xref: /sqlite-3.40.0/src/select.c (revision dee0359d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
351                                ** in sqlite3DbMallocRawNN() called from
352                                ** sqlite3PExpr(). */
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->iRightJoinTable = pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 void sqlite3SetJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->iRightJoinTable = iTable;
394     if( p->op==TK_FUNCTION ){
395       assert( ExprUseXList(p) );
396       if( p->x.pList ){
397         int i;
398         for(i=0; i<p->x.pList->nExpr; i++){
399           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
400         }
401       }
402     }
403     sqlite3SetJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
411 **
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
413 */
414 static void unsetJoinExpr(Expr *p, int iTable){
415   while( p ){
416     if( ExprHasProperty(p, EP_FromJoin)
417      && (iTable<0 || p->iRightJoinTable==iTable) ){
418       ExprClearProperty(p, EP_FromJoin);
419     }
420     if( p->op==TK_COLUMN && p->iTable==iTable ){
421       ExprClearProperty(p, EP_CanBeNull);
422     }
423     if( p->op==TK_FUNCTION ){
424       assert( ExprUseXList(p) );
425       if( p->x.pList ){
426         int i;
427         for(i=0; i<p->x.pList->nExpr; i++){
428           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
429         }
430       }
431     }
432     unsetJoinExpr(p->pLeft, iTable);
433     p = p->pRight;
434   }
435 }
436 
437 /*
438 ** This routine processes the join information for a SELECT statement.
439 ** ON and USING clauses are converted into extra terms of the WHERE clause.
440 ** NATURAL joins also create extra WHERE clause terms.
441 **
442 ** The terms of a FROM clause are contained in the Select.pSrc structure.
443 ** The left most table is the first entry in Select.pSrc.  The right-most
444 ** table is the last entry.  The join operator is held in the entry to
445 ** the left.  Thus entry 0 contains the join operator for the join between
446 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
447 ** also attached to the left entry.
448 **
449 ** This routine returns the number of errors encountered.
450 */
451 static int sqliteProcessJoin(Parse *pParse, Select *p){
452   SrcList *pSrc;                  /* All tables in the FROM clause */
453   int i, j;                       /* Loop counters */
454   SrcItem *pLeft;                 /* Left table being joined */
455   SrcItem *pRight;                /* Right table being joined */
456 
457   pSrc = p->pSrc;
458   pLeft = &pSrc->a[0];
459   pRight = &pLeft[1];
460   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
461     Table *pRightTab = pRight->pTab;
462     int isOuter;
463 
464     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
465     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
466 
467     /* When the NATURAL keyword is present, add WHERE clause terms for
468     ** every column that the two tables have in common.
469     */
470     if( pRight->fg.jointype & JT_NATURAL ){
471       if( pRight->pOn || pRight->pUsing ){
472         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
473            "an ON or USING clause", 0);
474         return 1;
475       }
476       for(j=0; j<pRightTab->nCol; j++){
477         char *zName;   /* Name of column in the right table */
478         int iLeft;     /* Matching left table */
479         int iLeftCol;  /* Matching column in the left table */
480 
481         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
482         zName = pRightTab->aCol[j].zCnName;
483         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
484           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
485                 isOuter, &p->pWhere);
486         }
487       }
488     }
489 
490     /* Disallow both ON and USING clauses in the same join
491     */
492     if( pRight->pOn && pRight->pUsing ){
493       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
494         "clauses in the same join");
495       return 1;
496     }
497 
498     /* Add the ON clause to the end of the WHERE clause, connected by
499     ** an AND operator.
500     */
501     if( pRight->pOn ){
502       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
503       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
504       pRight->pOn = 0;
505     }
506 
507     /* Create extra terms on the WHERE clause for each column named
508     ** in the USING clause.  Example: If the two tables to be joined are
509     ** A and B and the USING clause names X, Y, and Z, then add this
510     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
511     ** Report an error if any column mentioned in the USING clause is
512     ** not contained in both tables to be joined.
513     */
514     if( pRight->pUsing ){
515       IdList *pList = pRight->pUsing;
516       for(j=0; j<pList->nId; j++){
517         char *zName;     /* Name of the term in the USING clause */
518         int iLeft;       /* Table on the left with matching column name */
519         int iLeftCol;    /* Column number of matching column on the left */
520         int iRightCol;   /* Column number of matching column on the right */
521 
522         zName = pList->a[j].zName;
523         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
524         if( iRightCol<0
525          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
526         ){
527           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
528             "not present in both tables", zName);
529           return 1;
530         }
531         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
532                      isOuter, &p->pWhere);
533       }
534     }
535   }
536   return 0;
537 }
538 
539 /*
540 ** An instance of this object holds information (beyond pParse and pSelect)
541 ** needed to load the next result row that is to be added to the sorter.
542 */
543 typedef struct RowLoadInfo RowLoadInfo;
544 struct RowLoadInfo {
545   int regResult;               /* Store results in array of registers here */
546   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
548   ExprList *pExtra;            /* Extra columns needed by sorter refs */
549   int regExtraResult;          /* Where to load the extra columns */
550 #endif
551 };
552 
553 /*
554 ** This routine does the work of loading query data into an array of
555 ** registers so that it can be added to the sorter.
556 */
557 static void innerLoopLoadRow(
558   Parse *pParse,             /* Statement under construction */
559   Select *pSelect,           /* The query being coded */
560   RowLoadInfo *pInfo         /* Info needed to complete the row load */
561 ){
562   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
563                           0, pInfo->ecelFlags);
564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
565   if( pInfo->pExtra ){
566     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
567     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
568   }
569 #endif
570 }
571 
572 /*
573 ** Code the OP_MakeRecord instruction that generates the entry to be
574 ** added into the sorter.
575 **
576 ** Return the register in which the result is stored.
577 */
578 static int makeSorterRecord(
579   Parse *pParse,
580   SortCtx *pSort,
581   Select *pSelect,
582   int regBase,
583   int nBase
584 ){
585   int nOBSat = pSort->nOBSat;
586   Vdbe *v = pParse->pVdbe;
587   int regOut = ++pParse->nMem;
588   if( pSort->pDeferredRowLoad ){
589     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
590   }
591   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
592   return regOut;
593 }
594 
595 /*
596 ** Generate code that will push the record in registers regData
597 ** through regData+nData-1 onto the sorter.
598 */
599 static void pushOntoSorter(
600   Parse *pParse,         /* Parser context */
601   SortCtx *pSort,        /* Information about the ORDER BY clause */
602   Select *pSelect,       /* The whole SELECT statement */
603   int regData,           /* First register holding data to be sorted */
604   int regOrigData,       /* First register holding data before packing */
605   int nData,             /* Number of elements in the regData data array */
606   int nPrefixReg         /* No. of reg prior to regData available for use */
607 ){
608   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
609   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
610   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
611   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
612   int regBase;                                     /* Regs for sorter record */
613   int regRecord = 0;                               /* Assembled sorter record */
614   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
615   int op;                            /* Opcode to add sorter record to sorter */
616   int iLimit;                        /* LIMIT counter */
617   int iSkip = 0;                     /* End of the sorter insert loop */
618 
619   assert( bSeq==0 || bSeq==1 );
620 
621   /* Three cases:
622   **   (1) The data to be sorted has already been packed into a Record
623   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
624   **       will be completely unrelated to regOrigData.
625   **   (2) All output columns are included in the sort record.  In that
626   **       case regData==regOrigData.
627   **   (3) Some output columns are omitted from the sort record due to
628   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
629   **       SQLITE_ECEL_OMITREF optimization, or due to the
630   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
631   **       regOrigData is 0 to prevent this routine from trying to copy
632   **       values that might not yet exist.
633   */
634   assert( nData==1 || regData==regOrigData || regOrigData==0 );
635 
636   if( nPrefixReg ){
637     assert( nPrefixReg==nExpr+bSeq );
638     regBase = regData - nPrefixReg;
639   }else{
640     regBase = pParse->nMem + 1;
641     pParse->nMem += nBase;
642   }
643   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
644   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
645   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
646   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
647                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
648   if( bSeq ){
649     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
650   }
651   if( nPrefixReg==0 && nData>0 ){
652     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
653   }
654   if( nOBSat>0 ){
655     int regPrevKey;   /* The first nOBSat columns of the previous row */
656     int addrFirst;    /* Address of the OP_IfNot opcode */
657     int addrJmp;      /* Address of the OP_Jump opcode */
658     VdbeOp *pOp;      /* Opcode that opens the sorter */
659     int nKey;         /* Number of sorting key columns, including OP_Sequence */
660     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
661 
662     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
663     regPrevKey = pParse->nMem+1;
664     pParse->nMem += pSort->nOBSat;
665     nKey = nExpr - pSort->nOBSat + bSeq;
666     if( bSeq ){
667       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
668     }else{
669       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
670     }
671     VdbeCoverage(v);
672     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
673     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
674     if( pParse->db->mallocFailed ) return;
675     pOp->p2 = nKey + nData;
676     pKI = pOp->p4.pKeyInfo;
677     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
678     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
679     testcase( pKI->nAllField > pKI->nKeyField+2 );
680     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
681                                            pKI->nAllField-pKI->nKeyField-1);
682     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
683     addrJmp = sqlite3VdbeCurrentAddr(v);
684     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
686     pSort->regReturn = ++pParse->nMem;
687     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689     if( iLimit ){
690       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691       VdbeCoverage(v);
692     }
693     sqlite3VdbeJumpHere(v, addrFirst);
694     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695     sqlite3VdbeJumpHere(v, addrJmp);
696   }
697   if( iLimit ){
698     /* At this point the values for the new sorter entry are stored
699     ** in an array of registers. They need to be composed into a record
700     ** and inserted into the sorter if either (a) there are currently
701     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702     ** the largest record currently in the sorter. If (b) is true and there
703     ** are already LIMIT+OFFSET items in the sorter, delete the largest
704     ** entry before inserting the new one. This way there are never more
705     ** than LIMIT+OFFSET items in the sorter.
706     **
707     ** If the new record does not need to be inserted into the sorter,
708     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
709     ** value is not zero, then it is a label of where to jump.  Otherwise,
710     ** just bypass the row insert logic.  See the header comment on the
711     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
712     */
713     int iCsr = pSort->iECursor;
714     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715     VdbeCoverage(v);
716     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719     VdbeCoverage(v);
720     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
721   }
722   if( regRecord==0 ){
723     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
724   }
725   if( pSort->sortFlags & SORTFLAG_UseSorter ){
726     op = OP_SorterInsert;
727   }else{
728     op = OP_IdxInsert;
729   }
730   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731                        regBase+nOBSat, nBase-nOBSat);
732   if( iSkip ){
733     sqlite3VdbeChangeP2(v, iSkip,
734          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
735   }
736 }
737 
738 /*
739 ** Add code to implement the OFFSET
740 */
741 static void codeOffset(
742   Vdbe *v,          /* Generate code into this VM */
743   int iOffset,      /* Register holding the offset counter */
744   int iContinue     /* Jump here to skip the current record */
745 ){
746   if( iOffset>0 ){
747     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
748     VdbeComment((v, "OFFSET"));
749   }
750 }
751 
752 /*
753 ** Add code that will check to make sure the array of registers starting at
754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
756 ** are available. Which is used depends on the value of parameter eTnctType,
757 ** as follows:
758 **
759 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
760 **     Build an ephemeral table that contains all entries seen before and
761 **     skip entries which have been seen before.
762 **
763 **     Parameter iTab is the cursor number of an ephemeral table that must
764 **     be opened before the VM code generated by this routine is executed.
765 **     The ephemeral cursor table is queried for a record identical to the
766 **     record formed by the current array of registers. If one is found,
767 **     jump to VM address addrRepeat. Otherwise, insert a new record into
768 **     the ephemeral cursor and proceed.
769 **
770 **     The returned value in this case is a copy of parameter iTab.
771 **
772 **   WHERE_DISTINCT_ORDERED:
773 **     In this case rows are being delivered sorted order. The ephermal
774 **     table is not required. Instead, the current set of values
775 **     is compared against previous row. If they match, the new row
776 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
777 **     the VM program proceeds with processing the new row.
778 **
779 **     The returned value in this case is the register number of the first
780 **     in an array of registers used to store the previous result row so that
781 **     it can be compared to the next. The caller must ensure that this
782 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
783 **     will take care of this initialization.)
784 **
785 **   WHERE_DISTINCT_UNIQUE:
786 **     In this case it has already been determined that the rows are distinct.
787 **     No special action is required. The return value is zero.
788 **
789 ** Parameter pEList is the list of expressions used to generated the
790 ** contents of each row. It is used by this routine to determine (a)
791 ** how many elements there are in the array of registers and (b) the
792 ** collation sequences that should be used for the comparisons if
793 ** eTnctType is WHERE_DISTINCT_ORDERED.
794 */
795 static int codeDistinct(
796   Parse *pParse,     /* Parsing and code generating context */
797   int eTnctType,     /* WHERE_DISTINCT_* value */
798   int iTab,          /* A sorting index used to test for distinctness */
799   int addrRepeat,    /* Jump to here if not distinct */
800   ExprList *pEList,  /* Expression for each element */
801   int regElem        /* First element */
802 ){
803   int iRet = 0;
804   int nResultCol = pEList->nExpr;
805   Vdbe *v = pParse->pVdbe;
806 
807   switch( eTnctType ){
808     case WHERE_DISTINCT_ORDERED: {
809       int i;
810       int iJump;              /* Jump destination */
811       int regPrev;            /* Previous row content */
812 
813       /* Allocate space for the previous row */
814       iRet = regPrev = pParse->nMem+1;
815       pParse->nMem += nResultCol;
816 
817       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
818       for(i=0; i<nResultCol; i++){
819         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
820         if( i<nResultCol-1 ){
821           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
822           VdbeCoverage(v);
823         }else{
824           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
825           VdbeCoverage(v);
826          }
827         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
828         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
829       }
830       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
831       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
832       break;
833     }
834 
835     case WHERE_DISTINCT_UNIQUE: {
836       /* nothing to do */
837       break;
838     }
839 
840     default: {
841       int r1 = sqlite3GetTempReg(pParse);
842       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
843       VdbeCoverage(v);
844       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
845       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
846       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
847       sqlite3ReleaseTempReg(pParse, r1);
848       iRet = iTab;
849       break;
850     }
851   }
852 
853   return iRet;
854 }
855 
856 /*
857 ** This routine runs after codeDistinct().  It makes necessary
858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
859 ** routine made use of.  This processing must be done separately since
860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
861 ** laid down.
862 **
863 ** WHERE_DISTINCT_NOOP:
864 ** WHERE_DISTINCT_UNORDERED:
865 **
866 **     No adjustments necessary.  This function is a no-op.
867 **
868 ** WHERE_DISTINCT_UNIQUE:
869 **
870 **     The ephemeral table is not needed.  So change the
871 **     OP_OpenEphemeral opcode into an OP_Noop.
872 **
873 ** WHERE_DISTINCT_ORDERED:
874 **
875 **     The ephemeral table is not needed.  But we do need register
876 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
877 **     into an OP_Null on the iVal register.
878 */
879 static void fixDistinctOpenEph(
880   Parse *pParse,     /* Parsing and code generating context */
881   int eTnctType,     /* WHERE_DISTINCT_* value */
882   int iVal,          /* Value returned by codeDistinct() */
883   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
884 ){
885   if( pParse->nErr==0
886    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
887   ){
888     Vdbe *v = pParse->pVdbe;
889     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
890     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
891       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
892     }
893     if( eTnctType==WHERE_DISTINCT_ORDERED ){
894       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
895       ** bit on the first register of the previous value.  This will cause the
896       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
897       ** the loop even if the first row is all NULLs.  */
898       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
899       pOp->opcode = OP_Null;
900       pOp->p1 = 1;
901       pOp->p2 = iVal;
902     }
903   }
904 }
905 
906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
907 /*
908 ** This function is called as part of inner-loop generation for a SELECT
909 ** statement with an ORDER BY that is not optimized by an index. It
910 ** determines the expressions, if any, that the sorter-reference
911 ** optimization should be used for. The sorter-reference optimization
912 ** is used for SELECT queries like:
913 **
914 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
915 **
916 ** If the optimization is used for expression "bigblob", then instead of
917 ** storing values read from that column in the sorter records, the PK of
918 ** the row from table t1 is stored instead. Then, as records are extracted from
919 ** the sorter to return to the user, the required value of bigblob is
920 ** retrieved directly from table t1. If the values are very large, this
921 ** can be more efficient than storing them directly in the sorter records.
922 **
923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
924 ** for which the sorter-reference optimization should be enabled.
925 ** Additionally, the pSort->aDefer[] array is populated with entries
926 ** for all cursors required to evaluate all selected expressions. Finally.
927 ** output variable (*ppExtra) is set to an expression list containing
928 ** expressions for all extra PK values that should be stored in the
929 ** sorter records.
930 */
931 static void selectExprDefer(
932   Parse *pParse,                  /* Leave any error here */
933   SortCtx *pSort,                 /* Sorter context */
934   ExprList *pEList,               /* Expressions destined for sorter */
935   ExprList **ppExtra              /* Expressions to append to sorter record */
936 ){
937   int i;
938   int nDefer = 0;
939   ExprList *pExtra = 0;
940   for(i=0; i<pEList->nExpr; i++){
941     struct ExprList_item *pItem = &pEList->a[i];
942     if( pItem->u.x.iOrderByCol==0 ){
943       Expr *pExpr = pItem->pExpr;
944       Table *pTab;
945       assert( ExprUseYTab(pExpr) );
946       pTab = pExpr->y.pTab;
947       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
948        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
949       ){
950         int j;
951         for(j=0; j<nDefer; j++){
952           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
953         }
954         if( j==nDefer ){
955           if( nDefer==ArraySize(pSort->aDefer) ){
956             continue;
957           }else{
958             int nKey = 1;
959             int k;
960             Index *pPk = 0;
961             if( !HasRowid(pTab) ){
962               pPk = sqlite3PrimaryKeyIndex(pTab);
963               nKey = pPk->nKeyCol;
964             }
965             for(k=0; k<nKey; k++){
966               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
967               if( pNew ){
968                 pNew->iTable = pExpr->iTable;
969                 assert( ExprUseYTab(pNew) );
970                 pNew->y.pTab = pExpr->y.pTab;
971                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
972                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
973               }
974             }
975             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
976             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
977             pSort->aDefer[nDefer].nKey = nKey;
978             nDefer++;
979           }
980         }
981         pItem->bSorterRef = 1;
982       }
983     }
984   }
985   pSort->nDefer = (u8)nDefer;
986   *ppExtra = pExtra;
987 }
988 #endif
989 
990 /*
991 ** This routine generates the code for the inside of the inner loop
992 ** of a SELECT.
993 **
994 ** If srcTab is negative, then the p->pEList expressions
995 ** are evaluated in order to get the data for this row.  If srcTab is
996 ** zero or more, then data is pulled from srcTab and p->pEList is used only
997 ** to get the number of columns and the collation sequence for each column.
998 */
999 static void selectInnerLoop(
1000   Parse *pParse,          /* The parser context */
1001   Select *p,              /* The complete select statement being coded */
1002   int srcTab,             /* Pull data from this table if non-negative */
1003   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1004   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1005   SelectDest *pDest,      /* How to dispose of the results */
1006   int iContinue,          /* Jump here to continue with next row */
1007   int iBreak              /* Jump here to break out of the inner loop */
1008 ){
1009   Vdbe *v = pParse->pVdbe;
1010   int i;
1011   int hasDistinct;            /* True if the DISTINCT keyword is present */
1012   int eDest = pDest->eDest;   /* How to dispose of results */
1013   int iParm = pDest->iSDParm; /* First argument to disposal method */
1014   int nResultCol;             /* Number of result columns */
1015   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1016   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1017 
1018   /* Usually, regResult is the first cell in an array of memory cells
1019   ** containing the current result row. In this case regOrig is set to the
1020   ** same value. However, if the results are being sent to the sorter, the
1021   ** values for any expressions that are also part of the sort-key are omitted
1022   ** from this array. In this case regOrig is set to zero.  */
1023   int regResult;              /* Start of memory holding current results */
1024   int regOrig;                /* Start of memory holding full result (or 0) */
1025 
1026   assert( v );
1027   assert( p->pEList!=0 );
1028   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1029   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1030   if( pSort==0 && !hasDistinct ){
1031     assert( iContinue!=0 );
1032     codeOffset(v, p->iOffset, iContinue);
1033   }
1034 
1035   /* Pull the requested columns.
1036   */
1037   nResultCol = p->pEList->nExpr;
1038 
1039   if( pDest->iSdst==0 ){
1040     if( pSort ){
1041       nPrefixReg = pSort->pOrderBy->nExpr;
1042       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1043       pParse->nMem += nPrefixReg;
1044     }
1045     pDest->iSdst = pParse->nMem+1;
1046     pParse->nMem += nResultCol;
1047   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1048     /* This is an error condition that can result, for example, when a SELECT
1049     ** on the right-hand side of an INSERT contains more result columns than
1050     ** there are columns in the table on the left.  The error will be caught
1051     ** and reported later.  But we need to make sure enough memory is allocated
1052     ** to avoid other spurious errors in the meantime. */
1053     pParse->nMem += nResultCol;
1054   }
1055   pDest->nSdst = nResultCol;
1056   regOrig = regResult = pDest->iSdst;
1057   if( srcTab>=0 ){
1058     for(i=0; i<nResultCol; i++){
1059       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1060       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1061     }
1062   }else if( eDest!=SRT_Exists ){
1063 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1064     ExprList *pExtra = 0;
1065 #endif
1066     /* If the destination is an EXISTS(...) expression, the actual
1067     ** values returned by the SELECT are not required.
1068     */
1069     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1070     ExprList *pEList;
1071     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1072       ecelFlags = SQLITE_ECEL_DUP;
1073     }else{
1074       ecelFlags = 0;
1075     }
1076     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1077       /* For each expression in p->pEList that is a copy of an expression in
1078       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1079       ** iOrderByCol value to one more than the index of the ORDER BY
1080       ** expression within the sort-key that pushOntoSorter() will generate.
1081       ** This allows the p->pEList field to be omitted from the sorted record,
1082       ** saving space and CPU cycles.  */
1083       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1084 
1085       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1086         int j;
1087         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1088           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1089         }
1090       }
1091 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1092       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1093       if( pExtra && pParse->db->mallocFailed==0 ){
1094         /* If there are any extra PK columns to add to the sorter records,
1095         ** allocate extra memory cells and adjust the OpenEphemeral
1096         ** instruction to account for the larger records. This is only
1097         ** required if there are one or more WITHOUT ROWID tables with
1098         ** composite primary keys in the SortCtx.aDefer[] array.  */
1099         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1100         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1101         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1102         pParse->nMem += pExtra->nExpr;
1103       }
1104 #endif
1105 
1106       /* Adjust nResultCol to account for columns that are omitted
1107       ** from the sorter by the optimizations in this branch */
1108       pEList = p->pEList;
1109       for(i=0; i<pEList->nExpr; i++){
1110         if( pEList->a[i].u.x.iOrderByCol>0
1111 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1112          || pEList->a[i].bSorterRef
1113 #endif
1114         ){
1115           nResultCol--;
1116           regOrig = 0;
1117         }
1118       }
1119 
1120       testcase( regOrig );
1121       testcase( eDest==SRT_Set );
1122       testcase( eDest==SRT_Mem );
1123       testcase( eDest==SRT_Coroutine );
1124       testcase( eDest==SRT_Output );
1125       assert( eDest==SRT_Set || eDest==SRT_Mem
1126            || eDest==SRT_Coroutine || eDest==SRT_Output
1127            || eDest==SRT_Upfrom );
1128     }
1129     sRowLoadInfo.regResult = regResult;
1130     sRowLoadInfo.ecelFlags = ecelFlags;
1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1132     sRowLoadInfo.pExtra = pExtra;
1133     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1134     if( pExtra ) nResultCol += pExtra->nExpr;
1135 #endif
1136     if( p->iLimit
1137      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1138      && nPrefixReg>0
1139     ){
1140       assert( pSort!=0 );
1141       assert( hasDistinct==0 );
1142       pSort->pDeferredRowLoad = &sRowLoadInfo;
1143       regOrig = 0;
1144     }else{
1145       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1146     }
1147   }
1148 
1149   /* If the DISTINCT keyword was present on the SELECT statement
1150   ** and this row has been seen before, then do not make this row
1151   ** part of the result.
1152   */
1153   if( hasDistinct ){
1154     int eType = pDistinct->eTnctType;
1155     int iTab = pDistinct->tabTnct;
1156     assert( nResultCol==p->pEList->nExpr );
1157     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1158     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1159     if( pSort==0 ){
1160       codeOffset(v, p->iOffset, iContinue);
1161     }
1162   }
1163 
1164   switch( eDest ){
1165     /* In this mode, write each query result to the key of the temporary
1166     ** table iParm.
1167     */
1168 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1169     case SRT_Union: {
1170       int r1;
1171       r1 = sqlite3GetTempReg(pParse);
1172       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1173       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174       sqlite3ReleaseTempReg(pParse, r1);
1175       break;
1176     }
1177 
1178     /* Construct a record from the query result, but instead of
1179     ** saving that record, use it as a key to delete elements from
1180     ** the temporary table iParm.
1181     */
1182     case SRT_Except: {
1183       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1184       break;
1185     }
1186 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1187 
1188     /* Store the result as data using a unique key.
1189     */
1190     case SRT_Fifo:
1191     case SRT_DistFifo:
1192     case SRT_Table:
1193     case SRT_EphemTab: {
1194       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1195       testcase( eDest==SRT_Table );
1196       testcase( eDest==SRT_EphemTab );
1197       testcase( eDest==SRT_Fifo );
1198       testcase( eDest==SRT_DistFifo );
1199       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1200 #ifndef SQLITE_OMIT_CTE
1201       if( eDest==SRT_DistFifo ){
1202         /* If the destination is DistFifo, then cursor (iParm+1) is open
1203         ** on an ephemeral index. If the current row is already present
1204         ** in the index, do not write it to the output. If not, add the
1205         ** current row to the index and proceed with writing it to the
1206         ** output table as well.  */
1207         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1208         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1209         VdbeCoverage(v);
1210         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1211         assert( pSort==0 );
1212       }
1213 #endif
1214       if( pSort ){
1215         assert( regResult==regOrig );
1216         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1217       }else{
1218         int r2 = sqlite3GetTempReg(pParse);
1219         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1220         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1221         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1222         sqlite3ReleaseTempReg(pParse, r2);
1223       }
1224       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1225       break;
1226     }
1227 
1228     case SRT_Upfrom: {
1229       if( pSort ){
1230         pushOntoSorter(
1231             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1232       }else{
1233         int i2 = pDest->iSDParm2;
1234         int r1 = sqlite3GetTempReg(pParse);
1235 
1236         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1237         ** might still be trying to return one row, because that is what
1238         ** aggregates do.  Don't record that empty row in the output table. */
1239         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1240 
1241         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1242                           regResult+(i2<0), nResultCol-(i2<0), r1);
1243         if( i2<0 ){
1244           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1245         }else{
1246           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1247         }
1248       }
1249       break;
1250     }
1251 
1252 #ifndef SQLITE_OMIT_SUBQUERY
1253     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1254     ** then there should be a single item on the stack.  Write this
1255     ** item into the set table with bogus data.
1256     */
1257     case SRT_Set: {
1258       if( pSort ){
1259         /* At first glance you would think we could optimize out the
1260         ** ORDER BY in this case since the order of entries in the set
1261         ** does not matter.  But there might be a LIMIT clause, in which
1262         ** case the order does matter */
1263         pushOntoSorter(
1264             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1265       }else{
1266         int r1 = sqlite3GetTempReg(pParse);
1267         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1268         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1269             r1, pDest->zAffSdst, nResultCol);
1270         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1271         sqlite3ReleaseTempReg(pParse, r1);
1272       }
1273       break;
1274     }
1275 
1276 
1277     /* If any row exist in the result set, record that fact and abort.
1278     */
1279     case SRT_Exists: {
1280       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1281       /* The LIMIT clause will terminate the loop for us */
1282       break;
1283     }
1284 
1285     /* If this is a scalar select that is part of an expression, then
1286     ** store the results in the appropriate memory cell or array of
1287     ** memory cells and break out of the scan loop.
1288     */
1289     case SRT_Mem: {
1290       if( pSort ){
1291         assert( nResultCol<=pDest->nSdst );
1292         pushOntoSorter(
1293             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1294       }else{
1295         assert( nResultCol==pDest->nSdst );
1296         assert( regResult==iParm );
1297         /* The LIMIT clause will jump out of the loop for us */
1298       }
1299       break;
1300     }
1301 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1302 
1303     case SRT_Coroutine:       /* Send data to a co-routine */
1304     case SRT_Output: {        /* Return the results */
1305       testcase( eDest==SRT_Coroutine );
1306       testcase( eDest==SRT_Output );
1307       if( pSort ){
1308         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1309                        nPrefixReg);
1310       }else if( eDest==SRT_Coroutine ){
1311         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1312       }else{
1313         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1314       }
1315       break;
1316     }
1317 
1318 #ifndef SQLITE_OMIT_CTE
1319     /* Write the results into a priority queue that is order according to
1320     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1321     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1322     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1323     ** final OP_Sequence column.  The last column is the record as a blob.
1324     */
1325     case SRT_DistQueue:
1326     case SRT_Queue: {
1327       int nKey;
1328       int r1, r2, r3;
1329       int addrTest = 0;
1330       ExprList *pSO;
1331       pSO = pDest->pOrderBy;
1332       assert( pSO );
1333       nKey = pSO->nExpr;
1334       r1 = sqlite3GetTempReg(pParse);
1335       r2 = sqlite3GetTempRange(pParse, nKey+2);
1336       r3 = r2+nKey+1;
1337       if( eDest==SRT_DistQueue ){
1338         /* If the destination is DistQueue, then cursor (iParm+1) is open
1339         ** on a second ephemeral index that holds all values every previously
1340         ** added to the queue. */
1341         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1342                                         regResult, nResultCol);
1343         VdbeCoverage(v);
1344       }
1345       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1346       if( eDest==SRT_DistQueue ){
1347         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1348         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1349       }
1350       for(i=0; i<nKey; i++){
1351         sqlite3VdbeAddOp2(v, OP_SCopy,
1352                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1353                           r2+i);
1354       }
1355       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1356       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1357       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1358       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1359       sqlite3ReleaseTempReg(pParse, r1);
1360       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1361       break;
1362     }
1363 #endif /* SQLITE_OMIT_CTE */
1364 
1365 
1366 
1367 #if !defined(SQLITE_OMIT_TRIGGER)
1368     /* Discard the results.  This is used for SELECT statements inside
1369     ** the body of a TRIGGER.  The purpose of such selects is to call
1370     ** user-defined functions that have side effects.  We do not care
1371     ** about the actual results of the select.
1372     */
1373     default: {
1374       assert( eDest==SRT_Discard );
1375       break;
1376     }
1377 #endif
1378   }
1379 
1380   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1381   ** there is a sorter, in which case the sorter has already limited
1382   ** the output for us.
1383   */
1384   if( pSort==0 && p->iLimit ){
1385     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1386   }
1387 }
1388 
1389 /*
1390 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1391 ** X extra columns.
1392 */
1393 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1394   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1395   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1396   if( p ){
1397     p->aSortFlags = (u8*)&p->aColl[N+X];
1398     p->nKeyField = (u16)N;
1399     p->nAllField = (u16)(N+X);
1400     p->enc = ENC(db);
1401     p->db = db;
1402     p->nRef = 1;
1403     memset(&p[1], 0, nExtra);
1404   }else{
1405     sqlite3OomFault(db);
1406   }
1407   return p;
1408 }
1409 
1410 /*
1411 ** Deallocate a KeyInfo object
1412 */
1413 void sqlite3KeyInfoUnref(KeyInfo *p){
1414   if( p ){
1415     assert( p->nRef>0 );
1416     p->nRef--;
1417     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1418   }
1419 }
1420 
1421 /*
1422 ** Make a new pointer to a KeyInfo object
1423 */
1424 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1425   if( p ){
1426     assert( p->nRef>0 );
1427     p->nRef++;
1428   }
1429   return p;
1430 }
1431 
1432 #ifdef SQLITE_DEBUG
1433 /*
1434 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1435 ** can only be changed if this is just a single reference to the object.
1436 **
1437 ** This routine is used only inside of assert() statements.
1438 */
1439 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1440 #endif /* SQLITE_DEBUG */
1441 
1442 /*
1443 ** Given an expression list, generate a KeyInfo structure that records
1444 ** the collating sequence for each expression in that expression list.
1445 **
1446 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1447 ** KeyInfo structure is appropriate for initializing a virtual index to
1448 ** implement that clause.  If the ExprList is the result set of a SELECT
1449 ** then the KeyInfo structure is appropriate for initializing a virtual
1450 ** index to implement a DISTINCT test.
1451 **
1452 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1453 ** function is responsible for seeing that this structure is eventually
1454 ** freed.
1455 */
1456 KeyInfo *sqlite3KeyInfoFromExprList(
1457   Parse *pParse,       /* Parsing context */
1458   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1459   int iStart,          /* Begin with this column of pList */
1460   int nExtra           /* Add this many extra columns to the end */
1461 ){
1462   int nExpr;
1463   KeyInfo *pInfo;
1464   struct ExprList_item *pItem;
1465   sqlite3 *db = pParse->db;
1466   int i;
1467 
1468   nExpr = pList->nExpr;
1469   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1470   if( pInfo ){
1471     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1472     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1473       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1474       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1475     }
1476   }
1477   return pInfo;
1478 }
1479 
1480 /*
1481 ** Name of the connection operator, used for error messages.
1482 */
1483 const char *sqlite3SelectOpName(int id){
1484   char *z;
1485   switch( id ){
1486     case TK_ALL:       z = "UNION ALL";   break;
1487     case TK_INTERSECT: z = "INTERSECT";   break;
1488     case TK_EXCEPT:    z = "EXCEPT";      break;
1489     default:           z = "UNION";       break;
1490   }
1491   return z;
1492 }
1493 
1494 #ifndef SQLITE_OMIT_EXPLAIN
1495 /*
1496 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1497 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1498 ** where the caption is of the form:
1499 **
1500 **   "USE TEMP B-TREE FOR xxx"
1501 **
1502 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1503 ** is determined by the zUsage argument.
1504 */
1505 static void explainTempTable(Parse *pParse, const char *zUsage){
1506   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1507 }
1508 
1509 /*
1510 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1511 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1512 ** in sqlite3Select() to assign values to structure member variables that
1513 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1514 ** code with #ifndef directives.
1515 */
1516 # define explainSetInteger(a, b) a = b
1517 
1518 #else
1519 /* No-op versions of the explainXXX() functions and macros. */
1520 # define explainTempTable(y,z)
1521 # define explainSetInteger(y,z)
1522 #endif
1523 
1524 
1525 /*
1526 ** If the inner loop was generated using a non-null pOrderBy argument,
1527 ** then the results were placed in a sorter.  After the loop is terminated
1528 ** we need to run the sorter and output the results.  The following
1529 ** routine generates the code needed to do that.
1530 */
1531 static void generateSortTail(
1532   Parse *pParse,    /* Parsing context */
1533   Select *p,        /* The SELECT statement */
1534   SortCtx *pSort,   /* Information on the ORDER BY clause */
1535   int nColumn,      /* Number of columns of data */
1536   SelectDest *pDest /* Write the sorted results here */
1537 ){
1538   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1539   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1540   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1541   int addr;                       /* Top of output loop. Jump for Next. */
1542   int addrOnce = 0;
1543   int iTab;
1544   ExprList *pOrderBy = pSort->pOrderBy;
1545   int eDest = pDest->eDest;
1546   int iParm = pDest->iSDParm;
1547   int regRow;
1548   int regRowid;
1549   int iCol;
1550   int nKey;                       /* Number of key columns in sorter record */
1551   int iSortTab;                   /* Sorter cursor to read from */
1552   int i;
1553   int bSeq;                       /* True if sorter record includes seq. no. */
1554   int nRefKey = 0;
1555   struct ExprList_item *aOutEx = p->pEList->a;
1556 
1557   assert( addrBreak<0 );
1558   if( pSort->labelBkOut ){
1559     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1560     sqlite3VdbeGoto(v, addrBreak);
1561     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1562   }
1563 
1564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1565   /* Open any cursors needed for sorter-reference expressions */
1566   for(i=0; i<pSort->nDefer; i++){
1567     Table *pTab = pSort->aDefer[i].pTab;
1568     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1569     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1570     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1571   }
1572 #endif
1573 
1574   iTab = pSort->iECursor;
1575   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1576     regRowid = 0;
1577     regRow = pDest->iSdst;
1578   }else{
1579     regRowid = sqlite3GetTempReg(pParse);
1580     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1581       regRow = sqlite3GetTempReg(pParse);
1582       nColumn = 0;
1583     }else{
1584       regRow = sqlite3GetTempRange(pParse, nColumn);
1585     }
1586   }
1587   nKey = pOrderBy->nExpr - pSort->nOBSat;
1588   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1589     int regSortOut = ++pParse->nMem;
1590     iSortTab = pParse->nTab++;
1591     if( pSort->labelBkOut ){
1592       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1593     }
1594     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1595         nKey+1+nColumn+nRefKey);
1596     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1597     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1598     VdbeCoverage(v);
1599     codeOffset(v, p->iOffset, addrContinue);
1600     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1601     bSeq = 0;
1602   }else{
1603     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1604     codeOffset(v, p->iOffset, addrContinue);
1605     iSortTab = iTab;
1606     bSeq = 1;
1607   }
1608   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1609 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1610     if( aOutEx[i].bSorterRef ) continue;
1611 #endif
1612     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1613   }
1614 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1615   if( pSort->nDefer ){
1616     int iKey = iCol+1;
1617     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1618 
1619     for(i=0; i<pSort->nDefer; i++){
1620       int iCsr = pSort->aDefer[i].iCsr;
1621       Table *pTab = pSort->aDefer[i].pTab;
1622       int nKey = pSort->aDefer[i].nKey;
1623 
1624       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1625       if( HasRowid(pTab) ){
1626         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1627         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1628             sqlite3VdbeCurrentAddr(v)+1, regKey);
1629       }else{
1630         int k;
1631         int iJmp;
1632         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1633         for(k=0; k<nKey; k++){
1634           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1635         }
1636         iJmp = sqlite3VdbeCurrentAddr(v);
1637         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1638         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1639         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1640       }
1641     }
1642     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1643   }
1644 #endif
1645   for(i=nColumn-1; i>=0; i--){
1646 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1647     if( aOutEx[i].bSorterRef ){
1648       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1649     }else
1650 #endif
1651     {
1652       int iRead;
1653       if( aOutEx[i].u.x.iOrderByCol ){
1654         iRead = aOutEx[i].u.x.iOrderByCol-1;
1655       }else{
1656         iRead = iCol--;
1657       }
1658       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1659       VdbeComment((v, "%s", aOutEx[i].zEName));
1660     }
1661   }
1662   switch( eDest ){
1663     case SRT_Table:
1664     case SRT_EphemTab: {
1665       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1666       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1667       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1668       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1669       break;
1670     }
1671 #ifndef SQLITE_OMIT_SUBQUERY
1672     case SRT_Set: {
1673       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1674       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1675                         pDest->zAffSdst, nColumn);
1676       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1677       break;
1678     }
1679     case SRT_Mem: {
1680       /* The LIMIT clause will terminate the loop for us */
1681       break;
1682     }
1683 #endif
1684     case SRT_Upfrom: {
1685       int i2 = pDest->iSDParm2;
1686       int r1 = sqlite3GetTempReg(pParse);
1687       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1688       if( i2<0 ){
1689         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1690       }else{
1691         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1692       }
1693       break;
1694     }
1695     default: {
1696       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1697       testcase( eDest==SRT_Output );
1698       testcase( eDest==SRT_Coroutine );
1699       if( eDest==SRT_Output ){
1700         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1701       }else{
1702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1703       }
1704       break;
1705     }
1706   }
1707   if( regRowid ){
1708     if( eDest==SRT_Set ){
1709       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1710     }else{
1711       sqlite3ReleaseTempReg(pParse, regRow);
1712     }
1713     sqlite3ReleaseTempReg(pParse, regRowid);
1714   }
1715   /* The bottom of the loop
1716   */
1717   sqlite3VdbeResolveLabel(v, addrContinue);
1718   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1719     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1720   }else{
1721     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1722   }
1723   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1724   sqlite3VdbeResolveLabel(v, addrBreak);
1725 }
1726 
1727 /*
1728 ** Return a pointer to a string containing the 'declaration type' of the
1729 ** expression pExpr. The string may be treated as static by the caller.
1730 **
1731 ** Also try to estimate the size of the returned value and return that
1732 ** result in *pEstWidth.
1733 **
1734 ** The declaration type is the exact datatype definition extracted from the
1735 ** original CREATE TABLE statement if the expression is a column. The
1736 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1737 ** is considered a column can be complex in the presence of subqueries. The
1738 ** result-set expression in all of the following SELECT statements is
1739 ** considered a column by this function.
1740 **
1741 **   SELECT col FROM tbl;
1742 **   SELECT (SELECT col FROM tbl;
1743 **   SELECT (SELECT col FROM tbl);
1744 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1745 **
1746 ** The declaration type for any expression other than a column is NULL.
1747 **
1748 ** This routine has either 3 or 6 parameters depending on whether or not
1749 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1750 */
1751 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1752 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1753 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1754 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1755 #endif
1756 static const char *columnTypeImpl(
1757   NameContext *pNC,
1758 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1759   Expr *pExpr
1760 #else
1761   Expr *pExpr,
1762   const char **pzOrigDb,
1763   const char **pzOrigTab,
1764   const char **pzOrigCol
1765 #endif
1766 ){
1767   char const *zType = 0;
1768   int j;
1769 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1770   char const *zOrigDb = 0;
1771   char const *zOrigTab = 0;
1772   char const *zOrigCol = 0;
1773 #endif
1774 
1775   assert( pExpr!=0 );
1776   assert( pNC->pSrcList!=0 );
1777   switch( pExpr->op ){
1778     case TK_COLUMN: {
1779       /* The expression is a column. Locate the table the column is being
1780       ** extracted from in NameContext.pSrcList. This table may be real
1781       ** database table or a subquery.
1782       */
1783       Table *pTab = 0;            /* Table structure column is extracted from */
1784       Select *pS = 0;             /* Select the column is extracted from */
1785       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1786       while( pNC && !pTab ){
1787         SrcList *pTabList = pNC->pSrcList;
1788         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1789         if( j<pTabList->nSrc ){
1790           pTab = pTabList->a[j].pTab;
1791           pS = pTabList->a[j].pSelect;
1792         }else{
1793           pNC = pNC->pNext;
1794         }
1795       }
1796 
1797       if( pTab==0 ){
1798         /* At one time, code such as "SELECT new.x" within a trigger would
1799         ** cause this condition to run.  Since then, we have restructured how
1800         ** trigger code is generated and so this condition is no longer
1801         ** possible. However, it can still be true for statements like
1802         ** the following:
1803         **
1804         **   CREATE TABLE t1(col INTEGER);
1805         **   SELECT (SELECT t1.col) FROM FROM t1;
1806         **
1807         ** when columnType() is called on the expression "t1.col" in the
1808         ** sub-select. In this case, set the column type to NULL, even
1809         ** though it should really be "INTEGER".
1810         **
1811         ** This is not a problem, as the column type of "t1.col" is never
1812         ** used. When columnType() is called on the expression
1813         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1814         ** branch below.  */
1815         break;
1816       }
1817 
1818       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1819       if( pS ){
1820         /* The "table" is actually a sub-select or a view in the FROM clause
1821         ** of the SELECT statement. Return the declaration type and origin
1822         ** data for the result-set column of the sub-select.
1823         */
1824         if( iCol<pS->pEList->nExpr
1825 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1826          && iCol>=0
1827 #else
1828          && ALWAYS(iCol>=0)
1829 #endif
1830         ){
1831           /* If iCol is less than zero, then the expression requests the
1832           ** rowid of the sub-select or view. This expression is legal (see
1833           ** test case misc2.2.2) - it always evaluates to NULL.
1834           */
1835           NameContext sNC;
1836           Expr *p = pS->pEList->a[iCol].pExpr;
1837           sNC.pSrcList = pS->pSrc;
1838           sNC.pNext = pNC;
1839           sNC.pParse = pNC->pParse;
1840           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1841         }
1842       }else{
1843         /* A real table or a CTE table */
1844         assert( !pS );
1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1846         if( iCol<0 ) iCol = pTab->iPKey;
1847         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1848         if( iCol<0 ){
1849           zType = "INTEGER";
1850           zOrigCol = "rowid";
1851         }else{
1852           zOrigCol = pTab->aCol[iCol].zCnName;
1853           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1854         }
1855         zOrigTab = pTab->zName;
1856         if( pNC->pParse && pTab->pSchema ){
1857           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1858           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1859         }
1860 #else
1861         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1862         if( iCol<0 ){
1863           zType = "INTEGER";
1864         }else{
1865           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1866         }
1867 #endif
1868       }
1869       break;
1870     }
1871 #ifndef SQLITE_OMIT_SUBQUERY
1872     case TK_SELECT: {
1873       /* The expression is a sub-select. Return the declaration type and
1874       ** origin info for the single column in the result set of the SELECT
1875       ** statement.
1876       */
1877       NameContext sNC;
1878       Select *pS;
1879       Expr *p;
1880       assert( ExprUseXSelect(pExpr) );
1881       pS = pExpr->x.pSelect;
1882       p = pS->pEList->a[0].pExpr;
1883       sNC.pSrcList = pS->pSrc;
1884       sNC.pNext = pNC;
1885       sNC.pParse = pNC->pParse;
1886       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1887       break;
1888     }
1889 #endif
1890   }
1891 
1892 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1893   if( pzOrigDb ){
1894     assert( pzOrigTab && pzOrigCol );
1895     *pzOrigDb = zOrigDb;
1896     *pzOrigTab = zOrigTab;
1897     *pzOrigCol = zOrigCol;
1898   }
1899 #endif
1900   return zType;
1901 }
1902 
1903 /*
1904 ** Generate code that will tell the VDBE the declaration types of columns
1905 ** in the result set.
1906 */
1907 static void generateColumnTypes(
1908   Parse *pParse,      /* Parser context */
1909   SrcList *pTabList,  /* List of tables */
1910   ExprList *pEList    /* Expressions defining the result set */
1911 ){
1912 #ifndef SQLITE_OMIT_DECLTYPE
1913   Vdbe *v = pParse->pVdbe;
1914   int i;
1915   NameContext sNC;
1916   sNC.pSrcList = pTabList;
1917   sNC.pParse = pParse;
1918   sNC.pNext = 0;
1919   for(i=0; i<pEList->nExpr; i++){
1920     Expr *p = pEList->a[i].pExpr;
1921     const char *zType;
1922 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1923     const char *zOrigDb = 0;
1924     const char *zOrigTab = 0;
1925     const char *zOrigCol = 0;
1926     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1927 
1928     /* The vdbe must make its own copy of the column-type and other
1929     ** column specific strings, in case the schema is reset before this
1930     ** virtual machine is deleted.
1931     */
1932     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1933     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1934     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1935 #else
1936     zType = columnType(&sNC, p, 0, 0, 0);
1937 #endif
1938     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1939   }
1940 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1941 }
1942 
1943 
1944 /*
1945 ** Compute the column names for a SELECT statement.
1946 **
1947 ** The only guarantee that SQLite makes about column names is that if the
1948 ** column has an AS clause assigning it a name, that will be the name used.
1949 ** That is the only documented guarantee.  However, countless applications
1950 ** developed over the years have made baseless assumptions about column names
1951 ** and will break if those assumptions changes.  Hence, use extreme caution
1952 ** when modifying this routine to avoid breaking legacy.
1953 **
1954 ** See Also: sqlite3ColumnsFromExprList()
1955 **
1956 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1957 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1958 ** applications should operate this way.  Nevertheless, we need to support the
1959 ** other modes for legacy:
1960 **
1961 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1962 **                              originally appears in the SELECT statement.  In
1963 **                              other words, the zSpan of the result expression.
1964 **
1965 **    short=ON, full=OFF:       (This is the default setting).  If the result
1966 **                              refers directly to a table column, then the
1967 **                              result column name is just the table column
1968 **                              name: COLUMN.  Otherwise use zSpan.
1969 **
1970 **    full=ON, short=ANY:       If the result refers directly to a table column,
1971 **                              then the result column name with the table name
1972 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1973 */
1974 void sqlite3GenerateColumnNames(
1975   Parse *pParse,      /* Parser context */
1976   Select *pSelect     /* Generate column names for this SELECT statement */
1977 ){
1978   Vdbe *v = pParse->pVdbe;
1979   int i;
1980   Table *pTab;
1981   SrcList *pTabList;
1982   ExprList *pEList;
1983   sqlite3 *db = pParse->db;
1984   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1985   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1986 
1987 #ifndef SQLITE_OMIT_EXPLAIN
1988   /* If this is an EXPLAIN, skip this step */
1989   if( pParse->explain ){
1990     return;
1991   }
1992 #endif
1993 
1994   if( pParse->colNamesSet ) return;
1995   /* Column names are determined by the left-most term of a compound select */
1996   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1997   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1998   pTabList = pSelect->pSrc;
1999   pEList = pSelect->pEList;
2000   assert( v!=0 );
2001   assert( pTabList!=0 );
2002   pParse->colNamesSet = 1;
2003   fullName = (db->flags & SQLITE_FullColNames)!=0;
2004   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2005   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2006   for(i=0; i<pEList->nExpr; i++){
2007     Expr *p = pEList->a[i].pExpr;
2008 
2009     assert( p!=0 );
2010     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2011     assert( p->op!=TK_COLUMN
2012         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2013     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2014       /* An AS clause always takes first priority */
2015       char *zName = pEList->a[i].zEName;
2016       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2017     }else if( srcName && p->op==TK_COLUMN ){
2018       char *zCol;
2019       int iCol = p->iColumn;
2020       pTab = p->y.pTab;
2021       assert( pTab!=0 );
2022       if( iCol<0 ) iCol = pTab->iPKey;
2023       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2024       if( iCol<0 ){
2025         zCol = "rowid";
2026       }else{
2027         zCol = pTab->aCol[iCol].zCnName;
2028       }
2029       if( fullName ){
2030         char *zName = 0;
2031         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2032         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2033       }else{
2034         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2035       }
2036     }else{
2037       const char *z = pEList->a[i].zEName;
2038       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2039       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2040     }
2041   }
2042   generateColumnTypes(pParse, pTabList, pEList);
2043 }
2044 
2045 /*
2046 ** Given an expression list (which is really the list of expressions
2047 ** that form the result set of a SELECT statement) compute appropriate
2048 ** column names for a table that would hold the expression list.
2049 **
2050 ** All column names will be unique.
2051 **
2052 ** Only the column names are computed.  Column.zType, Column.zColl,
2053 ** and other fields of Column are zeroed.
2054 **
2055 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2056 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2057 **
2058 ** The only guarantee that SQLite makes about column names is that if the
2059 ** column has an AS clause assigning it a name, that will be the name used.
2060 ** That is the only documented guarantee.  However, countless applications
2061 ** developed over the years have made baseless assumptions about column names
2062 ** and will break if those assumptions changes.  Hence, use extreme caution
2063 ** when modifying this routine to avoid breaking legacy.
2064 **
2065 ** See Also: sqlite3GenerateColumnNames()
2066 */
2067 int sqlite3ColumnsFromExprList(
2068   Parse *pParse,          /* Parsing context */
2069   ExprList *pEList,       /* Expr list from which to derive column names */
2070   i16 *pnCol,             /* Write the number of columns here */
2071   Column **paCol          /* Write the new column list here */
2072 ){
2073   sqlite3 *db = pParse->db;   /* Database connection */
2074   int i, j;                   /* Loop counters */
2075   u32 cnt;                    /* Index added to make the name unique */
2076   Column *aCol, *pCol;        /* For looping over result columns */
2077   int nCol;                   /* Number of columns in the result set */
2078   char *zName;                /* Column name */
2079   int nName;                  /* Size of name in zName[] */
2080   Hash ht;                    /* Hash table of column names */
2081   Table *pTab;
2082 
2083   sqlite3HashInit(&ht);
2084   if( pEList ){
2085     nCol = pEList->nExpr;
2086     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2087     testcase( aCol==0 );
2088     if( NEVER(nCol>32767) ) nCol = 32767;
2089   }else{
2090     nCol = 0;
2091     aCol = 0;
2092   }
2093   assert( nCol==(i16)nCol );
2094   *pnCol = nCol;
2095   *paCol = aCol;
2096 
2097   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2098     /* Get an appropriate name for the column
2099     */
2100     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2101       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2102     }else{
2103       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2104       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2105         pColExpr = pColExpr->pRight;
2106         assert( pColExpr!=0 );
2107       }
2108       if( pColExpr->op==TK_COLUMN
2109        && ALWAYS( ExprUseYTab(pColExpr) )
2110        && (pTab = pColExpr->y.pTab)!=0
2111       ){
2112         /* For columns use the column name name */
2113         int iCol = pColExpr->iColumn;
2114         if( iCol<0 ) iCol = pTab->iPKey;
2115         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2116       }else if( pColExpr->op==TK_ID ){
2117         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2118         zName = pColExpr->u.zToken;
2119       }else{
2120         /* Use the original text of the column expression as its name */
2121         zName = pEList->a[i].zEName;
2122       }
2123     }
2124     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2125       zName = sqlite3DbStrDup(db, zName);
2126     }else{
2127       zName = sqlite3MPrintf(db,"column%d",i+1);
2128     }
2129 
2130     /* Make sure the column name is unique.  If the name is not unique,
2131     ** append an integer to the name so that it becomes unique.
2132     */
2133     cnt = 0;
2134     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2135       nName = sqlite3Strlen30(zName);
2136       if( nName>0 ){
2137         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2138         if( zName[j]==':' ) nName = j;
2139       }
2140       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2141       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2142     }
2143     pCol->zCnName = zName;
2144     pCol->hName = sqlite3StrIHash(zName);
2145     sqlite3ColumnPropertiesFromName(0, pCol);
2146     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2147       sqlite3OomFault(db);
2148     }
2149   }
2150   sqlite3HashClear(&ht);
2151   if( db->mallocFailed ){
2152     for(j=0; j<i; j++){
2153       sqlite3DbFree(db, aCol[j].zCnName);
2154     }
2155     sqlite3DbFree(db, aCol);
2156     *paCol = 0;
2157     *pnCol = 0;
2158     return SQLITE_NOMEM_BKPT;
2159   }
2160   return SQLITE_OK;
2161 }
2162 
2163 /*
2164 ** Add type and collation information to a column list based on
2165 ** a SELECT statement.
2166 **
2167 ** The column list presumably came from selectColumnNamesFromExprList().
2168 ** The column list has only names, not types or collations.  This
2169 ** routine goes through and adds the types and collations.
2170 **
2171 ** This routine requires that all identifiers in the SELECT
2172 ** statement be resolved.
2173 */
2174 void sqlite3SelectAddColumnTypeAndCollation(
2175   Parse *pParse,        /* Parsing contexts */
2176   Table *pTab,          /* Add column type information to this table */
2177   Select *pSelect,      /* SELECT used to determine types and collations */
2178   char aff              /* Default affinity for columns */
2179 ){
2180   sqlite3 *db = pParse->db;
2181   NameContext sNC;
2182   Column *pCol;
2183   CollSeq *pColl;
2184   int i;
2185   Expr *p;
2186   struct ExprList_item *a;
2187 
2188   assert( pSelect!=0 );
2189   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2190   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2191   if( db->mallocFailed ) return;
2192   memset(&sNC, 0, sizeof(sNC));
2193   sNC.pSrcList = pSelect->pSrc;
2194   a = pSelect->pEList->a;
2195   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2196     const char *zType;
2197     int n, m;
2198     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2199     p = a[i].pExpr;
2200     zType = columnType(&sNC, p, 0, 0, 0);
2201     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2202     pCol->affinity = sqlite3ExprAffinity(p);
2203     if( zType ){
2204       m = sqlite3Strlen30(zType);
2205       n = sqlite3Strlen30(pCol->zCnName);
2206       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2207       if( pCol->zCnName ){
2208         memcpy(&pCol->zCnName[n+1], zType, m+1);
2209         pCol->colFlags |= COLFLAG_HASTYPE;
2210       }
2211     }
2212     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2213     pColl = sqlite3ExprCollSeq(pParse, p);
2214     if( pColl ){
2215       assert( pTab->pIndex==0 );
2216       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2217     }
2218   }
2219   pTab->szTabRow = 1; /* Any non-zero value works */
2220 }
2221 
2222 /*
2223 ** Given a SELECT statement, generate a Table structure that describes
2224 ** the result set of that SELECT.
2225 */
2226 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2227   Table *pTab;
2228   sqlite3 *db = pParse->db;
2229   u64 savedFlags;
2230 
2231   savedFlags = db->flags;
2232   db->flags &= ~(u64)SQLITE_FullColNames;
2233   db->flags |= SQLITE_ShortColNames;
2234   sqlite3SelectPrep(pParse, pSelect, 0);
2235   db->flags = savedFlags;
2236   if( pParse->nErr ) return 0;
2237   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2238   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2239   if( pTab==0 ){
2240     return 0;
2241   }
2242   pTab->nTabRef = 1;
2243   pTab->zName = 0;
2244   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2245   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2246   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2247   pTab->iPKey = -1;
2248   if( db->mallocFailed ){
2249     sqlite3DeleteTable(db, pTab);
2250     return 0;
2251   }
2252   return pTab;
2253 }
2254 
2255 /*
2256 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2257 ** If an error occurs, return NULL and leave a message in pParse.
2258 */
2259 Vdbe *sqlite3GetVdbe(Parse *pParse){
2260   if( pParse->pVdbe ){
2261     return pParse->pVdbe;
2262   }
2263   if( pParse->pToplevel==0
2264    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2265   ){
2266     pParse->okConstFactor = 1;
2267   }
2268   return sqlite3VdbeCreate(pParse);
2269 }
2270 
2271 
2272 /*
2273 ** Compute the iLimit and iOffset fields of the SELECT based on the
2274 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2275 ** that appear in the original SQL statement after the LIMIT and OFFSET
2276 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2277 ** are the integer memory register numbers for counters used to compute
2278 ** the limit and offset.  If there is no limit and/or offset, then
2279 ** iLimit and iOffset are negative.
2280 **
2281 ** This routine changes the values of iLimit and iOffset only if
2282 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2283 ** and iOffset should have been preset to appropriate default values (zero)
2284 ** prior to calling this routine.
2285 **
2286 ** The iOffset register (if it exists) is initialized to the value
2287 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2288 ** iOffset+1 is initialized to LIMIT+OFFSET.
2289 **
2290 ** Only if pLimit->pLeft!=0 do the limit registers get
2291 ** redefined.  The UNION ALL operator uses this property to force
2292 ** the reuse of the same limit and offset registers across multiple
2293 ** SELECT statements.
2294 */
2295 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2296   Vdbe *v = 0;
2297   int iLimit = 0;
2298   int iOffset;
2299   int n;
2300   Expr *pLimit = p->pLimit;
2301 
2302   if( p->iLimit ) return;
2303 
2304   /*
2305   ** "LIMIT -1" always shows all rows.  There is some
2306   ** controversy about what the correct behavior should be.
2307   ** The current implementation interprets "LIMIT 0" to mean
2308   ** no rows.
2309   */
2310   if( pLimit ){
2311     assert( pLimit->op==TK_LIMIT );
2312     assert( pLimit->pLeft!=0 );
2313     p->iLimit = iLimit = ++pParse->nMem;
2314     v = sqlite3GetVdbe(pParse);
2315     assert( v!=0 );
2316     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2317       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2318       VdbeComment((v, "LIMIT counter"));
2319       if( n==0 ){
2320         sqlite3VdbeGoto(v, iBreak);
2321       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2322         p->nSelectRow = sqlite3LogEst((u64)n);
2323         p->selFlags |= SF_FixedLimit;
2324       }
2325     }else{
2326       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2327       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2328       VdbeComment((v, "LIMIT counter"));
2329       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2330     }
2331     if( pLimit->pRight ){
2332       p->iOffset = iOffset = ++pParse->nMem;
2333       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2334       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2335       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2336       VdbeComment((v, "OFFSET counter"));
2337       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2338       VdbeComment((v, "LIMIT+OFFSET"));
2339     }
2340   }
2341 }
2342 
2343 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2344 /*
2345 ** Return the appropriate collating sequence for the iCol-th column of
2346 ** the result set for the compound-select statement "p".  Return NULL if
2347 ** the column has no default collating sequence.
2348 **
2349 ** The collating sequence for the compound select is taken from the
2350 ** left-most term of the select that has a collating sequence.
2351 */
2352 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2353   CollSeq *pRet;
2354   if( p->pPrior ){
2355     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2356   }else{
2357     pRet = 0;
2358   }
2359   assert( iCol>=0 );
2360   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2361   ** have been thrown during name resolution and we would not have gotten
2362   ** this far */
2363   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2364     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2365   }
2366   return pRet;
2367 }
2368 
2369 /*
2370 ** The select statement passed as the second parameter is a compound SELECT
2371 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2372 ** structure suitable for implementing the ORDER BY.
2373 **
2374 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2375 ** function is responsible for ensuring that this structure is eventually
2376 ** freed.
2377 */
2378 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2379   ExprList *pOrderBy = p->pOrderBy;
2380   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2381   sqlite3 *db = pParse->db;
2382   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2383   if( pRet ){
2384     int i;
2385     for(i=0; i<nOrderBy; i++){
2386       struct ExprList_item *pItem = &pOrderBy->a[i];
2387       Expr *pTerm = pItem->pExpr;
2388       CollSeq *pColl;
2389 
2390       if( pTerm->flags & EP_Collate ){
2391         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2392       }else{
2393         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2394         if( pColl==0 ) pColl = db->pDfltColl;
2395         pOrderBy->a[i].pExpr =
2396           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2397       }
2398       assert( sqlite3KeyInfoIsWriteable(pRet) );
2399       pRet->aColl[i] = pColl;
2400       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2401     }
2402   }
2403 
2404   return pRet;
2405 }
2406 
2407 #ifndef SQLITE_OMIT_CTE
2408 /*
2409 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2410 ** query of the form:
2411 **
2412 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2413 **                         \___________/             \_______________/
2414 **                           p->pPrior                      p
2415 **
2416 **
2417 ** There is exactly one reference to the recursive-table in the FROM clause
2418 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2419 **
2420 ** The setup-query runs once to generate an initial set of rows that go
2421 ** into a Queue table.  Rows are extracted from the Queue table one by
2422 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2423 ** extracted row (now in the iCurrent table) becomes the content of the
2424 ** recursive-table for a recursive-query run.  The output of the recursive-query
2425 ** is added back into the Queue table.  Then another row is extracted from Queue
2426 ** and the iteration continues until the Queue table is empty.
2427 **
2428 ** If the compound query operator is UNION then no duplicate rows are ever
2429 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2430 ** that have ever been inserted into Queue and causes duplicates to be
2431 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2432 **
2433 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2434 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2435 ** an ORDER BY, the Queue table is just a FIFO.
2436 **
2437 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2438 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2439 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2440 ** with a positive value, then the first OFFSET outputs are discarded rather
2441 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2442 ** rows have been skipped.
2443 */
2444 static void generateWithRecursiveQuery(
2445   Parse *pParse,        /* Parsing context */
2446   Select *p,            /* The recursive SELECT to be coded */
2447   SelectDest *pDest     /* What to do with query results */
2448 ){
2449   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2450   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2451   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2452   Select *pSetup;               /* The setup query */
2453   Select *pFirstRec;            /* Left-most recursive term */
2454   int addrTop;                  /* Top of the loop */
2455   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2456   int iCurrent = 0;             /* The Current table */
2457   int regCurrent;               /* Register holding Current table */
2458   int iQueue;                   /* The Queue table */
2459   int iDistinct = 0;            /* To ensure unique results if UNION */
2460   int eDest = SRT_Fifo;         /* How to write to Queue */
2461   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2462   int i;                        /* Loop counter */
2463   int rc;                       /* Result code */
2464   ExprList *pOrderBy;           /* The ORDER BY clause */
2465   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2466   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2467 
2468 #ifndef SQLITE_OMIT_WINDOWFUNC
2469   if( p->pWin ){
2470     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2471     return;
2472   }
2473 #endif
2474 
2475   /* Obtain authorization to do a recursive query */
2476   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2477 
2478   /* Process the LIMIT and OFFSET clauses, if they exist */
2479   addrBreak = sqlite3VdbeMakeLabel(pParse);
2480   p->nSelectRow = 320;  /* 4 billion rows */
2481   computeLimitRegisters(pParse, p, addrBreak);
2482   pLimit = p->pLimit;
2483   regLimit = p->iLimit;
2484   regOffset = p->iOffset;
2485   p->pLimit = 0;
2486   p->iLimit = p->iOffset = 0;
2487   pOrderBy = p->pOrderBy;
2488 
2489   /* Locate the cursor number of the Current table */
2490   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2491     if( pSrc->a[i].fg.isRecursive ){
2492       iCurrent = pSrc->a[i].iCursor;
2493       break;
2494     }
2495   }
2496 
2497   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2498   ** the Distinct table must be exactly one greater than Queue in order
2499   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2500   iQueue = pParse->nTab++;
2501   if( p->op==TK_UNION ){
2502     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2503     iDistinct = pParse->nTab++;
2504   }else{
2505     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2506   }
2507   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2508 
2509   /* Allocate cursors for Current, Queue, and Distinct. */
2510   regCurrent = ++pParse->nMem;
2511   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2512   if( pOrderBy ){
2513     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2514     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2515                       (char*)pKeyInfo, P4_KEYINFO);
2516     destQueue.pOrderBy = pOrderBy;
2517   }else{
2518     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2519   }
2520   VdbeComment((v, "Queue table"));
2521   if( iDistinct ){
2522     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2523     p->selFlags |= SF_UsesEphemeral;
2524   }
2525 
2526   /* Detach the ORDER BY clause from the compound SELECT */
2527   p->pOrderBy = 0;
2528 
2529   /* Figure out how many elements of the compound SELECT are part of the
2530   ** recursive query.  Make sure no recursive elements use aggregate
2531   ** functions.  Mark the recursive elements as UNION ALL even if they
2532   ** are really UNION because the distinctness will be enforced by the
2533   ** iDistinct table.  pFirstRec is left pointing to the left-most
2534   ** recursive term of the CTE.
2535   */
2536   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2537     if( pFirstRec->selFlags & SF_Aggregate ){
2538       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2539       goto end_of_recursive_query;
2540     }
2541     pFirstRec->op = TK_ALL;
2542     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2543   }
2544 
2545   /* Store the results of the setup-query in Queue. */
2546   pSetup = pFirstRec->pPrior;
2547   pSetup->pNext = 0;
2548   ExplainQueryPlan((pParse, 1, "SETUP"));
2549   rc = sqlite3Select(pParse, pSetup, &destQueue);
2550   pSetup->pNext = p;
2551   if( rc ) goto end_of_recursive_query;
2552 
2553   /* Find the next row in the Queue and output that row */
2554   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2555 
2556   /* Transfer the next row in Queue over to Current */
2557   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2558   if( pOrderBy ){
2559     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2560   }else{
2561     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2562   }
2563   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2564 
2565   /* Output the single row in Current */
2566   addrCont = sqlite3VdbeMakeLabel(pParse);
2567   codeOffset(v, regOffset, addrCont);
2568   selectInnerLoop(pParse, p, iCurrent,
2569       0, 0, pDest, addrCont, addrBreak);
2570   if( regLimit ){
2571     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2572     VdbeCoverage(v);
2573   }
2574   sqlite3VdbeResolveLabel(v, addrCont);
2575 
2576   /* Execute the recursive SELECT taking the single row in Current as
2577   ** the value for the recursive-table. Store the results in the Queue.
2578   */
2579   pFirstRec->pPrior = 0;
2580   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2581   sqlite3Select(pParse, p, &destQueue);
2582   assert( pFirstRec->pPrior==0 );
2583   pFirstRec->pPrior = pSetup;
2584 
2585   /* Keep running the loop until the Queue is empty */
2586   sqlite3VdbeGoto(v, addrTop);
2587   sqlite3VdbeResolveLabel(v, addrBreak);
2588 
2589 end_of_recursive_query:
2590   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2591   p->pOrderBy = pOrderBy;
2592   p->pLimit = pLimit;
2593   return;
2594 }
2595 #endif /* SQLITE_OMIT_CTE */
2596 
2597 /* Forward references */
2598 static int multiSelectOrderBy(
2599   Parse *pParse,        /* Parsing context */
2600   Select *p,            /* The right-most of SELECTs to be coded */
2601   SelectDest *pDest     /* What to do with query results */
2602 );
2603 
2604 /*
2605 ** Handle the special case of a compound-select that originates from a
2606 ** VALUES clause.  By handling this as a special case, we avoid deep
2607 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2608 ** on a VALUES clause.
2609 **
2610 ** Because the Select object originates from a VALUES clause:
2611 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2612 **   (2) All terms are UNION ALL
2613 **   (3) There is no ORDER BY clause
2614 **
2615 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2616 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2617 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2618 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2619 */
2620 static int multiSelectValues(
2621   Parse *pParse,        /* Parsing context */
2622   Select *p,            /* The right-most of SELECTs to be coded */
2623   SelectDest *pDest     /* What to do with query results */
2624 ){
2625   int nRow = 1;
2626   int rc = 0;
2627   int bShowAll = p->pLimit==0;
2628   assert( p->selFlags & SF_MultiValue );
2629   do{
2630     assert( p->selFlags & SF_Values );
2631     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2632     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2633 #ifndef SQLITE_OMIT_WINDOWFUNC
2634     if( p->pWin ) return -1;
2635 #endif
2636     if( p->pPrior==0 ) break;
2637     assert( p->pPrior->pNext==p );
2638     p = p->pPrior;
2639     nRow += bShowAll;
2640   }while(1);
2641   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2642                     nRow==1 ? "" : "S"));
2643   while( p ){
2644     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2645     if( !bShowAll ) break;
2646     p->nSelectRow = nRow;
2647     p = p->pNext;
2648   }
2649   return rc;
2650 }
2651 
2652 /*
2653 ** Return true if the SELECT statement which is known to be the recursive
2654 ** part of a recursive CTE still has its anchor terms attached.  If the
2655 ** anchor terms have already been removed, then return false.
2656 */
2657 static int hasAnchor(Select *p){
2658   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2659   return p!=0;
2660 }
2661 
2662 /*
2663 ** This routine is called to process a compound query form from
2664 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2665 ** INTERSECT
2666 **
2667 ** "p" points to the right-most of the two queries.  the query on the
2668 ** left is p->pPrior.  The left query could also be a compound query
2669 ** in which case this routine will be called recursively.
2670 **
2671 ** The results of the total query are to be written into a destination
2672 ** of type eDest with parameter iParm.
2673 **
2674 ** Example 1:  Consider a three-way compound SQL statement.
2675 **
2676 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2677 **
2678 ** This statement is parsed up as follows:
2679 **
2680 **     SELECT c FROM t3
2681 **      |
2682 **      `----->  SELECT b FROM t2
2683 **                |
2684 **                `------>  SELECT a FROM t1
2685 **
2686 ** The arrows in the diagram above represent the Select.pPrior pointer.
2687 ** So if this routine is called with p equal to the t3 query, then
2688 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2689 **
2690 ** Notice that because of the way SQLite parses compound SELECTs, the
2691 ** individual selects always group from left to right.
2692 */
2693 static int multiSelect(
2694   Parse *pParse,        /* Parsing context */
2695   Select *p,            /* The right-most of SELECTs to be coded */
2696   SelectDest *pDest     /* What to do with query results */
2697 ){
2698   int rc = SQLITE_OK;   /* Success code from a subroutine */
2699   Select *pPrior;       /* Another SELECT immediately to our left */
2700   Vdbe *v;              /* Generate code to this VDBE */
2701   SelectDest dest;      /* Alternative data destination */
2702   Select *pDelete = 0;  /* Chain of simple selects to delete */
2703   sqlite3 *db;          /* Database connection */
2704 
2705   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2706   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2707   */
2708   assert( p && p->pPrior );  /* Calling function guarantees this much */
2709   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2710   assert( p->selFlags & SF_Compound );
2711   db = pParse->db;
2712   pPrior = p->pPrior;
2713   dest = *pDest;
2714   assert( pPrior->pOrderBy==0 );
2715   assert( pPrior->pLimit==0 );
2716 
2717   v = sqlite3GetVdbe(pParse);
2718   assert( v!=0 );  /* The VDBE already created by calling function */
2719 
2720   /* Create the destination temporary table if necessary
2721   */
2722   if( dest.eDest==SRT_EphemTab ){
2723     assert( p->pEList );
2724     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2725     dest.eDest = SRT_Table;
2726   }
2727 
2728   /* Special handling for a compound-select that originates as a VALUES clause.
2729   */
2730   if( p->selFlags & SF_MultiValue ){
2731     rc = multiSelectValues(pParse, p, &dest);
2732     if( rc>=0 ) goto multi_select_end;
2733     rc = SQLITE_OK;
2734   }
2735 
2736   /* Make sure all SELECTs in the statement have the same number of elements
2737   ** in their result sets.
2738   */
2739   assert( p->pEList && pPrior->pEList );
2740   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2741 
2742 #ifndef SQLITE_OMIT_CTE
2743   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2744     generateWithRecursiveQuery(pParse, p, &dest);
2745   }else
2746 #endif
2747 
2748   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2749   */
2750   if( p->pOrderBy ){
2751     return multiSelectOrderBy(pParse, p, pDest);
2752   }else{
2753 
2754 #ifndef SQLITE_OMIT_EXPLAIN
2755     if( pPrior->pPrior==0 ){
2756       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2757       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2758     }
2759 #endif
2760 
2761     /* Generate code for the left and right SELECT statements.
2762     */
2763     switch( p->op ){
2764       case TK_ALL: {
2765         int addr = 0;
2766         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2767         assert( !pPrior->pLimit );
2768         pPrior->iLimit = p->iLimit;
2769         pPrior->iOffset = p->iOffset;
2770         pPrior->pLimit = p->pLimit;
2771         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2772         rc = sqlite3Select(pParse, pPrior, &dest);
2773         pPrior->pLimit = 0;
2774         if( rc ){
2775           goto multi_select_end;
2776         }
2777         p->pPrior = 0;
2778         p->iLimit = pPrior->iLimit;
2779         p->iOffset = pPrior->iOffset;
2780         if( p->iLimit ){
2781           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2782           VdbeComment((v, "Jump ahead if LIMIT reached"));
2783           if( p->iOffset ){
2784             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2785                               p->iLimit, p->iOffset+1, p->iOffset);
2786           }
2787         }
2788         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2789         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2790         rc = sqlite3Select(pParse, p, &dest);
2791         testcase( rc!=SQLITE_OK );
2792         pDelete = p->pPrior;
2793         p->pPrior = pPrior;
2794         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2795         if( p->pLimit
2796          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2797          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2798         ){
2799           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2800         }
2801         if( addr ){
2802           sqlite3VdbeJumpHere(v, addr);
2803         }
2804         break;
2805       }
2806       case TK_EXCEPT:
2807       case TK_UNION: {
2808         int unionTab;    /* Cursor number of the temp table holding result */
2809         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2810         int priorOp;     /* The SRT_ operation to apply to prior selects */
2811         Expr *pLimit;    /* Saved values of p->nLimit  */
2812         int addr;
2813         SelectDest uniondest;
2814 
2815         testcase( p->op==TK_EXCEPT );
2816         testcase( p->op==TK_UNION );
2817         priorOp = SRT_Union;
2818         if( dest.eDest==priorOp ){
2819           /* We can reuse a temporary table generated by a SELECT to our
2820           ** right.
2821           */
2822           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2823           unionTab = dest.iSDParm;
2824         }else{
2825           /* We will need to create our own temporary table to hold the
2826           ** intermediate results.
2827           */
2828           unionTab = pParse->nTab++;
2829           assert( p->pOrderBy==0 );
2830           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2831           assert( p->addrOpenEphm[0] == -1 );
2832           p->addrOpenEphm[0] = addr;
2833           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2834           assert( p->pEList );
2835         }
2836 
2837 
2838         /* Code the SELECT statements to our left
2839         */
2840         assert( !pPrior->pOrderBy );
2841         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2842         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2843         rc = sqlite3Select(pParse, pPrior, &uniondest);
2844         if( rc ){
2845           goto multi_select_end;
2846         }
2847 
2848         /* Code the current SELECT statement
2849         */
2850         if( p->op==TK_EXCEPT ){
2851           op = SRT_Except;
2852         }else{
2853           assert( p->op==TK_UNION );
2854           op = SRT_Union;
2855         }
2856         p->pPrior = 0;
2857         pLimit = p->pLimit;
2858         p->pLimit = 0;
2859         uniondest.eDest = op;
2860         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2861                           sqlite3SelectOpName(p->op)));
2862         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2863         rc = sqlite3Select(pParse, p, &uniondest);
2864         testcase( rc!=SQLITE_OK );
2865         assert( p->pOrderBy==0 );
2866         pDelete = p->pPrior;
2867         p->pPrior = pPrior;
2868         p->pOrderBy = 0;
2869         if( p->op==TK_UNION ){
2870           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2871         }
2872         sqlite3ExprDelete(db, p->pLimit);
2873         p->pLimit = pLimit;
2874         p->iLimit = 0;
2875         p->iOffset = 0;
2876 
2877         /* Convert the data in the temporary table into whatever form
2878         ** it is that we currently need.
2879         */
2880         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2881         assert( p->pEList || db->mallocFailed );
2882         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2883           int iCont, iBreak, iStart;
2884           iBreak = sqlite3VdbeMakeLabel(pParse);
2885           iCont = sqlite3VdbeMakeLabel(pParse);
2886           computeLimitRegisters(pParse, p, iBreak);
2887           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2888           iStart = sqlite3VdbeCurrentAddr(v);
2889           selectInnerLoop(pParse, p, unionTab,
2890                           0, 0, &dest, iCont, iBreak);
2891           sqlite3VdbeResolveLabel(v, iCont);
2892           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2893           sqlite3VdbeResolveLabel(v, iBreak);
2894           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2895         }
2896         break;
2897       }
2898       default: assert( p->op==TK_INTERSECT ); {
2899         int tab1, tab2;
2900         int iCont, iBreak, iStart;
2901         Expr *pLimit;
2902         int addr;
2903         SelectDest intersectdest;
2904         int r1;
2905 
2906         /* INTERSECT is different from the others since it requires
2907         ** two temporary tables.  Hence it has its own case.  Begin
2908         ** by allocating the tables we will need.
2909         */
2910         tab1 = pParse->nTab++;
2911         tab2 = pParse->nTab++;
2912         assert( p->pOrderBy==0 );
2913 
2914         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2915         assert( p->addrOpenEphm[0] == -1 );
2916         p->addrOpenEphm[0] = addr;
2917         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2918         assert( p->pEList );
2919 
2920         /* Code the SELECTs to our left into temporary table "tab1".
2921         */
2922         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2923         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2924         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2925         if( rc ){
2926           goto multi_select_end;
2927         }
2928 
2929         /* Code the current SELECT into temporary table "tab2"
2930         */
2931         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2932         assert( p->addrOpenEphm[1] == -1 );
2933         p->addrOpenEphm[1] = addr;
2934         p->pPrior = 0;
2935         pLimit = p->pLimit;
2936         p->pLimit = 0;
2937         intersectdest.iSDParm = tab2;
2938         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2939                           sqlite3SelectOpName(p->op)));
2940         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2941         rc = sqlite3Select(pParse, p, &intersectdest);
2942         testcase( rc!=SQLITE_OK );
2943         pDelete = p->pPrior;
2944         p->pPrior = pPrior;
2945         if( p->nSelectRow>pPrior->nSelectRow ){
2946           p->nSelectRow = pPrior->nSelectRow;
2947         }
2948         sqlite3ExprDelete(db, p->pLimit);
2949         p->pLimit = pLimit;
2950 
2951         /* Generate code to take the intersection of the two temporary
2952         ** tables.
2953         */
2954         if( rc ) break;
2955         assert( p->pEList );
2956         iBreak = sqlite3VdbeMakeLabel(pParse);
2957         iCont = sqlite3VdbeMakeLabel(pParse);
2958         computeLimitRegisters(pParse, p, iBreak);
2959         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2960         r1 = sqlite3GetTempReg(pParse);
2961         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2962         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2963         VdbeCoverage(v);
2964         sqlite3ReleaseTempReg(pParse, r1);
2965         selectInnerLoop(pParse, p, tab1,
2966                         0, 0, &dest, iCont, iBreak);
2967         sqlite3VdbeResolveLabel(v, iCont);
2968         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2969         sqlite3VdbeResolveLabel(v, iBreak);
2970         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2971         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2972         break;
2973       }
2974     }
2975 
2976   #ifndef SQLITE_OMIT_EXPLAIN
2977     if( p->pNext==0 ){
2978       ExplainQueryPlanPop(pParse);
2979     }
2980   #endif
2981   }
2982   if( pParse->nErr ) goto multi_select_end;
2983 
2984   /* Compute collating sequences used by
2985   ** temporary tables needed to implement the compound select.
2986   ** Attach the KeyInfo structure to all temporary tables.
2987   **
2988   ** This section is run by the right-most SELECT statement only.
2989   ** SELECT statements to the left always skip this part.  The right-most
2990   ** SELECT might also skip this part if it has no ORDER BY clause and
2991   ** no temp tables are required.
2992   */
2993   if( p->selFlags & SF_UsesEphemeral ){
2994     int i;                        /* Loop counter */
2995     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2996     Select *pLoop;                /* For looping through SELECT statements */
2997     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2998     int nCol;                     /* Number of columns in result set */
2999 
3000     assert( p->pNext==0 );
3001     assert( p->pEList!=0 );
3002     nCol = p->pEList->nExpr;
3003     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3004     if( !pKeyInfo ){
3005       rc = SQLITE_NOMEM_BKPT;
3006       goto multi_select_end;
3007     }
3008     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3009       *apColl = multiSelectCollSeq(pParse, p, i);
3010       if( 0==*apColl ){
3011         *apColl = db->pDfltColl;
3012       }
3013     }
3014 
3015     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3016       for(i=0; i<2; i++){
3017         int addr = pLoop->addrOpenEphm[i];
3018         if( addr<0 ){
3019           /* If [0] is unused then [1] is also unused.  So we can
3020           ** always safely abort as soon as the first unused slot is found */
3021           assert( pLoop->addrOpenEphm[1]<0 );
3022           break;
3023         }
3024         sqlite3VdbeChangeP2(v, addr, nCol);
3025         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3026                             P4_KEYINFO);
3027         pLoop->addrOpenEphm[i] = -1;
3028       }
3029     }
3030     sqlite3KeyInfoUnref(pKeyInfo);
3031   }
3032 
3033 multi_select_end:
3034   pDest->iSdst = dest.iSdst;
3035   pDest->nSdst = dest.nSdst;
3036   if( pDelete ){
3037     sqlite3ParserAddCleanup(pParse,
3038         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3039         pDelete);
3040   }
3041   return rc;
3042 }
3043 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3044 
3045 /*
3046 ** Error message for when two or more terms of a compound select have different
3047 ** size result sets.
3048 */
3049 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3050   if( p->selFlags & SF_Values ){
3051     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3052   }else{
3053     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3054       " do not have the same number of result columns",
3055       sqlite3SelectOpName(p->op));
3056   }
3057 }
3058 
3059 /*
3060 ** Code an output subroutine for a coroutine implementation of a
3061 ** SELECT statment.
3062 **
3063 ** The data to be output is contained in pIn->iSdst.  There are
3064 ** pIn->nSdst columns to be output.  pDest is where the output should
3065 ** be sent.
3066 **
3067 ** regReturn is the number of the register holding the subroutine
3068 ** return address.
3069 **
3070 ** If regPrev>0 then it is the first register in a vector that
3071 ** records the previous output.  mem[regPrev] is a flag that is false
3072 ** if there has been no previous output.  If regPrev>0 then code is
3073 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3074 ** keys.
3075 **
3076 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3077 ** iBreak.
3078 */
3079 static int generateOutputSubroutine(
3080   Parse *pParse,          /* Parsing context */
3081   Select *p,              /* The SELECT statement */
3082   SelectDest *pIn,        /* Coroutine supplying data */
3083   SelectDest *pDest,      /* Where to send the data */
3084   int regReturn,          /* The return address register */
3085   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3086   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3087   int iBreak              /* Jump here if we hit the LIMIT */
3088 ){
3089   Vdbe *v = pParse->pVdbe;
3090   int iContinue;
3091   int addr;
3092 
3093   addr = sqlite3VdbeCurrentAddr(v);
3094   iContinue = sqlite3VdbeMakeLabel(pParse);
3095 
3096   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3097   */
3098   if( regPrev ){
3099     int addr1, addr2;
3100     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3101     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3102                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3103     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3104     sqlite3VdbeJumpHere(v, addr1);
3105     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3106     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3107   }
3108   if( pParse->db->mallocFailed ) return 0;
3109 
3110   /* Suppress the first OFFSET entries if there is an OFFSET clause
3111   */
3112   codeOffset(v, p->iOffset, iContinue);
3113 
3114   assert( pDest->eDest!=SRT_Exists );
3115   assert( pDest->eDest!=SRT_Table );
3116   switch( pDest->eDest ){
3117     /* Store the result as data using a unique key.
3118     */
3119     case SRT_EphemTab: {
3120       int r1 = sqlite3GetTempReg(pParse);
3121       int r2 = sqlite3GetTempReg(pParse);
3122       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3123       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3124       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3125       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3126       sqlite3ReleaseTempReg(pParse, r2);
3127       sqlite3ReleaseTempReg(pParse, r1);
3128       break;
3129     }
3130 
3131 #ifndef SQLITE_OMIT_SUBQUERY
3132     /* If we are creating a set for an "expr IN (SELECT ...)".
3133     */
3134     case SRT_Set: {
3135       int r1;
3136       testcase( pIn->nSdst>1 );
3137       r1 = sqlite3GetTempReg(pParse);
3138       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3139           r1, pDest->zAffSdst, pIn->nSdst);
3140       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3141                            pIn->iSdst, pIn->nSdst);
3142       sqlite3ReleaseTempReg(pParse, r1);
3143       break;
3144     }
3145 
3146     /* If this is a scalar select that is part of an expression, then
3147     ** store the results in the appropriate memory cell and break out
3148     ** of the scan loop.  Note that the select might return multiple columns
3149     ** if it is the RHS of a row-value IN operator.
3150     */
3151     case SRT_Mem: {
3152       testcase( pIn->nSdst>1 );
3153       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3154       /* The LIMIT clause will jump out of the loop for us */
3155       break;
3156     }
3157 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3158 
3159     /* The results are stored in a sequence of registers
3160     ** starting at pDest->iSdst.  Then the co-routine yields.
3161     */
3162     case SRT_Coroutine: {
3163       if( pDest->iSdst==0 ){
3164         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3165         pDest->nSdst = pIn->nSdst;
3166       }
3167       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3168       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3169       break;
3170     }
3171 
3172     /* If none of the above, then the result destination must be
3173     ** SRT_Output.  This routine is never called with any other
3174     ** destination other than the ones handled above or SRT_Output.
3175     **
3176     ** For SRT_Output, results are stored in a sequence of registers.
3177     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3178     ** return the next row of result.
3179     */
3180     default: {
3181       assert( pDest->eDest==SRT_Output );
3182       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3183       break;
3184     }
3185   }
3186 
3187   /* Jump to the end of the loop if the LIMIT is reached.
3188   */
3189   if( p->iLimit ){
3190     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3191   }
3192 
3193   /* Generate the subroutine return
3194   */
3195   sqlite3VdbeResolveLabel(v, iContinue);
3196   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3197 
3198   return addr;
3199 }
3200 
3201 /*
3202 ** Alternative compound select code generator for cases when there
3203 ** is an ORDER BY clause.
3204 **
3205 ** We assume a query of the following form:
3206 **
3207 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3208 **
3209 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3210 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3211 ** co-routines.  Then run the co-routines in parallel and merge the results
3212 ** into the output.  In addition to the two coroutines (called selectA and
3213 ** selectB) there are 7 subroutines:
3214 **
3215 **    outA:    Move the output of the selectA coroutine into the output
3216 **             of the compound query.
3217 **
3218 **    outB:    Move the output of the selectB coroutine into the output
3219 **             of the compound query.  (Only generated for UNION and
3220 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3221 **             appears only in B.)
3222 **
3223 **    AltB:    Called when there is data from both coroutines and A<B.
3224 **
3225 **    AeqB:    Called when there is data from both coroutines and A==B.
3226 **
3227 **    AgtB:    Called when there is data from both coroutines and A>B.
3228 **
3229 **    EofA:    Called when data is exhausted from selectA.
3230 **
3231 **    EofB:    Called when data is exhausted from selectB.
3232 **
3233 ** The implementation of the latter five subroutines depend on which
3234 ** <operator> is used:
3235 **
3236 **
3237 **             UNION ALL         UNION            EXCEPT          INTERSECT
3238 **          -------------  -----------------  --------------  -----------------
3239 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3240 **
3241 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3242 **
3243 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3244 **
3245 **   EofA:   outB, nextB      outB, nextB          halt             halt
3246 **
3247 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3248 **
3249 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3250 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3251 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3252 ** following nextX causes a jump to the end of the select processing.
3253 **
3254 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3255 ** within the output subroutine.  The regPrev register set holds the previously
3256 ** output value.  A comparison is made against this value and the output
3257 ** is skipped if the next results would be the same as the previous.
3258 **
3259 ** The implementation plan is to implement the two coroutines and seven
3260 ** subroutines first, then put the control logic at the bottom.  Like this:
3261 **
3262 **          goto Init
3263 **     coA: coroutine for left query (A)
3264 **     coB: coroutine for right query (B)
3265 **    outA: output one row of A
3266 **    outB: output one row of B (UNION and UNION ALL only)
3267 **    EofA: ...
3268 **    EofB: ...
3269 **    AltB: ...
3270 **    AeqB: ...
3271 **    AgtB: ...
3272 **    Init: initialize coroutine registers
3273 **          yield coA
3274 **          if eof(A) goto EofA
3275 **          yield coB
3276 **          if eof(B) goto EofB
3277 **    Cmpr: Compare A, B
3278 **          Jump AltB, AeqB, AgtB
3279 **     End: ...
3280 **
3281 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3282 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3283 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3284 ** and AgtB jump to either L2 or to one of EofA or EofB.
3285 */
3286 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3287 static int multiSelectOrderBy(
3288   Parse *pParse,        /* Parsing context */
3289   Select *p,            /* The right-most of SELECTs to be coded */
3290   SelectDest *pDest     /* What to do with query results */
3291 ){
3292   int i, j;             /* Loop counters */
3293   Select *pPrior;       /* Another SELECT immediately to our left */
3294   Vdbe *v;              /* Generate code to this VDBE */
3295   SelectDest destA;     /* Destination for coroutine A */
3296   SelectDest destB;     /* Destination for coroutine B */
3297   int regAddrA;         /* Address register for select-A coroutine */
3298   int regAddrB;         /* Address register for select-B coroutine */
3299   int addrSelectA;      /* Address of the select-A coroutine */
3300   int addrSelectB;      /* Address of the select-B coroutine */
3301   int regOutA;          /* Address register for the output-A subroutine */
3302   int regOutB;          /* Address register for the output-B subroutine */
3303   int addrOutA;         /* Address of the output-A subroutine */
3304   int addrOutB = 0;     /* Address of the output-B subroutine */
3305   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3306   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3307   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3308   int addrAltB;         /* Address of the A<B subroutine */
3309   int addrAeqB;         /* Address of the A==B subroutine */
3310   int addrAgtB;         /* Address of the A>B subroutine */
3311   int regLimitA;        /* Limit register for select-A */
3312   int regLimitB;        /* Limit register for select-A */
3313   int regPrev;          /* A range of registers to hold previous output */
3314   int savedLimit;       /* Saved value of p->iLimit */
3315   int savedOffset;      /* Saved value of p->iOffset */
3316   int labelCmpr;        /* Label for the start of the merge algorithm */
3317   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3318   int addr1;            /* Jump instructions that get retargetted */
3319   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3320   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3321   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3322   sqlite3 *db;          /* Database connection */
3323   ExprList *pOrderBy;   /* The ORDER BY clause */
3324   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3325   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3326 
3327   assert( p->pOrderBy!=0 );
3328   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3329   db = pParse->db;
3330   v = pParse->pVdbe;
3331   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3332   labelEnd = sqlite3VdbeMakeLabel(pParse);
3333   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3334 
3335 
3336   /* Patch up the ORDER BY clause
3337   */
3338   op = p->op;
3339   pPrior = p->pPrior;
3340   assert( pPrior->pOrderBy==0 );
3341   pOrderBy = p->pOrderBy;
3342   assert( pOrderBy );
3343   nOrderBy = pOrderBy->nExpr;
3344 
3345   /* For operators other than UNION ALL we have to make sure that
3346   ** the ORDER BY clause covers every term of the result set.  Add
3347   ** terms to the ORDER BY clause as necessary.
3348   */
3349   if( op!=TK_ALL ){
3350     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3351       struct ExprList_item *pItem;
3352       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3353         assert( pItem!=0 );
3354         assert( pItem->u.x.iOrderByCol>0 );
3355         if( pItem->u.x.iOrderByCol==i ) break;
3356       }
3357       if( j==nOrderBy ){
3358         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3359         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3360         pNew->flags |= EP_IntValue;
3361         pNew->u.iValue = i;
3362         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3363         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3364       }
3365     }
3366   }
3367 
3368   /* Compute the comparison permutation and keyinfo that is used with
3369   ** the permutation used to determine if the next
3370   ** row of results comes from selectA or selectB.  Also add explicit
3371   ** collations to the ORDER BY clause terms so that when the subqueries
3372   ** to the right and the left are evaluated, they use the correct
3373   ** collation.
3374   */
3375   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3376   if( aPermute ){
3377     struct ExprList_item *pItem;
3378     aPermute[0] = nOrderBy;
3379     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3380       assert( pItem!=0 );
3381       assert( pItem->u.x.iOrderByCol>0 );
3382       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3383       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3384     }
3385     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3386   }else{
3387     pKeyMerge = 0;
3388   }
3389 
3390   /* Reattach the ORDER BY clause to the query.
3391   */
3392   p->pOrderBy = pOrderBy;
3393   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3394 
3395   /* Allocate a range of temporary registers and the KeyInfo needed
3396   ** for the logic that removes duplicate result rows when the
3397   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3398   */
3399   if( op==TK_ALL ){
3400     regPrev = 0;
3401   }else{
3402     int nExpr = p->pEList->nExpr;
3403     assert( nOrderBy>=nExpr || db->mallocFailed );
3404     regPrev = pParse->nMem+1;
3405     pParse->nMem += nExpr+1;
3406     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3407     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3408     if( pKeyDup ){
3409       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3410       for(i=0; i<nExpr; i++){
3411         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3412         pKeyDup->aSortFlags[i] = 0;
3413       }
3414     }
3415   }
3416 
3417   /* Separate the left and the right query from one another
3418   */
3419   p->pPrior = 0;
3420   pPrior->pNext = 0;
3421   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3422   if( pPrior->pPrior==0 ){
3423     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3424   }
3425 
3426   /* Compute the limit registers */
3427   computeLimitRegisters(pParse, p, labelEnd);
3428   if( p->iLimit && op==TK_ALL ){
3429     regLimitA = ++pParse->nMem;
3430     regLimitB = ++pParse->nMem;
3431     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3432                                   regLimitA);
3433     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3434   }else{
3435     regLimitA = regLimitB = 0;
3436   }
3437   sqlite3ExprDelete(db, p->pLimit);
3438   p->pLimit = 0;
3439 
3440   regAddrA = ++pParse->nMem;
3441   regAddrB = ++pParse->nMem;
3442   regOutA = ++pParse->nMem;
3443   regOutB = ++pParse->nMem;
3444   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3445   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3446 
3447   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3448 
3449   /* Generate a coroutine to evaluate the SELECT statement to the
3450   ** left of the compound operator - the "A" select.
3451   */
3452   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3453   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3454   VdbeComment((v, "left SELECT"));
3455   pPrior->iLimit = regLimitA;
3456   ExplainQueryPlan((pParse, 1, "LEFT"));
3457   sqlite3Select(pParse, pPrior, &destA);
3458   sqlite3VdbeEndCoroutine(v, regAddrA);
3459   sqlite3VdbeJumpHere(v, addr1);
3460 
3461   /* Generate a coroutine to evaluate the SELECT statement on
3462   ** the right - the "B" select
3463   */
3464   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3465   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3466   VdbeComment((v, "right SELECT"));
3467   savedLimit = p->iLimit;
3468   savedOffset = p->iOffset;
3469   p->iLimit = regLimitB;
3470   p->iOffset = 0;
3471   ExplainQueryPlan((pParse, 1, "RIGHT"));
3472   sqlite3Select(pParse, p, &destB);
3473   p->iLimit = savedLimit;
3474   p->iOffset = savedOffset;
3475   sqlite3VdbeEndCoroutine(v, regAddrB);
3476 
3477   /* Generate a subroutine that outputs the current row of the A
3478   ** select as the next output row of the compound select.
3479   */
3480   VdbeNoopComment((v, "Output routine for A"));
3481   addrOutA = generateOutputSubroutine(pParse,
3482                  p, &destA, pDest, regOutA,
3483                  regPrev, pKeyDup, labelEnd);
3484 
3485   /* Generate a subroutine that outputs the current row of the B
3486   ** select as the next output row of the compound select.
3487   */
3488   if( op==TK_ALL || op==TK_UNION ){
3489     VdbeNoopComment((v, "Output routine for B"));
3490     addrOutB = generateOutputSubroutine(pParse,
3491                  p, &destB, pDest, regOutB,
3492                  regPrev, pKeyDup, labelEnd);
3493   }
3494   sqlite3KeyInfoUnref(pKeyDup);
3495 
3496   /* Generate a subroutine to run when the results from select A
3497   ** are exhausted and only data in select B remains.
3498   */
3499   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3500     addrEofA_noB = addrEofA = labelEnd;
3501   }else{
3502     VdbeNoopComment((v, "eof-A subroutine"));
3503     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3504     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3505                                      VdbeCoverage(v);
3506     sqlite3VdbeGoto(v, addrEofA);
3507     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3508   }
3509 
3510   /* Generate a subroutine to run when the results from select B
3511   ** are exhausted and only data in select A remains.
3512   */
3513   if( op==TK_INTERSECT ){
3514     addrEofB = addrEofA;
3515     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3516   }else{
3517     VdbeNoopComment((v, "eof-B subroutine"));
3518     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3519     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3520     sqlite3VdbeGoto(v, addrEofB);
3521   }
3522 
3523   /* Generate code to handle the case of A<B
3524   */
3525   VdbeNoopComment((v, "A-lt-B subroutine"));
3526   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3527   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3528   sqlite3VdbeGoto(v, labelCmpr);
3529 
3530   /* Generate code to handle the case of A==B
3531   */
3532   if( op==TK_ALL ){
3533     addrAeqB = addrAltB;
3534   }else if( op==TK_INTERSECT ){
3535     addrAeqB = addrAltB;
3536     addrAltB++;
3537   }else{
3538     VdbeNoopComment((v, "A-eq-B subroutine"));
3539     addrAeqB =
3540     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3541     sqlite3VdbeGoto(v, labelCmpr);
3542   }
3543 
3544   /* Generate code to handle the case of A>B
3545   */
3546   VdbeNoopComment((v, "A-gt-B subroutine"));
3547   addrAgtB = sqlite3VdbeCurrentAddr(v);
3548   if( op==TK_ALL || op==TK_UNION ){
3549     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3550   }
3551   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3552   sqlite3VdbeGoto(v, labelCmpr);
3553 
3554   /* This code runs once to initialize everything.
3555   */
3556   sqlite3VdbeJumpHere(v, addr1);
3557   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3558   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3559 
3560   /* Implement the main merge loop
3561   */
3562   sqlite3VdbeResolveLabel(v, labelCmpr);
3563   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3564   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3565                          (char*)pKeyMerge, P4_KEYINFO);
3566   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3567   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3568 
3569   /* Jump to the this point in order to terminate the query.
3570   */
3571   sqlite3VdbeResolveLabel(v, labelEnd);
3572 
3573   /* Reassembly the compound query so that it will be freed correctly
3574   ** by the calling function */
3575   if( p->pPrior ){
3576     sqlite3SelectDelete(db, p->pPrior);
3577   }
3578   p->pPrior = pPrior;
3579   pPrior->pNext = p;
3580 
3581   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3582   pPrior->pOrderBy = 0;
3583 
3584   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3585   **** subqueries ****/
3586   ExplainQueryPlanPop(pParse);
3587   return pParse->nErr!=0;
3588 }
3589 #endif
3590 
3591 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3592 
3593 /* An instance of the SubstContext object describes an substitution edit
3594 ** to be performed on a parse tree.
3595 **
3596 ** All references to columns in table iTable are to be replaced by corresponding
3597 ** expressions in pEList.
3598 */
3599 typedef struct SubstContext {
3600   Parse *pParse;            /* The parsing context */
3601   int iTable;               /* Replace references to this table */
3602   int iNewTable;            /* New table number */
3603   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3604   ExprList *pEList;         /* Replacement expressions */
3605 } SubstContext;
3606 
3607 /* Forward Declarations */
3608 static void substExprList(SubstContext*, ExprList*);
3609 static void substSelect(SubstContext*, Select*, int);
3610 
3611 /*
3612 ** Scan through the expression pExpr.  Replace every reference to
3613 ** a column in table number iTable with a copy of the iColumn-th
3614 ** entry in pEList.  (But leave references to the ROWID column
3615 ** unchanged.)
3616 **
3617 ** This routine is part of the flattening procedure.  A subquery
3618 ** whose result set is defined by pEList appears as entry in the
3619 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3620 ** FORM clause entry is iTable.  This routine makes the necessary
3621 ** changes to pExpr so that it refers directly to the source table
3622 ** of the subquery rather the result set of the subquery.
3623 */
3624 static Expr *substExpr(
3625   SubstContext *pSubst,  /* Description of the substitution */
3626   Expr *pExpr            /* Expr in which substitution occurs */
3627 ){
3628   if( pExpr==0 ) return 0;
3629   if( ExprHasProperty(pExpr, EP_FromJoin)
3630    && pExpr->iRightJoinTable==pSubst->iTable
3631   ){
3632     pExpr->iRightJoinTable = pSubst->iNewTable;
3633   }
3634   if( pExpr->op==TK_COLUMN
3635    && pExpr->iTable==pSubst->iTable
3636    && !ExprHasProperty(pExpr, EP_FixedCol)
3637   ){
3638 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3639     if( pExpr->iColumn<0 ){
3640       pExpr->op = TK_NULL;
3641     }else
3642 #endif
3643     {
3644       Expr *pNew;
3645       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3646       Expr ifNullRow;
3647       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3648       assert( pExpr->pRight==0 );
3649       if( sqlite3ExprIsVector(pCopy) ){
3650         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3651       }else{
3652         sqlite3 *db = pSubst->pParse->db;
3653         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3654           memset(&ifNullRow, 0, sizeof(ifNullRow));
3655           ifNullRow.op = TK_IF_NULL_ROW;
3656           ifNullRow.pLeft = pCopy;
3657           ifNullRow.iTable = pSubst->iNewTable;
3658           ifNullRow.flags = EP_IfNullRow;
3659           pCopy = &ifNullRow;
3660         }
3661         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3662         pNew = sqlite3ExprDup(db, pCopy, 0);
3663         if( db->mallocFailed ){
3664           sqlite3ExprDelete(db, pNew);
3665           return pExpr;
3666         }
3667         if( pSubst->isLeftJoin ){
3668           ExprSetProperty(pNew, EP_CanBeNull);
3669         }
3670         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3671           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3672         }
3673         sqlite3ExprDelete(db, pExpr);
3674         pExpr = pNew;
3675 
3676         /* Ensure that the expression now has an implicit collation sequence,
3677         ** just as it did when it was a column of a view or sub-query. */
3678         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3679           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3680           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3681               (pColl ? pColl->zName : "BINARY")
3682           );
3683         }
3684         ExprClearProperty(pExpr, EP_Collate);
3685       }
3686     }
3687   }else{
3688     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3689       pExpr->iTable = pSubst->iNewTable;
3690     }
3691     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3692     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3693     if( ExprUseXSelect(pExpr) ){
3694       substSelect(pSubst, pExpr->x.pSelect, 1);
3695     }else{
3696       substExprList(pSubst, pExpr->x.pList);
3697     }
3698 #ifndef SQLITE_OMIT_WINDOWFUNC
3699     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3700       Window *pWin = pExpr->y.pWin;
3701       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3702       substExprList(pSubst, pWin->pPartition);
3703       substExprList(pSubst, pWin->pOrderBy);
3704     }
3705 #endif
3706   }
3707   return pExpr;
3708 }
3709 static void substExprList(
3710   SubstContext *pSubst, /* Description of the substitution */
3711   ExprList *pList       /* List to scan and in which to make substitutes */
3712 ){
3713   int i;
3714   if( pList==0 ) return;
3715   for(i=0; i<pList->nExpr; i++){
3716     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3717   }
3718 }
3719 static void substSelect(
3720   SubstContext *pSubst, /* Description of the substitution */
3721   Select *p,            /* SELECT statement in which to make substitutions */
3722   int doPrior           /* Do substitutes on p->pPrior too */
3723 ){
3724   SrcList *pSrc;
3725   SrcItem *pItem;
3726   int i;
3727   if( !p ) return;
3728   do{
3729     substExprList(pSubst, p->pEList);
3730     substExprList(pSubst, p->pGroupBy);
3731     substExprList(pSubst, p->pOrderBy);
3732     p->pHaving = substExpr(pSubst, p->pHaving);
3733     p->pWhere = substExpr(pSubst, p->pWhere);
3734     pSrc = p->pSrc;
3735     assert( pSrc!=0 );
3736     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3737       substSelect(pSubst, pItem->pSelect, 1);
3738       if( pItem->fg.isTabFunc ){
3739         substExprList(pSubst, pItem->u1.pFuncArg);
3740       }
3741     }
3742   }while( doPrior && (p = p->pPrior)!=0 );
3743 }
3744 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3745 
3746 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3747 /*
3748 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3749 ** clause of that SELECT.
3750 **
3751 ** This routine scans the entire SELECT statement and recomputes the
3752 ** pSrcItem->colUsed mask.
3753 */
3754 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3755   SrcItem *pItem;
3756   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3757   pItem = pWalker->u.pSrcItem;
3758   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3759   if( pExpr->iColumn<0 ) return WRC_Continue;
3760   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3761   return WRC_Continue;
3762 }
3763 static void recomputeColumnsUsed(
3764   Select *pSelect,                 /* The complete SELECT statement */
3765   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3766 ){
3767   Walker w;
3768   if( NEVER(pSrcItem->pTab==0) ) return;
3769   memset(&w, 0, sizeof(w));
3770   w.xExprCallback = recomputeColumnsUsedExpr;
3771   w.xSelectCallback = sqlite3SelectWalkNoop;
3772   w.u.pSrcItem = pSrcItem;
3773   pSrcItem->colUsed = 0;
3774   sqlite3WalkSelect(&w, pSelect);
3775 }
3776 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3777 
3778 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3779 /*
3780 ** Assign new cursor numbers to each of the items in pSrc. For each
3781 ** new cursor number assigned, set an entry in the aCsrMap[] array
3782 ** to map the old cursor number to the new:
3783 **
3784 **     aCsrMap[iOld+1] = iNew;
3785 **
3786 ** The array is guaranteed by the caller to be large enough for all
3787 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3788 **
3789 ** If pSrc contains any sub-selects, call this routine recursively
3790 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3791 */
3792 static void srclistRenumberCursors(
3793   Parse *pParse,                  /* Parse context */
3794   int *aCsrMap,                   /* Array to store cursor mappings in */
3795   SrcList *pSrc,                  /* FROM clause to renumber */
3796   int iExcept                     /* FROM clause item to skip */
3797 ){
3798   int i;
3799   SrcItem *pItem;
3800   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3801     if( i!=iExcept ){
3802       Select *p;
3803       assert( pItem->iCursor < aCsrMap[0] );
3804       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3805         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3806       }
3807       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3808       for(p=pItem->pSelect; p; p=p->pPrior){
3809         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3810       }
3811     }
3812   }
3813 }
3814 
3815 /*
3816 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3817 */
3818 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3819   int *aCsrMap = pWalker->u.aiCol;
3820   int iCsr = *piCursor;
3821   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3822     *piCursor = aCsrMap[iCsr+1];
3823   }
3824 }
3825 
3826 /*
3827 ** Expression walker callback used by renumberCursors() to update
3828 ** Expr objects to match newly assigned cursor numbers.
3829 */
3830 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3831   int op = pExpr->op;
3832   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3833     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3834   }
3835   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3836     renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable);
3837   }
3838   return WRC_Continue;
3839 }
3840 
3841 /*
3842 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3843 ** of the SELECT statement passed as the second argument, and to each
3844 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3845 ** Except, do not assign a new cursor number to the iExcept'th element in
3846 ** the FROM clause of (*p). Update all expressions and other references
3847 ** to refer to the new cursor numbers.
3848 **
3849 ** Argument aCsrMap is an array that may be used for temporary working
3850 ** space. Two guarantees are made by the caller:
3851 **
3852 **   * the array is larger than the largest cursor number used within the
3853 **     select statement passed as an argument, and
3854 **
3855 **   * the array entries for all cursor numbers that do *not* appear in
3856 **     FROM clauses of the select statement as described above are
3857 **     initialized to zero.
3858 */
3859 static void renumberCursors(
3860   Parse *pParse,                  /* Parse context */
3861   Select *p,                      /* Select to renumber cursors within */
3862   int iExcept,                    /* FROM clause item to skip */
3863   int *aCsrMap                    /* Working space */
3864 ){
3865   Walker w;
3866   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3867   memset(&w, 0, sizeof(w));
3868   w.u.aiCol = aCsrMap;
3869   w.xExprCallback = renumberCursorsCb;
3870   w.xSelectCallback = sqlite3SelectWalkNoop;
3871   sqlite3WalkSelect(&w, p);
3872 }
3873 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3874 
3875 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3876 /*
3877 ** This routine attempts to flatten subqueries as a performance optimization.
3878 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3879 **
3880 ** To understand the concept of flattening, consider the following
3881 ** query:
3882 **
3883 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3884 **
3885 ** The default way of implementing this query is to execute the
3886 ** subquery first and store the results in a temporary table, then
3887 ** run the outer query on that temporary table.  This requires two
3888 ** passes over the data.  Furthermore, because the temporary table
3889 ** has no indices, the WHERE clause on the outer query cannot be
3890 ** optimized.
3891 **
3892 ** This routine attempts to rewrite queries such as the above into
3893 ** a single flat select, like this:
3894 **
3895 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3896 **
3897 ** The code generated for this simplification gives the same result
3898 ** but only has to scan the data once.  And because indices might
3899 ** exist on the table t1, a complete scan of the data might be
3900 ** avoided.
3901 **
3902 ** Flattening is subject to the following constraints:
3903 **
3904 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3905 **        The subquery and the outer query cannot both be aggregates.
3906 **
3907 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3908 **        (2) If the subquery is an aggregate then
3909 **        (2a) the outer query must not be a join and
3910 **        (2b) the outer query must not use subqueries
3911 **             other than the one FROM-clause subquery that is a candidate
3912 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3913 **             from 2015-02-09.)
3914 **
3915 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3916 **        (3a) the subquery may not be a join and
3917 **        (3b) the FROM clause of the subquery may not contain a virtual
3918 **             table and
3919 **        (3c) the outer query may not be an aggregate.
3920 **        (3d) the outer query may not be DISTINCT.
3921 **
3922 **   (4)  The subquery can not be DISTINCT.
3923 **
3924 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3925 **        sub-queries that were excluded from this optimization. Restriction
3926 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3927 **
3928 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3929 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3930 **
3931 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3932 **        A FROM clause, consider adding a FROM clause with the special
3933 **        table sqlite_once that consists of a single row containing a
3934 **        single NULL.
3935 **
3936 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3937 **
3938 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3939 **
3940 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3941 **        accidently carried the comment forward until 2014-09-15.  Original
3942 **        constraint: "If the subquery is aggregate then the outer query
3943 **        may not use LIMIT."
3944 **
3945 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3946 **
3947 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3948 **        a separate restriction deriving from ticket #350.
3949 **
3950 **  (13)  The subquery and outer query may not both use LIMIT.
3951 **
3952 **  (14)  The subquery may not use OFFSET.
3953 **
3954 **  (15)  If the outer query is part of a compound select, then the
3955 **        subquery may not use LIMIT.
3956 **        (See ticket #2339 and ticket [02a8e81d44]).
3957 **
3958 **  (16)  If the outer query is aggregate, then the subquery may not
3959 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3960 **        until we introduced the group_concat() function.
3961 **
3962 **  (17)  If the subquery is a compound select, then
3963 **        (17a) all compound operators must be a UNION ALL, and
3964 **        (17b) no terms within the subquery compound may be aggregate
3965 **              or DISTINCT, and
3966 **        (17c) every term within the subquery compound must have a FROM clause
3967 **        (17d) the outer query may not be
3968 **              (17d1) aggregate, or
3969 **              (17d2) DISTINCT
3970 **        (17e) the subquery may not contain window functions, and
3971 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3972 **
3973 **        The parent and sub-query may contain WHERE clauses. Subject to
3974 **        rules (11), (13) and (14), they may also contain ORDER BY,
3975 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3976 **        operator other than UNION ALL because all the other compound
3977 **        operators have an implied DISTINCT which is disallowed by
3978 **        restriction (4).
3979 **
3980 **        Also, each component of the sub-query must return the same number
3981 **        of result columns. This is actually a requirement for any compound
3982 **        SELECT statement, but all the code here does is make sure that no
3983 **        such (illegal) sub-query is flattened. The caller will detect the
3984 **        syntax error and return a detailed message.
3985 **
3986 **  (18)  If the sub-query is a compound select, then all terms of the
3987 **        ORDER BY clause of the parent must be copies of a term returned
3988 **        by the parent query.
3989 **
3990 **  (19)  If the subquery uses LIMIT then the outer query may not
3991 **        have a WHERE clause.
3992 **
3993 **  (20)  If the sub-query is a compound select, then it must not use
3994 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3995 **        somewhat by saying that the terms of the ORDER BY clause must
3996 **        appear as unmodified result columns in the outer query.  But we
3997 **        have other optimizations in mind to deal with that case.
3998 **
3999 **  (21)  If the subquery uses LIMIT then the outer query may not be
4000 **        DISTINCT.  (See ticket [752e1646fc]).
4001 **
4002 **  (22)  The subquery may not be a recursive CTE.
4003 **
4004 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4005 **        a compound query.  This restriction is because transforming the
4006 **        parent to a compound query confuses the code that handles
4007 **        recursive queries in multiSelect().
4008 **
4009 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4010 **        The subquery may not be an aggregate that uses the built-in min() or
4011 **        or max() functions.  (Without this restriction, a query like:
4012 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4013 **        return the value X for which Y was maximal.)
4014 **
4015 **  (25)  If either the subquery or the parent query contains a window
4016 **        function in the select list or ORDER BY clause, flattening
4017 **        is not attempted.
4018 **
4019 **
4020 ** In this routine, the "p" parameter is a pointer to the outer query.
4021 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4022 ** uses aggregates.
4023 **
4024 ** If flattening is not attempted, this routine is a no-op and returns 0.
4025 ** If flattening is attempted this routine returns 1.
4026 **
4027 ** All of the expression analysis must occur on both the outer query and
4028 ** the subquery before this routine runs.
4029 */
4030 static int flattenSubquery(
4031   Parse *pParse,       /* Parsing context */
4032   Select *p,           /* The parent or outer SELECT statement */
4033   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4034   int isAgg            /* True if outer SELECT uses aggregate functions */
4035 ){
4036   const char *zSavedAuthContext = pParse->zAuthContext;
4037   Select *pParent;    /* Current UNION ALL term of the other query */
4038   Select *pSub;       /* The inner query or "subquery" */
4039   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4040   SrcList *pSrc;      /* The FROM clause of the outer query */
4041   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4042   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4043   int iNewParent = -1;/* Replacement table for iParent */
4044   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4045   int i;              /* Loop counter */
4046   Expr *pWhere;                    /* The WHERE clause */
4047   SrcItem *pSubitem;               /* The subquery */
4048   sqlite3 *db = pParse->db;
4049   Walker w;                        /* Walker to persist agginfo data */
4050   int *aCsrMap = 0;
4051 
4052   /* Check to see if flattening is permitted.  Return 0 if not.
4053   */
4054   assert( p!=0 );
4055   assert( p->pPrior==0 );
4056   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4057   pSrc = p->pSrc;
4058   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4059   pSubitem = &pSrc->a[iFrom];
4060   iParent = pSubitem->iCursor;
4061   pSub = pSubitem->pSelect;
4062   assert( pSub!=0 );
4063 
4064 #ifndef SQLITE_OMIT_WINDOWFUNC
4065   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4066 #endif
4067 
4068   pSubSrc = pSub->pSrc;
4069   assert( pSubSrc );
4070   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4071   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4072   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4073   ** became arbitrary expressions, we were forced to add restrictions (13)
4074   ** and (14). */
4075   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4076   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4077   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4078     return 0;                                            /* Restriction (15) */
4079   }
4080   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4081   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4082   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4083      return 0;         /* Restrictions (8)(9) */
4084   }
4085   if( p->pOrderBy && pSub->pOrderBy ){
4086      return 0;                                           /* Restriction (11) */
4087   }
4088   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4089   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4090   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4091      return 0;         /* Restriction (21) */
4092   }
4093   if( pSub->selFlags & (SF_Recursive) ){
4094     return 0; /* Restrictions (22) */
4095   }
4096 
4097   /*
4098   ** If the subquery is the right operand of a LEFT JOIN, then the
4099   ** subquery may not be a join itself (3a). Example of why this is not
4100   ** allowed:
4101   **
4102   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4103   **
4104   ** If we flatten the above, we would get
4105   **
4106   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4107   **
4108   ** which is not at all the same thing.
4109   **
4110   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4111   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4112   ** aggregates are processed - there is no mechanism to determine if
4113   ** the LEFT JOIN table should be all-NULL.
4114   **
4115   ** See also tickets #306, #350, and #3300.
4116   */
4117   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4118     isLeftJoin = 1;
4119     if( pSubSrc->nSrc>1                   /* (3a) */
4120      || isAgg                             /* (3b) */
4121      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4122      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4123     ){
4124       return 0;
4125     }
4126   }
4127 #ifdef SQLITE_EXTRA_IFNULLROW
4128   else if( iFrom>0 && !isAgg ){
4129     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4130     ** every reference to any result column from subquery in a join, even
4131     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4132     ** opcode. */
4133     isLeftJoin = -1;
4134   }
4135 #endif
4136 
4137   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4138   ** use only the UNION ALL operator. And none of the simple select queries
4139   ** that make up the compound SELECT are allowed to be aggregate or distinct
4140   ** queries.
4141   */
4142   if( pSub->pPrior ){
4143     if( pSub->pOrderBy ){
4144       return 0;  /* Restriction (20) */
4145     }
4146     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4147       return 0; /* (17d1), (17d2), or (17f) */
4148     }
4149     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4150       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4151       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4152       assert( pSub->pSrc!=0 );
4153       assert( (pSub->selFlags & SF_Recursive)==0 );
4154       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4155       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4156        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4157        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4158 #ifndef SQLITE_OMIT_WINDOWFUNC
4159        || pSub1->pWin                                          /* (17e) */
4160 #endif
4161       ){
4162         return 0;
4163       }
4164       testcase( pSub1->pSrc->nSrc>1 );
4165     }
4166 
4167     /* Restriction (18). */
4168     if( p->pOrderBy ){
4169       int ii;
4170       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4171         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4172       }
4173     }
4174 
4175     /* Restriction (23) */
4176     if( (p->selFlags & SF_Recursive) ) return 0;
4177 
4178     if( pSrc->nSrc>1 ){
4179       if( pParse->nSelect>500 ) return 0;
4180       aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int));
4181       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4182     }
4183   }
4184 
4185   /***** If we reach this point, flattening is permitted. *****/
4186   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4187                    pSub->selId, pSub, iFrom));
4188 
4189   /* Authorize the subquery */
4190   pParse->zAuthContext = pSubitem->zName;
4191   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4192   testcase( i==SQLITE_DENY );
4193   pParse->zAuthContext = zSavedAuthContext;
4194 
4195   /* Delete the transient structures associated with thesubquery */
4196   pSub1 = pSubitem->pSelect;
4197   sqlite3DbFree(db, pSubitem->zDatabase);
4198   sqlite3DbFree(db, pSubitem->zName);
4199   sqlite3DbFree(db, pSubitem->zAlias);
4200   pSubitem->zDatabase = 0;
4201   pSubitem->zName = 0;
4202   pSubitem->zAlias = 0;
4203   pSubitem->pSelect = 0;
4204   assert( pSubitem->pOn==0 );
4205 
4206   /* If the sub-query is a compound SELECT statement, then (by restrictions
4207   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4208   ** be of the form:
4209   **
4210   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4211   **
4212   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4213   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4214   ** OFFSET clauses and joins them to the left-hand-side of the original
4215   ** using UNION ALL operators. In this case N is the number of simple
4216   ** select statements in the compound sub-query.
4217   **
4218   ** Example:
4219   **
4220   **     SELECT a+1 FROM (
4221   **        SELECT x FROM tab
4222   **        UNION ALL
4223   **        SELECT y FROM tab
4224   **        UNION ALL
4225   **        SELECT abs(z*2) FROM tab2
4226   **     ) WHERE a!=5 ORDER BY 1
4227   **
4228   ** Transformed into:
4229   **
4230   **     SELECT x+1 FROM tab WHERE x+1!=5
4231   **     UNION ALL
4232   **     SELECT y+1 FROM tab WHERE y+1!=5
4233   **     UNION ALL
4234   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4235   **     ORDER BY 1
4236   **
4237   ** We call this the "compound-subquery flattening".
4238   */
4239   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4240     Select *pNew;
4241     ExprList *pOrderBy = p->pOrderBy;
4242     Expr *pLimit = p->pLimit;
4243     Select *pPrior = p->pPrior;
4244     Table *pItemTab = pSubitem->pTab;
4245     pSubitem->pTab = 0;
4246     p->pOrderBy = 0;
4247     p->pPrior = 0;
4248     p->pLimit = 0;
4249     pNew = sqlite3SelectDup(db, p, 0);
4250     p->pLimit = pLimit;
4251     p->pOrderBy = pOrderBy;
4252     p->op = TK_ALL;
4253     pSubitem->pTab = pItemTab;
4254     if( pNew==0 ){
4255       p->pPrior = pPrior;
4256     }else{
4257       pNew->selId = ++pParse->nSelect;
4258       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4259         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4260       }
4261       pNew->pPrior = pPrior;
4262       if( pPrior ) pPrior->pNext = pNew;
4263       pNew->pNext = p;
4264       p->pPrior = pNew;
4265       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4266                               " creates %u as peer\n",pNew->selId));
4267     }
4268     assert( pSubitem->pSelect==0 );
4269   }
4270   sqlite3DbFree(db, aCsrMap);
4271   if( db->mallocFailed ){
4272     pSubitem->pSelect = pSub1;
4273     return 1;
4274   }
4275 
4276   /* Defer deleting the Table object associated with the
4277   ** subquery until code generation is
4278   ** complete, since there may still exist Expr.pTab entries that
4279   ** refer to the subquery even after flattening.  Ticket #3346.
4280   **
4281   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4282   */
4283   if( ALWAYS(pSubitem->pTab!=0) ){
4284     Table *pTabToDel = pSubitem->pTab;
4285     if( pTabToDel->nTabRef==1 ){
4286       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4287       sqlite3ParserAddCleanup(pToplevel,
4288          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4289          pTabToDel);
4290       testcase( pToplevel->earlyCleanup );
4291     }else{
4292       pTabToDel->nTabRef--;
4293     }
4294     pSubitem->pTab = 0;
4295   }
4296 
4297   /* The following loop runs once for each term in a compound-subquery
4298   ** flattening (as described above).  If we are doing a different kind
4299   ** of flattening - a flattening other than a compound-subquery flattening -
4300   ** then this loop only runs once.
4301   **
4302   ** This loop moves all of the FROM elements of the subquery into the
4303   ** the FROM clause of the outer query.  Before doing this, remember
4304   ** the cursor number for the original outer query FROM element in
4305   ** iParent.  The iParent cursor will never be used.  Subsequent code
4306   ** will scan expressions looking for iParent references and replace
4307   ** those references with expressions that resolve to the subquery FROM
4308   ** elements we are now copying in.
4309   */
4310   pSub = pSub1;
4311   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4312     int nSubSrc;
4313     u8 jointype = 0;
4314     assert( pSub!=0 );
4315     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4316     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4317     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4318 
4319     if( pParent==p ){
4320       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4321     }
4322 
4323     /* The subquery uses a single slot of the FROM clause of the outer
4324     ** query.  If the subquery has more than one element in its FROM clause,
4325     ** then expand the outer query to make space for it to hold all elements
4326     ** of the subquery.
4327     **
4328     ** Example:
4329     **
4330     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4331     **
4332     ** The outer query has 3 slots in its FROM clause.  One slot of the
4333     ** outer query (the middle slot) is used by the subquery.  The next
4334     ** block of code will expand the outer query FROM clause to 4 slots.
4335     ** The middle slot is expanded to two slots in order to make space
4336     ** for the two elements in the FROM clause of the subquery.
4337     */
4338     if( nSubSrc>1 ){
4339       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4340       if( pSrc==0 ) break;
4341       pParent->pSrc = pSrc;
4342     }
4343 
4344     /* Transfer the FROM clause terms from the subquery into the
4345     ** outer query.
4346     */
4347     for(i=0; i<nSubSrc; i++){
4348       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4349       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4350       pSrc->a[i+iFrom] = pSubSrc->a[i];
4351       iNewParent = pSubSrc->a[i].iCursor;
4352       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4353     }
4354     pSrc->a[iFrom].fg.jointype = jointype;
4355 
4356     /* Now begin substituting subquery result set expressions for
4357     ** references to the iParent in the outer query.
4358     **
4359     ** Example:
4360     **
4361     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4362     **   \                     \_____________ subquery __________/          /
4363     **    \_____________________ outer query ______________________________/
4364     **
4365     ** We look at every expression in the outer query and every place we see
4366     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4367     */
4368     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4369       /* At this point, any non-zero iOrderByCol values indicate that the
4370       ** ORDER BY column expression is identical to the iOrderByCol'th
4371       ** expression returned by SELECT statement pSub. Since these values
4372       ** do not necessarily correspond to columns in SELECT statement pParent,
4373       ** zero them before transfering the ORDER BY clause.
4374       **
4375       ** Not doing this may cause an error if a subsequent call to this
4376       ** function attempts to flatten a compound sub-query into pParent
4377       ** (the only way this can happen is if the compound sub-query is
4378       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4379       ExprList *pOrderBy = pSub->pOrderBy;
4380       for(i=0; i<pOrderBy->nExpr; i++){
4381         pOrderBy->a[i].u.x.iOrderByCol = 0;
4382       }
4383       assert( pParent->pOrderBy==0 );
4384       pParent->pOrderBy = pOrderBy;
4385       pSub->pOrderBy = 0;
4386     }
4387     pWhere = pSub->pWhere;
4388     pSub->pWhere = 0;
4389     if( isLeftJoin>0 ){
4390       sqlite3SetJoinExpr(pWhere, iNewParent);
4391     }
4392     if( pWhere ){
4393       if( pParent->pWhere ){
4394         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4395       }else{
4396         pParent->pWhere = pWhere;
4397       }
4398     }
4399     if( db->mallocFailed==0 ){
4400       SubstContext x;
4401       x.pParse = pParse;
4402       x.iTable = iParent;
4403       x.iNewTable = iNewParent;
4404       x.isLeftJoin = isLeftJoin;
4405       x.pEList = pSub->pEList;
4406       substSelect(&x, pParent, 0);
4407     }
4408 
4409     /* The flattened query is a compound if either the inner or the
4410     ** outer query is a compound. */
4411     pParent->selFlags |= pSub->selFlags & SF_Compound;
4412     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4413 
4414     /*
4415     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4416     **
4417     ** One is tempted to try to add a and b to combine the limits.  But this
4418     ** does not work if either limit is negative.
4419     */
4420     if( pSub->pLimit ){
4421       pParent->pLimit = pSub->pLimit;
4422       pSub->pLimit = 0;
4423     }
4424 
4425     /* Recompute the SrcList_item.colUsed masks for the flattened
4426     ** tables. */
4427     for(i=0; i<nSubSrc; i++){
4428       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4429     }
4430   }
4431 
4432   /* Finially, delete what is left of the subquery and return
4433   ** success.
4434   */
4435   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4436   sqlite3WalkSelect(&w,pSub1);
4437   sqlite3SelectDelete(db, pSub1);
4438 
4439 #if SELECTTRACE_ENABLED
4440   if( sqlite3SelectTrace & 0x100 ){
4441     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4442     sqlite3TreeViewSelect(0, p, 0);
4443   }
4444 #endif
4445 
4446   return 1;
4447 }
4448 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4449 
4450 /*
4451 ** A structure to keep track of all of the column values that are fixed to
4452 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4453 */
4454 typedef struct WhereConst WhereConst;
4455 struct WhereConst {
4456   Parse *pParse;   /* Parsing context */
4457   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4458   int nConst;      /* Number for COLUMN=CONSTANT terms */
4459   int nChng;       /* Number of times a constant is propagated */
4460   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4461   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4462 };
4463 
4464 /*
4465 ** Add a new entry to the pConst object.  Except, do not add duplicate
4466 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4467 **
4468 ** The caller guarantees the pColumn is a column and pValue is a constant.
4469 ** This routine has to do some additional checks before completing the
4470 ** insert.
4471 */
4472 static void constInsert(
4473   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4474   Expr *pColumn,       /* The COLUMN part of the constraint */
4475   Expr *pValue,        /* The VALUE part of the constraint */
4476   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4477 ){
4478   int i;
4479   assert( pColumn->op==TK_COLUMN );
4480   assert( sqlite3ExprIsConstant(pValue) );
4481 
4482   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4483   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4484   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4485     return;
4486   }
4487 
4488   /* 2018-10-25 ticket [cf5ed20f]
4489   ** Make sure the same pColumn is not inserted more than once */
4490   for(i=0; i<pConst->nConst; i++){
4491     const Expr *pE2 = pConst->apExpr[i*2];
4492     assert( pE2->op==TK_COLUMN );
4493     if( pE2->iTable==pColumn->iTable
4494      && pE2->iColumn==pColumn->iColumn
4495     ){
4496       return;  /* Already present.  Return without doing anything. */
4497     }
4498   }
4499   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4500     pConst->bHasAffBlob = 1;
4501   }
4502 
4503   pConst->nConst++;
4504   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4505                          pConst->nConst*2*sizeof(Expr*));
4506   if( pConst->apExpr==0 ){
4507     pConst->nConst = 0;
4508   }else{
4509     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4510     pConst->apExpr[pConst->nConst*2-1] = pValue;
4511   }
4512 }
4513 
4514 /*
4515 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4516 ** is a constant expression and where the term must be true because it
4517 ** is part of the AND-connected terms of the expression.  For each term
4518 ** found, add it to the pConst structure.
4519 */
4520 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4521   Expr *pRight, *pLeft;
4522   if( NEVER(pExpr==0) ) return;
4523   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4524   if( pExpr->op==TK_AND ){
4525     findConstInWhere(pConst, pExpr->pRight);
4526     findConstInWhere(pConst, pExpr->pLeft);
4527     return;
4528   }
4529   if( pExpr->op!=TK_EQ ) return;
4530   pRight = pExpr->pRight;
4531   pLeft = pExpr->pLeft;
4532   assert( pRight!=0 );
4533   assert( pLeft!=0 );
4534   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4535     constInsert(pConst,pRight,pLeft,pExpr);
4536   }
4537   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4538     constInsert(pConst,pLeft,pRight,pExpr);
4539   }
4540 }
4541 
4542 /*
4543 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4544 **
4545 ** Argument pExpr is a candidate expression to be replaced by a value. If
4546 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4547 ** then overwrite it with the corresponding value. Except, do not do so
4548 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4549 ** is SQLITE_AFF_BLOB.
4550 */
4551 static int propagateConstantExprRewriteOne(
4552   WhereConst *pConst,
4553   Expr *pExpr,
4554   int bIgnoreAffBlob
4555 ){
4556   int i;
4557   if( pConst->pOomFault[0] ) return WRC_Prune;
4558   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4559   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4560     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4561     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4562     return WRC_Continue;
4563   }
4564   for(i=0; i<pConst->nConst; i++){
4565     Expr *pColumn = pConst->apExpr[i*2];
4566     if( pColumn==pExpr ) continue;
4567     if( pColumn->iTable!=pExpr->iTable ) continue;
4568     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4569     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4570       break;
4571     }
4572     /* A match is found.  Add the EP_FixedCol property */
4573     pConst->nChng++;
4574     ExprClearProperty(pExpr, EP_Leaf);
4575     ExprSetProperty(pExpr, EP_FixedCol);
4576     assert( pExpr->pLeft==0 );
4577     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4578     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4579     break;
4580   }
4581   return WRC_Prune;
4582 }
4583 
4584 /*
4585 ** This is a Walker expression callback. pExpr is a node from the WHERE
4586 ** clause of a SELECT statement. This function examines pExpr to see if
4587 ** any substitutions based on the contents of pWalker->u.pConst should
4588 ** be made to pExpr or its immediate children.
4589 **
4590 ** A substitution is made if:
4591 **
4592 **   + pExpr is a column with an affinity other than BLOB that matches
4593 **     one of the columns in pWalker->u.pConst, or
4594 **
4595 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4596 **     uses an affinity other than TEXT and one of its immediate
4597 **     children is a column that matches one of the columns in
4598 **     pWalker->u.pConst.
4599 */
4600 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4601   WhereConst *pConst = pWalker->u.pConst;
4602   assert( TK_GT==TK_EQ+1 );
4603   assert( TK_LE==TK_EQ+2 );
4604   assert( TK_LT==TK_EQ+3 );
4605   assert( TK_GE==TK_EQ+4 );
4606   if( pConst->bHasAffBlob ){
4607     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4608      || pExpr->op==TK_IS
4609     ){
4610       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4611       if( pConst->pOomFault[0] ) return WRC_Prune;
4612       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4613         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4614       }
4615     }
4616   }
4617   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4618 }
4619 
4620 /*
4621 ** The WHERE-clause constant propagation optimization.
4622 **
4623 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4624 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4625 ** part of a ON clause from a LEFT JOIN, then throughout the query
4626 ** replace all other occurrences of COLUMN with CONSTANT.
4627 **
4628 ** For example, the query:
4629 **
4630 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4631 **
4632 ** Is transformed into
4633 **
4634 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4635 **
4636 ** Return true if any transformations where made and false if not.
4637 **
4638 ** Implementation note:  Constant propagation is tricky due to affinity
4639 ** and collating sequence interactions.  Consider this example:
4640 **
4641 **    CREATE TABLE t1(a INT,b TEXT);
4642 **    INSERT INTO t1 VALUES(123,'0123');
4643 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4644 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4645 **
4646 ** The two SELECT statements above should return different answers.  b=a
4647 ** is alway true because the comparison uses numeric affinity, but b=123
4648 ** is false because it uses text affinity and '0123' is not the same as '123'.
4649 ** To work around this, the expression tree is not actually changed from
4650 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4651 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4652 ** routines know to generate the constant "123" instead of looking up the
4653 ** column value.  Also, to avoid collation problems, this optimization is
4654 ** only attempted if the "a=123" term uses the default BINARY collation.
4655 **
4656 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4657 **
4658 **    CREATE TABLE t1(x);
4659 **    INSERT INTO t1 VALUES(10.0);
4660 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4661 **
4662 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4663 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4664 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4665 ** resulting in a false positive.  To avoid this, constant propagation for
4666 ** columns with BLOB affinity is only allowed if the constant is used with
4667 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4668 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4669 ** for details.
4670 */
4671 static int propagateConstants(
4672   Parse *pParse,   /* The parsing context */
4673   Select *p        /* The query in which to propagate constants */
4674 ){
4675   WhereConst x;
4676   Walker w;
4677   int nChng = 0;
4678   x.pParse = pParse;
4679   x.pOomFault = &pParse->db->mallocFailed;
4680   do{
4681     x.nConst = 0;
4682     x.nChng = 0;
4683     x.apExpr = 0;
4684     x.bHasAffBlob = 0;
4685     findConstInWhere(&x, p->pWhere);
4686     if( x.nConst ){
4687       memset(&w, 0, sizeof(w));
4688       w.pParse = pParse;
4689       w.xExprCallback = propagateConstantExprRewrite;
4690       w.xSelectCallback = sqlite3SelectWalkNoop;
4691       w.xSelectCallback2 = 0;
4692       w.walkerDepth = 0;
4693       w.u.pConst = &x;
4694       sqlite3WalkExpr(&w, p->pWhere);
4695       sqlite3DbFree(x.pParse->db, x.apExpr);
4696       nChng += x.nChng;
4697     }
4698   }while( x.nChng );
4699   return nChng;
4700 }
4701 
4702 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4703 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4704 /*
4705 ** This function is called to determine whether or not it is safe to
4706 ** push WHERE clause expression pExpr down to FROM clause sub-query
4707 ** pSubq, which contains at least one window function. Return 1
4708 ** if it is safe and the expression should be pushed down, or 0
4709 ** otherwise.
4710 **
4711 ** It is only safe to push the expression down if it consists only
4712 ** of constants and copies of expressions that appear in the PARTITION
4713 ** BY clause of all window function used by the sub-query. It is safe
4714 ** to filter out entire partitions, but not rows within partitions, as
4715 ** this may change the results of the window functions.
4716 **
4717 ** At the time this function is called it is guaranteed that
4718 **
4719 **   * the sub-query uses only one distinct window frame, and
4720 **   * that the window frame has a PARTITION BY clase.
4721 */
4722 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4723   assert( pSubq->pWin->pPartition );
4724   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4725   assert( pSubq->pPrior==0 );
4726   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4727 }
4728 # endif /* SQLITE_OMIT_WINDOWFUNC */
4729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4730 
4731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4732 /*
4733 ** Make copies of relevant WHERE clause terms of the outer query into
4734 ** the WHERE clause of subquery.  Example:
4735 **
4736 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4737 **
4738 ** Transformed into:
4739 **
4740 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4741 **     WHERE x=5 AND y=10;
4742 **
4743 ** The hope is that the terms added to the inner query will make it more
4744 ** efficient.
4745 **
4746 ** Do not attempt this optimization if:
4747 **
4748 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4749 **           disallow this optimization for aggregate subqueries, but now
4750 **           it is allowed by putting the extra terms on the HAVING clause.
4751 **           The added HAVING clause is pointless if the subquery lacks
4752 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4753 **           so there does not appear to be any reason to add extra logic
4754 **           to suppress it. **)
4755 **
4756 **   (2) The inner query is the recursive part of a common table expression.
4757 **
4758 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4759 **       clause would change the meaning of the LIMIT).
4760 **
4761 **   (4) The inner query is the right operand of a LEFT JOIN and the
4762 **       expression to be pushed down does not come from the ON clause
4763 **       on that LEFT JOIN.
4764 **
4765 **   (5) The WHERE clause expression originates in the ON or USING clause
4766 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4767 **       left join.  An example:
4768 **
4769 **           SELECT *
4770 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4771 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4772 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4773 **
4774 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4775 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4776 **       then the (1,1,NULL) row would be suppressed.
4777 **
4778 **   (6) Window functions make things tricky as changes to the WHERE clause
4779 **       of the inner query could change the window over which window
4780 **       functions are calculated. Therefore, do not attempt the optimization
4781 **       if:
4782 **
4783 **     (6a) The inner query uses multiple incompatible window partitions.
4784 **
4785 **     (6b) The inner query is a compound and uses window-functions.
4786 **
4787 **     (6c) The WHERE clause does not consist entirely of constants and
4788 **          copies of expressions found in the PARTITION BY clause of
4789 **          all window-functions used by the sub-query. It is safe to
4790 **          filter out entire partitions, as this does not change the
4791 **          window over which any window-function is calculated.
4792 **
4793 **   (7) The inner query is a Common Table Expression (CTE) that should
4794 **       be materialized.  (This restriction is implemented in the calling
4795 **       routine.)
4796 **
4797 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4798 ** terms are duplicated into the subquery.
4799 */
4800 static int pushDownWhereTerms(
4801   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4802   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4803   Expr *pWhere,         /* The WHERE clause of the outer query */
4804   int iCursor,          /* Cursor number of the subquery */
4805   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4806 ){
4807   Expr *pNew;
4808   int nChng = 0;
4809   if( pWhere==0 ) return 0;
4810   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4811 
4812 #ifndef SQLITE_OMIT_WINDOWFUNC
4813   if( pSubq->pPrior ){
4814     Select *pSel;
4815     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4816       if( pSel->pWin ) return 0;    /* restriction (6b) */
4817     }
4818   }else{
4819     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4820   }
4821 #endif
4822 
4823 #ifdef SQLITE_DEBUG
4824   /* Only the first term of a compound can have a WITH clause.  But make
4825   ** sure no other terms are marked SF_Recursive in case something changes
4826   ** in the future.
4827   */
4828   {
4829     Select *pX;
4830     for(pX=pSubq; pX; pX=pX->pPrior){
4831       assert( (pX->selFlags & (SF_Recursive))==0 );
4832     }
4833   }
4834 #endif
4835 
4836   if( pSubq->pLimit!=0 ){
4837     return 0; /* restriction (3) */
4838   }
4839   while( pWhere->op==TK_AND ){
4840     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4841                                 iCursor, isLeftJoin);
4842     pWhere = pWhere->pLeft;
4843   }
4844   if( isLeftJoin
4845    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4846          || pWhere->iRightJoinTable!=iCursor)
4847   ){
4848     return 0; /* restriction (4) */
4849   }
4850   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4851     return 0; /* restriction (5) */
4852   }
4853   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4854     nChng++;
4855     pSubq->selFlags |= SF_PushDown;
4856     while( pSubq ){
4857       SubstContext x;
4858       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4859       unsetJoinExpr(pNew, -1);
4860       x.pParse = pParse;
4861       x.iTable = iCursor;
4862       x.iNewTable = iCursor;
4863       x.isLeftJoin = 0;
4864       x.pEList = pSubq->pEList;
4865       pNew = substExpr(&x, pNew);
4866 #ifndef SQLITE_OMIT_WINDOWFUNC
4867       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4868         /* Restriction 6c has prevented push-down in this case */
4869         sqlite3ExprDelete(pParse->db, pNew);
4870         nChng--;
4871         break;
4872       }
4873 #endif
4874       if( pSubq->selFlags & SF_Aggregate ){
4875         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4876       }else{
4877         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4878       }
4879       pSubq = pSubq->pPrior;
4880     }
4881   }
4882   return nChng;
4883 }
4884 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4885 
4886 /*
4887 ** The pFunc is the only aggregate function in the query.  Check to see
4888 ** if the query is a candidate for the min/max optimization.
4889 **
4890 ** If the query is a candidate for the min/max optimization, then set
4891 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4892 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4893 ** whether pFunc is a min() or max() function.
4894 **
4895 ** If the query is not a candidate for the min/max optimization, return
4896 ** WHERE_ORDERBY_NORMAL (which must be zero).
4897 **
4898 ** This routine must be called after aggregate functions have been
4899 ** located but before their arguments have been subjected to aggregate
4900 ** analysis.
4901 */
4902 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4903   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4904   ExprList *pEList;                     /* Arguments to agg function */
4905   const char *zFunc;                    /* Name of aggregate function pFunc */
4906   ExprList *pOrderBy;
4907   u8 sortFlags = 0;
4908 
4909   assert( *ppMinMax==0 );
4910   assert( pFunc->op==TK_AGG_FUNCTION );
4911   assert( !IsWindowFunc(pFunc) );
4912   assert( ExprUseXList(pFunc) );
4913   pEList = pFunc->x.pList;
4914   if( pEList==0
4915    || pEList->nExpr!=1
4916    || ExprHasProperty(pFunc, EP_WinFunc)
4917    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4918   ){
4919     return eRet;
4920   }
4921   assert( !ExprHasProperty(pFunc, EP_IntValue) );
4922   zFunc = pFunc->u.zToken;
4923   if( sqlite3StrICmp(zFunc, "min")==0 ){
4924     eRet = WHERE_ORDERBY_MIN;
4925     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4926       sortFlags = KEYINFO_ORDER_BIGNULL;
4927     }
4928   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4929     eRet = WHERE_ORDERBY_MAX;
4930     sortFlags = KEYINFO_ORDER_DESC;
4931   }else{
4932     return eRet;
4933   }
4934   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4935   assert( pOrderBy!=0 || db->mallocFailed );
4936   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4937   return eRet;
4938 }
4939 
4940 /*
4941 ** The select statement passed as the first argument is an aggregate query.
4942 ** The second argument is the associated aggregate-info object. This
4943 ** function tests if the SELECT is of the form:
4944 **
4945 **   SELECT count(*) FROM <tbl>
4946 **
4947 ** where table is a database table, not a sub-select or view. If the query
4948 ** does match this pattern, then a pointer to the Table object representing
4949 ** <tbl> is returned. Otherwise, 0 is returned.
4950 */
4951 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4952   Table *pTab;
4953   Expr *pExpr;
4954 
4955   assert( !p->pGroupBy );
4956 
4957   if( p->pWhere || p->pEList->nExpr!=1
4958    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4959   ){
4960     return 0;
4961   }
4962   pTab = p->pSrc->a[0].pTab;
4963   pExpr = p->pEList->a[0].pExpr;
4964   assert( pTab && !IsView(pTab) && pExpr );
4965 
4966   if( IsVirtual(pTab) ) return 0;
4967   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4968   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4969   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4970   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4971 
4972   return pTab;
4973 }
4974 
4975 /*
4976 ** If the source-list item passed as an argument was augmented with an
4977 ** INDEXED BY clause, then try to locate the specified index. If there
4978 ** was such a clause and the named index cannot be found, return
4979 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4980 ** pFrom->pIndex and return SQLITE_OK.
4981 */
4982 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4983   Table *pTab = pFrom->pTab;
4984   char *zIndexedBy = pFrom->u1.zIndexedBy;
4985   Index *pIdx;
4986   assert( pTab!=0 );
4987   assert( pFrom->fg.isIndexedBy!=0 );
4988 
4989   for(pIdx=pTab->pIndex;
4990       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4991       pIdx=pIdx->pNext
4992   );
4993   if( !pIdx ){
4994     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4995     pParse->checkSchema = 1;
4996     return SQLITE_ERROR;
4997   }
4998   assert( pFrom->fg.isCte==0 );
4999   pFrom->u2.pIBIndex = pIdx;
5000   return SQLITE_OK;
5001 }
5002 
5003 /*
5004 ** Detect compound SELECT statements that use an ORDER BY clause with
5005 ** an alternative collating sequence.
5006 **
5007 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5008 **
5009 ** These are rewritten as a subquery:
5010 **
5011 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5012 **     ORDER BY ... COLLATE ...
5013 **
5014 ** This transformation is necessary because the multiSelectOrderBy() routine
5015 ** above that generates the code for a compound SELECT with an ORDER BY clause
5016 ** uses a merge algorithm that requires the same collating sequence on the
5017 ** result columns as on the ORDER BY clause.  See ticket
5018 ** http://www.sqlite.org/src/info/6709574d2a
5019 **
5020 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5021 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5022 ** there are COLLATE terms in the ORDER BY.
5023 */
5024 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5025   int i;
5026   Select *pNew;
5027   Select *pX;
5028   sqlite3 *db;
5029   struct ExprList_item *a;
5030   SrcList *pNewSrc;
5031   Parse *pParse;
5032   Token dummy;
5033 
5034   if( p->pPrior==0 ) return WRC_Continue;
5035   if( p->pOrderBy==0 ) return WRC_Continue;
5036   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5037   if( pX==0 ) return WRC_Continue;
5038   a = p->pOrderBy->a;
5039 #ifndef SQLITE_OMIT_WINDOWFUNC
5040   /* If iOrderByCol is already non-zero, then it has already been matched
5041   ** to a result column of the SELECT statement. This occurs when the
5042   ** SELECT is rewritten for window-functions processing and then passed
5043   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5044   ** by this function is not required in this case. */
5045   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5046 #endif
5047   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5048     if( a[i].pExpr->flags & EP_Collate ) break;
5049   }
5050   if( i<0 ) return WRC_Continue;
5051 
5052   /* If we reach this point, that means the transformation is required. */
5053 
5054   pParse = pWalker->pParse;
5055   db = pParse->db;
5056   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5057   if( pNew==0 ) return WRC_Abort;
5058   memset(&dummy, 0, sizeof(dummy));
5059   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5060   if( pNewSrc==0 ) return WRC_Abort;
5061   *pNew = *p;
5062   p->pSrc = pNewSrc;
5063   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5064   p->op = TK_SELECT;
5065   p->pWhere = 0;
5066   pNew->pGroupBy = 0;
5067   pNew->pHaving = 0;
5068   pNew->pOrderBy = 0;
5069   p->pPrior = 0;
5070   p->pNext = 0;
5071   p->pWith = 0;
5072 #ifndef SQLITE_OMIT_WINDOWFUNC
5073   p->pWinDefn = 0;
5074 #endif
5075   p->selFlags &= ~SF_Compound;
5076   assert( (p->selFlags & SF_Converted)==0 );
5077   p->selFlags |= SF_Converted;
5078   assert( pNew->pPrior!=0 );
5079   pNew->pPrior->pNext = pNew;
5080   pNew->pLimit = 0;
5081   return WRC_Continue;
5082 }
5083 
5084 /*
5085 ** Check to see if the FROM clause term pFrom has table-valued function
5086 ** arguments.  If it does, leave an error message in pParse and return
5087 ** non-zero, since pFrom is not allowed to be a table-valued function.
5088 */
5089 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5090   if( pFrom->fg.isTabFunc ){
5091     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5092     return 1;
5093   }
5094   return 0;
5095 }
5096 
5097 #ifndef SQLITE_OMIT_CTE
5098 /*
5099 ** Argument pWith (which may be NULL) points to a linked list of nested
5100 ** WITH contexts, from inner to outermost. If the table identified by
5101 ** FROM clause element pItem is really a common-table-expression (CTE)
5102 ** then return a pointer to the CTE definition for that table. Otherwise
5103 ** return NULL.
5104 **
5105 ** If a non-NULL value is returned, set *ppContext to point to the With
5106 ** object that the returned CTE belongs to.
5107 */
5108 static struct Cte *searchWith(
5109   With *pWith,                    /* Current innermost WITH clause */
5110   SrcItem *pItem,                 /* FROM clause element to resolve */
5111   With **ppContext                /* OUT: WITH clause return value belongs to */
5112 ){
5113   const char *zName = pItem->zName;
5114   With *p;
5115   assert( pItem->zDatabase==0 );
5116   assert( zName!=0 );
5117   for(p=pWith; p; p=p->pOuter){
5118     int i;
5119     for(i=0; i<p->nCte; i++){
5120       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5121         *ppContext = p;
5122         return &p->a[i];
5123       }
5124     }
5125     if( p->bView ) break;
5126   }
5127   return 0;
5128 }
5129 
5130 /* The code generator maintains a stack of active WITH clauses
5131 ** with the inner-most WITH clause being at the top of the stack.
5132 **
5133 ** This routine pushes the WITH clause passed as the second argument
5134 ** onto the top of the stack. If argument bFree is true, then this
5135 ** WITH clause will never be popped from the stack but should instead
5136 ** be freed along with the Parse object. In other cases, when
5137 ** bFree==0, the With object will be freed along with the SELECT
5138 ** statement with which it is associated.
5139 **
5140 ** This routine returns a copy of pWith.  Or, if bFree is true and
5141 ** the pWith object is destroyed immediately due to an OOM condition,
5142 ** then this routine return NULL.
5143 **
5144 ** If bFree is true, do not continue to use the pWith pointer after
5145 ** calling this routine,  Instead, use only the return value.
5146 */
5147 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5148   if( pWith ){
5149     if( bFree ){
5150       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5151                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5152                       pWith);
5153       if( pWith==0 ) return 0;
5154     }
5155     if( pParse->nErr==0 ){
5156       assert( pParse->pWith!=pWith );
5157       pWith->pOuter = pParse->pWith;
5158       pParse->pWith = pWith;
5159     }
5160   }
5161   return pWith;
5162 }
5163 
5164 /*
5165 ** This function checks if argument pFrom refers to a CTE declared by
5166 ** a WITH clause on the stack currently maintained by the parser (on the
5167 ** pParse->pWith linked list).  And if currently processing a CTE
5168 ** CTE expression, through routine checks to see if the reference is
5169 ** a recursive reference to the CTE.
5170 **
5171 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5172 ** and other fields are populated accordingly.
5173 **
5174 ** Return 0 if no match is found.
5175 ** Return 1 if a match is found.
5176 ** Return 2 if an error condition is detected.
5177 */
5178 static int resolveFromTermToCte(
5179   Parse *pParse,                  /* The parsing context */
5180   Walker *pWalker,                /* Current tree walker */
5181   SrcItem *pFrom                  /* The FROM clause term to check */
5182 ){
5183   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5184   With *pWith;             /* The matching WITH */
5185 
5186   assert( pFrom->pTab==0 );
5187   if( pParse->pWith==0 ){
5188     /* There are no WITH clauses in the stack.  No match is possible */
5189     return 0;
5190   }
5191   if( pParse->nErr ){
5192     /* Prior errors might have left pParse->pWith in a goofy state, so
5193     ** go no further. */
5194     return 0;
5195   }
5196   if( pFrom->zDatabase!=0 ){
5197     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5198     ** it cannot possibly be a CTE reference. */
5199     return 0;
5200   }
5201   if( pFrom->fg.notCte ){
5202     /* The FROM term is specifically excluded from matching a CTE.
5203     **   (1)  It is part of a trigger that used to have zDatabase but had
5204     **        zDatabase removed by sqlite3FixTriggerStep().
5205     **   (2)  This is the first term in the FROM clause of an UPDATE.
5206     */
5207     return 0;
5208   }
5209   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5210   if( pCte ){
5211     sqlite3 *db = pParse->db;
5212     Table *pTab;
5213     ExprList *pEList;
5214     Select *pSel;
5215     Select *pLeft;                /* Left-most SELECT statement */
5216     Select *pRecTerm;             /* Left-most recursive term */
5217     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5218     With *pSavedWith;             /* Initial value of pParse->pWith */
5219     int iRecTab = -1;             /* Cursor for recursive table */
5220     CteUse *pCteUse;
5221 
5222     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5223     ** recursive reference to CTE pCte. Leave an error in pParse and return
5224     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5225     ** In this case, proceed.  */
5226     if( pCte->zCteErr ){
5227       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5228       return 2;
5229     }
5230     if( cannotBeFunction(pParse, pFrom) ) return 2;
5231 
5232     assert( pFrom->pTab==0 );
5233     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5234     if( pTab==0 ) return 2;
5235     pCteUse = pCte->pUse;
5236     if( pCteUse==0 ){
5237       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5238       if( pCteUse==0
5239        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5240       ){
5241         sqlite3DbFree(db, pTab);
5242         return 2;
5243       }
5244       pCteUse->eM10d = pCte->eM10d;
5245     }
5246     pFrom->pTab = pTab;
5247     pTab->nTabRef = 1;
5248     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5249     pTab->iPKey = -1;
5250     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5251     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5252     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5253     if( db->mallocFailed ) return 2;
5254     pFrom->pSelect->selFlags |= SF_CopyCte;
5255     assert( pFrom->pSelect );
5256     if( pFrom->fg.isIndexedBy ){
5257       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5258       return 2;
5259     }
5260     pFrom->fg.isCte = 1;
5261     pFrom->u2.pCteUse = pCteUse;
5262     pCteUse->nUse++;
5263     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5264       pCteUse->eM10d = M10d_Yes;
5265     }
5266 
5267     /* Check if this is a recursive CTE. */
5268     pRecTerm = pSel = pFrom->pSelect;
5269     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5270     while( bMayRecursive && pRecTerm->op==pSel->op ){
5271       int i;
5272       SrcList *pSrc = pRecTerm->pSrc;
5273       assert( pRecTerm->pPrior!=0 );
5274       for(i=0; i<pSrc->nSrc; i++){
5275         SrcItem *pItem = &pSrc->a[i];
5276         if( pItem->zDatabase==0
5277          && pItem->zName!=0
5278          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5279         ){
5280           pItem->pTab = pTab;
5281           pTab->nTabRef++;
5282           pItem->fg.isRecursive = 1;
5283           if( pRecTerm->selFlags & SF_Recursive ){
5284             sqlite3ErrorMsg(pParse,
5285                "multiple references to recursive table: %s", pCte->zName
5286             );
5287             return 2;
5288           }
5289           pRecTerm->selFlags |= SF_Recursive;
5290           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5291           pItem->iCursor = iRecTab;
5292         }
5293       }
5294       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5295       pRecTerm = pRecTerm->pPrior;
5296     }
5297 
5298     pCte->zCteErr = "circular reference: %s";
5299     pSavedWith = pParse->pWith;
5300     pParse->pWith = pWith;
5301     if( pSel->selFlags & SF_Recursive ){
5302       int rc;
5303       assert( pRecTerm!=0 );
5304       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5305       assert( pRecTerm->pNext!=0 );
5306       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5307       assert( pRecTerm->pWith==0 );
5308       pRecTerm->pWith = pSel->pWith;
5309       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5310       pRecTerm->pWith = 0;
5311       if( rc ){
5312         pParse->pWith = pSavedWith;
5313         return 2;
5314       }
5315     }else{
5316       if( sqlite3WalkSelect(pWalker, pSel) ){
5317         pParse->pWith = pSavedWith;
5318         return 2;
5319       }
5320     }
5321     pParse->pWith = pWith;
5322 
5323     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5324     pEList = pLeft->pEList;
5325     if( pCte->pCols ){
5326       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5327         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5328             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5329         );
5330         pParse->pWith = pSavedWith;
5331         return 2;
5332       }
5333       pEList = pCte->pCols;
5334     }
5335 
5336     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5337     if( bMayRecursive ){
5338       if( pSel->selFlags & SF_Recursive ){
5339         pCte->zCteErr = "multiple recursive references: %s";
5340       }else{
5341         pCte->zCteErr = "recursive reference in a subquery: %s";
5342       }
5343       sqlite3WalkSelect(pWalker, pSel);
5344     }
5345     pCte->zCteErr = 0;
5346     pParse->pWith = pSavedWith;
5347     return 1;  /* Success */
5348   }
5349   return 0;  /* No match */
5350 }
5351 #endif
5352 
5353 #ifndef SQLITE_OMIT_CTE
5354 /*
5355 ** If the SELECT passed as the second argument has an associated WITH
5356 ** clause, pop it from the stack stored as part of the Parse object.
5357 **
5358 ** This function is used as the xSelectCallback2() callback by
5359 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5360 ** names and other FROM clause elements.
5361 */
5362 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5363   Parse *pParse = pWalker->pParse;
5364   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5365     With *pWith = findRightmost(p)->pWith;
5366     if( pWith!=0 ){
5367       assert( pParse->pWith==pWith || pParse->nErr );
5368       pParse->pWith = pWith->pOuter;
5369     }
5370   }
5371 }
5372 #endif
5373 
5374 /*
5375 ** The SrcList_item structure passed as the second argument represents a
5376 ** sub-query in the FROM clause of a SELECT statement. This function
5377 ** allocates and populates the SrcList_item.pTab object. If successful,
5378 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5379 ** SQLITE_NOMEM.
5380 */
5381 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5382   Select *pSel = pFrom->pSelect;
5383   Table *pTab;
5384 
5385   assert( pSel );
5386   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5387   if( pTab==0 ) return SQLITE_NOMEM;
5388   pTab->nTabRef = 1;
5389   if( pFrom->zAlias ){
5390     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5391   }else{
5392     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5393   }
5394   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5395   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5396   pTab->iPKey = -1;
5397   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5398 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5399   /* The usual case - do not allow ROWID on a subquery */
5400   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5401 #else
5402   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5403 #endif
5404 
5405 
5406   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5407 }
5408 
5409 /*
5410 ** This routine is a Walker callback for "expanding" a SELECT statement.
5411 ** "Expanding" means to do the following:
5412 **
5413 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5414 **         element of the FROM clause.
5415 **
5416 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5417 **         defines FROM clause.  When views appear in the FROM clause,
5418 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5419 **         that implements the view.  A copy is made of the view's SELECT
5420 **         statement so that we can freely modify or delete that statement
5421 **         without worrying about messing up the persistent representation
5422 **         of the view.
5423 **
5424 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5425 **         on joins and the ON and USING clause of joins.
5426 **
5427 **    (4)  Scan the list of columns in the result set (pEList) looking
5428 **         for instances of the "*" operator or the TABLE.* operator.
5429 **         If found, expand each "*" to be every column in every table
5430 **         and TABLE.* to be every column in TABLE.
5431 **
5432 */
5433 static int selectExpander(Walker *pWalker, Select *p){
5434   Parse *pParse = pWalker->pParse;
5435   int i, j, k, rc;
5436   SrcList *pTabList;
5437   ExprList *pEList;
5438   SrcItem *pFrom;
5439   sqlite3 *db = pParse->db;
5440   Expr *pE, *pRight, *pExpr;
5441   u16 selFlags = p->selFlags;
5442   u32 elistFlags = 0;
5443 
5444   p->selFlags |= SF_Expanded;
5445   if( db->mallocFailed  ){
5446     return WRC_Abort;
5447   }
5448   assert( p->pSrc!=0 );
5449   if( (selFlags & SF_Expanded)!=0 ){
5450     return WRC_Prune;
5451   }
5452   if( pWalker->eCode ){
5453     /* Renumber selId because it has been copied from a view */
5454     p->selId = ++pParse->nSelect;
5455   }
5456   pTabList = p->pSrc;
5457   pEList = p->pEList;
5458   if( pParse->pWith && (p->selFlags & SF_View) ){
5459     if( p->pWith==0 ){
5460       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5461       if( p->pWith==0 ){
5462         return WRC_Abort;
5463       }
5464     }
5465     p->pWith->bView = 1;
5466   }
5467   sqlite3WithPush(pParse, p->pWith, 0);
5468 
5469   /* Make sure cursor numbers have been assigned to all entries in
5470   ** the FROM clause of the SELECT statement.
5471   */
5472   sqlite3SrcListAssignCursors(pParse, pTabList);
5473 
5474   /* Look up every table named in the FROM clause of the select.  If
5475   ** an entry of the FROM clause is a subquery instead of a table or view,
5476   ** then create a transient table structure to describe the subquery.
5477   */
5478   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5479     Table *pTab;
5480     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5481     if( pFrom->pTab ) continue;
5482     assert( pFrom->fg.isRecursive==0 );
5483     if( pFrom->zName==0 ){
5484 #ifndef SQLITE_OMIT_SUBQUERY
5485       Select *pSel = pFrom->pSelect;
5486       /* A sub-query in the FROM clause of a SELECT */
5487       assert( pSel!=0 );
5488       assert( pFrom->pTab==0 );
5489       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5490       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5491 #endif
5492 #ifndef SQLITE_OMIT_CTE
5493     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5494       if( rc>1 ) return WRC_Abort;
5495       pTab = pFrom->pTab;
5496       assert( pTab!=0 );
5497 #endif
5498     }else{
5499       /* An ordinary table or view name in the FROM clause */
5500       assert( pFrom->pTab==0 );
5501       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5502       if( pTab==0 ) return WRC_Abort;
5503       if( pTab->nTabRef>=0xffff ){
5504         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5505            pTab->zName);
5506         pFrom->pTab = 0;
5507         return WRC_Abort;
5508       }
5509       pTab->nTabRef++;
5510       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5511         return WRC_Abort;
5512       }
5513 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5514       if( !IsOrdinaryTable(pTab) ){
5515         i16 nCol;
5516         u8 eCodeOrig = pWalker->eCode;
5517         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5518         assert( pFrom->pSelect==0 );
5519         if( IsView(pTab) ){
5520           if( (db->flags & SQLITE_EnableView)==0
5521            && pTab->pSchema!=db->aDb[1].pSchema
5522           ){
5523             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5524               pTab->zName);
5525           }
5526           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5527         }
5528 #ifndef SQLITE_OMIT_VIRTUALTABLE
5529         else if( ALWAYS(IsVirtual(pTab))
5530          && pFrom->fg.fromDDL
5531          && ALWAYS(pTab->u.vtab.p!=0)
5532          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5533         ){
5534           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5535                                   pTab->zName);
5536         }
5537         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5538 #endif
5539         nCol = pTab->nCol;
5540         pTab->nCol = -1;
5541         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5542         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5543         pWalker->eCode = eCodeOrig;
5544         pTab->nCol = nCol;
5545       }
5546 #endif
5547     }
5548 
5549     /* Locate the index named by the INDEXED BY clause, if any. */
5550     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5551       return WRC_Abort;
5552     }
5553   }
5554 
5555   /* Process NATURAL keywords, and ON and USING clauses of joins.
5556   */
5557   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5558     return WRC_Abort;
5559   }
5560 
5561   /* For every "*" that occurs in the column list, insert the names of
5562   ** all columns in all tables.  And for every TABLE.* insert the names
5563   ** of all columns in TABLE.  The parser inserted a special expression
5564   ** with the TK_ASTERISK operator for each "*" that it found in the column
5565   ** list.  The following code just has to locate the TK_ASTERISK
5566   ** expressions and expand each one to the list of all columns in
5567   ** all tables.
5568   **
5569   ** The first loop just checks to see if there are any "*" operators
5570   ** that need expanding.
5571   */
5572   for(k=0; k<pEList->nExpr; k++){
5573     pE = pEList->a[k].pExpr;
5574     if( pE->op==TK_ASTERISK ) break;
5575     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5576     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5577     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5578     elistFlags |= pE->flags;
5579   }
5580   if( k<pEList->nExpr ){
5581     /*
5582     ** If we get here it means the result set contains one or more "*"
5583     ** operators that need to be expanded.  Loop through each expression
5584     ** in the result set and expand them one by one.
5585     */
5586     struct ExprList_item *a = pEList->a;
5587     ExprList *pNew = 0;
5588     int flags = pParse->db->flags;
5589     int longNames = (flags & SQLITE_FullColNames)!=0
5590                       && (flags & SQLITE_ShortColNames)==0;
5591 
5592     for(k=0; k<pEList->nExpr; k++){
5593       pE = a[k].pExpr;
5594       elistFlags |= pE->flags;
5595       pRight = pE->pRight;
5596       assert( pE->op!=TK_DOT || pRight!=0 );
5597       if( pE->op!=TK_ASTERISK
5598        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5599       ){
5600         /* This particular expression does not need to be expanded.
5601         */
5602         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5603         if( pNew ){
5604           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5605           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5606           a[k].zEName = 0;
5607         }
5608         a[k].pExpr = 0;
5609       }else{
5610         /* This expression is a "*" or a "TABLE.*" and needs to be
5611         ** expanded. */
5612         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5613         char *zTName = 0;       /* text of name of TABLE */
5614         if( pE->op==TK_DOT ){
5615           assert( pE->pLeft!=0 );
5616           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5617           zTName = pE->pLeft->u.zToken;
5618         }
5619         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5620           Table *pTab = pFrom->pTab;
5621           Select *pSub = pFrom->pSelect;
5622           char *zTabName = pFrom->zAlias;
5623           const char *zSchemaName = 0;
5624           int iDb;
5625           if( zTabName==0 ){
5626             zTabName = pTab->zName;
5627           }
5628           if( db->mallocFailed ) break;
5629           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5630             pSub = 0;
5631             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5632               continue;
5633             }
5634             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5635             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5636           }
5637           for(j=0; j<pTab->nCol; j++){
5638             char *zName = pTab->aCol[j].zCnName;
5639             char *zColname;  /* The computed column name */
5640             char *zToFree;   /* Malloced string that needs to be freed */
5641             Token sColname;  /* Computed column name as a token */
5642 
5643             assert( zName );
5644             if( zTName && pSub
5645              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5646             ){
5647               continue;
5648             }
5649 
5650             /* If a column is marked as 'hidden', omit it from the expanded
5651             ** result-set list unless the SELECT has the SF_IncludeHidden
5652             ** bit set.
5653             */
5654             if( (p->selFlags & SF_IncludeHidden)==0
5655              && IsHiddenColumn(&pTab->aCol[j])
5656             ){
5657               continue;
5658             }
5659             tableSeen = 1;
5660 
5661             if( i>0 && zTName==0 ){
5662               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5663                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5664               ){
5665                 /* In a NATURAL join, omit the join columns from the
5666                 ** table to the right of the join */
5667                 continue;
5668               }
5669               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5670                 /* In a join with a USING clause, omit columns in the
5671                 ** using clause from the table on the right. */
5672                 continue;
5673               }
5674             }
5675             pRight = sqlite3Expr(db, TK_ID, zName);
5676             zColname = zName;
5677             zToFree = 0;
5678             if( longNames || pTabList->nSrc>1 ){
5679               Expr *pLeft;
5680               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5681               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5682               if( zSchemaName ){
5683                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5684                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5685               }
5686               if( longNames ){
5687                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5688                 zToFree = zColname;
5689               }
5690             }else{
5691               pExpr = pRight;
5692             }
5693             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5694             sqlite3TokenInit(&sColname, zColname);
5695             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5696             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5697               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5698               sqlite3DbFree(db, pX->zEName);
5699               if( pSub ){
5700                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5701                 testcase( pX->zEName==0 );
5702               }else{
5703                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5704                                            zSchemaName, zTabName, zColname);
5705                 testcase( pX->zEName==0 );
5706               }
5707               pX->eEName = ENAME_TAB;
5708             }
5709             sqlite3DbFree(db, zToFree);
5710           }
5711         }
5712         if( !tableSeen ){
5713           if( zTName ){
5714             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5715           }else{
5716             sqlite3ErrorMsg(pParse, "no tables specified");
5717           }
5718         }
5719       }
5720     }
5721     sqlite3ExprListDelete(db, pEList);
5722     p->pEList = pNew;
5723   }
5724   if( p->pEList ){
5725     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5726       sqlite3ErrorMsg(pParse, "too many columns in result set");
5727       return WRC_Abort;
5728     }
5729     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5730       p->selFlags |= SF_ComplexResult;
5731     }
5732   }
5733   return WRC_Continue;
5734 }
5735 
5736 #if SQLITE_DEBUG
5737 /*
5738 ** Always assert.  This xSelectCallback2 implementation proves that the
5739 ** xSelectCallback2 is never invoked.
5740 */
5741 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5742   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5743   assert( 0 );
5744 }
5745 #endif
5746 /*
5747 ** This routine "expands" a SELECT statement and all of its subqueries.
5748 ** For additional information on what it means to "expand" a SELECT
5749 ** statement, see the comment on the selectExpand worker callback above.
5750 **
5751 ** Expanding a SELECT statement is the first step in processing a
5752 ** SELECT statement.  The SELECT statement must be expanded before
5753 ** name resolution is performed.
5754 **
5755 ** If anything goes wrong, an error message is written into pParse.
5756 ** The calling function can detect the problem by looking at pParse->nErr
5757 ** and/or pParse->db->mallocFailed.
5758 */
5759 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5760   Walker w;
5761   w.xExprCallback = sqlite3ExprWalkNoop;
5762   w.pParse = pParse;
5763   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5764     w.xSelectCallback = convertCompoundSelectToSubquery;
5765     w.xSelectCallback2 = 0;
5766     sqlite3WalkSelect(&w, pSelect);
5767   }
5768   w.xSelectCallback = selectExpander;
5769   w.xSelectCallback2 = sqlite3SelectPopWith;
5770   w.eCode = 0;
5771   sqlite3WalkSelect(&w, pSelect);
5772 }
5773 
5774 
5775 #ifndef SQLITE_OMIT_SUBQUERY
5776 /*
5777 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5778 ** interface.
5779 **
5780 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5781 ** information to the Table structure that represents the result set
5782 ** of that subquery.
5783 **
5784 ** The Table structure that represents the result set was constructed
5785 ** by selectExpander() but the type and collation information was omitted
5786 ** at that point because identifiers had not yet been resolved.  This
5787 ** routine is called after identifier resolution.
5788 */
5789 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5790   Parse *pParse;
5791   int i;
5792   SrcList *pTabList;
5793   SrcItem *pFrom;
5794 
5795   assert( p->selFlags & SF_Resolved );
5796   if( p->selFlags & SF_HasTypeInfo ) return;
5797   p->selFlags |= SF_HasTypeInfo;
5798   pParse = pWalker->pParse;
5799   pTabList = p->pSrc;
5800   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5801     Table *pTab = pFrom->pTab;
5802     assert( pTab!=0 );
5803     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5804       /* A sub-query in the FROM clause of a SELECT */
5805       Select *pSel = pFrom->pSelect;
5806       if( pSel ){
5807         while( pSel->pPrior ) pSel = pSel->pPrior;
5808         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5809                                                SQLITE_AFF_NONE);
5810       }
5811     }
5812   }
5813 }
5814 #endif
5815 
5816 
5817 /*
5818 ** This routine adds datatype and collating sequence information to
5819 ** the Table structures of all FROM-clause subqueries in a
5820 ** SELECT statement.
5821 **
5822 ** Use this routine after name resolution.
5823 */
5824 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5825 #ifndef SQLITE_OMIT_SUBQUERY
5826   Walker w;
5827   w.xSelectCallback = sqlite3SelectWalkNoop;
5828   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5829   w.xExprCallback = sqlite3ExprWalkNoop;
5830   w.pParse = pParse;
5831   sqlite3WalkSelect(&w, pSelect);
5832 #endif
5833 }
5834 
5835 
5836 /*
5837 ** This routine sets up a SELECT statement for processing.  The
5838 ** following is accomplished:
5839 **
5840 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5841 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5842 **     *  ON and USING clauses are shifted into WHERE statements
5843 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5844 **     *  Identifiers in expression are matched to tables.
5845 **
5846 ** This routine acts recursively on all subqueries within the SELECT.
5847 */
5848 void sqlite3SelectPrep(
5849   Parse *pParse,         /* The parser context */
5850   Select *p,             /* The SELECT statement being coded. */
5851   NameContext *pOuterNC  /* Name context for container */
5852 ){
5853   assert( p!=0 || pParse->db->mallocFailed );
5854   if( pParse->db->mallocFailed ) return;
5855   if( p->selFlags & SF_HasTypeInfo ) return;
5856   sqlite3SelectExpand(pParse, p);
5857   if( pParse->nErr || pParse->db->mallocFailed ) return;
5858   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5859   if( pParse->nErr || pParse->db->mallocFailed ) return;
5860   sqlite3SelectAddTypeInfo(pParse, p);
5861 }
5862 
5863 /*
5864 ** Reset the aggregate accumulator.
5865 **
5866 ** The aggregate accumulator is a set of memory cells that hold
5867 ** intermediate results while calculating an aggregate.  This
5868 ** routine generates code that stores NULLs in all of those memory
5869 ** cells.
5870 */
5871 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5872   Vdbe *v = pParse->pVdbe;
5873   int i;
5874   struct AggInfo_func *pFunc;
5875   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5876   if( nReg==0 ) return;
5877   if( pParse->nErr || pParse->db->mallocFailed ) return;
5878 #ifdef SQLITE_DEBUG
5879   /* Verify that all AggInfo registers are within the range specified by
5880   ** AggInfo.mnReg..AggInfo.mxReg */
5881   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5882   for(i=0; i<pAggInfo->nColumn; i++){
5883     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5884          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5885   }
5886   for(i=0; i<pAggInfo->nFunc; i++){
5887     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5888          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5889   }
5890 #endif
5891   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5892   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5893     if( pFunc->iDistinct>=0 ){
5894       Expr *pE = pFunc->pFExpr;
5895       assert( ExprUseXList(pE) );
5896       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5897         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5898            "argument");
5899         pFunc->iDistinct = -1;
5900       }else{
5901         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5902         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5903             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5904         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5905                           pFunc->pFunc->zName));
5906       }
5907     }
5908   }
5909 }
5910 
5911 /*
5912 ** Invoke the OP_AggFinalize opcode for every aggregate function
5913 ** in the AggInfo structure.
5914 */
5915 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5916   Vdbe *v = pParse->pVdbe;
5917   int i;
5918   struct AggInfo_func *pF;
5919   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5920     ExprList *pList;
5921     assert( ExprUseXList(pF->pFExpr) );
5922     pList = pF->pFExpr->x.pList;
5923     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5924     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5925   }
5926 }
5927 
5928 
5929 /*
5930 ** Update the accumulator memory cells for an aggregate based on
5931 ** the current cursor position.
5932 **
5933 ** If regAcc is non-zero and there are no min() or max() aggregates
5934 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5935 ** registers if register regAcc contains 0. The caller will take care
5936 ** of setting and clearing regAcc.
5937 */
5938 static void updateAccumulator(
5939   Parse *pParse,
5940   int regAcc,
5941   AggInfo *pAggInfo,
5942   int eDistinctType
5943 ){
5944   Vdbe *v = pParse->pVdbe;
5945   int i;
5946   int regHit = 0;
5947   int addrHitTest = 0;
5948   struct AggInfo_func *pF;
5949   struct AggInfo_col *pC;
5950 
5951   pAggInfo->directMode = 1;
5952   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5953     int nArg;
5954     int addrNext = 0;
5955     int regAgg;
5956     ExprList *pList;
5957     assert( ExprUseXList(pF->pFExpr) );
5958     assert( !IsWindowFunc(pF->pFExpr) );
5959     pList = pF->pFExpr->x.pList;
5960     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5961       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5962       if( pAggInfo->nAccumulator
5963        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5964        && regAcc
5965       ){
5966         /* If regAcc==0, there there exists some min() or max() function
5967         ** without a FILTER clause that will ensure the magnet registers
5968         ** are populated. */
5969         if( regHit==0 ) regHit = ++pParse->nMem;
5970         /* If this is the first row of the group (regAcc contains 0), clear the
5971         ** "magnet" register regHit so that the accumulator registers
5972         ** are populated if the FILTER clause jumps over the the
5973         ** invocation of min() or max() altogether. Or, if this is not
5974         ** the first row (regAcc contains 1), set the magnet register so that
5975         ** the accumulators are not populated unless the min()/max() is invoked
5976         ** and indicates that they should be.  */
5977         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5978       }
5979       addrNext = sqlite3VdbeMakeLabel(pParse);
5980       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5981     }
5982     if( pList ){
5983       nArg = pList->nExpr;
5984       regAgg = sqlite3GetTempRange(pParse, nArg);
5985       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5986     }else{
5987       nArg = 0;
5988       regAgg = 0;
5989     }
5990     if( pF->iDistinct>=0 && pList ){
5991       if( addrNext==0 ){
5992         addrNext = sqlite3VdbeMakeLabel(pParse);
5993       }
5994       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5995           pF->iDistinct, addrNext, pList, regAgg);
5996     }
5997     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5998       CollSeq *pColl = 0;
5999       struct ExprList_item *pItem;
6000       int j;
6001       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6002       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6003         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6004       }
6005       if( !pColl ){
6006         pColl = pParse->db->pDfltColl;
6007       }
6008       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6009       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6010     }
6011     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6012     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6013     sqlite3VdbeChangeP5(v, (u8)nArg);
6014     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6015     if( addrNext ){
6016       sqlite3VdbeResolveLabel(v, addrNext);
6017     }
6018   }
6019   if( regHit==0 && pAggInfo->nAccumulator ){
6020     regHit = regAcc;
6021   }
6022   if( regHit ){
6023     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6024   }
6025   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6026     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6027   }
6028 
6029   pAggInfo->directMode = 0;
6030   if( addrHitTest ){
6031     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6032   }
6033 }
6034 
6035 /*
6036 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6037 ** count(*) query ("SELECT count(*) FROM pTab").
6038 */
6039 #ifndef SQLITE_OMIT_EXPLAIN
6040 static void explainSimpleCount(
6041   Parse *pParse,                  /* Parse context */
6042   Table *pTab,                    /* Table being queried */
6043   Index *pIdx                     /* Index used to optimize scan, or NULL */
6044 ){
6045   if( pParse->explain==2 ){
6046     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6047     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6048         pTab->zName,
6049         bCover ? " USING COVERING INDEX " : "",
6050         bCover ? pIdx->zName : ""
6051     );
6052   }
6053 }
6054 #else
6055 # define explainSimpleCount(a,b,c)
6056 #endif
6057 
6058 /*
6059 ** sqlite3WalkExpr() callback used by havingToWhere().
6060 **
6061 ** If the node passed to the callback is a TK_AND node, return
6062 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6063 **
6064 ** Otherwise, return WRC_Prune. In this case, also check if the
6065 ** sub-expression matches the criteria for being moved to the WHERE
6066 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6067 ** within the HAVING expression with a constant "1".
6068 */
6069 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6070   if( pExpr->op!=TK_AND ){
6071     Select *pS = pWalker->u.pSelect;
6072     /* This routine is called before the HAVING clause of the current
6073     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6074     ** here, it indicates that the expression is a correlated reference to a
6075     ** column from an outer aggregate query, or an aggregate function that
6076     ** belongs to an outer query. Do not move the expression to the WHERE
6077     ** clause in this obscure case, as doing so may corrupt the outer Select
6078     ** statements AggInfo structure.  */
6079     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6080      && ExprAlwaysFalse(pExpr)==0
6081      && pExpr->pAggInfo==0
6082     ){
6083       sqlite3 *db = pWalker->pParse->db;
6084       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6085       if( pNew ){
6086         Expr *pWhere = pS->pWhere;
6087         SWAP(Expr, *pNew, *pExpr);
6088         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6089         pS->pWhere = pNew;
6090         pWalker->eCode = 1;
6091       }
6092     }
6093     return WRC_Prune;
6094   }
6095   return WRC_Continue;
6096 }
6097 
6098 /*
6099 ** Transfer eligible terms from the HAVING clause of a query, which is
6100 ** processed after grouping, to the WHERE clause, which is processed before
6101 ** grouping. For example, the query:
6102 **
6103 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6104 **
6105 ** can be rewritten as:
6106 **
6107 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6108 **
6109 ** A term of the HAVING expression is eligible for transfer if it consists
6110 ** entirely of constants and expressions that are also GROUP BY terms that
6111 ** use the "BINARY" collation sequence.
6112 */
6113 static void havingToWhere(Parse *pParse, Select *p){
6114   Walker sWalker;
6115   memset(&sWalker, 0, sizeof(sWalker));
6116   sWalker.pParse = pParse;
6117   sWalker.xExprCallback = havingToWhereExprCb;
6118   sWalker.u.pSelect = p;
6119   sqlite3WalkExpr(&sWalker, p->pHaving);
6120 #if SELECTTRACE_ENABLED
6121   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6122     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6123     sqlite3TreeViewSelect(0, p, 0);
6124   }
6125 #endif
6126 }
6127 
6128 /*
6129 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6130 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6131 ** then return 0.
6132 */
6133 static SrcItem *isSelfJoinView(
6134   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6135   SrcItem *pThis               /* Search for prior reference to this subquery */
6136 ){
6137   SrcItem *pItem;
6138   assert( pThis->pSelect!=0 );
6139   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6140   for(pItem = pTabList->a; pItem<pThis; pItem++){
6141     Select *pS1;
6142     if( pItem->pSelect==0 ) continue;
6143     if( pItem->fg.viaCoroutine ) continue;
6144     if( pItem->zName==0 ) continue;
6145     assert( pItem->pTab!=0 );
6146     assert( pThis->pTab!=0 );
6147     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6148     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6149     pS1 = pItem->pSelect;
6150     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6151       /* The query flattener left two different CTE tables with identical
6152       ** names in the same FROM clause. */
6153       continue;
6154     }
6155     if( pItem->pSelect->selFlags & SF_PushDown ){
6156       /* The view was modified by some other optimization such as
6157       ** pushDownWhereTerms() */
6158       continue;
6159     }
6160     return pItem;
6161   }
6162   return 0;
6163 }
6164 
6165 /*
6166 ** Deallocate a single AggInfo object
6167 */
6168 static void agginfoFree(sqlite3 *db, AggInfo *p){
6169   sqlite3DbFree(db, p->aCol);
6170   sqlite3DbFree(db, p->aFunc);
6171   sqlite3DbFreeNN(db, p);
6172 }
6173 
6174 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6175 /*
6176 ** Attempt to transform a query of the form
6177 **
6178 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6179 **
6180 ** Into this:
6181 **
6182 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6183 **
6184 ** The transformation only works if all of the following are true:
6185 **
6186 **   *  The subquery is a UNION ALL of two or more terms
6187 **   *  The subquery does not have a LIMIT clause
6188 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6189 **   *  The outer query is a simple count(*) with no WHERE clause or other
6190 **      extraneous syntax.
6191 **
6192 ** Return TRUE if the optimization is undertaken.
6193 */
6194 static int countOfViewOptimization(Parse *pParse, Select *p){
6195   Select *pSub, *pPrior;
6196   Expr *pExpr;
6197   Expr *pCount;
6198   sqlite3 *db;
6199   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6200   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6201   if( p->pWhere ) return 0;
6202   if( p->pGroupBy ) return 0;
6203   pExpr = p->pEList->a[0].pExpr;
6204   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6205   assert( ExprUseUToken(pExpr) );
6206   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6207   assert( ExprUseXList(pExpr) );
6208   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6209   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6210   pSub = p->pSrc->a[0].pSelect;
6211   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6212   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6213   do{
6214     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6215     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6216     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6217     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6218     pSub = pSub->pPrior;                              /* Repeat over compound */
6219   }while( pSub );
6220 
6221   /* If we reach this point then it is OK to perform the transformation */
6222 
6223   db = pParse->db;
6224   pCount = pExpr;
6225   pExpr = 0;
6226   pSub = p->pSrc->a[0].pSelect;
6227   p->pSrc->a[0].pSelect = 0;
6228   sqlite3SrcListDelete(db, p->pSrc);
6229   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6230   while( pSub ){
6231     Expr *pTerm;
6232     pPrior = pSub->pPrior;
6233     pSub->pPrior = 0;
6234     pSub->pNext = 0;
6235     pSub->selFlags |= SF_Aggregate;
6236     pSub->selFlags &= ~SF_Compound;
6237     pSub->nSelectRow = 0;
6238     sqlite3ExprListDelete(db, pSub->pEList);
6239     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6240     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6241     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6242     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6243     if( pExpr==0 ){
6244       pExpr = pTerm;
6245     }else{
6246       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6247     }
6248     pSub = pPrior;
6249   }
6250   p->pEList->a[0].pExpr = pExpr;
6251   p->selFlags &= ~SF_Aggregate;
6252 
6253 #if SELECTTRACE_ENABLED
6254   if( sqlite3SelectTrace & 0x400 ){
6255     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6256     sqlite3TreeViewSelect(0, p, 0);
6257   }
6258 #endif
6259   return 1;
6260 }
6261 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6262 
6263 /*
6264 ** Generate code for the SELECT statement given in the p argument.
6265 **
6266 ** The results are returned according to the SelectDest structure.
6267 ** See comments in sqliteInt.h for further information.
6268 **
6269 ** This routine returns the number of errors.  If any errors are
6270 ** encountered, then an appropriate error message is left in
6271 ** pParse->zErrMsg.
6272 **
6273 ** This routine does NOT free the Select structure passed in.  The
6274 ** calling function needs to do that.
6275 */
6276 int sqlite3Select(
6277   Parse *pParse,         /* The parser context */
6278   Select *p,             /* The SELECT statement being coded. */
6279   SelectDest *pDest      /* What to do with the query results */
6280 ){
6281   int i, j;              /* Loop counters */
6282   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6283   Vdbe *v;               /* The virtual machine under construction */
6284   int isAgg;             /* True for select lists like "count(*)" */
6285   ExprList *pEList = 0;  /* List of columns to extract. */
6286   SrcList *pTabList;     /* List of tables to select from */
6287   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6288   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6289   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6290   AggInfo *pAggInfo = 0; /* Aggregate information */
6291   int rc = 1;            /* Value to return from this function */
6292   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6293   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6294   int iEnd;              /* Address of the end of the query */
6295   sqlite3 *db;           /* The database connection */
6296   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6297   u8 minMaxFlag;                 /* Flag for min/max queries */
6298 
6299   db = pParse->db;
6300   v = sqlite3GetVdbe(pParse);
6301   if( p==0 || db->mallocFailed || pParse->nErr ){
6302     return 1;
6303   }
6304   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6305 #if SELECTTRACE_ENABLED
6306   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6307   if( sqlite3SelectTrace & 0x100 ){
6308     sqlite3TreeViewSelect(0, p, 0);
6309   }
6310 #endif
6311 
6312   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6313   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6314   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6315   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6316   if( IgnorableDistinct(pDest) ){
6317     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6318            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6319            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6320     /* All of these destinations are also able to ignore the ORDER BY clause */
6321     if( p->pOrderBy ){
6322 #if SELECTTRACE_ENABLED
6323       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6324       if( sqlite3SelectTrace & 0x100 ){
6325         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6326       }
6327 #endif
6328       sqlite3ParserAddCleanup(pParse,
6329         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6330         p->pOrderBy);
6331       testcase( pParse->earlyCleanup );
6332       p->pOrderBy = 0;
6333     }
6334     p->selFlags &= ~SF_Distinct;
6335     p->selFlags |= SF_NoopOrderBy;
6336   }
6337   sqlite3SelectPrep(pParse, p, 0);
6338   if( pParse->nErr || db->mallocFailed ){
6339     goto select_end;
6340   }
6341   assert( p->pEList!=0 );
6342 #if SELECTTRACE_ENABLED
6343   if( sqlite3SelectTrace & 0x104 ){
6344     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6345     sqlite3TreeViewSelect(0, p, 0);
6346   }
6347 #endif
6348 
6349   /* If the SF_UFSrcCheck flag is set, then this function is being called
6350   ** as part of populating the temp table for an UPDATE...FROM statement.
6351   ** In this case, it is an error if the target object (pSrc->a[0]) name
6352   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6353   **
6354   ** Postgres disallows this case too. The reason is that some other
6355   ** systems handle this case differently, and not all the same way,
6356   ** which is just confusing. To avoid this, we follow PG's lead and
6357   ** disallow it altogether.  */
6358   if( p->selFlags & SF_UFSrcCheck ){
6359     SrcItem *p0 = &p->pSrc->a[0];
6360     for(i=1; i<p->pSrc->nSrc; i++){
6361       SrcItem *p1 = &p->pSrc->a[i];
6362       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6363         sqlite3ErrorMsg(pParse,
6364             "target object/alias may not appear in FROM clause: %s",
6365             p0->zAlias ? p0->zAlias : p0->pTab->zName
6366         );
6367         goto select_end;
6368       }
6369     }
6370 
6371     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6372     ** and leaving this flag set can cause errors if a compound sub-query
6373     ** in p->pSrc is flattened into this query and this function called
6374     ** again as part of compound SELECT processing.  */
6375     p->selFlags &= ~SF_UFSrcCheck;
6376   }
6377 
6378   if( pDest->eDest==SRT_Output ){
6379     sqlite3GenerateColumnNames(pParse, p);
6380   }
6381 
6382 #ifndef SQLITE_OMIT_WINDOWFUNC
6383   if( sqlite3WindowRewrite(pParse, p) ){
6384     assert( db->mallocFailed || pParse->nErr>0 );
6385     goto select_end;
6386   }
6387 #if SELECTTRACE_ENABLED
6388   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6389     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6390     sqlite3TreeViewSelect(0, p, 0);
6391   }
6392 #endif
6393 #endif /* SQLITE_OMIT_WINDOWFUNC */
6394   pTabList = p->pSrc;
6395   isAgg = (p->selFlags & SF_Aggregate)!=0;
6396   memset(&sSort, 0, sizeof(sSort));
6397   sSort.pOrderBy = p->pOrderBy;
6398 
6399   /* Try to do various optimizations (flattening subqueries, and strength
6400   ** reduction of join operators) in the FROM clause up into the main query
6401   */
6402 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6403   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6404     SrcItem *pItem = &pTabList->a[i];
6405     Select *pSub = pItem->pSelect;
6406     Table *pTab = pItem->pTab;
6407 
6408     /* The expander should have already created transient Table objects
6409     ** even for FROM clause elements such as subqueries that do not correspond
6410     ** to a real table */
6411     assert( pTab!=0 );
6412 
6413     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6414     ** of the LEFT JOIN used in the WHERE clause.
6415     */
6416     if( (pItem->fg.jointype & JT_LEFT)!=0
6417      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6418      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6419     ){
6420       SELECTTRACE(0x100,pParse,p,
6421                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6422       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6423       unsetJoinExpr(p->pWhere, pItem->iCursor);
6424     }
6425 
6426     /* No futher action if this term of the FROM clause is no a subquery */
6427     if( pSub==0 ) continue;
6428 
6429     /* Catch mismatch in the declared columns of a view and the number of
6430     ** columns in the SELECT on the RHS */
6431     if( pTab->nCol!=pSub->pEList->nExpr ){
6432       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6433                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6434       goto select_end;
6435     }
6436 
6437     /* Do not try to flatten an aggregate subquery.
6438     **
6439     ** Flattening an aggregate subquery is only possible if the outer query
6440     ** is not a join.  But if the outer query is not a join, then the subquery
6441     ** will be implemented as a co-routine and there is no advantage to
6442     ** flattening in that case.
6443     */
6444     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6445     assert( pSub->pGroupBy==0 );
6446 
6447     /* If a FROM-clause subquery has an ORDER BY clause that is not
6448     ** really doing anything, then delete it now so that it does not
6449     ** interfere with query flattening.  See the discussion at
6450     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6451     **
6452     ** Beware of these cases where the ORDER BY clause may not be safely
6453     ** omitted:
6454     **
6455     **    (1)   There is also a LIMIT clause
6456     **    (2)   The subquery was added to help with window-function
6457     **          processing
6458     **    (3)   The subquery is in the FROM clause of an UPDATE
6459     **    (4)   The outer query uses an aggregate function other than
6460     **          the built-in count(), min(), or max().
6461     **    (5)   The ORDER BY isn't going to accomplish anything because
6462     **          one of:
6463     **            (a)  The outer query has a different ORDER BY clause
6464     **            (b)  The subquery is part of a join
6465     **          See forum post 062d576715d277c8
6466     */
6467     if( pSub->pOrderBy!=0
6468      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6469      && pSub->pLimit==0                           /* Condition (1) */
6470      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6471      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6472      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6473     ){
6474       SELECTTRACE(0x100,pParse,p,
6475                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6476       sqlite3ExprListDelete(db, pSub->pOrderBy);
6477       pSub->pOrderBy = 0;
6478     }
6479 
6480     /* If the outer query contains a "complex" result set (that is,
6481     ** if the result set of the outer query uses functions or subqueries)
6482     ** and if the subquery contains an ORDER BY clause and if
6483     ** it will be implemented as a co-routine, then do not flatten.  This
6484     ** restriction allows SQL constructs like this:
6485     **
6486     **  SELECT expensive_function(x)
6487     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6488     **
6489     ** The expensive_function() is only computed on the 10 rows that
6490     ** are output, rather than every row of the table.
6491     **
6492     ** The requirement that the outer query have a complex result set
6493     ** means that flattening does occur on simpler SQL constraints without
6494     ** the expensive_function() like:
6495     **
6496     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6497     */
6498     if( pSub->pOrderBy!=0
6499      && i==0
6500      && (p->selFlags & SF_ComplexResult)!=0
6501      && (pTabList->nSrc==1
6502          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6503     ){
6504       continue;
6505     }
6506 
6507     if( flattenSubquery(pParse, p, i, isAgg) ){
6508       if( pParse->nErr ) goto select_end;
6509       /* This subquery can be absorbed into its parent. */
6510       i = -1;
6511     }
6512     pTabList = p->pSrc;
6513     if( db->mallocFailed ) goto select_end;
6514     if( !IgnorableOrderby(pDest) ){
6515       sSort.pOrderBy = p->pOrderBy;
6516     }
6517   }
6518 #endif
6519 
6520 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6521   /* Handle compound SELECT statements using the separate multiSelect()
6522   ** procedure.
6523   */
6524   if( p->pPrior ){
6525     rc = multiSelect(pParse, p, pDest);
6526 #if SELECTTRACE_ENABLED
6527     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6528     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6529       sqlite3TreeViewSelect(0, p, 0);
6530     }
6531 #endif
6532     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6533     return rc;
6534   }
6535 #endif
6536 
6537   /* Do the WHERE-clause constant propagation optimization if this is
6538   ** a join.  No need to speed time on this operation for non-join queries
6539   ** as the equivalent optimization will be handled by query planner in
6540   ** sqlite3WhereBegin().
6541   */
6542   if( p->pWhere!=0
6543    && p->pWhere->op==TK_AND
6544    && OptimizationEnabled(db, SQLITE_PropagateConst)
6545    && propagateConstants(pParse, p)
6546   ){
6547 #if SELECTTRACE_ENABLED
6548     if( sqlite3SelectTrace & 0x100 ){
6549       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6550       sqlite3TreeViewSelect(0, p, 0);
6551     }
6552 #endif
6553   }else{
6554     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6555   }
6556 
6557 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6558   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6559    && countOfViewOptimization(pParse, p)
6560   ){
6561     if( db->mallocFailed ) goto select_end;
6562     pEList = p->pEList;
6563     pTabList = p->pSrc;
6564   }
6565 #endif
6566 
6567   /* For each term in the FROM clause, do two things:
6568   ** (1) Authorized unreferenced tables
6569   ** (2) Generate code for all sub-queries
6570   */
6571   for(i=0; i<pTabList->nSrc; i++){
6572     SrcItem *pItem = &pTabList->a[i];
6573     SrcItem *pPrior;
6574     SelectDest dest;
6575     Select *pSub;
6576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6577     const char *zSavedAuthContext;
6578 #endif
6579 
6580     /* Issue SQLITE_READ authorizations with a fake column name for any
6581     ** tables that are referenced but from which no values are extracted.
6582     ** Examples of where these kinds of null SQLITE_READ authorizations
6583     ** would occur:
6584     **
6585     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6586     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6587     **
6588     ** The fake column name is an empty string.  It is possible for a table to
6589     ** have a column named by the empty string, in which case there is no way to
6590     ** distinguish between an unreferenced table and an actual reference to the
6591     ** "" column. The original design was for the fake column name to be a NULL,
6592     ** which would be unambiguous.  But legacy authorization callbacks might
6593     ** assume the column name is non-NULL and segfault.  The use of an empty
6594     ** string for the fake column name seems safer.
6595     */
6596     if( pItem->colUsed==0 && pItem->zName!=0 ){
6597       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6598     }
6599 
6600 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6601     /* Generate code for all sub-queries in the FROM clause
6602     */
6603     pSub = pItem->pSelect;
6604     if( pSub==0 ) continue;
6605 
6606     /* The code for a subquery should only be generated once. */
6607     assert( pItem->addrFillSub==0 );
6608 
6609     /* Increment Parse.nHeight by the height of the largest expression
6610     ** tree referred to by this, the parent select. The child select
6611     ** may contain expression trees of at most
6612     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6613     ** more conservative than necessary, but much easier than enforcing
6614     ** an exact limit.
6615     */
6616     pParse->nHeight += sqlite3SelectExprHeight(p);
6617 
6618     /* Make copies of constant WHERE-clause terms in the outer query down
6619     ** inside the subquery.  This can help the subquery to run more efficiently.
6620     */
6621     if( OptimizationEnabled(db, SQLITE_PushDown)
6622      && (pItem->fg.isCte==0
6623          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6624      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6625                            (pItem->fg.jointype & JT_OUTER)!=0)
6626     ){
6627 #if SELECTTRACE_ENABLED
6628       if( sqlite3SelectTrace & 0x100 ){
6629         SELECTTRACE(0x100,pParse,p,
6630             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6631         sqlite3TreeViewSelect(0, p, 0);
6632       }
6633 #endif
6634       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6635     }else{
6636       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6637     }
6638 
6639     zSavedAuthContext = pParse->zAuthContext;
6640     pParse->zAuthContext = pItem->zName;
6641 
6642     /* Generate code to implement the subquery
6643     **
6644     ** The subquery is implemented as a co-routine if:
6645     **    (1)  the subquery is guaranteed to be the outer loop (so that
6646     **         it does not need to be computed more than once), and
6647     **    (2)  the subquery is not a CTE that should be materialized
6648     **
6649     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6650     ** implementation?
6651     */
6652     if( i==0
6653      && (pTabList->nSrc==1
6654             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6655      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6656     ){
6657       /* Implement a co-routine that will return a single row of the result
6658       ** set on each invocation.
6659       */
6660       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6661 
6662       pItem->regReturn = ++pParse->nMem;
6663       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6664       VdbeComment((v, "%!S", pItem));
6665       pItem->addrFillSub = addrTop;
6666       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6667       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6668       sqlite3Select(pParse, pSub, &dest);
6669       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6670       pItem->fg.viaCoroutine = 1;
6671       pItem->regResult = dest.iSdst;
6672       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6673       sqlite3VdbeJumpHere(v, addrTop-1);
6674       sqlite3ClearTempRegCache(pParse);
6675     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6676       /* This is a CTE for which materialization code has already been
6677       ** generated.  Invoke the subroutine to compute the materialization,
6678       ** the make the pItem->iCursor be a copy of the ephemerial table that
6679       ** holds the result of the materialization. */
6680       CteUse *pCteUse = pItem->u2.pCteUse;
6681       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6682       if( pItem->iCursor!=pCteUse->iCur ){
6683         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6684         VdbeComment((v, "%!S", pItem));
6685       }
6686       pSub->nSelectRow = pCteUse->nRowEst;
6687     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6688       /* This view has already been materialized by a prior entry in
6689       ** this same FROM clause.  Reuse it. */
6690       if( pPrior->addrFillSub ){
6691         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6692       }
6693       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6694       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6695     }else{
6696       /* Materialize the view.  If the view is not correlated, generate a
6697       ** subroutine to do the materialization so that subsequent uses of
6698       ** the same view can reuse the materialization. */
6699       int topAddr;
6700       int onceAddr = 0;
6701       int retAddr;
6702 
6703       pItem->regReturn = ++pParse->nMem;
6704       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6705       pItem->addrFillSub = topAddr+1;
6706       if( pItem->fg.isCorrelated==0 ){
6707         /* If the subquery is not correlated and if we are not inside of
6708         ** a trigger, then we only need to compute the value of the subquery
6709         ** once. */
6710         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6711         VdbeComment((v, "materialize %!S", pItem));
6712       }else{
6713         VdbeNoopComment((v, "materialize %!S", pItem));
6714       }
6715       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6716       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6717       sqlite3Select(pParse, pSub, &dest);
6718       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6719       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6720       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6721       VdbeComment((v, "end %!S", pItem));
6722       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6723       sqlite3ClearTempRegCache(pParse);
6724       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6725         CteUse *pCteUse = pItem->u2.pCteUse;
6726         pCteUse->addrM9e = pItem->addrFillSub;
6727         pCteUse->regRtn = pItem->regReturn;
6728         pCteUse->iCur = pItem->iCursor;
6729         pCteUse->nRowEst = pSub->nSelectRow;
6730       }
6731     }
6732     if( db->mallocFailed ) goto select_end;
6733     pParse->nHeight -= sqlite3SelectExprHeight(p);
6734     pParse->zAuthContext = zSavedAuthContext;
6735 #endif
6736   }
6737 
6738   /* Various elements of the SELECT copied into local variables for
6739   ** convenience */
6740   pEList = p->pEList;
6741   pWhere = p->pWhere;
6742   pGroupBy = p->pGroupBy;
6743   pHaving = p->pHaving;
6744   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6745 
6746 #if SELECTTRACE_ENABLED
6747   if( sqlite3SelectTrace & 0x400 ){
6748     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6749     sqlite3TreeViewSelect(0, p, 0);
6750   }
6751 #endif
6752 
6753   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6754   ** if the select-list is the same as the ORDER BY list, then this query
6755   ** can be rewritten as a GROUP BY. In other words, this:
6756   **
6757   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6758   **
6759   ** is transformed to:
6760   **
6761   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6762   **
6763   ** The second form is preferred as a single index (or temp-table) may be
6764   ** used for both the ORDER BY and DISTINCT processing. As originally
6765   ** written the query must use a temp-table for at least one of the ORDER
6766   ** BY and DISTINCT, and an index or separate temp-table for the other.
6767   */
6768   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6769    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6770 #ifndef SQLITE_OMIT_WINDOWFUNC
6771    && p->pWin==0
6772 #endif
6773   ){
6774     p->selFlags &= ~SF_Distinct;
6775     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6776     p->selFlags |= SF_Aggregate;
6777     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6778     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6779     ** original setting of the SF_Distinct flag, not the current setting */
6780     assert( sDistinct.isTnct );
6781 
6782 #if SELECTTRACE_ENABLED
6783     if( sqlite3SelectTrace & 0x400 ){
6784       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6785       sqlite3TreeViewSelect(0, p, 0);
6786     }
6787 #endif
6788   }
6789 
6790   /* If there is an ORDER BY clause, then create an ephemeral index to
6791   ** do the sorting.  But this sorting ephemeral index might end up
6792   ** being unused if the data can be extracted in pre-sorted order.
6793   ** If that is the case, then the OP_OpenEphemeral instruction will be
6794   ** changed to an OP_Noop once we figure out that the sorting index is
6795   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6796   ** that change.
6797   */
6798   if( sSort.pOrderBy ){
6799     KeyInfo *pKeyInfo;
6800     pKeyInfo = sqlite3KeyInfoFromExprList(
6801         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6802     sSort.iECursor = pParse->nTab++;
6803     sSort.addrSortIndex =
6804       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6805           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6806           (char*)pKeyInfo, P4_KEYINFO
6807       );
6808   }else{
6809     sSort.addrSortIndex = -1;
6810   }
6811 
6812   /* If the output is destined for a temporary table, open that table.
6813   */
6814   if( pDest->eDest==SRT_EphemTab ){
6815     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6816   }
6817 
6818   /* Set the limiter.
6819   */
6820   iEnd = sqlite3VdbeMakeLabel(pParse);
6821   if( (p->selFlags & SF_FixedLimit)==0 ){
6822     p->nSelectRow = 320;  /* 4 billion rows */
6823   }
6824   computeLimitRegisters(pParse, p, iEnd);
6825   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6826     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6827     sSort.sortFlags |= SORTFLAG_UseSorter;
6828   }
6829 
6830   /* Open an ephemeral index to use for the distinct set.
6831   */
6832   if( p->selFlags & SF_Distinct ){
6833     sDistinct.tabTnct = pParse->nTab++;
6834     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6835                        sDistinct.tabTnct, 0, 0,
6836                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6837                        P4_KEYINFO);
6838     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6839     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6840   }else{
6841     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6842   }
6843 
6844   if( !isAgg && pGroupBy==0 ){
6845     /* No aggregate functions and no GROUP BY clause */
6846     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6847                    | (p->selFlags & SF_FixedLimit);
6848 #ifndef SQLITE_OMIT_WINDOWFUNC
6849     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6850     if( pWin ){
6851       sqlite3WindowCodeInit(pParse, p);
6852     }
6853 #endif
6854     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6855 
6856 
6857     /* Begin the database scan. */
6858     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6859     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6860                                p->pEList, wctrlFlags, p->nSelectRow);
6861     if( pWInfo==0 ) goto select_end;
6862     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6863       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6864     }
6865     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6866       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6867     }
6868     if( sSort.pOrderBy ){
6869       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6870       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6871       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6872         sSort.pOrderBy = 0;
6873       }
6874     }
6875     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6876 
6877     /* If sorting index that was created by a prior OP_OpenEphemeral
6878     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6879     ** into an OP_Noop.
6880     */
6881     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6882       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6883     }
6884 
6885     assert( p->pEList==pEList );
6886 #ifndef SQLITE_OMIT_WINDOWFUNC
6887     if( pWin ){
6888       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6889       int iCont = sqlite3VdbeMakeLabel(pParse);
6890       int iBreak = sqlite3VdbeMakeLabel(pParse);
6891       int regGosub = ++pParse->nMem;
6892 
6893       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6894 
6895       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6896       sqlite3VdbeResolveLabel(v, addrGosub);
6897       VdbeNoopComment((v, "inner-loop subroutine"));
6898       sSort.labelOBLopt = 0;
6899       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6900       sqlite3VdbeResolveLabel(v, iCont);
6901       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6902       VdbeComment((v, "end inner-loop subroutine"));
6903       sqlite3VdbeResolveLabel(v, iBreak);
6904     }else
6905 #endif /* SQLITE_OMIT_WINDOWFUNC */
6906     {
6907       /* Use the standard inner loop. */
6908       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6909           sqlite3WhereContinueLabel(pWInfo),
6910           sqlite3WhereBreakLabel(pWInfo));
6911 
6912       /* End the database scan loop.
6913       */
6914       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6915       sqlite3WhereEnd(pWInfo);
6916     }
6917   }else{
6918     /* This case when there exist aggregate functions or a GROUP BY clause
6919     ** or both */
6920     NameContext sNC;    /* Name context for processing aggregate information */
6921     int iAMem;          /* First Mem address for storing current GROUP BY */
6922     int iBMem;          /* First Mem address for previous GROUP BY */
6923     int iUseFlag;       /* Mem address holding flag indicating that at least
6924                         ** one row of the input to the aggregator has been
6925                         ** processed */
6926     int iAbortFlag;     /* Mem address which causes query abort if positive */
6927     int groupBySort;    /* Rows come from source in GROUP BY order */
6928     int addrEnd;        /* End of processing for this SELECT */
6929     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6930     int sortOut = 0;    /* Output register from the sorter */
6931     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6932 
6933     /* Remove any and all aliases between the result set and the
6934     ** GROUP BY clause.
6935     */
6936     if( pGroupBy ){
6937       int k;                        /* Loop counter */
6938       struct ExprList_item *pItem;  /* For looping over expression in a list */
6939 
6940       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6941         pItem->u.x.iAlias = 0;
6942       }
6943       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6944         pItem->u.x.iAlias = 0;
6945       }
6946       assert( 66==sqlite3LogEst(100) );
6947       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6948 
6949       /* If there is both a GROUP BY and an ORDER BY clause and they are
6950       ** identical, then it may be possible to disable the ORDER BY clause
6951       ** on the grounds that the GROUP BY will cause elements to come out
6952       ** in the correct order. It also may not - the GROUP BY might use a
6953       ** database index that causes rows to be grouped together as required
6954       ** but not actually sorted. Either way, record the fact that the
6955       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6956       ** variable.  */
6957       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6958         int ii;
6959         /* The GROUP BY processing doesn't care whether rows are delivered in
6960         ** ASC or DESC order - only that each group is returned contiguously.
6961         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6962         ** ORDER BY to maximize the chances of rows being delivered in an
6963         ** order that makes the ORDER BY redundant.  */
6964         for(ii=0; ii<pGroupBy->nExpr; ii++){
6965           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6966           pGroupBy->a[ii].sortFlags = sortFlags;
6967         }
6968         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6969           orderByGrp = 1;
6970         }
6971       }
6972     }else{
6973       assert( 0==sqlite3LogEst(1) );
6974       p->nSelectRow = 0;
6975     }
6976 
6977     /* Create a label to jump to when we want to abort the query */
6978     addrEnd = sqlite3VdbeMakeLabel(pParse);
6979 
6980     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6981     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6982     ** SELECT statement.
6983     */
6984     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6985     if( pAggInfo ){
6986       sqlite3ParserAddCleanup(pParse,
6987           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6988       testcase( pParse->earlyCleanup );
6989     }
6990     if( db->mallocFailed ){
6991       goto select_end;
6992     }
6993     pAggInfo->selId = p->selId;
6994     memset(&sNC, 0, sizeof(sNC));
6995     sNC.pParse = pParse;
6996     sNC.pSrcList = pTabList;
6997     sNC.uNC.pAggInfo = pAggInfo;
6998     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6999     pAggInfo->mnReg = pParse->nMem+1;
7000     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7001     pAggInfo->pGroupBy = pGroupBy;
7002     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7003     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7004     if( pHaving ){
7005       if( pGroupBy ){
7006         assert( pWhere==p->pWhere );
7007         assert( pHaving==p->pHaving );
7008         assert( pGroupBy==p->pGroupBy );
7009         havingToWhere(pParse, p);
7010         pWhere = p->pWhere;
7011       }
7012       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7013     }
7014     pAggInfo->nAccumulator = pAggInfo->nColumn;
7015     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7016       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7017     }else{
7018       minMaxFlag = WHERE_ORDERBY_NORMAL;
7019     }
7020     for(i=0; i<pAggInfo->nFunc; i++){
7021       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7022       assert( ExprUseXList(pExpr) );
7023       sNC.ncFlags |= NC_InAggFunc;
7024       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7025 #ifndef SQLITE_OMIT_WINDOWFUNC
7026       assert( !IsWindowFunc(pExpr) );
7027       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7028         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7029       }
7030 #endif
7031       sNC.ncFlags &= ~NC_InAggFunc;
7032     }
7033     pAggInfo->mxReg = pParse->nMem;
7034     if( db->mallocFailed ) goto select_end;
7035 #if SELECTTRACE_ENABLED
7036     if( sqlite3SelectTrace & 0x400 ){
7037       int ii;
7038       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7039       sqlite3TreeViewSelect(0, p, 0);
7040       if( minMaxFlag ){
7041         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7042         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7043       }
7044       for(ii=0; ii<pAggInfo->nColumn; ii++){
7045         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7046             ii, pAggInfo->aCol[ii].iMem);
7047         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7048       }
7049       for(ii=0; ii<pAggInfo->nFunc; ii++){
7050         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7051             ii, pAggInfo->aFunc[ii].iMem);
7052         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7053       }
7054     }
7055 #endif
7056 
7057 
7058     /* Processing for aggregates with GROUP BY is very different and
7059     ** much more complex than aggregates without a GROUP BY.
7060     */
7061     if( pGroupBy ){
7062       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7063       int addr1;          /* A-vs-B comparision jump */
7064       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7065       int regOutputRow;   /* Return address register for output subroutine */
7066       int addrSetAbort;   /* Set the abort flag and return */
7067       int addrTopOfLoop;  /* Top of the input loop */
7068       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7069       int addrReset;      /* Subroutine for resetting the accumulator */
7070       int regReset;       /* Return address register for reset subroutine */
7071       ExprList *pDistinct = 0;
7072       u16 distFlag = 0;
7073       int eDist = WHERE_DISTINCT_NOOP;
7074 
7075       if( pAggInfo->nFunc==1
7076        && pAggInfo->aFunc[0].iDistinct>=0
7077        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7078        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7079        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7080       ){
7081         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7082         pExpr = sqlite3ExprDup(db, pExpr, 0);
7083         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7084         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7085         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7086       }
7087 
7088       /* If there is a GROUP BY clause we might need a sorting index to
7089       ** implement it.  Allocate that sorting index now.  If it turns out
7090       ** that we do not need it after all, the OP_SorterOpen instruction
7091       ** will be converted into a Noop.
7092       */
7093       pAggInfo->sortingIdx = pParse->nTab++;
7094       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7095                                             0, pAggInfo->nColumn);
7096       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7097           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7098           0, (char*)pKeyInfo, P4_KEYINFO);
7099 
7100       /* Initialize memory locations used by GROUP BY aggregate processing
7101       */
7102       iUseFlag = ++pParse->nMem;
7103       iAbortFlag = ++pParse->nMem;
7104       regOutputRow = ++pParse->nMem;
7105       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7106       regReset = ++pParse->nMem;
7107       addrReset = sqlite3VdbeMakeLabel(pParse);
7108       iAMem = pParse->nMem + 1;
7109       pParse->nMem += pGroupBy->nExpr;
7110       iBMem = pParse->nMem + 1;
7111       pParse->nMem += pGroupBy->nExpr;
7112       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7113       VdbeComment((v, "clear abort flag"));
7114       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7115 
7116       /* Begin a loop that will extract all source rows in GROUP BY order.
7117       ** This might involve two separate loops with an OP_Sort in between, or
7118       ** it might be a single loop that uses an index to extract information
7119       ** in the right order to begin with.
7120       */
7121       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7122       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7123       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7124           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7125       );
7126       if( pWInfo==0 ){
7127         sqlite3ExprListDelete(db, pDistinct);
7128         goto select_end;
7129       }
7130       eDist = sqlite3WhereIsDistinct(pWInfo);
7131       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7132       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7133         /* The optimizer is able to deliver rows in group by order so
7134         ** we do not have to sort.  The OP_OpenEphemeral table will be
7135         ** cancelled later because we still need to use the pKeyInfo
7136         */
7137         groupBySort = 0;
7138       }else{
7139         /* Rows are coming out in undetermined order.  We have to push
7140         ** each row into a sorting index, terminate the first loop,
7141         ** then loop over the sorting index in order to get the output
7142         ** in sorted order
7143         */
7144         int regBase;
7145         int regRecord;
7146         int nCol;
7147         int nGroupBy;
7148 
7149         explainTempTable(pParse,
7150             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7151                     "DISTINCT" : "GROUP BY");
7152 
7153         groupBySort = 1;
7154         nGroupBy = pGroupBy->nExpr;
7155         nCol = nGroupBy;
7156         j = nGroupBy;
7157         for(i=0; i<pAggInfo->nColumn; i++){
7158           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7159             nCol++;
7160             j++;
7161           }
7162         }
7163         regBase = sqlite3GetTempRange(pParse, nCol);
7164         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7165         j = nGroupBy;
7166         for(i=0; i<pAggInfo->nColumn; i++){
7167           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7168           if( pCol->iSorterColumn>=j ){
7169             int r1 = j + regBase;
7170             sqlite3ExprCodeGetColumnOfTable(v,
7171                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7172             j++;
7173           }
7174         }
7175         regRecord = sqlite3GetTempReg(pParse);
7176         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7177         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7178         sqlite3ReleaseTempReg(pParse, regRecord);
7179         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7180         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7181         sqlite3WhereEnd(pWInfo);
7182         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7183         sortOut = sqlite3GetTempReg(pParse);
7184         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7185         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7186         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7187         pAggInfo->useSortingIdx = 1;
7188       }
7189 
7190       /* If the index or temporary table used by the GROUP BY sort
7191       ** will naturally deliver rows in the order required by the ORDER BY
7192       ** clause, cancel the ephemeral table open coded earlier.
7193       **
7194       ** This is an optimization - the correct answer should result regardless.
7195       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7196       ** disable this optimization for testing purposes.  */
7197       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7198        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7199       ){
7200         sSort.pOrderBy = 0;
7201         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7202       }
7203 
7204       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7205       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7206       ** Then compare the current GROUP BY terms against the GROUP BY terms
7207       ** from the previous row currently stored in a0, a1, a2...
7208       */
7209       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7210       if( groupBySort ){
7211         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7212                           sortOut, sortPTab);
7213       }
7214       for(j=0; j<pGroupBy->nExpr; j++){
7215         if( groupBySort ){
7216           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7217         }else{
7218           pAggInfo->directMode = 1;
7219           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7220         }
7221       }
7222       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7223                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7224       addr1 = sqlite3VdbeCurrentAddr(v);
7225       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7226 
7227       /* Generate code that runs whenever the GROUP BY changes.
7228       ** Changes in the GROUP BY are detected by the previous code
7229       ** block.  If there were no changes, this block is skipped.
7230       **
7231       ** This code copies current group by terms in b0,b1,b2,...
7232       ** over to a0,a1,a2.  It then calls the output subroutine
7233       ** and resets the aggregate accumulator registers in preparation
7234       ** for the next GROUP BY batch.
7235       */
7236       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7237       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7238       VdbeComment((v, "output one row"));
7239       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7240       VdbeComment((v, "check abort flag"));
7241       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7242       VdbeComment((v, "reset accumulator"));
7243 
7244       /* Update the aggregate accumulators based on the content of
7245       ** the current row
7246       */
7247       sqlite3VdbeJumpHere(v, addr1);
7248       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7249       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7250       VdbeComment((v, "indicate data in accumulator"));
7251 
7252       /* End of the loop
7253       */
7254       if( groupBySort ){
7255         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7256         VdbeCoverage(v);
7257       }else{
7258         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7259         sqlite3WhereEnd(pWInfo);
7260         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7261       }
7262       sqlite3ExprListDelete(db, pDistinct);
7263 
7264       /* Output the final row of result
7265       */
7266       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7267       VdbeComment((v, "output final row"));
7268 
7269       /* Jump over the subroutines
7270       */
7271       sqlite3VdbeGoto(v, addrEnd);
7272 
7273       /* Generate a subroutine that outputs a single row of the result
7274       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7275       ** is less than or equal to zero, the subroutine is a no-op.  If
7276       ** the processing calls for the query to abort, this subroutine
7277       ** increments the iAbortFlag memory location before returning in
7278       ** order to signal the caller to abort.
7279       */
7280       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7281       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7282       VdbeComment((v, "set abort flag"));
7283       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7284       sqlite3VdbeResolveLabel(v, addrOutputRow);
7285       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7286       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7287       VdbeCoverage(v);
7288       VdbeComment((v, "Groupby result generator entry point"));
7289       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7290       finalizeAggFunctions(pParse, pAggInfo);
7291       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7292       selectInnerLoop(pParse, p, -1, &sSort,
7293                       &sDistinct, pDest,
7294                       addrOutputRow+1, addrSetAbort);
7295       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7296       VdbeComment((v, "end groupby result generator"));
7297 
7298       /* Generate a subroutine that will reset the group-by accumulator
7299       */
7300       sqlite3VdbeResolveLabel(v, addrReset);
7301       resetAccumulator(pParse, pAggInfo);
7302       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7303       VdbeComment((v, "indicate accumulator empty"));
7304       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7305 
7306       if( eDist!=WHERE_DISTINCT_NOOP ){
7307         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7308         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7309       }
7310     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7311     else {
7312       Table *pTab;
7313       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7314         /* If isSimpleCount() returns a pointer to a Table structure, then
7315         ** the SQL statement is of the form:
7316         **
7317         **   SELECT count(*) FROM <tbl>
7318         **
7319         ** where the Table structure returned represents table <tbl>.
7320         **
7321         ** This statement is so common that it is optimized specially. The
7322         ** OP_Count instruction is executed either on the intkey table that
7323         ** contains the data for table <tbl> or on one of its indexes. It
7324         ** is better to execute the op on an index, as indexes are almost
7325         ** always spread across less pages than their corresponding tables.
7326         */
7327         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7328         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7329         Index *pIdx;                         /* Iterator variable */
7330         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7331         Index *pBest = 0;                    /* Best index found so far */
7332         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7333 
7334         sqlite3CodeVerifySchema(pParse, iDb);
7335         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7336 
7337         /* Search for the index that has the lowest scan cost.
7338         **
7339         ** (2011-04-15) Do not do a full scan of an unordered index.
7340         **
7341         ** (2013-10-03) Do not count the entries in a partial index.
7342         **
7343         ** In practice the KeyInfo structure will not be used. It is only
7344         ** passed to keep OP_OpenRead happy.
7345         */
7346         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7347         if( !p->pSrc->a[0].fg.notIndexed ){
7348           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7349             if( pIdx->bUnordered==0
7350              && pIdx->szIdxRow<pTab->szTabRow
7351              && pIdx->pPartIdxWhere==0
7352              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7353             ){
7354               pBest = pIdx;
7355             }
7356           }
7357         }
7358         if( pBest ){
7359           iRoot = pBest->tnum;
7360           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7361         }
7362 
7363         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7364         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7365         if( pKeyInfo ){
7366           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7367         }
7368         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7369         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7370         explainSimpleCount(pParse, pTab, pBest);
7371       }else{
7372         int regAcc = 0;           /* "populate accumulators" flag */
7373         ExprList *pDistinct = 0;
7374         u16 distFlag = 0;
7375         int eDist;
7376 
7377         /* If there are accumulator registers but no min() or max() functions
7378         ** without FILTER clauses, allocate register regAcc. Register regAcc
7379         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7380         ** The code generated by updateAccumulator() uses this to ensure
7381         ** that the accumulator registers are (a) updated only once if
7382         ** there are no min() or max functions or (b) always updated for the
7383         ** first row visited by the aggregate, so that they are updated at
7384         ** least once even if the FILTER clause means the min() or max()
7385         ** function visits zero rows.  */
7386         if( pAggInfo->nAccumulator ){
7387           for(i=0; i<pAggInfo->nFunc; i++){
7388             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7389               continue;
7390             }
7391             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7392               break;
7393             }
7394           }
7395           if( i==pAggInfo->nFunc ){
7396             regAcc = ++pParse->nMem;
7397             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7398           }
7399         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7400           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7401           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7402           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7403         }
7404 
7405         /* This case runs if the aggregate has no GROUP BY clause.  The
7406         ** processing is much simpler since there is only a single row
7407         ** of output.
7408         */
7409         assert( p->pGroupBy==0 );
7410         resetAccumulator(pParse, pAggInfo);
7411 
7412         /* If this query is a candidate for the min/max optimization, then
7413         ** minMaxFlag will have been previously set to either
7414         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7415         ** be an appropriate ORDER BY expression for the optimization.
7416         */
7417         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7418         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7419 
7420         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7421         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7422                                    pDistinct, minMaxFlag|distFlag, 0);
7423         if( pWInfo==0 ){
7424           goto select_end;
7425         }
7426         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7427         eDist = sqlite3WhereIsDistinct(pWInfo);
7428         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7429         if( eDist!=WHERE_DISTINCT_NOOP ){
7430           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7431           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7432         }
7433 
7434         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7435         if( minMaxFlag ){
7436           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7437         }
7438         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7439         sqlite3WhereEnd(pWInfo);
7440         finalizeAggFunctions(pParse, pAggInfo);
7441       }
7442 
7443       sSort.pOrderBy = 0;
7444       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7445       selectInnerLoop(pParse, p, -1, 0, 0,
7446                       pDest, addrEnd, addrEnd);
7447     }
7448     sqlite3VdbeResolveLabel(v, addrEnd);
7449 
7450   } /* endif aggregate query */
7451 
7452   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7453     explainTempTable(pParse, "DISTINCT");
7454   }
7455 
7456   /* If there is an ORDER BY clause, then we need to sort the results
7457   ** and send them to the callback one by one.
7458   */
7459   if( sSort.pOrderBy ){
7460     explainTempTable(pParse,
7461                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7462     assert( p->pEList==pEList );
7463     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7464   }
7465 
7466   /* Jump here to skip this query
7467   */
7468   sqlite3VdbeResolveLabel(v, iEnd);
7469 
7470   /* The SELECT has been coded. If there is an error in the Parse structure,
7471   ** set the return code to 1. Otherwise 0. */
7472   rc = (pParse->nErr>0);
7473 
7474   /* Control jumps to here if an error is encountered above, or upon
7475   ** successful coding of the SELECT.
7476   */
7477 select_end:
7478   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7479   pParse->nErr += db->mallocFailed;
7480   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7481 #ifdef SQLITE_DEBUG
7482   if( pAggInfo && !db->mallocFailed ){
7483     for(i=0; i<pAggInfo->nColumn; i++){
7484       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7485       assert( pExpr!=0 );
7486       assert( pExpr->pAggInfo==pAggInfo );
7487       assert( pExpr->iAgg==i );
7488     }
7489     for(i=0; i<pAggInfo->nFunc; i++){
7490       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7491       assert( pExpr!=0 );
7492       assert( pExpr->pAggInfo==pAggInfo );
7493       assert( pExpr->iAgg==i );
7494     }
7495   }
7496 #endif
7497 
7498 #if SELECTTRACE_ENABLED
7499   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7500   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7501     sqlite3TreeViewSelect(0, p, 0);
7502   }
7503 #endif
7504   ExplainQueryPlanPop(pParse);
7505   return rc;
7506 }
7507