1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->w.iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.w.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.w.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table w.iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->w.iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION ){ 395 assert( ExprUseXList(p) ); 396 if( p->x.pList ){ 397 int i; 398 for(i=0; i<p->x.pList->nExpr; i++){ 399 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 400 } 401 } 402 } 403 sqlite3SetJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 409 ** term that is marked with EP_FromJoin and w.iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->w.iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_COLUMN && p->iTable==iTable ){ 421 ExprClearProperty(p, EP_CanBeNull); 422 } 423 if( p->op==TK_FUNCTION ){ 424 assert( ExprUseXList(p) ); 425 if( p->x.pList ){ 426 int i; 427 for(i=0; i<p->x.pList->nExpr; i++){ 428 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 429 } 430 } 431 } 432 unsetJoinExpr(p->pLeft, iTable); 433 p = p->pRight; 434 } 435 } 436 437 /* 438 ** This routine processes the join information for a SELECT statement. 439 ** ON and USING clauses are converted into extra terms of the WHERE clause. 440 ** NATURAL joins also create extra WHERE clause terms. 441 ** 442 ** The terms of a FROM clause are contained in the Select.pSrc structure. 443 ** The left most table is the first entry in Select.pSrc. The right-most 444 ** table is the last entry. The join operator is held in the entry to 445 ** the left. Thus entry 0 contains the join operator for the join between 446 ** entries 0 and 1. Any ON or USING clauses associated with the join are 447 ** also attached to the left entry. 448 ** 449 ** This routine returns the number of errors encountered. 450 */ 451 static int sqliteProcessJoin(Parse *pParse, Select *p){ 452 SrcList *pSrc; /* All tables in the FROM clause */ 453 int i, j; /* Loop counters */ 454 SrcItem *pLeft; /* Left table being joined */ 455 SrcItem *pRight; /* Right table being joined */ 456 457 pSrc = p->pSrc; 458 pLeft = &pSrc->a[0]; 459 pRight = &pLeft[1]; 460 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 461 Table *pRightTab = pRight->pTab; 462 int isOuter; 463 464 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 465 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 466 467 /* When the NATURAL keyword is present, add WHERE clause terms for 468 ** every column that the two tables have in common. 469 */ 470 if( pRight->fg.jointype & JT_NATURAL ){ 471 if( pRight->pOn || pRight->pUsing ){ 472 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 473 "an ON or USING clause", 0); 474 return 1; 475 } 476 for(j=0; j<pRightTab->nCol; j++){ 477 char *zName; /* Name of column in the right table */ 478 int iLeft; /* Matching left table */ 479 int iLeftCol; /* Matching column in the left table */ 480 481 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 482 zName = pRightTab->aCol[j].zCnName; 483 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 490 /* Disallow both ON and USING clauses in the same join 491 */ 492 if( pRight->pOn && pRight->pUsing ){ 493 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 494 "clauses in the same join"); 495 return 1; 496 } 497 498 /* Add the ON clause to the end of the WHERE clause, connected by 499 ** an AND operator. 500 */ 501 if( pRight->pOn ){ 502 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 503 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 504 pRight->pOn = 0; 505 } 506 507 /* Create extra terms on the WHERE clause for each column named 508 ** in the USING clause. Example: If the two tables to be joined are 509 ** A and B and the USING clause names X, Y, and Z, then add this 510 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 511 ** Report an error if any column mentioned in the USING clause is 512 ** not contained in both tables to be joined. 513 */ 514 if( pRight->pUsing ){ 515 IdList *pList = pRight->pUsing; 516 for(j=0; j<pList->nId; j++){ 517 char *zName; /* Name of the term in the USING clause */ 518 int iLeft; /* Table on the left with matching column name */ 519 int iLeftCol; /* Column number of matching column on the left */ 520 int iRightCol; /* Column number of matching column on the right */ 521 522 zName = pList->a[j].zName; 523 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 524 if( iRightCol<0 525 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 526 ){ 527 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 528 "not present in both tables", zName); 529 return 1; 530 } 531 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 532 isOuter, &p->pWhere); 533 } 534 } 535 } 536 return 0; 537 } 538 539 /* 540 ** An instance of this object holds information (beyond pParse and pSelect) 541 ** needed to load the next result row that is to be added to the sorter. 542 */ 543 typedef struct RowLoadInfo RowLoadInfo; 544 struct RowLoadInfo { 545 int regResult; /* Store results in array of registers here */ 546 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 548 ExprList *pExtra; /* Extra columns needed by sorter refs */ 549 int regExtraResult; /* Where to load the extra columns */ 550 #endif 551 }; 552 553 /* 554 ** This routine does the work of loading query data into an array of 555 ** registers so that it can be added to the sorter. 556 */ 557 static void innerLoopLoadRow( 558 Parse *pParse, /* Statement under construction */ 559 Select *pSelect, /* The query being coded */ 560 RowLoadInfo *pInfo /* Info needed to complete the row load */ 561 ){ 562 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 563 0, pInfo->ecelFlags); 564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 565 if( pInfo->pExtra ){ 566 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 567 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 568 } 569 #endif 570 } 571 572 /* 573 ** Code the OP_MakeRecord instruction that generates the entry to be 574 ** added into the sorter. 575 ** 576 ** Return the register in which the result is stored. 577 */ 578 static int makeSorterRecord( 579 Parse *pParse, 580 SortCtx *pSort, 581 Select *pSelect, 582 int regBase, 583 int nBase 584 ){ 585 int nOBSat = pSort->nOBSat; 586 Vdbe *v = pParse->pVdbe; 587 int regOut = ++pParse->nMem; 588 if( pSort->pDeferredRowLoad ){ 589 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 590 } 591 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 592 return regOut; 593 } 594 595 /* 596 ** Generate code that will push the record in registers regData 597 ** through regData+nData-1 onto the sorter. 598 */ 599 static void pushOntoSorter( 600 Parse *pParse, /* Parser context */ 601 SortCtx *pSort, /* Information about the ORDER BY clause */ 602 Select *pSelect, /* The whole SELECT statement */ 603 int regData, /* First register holding data to be sorted */ 604 int regOrigData, /* First register holding data before packing */ 605 int nData, /* Number of elements in the regData data array */ 606 int nPrefixReg /* No. of reg prior to regData available for use */ 607 ){ 608 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 609 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 610 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 611 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 612 int regBase; /* Regs for sorter record */ 613 int regRecord = 0; /* Assembled sorter record */ 614 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 615 int op; /* Opcode to add sorter record to sorter */ 616 int iLimit; /* LIMIT counter */ 617 int iSkip = 0; /* End of the sorter insert loop */ 618 619 assert( bSeq==0 || bSeq==1 ); 620 621 /* Three cases: 622 ** (1) The data to be sorted has already been packed into a Record 623 ** by a prior OP_MakeRecord. In this case nData==1 and regData 624 ** will be completely unrelated to regOrigData. 625 ** (2) All output columns are included in the sort record. In that 626 ** case regData==regOrigData. 627 ** (3) Some output columns are omitted from the sort record due to 628 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 629 ** SQLITE_ECEL_OMITREF optimization, or due to the 630 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 631 ** regOrigData is 0 to prevent this routine from trying to copy 632 ** values that might not yet exist. 633 */ 634 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 635 636 if( nPrefixReg ){ 637 assert( nPrefixReg==nExpr+bSeq ); 638 regBase = regData - nPrefixReg; 639 }else{ 640 regBase = pParse->nMem + 1; 641 pParse->nMem += nBase; 642 } 643 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 644 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 645 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 646 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 647 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 648 if( bSeq ){ 649 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 650 } 651 if( nPrefixReg==0 && nData>0 ){ 652 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 653 } 654 if( nOBSat>0 ){ 655 int regPrevKey; /* The first nOBSat columns of the previous row */ 656 int addrFirst; /* Address of the OP_IfNot opcode */ 657 int addrJmp; /* Address of the OP_Jump opcode */ 658 VdbeOp *pOp; /* Opcode that opens the sorter */ 659 int nKey; /* Number of sorting key columns, including OP_Sequence */ 660 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 661 662 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 663 regPrevKey = pParse->nMem+1; 664 pParse->nMem += pSort->nOBSat; 665 nKey = nExpr - pSort->nOBSat + bSeq; 666 if( bSeq ){ 667 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 668 }else{ 669 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 670 } 671 VdbeCoverage(v); 672 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 673 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 674 if( pParse->db->mallocFailed ) return; 675 pOp->p2 = nKey + nData; 676 pKI = pOp->p4.pKeyInfo; 677 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 678 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 679 testcase( pKI->nAllField > pKI->nKeyField+2 ); 680 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 681 pKI->nAllField-pKI->nKeyField-1); 682 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 683 addrJmp = sqlite3VdbeCurrentAddr(v); 684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 685 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 686 pSort->regReturn = ++pParse->nMem; 687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 689 if( iLimit ){ 690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 691 VdbeCoverage(v); 692 } 693 sqlite3VdbeJumpHere(v, addrFirst); 694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 695 sqlite3VdbeJumpHere(v, addrJmp); 696 } 697 if( iLimit ){ 698 /* At this point the values for the new sorter entry are stored 699 ** in an array of registers. They need to be composed into a record 700 ** and inserted into the sorter if either (a) there are currently 701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 702 ** the largest record currently in the sorter. If (b) is true and there 703 ** are already LIMIT+OFFSET items in the sorter, delete the largest 704 ** entry before inserting the new one. This way there are never more 705 ** than LIMIT+OFFSET items in the sorter. 706 ** 707 ** If the new record does not need to be inserted into the sorter, 708 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 709 ** value is not zero, then it is a label of where to jump. Otherwise, 710 ** just bypass the row insert logic. See the header comment on the 711 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 712 */ 713 int iCsr = pSort->iECursor; 714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 715 VdbeCoverage(v); 716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 719 VdbeCoverage(v); 720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 721 } 722 if( regRecord==0 ){ 723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 724 } 725 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 726 op = OP_SorterInsert; 727 }else{ 728 op = OP_IdxInsert; 729 } 730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 731 regBase+nOBSat, nBase-nOBSat); 732 if( iSkip ){ 733 sqlite3VdbeChangeP2(v, iSkip, 734 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 735 } 736 } 737 738 /* 739 ** Add code to implement the OFFSET 740 */ 741 static void codeOffset( 742 Vdbe *v, /* Generate code into this VM */ 743 int iOffset, /* Register holding the offset counter */ 744 int iContinue /* Jump here to skip the current record */ 745 ){ 746 if( iOffset>0 ){ 747 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 748 VdbeComment((v, "OFFSET")); 749 } 750 } 751 752 /* 753 ** Add code that will check to make sure the array of registers starting at 754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 756 ** are available. Which is used depends on the value of parameter eTnctType, 757 ** as follows: 758 ** 759 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 760 ** Build an ephemeral table that contains all entries seen before and 761 ** skip entries which have been seen before. 762 ** 763 ** Parameter iTab is the cursor number of an ephemeral table that must 764 ** be opened before the VM code generated by this routine is executed. 765 ** The ephemeral cursor table is queried for a record identical to the 766 ** record formed by the current array of registers. If one is found, 767 ** jump to VM address addrRepeat. Otherwise, insert a new record into 768 ** the ephemeral cursor and proceed. 769 ** 770 ** The returned value in this case is a copy of parameter iTab. 771 ** 772 ** WHERE_DISTINCT_ORDERED: 773 ** In this case rows are being delivered sorted order. The ephermal 774 ** table is not required. Instead, the current set of values 775 ** is compared against previous row. If they match, the new row 776 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 777 ** the VM program proceeds with processing the new row. 778 ** 779 ** The returned value in this case is the register number of the first 780 ** in an array of registers used to store the previous result row so that 781 ** it can be compared to the next. The caller must ensure that this 782 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 783 ** will take care of this initialization.) 784 ** 785 ** WHERE_DISTINCT_UNIQUE: 786 ** In this case it has already been determined that the rows are distinct. 787 ** No special action is required. The return value is zero. 788 ** 789 ** Parameter pEList is the list of expressions used to generated the 790 ** contents of each row. It is used by this routine to determine (a) 791 ** how many elements there are in the array of registers and (b) the 792 ** collation sequences that should be used for the comparisons if 793 ** eTnctType is WHERE_DISTINCT_ORDERED. 794 */ 795 static int codeDistinct( 796 Parse *pParse, /* Parsing and code generating context */ 797 int eTnctType, /* WHERE_DISTINCT_* value */ 798 int iTab, /* A sorting index used to test for distinctness */ 799 int addrRepeat, /* Jump to here if not distinct */ 800 ExprList *pEList, /* Expression for each element */ 801 int regElem /* First element */ 802 ){ 803 int iRet = 0; 804 int nResultCol = pEList->nExpr; 805 Vdbe *v = pParse->pVdbe; 806 807 switch( eTnctType ){ 808 case WHERE_DISTINCT_ORDERED: { 809 int i; 810 int iJump; /* Jump destination */ 811 int regPrev; /* Previous row content */ 812 813 /* Allocate space for the previous row */ 814 iRet = regPrev = pParse->nMem+1; 815 pParse->nMem += nResultCol; 816 817 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 818 for(i=0; i<nResultCol; i++){ 819 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 820 if( i<nResultCol-1 ){ 821 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 822 VdbeCoverage(v); 823 }else{ 824 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 825 VdbeCoverage(v); 826 } 827 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 828 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 829 } 830 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 831 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 832 break; 833 } 834 835 case WHERE_DISTINCT_UNIQUE: { 836 /* nothing to do */ 837 break; 838 } 839 840 default: { 841 int r1 = sqlite3GetTempReg(pParse); 842 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 843 VdbeCoverage(v); 844 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 845 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 846 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 847 sqlite3ReleaseTempReg(pParse, r1); 848 iRet = iTab; 849 break; 850 } 851 } 852 853 return iRet; 854 } 855 856 /* 857 ** This routine runs after codeDistinct(). It makes necessary 858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 859 ** routine made use of. This processing must be done separately since 860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 861 ** laid down. 862 ** 863 ** WHERE_DISTINCT_NOOP: 864 ** WHERE_DISTINCT_UNORDERED: 865 ** 866 ** No adjustments necessary. This function is a no-op. 867 ** 868 ** WHERE_DISTINCT_UNIQUE: 869 ** 870 ** The ephemeral table is not needed. So change the 871 ** OP_OpenEphemeral opcode into an OP_Noop. 872 ** 873 ** WHERE_DISTINCT_ORDERED: 874 ** 875 ** The ephemeral table is not needed. But we do need register 876 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 877 ** into an OP_Null on the iVal register. 878 */ 879 static void fixDistinctOpenEph( 880 Parse *pParse, /* Parsing and code generating context */ 881 int eTnctType, /* WHERE_DISTINCT_* value */ 882 int iVal, /* Value returned by codeDistinct() */ 883 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 884 ){ 885 if( pParse->nErr==0 886 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 887 ){ 888 Vdbe *v = pParse->pVdbe; 889 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 890 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 891 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 892 } 893 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 894 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 895 ** bit on the first register of the previous value. This will cause the 896 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 897 ** the loop even if the first row is all NULLs. */ 898 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 899 pOp->opcode = OP_Null; 900 pOp->p1 = 1; 901 pOp->p2 = iVal; 902 } 903 } 904 } 905 906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 907 /* 908 ** This function is called as part of inner-loop generation for a SELECT 909 ** statement with an ORDER BY that is not optimized by an index. It 910 ** determines the expressions, if any, that the sorter-reference 911 ** optimization should be used for. The sorter-reference optimization 912 ** is used for SELECT queries like: 913 ** 914 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 915 ** 916 ** If the optimization is used for expression "bigblob", then instead of 917 ** storing values read from that column in the sorter records, the PK of 918 ** the row from table t1 is stored instead. Then, as records are extracted from 919 ** the sorter to return to the user, the required value of bigblob is 920 ** retrieved directly from table t1. If the values are very large, this 921 ** can be more efficient than storing them directly in the sorter records. 922 ** 923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 924 ** for which the sorter-reference optimization should be enabled. 925 ** Additionally, the pSort->aDefer[] array is populated with entries 926 ** for all cursors required to evaluate all selected expressions. Finally. 927 ** output variable (*ppExtra) is set to an expression list containing 928 ** expressions for all extra PK values that should be stored in the 929 ** sorter records. 930 */ 931 static void selectExprDefer( 932 Parse *pParse, /* Leave any error here */ 933 SortCtx *pSort, /* Sorter context */ 934 ExprList *pEList, /* Expressions destined for sorter */ 935 ExprList **ppExtra /* Expressions to append to sorter record */ 936 ){ 937 int i; 938 int nDefer = 0; 939 ExprList *pExtra = 0; 940 for(i=0; i<pEList->nExpr; i++){ 941 struct ExprList_item *pItem = &pEList->a[i]; 942 if( pItem->u.x.iOrderByCol==0 ){ 943 Expr *pExpr = pItem->pExpr; 944 Table *pTab; 945 if( pExpr->op==TK_COLUMN 946 && pExpr->iColumn>=0 947 && ALWAYS( ExprUseYTab(pExpr) ) 948 && (pTab = pExpr->y.pTab)!=0 949 && IsOrdinaryTable(pTab) 950 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 951 ){ 952 int j; 953 for(j=0; j<nDefer; j++){ 954 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 955 } 956 if( j==nDefer ){ 957 if( nDefer==ArraySize(pSort->aDefer) ){ 958 continue; 959 }else{ 960 int nKey = 1; 961 int k; 962 Index *pPk = 0; 963 if( !HasRowid(pTab) ){ 964 pPk = sqlite3PrimaryKeyIndex(pTab); 965 nKey = pPk->nKeyCol; 966 } 967 for(k=0; k<nKey; k++){ 968 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 969 if( pNew ){ 970 pNew->iTable = pExpr->iTable; 971 assert( ExprUseYTab(pNew) ); 972 pNew->y.pTab = pExpr->y.pTab; 973 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 974 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 975 } 976 } 977 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 978 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 979 pSort->aDefer[nDefer].nKey = nKey; 980 nDefer++; 981 } 982 } 983 pItem->bSorterRef = 1; 984 } 985 } 986 } 987 pSort->nDefer = (u8)nDefer; 988 *ppExtra = pExtra; 989 } 990 #endif 991 992 /* 993 ** This routine generates the code for the inside of the inner loop 994 ** of a SELECT. 995 ** 996 ** If srcTab is negative, then the p->pEList expressions 997 ** are evaluated in order to get the data for this row. If srcTab is 998 ** zero or more, then data is pulled from srcTab and p->pEList is used only 999 ** to get the number of columns and the collation sequence for each column. 1000 */ 1001 static void selectInnerLoop( 1002 Parse *pParse, /* The parser context */ 1003 Select *p, /* The complete select statement being coded */ 1004 int srcTab, /* Pull data from this table if non-negative */ 1005 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1006 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1007 SelectDest *pDest, /* How to dispose of the results */ 1008 int iContinue, /* Jump here to continue with next row */ 1009 int iBreak /* Jump here to break out of the inner loop */ 1010 ){ 1011 Vdbe *v = pParse->pVdbe; 1012 int i; 1013 int hasDistinct; /* True if the DISTINCT keyword is present */ 1014 int eDest = pDest->eDest; /* How to dispose of results */ 1015 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1016 int nResultCol; /* Number of result columns */ 1017 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1018 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1019 1020 /* Usually, regResult is the first cell in an array of memory cells 1021 ** containing the current result row. In this case regOrig is set to the 1022 ** same value. However, if the results are being sent to the sorter, the 1023 ** values for any expressions that are also part of the sort-key are omitted 1024 ** from this array. In this case regOrig is set to zero. */ 1025 int regResult; /* Start of memory holding current results */ 1026 int regOrig; /* Start of memory holding full result (or 0) */ 1027 1028 assert( v ); 1029 assert( p->pEList!=0 ); 1030 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1031 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1032 if( pSort==0 && !hasDistinct ){ 1033 assert( iContinue!=0 ); 1034 codeOffset(v, p->iOffset, iContinue); 1035 } 1036 1037 /* Pull the requested columns. 1038 */ 1039 nResultCol = p->pEList->nExpr; 1040 1041 if( pDest->iSdst==0 ){ 1042 if( pSort ){ 1043 nPrefixReg = pSort->pOrderBy->nExpr; 1044 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1045 pParse->nMem += nPrefixReg; 1046 } 1047 pDest->iSdst = pParse->nMem+1; 1048 pParse->nMem += nResultCol; 1049 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1050 /* This is an error condition that can result, for example, when a SELECT 1051 ** on the right-hand side of an INSERT contains more result columns than 1052 ** there are columns in the table on the left. The error will be caught 1053 ** and reported later. But we need to make sure enough memory is allocated 1054 ** to avoid other spurious errors in the meantime. */ 1055 pParse->nMem += nResultCol; 1056 } 1057 pDest->nSdst = nResultCol; 1058 regOrig = regResult = pDest->iSdst; 1059 if( srcTab>=0 ){ 1060 for(i=0; i<nResultCol; i++){ 1061 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1062 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1063 } 1064 }else if( eDest!=SRT_Exists ){ 1065 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1066 ExprList *pExtra = 0; 1067 #endif 1068 /* If the destination is an EXISTS(...) expression, the actual 1069 ** values returned by the SELECT are not required. 1070 */ 1071 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1072 ExprList *pEList; 1073 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1074 ecelFlags = SQLITE_ECEL_DUP; 1075 }else{ 1076 ecelFlags = 0; 1077 } 1078 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1079 /* For each expression in p->pEList that is a copy of an expression in 1080 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1081 ** iOrderByCol value to one more than the index of the ORDER BY 1082 ** expression within the sort-key that pushOntoSorter() will generate. 1083 ** This allows the p->pEList field to be omitted from the sorted record, 1084 ** saving space and CPU cycles. */ 1085 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1086 1087 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1088 int j; 1089 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1090 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1091 } 1092 } 1093 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1094 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1095 if( pExtra && pParse->db->mallocFailed==0 ){ 1096 /* If there are any extra PK columns to add to the sorter records, 1097 ** allocate extra memory cells and adjust the OpenEphemeral 1098 ** instruction to account for the larger records. This is only 1099 ** required if there are one or more WITHOUT ROWID tables with 1100 ** composite primary keys in the SortCtx.aDefer[] array. */ 1101 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1102 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1103 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1104 pParse->nMem += pExtra->nExpr; 1105 } 1106 #endif 1107 1108 /* Adjust nResultCol to account for columns that are omitted 1109 ** from the sorter by the optimizations in this branch */ 1110 pEList = p->pEList; 1111 for(i=0; i<pEList->nExpr; i++){ 1112 if( pEList->a[i].u.x.iOrderByCol>0 1113 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1114 || pEList->a[i].bSorterRef 1115 #endif 1116 ){ 1117 nResultCol--; 1118 regOrig = 0; 1119 } 1120 } 1121 1122 testcase( regOrig ); 1123 testcase( eDest==SRT_Set ); 1124 testcase( eDest==SRT_Mem ); 1125 testcase( eDest==SRT_Coroutine ); 1126 testcase( eDest==SRT_Output ); 1127 assert( eDest==SRT_Set || eDest==SRT_Mem 1128 || eDest==SRT_Coroutine || eDest==SRT_Output 1129 || eDest==SRT_Upfrom ); 1130 } 1131 sRowLoadInfo.regResult = regResult; 1132 sRowLoadInfo.ecelFlags = ecelFlags; 1133 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1134 sRowLoadInfo.pExtra = pExtra; 1135 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1136 if( pExtra ) nResultCol += pExtra->nExpr; 1137 #endif 1138 if( p->iLimit 1139 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1140 && nPrefixReg>0 1141 ){ 1142 assert( pSort!=0 ); 1143 assert( hasDistinct==0 ); 1144 pSort->pDeferredRowLoad = &sRowLoadInfo; 1145 regOrig = 0; 1146 }else{ 1147 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1148 } 1149 } 1150 1151 /* If the DISTINCT keyword was present on the SELECT statement 1152 ** and this row has been seen before, then do not make this row 1153 ** part of the result. 1154 */ 1155 if( hasDistinct ){ 1156 int eType = pDistinct->eTnctType; 1157 int iTab = pDistinct->tabTnct; 1158 assert( nResultCol==p->pEList->nExpr ); 1159 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1160 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1161 if( pSort==0 ){ 1162 codeOffset(v, p->iOffset, iContinue); 1163 } 1164 } 1165 1166 switch( eDest ){ 1167 /* In this mode, write each query result to the key of the temporary 1168 ** table iParm. 1169 */ 1170 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1171 case SRT_Union: { 1172 int r1; 1173 r1 = sqlite3GetTempReg(pParse); 1174 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1175 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1176 sqlite3ReleaseTempReg(pParse, r1); 1177 break; 1178 } 1179 1180 /* Construct a record from the query result, but instead of 1181 ** saving that record, use it as a key to delete elements from 1182 ** the temporary table iParm. 1183 */ 1184 case SRT_Except: { 1185 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1186 break; 1187 } 1188 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1189 1190 /* Store the result as data using a unique key. 1191 */ 1192 case SRT_Fifo: 1193 case SRT_DistFifo: 1194 case SRT_Table: 1195 case SRT_EphemTab: { 1196 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1197 testcase( eDest==SRT_Table ); 1198 testcase( eDest==SRT_EphemTab ); 1199 testcase( eDest==SRT_Fifo ); 1200 testcase( eDest==SRT_DistFifo ); 1201 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1202 #ifndef SQLITE_OMIT_CTE 1203 if( eDest==SRT_DistFifo ){ 1204 /* If the destination is DistFifo, then cursor (iParm+1) is open 1205 ** on an ephemeral index. If the current row is already present 1206 ** in the index, do not write it to the output. If not, add the 1207 ** current row to the index and proceed with writing it to the 1208 ** output table as well. */ 1209 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1210 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1211 VdbeCoverage(v); 1212 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1213 assert( pSort==0 ); 1214 } 1215 #endif 1216 if( pSort ){ 1217 assert( regResult==regOrig ); 1218 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1219 }else{ 1220 int r2 = sqlite3GetTempReg(pParse); 1221 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1222 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1223 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1224 sqlite3ReleaseTempReg(pParse, r2); 1225 } 1226 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1227 break; 1228 } 1229 1230 case SRT_Upfrom: { 1231 if( pSort ){ 1232 pushOntoSorter( 1233 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1234 }else{ 1235 int i2 = pDest->iSDParm2; 1236 int r1 = sqlite3GetTempReg(pParse); 1237 1238 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1239 ** might still be trying to return one row, because that is what 1240 ** aggregates do. Don't record that empty row in the output table. */ 1241 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1242 1243 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1244 regResult+(i2<0), nResultCol-(i2<0), r1); 1245 if( i2<0 ){ 1246 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1247 }else{ 1248 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1249 } 1250 } 1251 break; 1252 } 1253 1254 #ifndef SQLITE_OMIT_SUBQUERY 1255 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1256 ** then there should be a single item on the stack. Write this 1257 ** item into the set table with bogus data. 1258 */ 1259 case SRT_Set: { 1260 if( pSort ){ 1261 /* At first glance you would think we could optimize out the 1262 ** ORDER BY in this case since the order of entries in the set 1263 ** does not matter. But there might be a LIMIT clause, in which 1264 ** case the order does matter */ 1265 pushOntoSorter( 1266 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1267 }else{ 1268 int r1 = sqlite3GetTempReg(pParse); 1269 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1270 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1271 r1, pDest->zAffSdst, nResultCol); 1272 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1273 sqlite3ReleaseTempReg(pParse, r1); 1274 } 1275 break; 1276 } 1277 1278 1279 /* If any row exist in the result set, record that fact and abort. 1280 */ 1281 case SRT_Exists: { 1282 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1283 /* The LIMIT clause will terminate the loop for us */ 1284 break; 1285 } 1286 1287 /* If this is a scalar select that is part of an expression, then 1288 ** store the results in the appropriate memory cell or array of 1289 ** memory cells and break out of the scan loop. 1290 */ 1291 case SRT_Mem: { 1292 if( pSort ){ 1293 assert( nResultCol<=pDest->nSdst ); 1294 pushOntoSorter( 1295 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1296 }else{ 1297 assert( nResultCol==pDest->nSdst ); 1298 assert( regResult==iParm ); 1299 /* The LIMIT clause will jump out of the loop for us */ 1300 } 1301 break; 1302 } 1303 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1304 1305 case SRT_Coroutine: /* Send data to a co-routine */ 1306 case SRT_Output: { /* Return the results */ 1307 testcase( eDest==SRT_Coroutine ); 1308 testcase( eDest==SRT_Output ); 1309 if( pSort ){ 1310 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1311 nPrefixReg); 1312 }else if( eDest==SRT_Coroutine ){ 1313 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1314 }else{ 1315 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1316 } 1317 break; 1318 } 1319 1320 #ifndef SQLITE_OMIT_CTE 1321 /* Write the results into a priority queue that is order according to 1322 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1323 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1324 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1325 ** final OP_Sequence column. The last column is the record as a blob. 1326 */ 1327 case SRT_DistQueue: 1328 case SRT_Queue: { 1329 int nKey; 1330 int r1, r2, r3; 1331 int addrTest = 0; 1332 ExprList *pSO; 1333 pSO = pDest->pOrderBy; 1334 assert( pSO ); 1335 nKey = pSO->nExpr; 1336 r1 = sqlite3GetTempReg(pParse); 1337 r2 = sqlite3GetTempRange(pParse, nKey+2); 1338 r3 = r2+nKey+1; 1339 if( eDest==SRT_DistQueue ){ 1340 /* If the destination is DistQueue, then cursor (iParm+1) is open 1341 ** on a second ephemeral index that holds all values every previously 1342 ** added to the queue. */ 1343 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1344 regResult, nResultCol); 1345 VdbeCoverage(v); 1346 } 1347 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1348 if( eDest==SRT_DistQueue ){ 1349 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1350 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1351 } 1352 for(i=0; i<nKey; i++){ 1353 sqlite3VdbeAddOp2(v, OP_SCopy, 1354 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1355 r2+i); 1356 } 1357 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1358 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1360 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1361 sqlite3ReleaseTempReg(pParse, r1); 1362 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1363 break; 1364 } 1365 #endif /* SQLITE_OMIT_CTE */ 1366 1367 1368 1369 #if !defined(SQLITE_OMIT_TRIGGER) 1370 /* Discard the results. This is used for SELECT statements inside 1371 ** the body of a TRIGGER. The purpose of such selects is to call 1372 ** user-defined functions that have side effects. We do not care 1373 ** about the actual results of the select. 1374 */ 1375 default: { 1376 assert( eDest==SRT_Discard ); 1377 break; 1378 } 1379 #endif 1380 } 1381 1382 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1383 ** there is a sorter, in which case the sorter has already limited 1384 ** the output for us. 1385 */ 1386 if( pSort==0 && p->iLimit ){ 1387 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1388 } 1389 } 1390 1391 /* 1392 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1393 ** X extra columns. 1394 */ 1395 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1396 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1397 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1398 if( p ){ 1399 p->aSortFlags = (u8*)&p->aColl[N+X]; 1400 p->nKeyField = (u16)N; 1401 p->nAllField = (u16)(N+X); 1402 p->enc = ENC(db); 1403 p->db = db; 1404 p->nRef = 1; 1405 memset(&p[1], 0, nExtra); 1406 }else{ 1407 return (KeyInfo*)sqlite3OomFault(db); 1408 } 1409 return p; 1410 } 1411 1412 /* 1413 ** Deallocate a KeyInfo object 1414 */ 1415 void sqlite3KeyInfoUnref(KeyInfo *p){ 1416 if( p ){ 1417 assert( p->nRef>0 ); 1418 p->nRef--; 1419 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1420 } 1421 } 1422 1423 /* 1424 ** Make a new pointer to a KeyInfo object 1425 */ 1426 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1427 if( p ){ 1428 assert( p->nRef>0 ); 1429 p->nRef++; 1430 } 1431 return p; 1432 } 1433 1434 #ifdef SQLITE_DEBUG 1435 /* 1436 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1437 ** can only be changed if this is just a single reference to the object. 1438 ** 1439 ** This routine is used only inside of assert() statements. 1440 */ 1441 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1442 #endif /* SQLITE_DEBUG */ 1443 1444 /* 1445 ** Given an expression list, generate a KeyInfo structure that records 1446 ** the collating sequence for each expression in that expression list. 1447 ** 1448 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1449 ** KeyInfo structure is appropriate for initializing a virtual index to 1450 ** implement that clause. If the ExprList is the result set of a SELECT 1451 ** then the KeyInfo structure is appropriate for initializing a virtual 1452 ** index to implement a DISTINCT test. 1453 ** 1454 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1455 ** function is responsible for seeing that this structure is eventually 1456 ** freed. 1457 */ 1458 KeyInfo *sqlite3KeyInfoFromExprList( 1459 Parse *pParse, /* Parsing context */ 1460 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1461 int iStart, /* Begin with this column of pList */ 1462 int nExtra /* Add this many extra columns to the end */ 1463 ){ 1464 int nExpr; 1465 KeyInfo *pInfo; 1466 struct ExprList_item *pItem; 1467 sqlite3 *db = pParse->db; 1468 int i; 1469 1470 nExpr = pList->nExpr; 1471 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1472 if( pInfo ){ 1473 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1474 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1475 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1476 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1477 } 1478 } 1479 return pInfo; 1480 } 1481 1482 /* 1483 ** Name of the connection operator, used for error messages. 1484 */ 1485 const char *sqlite3SelectOpName(int id){ 1486 char *z; 1487 switch( id ){ 1488 case TK_ALL: z = "UNION ALL"; break; 1489 case TK_INTERSECT: z = "INTERSECT"; break; 1490 case TK_EXCEPT: z = "EXCEPT"; break; 1491 default: z = "UNION"; break; 1492 } 1493 return z; 1494 } 1495 1496 #ifndef SQLITE_OMIT_EXPLAIN 1497 /* 1498 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1499 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1500 ** where the caption is of the form: 1501 ** 1502 ** "USE TEMP B-TREE FOR xxx" 1503 ** 1504 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1505 ** is determined by the zUsage argument. 1506 */ 1507 static void explainTempTable(Parse *pParse, const char *zUsage){ 1508 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1509 } 1510 1511 /* 1512 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1513 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1514 ** in sqlite3Select() to assign values to structure member variables that 1515 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1516 ** code with #ifndef directives. 1517 */ 1518 # define explainSetInteger(a, b) a = b 1519 1520 #else 1521 /* No-op versions of the explainXXX() functions and macros. */ 1522 # define explainTempTable(y,z) 1523 # define explainSetInteger(y,z) 1524 #endif 1525 1526 1527 /* 1528 ** If the inner loop was generated using a non-null pOrderBy argument, 1529 ** then the results were placed in a sorter. After the loop is terminated 1530 ** we need to run the sorter and output the results. The following 1531 ** routine generates the code needed to do that. 1532 */ 1533 static void generateSortTail( 1534 Parse *pParse, /* Parsing context */ 1535 Select *p, /* The SELECT statement */ 1536 SortCtx *pSort, /* Information on the ORDER BY clause */ 1537 int nColumn, /* Number of columns of data */ 1538 SelectDest *pDest /* Write the sorted results here */ 1539 ){ 1540 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1541 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1542 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1543 int addr; /* Top of output loop. Jump for Next. */ 1544 int addrOnce = 0; 1545 int iTab; 1546 ExprList *pOrderBy = pSort->pOrderBy; 1547 int eDest = pDest->eDest; 1548 int iParm = pDest->iSDParm; 1549 int regRow; 1550 int regRowid; 1551 int iCol; 1552 int nKey; /* Number of key columns in sorter record */ 1553 int iSortTab; /* Sorter cursor to read from */ 1554 int i; 1555 int bSeq; /* True if sorter record includes seq. no. */ 1556 int nRefKey = 0; 1557 struct ExprList_item *aOutEx = p->pEList->a; 1558 1559 assert( addrBreak<0 ); 1560 if( pSort->labelBkOut ){ 1561 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1562 sqlite3VdbeGoto(v, addrBreak); 1563 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1564 } 1565 1566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1567 /* Open any cursors needed for sorter-reference expressions */ 1568 for(i=0; i<pSort->nDefer; i++){ 1569 Table *pTab = pSort->aDefer[i].pTab; 1570 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1571 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1572 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1573 } 1574 #endif 1575 1576 iTab = pSort->iECursor; 1577 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1578 if( eDest==SRT_Mem && p->iOffset ){ 1579 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1580 } 1581 regRowid = 0; 1582 regRow = pDest->iSdst; 1583 }else{ 1584 regRowid = sqlite3GetTempReg(pParse); 1585 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1586 regRow = sqlite3GetTempReg(pParse); 1587 nColumn = 0; 1588 }else{ 1589 regRow = sqlite3GetTempRange(pParse, nColumn); 1590 } 1591 } 1592 nKey = pOrderBy->nExpr - pSort->nOBSat; 1593 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1594 int regSortOut = ++pParse->nMem; 1595 iSortTab = pParse->nTab++; 1596 if( pSort->labelBkOut ){ 1597 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1598 } 1599 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1600 nKey+1+nColumn+nRefKey); 1601 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1602 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1603 VdbeCoverage(v); 1604 codeOffset(v, p->iOffset, addrContinue); 1605 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1606 bSeq = 0; 1607 }else{ 1608 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1609 codeOffset(v, p->iOffset, addrContinue); 1610 iSortTab = iTab; 1611 bSeq = 1; 1612 } 1613 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1614 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1615 if( aOutEx[i].bSorterRef ) continue; 1616 #endif 1617 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1618 } 1619 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1620 if( pSort->nDefer ){ 1621 int iKey = iCol+1; 1622 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1623 1624 for(i=0; i<pSort->nDefer; i++){ 1625 int iCsr = pSort->aDefer[i].iCsr; 1626 Table *pTab = pSort->aDefer[i].pTab; 1627 int nKey = pSort->aDefer[i].nKey; 1628 1629 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1630 if( HasRowid(pTab) ){ 1631 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1632 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1633 sqlite3VdbeCurrentAddr(v)+1, regKey); 1634 }else{ 1635 int k; 1636 int iJmp; 1637 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1638 for(k=0; k<nKey; k++){ 1639 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1640 } 1641 iJmp = sqlite3VdbeCurrentAddr(v); 1642 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1643 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1644 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1645 } 1646 } 1647 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1648 } 1649 #endif 1650 for(i=nColumn-1; i>=0; i--){ 1651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1652 if( aOutEx[i].bSorterRef ){ 1653 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1654 }else 1655 #endif 1656 { 1657 int iRead; 1658 if( aOutEx[i].u.x.iOrderByCol ){ 1659 iRead = aOutEx[i].u.x.iOrderByCol-1; 1660 }else{ 1661 iRead = iCol--; 1662 } 1663 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1664 VdbeComment((v, "%s", aOutEx[i].zEName)); 1665 } 1666 } 1667 switch( eDest ){ 1668 case SRT_Table: 1669 case SRT_EphemTab: { 1670 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1671 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1672 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1673 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1674 break; 1675 } 1676 #ifndef SQLITE_OMIT_SUBQUERY 1677 case SRT_Set: { 1678 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1679 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1680 pDest->zAffSdst, nColumn); 1681 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1682 break; 1683 } 1684 case SRT_Mem: { 1685 /* The LIMIT clause will terminate the loop for us */ 1686 break; 1687 } 1688 #endif 1689 case SRT_Upfrom: { 1690 int i2 = pDest->iSDParm2; 1691 int r1 = sqlite3GetTempReg(pParse); 1692 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1693 if( i2<0 ){ 1694 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1695 }else{ 1696 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1697 } 1698 break; 1699 } 1700 default: { 1701 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1702 testcase( eDest==SRT_Output ); 1703 testcase( eDest==SRT_Coroutine ); 1704 if( eDest==SRT_Output ){ 1705 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1706 }else{ 1707 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1708 } 1709 break; 1710 } 1711 } 1712 if( regRowid ){ 1713 if( eDest==SRT_Set ){ 1714 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1715 }else{ 1716 sqlite3ReleaseTempReg(pParse, regRow); 1717 } 1718 sqlite3ReleaseTempReg(pParse, regRowid); 1719 } 1720 /* The bottom of the loop 1721 */ 1722 sqlite3VdbeResolveLabel(v, addrContinue); 1723 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1724 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1725 }else{ 1726 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1727 } 1728 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1729 sqlite3VdbeResolveLabel(v, addrBreak); 1730 } 1731 1732 /* 1733 ** Return a pointer to a string containing the 'declaration type' of the 1734 ** expression pExpr. The string may be treated as static by the caller. 1735 ** 1736 ** Also try to estimate the size of the returned value and return that 1737 ** result in *pEstWidth. 1738 ** 1739 ** The declaration type is the exact datatype definition extracted from the 1740 ** original CREATE TABLE statement if the expression is a column. The 1741 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1742 ** is considered a column can be complex in the presence of subqueries. The 1743 ** result-set expression in all of the following SELECT statements is 1744 ** considered a column by this function. 1745 ** 1746 ** SELECT col FROM tbl; 1747 ** SELECT (SELECT col FROM tbl; 1748 ** SELECT (SELECT col FROM tbl); 1749 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1750 ** 1751 ** The declaration type for any expression other than a column is NULL. 1752 ** 1753 ** This routine has either 3 or 6 parameters depending on whether or not 1754 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1755 */ 1756 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1757 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1758 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1759 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1760 #endif 1761 static const char *columnTypeImpl( 1762 NameContext *pNC, 1763 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1764 Expr *pExpr 1765 #else 1766 Expr *pExpr, 1767 const char **pzOrigDb, 1768 const char **pzOrigTab, 1769 const char **pzOrigCol 1770 #endif 1771 ){ 1772 char const *zType = 0; 1773 int j; 1774 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1775 char const *zOrigDb = 0; 1776 char const *zOrigTab = 0; 1777 char const *zOrigCol = 0; 1778 #endif 1779 1780 assert( pExpr!=0 ); 1781 assert( pNC->pSrcList!=0 ); 1782 switch( pExpr->op ){ 1783 case TK_COLUMN: { 1784 /* The expression is a column. Locate the table the column is being 1785 ** extracted from in NameContext.pSrcList. This table may be real 1786 ** database table or a subquery. 1787 */ 1788 Table *pTab = 0; /* Table structure column is extracted from */ 1789 Select *pS = 0; /* Select the column is extracted from */ 1790 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1791 while( pNC && !pTab ){ 1792 SrcList *pTabList = pNC->pSrcList; 1793 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1794 if( j<pTabList->nSrc ){ 1795 pTab = pTabList->a[j].pTab; 1796 pS = pTabList->a[j].pSelect; 1797 }else{ 1798 pNC = pNC->pNext; 1799 } 1800 } 1801 1802 if( pTab==0 ){ 1803 /* At one time, code such as "SELECT new.x" within a trigger would 1804 ** cause this condition to run. Since then, we have restructured how 1805 ** trigger code is generated and so this condition is no longer 1806 ** possible. However, it can still be true for statements like 1807 ** the following: 1808 ** 1809 ** CREATE TABLE t1(col INTEGER); 1810 ** SELECT (SELECT t1.col) FROM FROM t1; 1811 ** 1812 ** when columnType() is called on the expression "t1.col" in the 1813 ** sub-select. In this case, set the column type to NULL, even 1814 ** though it should really be "INTEGER". 1815 ** 1816 ** This is not a problem, as the column type of "t1.col" is never 1817 ** used. When columnType() is called on the expression 1818 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1819 ** branch below. */ 1820 break; 1821 } 1822 1823 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1824 if( pS ){ 1825 /* The "table" is actually a sub-select or a view in the FROM clause 1826 ** of the SELECT statement. Return the declaration type and origin 1827 ** data for the result-set column of the sub-select. 1828 */ 1829 if( iCol<pS->pEList->nExpr 1830 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1831 && iCol>=0 1832 #else 1833 && ALWAYS(iCol>=0) 1834 #endif 1835 ){ 1836 /* If iCol is less than zero, then the expression requests the 1837 ** rowid of the sub-select or view. This expression is legal (see 1838 ** test case misc2.2.2) - it always evaluates to NULL. 1839 */ 1840 NameContext sNC; 1841 Expr *p = pS->pEList->a[iCol].pExpr; 1842 sNC.pSrcList = pS->pSrc; 1843 sNC.pNext = pNC; 1844 sNC.pParse = pNC->pParse; 1845 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1846 } 1847 }else{ 1848 /* A real table or a CTE table */ 1849 assert( !pS ); 1850 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1851 if( iCol<0 ) iCol = pTab->iPKey; 1852 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1853 if( iCol<0 ){ 1854 zType = "INTEGER"; 1855 zOrigCol = "rowid"; 1856 }else{ 1857 zOrigCol = pTab->aCol[iCol].zCnName; 1858 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1859 } 1860 zOrigTab = pTab->zName; 1861 if( pNC->pParse && pTab->pSchema ){ 1862 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1863 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1864 } 1865 #else 1866 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1867 if( iCol<0 ){ 1868 zType = "INTEGER"; 1869 }else{ 1870 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1871 } 1872 #endif 1873 } 1874 break; 1875 } 1876 #ifndef SQLITE_OMIT_SUBQUERY 1877 case TK_SELECT: { 1878 /* The expression is a sub-select. Return the declaration type and 1879 ** origin info for the single column in the result set of the SELECT 1880 ** statement. 1881 */ 1882 NameContext sNC; 1883 Select *pS; 1884 Expr *p; 1885 assert( ExprUseXSelect(pExpr) ); 1886 pS = pExpr->x.pSelect; 1887 p = pS->pEList->a[0].pExpr; 1888 sNC.pSrcList = pS->pSrc; 1889 sNC.pNext = pNC; 1890 sNC.pParse = pNC->pParse; 1891 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1892 break; 1893 } 1894 #endif 1895 } 1896 1897 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1898 if( pzOrigDb ){ 1899 assert( pzOrigTab && pzOrigCol ); 1900 *pzOrigDb = zOrigDb; 1901 *pzOrigTab = zOrigTab; 1902 *pzOrigCol = zOrigCol; 1903 } 1904 #endif 1905 return zType; 1906 } 1907 1908 /* 1909 ** Generate code that will tell the VDBE the declaration types of columns 1910 ** in the result set. 1911 */ 1912 static void generateColumnTypes( 1913 Parse *pParse, /* Parser context */ 1914 SrcList *pTabList, /* List of tables */ 1915 ExprList *pEList /* Expressions defining the result set */ 1916 ){ 1917 #ifndef SQLITE_OMIT_DECLTYPE 1918 Vdbe *v = pParse->pVdbe; 1919 int i; 1920 NameContext sNC; 1921 sNC.pSrcList = pTabList; 1922 sNC.pParse = pParse; 1923 sNC.pNext = 0; 1924 for(i=0; i<pEList->nExpr; i++){ 1925 Expr *p = pEList->a[i].pExpr; 1926 const char *zType; 1927 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1928 const char *zOrigDb = 0; 1929 const char *zOrigTab = 0; 1930 const char *zOrigCol = 0; 1931 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1932 1933 /* The vdbe must make its own copy of the column-type and other 1934 ** column specific strings, in case the schema is reset before this 1935 ** virtual machine is deleted. 1936 */ 1937 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1938 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1939 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1940 #else 1941 zType = columnType(&sNC, p, 0, 0, 0); 1942 #endif 1943 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1944 } 1945 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1946 } 1947 1948 1949 /* 1950 ** Compute the column names for a SELECT statement. 1951 ** 1952 ** The only guarantee that SQLite makes about column names is that if the 1953 ** column has an AS clause assigning it a name, that will be the name used. 1954 ** That is the only documented guarantee. However, countless applications 1955 ** developed over the years have made baseless assumptions about column names 1956 ** and will break if those assumptions changes. Hence, use extreme caution 1957 ** when modifying this routine to avoid breaking legacy. 1958 ** 1959 ** See Also: sqlite3ColumnsFromExprList() 1960 ** 1961 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1962 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1963 ** applications should operate this way. Nevertheless, we need to support the 1964 ** other modes for legacy: 1965 ** 1966 ** short=OFF, full=OFF: Column name is the text of the expression has it 1967 ** originally appears in the SELECT statement. In 1968 ** other words, the zSpan of the result expression. 1969 ** 1970 ** short=ON, full=OFF: (This is the default setting). If the result 1971 ** refers directly to a table column, then the 1972 ** result column name is just the table column 1973 ** name: COLUMN. Otherwise use zSpan. 1974 ** 1975 ** full=ON, short=ANY: If the result refers directly to a table column, 1976 ** then the result column name with the table name 1977 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1978 */ 1979 void sqlite3GenerateColumnNames( 1980 Parse *pParse, /* Parser context */ 1981 Select *pSelect /* Generate column names for this SELECT statement */ 1982 ){ 1983 Vdbe *v = pParse->pVdbe; 1984 int i; 1985 Table *pTab; 1986 SrcList *pTabList; 1987 ExprList *pEList; 1988 sqlite3 *db = pParse->db; 1989 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1990 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1991 1992 #ifndef SQLITE_OMIT_EXPLAIN 1993 /* If this is an EXPLAIN, skip this step */ 1994 if( pParse->explain ){ 1995 return; 1996 } 1997 #endif 1998 1999 if( pParse->colNamesSet ) return; 2000 /* Column names are determined by the left-most term of a compound select */ 2001 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2002 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2003 pTabList = pSelect->pSrc; 2004 pEList = pSelect->pEList; 2005 assert( v!=0 ); 2006 assert( pTabList!=0 ); 2007 pParse->colNamesSet = 1; 2008 fullName = (db->flags & SQLITE_FullColNames)!=0; 2009 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2010 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2011 for(i=0; i<pEList->nExpr; i++){ 2012 Expr *p = pEList->a[i].pExpr; 2013 2014 assert( p!=0 ); 2015 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2016 assert( p->op!=TK_COLUMN 2017 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2018 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2019 /* An AS clause always takes first priority */ 2020 char *zName = pEList->a[i].zEName; 2021 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2022 }else if( srcName && p->op==TK_COLUMN ){ 2023 char *zCol; 2024 int iCol = p->iColumn; 2025 pTab = p->y.pTab; 2026 assert( pTab!=0 ); 2027 if( iCol<0 ) iCol = pTab->iPKey; 2028 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2029 if( iCol<0 ){ 2030 zCol = "rowid"; 2031 }else{ 2032 zCol = pTab->aCol[iCol].zCnName; 2033 } 2034 if( fullName ){ 2035 char *zName = 0; 2036 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2038 }else{ 2039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2040 } 2041 }else{ 2042 const char *z = pEList->a[i].zEName; 2043 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2044 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2045 } 2046 } 2047 generateColumnTypes(pParse, pTabList, pEList); 2048 } 2049 2050 /* 2051 ** Given an expression list (which is really the list of expressions 2052 ** that form the result set of a SELECT statement) compute appropriate 2053 ** column names for a table that would hold the expression list. 2054 ** 2055 ** All column names will be unique. 2056 ** 2057 ** Only the column names are computed. Column.zType, Column.zColl, 2058 ** and other fields of Column are zeroed. 2059 ** 2060 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2061 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2062 ** 2063 ** The only guarantee that SQLite makes about column names is that if the 2064 ** column has an AS clause assigning it a name, that will be the name used. 2065 ** That is the only documented guarantee. However, countless applications 2066 ** developed over the years have made baseless assumptions about column names 2067 ** and will break if those assumptions changes. Hence, use extreme caution 2068 ** when modifying this routine to avoid breaking legacy. 2069 ** 2070 ** See Also: sqlite3GenerateColumnNames() 2071 */ 2072 int sqlite3ColumnsFromExprList( 2073 Parse *pParse, /* Parsing context */ 2074 ExprList *pEList, /* Expr list from which to derive column names */ 2075 i16 *pnCol, /* Write the number of columns here */ 2076 Column **paCol /* Write the new column list here */ 2077 ){ 2078 sqlite3 *db = pParse->db; /* Database connection */ 2079 int i, j; /* Loop counters */ 2080 u32 cnt; /* Index added to make the name unique */ 2081 Column *aCol, *pCol; /* For looping over result columns */ 2082 int nCol; /* Number of columns in the result set */ 2083 char *zName; /* Column name */ 2084 int nName; /* Size of name in zName[] */ 2085 Hash ht; /* Hash table of column names */ 2086 Table *pTab; 2087 2088 sqlite3HashInit(&ht); 2089 if( pEList ){ 2090 nCol = pEList->nExpr; 2091 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2092 testcase( aCol==0 ); 2093 if( NEVER(nCol>32767) ) nCol = 32767; 2094 }else{ 2095 nCol = 0; 2096 aCol = 0; 2097 } 2098 assert( nCol==(i16)nCol ); 2099 *pnCol = nCol; 2100 *paCol = aCol; 2101 2102 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2103 /* Get an appropriate name for the column 2104 */ 2105 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2106 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2107 }else{ 2108 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2109 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2110 pColExpr = pColExpr->pRight; 2111 assert( pColExpr!=0 ); 2112 } 2113 if( pColExpr->op==TK_COLUMN 2114 && ALWAYS( ExprUseYTab(pColExpr) ) 2115 && (pTab = pColExpr->y.pTab)!=0 2116 ){ 2117 /* For columns use the column name name */ 2118 int iCol = pColExpr->iColumn; 2119 if( iCol<0 ) iCol = pTab->iPKey; 2120 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2121 }else if( pColExpr->op==TK_ID ){ 2122 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2123 zName = pColExpr->u.zToken; 2124 }else{ 2125 /* Use the original text of the column expression as its name */ 2126 zName = pEList->a[i].zEName; 2127 } 2128 } 2129 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2130 zName = sqlite3DbStrDup(db, zName); 2131 }else{ 2132 zName = sqlite3MPrintf(db,"column%d",i+1); 2133 } 2134 2135 /* Make sure the column name is unique. If the name is not unique, 2136 ** append an integer to the name so that it becomes unique. 2137 */ 2138 cnt = 0; 2139 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2140 nName = sqlite3Strlen30(zName); 2141 if( nName>0 ){ 2142 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2143 if( zName[j]==':' ) nName = j; 2144 } 2145 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2146 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2147 } 2148 pCol->zCnName = zName; 2149 pCol->hName = sqlite3StrIHash(zName); 2150 sqlite3ColumnPropertiesFromName(0, pCol); 2151 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2152 sqlite3OomFault(db); 2153 } 2154 } 2155 sqlite3HashClear(&ht); 2156 if( db->mallocFailed ){ 2157 for(j=0; j<i; j++){ 2158 sqlite3DbFree(db, aCol[j].zCnName); 2159 } 2160 sqlite3DbFree(db, aCol); 2161 *paCol = 0; 2162 *pnCol = 0; 2163 return SQLITE_NOMEM_BKPT; 2164 } 2165 return SQLITE_OK; 2166 } 2167 2168 /* 2169 ** Add type and collation information to a column list based on 2170 ** a SELECT statement. 2171 ** 2172 ** The column list presumably came from selectColumnNamesFromExprList(). 2173 ** The column list has only names, not types or collations. This 2174 ** routine goes through and adds the types and collations. 2175 ** 2176 ** This routine requires that all identifiers in the SELECT 2177 ** statement be resolved. 2178 */ 2179 void sqlite3SelectAddColumnTypeAndCollation( 2180 Parse *pParse, /* Parsing contexts */ 2181 Table *pTab, /* Add column type information to this table */ 2182 Select *pSelect, /* SELECT used to determine types and collations */ 2183 char aff /* Default affinity for columns */ 2184 ){ 2185 sqlite3 *db = pParse->db; 2186 NameContext sNC; 2187 Column *pCol; 2188 CollSeq *pColl; 2189 int i; 2190 Expr *p; 2191 struct ExprList_item *a; 2192 2193 assert( pSelect!=0 ); 2194 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2195 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2196 if( db->mallocFailed ) return; 2197 memset(&sNC, 0, sizeof(sNC)); 2198 sNC.pSrcList = pSelect->pSrc; 2199 a = pSelect->pEList->a; 2200 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2201 const char *zType; 2202 i64 n, m; 2203 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2204 p = a[i].pExpr; 2205 zType = columnType(&sNC, p, 0, 0, 0); 2206 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2207 pCol->affinity = sqlite3ExprAffinity(p); 2208 if( zType ){ 2209 m = sqlite3Strlen30(zType); 2210 n = sqlite3Strlen30(pCol->zCnName); 2211 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2212 if( pCol->zCnName ){ 2213 memcpy(&pCol->zCnName[n+1], zType, m+1); 2214 pCol->colFlags |= COLFLAG_HASTYPE; 2215 }else{ 2216 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2217 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2218 } 2219 } 2220 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2221 pColl = sqlite3ExprCollSeq(pParse, p); 2222 if( pColl ){ 2223 assert( pTab->pIndex==0 ); 2224 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2225 } 2226 } 2227 pTab->szTabRow = 1; /* Any non-zero value works */ 2228 } 2229 2230 /* 2231 ** Given a SELECT statement, generate a Table structure that describes 2232 ** the result set of that SELECT. 2233 */ 2234 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2235 Table *pTab; 2236 sqlite3 *db = pParse->db; 2237 u64 savedFlags; 2238 2239 savedFlags = db->flags; 2240 db->flags &= ~(u64)SQLITE_FullColNames; 2241 db->flags |= SQLITE_ShortColNames; 2242 sqlite3SelectPrep(pParse, pSelect, 0); 2243 db->flags = savedFlags; 2244 if( pParse->nErr ) return 0; 2245 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2246 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2247 if( pTab==0 ){ 2248 return 0; 2249 } 2250 pTab->nTabRef = 1; 2251 pTab->zName = 0; 2252 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2253 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2254 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2255 pTab->iPKey = -1; 2256 if( db->mallocFailed ){ 2257 sqlite3DeleteTable(db, pTab); 2258 return 0; 2259 } 2260 return pTab; 2261 } 2262 2263 /* 2264 ** Get a VDBE for the given parser context. Create a new one if necessary. 2265 ** If an error occurs, return NULL and leave a message in pParse. 2266 */ 2267 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2268 if( pParse->pVdbe ){ 2269 return pParse->pVdbe; 2270 } 2271 if( pParse->pToplevel==0 2272 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2273 ){ 2274 pParse->okConstFactor = 1; 2275 } 2276 return sqlite3VdbeCreate(pParse); 2277 } 2278 2279 2280 /* 2281 ** Compute the iLimit and iOffset fields of the SELECT based on the 2282 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2283 ** that appear in the original SQL statement after the LIMIT and OFFSET 2284 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2285 ** are the integer memory register numbers for counters used to compute 2286 ** the limit and offset. If there is no limit and/or offset, then 2287 ** iLimit and iOffset are negative. 2288 ** 2289 ** This routine changes the values of iLimit and iOffset only if 2290 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2291 ** and iOffset should have been preset to appropriate default values (zero) 2292 ** prior to calling this routine. 2293 ** 2294 ** The iOffset register (if it exists) is initialized to the value 2295 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2296 ** iOffset+1 is initialized to LIMIT+OFFSET. 2297 ** 2298 ** Only if pLimit->pLeft!=0 do the limit registers get 2299 ** redefined. The UNION ALL operator uses this property to force 2300 ** the reuse of the same limit and offset registers across multiple 2301 ** SELECT statements. 2302 */ 2303 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2304 Vdbe *v = 0; 2305 int iLimit = 0; 2306 int iOffset; 2307 int n; 2308 Expr *pLimit = p->pLimit; 2309 2310 if( p->iLimit ) return; 2311 2312 /* 2313 ** "LIMIT -1" always shows all rows. There is some 2314 ** controversy about what the correct behavior should be. 2315 ** The current implementation interprets "LIMIT 0" to mean 2316 ** no rows. 2317 */ 2318 if( pLimit ){ 2319 assert( pLimit->op==TK_LIMIT ); 2320 assert( pLimit->pLeft!=0 ); 2321 p->iLimit = iLimit = ++pParse->nMem; 2322 v = sqlite3GetVdbe(pParse); 2323 assert( v!=0 ); 2324 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2325 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2326 VdbeComment((v, "LIMIT counter")); 2327 if( n==0 ){ 2328 sqlite3VdbeGoto(v, iBreak); 2329 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2330 p->nSelectRow = sqlite3LogEst((u64)n); 2331 p->selFlags |= SF_FixedLimit; 2332 } 2333 }else{ 2334 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2335 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2336 VdbeComment((v, "LIMIT counter")); 2337 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2338 } 2339 if( pLimit->pRight ){ 2340 p->iOffset = iOffset = ++pParse->nMem; 2341 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2342 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2343 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2344 VdbeComment((v, "OFFSET counter")); 2345 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2346 VdbeComment((v, "LIMIT+OFFSET")); 2347 } 2348 } 2349 } 2350 2351 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2352 /* 2353 ** Return the appropriate collating sequence for the iCol-th column of 2354 ** the result set for the compound-select statement "p". Return NULL if 2355 ** the column has no default collating sequence. 2356 ** 2357 ** The collating sequence for the compound select is taken from the 2358 ** left-most term of the select that has a collating sequence. 2359 */ 2360 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2361 CollSeq *pRet; 2362 if( p->pPrior ){ 2363 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2364 }else{ 2365 pRet = 0; 2366 } 2367 assert( iCol>=0 ); 2368 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2369 ** have been thrown during name resolution and we would not have gotten 2370 ** this far */ 2371 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2372 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2373 } 2374 return pRet; 2375 } 2376 2377 /* 2378 ** The select statement passed as the second parameter is a compound SELECT 2379 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2380 ** structure suitable for implementing the ORDER BY. 2381 ** 2382 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2383 ** function is responsible for ensuring that this structure is eventually 2384 ** freed. 2385 */ 2386 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2387 ExprList *pOrderBy = p->pOrderBy; 2388 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2389 sqlite3 *db = pParse->db; 2390 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2391 if( pRet ){ 2392 int i; 2393 for(i=0; i<nOrderBy; i++){ 2394 struct ExprList_item *pItem = &pOrderBy->a[i]; 2395 Expr *pTerm = pItem->pExpr; 2396 CollSeq *pColl; 2397 2398 if( pTerm->flags & EP_Collate ){ 2399 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2400 }else{ 2401 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2402 if( pColl==0 ) pColl = db->pDfltColl; 2403 pOrderBy->a[i].pExpr = 2404 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2405 } 2406 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2407 pRet->aColl[i] = pColl; 2408 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2409 } 2410 } 2411 2412 return pRet; 2413 } 2414 2415 #ifndef SQLITE_OMIT_CTE 2416 /* 2417 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2418 ** query of the form: 2419 ** 2420 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2421 ** \___________/ \_______________/ 2422 ** p->pPrior p 2423 ** 2424 ** 2425 ** There is exactly one reference to the recursive-table in the FROM clause 2426 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2427 ** 2428 ** The setup-query runs once to generate an initial set of rows that go 2429 ** into a Queue table. Rows are extracted from the Queue table one by 2430 ** one. Each row extracted from Queue is output to pDest. Then the single 2431 ** extracted row (now in the iCurrent table) becomes the content of the 2432 ** recursive-table for a recursive-query run. The output of the recursive-query 2433 ** is added back into the Queue table. Then another row is extracted from Queue 2434 ** and the iteration continues until the Queue table is empty. 2435 ** 2436 ** If the compound query operator is UNION then no duplicate rows are ever 2437 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2438 ** that have ever been inserted into Queue and causes duplicates to be 2439 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2440 ** 2441 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2442 ** ORDER BY order and the first entry is extracted for each cycle. Without 2443 ** an ORDER BY, the Queue table is just a FIFO. 2444 ** 2445 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2446 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2447 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2448 ** with a positive value, then the first OFFSET outputs are discarded rather 2449 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2450 ** rows have been skipped. 2451 */ 2452 static void generateWithRecursiveQuery( 2453 Parse *pParse, /* Parsing context */ 2454 Select *p, /* The recursive SELECT to be coded */ 2455 SelectDest *pDest /* What to do with query results */ 2456 ){ 2457 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2458 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2459 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2460 Select *pSetup; /* The setup query */ 2461 Select *pFirstRec; /* Left-most recursive term */ 2462 int addrTop; /* Top of the loop */ 2463 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2464 int iCurrent = 0; /* The Current table */ 2465 int regCurrent; /* Register holding Current table */ 2466 int iQueue; /* The Queue table */ 2467 int iDistinct = 0; /* To ensure unique results if UNION */ 2468 int eDest = SRT_Fifo; /* How to write to Queue */ 2469 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2470 int i; /* Loop counter */ 2471 int rc; /* Result code */ 2472 ExprList *pOrderBy; /* The ORDER BY clause */ 2473 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2474 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2475 2476 #ifndef SQLITE_OMIT_WINDOWFUNC 2477 if( p->pWin ){ 2478 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2479 return; 2480 } 2481 #endif 2482 2483 /* Obtain authorization to do a recursive query */ 2484 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2485 2486 /* Process the LIMIT and OFFSET clauses, if they exist */ 2487 addrBreak = sqlite3VdbeMakeLabel(pParse); 2488 p->nSelectRow = 320; /* 4 billion rows */ 2489 computeLimitRegisters(pParse, p, addrBreak); 2490 pLimit = p->pLimit; 2491 regLimit = p->iLimit; 2492 regOffset = p->iOffset; 2493 p->pLimit = 0; 2494 p->iLimit = p->iOffset = 0; 2495 pOrderBy = p->pOrderBy; 2496 2497 /* Locate the cursor number of the Current table */ 2498 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2499 if( pSrc->a[i].fg.isRecursive ){ 2500 iCurrent = pSrc->a[i].iCursor; 2501 break; 2502 } 2503 } 2504 2505 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2506 ** the Distinct table must be exactly one greater than Queue in order 2507 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2508 iQueue = pParse->nTab++; 2509 if( p->op==TK_UNION ){ 2510 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2511 iDistinct = pParse->nTab++; 2512 }else{ 2513 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2514 } 2515 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2516 2517 /* Allocate cursors for Current, Queue, and Distinct. */ 2518 regCurrent = ++pParse->nMem; 2519 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2520 if( pOrderBy ){ 2521 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2522 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2523 (char*)pKeyInfo, P4_KEYINFO); 2524 destQueue.pOrderBy = pOrderBy; 2525 }else{ 2526 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2527 } 2528 VdbeComment((v, "Queue table")); 2529 if( iDistinct ){ 2530 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2531 p->selFlags |= SF_UsesEphemeral; 2532 } 2533 2534 /* Detach the ORDER BY clause from the compound SELECT */ 2535 p->pOrderBy = 0; 2536 2537 /* Figure out how many elements of the compound SELECT are part of the 2538 ** recursive query. Make sure no recursive elements use aggregate 2539 ** functions. Mark the recursive elements as UNION ALL even if they 2540 ** are really UNION because the distinctness will be enforced by the 2541 ** iDistinct table. pFirstRec is left pointing to the left-most 2542 ** recursive term of the CTE. 2543 */ 2544 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2545 if( pFirstRec->selFlags & SF_Aggregate ){ 2546 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2547 goto end_of_recursive_query; 2548 } 2549 pFirstRec->op = TK_ALL; 2550 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2551 } 2552 2553 /* Store the results of the setup-query in Queue. */ 2554 pSetup = pFirstRec->pPrior; 2555 pSetup->pNext = 0; 2556 ExplainQueryPlan((pParse, 1, "SETUP")); 2557 rc = sqlite3Select(pParse, pSetup, &destQueue); 2558 pSetup->pNext = p; 2559 if( rc ) goto end_of_recursive_query; 2560 2561 /* Find the next row in the Queue and output that row */ 2562 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2563 2564 /* Transfer the next row in Queue over to Current */ 2565 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2566 if( pOrderBy ){ 2567 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2568 }else{ 2569 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2570 } 2571 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2572 2573 /* Output the single row in Current */ 2574 addrCont = sqlite3VdbeMakeLabel(pParse); 2575 codeOffset(v, regOffset, addrCont); 2576 selectInnerLoop(pParse, p, iCurrent, 2577 0, 0, pDest, addrCont, addrBreak); 2578 if( regLimit ){ 2579 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2580 VdbeCoverage(v); 2581 } 2582 sqlite3VdbeResolveLabel(v, addrCont); 2583 2584 /* Execute the recursive SELECT taking the single row in Current as 2585 ** the value for the recursive-table. Store the results in the Queue. 2586 */ 2587 pFirstRec->pPrior = 0; 2588 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2589 sqlite3Select(pParse, p, &destQueue); 2590 assert( pFirstRec->pPrior==0 ); 2591 pFirstRec->pPrior = pSetup; 2592 2593 /* Keep running the loop until the Queue is empty */ 2594 sqlite3VdbeGoto(v, addrTop); 2595 sqlite3VdbeResolveLabel(v, addrBreak); 2596 2597 end_of_recursive_query: 2598 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2599 p->pOrderBy = pOrderBy; 2600 p->pLimit = pLimit; 2601 return; 2602 } 2603 #endif /* SQLITE_OMIT_CTE */ 2604 2605 /* Forward references */ 2606 static int multiSelectOrderBy( 2607 Parse *pParse, /* Parsing context */ 2608 Select *p, /* The right-most of SELECTs to be coded */ 2609 SelectDest *pDest /* What to do with query results */ 2610 ); 2611 2612 /* 2613 ** Handle the special case of a compound-select that originates from a 2614 ** VALUES clause. By handling this as a special case, we avoid deep 2615 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2616 ** on a VALUES clause. 2617 ** 2618 ** Because the Select object originates from a VALUES clause: 2619 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2620 ** (2) All terms are UNION ALL 2621 ** (3) There is no ORDER BY clause 2622 ** 2623 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2624 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2625 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2626 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2627 */ 2628 static int multiSelectValues( 2629 Parse *pParse, /* Parsing context */ 2630 Select *p, /* The right-most of SELECTs to be coded */ 2631 SelectDest *pDest /* What to do with query results */ 2632 ){ 2633 int nRow = 1; 2634 int rc = 0; 2635 int bShowAll = p->pLimit==0; 2636 assert( p->selFlags & SF_MultiValue ); 2637 do{ 2638 assert( p->selFlags & SF_Values ); 2639 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2640 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2641 #ifndef SQLITE_OMIT_WINDOWFUNC 2642 if( p->pWin ) return -1; 2643 #endif 2644 if( p->pPrior==0 ) break; 2645 assert( p->pPrior->pNext==p ); 2646 p = p->pPrior; 2647 nRow += bShowAll; 2648 }while(1); 2649 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2650 nRow==1 ? "" : "S")); 2651 while( p ){ 2652 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2653 if( !bShowAll ) break; 2654 p->nSelectRow = nRow; 2655 p = p->pNext; 2656 } 2657 return rc; 2658 } 2659 2660 /* 2661 ** Return true if the SELECT statement which is known to be the recursive 2662 ** part of a recursive CTE still has its anchor terms attached. If the 2663 ** anchor terms have already been removed, then return false. 2664 */ 2665 static int hasAnchor(Select *p){ 2666 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2667 return p!=0; 2668 } 2669 2670 /* 2671 ** This routine is called to process a compound query form from 2672 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2673 ** INTERSECT 2674 ** 2675 ** "p" points to the right-most of the two queries. the query on the 2676 ** left is p->pPrior. The left query could also be a compound query 2677 ** in which case this routine will be called recursively. 2678 ** 2679 ** The results of the total query are to be written into a destination 2680 ** of type eDest with parameter iParm. 2681 ** 2682 ** Example 1: Consider a three-way compound SQL statement. 2683 ** 2684 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2685 ** 2686 ** This statement is parsed up as follows: 2687 ** 2688 ** SELECT c FROM t3 2689 ** | 2690 ** `-----> SELECT b FROM t2 2691 ** | 2692 ** `------> SELECT a FROM t1 2693 ** 2694 ** The arrows in the diagram above represent the Select.pPrior pointer. 2695 ** So if this routine is called with p equal to the t3 query, then 2696 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2697 ** 2698 ** Notice that because of the way SQLite parses compound SELECTs, the 2699 ** individual selects always group from left to right. 2700 */ 2701 static int multiSelect( 2702 Parse *pParse, /* Parsing context */ 2703 Select *p, /* The right-most of SELECTs to be coded */ 2704 SelectDest *pDest /* What to do with query results */ 2705 ){ 2706 int rc = SQLITE_OK; /* Success code from a subroutine */ 2707 Select *pPrior; /* Another SELECT immediately to our left */ 2708 Vdbe *v; /* Generate code to this VDBE */ 2709 SelectDest dest; /* Alternative data destination */ 2710 Select *pDelete = 0; /* Chain of simple selects to delete */ 2711 sqlite3 *db; /* Database connection */ 2712 2713 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2714 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2715 */ 2716 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2717 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2718 assert( p->selFlags & SF_Compound ); 2719 db = pParse->db; 2720 pPrior = p->pPrior; 2721 dest = *pDest; 2722 assert( pPrior->pOrderBy==0 ); 2723 assert( pPrior->pLimit==0 ); 2724 2725 v = sqlite3GetVdbe(pParse); 2726 assert( v!=0 ); /* The VDBE already created by calling function */ 2727 2728 /* Create the destination temporary table if necessary 2729 */ 2730 if( dest.eDest==SRT_EphemTab ){ 2731 assert( p->pEList ); 2732 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2733 dest.eDest = SRT_Table; 2734 } 2735 2736 /* Special handling for a compound-select that originates as a VALUES clause. 2737 */ 2738 if( p->selFlags & SF_MultiValue ){ 2739 rc = multiSelectValues(pParse, p, &dest); 2740 if( rc>=0 ) goto multi_select_end; 2741 rc = SQLITE_OK; 2742 } 2743 2744 /* Make sure all SELECTs in the statement have the same number of elements 2745 ** in their result sets. 2746 */ 2747 assert( p->pEList && pPrior->pEList ); 2748 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2749 2750 #ifndef SQLITE_OMIT_CTE 2751 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2752 generateWithRecursiveQuery(pParse, p, &dest); 2753 }else 2754 #endif 2755 2756 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2757 */ 2758 if( p->pOrderBy ){ 2759 return multiSelectOrderBy(pParse, p, pDest); 2760 }else{ 2761 2762 #ifndef SQLITE_OMIT_EXPLAIN 2763 if( pPrior->pPrior==0 ){ 2764 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2765 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2766 } 2767 #endif 2768 2769 /* Generate code for the left and right SELECT statements. 2770 */ 2771 switch( p->op ){ 2772 case TK_ALL: { 2773 int addr = 0; 2774 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2775 assert( !pPrior->pLimit ); 2776 pPrior->iLimit = p->iLimit; 2777 pPrior->iOffset = p->iOffset; 2778 pPrior->pLimit = p->pLimit; 2779 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2780 rc = sqlite3Select(pParse, pPrior, &dest); 2781 pPrior->pLimit = 0; 2782 if( rc ){ 2783 goto multi_select_end; 2784 } 2785 p->pPrior = 0; 2786 p->iLimit = pPrior->iLimit; 2787 p->iOffset = pPrior->iOffset; 2788 if( p->iLimit ){ 2789 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2790 VdbeComment((v, "Jump ahead if LIMIT reached")); 2791 if( p->iOffset ){ 2792 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2793 p->iLimit, p->iOffset+1, p->iOffset); 2794 } 2795 } 2796 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2797 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2798 rc = sqlite3Select(pParse, p, &dest); 2799 testcase( rc!=SQLITE_OK ); 2800 pDelete = p->pPrior; 2801 p->pPrior = pPrior; 2802 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2803 if( p->pLimit 2804 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2805 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2806 ){ 2807 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2808 } 2809 if( addr ){ 2810 sqlite3VdbeJumpHere(v, addr); 2811 } 2812 break; 2813 } 2814 case TK_EXCEPT: 2815 case TK_UNION: { 2816 int unionTab; /* Cursor number of the temp table holding result */ 2817 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2818 int priorOp; /* The SRT_ operation to apply to prior selects */ 2819 Expr *pLimit; /* Saved values of p->nLimit */ 2820 int addr; 2821 SelectDest uniondest; 2822 2823 testcase( p->op==TK_EXCEPT ); 2824 testcase( p->op==TK_UNION ); 2825 priorOp = SRT_Union; 2826 if( dest.eDest==priorOp ){ 2827 /* We can reuse a temporary table generated by a SELECT to our 2828 ** right. 2829 */ 2830 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2831 unionTab = dest.iSDParm; 2832 }else{ 2833 /* We will need to create our own temporary table to hold the 2834 ** intermediate results. 2835 */ 2836 unionTab = pParse->nTab++; 2837 assert( p->pOrderBy==0 ); 2838 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2839 assert( p->addrOpenEphm[0] == -1 ); 2840 p->addrOpenEphm[0] = addr; 2841 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2842 assert( p->pEList ); 2843 } 2844 2845 2846 /* Code the SELECT statements to our left 2847 */ 2848 assert( !pPrior->pOrderBy ); 2849 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2850 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2851 rc = sqlite3Select(pParse, pPrior, &uniondest); 2852 if( rc ){ 2853 goto multi_select_end; 2854 } 2855 2856 /* Code the current SELECT statement 2857 */ 2858 if( p->op==TK_EXCEPT ){ 2859 op = SRT_Except; 2860 }else{ 2861 assert( p->op==TK_UNION ); 2862 op = SRT_Union; 2863 } 2864 p->pPrior = 0; 2865 pLimit = p->pLimit; 2866 p->pLimit = 0; 2867 uniondest.eDest = op; 2868 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2869 sqlite3SelectOpName(p->op))); 2870 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2871 rc = sqlite3Select(pParse, p, &uniondest); 2872 testcase( rc!=SQLITE_OK ); 2873 assert( p->pOrderBy==0 ); 2874 pDelete = p->pPrior; 2875 p->pPrior = pPrior; 2876 p->pOrderBy = 0; 2877 if( p->op==TK_UNION ){ 2878 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2879 } 2880 sqlite3ExprDelete(db, p->pLimit); 2881 p->pLimit = pLimit; 2882 p->iLimit = 0; 2883 p->iOffset = 0; 2884 2885 /* Convert the data in the temporary table into whatever form 2886 ** it is that we currently need. 2887 */ 2888 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2889 assert( p->pEList || db->mallocFailed ); 2890 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2891 int iCont, iBreak, iStart; 2892 iBreak = sqlite3VdbeMakeLabel(pParse); 2893 iCont = sqlite3VdbeMakeLabel(pParse); 2894 computeLimitRegisters(pParse, p, iBreak); 2895 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2896 iStart = sqlite3VdbeCurrentAddr(v); 2897 selectInnerLoop(pParse, p, unionTab, 2898 0, 0, &dest, iCont, iBreak); 2899 sqlite3VdbeResolveLabel(v, iCont); 2900 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2901 sqlite3VdbeResolveLabel(v, iBreak); 2902 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2903 } 2904 break; 2905 } 2906 default: assert( p->op==TK_INTERSECT ); { 2907 int tab1, tab2; 2908 int iCont, iBreak, iStart; 2909 Expr *pLimit; 2910 int addr; 2911 SelectDest intersectdest; 2912 int r1; 2913 2914 /* INTERSECT is different from the others since it requires 2915 ** two temporary tables. Hence it has its own case. Begin 2916 ** by allocating the tables we will need. 2917 */ 2918 tab1 = pParse->nTab++; 2919 tab2 = pParse->nTab++; 2920 assert( p->pOrderBy==0 ); 2921 2922 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2923 assert( p->addrOpenEphm[0] == -1 ); 2924 p->addrOpenEphm[0] = addr; 2925 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2926 assert( p->pEList ); 2927 2928 /* Code the SELECTs to our left into temporary table "tab1". 2929 */ 2930 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2931 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2932 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2933 if( rc ){ 2934 goto multi_select_end; 2935 } 2936 2937 /* Code the current SELECT into temporary table "tab2" 2938 */ 2939 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2940 assert( p->addrOpenEphm[1] == -1 ); 2941 p->addrOpenEphm[1] = addr; 2942 p->pPrior = 0; 2943 pLimit = p->pLimit; 2944 p->pLimit = 0; 2945 intersectdest.iSDParm = tab2; 2946 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2947 sqlite3SelectOpName(p->op))); 2948 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2949 rc = sqlite3Select(pParse, p, &intersectdest); 2950 testcase( rc!=SQLITE_OK ); 2951 pDelete = p->pPrior; 2952 p->pPrior = pPrior; 2953 if( p->nSelectRow>pPrior->nSelectRow ){ 2954 p->nSelectRow = pPrior->nSelectRow; 2955 } 2956 sqlite3ExprDelete(db, p->pLimit); 2957 p->pLimit = pLimit; 2958 2959 /* Generate code to take the intersection of the two temporary 2960 ** tables. 2961 */ 2962 if( rc ) break; 2963 assert( p->pEList ); 2964 iBreak = sqlite3VdbeMakeLabel(pParse); 2965 iCont = sqlite3VdbeMakeLabel(pParse); 2966 computeLimitRegisters(pParse, p, iBreak); 2967 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2968 r1 = sqlite3GetTempReg(pParse); 2969 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2970 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2971 VdbeCoverage(v); 2972 sqlite3ReleaseTempReg(pParse, r1); 2973 selectInnerLoop(pParse, p, tab1, 2974 0, 0, &dest, iCont, iBreak); 2975 sqlite3VdbeResolveLabel(v, iCont); 2976 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2977 sqlite3VdbeResolveLabel(v, iBreak); 2978 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2979 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2980 break; 2981 } 2982 } 2983 2984 #ifndef SQLITE_OMIT_EXPLAIN 2985 if( p->pNext==0 ){ 2986 ExplainQueryPlanPop(pParse); 2987 } 2988 #endif 2989 } 2990 if( pParse->nErr ) goto multi_select_end; 2991 2992 /* Compute collating sequences used by 2993 ** temporary tables needed to implement the compound select. 2994 ** Attach the KeyInfo structure to all temporary tables. 2995 ** 2996 ** This section is run by the right-most SELECT statement only. 2997 ** SELECT statements to the left always skip this part. The right-most 2998 ** SELECT might also skip this part if it has no ORDER BY clause and 2999 ** no temp tables are required. 3000 */ 3001 if( p->selFlags & SF_UsesEphemeral ){ 3002 int i; /* Loop counter */ 3003 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3004 Select *pLoop; /* For looping through SELECT statements */ 3005 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3006 int nCol; /* Number of columns in result set */ 3007 3008 assert( p->pNext==0 ); 3009 assert( p->pEList!=0 ); 3010 nCol = p->pEList->nExpr; 3011 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3012 if( !pKeyInfo ){ 3013 rc = SQLITE_NOMEM_BKPT; 3014 goto multi_select_end; 3015 } 3016 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3017 *apColl = multiSelectCollSeq(pParse, p, i); 3018 if( 0==*apColl ){ 3019 *apColl = db->pDfltColl; 3020 } 3021 } 3022 3023 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3024 for(i=0; i<2; i++){ 3025 int addr = pLoop->addrOpenEphm[i]; 3026 if( addr<0 ){ 3027 /* If [0] is unused then [1] is also unused. So we can 3028 ** always safely abort as soon as the first unused slot is found */ 3029 assert( pLoop->addrOpenEphm[1]<0 ); 3030 break; 3031 } 3032 sqlite3VdbeChangeP2(v, addr, nCol); 3033 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3034 P4_KEYINFO); 3035 pLoop->addrOpenEphm[i] = -1; 3036 } 3037 } 3038 sqlite3KeyInfoUnref(pKeyInfo); 3039 } 3040 3041 multi_select_end: 3042 pDest->iSdst = dest.iSdst; 3043 pDest->nSdst = dest.nSdst; 3044 if( pDelete ){ 3045 sqlite3ParserAddCleanup(pParse, 3046 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3047 pDelete); 3048 } 3049 return rc; 3050 } 3051 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3052 3053 /* 3054 ** Error message for when two or more terms of a compound select have different 3055 ** size result sets. 3056 */ 3057 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3058 if( p->selFlags & SF_Values ){ 3059 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3060 }else{ 3061 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3062 " do not have the same number of result columns", 3063 sqlite3SelectOpName(p->op)); 3064 } 3065 } 3066 3067 /* 3068 ** Code an output subroutine for a coroutine implementation of a 3069 ** SELECT statment. 3070 ** 3071 ** The data to be output is contained in pIn->iSdst. There are 3072 ** pIn->nSdst columns to be output. pDest is where the output should 3073 ** be sent. 3074 ** 3075 ** regReturn is the number of the register holding the subroutine 3076 ** return address. 3077 ** 3078 ** If regPrev>0 then it is the first register in a vector that 3079 ** records the previous output. mem[regPrev] is a flag that is false 3080 ** if there has been no previous output. If regPrev>0 then code is 3081 ** generated to suppress duplicates. pKeyInfo is used for comparing 3082 ** keys. 3083 ** 3084 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3085 ** iBreak. 3086 */ 3087 static int generateOutputSubroutine( 3088 Parse *pParse, /* Parsing context */ 3089 Select *p, /* The SELECT statement */ 3090 SelectDest *pIn, /* Coroutine supplying data */ 3091 SelectDest *pDest, /* Where to send the data */ 3092 int regReturn, /* The return address register */ 3093 int regPrev, /* Previous result register. No uniqueness if 0 */ 3094 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3095 int iBreak /* Jump here if we hit the LIMIT */ 3096 ){ 3097 Vdbe *v = pParse->pVdbe; 3098 int iContinue; 3099 int addr; 3100 3101 addr = sqlite3VdbeCurrentAddr(v); 3102 iContinue = sqlite3VdbeMakeLabel(pParse); 3103 3104 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3105 */ 3106 if( regPrev ){ 3107 int addr1, addr2; 3108 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3109 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3110 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3111 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3112 sqlite3VdbeJumpHere(v, addr1); 3113 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3114 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3115 } 3116 if( pParse->db->mallocFailed ) return 0; 3117 3118 /* Suppress the first OFFSET entries if there is an OFFSET clause 3119 */ 3120 codeOffset(v, p->iOffset, iContinue); 3121 3122 assert( pDest->eDest!=SRT_Exists ); 3123 assert( pDest->eDest!=SRT_Table ); 3124 switch( pDest->eDest ){ 3125 /* Store the result as data using a unique key. 3126 */ 3127 case SRT_EphemTab: { 3128 int r1 = sqlite3GetTempReg(pParse); 3129 int r2 = sqlite3GetTempReg(pParse); 3130 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3131 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3132 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3133 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3134 sqlite3ReleaseTempReg(pParse, r2); 3135 sqlite3ReleaseTempReg(pParse, r1); 3136 break; 3137 } 3138 3139 #ifndef SQLITE_OMIT_SUBQUERY 3140 /* If we are creating a set for an "expr IN (SELECT ...)". 3141 */ 3142 case SRT_Set: { 3143 int r1; 3144 testcase( pIn->nSdst>1 ); 3145 r1 = sqlite3GetTempReg(pParse); 3146 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3147 r1, pDest->zAffSdst, pIn->nSdst); 3148 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3149 pIn->iSdst, pIn->nSdst); 3150 sqlite3ReleaseTempReg(pParse, r1); 3151 break; 3152 } 3153 3154 /* If this is a scalar select that is part of an expression, then 3155 ** store the results in the appropriate memory cell and break out 3156 ** of the scan loop. Note that the select might return multiple columns 3157 ** if it is the RHS of a row-value IN operator. 3158 */ 3159 case SRT_Mem: { 3160 testcase( pIn->nSdst>1 ); 3161 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3162 /* The LIMIT clause will jump out of the loop for us */ 3163 break; 3164 } 3165 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3166 3167 /* The results are stored in a sequence of registers 3168 ** starting at pDest->iSdst. Then the co-routine yields. 3169 */ 3170 case SRT_Coroutine: { 3171 if( pDest->iSdst==0 ){ 3172 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3173 pDest->nSdst = pIn->nSdst; 3174 } 3175 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3176 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3177 break; 3178 } 3179 3180 /* If none of the above, then the result destination must be 3181 ** SRT_Output. This routine is never called with any other 3182 ** destination other than the ones handled above or SRT_Output. 3183 ** 3184 ** For SRT_Output, results are stored in a sequence of registers. 3185 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3186 ** return the next row of result. 3187 */ 3188 default: { 3189 assert( pDest->eDest==SRT_Output ); 3190 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3191 break; 3192 } 3193 } 3194 3195 /* Jump to the end of the loop if the LIMIT is reached. 3196 */ 3197 if( p->iLimit ){ 3198 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3199 } 3200 3201 /* Generate the subroutine return 3202 */ 3203 sqlite3VdbeResolveLabel(v, iContinue); 3204 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3205 3206 return addr; 3207 } 3208 3209 /* 3210 ** Alternative compound select code generator for cases when there 3211 ** is an ORDER BY clause. 3212 ** 3213 ** We assume a query of the following form: 3214 ** 3215 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3216 ** 3217 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3218 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3219 ** co-routines. Then run the co-routines in parallel and merge the results 3220 ** into the output. In addition to the two coroutines (called selectA and 3221 ** selectB) there are 7 subroutines: 3222 ** 3223 ** outA: Move the output of the selectA coroutine into the output 3224 ** of the compound query. 3225 ** 3226 ** outB: Move the output of the selectB coroutine into the output 3227 ** of the compound query. (Only generated for UNION and 3228 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3229 ** appears only in B.) 3230 ** 3231 ** AltB: Called when there is data from both coroutines and A<B. 3232 ** 3233 ** AeqB: Called when there is data from both coroutines and A==B. 3234 ** 3235 ** AgtB: Called when there is data from both coroutines and A>B. 3236 ** 3237 ** EofA: Called when data is exhausted from selectA. 3238 ** 3239 ** EofB: Called when data is exhausted from selectB. 3240 ** 3241 ** The implementation of the latter five subroutines depend on which 3242 ** <operator> is used: 3243 ** 3244 ** 3245 ** UNION ALL UNION EXCEPT INTERSECT 3246 ** ------------- ----------------- -------------- ----------------- 3247 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3248 ** 3249 ** AeqB: outA, nextA nextA nextA outA, nextA 3250 ** 3251 ** AgtB: outB, nextB outB, nextB nextB nextB 3252 ** 3253 ** EofA: outB, nextB outB, nextB halt halt 3254 ** 3255 ** EofB: outA, nextA outA, nextA outA, nextA halt 3256 ** 3257 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3258 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3259 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3260 ** following nextX causes a jump to the end of the select processing. 3261 ** 3262 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3263 ** within the output subroutine. The regPrev register set holds the previously 3264 ** output value. A comparison is made against this value and the output 3265 ** is skipped if the next results would be the same as the previous. 3266 ** 3267 ** The implementation plan is to implement the two coroutines and seven 3268 ** subroutines first, then put the control logic at the bottom. Like this: 3269 ** 3270 ** goto Init 3271 ** coA: coroutine for left query (A) 3272 ** coB: coroutine for right query (B) 3273 ** outA: output one row of A 3274 ** outB: output one row of B (UNION and UNION ALL only) 3275 ** EofA: ... 3276 ** EofB: ... 3277 ** AltB: ... 3278 ** AeqB: ... 3279 ** AgtB: ... 3280 ** Init: initialize coroutine registers 3281 ** yield coA 3282 ** if eof(A) goto EofA 3283 ** yield coB 3284 ** if eof(B) goto EofB 3285 ** Cmpr: Compare A, B 3286 ** Jump AltB, AeqB, AgtB 3287 ** End: ... 3288 ** 3289 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3290 ** actually called using Gosub and they do not Return. EofA and EofB loop 3291 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3292 ** and AgtB jump to either L2 or to one of EofA or EofB. 3293 */ 3294 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3295 static int multiSelectOrderBy( 3296 Parse *pParse, /* Parsing context */ 3297 Select *p, /* The right-most of SELECTs to be coded */ 3298 SelectDest *pDest /* What to do with query results */ 3299 ){ 3300 int i, j; /* Loop counters */ 3301 Select *pPrior; /* Another SELECT immediately to our left */ 3302 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3303 int nSelect; /* Number of SELECT statements in the compound */ 3304 Vdbe *v; /* Generate code to this VDBE */ 3305 SelectDest destA; /* Destination for coroutine A */ 3306 SelectDest destB; /* Destination for coroutine B */ 3307 int regAddrA; /* Address register for select-A coroutine */ 3308 int regAddrB; /* Address register for select-B coroutine */ 3309 int addrSelectA; /* Address of the select-A coroutine */ 3310 int addrSelectB; /* Address of the select-B coroutine */ 3311 int regOutA; /* Address register for the output-A subroutine */ 3312 int regOutB; /* Address register for the output-B subroutine */ 3313 int addrOutA; /* Address of the output-A subroutine */ 3314 int addrOutB = 0; /* Address of the output-B subroutine */ 3315 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3316 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3317 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3318 int addrAltB; /* Address of the A<B subroutine */ 3319 int addrAeqB; /* Address of the A==B subroutine */ 3320 int addrAgtB; /* Address of the A>B subroutine */ 3321 int regLimitA; /* Limit register for select-A */ 3322 int regLimitB; /* Limit register for select-A */ 3323 int regPrev; /* A range of registers to hold previous output */ 3324 int savedLimit; /* Saved value of p->iLimit */ 3325 int savedOffset; /* Saved value of p->iOffset */ 3326 int labelCmpr; /* Label for the start of the merge algorithm */ 3327 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3328 int addr1; /* Jump instructions that get retargetted */ 3329 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3330 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3331 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3332 sqlite3 *db; /* Database connection */ 3333 ExprList *pOrderBy; /* The ORDER BY clause */ 3334 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3335 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3336 3337 assert( p->pOrderBy!=0 ); 3338 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3339 db = pParse->db; 3340 v = pParse->pVdbe; 3341 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3342 labelEnd = sqlite3VdbeMakeLabel(pParse); 3343 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3344 3345 3346 /* Patch up the ORDER BY clause 3347 */ 3348 op = p->op; 3349 assert( p->pPrior->pOrderBy==0 ); 3350 pOrderBy = p->pOrderBy; 3351 assert( pOrderBy ); 3352 nOrderBy = pOrderBy->nExpr; 3353 3354 /* For operators other than UNION ALL we have to make sure that 3355 ** the ORDER BY clause covers every term of the result set. Add 3356 ** terms to the ORDER BY clause as necessary. 3357 */ 3358 if( op!=TK_ALL ){ 3359 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3360 struct ExprList_item *pItem; 3361 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3362 assert( pItem!=0 ); 3363 assert( pItem->u.x.iOrderByCol>0 ); 3364 if( pItem->u.x.iOrderByCol==i ) break; 3365 } 3366 if( j==nOrderBy ){ 3367 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3368 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3369 pNew->flags |= EP_IntValue; 3370 pNew->u.iValue = i; 3371 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3372 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3373 } 3374 } 3375 } 3376 3377 /* Compute the comparison permutation and keyinfo that is used with 3378 ** the permutation used to determine if the next 3379 ** row of results comes from selectA or selectB. Also add explicit 3380 ** collations to the ORDER BY clause terms so that when the subqueries 3381 ** to the right and the left are evaluated, they use the correct 3382 ** collation. 3383 */ 3384 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3385 if( aPermute ){ 3386 struct ExprList_item *pItem; 3387 aPermute[0] = nOrderBy; 3388 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3389 assert( pItem!=0 ); 3390 assert( pItem->u.x.iOrderByCol>0 ); 3391 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3392 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3393 } 3394 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3395 }else{ 3396 pKeyMerge = 0; 3397 } 3398 3399 /* Allocate a range of temporary registers and the KeyInfo needed 3400 ** for the logic that removes duplicate result rows when the 3401 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3402 */ 3403 if( op==TK_ALL ){ 3404 regPrev = 0; 3405 }else{ 3406 int nExpr = p->pEList->nExpr; 3407 assert( nOrderBy>=nExpr || db->mallocFailed ); 3408 regPrev = pParse->nMem+1; 3409 pParse->nMem += nExpr+1; 3410 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3411 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3412 if( pKeyDup ){ 3413 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3414 for(i=0; i<nExpr; i++){ 3415 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3416 pKeyDup->aSortFlags[i] = 0; 3417 } 3418 } 3419 } 3420 3421 /* Separate the left and the right query from one another 3422 */ 3423 nSelect = 1; 3424 if( (op==TK_ALL || op==TK_UNION) 3425 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3426 ){ 3427 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3428 nSelect++; 3429 assert( pSplit->pPrior->pNext==pSplit ); 3430 } 3431 } 3432 if( nSelect<=3 ){ 3433 pSplit = p; 3434 }else{ 3435 pSplit = p; 3436 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3437 } 3438 pPrior = pSplit->pPrior; 3439 assert( pPrior!=0 ); 3440 pSplit->pPrior = 0; 3441 pPrior->pNext = 0; 3442 assert( p->pOrderBy == pOrderBy ); 3443 assert( pOrderBy!=0 || db->mallocFailed ); 3444 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3445 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3446 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3447 3448 /* Compute the limit registers */ 3449 computeLimitRegisters(pParse, p, labelEnd); 3450 if( p->iLimit && op==TK_ALL ){ 3451 regLimitA = ++pParse->nMem; 3452 regLimitB = ++pParse->nMem; 3453 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3454 regLimitA); 3455 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3456 }else{ 3457 regLimitA = regLimitB = 0; 3458 } 3459 sqlite3ExprDelete(db, p->pLimit); 3460 p->pLimit = 0; 3461 3462 regAddrA = ++pParse->nMem; 3463 regAddrB = ++pParse->nMem; 3464 regOutA = ++pParse->nMem; 3465 regOutB = ++pParse->nMem; 3466 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3467 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3468 3469 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3470 3471 /* Generate a coroutine to evaluate the SELECT statement to the 3472 ** left of the compound operator - the "A" select. 3473 */ 3474 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3475 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3476 VdbeComment((v, "left SELECT")); 3477 pPrior->iLimit = regLimitA; 3478 ExplainQueryPlan((pParse, 1, "LEFT")); 3479 sqlite3Select(pParse, pPrior, &destA); 3480 sqlite3VdbeEndCoroutine(v, regAddrA); 3481 sqlite3VdbeJumpHere(v, addr1); 3482 3483 /* Generate a coroutine to evaluate the SELECT statement on 3484 ** the right - the "B" select 3485 */ 3486 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3487 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3488 VdbeComment((v, "right SELECT")); 3489 savedLimit = p->iLimit; 3490 savedOffset = p->iOffset; 3491 p->iLimit = regLimitB; 3492 p->iOffset = 0; 3493 ExplainQueryPlan((pParse, 1, "RIGHT")); 3494 sqlite3Select(pParse, p, &destB); 3495 p->iLimit = savedLimit; 3496 p->iOffset = savedOffset; 3497 sqlite3VdbeEndCoroutine(v, regAddrB); 3498 3499 /* Generate a subroutine that outputs the current row of the A 3500 ** select as the next output row of the compound select. 3501 */ 3502 VdbeNoopComment((v, "Output routine for A")); 3503 addrOutA = generateOutputSubroutine(pParse, 3504 p, &destA, pDest, regOutA, 3505 regPrev, pKeyDup, labelEnd); 3506 3507 /* Generate a subroutine that outputs the current row of the B 3508 ** select as the next output row of the compound select. 3509 */ 3510 if( op==TK_ALL || op==TK_UNION ){ 3511 VdbeNoopComment((v, "Output routine for B")); 3512 addrOutB = generateOutputSubroutine(pParse, 3513 p, &destB, pDest, regOutB, 3514 regPrev, pKeyDup, labelEnd); 3515 } 3516 sqlite3KeyInfoUnref(pKeyDup); 3517 3518 /* Generate a subroutine to run when the results from select A 3519 ** are exhausted and only data in select B remains. 3520 */ 3521 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3522 addrEofA_noB = addrEofA = labelEnd; 3523 }else{ 3524 VdbeNoopComment((v, "eof-A subroutine")); 3525 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3526 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3527 VdbeCoverage(v); 3528 sqlite3VdbeGoto(v, addrEofA); 3529 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3530 } 3531 3532 /* Generate a subroutine to run when the results from select B 3533 ** are exhausted and only data in select A remains. 3534 */ 3535 if( op==TK_INTERSECT ){ 3536 addrEofB = addrEofA; 3537 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3538 }else{ 3539 VdbeNoopComment((v, "eof-B subroutine")); 3540 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3541 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3542 sqlite3VdbeGoto(v, addrEofB); 3543 } 3544 3545 /* Generate code to handle the case of A<B 3546 */ 3547 VdbeNoopComment((v, "A-lt-B subroutine")); 3548 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3549 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3550 sqlite3VdbeGoto(v, labelCmpr); 3551 3552 /* Generate code to handle the case of A==B 3553 */ 3554 if( op==TK_ALL ){ 3555 addrAeqB = addrAltB; 3556 }else if( op==TK_INTERSECT ){ 3557 addrAeqB = addrAltB; 3558 addrAltB++; 3559 }else{ 3560 VdbeNoopComment((v, "A-eq-B subroutine")); 3561 addrAeqB = 3562 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3563 sqlite3VdbeGoto(v, labelCmpr); 3564 } 3565 3566 /* Generate code to handle the case of A>B 3567 */ 3568 VdbeNoopComment((v, "A-gt-B subroutine")); 3569 addrAgtB = sqlite3VdbeCurrentAddr(v); 3570 if( op==TK_ALL || op==TK_UNION ){ 3571 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3572 } 3573 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3574 sqlite3VdbeGoto(v, labelCmpr); 3575 3576 /* This code runs once to initialize everything. 3577 */ 3578 sqlite3VdbeJumpHere(v, addr1); 3579 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3580 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3581 3582 /* Implement the main merge loop 3583 */ 3584 sqlite3VdbeResolveLabel(v, labelCmpr); 3585 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3586 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3587 (char*)pKeyMerge, P4_KEYINFO); 3588 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3589 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3590 3591 /* Jump to the this point in order to terminate the query. 3592 */ 3593 sqlite3VdbeResolveLabel(v, labelEnd); 3594 3595 /* Reassembly the compound query so that it will be freed correctly 3596 ** by the calling function */ 3597 if( pSplit->pPrior ){ 3598 sqlite3SelectDelete(db, pSplit->pPrior); 3599 } 3600 pSplit->pPrior = pPrior; 3601 pPrior->pNext = pSplit; 3602 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3603 pPrior->pOrderBy = 0; 3604 3605 /*** TBD: Insert subroutine calls to close cursors on incomplete 3606 **** subqueries ****/ 3607 ExplainQueryPlanPop(pParse); 3608 return pParse->nErr!=0; 3609 } 3610 #endif 3611 3612 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3613 3614 /* An instance of the SubstContext object describes an substitution edit 3615 ** to be performed on a parse tree. 3616 ** 3617 ** All references to columns in table iTable are to be replaced by corresponding 3618 ** expressions in pEList. 3619 */ 3620 typedef struct SubstContext { 3621 Parse *pParse; /* The parsing context */ 3622 int iTable; /* Replace references to this table */ 3623 int iNewTable; /* New table number */ 3624 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3625 ExprList *pEList; /* Replacement expressions */ 3626 } SubstContext; 3627 3628 /* Forward Declarations */ 3629 static void substExprList(SubstContext*, ExprList*); 3630 static void substSelect(SubstContext*, Select*, int); 3631 3632 /* 3633 ** Scan through the expression pExpr. Replace every reference to 3634 ** a column in table number iTable with a copy of the iColumn-th 3635 ** entry in pEList. (But leave references to the ROWID column 3636 ** unchanged.) 3637 ** 3638 ** This routine is part of the flattening procedure. A subquery 3639 ** whose result set is defined by pEList appears as entry in the 3640 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3641 ** FORM clause entry is iTable. This routine makes the necessary 3642 ** changes to pExpr so that it refers directly to the source table 3643 ** of the subquery rather the result set of the subquery. 3644 */ 3645 static Expr *substExpr( 3646 SubstContext *pSubst, /* Description of the substitution */ 3647 Expr *pExpr /* Expr in which substitution occurs */ 3648 ){ 3649 if( pExpr==0 ) return 0; 3650 if( ExprHasProperty(pExpr, EP_FromJoin) 3651 && pExpr->w.iRightJoinTable==pSubst->iTable 3652 ){ 3653 pExpr->w.iRightJoinTable = pSubst->iNewTable; 3654 } 3655 if( pExpr->op==TK_COLUMN 3656 && pExpr->iTable==pSubst->iTable 3657 && !ExprHasProperty(pExpr, EP_FixedCol) 3658 ){ 3659 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3660 if( pExpr->iColumn<0 ){ 3661 pExpr->op = TK_NULL; 3662 }else 3663 #endif 3664 { 3665 Expr *pNew; 3666 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3667 Expr ifNullRow; 3668 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3669 assert( pExpr->pRight==0 ); 3670 if( sqlite3ExprIsVector(pCopy) ){ 3671 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3672 }else{ 3673 sqlite3 *db = pSubst->pParse->db; 3674 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3675 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3676 ifNullRow.op = TK_IF_NULL_ROW; 3677 ifNullRow.pLeft = pCopy; 3678 ifNullRow.iTable = pSubst->iNewTable; 3679 ifNullRow.flags = EP_IfNullRow; 3680 pCopy = &ifNullRow; 3681 } 3682 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3683 pNew = sqlite3ExprDup(db, pCopy, 0); 3684 if( db->mallocFailed ){ 3685 sqlite3ExprDelete(db, pNew); 3686 return pExpr; 3687 } 3688 if( pSubst->isLeftJoin ){ 3689 ExprSetProperty(pNew, EP_CanBeNull); 3690 } 3691 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3692 sqlite3SetJoinExpr(pNew, pExpr->w.iRightJoinTable); 3693 } 3694 sqlite3ExprDelete(db, pExpr); 3695 pExpr = pNew; 3696 3697 /* Ensure that the expression now has an implicit collation sequence, 3698 ** just as it did when it was a column of a view or sub-query. */ 3699 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3700 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3701 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3702 (pColl ? pColl->zName : "BINARY") 3703 ); 3704 } 3705 ExprClearProperty(pExpr, EP_Collate); 3706 } 3707 } 3708 }else{ 3709 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3710 pExpr->iTable = pSubst->iNewTable; 3711 } 3712 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3713 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3714 if( ExprUseXSelect(pExpr) ){ 3715 substSelect(pSubst, pExpr->x.pSelect, 1); 3716 }else{ 3717 substExprList(pSubst, pExpr->x.pList); 3718 } 3719 #ifndef SQLITE_OMIT_WINDOWFUNC 3720 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3721 Window *pWin = pExpr->y.pWin; 3722 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3723 substExprList(pSubst, pWin->pPartition); 3724 substExprList(pSubst, pWin->pOrderBy); 3725 } 3726 #endif 3727 } 3728 return pExpr; 3729 } 3730 static void substExprList( 3731 SubstContext *pSubst, /* Description of the substitution */ 3732 ExprList *pList /* List to scan and in which to make substitutes */ 3733 ){ 3734 int i; 3735 if( pList==0 ) return; 3736 for(i=0; i<pList->nExpr; i++){ 3737 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3738 } 3739 } 3740 static void substSelect( 3741 SubstContext *pSubst, /* Description of the substitution */ 3742 Select *p, /* SELECT statement in which to make substitutions */ 3743 int doPrior /* Do substitutes on p->pPrior too */ 3744 ){ 3745 SrcList *pSrc; 3746 SrcItem *pItem; 3747 int i; 3748 if( !p ) return; 3749 do{ 3750 substExprList(pSubst, p->pEList); 3751 substExprList(pSubst, p->pGroupBy); 3752 substExprList(pSubst, p->pOrderBy); 3753 p->pHaving = substExpr(pSubst, p->pHaving); 3754 p->pWhere = substExpr(pSubst, p->pWhere); 3755 pSrc = p->pSrc; 3756 assert( pSrc!=0 ); 3757 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3758 substSelect(pSubst, pItem->pSelect, 1); 3759 if( pItem->fg.isTabFunc ){ 3760 substExprList(pSubst, pItem->u1.pFuncArg); 3761 } 3762 } 3763 }while( doPrior && (p = p->pPrior)!=0 ); 3764 } 3765 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3766 3767 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3768 /* 3769 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3770 ** clause of that SELECT. 3771 ** 3772 ** This routine scans the entire SELECT statement and recomputes the 3773 ** pSrcItem->colUsed mask. 3774 */ 3775 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3776 SrcItem *pItem; 3777 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3778 pItem = pWalker->u.pSrcItem; 3779 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3780 if( pExpr->iColumn<0 ) return WRC_Continue; 3781 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3782 return WRC_Continue; 3783 } 3784 static void recomputeColumnsUsed( 3785 Select *pSelect, /* The complete SELECT statement */ 3786 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3787 ){ 3788 Walker w; 3789 if( NEVER(pSrcItem->pTab==0) ) return; 3790 memset(&w, 0, sizeof(w)); 3791 w.xExprCallback = recomputeColumnsUsedExpr; 3792 w.xSelectCallback = sqlite3SelectWalkNoop; 3793 w.u.pSrcItem = pSrcItem; 3794 pSrcItem->colUsed = 0; 3795 sqlite3WalkSelect(&w, pSelect); 3796 } 3797 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3798 3799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3800 /* 3801 ** Assign new cursor numbers to each of the items in pSrc. For each 3802 ** new cursor number assigned, set an entry in the aCsrMap[] array 3803 ** to map the old cursor number to the new: 3804 ** 3805 ** aCsrMap[iOld+1] = iNew; 3806 ** 3807 ** The array is guaranteed by the caller to be large enough for all 3808 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3809 ** 3810 ** If pSrc contains any sub-selects, call this routine recursively 3811 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3812 */ 3813 static void srclistRenumberCursors( 3814 Parse *pParse, /* Parse context */ 3815 int *aCsrMap, /* Array to store cursor mappings in */ 3816 SrcList *pSrc, /* FROM clause to renumber */ 3817 int iExcept /* FROM clause item to skip */ 3818 ){ 3819 int i; 3820 SrcItem *pItem; 3821 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3822 if( i!=iExcept ){ 3823 Select *p; 3824 assert( pItem->iCursor < aCsrMap[0] ); 3825 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3826 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3827 } 3828 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3829 for(p=pItem->pSelect; p; p=p->pPrior){ 3830 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3831 } 3832 } 3833 } 3834 } 3835 3836 /* 3837 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3838 */ 3839 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3840 int *aCsrMap = pWalker->u.aiCol; 3841 int iCsr = *piCursor; 3842 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3843 *piCursor = aCsrMap[iCsr+1]; 3844 } 3845 } 3846 3847 /* 3848 ** Expression walker callback used by renumberCursors() to update 3849 ** Expr objects to match newly assigned cursor numbers. 3850 */ 3851 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3852 int op = pExpr->op; 3853 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3854 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3855 } 3856 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3857 renumberCursorDoMapping(pWalker, &pExpr->w.iRightJoinTable); 3858 } 3859 return WRC_Continue; 3860 } 3861 3862 /* 3863 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3864 ** of the SELECT statement passed as the second argument, and to each 3865 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3866 ** Except, do not assign a new cursor number to the iExcept'th element in 3867 ** the FROM clause of (*p). Update all expressions and other references 3868 ** to refer to the new cursor numbers. 3869 ** 3870 ** Argument aCsrMap is an array that may be used for temporary working 3871 ** space. Two guarantees are made by the caller: 3872 ** 3873 ** * the array is larger than the largest cursor number used within the 3874 ** select statement passed as an argument, and 3875 ** 3876 ** * the array entries for all cursor numbers that do *not* appear in 3877 ** FROM clauses of the select statement as described above are 3878 ** initialized to zero. 3879 */ 3880 static void renumberCursors( 3881 Parse *pParse, /* Parse context */ 3882 Select *p, /* Select to renumber cursors within */ 3883 int iExcept, /* FROM clause item to skip */ 3884 int *aCsrMap /* Working space */ 3885 ){ 3886 Walker w; 3887 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3888 memset(&w, 0, sizeof(w)); 3889 w.u.aiCol = aCsrMap; 3890 w.xExprCallback = renumberCursorsCb; 3891 w.xSelectCallback = sqlite3SelectWalkNoop; 3892 sqlite3WalkSelect(&w, p); 3893 } 3894 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3895 3896 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3897 /* 3898 ** This routine attempts to flatten subqueries as a performance optimization. 3899 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3900 ** 3901 ** To understand the concept of flattening, consider the following 3902 ** query: 3903 ** 3904 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3905 ** 3906 ** The default way of implementing this query is to execute the 3907 ** subquery first and store the results in a temporary table, then 3908 ** run the outer query on that temporary table. This requires two 3909 ** passes over the data. Furthermore, because the temporary table 3910 ** has no indices, the WHERE clause on the outer query cannot be 3911 ** optimized. 3912 ** 3913 ** This routine attempts to rewrite queries such as the above into 3914 ** a single flat select, like this: 3915 ** 3916 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3917 ** 3918 ** The code generated for this simplification gives the same result 3919 ** but only has to scan the data once. And because indices might 3920 ** exist on the table t1, a complete scan of the data might be 3921 ** avoided. 3922 ** 3923 ** Flattening is subject to the following constraints: 3924 ** 3925 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3926 ** The subquery and the outer query cannot both be aggregates. 3927 ** 3928 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3929 ** (2) If the subquery is an aggregate then 3930 ** (2a) the outer query must not be a join and 3931 ** (2b) the outer query must not use subqueries 3932 ** other than the one FROM-clause subquery that is a candidate 3933 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3934 ** from 2015-02-09.) 3935 ** 3936 ** (3) If the subquery is the right operand of a LEFT JOIN then 3937 ** (3a) the subquery may not be a join and 3938 ** (3b) the FROM clause of the subquery may not contain a virtual 3939 ** table and 3940 ** (3c) the outer query may not be an aggregate. 3941 ** (3d) the outer query may not be DISTINCT. 3942 ** 3943 ** (4) The subquery can not be DISTINCT. 3944 ** 3945 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3946 ** sub-queries that were excluded from this optimization. Restriction 3947 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3948 ** 3949 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3950 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3951 ** 3952 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3953 ** A FROM clause, consider adding a FROM clause with the special 3954 ** table sqlite_once that consists of a single row containing a 3955 ** single NULL. 3956 ** 3957 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3958 ** 3959 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3960 ** 3961 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3962 ** accidently carried the comment forward until 2014-09-15. Original 3963 ** constraint: "If the subquery is aggregate then the outer query 3964 ** may not use LIMIT." 3965 ** 3966 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3967 ** 3968 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3969 ** a separate restriction deriving from ticket #350. 3970 ** 3971 ** (13) The subquery and outer query may not both use LIMIT. 3972 ** 3973 ** (14) The subquery may not use OFFSET. 3974 ** 3975 ** (15) If the outer query is part of a compound select, then the 3976 ** subquery may not use LIMIT. 3977 ** (See ticket #2339 and ticket [02a8e81d44]). 3978 ** 3979 ** (16) If the outer query is aggregate, then the subquery may not 3980 ** use ORDER BY. (Ticket #2942) This used to not matter 3981 ** until we introduced the group_concat() function. 3982 ** 3983 ** (17) If the subquery is a compound select, then 3984 ** (17a) all compound operators must be a UNION ALL, and 3985 ** (17b) no terms within the subquery compound may be aggregate 3986 ** or DISTINCT, and 3987 ** (17c) every term within the subquery compound must have a FROM clause 3988 ** (17d) the outer query may not be 3989 ** (17d1) aggregate, or 3990 ** (17d2) DISTINCT 3991 ** (17e) the subquery may not contain window functions, and 3992 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3993 ** 3994 ** The parent and sub-query may contain WHERE clauses. Subject to 3995 ** rules (11), (13) and (14), they may also contain ORDER BY, 3996 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3997 ** operator other than UNION ALL because all the other compound 3998 ** operators have an implied DISTINCT which is disallowed by 3999 ** restriction (4). 4000 ** 4001 ** Also, each component of the sub-query must return the same number 4002 ** of result columns. This is actually a requirement for any compound 4003 ** SELECT statement, but all the code here does is make sure that no 4004 ** such (illegal) sub-query is flattened. The caller will detect the 4005 ** syntax error and return a detailed message. 4006 ** 4007 ** (18) If the sub-query is a compound select, then all terms of the 4008 ** ORDER BY clause of the parent must be copies of a term returned 4009 ** by the parent query. 4010 ** 4011 ** (19) If the subquery uses LIMIT then the outer query may not 4012 ** have a WHERE clause. 4013 ** 4014 ** (20) If the sub-query is a compound select, then it must not use 4015 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4016 ** somewhat by saying that the terms of the ORDER BY clause must 4017 ** appear as unmodified result columns in the outer query. But we 4018 ** have other optimizations in mind to deal with that case. 4019 ** 4020 ** (21) If the subquery uses LIMIT then the outer query may not be 4021 ** DISTINCT. (See ticket [752e1646fc]). 4022 ** 4023 ** (22) The subquery may not be a recursive CTE. 4024 ** 4025 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4026 ** a compound query. This restriction is because transforming the 4027 ** parent to a compound query confuses the code that handles 4028 ** recursive queries in multiSelect(). 4029 ** 4030 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4031 ** The subquery may not be an aggregate that uses the built-in min() or 4032 ** or max() functions. (Without this restriction, a query like: 4033 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4034 ** return the value X for which Y was maximal.) 4035 ** 4036 ** (25) If either the subquery or the parent query contains a window 4037 ** function in the select list or ORDER BY clause, flattening 4038 ** is not attempted. 4039 ** 4040 ** 4041 ** In this routine, the "p" parameter is a pointer to the outer query. 4042 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4043 ** uses aggregates. 4044 ** 4045 ** If flattening is not attempted, this routine is a no-op and returns 0. 4046 ** If flattening is attempted this routine returns 1. 4047 ** 4048 ** All of the expression analysis must occur on both the outer query and 4049 ** the subquery before this routine runs. 4050 */ 4051 static int flattenSubquery( 4052 Parse *pParse, /* Parsing context */ 4053 Select *p, /* The parent or outer SELECT statement */ 4054 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4055 int isAgg /* True if outer SELECT uses aggregate functions */ 4056 ){ 4057 const char *zSavedAuthContext = pParse->zAuthContext; 4058 Select *pParent; /* Current UNION ALL term of the other query */ 4059 Select *pSub; /* The inner query or "subquery" */ 4060 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4061 SrcList *pSrc; /* The FROM clause of the outer query */ 4062 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4063 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4064 int iNewParent = -1;/* Replacement table for iParent */ 4065 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4066 int i; /* Loop counter */ 4067 Expr *pWhere; /* The WHERE clause */ 4068 SrcItem *pSubitem; /* The subquery */ 4069 sqlite3 *db = pParse->db; 4070 Walker w; /* Walker to persist agginfo data */ 4071 int *aCsrMap = 0; 4072 4073 /* Check to see if flattening is permitted. Return 0 if not. 4074 */ 4075 assert( p!=0 ); 4076 assert( p->pPrior==0 ); 4077 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4078 pSrc = p->pSrc; 4079 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4080 pSubitem = &pSrc->a[iFrom]; 4081 iParent = pSubitem->iCursor; 4082 pSub = pSubitem->pSelect; 4083 assert( pSub!=0 ); 4084 4085 #ifndef SQLITE_OMIT_WINDOWFUNC 4086 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4087 #endif 4088 4089 pSubSrc = pSub->pSrc; 4090 assert( pSubSrc ); 4091 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4092 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4093 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4094 ** became arbitrary expressions, we were forced to add restrictions (13) 4095 ** and (14). */ 4096 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4097 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4098 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4099 return 0; /* Restriction (15) */ 4100 } 4101 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4102 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4103 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4104 return 0; /* Restrictions (8)(9) */ 4105 } 4106 if( p->pOrderBy && pSub->pOrderBy ){ 4107 return 0; /* Restriction (11) */ 4108 } 4109 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4110 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4111 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4112 return 0; /* Restriction (21) */ 4113 } 4114 if( pSub->selFlags & (SF_Recursive) ){ 4115 return 0; /* Restrictions (22) */ 4116 } 4117 4118 /* 4119 ** If the subquery is the right operand of a LEFT JOIN, then the 4120 ** subquery may not be a join itself (3a). Example of why this is not 4121 ** allowed: 4122 ** 4123 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4124 ** 4125 ** If we flatten the above, we would get 4126 ** 4127 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4128 ** 4129 ** which is not at all the same thing. 4130 ** 4131 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4132 ** query cannot be an aggregate. (3c) This is an artifact of the way 4133 ** aggregates are processed - there is no mechanism to determine if 4134 ** the LEFT JOIN table should be all-NULL. 4135 ** 4136 ** See also tickets #306, #350, and #3300. 4137 */ 4138 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4139 isLeftJoin = 1; 4140 if( pSubSrc->nSrc>1 /* (3a) */ 4141 || isAgg /* (3b) */ 4142 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4143 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4144 ){ 4145 return 0; 4146 } 4147 } 4148 #ifdef SQLITE_EXTRA_IFNULLROW 4149 else if( iFrom>0 && !isAgg ){ 4150 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4151 ** every reference to any result column from subquery in a join, even 4152 ** though they are not necessary. This will stress-test the OP_IfNullRow 4153 ** opcode. */ 4154 isLeftJoin = -1; 4155 } 4156 #endif 4157 4158 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4159 ** use only the UNION ALL operator. And none of the simple select queries 4160 ** that make up the compound SELECT are allowed to be aggregate or distinct 4161 ** queries. 4162 */ 4163 if( pSub->pPrior ){ 4164 if( pSub->pOrderBy ){ 4165 return 0; /* Restriction (20) */ 4166 } 4167 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4168 return 0; /* (17d1), (17d2), or (17f) */ 4169 } 4170 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4171 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4172 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4173 assert( pSub->pSrc!=0 ); 4174 assert( (pSub->selFlags & SF_Recursive)==0 ); 4175 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4176 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4177 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4178 || pSub1->pSrc->nSrc<1 /* (17c) */ 4179 #ifndef SQLITE_OMIT_WINDOWFUNC 4180 || pSub1->pWin /* (17e) */ 4181 #endif 4182 ){ 4183 return 0; 4184 } 4185 testcase( pSub1->pSrc->nSrc>1 ); 4186 } 4187 4188 /* Restriction (18). */ 4189 if( p->pOrderBy ){ 4190 int ii; 4191 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4192 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4193 } 4194 } 4195 4196 /* Restriction (23) */ 4197 if( (p->selFlags & SF_Recursive) ) return 0; 4198 4199 if( pSrc->nSrc>1 ){ 4200 if( pParse->nSelect>500 ) return 0; 4201 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4202 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4203 } 4204 } 4205 4206 /***** If we reach this point, flattening is permitted. *****/ 4207 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4208 pSub->selId, pSub, iFrom)); 4209 4210 /* Authorize the subquery */ 4211 pParse->zAuthContext = pSubitem->zName; 4212 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4213 testcase( i==SQLITE_DENY ); 4214 pParse->zAuthContext = zSavedAuthContext; 4215 4216 /* Delete the transient structures associated with thesubquery */ 4217 pSub1 = pSubitem->pSelect; 4218 sqlite3DbFree(db, pSubitem->zDatabase); 4219 sqlite3DbFree(db, pSubitem->zName); 4220 sqlite3DbFree(db, pSubitem->zAlias); 4221 pSubitem->zDatabase = 0; 4222 pSubitem->zName = 0; 4223 pSubitem->zAlias = 0; 4224 pSubitem->pSelect = 0; 4225 assert( pSubitem->pOn==0 ); 4226 4227 /* If the sub-query is a compound SELECT statement, then (by restrictions 4228 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4229 ** be of the form: 4230 ** 4231 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4232 ** 4233 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4234 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4235 ** OFFSET clauses and joins them to the left-hand-side of the original 4236 ** using UNION ALL operators. In this case N is the number of simple 4237 ** select statements in the compound sub-query. 4238 ** 4239 ** Example: 4240 ** 4241 ** SELECT a+1 FROM ( 4242 ** SELECT x FROM tab 4243 ** UNION ALL 4244 ** SELECT y FROM tab 4245 ** UNION ALL 4246 ** SELECT abs(z*2) FROM tab2 4247 ** ) WHERE a!=5 ORDER BY 1 4248 ** 4249 ** Transformed into: 4250 ** 4251 ** SELECT x+1 FROM tab WHERE x+1!=5 4252 ** UNION ALL 4253 ** SELECT y+1 FROM tab WHERE y+1!=5 4254 ** UNION ALL 4255 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4256 ** ORDER BY 1 4257 ** 4258 ** We call this the "compound-subquery flattening". 4259 */ 4260 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4261 Select *pNew; 4262 ExprList *pOrderBy = p->pOrderBy; 4263 Expr *pLimit = p->pLimit; 4264 Select *pPrior = p->pPrior; 4265 Table *pItemTab = pSubitem->pTab; 4266 pSubitem->pTab = 0; 4267 p->pOrderBy = 0; 4268 p->pPrior = 0; 4269 p->pLimit = 0; 4270 pNew = sqlite3SelectDup(db, p, 0); 4271 p->pLimit = pLimit; 4272 p->pOrderBy = pOrderBy; 4273 p->op = TK_ALL; 4274 pSubitem->pTab = pItemTab; 4275 if( pNew==0 ){ 4276 p->pPrior = pPrior; 4277 }else{ 4278 pNew->selId = ++pParse->nSelect; 4279 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4280 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4281 } 4282 pNew->pPrior = pPrior; 4283 if( pPrior ) pPrior->pNext = pNew; 4284 pNew->pNext = p; 4285 p->pPrior = pNew; 4286 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4287 " creates %u as peer\n",pNew->selId)); 4288 } 4289 assert( pSubitem->pSelect==0 ); 4290 } 4291 sqlite3DbFree(db, aCsrMap); 4292 if( db->mallocFailed ){ 4293 pSubitem->pSelect = pSub1; 4294 return 1; 4295 } 4296 4297 /* Defer deleting the Table object associated with the 4298 ** subquery until code generation is 4299 ** complete, since there may still exist Expr.pTab entries that 4300 ** refer to the subquery even after flattening. Ticket #3346. 4301 ** 4302 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4303 */ 4304 if( ALWAYS(pSubitem->pTab!=0) ){ 4305 Table *pTabToDel = pSubitem->pTab; 4306 if( pTabToDel->nTabRef==1 ){ 4307 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4308 sqlite3ParserAddCleanup(pToplevel, 4309 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4310 pTabToDel); 4311 testcase( pToplevel->earlyCleanup ); 4312 }else{ 4313 pTabToDel->nTabRef--; 4314 } 4315 pSubitem->pTab = 0; 4316 } 4317 4318 /* The following loop runs once for each term in a compound-subquery 4319 ** flattening (as described above). If we are doing a different kind 4320 ** of flattening - a flattening other than a compound-subquery flattening - 4321 ** then this loop only runs once. 4322 ** 4323 ** This loop moves all of the FROM elements of the subquery into the 4324 ** the FROM clause of the outer query. Before doing this, remember 4325 ** the cursor number for the original outer query FROM element in 4326 ** iParent. The iParent cursor will never be used. Subsequent code 4327 ** will scan expressions looking for iParent references and replace 4328 ** those references with expressions that resolve to the subquery FROM 4329 ** elements we are now copying in. 4330 */ 4331 pSub = pSub1; 4332 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4333 int nSubSrc; 4334 u8 jointype = 0; 4335 assert( pSub!=0 ); 4336 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4337 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4338 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4339 4340 if( pParent==p ){ 4341 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4342 } 4343 4344 /* The subquery uses a single slot of the FROM clause of the outer 4345 ** query. If the subquery has more than one element in its FROM clause, 4346 ** then expand the outer query to make space for it to hold all elements 4347 ** of the subquery. 4348 ** 4349 ** Example: 4350 ** 4351 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4352 ** 4353 ** The outer query has 3 slots in its FROM clause. One slot of the 4354 ** outer query (the middle slot) is used by the subquery. The next 4355 ** block of code will expand the outer query FROM clause to 4 slots. 4356 ** The middle slot is expanded to two slots in order to make space 4357 ** for the two elements in the FROM clause of the subquery. 4358 */ 4359 if( nSubSrc>1 ){ 4360 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4361 if( pSrc==0 ) break; 4362 pParent->pSrc = pSrc; 4363 } 4364 4365 /* Transfer the FROM clause terms from the subquery into the 4366 ** outer query. 4367 */ 4368 for(i=0; i<nSubSrc; i++){ 4369 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4370 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4371 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4372 iNewParent = pSubSrc->a[i].iCursor; 4373 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4374 } 4375 pSrc->a[iFrom].fg.jointype = jointype; 4376 4377 /* Now begin substituting subquery result set expressions for 4378 ** references to the iParent in the outer query. 4379 ** 4380 ** Example: 4381 ** 4382 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4383 ** \ \_____________ subquery __________/ / 4384 ** \_____________________ outer query ______________________________/ 4385 ** 4386 ** We look at every expression in the outer query and every place we see 4387 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4388 */ 4389 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4390 /* At this point, any non-zero iOrderByCol values indicate that the 4391 ** ORDER BY column expression is identical to the iOrderByCol'th 4392 ** expression returned by SELECT statement pSub. Since these values 4393 ** do not necessarily correspond to columns in SELECT statement pParent, 4394 ** zero them before transfering the ORDER BY clause. 4395 ** 4396 ** Not doing this may cause an error if a subsequent call to this 4397 ** function attempts to flatten a compound sub-query into pParent 4398 ** (the only way this can happen is if the compound sub-query is 4399 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4400 ExprList *pOrderBy = pSub->pOrderBy; 4401 for(i=0; i<pOrderBy->nExpr; i++){ 4402 pOrderBy->a[i].u.x.iOrderByCol = 0; 4403 } 4404 assert( pParent->pOrderBy==0 ); 4405 pParent->pOrderBy = pOrderBy; 4406 pSub->pOrderBy = 0; 4407 } 4408 pWhere = pSub->pWhere; 4409 pSub->pWhere = 0; 4410 if( isLeftJoin>0 ){ 4411 sqlite3SetJoinExpr(pWhere, iNewParent); 4412 } 4413 if( pWhere ){ 4414 if( pParent->pWhere ){ 4415 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4416 }else{ 4417 pParent->pWhere = pWhere; 4418 } 4419 } 4420 if( db->mallocFailed==0 ){ 4421 SubstContext x; 4422 x.pParse = pParse; 4423 x.iTable = iParent; 4424 x.iNewTable = iNewParent; 4425 x.isLeftJoin = isLeftJoin; 4426 x.pEList = pSub->pEList; 4427 substSelect(&x, pParent, 0); 4428 } 4429 4430 /* The flattened query is a compound if either the inner or the 4431 ** outer query is a compound. */ 4432 pParent->selFlags |= pSub->selFlags & SF_Compound; 4433 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4434 4435 /* 4436 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4437 ** 4438 ** One is tempted to try to add a and b to combine the limits. But this 4439 ** does not work if either limit is negative. 4440 */ 4441 if( pSub->pLimit ){ 4442 pParent->pLimit = pSub->pLimit; 4443 pSub->pLimit = 0; 4444 } 4445 4446 /* Recompute the SrcList_item.colUsed masks for the flattened 4447 ** tables. */ 4448 for(i=0; i<nSubSrc; i++){ 4449 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4450 } 4451 } 4452 4453 /* Finially, delete what is left of the subquery and return 4454 ** success. 4455 */ 4456 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4457 sqlite3WalkSelect(&w,pSub1); 4458 sqlite3SelectDelete(db, pSub1); 4459 4460 #if SELECTTRACE_ENABLED 4461 if( sqlite3SelectTrace & 0x100 ){ 4462 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4463 sqlite3TreeViewSelect(0, p, 0); 4464 } 4465 #endif 4466 4467 return 1; 4468 } 4469 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4470 4471 /* 4472 ** A structure to keep track of all of the column values that are fixed to 4473 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4474 */ 4475 typedef struct WhereConst WhereConst; 4476 struct WhereConst { 4477 Parse *pParse; /* Parsing context */ 4478 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4479 int nConst; /* Number for COLUMN=CONSTANT terms */ 4480 int nChng; /* Number of times a constant is propagated */ 4481 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4482 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4483 }; 4484 4485 /* 4486 ** Add a new entry to the pConst object. Except, do not add duplicate 4487 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4488 ** 4489 ** The caller guarantees the pColumn is a column and pValue is a constant. 4490 ** This routine has to do some additional checks before completing the 4491 ** insert. 4492 */ 4493 static void constInsert( 4494 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4495 Expr *pColumn, /* The COLUMN part of the constraint */ 4496 Expr *pValue, /* The VALUE part of the constraint */ 4497 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4498 ){ 4499 int i; 4500 assert( pColumn->op==TK_COLUMN ); 4501 assert( sqlite3ExprIsConstant(pValue) ); 4502 4503 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4504 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4505 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4506 return; 4507 } 4508 4509 /* 2018-10-25 ticket [cf5ed20f] 4510 ** Make sure the same pColumn is not inserted more than once */ 4511 for(i=0; i<pConst->nConst; i++){ 4512 const Expr *pE2 = pConst->apExpr[i*2]; 4513 assert( pE2->op==TK_COLUMN ); 4514 if( pE2->iTable==pColumn->iTable 4515 && pE2->iColumn==pColumn->iColumn 4516 ){ 4517 return; /* Already present. Return without doing anything. */ 4518 } 4519 } 4520 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4521 pConst->bHasAffBlob = 1; 4522 } 4523 4524 pConst->nConst++; 4525 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4526 pConst->nConst*2*sizeof(Expr*)); 4527 if( pConst->apExpr==0 ){ 4528 pConst->nConst = 0; 4529 }else{ 4530 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4531 pConst->apExpr[pConst->nConst*2-1] = pValue; 4532 } 4533 } 4534 4535 /* 4536 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4537 ** is a constant expression and where the term must be true because it 4538 ** is part of the AND-connected terms of the expression. For each term 4539 ** found, add it to the pConst structure. 4540 */ 4541 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4542 Expr *pRight, *pLeft; 4543 if( NEVER(pExpr==0) ) return; 4544 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4545 if( pExpr->op==TK_AND ){ 4546 findConstInWhere(pConst, pExpr->pRight); 4547 findConstInWhere(pConst, pExpr->pLeft); 4548 return; 4549 } 4550 if( pExpr->op!=TK_EQ ) return; 4551 pRight = pExpr->pRight; 4552 pLeft = pExpr->pLeft; 4553 assert( pRight!=0 ); 4554 assert( pLeft!=0 ); 4555 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4556 constInsert(pConst,pRight,pLeft,pExpr); 4557 } 4558 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4559 constInsert(pConst,pLeft,pRight,pExpr); 4560 } 4561 } 4562 4563 /* 4564 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4565 ** 4566 ** Argument pExpr is a candidate expression to be replaced by a value. If 4567 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4568 ** then overwrite it with the corresponding value. Except, do not do so 4569 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4570 ** is SQLITE_AFF_BLOB. 4571 */ 4572 static int propagateConstantExprRewriteOne( 4573 WhereConst *pConst, 4574 Expr *pExpr, 4575 int bIgnoreAffBlob 4576 ){ 4577 int i; 4578 if( pConst->pOomFault[0] ) return WRC_Prune; 4579 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4580 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4581 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4582 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4583 return WRC_Continue; 4584 } 4585 for(i=0; i<pConst->nConst; i++){ 4586 Expr *pColumn = pConst->apExpr[i*2]; 4587 if( pColumn==pExpr ) continue; 4588 if( pColumn->iTable!=pExpr->iTable ) continue; 4589 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4590 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4591 break; 4592 } 4593 /* A match is found. Add the EP_FixedCol property */ 4594 pConst->nChng++; 4595 ExprClearProperty(pExpr, EP_Leaf); 4596 ExprSetProperty(pExpr, EP_FixedCol); 4597 assert( pExpr->pLeft==0 ); 4598 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4599 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4600 break; 4601 } 4602 return WRC_Prune; 4603 } 4604 4605 /* 4606 ** This is a Walker expression callback. pExpr is a node from the WHERE 4607 ** clause of a SELECT statement. This function examines pExpr to see if 4608 ** any substitutions based on the contents of pWalker->u.pConst should 4609 ** be made to pExpr or its immediate children. 4610 ** 4611 ** A substitution is made if: 4612 ** 4613 ** + pExpr is a column with an affinity other than BLOB that matches 4614 ** one of the columns in pWalker->u.pConst, or 4615 ** 4616 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4617 ** uses an affinity other than TEXT and one of its immediate 4618 ** children is a column that matches one of the columns in 4619 ** pWalker->u.pConst. 4620 */ 4621 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4622 WhereConst *pConst = pWalker->u.pConst; 4623 assert( TK_GT==TK_EQ+1 ); 4624 assert( TK_LE==TK_EQ+2 ); 4625 assert( TK_LT==TK_EQ+3 ); 4626 assert( TK_GE==TK_EQ+4 ); 4627 if( pConst->bHasAffBlob ){ 4628 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4629 || pExpr->op==TK_IS 4630 ){ 4631 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4632 if( pConst->pOomFault[0] ) return WRC_Prune; 4633 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4634 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4635 } 4636 } 4637 } 4638 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4639 } 4640 4641 /* 4642 ** The WHERE-clause constant propagation optimization. 4643 ** 4644 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4645 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4646 ** part of a ON clause from a LEFT JOIN, then throughout the query 4647 ** replace all other occurrences of COLUMN with CONSTANT. 4648 ** 4649 ** For example, the query: 4650 ** 4651 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4652 ** 4653 ** Is transformed into 4654 ** 4655 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4656 ** 4657 ** Return true if any transformations where made and false if not. 4658 ** 4659 ** Implementation note: Constant propagation is tricky due to affinity 4660 ** and collating sequence interactions. Consider this example: 4661 ** 4662 ** CREATE TABLE t1(a INT,b TEXT); 4663 ** INSERT INTO t1 VALUES(123,'0123'); 4664 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4665 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4666 ** 4667 ** The two SELECT statements above should return different answers. b=a 4668 ** is alway true because the comparison uses numeric affinity, but b=123 4669 ** is false because it uses text affinity and '0123' is not the same as '123'. 4670 ** To work around this, the expression tree is not actually changed from 4671 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4672 ** and the "123" value is hung off of the pLeft pointer. Code generator 4673 ** routines know to generate the constant "123" instead of looking up the 4674 ** column value. Also, to avoid collation problems, this optimization is 4675 ** only attempted if the "a=123" term uses the default BINARY collation. 4676 ** 4677 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4678 ** 4679 ** CREATE TABLE t1(x); 4680 ** INSERT INTO t1 VALUES(10.0); 4681 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4682 ** 4683 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4684 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4685 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4686 ** resulting in a false positive. To avoid this, constant propagation for 4687 ** columns with BLOB affinity is only allowed if the constant is used with 4688 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4689 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4690 ** for details. 4691 */ 4692 static int propagateConstants( 4693 Parse *pParse, /* The parsing context */ 4694 Select *p /* The query in which to propagate constants */ 4695 ){ 4696 WhereConst x; 4697 Walker w; 4698 int nChng = 0; 4699 x.pParse = pParse; 4700 x.pOomFault = &pParse->db->mallocFailed; 4701 do{ 4702 x.nConst = 0; 4703 x.nChng = 0; 4704 x.apExpr = 0; 4705 x.bHasAffBlob = 0; 4706 findConstInWhere(&x, p->pWhere); 4707 if( x.nConst ){ 4708 memset(&w, 0, sizeof(w)); 4709 w.pParse = pParse; 4710 w.xExprCallback = propagateConstantExprRewrite; 4711 w.xSelectCallback = sqlite3SelectWalkNoop; 4712 w.xSelectCallback2 = 0; 4713 w.walkerDepth = 0; 4714 w.u.pConst = &x; 4715 sqlite3WalkExpr(&w, p->pWhere); 4716 sqlite3DbFree(x.pParse->db, x.apExpr); 4717 nChng += x.nChng; 4718 } 4719 }while( x.nChng ); 4720 return nChng; 4721 } 4722 4723 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4724 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4725 /* 4726 ** This function is called to determine whether or not it is safe to 4727 ** push WHERE clause expression pExpr down to FROM clause sub-query 4728 ** pSubq, which contains at least one window function. Return 1 4729 ** if it is safe and the expression should be pushed down, or 0 4730 ** otherwise. 4731 ** 4732 ** It is only safe to push the expression down if it consists only 4733 ** of constants and copies of expressions that appear in the PARTITION 4734 ** BY clause of all window function used by the sub-query. It is safe 4735 ** to filter out entire partitions, but not rows within partitions, as 4736 ** this may change the results of the window functions. 4737 ** 4738 ** At the time this function is called it is guaranteed that 4739 ** 4740 ** * the sub-query uses only one distinct window frame, and 4741 ** * that the window frame has a PARTITION BY clase. 4742 */ 4743 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4744 assert( pSubq->pWin->pPartition ); 4745 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4746 assert( pSubq->pPrior==0 ); 4747 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4748 } 4749 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4750 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4751 4752 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4753 /* 4754 ** Make copies of relevant WHERE clause terms of the outer query into 4755 ** the WHERE clause of subquery. Example: 4756 ** 4757 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4758 ** 4759 ** Transformed into: 4760 ** 4761 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4762 ** WHERE x=5 AND y=10; 4763 ** 4764 ** The hope is that the terms added to the inner query will make it more 4765 ** efficient. 4766 ** 4767 ** Do not attempt this optimization if: 4768 ** 4769 ** (1) (** This restriction was removed on 2017-09-29. We used to 4770 ** disallow this optimization for aggregate subqueries, but now 4771 ** it is allowed by putting the extra terms on the HAVING clause. 4772 ** The added HAVING clause is pointless if the subquery lacks 4773 ** a GROUP BY clause. But such a HAVING clause is also harmless 4774 ** so there does not appear to be any reason to add extra logic 4775 ** to suppress it. **) 4776 ** 4777 ** (2) The inner query is the recursive part of a common table expression. 4778 ** 4779 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4780 ** clause would change the meaning of the LIMIT). 4781 ** 4782 ** (4) The inner query is the right operand of a LEFT JOIN and the 4783 ** expression to be pushed down does not come from the ON clause 4784 ** on that LEFT JOIN. 4785 ** 4786 ** (5) The WHERE clause expression originates in the ON or USING clause 4787 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4788 ** left join. An example: 4789 ** 4790 ** SELECT * 4791 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4792 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4793 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4794 ** 4795 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4796 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4797 ** then the (1,1,NULL) row would be suppressed. 4798 ** 4799 ** (6) Window functions make things tricky as changes to the WHERE clause 4800 ** of the inner query could change the window over which window 4801 ** functions are calculated. Therefore, do not attempt the optimization 4802 ** if: 4803 ** 4804 ** (6a) The inner query uses multiple incompatible window partitions. 4805 ** 4806 ** (6b) The inner query is a compound and uses window-functions. 4807 ** 4808 ** (6c) The WHERE clause does not consist entirely of constants and 4809 ** copies of expressions found in the PARTITION BY clause of 4810 ** all window-functions used by the sub-query. It is safe to 4811 ** filter out entire partitions, as this does not change the 4812 ** window over which any window-function is calculated. 4813 ** 4814 ** (7) The inner query is a Common Table Expression (CTE) that should 4815 ** be materialized. (This restriction is implemented in the calling 4816 ** routine.) 4817 ** 4818 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4819 ** terms are duplicated into the subquery. 4820 */ 4821 static int pushDownWhereTerms( 4822 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4823 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4824 Expr *pWhere, /* The WHERE clause of the outer query */ 4825 int iCursor, /* Cursor number of the subquery */ 4826 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4827 ){ 4828 Expr *pNew; 4829 int nChng = 0; 4830 if( pWhere==0 ) return 0; 4831 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4832 4833 #ifndef SQLITE_OMIT_WINDOWFUNC 4834 if( pSubq->pPrior ){ 4835 Select *pSel; 4836 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4837 if( pSel->pWin ) return 0; /* restriction (6b) */ 4838 } 4839 }else{ 4840 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4841 } 4842 #endif 4843 4844 #ifdef SQLITE_DEBUG 4845 /* Only the first term of a compound can have a WITH clause. But make 4846 ** sure no other terms are marked SF_Recursive in case something changes 4847 ** in the future. 4848 */ 4849 { 4850 Select *pX; 4851 for(pX=pSubq; pX; pX=pX->pPrior){ 4852 assert( (pX->selFlags & (SF_Recursive))==0 ); 4853 } 4854 } 4855 #endif 4856 4857 if( pSubq->pLimit!=0 ){ 4858 return 0; /* restriction (3) */ 4859 } 4860 while( pWhere->op==TK_AND ){ 4861 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4862 iCursor, isLeftJoin); 4863 pWhere = pWhere->pLeft; 4864 } 4865 if( isLeftJoin 4866 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4867 || pWhere->w.iRightJoinTable!=iCursor) 4868 ){ 4869 return 0; /* restriction (4) */ 4870 } 4871 if( ExprHasProperty(pWhere,EP_FromJoin) 4872 && pWhere->w.iRightJoinTable!=iCursor 4873 ){ 4874 return 0; /* restriction (5) */ 4875 } 4876 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4877 nChng++; 4878 pSubq->selFlags |= SF_PushDown; 4879 while( pSubq ){ 4880 SubstContext x; 4881 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4882 unsetJoinExpr(pNew, -1); 4883 x.pParse = pParse; 4884 x.iTable = iCursor; 4885 x.iNewTable = iCursor; 4886 x.isLeftJoin = 0; 4887 x.pEList = pSubq->pEList; 4888 pNew = substExpr(&x, pNew); 4889 #ifndef SQLITE_OMIT_WINDOWFUNC 4890 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4891 /* Restriction 6c has prevented push-down in this case */ 4892 sqlite3ExprDelete(pParse->db, pNew); 4893 nChng--; 4894 break; 4895 } 4896 #endif 4897 if( pSubq->selFlags & SF_Aggregate ){ 4898 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4899 }else{ 4900 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4901 } 4902 pSubq = pSubq->pPrior; 4903 } 4904 } 4905 return nChng; 4906 } 4907 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4908 4909 /* 4910 ** The pFunc is the only aggregate function in the query. Check to see 4911 ** if the query is a candidate for the min/max optimization. 4912 ** 4913 ** If the query is a candidate for the min/max optimization, then set 4914 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4915 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4916 ** whether pFunc is a min() or max() function. 4917 ** 4918 ** If the query is not a candidate for the min/max optimization, return 4919 ** WHERE_ORDERBY_NORMAL (which must be zero). 4920 ** 4921 ** This routine must be called after aggregate functions have been 4922 ** located but before their arguments have been subjected to aggregate 4923 ** analysis. 4924 */ 4925 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4926 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4927 ExprList *pEList; /* Arguments to agg function */ 4928 const char *zFunc; /* Name of aggregate function pFunc */ 4929 ExprList *pOrderBy; 4930 u8 sortFlags = 0; 4931 4932 assert( *ppMinMax==0 ); 4933 assert( pFunc->op==TK_AGG_FUNCTION ); 4934 assert( !IsWindowFunc(pFunc) ); 4935 assert( ExprUseXList(pFunc) ); 4936 pEList = pFunc->x.pList; 4937 if( pEList==0 4938 || pEList->nExpr!=1 4939 || ExprHasProperty(pFunc, EP_WinFunc) 4940 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4941 ){ 4942 return eRet; 4943 } 4944 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 4945 zFunc = pFunc->u.zToken; 4946 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4947 eRet = WHERE_ORDERBY_MIN; 4948 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4949 sortFlags = KEYINFO_ORDER_BIGNULL; 4950 } 4951 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4952 eRet = WHERE_ORDERBY_MAX; 4953 sortFlags = KEYINFO_ORDER_DESC; 4954 }else{ 4955 return eRet; 4956 } 4957 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4958 assert( pOrderBy!=0 || db->mallocFailed ); 4959 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4960 return eRet; 4961 } 4962 4963 /* 4964 ** The select statement passed as the first argument is an aggregate query. 4965 ** The second argument is the associated aggregate-info object. This 4966 ** function tests if the SELECT is of the form: 4967 ** 4968 ** SELECT count(*) FROM <tbl> 4969 ** 4970 ** where table is a database table, not a sub-select or view. If the query 4971 ** does match this pattern, then a pointer to the Table object representing 4972 ** <tbl> is returned. Otherwise, NULL is returned. 4973 ** 4974 ** This routine checks to see if it is safe to use the count optimization. 4975 ** A correct answer is still obtained (though perhaps more slowly) if 4976 ** this routine returns NULL when it could have returned a table pointer. 4977 ** But returning the pointer when NULL should have been returned can 4978 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 4979 */ 4980 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4981 Table *pTab; 4982 Expr *pExpr; 4983 4984 assert( !p->pGroupBy ); 4985 4986 if( p->pWhere 4987 || p->pEList->nExpr!=1 4988 || p->pSrc->nSrc!=1 4989 || p->pSrc->a[0].pSelect 4990 || pAggInfo->nFunc!=1 4991 ){ 4992 return 0; 4993 } 4994 pTab = p->pSrc->a[0].pTab; 4995 assert( pTab!=0 ); 4996 assert( !IsView(pTab) ); 4997 if( !IsOrdinaryTable(pTab) ) return 0; 4998 pExpr = p->pEList->a[0].pExpr; 4999 assert( pExpr!=0 ); 5000 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5001 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5002 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5003 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5004 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5005 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5006 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5007 5008 return pTab; 5009 } 5010 5011 /* 5012 ** If the source-list item passed as an argument was augmented with an 5013 ** INDEXED BY clause, then try to locate the specified index. If there 5014 ** was such a clause and the named index cannot be found, return 5015 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5016 ** pFrom->pIndex and return SQLITE_OK. 5017 */ 5018 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5019 Table *pTab = pFrom->pTab; 5020 char *zIndexedBy = pFrom->u1.zIndexedBy; 5021 Index *pIdx; 5022 assert( pTab!=0 ); 5023 assert( pFrom->fg.isIndexedBy!=0 ); 5024 5025 for(pIdx=pTab->pIndex; 5026 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5027 pIdx=pIdx->pNext 5028 ); 5029 if( !pIdx ){ 5030 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5031 pParse->checkSchema = 1; 5032 return SQLITE_ERROR; 5033 } 5034 assert( pFrom->fg.isCte==0 ); 5035 pFrom->u2.pIBIndex = pIdx; 5036 return SQLITE_OK; 5037 } 5038 5039 /* 5040 ** Detect compound SELECT statements that use an ORDER BY clause with 5041 ** an alternative collating sequence. 5042 ** 5043 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5044 ** 5045 ** These are rewritten as a subquery: 5046 ** 5047 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5048 ** ORDER BY ... COLLATE ... 5049 ** 5050 ** This transformation is necessary because the multiSelectOrderBy() routine 5051 ** above that generates the code for a compound SELECT with an ORDER BY clause 5052 ** uses a merge algorithm that requires the same collating sequence on the 5053 ** result columns as on the ORDER BY clause. See ticket 5054 ** http://www.sqlite.org/src/info/6709574d2a 5055 ** 5056 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5057 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5058 ** there are COLLATE terms in the ORDER BY. 5059 */ 5060 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5061 int i; 5062 Select *pNew; 5063 Select *pX; 5064 sqlite3 *db; 5065 struct ExprList_item *a; 5066 SrcList *pNewSrc; 5067 Parse *pParse; 5068 Token dummy; 5069 5070 if( p->pPrior==0 ) return WRC_Continue; 5071 if( p->pOrderBy==0 ) return WRC_Continue; 5072 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5073 if( pX==0 ) return WRC_Continue; 5074 a = p->pOrderBy->a; 5075 #ifndef SQLITE_OMIT_WINDOWFUNC 5076 /* If iOrderByCol is already non-zero, then it has already been matched 5077 ** to a result column of the SELECT statement. This occurs when the 5078 ** SELECT is rewritten for window-functions processing and then passed 5079 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5080 ** by this function is not required in this case. */ 5081 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5082 #endif 5083 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5084 if( a[i].pExpr->flags & EP_Collate ) break; 5085 } 5086 if( i<0 ) return WRC_Continue; 5087 5088 /* If we reach this point, that means the transformation is required. */ 5089 5090 pParse = pWalker->pParse; 5091 db = pParse->db; 5092 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5093 if( pNew==0 ) return WRC_Abort; 5094 memset(&dummy, 0, sizeof(dummy)); 5095 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5096 if( pNewSrc==0 ) return WRC_Abort; 5097 *pNew = *p; 5098 p->pSrc = pNewSrc; 5099 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5100 p->op = TK_SELECT; 5101 p->pWhere = 0; 5102 pNew->pGroupBy = 0; 5103 pNew->pHaving = 0; 5104 pNew->pOrderBy = 0; 5105 p->pPrior = 0; 5106 p->pNext = 0; 5107 p->pWith = 0; 5108 #ifndef SQLITE_OMIT_WINDOWFUNC 5109 p->pWinDefn = 0; 5110 #endif 5111 p->selFlags &= ~SF_Compound; 5112 assert( (p->selFlags & SF_Converted)==0 ); 5113 p->selFlags |= SF_Converted; 5114 assert( pNew->pPrior!=0 ); 5115 pNew->pPrior->pNext = pNew; 5116 pNew->pLimit = 0; 5117 return WRC_Continue; 5118 } 5119 5120 /* 5121 ** Check to see if the FROM clause term pFrom has table-valued function 5122 ** arguments. If it does, leave an error message in pParse and return 5123 ** non-zero, since pFrom is not allowed to be a table-valued function. 5124 */ 5125 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5126 if( pFrom->fg.isTabFunc ){ 5127 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5128 return 1; 5129 } 5130 return 0; 5131 } 5132 5133 #ifndef SQLITE_OMIT_CTE 5134 /* 5135 ** Argument pWith (which may be NULL) points to a linked list of nested 5136 ** WITH contexts, from inner to outermost. If the table identified by 5137 ** FROM clause element pItem is really a common-table-expression (CTE) 5138 ** then return a pointer to the CTE definition for that table. Otherwise 5139 ** return NULL. 5140 ** 5141 ** If a non-NULL value is returned, set *ppContext to point to the With 5142 ** object that the returned CTE belongs to. 5143 */ 5144 static struct Cte *searchWith( 5145 With *pWith, /* Current innermost WITH clause */ 5146 SrcItem *pItem, /* FROM clause element to resolve */ 5147 With **ppContext /* OUT: WITH clause return value belongs to */ 5148 ){ 5149 const char *zName = pItem->zName; 5150 With *p; 5151 assert( pItem->zDatabase==0 ); 5152 assert( zName!=0 ); 5153 for(p=pWith; p; p=p->pOuter){ 5154 int i; 5155 for(i=0; i<p->nCte; i++){ 5156 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5157 *ppContext = p; 5158 return &p->a[i]; 5159 } 5160 } 5161 if( p->bView ) break; 5162 } 5163 return 0; 5164 } 5165 5166 /* The code generator maintains a stack of active WITH clauses 5167 ** with the inner-most WITH clause being at the top of the stack. 5168 ** 5169 ** This routine pushes the WITH clause passed as the second argument 5170 ** onto the top of the stack. If argument bFree is true, then this 5171 ** WITH clause will never be popped from the stack but should instead 5172 ** be freed along with the Parse object. In other cases, when 5173 ** bFree==0, the With object will be freed along with the SELECT 5174 ** statement with which it is associated. 5175 ** 5176 ** This routine returns a copy of pWith. Or, if bFree is true and 5177 ** the pWith object is destroyed immediately due to an OOM condition, 5178 ** then this routine return NULL. 5179 ** 5180 ** If bFree is true, do not continue to use the pWith pointer after 5181 ** calling this routine, Instead, use only the return value. 5182 */ 5183 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5184 if( pWith ){ 5185 if( bFree ){ 5186 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5187 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5188 pWith); 5189 if( pWith==0 ) return 0; 5190 } 5191 if( pParse->nErr==0 ){ 5192 assert( pParse->pWith!=pWith ); 5193 pWith->pOuter = pParse->pWith; 5194 pParse->pWith = pWith; 5195 } 5196 } 5197 return pWith; 5198 } 5199 5200 /* 5201 ** This function checks if argument pFrom refers to a CTE declared by 5202 ** a WITH clause on the stack currently maintained by the parser (on the 5203 ** pParse->pWith linked list). And if currently processing a CTE 5204 ** CTE expression, through routine checks to see if the reference is 5205 ** a recursive reference to the CTE. 5206 ** 5207 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5208 ** and other fields are populated accordingly. 5209 ** 5210 ** Return 0 if no match is found. 5211 ** Return 1 if a match is found. 5212 ** Return 2 if an error condition is detected. 5213 */ 5214 static int resolveFromTermToCte( 5215 Parse *pParse, /* The parsing context */ 5216 Walker *pWalker, /* Current tree walker */ 5217 SrcItem *pFrom /* The FROM clause term to check */ 5218 ){ 5219 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5220 With *pWith; /* The matching WITH */ 5221 5222 assert( pFrom->pTab==0 ); 5223 if( pParse->pWith==0 ){ 5224 /* There are no WITH clauses in the stack. No match is possible */ 5225 return 0; 5226 } 5227 if( pParse->nErr ){ 5228 /* Prior errors might have left pParse->pWith in a goofy state, so 5229 ** go no further. */ 5230 return 0; 5231 } 5232 if( pFrom->zDatabase!=0 ){ 5233 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5234 ** it cannot possibly be a CTE reference. */ 5235 return 0; 5236 } 5237 if( pFrom->fg.notCte ){ 5238 /* The FROM term is specifically excluded from matching a CTE. 5239 ** (1) It is part of a trigger that used to have zDatabase but had 5240 ** zDatabase removed by sqlite3FixTriggerStep(). 5241 ** (2) This is the first term in the FROM clause of an UPDATE. 5242 */ 5243 return 0; 5244 } 5245 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5246 if( pCte ){ 5247 sqlite3 *db = pParse->db; 5248 Table *pTab; 5249 ExprList *pEList; 5250 Select *pSel; 5251 Select *pLeft; /* Left-most SELECT statement */ 5252 Select *pRecTerm; /* Left-most recursive term */ 5253 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5254 With *pSavedWith; /* Initial value of pParse->pWith */ 5255 int iRecTab = -1; /* Cursor for recursive table */ 5256 CteUse *pCteUse; 5257 5258 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5259 ** recursive reference to CTE pCte. Leave an error in pParse and return 5260 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5261 ** In this case, proceed. */ 5262 if( pCte->zCteErr ){ 5263 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5264 return 2; 5265 } 5266 if( cannotBeFunction(pParse, pFrom) ) return 2; 5267 5268 assert( pFrom->pTab==0 ); 5269 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5270 if( pTab==0 ) return 2; 5271 pCteUse = pCte->pUse; 5272 if( pCteUse==0 ){ 5273 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5274 if( pCteUse==0 5275 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5276 ){ 5277 sqlite3DbFree(db, pTab); 5278 return 2; 5279 } 5280 pCteUse->eM10d = pCte->eM10d; 5281 } 5282 pFrom->pTab = pTab; 5283 pTab->nTabRef = 1; 5284 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5285 pTab->iPKey = -1; 5286 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5287 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5288 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5289 if( db->mallocFailed ) return 2; 5290 pFrom->pSelect->selFlags |= SF_CopyCte; 5291 assert( pFrom->pSelect ); 5292 if( pFrom->fg.isIndexedBy ){ 5293 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5294 return 2; 5295 } 5296 pFrom->fg.isCte = 1; 5297 pFrom->u2.pCteUse = pCteUse; 5298 pCteUse->nUse++; 5299 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5300 pCteUse->eM10d = M10d_Yes; 5301 } 5302 5303 /* Check if this is a recursive CTE. */ 5304 pRecTerm = pSel = pFrom->pSelect; 5305 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5306 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5307 int i; 5308 SrcList *pSrc = pRecTerm->pSrc; 5309 assert( pRecTerm->pPrior!=0 ); 5310 for(i=0; i<pSrc->nSrc; i++){ 5311 SrcItem *pItem = &pSrc->a[i]; 5312 if( pItem->zDatabase==0 5313 && pItem->zName!=0 5314 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5315 ){ 5316 pItem->pTab = pTab; 5317 pTab->nTabRef++; 5318 pItem->fg.isRecursive = 1; 5319 if( pRecTerm->selFlags & SF_Recursive ){ 5320 sqlite3ErrorMsg(pParse, 5321 "multiple references to recursive table: %s", pCte->zName 5322 ); 5323 return 2; 5324 } 5325 pRecTerm->selFlags |= SF_Recursive; 5326 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5327 pItem->iCursor = iRecTab; 5328 } 5329 } 5330 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5331 pRecTerm = pRecTerm->pPrior; 5332 } 5333 5334 pCte->zCteErr = "circular reference: %s"; 5335 pSavedWith = pParse->pWith; 5336 pParse->pWith = pWith; 5337 if( pSel->selFlags & SF_Recursive ){ 5338 int rc; 5339 assert( pRecTerm!=0 ); 5340 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5341 assert( pRecTerm->pNext!=0 ); 5342 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5343 assert( pRecTerm->pWith==0 ); 5344 pRecTerm->pWith = pSel->pWith; 5345 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5346 pRecTerm->pWith = 0; 5347 if( rc ){ 5348 pParse->pWith = pSavedWith; 5349 return 2; 5350 } 5351 }else{ 5352 if( sqlite3WalkSelect(pWalker, pSel) ){ 5353 pParse->pWith = pSavedWith; 5354 return 2; 5355 } 5356 } 5357 pParse->pWith = pWith; 5358 5359 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5360 pEList = pLeft->pEList; 5361 if( pCte->pCols ){ 5362 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5363 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5364 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5365 ); 5366 pParse->pWith = pSavedWith; 5367 return 2; 5368 } 5369 pEList = pCte->pCols; 5370 } 5371 5372 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5373 if( bMayRecursive ){ 5374 if( pSel->selFlags & SF_Recursive ){ 5375 pCte->zCteErr = "multiple recursive references: %s"; 5376 }else{ 5377 pCte->zCteErr = "recursive reference in a subquery: %s"; 5378 } 5379 sqlite3WalkSelect(pWalker, pSel); 5380 } 5381 pCte->zCteErr = 0; 5382 pParse->pWith = pSavedWith; 5383 return 1; /* Success */ 5384 } 5385 return 0; /* No match */ 5386 } 5387 #endif 5388 5389 #ifndef SQLITE_OMIT_CTE 5390 /* 5391 ** If the SELECT passed as the second argument has an associated WITH 5392 ** clause, pop it from the stack stored as part of the Parse object. 5393 ** 5394 ** This function is used as the xSelectCallback2() callback by 5395 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5396 ** names and other FROM clause elements. 5397 */ 5398 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5399 Parse *pParse = pWalker->pParse; 5400 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5401 With *pWith = findRightmost(p)->pWith; 5402 if( pWith!=0 ){ 5403 assert( pParse->pWith==pWith || pParse->nErr ); 5404 pParse->pWith = pWith->pOuter; 5405 } 5406 } 5407 } 5408 #endif 5409 5410 /* 5411 ** The SrcList_item structure passed as the second argument represents a 5412 ** sub-query in the FROM clause of a SELECT statement. This function 5413 ** allocates and populates the SrcList_item.pTab object. If successful, 5414 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5415 ** SQLITE_NOMEM. 5416 */ 5417 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5418 Select *pSel = pFrom->pSelect; 5419 Table *pTab; 5420 5421 assert( pSel ); 5422 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5423 if( pTab==0 ) return SQLITE_NOMEM; 5424 pTab->nTabRef = 1; 5425 if( pFrom->zAlias ){ 5426 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5427 }else{ 5428 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5429 } 5430 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5431 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5432 pTab->iPKey = -1; 5433 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5434 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5435 /* The usual case - do not allow ROWID on a subquery */ 5436 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5437 #else 5438 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5439 #endif 5440 5441 5442 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5443 } 5444 5445 /* 5446 ** This routine is a Walker callback for "expanding" a SELECT statement. 5447 ** "Expanding" means to do the following: 5448 ** 5449 ** (1) Make sure VDBE cursor numbers have been assigned to every 5450 ** element of the FROM clause. 5451 ** 5452 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5453 ** defines FROM clause. When views appear in the FROM clause, 5454 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5455 ** that implements the view. A copy is made of the view's SELECT 5456 ** statement so that we can freely modify or delete that statement 5457 ** without worrying about messing up the persistent representation 5458 ** of the view. 5459 ** 5460 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5461 ** on joins and the ON and USING clause of joins. 5462 ** 5463 ** (4) Scan the list of columns in the result set (pEList) looking 5464 ** for instances of the "*" operator or the TABLE.* operator. 5465 ** If found, expand each "*" to be every column in every table 5466 ** and TABLE.* to be every column in TABLE. 5467 ** 5468 */ 5469 static int selectExpander(Walker *pWalker, Select *p){ 5470 Parse *pParse = pWalker->pParse; 5471 int i, j, k, rc; 5472 SrcList *pTabList; 5473 ExprList *pEList; 5474 SrcItem *pFrom; 5475 sqlite3 *db = pParse->db; 5476 Expr *pE, *pRight, *pExpr; 5477 u16 selFlags = p->selFlags; 5478 u32 elistFlags = 0; 5479 5480 p->selFlags |= SF_Expanded; 5481 if( db->mallocFailed ){ 5482 return WRC_Abort; 5483 } 5484 assert( p->pSrc!=0 ); 5485 if( (selFlags & SF_Expanded)!=0 ){ 5486 return WRC_Prune; 5487 } 5488 if( pWalker->eCode ){ 5489 /* Renumber selId because it has been copied from a view */ 5490 p->selId = ++pParse->nSelect; 5491 } 5492 pTabList = p->pSrc; 5493 pEList = p->pEList; 5494 if( pParse->pWith && (p->selFlags & SF_View) ){ 5495 if( p->pWith==0 ){ 5496 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5497 if( p->pWith==0 ){ 5498 return WRC_Abort; 5499 } 5500 } 5501 p->pWith->bView = 1; 5502 } 5503 sqlite3WithPush(pParse, p->pWith, 0); 5504 5505 /* Make sure cursor numbers have been assigned to all entries in 5506 ** the FROM clause of the SELECT statement. 5507 */ 5508 sqlite3SrcListAssignCursors(pParse, pTabList); 5509 5510 /* Look up every table named in the FROM clause of the select. If 5511 ** an entry of the FROM clause is a subquery instead of a table or view, 5512 ** then create a transient table structure to describe the subquery. 5513 */ 5514 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5515 Table *pTab; 5516 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5517 if( pFrom->pTab ) continue; 5518 assert( pFrom->fg.isRecursive==0 ); 5519 if( pFrom->zName==0 ){ 5520 #ifndef SQLITE_OMIT_SUBQUERY 5521 Select *pSel = pFrom->pSelect; 5522 /* A sub-query in the FROM clause of a SELECT */ 5523 assert( pSel!=0 ); 5524 assert( pFrom->pTab==0 ); 5525 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5526 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5527 #endif 5528 #ifndef SQLITE_OMIT_CTE 5529 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5530 if( rc>1 ) return WRC_Abort; 5531 pTab = pFrom->pTab; 5532 assert( pTab!=0 ); 5533 #endif 5534 }else{ 5535 /* An ordinary table or view name in the FROM clause */ 5536 assert( pFrom->pTab==0 ); 5537 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5538 if( pTab==0 ) return WRC_Abort; 5539 if( pTab->nTabRef>=0xffff ){ 5540 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5541 pTab->zName); 5542 pFrom->pTab = 0; 5543 return WRC_Abort; 5544 } 5545 pTab->nTabRef++; 5546 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5547 return WRC_Abort; 5548 } 5549 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5550 if( !IsOrdinaryTable(pTab) ){ 5551 i16 nCol; 5552 u8 eCodeOrig = pWalker->eCode; 5553 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5554 assert( pFrom->pSelect==0 ); 5555 if( IsView(pTab) ){ 5556 if( (db->flags & SQLITE_EnableView)==0 5557 && pTab->pSchema!=db->aDb[1].pSchema 5558 ){ 5559 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5560 pTab->zName); 5561 } 5562 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5563 } 5564 #ifndef SQLITE_OMIT_VIRTUALTABLE 5565 else if( ALWAYS(IsVirtual(pTab)) 5566 && pFrom->fg.fromDDL 5567 && ALWAYS(pTab->u.vtab.p!=0) 5568 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5569 ){ 5570 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5571 pTab->zName); 5572 } 5573 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5574 #endif 5575 nCol = pTab->nCol; 5576 pTab->nCol = -1; 5577 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5578 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5579 pWalker->eCode = eCodeOrig; 5580 pTab->nCol = nCol; 5581 } 5582 #endif 5583 } 5584 5585 /* Locate the index named by the INDEXED BY clause, if any. */ 5586 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5587 return WRC_Abort; 5588 } 5589 } 5590 5591 /* Process NATURAL keywords, and ON and USING clauses of joins. 5592 */ 5593 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5594 if( pParse->nErr || sqliteProcessJoin(pParse, p) ){ 5595 return WRC_Abort; 5596 } 5597 5598 /* For every "*" that occurs in the column list, insert the names of 5599 ** all columns in all tables. And for every TABLE.* insert the names 5600 ** of all columns in TABLE. The parser inserted a special expression 5601 ** with the TK_ASTERISK operator for each "*" that it found in the column 5602 ** list. The following code just has to locate the TK_ASTERISK 5603 ** expressions and expand each one to the list of all columns in 5604 ** all tables. 5605 ** 5606 ** The first loop just checks to see if there are any "*" operators 5607 ** that need expanding. 5608 */ 5609 for(k=0; k<pEList->nExpr; k++){ 5610 pE = pEList->a[k].pExpr; 5611 if( pE->op==TK_ASTERISK ) break; 5612 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5613 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5614 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5615 elistFlags |= pE->flags; 5616 } 5617 if( k<pEList->nExpr ){ 5618 /* 5619 ** If we get here it means the result set contains one or more "*" 5620 ** operators that need to be expanded. Loop through each expression 5621 ** in the result set and expand them one by one. 5622 */ 5623 struct ExprList_item *a = pEList->a; 5624 ExprList *pNew = 0; 5625 int flags = pParse->db->flags; 5626 int longNames = (flags & SQLITE_FullColNames)!=0 5627 && (flags & SQLITE_ShortColNames)==0; 5628 5629 for(k=0; k<pEList->nExpr; k++){ 5630 pE = a[k].pExpr; 5631 elistFlags |= pE->flags; 5632 pRight = pE->pRight; 5633 assert( pE->op!=TK_DOT || pRight!=0 ); 5634 if( pE->op!=TK_ASTERISK 5635 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5636 ){ 5637 /* This particular expression does not need to be expanded. 5638 */ 5639 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5640 if( pNew ){ 5641 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5642 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5643 a[k].zEName = 0; 5644 } 5645 a[k].pExpr = 0; 5646 }else{ 5647 /* This expression is a "*" or a "TABLE.*" and needs to be 5648 ** expanded. */ 5649 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5650 char *zTName = 0; /* text of name of TABLE */ 5651 if( pE->op==TK_DOT ){ 5652 assert( pE->pLeft!=0 ); 5653 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5654 zTName = pE->pLeft->u.zToken; 5655 } 5656 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5657 Table *pTab = pFrom->pTab; 5658 Select *pSub = pFrom->pSelect; 5659 char *zTabName = pFrom->zAlias; 5660 const char *zSchemaName = 0; 5661 int iDb; 5662 if( zTabName==0 ){ 5663 zTabName = pTab->zName; 5664 } 5665 if( db->mallocFailed ) break; 5666 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5667 pSub = 0; 5668 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5669 continue; 5670 } 5671 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5672 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5673 } 5674 for(j=0; j<pTab->nCol; j++){ 5675 char *zName = pTab->aCol[j].zCnName; 5676 char *zColname; /* The computed column name */ 5677 char *zToFree; /* Malloced string that needs to be freed */ 5678 Token sColname; /* Computed column name as a token */ 5679 5680 assert( zName ); 5681 if( zTName && pSub 5682 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5683 ){ 5684 continue; 5685 } 5686 5687 /* If a column is marked as 'hidden', omit it from the expanded 5688 ** result-set list unless the SELECT has the SF_IncludeHidden 5689 ** bit set. 5690 */ 5691 if( (p->selFlags & SF_IncludeHidden)==0 5692 && IsHiddenColumn(&pTab->aCol[j]) 5693 ){ 5694 continue; 5695 } 5696 tableSeen = 1; 5697 5698 if( i>0 && zTName==0 ){ 5699 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5700 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5701 ){ 5702 /* In a NATURAL join, omit the join columns from the 5703 ** table to the right of the join */ 5704 continue; 5705 } 5706 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5707 /* In a join with a USING clause, omit columns in the 5708 ** using clause from the table on the right. */ 5709 continue; 5710 } 5711 } 5712 pRight = sqlite3Expr(db, TK_ID, zName); 5713 zColname = zName; 5714 zToFree = 0; 5715 if( longNames || pTabList->nSrc>1 ){ 5716 Expr *pLeft; 5717 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5718 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5719 if( zSchemaName ){ 5720 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5721 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5722 } 5723 if( longNames ){ 5724 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5725 zToFree = zColname; 5726 } 5727 }else{ 5728 pExpr = pRight; 5729 } 5730 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5731 sqlite3TokenInit(&sColname, zColname); 5732 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5733 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5734 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5735 sqlite3DbFree(db, pX->zEName); 5736 if( pSub ){ 5737 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5738 testcase( pX->zEName==0 ); 5739 }else{ 5740 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5741 zSchemaName, zTabName, zColname); 5742 testcase( pX->zEName==0 ); 5743 } 5744 pX->eEName = ENAME_TAB; 5745 } 5746 sqlite3DbFree(db, zToFree); 5747 } 5748 } 5749 if( !tableSeen ){ 5750 if( zTName ){ 5751 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5752 }else{ 5753 sqlite3ErrorMsg(pParse, "no tables specified"); 5754 } 5755 } 5756 } 5757 } 5758 sqlite3ExprListDelete(db, pEList); 5759 p->pEList = pNew; 5760 } 5761 if( p->pEList ){ 5762 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5763 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5764 return WRC_Abort; 5765 } 5766 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5767 p->selFlags |= SF_ComplexResult; 5768 } 5769 } 5770 return WRC_Continue; 5771 } 5772 5773 #if SQLITE_DEBUG 5774 /* 5775 ** Always assert. This xSelectCallback2 implementation proves that the 5776 ** xSelectCallback2 is never invoked. 5777 */ 5778 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5779 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5780 assert( 0 ); 5781 } 5782 #endif 5783 /* 5784 ** This routine "expands" a SELECT statement and all of its subqueries. 5785 ** For additional information on what it means to "expand" a SELECT 5786 ** statement, see the comment on the selectExpand worker callback above. 5787 ** 5788 ** Expanding a SELECT statement is the first step in processing a 5789 ** SELECT statement. The SELECT statement must be expanded before 5790 ** name resolution is performed. 5791 ** 5792 ** If anything goes wrong, an error message is written into pParse. 5793 ** The calling function can detect the problem by looking at pParse->nErr 5794 ** and/or pParse->db->mallocFailed. 5795 */ 5796 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5797 Walker w; 5798 w.xExprCallback = sqlite3ExprWalkNoop; 5799 w.pParse = pParse; 5800 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5801 w.xSelectCallback = convertCompoundSelectToSubquery; 5802 w.xSelectCallback2 = 0; 5803 sqlite3WalkSelect(&w, pSelect); 5804 } 5805 w.xSelectCallback = selectExpander; 5806 w.xSelectCallback2 = sqlite3SelectPopWith; 5807 w.eCode = 0; 5808 sqlite3WalkSelect(&w, pSelect); 5809 } 5810 5811 5812 #ifndef SQLITE_OMIT_SUBQUERY 5813 /* 5814 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5815 ** interface. 5816 ** 5817 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5818 ** information to the Table structure that represents the result set 5819 ** of that subquery. 5820 ** 5821 ** The Table structure that represents the result set was constructed 5822 ** by selectExpander() but the type and collation information was omitted 5823 ** at that point because identifiers had not yet been resolved. This 5824 ** routine is called after identifier resolution. 5825 */ 5826 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5827 Parse *pParse; 5828 int i; 5829 SrcList *pTabList; 5830 SrcItem *pFrom; 5831 5832 assert( p->selFlags & SF_Resolved ); 5833 if( p->selFlags & SF_HasTypeInfo ) return; 5834 p->selFlags |= SF_HasTypeInfo; 5835 pParse = pWalker->pParse; 5836 pTabList = p->pSrc; 5837 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5838 Table *pTab = pFrom->pTab; 5839 assert( pTab!=0 ); 5840 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5841 /* A sub-query in the FROM clause of a SELECT */ 5842 Select *pSel = pFrom->pSelect; 5843 if( pSel ){ 5844 while( pSel->pPrior ) pSel = pSel->pPrior; 5845 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5846 SQLITE_AFF_NONE); 5847 } 5848 } 5849 } 5850 } 5851 #endif 5852 5853 5854 /* 5855 ** This routine adds datatype and collating sequence information to 5856 ** the Table structures of all FROM-clause subqueries in a 5857 ** SELECT statement. 5858 ** 5859 ** Use this routine after name resolution. 5860 */ 5861 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5862 #ifndef SQLITE_OMIT_SUBQUERY 5863 Walker w; 5864 w.xSelectCallback = sqlite3SelectWalkNoop; 5865 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5866 w.xExprCallback = sqlite3ExprWalkNoop; 5867 w.pParse = pParse; 5868 sqlite3WalkSelect(&w, pSelect); 5869 #endif 5870 } 5871 5872 5873 /* 5874 ** This routine sets up a SELECT statement for processing. The 5875 ** following is accomplished: 5876 ** 5877 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5878 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5879 ** * ON and USING clauses are shifted into WHERE statements 5880 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5881 ** * Identifiers in expression are matched to tables. 5882 ** 5883 ** This routine acts recursively on all subqueries within the SELECT. 5884 */ 5885 void sqlite3SelectPrep( 5886 Parse *pParse, /* The parser context */ 5887 Select *p, /* The SELECT statement being coded. */ 5888 NameContext *pOuterNC /* Name context for container */ 5889 ){ 5890 assert( p!=0 || pParse->db->mallocFailed ); 5891 assert( pParse->db->pParse==pParse ); 5892 if( pParse->db->mallocFailed ) return; 5893 if( p->selFlags & SF_HasTypeInfo ) return; 5894 sqlite3SelectExpand(pParse, p); 5895 if( pParse->nErr ) return; 5896 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5897 if( pParse->nErr ) return; 5898 sqlite3SelectAddTypeInfo(pParse, p); 5899 } 5900 5901 /* 5902 ** Reset the aggregate accumulator. 5903 ** 5904 ** The aggregate accumulator is a set of memory cells that hold 5905 ** intermediate results while calculating an aggregate. This 5906 ** routine generates code that stores NULLs in all of those memory 5907 ** cells. 5908 */ 5909 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5910 Vdbe *v = pParse->pVdbe; 5911 int i; 5912 struct AggInfo_func *pFunc; 5913 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5914 assert( pParse->db->pParse==pParse ); 5915 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 5916 if( nReg==0 ) return; 5917 if( pParse->nErr ) return; 5918 #ifdef SQLITE_DEBUG 5919 /* Verify that all AggInfo registers are within the range specified by 5920 ** AggInfo.mnReg..AggInfo.mxReg */ 5921 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5922 for(i=0; i<pAggInfo->nColumn; i++){ 5923 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5924 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5925 } 5926 for(i=0; i<pAggInfo->nFunc; i++){ 5927 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5928 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5929 } 5930 #endif 5931 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5932 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5933 if( pFunc->iDistinct>=0 ){ 5934 Expr *pE = pFunc->pFExpr; 5935 assert( ExprUseXList(pE) ); 5936 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5937 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5938 "argument"); 5939 pFunc->iDistinct = -1; 5940 }else{ 5941 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5942 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5943 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5944 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5945 pFunc->pFunc->zName)); 5946 } 5947 } 5948 } 5949 } 5950 5951 /* 5952 ** Invoke the OP_AggFinalize opcode for every aggregate function 5953 ** in the AggInfo structure. 5954 */ 5955 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5956 Vdbe *v = pParse->pVdbe; 5957 int i; 5958 struct AggInfo_func *pF; 5959 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5960 ExprList *pList; 5961 assert( ExprUseXList(pF->pFExpr) ); 5962 pList = pF->pFExpr->x.pList; 5963 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5964 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5965 } 5966 } 5967 5968 5969 /* 5970 ** Update the accumulator memory cells for an aggregate based on 5971 ** the current cursor position. 5972 ** 5973 ** If regAcc is non-zero and there are no min() or max() aggregates 5974 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5975 ** registers if register regAcc contains 0. The caller will take care 5976 ** of setting and clearing regAcc. 5977 */ 5978 static void updateAccumulator( 5979 Parse *pParse, 5980 int regAcc, 5981 AggInfo *pAggInfo, 5982 int eDistinctType 5983 ){ 5984 Vdbe *v = pParse->pVdbe; 5985 int i; 5986 int regHit = 0; 5987 int addrHitTest = 0; 5988 struct AggInfo_func *pF; 5989 struct AggInfo_col *pC; 5990 5991 pAggInfo->directMode = 1; 5992 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5993 int nArg; 5994 int addrNext = 0; 5995 int regAgg; 5996 ExprList *pList; 5997 assert( ExprUseXList(pF->pFExpr) ); 5998 assert( !IsWindowFunc(pF->pFExpr) ); 5999 pList = pF->pFExpr->x.pList; 6000 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6001 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6002 if( pAggInfo->nAccumulator 6003 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6004 && regAcc 6005 ){ 6006 /* If regAcc==0, there there exists some min() or max() function 6007 ** without a FILTER clause that will ensure the magnet registers 6008 ** are populated. */ 6009 if( regHit==0 ) regHit = ++pParse->nMem; 6010 /* If this is the first row of the group (regAcc contains 0), clear the 6011 ** "magnet" register regHit so that the accumulator registers 6012 ** are populated if the FILTER clause jumps over the the 6013 ** invocation of min() or max() altogether. Or, if this is not 6014 ** the first row (regAcc contains 1), set the magnet register so that 6015 ** the accumulators are not populated unless the min()/max() is invoked 6016 ** and indicates that they should be. */ 6017 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6018 } 6019 addrNext = sqlite3VdbeMakeLabel(pParse); 6020 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6021 } 6022 if( pList ){ 6023 nArg = pList->nExpr; 6024 regAgg = sqlite3GetTempRange(pParse, nArg); 6025 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6026 }else{ 6027 nArg = 0; 6028 regAgg = 0; 6029 } 6030 if( pF->iDistinct>=0 && pList ){ 6031 if( addrNext==0 ){ 6032 addrNext = sqlite3VdbeMakeLabel(pParse); 6033 } 6034 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6035 pF->iDistinct, addrNext, pList, regAgg); 6036 } 6037 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6038 CollSeq *pColl = 0; 6039 struct ExprList_item *pItem; 6040 int j; 6041 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6042 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6043 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6044 } 6045 if( !pColl ){ 6046 pColl = pParse->db->pDfltColl; 6047 } 6048 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6049 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6050 } 6051 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6052 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6053 sqlite3VdbeChangeP5(v, (u8)nArg); 6054 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6055 if( addrNext ){ 6056 sqlite3VdbeResolveLabel(v, addrNext); 6057 } 6058 } 6059 if( regHit==0 && pAggInfo->nAccumulator ){ 6060 regHit = regAcc; 6061 } 6062 if( regHit ){ 6063 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6064 } 6065 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6066 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6067 } 6068 6069 pAggInfo->directMode = 0; 6070 if( addrHitTest ){ 6071 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6072 } 6073 } 6074 6075 /* 6076 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6077 ** count(*) query ("SELECT count(*) FROM pTab"). 6078 */ 6079 #ifndef SQLITE_OMIT_EXPLAIN 6080 static void explainSimpleCount( 6081 Parse *pParse, /* Parse context */ 6082 Table *pTab, /* Table being queried */ 6083 Index *pIdx /* Index used to optimize scan, or NULL */ 6084 ){ 6085 if( pParse->explain==2 ){ 6086 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6087 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6088 pTab->zName, 6089 bCover ? " USING COVERING INDEX " : "", 6090 bCover ? pIdx->zName : "" 6091 ); 6092 } 6093 } 6094 #else 6095 # define explainSimpleCount(a,b,c) 6096 #endif 6097 6098 /* 6099 ** sqlite3WalkExpr() callback used by havingToWhere(). 6100 ** 6101 ** If the node passed to the callback is a TK_AND node, return 6102 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6103 ** 6104 ** Otherwise, return WRC_Prune. In this case, also check if the 6105 ** sub-expression matches the criteria for being moved to the WHERE 6106 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6107 ** within the HAVING expression with a constant "1". 6108 */ 6109 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6110 if( pExpr->op!=TK_AND ){ 6111 Select *pS = pWalker->u.pSelect; 6112 /* This routine is called before the HAVING clause of the current 6113 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6114 ** here, it indicates that the expression is a correlated reference to a 6115 ** column from an outer aggregate query, or an aggregate function that 6116 ** belongs to an outer query. Do not move the expression to the WHERE 6117 ** clause in this obscure case, as doing so may corrupt the outer Select 6118 ** statements AggInfo structure. */ 6119 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6120 && ExprAlwaysFalse(pExpr)==0 6121 && pExpr->pAggInfo==0 6122 ){ 6123 sqlite3 *db = pWalker->pParse->db; 6124 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6125 if( pNew ){ 6126 Expr *pWhere = pS->pWhere; 6127 SWAP(Expr, *pNew, *pExpr); 6128 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6129 pS->pWhere = pNew; 6130 pWalker->eCode = 1; 6131 } 6132 } 6133 return WRC_Prune; 6134 } 6135 return WRC_Continue; 6136 } 6137 6138 /* 6139 ** Transfer eligible terms from the HAVING clause of a query, which is 6140 ** processed after grouping, to the WHERE clause, which is processed before 6141 ** grouping. For example, the query: 6142 ** 6143 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6144 ** 6145 ** can be rewritten as: 6146 ** 6147 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6148 ** 6149 ** A term of the HAVING expression is eligible for transfer if it consists 6150 ** entirely of constants and expressions that are also GROUP BY terms that 6151 ** use the "BINARY" collation sequence. 6152 */ 6153 static void havingToWhere(Parse *pParse, Select *p){ 6154 Walker sWalker; 6155 memset(&sWalker, 0, sizeof(sWalker)); 6156 sWalker.pParse = pParse; 6157 sWalker.xExprCallback = havingToWhereExprCb; 6158 sWalker.u.pSelect = p; 6159 sqlite3WalkExpr(&sWalker, p->pHaving); 6160 #if SELECTTRACE_ENABLED 6161 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6162 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6163 sqlite3TreeViewSelect(0, p, 0); 6164 } 6165 #endif 6166 } 6167 6168 /* 6169 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6170 ** If it is, then return the SrcList_item for the prior view. If it is not, 6171 ** then return 0. 6172 */ 6173 static SrcItem *isSelfJoinView( 6174 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6175 SrcItem *pThis /* Search for prior reference to this subquery */ 6176 ){ 6177 SrcItem *pItem; 6178 assert( pThis->pSelect!=0 ); 6179 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6180 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6181 Select *pS1; 6182 if( pItem->pSelect==0 ) continue; 6183 if( pItem->fg.viaCoroutine ) continue; 6184 if( pItem->zName==0 ) continue; 6185 assert( pItem->pTab!=0 ); 6186 assert( pThis->pTab!=0 ); 6187 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6188 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6189 pS1 = pItem->pSelect; 6190 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6191 /* The query flattener left two different CTE tables with identical 6192 ** names in the same FROM clause. */ 6193 continue; 6194 } 6195 if( pItem->pSelect->selFlags & SF_PushDown ){ 6196 /* The view was modified by some other optimization such as 6197 ** pushDownWhereTerms() */ 6198 continue; 6199 } 6200 return pItem; 6201 } 6202 return 0; 6203 } 6204 6205 /* 6206 ** Deallocate a single AggInfo object 6207 */ 6208 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6209 sqlite3DbFree(db, p->aCol); 6210 sqlite3DbFree(db, p->aFunc); 6211 sqlite3DbFreeNN(db, p); 6212 } 6213 6214 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6215 /* 6216 ** Attempt to transform a query of the form 6217 ** 6218 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6219 ** 6220 ** Into this: 6221 ** 6222 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6223 ** 6224 ** The transformation only works if all of the following are true: 6225 ** 6226 ** * The subquery is a UNION ALL of two or more terms 6227 ** * The subquery does not have a LIMIT clause 6228 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6229 ** * The outer query is a simple count(*) with no WHERE clause or other 6230 ** extraneous syntax. 6231 ** 6232 ** Return TRUE if the optimization is undertaken. 6233 */ 6234 static int countOfViewOptimization(Parse *pParse, Select *p){ 6235 Select *pSub, *pPrior; 6236 Expr *pExpr; 6237 Expr *pCount; 6238 sqlite3 *db; 6239 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6240 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6241 if( p->pWhere ) return 0; 6242 if( p->pGroupBy ) return 0; 6243 pExpr = p->pEList->a[0].pExpr; 6244 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6245 assert( ExprUseUToken(pExpr) ); 6246 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6247 assert( ExprUseXList(pExpr) ); 6248 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6249 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6250 pSub = p->pSrc->a[0].pSelect; 6251 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6252 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6253 do{ 6254 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6255 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6256 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6257 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6258 pSub = pSub->pPrior; /* Repeat over compound */ 6259 }while( pSub ); 6260 6261 /* If we reach this point then it is OK to perform the transformation */ 6262 6263 db = pParse->db; 6264 pCount = pExpr; 6265 pExpr = 0; 6266 pSub = p->pSrc->a[0].pSelect; 6267 p->pSrc->a[0].pSelect = 0; 6268 sqlite3SrcListDelete(db, p->pSrc); 6269 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6270 while( pSub ){ 6271 Expr *pTerm; 6272 pPrior = pSub->pPrior; 6273 pSub->pPrior = 0; 6274 pSub->pNext = 0; 6275 pSub->selFlags |= SF_Aggregate; 6276 pSub->selFlags &= ~SF_Compound; 6277 pSub->nSelectRow = 0; 6278 sqlite3ExprListDelete(db, pSub->pEList); 6279 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6280 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6281 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6282 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6283 if( pExpr==0 ){ 6284 pExpr = pTerm; 6285 }else{ 6286 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6287 } 6288 pSub = pPrior; 6289 } 6290 p->pEList->a[0].pExpr = pExpr; 6291 p->selFlags &= ~SF_Aggregate; 6292 6293 #if SELECTTRACE_ENABLED 6294 if( sqlite3SelectTrace & 0x400 ){ 6295 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6296 sqlite3TreeViewSelect(0, p, 0); 6297 } 6298 #endif 6299 return 1; 6300 } 6301 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6302 6303 /* 6304 ** Generate code for the SELECT statement given in the p argument. 6305 ** 6306 ** The results are returned according to the SelectDest structure. 6307 ** See comments in sqliteInt.h for further information. 6308 ** 6309 ** This routine returns the number of errors. If any errors are 6310 ** encountered, then an appropriate error message is left in 6311 ** pParse->zErrMsg. 6312 ** 6313 ** This routine does NOT free the Select structure passed in. The 6314 ** calling function needs to do that. 6315 */ 6316 int sqlite3Select( 6317 Parse *pParse, /* The parser context */ 6318 Select *p, /* The SELECT statement being coded. */ 6319 SelectDest *pDest /* What to do with the query results */ 6320 ){ 6321 int i, j; /* Loop counters */ 6322 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6323 Vdbe *v; /* The virtual machine under construction */ 6324 int isAgg; /* True for select lists like "count(*)" */ 6325 ExprList *pEList = 0; /* List of columns to extract. */ 6326 SrcList *pTabList; /* List of tables to select from */ 6327 Expr *pWhere; /* The WHERE clause. May be NULL */ 6328 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6329 Expr *pHaving; /* The HAVING clause. May be NULL */ 6330 AggInfo *pAggInfo = 0; /* Aggregate information */ 6331 int rc = 1; /* Value to return from this function */ 6332 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6333 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6334 int iEnd; /* Address of the end of the query */ 6335 sqlite3 *db; /* The database connection */ 6336 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6337 u8 minMaxFlag; /* Flag for min/max queries */ 6338 6339 db = pParse->db; 6340 assert( pParse==db->pParse ); 6341 v = sqlite3GetVdbe(pParse); 6342 if( p==0 || pParse->nErr ){ 6343 return 1; 6344 } 6345 assert( db->mallocFailed==0 ); 6346 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6347 #if SELECTTRACE_ENABLED 6348 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6349 if( sqlite3SelectTrace & 0x100 ){ 6350 sqlite3TreeViewSelect(0, p, 0); 6351 } 6352 #endif 6353 6354 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6355 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6356 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6357 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6358 if( IgnorableDistinct(pDest) ){ 6359 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6360 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6361 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6362 /* All of these destinations are also able to ignore the ORDER BY clause */ 6363 if( p->pOrderBy ){ 6364 #if SELECTTRACE_ENABLED 6365 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6366 if( sqlite3SelectTrace & 0x100 ){ 6367 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6368 } 6369 #endif 6370 sqlite3ParserAddCleanup(pParse, 6371 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6372 p->pOrderBy); 6373 testcase( pParse->earlyCleanup ); 6374 p->pOrderBy = 0; 6375 } 6376 p->selFlags &= ~SF_Distinct; 6377 p->selFlags |= SF_NoopOrderBy; 6378 } 6379 sqlite3SelectPrep(pParse, p, 0); 6380 if( pParse->nErr ){ 6381 goto select_end; 6382 } 6383 assert( db->mallocFailed==0 ); 6384 assert( p->pEList!=0 ); 6385 #if SELECTTRACE_ENABLED 6386 if( sqlite3SelectTrace & 0x104 ){ 6387 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6388 sqlite3TreeViewSelect(0, p, 0); 6389 } 6390 #endif 6391 6392 /* If the SF_UFSrcCheck flag is set, then this function is being called 6393 ** as part of populating the temp table for an UPDATE...FROM statement. 6394 ** In this case, it is an error if the target object (pSrc->a[0]) name 6395 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6396 ** 6397 ** Postgres disallows this case too. The reason is that some other 6398 ** systems handle this case differently, and not all the same way, 6399 ** which is just confusing. To avoid this, we follow PG's lead and 6400 ** disallow it altogether. */ 6401 if( p->selFlags & SF_UFSrcCheck ){ 6402 SrcItem *p0 = &p->pSrc->a[0]; 6403 for(i=1; i<p->pSrc->nSrc; i++){ 6404 SrcItem *p1 = &p->pSrc->a[i]; 6405 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6406 sqlite3ErrorMsg(pParse, 6407 "target object/alias may not appear in FROM clause: %s", 6408 p0->zAlias ? p0->zAlias : p0->pTab->zName 6409 ); 6410 goto select_end; 6411 } 6412 } 6413 6414 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6415 ** and leaving this flag set can cause errors if a compound sub-query 6416 ** in p->pSrc is flattened into this query and this function called 6417 ** again as part of compound SELECT processing. */ 6418 p->selFlags &= ~SF_UFSrcCheck; 6419 } 6420 6421 if( pDest->eDest==SRT_Output ){ 6422 sqlite3GenerateColumnNames(pParse, p); 6423 } 6424 6425 #ifndef SQLITE_OMIT_WINDOWFUNC 6426 if( sqlite3WindowRewrite(pParse, p) ){ 6427 assert( pParse->nErr ); 6428 goto select_end; 6429 } 6430 #if SELECTTRACE_ENABLED 6431 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6432 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6433 sqlite3TreeViewSelect(0, p, 0); 6434 } 6435 #endif 6436 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6437 pTabList = p->pSrc; 6438 isAgg = (p->selFlags & SF_Aggregate)!=0; 6439 memset(&sSort, 0, sizeof(sSort)); 6440 sSort.pOrderBy = p->pOrderBy; 6441 6442 /* Try to do various optimizations (flattening subqueries, and strength 6443 ** reduction of join operators) in the FROM clause up into the main query 6444 */ 6445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6446 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6447 SrcItem *pItem = &pTabList->a[i]; 6448 Select *pSub = pItem->pSelect; 6449 Table *pTab = pItem->pTab; 6450 6451 /* The expander should have already created transient Table objects 6452 ** even for FROM clause elements such as subqueries that do not correspond 6453 ** to a real table */ 6454 assert( pTab!=0 ); 6455 6456 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6457 ** of the LEFT JOIN used in the WHERE clause. 6458 */ 6459 if( (pItem->fg.jointype & JT_LEFT)!=0 6460 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6461 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6462 ){ 6463 SELECTTRACE(0x100,pParse,p, 6464 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6465 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6466 unsetJoinExpr(p->pWhere, pItem->iCursor); 6467 } 6468 6469 /* No futher action if this term of the FROM clause is no a subquery */ 6470 if( pSub==0 ) continue; 6471 6472 /* Catch mismatch in the declared columns of a view and the number of 6473 ** columns in the SELECT on the RHS */ 6474 if( pTab->nCol!=pSub->pEList->nExpr ){ 6475 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6476 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6477 goto select_end; 6478 } 6479 6480 /* Do not try to flatten an aggregate subquery. 6481 ** 6482 ** Flattening an aggregate subquery is only possible if the outer query 6483 ** is not a join. But if the outer query is not a join, then the subquery 6484 ** will be implemented as a co-routine and there is no advantage to 6485 ** flattening in that case. 6486 */ 6487 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6488 assert( pSub->pGroupBy==0 ); 6489 6490 /* If a FROM-clause subquery has an ORDER BY clause that is not 6491 ** really doing anything, then delete it now so that it does not 6492 ** interfere with query flattening. See the discussion at 6493 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6494 ** 6495 ** Beware of these cases where the ORDER BY clause may not be safely 6496 ** omitted: 6497 ** 6498 ** (1) There is also a LIMIT clause 6499 ** (2) The subquery was added to help with window-function 6500 ** processing 6501 ** (3) The subquery is in the FROM clause of an UPDATE 6502 ** (4) The outer query uses an aggregate function other than 6503 ** the built-in count(), min(), or max(). 6504 ** (5) The ORDER BY isn't going to accomplish anything because 6505 ** one of: 6506 ** (a) The outer query has a different ORDER BY clause 6507 ** (b) The subquery is part of a join 6508 ** See forum post 062d576715d277c8 6509 */ 6510 if( pSub->pOrderBy!=0 6511 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6512 && pSub->pLimit==0 /* Condition (1) */ 6513 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6514 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6515 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6516 ){ 6517 SELECTTRACE(0x100,pParse,p, 6518 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6519 sqlite3ExprListDelete(db, pSub->pOrderBy); 6520 pSub->pOrderBy = 0; 6521 } 6522 6523 /* If the outer query contains a "complex" result set (that is, 6524 ** if the result set of the outer query uses functions or subqueries) 6525 ** and if the subquery contains an ORDER BY clause and if 6526 ** it will be implemented as a co-routine, then do not flatten. This 6527 ** restriction allows SQL constructs like this: 6528 ** 6529 ** SELECT expensive_function(x) 6530 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6531 ** 6532 ** The expensive_function() is only computed on the 10 rows that 6533 ** are output, rather than every row of the table. 6534 ** 6535 ** The requirement that the outer query have a complex result set 6536 ** means that flattening does occur on simpler SQL constraints without 6537 ** the expensive_function() like: 6538 ** 6539 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6540 */ 6541 if( pSub->pOrderBy!=0 6542 && i==0 6543 && (p->selFlags & SF_ComplexResult)!=0 6544 && (pTabList->nSrc==1 6545 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6546 ){ 6547 continue; 6548 } 6549 6550 if( flattenSubquery(pParse, p, i, isAgg) ){ 6551 if( pParse->nErr ) goto select_end; 6552 /* This subquery can be absorbed into its parent. */ 6553 i = -1; 6554 } 6555 pTabList = p->pSrc; 6556 if( db->mallocFailed ) goto select_end; 6557 if( !IgnorableOrderby(pDest) ){ 6558 sSort.pOrderBy = p->pOrderBy; 6559 } 6560 } 6561 #endif 6562 6563 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6564 /* Handle compound SELECT statements using the separate multiSelect() 6565 ** procedure. 6566 */ 6567 if( p->pPrior ){ 6568 rc = multiSelect(pParse, p, pDest); 6569 #if SELECTTRACE_ENABLED 6570 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6571 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6572 sqlite3TreeViewSelect(0, p, 0); 6573 } 6574 #endif 6575 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6576 return rc; 6577 } 6578 #endif 6579 6580 /* Do the WHERE-clause constant propagation optimization if this is 6581 ** a join. No need to speed time on this operation for non-join queries 6582 ** as the equivalent optimization will be handled by query planner in 6583 ** sqlite3WhereBegin(). 6584 */ 6585 if( p->pWhere!=0 6586 && p->pWhere->op==TK_AND 6587 && OptimizationEnabled(db, SQLITE_PropagateConst) 6588 && propagateConstants(pParse, p) 6589 ){ 6590 #if SELECTTRACE_ENABLED 6591 if( sqlite3SelectTrace & 0x100 ){ 6592 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6593 sqlite3TreeViewSelect(0, p, 0); 6594 } 6595 #endif 6596 }else{ 6597 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6598 } 6599 6600 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6601 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6602 && countOfViewOptimization(pParse, p) 6603 ){ 6604 if( db->mallocFailed ) goto select_end; 6605 pEList = p->pEList; 6606 pTabList = p->pSrc; 6607 } 6608 #endif 6609 6610 /* For each term in the FROM clause, do two things: 6611 ** (1) Authorized unreferenced tables 6612 ** (2) Generate code for all sub-queries 6613 */ 6614 for(i=0; i<pTabList->nSrc; i++){ 6615 SrcItem *pItem = &pTabList->a[i]; 6616 SrcItem *pPrior; 6617 SelectDest dest; 6618 Select *pSub; 6619 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6620 const char *zSavedAuthContext; 6621 #endif 6622 6623 /* Issue SQLITE_READ authorizations with a fake column name for any 6624 ** tables that are referenced but from which no values are extracted. 6625 ** Examples of where these kinds of null SQLITE_READ authorizations 6626 ** would occur: 6627 ** 6628 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6629 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6630 ** 6631 ** The fake column name is an empty string. It is possible for a table to 6632 ** have a column named by the empty string, in which case there is no way to 6633 ** distinguish between an unreferenced table and an actual reference to the 6634 ** "" column. The original design was for the fake column name to be a NULL, 6635 ** which would be unambiguous. But legacy authorization callbacks might 6636 ** assume the column name is non-NULL and segfault. The use of an empty 6637 ** string for the fake column name seems safer. 6638 */ 6639 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6640 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6641 } 6642 6643 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6644 /* Generate code for all sub-queries in the FROM clause 6645 */ 6646 pSub = pItem->pSelect; 6647 if( pSub==0 ) continue; 6648 6649 /* The code for a subquery should only be generated once. */ 6650 assert( pItem->addrFillSub==0 ); 6651 6652 /* Increment Parse.nHeight by the height of the largest expression 6653 ** tree referred to by this, the parent select. The child select 6654 ** may contain expression trees of at most 6655 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6656 ** more conservative than necessary, but much easier than enforcing 6657 ** an exact limit. 6658 */ 6659 pParse->nHeight += sqlite3SelectExprHeight(p); 6660 6661 /* Make copies of constant WHERE-clause terms in the outer query down 6662 ** inside the subquery. This can help the subquery to run more efficiently. 6663 */ 6664 if( OptimizationEnabled(db, SQLITE_PushDown) 6665 && (pItem->fg.isCte==0 6666 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6667 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6668 (pItem->fg.jointype & JT_OUTER)!=0) 6669 ){ 6670 #if SELECTTRACE_ENABLED 6671 if( sqlite3SelectTrace & 0x100 ){ 6672 SELECTTRACE(0x100,pParse,p, 6673 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6674 sqlite3TreeViewSelect(0, p, 0); 6675 } 6676 #endif 6677 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6678 }else{ 6679 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6680 } 6681 6682 zSavedAuthContext = pParse->zAuthContext; 6683 pParse->zAuthContext = pItem->zName; 6684 6685 /* Generate code to implement the subquery 6686 ** 6687 ** The subquery is implemented as a co-routine if: 6688 ** (1) the subquery is guaranteed to be the outer loop (so that 6689 ** it does not need to be computed more than once), and 6690 ** (2) the subquery is not a CTE that should be materialized 6691 ** 6692 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6693 ** implementation? 6694 */ 6695 if( i==0 6696 && (pTabList->nSrc==1 6697 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6698 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6699 ){ 6700 /* Implement a co-routine that will return a single row of the result 6701 ** set on each invocation. 6702 */ 6703 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6704 6705 pItem->regReturn = ++pParse->nMem; 6706 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6707 VdbeComment((v, "%!S", pItem)); 6708 pItem->addrFillSub = addrTop; 6709 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6710 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6711 sqlite3Select(pParse, pSub, &dest); 6712 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6713 pItem->fg.viaCoroutine = 1; 6714 pItem->regResult = dest.iSdst; 6715 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6716 sqlite3VdbeJumpHere(v, addrTop-1); 6717 sqlite3ClearTempRegCache(pParse); 6718 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6719 /* This is a CTE for which materialization code has already been 6720 ** generated. Invoke the subroutine to compute the materialization, 6721 ** the make the pItem->iCursor be a copy of the ephemerial table that 6722 ** holds the result of the materialization. */ 6723 CteUse *pCteUse = pItem->u2.pCteUse; 6724 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6725 if( pItem->iCursor!=pCteUse->iCur ){ 6726 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6727 VdbeComment((v, "%!S", pItem)); 6728 } 6729 pSub->nSelectRow = pCteUse->nRowEst; 6730 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6731 /* This view has already been materialized by a prior entry in 6732 ** this same FROM clause. Reuse it. */ 6733 if( pPrior->addrFillSub ){ 6734 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6735 } 6736 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6737 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6738 }else{ 6739 /* Materialize the view. If the view is not correlated, generate a 6740 ** subroutine to do the materialization so that subsequent uses of 6741 ** the same view can reuse the materialization. */ 6742 int topAddr; 6743 int onceAddr = 0; 6744 int retAddr; 6745 6746 pItem->regReturn = ++pParse->nMem; 6747 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6748 pItem->addrFillSub = topAddr+1; 6749 if( pItem->fg.isCorrelated==0 ){ 6750 /* If the subquery is not correlated and if we are not inside of 6751 ** a trigger, then we only need to compute the value of the subquery 6752 ** once. */ 6753 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6754 VdbeComment((v, "materialize %!S", pItem)); 6755 }else{ 6756 VdbeNoopComment((v, "materialize %!S", pItem)); 6757 } 6758 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6759 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6760 sqlite3Select(pParse, pSub, &dest); 6761 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6762 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6763 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6764 VdbeComment((v, "end %!S", pItem)); 6765 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6766 sqlite3ClearTempRegCache(pParse); 6767 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6768 CteUse *pCteUse = pItem->u2.pCteUse; 6769 pCteUse->addrM9e = pItem->addrFillSub; 6770 pCteUse->regRtn = pItem->regReturn; 6771 pCteUse->iCur = pItem->iCursor; 6772 pCteUse->nRowEst = pSub->nSelectRow; 6773 } 6774 } 6775 if( db->mallocFailed ) goto select_end; 6776 pParse->nHeight -= sqlite3SelectExprHeight(p); 6777 pParse->zAuthContext = zSavedAuthContext; 6778 #endif 6779 } 6780 6781 /* Various elements of the SELECT copied into local variables for 6782 ** convenience */ 6783 pEList = p->pEList; 6784 pWhere = p->pWhere; 6785 pGroupBy = p->pGroupBy; 6786 pHaving = p->pHaving; 6787 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6788 6789 #if SELECTTRACE_ENABLED 6790 if( sqlite3SelectTrace & 0x400 ){ 6791 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6792 sqlite3TreeViewSelect(0, p, 0); 6793 } 6794 #endif 6795 6796 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6797 ** if the select-list is the same as the ORDER BY list, then this query 6798 ** can be rewritten as a GROUP BY. In other words, this: 6799 ** 6800 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6801 ** 6802 ** is transformed to: 6803 ** 6804 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6805 ** 6806 ** The second form is preferred as a single index (or temp-table) may be 6807 ** used for both the ORDER BY and DISTINCT processing. As originally 6808 ** written the query must use a temp-table for at least one of the ORDER 6809 ** BY and DISTINCT, and an index or separate temp-table for the other. 6810 */ 6811 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6812 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6813 #ifndef SQLITE_OMIT_WINDOWFUNC 6814 && p->pWin==0 6815 #endif 6816 ){ 6817 p->selFlags &= ~SF_Distinct; 6818 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6819 p->selFlags |= SF_Aggregate; 6820 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6821 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6822 ** original setting of the SF_Distinct flag, not the current setting */ 6823 assert( sDistinct.isTnct ); 6824 6825 #if SELECTTRACE_ENABLED 6826 if( sqlite3SelectTrace & 0x400 ){ 6827 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6828 sqlite3TreeViewSelect(0, p, 0); 6829 } 6830 #endif 6831 } 6832 6833 /* If there is an ORDER BY clause, then create an ephemeral index to 6834 ** do the sorting. But this sorting ephemeral index might end up 6835 ** being unused if the data can be extracted in pre-sorted order. 6836 ** If that is the case, then the OP_OpenEphemeral instruction will be 6837 ** changed to an OP_Noop once we figure out that the sorting index is 6838 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6839 ** that change. 6840 */ 6841 if( sSort.pOrderBy ){ 6842 KeyInfo *pKeyInfo; 6843 pKeyInfo = sqlite3KeyInfoFromExprList( 6844 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6845 sSort.iECursor = pParse->nTab++; 6846 sSort.addrSortIndex = 6847 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6848 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6849 (char*)pKeyInfo, P4_KEYINFO 6850 ); 6851 }else{ 6852 sSort.addrSortIndex = -1; 6853 } 6854 6855 /* If the output is destined for a temporary table, open that table. 6856 */ 6857 if( pDest->eDest==SRT_EphemTab ){ 6858 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6859 } 6860 6861 /* Set the limiter. 6862 */ 6863 iEnd = sqlite3VdbeMakeLabel(pParse); 6864 if( (p->selFlags & SF_FixedLimit)==0 ){ 6865 p->nSelectRow = 320; /* 4 billion rows */ 6866 } 6867 computeLimitRegisters(pParse, p, iEnd); 6868 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6869 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6870 sSort.sortFlags |= SORTFLAG_UseSorter; 6871 } 6872 6873 /* Open an ephemeral index to use for the distinct set. 6874 */ 6875 if( p->selFlags & SF_Distinct ){ 6876 sDistinct.tabTnct = pParse->nTab++; 6877 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6878 sDistinct.tabTnct, 0, 0, 6879 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6880 P4_KEYINFO); 6881 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6882 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6883 }else{ 6884 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6885 } 6886 6887 if( !isAgg && pGroupBy==0 ){ 6888 /* No aggregate functions and no GROUP BY clause */ 6889 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6890 | (p->selFlags & SF_FixedLimit); 6891 #ifndef SQLITE_OMIT_WINDOWFUNC 6892 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6893 if( pWin ){ 6894 sqlite3WindowCodeInit(pParse, p); 6895 } 6896 #endif 6897 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6898 6899 6900 /* Begin the database scan. */ 6901 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6902 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6903 p->pEList, p, wctrlFlags, p->nSelectRow); 6904 if( pWInfo==0 ) goto select_end; 6905 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6906 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6907 } 6908 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6909 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6910 } 6911 if( sSort.pOrderBy ){ 6912 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6913 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6914 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6915 sSort.pOrderBy = 0; 6916 } 6917 } 6918 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6919 6920 /* If sorting index that was created by a prior OP_OpenEphemeral 6921 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6922 ** into an OP_Noop. 6923 */ 6924 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6925 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6926 } 6927 6928 assert( p->pEList==pEList ); 6929 #ifndef SQLITE_OMIT_WINDOWFUNC 6930 if( pWin ){ 6931 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6932 int iCont = sqlite3VdbeMakeLabel(pParse); 6933 int iBreak = sqlite3VdbeMakeLabel(pParse); 6934 int regGosub = ++pParse->nMem; 6935 6936 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6937 6938 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6939 sqlite3VdbeResolveLabel(v, addrGosub); 6940 VdbeNoopComment((v, "inner-loop subroutine")); 6941 sSort.labelOBLopt = 0; 6942 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6943 sqlite3VdbeResolveLabel(v, iCont); 6944 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6945 VdbeComment((v, "end inner-loop subroutine")); 6946 sqlite3VdbeResolveLabel(v, iBreak); 6947 }else 6948 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6949 { 6950 /* Use the standard inner loop. */ 6951 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6952 sqlite3WhereContinueLabel(pWInfo), 6953 sqlite3WhereBreakLabel(pWInfo)); 6954 6955 /* End the database scan loop. 6956 */ 6957 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6958 sqlite3WhereEnd(pWInfo); 6959 } 6960 }else{ 6961 /* This case when there exist aggregate functions or a GROUP BY clause 6962 ** or both */ 6963 NameContext sNC; /* Name context for processing aggregate information */ 6964 int iAMem; /* First Mem address for storing current GROUP BY */ 6965 int iBMem; /* First Mem address for previous GROUP BY */ 6966 int iUseFlag; /* Mem address holding flag indicating that at least 6967 ** one row of the input to the aggregator has been 6968 ** processed */ 6969 int iAbortFlag; /* Mem address which causes query abort if positive */ 6970 int groupBySort; /* Rows come from source in GROUP BY order */ 6971 int addrEnd; /* End of processing for this SELECT */ 6972 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6973 int sortOut = 0; /* Output register from the sorter */ 6974 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6975 6976 /* Remove any and all aliases between the result set and the 6977 ** GROUP BY clause. 6978 */ 6979 if( pGroupBy ){ 6980 int k; /* Loop counter */ 6981 struct ExprList_item *pItem; /* For looping over expression in a list */ 6982 6983 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6984 pItem->u.x.iAlias = 0; 6985 } 6986 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6987 pItem->u.x.iAlias = 0; 6988 } 6989 assert( 66==sqlite3LogEst(100) ); 6990 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6991 6992 /* If there is both a GROUP BY and an ORDER BY clause and they are 6993 ** identical, then it may be possible to disable the ORDER BY clause 6994 ** on the grounds that the GROUP BY will cause elements to come out 6995 ** in the correct order. It also may not - the GROUP BY might use a 6996 ** database index that causes rows to be grouped together as required 6997 ** but not actually sorted. Either way, record the fact that the 6998 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6999 ** variable. */ 7000 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7001 int ii; 7002 /* The GROUP BY processing doesn't care whether rows are delivered in 7003 ** ASC or DESC order - only that each group is returned contiguously. 7004 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7005 ** ORDER BY to maximize the chances of rows being delivered in an 7006 ** order that makes the ORDER BY redundant. */ 7007 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7008 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 7009 pGroupBy->a[ii].sortFlags = sortFlags; 7010 } 7011 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7012 orderByGrp = 1; 7013 } 7014 } 7015 }else{ 7016 assert( 0==sqlite3LogEst(1) ); 7017 p->nSelectRow = 0; 7018 } 7019 7020 /* Create a label to jump to when we want to abort the query */ 7021 addrEnd = sqlite3VdbeMakeLabel(pParse); 7022 7023 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7024 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7025 ** SELECT statement. 7026 */ 7027 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7028 if( pAggInfo ){ 7029 sqlite3ParserAddCleanup(pParse, 7030 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7031 testcase( pParse->earlyCleanup ); 7032 } 7033 if( db->mallocFailed ){ 7034 goto select_end; 7035 } 7036 pAggInfo->selId = p->selId; 7037 memset(&sNC, 0, sizeof(sNC)); 7038 sNC.pParse = pParse; 7039 sNC.pSrcList = pTabList; 7040 sNC.uNC.pAggInfo = pAggInfo; 7041 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7042 pAggInfo->mnReg = pParse->nMem+1; 7043 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7044 pAggInfo->pGroupBy = pGroupBy; 7045 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7046 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7047 if( pHaving ){ 7048 if( pGroupBy ){ 7049 assert( pWhere==p->pWhere ); 7050 assert( pHaving==p->pHaving ); 7051 assert( pGroupBy==p->pGroupBy ); 7052 havingToWhere(pParse, p); 7053 pWhere = p->pWhere; 7054 } 7055 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7056 } 7057 pAggInfo->nAccumulator = pAggInfo->nColumn; 7058 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7059 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7060 }else{ 7061 minMaxFlag = WHERE_ORDERBY_NORMAL; 7062 } 7063 for(i=0; i<pAggInfo->nFunc; i++){ 7064 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7065 assert( ExprUseXList(pExpr) ); 7066 sNC.ncFlags |= NC_InAggFunc; 7067 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7068 #ifndef SQLITE_OMIT_WINDOWFUNC 7069 assert( !IsWindowFunc(pExpr) ); 7070 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7071 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7072 } 7073 #endif 7074 sNC.ncFlags &= ~NC_InAggFunc; 7075 } 7076 pAggInfo->mxReg = pParse->nMem; 7077 if( db->mallocFailed ) goto select_end; 7078 #if SELECTTRACE_ENABLED 7079 if( sqlite3SelectTrace & 0x400 ){ 7080 int ii; 7081 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7082 sqlite3TreeViewSelect(0, p, 0); 7083 if( minMaxFlag ){ 7084 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7085 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7086 } 7087 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7088 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7089 ii, pAggInfo->aCol[ii].iMem); 7090 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7091 } 7092 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7093 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7094 ii, pAggInfo->aFunc[ii].iMem); 7095 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7096 } 7097 } 7098 #endif 7099 7100 7101 /* Processing for aggregates with GROUP BY is very different and 7102 ** much more complex than aggregates without a GROUP BY. 7103 */ 7104 if( pGroupBy ){ 7105 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7106 int addr1; /* A-vs-B comparision jump */ 7107 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7108 int regOutputRow; /* Return address register for output subroutine */ 7109 int addrSetAbort; /* Set the abort flag and return */ 7110 int addrTopOfLoop; /* Top of the input loop */ 7111 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7112 int addrReset; /* Subroutine for resetting the accumulator */ 7113 int regReset; /* Return address register for reset subroutine */ 7114 ExprList *pDistinct = 0; 7115 u16 distFlag = 0; 7116 int eDist = WHERE_DISTINCT_NOOP; 7117 7118 if( pAggInfo->nFunc==1 7119 && pAggInfo->aFunc[0].iDistinct>=0 7120 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7121 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7122 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7123 ){ 7124 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7125 pExpr = sqlite3ExprDup(db, pExpr, 0); 7126 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7127 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7128 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7129 } 7130 7131 /* If there is a GROUP BY clause we might need a sorting index to 7132 ** implement it. Allocate that sorting index now. If it turns out 7133 ** that we do not need it after all, the OP_SorterOpen instruction 7134 ** will be converted into a Noop. 7135 */ 7136 pAggInfo->sortingIdx = pParse->nTab++; 7137 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7138 0, pAggInfo->nColumn); 7139 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7140 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7141 0, (char*)pKeyInfo, P4_KEYINFO); 7142 7143 /* Initialize memory locations used by GROUP BY aggregate processing 7144 */ 7145 iUseFlag = ++pParse->nMem; 7146 iAbortFlag = ++pParse->nMem; 7147 regOutputRow = ++pParse->nMem; 7148 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7149 regReset = ++pParse->nMem; 7150 addrReset = sqlite3VdbeMakeLabel(pParse); 7151 iAMem = pParse->nMem + 1; 7152 pParse->nMem += pGroupBy->nExpr; 7153 iBMem = pParse->nMem + 1; 7154 pParse->nMem += pGroupBy->nExpr; 7155 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7156 VdbeComment((v, "clear abort flag")); 7157 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7158 7159 /* Begin a loop that will extract all source rows in GROUP BY order. 7160 ** This might involve two separate loops with an OP_Sort in between, or 7161 ** it might be a single loop that uses an index to extract information 7162 ** in the right order to begin with. 7163 */ 7164 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7165 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7166 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7167 0, (WHERE_GROUPBY|(orderByGrp ? WHERE_SORTBYGROUP : 0)|distFlag), 0 7168 ); 7169 if( pWInfo==0 ){ 7170 sqlite3ExprListDelete(db, pDistinct); 7171 goto select_end; 7172 } 7173 eDist = sqlite3WhereIsDistinct(pWInfo); 7174 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7175 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7176 /* The optimizer is able to deliver rows in group by order so 7177 ** we do not have to sort. The OP_OpenEphemeral table will be 7178 ** cancelled later because we still need to use the pKeyInfo 7179 */ 7180 groupBySort = 0; 7181 }else{ 7182 /* Rows are coming out in undetermined order. We have to push 7183 ** each row into a sorting index, terminate the first loop, 7184 ** then loop over the sorting index in order to get the output 7185 ** in sorted order 7186 */ 7187 int regBase; 7188 int regRecord; 7189 int nCol; 7190 int nGroupBy; 7191 7192 explainTempTable(pParse, 7193 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7194 "DISTINCT" : "GROUP BY"); 7195 7196 groupBySort = 1; 7197 nGroupBy = pGroupBy->nExpr; 7198 nCol = nGroupBy; 7199 j = nGroupBy; 7200 for(i=0; i<pAggInfo->nColumn; i++){ 7201 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7202 nCol++; 7203 j++; 7204 } 7205 } 7206 regBase = sqlite3GetTempRange(pParse, nCol); 7207 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7208 j = nGroupBy; 7209 for(i=0; i<pAggInfo->nColumn; i++){ 7210 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7211 if( pCol->iSorterColumn>=j ){ 7212 int r1 = j + regBase; 7213 sqlite3ExprCodeGetColumnOfTable(v, 7214 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7215 j++; 7216 } 7217 } 7218 regRecord = sqlite3GetTempReg(pParse); 7219 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7220 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7221 sqlite3ReleaseTempReg(pParse, regRecord); 7222 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7223 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7224 sqlite3WhereEnd(pWInfo); 7225 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7226 sortOut = sqlite3GetTempReg(pParse); 7227 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7228 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7229 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7230 pAggInfo->useSortingIdx = 1; 7231 } 7232 7233 /* If the index or temporary table used by the GROUP BY sort 7234 ** will naturally deliver rows in the order required by the ORDER BY 7235 ** clause, cancel the ephemeral table open coded earlier. 7236 ** 7237 ** This is an optimization - the correct answer should result regardless. 7238 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7239 ** disable this optimization for testing purposes. */ 7240 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7241 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7242 ){ 7243 sSort.pOrderBy = 0; 7244 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7245 } 7246 7247 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7248 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7249 ** Then compare the current GROUP BY terms against the GROUP BY terms 7250 ** from the previous row currently stored in a0, a1, a2... 7251 */ 7252 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7253 if( groupBySort ){ 7254 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7255 sortOut, sortPTab); 7256 } 7257 for(j=0; j<pGroupBy->nExpr; j++){ 7258 if( groupBySort ){ 7259 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7260 }else{ 7261 pAggInfo->directMode = 1; 7262 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7263 } 7264 } 7265 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7266 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7267 addr1 = sqlite3VdbeCurrentAddr(v); 7268 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7269 7270 /* Generate code that runs whenever the GROUP BY changes. 7271 ** Changes in the GROUP BY are detected by the previous code 7272 ** block. If there were no changes, this block is skipped. 7273 ** 7274 ** This code copies current group by terms in b0,b1,b2,... 7275 ** over to a0,a1,a2. It then calls the output subroutine 7276 ** and resets the aggregate accumulator registers in preparation 7277 ** for the next GROUP BY batch. 7278 */ 7279 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7280 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7281 VdbeComment((v, "output one row")); 7282 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7283 VdbeComment((v, "check abort flag")); 7284 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7285 VdbeComment((v, "reset accumulator")); 7286 7287 /* Update the aggregate accumulators based on the content of 7288 ** the current row 7289 */ 7290 sqlite3VdbeJumpHere(v, addr1); 7291 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7292 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7293 VdbeComment((v, "indicate data in accumulator")); 7294 7295 /* End of the loop 7296 */ 7297 if( groupBySort ){ 7298 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7299 VdbeCoverage(v); 7300 }else{ 7301 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7302 sqlite3WhereEnd(pWInfo); 7303 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7304 } 7305 sqlite3ExprListDelete(db, pDistinct); 7306 7307 /* Output the final row of result 7308 */ 7309 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7310 VdbeComment((v, "output final row")); 7311 7312 /* Jump over the subroutines 7313 */ 7314 sqlite3VdbeGoto(v, addrEnd); 7315 7316 /* Generate a subroutine that outputs a single row of the result 7317 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7318 ** is less than or equal to zero, the subroutine is a no-op. If 7319 ** the processing calls for the query to abort, this subroutine 7320 ** increments the iAbortFlag memory location before returning in 7321 ** order to signal the caller to abort. 7322 */ 7323 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7324 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7325 VdbeComment((v, "set abort flag")); 7326 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7327 sqlite3VdbeResolveLabel(v, addrOutputRow); 7328 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7329 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7330 VdbeCoverage(v); 7331 VdbeComment((v, "Groupby result generator entry point")); 7332 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7333 finalizeAggFunctions(pParse, pAggInfo); 7334 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7335 selectInnerLoop(pParse, p, -1, &sSort, 7336 &sDistinct, pDest, 7337 addrOutputRow+1, addrSetAbort); 7338 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7339 VdbeComment((v, "end groupby result generator")); 7340 7341 /* Generate a subroutine that will reset the group-by accumulator 7342 */ 7343 sqlite3VdbeResolveLabel(v, addrReset); 7344 resetAccumulator(pParse, pAggInfo); 7345 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7346 VdbeComment((v, "indicate accumulator empty")); 7347 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7348 7349 if( eDist!=WHERE_DISTINCT_NOOP ){ 7350 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7351 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7352 } 7353 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7354 else { 7355 Table *pTab; 7356 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7357 /* If isSimpleCount() returns a pointer to a Table structure, then 7358 ** the SQL statement is of the form: 7359 ** 7360 ** SELECT count(*) FROM <tbl> 7361 ** 7362 ** where the Table structure returned represents table <tbl>. 7363 ** 7364 ** This statement is so common that it is optimized specially. The 7365 ** OP_Count instruction is executed either on the intkey table that 7366 ** contains the data for table <tbl> or on one of its indexes. It 7367 ** is better to execute the op on an index, as indexes are almost 7368 ** always spread across less pages than their corresponding tables. 7369 */ 7370 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7371 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7372 Index *pIdx; /* Iterator variable */ 7373 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7374 Index *pBest = 0; /* Best index found so far */ 7375 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7376 7377 sqlite3CodeVerifySchema(pParse, iDb); 7378 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7379 7380 /* Search for the index that has the lowest scan cost. 7381 ** 7382 ** (2011-04-15) Do not do a full scan of an unordered index. 7383 ** 7384 ** (2013-10-03) Do not count the entries in a partial index. 7385 ** 7386 ** In practice the KeyInfo structure will not be used. It is only 7387 ** passed to keep OP_OpenRead happy. 7388 */ 7389 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7390 if( !p->pSrc->a[0].fg.notIndexed ){ 7391 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7392 if( pIdx->bUnordered==0 7393 && pIdx->szIdxRow<pTab->szTabRow 7394 && pIdx->pPartIdxWhere==0 7395 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7396 ){ 7397 pBest = pIdx; 7398 } 7399 } 7400 } 7401 if( pBest ){ 7402 iRoot = pBest->tnum; 7403 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7404 } 7405 7406 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7407 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7408 if( pKeyInfo ){ 7409 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7410 } 7411 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7412 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7413 explainSimpleCount(pParse, pTab, pBest); 7414 }else{ 7415 int regAcc = 0; /* "populate accumulators" flag */ 7416 ExprList *pDistinct = 0; 7417 u16 distFlag = 0; 7418 int eDist; 7419 7420 /* If there are accumulator registers but no min() or max() functions 7421 ** without FILTER clauses, allocate register regAcc. Register regAcc 7422 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7423 ** The code generated by updateAccumulator() uses this to ensure 7424 ** that the accumulator registers are (a) updated only once if 7425 ** there are no min() or max functions or (b) always updated for the 7426 ** first row visited by the aggregate, so that they are updated at 7427 ** least once even if the FILTER clause means the min() or max() 7428 ** function visits zero rows. */ 7429 if( pAggInfo->nAccumulator ){ 7430 for(i=0; i<pAggInfo->nFunc; i++){ 7431 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7432 continue; 7433 } 7434 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7435 break; 7436 } 7437 } 7438 if( i==pAggInfo->nFunc ){ 7439 regAcc = ++pParse->nMem; 7440 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7441 } 7442 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7443 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7444 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7445 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7446 } 7447 7448 /* This case runs if the aggregate has no GROUP BY clause. The 7449 ** processing is much simpler since there is only a single row 7450 ** of output. 7451 */ 7452 assert( p->pGroupBy==0 ); 7453 resetAccumulator(pParse, pAggInfo); 7454 7455 /* If this query is a candidate for the min/max optimization, then 7456 ** minMaxFlag will have been previously set to either 7457 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7458 ** be an appropriate ORDER BY expression for the optimization. 7459 */ 7460 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7461 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7462 7463 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7464 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7465 pDistinct, 0, minMaxFlag|distFlag, 0); 7466 if( pWInfo==0 ){ 7467 goto select_end; 7468 } 7469 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7470 eDist = sqlite3WhereIsDistinct(pWInfo); 7471 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7472 if( eDist!=WHERE_DISTINCT_NOOP ){ 7473 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7474 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7475 } 7476 7477 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7478 if( minMaxFlag ){ 7479 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7480 } 7481 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7482 sqlite3WhereEnd(pWInfo); 7483 finalizeAggFunctions(pParse, pAggInfo); 7484 } 7485 7486 sSort.pOrderBy = 0; 7487 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7488 selectInnerLoop(pParse, p, -1, 0, 0, 7489 pDest, addrEnd, addrEnd); 7490 } 7491 sqlite3VdbeResolveLabel(v, addrEnd); 7492 7493 } /* endif aggregate query */ 7494 7495 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7496 explainTempTable(pParse, "DISTINCT"); 7497 } 7498 7499 /* If there is an ORDER BY clause, then we need to sort the results 7500 ** and send them to the callback one by one. 7501 */ 7502 if( sSort.pOrderBy ){ 7503 explainTempTable(pParse, 7504 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7505 assert( p->pEList==pEList ); 7506 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7507 } 7508 7509 /* Jump here to skip this query 7510 */ 7511 sqlite3VdbeResolveLabel(v, iEnd); 7512 7513 /* The SELECT has been coded. If there is an error in the Parse structure, 7514 ** set the return code to 1. Otherwise 0. */ 7515 rc = (pParse->nErr>0); 7516 7517 /* Control jumps to here if an error is encountered above, or upon 7518 ** successful coding of the SELECT. 7519 */ 7520 select_end: 7521 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7522 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7523 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7524 #ifdef SQLITE_DEBUG 7525 if( pAggInfo && !db->mallocFailed ){ 7526 for(i=0; i<pAggInfo->nColumn; i++){ 7527 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7528 assert( pExpr!=0 ); 7529 assert( pExpr->pAggInfo==pAggInfo ); 7530 assert( pExpr->iAgg==i ); 7531 } 7532 for(i=0; i<pAggInfo->nFunc; i++){ 7533 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7534 assert( pExpr!=0 ); 7535 assert( pExpr->pAggInfo==pAggInfo ); 7536 assert( pExpr->iAgg==i ); 7537 } 7538 } 7539 #endif 7540 7541 #if SELECTTRACE_ENABLED 7542 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7543 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7544 sqlite3TreeViewSelect(0, p, 0); 7545 } 7546 #endif 7547 ExplainQueryPlanPop(pParse); 7548 return rc; 7549 } 7550