1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION ){ 395 assert( ExprUseXList(p) ); 396 if( p->x.pList ){ 397 int i; 398 for(i=0; i<p->x.pList->nExpr; i++){ 399 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 400 } 401 } 402 } 403 sqlite3SetJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_COLUMN && p->iTable==iTable ){ 421 ExprClearProperty(p, EP_CanBeNull); 422 } 423 if( p->op==TK_FUNCTION ){ 424 assert( ExprUseXList(p) ); 425 if( p->x.pList ){ 426 int i; 427 for(i=0; i<p->x.pList->nExpr; i++){ 428 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 429 } 430 } 431 } 432 unsetJoinExpr(p->pLeft, iTable); 433 p = p->pRight; 434 } 435 } 436 437 /* 438 ** This routine processes the join information for a SELECT statement. 439 ** ON and USING clauses are converted into extra terms of the WHERE clause. 440 ** NATURAL joins also create extra WHERE clause terms. 441 ** 442 ** The terms of a FROM clause are contained in the Select.pSrc structure. 443 ** The left most table is the first entry in Select.pSrc. The right-most 444 ** table is the last entry. The join operator is held in the entry to 445 ** the left. Thus entry 0 contains the join operator for the join between 446 ** entries 0 and 1. Any ON or USING clauses associated with the join are 447 ** also attached to the left entry. 448 ** 449 ** This routine returns the number of errors encountered. 450 */ 451 static int sqliteProcessJoin(Parse *pParse, Select *p){ 452 SrcList *pSrc; /* All tables in the FROM clause */ 453 int i, j; /* Loop counters */ 454 SrcItem *pLeft; /* Left table being joined */ 455 SrcItem *pRight; /* Right table being joined */ 456 457 pSrc = p->pSrc; 458 pLeft = &pSrc->a[0]; 459 pRight = &pLeft[1]; 460 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 461 Table *pRightTab = pRight->pTab; 462 int isOuter; 463 464 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 465 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 466 467 /* When the NATURAL keyword is present, add WHERE clause terms for 468 ** every column that the two tables have in common. 469 */ 470 if( pRight->fg.jointype & JT_NATURAL ){ 471 if( pRight->pOn || pRight->pUsing ){ 472 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 473 "an ON or USING clause", 0); 474 return 1; 475 } 476 for(j=0; j<pRightTab->nCol; j++){ 477 char *zName; /* Name of column in the right table */ 478 int iLeft; /* Matching left table */ 479 int iLeftCol; /* Matching column in the left table */ 480 481 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 482 zName = pRightTab->aCol[j].zCnName; 483 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 490 /* Disallow both ON and USING clauses in the same join 491 */ 492 if( pRight->pOn && pRight->pUsing ){ 493 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 494 "clauses in the same join"); 495 return 1; 496 } 497 498 /* Add the ON clause to the end of the WHERE clause, connected by 499 ** an AND operator. 500 */ 501 if( pRight->pOn ){ 502 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 503 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 504 pRight->pOn = 0; 505 } 506 507 /* Create extra terms on the WHERE clause for each column named 508 ** in the USING clause. Example: If the two tables to be joined are 509 ** A and B and the USING clause names X, Y, and Z, then add this 510 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 511 ** Report an error if any column mentioned in the USING clause is 512 ** not contained in both tables to be joined. 513 */ 514 if( pRight->pUsing ){ 515 IdList *pList = pRight->pUsing; 516 for(j=0; j<pList->nId; j++){ 517 char *zName; /* Name of the term in the USING clause */ 518 int iLeft; /* Table on the left with matching column name */ 519 int iLeftCol; /* Column number of matching column on the left */ 520 int iRightCol; /* Column number of matching column on the right */ 521 522 zName = pList->a[j].zName; 523 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 524 if( iRightCol<0 525 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 526 ){ 527 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 528 "not present in both tables", zName); 529 return 1; 530 } 531 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 532 isOuter, &p->pWhere); 533 } 534 } 535 } 536 return 0; 537 } 538 539 /* 540 ** An instance of this object holds information (beyond pParse and pSelect) 541 ** needed to load the next result row that is to be added to the sorter. 542 */ 543 typedef struct RowLoadInfo RowLoadInfo; 544 struct RowLoadInfo { 545 int regResult; /* Store results in array of registers here */ 546 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 548 ExprList *pExtra; /* Extra columns needed by sorter refs */ 549 int regExtraResult; /* Where to load the extra columns */ 550 #endif 551 }; 552 553 /* 554 ** This routine does the work of loading query data into an array of 555 ** registers so that it can be added to the sorter. 556 */ 557 static void innerLoopLoadRow( 558 Parse *pParse, /* Statement under construction */ 559 Select *pSelect, /* The query being coded */ 560 RowLoadInfo *pInfo /* Info needed to complete the row load */ 561 ){ 562 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 563 0, pInfo->ecelFlags); 564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 565 if( pInfo->pExtra ){ 566 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 567 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 568 } 569 #endif 570 } 571 572 /* 573 ** Code the OP_MakeRecord instruction that generates the entry to be 574 ** added into the sorter. 575 ** 576 ** Return the register in which the result is stored. 577 */ 578 static int makeSorterRecord( 579 Parse *pParse, 580 SortCtx *pSort, 581 Select *pSelect, 582 int regBase, 583 int nBase 584 ){ 585 int nOBSat = pSort->nOBSat; 586 Vdbe *v = pParse->pVdbe; 587 int regOut = ++pParse->nMem; 588 if( pSort->pDeferredRowLoad ){ 589 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 590 } 591 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 592 return regOut; 593 } 594 595 /* 596 ** Generate code that will push the record in registers regData 597 ** through regData+nData-1 onto the sorter. 598 */ 599 static void pushOntoSorter( 600 Parse *pParse, /* Parser context */ 601 SortCtx *pSort, /* Information about the ORDER BY clause */ 602 Select *pSelect, /* The whole SELECT statement */ 603 int regData, /* First register holding data to be sorted */ 604 int regOrigData, /* First register holding data before packing */ 605 int nData, /* Number of elements in the regData data array */ 606 int nPrefixReg /* No. of reg prior to regData available for use */ 607 ){ 608 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 609 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 610 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 611 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 612 int regBase; /* Regs for sorter record */ 613 int regRecord = 0; /* Assembled sorter record */ 614 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 615 int op; /* Opcode to add sorter record to sorter */ 616 int iLimit; /* LIMIT counter */ 617 int iSkip = 0; /* End of the sorter insert loop */ 618 619 assert( bSeq==0 || bSeq==1 ); 620 621 /* Three cases: 622 ** (1) The data to be sorted has already been packed into a Record 623 ** by a prior OP_MakeRecord. In this case nData==1 and regData 624 ** will be completely unrelated to regOrigData. 625 ** (2) All output columns are included in the sort record. In that 626 ** case regData==regOrigData. 627 ** (3) Some output columns are omitted from the sort record due to 628 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 629 ** SQLITE_ECEL_OMITREF optimization, or due to the 630 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 631 ** regOrigData is 0 to prevent this routine from trying to copy 632 ** values that might not yet exist. 633 */ 634 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 635 636 if( nPrefixReg ){ 637 assert( nPrefixReg==nExpr+bSeq ); 638 regBase = regData - nPrefixReg; 639 }else{ 640 regBase = pParse->nMem + 1; 641 pParse->nMem += nBase; 642 } 643 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 644 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 645 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 646 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 647 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 648 if( bSeq ){ 649 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 650 } 651 if( nPrefixReg==0 && nData>0 ){ 652 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 653 } 654 if( nOBSat>0 ){ 655 int regPrevKey; /* The first nOBSat columns of the previous row */ 656 int addrFirst; /* Address of the OP_IfNot opcode */ 657 int addrJmp; /* Address of the OP_Jump opcode */ 658 VdbeOp *pOp; /* Opcode that opens the sorter */ 659 int nKey; /* Number of sorting key columns, including OP_Sequence */ 660 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 661 662 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 663 regPrevKey = pParse->nMem+1; 664 pParse->nMem += pSort->nOBSat; 665 nKey = nExpr - pSort->nOBSat + bSeq; 666 if( bSeq ){ 667 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 668 }else{ 669 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 670 } 671 VdbeCoverage(v); 672 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 673 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 674 if( pParse->db->mallocFailed ) return; 675 pOp->p2 = nKey + nData; 676 pKI = pOp->p4.pKeyInfo; 677 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 678 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 679 testcase( pKI->nAllField > pKI->nKeyField+2 ); 680 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 681 pKI->nAllField-pKI->nKeyField-1); 682 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 683 addrJmp = sqlite3VdbeCurrentAddr(v); 684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 685 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 686 pSort->regReturn = ++pParse->nMem; 687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 689 if( iLimit ){ 690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 691 VdbeCoverage(v); 692 } 693 sqlite3VdbeJumpHere(v, addrFirst); 694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 695 sqlite3VdbeJumpHere(v, addrJmp); 696 } 697 if( iLimit ){ 698 /* At this point the values for the new sorter entry are stored 699 ** in an array of registers. They need to be composed into a record 700 ** and inserted into the sorter if either (a) there are currently 701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 702 ** the largest record currently in the sorter. If (b) is true and there 703 ** are already LIMIT+OFFSET items in the sorter, delete the largest 704 ** entry before inserting the new one. This way there are never more 705 ** than LIMIT+OFFSET items in the sorter. 706 ** 707 ** If the new record does not need to be inserted into the sorter, 708 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 709 ** value is not zero, then it is a label of where to jump. Otherwise, 710 ** just bypass the row insert logic. See the header comment on the 711 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 712 */ 713 int iCsr = pSort->iECursor; 714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 715 VdbeCoverage(v); 716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 719 VdbeCoverage(v); 720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 721 } 722 if( regRecord==0 ){ 723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 724 } 725 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 726 op = OP_SorterInsert; 727 }else{ 728 op = OP_IdxInsert; 729 } 730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 731 regBase+nOBSat, nBase-nOBSat); 732 if( iSkip ){ 733 sqlite3VdbeChangeP2(v, iSkip, 734 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 735 } 736 } 737 738 /* 739 ** Add code to implement the OFFSET 740 */ 741 static void codeOffset( 742 Vdbe *v, /* Generate code into this VM */ 743 int iOffset, /* Register holding the offset counter */ 744 int iContinue /* Jump here to skip the current record */ 745 ){ 746 if( iOffset>0 ){ 747 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 748 VdbeComment((v, "OFFSET")); 749 } 750 } 751 752 /* 753 ** Add code that will check to make sure the array of registers starting at 754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 756 ** are available. Which is used depends on the value of parameter eTnctType, 757 ** as follows: 758 ** 759 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 760 ** Build an ephemeral table that contains all entries seen before and 761 ** skip entries which have been seen before. 762 ** 763 ** Parameter iTab is the cursor number of an ephemeral table that must 764 ** be opened before the VM code generated by this routine is executed. 765 ** The ephemeral cursor table is queried for a record identical to the 766 ** record formed by the current array of registers. If one is found, 767 ** jump to VM address addrRepeat. Otherwise, insert a new record into 768 ** the ephemeral cursor and proceed. 769 ** 770 ** The returned value in this case is a copy of parameter iTab. 771 ** 772 ** WHERE_DISTINCT_ORDERED: 773 ** In this case rows are being delivered sorted order. The ephermal 774 ** table is not required. Instead, the current set of values 775 ** is compared against previous row. If they match, the new row 776 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 777 ** the VM program proceeds with processing the new row. 778 ** 779 ** The returned value in this case is the register number of the first 780 ** in an array of registers used to store the previous result row so that 781 ** it can be compared to the next. The caller must ensure that this 782 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 783 ** will take care of this initialization.) 784 ** 785 ** WHERE_DISTINCT_UNIQUE: 786 ** In this case it has already been determined that the rows are distinct. 787 ** No special action is required. The return value is zero. 788 ** 789 ** Parameter pEList is the list of expressions used to generated the 790 ** contents of each row. It is used by this routine to determine (a) 791 ** how many elements there are in the array of registers and (b) the 792 ** collation sequences that should be used for the comparisons if 793 ** eTnctType is WHERE_DISTINCT_ORDERED. 794 */ 795 static int codeDistinct( 796 Parse *pParse, /* Parsing and code generating context */ 797 int eTnctType, /* WHERE_DISTINCT_* value */ 798 int iTab, /* A sorting index used to test for distinctness */ 799 int addrRepeat, /* Jump to here if not distinct */ 800 ExprList *pEList, /* Expression for each element */ 801 int regElem /* First element */ 802 ){ 803 int iRet = 0; 804 int nResultCol = pEList->nExpr; 805 Vdbe *v = pParse->pVdbe; 806 807 switch( eTnctType ){ 808 case WHERE_DISTINCT_ORDERED: { 809 int i; 810 int iJump; /* Jump destination */ 811 int regPrev; /* Previous row content */ 812 813 /* Allocate space for the previous row */ 814 iRet = regPrev = pParse->nMem+1; 815 pParse->nMem += nResultCol; 816 817 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 818 for(i=0; i<nResultCol; i++){ 819 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 820 if( i<nResultCol-1 ){ 821 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 822 VdbeCoverage(v); 823 }else{ 824 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 825 VdbeCoverage(v); 826 } 827 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 828 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 829 } 830 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 831 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 832 break; 833 } 834 835 case WHERE_DISTINCT_UNIQUE: { 836 /* nothing to do */ 837 break; 838 } 839 840 default: { 841 int r1 = sqlite3GetTempReg(pParse); 842 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 843 VdbeCoverage(v); 844 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 845 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 846 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 847 sqlite3ReleaseTempReg(pParse, r1); 848 iRet = iTab; 849 break; 850 } 851 } 852 853 return iRet; 854 } 855 856 /* 857 ** This routine runs after codeDistinct(). It makes necessary 858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 859 ** routine made use of. This processing must be done separately since 860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 861 ** laid down. 862 ** 863 ** WHERE_DISTINCT_NOOP: 864 ** WHERE_DISTINCT_UNORDERED: 865 ** 866 ** No adjustments necessary. This function is a no-op. 867 ** 868 ** WHERE_DISTINCT_UNIQUE: 869 ** 870 ** The ephemeral table is not needed. So change the 871 ** OP_OpenEphemeral opcode into an OP_Noop. 872 ** 873 ** WHERE_DISTINCT_ORDERED: 874 ** 875 ** The ephemeral table is not needed. But we do need register 876 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 877 ** into an OP_Null on the iVal register. 878 */ 879 static void fixDistinctOpenEph( 880 Parse *pParse, /* Parsing and code generating context */ 881 int eTnctType, /* WHERE_DISTINCT_* value */ 882 int iVal, /* Value returned by codeDistinct() */ 883 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 884 ){ 885 if( pParse->nErr==0 886 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 887 ){ 888 Vdbe *v = pParse->pVdbe; 889 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 890 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 891 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 892 } 893 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 894 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 895 ** bit on the first register of the previous value. This will cause the 896 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 897 ** the loop even if the first row is all NULLs. */ 898 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 899 pOp->opcode = OP_Null; 900 pOp->p1 = 1; 901 pOp->p2 = iVal; 902 } 903 } 904 } 905 906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 907 /* 908 ** This function is called as part of inner-loop generation for a SELECT 909 ** statement with an ORDER BY that is not optimized by an index. It 910 ** determines the expressions, if any, that the sorter-reference 911 ** optimization should be used for. The sorter-reference optimization 912 ** is used for SELECT queries like: 913 ** 914 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 915 ** 916 ** If the optimization is used for expression "bigblob", then instead of 917 ** storing values read from that column in the sorter records, the PK of 918 ** the row from table t1 is stored instead. Then, as records are extracted from 919 ** the sorter to return to the user, the required value of bigblob is 920 ** retrieved directly from table t1. If the values are very large, this 921 ** can be more efficient than storing them directly in the sorter records. 922 ** 923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 924 ** for which the sorter-reference optimization should be enabled. 925 ** Additionally, the pSort->aDefer[] array is populated with entries 926 ** for all cursors required to evaluate all selected expressions. Finally. 927 ** output variable (*ppExtra) is set to an expression list containing 928 ** expressions for all extra PK values that should be stored in the 929 ** sorter records. 930 */ 931 static void selectExprDefer( 932 Parse *pParse, /* Leave any error here */ 933 SortCtx *pSort, /* Sorter context */ 934 ExprList *pEList, /* Expressions destined for sorter */ 935 ExprList **ppExtra /* Expressions to append to sorter record */ 936 ){ 937 int i; 938 int nDefer = 0; 939 ExprList *pExtra = 0; 940 for(i=0; i<pEList->nExpr; i++){ 941 struct ExprList_item *pItem = &pEList->a[i]; 942 if( pItem->u.x.iOrderByCol==0 ){ 943 Expr *pExpr = pItem->pExpr; 944 Table *pTab; 945 assert( ExprUseYTab(pExpr) ); 946 pTab = pExpr->y.pTab; 947 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 948 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 949 ){ 950 int j; 951 for(j=0; j<nDefer; j++){ 952 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 953 } 954 if( j==nDefer ){ 955 if( nDefer==ArraySize(pSort->aDefer) ){ 956 continue; 957 }else{ 958 int nKey = 1; 959 int k; 960 Index *pPk = 0; 961 if( !HasRowid(pTab) ){ 962 pPk = sqlite3PrimaryKeyIndex(pTab); 963 nKey = pPk->nKeyCol; 964 } 965 for(k=0; k<nKey; k++){ 966 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 967 if( pNew ){ 968 pNew->iTable = pExpr->iTable; 969 assert( ExprUseYTab(pNew) ); 970 pNew->y.pTab = pExpr->y.pTab; 971 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 972 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 973 } 974 } 975 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 976 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 977 pSort->aDefer[nDefer].nKey = nKey; 978 nDefer++; 979 } 980 } 981 pItem->bSorterRef = 1; 982 } 983 } 984 } 985 pSort->nDefer = (u8)nDefer; 986 *ppExtra = pExtra; 987 } 988 #endif 989 990 /* 991 ** This routine generates the code for the inside of the inner loop 992 ** of a SELECT. 993 ** 994 ** If srcTab is negative, then the p->pEList expressions 995 ** are evaluated in order to get the data for this row. If srcTab is 996 ** zero or more, then data is pulled from srcTab and p->pEList is used only 997 ** to get the number of columns and the collation sequence for each column. 998 */ 999 static void selectInnerLoop( 1000 Parse *pParse, /* The parser context */ 1001 Select *p, /* The complete select statement being coded */ 1002 int srcTab, /* Pull data from this table if non-negative */ 1003 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1004 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1005 SelectDest *pDest, /* How to dispose of the results */ 1006 int iContinue, /* Jump here to continue with next row */ 1007 int iBreak /* Jump here to break out of the inner loop */ 1008 ){ 1009 Vdbe *v = pParse->pVdbe; 1010 int i; 1011 int hasDistinct; /* True if the DISTINCT keyword is present */ 1012 int eDest = pDest->eDest; /* How to dispose of results */ 1013 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1014 int nResultCol; /* Number of result columns */ 1015 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1016 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1017 1018 /* Usually, regResult is the first cell in an array of memory cells 1019 ** containing the current result row. In this case regOrig is set to the 1020 ** same value. However, if the results are being sent to the sorter, the 1021 ** values for any expressions that are also part of the sort-key are omitted 1022 ** from this array. In this case regOrig is set to zero. */ 1023 int regResult; /* Start of memory holding current results */ 1024 int regOrig; /* Start of memory holding full result (or 0) */ 1025 1026 assert( v ); 1027 assert( p->pEList!=0 ); 1028 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1029 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1030 if( pSort==0 && !hasDistinct ){ 1031 assert( iContinue!=0 ); 1032 codeOffset(v, p->iOffset, iContinue); 1033 } 1034 1035 /* Pull the requested columns. 1036 */ 1037 nResultCol = p->pEList->nExpr; 1038 1039 if( pDest->iSdst==0 ){ 1040 if( pSort ){ 1041 nPrefixReg = pSort->pOrderBy->nExpr; 1042 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1043 pParse->nMem += nPrefixReg; 1044 } 1045 pDest->iSdst = pParse->nMem+1; 1046 pParse->nMem += nResultCol; 1047 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1048 /* This is an error condition that can result, for example, when a SELECT 1049 ** on the right-hand side of an INSERT contains more result columns than 1050 ** there are columns in the table on the left. The error will be caught 1051 ** and reported later. But we need to make sure enough memory is allocated 1052 ** to avoid other spurious errors in the meantime. */ 1053 pParse->nMem += nResultCol; 1054 } 1055 pDest->nSdst = nResultCol; 1056 regOrig = regResult = pDest->iSdst; 1057 if( srcTab>=0 ){ 1058 for(i=0; i<nResultCol; i++){ 1059 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1060 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1061 } 1062 }else if( eDest!=SRT_Exists ){ 1063 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1064 ExprList *pExtra = 0; 1065 #endif 1066 /* If the destination is an EXISTS(...) expression, the actual 1067 ** values returned by the SELECT are not required. 1068 */ 1069 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1070 ExprList *pEList; 1071 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1072 ecelFlags = SQLITE_ECEL_DUP; 1073 }else{ 1074 ecelFlags = 0; 1075 } 1076 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1077 /* For each expression in p->pEList that is a copy of an expression in 1078 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1079 ** iOrderByCol value to one more than the index of the ORDER BY 1080 ** expression within the sort-key that pushOntoSorter() will generate. 1081 ** This allows the p->pEList field to be omitted from the sorted record, 1082 ** saving space and CPU cycles. */ 1083 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1084 1085 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1086 int j; 1087 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1088 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1089 } 1090 } 1091 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1092 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1093 if( pExtra && pParse->db->mallocFailed==0 ){ 1094 /* If there are any extra PK columns to add to the sorter records, 1095 ** allocate extra memory cells and adjust the OpenEphemeral 1096 ** instruction to account for the larger records. This is only 1097 ** required if there are one or more WITHOUT ROWID tables with 1098 ** composite primary keys in the SortCtx.aDefer[] array. */ 1099 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1100 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1101 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1102 pParse->nMem += pExtra->nExpr; 1103 } 1104 #endif 1105 1106 /* Adjust nResultCol to account for columns that are omitted 1107 ** from the sorter by the optimizations in this branch */ 1108 pEList = p->pEList; 1109 for(i=0; i<pEList->nExpr; i++){ 1110 if( pEList->a[i].u.x.iOrderByCol>0 1111 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1112 || pEList->a[i].bSorterRef 1113 #endif 1114 ){ 1115 nResultCol--; 1116 regOrig = 0; 1117 } 1118 } 1119 1120 testcase( regOrig ); 1121 testcase( eDest==SRT_Set ); 1122 testcase( eDest==SRT_Mem ); 1123 testcase( eDest==SRT_Coroutine ); 1124 testcase( eDest==SRT_Output ); 1125 assert( eDest==SRT_Set || eDest==SRT_Mem 1126 || eDest==SRT_Coroutine || eDest==SRT_Output 1127 || eDest==SRT_Upfrom ); 1128 } 1129 sRowLoadInfo.regResult = regResult; 1130 sRowLoadInfo.ecelFlags = ecelFlags; 1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1132 sRowLoadInfo.pExtra = pExtra; 1133 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1134 if( pExtra ) nResultCol += pExtra->nExpr; 1135 #endif 1136 if( p->iLimit 1137 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1138 && nPrefixReg>0 1139 ){ 1140 assert( pSort!=0 ); 1141 assert( hasDistinct==0 ); 1142 pSort->pDeferredRowLoad = &sRowLoadInfo; 1143 regOrig = 0; 1144 }else{ 1145 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1146 } 1147 } 1148 1149 /* If the DISTINCT keyword was present on the SELECT statement 1150 ** and this row has been seen before, then do not make this row 1151 ** part of the result. 1152 */ 1153 if( hasDistinct ){ 1154 int eType = pDistinct->eTnctType; 1155 int iTab = pDistinct->tabTnct; 1156 assert( nResultCol==p->pEList->nExpr ); 1157 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1158 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1159 if( pSort==0 ){ 1160 codeOffset(v, p->iOffset, iContinue); 1161 } 1162 } 1163 1164 switch( eDest ){ 1165 /* In this mode, write each query result to the key of the temporary 1166 ** table iParm. 1167 */ 1168 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1169 case SRT_Union: { 1170 int r1; 1171 r1 = sqlite3GetTempReg(pParse); 1172 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1173 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1174 sqlite3ReleaseTempReg(pParse, r1); 1175 break; 1176 } 1177 1178 /* Construct a record from the query result, but instead of 1179 ** saving that record, use it as a key to delete elements from 1180 ** the temporary table iParm. 1181 */ 1182 case SRT_Except: { 1183 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1184 break; 1185 } 1186 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1187 1188 /* Store the result as data using a unique key. 1189 */ 1190 case SRT_Fifo: 1191 case SRT_DistFifo: 1192 case SRT_Table: 1193 case SRT_EphemTab: { 1194 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1195 testcase( eDest==SRT_Table ); 1196 testcase( eDest==SRT_EphemTab ); 1197 testcase( eDest==SRT_Fifo ); 1198 testcase( eDest==SRT_DistFifo ); 1199 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1200 #ifndef SQLITE_OMIT_CTE 1201 if( eDest==SRT_DistFifo ){ 1202 /* If the destination is DistFifo, then cursor (iParm+1) is open 1203 ** on an ephemeral index. If the current row is already present 1204 ** in the index, do not write it to the output. If not, add the 1205 ** current row to the index and proceed with writing it to the 1206 ** output table as well. */ 1207 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1208 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1209 VdbeCoverage(v); 1210 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1211 assert( pSort==0 ); 1212 } 1213 #endif 1214 if( pSort ){ 1215 assert( regResult==regOrig ); 1216 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1217 }else{ 1218 int r2 = sqlite3GetTempReg(pParse); 1219 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1220 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1221 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1222 sqlite3ReleaseTempReg(pParse, r2); 1223 } 1224 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1225 break; 1226 } 1227 1228 case SRT_Upfrom: { 1229 if( pSort ){ 1230 pushOntoSorter( 1231 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1232 }else{ 1233 int i2 = pDest->iSDParm2; 1234 int r1 = sqlite3GetTempReg(pParse); 1235 1236 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1237 ** might still be trying to return one row, because that is what 1238 ** aggregates do. Don't record that empty row in the output table. */ 1239 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1240 1241 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1242 regResult+(i2<0), nResultCol-(i2<0), r1); 1243 if( i2<0 ){ 1244 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1245 }else{ 1246 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1247 } 1248 } 1249 break; 1250 } 1251 1252 #ifndef SQLITE_OMIT_SUBQUERY 1253 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1254 ** then there should be a single item on the stack. Write this 1255 ** item into the set table with bogus data. 1256 */ 1257 case SRT_Set: { 1258 if( pSort ){ 1259 /* At first glance you would think we could optimize out the 1260 ** ORDER BY in this case since the order of entries in the set 1261 ** does not matter. But there might be a LIMIT clause, in which 1262 ** case the order does matter */ 1263 pushOntoSorter( 1264 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1265 }else{ 1266 int r1 = sqlite3GetTempReg(pParse); 1267 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1268 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1269 r1, pDest->zAffSdst, nResultCol); 1270 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1271 sqlite3ReleaseTempReg(pParse, r1); 1272 } 1273 break; 1274 } 1275 1276 1277 /* If any row exist in the result set, record that fact and abort. 1278 */ 1279 case SRT_Exists: { 1280 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1281 /* The LIMIT clause will terminate the loop for us */ 1282 break; 1283 } 1284 1285 /* If this is a scalar select that is part of an expression, then 1286 ** store the results in the appropriate memory cell or array of 1287 ** memory cells and break out of the scan loop. 1288 */ 1289 case SRT_Mem: { 1290 if( pSort ){ 1291 assert( nResultCol<=pDest->nSdst ); 1292 pushOntoSorter( 1293 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1294 }else{ 1295 assert( nResultCol==pDest->nSdst ); 1296 assert( regResult==iParm ); 1297 /* The LIMIT clause will jump out of the loop for us */ 1298 } 1299 break; 1300 } 1301 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1302 1303 case SRT_Coroutine: /* Send data to a co-routine */ 1304 case SRT_Output: { /* Return the results */ 1305 testcase( eDest==SRT_Coroutine ); 1306 testcase( eDest==SRT_Output ); 1307 if( pSort ){ 1308 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1309 nPrefixReg); 1310 }else if( eDest==SRT_Coroutine ){ 1311 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1312 }else{ 1313 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1314 } 1315 break; 1316 } 1317 1318 #ifndef SQLITE_OMIT_CTE 1319 /* Write the results into a priority queue that is order according to 1320 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1321 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1322 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1323 ** final OP_Sequence column. The last column is the record as a blob. 1324 */ 1325 case SRT_DistQueue: 1326 case SRT_Queue: { 1327 int nKey; 1328 int r1, r2, r3; 1329 int addrTest = 0; 1330 ExprList *pSO; 1331 pSO = pDest->pOrderBy; 1332 assert( pSO ); 1333 nKey = pSO->nExpr; 1334 r1 = sqlite3GetTempReg(pParse); 1335 r2 = sqlite3GetTempRange(pParse, nKey+2); 1336 r3 = r2+nKey+1; 1337 if( eDest==SRT_DistQueue ){ 1338 /* If the destination is DistQueue, then cursor (iParm+1) is open 1339 ** on a second ephemeral index that holds all values every previously 1340 ** added to the queue. */ 1341 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1342 regResult, nResultCol); 1343 VdbeCoverage(v); 1344 } 1345 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1346 if( eDest==SRT_DistQueue ){ 1347 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1348 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1349 } 1350 for(i=0; i<nKey; i++){ 1351 sqlite3VdbeAddOp2(v, OP_SCopy, 1352 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1353 r2+i); 1354 } 1355 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1356 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1357 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1358 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1359 sqlite3ReleaseTempReg(pParse, r1); 1360 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1361 break; 1362 } 1363 #endif /* SQLITE_OMIT_CTE */ 1364 1365 1366 1367 #if !defined(SQLITE_OMIT_TRIGGER) 1368 /* Discard the results. This is used for SELECT statements inside 1369 ** the body of a TRIGGER. The purpose of such selects is to call 1370 ** user-defined functions that have side effects. We do not care 1371 ** about the actual results of the select. 1372 */ 1373 default: { 1374 assert( eDest==SRT_Discard ); 1375 break; 1376 } 1377 #endif 1378 } 1379 1380 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1381 ** there is a sorter, in which case the sorter has already limited 1382 ** the output for us. 1383 */ 1384 if( pSort==0 && p->iLimit ){ 1385 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1386 } 1387 } 1388 1389 /* 1390 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1391 ** X extra columns. 1392 */ 1393 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1394 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1395 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1396 if( p ){ 1397 p->aSortFlags = (u8*)&p->aColl[N+X]; 1398 p->nKeyField = (u16)N; 1399 p->nAllField = (u16)(N+X); 1400 p->enc = ENC(db); 1401 p->db = db; 1402 p->nRef = 1; 1403 memset(&p[1], 0, nExtra); 1404 }else{ 1405 sqlite3OomFault(db); 1406 } 1407 return p; 1408 } 1409 1410 /* 1411 ** Deallocate a KeyInfo object 1412 */ 1413 void sqlite3KeyInfoUnref(KeyInfo *p){ 1414 if( p ){ 1415 assert( p->nRef>0 ); 1416 p->nRef--; 1417 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1418 } 1419 } 1420 1421 /* 1422 ** Make a new pointer to a KeyInfo object 1423 */ 1424 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1425 if( p ){ 1426 assert( p->nRef>0 ); 1427 p->nRef++; 1428 } 1429 return p; 1430 } 1431 1432 #ifdef SQLITE_DEBUG 1433 /* 1434 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1435 ** can only be changed if this is just a single reference to the object. 1436 ** 1437 ** This routine is used only inside of assert() statements. 1438 */ 1439 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1440 #endif /* SQLITE_DEBUG */ 1441 1442 /* 1443 ** Given an expression list, generate a KeyInfo structure that records 1444 ** the collating sequence for each expression in that expression list. 1445 ** 1446 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1447 ** KeyInfo structure is appropriate for initializing a virtual index to 1448 ** implement that clause. If the ExprList is the result set of a SELECT 1449 ** then the KeyInfo structure is appropriate for initializing a virtual 1450 ** index to implement a DISTINCT test. 1451 ** 1452 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1453 ** function is responsible for seeing that this structure is eventually 1454 ** freed. 1455 */ 1456 KeyInfo *sqlite3KeyInfoFromExprList( 1457 Parse *pParse, /* Parsing context */ 1458 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1459 int iStart, /* Begin with this column of pList */ 1460 int nExtra /* Add this many extra columns to the end */ 1461 ){ 1462 int nExpr; 1463 KeyInfo *pInfo; 1464 struct ExprList_item *pItem; 1465 sqlite3 *db = pParse->db; 1466 int i; 1467 1468 nExpr = pList->nExpr; 1469 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1470 if( pInfo ){ 1471 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1472 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1473 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1474 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1475 } 1476 } 1477 return pInfo; 1478 } 1479 1480 /* 1481 ** Name of the connection operator, used for error messages. 1482 */ 1483 const char *sqlite3SelectOpName(int id){ 1484 char *z; 1485 switch( id ){ 1486 case TK_ALL: z = "UNION ALL"; break; 1487 case TK_INTERSECT: z = "INTERSECT"; break; 1488 case TK_EXCEPT: z = "EXCEPT"; break; 1489 default: z = "UNION"; break; 1490 } 1491 return z; 1492 } 1493 1494 #ifndef SQLITE_OMIT_EXPLAIN 1495 /* 1496 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1497 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1498 ** where the caption is of the form: 1499 ** 1500 ** "USE TEMP B-TREE FOR xxx" 1501 ** 1502 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1503 ** is determined by the zUsage argument. 1504 */ 1505 static void explainTempTable(Parse *pParse, const char *zUsage){ 1506 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1507 } 1508 1509 /* 1510 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1511 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1512 ** in sqlite3Select() to assign values to structure member variables that 1513 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1514 ** code with #ifndef directives. 1515 */ 1516 # define explainSetInteger(a, b) a = b 1517 1518 #else 1519 /* No-op versions of the explainXXX() functions and macros. */ 1520 # define explainTempTable(y,z) 1521 # define explainSetInteger(y,z) 1522 #endif 1523 1524 1525 /* 1526 ** If the inner loop was generated using a non-null pOrderBy argument, 1527 ** then the results were placed in a sorter. After the loop is terminated 1528 ** we need to run the sorter and output the results. The following 1529 ** routine generates the code needed to do that. 1530 */ 1531 static void generateSortTail( 1532 Parse *pParse, /* Parsing context */ 1533 Select *p, /* The SELECT statement */ 1534 SortCtx *pSort, /* Information on the ORDER BY clause */ 1535 int nColumn, /* Number of columns of data */ 1536 SelectDest *pDest /* Write the sorted results here */ 1537 ){ 1538 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1539 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1540 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1541 int addr; /* Top of output loop. Jump for Next. */ 1542 int addrOnce = 0; 1543 int iTab; 1544 ExprList *pOrderBy = pSort->pOrderBy; 1545 int eDest = pDest->eDest; 1546 int iParm = pDest->iSDParm; 1547 int regRow; 1548 int regRowid; 1549 int iCol; 1550 int nKey; /* Number of key columns in sorter record */ 1551 int iSortTab; /* Sorter cursor to read from */ 1552 int i; 1553 int bSeq; /* True if sorter record includes seq. no. */ 1554 int nRefKey = 0; 1555 struct ExprList_item *aOutEx = p->pEList->a; 1556 1557 assert( addrBreak<0 ); 1558 if( pSort->labelBkOut ){ 1559 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1560 sqlite3VdbeGoto(v, addrBreak); 1561 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1562 } 1563 1564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1565 /* Open any cursors needed for sorter-reference expressions */ 1566 for(i=0; i<pSort->nDefer; i++){ 1567 Table *pTab = pSort->aDefer[i].pTab; 1568 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1569 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1570 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1571 } 1572 #endif 1573 1574 iTab = pSort->iECursor; 1575 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1576 regRowid = 0; 1577 regRow = pDest->iSdst; 1578 }else{ 1579 regRowid = sqlite3GetTempReg(pParse); 1580 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1581 regRow = sqlite3GetTempReg(pParse); 1582 nColumn = 0; 1583 }else{ 1584 regRow = sqlite3GetTempRange(pParse, nColumn); 1585 } 1586 } 1587 nKey = pOrderBy->nExpr - pSort->nOBSat; 1588 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1589 int regSortOut = ++pParse->nMem; 1590 iSortTab = pParse->nTab++; 1591 if( pSort->labelBkOut ){ 1592 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1593 } 1594 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1595 nKey+1+nColumn+nRefKey); 1596 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1597 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1598 VdbeCoverage(v); 1599 codeOffset(v, p->iOffset, addrContinue); 1600 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1601 bSeq = 0; 1602 }else{ 1603 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1604 codeOffset(v, p->iOffset, addrContinue); 1605 iSortTab = iTab; 1606 bSeq = 1; 1607 } 1608 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1609 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1610 if( aOutEx[i].bSorterRef ) continue; 1611 #endif 1612 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1613 } 1614 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1615 if( pSort->nDefer ){ 1616 int iKey = iCol+1; 1617 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1618 1619 for(i=0; i<pSort->nDefer; i++){ 1620 int iCsr = pSort->aDefer[i].iCsr; 1621 Table *pTab = pSort->aDefer[i].pTab; 1622 int nKey = pSort->aDefer[i].nKey; 1623 1624 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1625 if( HasRowid(pTab) ){ 1626 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1627 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1628 sqlite3VdbeCurrentAddr(v)+1, regKey); 1629 }else{ 1630 int k; 1631 int iJmp; 1632 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1633 for(k=0; k<nKey; k++){ 1634 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1635 } 1636 iJmp = sqlite3VdbeCurrentAddr(v); 1637 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1638 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1639 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1640 } 1641 } 1642 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1643 } 1644 #endif 1645 for(i=nColumn-1; i>=0; i--){ 1646 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1647 if( aOutEx[i].bSorterRef ){ 1648 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1649 }else 1650 #endif 1651 { 1652 int iRead; 1653 if( aOutEx[i].u.x.iOrderByCol ){ 1654 iRead = aOutEx[i].u.x.iOrderByCol-1; 1655 }else{ 1656 iRead = iCol--; 1657 } 1658 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1659 VdbeComment((v, "%s", aOutEx[i].zEName)); 1660 } 1661 } 1662 switch( eDest ){ 1663 case SRT_Table: 1664 case SRT_EphemTab: { 1665 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1666 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1667 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1668 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1669 break; 1670 } 1671 #ifndef SQLITE_OMIT_SUBQUERY 1672 case SRT_Set: { 1673 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1674 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1675 pDest->zAffSdst, nColumn); 1676 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1677 break; 1678 } 1679 case SRT_Mem: { 1680 /* The LIMIT clause will terminate the loop for us */ 1681 break; 1682 } 1683 #endif 1684 case SRT_Upfrom: { 1685 int i2 = pDest->iSDParm2; 1686 int r1 = sqlite3GetTempReg(pParse); 1687 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1688 if( i2<0 ){ 1689 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1690 }else{ 1691 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1692 } 1693 break; 1694 } 1695 default: { 1696 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1697 testcase( eDest==SRT_Output ); 1698 testcase( eDest==SRT_Coroutine ); 1699 if( eDest==SRT_Output ){ 1700 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1701 }else{ 1702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1703 } 1704 break; 1705 } 1706 } 1707 if( regRowid ){ 1708 if( eDest==SRT_Set ){ 1709 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1710 }else{ 1711 sqlite3ReleaseTempReg(pParse, regRow); 1712 } 1713 sqlite3ReleaseTempReg(pParse, regRowid); 1714 } 1715 /* The bottom of the loop 1716 */ 1717 sqlite3VdbeResolveLabel(v, addrContinue); 1718 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1719 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1720 }else{ 1721 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1722 } 1723 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1724 sqlite3VdbeResolveLabel(v, addrBreak); 1725 } 1726 1727 /* 1728 ** Return a pointer to a string containing the 'declaration type' of the 1729 ** expression pExpr. The string may be treated as static by the caller. 1730 ** 1731 ** Also try to estimate the size of the returned value and return that 1732 ** result in *pEstWidth. 1733 ** 1734 ** The declaration type is the exact datatype definition extracted from the 1735 ** original CREATE TABLE statement if the expression is a column. The 1736 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1737 ** is considered a column can be complex in the presence of subqueries. The 1738 ** result-set expression in all of the following SELECT statements is 1739 ** considered a column by this function. 1740 ** 1741 ** SELECT col FROM tbl; 1742 ** SELECT (SELECT col FROM tbl; 1743 ** SELECT (SELECT col FROM tbl); 1744 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1745 ** 1746 ** The declaration type for any expression other than a column is NULL. 1747 ** 1748 ** This routine has either 3 or 6 parameters depending on whether or not 1749 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1750 */ 1751 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1752 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1753 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1754 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1755 #endif 1756 static const char *columnTypeImpl( 1757 NameContext *pNC, 1758 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1759 Expr *pExpr 1760 #else 1761 Expr *pExpr, 1762 const char **pzOrigDb, 1763 const char **pzOrigTab, 1764 const char **pzOrigCol 1765 #endif 1766 ){ 1767 char const *zType = 0; 1768 int j; 1769 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1770 char const *zOrigDb = 0; 1771 char const *zOrigTab = 0; 1772 char const *zOrigCol = 0; 1773 #endif 1774 1775 assert( pExpr!=0 ); 1776 assert( pNC->pSrcList!=0 ); 1777 switch( pExpr->op ){ 1778 case TK_COLUMN: { 1779 /* The expression is a column. Locate the table the column is being 1780 ** extracted from in NameContext.pSrcList. This table may be real 1781 ** database table or a subquery. 1782 */ 1783 Table *pTab = 0; /* Table structure column is extracted from */ 1784 Select *pS = 0; /* Select the column is extracted from */ 1785 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1786 while( pNC && !pTab ){ 1787 SrcList *pTabList = pNC->pSrcList; 1788 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1789 if( j<pTabList->nSrc ){ 1790 pTab = pTabList->a[j].pTab; 1791 pS = pTabList->a[j].pSelect; 1792 }else{ 1793 pNC = pNC->pNext; 1794 } 1795 } 1796 1797 if( pTab==0 ){ 1798 /* At one time, code such as "SELECT new.x" within a trigger would 1799 ** cause this condition to run. Since then, we have restructured how 1800 ** trigger code is generated and so this condition is no longer 1801 ** possible. However, it can still be true for statements like 1802 ** the following: 1803 ** 1804 ** CREATE TABLE t1(col INTEGER); 1805 ** SELECT (SELECT t1.col) FROM FROM t1; 1806 ** 1807 ** when columnType() is called on the expression "t1.col" in the 1808 ** sub-select. In this case, set the column type to NULL, even 1809 ** though it should really be "INTEGER". 1810 ** 1811 ** This is not a problem, as the column type of "t1.col" is never 1812 ** used. When columnType() is called on the expression 1813 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1814 ** branch below. */ 1815 break; 1816 } 1817 1818 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1819 if( pS ){ 1820 /* The "table" is actually a sub-select or a view in the FROM clause 1821 ** of the SELECT statement. Return the declaration type and origin 1822 ** data for the result-set column of the sub-select. 1823 */ 1824 if( iCol<pS->pEList->nExpr 1825 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1826 && iCol>=0 1827 #else 1828 && ALWAYS(iCol>=0) 1829 #endif 1830 ){ 1831 /* If iCol is less than zero, then the expression requests the 1832 ** rowid of the sub-select or view. This expression is legal (see 1833 ** test case misc2.2.2) - it always evaluates to NULL. 1834 */ 1835 NameContext sNC; 1836 Expr *p = pS->pEList->a[iCol].pExpr; 1837 sNC.pSrcList = pS->pSrc; 1838 sNC.pNext = pNC; 1839 sNC.pParse = pNC->pParse; 1840 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1841 } 1842 }else{ 1843 /* A real table or a CTE table */ 1844 assert( !pS ); 1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1846 if( iCol<0 ) iCol = pTab->iPKey; 1847 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1848 if( iCol<0 ){ 1849 zType = "INTEGER"; 1850 zOrigCol = "rowid"; 1851 }else{ 1852 zOrigCol = pTab->aCol[iCol].zCnName; 1853 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1854 } 1855 zOrigTab = pTab->zName; 1856 if( pNC->pParse && pTab->pSchema ){ 1857 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1858 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1859 } 1860 #else 1861 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1862 if( iCol<0 ){ 1863 zType = "INTEGER"; 1864 }else{ 1865 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1866 } 1867 #endif 1868 } 1869 break; 1870 } 1871 #ifndef SQLITE_OMIT_SUBQUERY 1872 case TK_SELECT: { 1873 /* The expression is a sub-select. Return the declaration type and 1874 ** origin info for the single column in the result set of the SELECT 1875 ** statement. 1876 */ 1877 NameContext sNC; 1878 Select *pS; 1879 Expr *p; 1880 assert( ExprUseXSelect(pExpr) ); 1881 pS = pExpr->x.pSelect; 1882 p = pS->pEList->a[0].pExpr; 1883 sNC.pSrcList = pS->pSrc; 1884 sNC.pNext = pNC; 1885 sNC.pParse = pNC->pParse; 1886 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1887 break; 1888 } 1889 #endif 1890 } 1891 1892 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1893 if( pzOrigDb ){ 1894 assert( pzOrigTab && pzOrigCol ); 1895 *pzOrigDb = zOrigDb; 1896 *pzOrigTab = zOrigTab; 1897 *pzOrigCol = zOrigCol; 1898 } 1899 #endif 1900 return zType; 1901 } 1902 1903 /* 1904 ** Generate code that will tell the VDBE the declaration types of columns 1905 ** in the result set. 1906 */ 1907 static void generateColumnTypes( 1908 Parse *pParse, /* Parser context */ 1909 SrcList *pTabList, /* List of tables */ 1910 ExprList *pEList /* Expressions defining the result set */ 1911 ){ 1912 #ifndef SQLITE_OMIT_DECLTYPE 1913 Vdbe *v = pParse->pVdbe; 1914 int i; 1915 NameContext sNC; 1916 sNC.pSrcList = pTabList; 1917 sNC.pParse = pParse; 1918 sNC.pNext = 0; 1919 for(i=0; i<pEList->nExpr; i++){ 1920 Expr *p = pEList->a[i].pExpr; 1921 const char *zType; 1922 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1923 const char *zOrigDb = 0; 1924 const char *zOrigTab = 0; 1925 const char *zOrigCol = 0; 1926 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1927 1928 /* The vdbe must make its own copy of the column-type and other 1929 ** column specific strings, in case the schema is reset before this 1930 ** virtual machine is deleted. 1931 */ 1932 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1933 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1934 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1935 #else 1936 zType = columnType(&sNC, p, 0, 0, 0); 1937 #endif 1938 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1939 } 1940 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1941 } 1942 1943 1944 /* 1945 ** Compute the column names for a SELECT statement. 1946 ** 1947 ** The only guarantee that SQLite makes about column names is that if the 1948 ** column has an AS clause assigning it a name, that will be the name used. 1949 ** That is the only documented guarantee. However, countless applications 1950 ** developed over the years have made baseless assumptions about column names 1951 ** and will break if those assumptions changes. Hence, use extreme caution 1952 ** when modifying this routine to avoid breaking legacy. 1953 ** 1954 ** See Also: sqlite3ColumnsFromExprList() 1955 ** 1956 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1957 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1958 ** applications should operate this way. Nevertheless, we need to support the 1959 ** other modes for legacy: 1960 ** 1961 ** short=OFF, full=OFF: Column name is the text of the expression has it 1962 ** originally appears in the SELECT statement. In 1963 ** other words, the zSpan of the result expression. 1964 ** 1965 ** short=ON, full=OFF: (This is the default setting). If the result 1966 ** refers directly to a table column, then the 1967 ** result column name is just the table column 1968 ** name: COLUMN. Otherwise use zSpan. 1969 ** 1970 ** full=ON, short=ANY: If the result refers directly to a table column, 1971 ** then the result column name with the table name 1972 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1973 */ 1974 void sqlite3GenerateColumnNames( 1975 Parse *pParse, /* Parser context */ 1976 Select *pSelect /* Generate column names for this SELECT statement */ 1977 ){ 1978 Vdbe *v = pParse->pVdbe; 1979 int i; 1980 Table *pTab; 1981 SrcList *pTabList; 1982 ExprList *pEList; 1983 sqlite3 *db = pParse->db; 1984 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1985 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1986 1987 #ifndef SQLITE_OMIT_EXPLAIN 1988 /* If this is an EXPLAIN, skip this step */ 1989 if( pParse->explain ){ 1990 return; 1991 } 1992 #endif 1993 1994 if( pParse->colNamesSet ) return; 1995 /* Column names are determined by the left-most term of a compound select */ 1996 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1997 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1998 pTabList = pSelect->pSrc; 1999 pEList = pSelect->pEList; 2000 assert( v!=0 ); 2001 assert( pTabList!=0 ); 2002 pParse->colNamesSet = 1; 2003 fullName = (db->flags & SQLITE_FullColNames)!=0; 2004 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2005 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2006 for(i=0; i<pEList->nExpr; i++){ 2007 Expr *p = pEList->a[i].pExpr; 2008 2009 assert( p!=0 ); 2010 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2011 assert( p->op!=TK_COLUMN 2012 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2013 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2014 /* An AS clause always takes first priority */ 2015 char *zName = pEList->a[i].zEName; 2016 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2017 }else if( srcName && p->op==TK_COLUMN ){ 2018 char *zCol; 2019 int iCol = p->iColumn; 2020 pTab = p->y.pTab; 2021 assert( pTab!=0 ); 2022 if( iCol<0 ) iCol = pTab->iPKey; 2023 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2024 if( iCol<0 ){ 2025 zCol = "rowid"; 2026 }else{ 2027 zCol = pTab->aCol[iCol].zCnName; 2028 } 2029 if( fullName ){ 2030 char *zName = 0; 2031 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2032 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2033 }else{ 2034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2035 } 2036 }else{ 2037 const char *z = pEList->a[i].zEName; 2038 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2040 } 2041 } 2042 generateColumnTypes(pParse, pTabList, pEList); 2043 } 2044 2045 /* 2046 ** Given an expression list (which is really the list of expressions 2047 ** that form the result set of a SELECT statement) compute appropriate 2048 ** column names for a table that would hold the expression list. 2049 ** 2050 ** All column names will be unique. 2051 ** 2052 ** Only the column names are computed. Column.zType, Column.zColl, 2053 ** and other fields of Column are zeroed. 2054 ** 2055 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2056 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2057 ** 2058 ** The only guarantee that SQLite makes about column names is that if the 2059 ** column has an AS clause assigning it a name, that will be the name used. 2060 ** That is the only documented guarantee. However, countless applications 2061 ** developed over the years have made baseless assumptions about column names 2062 ** and will break if those assumptions changes. Hence, use extreme caution 2063 ** when modifying this routine to avoid breaking legacy. 2064 ** 2065 ** See Also: sqlite3GenerateColumnNames() 2066 */ 2067 int sqlite3ColumnsFromExprList( 2068 Parse *pParse, /* Parsing context */ 2069 ExprList *pEList, /* Expr list from which to derive column names */ 2070 i16 *pnCol, /* Write the number of columns here */ 2071 Column **paCol /* Write the new column list here */ 2072 ){ 2073 sqlite3 *db = pParse->db; /* Database connection */ 2074 int i, j; /* Loop counters */ 2075 u32 cnt; /* Index added to make the name unique */ 2076 Column *aCol, *pCol; /* For looping over result columns */ 2077 int nCol; /* Number of columns in the result set */ 2078 char *zName; /* Column name */ 2079 int nName; /* Size of name in zName[] */ 2080 Hash ht; /* Hash table of column names */ 2081 Table *pTab; 2082 2083 sqlite3HashInit(&ht); 2084 if( pEList ){ 2085 nCol = pEList->nExpr; 2086 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2087 testcase( aCol==0 ); 2088 if( NEVER(nCol>32767) ) nCol = 32767; 2089 }else{ 2090 nCol = 0; 2091 aCol = 0; 2092 } 2093 assert( nCol==(i16)nCol ); 2094 *pnCol = nCol; 2095 *paCol = aCol; 2096 2097 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2098 /* Get an appropriate name for the column 2099 */ 2100 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2101 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2102 }else{ 2103 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2104 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2105 pColExpr = pColExpr->pRight; 2106 assert( pColExpr!=0 ); 2107 } 2108 if( pColExpr->op==TK_COLUMN 2109 && ALWAYS( ExprUseYTab(pColExpr) ) 2110 && (pTab = pColExpr->y.pTab)!=0 2111 ){ 2112 /* For columns use the column name name */ 2113 int iCol = pColExpr->iColumn; 2114 if( iCol<0 ) iCol = pTab->iPKey; 2115 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2116 }else if( pColExpr->op==TK_ID ){ 2117 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2118 zName = pColExpr->u.zToken; 2119 }else{ 2120 /* Use the original text of the column expression as its name */ 2121 zName = pEList->a[i].zEName; 2122 } 2123 } 2124 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2125 zName = sqlite3DbStrDup(db, zName); 2126 }else{ 2127 zName = sqlite3MPrintf(db,"column%d",i+1); 2128 } 2129 2130 /* Make sure the column name is unique. If the name is not unique, 2131 ** append an integer to the name so that it becomes unique. 2132 */ 2133 cnt = 0; 2134 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2135 nName = sqlite3Strlen30(zName); 2136 if( nName>0 ){ 2137 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2138 if( zName[j]==':' ) nName = j; 2139 } 2140 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2141 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2142 } 2143 pCol->zCnName = zName; 2144 pCol->hName = sqlite3StrIHash(zName); 2145 sqlite3ColumnPropertiesFromName(0, pCol); 2146 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2147 sqlite3OomFault(db); 2148 } 2149 } 2150 sqlite3HashClear(&ht); 2151 if( db->mallocFailed ){ 2152 for(j=0; j<i; j++){ 2153 sqlite3DbFree(db, aCol[j].zCnName); 2154 } 2155 sqlite3DbFree(db, aCol); 2156 *paCol = 0; 2157 *pnCol = 0; 2158 return SQLITE_NOMEM_BKPT; 2159 } 2160 return SQLITE_OK; 2161 } 2162 2163 /* 2164 ** Add type and collation information to a column list based on 2165 ** a SELECT statement. 2166 ** 2167 ** The column list presumably came from selectColumnNamesFromExprList(). 2168 ** The column list has only names, not types or collations. This 2169 ** routine goes through and adds the types and collations. 2170 ** 2171 ** This routine requires that all identifiers in the SELECT 2172 ** statement be resolved. 2173 */ 2174 void sqlite3SelectAddColumnTypeAndCollation( 2175 Parse *pParse, /* Parsing contexts */ 2176 Table *pTab, /* Add column type information to this table */ 2177 Select *pSelect, /* SELECT used to determine types and collations */ 2178 char aff /* Default affinity for columns */ 2179 ){ 2180 sqlite3 *db = pParse->db; 2181 NameContext sNC; 2182 Column *pCol; 2183 CollSeq *pColl; 2184 int i; 2185 Expr *p; 2186 struct ExprList_item *a; 2187 2188 assert( pSelect!=0 ); 2189 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2190 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2191 if( db->mallocFailed ) return; 2192 memset(&sNC, 0, sizeof(sNC)); 2193 sNC.pSrcList = pSelect->pSrc; 2194 a = pSelect->pEList->a; 2195 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2196 const char *zType; 2197 int n, m; 2198 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2199 p = a[i].pExpr; 2200 zType = columnType(&sNC, p, 0, 0, 0); 2201 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2202 pCol->affinity = sqlite3ExprAffinity(p); 2203 if( zType ){ 2204 m = sqlite3Strlen30(zType); 2205 n = sqlite3Strlen30(pCol->zCnName); 2206 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2207 if( pCol->zCnName ){ 2208 memcpy(&pCol->zCnName[n+1], zType, m+1); 2209 pCol->colFlags |= COLFLAG_HASTYPE; 2210 } 2211 } 2212 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2213 pColl = sqlite3ExprCollSeq(pParse, p); 2214 if( pColl ){ 2215 assert( pTab->pIndex==0 ); 2216 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2217 } 2218 } 2219 pTab->szTabRow = 1; /* Any non-zero value works */ 2220 } 2221 2222 /* 2223 ** Given a SELECT statement, generate a Table structure that describes 2224 ** the result set of that SELECT. 2225 */ 2226 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2227 Table *pTab; 2228 sqlite3 *db = pParse->db; 2229 u64 savedFlags; 2230 2231 savedFlags = db->flags; 2232 db->flags &= ~(u64)SQLITE_FullColNames; 2233 db->flags |= SQLITE_ShortColNames; 2234 sqlite3SelectPrep(pParse, pSelect, 0); 2235 db->flags = savedFlags; 2236 if( pParse->nErr ) return 0; 2237 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2238 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2239 if( pTab==0 ){ 2240 return 0; 2241 } 2242 pTab->nTabRef = 1; 2243 pTab->zName = 0; 2244 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2245 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2246 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2247 pTab->iPKey = -1; 2248 if( db->mallocFailed ){ 2249 sqlite3DeleteTable(db, pTab); 2250 return 0; 2251 } 2252 return pTab; 2253 } 2254 2255 /* 2256 ** Get a VDBE for the given parser context. Create a new one if necessary. 2257 ** If an error occurs, return NULL and leave a message in pParse. 2258 */ 2259 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2260 if( pParse->pVdbe ){ 2261 return pParse->pVdbe; 2262 } 2263 if( pParse->pToplevel==0 2264 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2265 ){ 2266 pParse->okConstFactor = 1; 2267 } 2268 return sqlite3VdbeCreate(pParse); 2269 } 2270 2271 2272 /* 2273 ** Compute the iLimit and iOffset fields of the SELECT based on the 2274 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2275 ** that appear in the original SQL statement after the LIMIT and OFFSET 2276 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2277 ** are the integer memory register numbers for counters used to compute 2278 ** the limit and offset. If there is no limit and/or offset, then 2279 ** iLimit and iOffset are negative. 2280 ** 2281 ** This routine changes the values of iLimit and iOffset only if 2282 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2283 ** and iOffset should have been preset to appropriate default values (zero) 2284 ** prior to calling this routine. 2285 ** 2286 ** The iOffset register (if it exists) is initialized to the value 2287 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2288 ** iOffset+1 is initialized to LIMIT+OFFSET. 2289 ** 2290 ** Only if pLimit->pLeft!=0 do the limit registers get 2291 ** redefined. The UNION ALL operator uses this property to force 2292 ** the reuse of the same limit and offset registers across multiple 2293 ** SELECT statements. 2294 */ 2295 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2296 Vdbe *v = 0; 2297 int iLimit = 0; 2298 int iOffset; 2299 int n; 2300 Expr *pLimit = p->pLimit; 2301 2302 if( p->iLimit ) return; 2303 2304 /* 2305 ** "LIMIT -1" always shows all rows. There is some 2306 ** controversy about what the correct behavior should be. 2307 ** The current implementation interprets "LIMIT 0" to mean 2308 ** no rows. 2309 */ 2310 if( pLimit ){ 2311 assert( pLimit->op==TK_LIMIT ); 2312 assert( pLimit->pLeft!=0 ); 2313 p->iLimit = iLimit = ++pParse->nMem; 2314 v = sqlite3GetVdbe(pParse); 2315 assert( v!=0 ); 2316 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2317 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2318 VdbeComment((v, "LIMIT counter")); 2319 if( n==0 ){ 2320 sqlite3VdbeGoto(v, iBreak); 2321 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2322 p->nSelectRow = sqlite3LogEst((u64)n); 2323 p->selFlags |= SF_FixedLimit; 2324 } 2325 }else{ 2326 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2327 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2328 VdbeComment((v, "LIMIT counter")); 2329 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2330 } 2331 if( pLimit->pRight ){ 2332 p->iOffset = iOffset = ++pParse->nMem; 2333 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2334 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2335 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2336 VdbeComment((v, "OFFSET counter")); 2337 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2338 VdbeComment((v, "LIMIT+OFFSET")); 2339 } 2340 } 2341 } 2342 2343 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2344 /* 2345 ** Return the appropriate collating sequence for the iCol-th column of 2346 ** the result set for the compound-select statement "p". Return NULL if 2347 ** the column has no default collating sequence. 2348 ** 2349 ** The collating sequence for the compound select is taken from the 2350 ** left-most term of the select that has a collating sequence. 2351 */ 2352 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2353 CollSeq *pRet; 2354 if( p->pPrior ){ 2355 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2356 }else{ 2357 pRet = 0; 2358 } 2359 assert( iCol>=0 ); 2360 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2361 ** have been thrown during name resolution and we would not have gotten 2362 ** this far */ 2363 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2364 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2365 } 2366 return pRet; 2367 } 2368 2369 /* 2370 ** The select statement passed as the second parameter is a compound SELECT 2371 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2372 ** structure suitable for implementing the ORDER BY. 2373 ** 2374 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2375 ** function is responsible for ensuring that this structure is eventually 2376 ** freed. 2377 */ 2378 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2379 ExprList *pOrderBy = p->pOrderBy; 2380 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2381 sqlite3 *db = pParse->db; 2382 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2383 if( pRet ){ 2384 int i; 2385 for(i=0; i<nOrderBy; i++){ 2386 struct ExprList_item *pItem = &pOrderBy->a[i]; 2387 Expr *pTerm = pItem->pExpr; 2388 CollSeq *pColl; 2389 2390 if( pTerm->flags & EP_Collate ){ 2391 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2392 }else{ 2393 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2394 if( pColl==0 ) pColl = db->pDfltColl; 2395 pOrderBy->a[i].pExpr = 2396 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2397 } 2398 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2399 pRet->aColl[i] = pColl; 2400 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2401 } 2402 } 2403 2404 return pRet; 2405 } 2406 2407 #ifndef SQLITE_OMIT_CTE 2408 /* 2409 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2410 ** query of the form: 2411 ** 2412 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2413 ** \___________/ \_______________/ 2414 ** p->pPrior p 2415 ** 2416 ** 2417 ** There is exactly one reference to the recursive-table in the FROM clause 2418 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2419 ** 2420 ** The setup-query runs once to generate an initial set of rows that go 2421 ** into a Queue table. Rows are extracted from the Queue table one by 2422 ** one. Each row extracted from Queue is output to pDest. Then the single 2423 ** extracted row (now in the iCurrent table) becomes the content of the 2424 ** recursive-table for a recursive-query run. The output of the recursive-query 2425 ** is added back into the Queue table. Then another row is extracted from Queue 2426 ** and the iteration continues until the Queue table is empty. 2427 ** 2428 ** If the compound query operator is UNION then no duplicate rows are ever 2429 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2430 ** that have ever been inserted into Queue and causes duplicates to be 2431 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2432 ** 2433 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2434 ** ORDER BY order and the first entry is extracted for each cycle. Without 2435 ** an ORDER BY, the Queue table is just a FIFO. 2436 ** 2437 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2438 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2439 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2440 ** with a positive value, then the first OFFSET outputs are discarded rather 2441 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2442 ** rows have been skipped. 2443 */ 2444 static void generateWithRecursiveQuery( 2445 Parse *pParse, /* Parsing context */ 2446 Select *p, /* The recursive SELECT to be coded */ 2447 SelectDest *pDest /* What to do with query results */ 2448 ){ 2449 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2450 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2451 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2452 Select *pSetup; /* The setup query */ 2453 Select *pFirstRec; /* Left-most recursive term */ 2454 int addrTop; /* Top of the loop */ 2455 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2456 int iCurrent = 0; /* The Current table */ 2457 int regCurrent; /* Register holding Current table */ 2458 int iQueue; /* The Queue table */ 2459 int iDistinct = 0; /* To ensure unique results if UNION */ 2460 int eDest = SRT_Fifo; /* How to write to Queue */ 2461 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2462 int i; /* Loop counter */ 2463 int rc; /* Result code */ 2464 ExprList *pOrderBy; /* The ORDER BY clause */ 2465 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2466 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2467 2468 #ifndef SQLITE_OMIT_WINDOWFUNC 2469 if( p->pWin ){ 2470 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2471 return; 2472 } 2473 #endif 2474 2475 /* Obtain authorization to do a recursive query */ 2476 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2477 2478 /* Process the LIMIT and OFFSET clauses, if they exist */ 2479 addrBreak = sqlite3VdbeMakeLabel(pParse); 2480 p->nSelectRow = 320; /* 4 billion rows */ 2481 computeLimitRegisters(pParse, p, addrBreak); 2482 pLimit = p->pLimit; 2483 regLimit = p->iLimit; 2484 regOffset = p->iOffset; 2485 p->pLimit = 0; 2486 p->iLimit = p->iOffset = 0; 2487 pOrderBy = p->pOrderBy; 2488 2489 /* Locate the cursor number of the Current table */ 2490 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2491 if( pSrc->a[i].fg.isRecursive ){ 2492 iCurrent = pSrc->a[i].iCursor; 2493 break; 2494 } 2495 } 2496 2497 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2498 ** the Distinct table must be exactly one greater than Queue in order 2499 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2500 iQueue = pParse->nTab++; 2501 if( p->op==TK_UNION ){ 2502 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2503 iDistinct = pParse->nTab++; 2504 }else{ 2505 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2506 } 2507 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2508 2509 /* Allocate cursors for Current, Queue, and Distinct. */ 2510 regCurrent = ++pParse->nMem; 2511 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2512 if( pOrderBy ){ 2513 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2514 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2515 (char*)pKeyInfo, P4_KEYINFO); 2516 destQueue.pOrderBy = pOrderBy; 2517 }else{ 2518 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2519 } 2520 VdbeComment((v, "Queue table")); 2521 if( iDistinct ){ 2522 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2523 p->selFlags |= SF_UsesEphemeral; 2524 } 2525 2526 /* Detach the ORDER BY clause from the compound SELECT */ 2527 p->pOrderBy = 0; 2528 2529 /* Figure out how many elements of the compound SELECT are part of the 2530 ** recursive query. Make sure no recursive elements use aggregate 2531 ** functions. Mark the recursive elements as UNION ALL even if they 2532 ** are really UNION because the distinctness will be enforced by the 2533 ** iDistinct table. pFirstRec is left pointing to the left-most 2534 ** recursive term of the CTE. 2535 */ 2536 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2537 if( pFirstRec->selFlags & SF_Aggregate ){ 2538 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2539 goto end_of_recursive_query; 2540 } 2541 pFirstRec->op = TK_ALL; 2542 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2543 } 2544 2545 /* Store the results of the setup-query in Queue. */ 2546 pSetup = pFirstRec->pPrior; 2547 pSetup->pNext = 0; 2548 ExplainQueryPlan((pParse, 1, "SETUP")); 2549 rc = sqlite3Select(pParse, pSetup, &destQueue); 2550 pSetup->pNext = p; 2551 if( rc ) goto end_of_recursive_query; 2552 2553 /* Find the next row in the Queue and output that row */ 2554 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2555 2556 /* Transfer the next row in Queue over to Current */ 2557 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2558 if( pOrderBy ){ 2559 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2560 }else{ 2561 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2562 } 2563 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2564 2565 /* Output the single row in Current */ 2566 addrCont = sqlite3VdbeMakeLabel(pParse); 2567 codeOffset(v, regOffset, addrCont); 2568 selectInnerLoop(pParse, p, iCurrent, 2569 0, 0, pDest, addrCont, addrBreak); 2570 if( regLimit ){ 2571 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2572 VdbeCoverage(v); 2573 } 2574 sqlite3VdbeResolveLabel(v, addrCont); 2575 2576 /* Execute the recursive SELECT taking the single row in Current as 2577 ** the value for the recursive-table. Store the results in the Queue. 2578 */ 2579 pFirstRec->pPrior = 0; 2580 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2581 sqlite3Select(pParse, p, &destQueue); 2582 assert( pFirstRec->pPrior==0 ); 2583 pFirstRec->pPrior = pSetup; 2584 2585 /* Keep running the loop until the Queue is empty */ 2586 sqlite3VdbeGoto(v, addrTop); 2587 sqlite3VdbeResolveLabel(v, addrBreak); 2588 2589 end_of_recursive_query: 2590 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2591 p->pOrderBy = pOrderBy; 2592 p->pLimit = pLimit; 2593 return; 2594 } 2595 #endif /* SQLITE_OMIT_CTE */ 2596 2597 /* Forward references */ 2598 static int multiSelectOrderBy( 2599 Parse *pParse, /* Parsing context */ 2600 Select *p, /* The right-most of SELECTs to be coded */ 2601 SelectDest *pDest /* What to do with query results */ 2602 ); 2603 2604 /* 2605 ** Handle the special case of a compound-select that originates from a 2606 ** VALUES clause. By handling this as a special case, we avoid deep 2607 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2608 ** on a VALUES clause. 2609 ** 2610 ** Because the Select object originates from a VALUES clause: 2611 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2612 ** (2) All terms are UNION ALL 2613 ** (3) There is no ORDER BY clause 2614 ** 2615 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2616 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2617 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2618 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2619 */ 2620 static int multiSelectValues( 2621 Parse *pParse, /* Parsing context */ 2622 Select *p, /* The right-most of SELECTs to be coded */ 2623 SelectDest *pDest /* What to do with query results */ 2624 ){ 2625 int nRow = 1; 2626 int rc = 0; 2627 int bShowAll = p->pLimit==0; 2628 assert( p->selFlags & SF_MultiValue ); 2629 do{ 2630 assert( p->selFlags & SF_Values ); 2631 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2632 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2633 #ifndef SQLITE_OMIT_WINDOWFUNC 2634 if( p->pWin ) return -1; 2635 #endif 2636 if( p->pPrior==0 ) break; 2637 assert( p->pPrior->pNext==p ); 2638 p = p->pPrior; 2639 nRow += bShowAll; 2640 }while(1); 2641 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2642 nRow==1 ? "" : "S")); 2643 while( p ){ 2644 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2645 if( !bShowAll ) break; 2646 p->nSelectRow = nRow; 2647 p = p->pNext; 2648 } 2649 return rc; 2650 } 2651 2652 /* 2653 ** Return true if the SELECT statement which is known to be the recursive 2654 ** part of a recursive CTE still has its anchor terms attached. If the 2655 ** anchor terms have already been removed, then return false. 2656 */ 2657 static int hasAnchor(Select *p){ 2658 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2659 return p!=0; 2660 } 2661 2662 /* 2663 ** This routine is called to process a compound query form from 2664 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2665 ** INTERSECT 2666 ** 2667 ** "p" points to the right-most of the two queries. the query on the 2668 ** left is p->pPrior. The left query could also be a compound query 2669 ** in which case this routine will be called recursively. 2670 ** 2671 ** The results of the total query are to be written into a destination 2672 ** of type eDest with parameter iParm. 2673 ** 2674 ** Example 1: Consider a three-way compound SQL statement. 2675 ** 2676 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2677 ** 2678 ** This statement is parsed up as follows: 2679 ** 2680 ** SELECT c FROM t3 2681 ** | 2682 ** `-----> SELECT b FROM t2 2683 ** | 2684 ** `------> SELECT a FROM t1 2685 ** 2686 ** The arrows in the diagram above represent the Select.pPrior pointer. 2687 ** So if this routine is called with p equal to the t3 query, then 2688 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2689 ** 2690 ** Notice that because of the way SQLite parses compound SELECTs, the 2691 ** individual selects always group from left to right. 2692 */ 2693 static int multiSelect( 2694 Parse *pParse, /* Parsing context */ 2695 Select *p, /* The right-most of SELECTs to be coded */ 2696 SelectDest *pDest /* What to do with query results */ 2697 ){ 2698 int rc = SQLITE_OK; /* Success code from a subroutine */ 2699 Select *pPrior; /* Another SELECT immediately to our left */ 2700 Vdbe *v; /* Generate code to this VDBE */ 2701 SelectDest dest; /* Alternative data destination */ 2702 Select *pDelete = 0; /* Chain of simple selects to delete */ 2703 sqlite3 *db; /* Database connection */ 2704 2705 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2706 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2707 */ 2708 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2709 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2710 assert( p->selFlags & SF_Compound ); 2711 db = pParse->db; 2712 pPrior = p->pPrior; 2713 dest = *pDest; 2714 assert( pPrior->pOrderBy==0 ); 2715 assert( pPrior->pLimit==0 ); 2716 2717 v = sqlite3GetVdbe(pParse); 2718 assert( v!=0 ); /* The VDBE already created by calling function */ 2719 2720 /* Create the destination temporary table if necessary 2721 */ 2722 if( dest.eDest==SRT_EphemTab ){ 2723 assert( p->pEList ); 2724 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2725 dest.eDest = SRT_Table; 2726 } 2727 2728 /* Special handling for a compound-select that originates as a VALUES clause. 2729 */ 2730 if( p->selFlags & SF_MultiValue ){ 2731 rc = multiSelectValues(pParse, p, &dest); 2732 if( rc>=0 ) goto multi_select_end; 2733 rc = SQLITE_OK; 2734 } 2735 2736 /* Make sure all SELECTs in the statement have the same number of elements 2737 ** in their result sets. 2738 */ 2739 assert( p->pEList && pPrior->pEList ); 2740 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2741 2742 #ifndef SQLITE_OMIT_CTE 2743 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2744 generateWithRecursiveQuery(pParse, p, &dest); 2745 }else 2746 #endif 2747 2748 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2749 */ 2750 if( p->pOrderBy ){ 2751 return multiSelectOrderBy(pParse, p, pDest); 2752 }else{ 2753 2754 #ifndef SQLITE_OMIT_EXPLAIN 2755 if( pPrior->pPrior==0 ){ 2756 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2757 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2758 } 2759 #endif 2760 2761 /* Generate code for the left and right SELECT statements. 2762 */ 2763 switch( p->op ){ 2764 case TK_ALL: { 2765 int addr = 0; 2766 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2767 assert( !pPrior->pLimit ); 2768 pPrior->iLimit = p->iLimit; 2769 pPrior->iOffset = p->iOffset; 2770 pPrior->pLimit = p->pLimit; 2771 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2772 rc = sqlite3Select(pParse, pPrior, &dest); 2773 pPrior->pLimit = 0; 2774 if( rc ){ 2775 goto multi_select_end; 2776 } 2777 p->pPrior = 0; 2778 p->iLimit = pPrior->iLimit; 2779 p->iOffset = pPrior->iOffset; 2780 if( p->iLimit ){ 2781 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2782 VdbeComment((v, "Jump ahead if LIMIT reached")); 2783 if( p->iOffset ){ 2784 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2785 p->iLimit, p->iOffset+1, p->iOffset); 2786 } 2787 } 2788 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2789 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2790 rc = sqlite3Select(pParse, p, &dest); 2791 testcase( rc!=SQLITE_OK ); 2792 pDelete = p->pPrior; 2793 p->pPrior = pPrior; 2794 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2795 if( p->pLimit 2796 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2797 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2798 ){ 2799 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2800 } 2801 if( addr ){ 2802 sqlite3VdbeJumpHere(v, addr); 2803 } 2804 break; 2805 } 2806 case TK_EXCEPT: 2807 case TK_UNION: { 2808 int unionTab; /* Cursor number of the temp table holding result */ 2809 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2810 int priorOp; /* The SRT_ operation to apply to prior selects */ 2811 Expr *pLimit; /* Saved values of p->nLimit */ 2812 int addr; 2813 SelectDest uniondest; 2814 2815 testcase( p->op==TK_EXCEPT ); 2816 testcase( p->op==TK_UNION ); 2817 priorOp = SRT_Union; 2818 if( dest.eDest==priorOp ){ 2819 /* We can reuse a temporary table generated by a SELECT to our 2820 ** right. 2821 */ 2822 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2823 unionTab = dest.iSDParm; 2824 }else{ 2825 /* We will need to create our own temporary table to hold the 2826 ** intermediate results. 2827 */ 2828 unionTab = pParse->nTab++; 2829 assert( p->pOrderBy==0 ); 2830 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2831 assert( p->addrOpenEphm[0] == -1 ); 2832 p->addrOpenEphm[0] = addr; 2833 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2834 assert( p->pEList ); 2835 } 2836 2837 2838 /* Code the SELECT statements to our left 2839 */ 2840 assert( !pPrior->pOrderBy ); 2841 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2842 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2843 rc = sqlite3Select(pParse, pPrior, &uniondest); 2844 if( rc ){ 2845 goto multi_select_end; 2846 } 2847 2848 /* Code the current SELECT statement 2849 */ 2850 if( p->op==TK_EXCEPT ){ 2851 op = SRT_Except; 2852 }else{ 2853 assert( p->op==TK_UNION ); 2854 op = SRT_Union; 2855 } 2856 p->pPrior = 0; 2857 pLimit = p->pLimit; 2858 p->pLimit = 0; 2859 uniondest.eDest = op; 2860 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2861 sqlite3SelectOpName(p->op))); 2862 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2863 rc = sqlite3Select(pParse, p, &uniondest); 2864 testcase( rc!=SQLITE_OK ); 2865 assert( p->pOrderBy==0 ); 2866 pDelete = p->pPrior; 2867 p->pPrior = pPrior; 2868 p->pOrderBy = 0; 2869 if( p->op==TK_UNION ){ 2870 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2871 } 2872 sqlite3ExprDelete(db, p->pLimit); 2873 p->pLimit = pLimit; 2874 p->iLimit = 0; 2875 p->iOffset = 0; 2876 2877 /* Convert the data in the temporary table into whatever form 2878 ** it is that we currently need. 2879 */ 2880 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2881 assert( p->pEList || db->mallocFailed ); 2882 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2883 int iCont, iBreak, iStart; 2884 iBreak = sqlite3VdbeMakeLabel(pParse); 2885 iCont = sqlite3VdbeMakeLabel(pParse); 2886 computeLimitRegisters(pParse, p, iBreak); 2887 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2888 iStart = sqlite3VdbeCurrentAddr(v); 2889 selectInnerLoop(pParse, p, unionTab, 2890 0, 0, &dest, iCont, iBreak); 2891 sqlite3VdbeResolveLabel(v, iCont); 2892 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2893 sqlite3VdbeResolveLabel(v, iBreak); 2894 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2895 } 2896 break; 2897 } 2898 default: assert( p->op==TK_INTERSECT ); { 2899 int tab1, tab2; 2900 int iCont, iBreak, iStart; 2901 Expr *pLimit; 2902 int addr; 2903 SelectDest intersectdest; 2904 int r1; 2905 2906 /* INTERSECT is different from the others since it requires 2907 ** two temporary tables. Hence it has its own case. Begin 2908 ** by allocating the tables we will need. 2909 */ 2910 tab1 = pParse->nTab++; 2911 tab2 = pParse->nTab++; 2912 assert( p->pOrderBy==0 ); 2913 2914 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2915 assert( p->addrOpenEphm[0] == -1 ); 2916 p->addrOpenEphm[0] = addr; 2917 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2918 assert( p->pEList ); 2919 2920 /* Code the SELECTs to our left into temporary table "tab1". 2921 */ 2922 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2923 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2924 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2925 if( rc ){ 2926 goto multi_select_end; 2927 } 2928 2929 /* Code the current SELECT into temporary table "tab2" 2930 */ 2931 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2932 assert( p->addrOpenEphm[1] == -1 ); 2933 p->addrOpenEphm[1] = addr; 2934 p->pPrior = 0; 2935 pLimit = p->pLimit; 2936 p->pLimit = 0; 2937 intersectdest.iSDParm = tab2; 2938 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2939 sqlite3SelectOpName(p->op))); 2940 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2941 rc = sqlite3Select(pParse, p, &intersectdest); 2942 testcase( rc!=SQLITE_OK ); 2943 pDelete = p->pPrior; 2944 p->pPrior = pPrior; 2945 if( p->nSelectRow>pPrior->nSelectRow ){ 2946 p->nSelectRow = pPrior->nSelectRow; 2947 } 2948 sqlite3ExprDelete(db, p->pLimit); 2949 p->pLimit = pLimit; 2950 2951 /* Generate code to take the intersection of the two temporary 2952 ** tables. 2953 */ 2954 if( rc ) break; 2955 assert( p->pEList ); 2956 iBreak = sqlite3VdbeMakeLabel(pParse); 2957 iCont = sqlite3VdbeMakeLabel(pParse); 2958 computeLimitRegisters(pParse, p, iBreak); 2959 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2960 r1 = sqlite3GetTempReg(pParse); 2961 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2962 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2963 VdbeCoverage(v); 2964 sqlite3ReleaseTempReg(pParse, r1); 2965 selectInnerLoop(pParse, p, tab1, 2966 0, 0, &dest, iCont, iBreak); 2967 sqlite3VdbeResolveLabel(v, iCont); 2968 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2969 sqlite3VdbeResolveLabel(v, iBreak); 2970 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2971 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2972 break; 2973 } 2974 } 2975 2976 #ifndef SQLITE_OMIT_EXPLAIN 2977 if( p->pNext==0 ){ 2978 ExplainQueryPlanPop(pParse); 2979 } 2980 #endif 2981 } 2982 if( pParse->nErr ) goto multi_select_end; 2983 2984 /* Compute collating sequences used by 2985 ** temporary tables needed to implement the compound select. 2986 ** Attach the KeyInfo structure to all temporary tables. 2987 ** 2988 ** This section is run by the right-most SELECT statement only. 2989 ** SELECT statements to the left always skip this part. The right-most 2990 ** SELECT might also skip this part if it has no ORDER BY clause and 2991 ** no temp tables are required. 2992 */ 2993 if( p->selFlags & SF_UsesEphemeral ){ 2994 int i; /* Loop counter */ 2995 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2996 Select *pLoop; /* For looping through SELECT statements */ 2997 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2998 int nCol; /* Number of columns in result set */ 2999 3000 assert( p->pNext==0 ); 3001 assert( p->pEList!=0 ); 3002 nCol = p->pEList->nExpr; 3003 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3004 if( !pKeyInfo ){ 3005 rc = SQLITE_NOMEM_BKPT; 3006 goto multi_select_end; 3007 } 3008 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3009 *apColl = multiSelectCollSeq(pParse, p, i); 3010 if( 0==*apColl ){ 3011 *apColl = db->pDfltColl; 3012 } 3013 } 3014 3015 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3016 for(i=0; i<2; i++){ 3017 int addr = pLoop->addrOpenEphm[i]; 3018 if( addr<0 ){ 3019 /* If [0] is unused then [1] is also unused. So we can 3020 ** always safely abort as soon as the first unused slot is found */ 3021 assert( pLoop->addrOpenEphm[1]<0 ); 3022 break; 3023 } 3024 sqlite3VdbeChangeP2(v, addr, nCol); 3025 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3026 P4_KEYINFO); 3027 pLoop->addrOpenEphm[i] = -1; 3028 } 3029 } 3030 sqlite3KeyInfoUnref(pKeyInfo); 3031 } 3032 3033 multi_select_end: 3034 pDest->iSdst = dest.iSdst; 3035 pDest->nSdst = dest.nSdst; 3036 if( pDelete ){ 3037 sqlite3ParserAddCleanup(pParse, 3038 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3039 pDelete); 3040 } 3041 return rc; 3042 } 3043 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3044 3045 /* 3046 ** Error message for when two or more terms of a compound select have different 3047 ** size result sets. 3048 */ 3049 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3050 if( p->selFlags & SF_Values ){ 3051 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3052 }else{ 3053 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3054 " do not have the same number of result columns", 3055 sqlite3SelectOpName(p->op)); 3056 } 3057 } 3058 3059 /* 3060 ** Code an output subroutine for a coroutine implementation of a 3061 ** SELECT statment. 3062 ** 3063 ** The data to be output is contained in pIn->iSdst. There are 3064 ** pIn->nSdst columns to be output. pDest is where the output should 3065 ** be sent. 3066 ** 3067 ** regReturn is the number of the register holding the subroutine 3068 ** return address. 3069 ** 3070 ** If regPrev>0 then it is the first register in a vector that 3071 ** records the previous output. mem[regPrev] is a flag that is false 3072 ** if there has been no previous output. If regPrev>0 then code is 3073 ** generated to suppress duplicates. pKeyInfo is used for comparing 3074 ** keys. 3075 ** 3076 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3077 ** iBreak. 3078 */ 3079 static int generateOutputSubroutine( 3080 Parse *pParse, /* Parsing context */ 3081 Select *p, /* The SELECT statement */ 3082 SelectDest *pIn, /* Coroutine supplying data */ 3083 SelectDest *pDest, /* Where to send the data */ 3084 int regReturn, /* The return address register */ 3085 int regPrev, /* Previous result register. No uniqueness if 0 */ 3086 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3087 int iBreak /* Jump here if we hit the LIMIT */ 3088 ){ 3089 Vdbe *v = pParse->pVdbe; 3090 int iContinue; 3091 int addr; 3092 3093 addr = sqlite3VdbeCurrentAddr(v); 3094 iContinue = sqlite3VdbeMakeLabel(pParse); 3095 3096 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3097 */ 3098 if( regPrev ){ 3099 int addr1, addr2; 3100 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3101 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3102 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3103 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3104 sqlite3VdbeJumpHere(v, addr1); 3105 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3106 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3107 } 3108 if( pParse->db->mallocFailed ) return 0; 3109 3110 /* Suppress the first OFFSET entries if there is an OFFSET clause 3111 */ 3112 codeOffset(v, p->iOffset, iContinue); 3113 3114 assert( pDest->eDest!=SRT_Exists ); 3115 assert( pDest->eDest!=SRT_Table ); 3116 switch( pDest->eDest ){ 3117 /* Store the result as data using a unique key. 3118 */ 3119 case SRT_EphemTab: { 3120 int r1 = sqlite3GetTempReg(pParse); 3121 int r2 = sqlite3GetTempReg(pParse); 3122 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3123 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3124 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3125 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3126 sqlite3ReleaseTempReg(pParse, r2); 3127 sqlite3ReleaseTempReg(pParse, r1); 3128 break; 3129 } 3130 3131 #ifndef SQLITE_OMIT_SUBQUERY 3132 /* If we are creating a set for an "expr IN (SELECT ...)". 3133 */ 3134 case SRT_Set: { 3135 int r1; 3136 testcase( pIn->nSdst>1 ); 3137 r1 = sqlite3GetTempReg(pParse); 3138 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3139 r1, pDest->zAffSdst, pIn->nSdst); 3140 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3141 pIn->iSdst, pIn->nSdst); 3142 sqlite3ReleaseTempReg(pParse, r1); 3143 break; 3144 } 3145 3146 /* If this is a scalar select that is part of an expression, then 3147 ** store the results in the appropriate memory cell and break out 3148 ** of the scan loop. Note that the select might return multiple columns 3149 ** if it is the RHS of a row-value IN operator. 3150 */ 3151 case SRT_Mem: { 3152 testcase( pIn->nSdst>1 ); 3153 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3154 /* The LIMIT clause will jump out of the loop for us */ 3155 break; 3156 } 3157 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3158 3159 /* The results are stored in a sequence of registers 3160 ** starting at pDest->iSdst. Then the co-routine yields. 3161 */ 3162 case SRT_Coroutine: { 3163 if( pDest->iSdst==0 ){ 3164 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3165 pDest->nSdst = pIn->nSdst; 3166 } 3167 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3168 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3169 break; 3170 } 3171 3172 /* If none of the above, then the result destination must be 3173 ** SRT_Output. This routine is never called with any other 3174 ** destination other than the ones handled above or SRT_Output. 3175 ** 3176 ** For SRT_Output, results are stored in a sequence of registers. 3177 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3178 ** return the next row of result. 3179 */ 3180 default: { 3181 assert( pDest->eDest==SRT_Output ); 3182 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3183 break; 3184 } 3185 } 3186 3187 /* Jump to the end of the loop if the LIMIT is reached. 3188 */ 3189 if( p->iLimit ){ 3190 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3191 } 3192 3193 /* Generate the subroutine return 3194 */ 3195 sqlite3VdbeResolveLabel(v, iContinue); 3196 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3197 3198 return addr; 3199 } 3200 3201 /* 3202 ** Alternative compound select code generator for cases when there 3203 ** is an ORDER BY clause. 3204 ** 3205 ** We assume a query of the following form: 3206 ** 3207 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3208 ** 3209 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3210 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3211 ** co-routines. Then run the co-routines in parallel and merge the results 3212 ** into the output. In addition to the two coroutines (called selectA and 3213 ** selectB) there are 7 subroutines: 3214 ** 3215 ** outA: Move the output of the selectA coroutine into the output 3216 ** of the compound query. 3217 ** 3218 ** outB: Move the output of the selectB coroutine into the output 3219 ** of the compound query. (Only generated for UNION and 3220 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3221 ** appears only in B.) 3222 ** 3223 ** AltB: Called when there is data from both coroutines and A<B. 3224 ** 3225 ** AeqB: Called when there is data from both coroutines and A==B. 3226 ** 3227 ** AgtB: Called when there is data from both coroutines and A>B. 3228 ** 3229 ** EofA: Called when data is exhausted from selectA. 3230 ** 3231 ** EofB: Called when data is exhausted from selectB. 3232 ** 3233 ** The implementation of the latter five subroutines depend on which 3234 ** <operator> is used: 3235 ** 3236 ** 3237 ** UNION ALL UNION EXCEPT INTERSECT 3238 ** ------------- ----------------- -------------- ----------------- 3239 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3240 ** 3241 ** AeqB: outA, nextA nextA nextA outA, nextA 3242 ** 3243 ** AgtB: outB, nextB outB, nextB nextB nextB 3244 ** 3245 ** EofA: outB, nextB outB, nextB halt halt 3246 ** 3247 ** EofB: outA, nextA outA, nextA outA, nextA halt 3248 ** 3249 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3250 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3251 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3252 ** following nextX causes a jump to the end of the select processing. 3253 ** 3254 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3255 ** within the output subroutine. The regPrev register set holds the previously 3256 ** output value. A comparison is made against this value and the output 3257 ** is skipped if the next results would be the same as the previous. 3258 ** 3259 ** The implementation plan is to implement the two coroutines and seven 3260 ** subroutines first, then put the control logic at the bottom. Like this: 3261 ** 3262 ** goto Init 3263 ** coA: coroutine for left query (A) 3264 ** coB: coroutine for right query (B) 3265 ** outA: output one row of A 3266 ** outB: output one row of B (UNION and UNION ALL only) 3267 ** EofA: ... 3268 ** EofB: ... 3269 ** AltB: ... 3270 ** AeqB: ... 3271 ** AgtB: ... 3272 ** Init: initialize coroutine registers 3273 ** yield coA 3274 ** if eof(A) goto EofA 3275 ** yield coB 3276 ** if eof(B) goto EofB 3277 ** Cmpr: Compare A, B 3278 ** Jump AltB, AeqB, AgtB 3279 ** End: ... 3280 ** 3281 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3282 ** actually called using Gosub and they do not Return. EofA and EofB loop 3283 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3284 ** and AgtB jump to either L2 or to one of EofA or EofB. 3285 */ 3286 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3287 static int multiSelectOrderBy( 3288 Parse *pParse, /* Parsing context */ 3289 Select *p, /* The right-most of SELECTs to be coded */ 3290 SelectDest *pDest /* What to do with query results */ 3291 ){ 3292 int i, j; /* Loop counters */ 3293 Select *pPrior; /* Another SELECT immediately to our left */ 3294 Vdbe *v; /* Generate code to this VDBE */ 3295 SelectDest destA; /* Destination for coroutine A */ 3296 SelectDest destB; /* Destination for coroutine B */ 3297 int regAddrA; /* Address register for select-A coroutine */ 3298 int regAddrB; /* Address register for select-B coroutine */ 3299 int addrSelectA; /* Address of the select-A coroutine */ 3300 int addrSelectB; /* Address of the select-B coroutine */ 3301 int regOutA; /* Address register for the output-A subroutine */ 3302 int regOutB; /* Address register for the output-B subroutine */ 3303 int addrOutA; /* Address of the output-A subroutine */ 3304 int addrOutB = 0; /* Address of the output-B subroutine */ 3305 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3306 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3307 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3308 int addrAltB; /* Address of the A<B subroutine */ 3309 int addrAeqB; /* Address of the A==B subroutine */ 3310 int addrAgtB; /* Address of the A>B subroutine */ 3311 int regLimitA; /* Limit register for select-A */ 3312 int regLimitB; /* Limit register for select-A */ 3313 int regPrev; /* A range of registers to hold previous output */ 3314 int savedLimit; /* Saved value of p->iLimit */ 3315 int savedOffset; /* Saved value of p->iOffset */ 3316 int labelCmpr; /* Label for the start of the merge algorithm */ 3317 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3318 int addr1; /* Jump instructions that get retargetted */ 3319 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3320 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3321 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3322 sqlite3 *db; /* Database connection */ 3323 ExprList *pOrderBy; /* The ORDER BY clause */ 3324 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3325 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3326 3327 assert( p->pOrderBy!=0 ); 3328 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3329 db = pParse->db; 3330 v = pParse->pVdbe; 3331 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3332 labelEnd = sqlite3VdbeMakeLabel(pParse); 3333 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3334 3335 3336 /* Patch up the ORDER BY clause 3337 */ 3338 op = p->op; 3339 pPrior = p->pPrior; 3340 assert( pPrior->pOrderBy==0 ); 3341 pOrderBy = p->pOrderBy; 3342 assert( pOrderBy ); 3343 nOrderBy = pOrderBy->nExpr; 3344 3345 /* For operators other than UNION ALL we have to make sure that 3346 ** the ORDER BY clause covers every term of the result set. Add 3347 ** terms to the ORDER BY clause as necessary. 3348 */ 3349 if( op!=TK_ALL ){ 3350 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3351 struct ExprList_item *pItem; 3352 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3353 assert( pItem!=0 ); 3354 assert( pItem->u.x.iOrderByCol>0 ); 3355 if( pItem->u.x.iOrderByCol==i ) break; 3356 } 3357 if( j==nOrderBy ){ 3358 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3359 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3360 pNew->flags |= EP_IntValue; 3361 pNew->u.iValue = i; 3362 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3363 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3364 } 3365 } 3366 } 3367 3368 /* Compute the comparison permutation and keyinfo that is used with 3369 ** the permutation used to determine if the next 3370 ** row of results comes from selectA or selectB. Also add explicit 3371 ** collations to the ORDER BY clause terms so that when the subqueries 3372 ** to the right and the left are evaluated, they use the correct 3373 ** collation. 3374 */ 3375 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3376 if( aPermute ){ 3377 struct ExprList_item *pItem; 3378 aPermute[0] = nOrderBy; 3379 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3380 assert( pItem!=0 ); 3381 assert( pItem->u.x.iOrderByCol>0 ); 3382 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3383 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3384 } 3385 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3386 }else{ 3387 pKeyMerge = 0; 3388 } 3389 3390 /* Reattach the ORDER BY clause to the query. 3391 */ 3392 p->pOrderBy = pOrderBy; 3393 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3394 3395 /* Allocate a range of temporary registers and the KeyInfo needed 3396 ** for the logic that removes duplicate result rows when the 3397 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3398 */ 3399 if( op==TK_ALL ){ 3400 regPrev = 0; 3401 }else{ 3402 int nExpr = p->pEList->nExpr; 3403 assert( nOrderBy>=nExpr || db->mallocFailed ); 3404 regPrev = pParse->nMem+1; 3405 pParse->nMem += nExpr+1; 3406 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3407 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3408 if( pKeyDup ){ 3409 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3410 for(i=0; i<nExpr; i++){ 3411 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3412 pKeyDup->aSortFlags[i] = 0; 3413 } 3414 } 3415 } 3416 3417 /* Separate the left and the right query from one another 3418 */ 3419 p->pPrior = 0; 3420 pPrior->pNext = 0; 3421 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3422 if( pPrior->pPrior==0 ){ 3423 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3424 } 3425 3426 /* Compute the limit registers */ 3427 computeLimitRegisters(pParse, p, labelEnd); 3428 if( p->iLimit && op==TK_ALL ){ 3429 regLimitA = ++pParse->nMem; 3430 regLimitB = ++pParse->nMem; 3431 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3432 regLimitA); 3433 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3434 }else{ 3435 regLimitA = regLimitB = 0; 3436 } 3437 sqlite3ExprDelete(db, p->pLimit); 3438 p->pLimit = 0; 3439 3440 regAddrA = ++pParse->nMem; 3441 regAddrB = ++pParse->nMem; 3442 regOutA = ++pParse->nMem; 3443 regOutB = ++pParse->nMem; 3444 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3445 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3446 3447 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3448 3449 /* Generate a coroutine to evaluate the SELECT statement to the 3450 ** left of the compound operator - the "A" select. 3451 */ 3452 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3453 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3454 VdbeComment((v, "left SELECT")); 3455 pPrior->iLimit = regLimitA; 3456 ExplainQueryPlan((pParse, 1, "LEFT")); 3457 sqlite3Select(pParse, pPrior, &destA); 3458 sqlite3VdbeEndCoroutine(v, regAddrA); 3459 sqlite3VdbeJumpHere(v, addr1); 3460 3461 /* Generate a coroutine to evaluate the SELECT statement on 3462 ** the right - the "B" select 3463 */ 3464 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3465 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3466 VdbeComment((v, "right SELECT")); 3467 savedLimit = p->iLimit; 3468 savedOffset = p->iOffset; 3469 p->iLimit = regLimitB; 3470 p->iOffset = 0; 3471 ExplainQueryPlan((pParse, 1, "RIGHT")); 3472 sqlite3Select(pParse, p, &destB); 3473 p->iLimit = savedLimit; 3474 p->iOffset = savedOffset; 3475 sqlite3VdbeEndCoroutine(v, regAddrB); 3476 3477 /* Generate a subroutine that outputs the current row of the A 3478 ** select as the next output row of the compound select. 3479 */ 3480 VdbeNoopComment((v, "Output routine for A")); 3481 addrOutA = generateOutputSubroutine(pParse, 3482 p, &destA, pDest, regOutA, 3483 regPrev, pKeyDup, labelEnd); 3484 3485 /* Generate a subroutine that outputs the current row of the B 3486 ** select as the next output row of the compound select. 3487 */ 3488 if( op==TK_ALL || op==TK_UNION ){ 3489 VdbeNoopComment((v, "Output routine for B")); 3490 addrOutB = generateOutputSubroutine(pParse, 3491 p, &destB, pDest, regOutB, 3492 regPrev, pKeyDup, labelEnd); 3493 } 3494 sqlite3KeyInfoUnref(pKeyDup); 3495 3496 /* Generate a subroutine to run when the results from select A 3497 ** are exhausted and only data in select B remains. 3498 */ 3499 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3500 addrEofA_noB = addrEofA = labelEnd; 3501 }else{ 3502 VdbeNoopComment((v, "eof-A subroutine")); 3503 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3504 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3505 VdbeCoverage(v); 3506 sqlite3VdbeGoto(v, addrEofA); 3507 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3508 } 3509 3510 /* Generate a subroutine to run when the results from select B 3511 ** are exhausted and only data in select A remains. 3512 */ 3513 if( op==TK_INTERSECT ){ 3514 addrEofB = addrEofA; 3515 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3516 }else{ 3517 VdbeNoopComment((v, "eof-B subroutine")); 3518 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3519 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3520 sqlite3VdbeGoto(v, addrEofB); 3521 } 3522 3523 /* Generate code to handle the case of A<B 3524 */ 3525 VdbeNoopComment((v, "A-lt-B subroutine")); 3526 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3527 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3528 sqlite3VdbeGoto(v, labelCmpr); 3529 3530 /* Generate code to handle the case of A==B 3531 */ 3532 if( op==TK_ALL ){ 3533 addrAeqB = addrAltB; 3534 }else if( op==TK_INTERSECT ){ 3535 addrAeqB = addrAltB; 3536 addrAltB++; 3537 }else{ 3538 VdbeNoopComment((v, "A-eq-B subroutine")); 3539 addrAeqB = 3540 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3541 sqlite3VdbeGoto(v, labelCmpr); 3542 } 3543 3544 /* Generate code to handle the case of A>B 3545 */ 3546 VdbeNoopComment((v, "A-gt-B subroutine")); 3547 addrAgtB = sqlite3VdbeCurrentAddr(v); 3548 if( op==TK_ALL || op==TK_UNION ){ 3549 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3550 } 3551 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3552 sqlite3VdbeGoto(v, labelCmpr); 3553 3554 /* This code runs once to initialize everything. 3555 */ 3556 sqlite3VdbeJumpHere(v, addr1); 3557 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3558 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3559 3560 /* Implement the main merge loop 3561 */ 3562 sqlite3VdbeResolveLabel(v, labelCmpr); 3563 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3564 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3565 (char*)pKeyMerge, P4_KEYINFO); 3566 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3567 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3568 3569 /* Jump to the this point in order to terminate the query. 3570 */ 3571 sqlite3VdbeResolveLabel(v, labelEnd); 3572 3573 /* Reassembly the compound query so that it will be freed correctly 3574 ** by the calling function */ 3575 if( p->pPrior ){ 3576 sqlite3SelectDelete(db, p->pPrior); 3577 } 3578 p->pPrior = pPrior; 3579 pPrior->pNext = p; 3580 3581 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3582 pPrior->pOrderBy = 0; 3583 3584 /*** TBD: Insert subroutine calls to close cursors on incomplete 3585 **** subqueries ****/ 3586 ExplainQueryPlanPop(pParse); 3587 return pParse->nErr!=0; 3588 } 3589 #endif 3590 3591 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3592 3593 /* An instance of the SubstContext object describes an substitution edit 3594 ** to be performed on a parse tree. 3595 ** 3596 ** All references to columns in table iTable are to be replaced by corresponding 3597 ** expressions in pEList. 3598 */ 3599 typedef struct SubstContext { 3600 Parse *pParse; /* The parsing context */ 3601 int iTable; /* Replace references to this table */ 3602 int iNewTable; /* New table number */ 3603 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3604 ExprList *pEList; /* Replacement expressions */ 3605 } SubstContext; 3606 3607 /* Forward Declarations */ 3608 static void substExprList(SubstContext*, ExprList*); 3609 static void substSelect(SubstContext*, Select*, int); 3610 3611 /* 3612 ** Scan through the expression pExpr. Replace every reference to 3613 ** a column in table number iTable with a copy of the iColumn-th 3614 ** entry in pEList. (But leave references to the ROWID column 3615 ** unchanged.) 3616 ** 3617 ** This routine is part of the flattening procedure. A subquery 3618 ** whose result set is defined by pEList appears as entry in the 3619 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3620 ** FORM clause entry is iTable. This routine makes the necessary 3621 ** changes to pExpr so that it refers directly to the source table 3622 ** of the subquery rather the result set of the subquery. 3623 */ 3624 static Expr *substExpr( 3625 SubstContext *pSubst, /* Description of the substitution */ 3626 Expr *pExpr /* Expr in which substitution occurs */ 3627 ){ 3628 if( pExpr==0 ) return 0; 3629 if( ExprHasProperty(pExpr, EP_FromJoin) 3630 && pExpr->iRightJoinTable==pSubst->iTable 3631 ){ 3632 pExpr->iRightJoinTable = pSubst->iNewTable; 3633 } 3634 if( pExpr->op==TK_COLUMN 3635 && pExpr->iTable==pSubst->iTable 3636 && !ExprHasProperty(pExpr, EP_FixedCol) 3637 ){ 3638 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3639 if( pExpr->iColumn<0 ){ 3640 pExpr->op = TK_NULL; 3641 }else 3642 #endif 3643 { 3644 Expr *pNew; 3645 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3646 Expr ifNullRow; 3647 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3648 assert( pExpr->pRight==0 ); 3649 if( sqlite3ExprIsVector(pCopy) ){ 3650 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3651 }else{ 3652 sqlite3 *db = pSubst->pParse->db; 3653 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3654 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3655 ifNullRow.op = TK_IF_NULL_ROW; 3656 ifNullRow.pLeft = pCopy; 3657 ifNullRow.iTable = pSubst->iNewTable; 3658 ifNullRow.flags = EP_IfNullRow; 3659 pCopy = &ifNullRow; 3660 } 3661 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3662 pNew = sqlite3ExprDup(db, pCopy, 0); 3663 if( db->mallocFailed ){ 3664 sqlite3ExprDelete(db, pNew); 3665 return pExpr; 3666 } 3667 if( pSubst->isLeftJoin ){ 3668 ExprSetProperty(pNew, EP_CanBeNull); 3669 } 3670 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3671 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3672 } 3673 sqlite3ExprDelete(db, pExpr); 3674 pExpr = pNew; 3675 3676 /* Ensure that the expression now has an implicit collation sequence, 3677 ** just as it did when it was a column of a view or sub-query. */ 3678 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3679 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3680 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3681 (pColl ? pColl->zName : "BINARY") 3682 ); 3683 } 3684 ExprClearProperty(pExpr, EP_Collate); 3685 } 3686 } 3687 }else{ 3688 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3689 pExpr->iTable = pSubst->iNewTable; 3690 } 3691 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3692 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3693 if( ExprUseXSelect(pExpr) ){ 3694 substSelect(pSubst, pExpr->x.pSelect, 1); 3695 }else{ 3696 substExprList(pSubst, pExpr->x.pList); 3697 } 3698 #ifndef SQLITE_OMIT_WINDOWFUNC 3699 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3700 Window *pWin = pExpr->y.pWin; 3701 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3702 substExprList(pSubst, pWin->pPartition); 3703 substExprList(pSubst, pWin->pOrderBy); 3704 } 3705 #endif 3706 } 3707 return pExpr; 3708 } 3709 static void substExprList( 3710 SubstContext *pSubst, /* Description of the substitution */ 3711 ExprList *pList /* List to scan and in which to make substitutes */ 3712 ){ 3713 int i; 3714 if( pList==0 ) return; 3715 for(i=0; i<pList->nExpr; i++){ 3716 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3717 } 3718 } 3719 static void substSelect( 3720 SubstContext *pSubst, /* Description of the substitution */ 3721 Select *p, /* SELECT statement in which to make substitutions */ 3722 int doPrior /* Do substitutes on p->pPrior too */ 3723 ){ 3724 SrcList *pSrc; 3725 SrcItem *pItem; 3726 int i; 3727 if( !p ) return; 3728 do{ 3729 substExprList(pSubst, p->pEList); 3730 substExprList(pSubst, p->pGroupBy); 3731 substExprList(pSubst, p->pOrderBy); 3732 p->pHaving = substExpr(pSubst, p->pHaving); 3733 p->pWhere = substExpr(pSubst, p->pWhere); 3734 pSrc = p->pSrc; 3735 assert( pSrc!=0 ); 3736 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3737 substSelect(pSubst, pItem->pSelect, 1); 3738 if( pItem->fg.isTabFunc ){ 3739 substExprList(pSubst, pItem->u1.pFuncArg); 3740 } 3741 } 3742 }while( doPrior && (p = p->pPrior)!=0 ); 3743 } 3744 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3745 3746 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3747 /* 3748 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3749 ** clause of that SELECT. 3750 ** 3751 ** This routine scans the entire SELECT statement and recomputes the 3752 ** pSrcItem->colUsed mask. 3753 */ 3754 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3755 SrcItem *pItem; 3756 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3757 pItem = pWalker->u.pSrcItem; 3758 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3759 if( pExpr->iColumn<0 ) return WRC_Continue; 3760 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3761 return WRC_Continue; 3762 } 3763 static void recomputeColumnsUsed( 3764 Select *pSelect, /* The complete SELECT statement */ 3765 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3766 ){ 3767 Walker w; 3768 if( NEVER(pSrcItem->pTab==0) ) return; 3769 memset(&w, 0, sizeof(w)); 3770 w.xExprCallback = recomputeColumnsUsedExpr; 3771 w.xSelectCallback = sqlite3SelectWalkNoop; 3772 w.u.pSrcItem = pSrcItem; 3773 pSrcItem->colUsed = 0; 3774 sqlite3WalkSelect(&w, pSelect); 3775 } 3776 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3777 3778 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3779 /* 3780 ** Assign new cursor numbers to each of the items in pSrc. For each 3781 ** new cursor number assigned, set an entry in the aCsrMap[] array 3782 ** to map the old cursor number to the new: 3783 ** 3784 ** aCsrMap[iOld+1] = iNew; 3785 ** 3786 ** The array is guaranteed by the caller to be large enough for all 3787 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3788 ** 3789 ** If pSrc contains any sub-selects, call this routine recursively 3790 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3791 */ 3792 static void srclistRenumberCursors( 3793 Parse *pParse, /* Parse context */ 3794 int *aCsrMap, /* Array to store cursor mappings in */ 3795 SrcList *pSrc, /* FROM clause to renumber */ 3796 int iExcept /* FROM clause item to skip */ 3797 ){ 3798 int i; 3799 SrcItem *pItem; 3800 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3801 if( i!=iExcept ){ 3802 Select *p; 3803 assert( pItem->iCursor < aCsrMap[0] ); 3804 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3805 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3806 } 3807 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3808 for(p=pItem->pSelect; p; p=p->pPrior){ 3809 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3810 } 3811 } 3812 } 3813 } 3814 3815 /* 3816 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3817 */ 3818 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3819 int *aCsrMap = pWalker->u.aiCol; 3820 int iCsr = *piCursor; 3821 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3822 *piCursor = aCsrMap[iCsr+1]; 3823 } 3824 } 3825 3826 /* 3827 ** Expression walker callback used by renumberCursors() to update 3828 ** Expr objects to match newly assigned cursor numbers. 3829 */ 3830 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3831 int op = pExpr->op; 3832 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3833 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3834 } 3835 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3836 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3837 } 3838 return WRC_Continue; 3839 } 3840 3841 /* 3842 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3843 ** of the SELECT statement passed as the second argument, and to each 3844 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3845 ** Except, do not assign a new cursor number to the iExcept'th element in 3846 ** the FROM clause of (*p). Update all expressions and other references 3847 ** to refer to the new cursor numbers. 3848 ** 3849 ** Argument aCsrMap is an array that may be used for temporary working 3850 ** space. Two guarantees are made by the caller: 3851 ** 3852 ** * the array is larger than the largest cursor number used within the 3853 ** select statement passed as an argument, and 3854 ** 3855 ** * the array entries for all cursor numbers that do *not* appear in 3856 ** FROM clauses of the select statement as described above are 3857 ** initialized to zero. 3858 */ 3859 static void renumberCursors( 3860 Parse *pParse, /* Parse context */ 3861 Select *p, /* Select to renumber cursors within */ 3862 int iExcept, /* FROM clause item to skip */ 3863 int *aCsrMap /* Working space */ 3864 ){ 3865 Walker w; 3866 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3867 memset(&w, 0, sizeof(w)); 3868 w.u.aiCol = aCsrMap; 3869 w.xExprCallback = renumberCursorsCb; 3870 w.xSelectCallback = sqlite3SelectWalkNoop; 3871 sqlite3WalkSelect(&w, p); 3872 } 3873 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3874 3875 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3876 /* 3877 ** This routine attempts to flatten subqueries as a performance optimization. 3878 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3879 ** 3880 ** To understand the concept of flattening, consider the following 3881 ** query: 3882 ** 3883 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3884 ** 3885 ** The default way of implementing this query is to execute the 3886 ** subquery first and store the results in a temporary table, then 3887 ** run the outer query on that temporary table. This requires two 3888 ** passes over the data. Furthermore, because the temporary table 3889 ** has no indices, the WHERE clause on the outer query cannot be 3890 ** optimized. 3891 ** 3892 ** This routine attempts to rewrite queries such as the above into 3893 ** a single flat select, like this: 3894 ** 3895 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3896 ** 3897 ** The code generated for this simplification gives the same result 3898 ** but only has to scan the data once. And because indices might 3899 ** exist on the table t1, a complete scan of the data might be 3900 ** avoided. 3901 ** 3902 ** Flattening is subject to the following constraints: 3903 ** 3904 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3905 ** The subquery and the outer query cannot both be aggregates. 3906 ** 3907 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3908 ** (2) If the subquery is an aggregate then 3909 ** (2a) the outer query must not be a join and 3910 ** (2b) the outer query must not use subqueries 3911 ** other than the one FROM-clause subquery that is a candidate 3912 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3913 ** from 2015-02-09.) 3914 ** 3915 ** (3) If the subquery is the right operand of a LEFT JOIN then 3916 ** (3a) the subquery may not be a join and 3917 ** (3b) the FROM clause of the subquery may not contain a virtual 3918 ** table and 3919 ** (3c) the outer query may not be an aggregate. 3920 ** (3d) the outer query may not be DISTINCT. 3921 ** 3922 ** (4) The subquery can not be DISTINCT. 3923 ** 3924 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3925 ** sub-queries that were excluded from this optimization. Restriction 3926 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3927 ** 3928 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3929 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3930 ** 3931 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3932 ** A FROM clause, consider adding a FROM clause with the special 3933 ** table sqlite_once that consists of a single row containing a 3934 ** single NULL. 3935 ** 3936 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3937 ** 3938 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3939 ** 3940 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3941 ** accidently carried the comment forward until 2014-09-15. Original 3942 ** constraint: "If the subquery is aggregate then the outer query 3943 ** may not use LIMIT." 3944 ** 3945 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3946 ** 3947 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3948 ** a separate restriction deriving from ticket #350. 3949 ** 3950 ** (13) The subquery and outer query may not both use LIMIT. 3951 ** 3952 ** (14) The subquery may not use OFFSET. 3953 ** 3954 ** (15) If the outer query is part of a compound select, then the 3955 ** subquery may not use LIMIT. 3956 ** (See ticket #2339 and ticket [02a8e81d44]). 3957 ** 3958 ** (16) If the outer query is aggregate, then the subquery may not 3959 ** use ORDER BY. (Ticket #2942) This used to not matter 3960 ** until we introduced the group_concat() function. 3961 ** 3962 ** (17) If the subquery is a compound select, then 3963 ** (17a) all compound operators must be a UNION ALL, and 3964 ** (17b) no terms within the subquery compound may be aggregate 3965 ** or DISTINCT, and 3966 ** (17c) every term within the subquery compound must have a FROM clause 3967 ** (17d) the outer query may not be 3968 ** (17d1) aggregate, or 3969 ** (17d2) DISTINCT 3970 ** (17e) the subquery may not contain window functions, and 3971 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3972 ** 3973 ** The parent and sub-query may contain WHERE clauses. Subject to 3974 ** rules (11), (13) and (14), they may also contain ORDER BY, 3975 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3976 ** operator other than UNION ALL because all the other compound 3977 ** operators have an implied DISTINCT which is disallowed by 3978 ** restriction (4). 3979 ** 3980 ** Also, each component of the sub-query must return the same number 3981 ** of result columns. This is actually a requirement for any compound 3982 ** SELECT statement, but all the code here does is make sure that no 3983 ** such (illegal) sub-query is flattened. The caller will detect the 3984 ** syntax error and return a detailed message. 3985 ** 3986 ** (18) If the sub-query is a compound select, then all terms of the 3987 ** ORDER BY clause of the parent must be copies of a term returned 3988 ** by the parent query. 3989 ** 3990 ** (19) If the subquery uses LIMIT then the outer query may not 3991 ** have a WHERE clause. 3992 ** 3993 ** (20) If the sub-query is a compound select, then it must not use 3994 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3995 ** somewhat by saying that the terms of the ORDER BY clause must 3996 ** appear as unmodified result columns in the outer query. But we 3997 ** have other optimizations in mind to deal with that case. 3998 ** 3999 ** (21) If the subquery uses LIMIT then the outer query may not be 4000 ** DISTINCT. (See ticket [752e1646fc]). 4001 ** 4002 ** (22) The subquery may not be a recursive CTE. 4003 ** 4004 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4005 ** a compound query. This restriction is because transforming the 4006 ** parent to a compound query confuses the code that handles 4007 ** recursive queries in multiSelect(). 4008 ** 4009 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4010 ** The subquery may not be an aggregate that uses the built-in min() or 4011 ** or max() functions. (Without this restriction, a query like: 4012 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4013 ** return the value X for which Y was maximal.) 4014 ** 4015 ** (25) If either the subquery or the parent query contains a window 4016 ** function in the select list or ORDER BY clause, flattening 4017 ** is not attempted. 4018 ** 4019 ** 4020 ** In this routine, the "p" parameter is a pointer to the outer query. 4021 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4022 ** uses aggregates. 4023 ** 4024 ** If flattening is not attempted, this routine is a no-op and returns 0. 4025 ** If flattening is attempted this routine returns 1. 4026 ** 4027 ** All of the expression analysis must occur on both the outer query and 4028 ** the subquery before this routine runs. 4029 */ 4030 static int flattenSubquery( 4031 Parse *pParse, /* Parsing context */ 4032 Select *p, /* The parent or outer SELECT statement */ 4033 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4034 int isAgg /* True if outer SELECT uses aggregate functions */ 4035 ){ 4036 const char *zSavedAuthContext = pParse->zAuthContext; 4037 Select *pParent; /* Current UNION ALL term of the other query */ 4038 Select *pSub; /* The inner query or "subquery" */ 4039 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4040 SrcList *pSrc; /* The FROM clause of the outer query */ 4041 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4042 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4043 int iNewParent = -1;/* Replacement table for iParent */ 4044 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4045 int i; /* Loop counter */ 4046 Expr *pWhere; /* The WHERE clause */ 4047 SrcItem *pSubitem; /* The subquery */ 4048 sqlite3 *db = pParse->db; 4049 Walker w; /* Walker to persist agginfo data */ 4050 int *aCsrMap = 0; 4051 4052 /* Check to see if flattening is permitted. Return 0 if not. 4053 */ 4054 assert( p!=0 ); 4055 assert( p->pPrior==0 ); 4056 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4057 pSrc = p->pSrc; 4058 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4059 pSubitem = &pSrc->a[iFrom]; 4060 iParent = pSubitem->iCursor; 4061 pSub = pSubitem->pSelect; 4062 assert( pSub!=0 ); 4063 4064 #ifndef SQLITE_OMIT_WINDOWFUNC 4065 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4066 #endif 4067 4068 pSubSrc = pSub->pSrc; 4069 assert( pSubSrc ); 4070 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4071 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4072 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4073 ** became arbitrary expressions, we were forced to add restrictions (13) 4074 ** and (14). */ 4075 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4076 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4077 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4078 return 0; /* Restriction (15) */ 4079 } 4080 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4081 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4082 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4083 return 0; /* Restrictions (8)(9) */ 4084 } 4085 if( p->pOrderBy && pSub->pOrderBy ){ 4086 return 0; /* Restriction (11) */ 4087 } 4088 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4089 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4090 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4091 return 0; /* Restriction (21) */ 4092 } 4093 if( pSub->selFlags & (SF_Recursive) ){ 4094 return 0; /* Restrictions (22) */ 4095 } 4096 4097 /* 4098 ** If the subquery is the right operand of a LEFT JOIN, then the 4099 ** subquery may not be a join itself (3a). Example of why this is not 4100 ** allowed: 4101 ** 4102 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4103 ** 4104 ** If we flatten the above, we would get 4105 ** 4106 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4107 ** 4108 ** which is not at all the same thing. 4109 ** 4110 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4111 ** query cannot be an aggregate. (3c) This is an artifact of the way 4112 ** aggregates are processed - there is no mechanism to determine if 4113 ** the LEFT JOIN table should be all-NULL. 4114 ** 4115 ** See also tickets #306, #350, and #3300. 4116 */ 4117 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4118 isLeftJoin = 1; 4119 if( pSubSrc->nSrc>1 /* (3a) */ 4120 || isAgg /* (3b) */ 4121 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4122 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4123 ){ 4124 return 0; 4125 } 4126 } 4127 #ifdef SQLITE_EXTRA_IFNULLROW 4128 else if( iFrom>0 && !isAgg ){ 4129 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4130 ** every reference to any result column from subquery in a join, even 4131 ** though they are not necessary. This will stress-test the OP_IfNullRow 4132 ** opcode. */ 4133 isLeftJoin = -1; 4134 } 4135 #endif 4136 4137 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4138 ** use only the UNION ALL operator. And none of the simple select queries 4139 ** that make up the compound SELECT are allowed to be aggregate or distinct 4140 ** queries. 4141 */ 4142 if( pSub->pPrior ){ 4143 if( pSub->pOrderBy ){ 4144 return 0; /* Restriction (20) */ 4145 } 4146 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4147 return 0; /* (17d1), (17d2), or (17f) */ 4148 } 4149 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4150 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4151 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4152 assert( pSub->pSrc!=0 ); 4153 assert( (pSub->selFlags & SF_Recursive)==0 ); 4154 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4155 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4156 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4157 || pSub1->pSrc->nSrc<1 /* (17c) */ 4158 #ifndef SQLITE_OMIT_WINDOWFUNC 4159 || pSub1->pWin /* (17e) */ 4160 #endif 4161 ){ 4162 return 0; 4163 } 4164 testcase( pSub1->pSrc->nSrc>1 ); 4165 } 4166 4167 /* Restriction (18). */ 4168 if( p->pOrderBy ){ 4169 int ii; 4170 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4171 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4172 } 4173 } 4174 4175 /* Restriction (23) */ 4176 if( (p->selFlags & SF_Recursive) ) return 0; 4177 4178 if( pSrc->nSrc>1 ){ 4179 if( pParse->nSelect>500 ) return 0; 4180 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4181 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4182 } 4183 } 4184 4185 /***** If we reach this point, flattening is permitted. *****/ 4186 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4187 pSub->selId, pSub, iFrom)); 4188 4189 /* Authorize the subquery */ 4190 pParse->zAuthContext = pSubitem->zName; 4191 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4192 testcase( i==SQLITE_DENY ); 4193 pParse->zAuthContext = zSavedAuthContext; 4194 4195 /* Delete the transient structures associated with thesubquery */ 4196 pSub1 = pSubitem->pSelect; 4197 sqlite3DbFree(db, pSubitem->zDatabase); 4198 sqlite3DbFree(db, pSubitem->zName); 4199 sqlite3DbFree(db, pSubitem->zAlias); 4200 pSubitem->zDatabase = 0; 4201 pSubitem->zName = 0; 4202 pSubitem->zAlias = 0; 4203 pSubitem->pSelect = 0; 4204 assert( pSubitem->pOn==0 ); 4205 4206 /* If the sub-query is a compound SELECT statement, then (by restrictions 4207 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4208 ** be of the form: 4209 ** 4210 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4211 ** 4212 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4213 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4214 ** OFFSET clauses and joins them to the left-hand-side of the original 4215 ** using UNION ALL operators. In this case N is the number of simple 4216 ** select statements in the compound sub-query. 4217 ** 4218 ** Example: 4219 ** 4220 ** SELECT a+1 FROM ( 4221 ** SELECT x FROM tab 4222 ** UNION ALL 4223 ** SELECT y FROM tab 4224 ** UNION ALL 4225 ** SELECT abs(z*2) FROM tab2 4226 ** ) WHERE a!=5 ORDER BY 1 4227 ** 4228 ** Transformed into: 4229 ** 4230 ** SELECT x+1 FROM tab WHERE x+1!=5 4231 ** UNION ALL 4232 ** SELECT y+1 FROM tab WHERE y+1!=5 4233 ** UNION ALL 4234 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4235 ** ORDER BY 1 4236 ** 4237 ** We call this the "compound-subquery flattening". 4238 */ 4239 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4240 Select *pNew; 4241 ExprList *pOrderBy = p->pOrderBy; 4242 Expr *pLimit = p->pLimit; 4243 Select *pPrior = p->pPrior; 4244 Table *pItemTab = pSubitem->pTab; 4245 pSubitem->pTab = 0; 4246 p->pOrderBy = 0; 4247 p->pPrior = 0; 4248 p->pLimit = 0; 4249 pNew = sqlite3SelectDup(db, p, 0); 4250 p->pLimit = pLimit; 4251 p->pOrderBy = pOrderBy; 4252 p->op = TK_ALL; 4253 pSubitem->pTab = pItemTab; 4254 if( pNew==0 ){ 4255 p->pPrior = pPrior; 4256 }else{ 4257 pNew->selId = ++pParse->nSelect; 4258 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4259 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4260 } 4261 pNew->pPrior = pPrior; 4262 if( pPrior ) pPrior->pNext = pNew; 4263 pNew->pNext = p; 4264 p->pPrior = pNew; 4265 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4266 " creates %u as peer\n",pNew->selId)); 4267 } 4268 assert( pSubitem->pSelect==0 ); 4269 } 4270 sqlite3DbFree(db, aCsrMap); 4271 if( db->mallocFailed ){ 4272 pSubitem->pSelect = pSub1; 4273 return 1; 4274 } 4275 4276 /* Defer deleting the Table object associated with the 4277 ** subquery until code generation is 4278 ** complete, since there may still exist Expr.pTab entries that 4279 ** refer to the subquery even after flattening. Ticket #3346. 4280 ** 4281 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4282 */ 4283 if( ALWAYS(pSubitem->pTab!=0) ){ 4284 Table *pTabToDel = pSubitem->pTab; 4285 if( pTabToDel->nTabRef==1 ){ 4286 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4287 sqlite3ParserAddCleanup(pToplevel, 4288 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4289 pTabToDel); 4290 testcase( pToplevel->earlyCleanup ); 4291 }else{ 4292 pTabToDel->nTabRef--; 4293 } 4294 pSubitem->pTab = 0; 4295 } 4296 4297 /* The following loop runs once for each term in a compound-subquery 4298 ** flattening (as described above). If we are doing a different kind 4299 ** of flattening - a flattening other than a compound-subquery flattening - 4300 ** then this loop only runs once. 4301 ** 4302 ** This loop moves all of the FROM elements of the subquery into the 4303 ** the FROM clause of the outer query. Before doing this, remember 4304 ** the cursor number for the original outer query FROM element in 4305 ** iParent. The iParent cursor will never be used. Subsequent code 4306 ** will scan expressions looking for iParent references and replace 4307 ** those references with expressions that resolve to the subquery FROM 4308 ** elements we are now copying in. 4309 */ 4310 pSub = pSub1; 4311 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4312 int nSubSrc; 4313 u8 jointype = 0; 4314 assert( pSub!=0 ); 4315 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4316 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4317 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4318 4319 if( pParent==p ){ 4320 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4321 } 4322 4323 /* The subquery uses a single slot of the FROM clause of the outer 4324 ** query. If the subquery has more than one element in its FROM clause, 4325 ** then expand the outer query to make space for it to hold all elements 4326 ** of the subquery. 4327 ** 4328 ** Example: 4329 ** 4330 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4331 ** 4332 ** The outer query has 3 slots in its FROM clause. One slot of the 4333 ** outer query (the middle slot) is used by the subquery. The next 4334 ** block of code will expand the outer query FROM clause to 4 slots. 4335 ** The middle slot is expanded to two slots in order to make space 4336 ** for the two elements in the FROM clause of the subquery. 4337 */ 4338 if( nSubSrc>1 ){ 4339 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4340 if( pSrc==0 ) break; 4341 pParent->pSrc = pSrc; 4342 } 4343 4344 /* Transfer the FROM clause terms from the subquery into the 4345 ** outer query. 4346 */ 4347 for(i=0; i<nSubSrc; i++){ 4348 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4349 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4350 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4351 iNewParent = pSubSrc->a[i].iCursor; 4352 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4353 } 4354 pSrc->a[iFrom].fg.jointype = jointype; 4355 4356 /* Now begin substituting subquery result set expressions for 4357 ** references to the iParent in the outer query. 4358 ** 4359 ** Example: 4360 ** 4361 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4362 ** \ \_____________ subquery __________/ / 4363 ** \_____________________ outer query ______________________________/ 4364 ** 4365 ** We look at every expression in the outer query and every place we see 4366 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4367 */ 4368 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4369 /* At this point, any non-zero iOrderByCol values indicate that the 4370 ** ORDER BY column expression is identical to the iOrderByCol'th 4371 ** expression returned by SELECT statement pSub. Since these values 4372 ** do not necessarily correspond to columns in SELECT statement pParent, 4373 ** zero them before transfering the ORDER BY clause. 4374 ** 4375 ** Not doing this may cause an error if a subsequent call to this 4376 ** function attempts to flatten a compound sub-query into pParent 4377 ** (the only way this can happen is if the compound sub-query is 4378 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4379 ExprList *pOrderBy = pSub->pOrderBy; 4380 for(i=0; i<pOrderBy->nExpr; i++){ 4381 pOrderBy->a[i].u.x.iOrderByCol = 0; 4382 } 4383 assert( pParent->pOrderBy==0 ); 4384 pParent->pOrderBy = pOrderBy; 4385 pSub->pOrderBy = 0; 4386 } 4387 pWhere = pSub->pWhere; 4388 pSub->pWhere = 0; 4389 if( isLeftJoin>0 ){ 4390 sqlite3SetJoinExpr(pWhere, iNewParent); 4391 } 4392 if( pWhere ){ 4393 if( pParent->pWhere ){ 4394 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4395 }else{ 4396 pParent->pWhere = pWhere; 4397 } 4398 } 4399 if( db->mallocFailed==0 ){ 4400 SubstContext x; 4401 x.pParse = pParse; 4402 x.iTable = iParent; 4403 x.iNewTable = iNewParent; 4404 x.isLeftJoin = isLeftJoin; 4405 x.pEList = pSub->pEList; 4406 substSelect(&x, pParent, 0); 4407 } 4408 4409 /* The flattened query is a compound if either the inner or the 4410 ** outer query is a compound. */ 4411 pParent->selFlags |= pSub->selFlags & SF_Compound; 4412 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4413 4414 /* 4415 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4416 ** 4417 ** One is tempted to try to add a and b to combine the limits. But this 4418 ** does not work if either limit is negative. 4419 */ 4420 if( pSub->pLimit ){ 4421 pParent->pLimit = pSub->pLimit; 4422 pSub->pLimit = 0; 4423 } 4424 4425 /* Recompute the SrcList_item.colUsed masks for the flattened 4426 ** tables. */ 4427 for(i=0; i<nSubSrc; i++){ 4428 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4429 } 4430 } 4431 4432 /* Finially, delete what is left of the subquery and return 4433 ** success. 4434 */ 4435 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4436 sqlite3WalkSelect(&w,pSub1); 4437 sqlite3SelectDelete(db, pSub1); 4438 4439 #if SELECTTRACE_ENABLED 4440 if( sqlite3SelectTrace & 0x100 ){ 4441 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4442 sqlite3TreeViewSelect(0, p, 0); 4443 } 4444 #endif 4445 4446 return 1; 4447 } 4448 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4449 4450 /* 4451 ** A structure to keep track of all of the column values that are fixed to 4452 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4453 */ 4454 typedef struct WhereConst WhereConst; 4455 struct WhereConst { 4456 Parse *pParse; /* Parsing context */ 4457 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4458 int nConst; /* Number for COLUMN=CONSTANT terms */ 4459 int nChng; /* Number of times a constant is propagated */ 4460 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4461 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4462 }; 4463 4464 /* 4465 ** Add a new entry to the pConst object. Except, do not add duplicate 4466 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4467 ** 4468 ** The caller guarantees the pColumn is a column and pValue is a constant. 4469 ** This routine has to do some additional checks before completing the 4470 ** insert. 4471 */ 4472 static void constInsert( 4473 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4474 Expr *pColumn, /* The COLUMN part of the constraint */ 4475 Expr *pValue, /* The VALUE part of the constraint */ 4476 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4477 ){ 4478 int i; 4479 assert( pColumn->op==TK_COLUMN ); 4480 assert( sqlite3ExprIsConstant(pValue) ); 4481 4482 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4483 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4484 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4485 return; 4486 } 4487 4488 /* 2018-10-25 ticket [cf5ed20f] 4489 ** Make sure the same pColumn is not inserted more than once */ 4490 for(i=0; i<pConst->nConst; i++){ 4491 const Expr *pE2 = pConst->apExpr[i*2]; 4492 assert( pE2->op==TK_COLUMN ); 4493 if( pE2->iTable==pColumn->iTable 4494 && pE2->iColumn==pColumn->iColumn 4495 ){ 4496 return; /* Already present. Return without doing anything. */ 4497 } 4498 } 4499 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4500 pConst->bHasAffBlob = 1; 4501 } 4502 4503 pConst->nConst++; 4504 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4505 pConst->nConst*2*sizeof(Expr*)); 4506 if( pConst->apExpr==0 ){ 4507 pConst->nConst = 0; 4508 }else{ 4509 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4510 pConst->apExpr[pConst->nConst*2-1] = pValue; 4511 } 4512 } 4513 4514 /* 4515 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4516 ** is a constant expression and where the term must be true because it 4517 ** is part of the AND-connected terms of the expression. For each term 4518 ** found, add it to the pConst structure. 4519 */ 4520 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4521 Expr *pRight, *pLeft; 4522 if( NEVER(pExpr==0) ) return; 4523 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4524 if( pExpr->op==TK_AND ){ 4525 findConstInWhere(pConst, pExpr->pRight); 4526 findConstInWhere(pConst, pExpr->pLeft); 4527 return; 4528 } 4529 if( pExpr->op!=TK_EQ ) return; 4530 pRight = pExpr->pRight; 4531 pLeft = pExpr->pLeft; 4532 assert( pRight!=0 ); 4533 assert( pLeft!=0 ); 4534 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4535 constInsert(pConst,pRight,pLeft,pExpr); 4536 } 4537 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4538 constInsert(pConst,pLeft,pRight,pExpr); 4539 } 4540 } 4541 4542 /* 4543 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4544 ** 4545 ** Argument pExpr is a candidate expression to be replaced by a value. If 4546 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4547 ** then overwrite it with the corresponding value. Except, do not do so 4548 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4549 ** is SQLITE_AFF_BLOB. 4550 */ 4551 static int propagateConstantExprRewriteOne( 4552 WhereConst *pConst, 4553 Expr *pExpr, 4554 int bIgnoreAffBlob 4555 ){ 4556 int i; 4557 if( pConst->pOomFault[0] ) return WRC_Prune; 4558 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4559 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4560 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4561 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4562 return WRC_Continue; 4563 } 4564 for(i=0; i<pConst->nConst; i++){ 4565 Expr *pColumn = pConst->apExpr[i*2]; 4566 if( pColumn==pExpr ) continue; 4567 if( pColumn->iTable!=pExpr->iTable ) continue; 4568 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4569 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4570 break; 4571 } 4572 /* A match is found. Add the EP_FixedCol property */ 4573 pConst->nChng++; 4574 ExprClearProperty(pExpr, EP_Leaf); 4575 ExprSetProperty(pExpr, EP_FixedCol); 4576 assert( pExpr->pLeft==0 ); 4577 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4578 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4579 break; 4580 } 4581 return WRC_Prune; 4582 } 4583 4584 /* 4585 ** This is a Walker expression callback. pExpr is a node from the WHERE 4586 ** clause of a SELECT statement. This function examines pExpr to see if 4587 ** any substitutions based on the contents of pWalker->u.pConst should 4588 ** be made to pExpr or its immediate children. 4589 ** 4590 ** A substitution is made if: 4591 ** 4592 ** + pExpr is a column with an affinity other than BLOB that matches 4593 ** one of the columns in pWalker->u.pConst, or 4594 ** 4595 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4596 ** uses an affinity other than TEXT and one of its immediate 4597 ** children is a column that matches one of the columns in 4598 ** pWalker->u.pConst. 4599 */ 4600 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4601 WhereConst *pConst = pWalker->u.pConst; 4602 assert( TK_GT==TK_EQ+1 ); 4603 assert( TK_LE==TK_EQ+2 ); 4604 assert( TK_LT==TK_EQ+3 ); 4605 assert( TK_GE==TK_EQ+4 ); 4606 if( pConst->bHasAffBlob ){ 4607 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4608 || pExpr->op==TK_IS 4609 ){ 4610 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4611 if( pConst->pOomFault[0] ) return WRC_Prune; 4612 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4613 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4614 } 4615 } 4616 } 4617 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4618 } 4619 4620 /* 4621 ** The WHERE-clause constant propagation optimization. 4622 ** 4623 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4624 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4625 ** part of a ON clause from a LEFT JOIN, then throughout the query 4626 ** replace all other occurrences of COLUMN with CONSTANT. 4627 ** 4628 ** For example, the query: 4629 ** 4630 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4631 ** 4632 ** Is transformed into 4633 ** 4634 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4635 ** 4636 ** Return true if any transformations where made and false if not. 4637 ** 4638 ** Implementation note: Constant propagation is tricky due to affinity 4639 ** and collating sequence interactions. Consider this example: 4640 ** 4641 ** CREATE TABLE t1(a INT,b TEXT); 4642 ** INSERT INTO t1 VALUES(123,'0123'); 4643 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4644 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4645 ** 4646 ** The two SELECT statements above should return different answers. b=a 4647 ** is alway true because the comparison uses numeric affinity, but b=123 4648 ** is false because it uses text affinity and '0123' is not the same as '123'. 4649 ** To work around this, the expression tree is not actually changed from 4650 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4651 ** and the "123" value is hung off of the pLeft pointer. Code generator 4652 ** routines know to generate the constant "123" instead of looking up the 4653 ** column value. Also, to avoid collation problems, this optimization is 4654 ** only attempted if the "a=123" term uses the default BINARY collation. 4655 ** 4656 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4657 ** 4658 ** CREATE TABLE t1(x); 4659 ** INSERT INTO t1 VALUES(10.0); 4660 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4661 ** 4662 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4663 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4664 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4665 ** resulting in a false positive. To avoid this, constant propagation for 4666 ** columns with BLOB affinity is only allowed if the constant is used with 4667 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4668 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4669 ** for details. 4670 */ 4671 static int propagateConstants( 4672 Parse *pParse, /* The parsing context */ 4673 Select *p /* The query in which to propagate constants */ 4674 ){ 4675 WhereConst x; 4676 Walker w; 4677 int nChng = 0; 4678 x.pParse = pParse; 4679 x.pOomFault = &pParse->db->mallocFailed; 4680 do{ 4681 x.nConst = 0; 4682 x.nChng = 0; 4683 x.apExpr = 0; 4684 x.bHasAffBlob = 0; 4685 findConstInWhere(&x, p->pWhere); 4686 if( x.nConst ){ 4687 memset(&w, 0, sizeof(w)); 4688 w.pParse = pParse; 4689 w.xExprCallback = propagateConstantExprRewrite; 4690 w.xSelectCallback = sqlite3SelectWalkNoop; 4691 w.xSelectCallback2 = 0; 4692 w.walkerDepth = 0; 4693 w.u.pConst = &x; 4694 sqlite3WalkExpr(&w, p->pWhere); 4695 sqlite3DbFree(x.pParse->db, x.apExpr); 4696 nChng += x.nChng; 4697 } 4698 }while( x.nChng ); 4699 return nChng; 4700 } 4701 4702 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4703 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4704 /* 4705 ** This function is called to determine whether or not it is safe to 4706 ** push WHERE clause expression pExpr down to FROM clause sub-query 4707 ** pSubq, which contains at least one window function. Return 1 4708 ** if it is safe and the expression should be pushed down, or 0 4709 ** otherwise. 4710 ** 4711 ** It is only safe to push the expression down if it consists only 4712 ** of constants and copies of expressions that appear in the PARTITION 4713 ** BY clause of all window function used by the sub-query. It is safe 4714 ** to filter out entire partitions, but not rows within partitions, as 4715 ** this may change the results of the window functions. 4716 ** 4717 ** At the time this function is called it is guaranteed that 4718 ** 4719 ** * the sub-query uses only one distinct window frame, and 4720 ** * that the window frame has a PARTITION BY clase. 4721 */ 4722 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4723 assert( pSubq->pWin->pPartition ); 4724 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4725 assert( pSubq->pPrior==0 ); 4726 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4727 } 4728 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4730 4731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4732 /* 4733 ** Make copies of relevant WHERE clause terms of the outer query into 4734 ** the WHERE clause of subquery. Example: 4735 ** 4736 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4737 ** 4738 ** Transformed into: 4739 ** 4740 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4741 ** WHERE x=5 AND y=10; 4742 ** 4743 ** The hope is that the terms added to the inner query will make it more 4744 ** efficient. 4745 ** 4746 ** Do not attempt this optimization if: 4747 ** 4748 ** (1) (** This restriction was removed on 2017-09-29. We used to 4749 ** disallow this optimization for aggregate subqueries, but now 4750 ** it is allowed by putting the extra terms on the HAVING clause. 4751 ** The added HAVING clause is pointless if the subquery lacks 4752 ** a GROUP BY clause. But such a HAVING clause is also harmless 4753 ** so there does not appear to be any reason to add extra logic 4754 ** to suppress it. **) 4755 ** 4756 ** (2) The inner query is the recursive part of a common table expression. 4757 ** 4758 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4759 ** clause would change the meaning of the LIMIT). 4760 ** 4761 ** (4) The inner query is the right operand of a LEFT JOIN and the 4762 ** expression to be pushed down does not come from the ON clause 4763 ** on that LEFT JOIN. 4764 ** 4765 ** (5) The WHERE clause expression originates in the ON or USING clause 4766 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4767 ** left join. An example: 4768 ** 4769 ** SELECT * 4770 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4771 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4772 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4773 ** 4774 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4775 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4776 ** then the (1,1,NULL) row would be suppressed. 4777 ** 4778 ** (6) Window functions make things tricky as changes to the WHERE clause 4779 ** of the inner query could change the window over which window 4780 ** functions are calculated. Therefore, do not attempt the optimization 4781 ** if: 4782 ** 4783 ** (6a) The inner query uses multiple incompatible window partitions. 4784 ** 4785 ** (6b) The inner query is a compound and uses window-functions. 4786 ** 4787 ** (6c) The WHERE clause does not consist entirely of constants and 4788 ** copies of expressions found in the PARTITION BY clause of 4789 ** all window-functions used by the sub-query. It is safe to 4790 ** filter out entire partitions, as this does not change the 4791 ** window over which any window-function is calculated. 4792 ** 4793 ** (7) The inner query is a Common Table Expression (CTE) that should 4794 ** be materialized. (This restriction is implemented in the calling 4795 ** routine.) 4796 ** 4797 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4798 ** terms are duplicated into the subquery. 4799 */ 4800 static int pushDownWhereTerms( 4801 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4802 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4803 Expr *pWhere, /* The WHERE clause of the outer query */ 4804 int iCursor, /* Cursor number of the subquery */ 4805 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4806 ){ 4807 Expr *pNew; 4808 int nChng = 0; 4809 if( pWhere==0 ) return 0; 4810 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4811 4812 #ifndef SQLITE_OMIT_WINDOWFUNC 4813 if( pSubq->pPrior ){ 4814 Select *pSel; 4815 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4816 if( pSel->pWin ) return 0; /* restriction (6b) */ 4817 } 4818 }else{ 4819 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4820 } 4821 #endif 4822 4823 #ifdef SQLITE_DEBUG 4824 /* Only the first term of a compound can have a WITH clause. But make 4825 ** sure no other terms are marked SF_Recursive in case something changes 4826 ** in the future. 4827 */ 4828 { 4829 Select *pX; 4830 for(pX=pSubq; pX; pX=pX->pPrior){ 4831 assert( (pX->selFlags & (SF_Recursive))==0 ); 4832 } 4833 } 4834 #endif 4835 4836 if( pSubq->pLimit!=0 ){ 4837 return 0; /* restriction (3) */ 4838 } 4839 while( pWhere->op==TK_AND ){ 4840 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4841 iCursor, isLeftJoin); 4842 pWhere = pWhere->pLeft; 4843 } 4844 if( isLeftJoin 4845 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4846 || pWhere->iRightJoinTable!=iCursor) 4847 ){ 4848 return 0; /* restriction (4) */ 4849 } 4850 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4851 return 0; /* restriction (5) */ 4852 } 4853 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4854 nChng++; 4855 pSubq->selFlags |= SF_PushDown; 4856 while( pSubq ){ 4857 SubstContext x; 4858 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4859 unsetJoinExpr(pNew, -1); 4860 x.pParse = pParse; 4861 x.iTable = iCursor; 4862 x.iNewTable = iCursor; 4863 x.isLeftJoin = 0; 4864 x.pEList = pSubq->pEList; 4865 pNew = substExpr(&x, pNew); 4866 #ifndef SQLITE_OMIT_WINDOWFUNC 4867 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4868 /* Restriction 6c has prevented push-down in this case */ 4869 sqlite3ExprDelete(pParse->db, pNew); 4870 nChng--; 4871 break; 4872 } 4873 #endif 4874 if( pSubq->selFlags & SF_Aggregate ){ 4875 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4876 }else{ 4877 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4878 } 4879 pSubq = pSubq->pPrior; 4880 } 4881 } 4882 return nChng; 4883 } 4884 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4885 4886 /* 4887 ** The pFunc is the only aggregate function in the query. Check to see 4888 ** if the query is a candidate for the min/max optimization. 4889 ** 4890 ** If the query is a candidate for the min/max optimization, then set 4891 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4892 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4893 ** whether pFunc is a min() or max() function. 4894 ** 4895 ** If the query is not a candidate for the min/max optimization, return 4896 ** WHERE_ORDERBY_NORMAL (which must be zero). 4897 ** 4898 ** This routine must be called after aggregate functions have been 4899 ** located but before their arguments have been subjected to aggregate 4900 ** analysis. 4901 */ 4902 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4903 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4904 ExprList *pEList; /* Arguments to agg function */ 4905 const char *zFunc; /* Name of aggregate function pFunc */ 4906 ExprList *pOrderBy; 4907 u8 sortFlags = 0; 4908 4909 assert( *ppMinMax==0 ); 4910 assert( pFunc->op==TK_AGG_FUNCTION ); 4911 assert( !IsWindowFunc(pFunc) ); 4912 assert( ExprUseXList(pFunc) ); 4913 pEList = pFunc->x.pList; 4914 if( pEList==0 4915 || pEList->nExpr!=1 4916 || ExprHasProperty(pFunc, EP_WinFunc) 4917 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4918 ){ 4919 return eRet; 4920 } 4921 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 4922 zFunc = pFunc->u.zToken; 4923 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4924 eRet = WHERE_ORDERBY_MIN; 4925 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4926 sortFlags = KEYINFO_ORDER_BIGNULL; 4927 } 4928 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4929 eRet = WHERE_ORDERBY_MAX; 4930 sortFlags = KEYINFO_ORDER_DESC; 4931 }else{ 4932 return eRet; 4933 } 4934 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4935 assert( pOrderBy!=0 || db->mallocFailed ); 4936 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4937 return eRet; 4938 } 4939 4940 /* 4941 ** The select statement passed as the first argument is an aggregate query. 4942 ** The second argument is the associated aggregate-info object. This 4943 ** function tests if the SELECT is of the form: 4944 ** 4945 ** SELECT count(*) FROM <tbl> 4946 ** 4947 ** where table is a database table, not a sub-select or view. If the query 4948 ** does match this pattern, then a pointer to the Table object representing 4949 ** <tbl> is returned. Otherwise, 0 is returned. 4950 */ 4951 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4952 Table *pTab; 4953 Expr *pExpr; 4954 4955 assert( !p->pGroupBy ); 4956 4957 if( p->pWhere || p->pEList->nExpr!=1 4958 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4959 ){ 4960 return 0; 4961 } 4962 pTab = p->pSrc->a[0].pTab; 4963 pExpr = p->pEList->a[0].pExpr; 4964 assert( pTab && !IsView(pTab) && pExpr ); 4965 4966 if( IsVirtual(pTab) ) return 0; 4967 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4968 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4969 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4970 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4971 4972 return pTab; 4973 } 4974 4975 /* 4976 ** If the source-list item passed as an argument was augmented with an 4977 ** INDEXED BY clause, then try to locate the specified index. If there 4978 ** was such a clause and the named index cannot be found, return 4979 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4980 ** pFrom->pIndex and return SQLITE_OK. 4981 */ 4982 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4983 Table *pTab = pFrom->pTab; 4984 char *zIndexedBy = pFrom->u1.zIndexedBy; 4985 Index *pIdx; 4986 assert( pTab!=0 ); 4987 assert( pFrom->fg.isIndexedBy!=0 ); 4988 4989 for(pIdx=pTab->pIndex; 4990 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4991 pIdx=pIdx->pNext 4992 ); 4993 if( !pIdx ){ 4994 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4995 pParse->checkSchema = 1; 4996 return SQLITE_ERROR; 4997 } 4998 assert( pFrom->fg.isCte==0 ); 4999 pFrom->u2.pIBIndex = pIdx; 5000 return SQLITE_OK; 5001 } 5002 5003 /* 5004 ** Detect compound SELECT statements that use an ORDER BY clause with 5005 ** an alternative collating sequence. 5006 ** 5007 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5008 ** 5009 ** These are rewritten as a subquery: 5010 ** 5011 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5012 ** ORDER BY ... COLLATE ... 5013 ** 5014 ** This transformation is necessary because the multiSelectOrderBy() routine 5015 ** above that generates the code for a compound SELECT with an ORDER BY clause 5016 ** uses a merge algorithm that requires the same collating sequence on the 5017 ** result columns as on the ORDER BY clause. See ticket 5018 ** http://www.sqlite.org/src/info/6709574d2a 5019 ** 5020 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5021 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5022 ** there are COLLATE terms in the ORDER BY. 5023 */ 5024 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5025 int i; 5026 Select *pNew; 5027 Select *pX; 5028 sqlite3 *db; 5029 struct ExprList_item *a; 5030 SrcList *pNewSrc; 5031 Parse *pParse; 5032 Token dummy; 5033 5034 if( p->pPrior==0 ) return WRC_Continue; 5035 if( p->pOrderBy==0 ) return WRC_Continue; 5036 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5037 if( pX==0 ) return WRC_Continue; 5038 a = p->pOrderBy->a; 5039 #ifndef SQLITE_OMIT_WINDOWFUNC 5040 /* If iOrderByCol is already non-zero, then it has already been matched 5041 ** to a result column of the SELECT statement. This occurs when the 5042 ** SELECT is rewritten for window-functions processing and then passed 5043 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5044 ** by this function is not required in this case. */ 5045 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5046 #endif 5047 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5048 if( a[i].pExpr->flags & EP_Collate ) break; 5049 } 5050 if( i<0 ) return WRC_Continue; 5051 5052 /* If we reach this point, that means the transformation is required. */ 5053 5054 pParse = pWalker->pParse; 5055 db = pParse->db; 5056 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5057 if( pNew==0 ) return WRC_Abort; 5058 memset(&dummy, 0, sizeof(dummy)); 5059 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5060 if( pNewSrc==0 ) return WRC_Abort; 5061 *pNew = *p; 5062 p->pSrc = pNewSrc; 5063 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5064 p->op = TK_SELECT; 5065 p->pWhere = 0; 5066 pNew->pGroupBy = 0; 5067 pNew->pHaving = 0; 5068 pNew->pOrderBy = 0; 5069 p->pPrior = 0; 5070 p->pNext = 0; 5071 p->pWith = 0; 5072 #ifndef SQLITE_OMIT_WINDOWFUNC 5073 p->pWinDefn = 0; 5074 #endif 5075 p->selFlags &= ~SF_Compound; 5076 assert( (p->selFlags & SF_Converted)==0 ); 5077 p->selFlags |= SF_Converted; 5078 assert( pNew->pPrior!=0 ); 5079 pNew->pPrior->pNext = pNew; 5080 pNew->pLimit = 0; 5081 return WRC_Continue; 5082 } 5083 5084 /* 5085 ** Check to see if the FROM clause term pFrom has table-valued function 5086 ** arguments. If it does, leave an error message in pParse and return 5087 ** non-zero, since pFrom is not allowed to be a table-valued function. 5088 */ 5089 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5090 if( pFrom->fg.isTabFunc ){ 5091 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5092 return 1; 5093 } 5094 return 0; 5095 } 5096 5097 #ifndef SQLITE_OMIT_CTE 5098 /* 5099 ** Argument pWith (which may be NULL) points to a linked list of nested 5100 ** WITH contexts, from inner to outermost. If the table identified by 5101 ** FROM clause element pItem is really a common-table-expression (CTE) 5102 ** then return a pointer to the CTE definition for that table. Otherwise 5103 ** return NULL. 5104 ** 5105 ** If a non-NULL value is returned, set *ppContext to point to the With 5106 ** object that the returned CTE belongs to. 5107 */ 5108 static struct Cte *searchWith( 5109 With *pWith, /* Current innermost WITH clause */ 5110 SrcItem *pItem, /* FROM clause element to resolve */ 5111 With **ppContext /* OUT: WITH clause return value belongs to */ 5112 ){ 5113 const char *zName = pItem->zName; 5114 With *p; 5115 assert( pItem->zDatabase==0 ); 5116 assert( zName!=0 ); 5117 for(p=pWith; p; p=p->pOuter){ 5118 int i; 5119 for(i=0; i<p->nCte; i++){ 5120 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5121 *ppContext = p; 5122 return &p->a[i]; 5123 } 5124 } 5125 if( p->bView ) break; 5126 } 5127 return 0; 5128 } 5129 5130 /* The code generator maintains a stack of active WITH clauses 5131 ** with the inner-most WITH clause being at the top of the stack. 5132 ** 5133 ** This routine pushes the WITH clause passed as the second argument 5134 ** onto the top of the stack. If argument bFree is true, then this 5135 ** WITH clause will never be popped from the stack but should instead 5136 ** be freed along with the Parse object. In other cases, when 5137 ** bFree==0, the With object will be freed along with the SELECT 5138 ** statement with which it is associated. 5139 ** 5140 ** This routine returns a copy of pWith. Or, if bFree is true and 5141 ** the pWith object is destroyed immediately due to an OOM condition, 5142 ** then this routine return NULL. 5143 ** 5144 ** If bFree is true, do not continue to use the pWith pointer after 5145 ** calling this routine, Instead, use only the return value. 5146 */ 5147 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5148 if( pWith ){ 5149 if( bFree ){ 5150 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5151 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5152 pWith); 5153 if( pWith==0 ) return 0; 5154 } 5155 if( pParse->nErr==0 ){ 5156 assert( pParse->pWith!=pWith ); 5157 pWith->pOuter = pParse->pWith; 5158 pParse->pWith = pWith; 5159 } 5160 } 5161 return pWith; 5162 } 5163 5164 /* 5165 ** This function checks if argument pFrom refers to a CTE declared by 5166 ** a WITH clause on the stack currently maintained by the parser (on the 5167 ** pParse->pWith linked list). And if currently processing a CTE 5168 ** CTE expression, through routine checks to see if the reference is 5169 ** a recursive reference to the CTE. 5170 ** 5171 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5172 ** and other fields are populated accordingly. 5173 ** 5174 ** Return 0 if no match is found. 5175 ** Return 1 if a match is found. 5176 ** Return 2 if an error condition is detected. 5177 */ 5178 static int resolveFromTermToCte( 5179 Parse *pParse, /* The parsing context */ 5180 Walker *pWalker, /* Current tree walker */ 5181 SrcItem *pFrom /* The FROM clause term to check */ 5182 ){ 5183 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5184 With *pWith; /* The matching WITH */ 5185 5186 assert( pFrom->pTab==0 ); 5187 if( pParse->pWith==0 ){ 5188 /* There are no WITH clauses in the stack. No match is possible */ 5189 return 0; 5190 } 5191 if( pParse->nErr ){ 5192 /* Prior errors might have left pParse->pWith in a goofy state, so 5193 ** go no further. */ 5194 return 0; 5195 } 5196 if( pFrom->zDatabase!=0 ){ 5197 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5198 ** it cannot possibly be a CTE reference. */ 5199 return 0; 5200 } 5201 if( pFrom->fg.notCte ){ 5202 /* The FROM term is specifically excluded from matching a CTE. 5203 ** (1) It is part of a trigger that used to have zDatabase but had 5204 ** zDatabase removed by sqlite3FixTriggerStep(). 5205 ** (2) This is the first term in the FROM clause of an UPDATE. 5206 */ 5207 return 0; 5208 } 5209 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5210 if( pCte ){ 5211 sqlite3 *db = pParse->db; 5212 Table *pTab; 5213 ExprList *pEList; 5214 Select *pSel; 5215 Select *pLeft; /* Left-most SELECT statement */ 5216 Select *pRecTerm; /* Left-most recursive term */ 5217 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5218 With *pSavedWith; /* Initial value of pParse->pWith */ 5219 int iRecTab = -1; /* Cursor for recursive table */ 5220 CteUse *pCteUse; 5221 5222 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5223 ** recursive reference to CTE pCte. Leave an error in pParse and return 5224 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5225 ** In this case, proceed. */ 5226 if( pCte->zCteErr ){ 5227 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5228 return 2; 5229 } 5230 if( cannotBeFunction(pParse, pFrom) ) return 2; 5231 5232 assert( pFrom->pTab==0 ); 5233 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5234 if( pTab==0 ) return 2; 5235 pCteUse = pCte->pUse; 5236 if( pCteUse==0 ){ 5237 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5238 if( pCteUse==0 5239 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5240 ){ 5241 sqlite3DbFree(db, pTab); 5242 return 2; 5243 } 5244 pCteUse->eM10d = pCte->eM10d; 5245 } 5246 pFrom->pTab = pTab; 5247 pTab->nTabRef = 1; 5248 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5249 pTab->iPKey = -1; 5250 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5251 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5252 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5253 if( db->mallocFailed ) return 2; 5254 pFrom->pSelect->selFlags |= SF_CopyCte; 5255 assert( pFrom->pSelect ); 5256 if( pFrom->fg.isIndexedBy ){ 5257 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5258 return 2; 5259 } 5260 pFrom->fg.isCte = 1; 5261 pFrom->u2.pCteUse = pCteUse; 5262 pCteUse->nUse++; 5263 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5264 pCteUse->eM10d = M10d_Yes; 5265 } 5266 5267 /* Check if this is a recursive CTE. */ 5268 pRecTerm = pSel = pFrom->pSelect; 5269 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5270 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5271 int i; 5272 SrcList *pSrc = pRecTerm->pSrc; 5273 assert( pRecTerm->pPrior!=0 ); 5274 for(i=0; i<pSrc->nSrc; i++){ 5275 SrcItem *pItem = &pSrc->a[i]; 5276 if( pItem->zDatabase==0 5277 && pItem->zName!=0 5278 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5279 ){ 5280 pItem->pTab = pTab; 5281 pTab->nTabRef++; 5282 pItem->fg.isRecursive = 1; 5283 if( pRecTerm->selFlags & SF_Recursive ){ 5284 sqlite3ErrorMsg(pParse, 5285 "multiple references to recursive table: %s", pCte->zName 5286 ); 5287 return 2; 5288 } 5289 pRecTerm->selFlags |= SF_Recursive; 5290 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5291 pItem->iCursor = iRecTab; 5292 } 5293 } 5294 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5295 pRecTerm = pRecTerm->pPrior; 5296 } 5297 5298 pCte->zCteErr = "circular reference: %s"; 5299 pSavedWith = pParse->pWith; 5300 pParse->pWith = pWith; 5301 if( pSel->selFlags & SF_Recursive ){ 5302 int rc; 5303 assert( pRecTerm!=0 ); 5304 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5305 assert( pRecTerm->pNext!=0 ); 5306 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5307 assert( pRecTerm->pWith==0 ); 5308 pRecTerm->pWith = pSel->pWith; 5309 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5310 pRecTerm->pWith = 0; 5311 if( rc ){ 5312 pParse->pWith = pSavedWith; 5313 return 2; 5314 } 5315 }else{ 5316 if( sqlite3WalkSelect(pWalker, pSel) ){ 5317 pParse->pWith = pSavedWith; 5318 return 2; 5319 } 5320 } 5321 pParse->pWith = pWith; 5322 5323 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5324 pEList = pLeft->pEList; 5325 if( pCte->pCols ){ 5326 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5327 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5328 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5329 ); 5330 pParse->pWith = pSavedWith; 5331 return 2; 5332 } 5333 pEList = pCte->pCols; 5334 } 5335 5336 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5337 if( bMayRecursive ){ 5338 if( pSel->selFlags & SF_Recursive ){ 5339 pCte->zCteErr = "multiple recursive references: %s"; 5340 }else{ 5341 pCte->zCteErr = "recursive reference in a subquery: %s"; 5342 } 5343 sqlite3WalkSelect(pWalker, pSel); 5344 } 5345 pCte->zCteErr = 0; 5346 pParse->pWith = pSavedWith; 5347 return 1; /* Success */ 5348 } 5349 return 0; /* No match */ 5350 } 5351 #endif 5352 5353 #ifndef SQLITE_OMIT_CTE 5354 /* 5355 ** If the SELECT passed as the second argument has an associated WITH 5356 ** clause, pop it from the stack stored as part of the Parse object. 5357 ** 5358 ** This function is used as the xSelectCallback2() callback by 5359 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5360 ** names and other FROM clause elements. 5361 */ 5362 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5363 Parse *pParse = pWalker->pParse; 5364 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5365 With *pWith = findRightmost(p)->pWith; 5366 if( pWith!=0 ){ 5367 assert( pParse->pWith==pWith || pParse->nErr ); 5368 pParse->pWith = pWith->pOuter; 5369 } 5370 } 5371 } 5372 #endif 5373 5374 /* 5375 ** The SrcList_item structure passed as the second argument represents a 5376 ** sub-query in the FROM clause of a SELECT statement. This function 5377 ** allocates and populates the SrcList_item.pTab object. If successful, 5378 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5379 ** SQLITE_NOMEM. 5380 */ 5381 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5382 Select *pSel = pFrom->pSelect; 5383 Table *pTab; 5384 5385 assert( pSel ); 5386 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5387 if( pTab==0 ) return SQLITE_NOMEM; 5388 pTab->nTabRef = 1; 5389 if( pFrom->zAlias ){ 5390 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5391 }else{ 5392 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5393 } 5394 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5395 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5396 pTab->iPKey = -1; 5397 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5398 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5399 /* The usual case - do not allow ROWID on a subquery */ 5400 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5401 #else 5402 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5403 #endif 5404 5405 5406 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5407 } 5408 5409 /* 5410 ** This routine is a Walker callback for "expanding" a SELECT statement. 5411 ** "Expanding" means to do the following: 5412 ** 5413 ** (1) Make sure VDBE cursor numbers have been assigned to every 5414 ** element of the FROM clause. 5415 ** 5416 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5417 ** defines FROM clause. When views appear in the FROM clause, 5418 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5419 ** that implements the view. A copy is made of the view's SELECT 5420 ** statement so that we can freely modify or delete that statement 5421 ** without worrying about messing up the persistent representation 5422 ** of the view. 5423 ** 5424 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5425 ** on joins and the ON and USING clause of joins. 5426 ** 5427 ** (4) Scan the list of columns in the result set (pEList) looking 5428 ** for instances of the "*" operator or the TABLE.* operator. 5429 ** If found, expand each "*" to be every column in every table 5430 ** and TABLE.* to be every column in TABLE. 5431 ** 5432 */ 5433 static int selectExpander(Walker *pWalker, Select *p){ 5434 Parse *pParse = pWalker->pParse; 5435 int i, j, k, rc; 5436 SrcList *pTabList; 5437 ExprList *pEList; 5438 SrcItem *pFrom; 5439 sqlite3 *db = pParse->db; 5440 Expr *pE, *pRight, *pExpr; 5441 u16 selFlags = p->selFlags; 5442 u32 elistFlags = 0; 5443 5444 p->selFlags |= SF_Expanded; 5445 if( db->mallocFailed ){ 5446 return WRC_Abort; 5447 } 5448 assert( p->pSrc!=0 ); 5449 if( (selFlags & SF_Expanded)!=0 ){ 5450 return WRC_Prune; 5451 } 5452 if( pWalker->eCode ){ 5453 /* Renumber selId because it has been copied from a view */ 5454 p->selId = ++pParse->nSelect; 5455 } 5456 pTabList = p->pSrc; 5457 pEList = p->pEList; 5458 if( pParse->pWith && (p->selFlags & SF_View) ){ 5459 if( p->pWith==0 ){ 5460 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5461 if( p->pWith==0 ){ 5462 return WRC_Abort; 5463 } 5464 } 5465 p->pWith->bView = 1; 5466 } 5467 sqlite3WithPush(pParse, p->pWith, 0); 5468 5469 /* Make sure cursor numbers have been assigned to all entries in 5470 ** the FROM clause of the SELECT statement. 5471 */ 5472 sqlite3SrcListAssignCursors(pParse, pTabList); 5473 5474 /* Look up every table named in the FROM clause of the select. If 5475 ** an entry of the FROM clause is a subquery instead of a table or view, 5476 ** then create a transient table structure to describe the subquery. 5477 */ 5478 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5479 Table *pTab; 5480 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5481 if( pFrom->pTab ) continue; 5482 assert( pFrom->fg.isRecursive==0 ); 5483 if( pFrom->zName==0 ){ 5484 #ifndef SQLITE_OMIT_SUBQUERY 5485 Select *pSel = pFrom->pSelect; 5486 /* A sub-query in the FROM clause of a SELECT */ 5487 assert( pSel!=0 ); 5488 assert( pFrom->pTab==0 ); 5489 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5490 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5491 #endif 5492 #ifndef SQLITE_OMIT_CTE 5493 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5494 if( rc>1 ) return WRC_Abort; 5495 pTab = pFrom->pTab; 5496 assert( pTab!=0 ); 5497 #endif 5498 }else{ 5499 /* An ordinary table or view name in the FROM clause */ 5500 assert( pFrom->pTab==0 ); 5501 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5502 if( pTab==0 ) return WRC_Abort; 5503 if( pTab->nTabRef>=0xffff ){ 5504 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5505 pTab->zName); 5506 pFrom->pTab = 0; 5507 return WRC_Abort; 5508 } 5509 pTab->nTabRef++; 5510 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5511 return WRC_Abort; 5512 } 5513 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5514 if( !IsOrdinaryTable(pTab) ){ 5515 i16 nCol; 5516 u8 eCodeOrig = pWalker->eCode; 5517 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5518 assert( pFrom->pSelect==0 ); 5519 if( IsView(pTab) ){ 5520 if( (db->flags & SQLITE_EnableView)==0 5521 && pTab->pSchema!=db->aDb[1].pSchema 5522 ){ 5523 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5524 pTab->zName); 5525 } 5526 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5527 } 5528 #ifndef SQLITE_OMIT_VIRTUALTABLE 5529 else if( ALWAYS(IsVirtual(pTab)) 5530 && pFrom->fg.fromDDL 5531 && ALWAYS(pTab->u.vtab.p!=0) 5532 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5533 ){ 5534 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5535 pTab->zName); 5536 } 5537 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5538 #endif 5539 nCol = pTab->nCol; 5540 pTab->nCol = -1; 5541 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5542 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5543 pWalker->eCode = eCodeOrig; 5544 pTab->nCol = nCol; 5545 } 5546 #endif 5547 } 5548 5549 /* Locate the index named by the INDEXED BY clause, if any. */ 5550 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5551 return WRC_Abort; 5552 } 5553 } 5554 5555 /* Process NATURAL keywords, and ON and USING clauses of joins. 5556 */ 5557 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5558 return WRC_Abort; 5559 } 5560 5561 /* For every "*" that occurs in the column list, insert the names of 5562 ** all columns in all tables. And for every TABLE.* insert the names 5563 ** of all columns in TABLE. The parser inserted a special expression 5564 ** with the TK_ASTERISK operator for each "*" that it found in the column 5565 ** list. The following code just has to locate the TK_ASTERISK 5566 ** expressions and expand each one to the list of all columns in 5567 ** all tables. 5568 ** 5569 ** The first loop just checks to see if there are any "*" operators 5570 ** that need expanding. 5571 */ 5572 for(k=0; k<pEList->nExpr; k++){ 5573 pE = pEList->a[k].pExpr; 5574 if( pE->op==TK_ASTERISK ) break; 5575 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5576 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5577 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5578 elistFlags |= pE->flags; 5579 } 5580 if( k<pEList->nExpr ){ 5581 /* 5582 ** If we get here it means the result set contains one or more "*" 5583 ** operators that need to be expanded. Loop through each expression 5584 ** in the result set and expand them one by one. 5585 */ 5586 struct ExprList_item *a = pEList->a; 5587 ExprList *pNew = 0; 5588 int flags = pParse->db->flags; 5589 int longNames = (flags & SQLITE_FullColNames)!=0 5590 && (flags & SQLITE_ShortColNames)==0; 5591 5592 for(k=0; k<pEList->nExpr; k++){ 5593 pE = a[k].pExpr; 5594 elistFlags |= pE->flags; 5595 pRight = pE->pRight; 5596 assert( pE->op!=TK_DOT || pRight!=0 ); 5597 if( pE->op!=TK_ASTERISK 5598 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5599 ){ 5600 /* This particular expression does not need to be expanded. 5601 */ 5602 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5603 if( pNew ){ 5604 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5605 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5606 a[k].zEName = 0; 5607 } 5608 a[k].pExpr = 0; 5609 }else{ 5610 /* This expression is a "*" or a "TABLE.*" and needs to be 5611 ** expanded. */ 5612 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5613 char *zTName = 0; /* text of name of TABLE */ 5614 if( pE->op==TK_DOT ){ 5615 assert( pE->pLeft!=0 ); 5616 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5617 zTName = pE->pLeft->u.zToken; 5618 } 5619 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5620 Table *pTab = pFrom->pTab; 5621 Select *pSub = pFrom->pSelect; 5622 char *zTabName = pFrom->zAlias; 5623 const char *zSchemaName = 0; 5624 int iDb; 5625 if( zTabName==0 ){ 5626 zTabName = pTab->zName; 5627 } 5628 if( db->mallocFailed ) break; 5629 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5630 pSub = 0; 5631 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5632 continue; 5633 } 5634 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5635 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5636 } 5637 for(j=0; j<pTab->nCol; j++){ 5638 char *zName = pTab->aCol[j].zCnName; 5639 char *zColname; /* The computed column name */ 5640 char *zToFree; /* Malloced string that needs to be freed */ 5641 Token sColname; /* Computed column name as a token */ 5642 5643 assert( zName ); 5644 if( zTName && pSub 5645 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5646 ){ 5647 continue; 5648 } 5649 5650 /* If a column is marked as 'hidden', omit it from the expanded 5651 ** result-set list unless the SELECT has the SF_IncludeHidden 5652 ** bit set. 5653 */ 5654 if( (p->selFlags & SF_IncludeHidden)==0 5655 && IsHiddenColumn(&pTab->aCol[j]) 5656 ){ 5657 continue; 5658 } 5659 tableSeen = 1; 5660 5661 if( i>0 && zTName==0 ){ 5662 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5663 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5664 ){ 5665 /* In a NATURAL join, omit the join columns from the 5666 ** table to the right of the join */ 5667 continue; 5668 } 5669 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5670 /* In a join with a USING clause, omit columns in the 5671 ** using clause from the table on the right. */ 5672 continue; 5673 } 5674 } 5675 pRight = sqlite3Expr(db, TK_ID, zName); 5676 zColname = zName; 5677 zToFree = 0; 5678 if( longNames || pTabList->nSrc>1 ){ 5679 Expr *pLeft; 5680 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5681 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5682 if( zSchemaName ){ 5683 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5684 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5685 } 5686 if( longNames ){ 5687 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5688 zToFree = zColname; 5689 } 5690 }else{ 5691 pExpr = pRight; 5692 } 5693 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5694 sqlite3TokenInit(&sColname, zColname); 5695 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5696 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5697 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5698 sqlite3DbFree(db, pX->zEName); 5699 if( pSub ){ 5700 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5701 testcase( pX->zEName==0 ); 5702 }else{ 5703 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5704 zSchemaName, zTabName, zColname); 5705 testcase( pX->zEName==0 ); 5706 } 5707 pX->eEName = ENAME_TAB; 5708 } 5709 sqlite3DbFree(db, zToFree); 5710 } 5711 } 5712 if( !tableSeen ){ 5713 if( zTName ){ 5714 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5715 }else{ 5716 sqlite3ErrorMsg(pParse, "no tables specified"); 5717 } 5718 } 5719 } 5720 } 5721 sqlite3ExprListDelete(db, pEList); 5722 p->pEList = pNew; 5723 } 5724 if( p->pEList ){ 5725 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5726 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5727 return WRC_Abort; 5728 } 5729 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5730 p->selFlags |= SF_ComplexResult; 5731 } 5732 } 5733 return WRC_Continue; 5734 } 5735 5736 #if SQLITE_DEBUG 5737 /* 5738 ** Always assert. This xSelectCallback2 implementation proves that the 5739 ** xSelectCallback2 is never invoked. 5740 */ 5741 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5742 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5743 assert( 0 ); 5744 } 5745 #endif 5746 /* 5747 ** This routine "expands" a SELECT statement and all of its subqueries. 5748 ** For additional information on what it means to "expand" a SELECT 5749 ** statement, see the comment on the selectExpand worker callback above. 5750 ** 5751 ** Expanding a SELECT statement is the first step in processing a 5752 ** SELECT statement. The SELECT statement must be expanded before 5753 ** name resolution is performed. 5754 ** 5755 ** If anything goes wrong, an error message is written into pParse. 5756 ** The calling function can detect the problem by looking at pParse->nErr 5757 ** and/or pParse->db->mallocFailed. 5758 */ 5759 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5760 Walker w; 5761 w.xExprCallback = sqlite3ExprWalkNoop; 5762 w.pParse = pParse; 5763 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5764 w.xSelectCallback = convertCompoundSelectToSubquery; 5765 w.xSelectCallback2 = 0; 5766 sqlite3WalkSelect(&w, pSelect); 5767 } 5768 w.xSelectCallback = selectExpander; 5769 w.xSelectCallback2 = sqlite3SelectPopWith; 5770 w.eCode = 0; 5771 sqlite3WalkSelect(&w, pSelect); 5772 } 5773 5774 5775 #ifndef SQLITE_OMIT_SUBQUERY 5776 /* 5777 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5778 ** interface. 5779 ** 5780 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5781 ** information to the Table structure that represents the result set 5782 ** of that subquery. 5783 ** 5784 ** The Table structure that represents the result set was constructed 5785 ** by selectExpander() but the type and collation information was omitted 5786 ** at that point because identifiers had not yet been resolved. This 5787 ** routine is called after identifier resolution. 5788 */ 5789 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5790 Parse *pParse; 5791 int i; 5792 SrcList *pTabList; 5793 SrcItem *pFrom; 5794 5795 assert( p->selFlags & SF_Resolved ); 5796 if( p->selFlags & SF_HasTypeInfo ) return; 5797 p->selFlags |= SF_HasTypeInfo; 5798 pParse = pWalker->pParse; 5799 pTabList = p->pSrc; 5800 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5801 Table *pTab = pFrom->pTab; 5802 assert( pTab!=0 ); 5803 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5804 /* A sub-query in the FROM clause of a SELECT */ 5805 Select *pSel = pFrom->pSelect; 5806 if( pSel ){ 5807 while( pSel->pPrior ) pSel = pSel->pPrior; 5808 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5809 SQLITE_AFF_NONE); 5810 } 5811 } 5812 } 5813 } 5814 #endif 5815 5816 5817 /* 5818 ** This routine adds datatype and collating sequence information to 5819 ** the Table structures of all FROM-clause subqueries in a 5820 ** SELECT statement. 5821 ** 5822 ** Use this routine after name resolution. 5823 */ 5824 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5825 #ifndef SQLITE_OMIT_SUBQUERY 5826 Walker w; 5827 w.xSelectCallback = sqlite3SelectWalkNoop; 5828 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5829 w.xExprCallback = sqlite3ExprWalkNoop; 5830 w.pParse = pParse; 5831 sqlite3WalkSelect(&w, pSelect); 5832 #endif 5833 } 5834 5835 5836 /* 5837 ** This routine sets up a SELECT statement for processing. The 5838 ** following is accomplished: 5839 ** 5840 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5841 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5842 ** * ON and USING clauses are shifted into WHERE statements 5843 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5844 ** * Identifiers in expression are matched to tables. 5845 ** 5846 ** This routine acts recursively on all subqueries within the SELECT. 5847 */ 5848 void sqlite3SelectPrep( 5849 Parse *pParse, /* The parser context */ 5850 Select *p, /* The SELECT statement being coded. */ 5851 NameContext *pOuterNC /* Name context for container */ 5852 ){ 5853 assert( p!=0 || pParse->db->mallocFailed ); 5854 if( pParse->db->mallocFailed ) return; 5855 if( p->selFlags & SF_HasTypeInfo ) return; 5856 sqlite3SelectExpand(pParse, p); 5857 if( pParse->nErr || pParse->db->mallocFailed ) return; 5858 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5859 if( pParse->nErr || pParse->db->mallocFailed ) return; 5860 sqlite3SelectAddTypeInfo(pParse, p); 5861 } 5862 5863 /* 5864 ** Reset the aggregate accumulator. 5865 ** 5866 ** The aggregate accumulator is a set of memory cells that hold 5867 ** intermediate results while calculating an aggregate. This 5868 ** routine generates code that stores NULLs in all of those memory 5869 ** cells. 5870 */ 5871 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5872 Vdbe *v = pParse->pVdbe; 5873 int i; 5874 struct AggInfo_func *pFunc; 5875 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5876 if( nReg==0 ) return; 5877 if( pParse->nErr || pParse->db->mallocFailed ) return; 5878 #ifdef SQLITE_DEBUG 5879 /* Verify that all AggInfo registers are within the range specified by 5880 ** AggInfo.mnReg..AggInfo.mxReg */ 5881 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5882 for(i=0; i<pAggInfo->nColumn; i++){ 5883 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5884 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5885 } 5886 for(i=0; i<pAggInfo->nFunc; i++){ 5887 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5888 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5889 } 5890 #endif 5891 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5892 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5893 if( pFunc->iDistinct>=0 ){ 5894 Expr *pE = pFunc->pFExpr; 5895 assert( ExprUseXList(pE) ); 5896 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5897 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5898 "argument"); 5899 pFunc->iDistinct = -1; 5900 }else{ 5901 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5902 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5903 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5904 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5905 pFunc->pFunc->zName)); 5906 } 5907 } 5908 } 5909 } 5910 5911 /* 5912 ** Invoke the OP_AggFinalize opcode for every aggregate function 5913 ** in the AggInfo structure. 5914 */ 5915 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5916 Vdbe *v = pParse->pVdbe; 5917 int i; 5918 struct AggInfo_func *pF; 5919 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5920 ExprList *pList; 5921 assert( ExprUseXList(pF->pFExpr) ); 5922 pList = pF->pFExpr->x.pList; 5923 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5924 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5925 } 5926 } 5927 5928 5929 /* 5930 ** Update the accumulator memory cells for an aggregate based on 5931 ** the current cursor position. 5932 ** 5933 ** If regAcc is non-zero and there are no min() or max() aggregates 5934 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5935 ** registers if register regAcc contains 0. The caller will take care 5936 ** of setting and clearing regAcc. 5937 */ 5938 static void updateAccumulator( 5939 Parse *pParse, 5940 int regAcc, 5941 AggInfo *pAggInfo, 5942 int eDistinctType 5943 ){ 5944 Vdbe *v = pParse->pVdbe; 5945 int i; 5946 int regHit = 0; 5947 int addrHitTest = 0; 5948 struct AggInfo_func *pF; 5949 struct AggInfo_col *pC; 5950 5951 pAggInfo->directMode = 1; 5952 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5953 int nArg; 5954 int addrNext = 0; 5955 int regAgg; 5956 ExprList *pList; 5957 assert( ExprUseXList(pF->pFExpr) ); 5958 assert( !IsWindowFunc(pF->pFExpr) ); 5959 pList = pF->pFExpr->x.pList; 5960 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5961 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5962 if( pAggInfo->nAccumulator 5963 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5964 && regAcc 5965 ){ 5966 /* If regAcc==0, there there exists some min() or max() function 5967 ** without a FILTER clause that will ensure the magnet registers 5968 ** are populated. */ 5969 if( regHit==0 ) regHit = ++pParse->nMem; 5970 /* If this is the first row of the group (regAcc contains 0), clear the 5971 ** "magnet" register regHit so that the accumulator registers 5972 ** are populated if the FILTER clause jumps over the the 5973 ** invocation of min() or max() altogether. Or, if this is not 5974 ** the first row (regAcc contains 1), set the magnet register so that 5975 ** the accumulators are not populated unless the min()/max() is invoked 5976 ** and indicates that they should be. */ 5977 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5978 } 5979 addrNext = sqlite3VdbeMakeLabel(pParse); 5980 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5981 } 5982 if( pList ){ 5983 nArg = pList->nExpr; 5984 regAgg = sqlite3GetTempRange(pParse, nArg); 5985 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5986 }else{ 5987 nArg = 0; 5988 regAgg = 0; 5989 } 5990 if( pF->iDistinct>=0 && pList ){ 5991 if( addrNext==0 ){ 5992 addrNext = sqlite3VdbeMakeLabel(pParse); 5993 } 5994 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5995 pF->iDistinct, addrNext, pList, regAgg); 5996 } 5997 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5998 CollSeq *pColl = 0; 5999 struct ExprList_item *pItem; 6000 int j; 6001 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6002 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6003 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6004 } 6005 if( !pColl ){ 6006 pColl = pParse->db->pDfltColl; 6007 } 6008 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6009 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6010 } 6011 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6012 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6013 sqlite3VdbeChangeP5(v, (u8)nArg); 6014 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6015 if( addrNext ){ 6016 sqlite3VdbeResolveLabel(v, addrNext); 6017 } 6018 } 6019 if( regHit==0 && pAggInfo->nAccumulator ){ 6020 regHit = regAcc; 6021 } 6022 if( regHit ){ 6023 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6024 } 6025 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6026 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6027 } 6028 6029 pAggInfo->directMode = 0; 6030 if( addrHitTest ){ 6031 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6032 } 6033 } 6034 6035 /* 6036 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6037 ** count(*) query ("SELECT count(*) FROM pTab"). 6038 */ 6039 #ifndef SQLITE_OMIT_EXPLAIN 6040 static void explainSimpleCount( 6041 Parse *pParse, /* Parse context */ 6042 Table *pTab, /* Table being queried */ 6043 Index *pIdx /* Index used to optimize scan, or NULL */ 6044 ){ 6045 if( pParse->explain==2 ){ 6046 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6047 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6048 pTab->zName, 6049 bCover ? " USING COVERING INDEX " : "", 6050 bCover ? pIdx->zName : "" 6051 ); 6052 } 6053 } 6054 #else 6055 # define explainSimpleCount(a,b,c) 6056 #endif 6057 6058 /* 6059 ** sqlite3WalkExpr() callback used by havingToWhere(). 6060 ** 6061 ** If the node passed to the callback is a TK_AND node, return 6062 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6063 ** 6064 ** Otherwise, return WRC_Prune. In this case, also check if the 6065 ** sub-expression matches the criteria for being moved to the WHERE 6066 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6067 ** within the HAVING expression with a constant "1". 6068 */ 6069 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6070 if( pExpr->op!=TK_AND ){ 6071 Select *pS = pWalker->u.pSelect; 6072 /* This routine is called before the HAVING clause of the current 6073 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6074 ** here, it indicates that the expression is a correlated reference to a 6075 ** column from an outer aggregate query, or an aggregate function that 6076 ** belongs to an outer query. Do not move the expression to the WHERE 6077 ** clause in this obscure case, as doing so may corrupt the outer Select 6078 ** statements AggInfo structure. */ 6079 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6080 && ExprAlwaysFalse(pExpr)==0 6081 && pExpr->pAggInfo==0 6082 ){ 6083 sqlite3 *db = pWalker->pParse->db; 6084 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6085 if( pNew ){ 6086 Expr *pWhere = pS->pWhere; 6087 SWAP(Expr, *pNew, *pExpr); 6088 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6089 pS->pWhere = pNew; 6090 pWalker->eCode = 1; 6091 } 6092 } 6093 return WRC_Prune; 6094 } 6095 return WRC_Continue; 6096 } 6097 6098 /* 6099 ** Transfer eligible terms from the HAVING clause of a query, which is 6100 ** processed after grouping, to the WHERE clause, which is processed before 6101 ** grouping. For example, the query: 6102 ** 6103 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6104 ** 6105 ** can be rewritten as: 6106 ** 6107 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6108 ** 6109 ** A term of the HAVING expression is eligible for transfer if it consists 6110 ** entirely of constants and expressions that are also GROUP BY terms that 6111 ** use the "BINARY" collation sequence. 6112 */ 6113 static void havingToWhere(Parse *pParse, Select *p){ 6114 Walker sWalker; 6115 memset(&sWalker, 0, sizeof(sWalker)); 6116 sWalker.pParse = pParse; 6117 sWalker.xExprCallback = havingToWhereExprCb; 6118 sWalker.u.pSelect = p; 6119 sqlite3WalkExpr(&sWalker, p->pHaving); 6120 #if SELECTTRACE_ENABLED 6121 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6122 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6123 sqlite3TreeViewSelect(0, p, 0); 6124 } 6125 #endif 6126 } 6127 6128 /* 6129 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6130 ** If it is, then return the SrcList_item for the prior view. If it is not, 6131 ** then return 0. 6132 */ 6133 static SrcItem *isSelfJoinView( 6134 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6135 SrcItem *pThis /* Search for prior reference to this subquery */ 6136 ){ 6137 SrcItem *pItem; 6138 assert( pThis->pSelect!=0 ); 6139 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6140 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6141 Select *pS1; 6142 if( pItem->pSelect==0 ) continue; 6143 if( pItem->fg.viaCoroutine ) continue; 6144 if( pItem->zName==0 ) continue; 6145 assert( pItem->pTab!=0 ); 6146 assert( pThis->pTab!=0 ); 6147 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6148 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6149 pS1 = pItem->pSelect; 6150 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6151 /* The query flattener left two different CTE tables with identical 6152 ** names in the same FROM clause. */ 6153 continue; 6154 } 6155 if( pItem->pSelect->selFlags & SF_PushDown ){ 6156 /* The view was modified by some other optimization such as 6157 ** pushDownWhereTerms() */ 6158 continue; 6159 } 6160 return pItem; 6161 } 6162 return 0; 6163 } 6164 6165 /* 6166 ** Deallocate a single AggInfo object 6167 */ 6168 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6169 sqlite3DbFree(db, p->aCol); 6170 sqlite3DbFree(db, p->aFunc); 6171 sqlite3DbFreeNN(db, p); 6172 } 6173 6174 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6175 /* 6176 ** Attempt to transform a query of the form 6177 ** 6178 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6179 ** 6180 ** Into this: 6181 ** 6182 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6183 ** 6184 ** The transformation only works if all of the following are true: 6185 ** 6186 ** * The subquery is a UNION ALL of two or more terms 6187 ** * The subquery does not have a LIMIT clause 6188 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6189 ** * The outer query is a simple count(*) with no WHERE clause or other 6190 ** extraneous syntax. 6191 ** 6192 ** Return TRUE if the optimization is undertaken. 6193 */ 6194 static int countOfViewOptimization(Parse *pParse, Select *p){ 6195 Select *pSub, *pPrior; 6196 Expr *pExpr; 6197 Expr *pCount; 6198 sqlite3 *db; 6199 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6200 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6201 if( p->pWhere ) return 0; 6202 if( p->pGroupBy ) return 0; 6203 pExpr = p->pEList->a[0].pExpr; 6204 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6205 assert( ExprUseUToken(pExpr) ); 6206 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6207 assert( ExprUseXList(pExpr) ); 6208 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6209 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6210 pSub = p->pSrc->a[0].pSelect; 6211 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6212 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6213 do{ 6214 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6215 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6216 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6217 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6218 pSub = pSub->pPrior; /* Repeat over compound */ 6219 }while( pSub ); 6220 6221 /* If we reach this point then it is OK to perform the transformation */ 6222 6223 db = pParse->db; 6224 pCount = pExpr; 6225 pExpr = 0; 6226 pSub = p->pSrc->a[0].pSelect; 6227 p->pSrc->a[0].pSelect = 0; 6228 sqlite3SrcListDelete(db, p->pSrc); 6229 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6230 while( pSub ){ 6231 Expr *pTerm; 6232 pPrior = pSub->pPrior; 6233 pSub->pPrior = 0; 6234 pSub->pNext = 0; 6235 pSub->selFlags |= SF_Aggregate; 6236 pSub->selFlags &= ~SF_Compound; 6237 pSub->nSelectRow = 0; 6238 sqlite3ExprListDelete(db, pSub->pEList); 6239 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6240 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6241 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6242 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6243 if( pExpr==0 ){ 6244 pExpr = pTerm; 6245 }else{ 6246 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6247 } 6248 pSub = pPrior; 6249 } 6250 p->pEList->a[0].pExpr = pExpr; 6251 p->selFlags &= ~SF_Aggregate; 6252 6253 #if SELECTTRACE_ENABLED 6254 if( sqlite3SelectTrace & 0x400 ){ 6255 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6256 sqlite3TreeViewSelect(0, p, 0); 6257 } 6258 #endif 6259 return 1; 6260 } 6261 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6262 6263 /* 6264 ** Generate code for the SELECT statement given in the p argument. 6265 ** 6266 ** The results are returned according to the SelectDest structure. 6267 ** See comments in sqliteInt.h for further information. 6268 ** 6269 ** This routine returns the number of errors. If any errors are 6270 ** encountered, then an appropriate error message is left in 6271 ** pParse->zErrMsg. 6272 ** 6273 ** This routine does NOT free the Select structure passed in. The 6274 ** calling function needs to do that. 6275 */ 6276 int sqlite3Select( 6277 Parse *pParse, /* The parser context */ 6278 Select *p, /* The SELECT statement being coded. */ 6279 SelectDest *pDest /* What to do with the query results */ 6280 ){ 6281 int i, j; /* Loop counters */ 6282 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6283 Vdbe *v; /* The virtual machine under construction */ 6284 int isAgg; /* True for select lists like "count(*)" */ 6285 ExprList *pEList = 0; /* List of columns to extract. */ 6286 SrcList *pTabList; /* List of tables to select from */ 6287 Expr *pWhere; /* The WHERE clause. May be NULL */ 6288 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6289 Expr *pHaving; /* The HAVING clause. May be NULL */ 6290 AggInfo *pAggInfo = 0; /* Aggregate information */ 6291 int rc = 1; /* Value to return from this function */ 6292 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6293 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6294 int iEnd; /* Address of the end of the query */ 6295 sqlite3 *db; /* The database connection */ 6296 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6297 u8 minMaxFlag; /* Flag for min/max queries */ 6298 6299 db = pParse->db; 6300 v = sqlite3GetVdbe(pParse); 6301 if( p==0 || db->mallocFailed || pParse->nErr ){ 6302 return 1; 6303 } 6304 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6305 #if SELECTTRACE_ENABLED 6306 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6307 if( sqlite3SelectTrace & 0x100 ){ 6308 sqlite3TreeViewSelect(0, p, 0); 6309 } 6310 #endif 6311 6312 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6313 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6314 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6315 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6316 if( IgnorableDistinct(pDest) ){ 6317 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6318 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6319 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6320 /* All of these destinations are also able to ignore the ORDER BY clause */ 6321 if( p->pOrderBy ){ 6322 #if SELECTTRACE_ENABLED 6323 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6324 if( sqlite3SelectTrace & 0x100 ){ 6325 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6326 } 6327 #endif 6328 sqlite3ParserAddCleanup(pParse, 6329 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6330 p->pOrderBy); 6331 testcase( pParse->earlyCleanup ); 6332 p->pOrderBy = 0; 6333 } 6334 p->selFlags &= ~SF_Distinct; 6335 p->selFlags |= SF_NoopOrderBy; 6336 } 6337 sqlite3SelectPrep(pParse, p, 0); 6338 if( pParse->nErr || db->mallocFailed ){ 6339 goto select_end; 6340 } 6341 assert( p->pEList!=0 ); 6342 #if SELECTTRACE_ENABLED 6343 if( sqlite3SelectTrace & 0x104 ){ 6344 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6345 sqlite3TreeViewSelect(0, p, 0); 6346 } 6347 #endif 6348 6349 /* If the SF_UFSrcCheck flag is set, then this function is being called 6350 ** as part of populating the temp table for an UPDATE...FROM statement. 6351 ** In this case, it is an error if the target object (pSrc->a[0]) name 6352 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6353 ** 6354 ** Postgres disallows this case too. The reason is that some other 6355 ** systems handle this case differently, and not all the same way, 6356 ** which is just confusing. To avoid this, we follow PG's lead and 6357 ** disallow it altogether. */ 6358 if( p->selFlags & SF_UFSrcCheck ){ 6359 SrcItem *p0 = &p->pSrc->a[0]; 6360 for(i=1; i<p->pSrc->nSrc; i++){ 6361 SrcItem *p1 = &p->pSrc->a[i]; 6362 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6363 sqlite3ErrorMsg(pParse, 6364 "target object/alias may not appear in FROM clause: %s", 6365 p0->zAlias ? p0->zAlias : p0->pTab->zName 6366 ); 6367 goto select_end; 6368 } 6369 } 6370 6371 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6372 ** and leaving this flag set can cause errors if a compound sub-query 6373 ** in p->pSrc is flattened into this query and this function called 6374 ** again as part of compound SELECT processing. */ 6375 p->selFlags &= ~SF_UFSrcCheck; 6376 } 6377 6378 if( pDest->eDest==SRT_Output ){ 6379 sqlite3GenerateColumnNames(pParse, p); 6380 } 6381 6382 #ifndef SQLITE_OMIT_WINDOWFUNC 6383 if( sqlite3WindowRewrite(pParse, p) ){ 6384 assert( db->mallocFailed || pParse->nErr>0 ); 6385 goto select_end; 6386 } 6387 #if SELECTTRACE_ENABLED 6388 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6389 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6390 sqlite3TreeViewSelect(0, p, 0); 6391 } 6392 #endif 6393 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6394 pTabList = p->pSrc; 6395 isAgg = (p->selFlags & SF_Aggregate)!=0; 6396 memset(&sSort, 0, sizeof(sSort)); 6397 sSort.pOrderBy = p->pOrderBy; 6398 6399 /* Try to do various optimizations (flattening subqueries, and strength 6400 ** reduction of join operators) in the FROM clause up into the main query 6401 */ 6402 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6403 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6404 SrcItem *pItem = &pTabList->a[i]; 6405 Select *pSub = pItem->pSelect; 6406 Table *pTab = pItem->pTab; 6407 6408 /* The expander should have already created transient Table objects 6409 ** even for FROM clause elements such as subqueries that do not correspond 6410 ** to a real table */ 6411 assert( pTab!=0 ); 6412 6413 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6414 ** of the LEFT JOIN used in the WHERE clause. 6415 */ 6416 if( (pItem->fg.jointype & JT_LEFT)!=0 6417 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6418 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6419 ){ 6420 SELECTTRACE(0x100,pParse,p, 6421 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6422 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6423 unsetJoinExpr(p->pWhere, pItem->iCursor); 6424 } 6425 6426 /* No futher action if this term of the FROM clause is no a subquery */ 6427 if( pSub==0 ) continue; 6428 6429 /* Catch mismatch in the declared columns of a view and the number of 6430 ** columns in the SELECT on the RHS */ 6431 if( pTab->nCol!=pSub->pEList->nExpr ){ 6432 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6433 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6434 goto select_end; 6435 } 6436 6437 /* Do not try to flatten an aggregate subquery. 6438 ** 6439 ** Flattening an aggregate subquery is only possible if the outer query 6440 ** is not a join. But if the outer query is not a join, then the subquery 6441 ** will be implemented as a co-routine and there is no advantage to 6442 ** flattening in that case. 6443 */ 6444 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6445 assert( pSub->pGroupBy==0 ); 6446 6447 /* If a FROM-clause subquery has an ORDER BY clause that is not 6448 ** really doing anything, then delete it now so that it does not 6449 ** interfere with query flattening. See the discussion at 6450 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6451 ** 6452 ** Beware of these cases where the ORDER BY clause may not be safely 6453 ** omitted: 6454 ** 6455 ** (1) There is also a LIMIT clause 6456 ** (2) The subquery was added to help with window-function 6457 ** processing 6458 ** (3) The subquery is in the FROM clause of an UPDATE 6459 ** (4) The outer query uses an aggregate function other than 6460 ** the built-in count(), min(), or max(). 6461 ** (5) The ORDER BY isn't going to accomplish anything because 6462 ** one of: 6463 ** (a) The outer query has a different ORDER BY clause 6464 ** (b) The subquery is part of a join 6465 ** See forum post 062d576715d277c8 6466 */ 6467 if( pSub->pOrderBy!=0 6468 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6469 && pSub->pLimit==0 /* Condition (1) */ 6470 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6471 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6472 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6473 ){ 6474 SELECTTRACE(0x100,pParse,p, 6475 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6476 sqlite3ExprListDelete(db, pSub->pOrderBy); 6477 pSub->pOrderBy = 0; 6478 } 6479 6480 /* If the outer query contains a "complex" result set (that is, 6481 ** if the result set of the outer query uses functions or subqueries) 6482 ** and if the subquery contains an ORDER BY clause and if 6483 ** it will be implemented as a co-routine, then do not flatten. This 6484 ** restriction allows SQL constructs like this: 6485 ** 6486 ** SELECT expensive_function(x) 6487 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6488 ** 6489 ** The expensive_function() is only computed on the 10 rows that 6490 ** are output, rather than every row of the table. 6491 ** 6492 ** The requirement that the outer query have a complex result set 6493 ** means that flattening does occur on simpler SQL constraints without 6494 ** the expensive_function() like: 6495 ** 6496 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6497 */ 6498 if( pSub->pOrderBy!=0 6499 && i==0 6500 && (p->selFlags & SF_ComplexResult)!=0 6501 && (pTabList->nSrc==1 6502 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6503 ){ 6504 continue; 6505 } 6506 6507 if( flattenSubquery(pParse, p, i, isAgg) ){ 6508 if( pParse->nErr ) goto select_end; 6509 /* This subquery can be absorbed into its parent. */ 6510 i = -1; 6511 } 6512 pTabList = p->pSrc; 6513 if( db->mallocFailed ) goto select_end; 6514 if( !IgnorableOrderby(pDest) ){ 6515 sSort.pOrderBy = p->pOrderBy; 6516 } 6517 } 6518 #endif 6519 6520 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6521 /* Handle compound SELECT statements using the separate multiSelect() 6522 ** procedure. 6523 */ 6524 if( p->pPrior ){ 6525 rc = multiSelect(pParse, p, pDest); 6526 #if SELECTTRACE_ENABLED 6527 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6528 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6529 sqlite3TreeViewSelect(0, p, 0); 6530 } 6531 #endif 6532 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6533 return rc; 6534 } 6535 #endif 6536 6537 /* Do the WHERE-clause constant propagation optimization if this is 6538 ** a join. No need to speed time on this operation for non-join queries 6539 ** as the equivalent optimization will be handled by query planner in 6540 ** sqlite3WhereBegin(). 6541 */ 6542 if( p->pWhere!=0 6543 && p->pWhere->op==TK_AND 6544 && OptimizationEnabled(db, SQLITE_PropagateConst) 6545 && propagateConstants(pParse, p) 6546 ){ 6547 #if SELECTTRACE_ENABLED 6548 if( sqlite3SelectTrace & 0x100 ){ 6549 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6550 sqlite3TreeViewSelect(0, p, 0); 6551 } 6552 #endif 6553 }else{ 6554 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6555 } 6556 6557 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6558 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6559 && countOfViewOptimization(pParse, p) 6560 ){ 6561 if( db->mallocFailed ) goto select_end; 6562 pEList = p->pEList; 6563 pTabList = p->pSrc; 6564 } 6565 #endif 6566 6567 /* For each term in the FROM clause, do two things: 6568 ** (1) Authorized unreferenced tables 6569 ** (2) Generate code for all sub-queries 6570 */ 6571 for(i=0; i<pTabList->nSrc; i++){ 6572 SrcItem *pItem = &pTabList->a[i]; 6573 SrcItem *pPrior; 6574 SelectDest dest; 6575 Select *pSub; 6576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6577 const char *zSavedAuthContext; 6578 #endif 6579 6580 /* Issue SQLITE_READ authorizations with a fake column name for any 6581 ** tables that are referenced but from which no values are extracted. 6582 ** Examples of where these kinds of null SQLITE_READ authorizations 6583 ** would occur: 6584 ** 6585 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6586 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6587 ** 6588 ** The fake column name is an empty string. It is possible for a table to 6589 ** have a column named by the empty string, in which case there is no way to 6590 ** distinguish between an unreferenced table and an actual reference to the 6591 ** "" column. The original design was for the fake column name to be a NULL, 6592 ** which would be unambiguous. But legacy authorization callbacks might 6593 ** assume the column name is non-NULL and segfault. The use of an empty 6594 ** string for the fake column name seems safer. 6595 */ 6596 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6597 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6598 } 6599 6600 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6601 /* Generate code for all sub-queries in the FROM clause 6602 */ 6603 pSub = pItem->pSelect; 6604 if( pSub==0 ) continue; 6605 6606 /* The code for a subquery should only be generated once. */ 6607 assert( pItem->addrFillSub==0 ); 6608 6609 /* Increment Parse.nHeight by the height of the largest expression 6610 ** tree referred to by this, the parent select. The child select 6611 ** may contain expression trees of at most 6612 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6613 ** more conservative than necessary, but much easier than enforcing 6614 ** an exact limit. 6615 */ 6616 pParse->nHeight += sqlite3SelectExprHeight(p); 6617 6618 /* Make copies of constant WHERE-clause terms in the outer query down 6619 ** inside the subquery. This can help the subquery to run more efficiently. 6620 */ 6621 if( OptimizationEnabled(db, SQLITE_PushDown) 6622 && (pItem->fg.isCte==0 6623 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6624 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6625 (pItem->fg.jointype & JT_OUTER)!=0) 6626 ){ 6627 #if SELECTTRACE_ENABLED 6628 if( sqlite3SelectTrace & 0x100 ){ 6629 SELECTTRACE(0x100,pParse,p, 6630 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6631 sqlite3TreeViewSelect(0, p, 0); 6632 } 6633 #endif 6634 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6635 }else{ 6636 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6637 } 6638 6639 zSavedAuthContext = pParse->zAuthContext; 6640 pParse->zAuthContext = pItem->zName; 6641 6642 /* Generate code to implement the subquery 6643 ** 6644 ** The subquery is implemented as a co-routine if: 6645 ** (1) the subquery is guaranteed to be the outer loop (so that 6646 ** it does not need to be computed more than once), and 6647 ** (2) the subquery is not a CTE that should be materialized 6648 ** 6649 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6650 ** implementation? 6651 */ 6652 if( i==0 6653 && (pTabList->nSrc==1 6654 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6655 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6656 ){ 6657 /* Implement a co-routine that will return a single row of the result 6658 ** set on each invocation. 6659 */ 6660 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6661 6662 pItem->regReturn = ++pParse->nMem; 6663 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6664 VdbeComment((v, "%!S", pItem)); 6665 pItem->addrFillSub = addrTop; 6666 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6667 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6668 sqlite3Select(pParse, pSub, &dest); 6669 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6670 pItem->fg.viaCoroutine = 1; 6671 pItem->regResult = dest.iSdst; 6672 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6673 sqlite3VdbeJumpHere(v, addrTop-1); 6674 sqlite3ClearTempRegCache(pParse); 6675 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6676 /* This is a CTE for which materialization code has already been 6677 ** generated. Invoke the subroutine to compute the materialization, 6678 ** the make the pItem->iCursor be a copy of the ephemerial table that 6679 ** holds the result of the materialization. */ 6680 CteUse *pCteUse = pItem->u2.pCteUse; 6681 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6682 if( pItem->iCursor!=pCteUse->iCur ){ 6683 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6684 VdbeComment((v, "%!S", pItem)); 6685 } 6686 pSub->nSelectRow = pCteUse->nRowEst; 6687 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6688 /* This view has already been materialized by a prior entry in 6689 ** this same FROM clause. Reuse it. */ 6690 if( pPrior->addrFillSub ){ 6691 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6692 } 6693 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6694 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6695 }else{ 6696 /* Materialize the view. If the view is not correlated, generate a 6697 ** subroutine to do the materialization so that subsequent uses of 6698 ** the same view can reuse the materialization. */ 6699 int topAddr; 6700 int onceAddr = 0; 6701 int retAddr; 6702 6703 pItem->regReturn = ++pParse->nMem; 6704 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6705 pItem->addrFillSub = topAddr+1; 6706 if( pItem->fg.isCorrelated==0 ){ 6707 /* If the subquery is not correlated and if we are not inside of 6708 ** a trigger, then we only need to compute the value of the subquery 6709 ** once. */ 6710 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6711 VdbeComment((v, "materialize %!S", pItem)); 6712 }else{ 6713 VdbeNoopComment((v, "materialize %!S", pItem)); 6714 } 6715 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6716 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6717 sqlite3Select(pParse, pSub, &dest); 6718 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6719 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6720 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6721 VdbeComment((v, "end %!S", pItem)); 6722 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6723 sqlite3ClearTempRegCache(pParse); 6724 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6725 CteUse *pCteUse = pItem->u2.pCteUse; 6726 pCteUse->addrM9e = pItem->addrFillSub; 6727 pCteUse->regRtn = pItem->regReturn; 6728 pCteUse->iCur = pItem->iCursor; 6729 pCteUse->nRowEst = pSub->nSelectRow; 6730 } 6731 } 6732 if( db->mallocFailed ) goto select_end; 6733 pParse->nHeight -= sqlite3SelectExprHeight(p); 6734 pParse->zAuthContext = zSavedAuthContext; 6735 #endif 6736 } 6737 6738 /* Various elements of the SELECT copied into local variables for 6739 ** convenience */ 6740 pEList = p->pEList; 6741 pWhere = p->pWhere; 6742 pGroupBy = p->pGroupBy; 6743 pHaving = p->pHaving; 6744 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6745 6746 #if SELECTTRACE_ENABLED 6747 if( sqlite3SelectTrace & 0x400 ){ 6748 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6749 sqlite3TreeViewSelect(0, p, 0); 6750 } 6751 #endif 6752 6753 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6754 ** if the select-list is the same as the ORDER BY list, then this query 6755 ** can be rewritten as a GROUP BY. In other words, this: 6756 ** 6757 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6758 ** 6759 ** is transformed to: 6760 ** 6761 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6762 ** 6763 ** The second form is preferred as a single index (or temp-table) may be 6764 ** used for both the ORDER BY and DISTINCT processing. As originally 6765 ** written the query must use a temp-table for at least one of the ORDER 6766 ** BY and DISTINCT, and an index or separate temp-table for the other. 6767 */ 6768 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6769 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6770 #ifndef SQLITE_OMIT_WINDOWFUNC 6771 && p->pWin==0 6772 #endif 6773 ){ 6774 p->selFlags &= ~SF_Distinct; 6775 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6776 p->selFlags |= SF_Aggregate; 6777 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6778 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6779 ** original setting of the SF_Distinct flag, not the current setting */ 6780 assert( sDistinct.isTnct ); 6781 6782 #if SELECTTRACE_ENABLED 6783 if( sqlite3SelectTrace & 0x400 ){ 6784 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6785 sqlite3TreeViewSelect(0, p, 0); 6786 } 6787 #endif 6788 } 6789 6790 /* If there is an ORDER BY clause, then create an ephemeral index to 6791 ** do the sorting. But this sorting ephemeral index might end up 6792 ** being unused if the data can be extracted in pre-sorted order. 6793 ** If that is the case, then the OP_OpenEphemeral instruction will be 6794 ** changed to an OP_Noop once we figure out that the sorting index is 6795 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6796 ** that change. 6797 */ 6798 if( sSort.pOrderBy ){ 6799 KeyInfo *pKeyInfo; 6800 pKeyInfo = sqlite3KeyInfoFromExprList( 6801 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6802 sSort.iECursor = pParse->nTab++; 6803 sSort.addrSortIndex = 6804 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6805 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6806 (char*)pKeyInfo, P4_KEYINFO 6807 ); 6808 }else{ 6809 sSort.addrSortIndex = -1; 6810 } 6811 6812 /* If the output is destined for a temporary table, open that table. 6813 */ 6814 if( pDest->eDest==SRT_EphemTab ){ 6815 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6816 } 6817 6818 /* Set the limiter. 6819 */ 6820 iEnd = sqlite3VdbeMakeLabel(pParse); 6821 if( (p->selFlags & SF_FixedLimit)==0 ){ 6822 p->nSelectRow = 320; /* 4 billion rows */ 6823 } 6824 computeLimitRegisters(pParse, p, iEnd); 6825 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6826 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6827 sSort.sortFlags |= SORTFLAG_UseSorter; 6828 } 6829 6830 /* Open an ephemeral index to use for the distinct set. 6831 */ 6832 if( p->selFlags & SF_Distinct ){ 6833 sDistinct.tabTnct = pParse->nTab++; 6834 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6835 sDistinct.tabTnct, 0, 0, 6836 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6837 P4_KEYINFO); 6838 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6839 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6840 }else{ 6841 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6842 } 6843 6844 if( !isAgg && pGroupBy==0 ){ 6845 /* No aggregate functions and no GROUP BY clause */ 6846 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6847 | (p->selFlags & SF_FixedLimit); 6848 #ifndef SQLITE_OMIT_WINDOWFUNC 6849 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6850 if( pWin ){ 6851 sqlite3WindowCodeInit(pParse, p); 6852 } 6853 #endif 6854 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6855 6856 6857 /* Begin the database scan. */ 6858 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6859 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6860 p->pEList, wctrlFlags, p->nSelectRow); 6861 if( pWInfo==0 ) goto select_end; 6862 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6863 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6864 } 6865 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6866 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6867 } 6868 if( sSort.pOrderBy ){ 6869 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6870 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6871 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6872 sSort.pOrderBy = 0; 6873 } 6874 } 6875 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6876 6877 /* If sorting index that was created by a prior OP_OpenEphemeral 6878 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6879 ** into an OP_Noop. 6880 */ 6881 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6882 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6883 } 6884 6885 assert( p->pEList==pEList ); 6886 #ifndef SQLITE_OMIT_WINDOWFUNC 6887 if( pWin ){ 6888 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6889 int iCont = sqlite3VdbeMakeLabel(pParse); 6890 int iBreak = sqlite3VdbeMakeLabel(pParse); 6891 int regGosub = ++pParse->nMem; 6892 6893 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6894 6895 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6896 sqlite3VdbeResolveLabel(v, addrGosub); 6897 VdbeNoopComment((v, "inner-loop subroutine")); 6898 sSort.labelOBLopt = 0; 6899 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6900 sqlite3VdbeResolveLabel(v, iCont); 6901 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6902 VdbeComment((v, "end inner-loop subroutine")); 6903 sqlite3VdbeResolveLabel(v, iBreak); 6904 }else 6905 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6906 { 6907 /* Use the standard inner loop. */ 6908 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6909 sqlite3WhereContinueLabel(pWInfo), 6910 sqlite3WhereBreakLabel(pWInfo)); 6911 6912 /* End the database scan loop. 6913 */ 6914 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6915 sqlite3WhereEnd(pWInfo); 6916 } 6917 }else{ 6918 /* This case when there exist aggregate functions or a GROUP BY clause 6919 ** or both */ 6920 NameContext sNC; /* Name context for processing aggregate information */ 6921 int iAMem; /* First Mem address for storing current GROUP BY */ 6922 int iBMem; /* First Mem address for previous GROUP BY */ 6923 int iUseFlag; /* Mem address holding flag indicating that at least 6924 ** one row of the input to the aggregator has been 6925 ** processed */ 6926 int iAbortFlag; /* Mem address which causes query abort if positive */ 6927 int groupBySort; /* Rows come from source in GROUP BY order */ 6928 int addrEnd; /* End of processing for this SELECT */ 6929 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6930 int sortOut = 0; /* Output register from the sorter */ 6931 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6932 6933 /* Remove any and all aliases between the result set and the 6934 ** GROUP BY clause. 6935 */ 6936 if( pGroupBy ){ 6937 int k; /* Loop counter */ 6938 struct ExprList_item *pItem; /* For looping over expression in a list */ 6939 6940 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6941 pItem->u.x.iAlias = 0; 6942 } 6943 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6944 pItem->u.x.iAlias = 0; 6945 } 6946 assert( 66==sqlite3LogEst(100) ); 6947 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6948 6949 /* If there is both a GROUP BY and an ORDER BY clause and they are 6950 ** identical, then it may be possible to disable the ORDER BY clause 6951 ** on the grounds that the GROUP BY will cause elements to come out 6952 ** in the correct order. It also may not - the GROUP BY might use a 6953 ** database index that causes rows to be grouped together as required 6954 ** but not actually sorted. Either way, record the fact that the 6955 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6956 ** variable. */ 6957 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6958 int ii; 6959 /* The GROUP BY processing doesn't care whether rows are delivered in 6960 ** ASC or DESC order - only that each group is returned contiguously. 6961 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6962 ** ORDER BY to maximize the chances of rows being delivered in an 6963 ** order that makes the ORDER BY redundant. */ 6964 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6965 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6966 pGroupBy->a[ii].sortFlags = sortFlags; 6967 } 6968 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6969 orderByGrp = 1; 6970 } 6971 } 6972 }else{ 6973 assert( 0==sqlite3LogEst(1) ); 6974 p->nSelectRow = 0; 6975 } 6976 6977 /* Create a label to jump to when we want to abort the query */ 6978 addrEnd = sqlite3VdbeMakeLabel(pParse); 6979 6980 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6981 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6982 ** SELECT statement. 6983 */ 6984 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6985 if( pAggInfo ){ 6986 sqlite3ParserAddCleanup(pParse, 6987 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6988 testcase( pParse->earlyCleanup ); 6989 } 6990 if( db->mallocFailed ){ 6991 goto select_end; 6992 } 6993 pAggInfo->selId = p->selId; 6994 memset(&sNC, 0, sizeof(sNC)); 6995 sNC.pParse = pParse; 6996 sNC.pSrcList = pTabList; 6997 sNC.uNC.pAggInfo = pAggInfo; 6998 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6999 pAggInfo->mnReg = pParse->nMem+1; 7000 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7001 pAggInfo->pGroupBy = pGroupBy; 7002 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7003 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7004 if( pHaving ){ 7005 if( pGroupBy ){ 7006 assert( pWhere==p->pWhere ); 7007 assert( pHaving==p->pHaving ); 7008 assert( pGroupBy==p->pGroupBy ); 7009 havingToWhere(pParse, p); 7010 pWhere = p->pWhere; 7011 } 7012 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7013 } 7014 pAggInfo->nAccumulator = pAggInfo->nColumn; 7015 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7016 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7017 }else{ 7018 minMaxFlag = WHERE_ORDERBY_NORMAL; 7019 } 7020 for(i=0; i<pAggInfo->nFunc; i++){ 7021 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7022 assert( ExprUseXList(pExpr) ); 7023 sNC.ncFlags |= NC_InAggFunc; 7024 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7025 #ifndef SQLITE_OMIT_WINDOWFUNC 7026 assert( !IsWindowFunc(pExpr) ); 7027 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7028 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7029 } 7030 #endif 7031 sNC.ncFlags &= ~NC_InAggFunc; 7032 } 7033 pAggInfo->mxReg = pParse->nMem; 7034 if( db->mallocFailed ) goto select_end; 7035 #if SELECTTRACE_ENABLED 7036 if( sqlite3SelectTrace & 0x400 ){ 7037 int ii; 7038 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7039 sqlite3TreeViewSelect(0, p, 0); 7040 if( minMaxFlag ){ 7041 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7042 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7043 } 7044 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7045 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7046 ii, pAggInfo->aCol[ii].iMem); 7047 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7048 } 7049 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7050 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7051 ii, pAggInfo->aFunc[ii].iMem); 7052 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7053 } 7054 } 7055 #endif 7056 7057 7058 /* Processing for aggregates with GROUP BY is very different and 7059 ** much more complex than aggregates without a GROUP BY. 7060 */ 7061 if( pGroupBy ){ 7062 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7063 int addr1; /* A-vs-B comparision jump */ 7064 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7065 int regOutputRow; /* Return address register for output subroutine */ 7066 int addrSetAbort; /* Set the abort flag and return */ 7067 int addrTopOfLoop; /* Top of the input loop */ 7068 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7069 int addrReset; /* Subroutine for resetting the accumulator */ 7070 int regReset; /* Return address register for reset subroutine */ 7071 ExprList *pDistinct = 0; 7072 u16 distFlag = 0; 7073 int eDist = WHERE_DISTINCT_NOOP; 7074 7075 if( pAggInfo->nFunc==1 7076 && pAggInfo->aFunc[0].iDistinct>=0 7077 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7078 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7079 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7080 ){ 7081 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7082 pExpr = sqlite3ExprDup(db, pExpr, 0); 7083 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7084 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7085 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7086 } 7087 7088 /* If there is a GROUP BY clause we might need a sorting index to 7089 ** implement it. Allocate that sorting index now. If it turns out 7090 ** that we do not need it after all, the OP_SorterOpen instruction 7091 ** will be converted into a Noop. 7092 */ 7093 pAggInfo->sortingIdx = pParse->nTab++; 7094 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7095 0, pAggInfo->nColumn); 7096 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7097 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7098 0, (char*)pKeyInfo, P4_KEYINFO); 7099 7100 /* Initialize memory locations used by GROUP BY aggregate processing 7101 */ 7102 iUseFlag = ++pParse->nMem; 7103 iAbortFlag = ++pParse->nMem; 7104 regOutputRow = ++pParse->nMem; 7105 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7106 regReset = ++pParse->nMem; 7107 addrReset = sqlite3VdbeMakeLabel(pParse); 7108 iAMem = pParse->nMem + 1; 7109 pParse->nMem += pGroupBy->nExpr; 7110 iBMem = pParse->nMem + 1; 7111 pParse->nMem += pGroupBy->nExpr; 7112 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7113 VdbeComment((v, "clear abort flag")); 7114 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7115 7116 /* Begin a loop that will extract all source rows in GROUP BY order. 7117 ** This might involve two separate loops with an OP_Sort in between, or 7118 ** it might be a single loop that uses an index to extract information 7119 ** in the right order to begin with. 7120 */ 7121 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7122 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7123 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7124 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7125 ); 7126 if( pWInfo==0 ){ 7127 sqlite3ExprListDelete(db, pDistinct); 7128 goto select_end; 7129 } 7130 eDist = sqlite3WhereIsDistinct(pWInfo); 7131 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7132 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7133 /* The optimizer is able to deliver rows in group by order so 7134 ** we do not have to sort. The OP_OpenEphemeral table will be 7135 ** cancelled later because we still need to use the pKeyInfo 7136 */ 7137 groupBySort = 0; 7138 }else{ 7139 /* Rows are coming out in undetermined order. We have to push 7140 ** each row into a sorting index, terminate the first loop, 7141 ** then loop over the sorting index in order to get the output 7142 ** in sorted order 7143 */ 7144 int regBase; 7145 int regRecord; 7146 int nCol; 7147 int nGroupBy; 7148 7149 explainTempTable(pParse, 7150 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7151 "DISTINCT" : "GROUP BY"); 7152 7153 groupBySort = 1; 7154 nGroupBy = pGroupBy->nExpr; 7155 nCol = nGroupBy; 7156 j = nGroupBy; 7157 for(i=0; i<pAggInfo->nColumn; i++){ 7158 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7159 nCol++; 7160 j++; 7161 } 7162 } 7163 regBase = sqlite3GetTempRange(pParse, nCol); 7164 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7165 j = nGroupBy; 7166 for(i=0; i<pAggInfo->nColumn; i++){ 7167 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7168 if( pCol->iSorterColumn>=j ){ 7169 int r1 = j + regBase; 7170 sqlite3ExprCodeGetColumnOfTable(v, 7171 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7172 j++; 7173 } 7174 } 7175 regRecord = sqlite3GetTempReg(pParse); 7176 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7177 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7178 sqlite3ReleaseTempReg(pParse, regRecord); 7179 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7180 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7181 sqlite3WhereEnd(pWInfo); 7182 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7183 sortOut = sqlite3GetTempReg(pParse); 7184 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7185 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7186 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7187 pAggInfo->useSortingIdx = 1; 7188 } 7189 7190 /* If the index or temporary table used by the GROUP BY sort 7191 ** will naturally deliver rows in the order required by the ORDER BY 7192 ** clause, cancel the ephemeral table open coded earlier. 7193 ** 7194 ** This is an optimization - the correct answer should result regardless. 7195 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7196 ** disable this optimization for testing purposes. */ 7197 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7198 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7199 ){ 7200 sSort.pOrderBy = 0; 7201 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7202 } 7203 7204 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7205 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7206 ** Then compare the current GROUP BY terms against the GROUP BY terms 7207 ** from the previous row currently stored in a0, a1, a2... 7208 */ 7209 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7210 if( groupBySort ){ 7211 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7212 sortOut, sortPTab); 7213 } 7214 for(j=0; j<pGroupBy->nExpr; j++){ 7215 if( groupBySort ){ 7216 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7217 }else{ 7218 pAggInfo->directMode = 1; 7219 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7220 } 7221 } 7222 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7223 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7224 addr1 = sqlite3VdbeCurrentAddr(v); 7225 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7226 7227 /* Generate code that runs whenever the GROUP BY changes. 7228 ** Changes in the GROUP BY are detected by the previous code 7229 ** block. If there were no changes, this block is skipped. 7230 ** 7231 ** This code copies current group by terms in b0,b1,b2,... 7232 ** over to a0,a1,a2. It then calls the output subroutine 7233 ** and resets the aggregate accumulator registers in preparation 7234 ** for the next GROUP BY batch. 7235 */ 7236 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7237 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7238 VdbeComment((v, "output one row")); 7239 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7240 VdbeComment((v, "check abort flag")); 7241 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7242 VdbeComment((v, "reset accumulator")); 7243 7244 /* Update the aggregate accumulators based on the content of 7245 ** the current row 7246 */ 7247 sqlite3VdbeJumpHere(v, addr1); 7248 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7249 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7250 VdbeComment((v, "indicate data in accumulator")); 7251 7252 /* End of the loop 7253 */ 7254 if( groupBySort ){ 7255 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7256 VdbeCoverage(v); 7257 }else{ 7258 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7259 sqlite3WhereEnd(pWInfo); 7260 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7261 } 7262 sqlite3ExprListDelete(db, pDistinct); 7263 7264 /* Output the final row of result 7265 */ 7266 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7267 VdbeComment((v, "output final row")); 7268 7269 /* Jump over the subroutines 7270 */ 7271 sqlite3VdbeGoto(v, addrEnd); 7272 7273 /* Generate a subroutine that outputs a single row of the result 7274 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7275 ** is less than or equal to zero, the subroutine is a no-op. If 7276 ** the processing calls for the query to abort, this subroutine 7277 ** increments the iAbortFlag memory location before returning in 7278 ** order to signal the caller to abort. 7279 */ 7280 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7281 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7282 VdbeComment((v, "set abort flag")); 7283 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7284 sqlite3VdbeResolveLabel(v, addrOutputRow); 7285 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7286 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7287 VdbeCoverage(v); 7288 VdbeComment((v, "Groupby result generator entry point")); 7289 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7290 finalizeAggFunctions(pParse, pAggInfo); 7291 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7292 selectInnerLoop(pParse, p, -1, &sSort, 7293 &sDistinct, pDest, 7294 addrOutputRow+1, addrSetAbort); 7295 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7296 VdbeComment((v, "end groupby result generator")); 7297 7298 /* Generate a subroutine that will reset the group-by accumulator 7299 */ 7300 sqlite3VdbeResolveLabel(v, addrReset); 7301 resetAccumulator(pParse, pAggInfo); 7302 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7303 VdbeComment((v, "indicate accumulator empty")); 7304 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7305 7306 if( eDist!=WHERE_DISTINCT_NOOP ){ 7307 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7308 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7309 } 7310 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7311 else { 7312 Table *pTab; 7313 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7314 /* If isSimpleCount() returns a pointer to a Table structure, then 7315 ** the SQL statement is of the form: 7316 ** 7317 ** SELECT count(*) FROM <tbl> 7318 ** 7319 ** where the Table structure returned represents table <tbl>. 7320 ** 7321 ** This statement is so common that it is optimized specially. The 7322 ** OP_Count instruction is executed either on the intkey table that 7323 ** contains the data for table <tbl> or on one of its indexes. It 7324 ** is better to execute the op on an index, as indexes are almost 7325 ** always spread across less pages than their corresponding tables. 7326 */ 7327 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7328 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7329 Index *pIdx; /* Iterator variable */ 7330 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7331 Index *pBest = 0; /* Best index found so far */ 7332 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7333 7334 sqlite3CodeVerifySchema(pParse, iDb); 7335 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7336 7337 /* Search for the index that has the lowest scan cost. 7338 ** 7339 ** (2011-04-15) Do not do a full scan of an unordered index. 7340 ** 7341 ** (2013-10-03) Do not count the entries in a partial index. 7342 ** 7343 ** In practice the KeyInfo structure will not be used. It is only 7344 ** passed to keep OP_OpenRead happy. 7345 */ 7346 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7347 if( !p->pSrc->a[0].fg.notIndexed ){ 7348 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7349 if( pIdx->bUnordered==0 7350 && pIdx->szIdxRow<pTab->szTabRow 7351 && pIdx->pPartIdxWhere==0 7352 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7353 ){ 7354 pBest = pIdx; 7355 } 7356 } 7357 } 7358 if( pBest ){ 7359 iRoot = pBest->tnum; 7360 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7361 } 7362 7363 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7364 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7365 if( pKeyInfo ){ 7366 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7367 } 7368 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7369 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7370 explainSimpleCount(pParse, pTab, pBest); 7371 }else{ 7372 int regAcc = 0; /* "populate accumulators" flag */ 7373 ExprList *pDistinct = 0; 7374 u16 distFlag = 0; 7375 int eDist; 7376 7377 /* If there are accumulator registers but no min() or max() functions 7378 ** without FILTER clauses, allocate register regAcc. Register regAcc 7379 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7380 ** The code generated by updateAccumulator() uses this to ensure 7381 ** that the accumulator registers are (a) updated only once if 7382 ** there are no min() or max functions or (b) always updated for the 7383 ** first row visited by the aggregate, so that they are updated at 7384 ** least once even if the FILTER clause means the min() or max() 7385 ** function visits zero rows. */ 7386 if( pAggInfo->nAccumulator ){ 7387 for(i=0; i<pAggInfo->nFunc; i++){ 7388 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7389 continue; 7390 } 7391 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7392 break; 7393 } 7394 } 7395 if( i==pAggInfo->nFunc ){ 7396 regAcc = ++pParse->nMem; 7397 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7398 } 7399 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7400 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7401 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7402 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7403 } 7404 7405 /* This case runs if the aggregate has no GROUP BY clause. The 7406 ** processing is much simpler since there is only a single row 7407 ** of output. 7408 */ 7409 assert( p->pGroupBy==0 ); 7410 resetAccumulator(pParse, pAggInfo); 7411 7412 /* If this query is a candidate for the min/max optimization, then 7413 ** minMaxFlag will have been previously set to either 7414 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7415 ** be an appropriate ORDER BY expression for the optimization. 7416 */ 7417 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7418 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7419 7420 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7421 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7422 pDistinct, minMaxFlag|distFlag, 0); 7423 if( pWInfo==0 ){ 7424 goto select_end; 7425 } 7426 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7427 eDist = sqlite3WhereIsDistinct(pWInfo); 7428 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7429 if( eDist!=WHERE_DISTINCT_NOOP ){ 7430 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7431 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7432 } 7433 7434 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7435 if( minMaxFlag ){ 7436 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7437 } 7438 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7439 sqlite3WhereEnd(pWInfo); 7440 finalizeAggFunctions(pParse, pAggInfo); 7441 } 7442 7443 sSort.pOrderBy = 0; 7444 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7445 selectInnerLoop(pParse, p, -1, 0, 0, 7446 pDest, addrEnd, addrEnd); 7447 } 7448 sqlite3VdbeResolveLabel(v, addrEnd); 7449 7450 } /* endif aggregate query */ 7451 7452 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7453 explainTempTable(pParse, "DISTINCT"); 7454 } 7455 7456 /* If there is an ORDER BY clause, then we need to sort the results 7457 ** and send them to the callback one by one. 7458 */ 7459 if( sSort.pOrderBy ){ 7460 explainTempTable(pParse, 7461 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7462 assert( p->pEList==pEList ); 7463 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7464 } 7465 7466 /* Jump here to skip this query 7467 */ 7468 sqlite3VdbeResolveLabel(v, iEnd); 7469 7470 /* The SELECT has been coded. If there is an error in the Parse structure, 7471 ** set the return code to 1. Otherwise 0. */ 7472 rc = (pParse->nErr>0); 7473 7474 /* Control jumps to here if an error is encountered above, or upon 7475 ** successful coding of the SELECT. 7476 */ 7477 select_end: 7478 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7479 pParse->nErr += db->mallocFailed; 7480 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7481 #ifdef SQLITE_DEBUG 7482 if( pAggInfo && !db->mallocFailed ){ 7483 for(i=0; i<pAggInfo->nColumn; i++){ 7484 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7485 assert( pExpr!=0 ); 7486 assert( pExpr->pAggInfo==pAggInfo ); 7487 assert( pExpr->iAgg==i ); 7488 } 7489 for(i=0; i<pAggInfo->nFunc; i++){ 7490 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7491 assert( pExpr!=0 ); 7492 assert( pExpr->pAggInfo==pAggInfo ); 7493 assert( pExpr->iAgg==i ); 7494 } 7495 } 7496 #endif 7497 7498 #if SELECTTRACE_ENABLED 7499 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7500 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7501 sqlite3TreeViewSelect(0, p, 0); 7502 } 7503 #endif 7504 ExplainQueryPlanPop(pParse); 7505 return rc; 7506 } 7507