1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 ** 208 ** These are the valid join types: 209 ** 210 ** 211 ** pA pB pC Return Value 212 ** ------- ----- ----- ------------ 213 ** CROSS - - JT_CROSS 214 ** INNER - - JT_INNER 215 ** LEFT - - JT_LEFT|JT_OUTER 216 ** LEFT OUTER - JT_LEFT|JT_OUTER 217 ** RIGHT - - JT_RIGHT|JT_OUTER 218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** NATURAL INNER - JT_NATURAL|JT_INNER 222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 228 ** 229 ** To preserve historical compatibly, SQLite also accepts a variety 230 ** of other non-standard and in many cases non-sensical join types. 231 ** This routine makes as much sense at it can from the nonsense join 232 ** type and returns a result. Examples of accepted nonsense join types 233 ** include but are not limited to: 234 ** 235 ** INNER CROSS JOIN -> same as JOIN 236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 237 ** OUTER LEFT JOIN -> same as LEFT JOIN 238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 239 ** LEFT RIGHT JOIN -> same as FULL JOIN 240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 241 ** CROSS CROSS CROSS JOIN -> same as JOIN 242 ** 243 ** The only restrictions on the join type name are: 244 ** 245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 246 ** or "FULL". 247 ** 248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 249 ** or "FULL". 250 ** 251 ** * If "OUTER" is present then there must also be one of 252 ** "LEFT", "RIGHT", or "FULL" 253 */ 254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 255 int jointype = 0; 256 Token *apAll[3]; 257 Token *p; 258 /* 0123456789 123456789 123456789 123 */ 259 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 260 static const struct { 261 u8 i; /* Beginning of keyword text in zKeyText[] */ 262 u8 nChar; /* Length of the keyword in characters */ 263 u8 code; /* Join type mask */ 264 } aKeyword[] = { 265 /* (0) natural */ { 0, 7, JT_NATURAL }, 266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 267 /* (2) outer */ { 10, 5, JT_OUTER }, 268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 270 /* (5) inner */ { 23, 5, JT_INNER }, 271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 272 }; 273 int i, j; 274 apAll[0] = pA; 275 apAll[1] = pB; 276 apAll[2] = pC; 277 for(i=0; i<3 && apAll[i]; i++){ 278 p = apAll[i]; 279 for(j=0; j<ArraySize(aKeyword); j++){ 280 if( p->n==aKeyword[j].nChar 281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 282 jointype |= aKeyword[j].code; 283 break; 284 } 285 } 286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 287 if( j>=ArraySize(aKeyword) ){ 288 jointype |= JT_ERROR; 289 break; 290 } 291 } 292 if( 293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 294 (jointype & JT_ERROR)!=0 || 295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 296 ){ 297 const char *zSp1 = " "; 298 const char *zSp2 = " "; 299 if( pB==0 ){ zSp1++; } 300 if( pC==0 ){ zSp2++; } 301 sqlite3ErrorMsg(pParse, "unknown join type: " 302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 303 jointype = JT_INNER; 304 } 305 return jointype; 306 } 307 308 /* 309 ** Return the index of a column in a table. Return -1 if the column 310 ** is not contained in the table. 311 */ 312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 313 int i; 314 u8 h = sqlite3StrIHash(zCol); 315 Column *pCol; 316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 318 } 319 return -1; 320 } 321 322 /* 323 ** Mark a subquery result column as having been used. 324 */ 325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 326 assert( pItem!=0 ); 327 assert( pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 328 if( pItem->fg.isNestedFrom ){ 329 ExprList *pResults; 330 assert( pItem->pSelect!=0 ); 331 pResults = pItem->pSelect->pEList; 332 assert( pResults!=0 ); 333 assert( iCol>=0 && iCol<pResults->nExpr ); 334 pResults->a[iCol].bUsed = 1; 335 } 336 } 337 338 /* 339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 340 ** table that has a column named zCol. The search is left-to-right. 341 ** The first match found is returned. 342 ** 343 ** When found, set *piTab and *piCol to the table index and column index 344 ** of the matching column and return TRUE. 345 ** 346 ** If not found, return FALSE. 347 */ 348 static int tableAndColumnIndex( 349 SrcList *pSrc, /* Array of tables to search */ 350 int iStart, /* First member of pSrc->a[] to check */ 351 int iEnd, /* Last member of pSrc->a[] to check */ 352 const char *zCol, /* Name of the column we are looking for */ 353 int *piTab, /* Write index of pSrc->a[] here */ 354 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 355 int bIgnoreHidden /* Ignore hidden columns */ 356 ){ 357 int i; /* For looping over tables in pSrc */ 358 int iCol; /* Index of column matching zCol */ 359 360 assert( iEnd<pSrc->nSrc ); 361 assert( iStart>=0 ); 362 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 363 364 for(i=iStart; i<=iEnd; i++){ 365 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 366 if( iCol>=0 367 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 368 ){ 369 if( piTab ){ 370 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 371 *piTab = i; 372 *piCol = iCol; 373 } 374 return 1; 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Set the EP_FromJoin property on all terms of the given expression. 382 ** And set the Expr.w.iJoin to iTable for every term in the 383 ** expression. 384 ** 385 ** The EP_FromJoin property is used on terms of an expression to tell 386 ** the OUTER JOIN processing logic that this term is part of the 387 ** join restriction specified in the ON or USING clause and not a part 388 ** of the more general WHERE clause. These terms are moved over to the 389 ** WHERE clause during join processing but we need to remember that they 390 ** originated in the ON or USING clause. 391 ** 392 ** The Expr.w.iJoin tells the WHERE clause processing that the 393 ** expression depends on table w.iJoin even if that table is not 394 ** explicitly mentioned in the expression. That information is needed 395 ** for cases like this: 396 ** 397 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 398 ** 399 ** The where clause needs to defer the handling of the t1.x=5 400 ** term until after the t2 loop of the join. In that way, a 401 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 402 ** defer the handling of t1.x=5, it will be processed immediately 403 ** after the t1 loop and rows with t1.x!=5 will never appear in 404 ** the output, which is incorrect. 405 */ 406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 407 assert( joinFlag==EP_FromJoin || joinFlag==EP_InnerJoin ); 408 while( p ){ 409 ExprSetProperty(p, joinFlag); 410 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 411 ExprSetVVAProperty(p, EP_NoReduce); 412 p->w.iJoin = iTable; 413 if( p->op==TK_FUNCTION ){ 414 assert( ExprUseXList(p) ); 415 if( p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 419 } 420 } 421 } 422 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 423 p = p->pRight; 424 } 425 } 426 427 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 428 ** term that is marked with EP_FromJoin and w.iJoin==iTable into 429 ** an ordinary term that omits the EP_FromJoin mark. 430 ** 431 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 432 */ 433 static void unsetJoinExpr(Expr *p, int iTable){ 434 while( p ){ 435 if( ExprHasProperty(p, EP_FromJoin) 436 && (iTable<0 || p->w.iJoin==iTable) ){ 437 ExprClearProperty(p, EP_FromJoin); 438 ExprSetProperty(p, EP_InnerJoin); 439 } 440 if( p->op==TK_COLUMN && p->iTable==iTable ){ 441 ExprClearProperty(p, EP_CanBeNull); 442 } 443 if( p->op==TK_FUNCTION ){ 444 assert( ExprUseXList(p) ); 445 if( p->x.pList ){ 446 int i; 447 for(i=0; i<p->x.pList->nExpr; i++){ 448 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 449 } 450 } 451 } 452 unsetJoinExpr(p->pLeft, iTable); 453 p = p->pRight; 454 } 455 } 456 457 /* 458 ** This routine processes the join information for a SELECT statement. 459 ** 460 ** * A NATURAL join is converted into a USING join. After that, we 461 ** do not need to be concerned with NATURAL joins and we only have 462 ** think about USING joins. 463 ** 464 ** * ON and USING clauses result in extra terms being added to the 465 ** WHERE clause to enforce the specified constraints. The extra 466 ** WHERE clause terms will be tagged with EP_FromJoin or 467 ** EP_InnerJoin so that we know that they originated in ON/USING. 468 ** 469 ** The terms of a FROM clause are contained in the Select.pSrc structure. 470 ** The left most table is the first entry in Select.pSrc. The right-most 471 ** table is the last entry. The join operator is held in the entry to 472 ** the right. Thus entry 1 contains the join operator for the join between 473 ** entries 0 and 1. Any ON or USING clauses associated with the join are 474 ** also attached to the right entry. 475 ** 476 ** This routine returns the number of errors encountered. 477 */ 478 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 479 SrcList *pSrc; /* All tables in the FROM clause */ 480 int i, j; /* Loop counters */ 481 SrcItem *pLeft; /* Left table being joined */ 482 SrcItem *pRight; /* Right table being joined */ 483 484 pSrc = p->pSrc; 485 pLeft = &pSrc->a[0]; 486 pRight = &pLeft[1]; 487 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 488 Table *pRightTab = pRight->pTab; 489 u32 joinType; 490 491 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 492 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_FromJoin : EP_InnerJoin; 493 494 /* If this is a NATURAL join, synthesize an approprate USING clause 495 ** to specify which columns should be joined. 496 */ 497 if( pRight->fg.jointype & JT_NATURAL ){ 498 IdList *pUsing = 0; 499 if( pRight->fg.isUsing || pRight->u3.pOn ){ 500 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 501 "an ON or USING clause", 0); 502 return 1; 503 } 504 for(j=0; j<pRightTab->nCol; j++){ 505 char *zName; /* Name of column in the right table */ 506 507 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 508 zName = pRightTab->aCol[j].zCnName; 509 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 510 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 511 if( pUsing ){ 512 assert( pUsing->nId>0 ); 513 assert( pUsing->a[pUsing->nId-1].zName==0 ); 514 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 515 } 516 } 517 } 518 if( pUsing ){ 519 pRight->fg.isUsing = 1; 520 pRight->fg.isSynthUsing = 1; 521 pRight->u3.pUsing = pUsing; 522 } 523 if( pParse->nErr ) return 1; 524 } 525 526 /* Create extra terms on the WHERE clause for each column named 527 ** in the USING clause. Example: If the two tables to be joined are 528 ** A and B and the USING clause names X, Y, and Z, then add this 529 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 530 ** Report an error if any column mentioned in the USING clause is 531 ** not contained in both tables to be joined. 532 */ 533 if( pRight->fg.isUsing ){ 534 IdList *pList = pRight->u3.pUsing; 535 sqlite3 *db = pParse->db; 536 assert( pList!=0 ); 537 for(j=0; j<pList->nId; j++){ 538 char *zName; /* Name of the term in the USING clause */ 539 int iLeft; /* Table on the left with matching column name */ 540 int iLeftCol; /* Column number of matching column on the left */ 541 int iRightCol; /* Column number of matching column on the right */ 542 Expr *pE1; /* Reference to the column on the LEFT of the join */ 543 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 544 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 545 546 zName = pList->a[j].zName; 547 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 548 if( iRightCol<0 549 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 550 pRight->fg.isSynthUsing)==0 551 ){ 552 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 553 "not present in both tables", zName); 554 return 1; 555 } 556 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 557 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 558 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 559 /* This branch runs if the query contains one or more RIGHT or FULL 560 ** JOINs. If only a single table on the left side of this join 561 ** contains the zName column, then this branch is a no-op. 562 ** But if there are two or more tables on the left side 563 ** of the join, construct a coalesce() function that gathers all 564 ** such tables. Raise an error if more than one of those references 565 ** to zName is not also within a prior USING clause. 566 ** 567 ** We really ought to raise an error if there are two or more 568 ** non-USING references to zName on the left of an INNER or LEFT 569 ** JOIN. But older versions of SQLite do not do that, so we avoid 570 ** adding a new error so as to not break legacy applications. 571 */ 572 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 573 static const Token tkCoalesce = { "coalesce", 8 }; 574 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 575 pRight->fg.isSynthUsing)!=0 ){ 576 if( pSrc->a[iLeft].fg.isUsing==0 577 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 578 ){ 579 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 580 zName); 581 break; 582 } 583 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 584 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 585 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 586 } 587 if( pFuncArgs ){ 588 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 589 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 590 } 591 } 592 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 593 sqlite3SrcItemColumnUsed(pRight, iRightCol); 594 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 595 assert( pE2!=0 || pEq==0 ); 596 if( pEq ){ 597 ExprSetProperty(pEq, joinType); 598 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 599 ExprSetVVAProperty(pEq, EP_NoReduce); 600 pEq->w.iJoin = pE2->iTable; 601 } 602 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 603 } 604 } 605 606 /* Add the ON clause to the end of the WHERE clause, connected by 607 ** an AND operator. 608 */ 609 else if( pRight->u3.pOn ){ 610 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 611 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 612 pRight->u3.pOn = 0; 613 } 614 } 615 return 0; 616 } 617 618 /* 619 ** An instance of this object holds information (beyond pParse and pSelect) 620 ** needed to load the next result row that is to be added to the sorter. 621 */ 622 typedef struct RowLoadInfo RowLoadInfo; 623 struct RowLoadInfo { 624 int regResult; /* Store results in array of registers here */ 625 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 626 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 627 ExprList *pExtra; /* Extra columns needed by sorter refs */ 628 int regExtraResult; /* Where to load the extra columns */ 629 #endif 630 }; 631 632 /* 633 ** This routine does the work of loading query data into an array of 634 ** registers so that it can be added to the sorter. 635 */ 636 static void innerLoopLoadRow( 637 Parse *pParse, /* Statement under construction */ 638 Select *pSelect, /* The query being coded */ 639 RowLoadInfo *pInfo /* Info needed to complete the row load */ 640 ){ 641 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 642 0, pInfo->ecelFlags); 643 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 644 if( pInfo->pExtra ){ 645 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 646 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 647 } 648 #endif 649 } 650 651 /* 652 ** Code the OP_MakeRecord instruction that generates the entry to be 653 ** added into the sorter. 654 ** 655 ** Return the register in which the result is stored. 656 */ 657 static int makeSorterRecord( 658 Parse *pParse, 659 SortCtx *pSort, 660 Select *pSelect, 661 int regBase, 662 int nBase 663 ){ 664 int nOBSat = pSort->nOBSat; 665 Vdbe *v = pParse->pVdbe; 666 int regOut = ++pParse->nMem; 667 if( pSort->pDeferredRowLoad ){ 668 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 669 } 670 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 671 return regOut; 672 } 673 674 /* 675 ** Generate code that will push the record in registers regData 676 ** through regData+nData-1 onto the sorter. 677 */ 678 static void pushOntoSorter( 679 Parse *pParse, /* Parser context */ 680 SortCtx *pSort, /* Information about the ORDER BY clause */ 681 Select *pSelect, /* The whole SELECT statement */ 682 int regData, /* First register holding data to be sorted */ 683 int regOrigData, /* First register holding data before packing */ 684 int nData, /* Number of elements in the regData data array */ 685 int nPrefixReg /* No. of reg prior to regData available for use */ 686 ){ 687 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 688 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 689 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 690 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 691 int regBase; /* Regs for sorter record */ 692 int regRecord = 0; /* Assembled sorter record */ 693 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 694 int op; /* Opcode to add sorter record to sorter */ 695 int iLimit; /* LIMIT counter */ 696 int iSkip = 0; /* End of the sorter insert loop */ 697 698 assert( bSeq==0 || bSeq==1 ); 699 700 /* Three cases: 701 ** (1) The data to be sorted has already been packed into a Record 702 ** by a prior OP_MakeRecord. In this case nData==1 and regData 703 ** will be completely unrelated to regOrigData. 704 ** (2) All output columns are included in the sort record. In that 705 ** case regData==regOrigData. 706 ** (3) Some output columns are omitted from the sort record due to 707 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 708 ** SQLITE_ECEL_OMITREF optimization, or due to the 709 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 710 ** regOrigData is 0 to prevent this routine from trying to copy 711 ** values that might not yet exist. 712 */ 713 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 714 715 if( nPrefixReg ){ 716 assert( nPrefixReg==nExpr+bSeq ); 717 regBase = regData - nPrefixReg; 718 }else{ 719 regBase = pParse->nMem + 1; 720 pParse->nMem += nBase; 721 } 722 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 723 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 724 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 725 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 726 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 727 if( bSeq ){ 728 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 729 } 730 if( nPrefixReg==0 && nData>0 ){ 731 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 732 } 733 if( nOBSat>0 ){ 734 int regPrevKey; /* The first nOBSat columns of the previous row */ 735 int addrFirst; /* Address of the OP_IfNot opcode */ 736 int addrJmp; /* Address of the OP_Jump opcode */ 737 VdbeOp *pOp; /* Opcode that opens the sorter */ 738 int nKey; /* Number of sorting key columns, including OP_Sequence */ 739 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 740 741 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 742 regPrevKey = pParse->nMem+1; 743 pParse->nMem += pSort->nOBSat; 744 nKey = nExpr - pSort->nOBSat + bSeq; 745 if( bSeq ){ 746 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 747 }else{ 748 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 749 } 750 VdbeCoverage(v); 751 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 752 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 753 if( pParse->db->mallocFailed ) return; 754 pOp->p2 = nKey + nData; 755 pKI = pOp->p4.pKeyInfo; 756 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 757 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 758 testcase( pKI->nAllField > pKI->nKeyField+2 ); 759 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 760 pKI->nAllField-pKI->nKeyField-1); 761 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 762 addrJmp = sqlite3VdbeCurrentAddr(v); 763 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 764 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 765 pSort->regReturn = ++pParse->nMem; 766 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 767 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 768 if( iLimit ){ 769 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 770 VdbeCoverage(v); 771 } 772 sqlite3VdbeJumpHere(v, addrFirst); 773 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 774 sqlite3VdbeJumpHere(v, addrJmp); 775 } 776 if( iLimit ){ 777 /* At this point the values for the new sorter entry are stored 778 ** in an array of registers. They need to be composed into a record 779 ** and inserted into the sorter if either (a) there are currently 780 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 781 ** the largest record currently in the sorter. If (b) is true and there 782 ** are already LIMIT+OFFSET items in the sorter, delete the largest 783 ** entry before inserting the new one. This way there are never more 784 ** than LIMIT+OFFSET items in the sorter. 785 ** 786 ** If the new record does not need to be inserted into the sorter, 787 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 788 ** value is not zero, then it is a label of where to jump. Otherwise, 789 ** just bypass the row insert logic. See the header comment on the 790 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 791 */ 792 int iCsr = pSort->iECursor; 793 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 794 VdbeCoverage(v); 795 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 796 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 797 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 798 VdbeCoverage(v); 799 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 800 } 801 if( regRecord==0 ){ 802 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 803 } 804 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 805 op = OP_SorterInsert; 806 }else{ 807 op = OP_IdxInsert; 808 } 809 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 810 regBase+nOBSat, nBase-nOBSat); 811 if( iSkip ){ 812 sqlite3VdbeChangeP2(v, iSkip, 813 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 814 } 815 } 816 817 /* 818 ** Add code to implement the OFFSET 819 */ 820 static void codeOffset( 821 Vdbe *v, /* Generate code into this VM */ 822 int iOffset, /* Register holding the offset counter */ 823 int iContinue /* Jump here to skip the current record */ 824 ){ 825 if( iOffset>0 ){ 826 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 827 VdbeComment((v, "OFFSET")); 828 } 829 } 830 831 /* 832 ** Add code that will check to make sure the array of registers starting at 833 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 834 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 835 ** are available. Which is used depends on the value of parameter eTnctType, 836 ** as follows: 837 ** 838 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 839 ** Build an ephemeral table that contains all entries seen before and 840 ** skip entries which have been seen before. 841 ** 842 ** Parameter iTab is the cursor number of an ephemeral table that must 843 ** be opened before the VM code generated by this routine is executed. 844 ** The ephemeral cursor table is queried for a record identical to the 845 ** record formed by the current array of registers. If one is found, 846 ** jump to VM address addrRepeat. Otherwise, insert a new record into 847 ** the ephemeral cursor and proceed. 848 ** 849 ** The returned value in this case is a copy of parameter iTab. 850 ** 851 ** WHERE_DISTINCT_ORDERED: 852 ** In this case rows are being delivered sorted order. The ephermal 853 ** table is not required. Instead, the current set of values 854 ** is compared against previous row. If they match, the new row 855 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 856 ** the VM program proceeds with processing the new row. 857 ** 858 ** The returned value in this case is the register number of the first 859 ** in an array of registers used to store the previous result row so that 860 ** it can be compared to the next. The caller must ensure that this 861 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 862 ** will take care of this initialization.) 863 ** 864 ** WHERE_DISTINCT_UNIQUE: 865 ** In this case it has already been determined that the rows are distinct. 866 ** No special action is required. The return value is zero. 867 ** 868 ** Parameter pEList is the list of expressions used to generated the 869 ** contents of each row. It is used by this routine to determine (a) 870 ** how many elements there are in the array of registers and (b) the 871 ** collation sequences that should be used for the comparisons if 872 ** eTnctType is WHERE_DISTINCT_ORDERED. 873 */ 874 static int codeDistinct( 875 Parse *pParse, /* Parsing and code generating context */ 876 int eTnctType, /* WHERE_DISTINCT_* value */ 877 int iTab, /* A sorting index used to test for distinctness */ 878 int addrRepeat, /* Jump to here if not distinct */ 879 ExprList *pEList, /* Expression for each element */ 880 int regElem /* First element */ 881 ){ 882 int iRet = 0; 883 int nResultCol = pEList->nExpr; 884 Vdbe *v = pParse->pVdbe; 885 886 switch( eTnctType ){ 887 case WHERE_DISTINCT_ORDERED: { 888 int i; 889 int iJump; /* Jump destination */ 890 int regPrev; /* Previous row content */ 891 892 /* Allocate space for the previous row */ 893 iRet = regPrev = pParse->nMem+1; 894 pParse->nMem += nResultCol; 895 896 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 897 for(i=0; i<nResultCol; i++){ 898 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 899 if( i<nResultCol-1 ){ 900 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 901 VdbeCoverage(v); 902 }else{ 903 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 904 VdbeCoverage(v); 905 } 906 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 907 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 908 } 909 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 910 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 911 break; 912 } 913 914 case WHERE_DISTINCT_UNIQUE: { 915 /* nothing to do */ 916 break; 917 } 918 919 default: { 920 int r1 = sqlite3GetTempReg(pParse); 921 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 922 VdbeCoverage(v); 923 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 924 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 925 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 926 sqlite3ReleaseTempReg(pParse, r1); 927 iRet = iTab; 928 break; 929 } 930 } 931 932 return iRet; 933 } 934 935 /* 936 ** This routine runs after codeDistinct(). It makes necessary 937 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 938 ** routine made use of. This processing must be done separately since 939 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 940 ** laid down. 941 ** 942 ** WHERE_DISTINCT_NOOP: 943 ** WHERE_DISTINCT_UNORDERED: 944 ** 945 ** No adjustments necessary. This function is a no-op. 946 ** 947 ** WHERE_DISTINCT_UNIQUE: 948 ** 949 ** The ephemeral table is not needed. So change the 950 ** OP_OpenEphemeral opcode into an OP_Noop. 951 ** 952 ** WHERE_DISTINCT_ORDERED: 953 ** 954 ** The ephemeral table is not needed. But we do need register 955 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 956 ** into an OP_Null on the iVal register. 957 */ 958 static void fixDistinctOpenEph( 959 Parse *pParse, /* Parsing and code generating context */ 960 int eTnctType, /* WHERE_DISTINCT_* value */ 961 int iVal, /* Value returned by codeDistinct() */ 962 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 963 ){ 964 if( pParse->nErr==0 965 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 966 ){ 967 Vdbe *v = pParse->pVdbe; 968 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 969 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 970 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 971 } 972 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 973 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 974 ** bit on the first register of the previous value. This will cause the 975 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 976 ** the loop even if the first row is all NULLs. */ 977 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 978 pOp->opcode = OP_Null; 979 pOp->p1 = 1; 980 pOp->p2 = iVal; 981 } 982 } 983 } 984 985 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 986 /* 987 ** This function is called as part of inner-loop generation for a SELECT 988 ** statement with an ORDER BY that is not optimized by an index. It 989 ** determines the expressions, if any, that the sorter-reference 990 ** optimization should be used for. The sorter-reference optimization 991 ** is used for SELECT queries like: 992 ** 993 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 994 ** 995 ** If the optimization is used for expression "bigblob", then instead of 996 ** storing values read from that column in the sorter records, the PK of 997 ** the row from table t1 is stored instead. Then, as records are extracted from 998 ** the sorter to return to the user, the required value of bigblob is 999 ** retrieved directly from table t1. If the values are very large, this 1000 ** can be more efficient than storing them directly in the sorter records. 1001 ** 1002 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 1003 ** for which the sorter-reference optimization should be enabled. 1004 ** Additionally, the pSort->aDefer[] array is populated with entries 1005 ** for all cursors required to evaluate all selected expressions. Finally. 1006 ** output variable (*ppExtra) is set to an expression list containing 1007 ** expressions for all extra PK values that should be stored in the 1008 ** sorter records. 1009 */ 1010 static void selectExprDefer( 1011 Parse *pParse, /* Leave any error here */ 1012 SortCtx *pSort, /* Sorter context */ 1013 ExprList *pEList, /* Expressions destined for sorter */ 1014 ExprList **ppExtra /* Expressions to append to sorter record */ 1015 ){ 1016 int i; 1017 int nDefer = 0; 1018 ExprList *pExtra = 0; 1019 for(i=0; i<pEList->nExpr; i++){ 1020 struct ExprList_item *pItem = &pEList->a[i]; 1021 if( pItem->u.x.iOrderByCol==0 ){ 1022 Expr *pExpr = pItem->pExpr; 1023 Table *pTab; 1024 if( pExpr->op==TK_COLUMN 1025 && pExpr->iColumn>=0 1026 && ALWAYS( ExprUseYTab(pExpr) ) 1027 && (pTab = pExpr->y.pTab)!=0 1028 && IsOrdinaryTable(pTab) 1029 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1030 ){ 1031 int j; 1032 for(j=0; j<nDefer; j++){ 1033 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1034 } 1035 if( j==nDefer ){ 1036 if( nDefer==ArraySize(pSort->aDefer) ){ 1037 continue; 1038 }else{ 1039 int nKey = 1; 1040 int k; 1041 Index *pPk = 0; 1042 if( !HasRowid(pTab) ){ 1043 pPk = sqlite3PrimaryKeyIndex(pTab); 1044 nKey = pPk->nKeyCol; 1045 } 1046 for(k=0; k<nKey; k++){ 1047 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1048 if( pNew ){ 1049 pNew->iTable = pExpr->iTable; 1050 assert( ExprUseYTab(pNew) ); 1051 pNew->y.pTab = pExpr->y.pTab; 1052 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1053 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1054 } 1055 } 1056 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1057 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1058 pSort->aDefer[nDefer].nKey = nKey; 1059 nDefer++; 1060 } 1061 } 1062 pItem->bSorterRef = 1; 1063 } 1064 } 1065 } 1066 pSort->nDefer = (u8)nDefer; 1067 *ppExtra = pExtra; 1068 } 1069 #endif 1070 1071 /* 1072 ** This routine generates the code for the inside of the inner loop 1073 ** of a SELECT. 1074 ** 1075 ** If srcTab is negative, then the p->pEList expressions 1076 ** are evaluated in order to get the data for this row. If srcTab is 1077 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1078 ** to get the number of columns and the collation sequence for each column. 1079 */ 1080 static void selectInnerLoop( 1081 Parse *pParse, /* The parser context */ 1082 Select *p, /* The complete select statement being coded */ 1083 int srcTab, /* Pull data from this table if non-negative */ 1084 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1085 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1086 SelectDest *pDest, /* How to dispose of the results */ 1087 int iContinue, /* Jump here to continue with next row */ 1088 int iBreak /* Jump here to break out of the inner loop */ 1089 ){ 1090 Vdbe *v = pParse->pVdbe; 1091 int i; 1092 int hasDistinct; /* True if the DISTINCT keyword is present */ 1093 int eDest = pDest->eDest; /* How to dispose of results */ 1094 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1095 int nResultCol; /* Number of result columns */ 1096 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1097 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1098 1099 /* Usually, regResult is the first cell in an array of memory cells 1100 ** containing the current result row. In this case regOrig is set to the 1101 ** same value. However, if the results are being sent to the sorter, the 1102 ** values for any expressions that are also part of the sort-key are omitted 1103 ** from this array. In this case regOrig is set to zero. */ 1104 int regResult; /* Start of memory holding current results */ 1105 int regOrig; /* Start of memory holding full result (or 0) */ 1106 1107 assert( v ); 1108 assert( p->pEList!=0 ); 1109 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1110 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1111 if( pSort==0 && !hasDistinct ){ 1112 assert( iContinue!=0 ); 1113 codeOffset(v, p->iOffset, iContinue); 1114 } 1115 1116 /* Pull the requested columns. 1117 */ 1118 nResultCol = p->pEList->nExpr; 1119 1120 if( pDest->iSdst==0 ){ 1121 if( pSort ){ 1122 nPrefixReg = pSort->pOrderBy->nExpr; 1123 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1124 pParse->nMem += nPrefixReg; 1125 } 1126 pDest->iSdst = pParse->nMem+1; 1127 pParse->nMem += nResultCol; 1128 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1129 /* This is an error condition that can result, for example, when a SELECT 1130 ** on the right-hand side of an INSERT contains more result columns than 1131 ** there are columns in the table on the left. The error will be caught 1132 ** and reported later. But we need to make sure enough memory is allocated 1133 ** to avoid other spurious errors in the meantime. */ 1134 pParse->nMem += nResultCol; 1135 } 1136 pDest->nSdst = nResultCol; 1137 regOrig = regResult = pDest->iSdst; 1138 if( srcTab>=0 ){ 1139 for(i=0; i<nResultCol; i++){ 1140 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1141 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1142 } 1143 }else if( eDest!=SRT_Exists ){ 1144 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1145 ExprList *pExtra = 0; 1146 #endif 1147 /* If the destination is an EXISTS(...) expression, the actual 1148 ** values returned by the SELECT are not required. 1149 */ 1150 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1151 ExprList *pEList; 1152 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1153 ecelFlags = SQLITE_ECEL_DUP; 1154 }else{ 1155 ecelFlags = 0; 1156 } 1157 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1158 /* For each expression in p->pEList that is a copy of an expression in 1159 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1160 ** iOrderByCol value to one more than the index of the ORDER BY 1161 ** expression within the sort-key that pushOntoSorter() will generate. 1162 ** This allows the p->pEList field to be omitted from the sorted record, 1163 ** saving space and CPU cycles. */ 1164 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1165 1166 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1167 int j; 1168 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1169 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1170 } 1171 } 1172 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1173 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1174 if( pExtra && pParse->db->mallocFailed==0 ){ 1175 /* If there are any extra PK columns to add to the sorter records, 1176 ** allocate extra memory cells and adjust the OpenEphemeral 1177 ** instruction to account for the larger records. This is only 1178 ** required if there are one or more WITHOUT ROWID tables with 1179 ** composite primary keys in the SortCtx.aDefer[] array. */ 1180 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1181 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1182 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1183 pParse->nMem += pExtra->nExpr; 1184 } 1185 #endif 1186 1187 /* Adjust nResultCol to account for columns that are omitted 1188 ** from the sorter by the optimizations in this branch */ 1189 pEList = p->pEList; 1190 for(i=0; i<pEList->nExpr; i++){ 1191 if( pEList->a[i].u.x.iOrderByCol>0 1192 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1193 || pEList->a[i].bSorterRef 1194 #endif 1195 ){ 1196 nResultCol--; 1197 regOrig = 0; 1198 } 1199 } 1200 1201 testcase( regOrig ); 1202 testcase( eDest==SRT_Set ); 1203 testcase( eDest==SRT_Mem ); 1204 testcase( eDest==SRT_Coroutine ); 1205 testcase( eDest==SRT_Output ); 1206 assert( eDest==SRT_Set || eDest==SRT_Mem 1207 || eDest==SRT_Coroutine || eDest==SRT_Output 1208 || eDest==SRT_Upfrom ); 1209 } 1210 sRowLoadInfo.regResult = regResult; 1211 sRowLoadInfo.ecelFlags = ecelFlags; 1212 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1213 sRowLoadInfo.pExtra = pExtra; 1214 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1215 if( pExtra ) nResultCol += pExtra->nExpr; 1216 #endif 1217 if( p->iLimit 1218 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1219 && nPrefixReg>0 1220 ){ 1221 assert( pSort!=0 ); 1222 assert( hasDistinct==0 ); 1223 pSort->pDeferredRowLoad = &sRowLoadInfo; 1224 regOrig = 0; 1225 }else{ 1226 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1227 } 1228 } 1229 1230 /* If the DISTINCT keyword was present on the SELECT statement 1231 ** and this row has been seen before, then do not make this row 1232 ** part of the result. 1233 */ 1234 if( hasDistinct ){ 1235 int eType = pDistinct->eTnctType; 1236 int iTab = pDistinct->tabTnct; 1237 assert( nResultCol==p->pEList->nExpr ); 1238 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1239 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1240 if( pSort==0 ){ 1241 codeOffset(v, p->iOffset, iContinue); 1242 } 1243 } 1244 1245 switch( eDest ){ 1246 /* In this mode, write each query result to the key of the temporary 1247 ** table iParm. 1248 */ 1249 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1250 case SRT_Union: { 1251 int r1; 1252 r1 = sqlite3GetTempReg(pParse); 1253 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1254 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1255 sqlite3ReleaseTempReg(pParse, r1); 1256 break; 1257 } 1258 1259 /* Construct a record from the query result, but instead of 1260 ** saving that record, use it as a key to delete elements from 1261 ** the temporary table iParm. 1262 */ 1263 case SRT_Except: { 1264 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1265 break; 1266 } 1267 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1268 1269 /* Store the result as data using a unique key. 1270 */ 1271 case SRT_Fifo: 1272 case SRT_DistFifo: 1273 case SRT_Table: 1274 case SRT_EphemTab: { 1275 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1276 testcase( eDest==SRT_Table ); 1277 testcase( eDest==SRT_EphemTab ); 1278 testcase( eDest==SRT_Fifo ); 1279 testcase( eDest==SRT_DistFifo ); 1280 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1281 #ifndef SQLITE_OMIT_CTE 1282 if( eDest==SRT_DistFifo ){ 1283 /* If the destination is DistFifo, then cursor (iParm+1) is open 1284 ** on an ephemeral index. If the current row is already present 1285 ** in the index, do not write it to the output. If not, add the 1286 ** current row to the index and proceed with writing it to the 1287 ** output table as well. */ 1288 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1289 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1290 VdbeCoverage(v); 1291 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1292 assert( pSort==0 ); 1293 } 1294 #endif 1295 if( pSort ){ 1296 assert( regResult==regOrig ); 1297 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1298 }else{ 1299 int r2 = sqlite3GetTempReg(pParse); 1300 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1301 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1302 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1303 sqlite3ReleaseTempReg(pParse, r2); 1304 } 1305 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1306 break; 1307 } 1308 1309 case SRT_Upfrom: { 1310 if( pSort ){ 1311 pushOntoSorter( 1312 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1313 }else{ 1314 int i2 = pDest->iSDParm2; 1315 int r1 = sqlite3GetTempReg(pParse); 1316 1317 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1318 ** might still be trying to return one row, because that is what 1319 ** aggregates do. Don't record that empty row in the output table. */ 1320 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1321 1322 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1323 regResult+(i2<0), nResultCol-(i2<0), r1); 1324 if( i2<0 ){ 1325 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1326 }else{ 1327 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1328 } 1329 } 1330 break; 1331 } 1332 1333 #ifndef SQLITE_OMIT_SUBQUERY 1334 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1335 ** then there should be a single item on the stack. Write this 1336 ** item into the set table with bogus data. 1337 */ 1338 case SRT_Set: { 1339 if( pSort ){ 1340 /* At first glance you would think we could optimize out the 1341 ** ORDER BY in this case since the order of entries in the set 1342 ** does not matter. But there might be a LIMIT clause, in which 1343 ** case the order does matter */ 1344 pushOntoSorter( 1345 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1346 }else{ 1347 int r1 = sqlite3GetTempReg(pParse); 1348 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1349 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1350 r1, pDest->zAffSdst, nResultCol); 1351 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1352 sqlite3ReleaseTempReg(pParse, r1); 1353 } 1354 break; 1355 } 1356 1357 1358 /* If any row exist in the result set, record that fact and abort. 1359 */ 1360 case SRT_Exists: { 1361 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1362 /* The LIMIT clause will terminate the loop for us */ 1363 break; 1364 } 1365 1366 /* If this is a scalar select that is part of an expression, then 1367 ** store the results in the appropriate memory cell or array of 1368 ** memory cells and break out of the scan loop. 1369 */ 1370 case SRT_Mem: { 1371 if( pSort ){ 1372 assert( nResultCol<=pDest->nSdst ); 1373 pushOntoSorter( 1374 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1375 }else{ 1376 assert( nResultCol==pDest->nSdst ); 1377 assert( regResult==iParm ); 1378 /* The LIMIT clause will jump out of the loop for us */ 1379 } 1380 break; 1381 } 1382 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1383 1384 case SRT_Coroutine: /* Send data to a co-routine */ 1385 case SRT_Output: { /* Return the results */ 1386 testcase( eDest==SRT_Coroutine ); 1387 testcase( eDest==SRT_Output ); 1388 if( pSort ){ 1389 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1390 nPrefixReg); 1391 }else if( eDest==SRT_Coroutine ){ 1392 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1393 }else{ 1394 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1395 } 1396 break; 1397 } 1398 1399 #ifndef SQLITE_OMIT_CTE 1400 /* Write the results into a priority queue that is order according to 1401 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1402 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1403 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1404 ** final OP_Sequence column. The last column is the record as a blob. 1405 */ 1406 case SRT_DistQueue: 1407 case SRT_Queue: { 1408 int nKey; 1409 int r1, r2, r3; 1410 int addrTest = 0; 1411 ExprList *pSO; 1412 pSO = pDest->pOrderBy; 1413 assert( pSO ); 1414 nKey = pSO->nExpr; 1415 r1 = sqlite3GetTempReg(pParse); 1416 r2 = sqlite3GetTempRange(pParse, nKey+2); 1417 r3 = r2+nKey+1; 1418 if( eDest==SRT_DistQueue ){ 1419 /* If the destination is DistQueue, then cursor (iParm+1) is open 1420 ** on a second ephemeral index that holds all values every previously 1421 ** added to the queue. */ 1422 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1423 regResult, nResultCol); 1424 VdbeCoverage(v); 1425 } 1426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1427 if( eDest==SRT_DistQueue ){ 1428 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1429 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1430 } 1431 for(i=0; i<nKey; i++){ 1432 sqlite3VdbeAddOp2(v, OP_SCopy, 1433 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1434 r2+i); 1435 } 1436 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1437 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1438 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1439 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1440 sqlite3ReleaseTempReg(pParse, r1); 1441 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1442 break; 1443 } 1444 #endif /* SQLITE_OMIT_CTE */ 1445 1446 1447 1448 #if !defined(SQLITE_OMIT_TRIGGER) 1449 /* Discard the results. This is used for SELECT statements inside 1450 ** the body of a TRIGGER. The purpose of such selects is to call 1451 ** user-defined functions that have side effects. We do not care 1452 ** about the actual results of the select. 1453 */ 1454 default: { 1455 assert( eDest==SRT_Discard ); 1456 break; 1457 } 1458 #endif 1459 } 1460 1461 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1462 ** there is a sorter, in which case the sorter has already limited 1463 ** the output for us. 1464 */ 1465 if( pSort==0 && p->iLimit ){ 1466 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1467 } 1468 } 1469 1470 /* 1471 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1472 ** X extra columns. 1473 */ 1474 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1475 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1476 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1477 if( p ){ 1478 p->aSortFlags = (u8*)&p->aColl[N+X]; 1479 p->nKeyField = (u16)N; 1480 p->nAllField = (u16)(N+X); 1481 p->enc = ENC(db); 1482 p->db = db; 1483 p->nRef = 1; 1484 memset(&p[1], 0, nExtra); 1485 }else{ 1486 return (KeyInfo*)sqlite3OomFault(db); 1487 } 1488 return p; 1489 } 1490 1491 /* 1492 ** Deallocate a KeyInfo object 1493 */ 1494 void sqlite3KeyInfoUnref(KeyInfo *p){ 1495 if( p ){ 1496 assert( p->nRef>0 ); 1497 p->nRef--; 1498 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1499 } 1500 } 1501 1502 /* 1503 ** Make a new pointer to a KeyInfo object 1504 */ 1505 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1506 if( p ){ 1507 assert( p->nRef>0 ); 1508 p->nRef++; 1509 } 1510 return p; 1511 } 1512 1513 #ifdef SQLITE_DEBUG 1514 /* 1515 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1516 ** can only be changed if this is just a single reference to the object. 1517 ** 1518 ** This routine is used only inside of assert() statements. 1519 */ 1520 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1521 #endif /* SQLITE_DEBUG */ 1522 1523 /* 1524 ** Given an expression list, generate a KeyInfo structure that records 1525 ** the collating sequence for each expression in that expression list. 1526 ** 1527 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1528 ** KeyInfo structure is appropriate for initializing a virtual index to 1529 ** implement that clause. If the ExprList is the result set of a SELECT 1530 ** then the KeyInfo structure is appropriate for initializing a virtual 1531 ** index to implement a DISTINCT test. 1532 ** 1533 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1534 ** function is responsible for seeing that this structure is eventually 1535 ** freed. 1536 */ 1537 KeyInfo *sqlite3KeyInfoFromExprList( 1538 Parse *pParse, /* Parsing context */ 1539 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1540 int iStart, /* Begin with this column of pList */ 1541 int nExtra /* Add this many extra columns to the end */ 1542 ){ 1543 int nExpr; 1544 KeyInfo *pInfo; 1545 struct ExprList_item *pItem; 1546 sqlite3 *db = pParse->db; 1547 int i; 1548 1549 nExpr = pList->nExpr; 1550 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1551 if( pInfo ){ 1552 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1553 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1554 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1555 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1556 } 1557 } 1558 return pInfo; 1559 } 1560 1561 /* 1562 ** Name of the connection operator, used for error messages. 1563 */ 1564 const char *sqlite3SelectOpName(int id){ 1565 char *z; 1566 switch( id ){ 1567 case TK_ALL: z = "UNION ALL"; break; 1568 case TK_INTERSECT: z = "INTERSECT"; break; 1569 case TK_EXCEPT: z = "EXCEPT"; break; 1570 default: z = "UNION"; break; 1571 } 1572 return z; 1573 } 1574 1575 #ifndef SQLITE_OMIT_EXPLAIN 1576 /* 1577 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1578 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1579 ** where the caption is of the form: 1580 ** 1581 ** "USE TEMP B-TREE FOR xxx" 1582 ** 1583 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1584 ** is determined by the zUsage argument. 1585 */ 1586 static void explainTempTable(Parse *pParse, const char *zUsage){ 1587 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1588 } 1589 1590 /* 1591 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1592 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1593 ** in sqlite3Select() to assign values to structure member variables that 1594 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1595 ** code with #ifndef directives. 1596 */ 1597 # define explainSetInteger(a, b) a = b 1598 1599 #else 1600 /* No-op versions of the explainXXX() functions and macros. */ 1601 # define explainTempTable(y,z) 1602 # define explainSetInteger(y,z) 1603 #endif 1604 1605 1606 /* 1607 ** If the inner loop was generated using a non-null pOrderBy argument, 1608 ** then the results were placed in a sorter. After the loop is terminated 1609 ** we need to run the sorter and output the results. The following 1610 ** routine generates the code needed to do that. 1611 */ 1612 static void generateSortTail( 1613 Parse *pParse, /* Parsing context */ 1614 Select *p, /* The SELECT statement */ 1615 SortCtx *pSort, /* Information on the ORDER BY clause */ 1616 int nColumn, /* Number of columns of data */ 1617 SelectDest *pDest /* Write the sorted results here */ 1618 ){ 1619 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1620 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1621 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1622 int addr; /* Top of output loop. Jump for Next. */ 1623 int addrOnce = 0; 1624 int iTab; 1625 ExprList *pOrderBy = pSort->pOrderBy; 1626 int eDest = pDest->eDest; 1627 int iParm = pDest->iSDParm; 1628 int regRow; 1629 int regRowid; 1630 int iCol; 1631 int nKey; /* Number of key columns in sorter record */ 1632 int iSortTab; /* Sorter cursor to read from */ 1633 int i; 1634 int bSeq; /* True if sorter record includes seq. no. */ 1635 int nRefKey = 0; 1636 struct ExprList_item *aOutEx = p->pEList->a; 1637 1638 assert( addrBreak<0 ); 1639 if( pSort->labelBkOut ){ 1640 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1641 sqlite3VdbeGoto(v, addrBreak); 1642 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1643 } 1644 1645 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1646 /* Open any cursors needed for sorter-reference expressions */ 1647 for(i=0; i<pSort->nDefer; i++){ 1648 Table *pTab = pSort->aDefer[i].pTab; 1649 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1650 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1651 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1652 } 1653 #endif 1654 1655 iTab = pSort->iECursor; 1656 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1657 if( eDest==SRT_Mem && p->iOffset ){ 1658 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1659 } 1660 regRowid = 0; 1661 regRow = pDest->iSdst; 1662 }else{ 1663 regRowid = sqlite3GetTempReg(pParse); 1664 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1665 regRow = sqlite3GetTempReg(pParse); 1666 nColumn = 0; 1667 }else{ 1668 regRow = sqlite3GetTempRange(pParse, nColumn); 1669 } 1670 } 1671 nKey = pOrderBy->nExpr - pSort->nOBSat; 1672 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1673 int regSortOut = ++pParse->nMem; 1674 iSortTab = pParse->nTab++; 1675 if( pSort->labelBkOut ){ 1676 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1677 } 1678 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1679 nKey+1+nColumn+nRefKey); 1680 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1681 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1682 VdbeCoverage(v); 1683 codeOffset(v, p->iOffset, addrContinue); 1684 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1685 bSeq = 0; 1686 }else{ 1687 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1688 codeOffset(v, p->iOffset, addrContinue); 1689 iSortTab = iTab; 1690 bSeq = 1; 1691 } 1692 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1693 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1694 if( aOutEx[i].bSorterRef ) continue; 1695 #endif 1696 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1697 } 1698 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1699 if( pSort->nDefer ){ 1700 int iKey = iCol+1; 1701 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1702 1703 for(i=0; i<pSort->nDefer; i++){ 1704 int iCsr = pSort->aDefer[i].iCsr; 1705 Table *pTab = pSort->aDefer[i].pTab; 1706 int nKey = pSort->aDefer[i].nKey; 1707 1708 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1709 if( HasRowid(pTab) ){ 1710 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1711 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1712 sqlite3VdbeCurrentAddr(v)+1, regKey); 1713 }else{ 1714 int k; 1715 int iJmp; 1716 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1717 for(k=0; k<nKey; k++){ 1718 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1719 } 1720 iJmp = sqlite3VdbeCurrentAddr(v); 1721 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1722 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1723 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1724 } 1725 } 1726 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1727 } 1728 #endif 1729 for(i=nColumn-1; i>=0; i--){ 1730 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1731 if( aOutEx[i].bSorterRef ){ 1732 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1733 }else 1734 #endif 1735 { 1736 int iRead; 1737 if( aOutEx[i].u.x.iOrderByCol ){ 1738 iRead = aOutEx[i].u.x.iOrderByCol-1; 1739 }else{ 1740 iRead = iCol--; 1741 } 1742 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1743 VdbeComment((v, "%s", aOutEx[i].zEName)); 1744 } 1745 } 1746 switch( eDest ){ 1747 case SRT_Table: 1748 case SRT_EphemTab: { 1749 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1750 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1751 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1752 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1753 break; 1754 } 1755 #ifndef SQLITE_OMIT_SUBQUERY 1756 case SRT_Set: { 1757 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1758 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1759 pDest->zAffSdst, nColumn); 1760 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1761 break; 1762 } 1763 case SRT_Mem: { 1764 /* The LIMIT clause will terminate the loop for us */ 1765 break; 1766 } 1767 #endif 1768 case SRT_Upfrom: { 1769 int i2 = pDest->iSDParm2; 1770 int r1 = sqlite3GetTempReg(pParse); 1771 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1772 if( i2<0 ){ 1773 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1774 }else{ 1775 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1776 } 1777 break; 1778 } 1779 default: { 1780 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1781 testcase( eDest==SRT_Output ); 1782 testcase( eDest==SRT_Coroutine ); 1783 if( eDest==SRT_Output ){ 1784 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1785 }else{ 1786 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1787 } 1788 break; 1789 } 1790 } 1791 if( regRowid ){ 1792 if( eDest==SRT_Set ){ 1793 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1794 }else{ 1795 sqlite3ReleaseTempReg(pParse, regRow); 1796 } 1797 sqlite3ReleaseTempReg(pParse, regRowid); 1798 } 1799 /* The bottom of the loop 1800 */ 1801 sqlite3VdbeResolveLabel(v, addrContinue); 1802 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1803 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1804 }else{ 1805 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1806 } 1807 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1808 sqlite3VdbeResolveLabel(v, addrBreak); 1809 } 1810 1811 /* 1812 ** Return a pointer to a string containing the 'declaration type' of the 1813 ** expression pExpr. The string may be treated as static by the caller. 1814 ** 1815 ** Also try to estimate the size of the returned value and return that 1816 ** result in *pEstWidth. 1817 ** 1818 ** The declaration type is the exact datatype definition extracted from the 1819 ** original CREATE TABLE statement if the expression is a column. The 1820 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1821 ** is considered a column can be complex in the presence of subqueries. The 1822 ** result-set expression in all of the following SELECT statements is 1823 ** considered a column by this function. 1824 ** 1825 ** SELECT col FROM tbl; 1826 ** SELECT (SELECT col FROM tbl; 1827 ** SELECT (SELECT col FROM tbl); 1828 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1829 ** 1830 ** The declaration type for any expression other than a column is NULL. 1831 ** 1832 ** This routine has either 3 or 6 parameters depending on whether or not 1833 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1834 */ 1835 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1836 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1837 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1838 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1839 #endif 1840 static const char *columnTypeImpl( 1841 NameContext *pNC, 1842 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1843 Expr *pExpr 1844 #else 1845 Expr *pExpr, 1846 const char **pzOrigDb, 1847 const char **pzOrigTab, 1848 const char **pzOrigCol 1849 #endif 1850 ){ 1851 char const *zType = 0; 1852 int j; 1853 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1854 char const *zOrigDb = 0; 1855 char const *zOrigTab = 0; 1856 char const *zOrigCol = 0; 1857 #endif 1858 1859 assert( pExpr!=0 ); 1860 assert( pNC->pSrcList!=0 ); 1861 switch( pExpr->op ){ 1862 case TK_COLUMN: { 1863 /* The expression is a column. Locate the table the column is being 1864 ** extracted from in NameContext.pSrcList. This table may be real 1865 ** database table or a subquery. 1866 */ 1867 Table *pTab = 0; /* Table structure column is extracted from */ 1868 Select *pS = 0; /* Select the column is extracted from */ 1869 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1870 while( pNC && !pTab ){ 1871 SrcList *pTabList = pNC->pSrcList; 1872 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1873 if( j<pTabList->nSrc ){ 1874 pTab = pTabList->a[j].pTab; 1875 pS = pTabList->a[j].pSelect; 1876 }else{ 1877 pNC = pNC->pNext; 1878 } 1879 } 1880 1881 if( pTab==0 ){ 1882 /* At one time, code such as "SELECT new.x" within a trigger would 1883 ** cause this condition to run. Since then, we have restructured how 1884 ** trigger code is generated and so this condition is no longer 1885 ** possible. However, it can still be true for statements like 1886 ** the following: 1887 ** 1888 ** CREATE TABLE t1(col INTEGER); 1889 ** SELECT (SELECT t1.col) FROM FROM t1; 1890 ** 1891 ** when columnType() is called on the expression "t1.col" in the 1892 ** sub-select. In this case, set the column type to NULL, even 1893 ** though it should really be "INTEGER". 1894 ** 1895 ** This is not a problem, as the column type of "t1.col" is never 1896 ** used. When columnType() is called on the expression 1897 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1898 ** branch below. */ 1899 break; 1900 } 1901 1902 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1903 if( pS ){ 1904 /* The "table" is actually a sub-select or a view in the FROM clause 1905 ** of the SELECT statement. Return the declaration type and origin 1906 ** data for the result-set column of the sub-select. 1907 */ 1908 if( iCol<pS->pEList->nExpr 1909 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1910 && iCol>=0 1911 #else 1912 && ALWAYS(iCol>=0) 1913 #endif 1914 ){ 1915 /* If iCol is less than zero, then the expression requests the 1916 ** rowid of the sub-select or view. This expression is legal (see 1917 ** test case misc2.2.2) - it always evaluates to NULL. 1918 */ 1919 NameContext sNC; 1920 Expr *p = pS->pEList->a[iCol].pExpr; 1921 sNC.pSrcList = pS->pSrc; 1922 sNC.pNext = pNC; 1923 sNC.pParse = pNC->pParse; 1924 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1925 } 1926 }else{ 1927 /* A real table or a CTE table */ 1928 assert( !pS ); 1929 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1930 if( iCol<0 ) iCol = pTab->iPKey; 1931 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1932 if( iCol<0 ){ 1933 zType = "INTEGER"; 1934 zOrigCol = "rowid"; 1935 }else{ 1936 zOrigCol = pTab->aCol[iCol].zCnName; 1937 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1938 } 1939 zOrigTab = pTab->zName; 1940 if( pNC->pParse && pTab->pSchema ){ 1941 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1942 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1943 } 1944 #else 1945 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1946 if( iCol<0 ){ 1947 zType = "INTEGER"; 1948 }else{ 1949 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1950 } 1951 #endif 1952 } 1953 break; 1954 } 1955 #ifndef SQLITE_OMIT_SUBQUERY 1956 case TK_SELECT: { 1957 /* The expression is a sub-select. Return the declaration type and 1958 ** origin info for the single column in the result set of the SELECT 1959 ** statement. 1960 */ 1961 NameContext sNC; 1962 Select *pS; 1963 Expr *p; 1964 assert( ExprUseXSelect(pExpr) ); 1965 pS = pExpr->x.pSelect; 1966 p = pS->pEList->a[0].pExpr; 1967 sNC.pSrcList = pS->pSrc; 1968 sNC.pNext = pNC; 1969 sNC.pParse = pNC->pParse; 1970 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1971 break; 1972 } 1973 #endif 1974 } 1975 1976 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1977 if( pzOrigDb ){ 1978 assert( pzOrigTab && pzOrigCol ); 1979 *pzOrigDb = zOrigDb; 1980 *pzOrigTab = zOrigTab; 1981 *pzOrigCol = zOrigCol; 1982 } 1983 #endif 1984 return zType; 1985 } 1986 1987 /* 1988 ** Generate code that will tell the VDBE the declaration types of columns 1989 ** in the result set. 1990 */ 1991 static void generateColumnTypes( 1992 Parse *pParse, /* Parser context */ 1993 SrcList *pTabList, /* List of tables */ 1994 ExprList *pEList /* Expressions defining the result set */ 1995 ){ 1996 #ifndef SQLITE_OMIT_DECLTYPE 1997 Vdbe *v = pParse->pVdbe; 1998 int i; 1999 NameContext sNC; 2000 sNC.pSrcList = pTabList; 2001 sNC.pParse = pParse; 2002 sNC.pNext = 0; 2003 for(i=0; i<pEList->nExpr; i++){ 2004 Expr *p = pEList->a[i].pExpr; 2005 const char *zType; 2006 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2007 const char *zOrigDb = 0; 2008 const char *zOrigTab = 0; 2009 const char *zOrigCol = 0; 2010 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2011 2012 /* The vdbe must make its own copy of the column-type and other 2013 ** column specific strings, in case the schema is reset before this 2014 ** virtual machine is deleted. 2015 */ 2016 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2017 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2018 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2019 #else 2020 zType = columnType(&sNC, p, 0, 0, 0); 2021 #endif 2022 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2023 } 2024 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2025 } 2026 2027 2028 /* 2029 ** Compute the column names for a SELECT statement. 2030 ** 2031 ** The only guarantee that SQLite makes about column names is that if the 2032 ** column has an AS clause assigning it a name, that will be the name used. 2033 ** That is the only documented guarantee. However, countless applications 2034 ** developed over the years have made baseless assumptions about column names 2035 ** and will break if those assumptions changes. Hence, use extreme caution 2036 ** when modifying this routine to avoid breaking legacy. 2037 ** 2038 ** See Also: sqlite3ColumnsFromExprList() 2039 ** 2040 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2041 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2042 ** applications should operate this way. Nevertheless, we need to support the 2043 ** other modes for legacy: 2044 ** 2045 ** short=OFF, full=OFF: Column name is the text of the expression has it 2046 ** originally appears in the SELECT statement. In 2047 ** other words, the zSpan of the result expression. 2048 ** 2049 ** short=ON, full=OFF: (This is the default setting). If the result 2050 ** refers directly to a table column, then the 2051 ** result column name is just the table column 2052 ** name: COLUMN. Otherwise use zSpan. 2053 ** 2054 ** full=ON, short=ANY: If the result refers directly to a table column, 2055 ** then the result column name with the table name 2056 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2057 */ 2058 void sqlite3GenerateColumnNames( 2059 Parse *pParse, /* Parser context */ 2060 Select *pSelect /* Generate column names for this SELECT statement */ 2061 ){ 2062 Vdbe *v = pParse->pVdbe; 2063 int i; 2064 Table *pTab; 2065 SrcList *pTabList; 2066 ExprList *pEList; 2067 sqlite3 *db = pParse->db; 2068 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2069 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2070 2071 #ifndef SQLITE_OMIT_EXPLAIN 2072 /* If this is an EXPLAIN, skip this step */ 2073 if( pParse->explain ){ 2074 return; 2075 } 2076 #endif 2077 2078 if( pParse->colNamesSet ) return; 2079 /* Column names are determined by the left-most term of a compound select */ 2080 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2081 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2082 pTabList = pSelect->pSrc; 2083 pEList = pSelect->pEList; 2084 assert( v!=0 ); 2085 assert( pTabList!=0 ); 2086 pParse->colNamesSet = 1; 2087 fullName = (db->flags & SQLITE_FullColNames)!=0; 2088 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2089 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2090 for(i=0; i<pEList->nExpr; i++){ 2091 Expr *p = pEList->a[i].pExpr; 2092 2093 assert( p!=0 ); 2094 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2095 assert( p->op!=TK_COLUMN 2096 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2097 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2098 /* An AS clause always takes first priority */ 2099 char *zName = pEList->a[i].zEName; 2100 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2101 }else if( srcName && p->op==TK_COLUMN ){ 2102 char *zCol; 2103 int iCol = p->iColumn; 2104 pTab = p->y.pTab; 2105 assert( pTab!=0 ); 2106 if( iCol<0 ) iCol = pTab->iPKey; 2107 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2108 if( iCol<0 ){ 2109 zCol = "rowid"; 2110 }else{ 2111 zCol = pTab->aCol[iCol].zCnName; 2112 } 2113 if( fullName ){ 2114 char *zName = 0; 2115 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2116 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2117 }else{ 2118 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2119 } 2120 }else{ 2121 const char *z = pEList->a[i].zEName; 2122 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2123 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2124 } 2125 } 2126 generateColumnTypes(pParse, pTabList, pEList); 2127 } 2128 2129 /* 2130 ** Given an expression list (which is really the list of expressions 2131 ** that form the result set of a SELECT statement) compute appropriate 2132 ** column names for a table that would hold the expression list. 2133 ** 2134 ** All column names will be unique. 2135 ** 2136 ** Only the column names are computed. Column.zType, Column.zColl, 2137 ** and other fields of Column are zeroed. 2138 ** 2139 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2140 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2141 ** 2142 ** The only guarantee that SQLite makes about column names is that if the 2143 ** column has an AS clause assigning it a name, that will be the name used. 2144 ** That is the only documented guarantee. However, countless applications 2145 ** developed over the years have made baseless assumptions about column names 2146 ** and will break if those assumptions changes. Hence, use extreme caution 2147 ** when modifying this routine to avoid breaking legacy. 2148 ** 2149 ** See Also: sqlite3GenerateColumnNames() 2150 */ 2151 int sqlite3ColumnsFromExprList( 2152 Parse *pParse, /* Parsing context */ 2153 ExprList *pEList, /* Expr list from which to derive column names */ 2154 i16 *pnCol, /* Write the number of columns here */ 2155 Column **paCol /* Write the new column list here */ 2156 ){ 2157 sqlite3 *db = pParse->db; /* Database connection */ 2158 int i, j; /* Loop counters */ 2159 u32 cnt; /* Index added to make the name unique */ 2160 Column *aCol, *pCol; /* For looping over result columns */ 2161 int nCol; /* Number of columns in the result set */ 2162 char *zName; /* Column name */ 2163 int nName; /* Size of name in zName[] */ 2164 Hash ht; /* Hash table of column names */ 2165 Table *pTab; 2166 2167 sqlite3HashInit(&ht); 2168 if( pEList ){ 2169 nCol = pEList->nExpr; 2170 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2171 testcase( aCol==0 ); 2172 if( NEVER(nCol>32767) ) nCol = 32767; 2173 }else{ 2174 nCol = 0; 2175 aCol = 0; 2176 } 2177 assert( nCol==(i16)nCol ); 2178 *pnCol = nCol; 2179 *paCol = aCol; 2180 2181 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2182 struct ExprList_item *pX = &pEList->a[i]; 2183 /* Get an appropriate name for the column 2184 */ 2185 if( (zName = pX->zEName)!=0 && pX->eEName==ENAME_NAME ){ 2186 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2187 }else{ 2188 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2189 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2190 pColExpr = pColExpr->pRight; 2191 assert( pColExpr!=0 ); 2192 } 2193 if( pColExpr->op==TK_COLUMN 2194 && ALWAYS( ExprUseYTab(pColExpr) ) 2195 && (pTab = pColExpr->y.pTab)!=0 2196 ){ 2197 /* For columns use the column name name */ 2198 int iCol = pColExpr->iColumn; 2199 if( iCol<0 ) iCol = pTab->iPKey; 2200 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2201 }else if( pColExpr->op==TK_ID ){ 2202 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2203 zName = pColExpr->u.zToken; 2204 }else{ 2205 /* Use the original text of the column expression as its name */ 2206 assert( zName==pX->zEName ); /* pointer comparison intended */ 2207 } 2208 } 2209 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2210 zName = sqlite3DbStrDup(db, zName); 2211 }else{ 2212 zName = sqlite3MPrintf(db,"column%d",i+1); 2213 } 2214 2215 /* Make sure the column name is unique. If the name is not unique, 2216 ** append an integer to the name so that it becomes unique. 2217 */ 2218 cnt = 0; 2219 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2220 nName = sqlite3Strlen30(zName); 2221 if( nName>0 ){ 2222 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2223 if( zName[j]==':' ) nName = j; 2224 } 2225 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2226 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2227 } 2228 pCol->zCnName = zName; 2229 pCol->hName = sqlite3StrIHash(zName); 2230 sqlite3ColumnPropertiesFromName(0, pCol); 2231 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2232 sqlite3OomFault(db); 2233 } 2234 } 2235 sqlite3HashClear(&ht); 2236 if( db->mallocFailed ){ 2237 for(j=0; j<i; j++){ 2238 sqlite3DbFree(db, aCol[j].zCnName); 2239 } 2240 sqlite3DbFree(db, aCol); 2241 *paCol = 0; 2242 *pnCol = 0; 2243 return SQLITE_NOMEM_BKPT; 2244 } 2245 return SQLITE_OK; 2246 } 2247 2248 /* 2249 ** Add type and collation information to a column list based on 2250 ** a SELECT statement. 2251 ** 2252 ** The column list presumably came from selectColumnNamesFromExprList(). 2253 ** The column list has only names, not types or collations. This 2254 ** routine goes through and adds the types and collations. 2255 ** 2256 ** This routine requires that all identifiers in the SELECT 2257 ** statement be resolved. 2258 */ 2259 void sqlite3SelectAddColumnTypeAndCollation( 2260 Parse *pParse, /* Parsing contexts */ 2261 Table *pTab, /* Add column type information to this table */ 2262 Select *pSelect, /* SELECT used to determine types and collations */ 2263 char aff /* Default affinity for columns */ 2264 ){ 2265 sqlite3 *db = pParse->db; 2266 NameContext sNC; 2267 Column *pCol; 2268 CollSeq *pColl; 2269 int i; 2270 Expr *p; 2271 struct ExprList_item *a; 2272 2273 assert( pSelect!=0 ); 2274 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2275 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2276 if( db->mallocFailed ) return; 2277 memset(&sNC, 0, sizeof(sNC)); 2278 sNC.pSrcList = pSelect->pSrc; 2279 a = pSelect->pEList->a; 2280 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2281 const char *zType; 2282 i64 n, m; 2283 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2284 p = a[i].pExpr; 2285 zType = columnType(&sNC, p, 0, 0, 0); 2286 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2287 pCol->affinity = sqlite3ExprAffinity(p); 2288 if( zType ){ 2289 m = sqlite3Strlen30(zType); 2290 n = sqlite3Strlen30(pCol->zCnName); 2291 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2292 if( pCol->zCnName ){ 2293 memcpy(&pCol->zCnName[n+1], zType, m+1); 2294 pCol->colFlags |= COLFLAG_HASTYPE; 2295 }else{ 2296 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2297 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2298 } 2299 } 2300 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2301 pColl = sqlite3ExprCollSeq(pParse, p); 2302 if( pColl ){ 2303 assert( pTab->pIndex==0 ); 2304 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2305 } 2306 } 2307 pTab->szTabRow = 1; /* Any non-zero value works */ 2308 } 2309 2310 /* 2311 ** Given a SELECT statement, generate a Table structure that describes 2312 ** the result set of that SELECT. 2313 */ 2314 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2315 Table *pTab; 2316 sqlite3 *db = pParse->db; 2317 u64 savedFlags; 2318 2319 savedFlags = db->flags; 2320 db->flags &= ~(u64)SQLITE_FullColNames; 2321 db->flags |= SQLITE_ShortColNames; 2322 sqlite3SelectPrep(pParse, pSelect, 0); 2323 db->flags = savedFlags; 2324 if( pParse->nErr ) return 0; 2325 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2326 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2327 if( pTab==0 ){ 2328 return 0; 2329 } 2330 pTab->nTabRef = 1; 2331 pTab->zName = 0; 2332 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2333 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2334 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2335 pTab->iPKey = -1; 2336 if( db->mallocFailed ){ 2337 sqlite3DeleteTable(db, pTab); 2338 return 0; 2339 } 2340 return pTab; 2341 } 2342 2343 /* 2344 ** Get a VDBE for the given parser context. Create a new one if necessary. 2345 ** If an error occurs, return NULL and leave a message in pParse. 2346 */ 2347 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2348 if( pParse->pVdbe ){ 2349 return pParse->pVdbe; 2350 } 2351 if( pParse->pToplevel==0 2352 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2353 ){ 2354 pParse->okConstFactor = 1; 2355 } 2356 return sqlite3VdbeCreate(pParse); 2357 } 2358 2359 2360 /* 2361 ** Compute the iLimit and iOffset fields of the SELECT based on the 2362 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2363 ** that appear in the original SQL statement after the LIMIT and OFFSET 2364 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2365 ** are the integer memory register numbers for counters used to compute 2366 ** the limit and offset. If there is no limit and/or offset, then 2367 ** iLimit and iOffset are negative. 2368 ** 2369 ** This routine changes the values of iLimit and iOffset only if 2370 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2371 ** and iOffset should have been preset to appropriate default values (zero) 2372 ** prior to calling this routine. 2373 ** 2374 ** The iOffset register (if it exists) is initialized to the value 2375 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2376 ** iOffset+1 is initialized to LIMIT+OFFSET. 2377 ** 2378 ** Only if pLimit->pLeft!=0 do the limit registers get 2379 ** redefined. The UNION ALL operator uses this property to force 2380 ** the reuse of the same limit and offset registers across multiple 2381 ** SELECT statements. 2382 */ 2383 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2384 Vdbe *v = 0; 2385 int iLimit = 0; 2386 int iOffset; 2387 int n; 2388 Expr *pLimit = p->pLimit; 2389 2390 if( p->iLimit ) return; 2391 2392 /* 2393 ** "LIMIT -1" always shows all rows. There is some 2394 ** controversy about what the correct behavior should be. 2395 ** The current implementation interprets "LIMIT 0" to mean 2396 ** no rows. 2397 */ 2398 if( pLimit ){ 2399 assert( pLimit->op==TK_LIMIT ); 2400 assert( pLimit->pLeft!=0 ); 2401 p->iLimit = iLimit = ++pParse->nMem; 2402 v = sqlite3GetVdbe(pParse); 2403 assert( v!=0 ); 2404 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2405 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2406 VdbeComment((v, "LIMIT counter")); 2407 if( n==0 ){ 2408 sqlite3VdbeGoto(v, iBreak); 2409 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2410 p->nSelectRow = sqlite3LogEst((u64)n); 2411 p->selFlags |= SF_FixedLimit; 2412 } 2413 }else{ 2414 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2415 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2416 VdbeComment((v, "LIMIT counter")); 2417 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2418 } 2419 if( pLimit->pRight ){ 2420 p->iOffset = iOffset = ++pParse->nMem; 2421 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2422 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2423 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2424 VdbeComment((v, "OFFSET counter")); 2425 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2426 VdbeComment((v, "LIMIT+OFFSET")); 2427 } 2428 } 2429 } 2430 2431 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2432 /* 2433 ** Return the appropriate collating sequence for the iCol-th column of 2434 ** the result set for the compound-select statement "p". Return NULL if 2435 ** the column has no default collating sequence. 2436 ** 2437 ** The collating sequence for the compound select is taken from the 2438 ** left-most term of the select that has a collating sequence. 2439 */ 2440 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2441 CollSeq *pRet; 2442 if( p->pPrior ){ 2443 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2444 }else{ 2445 pRet = 0; 2446 } 2447 assert( iCol>=0 ); 2448 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2449 ** have been thrown during name resolution and we would not have gotten 2450 ** this far */ 2451 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2452 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2453 } 2454 return pRet; 2455 } 2456 2457 /* 2458 ** The select statement passed as the second parameter is a compound SELECT 2459 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2460 ** structure suitable for implementing the ORDER BY. 2461 ** 2462 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2463 ** function is responsible for ensuring that this structure is eventually 2464 ** freed. 2465 */ 2466 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2467 ExprList *pOrderBy = p->pOrderBy; 2468 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2469 sqlite3 *db = pParse->db; 2470 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2471 if( pRet ){ 2472 int i; 2473 for(i=0; i<nOrderBy; i++){ 2474 struct ExprList_item *pItem = &pOrderBy->a[i]; 2475 Expr *pTerm = pItem->pExpr; 2476 CollSeq *pColl; 2477 2478 if( pTerm->flags & EP_Collate ){ 2479 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2480 }else{ 2481 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2482 if( pColl==0 ) pColl = db->pDfltColl; 2483 pOrderBy->a[i].pExpr = 2484 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2485 } 2486 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2487 pRet->aColl[i] = pColl; 2488 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2489 } 2490 } 2491 2492 return pRet; 2493 } 2494 2495 #ifndef SQLITE_OMIT_CTE 2496 /* 2497 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2498 ** query of the form: 2499 ** 2500 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2501 ** \___________/ \_______________/ 2502 ** p->pPrior p 2503 ** 2504 ** 2505 ** There is exactly one reference to the recursive-table in the FROM clause 2506 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2507 ** 2508 ** The setup-query runs once to generate an initial set of rows that go 2509 ** into a Queue table. Rows are extracted from the Queue table one by 2510 ** one. Each row extracted from Queue is output to pDest. Then the single 2511 ** extracted row (now in the iCurrent table) becomes the content of the 2512 ** recursive-table for a recursive-query run. The output of the recursive-query 2513 ** is added back into the Queue table. Then another row is extracted from Queue 2514 ** and the iteration continues until the Queue table is empty. 2515 ** 2516 ** If the compound query operator is UNION then no duplicate rows are ever 2517 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2518 ** that have ever been inserted into Queue and causes duplicates to be 2519 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2520 ** 2521 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2522 ** ORDER BY order and the first entry is extracted for each cycle. Without 2523 ** an ORDER BY, the Queue table is just a FIFO. 2524 ** 2525 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2526 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2527 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2528 ** with a positive value, then the first OFFSET outputs are discarded rather 2529 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2530 ** rows have been skipped. 2531 */ 2532 static void generateWithRecursiveQuery( 2533 Parse *pParse, /* Parsing context */ 2534 Select *p, /* The recursive SELECT to be coded */ 2535 SelectDest *pDest /* What to do with query results */ 2536 ){ 2537 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2538 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2539 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2540 Select *pSetup; /* The setup query */ 2541 Select *pFirstRec; /* Left-most recursive term */ 2542 int addrTop; /* Top of the loop */ 2543 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2544 int iCurrent = 0; /* The Current table */ 2545 int regCurrent; /* Register holding Current table */ 2546 int iQueue; /* The Queue table */ 2547 int iDistinct = 0; /* To ensure unique results if UNION */ 2548 int eDest = SRT_Fifo; /* How to write to Queue */ 2549 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2550 int i; /* Loop counter */ 2551 int rc; /* Result code */ 2552 ExprList *pOrderBy; /* The ORDER BY clause */ 2553 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2554 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2555 2556 #ifndef SQLITE_OMIT_WINDOWFUNC 2557 if( p->pWin ){ 2558 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2559 return; 2560 } 2561 #endif 2562 2563 /* Obtain authorization to do a recursive query */ 2564 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2565 2566 /* Process the LIMIT and OFFSET clauses, if they exist */ 2567 addrBreak = sqlite3VdbeMakeLabel(pParse); 2568 p->nSelectRow = 320; /* 4 billion rows */ 2569 computeLimitRegisters(pParse, p, addrBreak); 2570 pLimit = p->pLimit; 2571 regLimit = p->iLimit; 2572 regOffset = p->iOffset; 2573 p->pLimit = 0; 2574 p->iLimit = p->iOffset = 0; 2575 pOrderBy = p->pOrderBy; 2576 2577 /* Locate the cursor number of the Current table */ 2578 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2579 if( pSrc->a[i].fg.isRecursive ){ 2580 iCurrent = pSrc->a[i].iCursor; 2581 break; 2582 } 2583 } 2584 2585 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2586 ** the Distinct table must be exactly one greater than Queue in order 2587 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2588 iQueue = pParse->nTab++; 2589 if( p->op==TK_UNION ){ 2590 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2591 iDistinct = pParse->nTab++; 2592 }else{ 2593 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2594 } 2595 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2596 2597 /* Allocate cursors for Current, Queue, and Distinct. */ 2598 regCurrent = ++pParse->nMem; 2599 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2600 if( pOrderBy ){ 2601 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2602 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2603 (char*)pKeyInfo, P4_KEYINFO); 2604 destQueue.pOrderBy = pOrderBy; 2605 }else{ 2606 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2607 } 2608 VdbeComment((v, "Queue table")); 2609 if( iDistinct ){ 2610 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2611 p->selFlags |= SF_UsesEphemeral; 2612 } 2613 2614 /* Detach the ORDER BY clause from the compound SELECT */ 2615 p->pOrderBy = 0; 2616 2617 /* Figure out how many elements of the compound SELECT are part of the 2618 ** recursive query. Make sure no recursive elements use aggregate 2619 ** functions. Mark the recursive elements as UNION ALL even if they 2620 ** are really UNION because the distinctness will be enforced by the 2621 ** iDistinct table. pFirstRec is left pointing to the left-most 2622 ** recursive term of the CTE. 2623 */ 2624 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2625 if( pFirstRec->selFlags & SF_Aggregate ){ 2626 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2627 goto end_of_recursive_query; 2628 } 2629 pFirstRec->op = TK_ALL; 2630 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2631 } 2632 2633 /* Store the results of the setup-query in Queue. */ 2634 pSetup = pFirstRec->pPrior; 2635 pSetup->pNext = 0; 2636 ExplainQueryPlan((pParse, 1, "SETUP")); 2637 rc = sqlite3Select(pParse, pSetup, &destQueue); 2638 pSetup->pNext = p; 2639 if( rc ) goto end_of_recursive_query; 2640 2641 /* Find the next row in the Queue and output that row */ 2642 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2643 2644 /* Transfer the next row in Queue over to Current */ 2645 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2646 if( pOrderBy ){ 2647 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2648 }else{ 2649 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2650 } 2651 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2652 2653 /* Output the single row in Current */ 2654 addrCont = sqlite3VdbeMakeLabel(pParse); 2655 codeOffset(v, regOffset, addrCont); 2656 selectInnerLoop(pParse, p, iCurrent, 2657 0, 0, pDest, addrCont, addrBreak); 2658 if( regLimit ){ 2659 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2660 VdbeCoverage(v); 2661 } 2662 sqlite3VdbeResolveLabel(v, addrCont); 2663 2664 /* Execute the recursive SELECT taking the single row in Current as 2665 ** the value for the recursive-table. Store the results in the Queue. 2666 */ 2667 pFirstRec->pPrior = 0; 2668 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2669 sqlite3Select(pParse, p, &destQueue); 2670 assert( pFirstRec->pPrior==0 ); 2671 pFirstRec->pPrior = pSetup; 2672 2673 /* Keep running the loop until the Queue is empty */ 2674 sqlite3VdbeGoto(v, addrTop); 2675 sqlite3VdbeResolveLabel(v, addrBreak); 2676 2677 end_of_recursive_query: 2678 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2679 p->pOrderBy = pOrderBy; 2680 p->pLimit = pLimit; 2681 return; 2682 } 2683 #endif /* SQLITE_OMIT_CTE */ 2684 2685 /* Forward references */ 2686 static int multiSelectOrderBy( 2687 Parse *pParse, /* Parsing context */ 2688 Select *p, /* The right-most of SELECTs to be coded */ 2689 SelectDest *pDest /* What to do with query results */ 2690 ); 2691 2692 /* 2693 ** Handle the special case of a compound-select that originates from a 2694 ** VALUES clause. By handling this as a special case, we avoid deep 2695 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2696 ** on a VALUES clause. 2697 ** 2698 ** Because the Select object originates from a VALUES clause: 2699 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2700 ** (2) All terms are UNION ALL 2701 ** (3) There is no ORDER BY clause 2702 ** 2703 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2704 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2705 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2706 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2707 */ 2708 static int multiSelectValues( 2709 Parse *pParse, /* Parsing context */ 2710 Select *p, /* The right-most of SELECTs to be coded */ 2711 SelectDest *pDest /* What to do with query results */ 2712 ){ 2713 int nRow = 1; 2714 int rc = 0; 2715 int bShowAll = p->pLimit==0; 2716 assert( p->selFlags & SF_MultiValue ); 2717 do{ 2718 assert( p->selFlags & SF_Values ); 2719 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2720 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2721 #ifndef SQLITE_OMIT_WINDOWFUNC 2722 if( p->pWin ) return -1; 2723 #endif 2724 if( p->pPrior==0 ) break; 2725 assert( p->pPrior->pNext==p ); 2726 p = p->pPrior; 2727 nRow += bShowAll; 2728 }while(1); 2729 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2730 nRow==1 ? "" : "S")); 2731 while( p ){ 2732 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2733 if( !bShowAll ) break; 2734 p->nSelectRow = nRow; 2735 p = p->pNext; 2736 } 2737 return rc; 2738 } 2739 2740 /* 2741 ** Return true if the SELECT statement which is known to be the recursive 2742 ** part of a recursive CTE still has its anchor terms attached. If the 2743 ** anchor terms have already been removed, then return false. 2744 */ 2745 static int hasAnchor(Select *p){ 2746 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2747 return p!=0; 2748 } 2749 2750 /* 2751 ** This routine is called to process a compound query form from 2752 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2753 ** INTERSECT 2754 ** 2755 ** "p" points to the right-most of the two queries. the query on the 2756 ** left is p->pPrior. The left query could also be a compound query 2757 ** in which case this routine will be called recursively. 2758 ** 2759 ** The results of the total query are to be written into a destination 2760 ** of type eDest with parameter iParm. 2761 ** 2762 ** Example 1: Consider a three-way compound SQL statement. 2763 ** 2764 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2765 ** 2766 ** This statement is parsed up as follows: 2767 ** 2768 ** SELECT c FROM t3 2769 ** | 2770 ** `-----> SELECT b FROM t2 2771 ** | 2772 ** `------> SELECT a FROM t1 2773 ** 2774 ** The arrows in the diagram above represent the Select.pPrior pointer. 2775 ** So if this routine is called with p equal to the t3 query, then 2776 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2777 ** 2778 ** Notice that because of the way SQLite parses compound SELECTs, the 2779 ** individual selects always group from left to right. 2780 */ 2781 static int multiSelect( 2782 Parse *pParse, /* Parsing context */ 2783 Select *p, /* The right-most of SELECTs to be coded */ 2784 SelectDest *pDest /* What to do with query results */ 2785 ){ 2786 int rc = SQLITE_OK; /* Success code from a subroutine */ 2787 Select *pPrior; /* Another SELECT immediately to our left */ 2788 Vdbe *v; /* Generate code to this VDBE */ 2789 SelectDest dest; /* Alternative data destination */ 2790 Select *pDelete = 0; /* Chain of simple selects to delete */ 2791 sqlite3 *db; /* Database connection */ 2792 2793 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2794 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2795 */ 2796 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2797 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2798 assert( p->selFlags & SF_Compound ); 2799 db = pParse->db; 2800 pPrior = p->pPrior; 2801 dest = *pDest; 2802 assert( pPrior->pOrderBy==0 ); 2803 assert( pPrior->pLimit==0 ); 2804 2805 v = sqlite3GetVdbe(pParse); 2806 assert( v!=0 ); /* The VDBE already created by calling function */ 2807 2808 /* Create the destination temporary table if necessary 2809 */ 2810 if( dest.eDest==SRT_EphemTab ){ 2811 assert( p->pEList ); 2812 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2813 dest.eDest = SRT_Table; 2814 } 2815 2816 /* Special handling for a compound-select that originates as a VALUES clause. 2817 */ 2818 if( p->selFlags & SF_MultiValue ){ 2819 rc = multiSelectValues(pParse, p, &dest); 2820 if( rc>=0 ) goto multi_select_end; 2821 rc = SQLITE_OK; 2822 } 2823 2824 /* Make sure all SELECTs in the statement have the same number of elements 2825 ** in their result sets. 2826 */ 2827 assert( p->pEList && pPrior->pEList ); 2828 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2829 2830 #ifndef SQLITE_OMIT_CTE 2831 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2832 generateWithRecursiveQuery(pParse, p, &dest); 2833 }else 2834 #endif 2835 2836 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2837 */ 2838 if( p->pOrderBy ){ 2839 return multiSelectOrderBy(pParse, p, pDest); 2840 }else{ 2841 2842 #ifndef SQLITE_OMIT_EXPLAIN 2843 if( pPrior->pPrior==0 ){ 2844 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2845 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2846 } 2847 #endif 2848 2849 /* Generate code for the left and right SELECT statements. 2850 */ 2851 switch( p->op ){ 2852 case TK_ALL: { 2853 int addr = 0; 2854 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2855 assert( !pPrior->pLimit ); 2856 pPrior->iLimit = p->iLimit; 2857 pPrior->iOffset = p->iOffset; 2858 pPrior->pLimit = p->pLimit; 2859 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2860 rc = sqlite3Select(pParse, pPrior, &dest); 2861 pPrior->pLimit = 0; 2862 if( rc ){ 2863 goto multi_select_end; 2864 } 2865 p->pPrior = 0; 2866 p->iLimit = pPrior->iLimit; 2867 p->iOffset = pPrior->iOffset; 2868 if( p->iLimit ){ 2869 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2870 VdbeComment((v, "Jump ahead if LIMIT reached")); 2871 if( p->iOffset ){ 2872 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2873 p->iLimit, p->iOffset+1, p->iOffset); 2874 } 2875 } 2876 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2877 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2878 rc = sqlite3Select(pParse, p, &dest); 2879 testcase( rc!=SQLITE_OK ); 2880 pDelete = p->pPrior; 2881 p->pPrior = pPrior; 2882 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2883 if( p->pLimit 2884 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2885 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2886 ){ 2887 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2888 } 2889 if( addr ){ 2890 sqlite3VdbeJumpHere(v, addr); 2891 } 2892 break; 2893 } 2894 case TK_EXCEPT: 2895 case TK_UNION: { 2896 int unionTab; /* Cursor number of the temp table holding result */ 2897 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2898 int priorOp; /* The SRT_ operation to apply to prior selects */ 2899 Expr *pLimit; /* Saved values of p->nLimit */ 2900 int addr; 2901 SelectDest uniondest; 2902 2903 testcase( p->op==TK_EXCEPT ); 2904 testcase( p->op==TK_UNION ); 2905 priorOp = SRT_Union; 2906 if( dest.eDest==priorOp ){ 2907 /* We can reuse a temporary table generated by a SELECT to our 2908 ** right. 2909 */ 2910 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2911 unionTab = dest.iSDParm; 2912 }else{ 2913 /* We will need to create our own temporary table to hold the 2914 ** intermediate results. 2915 */ 2916 unionTab = pParse->nTab++; 2917 assert( p->pOrderBy==0 ); 2918 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2919 assert( p->addrOpenEphm[0] == -1 ); 2920 p->addrOpenEphm[0] = addr; 2921 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2922 assert( p->pEList ); 2923 } 2924 2925 2926 /* Code the SELECT statements to our left 2927 */ 2928 assert( !pPrior->pOrderBy ); 2929 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2930 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2931 rc = sqlite3Select(pParse, pPrior, &uniondest); 2932 if( rc ){ 2933 goto multi_select_end; 2934 } 2935 2936 /* Code the current SELECT statement 2937 */ 2938 if( p->op==TK_EXCEPT ){ 2939 op = SRT_Except; 2940 }else{ 2941 assert( p->op==TK_UNION ); 2942 op = SRT_Union; 2943 } 2944 p->pPrior = 0; 2945 pLimit = p->pLimit; 2946 p->pLimit = 0; 2947 uniondest.eDest = op; 2948 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2949 sqlite3SelectOpName(p->op))); 2950 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2951 rc = sqlite3Select(pParse, p, &uniondest); 2952 testcase( rc!=SQLITE_OK ); 2953 assert( p->pOrderBy==0 ); 2954 pDelete = p->pPrior; 2955 p->pPrior = pPrior; 2956 p->pOrderBy = 0; 2957 if( p->op==TK_UNION ){ 2958 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2959 } 2960 sqlite3ExprDelete(db, p->pLimit); 2961 p->pLimit = pLimit; 2962 p->iLimit = 0; 2963 p->iOffset = 0; 2964 2965 /* Convert the data in the temporary table into whatever form 2966 ** it is that we currently need. 2967 */ 2968 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2969 assert( p->pEList || db->mallocFailed ); 2970 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2971 int iCont, iBreak, iStart; 2972 iBreak = sqlite3VdbeMakeLabel(pParse); 2973 iCont = sqlite3VdbeMakeLabel(pParse); 2974 computeLimitRegisters(pParse, p, iBreak); 2975 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2976 iStart = sqlite3VdbeCurrentAddr(v); 2977 selectInnerLoop(pParse, p, unionTab, 2978 0, 0, &dest, iCont, iBreak); 2979 sqlite3VdbeResolveLabel(v, iCont); 2980 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2981 sqlite3VdbeResolveLabel(v, iBreak); 2982 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2983 } 2984 break; 2985 } 2986 default: assert( p->op==TK_INTERSECT ); { 2987 int tab1, tab2; 2988 int iCont, iBreak, iStart; 2989 Expr *pLimit; 2990 int addr; 2991 SelectDest intersectdest; 2992 int r1; 2993 2994 /* INTERSECT is different from the others since it requires 2995 ** two temporary tables. Hence it has its own case. Begin 2996 ** by allocating the tables we will need. 2997 */ 2998 tab1 = pParse->nTab++; 2999 tab2 = pParse->nTab++; 3000 assert( p->pOrderBy==0 ); 3001 3002 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3003 assert( p->addrOpenEphm[0] == -1 ); 3004 p->addrOpenEphm[0] = addr; 3005 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3006 assert( p->pEList ); 3007 3008 /* Code the SELECTs to our left into temporary table "tab1". 3009 */ 3010 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3011 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3012 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3013 if( rc ){ 3014 goto multi_select_end; 3015 } 3016 3017 /* Code the current SELECT into temporary table "tab2" 3018 */ 3019 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3020 assert( p->addrOpenEphm[1] == -1 ); 3021 p->addrOpenEphm[1] = addr; 3022 p->pPrior = 0; 3023 pLimit = p->pLimit; 3024 p->pLimit = 0; 3025 intersectdest.iSDParm = tab2; 3026 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3027 sqlite3SelectOpName(p->op))); 3028 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3029 rc = sqlite3Select(pParse, p, &intersectdest); 3030 testcase( rc!=SQLITE_OK ); 3031 pDelete = p->pPrior; 3032 p->pPrior = pPrior; 3033 if( p->nSelectRow>pPrior->nSelectRow ){ 3034 p->nSelectRow = pPrior->nSelectRow; 3035 } 3036 sqlite3ExprDelete(db, p->pLimit); 3037 p->pLimit = pLimit; 3038 3039 /* Generate code to take the intersection of the two temporary 3040 ** tables. 3041 */ 3042 if( rc ) break; 3043 assert( p->pEList ); 3044 iBreak = sqlite3VdbeMakeLabel(pParse); 3045 iCont = sqlite3VdbeMakeLabel(pParse); 3046 computeLimitRegisters(pParse, p, iBreak); 3047 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3048 r1 = sqlite3GetTempReg(pParse); 3049 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3050 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3051 VdbeCoverage(v); 3052 sqlite3ReleaseTempReg(pParse, r1); 3053 selectInnerLoop(pParse, p, tab1, 3054 0, 0, &dest, iCont, iBreak); 3055 sqlite3VdbeResolveLabel(v, iCont); 3056 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3057 sqlite3VdbeResolveLabel(v, iBreak); 3058 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3059 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3060 break; 3061 } 3062 } 3063 3064 #ifndef SQLITE_OMIT_EXPLAIN 3065 if( p->pNext==0 ){ 3066 ExplainQueryPlanPop(pParse); 3067 } 3068 #endif 3069 } 3070 if( pParse->nErr ) goto multi_select_end; 3071 3072 /* Compute collating sequences used by 3073 ** temporary tables needed to implement the compound select. 3074 ** Attach the KeyInfo structure to all temporary tables. 3075 ** 3076 ** This section is run by the right-most SELECT statement only. 3077 ** SELECT statements to the left always skip this part. The right-most 3078 ** SELECT might also skip this part if it has no ORDER BY clause and 3079 ** no temp tables are required. 3080 */ 3081 if( p->selFlags & SF_UsesEphemeral ){ 3082 int i; /* Loop counter */ 3083 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3084 Select *pLoop; /* For looping through SELECT statements */ 3085 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3086 int nCol; /* Number of columns in result set */ 3087 3088 assert( p->pNext==0 ); 3089 assert( p->pEList!=0 ); 3090 nCol = p->pEList->nExpr; 3091 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3092 if( !pKeyInfo ){ 3093 rc = SQLITE_NOMEM_BKPT; 3094 goto multi_select_end; 3095 } 3096 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3097 *apColl = multiSelectCollSeq(pParse, p, i); 3098 if( 0==*apColl ){ 3099 *apColl = db->pDfltColl; 3100 } 3101 } 3102 3103 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3104 for(i=0; i<2; i++){ 3105 int addr = pLoop->addrOpenEphm[i]; 3106 if( addr<0 ){ 3107 /* If [0] is unused then [1] is also unused. So we can 3108 ** always safely abort as soon as the first unused slot is found */ 3109 assert( pLoop->addrOpenEphm[1]<0 ); 3110 break; 3111 } 3112 sqlite3VdbeChangeP2(v, addr, nCol); 3113 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3114 P4_KEYINFO); 3115 pLoop->addrOpenEphm[i] = -1; 3116 } 3117 } 3118 sqlite3KeyInfoUnref(pKeyInfo); 3119 } 3120 3121 multi_select_end: 3122 pDest->iSdst = dest.iSdst; 3123 pDest->nSdst = dest.nSdst; 3124 if( pDelete ){ 3125 sqlite3ParserAddCleanup(pParse, 3126 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3127 pDelete); 3128 } 3129 return rc; 3130 } 3131 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3132 3133 /* 3134 ** Error message for when two or more terms of a compound select have different 3135 ** size result sets. 3136 */ 3137 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3138 if( p->selFlags & SF_Values ){ 3139 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3140 }else{ 3141 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3142 " do not have the same number of result columns", 3143 sqlite3SelectOpName(p->op)); 3144 } 3145 } 3146 3147 /* 3148 ** Code an output subroutine for a coroutine implementation of a 3149 ** SELECT statment. 3150 ** 3151 ** The data to be output is contained in pIn->iSdst. There are 3152 ** pIn->nSdst columns to be output. pDest is where the output should 3153 ** be sent. 3154 ** 3155 ** regReturn is the number of the register holding the subroutine 3156 ** return address. 3157 ** 3158 ** If regPrev>0 then it is the first register in a vector that 3159 ** records the previous output. mem[regPrev] is a flag that is false 3160 ** if there has been no previous output. If regPrev>0 then code is 3161 ** generated to suppress duplicates. pKeyInfo is used for comparing 3162 ** keys. 3163 ** 3164 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3165 ** iBreak. 3166 */ 3167 static int generateOutputSubroutine( 3168 Parse *pParse, /* Parsing context */ 3169 Select *p, /* The SELECT statement */ 3170 SelectDest *pIn, /* Coroutine supplying data */ 3171 SelectDest *pDest, /* Where to send the data */ 3172 int regReturn, /* The return address register */ 3173 int regPrev, /* Previous result register. No uniqueness if 0 */ 3174 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3175 int iBreak /* Jump here if we hit the LIMIT */ 3176 ){ 3177 Vdbe *v = pParse->pVdbe; 3178 int iContinue; 3179 int addr; 3180 3181 addr = sqlite3VdbeCurrentAddr(v); 3182 iContinue = sqlite3VdbeMakeLabel(pParse); 3183 3184 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3185 */ 3186 if( regPrev ){ 3187 int addr1, addr2; 3188 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3189 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3190 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3191 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3192 sqlite3VdbeJumpHere(v, addr1); 3193 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3194 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3195 } 3196 if( pParse->db->mallocFailed ) return 0; 3197 3198 /* Suppress the first OFFSET entries if there is an OFFSET clause 3199 */ 3200 codeOffset(v, p->iOffset, iContinue); 3201 3202 assert( pDest->eDest!=SRT_Exists ); 3203 assert( pDest->eDest!=SRT_Table ); 3204 switch( pDest->eDest ){ 3205 /* Store the result as data using a unique key. 3206 */ 3207 case SRT_EphemTab: { 3208 int r1 = sqlite3GetTempReg(pParse); 3209 int r2 = sqlite3GetTempReg(pParse); 3210 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3211 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3212 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3213 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3214 sqlite3ReleaseTempReg(pParse, r2); 3215 sqlite3ReleaseTempReg(pParse, r1); 3216 break; 3217 } 3218 3219 #ifndef SQLITE_OMIT_SUBQUERY 3220 /* If we are creating a set for an "expr IN (SELECT ...)". 3221 */ 3222 case SRT_Set: { 3223 int r1; 3224 testcase( pIn->nSdst>1 ); 3225 r1 = sqlite3GetTempReg(pParse); 3226 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3227 r1, pDest->zAffSdst, pIn->nSdst); 3228 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3229 pIn->iSdst, pIn->nSdst); 3230 sqlite3ReleaseTempReg(pParse, r1); 3231 break; 3232 } 3233 3234 /* If this is a scalar select that is part of an expression, then 3235 ** store the results in the appropriate memory cell and break out 3236 ** of the scan loop. Note that the select might return multiple columns 3237 ** if it is the RHS of a row-value IN operator. 3238 */ 3239 case SRT_Mem: { 3240 testcase( pIn->nSdst>1 ); 3241 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3242 /* The LIMIT clause will jump out of the loop for us */ 3243 break; 3244 } 3245 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3246 3247 /* The results are stored in a sequence of registers 3248 ** starting at pDest->iSdst. Then the co-routine yields. 3249 */ 3250 case SRT_Coroutine: { 3251 if( pDest->iSdst==0 ){ 3252 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3253 pDest->nSdst = pIn->nSdst; 3254 } 3255 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3256 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3257 break; 3258 } 3259 3260 /* If none of the above, then the result destination must be 3261 ** SRT_Output. This routine is never called with any other 3262 ** destination other than the ones handled above or SRT_Output. 3263 ** 3264 ** For SRT_Output, results are stored in a sequence of registers. 3265 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3266 ** return the next row of result. 3267 */ 3268 default: { 3269 assert( pDest->eDest==SRT_Output ); 3270 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3271 break; 3272 } 3273 } 3274 3275 /* Jump to the end of the loop if the LIMIT is reached. 3276 */ 3277 if( p->iLimit ){ 3278 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3279 } 3280 3281 /* Generate the subroutine return 3282 */ 3283 sqlite3VdbeResolveLabel(v, iContinue); 3284 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3285 3286 return addr; 3287 } 3288 3289 /* 3290 ** Alternative compound select code generator for cases when there 3291 ** is an ORDER BY clause. 3292 ** 3293 ** We assume a query of the following form: 3294 ** 3295 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3296 ** 3297 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3298 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3299 ** co-routines. Then run the co-routines in parallel and merge the results 3300 ** into the output. In addition to the two coroutines (called selectA and 3301 ** selectB) there are 7 subroutines: 3302 ** 3303 ** outA: Move the output of the selectA coroutine into the output 3304 ** of the compound query. 3305 ** 3306 ** outB: Move the output of the selectB coroutine into the output 3307 ** of the compound query. (Only generated for UNION and 3308 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3309 ** appears only in B.) 3310 ** 3311 ** AltB: Called when there is data from both coroutines and A<B. 3312 ** 3313 ** AeqB: Called when there is data from both coroutines and A==B. 3314 ** 3315 ** AgtB: Called when there is data from both coroutines and A>B. 3316 ** 3317 ** EofA: Called when data is exhausted from selectA. 3318 ** 3319 ** EofB: Called when data is exhausted from selectB. 3320 ** 3321 ** The implementation of the latter five subroutines depend on which 3322 ** <operator> is used: 3323 ** 3324 ** 3325 ** UNION ALL UNION EXCEPT INTERSECT 3326 ** ------------- ----------------- -------------- ----------------- 3327 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3328 ** 3329 ** AeqB: outA, nextA nextA nextA outA, nextA 3330 ** 3331 ** AgtB: outB, nextB outB, nextB nextB nextB 3332 ** 3333 ** EofA: outB, nextB outB, nextB halt halt 3334 ** 3335 ** EofB: outA, nextA outA, nextA outA, nextA halt 3336 ** 3337 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3338 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3339 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3340 ** following nextX causes a jump to the end of the select processing. 3341 ** 3342 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3343 ** within the output subroutine. The regPrev register set holds the previously 3344 ** output value. A comparison is made against this value and the output 3345 ** is skipped if the next results would be the same as the previous. 3346 ** 3347 ** The implementation plan is to implement the two coroutines and seven 3348 ** subroutines first, then put the control logic at the bottom. Like this: 3349 ** 3350 ** goto Init 3351 ** coA: coroutine for left query (A) 3352 ** coB: coroutine for right query (B) 3353 ** outA: output one row of A 3354 ** outB: output one row of B (UNION and UNION ALL only) 3355 ** EofA: ... 3356 ** EofB: ... 3357 ** AltB: ... 3358 ** AeqB: ... 3359 ** AgtB: ... 3360 ** Init: initialize coroutine registers 3361 ** yield coA 3362 ** if eof(A) goto EofA 3363 ** yield coB 3364 ** if eof(B) goto EofB 3365 ** Cmpr: Compare A, B 3366 ** Jump AltB, AeqB, AgtB 3367 ** End: ... 3368 ** 3369 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3370 ** actually called using Gosub and they do not Return. EofA and EofB loop 3371 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3372 ** and AgtB jump to either L2 or to one of EofA or EofB. 3373 */ 3374 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3375 static int multiSelectOrderBy( 3376 Parse *pParse, /* Parsing context */ 3377 Select *p, /* The right-most of SELECTs to be coded */ 3378 SelectDest *pDest /* What to do with query results */ 3379 ){ 3380 int i, j; /* Loop counters */ 3381 Select *pPrior; /* Another SELECT immediately to our left */ 3382 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3383 int nSelect; /* Number of SELECT statements in the compound */ 3384 Vdbe *v; /* Generate code to this VDBE */ 3385 SelectDest destA; /* Destination for coroutine A */ 3386 SelectDest destB; /* Destination for coroutine B */ 3387 int regAddrA; /* Address register for select-A coroutine */ 3388 int regAddrB; /* Address register for select-B coroutine */ 3389 int addrSelectA; /* Address of the select-A coroutine */ 3390 int addrSelectB; /* Address of the select-B coroutine */ 3391 int regOutA; /* Address register for the output-A subroutine */ 3392 int regOutB; /* Address register for the output-B subroutine */ 3393 int addrOutA; /* Address of the output-A subroutine */ 3394 int addrOutB = 0; /* Address of the output-B subroutine */ 3395 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3396 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3397 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3398 int addrAltB; /* Address of the A<B subroutine */ 3399 int addrAeqB; /* Address of the A==B subroutine */ 3400 int addrAgtB; /* Address of the A>B subroutine */ 3401 int regLimitA; /* Limit register for select-A */ 3402 int regLimitB; /* Limit register for select-A */ 3403 int regPrev; /* A range of registers to hold previous output */ 3404 int savedLimit; /* Saved value of p->iLimit */ 3405 int savedOffset; /* Saved value of p->iOffset */ 3406 int labelCmpr; /* Label for the start of the merge algorithm */ 3407 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3408 int addr1; /* Jump instructions that get retargetted */ 3409 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3410 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3411 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3412 sqlite3 *db; /* Database connection */ 3413 ExprList *pOrderBy; /* The ORDER BY clause */ 3414 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3415 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3416 3417 assert( p->pOrderBy!=0 ); 3418 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3419 db = pParse->db; 3420 v = pParse->pVdbe; 3421 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3422 labelEnd = sqlite3VdbeMakeLabel(pParse); 3423 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3424 3425 3426 /* Patch up the ORDER BY clause 3427 */ 3428 op = p->op; 3429 assert( p->pPrior->pOrderBy==0 ); 3430 pOrderBy = p->pOrderBy; 3431 assert( pOrderBy ); 3432 nOrderBy = pOrderBy->nExpr; 3433 3434 /* For operators other than UNION ALL we have to make sure that 3435 ** the ORDER BY clause covers every term of the result set. Add 3436 ** terms to the ORDER BY clause as necessary. 3437 */ 3438 if( op!=TK_ALL ){ 3439 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3440 struct ExprList_item *pItem; 3441 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3442 assert( pItem!=0 ); 3443 assert( pItem->u.x.iOrderByCol>0 ); 3444 if( pItem->u.x.iOrderByCol==i ) break; 3445 } 3446 if( j==nOrderBy ){ 3447 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3448 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3449 pNew->flags |= EP_IntValue; 3450 pNew->u.iValue = i; 3451 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3452 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3453 } 3454 } 3455 } 3456 3457 /* Compute the comparison permutation and keyinfo that is used with 3458 ** the permutation used to determine if the next 3459 ** row of results comes from selectA or selectB. Also add explicit 3460 ** collations to the ORDER BY clause terms so that when the subqueries 3461 ** to the right and the left are evaluated, they use the correct 3462 ** collation. 3463 */ 3464 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3465 if( aPermute ){ 3466 struct ExprList_item *pItem; 3467 aPermute[0] = nOrderBy; 3468 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3469 assert( pItem!=0 ); 3470 assert( pItem->u.x.iOrderByCol>0 ); 3471 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3472 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3473 } 3474 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3475 }else{ 3476 pKeyMerge = 0; 3477 } 3478 3479 /* Allocate a range of temporary registers and the KeyInfo needed 3480 ** for the logic that removes duplicate result rows when the 3481 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3482 */ 3483 if( op==TK_ALL ){ 3484 regPrev = 0; 3485 }else{ 3486 int nExpr = p->pEList->nExpr; 3487 assert( nOrderBy>=nExpr || db->mallocFailed ); 3488 regPrev = pParse->nMem+1; 3489 pParse->nMem += nExpr+1; 3490 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3491 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3492 if( pKeyDup ){ 3493 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3494 for(i=0; i<nExpr; i++){ 3495 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3496 pKeyDup->aSortFlags[i] = 0; 3497 } 3498 } 3499 } 3500 3501 /* Separate the left and the right query from one another 3502 */ 3503 nSelect = 1; 3504 if( (op==TK_ALL || op==TK_UNION) 3505 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3506 ){ 3507 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3508 nSelect++; 3509 assert( pSplit->pPrior->pNext==pSplit ); 3510 } 3511 } 3512 if( nSelect<=3 ){ 3513 pSplit = p; 3514 }else{ 3515 pSplit = p; 3516 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3517 } 3518 pPrior = pSplit->pPrior; 3519 assert( pPrior!=0 ); 3520 pSplit->pPrior = 0; 3521 pPrior->pNext = 0; 3522 assert( p->pOrderBy == pOrderBy ); 3523 assert( pOrderBy!=0 || db->mallocFailed ); 3524 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3525 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3526 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3527 3528 /* Compute the limit registers */ 3529 computeLimitRegisters(pParse, p, labelEnd); 3530 if( p->iLimit && op==TK_ALL ){ 3531 regLimitA = ++pParse->nMem; 3532 regLimitB = ++pParse->nMem; 3533 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3534 regLimitA); 3535 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3536 }else{ 3537 regLimitA = regLimitB = 0; 3538 } 3539 sqlite3ExprDelete(db, p->pLimit); 3540 p->pLimit = 0; 3541 3542 regAddrA = ++pParse->nMem; 3543 regAddrB = ++pParse->nMem; 3544 regOutA = ++pParse->nMem; 3545 regOutB = ++pParse->nMem; 3546 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3547 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3548 3549 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3550 3551 /* Generate a coroutine to evaluate the SELECT statement to the 3552 ** left of the compound operator - the "A" select. 3553 */ 3554 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3555 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3556 VdbeComment((v, "left SELECT")); 3557 pPrior->iLimit = regLimitA; 3558 ExplainQueryPlan((pParse, 1, "LEFT")); 3559 sqlite3Select(pParse, pPrior, &destA); 3560 sqlite3VdbeEndCoroutine(v, regAddrA); 3561 sqlite3VdbeJumpHere(v, addr1); 3562 3563 /* Generate a coroutine to evaluate the SELECT statement on 3564 ** the right - the "B" select 3565 */ 3566 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3567 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3568 VdbeComment((v, "right SELECT")); 3569 savedLimit = p->iLimit; 3570 savedOffset = p->iOffset; 3571 p->iLimit = regLimitB; 3572 p->iOffset = 0; 3573 ExplainQueryPlan((pParse, 1, "RIGHT")); 3574 sqlite3Select(pParse, p, &destB); 3575 p->iLimit = savedLimit; 3576 p->iOffset = savedOffset; 3577 sqlite3VdbeEndCoroutine(v, regAddrB); 3578 3579 /* Generate a subroutine that outputs the current row of the A 3580 ** select as the next output row of the compound select. 3581 */ 3582 VdbeNoopComment((v, "Output routine for A")); 3583 addrOutA = generateOutputSubroutine(pParse, 3584 p, &destA, pDest, regOutA, 3585 regPrev, pKeyDup, labelEnd); 3586 3587 /* Generate a subroutine that outputs the current row of the B 3588 ** select as the next output row of the compound select. 3589 */ 3590 if( op==TK_ALL || op==TK_UNION ){ 3591 VdbeNoopComment((v, "Output routine for B")); 3592 addrOutB = generateOutputSubroutine(pParse, 3593 p, &destB, pDest, regOutB, 3594 regPrev, pKeyDup, labelEnd); 3595 } 3596 sqlite3KeyInfoUnref(pKeyDup); 3597 3598 /* Generate a subroutine to run when the results from select A 3599 ** are exhausted and only data in select B remains. 3600 */ 3601 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3602 addrEofA_noB = addrEofA = labelEnd; 3603 }else{ 3604 VdbeNoopComment((v, "eof-A subroutine")); 3605 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3606 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3607 VdbeCoverage(v); 3608 sqlite3VdbeGoto(v, addrEofA); 3609 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3610 } 3611 3612 /* Generate a subroutine to run when the results from select B 3613 ** are exhausted and only data in select A remains. 3614 */ 3615 if( op==TK_INTERSECT ){ 3616 addrEofB = addrEofA; 3617 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3618 }else{ 3619 VdbeNoopComment((v, "eof-B subroutine")); 3620 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3621 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3622 sqlite3VdbeGoto(v, addrEofB); 3623 } 3624 3625 /* Generate code to handle the case of A<B 3626 */ 3627 VdbeNoopComment((v, "A-lt-B subroutine")); 3628 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3629 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3630 sqlite3VdbeGoto(v, labelCmpr); 3631 3632 /* Generate code to handle the case of A==B 3633 */ 3634 if( op==TK_ALL ){ 3635 addrAeqB = addrAltB; 3636 }else if( op==TK_INTERSECT ){ 3637 addrAeqB = addrAltB; 3638 addrAltB++; 3639 }else{ 3640 VdbeNoopComment((v, "A-eq-B subroutine")); 3641 addrAeqB = 3642 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3643 sqlite3VdbeGoto(v, labelCmpr); 3644 } 3645 3646 /* Generate code to handle the case of A>B 3647 */ 3648 VdbeNoopComment((v, "A-gt-B subroutine")); 3649 addrAgtB = sqlite3VdbeCurrentAddr(v); 3650 if( op==TK_ALL || op==TK_UNION ){ 3651 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3652 } 3653 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3654 sqlite3VdbeGoto(v, labelCmpr); 3655 3656 /* This code runs once to initialize everything. 3657 */ 3658 sqlite3VdbeJumpHere(v, addr1); 3659 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3660 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3661 3662 /* Implement the main merge loop 3663 */ 3664 sqlite3VdbeResolveLabel(v, labelCmpr); 3665 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3666 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3667 (char*)pKeyMerge, P4_KEYINFO); 3668 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3669 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3670 3671 /* Jump to the this point in order to terminate the query. 3672 */ 3673 sqlite3VdbeResolveLabel(v, labelEnd); 3674 3675 /* Reassembly the compound query so that it will be freed correctly 3676 ** by the calling function */ 3677 if( pSplit->pPrior ){ 3678 sqlite3SelectDelete(db, pSplit->pPrior); 3679 } 3680 pSplit->pPrior = pPrior; 3681 pPrior->pNext = pSplit; 3682 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3683 pPrior->pOrderBy = 0; 3684 3685 /*** TBD: Insert subroutine calls to close cursors on incomplete 3686 **** subqueries ****/ 3687 ExplainQueryPlanPop(pParse); 3688 return pParse->nErr!=0; 3689 } 3690 #endif 3691 3692 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3693 3694 /* An instance of the SubstContext object describes an substitution edit 3695 ** to be performed on a parse tree. 3696 ** 3697 ** All references to columns in table iTable are to be replaced by corresponding 3698 ** expressions in pEList. 3699 ** 3700 ** ## About "isOuterJoin": 3701 ** 3702 ** The isOuterJoin column indicates that the replacement will occur into a 3703 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3704 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3705 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3706 ** bypass the substituted expression with OP_IfNullRow. 3707 ** 3708 ** Suppose the original expression integer constant. Even though the table 3709 ** has the nullRow flag set, because the expression is an integer constant, 3710 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3711 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3712 ** flag is set, then the value in the register is set to NULL and the original 3713 ** expression is bypassed. If the nullRow flag is not set, then the original 3714 ** expression runs to populate the register. 3715 ** 3716 ** Example where this is needed: 3717 ** 3718 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3719 ** CREATE TABLE t2(x INT UNIQUE); 3720 ** 3721 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3722 ** 3723 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3724 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3725 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3726 ** when processing a non-matched row of the left. 3727 */ 3728 typedef struct SubstContext { 3729 Parse *pParse; /* The parsing context */ 3730 int iTable; /* Replace references to this table */ 3731 int iNewTable; /* New table number */ 3732 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3733 ExprList *pEList; /* Replacement expressions */ 3734 } SubstContext; 3735 3736 /* Forward Declarations */ 3737 static void substExprList(SubstContext*, ExprList*); 3738 static void substSelect(SubstContext*, Select*, int); 3739 3740 /* 3741 ** Scan through the expression pExpr. Replace every reference to 3742 ** a column in table number iTable with a copy of the iColumn-th 3743 ** entry in pEList. (But leave references to the ROWID column 3744 ** unchanged.) 3745 ** 3746 ** This routine is part of the flattening procedure. A subquery 3747 ** whose result set is defined by pEList appears as entry in the 3748 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3749 ** FORM clause entry is iTable. This routine makes the necessary 3750 ** changes to pExpr so that it refers directly to the source table 3751 ** of the subquery rather the result set of the subquery. 3752 */ 3753 static Expr *substExpr( 3754 SubstContext *pSubst, /* Description of the substitution */ 3755 Expr *pExpr /* Expr in which substitution occurs */ 3756 ){ 3757 if( pExpr==0 ) return 0; 3758 if( ExprHasProperty(pExpr, EP_FromJoin) 3759 && pExpr->w.iJoin==pSubst->iTable 3760 ){ 3761 pExpr->w.iJoin = pSubst->iNewTable; 3762 } 3763 if( pExpr->op==TK_COLUMN 3764 && pExpr->iTable==pSubst->iTable 3765 && !ExprHasProperty(pExpr, EP_FixedCol) 3766 ){ 3767 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3768 if( pExpr->iColumn<0 ){ 3769 pExpr->op = TK_NULL; 3770 }else 3771 #endif 3772 { 3773 Expr *pNew; 3774 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3775 Expr ifNullRow; 3776 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3777 assert( pExpr->pRight==0 ); 3778 if( sqlite3ExprIsVector(pCopy) ){ 3779 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3780 }else{ 3781 sqlite3 *db = pSubst->pParse->db; 3782 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3783 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3784 ifNullRow.op = TK_IF_NULL_ROW; 3785 ifNullRow.pLeft = pCopy; 3786 ifNullRow.iTable = pSubst->iNewTable; 3787 ifNullRow.flags = EP_IfNullRow; 3788 pCopy = &ifNullRow; 3789 } 3790 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3791 pNew = sqlite3ExprDup(db, pCopy, 0); 3792 if( db->mallocFailed ){ 3793 sqlite3ExprDelete(db, pNew); 3794 return pExpr; 3795 } 3796 if( pSubst->isOuterJoin ){ 3797 ExprSetProperty(pNew, EP_CanBeNull); 3798 } 3799 if( ExprHasProperty(pExpr,EP_FromJoin|EP_InnerJoin) ){ 3800 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3801 pExpr->flags & (EP_FromJoin|EP_InnerJoin)); 3802 } 3803 sqlite3ExprDelete(db, pExpr); 3804 pExpr = pNew; 3805 3806 /* Ensure that the expression now has an implicit collation sequence, 3807 ** just as it did when it was a column of a view or sub-query. */ 3808 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3809 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3810 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3811 (pColl ? pColl->zName : "BINARY") 3812 ); 3813 } 3814 ExprClearProperty(pExpr, EP_Collate); 3815 } 3816 } 3817 }else{ 3818 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3819 pExpr->iTable = pSubst->iNewTable; 3820 } 3821 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3822 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3823 if( ExprUseXSelect(pExpr) ){ 3824 substSelect(pSubst, pExpr->x.pSelect, 1); 3825 }else{ 3826 substExprList(pSubst, pExpr->x.pList); 3827 } 3828 #ifndef SQLITE_OMIT_WINDOWFUNC 3829 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3830 Window *pWin = pExpr->y.pWin; 3831 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3832 substExprList(pSubst, pWin->pPartition); 3833 substExprList(pSubst, pWin->pOrderBy); 3834 } 3835 #endif 3836 } 3837 return pExpr; 3838 } 3839 static void substExprList( 3840 SubstContext *pSubst, /* Description of the substitution */ 3841 ExprList *pList /* List to scan and in which to make substitutes */ 3842 ){ 3843 int i; 3844 if( pList==0 ) return; 3845 for(i=0; i<pList->nExpr; i++){ 3846 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3847 } 3848 } 3849 static void substSelect( 3850 SubstContext *pSubst, /* Description of the substitution */ 3851 Select *p, /* SELECT statement in which to make substitutions */ 3852 int doPrior /* Do substitutes on p->pPrior too */ 3853 ){ 3854 SrcList *pSrc; 3855 SrcItem *pItem; 3856 int i; 3857 if( !p ) return; 3858 do{ 3859 substExprList(pSubst, p->pEList); 3860 substExprList(pSubst, p->pGroupBy); 3861 substExprList(pSubst, p->pOrderBy); 3862 p->pHaving = substExpr(pSubst, p->pHaving); 3863 p->pWhere = substExpr(pSubst, p->pWhere); 3864 pSrc = p->pSrc; 3865 assert( pSrc!=0 ); 3866 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3867 substSelect(pSubst, pItem->pSelect, 1); 3868 if( pItem->fg.isTabFunc ){ 3869 substExprList(pSubst, pItem->u1.pFuncArg); 3870 } 3871 } 3872 }while( doPrior && (p = p->pPrior)!=0 ); 3873 } 3874 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3875 3876 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3877 /* 3878 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3879 ** clause of that SELECT. 3880 ** 3881 ** This routine scans the entire SELECT statement and recomputes the 3882 ** pSrcItem->colUsed mask. 3883 */ 3884 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3885 SrcItem *pItem; 3886 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3887 pItem = pWalker->u.pSrcItem; 3888 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3889 if( pExpr->iColumn<0 ) return WRC_Continue; 3890 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3891 return WRC_Continue; 3892 } 3893 static void recomputeColumnsUsed( 3894 Select *pSelect, /* The complete SELECT statement */ 3895 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3896 ){ 3897 Walker w; 3898 if( NEVER(pSrcItem->pTab==0) ) return; 3899 memset(&w, 0, sizeof(w)); 3900 w.xExprCallback = recomputeColumnsUsedExpr; 3901 w.xSelectCallback = sqlite3SelectWalkNoop; 3902 w.u.pSrcItem = pSrcItem; 3903 pSrcItem->colUsed = 0; 3904 sqlite3WalkSelect(&w, pSelect); 3905 } 3906 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3907 3908 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3909 /* 3910 ** Assign new cursor numbers to each of the items in pSrc. For each 3911 ** new cursor number assigned, set an entry in the aCsrMap[] array 3912 ** to map the old cursor number to the new: 3913 ** 3914 ** aCsrMap[iOld+1] = iNew; 3915 ** 3916 ** The array is guaranteed by the caller to be large enough for all 3917 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3918 ** 3919 ** If pSrc contains any sub-selects, call this routine recursively 3920 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3921 */ 3922 static void srclistRenumberCursors( 3923 Parse *pParse, /* Parse context */ 3924 int *aCsrMap, /* Array to store cursor mappings in */ 3925 SrcList *pSrc, /* FROM clause to renumber */ 3926 int iExcept /* FROM clause item to skip */ 3927 ){ 3928 int i; 3929 SrcItem *pItem; 3930 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3931 if( i!=iExcept ){ 3932 Select *p; 3933 assert( pItem->iCursor < aCsrMap[0] ); 3934 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3935 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3936 } 3937 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3938 for(p=pItem->pSelect; p; p=p->pPrior){ 3939 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3940 } 3941 } 3942 } 3943 } 3944 3945 /* 3946 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3947 */ 3948 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3949 int *aCsrMap = pWalker->u.aiCol; 3950 int iCsr = *piCursor; 3951 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3952 *piCursor = aCsrMap[iCsr+1]; 3953 } 3954 } 3955 3956 /* 3957 ** Expression walker callback used by renumberCursors() to update 3958 ** Expr objects to match newly assigned cursor numbers. 3959 */ 3960 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3961 int op = pExpr->op; 3962 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3963 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3964 } 3965 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3966 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3967 } 3968 return WRC_Continue; 3969 } 3970 3971 /* 3972 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3973 ** of the SELECT statement passed as the second argument, and to each 3974 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3975 ** Except, do not assign a new cursor number to the iExcept'th element in 3976 ** the FROM clause of (*p). Update all expressions and other references 3977 ** to refer to the new cursor numbers. 3978 ** 3979 ** Argument aCsrMap is an array that may be used for temporary working 3980 ** space. Two guarantees are made by the caller: 3981 ** 3982 ** * the array is larger than the largest cursor number used within the 3983 ** select statement passed as an argument, and 3984 ** 3985 ** * the array entries for all cursor numbers that do *not* appear in 3986 ** FROM clauses of the select statement as described above are 3987 ** initialized to zero. 3988 */ 3989 static void renumberCursors( 3990 Parse *pParse, /* Parse context */ 3991 Select *p, /* Select to renumber cursors within */ 3992 int iExcept, /* FROM clause item to skip */ 3993 int *aCsrMap /* Working space */ 3994 ){ 3995 Walker w; 3996 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3997 memset(&w, 0, sizeof(w)); 3998 w.u.aiCol = aCsrMap; 3999 w.xExprCallback = renumberCursorsCb; 4000 w.xSelectCallback = sqlite3SelectWalkNoop; 4001 sqlite3WalkSelect(&w, p); 4002 } 4003 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4004 4005 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4006 /* 4007 ** This routine attempts to flatten subqueries as a performance optimization. 4008 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4009 ** 4010 ** To understand the concept of flattening, consider the following 4011 ** query: 4012 ** 4013 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4014 ** 4015 ** The default way of implementing this query is to execute the 4016 ** subquery first and store the results in a temporary table, then 4017 ** run the outer query on that temporary table. This requires two 4018 ** passes over the data. Furthermore, because the temporary table 4019 ** has no indices, the WHERE clause on the outer query cannot be 4020 ** optimized. 4021 ** 4022 ** This routine attempts to rewrite queries such as the above into 4023 ** a single flat select, like this: 4024 ** 4025 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4026 ** 4027 ** The code generated for this simplification gives the same result 4028 ** but only has to scan the data once. And because indices might 4029 ** exist on the table t1, a complete scan of the data might be 4030 ** avoided. 4031 ** 4032 ** Flattening is subject to the following constraints: 4033 ** 4034 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4035 ** The subquery and the outer query cannot both be aggregates. 4036 ** 4037 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4038 ** (2) If the subquery is an aggregate then 4039 ** (2a) the outer query must not be a join and 4040 ** (2b) the outer query must not use subqueries 4041 ** other than the one FROM-clause subquery that is a candidate 4042 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4043 ** from 2015-02-09.) 4044 ** 4045 ** (3) If the subquery is the right operand of a LEFT JOIN then 4046 ** (3a) the subquery may not be a join and 4047 ** (3b) the FROM clause of the subquery may not contain a virtual 4048 ** table and 4049 ** (3c) the outer query may not be an aggregate. 4050 ** (3d) the outer query may not be DISTINCT. 4051 ** See also (26) for restrictions on RIGHT JOIN. 4052 ** 4053 ** (4) The subquery can not be DISTINCT. 4054 ** 4055 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4056 ** sub-queries that were excluded from this optimization. Restriction 4057 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4058 ** 4059 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4060 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4061 ** 4062 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4063 ** A FROM clause, consider adding a FROM clause with the special 4064 ** table sqlite_once that consists of a single row containing a 4065 ** single NULL. 4066 ** 4067 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4068 ** 4069 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4070 ** 4071 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4072 ** accidently carried the comment forward until 2014-09-15. Original 4073 ** constraint: "If the subquery is aggregate then the outer query 4074 ** may not use LIMIT." 4075 ** 4076 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4077 ** 4078 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4079 ** a separate restriction deriving from ticket #350. 4080 ** 4081 ** (13) The subquery and outer query may not both use LIMIT. 4082 ** 4083 ** (14) The subquery may not use OFFSET. 4084 ** 4085 ** (15) If the outer query is part of a compound select, then the 4086 ** subquery may not use LIMIT. 4087 ** (See ticket #2339 and ticket [02a8e81d44]). 4088 ** 4089 ** (16) If the outer query is aggregate, then the subquery may not 4090 ** use ORDER BY. (Ticket #2942) This used to not matter 4091 ** until we introduced the group_concat() function. 4092 ** 4093 ** (17) If the subquery is a compound select, then 4094 ** (17a) all compound operators must be a UNION ALL, and 4095 ** (17b) no terms within the subquery compound may be aggregate 4096 ** or DISTINCT, and 4097 ** (17c) every term within the subquery compound must have a FROM clause 4098 ** (17d) the outer query may not be 4099 ** (17d1) aggregate, or 4100 ** (17d2) DISTINCT 4101 ** (17e) the subquery may not contain window functions, and 4102 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4103 ** 4104 ** The parent and sub-query may contain WHERE clauses. Subject to 4105 ** rules (11), (13) and (14), they may also contain ORDER BY, 4106 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4107 ** operator other than UNION ALL because all the other compound 4108 ** operators have an implied DISTINCT which is disallowed by 4109 ** restriction (4). 4110 ** 4111 ** Also, each component of the sub-query must return the same number 4112 ** of result columns. This is actually a requirement for any compound 4113 ** SELECT statement, but all the code here does is make sure that no 4114 ** such (illegal) sub-query is flattened. The caller will detect the 4115 ** syntax error and return a detailed message. 4116 ** 4117 ** (18) If the sub-query is a compound select, then all terms of the 4118 ** ORDER BY clause of the parent must be copies of a term returned 4119 ** by the parent query. 4120 ** 4121 ** (19) If the subquery uses LIMIT then the outer query may not 4122 ** have a WHERE clause. 4123 ** 4124 ** (20) If the sub-query is a compound select, then it must not use 4125 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4126 ** somewhat by saying that the terms of the ORDER BY clause must 4127 ** appear as unmodified result columns in the outer query. But we 4128 ** have other optimizations in mind to deal with that case. 4129 ** 4130 ** (21) If the subquery uses LIMIT then the outer query may not be 4131 ** DISTINCT. (See ticket [752e1646fc]). 4132 ** 4133 ** (22) The subquery may not be a recursive CTE. 4134 ** 4135 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4136 ** a compound query. This restriction is because transforming the 4137 ** parent to a compound query confuses the code that handles 4138 ** recursive queries in multiSelect(). 4139 ** 4140 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4141 ** The subquery may not be an aggregate that uses the built-in min() or 4142 ** or max() functions. (Without this restriction, a query like: 4143 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4144 ** return the value X for which Y was maximal.) 4145 ** 4146 ** (25) If either the subquery or the parent query contains a window 4147 ** function in the select list or ORDER BY clause, flattening 4148 ** is not attempted. 4149 ** 4150 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4151 ** See also (3) for restrictions on LEFT JOIN. 4152 ** 4153 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4154 ** is the first element of the parent query. 4155 ** 4156 ** (28) The subquery is not a MATERIALIZED CTE. 4157 ** 4158 ** 4159 ** In this routine, the "p" parameter is a pointer to the outer query. 4160 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4161 ** uses aggregates. 4162 ** 4163 ** If flattening is not attempted, this routine is a no-op and returns 0. 4164 ** If flattening is attempted this routine returns 1. 4165 ** 4166 ** All of the expression analysis must occur on both the outer query and 4167 ** the subquery before this routine runs. 4168 */ 4169 static int flattenSubquery( 4170 Parse *pParse, /* Parsing context */ 4171 Select *p, /* The parent or outer SELECT statement */ 4172 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4173 int isAgg /* True if outer SELECT uses aggregate functions */ 4174 ){ 4175 const char *zSavedAuthContext = pParse->zAuthContext; 4176 Select *pParent; /* Current UNION ALL term of the other query */ 4177 Select *pSub; /* The inner query or "subquery" */ 4178 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4179 SrcList *pSrc; /* The FROM clause of the outer query */ 4180 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4181 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4182 int iNewParent = -1;/* Replacement table for iParent */ 4183 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4184 int i; /* Loop counter */ 4185 Expr *pWhere; /* The WHERE clause */ 4186 SrcItem *pSubitem; /* The subquery */ 4187 sqlite3 *db = pParse->db; 4188 Walker w; /* Walker to persist agginfo data */ 4189 int *aCsrMap = 0; 4190 4191 /* Check to see if flattening is permitted. Return 0 if not. 4192 */ 4193 assert( p!=0 ); 4194 assert( p->pPrior==0 ); 4195 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4196 pSrc = p->pSrc; 4197 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4198 pSubitem = &pSrc->a[iFrom]; 4199 iParent = pSubitem->iCursor; 4200 pSub = pSubitem->pSelect; 4201 assert( pSub!=0 ); 4202 4203 #ifndef SQLITE_OMIT_WINDOWFUNC 4204 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4205 #endif 4206 4207 pSubSrc = pSub->pSrc; 4208 assert( pSubSrc ); 4209 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4210 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4211 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4212 ** became arbitrary expressions, we were forced to add restrictions (13) 4213 ** and (14). */ 4214 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4215 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4216 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4217 return 0; /* Restriction (15) */ 4218 } 4219 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4220 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4221 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4222 return 0; /* Restrictions (8)(9) */ 4223 } 4224 if( p->pOrderBy && pSub->pOrderBy ){ 4225 return 0; /* Restriction (11) */ 4226 } 4227 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4228 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4229 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4230 return 0; /* Restriction (21) */ 4231 } 4232 if( pSub->selFlags & (SF_Recursive) ){ 4233 return 0; /* Restrictions (22) */ 4234 } 4235 4236 /* 4237 ** If the subquery is the right operand of a LEFT JOIN, then the 4238 ** subquery may not be a join itself (3a). Example of why this is not 4239 ** allowed: 4240 ** 4241 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4242 ** 4243 ** If we flatten the above, we would get 4244 ** 4245 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4246 ** 4247 ** which is not at all the same thing. 4248 ** 4249 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4250 ** query cannot be an aggregate. (3c) This is an artifact of the way 4251 ** aggregates are processed - there is no mechanism to determine if 4252 ** the LEFT JOIN table should be all-NULL. 4253 ** 4254 ** See also tickets #306, #350, and #3300. 4255 */ 4256 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4257 if( pSubSrc->nSrc>1 /* (3a) */ 4258 || isAgg /* (3b) */ 4259 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4260 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4261 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4262 ){ 4263 return 0; 4264 } 4265 isOuterJoin = 1; 4266 } 4267 #ifdef SQLITE_EXTRA_IFNULLROW 4268 else if( iFrom>0 && !isAgg ){ 4269 /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for 4270 ** every reference to any result column from subquery in a join, even 4271 ** though they are not necessary. This will stress-test the OP_IfNullRow 4272 ** opcode. */ 4273 isOuterJoin = -1; 4274 } 4275 #endif 4276 4277 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4278 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4279 return 0; /* Restriction (27) */ 4280 } 4281 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4282 return 0; /* (28) */ 4283 } 4284 4285 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4286 ** use only the UNION ALL operator. And none of the simple select queries 4287 ** that make up the compound SELECT are allowed to be aggregate or distinct 4288 ** queries. 4289 */ 4290 if( pSub->pPrior ){ 4291 if( pSub->pOrderBy ){ 4292 return 0; /* Restriction (20) */ 4293 } 4294 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4295 return 0; /* (17d1), (17d2), or (17f) */ 4296 } 4297 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4298 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4299 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4300 assert( pSub->pSrc!=0 ); 4301 assert( (pSub->selFlags & SF_Recursive)==0 ); 4302 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4303 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4304 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4305 || pSub1->pSrc->nSrc<1 /* (17c) */ 4306 #ifndef SQLITE_OMIT_WINDOWFUNC 4307 || pSub1->pWin /* (17e) */ 4308 #endif 4309 ){ 4310 return 0; 4311 } 4312 testcase( pSub1->pSrc->nSrc>1 ); 4313 } 4314 4315 /* Restriction (18). */ 4316 if( p->pOrderBy ){ 4317 int ii; 4318 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4319 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4320 } 4321 } 4322 4323 /* Restriction (23) */ 4324 if( (p->selFlags & SF_Recursive) ) return 0; 4325 4326 if( pSrc->nSrc>1 ){ 4327 if( pParse->nSelect>500 ) return 0; 4328 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4329 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4330 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4331 } 4332 } 4333 4334 /***** If we reach this point, flattening is permitted. *****/ 4335 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4336 pSub->selId, pSub, iFrom)); 4337 4338 /* Authorize the subquery */ 4339 pParse->zAuthContext = pSubitem->zName; 4340 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4341 testcase( i==SQLITE_DENY ); 4342 pParse->zAuthContext = zSavedAuthContext; 4343 4344 /* Delete the transient structures associated with thesubquery */ 4345 pSub1 = pSubitem->pSelect; 4346 sqlite3DbFree(db, pSubitem->zDatabase); 4347 sqlite3DbFree(db, pSubitem->zName); 4348 sqlite3DbFree(db, pSubitem->zAlias); 4349 pSubitem->zDatabase = 0; 4350 pSubitem->zName = 0; 4351 pSubitem->zAlias = 0; 4352 pSubitem->pSelect = 0; 4353 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4354 4355 /* If the sub-query is a compound SELECT statement, then (by restrictions 4356 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4357 ** be of the form: 4358 ** 4359 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4360 ** 4361 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4362 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4363 ** OFFSET clauses and joins them to the left-hand-side of the original 4364 ** using UNION ALL operators. In this case N is the number of simple 4365 ** select statements in the compound sub-query. 4366 ** 4367 ** Example: 4368 ** 4369 ** SELECT a+1 FROM ( 4370 ** SELECT x FROM tab 4371 ** UNION ALL 4372 ** SELECT y FROM tab 4373 ** UNION ALL 4374 ** SELECT abs(z*2) FROM tab2 4375 ** ) WHERE a!=5 ORDER BY 1 4376 ** 4377 ** Transformed into: 4378 ** 4379 ** SELECT x+1 FROM tab WHERE x+1!=5 4380 ** UNION ALL 4381 ** SELECT y+1 FROM tab WHERE y+1!=5 4382 ** UNION ALL 4383 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4384 ** ORDER BY 1 4385 ** 4386 ** We call this the "compound-subquery flattening". 4387 */ 4388 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4389 Select *pNew; 4390 ExprList *pOrderBy = p->pOrderBy; 4391 Expr *pLimit = p->pLimit; 4392 Select *pPrior = p->pPrior; 4393 Table *pItemTab = pSubitem->pTab; 4394 pSubitem->pTab = 0; 4395 p->pOrderBy = 0; 4396 p->pPrior = 0; 4397 p->pLimit = 0; 4398 pNew = sqlite3SelectDup(db, p, 0); 4399 p->pLimit = pLimit; 4400 p->pOrderBy = pOrderBy; 4401 p->op = TK_ALL; 4402 pSubitem->pTab = pItemTab; 4403 if( pNew==0 ){ 4404 p->pPrior = pPrior; 4405 }else{ 4406 pNew->selId = ++pParse->nSelect; 4407 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4408 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4409 } 4410 pNew->pPrior = pPrior; 4411 if( pPrior ) pPrior->pNext = pNew; 4412 pNew->pNext = p; 4413 p->pPrior = pNew; 4414 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4415 " creates %u as peer\n",pNew->selId)); 4416 } 4417 assert( pSubitem->pSelect==0 ); 4418 } 4419 sqlite3DbFree(db, aCsrMap); 4420 if( db->mallocFailed ){ 4421 pSubitem->pSelect = pSub1; 4422 return 1; 4423 } 4424 4425 /* Defer deleting the Table object associated with the 4426 ** subquery until code generation is 4427 ** complete, since there may still exist Expr.pTab entries that 4428 ** refer to the subquery even after flattening. Ticket #3346. 4429 ** 4430 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4431 */ 4432 if( ALWAYS(pSubitem->pTab!=0) ){ 4433 Table *pTabToDel = pSubitem->pTab; 4434 if( pTabToDel->nTabRef==1 ){ 4435 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4436 sqlite3ParserAddCleanup(pToplevel, 4437 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4438 pTabToDel); 4439 testcase( pToplevel->earlyCleanup ); 4440 }else{ 4441 pTabToDel->nTabRef--; 4442 } 4443 pSubitem->pTab = 0; 4444 } 4445 4446 /* The following loop runs once for each term in a compound-subquery 4447 ** flattening (as described above). If we are doing a different kind 4448 ** of flattening - a flattening other than a compound-subquery flattening - 4449 ** then this loop only runs once. 4450 ** 4451 ** This loop moves all of the FROM elements of the subquery into the 4452 ** the FROM clause of the outer query. Before doing this, remember 4453 ** the cursor number for the original outer query FROM element in 4454 ** iParent. The iParent cursor will never be used. Subsequent code 4455 ** will scan expressions looking for iParent references and replace 4456 ** those references with expressions that resolve to the subquery FROM 4457 ** elements we are now copying in. 4458 */ 4459 pSub = pSub1; 4460 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4461 int nSubSrc; 4462 u8 jointype = 0; 4463 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4464 assert( pSub!=0 ); 4465 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4466 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4467 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4468 4469 if( pParent==p ){ 4470 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4471 } 4472 4473 /* The subquery uses a single slot of the FROM clause of the outer 4474 ** query. If the subquery has more than one element in its FROM clause, 4475 ** then expand the outer query to make space for it to hold all elements 4476 ** of the subquery. 4477 ** 4478 ** Example: 4479 ** 4480 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4481 ** 4482 ** The outer query has 3 slots in its FROM clause. One slot of the 4483 ** outer query (the middle slot) is used by the subquery. The next 4484 ** block of code will expand the outer query FROM clause to 4 slots. 4485 ** The middle slot is expanded to two slots in order to make space 4486 ** for the two elements in the FROM clause of the subquery. 4487 */ 4488 if( nSubSrc>1 ){ 4489 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4490 if( pSrc==0 ) break; 4491 pParent->pSrc = pSrc; 4492 } 4493 4494 /* Transfer the FROM clause terms from the subquery into the 4495 ** outer query. 4496 */ 4497 for(i=0; i<nSubSrc; i++){ 4498 SrcItem *pItem = &pSrc->a[i+iFrom]; 4499 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4500 assert( pItem->fg.isTabFunc==0 ); 4501 *pItem = pSubSrc->a[i]; 4502 pItem->fg.jointype |= ltorj; 4503 iNewParent = pSubSrc->a[i].iCursor; 4504 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4505 } 4506 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4507 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4508 4509 /* Now begin substituting subquery result set expressions for 4510 ** references to the iParent in the outer query. 4511 ** 4512 ** Example: 4513 ** 4514 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4515 ** \ \_____________ subquery __________/ / 4516 ** \_____________________ outer query ______________________________/ 4517 ** 4518 ** We look at every expression in the outer query and every place we see 4519 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4520 */ 4521 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4522 /* At this point, any non-zero iOrderByCol values indicate that the 4523 ** ORDER BY column expression is identical to the iOrderByCol'th 4524 ** expression returned by SELECT statement pSub. Since these values 4525 ** do not necessarily correspond to columns in SELECT statement pParent, 4526 ** zero them before transfering the ORDER BY clause. 4527 ** 4528 ** Not doing this may cause an error if a subsequent call to this 4529 ** function attempts to flatten a compound sub-query into pParent 4530 ** (the only way this can happen is if the compound sub-query is 4531 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4532 ExprList *pOrderBy = pSub->pOrderBy; 4533 for(i=0; i<pOrderBy->nExpr; i++){ 4534 pOrderBy->a[i].u.x.iOrderByCol = 0; 4535 } 4536 assert( pParent->pOrderBy==0 ); 4537 pParent->pOrderBy = pOrderBy; 4538 pSub->pOrderBy = 0; 4539 } 4540 pWhere = pSub->pWhere; 4541 pSub->pWhere = 0; 4542 if( isOuterJoin>0 ){ 4543 sqlite3SetJoinExpr(pWhere, iNewParent, EP_FromJoin); 4544 } 4545 if( pWhere ){ 4546 if( pParent->pWhere ){ 4547 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4548 }else{ 4549 pParent->pWhere = pWhere; 4550 } 4551 } 4552 if( db->mallocFailed==0 ){ 4553 SubstContext x; 4554 x.pParse = pParse; 4555 x.iTable = iParent; 4556 x.iNewTable = iNewParent; 4557 x.isOuterJoin = isOuterJoin; 4558 x.pEList = pSub->pEList; 4559 substSelect(&x, pParent, 0); 4560 } 4561 4562 /* The flattened query is a compound if either the inner or the 4563 ** outer query is a compound. */ 4564 pParent->selFlags |= pSub->selFlags & SF_Compound; 4565 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4566 4567 /* 4568 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4569 ** 4570 ** One is tempted to try to add a and b to combine the limits. But this 4571 ** does not work if either limit is negative. 4572 */ 4573 if( pSub->pLimit ){ 4574 pParent->pLimit = pSub->pLimit; 4575 pSub->pLimit = 0; 4576 } 4577 4578 /* Recompute the SrcList_item.colUsed masks for the flattened 4579 ** tables. */ 4580 for(i=0; i<nSubSrc; i++){ 4581 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4582 } 4583 } 4584 4585 /* Finially, delete what is left of the subquery and return 4586 ** success. 4587 */ 4588 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4589 sqlite3WalkSelect(&w,pSub1); 4590 sqlite3SelectDelete(db, pSub1); 4591 4592 #if TREETRACE_ENABLED 4593 if( sqlite3TreeTrace & 0x100 ){ 4594 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4595 sqlite3TreeViewSelect(0, p, 0); 4596 } 4597 #endif 4598 4599 return 1; 4600 } 4601 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4602 4603 /* 4604 ** A structure to keep track of all of the column values that are fixed to 4605 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4606 */ 4607 typedef struct WhereConst WhereConst; 4608 struct WhereConst { 4609 Parse *pParse; /* Parsing context */ 4610 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4611 int nConst; /* Number for COLUMN=CONSTANT terms */ 4612 int nChng; /* Number of times a constant is propagated */ 4613 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4614 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4615 }; 4616 4617 /* 4618 ** Add a new entry to the pConst object. Except, do not add duplicate 4619 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4620 ** 4621 ** The caller guarantees the pColumn is a column and pValue is a constant. 4622 ** This routine has to do some additional checks before completing the 4623 ** insert. 4624 */ 4625 static void constInsert( 4626 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4627 Expr *pColumn, /* The COLUMN part of the constraint */ 4628 Expr *pValue, /* The VALUE part of the constraint */ 4629 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4630 ){ 4631 int i; 4632 assert( pColumn->op==TK_COLUMN ); 4633 assert( sqlite3ExprIsConstant(pValue) ); 4634 4635 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4636 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4637 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4638 return; 4639 } 4640 4641 /* 2018-10-25 ticket [cf5ed20f] 4642 ** Make sure the same pColumn is not inserted more than once */ 4643 for(i=0; i<pConst->nConst; i++){ 4644 const Expr *pE2 = pConst->apExpr[i*2]; 4645 assert( pE2->op==TK_COLUMN ); 4646 if( pE2->iTable==pColumn->iTable 4647 && pE2->iColumn==pColumn->iColumn 4648 ){ 4649 return; /* Already present. Return without doing anything. */ 4650 } 4651 } 4652 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4653 pConst->bHasAffBlob = 1; 4654 } 4655 4656 pConst->nConst++; 4657 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4658 pConst->nConst*2*sizeof(Expr*)); 4659 if( pConst->apExpr==0 ){ 4660 pConst->nConst = 0; 4661 }else{ 4662 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4663 pConst->apExpr[pConst->nConst*2-1] = pValue; 4664 } 4665 } 4666 4667 /* 4668 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4669 ** is a constant expression and where the term must be true because it 4670 ** is part of the AND-connected terms of the expression. For each term 4671 ** found, add it to the pConst structure. 4672 */ 4673 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4674 Expr *pRight, *pLeft; 4675 if( NEVER(pExpr==0) ) return; 4676 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4677 if( pExpr->op==TK_AND ){ 4678 findConstInWhere(pConst, pExpr->pRight); 4679 findConstInWhere(pConst, pExpr->pLeft); 4680 return; 4681 } 4682 if( pExpr->op!=TK_EQ ) return; 4683 pRight = pExpr->pRight; 4684 pLeft = pExpr->pLeft; 4685 assert( pRight!=0 ); 4686 assert( pLeft!=0 ); 4687 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4688 constInsert(pConst,pRight,pLeft,pExpr); 4689 } 4690 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4691 constInsert(pConst,pLeft,pRight,pExpr); 4692 } 4693 } 4694 4695 /* 4696 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4697 ** 4698 ** Argument pExpr is a candidate expression to be replaced by a value. If 4699 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4700 ** then overwrite it with the corresponding value. Except, do not do so 4701 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4702 ** is SQLITE_AFF_BLOB. 4703 */ 4704 static int propagateConstantExprRewriteOne( 4705 WhereConst *pConst, 4706 Expr *pExpr, 4707 int bIgnoreAffBlob 4708 ){ 4709 int i; 4710 if( pConst->pOomFault[0] ) return WRC_Prune; 4711 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4712 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4713 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4714 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4715 return WRC_Continue; 4716 } 4717 for(i=0; i<pConst->nConst; i++){ 4718 Expr *pColumn = pConst->apExpr[i*2]; 4719 if( pColumn==pExpr ) continue; 4720 if( pColumn->iTable!=pExpr->iTable ) continue; 4721 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4722 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4723 break; 4724 } 4725 /* A match is found. Add the EP_FixedCol property */ 4726 pConst->nChng++; 4727 ExprClearProperty(pExpr, EP_Leaf); 4728 ExprSetProperty(pExpr, EP_FixedCol); 4729 assert( pExpr->pLeft==0 ); 4730 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4731 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4732 break; 4733 } 4734 return WRC_Prune; 4735 } 4736 4737 /* 4738 ** This is a Walker expression callback. pExpr is a node from the WHERE 4739 ** clause of a SELECT statement. This function examines pExpr to see if 4740 ** any substitutions based on the contents of pWalker->u.pConst should 4741 ** be made to pExpr or its immediate children. 4742 ** 4743 ** A substitution is made if: 4744 ** 4745 ** + pExpr is a column with an affinity other than BLOB that matches 4746 ** one of the columns in pWalker->u.pConst, or 4747 ** 4748 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4749 ** uses an affinity other than TEXT and one of its immediate 4750 ** children is a column that matches one of the columns in 4751 ** pWalker->u.pConst. 4752 */ 4753 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4754 WhereConst *pConst = pWalker->u.pConst; 4755 assert( TK_GT==TK_EQ+1 ); 4756 assert( TK_LE==TK_EQ+2 ); 4757 assert( TK_LT==TK_EQ+3 ); 4758 assert( TK_GE==TK_EQ+4 ); 4759 if( pConst->bHasAffBlob ){ 4760 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4761 || pExpr->op==TK_IS 4762 ){ 4763 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4764 if( pConst->pOomFault[0] ) return WRC_Prune; 4765 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4766 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4767 } 4768 } 4769 } 4770 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4771 } 4772 4773 /* 4774 ** The WHERE-clause constant propagation optimization. 4775 ** 4776 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4777 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4778 ** part of a ON clause from a LEFT JOIN, then throughout the query 4779 ** replace all other occurrences of COLUMN with CONSTANT. 4780 ** 4781 ** For example, the query: 4782 ** 4783 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4784 ** 4785 ** Is transformed into 4786 ** 4787 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4788 ** 4789 ** Return true if any transformations where made and false if not. 4790 ** 4791 ** Implementation note: Constant propagation is tricky due to affinity 4792 ** and collating sequence interactions. Consider this example: 4793 ** 4794 ** CREATE TABLE t1(a INT,b TEXT); 4795 ** INSERT INTO t1 VALUES(123,'0123'); 4796 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4797 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4798 ** 4799 ** The two SELECT statements above should return different answers. b=a 4800 ** is alway true because the comparison uses numeric affinity, but b=123 4801 ** is false because it uses text affinity and '0123' is not the same as '123'. 4802 ** To work around this, the expression tree is not actually changed from 4803 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4804 ** and the "123" value is hung off of the pLeft pointer. Code generator 4805 ** routines know to generate the constant "123" instead of looking up the 4806 ** column value. Also, to avoid collation problems, this optimization is 4807 ** only attempted if the "a=123" term uses the default BINARY collation. 4808 ** 4809 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4810 ** 4811 ** CREATE TABLE t1(x); 4812 ** INSERT INTO t1 VALUES(10.0); 4813 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4814 ** 4815 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4816 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4817 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4818 ** resulting in a false positive. To avoid this, constant propagation for 4819 ** columns with BLOB affinity is only allowed if the constant is used with 4820 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4821 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4822 ** for details. 4823 */ 4824 static int propagateConstants( 4825 Parse *pParse, /* The parsing context */ 4826 Select *p /* The query in which to propagate constants */ 4827 ){ 4828 WhereConst x; 4829 Walker w; 4830 int nChng = 0; 4831 x.pParse = pParse; 4832 x.pOomFault = &pParse->db->mallocFailed; 4833 do{ 4834 x.nConst = 0; 4835 x.nChng = 0; 4836 x.apExpr = 0; 4837 x.bHasAffBlob = 0; 4838 findConstInWhere(&x, p->pWhere); 4839 if( x.nConst ){ 4840 memset(&w, 0, sizeof(w)); 4841 w.pParse = pParse; 4842 w.xExprCallback = propagateConstantExprRewrite; 4843 w.xSelectCallback = sqlite3SelectWalkNoop; 4844 w.xSelectCallback2 = 0; 4845 w.walkerDepth = 0; 4846 w.u.pConst = &x; 4847 sqlite3WalkExpr(&w, p->pWhere); 4848 sqlite3DbFree(x.pParse->db, x.apExpr); 4849 nChng += x.nChng; 4850 } 4851 }while( x.nChng ); 4852 return nChng; 4853 } 4854 4855 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4856 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4857 /* 4858 ** This function is called to determine whether or not it is safe to 4859 ** push WHERE clause expression pExpr down to FROM clause sub-query 4860 ** pSubq, which contains at least one window function. Return 1 4861 ** if it is safe and the expression should be pushed down, or 0 4862 ** otherwise. 4863 ** 4864 ** It is only safe to push the expression down if it consists only 4865 ** of constants and copies of expressions that appear in the PARTITION 4866 ** BY clause of all window function used by the sub-query. It is safe 4867 ** to filter out entire partitions, but not rows within partitions, as 4868 ** this may change the results of the window functions. 4869 ** 4870 ** At the time this function is called it is guaranteed that 4871 ** 4872 ** * the sub-query uses only one distinct window frame, and 4873 ** * that the window frame has a PARTITION BY clase. 4874 */ 4875 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4876 assert( pSubq->pWin->pPartition ); 4877 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4878 assert( pSubq->pPrior==0 ); 4879 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4880 } 4881 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4882 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4883 4884 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4885 /* 4886 ** Make copies of relevant WHERE clause terms of the outer query into 4887 ** the WHERE clause of subquery. Example: 4888 ** 4889 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4890 ** 4891 ** Transformed into: 4892 ** 4893 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4894 ** WHERE x=5 AND y=10; 4895 ** 4896 ** The hope is that the terms added to the inner query will make it more 4897 ** efficient. 4898 ** 4899 ** Do not attempt this optimization if: 4900 ** 4901 ** (1) (** This restriction was removed on 2017-09-29. We used to 4902 ** disallow this optimization for aggregate subqueries, but now 4903 ** it is allowed by putting the extra terms on the HAVING clause. 4904 ** The added HAVING clause is pointless if the subquery lacks 4905 ** a GROUP BY clause. But such a HAVING clause is also harmless 4906 ** so there does not appear to be any reason to add extra logic 4907 ** to suppress it. **) 4908 ** 4909 ** (2) The inner query is the recursive part of a common table expression. 4910 ** 4911 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4912 ** clause would change the meaning of the LIMIT). 4913 ** 4914 ** (4) The inner query is the right operand of a LEFT JOIN and the 4915 ** expression to be pushed down does not come from the ON clause 4916 ** on that LEFT JOIN. 4917 ** 4918 ** (5) The WHERE clause expression originates in the ON or USING clause 4919 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4920 ** left join. An example: 4921 ** 4922 ** SELECT * 4923 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4924 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4925 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4926 ** 4927 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4928 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4929 ** then the (1,1,NULL) row would be suppressed. 4930 ** 4931 ** (6) Window functions make things tricky as changes to the WHERE clause 4932 ** of the inner query could change the window over which window 4933 ** functions are calculated. Therefore, do not attempt the optimization 4934 ** if: 4935 ** 4936 ** (6a) The inner query uses multiple incompatible window partitions. 4937 ** 4938 ** (6b) The inner query is a compound and uses window-functions. 4939 ** 4940 ** (6c) The WHERE clause does not consist entirely of constants and 4941 ** copies of expressions found in the PARTITION BY clause of 4942 ** all window-functions used by the sub-query. It is safe to 4943 ** filter out entire partitions, as this does not change the 4944 ** window over which any window-function is calculated. 4945 ** 4946 ** (7) The inner query is a Common Table Expression (CTE) that should 4947 ** be materialized. (This restriction is implemented in the calling 4948 ** routine.) 4949 ** 4950 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4951 ** terms are duplicated into the subquery. 4952 */ 4953 static int pushDownWhereTerms( 4954 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4955 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4956 Expr *pWhere, /* The WHERE clause of the outer query */ 4957 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 4958 ){ 4959 Expr *pNew; 4960 int nChng = 0; 4961 if( pWhere==0 ) return 0; 4962 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4963 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 4964 4965 #ifndef SQLITE_OMIT_WINDOWFUNC 4966 if( pSubq->pPrior ){ 4967 Select *pSel; 4968 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4969 if( pSel->pWin ) return 0; /* restriction (6b) */ 4970 } 4971 }else{ 4972 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4973 } 4974 #endif 4975 4976 #ifdef SQLITE_DEBUG 4977 /* Only the first term of a compound can have a WITH clause. But make 4978 ** sure no other terms are marked SF_Recursive in case something changes 4979 ** in the future. 4980 */ 4981 { 4982 Select *pX; 4983 for(pX=pSubq; pX; pX=pX->pPrior){ 4984 assert( (pX->selFlags & (SF_Recursive))==0 ); 4985 } 4986 } 4987 #endif 4988 4989 if( pSubq->pLimit!=0 ){ 4990 return 0; /* restriction (3) */ 4991 } 4992 while( pWhere->op==TK_AND ){ 4993 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 4994 pWhere = pWhere->pLeft; 4995 } 4996 4997 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 4998 if( isLeftJoin 4999 && (ExprHasProperty(pWhere,EP_FromJoin)==0 5000 || pWhere->w.iJoin!=iCursor) 5001 ){ 5002 return 0; /* restriction (4) */ 5003 } 5004 if( ExprHasProperty(pWhere,EP_FromJoin) 5005 && pWhere->w.iJoin!=iCursor 5006 ){ 5007 return 0; /* restriction (5) */ 5008 } 5009 #endif 5010 5011 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5012 nChng++; 5013 pSubq->selFlags |= SF_PushDown; 5014 while( pSubq ){ 5015 SubstContext x; 5016 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5017 unsetJoinExpr(pNew, -1); 5018 x.pParse = pParse; 5019 x.iTable = pSrc->iCursor; 5020 x.iNewTable = pSrc->iCursor; 5021 x.isOuterJoin = 0; 5022 x.pEList = pSubq->pEList; 5023 pNew = substExpr(&x, pNew); 5024 #ifndef SQLITE_OMIT_WINDOWFUNC 5025 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5026 /* Restriction 6c has prevented push-down in this case */ 5027 sqlite3ExprDelete(pParse->db, pNew); 5028 nChng--; 5029 break; 5030 } 5031 #endif 5032 if( pSubq->selFlags & SF_Aggregate ){ 5033 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5034 }else{ 5035 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5036 } 5037 pSubq = pSubq->pPrior; 5038 } 5039 } 5040 return nChng; 5041 } 5042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5043 5044 /* 5045 ** The pFunc is the only aggregate function in the query. Check to see 5046 ** if the query is a candidate for the min/max optimization. 5047 ** 5048 ** If the query is a candidate for the min/max optimization, then set 5049 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5050 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5051 ** whether pFunc is a min() or max() function. 5052 ** 5053 ** If the query is not a candidate for the min/max optimization, return 5054 ** WHERE_ORDERBY_NORMAL (which must be zero). 5055 ** 5056 ** This routine must be called after aggregate functions have been 5057 ** located but before their arguments have been subjected to aggregate 5058 ** analysis. 5059 */ 5060 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5061 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5062 ExprList *pEList; /* Arguments to agg function */ 5063 const char *zFunc; /* Name of aggregate function pFunc */ 5064 ExprList *pOrderBy; 5065 u8 sortFlags = 0; 5066 5067 assert( *ppMinMax==0 ); 5068 assert( pFunc->op==TK_AGG_FUNCTION ); 5069 assert( !IsWindowFunc(pFunc) ); 5070 assert( ExprUseXList(pFunc) ); 5071 pEList = pFunc->x.pList; 5072 if( pEList==0 5073 || pEList->nExpr!=1 5074 || ExprHasProperty(pFunc, EP_WinFunc) 5075 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5076 ){ 5077 return eRet; 5078 } 5079 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5080 zFunc = pFunc->u.zToken; 5081 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5082 eRet = WHERE_ORDERBY_MIN; 5083 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5084 sortFlags = KEYINFO_ORDER_BIGNULL; 5085 } 5086 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5087 eRet = WHERE_ORDERBY_MAX; 5088 sortFlags = KEYINFO_ORDER_DESC; 5089 }else{ 5090 return eRet; 5091 } 5092 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5093 assert( pOrderBy!=0 || db->mallocFailed ); 5094 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 5095 return eRet; 5096 } 5097 5098 /* 5099 ** The select statement passed as the first argument is an aggregate query. 5100 ** The second argument is the associated aggregate-info object. This 5101 ** function tests if the SELECT is of the form: 5102 ** 5103 ** SELECT count(*) FROM <tbl> 5104 ** 5105 ** where table is a database table, not a sub-select or view. If the query 5106 ** does match this pattern, then a pointer to the Table object representing 5107 ** <tbl> is returned. Otherwise, NULL is returned. 5108 ** 5109 ** This routine checks to see if it is safe to use the count optimization. 5110 ** A correct answer is still obtained (though perhaps more slowly) if 5111 ** this routine returns NULL when it could have returned a table pointer. 5112 ** But returning the pointer when NULL should have been returned can 5113 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5114 */ 5115 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5116 Table *pTab; 5117 Expr *pExpr; 5118 5119 assert( !p->pGroupBy ); 5120 5121 if( p->pWhere 5122 || p->pEList->nExpr!=1 5123 || p->pSrc->nSrc!=1 5124 || p->pSrc->a[0].pSelect 5125 || pAggInfo->nFunc!=1 5126 ){ 5127 return 0; 5128 } 5129 pTab = p->pSrc->a[0].pTab; 5130 assert( pTab!=0 ); 5131 assert( !IsView(pTab) ); 5132 if( !IsOrdinaryTable(pTab) ) return 0; 5133 pExpr = p->pEList->a[0].pExpr; 5134 assert( pExpr!=0 ); 5135 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5136 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5137 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5138 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5139 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5140 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5141 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5142 5143 return pTab; 5144 } 5145 5146 /* 5147 ** If the source-list item passed as an argument was augmented with an 5148 ** INDEXED BY clause, then try to locate the specified index. If there 5149 ** was such a clause and the named index cannot be found, return 5150 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5151 ** pFrom->pIndex and return SQLITE_OK. 5152 */ 5153 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5154 Table *pTab = pFrom->pTab; 5155 char *zIndexedBy = pFrom->u1.zIndexedBy; 5156 Index *pIdx; 5157 assert( pTab!=0 ); 5158 assert( pFrom->fg.isIndexedBy!=0 ); 5159 5160 for(pIdx=pTab->pIndex; 5161 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5162 pIdx=pIdx->pNext 5163 ); 5164 if( !pIdx ){ 5165 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5166 pParse->checkSchema = 1; 5167 return SQLITE_ERROR; 5168 } 5169 assert( pFrom->fg.isCte==0 ); 5170 pFrom->u2.pIBIndex = pIdx; 5171 return SQLITE_OK; 5172 } 5173 5174 /* 5175 ** Detect compound SELECT statements that use an ORDER BY clause with 5176 ** an alternative collating sequence. 5177 ** 5178 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5179 ** 5180 ** These are rewritten as a subquery: 5181 ** 5182 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5183 ** ORDER BY ... COLLATE ... 5184 ** 5185 ** This transformation is necessary because the multiSelectOrderBy() routine 5186 ** above that generates the code for a compound SELECT with an ORDER BY clause 5187 ** uses a merge algorithm that requires the same collating sequence on the 5188 ** result columns as on the ORDER BY clause. See ticket 5189 ** http://www.sqlite.org/src/info/6709574d2a 5190 ** 5191 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5192 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5193 ** there are COLLATE terms in the ORDER BY. 5194 */ 5195 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5196 int i; 5197 Select *pNew; 5198 Select *pX; 5199 sqlite3 *db; 5200 struct ExprList_item *a; 5201 SrcList *pNewSrc; 5202 Parse *pParse; 5203 Token dummy; 5204 5205 if( p->pPrior==0 ) return WRC_Continue; 5206 if( p->pOrderBy==0 ) return WRC_Continue; 5207 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5208 if( pX==0 ) return WRC_Continue; 5209 a = p->pOrderBy->a; 5210 #ifndef SQLITE_OMIT_WINDOWFUNC 5211 /* If iOrderByCol is already non-zero, then it has already been matched 5212 ** to a result column of the SELECT statement. This occurs when the 5213 ** SELECT is rewritten for window-functions processing and then passed 5214 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5215 ** by this function is not required in this case. */ 5216 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5217 #endif 5218 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5219 if( a[i].pExpr->flags & EP_Collate ) break; 5220 } 5221 if( i<0 ) return WRC_Continue; 5222 5223 /* If we reach this point, that means the transformation is required. */ 5224 5225 pParse = pWalker->pParse; 5226 db = pParse->db; 5227 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5228 if( pNew==0 ) return WRC_Abort; 5229 memset(&dummy, 0, sizeof(dummy)); 5230 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5231 if( pNewSrc==0 ) return WRC_Abort; 5232 *pNew = *p; 5233 p->pSrc = pNewSrc; 5234 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5235 p->op = TK_SELECT; 5236 p->pWhere = 0; 5237 pNew->pGroupBy = 0; 5238 pNew->pHaving = 0; 5239 pNew->pOrderBy = 0; 5240 p->pPrior = 0; 5241 p->pNext = 0; 5242 p->pWith = 0; 5243 #ifndef SQLITE_OMIT_WINDOWFUNC 5244 p->pWinDefn = 0; 5245 #endif 5246 p->selFlags &= ~SF_Compound; 5247 assert( (p->selFlags & SF_Converted)==0 ); 5248 p->selFlags |= SF_Converted; 5249 assert( pNew->pPrior!=0 ); 5250 pNew->pPrior->pNext = pNew; 5251 pNew->pLimit = 0; 5252 return WRC_Continue; 5253 } 5254 5255 /* 5256 ** Check to see if the FROM clause term pFrom has table-valued function 5257 ** arguments. If it does, leave an error message in pParse and return 5258 ** non-zero, since pFrom is not allowed to be a table-valued function. 5259 */ 5260 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5261 if( pFrom->fg.isTabFunc ){ 5262 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5263 return 1; 5264 } 5265 return 0; 5266 } 5267 5268 #ifndef SQLITE_OMIT_CTE 5269 /* 5270 ** Argument pWith (which may be NULL) points to a linked list of nested 5271 ** WITH contexts, from inner to outermost. If the table identified by 5272 ** FROM clause element pItem is really a common-table-expression (CTE) 5273 ** then return a pointer to the CTE definition for that table. Otherwise 5274 ** return NULL. 5275 ** 5276 ** If a non-NULL value is returned, set *ppContext to point to the With 5277 ** object that the returned CTE belongs to. 5278 */ 5279 static struct Cte *searchWith( 5280 With *pWith, /* Current innermost WITH clause */ 5281 SrcItem *pItem, /* FROM clause element to resolve */ 5282 With **ppContext /* OUT: WITH clause return value belongs to */ 5283 ){ 5284 const char *zName = pItem->zName; 5285 With *p; 5286 assert( pItem->zDatabase==0 ); 5287 assert( zName!=0 ); 5288 for(p=pWith; p; p=p->pOuter){ 5289 int i; 5290 for(i=0; i<p->nCte; i++){ 5291 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5292 *ppContext = p; 5293 return &p->a[i]; 5294 } 5295 } 5296 if( p->bView ) break; 5297 } 5298 return 0; 5299 } 5300 5301 /* The code generator maintains a stack of active WITH clauses 5302 ** with the inner-most WITH clause being at the top of the stack. 5303 ** 5304 ** This routine pushes the WITH clause passed as the second argument 5305 ** onto the top of the stack. If argument bFree is true, then this 5306 ** WITH clause will never be popped from the stack but should instead 5307 ** be freed along with the Parse object. In other cases, when 5308 ** bFree==0, the With object will be freed along with the SELECT 5309 ** statement with which it is associated. 5310 ** 5311 ** This routine returns a copy of pWith. Or, if bFree is true and 5312 ** the pWith object is destroyed immediately due to an OOM condition, 5313 ** then this routine return NULL. 5314 ** 5315 ** If bFree is true, do not continue to use the pWith pointer after 5316 ** calling this routine, Instead, use only the return value. 5317 */ 5318 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5319 if( pWith ){ 5320 if( bFree ){ 5321 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5322 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5323 pWith); 5324 if( pWith==0 ) return 0; 5325 } 5326 if( pParse->nErr==0 ){ 5327 assert( pParse->pWith!=pWith ); 5328 pWith->pOuter = pParse->pWith; 5329 pParse->pWith = pWith; 5330 } 5331 } 5332 return pWith; 5333 } 5334 5335 /* 5336 ** This function checks if argument pFrom refers to a CTE declared by 5337 ** a WITH clause on the stack currently maintained by the parser (on the 5338 ** pParse->pWith linked list). And if currently processing a CTE 5339 ** CTE expression, through routine checks to see if the reference is 5340 ** a recursive reference to the CTE. 5341 ** 5342 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5343 ** and other fields are populated accordingly. 5344 ** 5345 ** Return 0 if no match is found. 5346 ** Return 1 if a match is found. 5347 ** Return 2 if an error condition is detected. 5348 */ 5349 static int resolveFromTermToCte( 5350 Parse *pParse, /* The parsing context */ 5351 Walker *pWalker, /* Current tree walker */ 5352 SrcItem *pFrom /* The FROM clause term to check */ 5353 ){ 5354 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5355 With *pWith; /* The matching WITH */ 5356 5357 assert( pFrom->pTab==0 ); 5358 if( pParse->pWith==0 ){ 5359 /* There are no WITH clauses in the stack. No match is possible */ 5360 return 0; 5361 } 5362 if( pParse->nErr ){ 5363 /* Prior errors might have left pParse->pWith in a goofy state, so 5364 ** go no further. */ 5365 return 0; 5366 } 5367 if( pFrom->zDatabase!=0 ){ 5368 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5369 ** it cannot possibly be a CTE reference. */ 5370 return 0; 5371 } 5372 if( pFrom->fg.notCte ){ 5373 /* The FROM term is specifically excluded from matching a CTE. 5374 ** (1) It is part of a trigger that used to have zDatabase but had 5375 ** zDatabase removed by sqlite3FixTriggerStep(). 5376 ** (2) This is the first term in the FROM clause of an UPDATE. 5377 */ 5378 return 0; 5379 } 5380 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5381 if( pCte ){ 5382 sqlite3 *db = pParse->db; 5383 Table *pTab; 5384 ExprList *pEList; 5385 Select *pSel; 5386 Select *pLeft; /* Left-most SELECT statement */ 5387 Select *pRecTerm; /* Left-most recursive term */ 5388 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5389 With *pSavedWith; /* Initial value of pParse->pWith */ 5390 int iRecTab = -1; /* Cursor for recursive table */ 5391 CteUse *pCteUse; 5392 5393 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5394 ** recursive reference to CTE pCte. Leave an error in pParse and return 5395 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5396 ** In this case, proceed. */ 5397 if( pCte->zCteErr ){ 5398 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5399 return 2; 5400 } 5401 if( cannotBeFunction(pParse, pFrom) ) return 2; 5402 5403 assert( pFrom->pTab==0 ); 5404 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5405 if( pTab==0 ) return 2; 5406 pCteUse = pCte->pUse; 5407 if( pCteUse==0 ){ 5408 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5409 if( pCteUse==0 5410 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5411 ){ 5412 sqlite3DbFree(db, pTab); 5413 return 2; 5414 } 5415 pCteUse->eM10d = pCte->eM10d; 5416 } 5417 pFrom->pTab = pTab; 5418 pTab->nTabRef = 1; 5419 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5420 pTab->iPKey = -1; 5421 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5422 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5423 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5424 if( db->mallocFailed ) return 2; 5425 pFrom->pSelect->selFlags |= SF_CopyCte; 5426 assert( pFrom->pSelect ); 5427 if( pFrom->fg.isIndexedBy ){ 5428 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5429 return 2; 5430 } 5431 pFrom->fg.isCte = 1; 5432 pFrom->u2.pCteUse = pCteUse; 5433 pCteUse->nUse++; 5434 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5435 pCteUse->eM10d = M10d_Yes; 5436 } 5437 5438 /* Check if this is a recursive CTE. */ 5439 pRecTerm = pSel = pFrom->pSelect; 5440 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5441 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5442 int i; 5443 SrcList *pSrc = pRecTerm->pSrc; 5444 assert( pRecTerm->pPrior!=0 ); 5445 for(i=0; i<pSrc->nSrc; i++){ 5446 SrcItem *pItem = &pSrc->a[i]; 5447 if( pItem->zDatabase==0 5448 && pItem->zName!=0 5449 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5450 ){ 5451 pItem->pTab = pTab; 5452 pTab->nTabRef++; 5453 pItem->fg.isRecursive = 1; 5454 if( pRecTerm->selFlags & SF_Recursive ){ 5455 sqlite3ErrorMsg(pParse, 5456 "multiple references to recursive table: %s", pCte->zName 5457 ); 5458 return 2; 5459 } 5460 pRecTerm->selFlags |= SF_Recursive; 5461 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5462 pItem->iCursor = iRecTab; 5463 } 5464 } 5465 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5466 pRecTerm = pRecTerm->pPrior; 5467 } 5468 5469 pCte->zCteErr = "circular reference: %s"; 5470 pSavedWith = pParse->pWith; 5471 pParse->pWith = pWith; 5472 if( pSel->selFlags & SF_Recursive ){ 5473 int rc; 5474 assert( pRecTerm!=0 ); 5475 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5476 assert( pRecTerm->pNext!=0 ); 5477 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5478 assert( pRecTerm->pWith==0 ); 5479 pRecTerm->pWith = pSel->pWith; 5480 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5481 pRecTerm->pWith = 0; 5482 if( rc ){ 5483 pParse->pWith = pSavedWith; 5484 return 2; 5485 } 5486 }else{ 5487 if( sqlite3WalkSelect(pWalker, pSel) ){ 5488 pParse->pWith = pSavedWith; 5489 return 2; 5490 } 5491 } 5492 pParse->pWith = pWith; 5493 5494 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5495 pEList = pLeft->pEList; 5496 if( pCte->pCols ){ 5497 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5498 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5499 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5500 ); 5501 pParse->pWith = pSavedWith; 5502 return 2; 5503 } 5504 pEList = pCte->pCols; 5505 } 5506 5507 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5508 if( bMayRecursive ){ 5509 if( pSel->selFlags & SF_Recursive ){ 5510 pCte->zCteErr = "multiple recursive references: %s"; 5511 }else{ 5512 pCte->zCteErr = "recursive reference in a subquery: %s"; 5513 } 5514 sqlite3WalkSelect(pWalker, pSel); 5515 } 5516 pCte->zCteErr = 0; 5517 pParse->pWith = pSavedWith; 5518 return 1; /* Success */ 5519 } 5520 return 0; /* No match */ 5521 } 5522 #endif 5523 5524 #ifndef SQLITE_OMIT_CTE 5525 /* 5526 ** If the SELECT passed as the second argument has an associated WITH 5527 ** clause, pop it from the stack stored as part of the Parse object. 5528 ** 5529 ** This function is used as the xSelectCallback2() callback by 5530 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5531 ** names and other FROM clause elements. 5532 */ 5533 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5534 Parse *pParse = pWalker->pParse; 5535 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5536 With *pWith = findRightmost(p)->pWith; 5537 if( pWith!=0 ){ 5538 assert( pParse->pWith==pWith || pParse->nErr ); 5539 pParse->pWith = pWith->pOuter; 5540 } 5541 } 5542 } 5543 #endif 5544 5545 /* 5546 ** The SrcList_item structure passed as the second argument represents a 5547 ** sub-query in the FROM clause of a SELECT statement. This function 5548 ** allocates and populates the SrcList_item.pTab object. If successful, 5549 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5550 ** SQLITE_NOMEM. 5551 */ 5552 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5553 Select *pSel = pFrom->pSelect; 5554 Table *pTab; 5555 5556 assert( pSel ); 5557 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5558 if( pTab==0 ) return SQLITE_NOMEM; 5559 pTab->nTabRef = 1; 5560 if( pFrom->zAlias ){ 5561 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5562 }else{ 5563 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5564 } 5565 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5566 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5567 pTab->iPKey = -1; 5568 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5569 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5570 /* The usual case - do not allow ROWID on a subquery */ 5571 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5572 #else 5573 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5574 #endif 5575 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5576 } 5577 5578 5579 /* 5580 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5581 ** If any of those SrcItem objects have a USING clause containing zName 5582 ** then return true. 5583 ** 5584 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5585 ** contains a USING clause, or if none of the USING clauses contain zName, 5586 ** then return false. 5587 */ 5588 static int inAnyUsingClause( 5589 const char *zName, /* Name we are looking for */ 5590 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5591 int N /* How many SrcItems to check */ 5592 ){ 5593 while( N>0 ){ 5594 N--; 5595 pBase++; 5596 if( pBase->fg.isUsing==0 ) continue; 5597 if( NEVER(pBase->u3.pUsing==0) ) continue; 5598 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5599 } 5600 return 0; 5601 } 5602 5603 5604 /* 5605 ** This routine is a Walker callback for "expanding" a SELECT statement. 5606 ** "Expanding" means to do the following: 5607 ** 5608 ** (1) Make sure VDBE cursor numbers have been assigned to every 5609 ** element of the FROM clause. 5610 ** 5611 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5612 ** defines FROM clause. When views appear in the FROM clause, 5613 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5614 ** that implements the view. A copy is made of the view's SELECT 5615 ** statement so that we can freely modify or delete that statement 5616 ** without worrying about messing up the persistent representation 5617 ** of the view. 5618 ** 5619 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5620 ** on joins and the ON and USING clause of joins. 5621 ** 5622 ** (4) Scan the list of columns in the result set (pEList) looking 5623 ** for instances of the "*" operator or the TABLE.* operator. 5624 ** If found, expand each "*" to be every column in every table 5625 ** and TABLE.* to be every column in TABLE. 5626 ** 5627 */ 5628 static int selectExpander(Walker *pWalker, Select *p){ 5629 Parse *pParse = pWalker->pParse; 5630 int i, j, k, rc; 5631 SrcList *pTabList; 5632 ExprList *pEList; 5633 SrcItem *pFrom; 5634 sqlite3 *db = pParse->db; 5635 Expr *pE, *pRight, *pExpr; 5636 u16 selFlags = p->selFlags; 5637 u32 elistFlags = 0; 5638 5639 p->selFlags |= SF_Expanded; 5640 if( db->mallocFailed ){ 5641 return WRC_Abort; 5642 } 5643 assert( p->pSrc!=0 ); 5644 if( (selFlags & SF_Expanded)!=0 ){ 5645 return WRC_Prune; 5646 } 5647 if( pWalker->eCode ){ 5648 /* Renumber selId because it has been copied from a view */ 5649 p->selId = ++pParse->nSelect; 5650 } 5651 pTabList = p->pSrc; 5652 pEList = p->pEList; 5653 if( pParse->pWith && (p->selFlags & SF_View) ){ 5654 if( p->pWith==0 ){ 5655 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5656 if( p->pWith==0 ){ 5657 return WRC_Abort; 5658 } 5659 } 5660 p->pWith->bView = 1; 5661 } 5662 sqlite3WithPush(pParse, p->pWith, 0); 5663 5664 /* Make sure cursor numbers have been assigned to all entries in 5665 ** the FROM clause of the SELECT statement. 5666 */ 5667 sqlite3SrcListAssignCursors(pParse, pTabList); 5668 5669 /* Look up every table named in the FROM clause of the select. If 5670 ** an entry of the FROM clause is a subquery instead of a table or view, 5671 ** then create a transient table structure to describe the subquery. 5672 */ 5673 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5674 Table *pTab; 5675 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5676 if( pFrom->pTab ) continue; 5677 assert( pFrom->fg.isRecursive==0 ); 5678 if( pFrom->zName==0 ){ 5679 #ifndef SQLITE_OMIT_SUBQUERY 5680 Select *pSel = pFrom->pSelect; 5681 /* A sub-query in the FROM clause of a SELECT */ 5682 assert( pSel!=0 ); 5683 assert( pFrom->pTab==0 ); 5684 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5685 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5686 #endif 5687 #ifndef SQLITE_OMIT_CTE 5688 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5689 if( rc>1 ) return WRC_Abort; 5690 pTab = pFrom->pTab; 5691 assert( pTab!=0 ); 5692 #endif 5693 }else{ 5694 /* An ordinary table or view name in the FROM clause */ 5695 assert( pFrom->pTab==0 ); 5696 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5697 if( pTab==0 ) return WRC_Abort; 5698 if( pTab->nTabRef>=0xffff ){ 5699 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5700 pTab->zName); 5701 pFrom->pTab = 0; 5702 return WRC_Abort; 5703 } 5704 pTab->nTabRef++; 5705 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5706 return WRC_Abort; 5707 } 5708 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5709 if( !IsOrdinaryTable(pTab) ){ 5710 i16 nCol; 5711 u8 eCodeOrig = pWalker->eCode; 5712 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5713 assert( pFrom->pSelect==0 ); 5714 if( IsView(pTab) ){ 5715 if( (db->flags & SQLITE_EnableView)==0 5716 && pTab->pSchema!=db->aDb[1].pSchema 5717 ){ 5718 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5719 pTab->zName); 5720 } 5721 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5722 } 5723 #ifndef SQLITE_OMIT_VIRTUALTABLE 5724 else if( ALWAYS(IsVirtual(pTab)) 5725 && pFrom->fg.fromDDL 5726 && ALWAYS(pTab->u.vtab.p!=0) 5727 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5728 ){ 5729 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5730 pTab->zName); 5731 } 5732 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5733 #endif 5734 nCol = pTab->nCol; 5735 pTab->nCol = -1; 5736 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5737 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5738 pWalker->eCode = eCodeOrig; 5739 pTab->nCol = nCol; 5740 } 5741 #endif 5742 } 5743 5744 /* Locate the index named by the INDEXED BY clause, if any. */ 5745 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5746 return WRC_Abort; 5747 } 5748 } 5749 5750 /* Process NATURAL keywords, and ON and USING clauses of joins. 5751 */ 5752 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5753 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5754 return WRC_Abort; 5755 } 5756 5757 /* For every "*" that occurs in the column list, insert the names of 5758 ** all columns in all tables. And for every TABLE.* insert the names 5759 ** of all columns in TABLE. The parser inserted a special expression 5760 ** with the TK_ASTERISK operator for each "*" that it found in the column 5761 ** list. The following code just has to locate the TK_ASTERISK 5762 ** expressions and expand each one to the list of all columns in 5763 ** all tables. 5764 ** 5765 ** The first loop just checks to see if there are any "*" operators 5766 ** that need expanding. 5767 */ 5768 for(k=0; k<pEList->nExpr; k++){ 5769 pE = pEList->a[k].pExpr; 5770 if( pE->op==TK_ASTERISK ) break; 5771 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5772 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5773 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5774 elistFlags |= pE->flags; 5775 } 5776 if( k<pEList->nExpr ){ 5777 /* 5778 ** If we get here it means the result set contains one or more "*" 5779 ** operators that need to be expanded. Loop through each expression 5780 ** in the result set and expand them one by one. 5781 */ 5782 struct ExprList_item *a = pEList->a; 5783 ExprList *pNew = 0; 5784 int flags = pParse->db->flags; 5785 int longNames = (flags & SQLITE_FullColNames)!=0 5786 && (flags & SQLITE_ShortColNames)==0; 5787 5788 for(k=0; k<pEList->nExpr; k++){ 5789 pE = a[k].pExpr; 5790 elistFlags |= pE->flags; 5791 pRight = pE->pRight; 5792 assert( pE->op!=TK_DOT || pRight!=0 ); 5793 if( pE->op!=TK_ASTERISK 5794 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5795 ){ 5796 /* This particular expression does not need to be expanded. 5797 */ 5798 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5799 if( pNew ){ 5800 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5801 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5802 a[k].zEName = 0; 5803 } 5804 a[k].pExpr = 0; 5805 }else{ 5806 /* This expression is a "*" or a "TABLE.*" and needs to be 5807 ** expanded. */ 5808 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5809 char *zTName = 0; /* text of name of TABLE */ 5810 if( pE->op==TK_DOT ){ 5811 assert( pE->pLeft!=0 ); 5812 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5813 zTName = pE->pLeft->u.zToken; 5814 } 5815 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5816 Table *pTab = pFrom->pTab; /* Table for this data source */ 5817 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5818 char *zTabName; /* AS name for this data source */ 5819 const char *zSchemaName = 0; /* Schema name for this data source */ 5820 int iDb; /* Schema index for this data src */ 5821 5822 if( (zTabName = pFrom->zAlias)==0 ){ 5823 zTabName = pTab->zName; 5824 } 5825 if( db->mallocFailed ) break; 5826 assert( pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5827 if( pFrom->fg.isNestedFrom ){ 5828 assert( pFrom->pSelect!=0 ); 5829 pNestedFrom = pFrom->pSelect->pEList; 5830 assert( pNestedFrom!=0 ); 5831 assert( pNestedFrom->nExpr==pTab->nCol ); 5832 }else{ 5833 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5834 continue; 5835 } 5836 pNestedFrom = 0; 5837 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5838 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5839 } 5840 for(j=0; j<pTab->nCol; j++){ 5841 char *zName = pTab->aCol[j].zCnName; 5842 struct ExprList_item *pX; /* Newly added ExprList term */ 5843 5844 assert( zName ); 5845 if( zTName 5846 && pNestedFrom 5847 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5848 ){ 5849 continue; 5850 } 5851 5852 /* If a column is marked as 'hidden', omit it from the expanded 5853 ** result-set list unless the SELECT has the SF_IncludeHidden 5854 ** bit set. 5855 */ 5856 if( (p->selFlags & SF_IncludeHidden)==0 5857 && IsHiddenColumn(&pTab->aCol[j]) 5858 ){ 5859 continue; 5860 } 5861 tableSeen = 1; 5862 5863 if( i>0 && zTName==0 ){ 5864 if( pFrom->fg.isUsing 5865 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5866 ){ 5867 /* In a join with a USING clause, omit columns in the 5868 ** using clause from the table on the right. */ 5869 continue; 5870 } 5871 } 5872 pRight = sqlite3Expr(db, TK_ID, zName); 5873 if( (pTabList->nSrc>1 5874 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5875 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5876 ) 5877 ) 5878 || IN_RENAME_OBJECT 5879 ){ 5880 Expr *pLeft; 5881 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5882 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5883 if( IN_RENAME_OBJECT && pE->pLeft ){ 5884 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5885 } 5886 if( zSchemaName ){ 5887 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5888 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5889 } 5890 }else{ 5891 pExpr = pRight; 5892 } 5893 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5894 if( pNew==0 ){ 5895 break; /* OOM */ 5896 } 5897 pX = &pNew->a[pNew->nExpr-1]; 5898 assert( pX->zEName==0 ); 5899 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5900 if( pNestedFrom ){ 5901 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 5902 testcase( pX->zEName==0 ); 5903 }else{ 5904 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5905 zSchemaName, zTabName, zName); 5906 testcase( pX->zEName==0 ); 5907 } 5908 pX->eEName = ENAME_TAB; 5909 }else if( longNames ){ 5910 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5911 pX->eEName = ENAME_NAME; 5912 }else{ 5913 pX->zEName = sqlite3DbStrDup(db, zName); 5914 pX->eEName = ENAME_NAME; 5915 } 5916 } 5917 } 5918 if( !tableSeen ){ 5919 if( zTName ){ 5920 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5921 }else{ 5922 sqlite3ErrorMsg(pParse, "no tables specified"); 5923 } 5924 } 5925 } 5926 } 5927 sqlite3ExprListDelete(db, pEList); 5928 p->pEList = pNew; 5929 } 5930 if( p->pEList ){ 5931 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5932 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5933 return WRC_Abort; 5934 } 5935 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5936 p->selFlags |= SF_ComplexResult; 5937 } 5938 } 5939 #if TREETRACE_ENABLED 5940 if( sqlite3TreeTrace & 0x100 ){ 5941 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 5942 sqlite3TreeViewSelect(0, p, 0); 5943 } 5944 #endif 5945 return WRC_Continue; 5946 } 5947 5948 #if SQLITE_DEBUG 5949 /* 5950 ** Always assert. This xSelectCallback2 implementation proves that the 5951 ** xSelectCallback2 is never invoked. 5952 */ 5953 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5954 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5955 assert( 0 ); 5956 } 5957 #endif 5958 /* 5959 ** This routine "expands" a SELECT statement and all of its subqueries. 5960 ** For additional information on what it means to "expand" a SELECT 5961 ** statement, see the comment on the selectExpand worker callback above. 5962 ** 5963 ** Expanding a SELECT statement is the first step in processing a 5964 ** SELECT statement. The SELECT statement must be expanded before 5965 ** name resolution is performed. 5966 ** 5967 ** If anything goes wrong, an error message is written into pParse. 5968 ** The calling function can detect the problem by looking at pParse->nErr 5969 ** and/or pParse->db->mallocFailed. 5970 */ 5971 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5972 Walker w; 5973 w.xExprCallback = sqlite3ExprWalkNoop; 5974 w.pParse = pParse; 5975 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5976 w.xSelectCallback = convertCompoundSelectToSubquery; 5977 w.xSelectCallback2 = 0; 5978 sqlite3WalkSelect(&w, pSelect); 5979 } 5980 w.xSelectCallback = selectExpander; 5981 w.xSelectCallback2 = sqlite3SelectPopWith; 5982 w.eCode = 0; 5983 sqlite3WalkSelect(&w, pSelect); 5984 } 5985 5986 5987 #ifndef SQLITE_OMIT_SUBQUERY 5988 /* 5989 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5990 ** interface. 5991 ** 5992 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5993 ** information to the Table structure that represents the result set 5994 ** of that subquery. 5995 ** 5996 ** The Table structure that represents the result set was constructed 5997 ** by selectExpander() but the type and collation information was omitted 5998 ** at that point because identifiers had not yet been resolved. This 5999 ** routine is called after identifier resolution. 6000 */ 6001 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6002 Parse *pParse; 6003 int i; 6004 SrcList *pTabList; 6005 SrcItem *pFrom; 6006 6007 assert( p->selFlags & SF_Resolved ); 6008 if( p->selFlags & SF_HasTypeInfo ) return; 6009 p->selFlags |= SF_HasTypeInfo; 6010 pParse = pWalker->pParse; 6011 pTabList = p->pSrc; 6012 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6013 Table *pTab = pFrom->pTab; 6014 assert( pTab!=0 ); 6015 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6016 /* A sub-query in the FROM clause of a SELECT */ 6017 Select *pSel = pFrom->pSelect; 6018 if( pSel ){ 6019 while( pSel->pPrior ) pSel = pSel->pPrior; 6020 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6021 SQLITE_AFF_NONE); 6022 } 6023 } 6024 } 6025 } 6026 #endif 6027 6028 6029 /* 6030 ** This routine adds datatype and collating sequence information to 6031 ** the Table structures of all FROM-clause subqueries in a 6032 ** SELECT statement. 6033 ** 6034 ** Use this routine after name resolution. 6035 */ 6036 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6037 #ifndef SQLITE_OMIT_SUBQUERY 6038 Walker w; 6039 w.xSelectCallback = sqlite3SelectWalkNoop; 6040 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6041 w.xExprCallback = sqlite3ExprWalkNoop; 6042 w.pParse = pParse; 6043 sqlite3WalkSelect(&w, pSelect); 6044 #endif 6045 } 6046 6047 6048 /* 6049 ** This routine sets up a SELECT statement for processing. The 6050 ** following is accomplished: 6051 ** 6052 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6053 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6054 ** * ON and USING clauses are shifted into WHERE statements 6055 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6056 ** * Identifiers in expression are matched to tables. 6057 ** 6058 ** This routine acts recursively on all subqueries within the SELECT. 6059 */ 6060 void sqlite3SelectPrep( 6061 Parse *pParse, /* The parser context */ 6062 Select *p, /* The SELECT statement being coded. */ 6063 NameContext *pOuterNC /* Name context for container */ 6064 ){ 6065 assert( p!=0 || pParse->db->mallocFailed ); 6066 assert( pParse->db->pParse==pParse ); 6067 if( pParse->db->mallocFailed ) return; 6068 if( p->selFlags & SF_HasTypeInfo ) return; 6069 sqlite3SelectExpand(pParse, p); 6070 if( pParse->nErr ) return; 6071 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6072 if( pParse->nErr ) return; 6073 sqlite3SelectAddTypeInfo(pParse, p); 6074 } 6075 6076 /* 6077 ** Reset the aggregate accumulator. 6078 ** 6079 ** The aggregate accumulator is a set of memory cells that hold 6080 ** intermediate results while calculating an aggregate. This 6081 ** routine generates code that stores NULLs in all of those memory 6082 ** cells. 6083 */ 6084 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6085 Vdbe *v = pParse->pVdbe; 6086 int i; 6087 struct AggInfo_func *pFunc; 6088 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6089 assert( pParse->db->pParse==pParse ); 6090 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6091 if( nReg==0 ) return; 6092 if( pParse->nErr ) return; 6093 #ifdef SQLITE_DEBUG 6094 /* Verify that all AggInfo registers are within the range specified by 6095 ** AggInfo.mnReg..AggInfo.mxReg */ 6096 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6097 for(i=0; i<pAggInfo->nColumn; i++){ 6098 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6099 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6100 } 6101 for(i=0; i<pAggInfo->nFunc; i++){ 6102 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6103 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6104 } 6105 #endif 6106 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6107 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6108 if( pFunc->iDistinct>=0 ){ 6109 Expr *pE = pFunc->pFExpr; 6110 assert( ExprUseXList(pE) ); 6111 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6112 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6113 "argument"); 6114 pFunc->iDistinct = -1; 6115 }else{ 6116 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6117 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6118 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6119 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6120 pFunc->pFunc->zName)); 6121 } 6122 } 6123 } 6124 } 6125 6126 /* 6127 ** Invoke the OP_AggFinalize opcode for every aggregate function 6128 ** in the AggInfo structure. 6129 */ 6130 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6131 Vdbe *v = pParse->pVdbe; 6132 int i; 6133 struct AggInfo_func *pF; 6134 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6135 ExprList *pList; 6136 assert( ExprUseXList(pF->pFExpr) ); 6137 pList = pF->pFExpr->x.pList; 6138 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6139 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6140 } 6141 } 6142 6143 6144 /* 6145 ** Update the accumulator memory cells for an aggregate based on 6146 ** the current cursor position. 6147 ** 6148 ** If regAcc is non-zero and there are no min() or max() aggregates 6149 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6150 ** registers if register regAcc contains 0. The caller will take care 6151 ** of setting and clearing regAcc. 6152 */ 6153 static void updateAccumulator( 6154 Parse *pParse, 6155 int regAcc, 6156 AggInfo *pAggInfo, 6157 int eDistinctType 6158 ){ 6159 Vdbe *v = pParse->pVdbe; 6160 int i; 6161 int regHit = 0; 6162 int addrHitTest = 0; 6163 struct AggInfo_func *pF; 6164 struct AggInfo_col *pC; 6165 6166 pAggInfo->directMode = 1; 6167 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6168 int nArg; 6169 int addrNext = 0; 6170 int regAgg; 6171 ExprList *pList; 6172 assert( ExprUseXList(pF->pFExpr) ); 6173 assert( !IsWindowFunc(pF->pFExpr) ); 6174 pList = pF->pFExpr->x.pList; 6175 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6176 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6177 if( pAggInfo->nAccumulator 6178 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6179 && regAcc 6180 ){ 6181 /* If regAcc==0, there there exists some min() or max() function 6182 ** without a FILTER clause that will ensure the magnet registers 6183 ** are populated. */ 6184 if( regHit==0 ) regHit = ++pParse->nMem; 6185 /* If this is the first row of the group (regAcc contains 0), clear the 6186 ** "magnet" register regHit so that the accumulator registers 6187 ** are populated if the FILTER clause jumps over the the 6188 ** invocation of min() or max() altogether. Or, if this is not 6189 ** the first row (regAcc contains 1), set the magnet register so that 6190 ** the accumulators are not populated unless the min()/max() is invoked 6191 ** and indicates that they should be. */ 6192 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6193 } 6194 addrNext = sqlite3VdbeMakeLabel(pParse); 6195 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6196 } 6197 if( pList ){ 6198 nArg = pList->nExpr; 6199 regAgg = sqlite3GetTempRange(pParse, nArg); 6200 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6201 }else{ 6202 nArg = 0; 6203 regAgg = 0; 6204 } 6205 if( pF->iDistinct>=0 && pList ){ 6206 if( addrNext==0 ){ 6207 addrNext = sqlite3VdbeMakeLabel(pParse); 6208 } 6209 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6210 pF->iDistinct, addrNext, pList, regAgg); 6211 } 6212 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6213 CollSeq *pColl = 0; 6214 struct ExprList_item *pItem; 6215 int j; 6216 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6217 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6218 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6219 } 6220 if( !pColl ){ 6221 pColl = pParse->db->pDfltColl; 6222 } 6223 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6224 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6225 } 6226 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6227 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6228 sqlite3VdbeChangeP5(v, (u8)nArg); 6229 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6230 if( addrNext ){ 6231 sqlite3VdbeResolveLabel(v, addrNext); 6232 } 6233 } 6234 if( regHit==0 && pAggInfo->nAccumulator ){ 6235 regHit = regAcc; 6236 } 6237 if( regHit ){ 6238 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6239 } 6240 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6241 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6242 } 6243 6244 pAggInfo->directMode = 0; 6245 if( addrHitTest ){ 6246 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6247 } 6248 } 6249 6250 /* 6251 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6252 ** count(*) query ("SELECT count(*) FROM pTab"). 6253 */ 6254 #ifndef SQLITE_OMIT_EXPLAIN 6255 static void explainSimpleCount( 6256 Parse *pParse, /* Parse context */ 6257 Table *pTab, /* Table being queried */ 6258 Index *pIdx /* Index used to optimize scan, or NULL */ 6259 ){ 6260 if( pParse->explain==2 ){ 6261 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6262 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6263 pTab->zName, 6264 bCover ? " USING COVERING INDEX " : "", 6265 bCover ? pIdx->zName : "" 6266 ); 6267 } 6268 } 6269 #else 6270 # define explainSimpleCount(a,b,c) 6271 #endif 6272 6273 /* 6274 ** sqlite3WalkExpr() callback used by havingToWhere(). 6275 ** 6276 ** If the node passed to the callback is a TK_AND node, return 6277 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6278 ** 6279 ** Otherwise, return WRC_Prune. In this case, also check if the 6280 ** sub-expression matches the criteria for being moved to the WHERE 6281 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6282 ** within the HAVING expression with a constant "1". 6283 */ 6284 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6285 if( pExpr->op!=TK_AND ){ 6286 Select *pS = pWalker->u.pSelect; 6287 /* This routine is called before the HAVING clause of the current 6288 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6289 ** here, it indicates that the expression is a correlated reference to a 6290 ** column from an outer aggregate query, or an aggregate function that 6291 ** belongs to an outer query. Do not move the expression to the WHERE 6292 ** clause in this obscure case, as doing so may corrupt the outer Select 6293 ** statements AggInfo structure. */ 6294 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6295 && ExprAlwaysFalse(pExpr)==0 6296 && pExpr->pAggInfo==0 6297 ){ 6298 sqlite3 *db = pWalker->pParse->db; 6299 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6300 if( pNew ){ 6301 Expr *pWhere = pS->pWhere; 6302 SWAP(Expr, *pNew, *pExpr); 6303 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6304 pS->pWhere = pNew; 6305 pWalker->eCode = 1; 6306 } 6307 } 6308 return WRC_Prune; 6309 } 6310 return WRC_Continue; 6311 } 6312 6313 /* 6314 ** Transfer eligible terms from the HAVING clause of a query, which is 6315 ** processed after grouping, to the WHERE clause, which is processed before 6316 ** grouping. For example, the query: 6317 ** 6318 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6319 ** 6320 ** can be rewritten as: 6321 ** 6322 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6323 ** 6324 ** A term of the HAVING expression is eligible for transfer if it consists 6325 ** entirely of constants and expressions that are also GROUP BY terms that 6326 ** use the "BINARY" collation sequence. 6327 */ 6328 static void havingToWhere(Parse *pParse, Select *p){ 6329 Walker sWalker; 6330 memset(&sWalker, 0, sizeof(sWalker)); 6331 sWalker.pParse = pParse; 6332 sWalker.xExprCallback = havingToWhereExprCb; 6333 sWalker.u.pSelect = p; 6334 sqlite3WalkExpr(&sWalker, p->pHaving); 6335 #if TREETRACE_ENABLED 6336 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6337 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6338 sqlite3TreeViewSelect(0, p, 0); 6339 } 6340 #endif 6341 } 6342 6343 /* 6344 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6345 ** If it is, then return the SrcList_item for the prior view. If it is not, 6346 ** then return 0. 6347 */ 6348 static SrcItem *isSelfJoinView( 6349 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6350 SrcItem *pThis /* Search for prior reference to this subquery */ 6351 ){ 6352 SrcItem *pItem; 6353 assert( pThis->pSelect!=0 ); 6354 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6355 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6356 Select *pS1; 6357 if( pItem->pSelect==0 ) continue; 6358 if( pItem->fg.viaCoroutine ) continue; 6359 if( pItem->zName==0 ) continue; 6360 assert( pItem->pTab!=0 ); 6361 assert( pThis->pTab!=0 ); 6362 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6363 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6364 pS1 = pItem->pSelect; 6365 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6366 /* The query flattener left two different CTE tables with identical 6367 ** names in the same FROM clause. */ 6368 continue; 6369 } 6370 if( pItem->pSelect->selFlags & SF_PushDown ){ 6371 /* The view was modified by some other optimization such as 6372 ** pushDownWhereTerms() */ 6373 continue; 6374 } 6375 return pItem; 6376 } 6377 return 0; 6378 } 6379 6380 /* 6381 ** Deallocate a single AggInfo object 6382 */ 6383 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6384 sqlite3DbFree(db, p->aCol); 6385 sqlite3DbFree(db, p->aFunc); 6386 sqlite3DbFreeNN(db, p); 6387 } 6388 6389 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6390 /* 6391 ** Attempt to transform a query of the form 6392 ** 6393 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6394 ** 6395 ** Into this: 6396 ** 6397 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6398 ** 6399 ** The transformation only works if all of the following are true: 6400 ** 6401 ** * The subquery is a UNION ALL of two or more terms 6402 ** * The subquery does not have a LIMIT clause 6403 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6404 ** * The outer query is a simple count(*) with no WHERE clause or other 6405 ** extraneous syntax. 6406 ** 6407 ** Return TRUE if the optimization is undertaken. 6408 */ 6409 static int countOfViewOptimization(Parse *pParse, Select *p){ 6410 Select *pSub, *pPrior; 6411 Expr *pExpr; 6412 Expr *pCount; 6413 sqlite3 *db; 6414 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6415 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6416 if( p->pWhere ) return 0; 6417 if( p->pGroupBy ) return 0; 6418 pExpr = p->pEList->a[0].pExpr; 6419 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6420 assert( ExprUseUToken(pExpr) ); 6421 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6422 assert( ExprUseXList(pExpr) ); 6423 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6424 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6425 pSub = p->pSrc->a[0].pSelect; 6426 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6427 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6428 do{ 6429 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6430 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6431 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6432 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6433 pSub = pSub->pPrior; /* Repeat over compound */ 6434 }while( pSub ); 6435 6436 /* If we reach this point then it is OK to perform the transformation */ 6437 6438 db = pParse->db; 6439 pCount = pExpr; 6440 pExpr = 0; 6441 pSub = p->pSrc->a[0].pSelect; 6442 p->pSrc->a[0].pSelect = 0; 6443 sqlite3SrcListDelete(db, p->pSrc); 6444 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6445 while( pSub ){ 6446 Expr *pTerm; 6447 pPrior = pSub->pPrior; 6448 pSub->pPrior = 0; 6449 pSub->pNext = 0; 6450 pSub->selFlags |= SF_Aggregate; 6451 pSub->selFlags &= ~SF_Compound; 6452 pSub->nSelectRow = 0; 6453 sqlite3ExprListDelete(db, pSub->pEList); 6454 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6455 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6456 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6457 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6458 if( pExpr==0 ){ 6459 pExpr = pTerm; 6460 }else{ 6461 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6462 } 6463 pSub = pPrior; 6464 } 6465 p->pEList->a[0].pExpr = pExpr; 6466 p->selFlags &= ~SF_Aggregate; 6467 6468 #if TREETRACE_ENABLED 6469 if( sqlite3TreeTrace & 0x400 ){ 6470 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6471 sqlite3TreeViewSelect(0, p, 0); 6472 } 6473 #endif 6474 return 1; 6475 } 6476 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6477 6478 /* 6479 ** Generate code for the SELECT statement given in the p argument. 6480 ** 6481 ** The results are returned according to the SelectDest structure. 6482 ** See comments in sqliteInt.h for further information. 6483 ** 6484 ** This routine returns the number of errors. If any errors are 6485 ** encountered, then an appropriate error message is left in 6486 ** pParse->zErrMsg. 6487 ** 6488 ** This routine does NOT free the Select structure passed in. The 6489 ** calling function needs to do that. 6490 */ 6491 int sqlite3Select( 6492 Parse *pParse, /* The parser context */ 6493 Select *p, /* The SELECT statement being coded. */ 6494 SelectDest *pDest /* What to do with the query results */ 6495 ){ 6496 int i, j; /* Loop counters */ 6497 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6498 Vdbe *v; /* The virtual machine under construction */ 6499 int isAgg; /* True for select lists like "count(*)" */ 6500 ExprList *pEList = 0; /* List of columns to extract. */ 6501 SrcList *pTabList; /* List of tables to select from */ 6502 Expr *pWhere; /* The WHERE clause. May be NULL */ 6503 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6504 Expr *pHaving; /* The HAVING clause. May be NULL */ 6505 AggInfo *pAggInfo = 0; /* Aggregate information */ 6506 int rc = 1; /* Value to return from this function */ 6507 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6508 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6509 int iEnd; /* Address of the end of the query */ 6510 sqlite3 *db; /* The database connection */ 6511 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6512 u8 minMaxFlag; /* Flag for min/max queries */ 6513 6514 db = pParse->db; 6515 assert( pParse==db->pParse ); 6516 v = sqlite3GetVdbe(pParse); 6517 if( p==0 || pParse->nErr ){ 6518 return 1; 6519 } 6520 assert( db->mallocFailed==0 ); 6521 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6522 #if TREETRACE_ENABLED 6523 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6524 if( sqlite3TreeTrace & 0x10100 ){ 6525 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6526 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6527 __FILE__, __LINE__); 6528 } 6529 sqlite3ShowSelect(p); 6530 } 6531 #endif 6532 6533 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6534 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6535 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6536 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6537 if( IgnorableDistinct(pDest) ){ 6538 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6539 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6540 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6541 /* All of these destinations are also able to ignore the ORDER BY clause */ 6542 if( p->pOrderBy ){ 6543 #if TREETRACE_ENABLED 6544 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6545 if( sqlite3TreeTrace & 0x100 ){ 6546 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6547 } 6548 #endif 6549 sqlite3ParserAddCleanup(pParse, 6550 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6551 p->pOrderBy); 6552 testcase( pParse->earlyCleanup ); 6553 p->pOrderBy = 0; 6554 } 6555 p->selFlags &= ~SF_Distinct; 6556 p->selFlags |= SF_NoopOrderBy; 6557 } 6558 sqlite3SelectPrep(pParse, p, 0); 6559 if( pParse->nErr ){ 6560 goto select_end; 6561 } 6562 assert( db->mallocFailed==0 ); 6563 assert( p->pEList!=0 ); 6564 #if TREETRACE_ENABLED 6565 if( sqlite3TreeTrace & 0x104 ){ 6566 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6567 sqlite3TreeViewSelect(0, p, 0); 6568 } 6569 #endif 6570 6571 /* If the SF_UFSrcCheck flag is set, then this function is being called 6572 ** as part of populating the temp table for an UPDATE...FROM statement. 6573 ** In this case, it is an error if the target object (pSrc->a[0]) name 6574 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6575 ** 6576 ** Postgres disallows this case too. The reason is that some other 6577 ** systems handle this case differently, and not all the same way, 6578 ** which is just confusing. To avoid this, we follow PG's lead and 6579 ** disallow it altogether. */ 6580 if( p->selFlags & SF_UFSrcCheck ){ 6581 SrcItem *p0 = &p->pSrc->a[0]; 6582 for(i=1; i<p->pSrc->nSrc; i++){ 6583 SrcItem *p1 = &p->pSrc->a[i]; 6584 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6585 sqlite3ErrorMsg(pParse, 6586 "target object/alias may not appear in FROM clause: %s", 6587 p0->zAlias ? p0->zAlias : p0->pTab->zName 6588 ); 6589 goto select_end; 6590 } 6591 } 6592 6593 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6594 ** and leaving this flag set can cause errors if a compound sub-query 6595 ** in p->pSrc is flattened into this query and this function called 6596 ** again as part of compound SELECT processing. */ 6597 p->selFlags &= ~SF_UFSrcCheck; 6598 } 6599 6600 if( pDest->eDest==SRT_Output ){ 6601 sqlite3GenerateColumnNames(pParse, p); 6602 } 6603 6604 #ifndef SQLITE_OMIT_WINDOWFUNC 6605 if( sqlite3WindowRewrite(pParse, p) ){ 6606 assert( pParse->nErr ); 6607 goto select_end; 6608 } 6609 #if TREETRACE_ENABLED 6610 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6611 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6612 sqlite3TreeViewSelect(0, p, 0); 6613 } 6614 #endif 6615 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6616 pTabList = p->pSrc; 6617 isAgg = (p->selFlags & SF_Aggregate)!=0; 6618 memset(&sSort, 0, sizeof(sSort)); 6619 sSort.pOrderBy = p->pOrderBy; 6620 6621 /* Try to do various optimizations (flattening subqueries, and strength 6622 ** reduction of join operators) in the FROM clause up into the main query 6623 */ 6624 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6625 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6626 SrcItem *pItem = &pTabList->a[i]; 6627 Select *pSub = pItem->pSelect; 6628 Table *pTab = pItem->pTab; 6629 6630 /* The expander should have already created transient Table objects 6631 ** even for FROM clause elements such as subqueries that do not correspond 6632 ** to a real table */ 6633 assert( pTab!=0 ); 6634 6635 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6636 ** of the LEFT JOIN used in the WHERE clause. 6637 */ 6638 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6639 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6640 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6641 ){ 6642 SELECTTRACE(0x100,pParse,p, 6643 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6644 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6645 unsetJoinExpr(p->pWhere, pItem->iCursor); 6646 } 6647 6648 /* No futher action if this term of the FROM clause is no a subquery */ 6649 if( pSub==0 ) continue; 6650 6651 /* Catch mismatch in the declared columns of a view and the number of 6652 ** columns in the SELECT on the RHS */ 6653 if( pTab->nCol!=pSub->pEList->nExpr ){ 6654 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6655 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6656 goto select_end; 6657 } 6658 6659 /* Do not try to flatten an aggregate subquery. 6660 ** 6661 ** Flattening an aggregate subquery is only possible if the outer query 6662 ** is not a join. But if the outer query is not a join, then the subquery 6663 ** will be implemented as a co-routine and there is no advantage to 6664 ** flattening in that case. 6665 */ 6666 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6667 assert( pSub->pGroupBy==0 ); 6668 6669 /* If a FROM-clause subquery has an ORDER BY clause that is not 6670 ** really doing anything, then delete it now so that it does not 6671 ** interfere with query flattening. See the discussion at 6672 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6673 ** 6674 ** Beware of these cases where the ORDER BY clause may not be safely 6675 ** omitted: 6676 ** 6677 ** (1) There is also a LIMIT clause 6678 ** (2) The subquery was added to help with window-function 6679 ** processing 6680 ** (3) The subquery is in the FROM clause of an UPDATE 6681 ** (4) The outer query uses an aggregate function other than 6682 ** the built-in count(), min(), or max(). 6683 ** (5) The ORDER BY isn't going to accomplish anything because 6684 ** one of: 6685 ** (a) The outer query has a different ORDER BY clause 6686 ** (b) The subquery is part of a join 6687 ** See forum post 062d576715d277c8 6688 */ 6689 if( pSub->pOrderBy!=0 6690 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6691 && pSub->pLimit==0 /* Condition (1) */ 6692 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6693 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6694 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6695 ){ 6696 SELECTTRACE(0x100,pParse,p, 6697 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6698 sqlite3ExprListDelete(db, pSub->pOrderBy); 6699 pSub->pOrderBy = 0; 6700 } 6701 6702 /* If the outer query contains a "complex" result set (that is, 6703 ** if the result set of the outer query uses functions or subqueries) 6704 ** and if the subquery contains an ORDER BY clause and if 6705 ** it will be implemented as a co-routine, then do not flatten. This 6706 ** restriction allows SQL constructs like this: 6707 ** 6708 ** SELECT expensive_function(x) 6709 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6710 ** 6711 ** The expensive_function() is only computed on the 10 rows that 6712 ** are output, rather than every row of the table. 6713 ** 6714 ** The requirement that the outer query have a complex result set 6715 ** means that flattening does occur on simpler SQL constraints without 6716 ** the expensive_function() like: 6717 ** 6718 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6719 */ 6720 if( pSub->pOrderBy!=0 6721 && i==0 6722 && (p->selFlags & SF_ComplexResult)!=0 6723 && (pTabList->nSrc==1 6724 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6725 ){ 6726 continue; 6727 } 6728 6729 if( flattenSubquery(pParse, p, i, isAgg) ){ 6730 if( pParse->nErr ) goto select_end; 6731 /* This subquery can be absorbed into its parent. */ 6732 i = -1; 6733 } 6734 pTabList = p->pSrc; 6735 if( db->mallocFailed ) goto select_end; 6736 if( !IgnorableOrderby(pDest) ){ 6737 sSort.pOrderBy = p->pOrderBy; 6738 } 6739 } 6740 #endif 6741 6742 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6743 /* Handle compound SELECT statements using the separate multiSelect() 6744 ** procedure. 6745 */ 6746 if( p->pPrior ){ 6747 rc = multiSelect(pParse, p, pDest); 6748 #if TREETRACE_ENABLED 6749 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6750 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6751 sqlite3TreeViewSelect(0, p, 0); 6752 } 6753 #endif 6754 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6755 return rc; 6756 } 6757 #endif 6758 6759 /* Do the WHERE-clause constant propagation optimization if this is 6760 ** a join. No need to speed time on this operation for non-join queries 6761 ** as the equivalent optimization will be handled by query planner in 6762 ** sqlite3WhereBegin(). 6763 */ 6764 if( p->pWhere!=0 6765 && p->pWhere->op==TK_AND 6766 && OptimizationEnabled(db, SQLITE_PropagateConst) 6767 && propagateConstants(pParse, p) 6768 ){ 6769 #if TREETRACE_ENABLED 6770 if( sqlite3TreeTrace & 0x100 ){ 6771 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6772 sqlite3TreeViewSelect(0, p, 0); 6773 } 6774 #endif 6775 }else{ 6776 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6777 } 6778 6779 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6780 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6781 && countOfViewOptimization(pParse, p) 6782 ){ 6783 if( db->mallocFailed ) goto select_end; 6784 pEList = p->pEList; 6785 pTabList = p->pSrc; 6786 } 6787 #endif 6788 6789 /* For each term in the FROM clause, do two things: 6790 ** (1) Authorized unreferenced tables 6791 ** (2) Generate code for all sub-queries 6792 */ 6793 for(i=0; i<pTabList->nSrc; i++){ 6794 SrcItem *pItem = &pTabList->a[i]; 6795 SrcItem *pPrior; 6796 SelectDest dest; 6797 Select *pSub; 6798 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6799 const char *zSavedAuthContext; 6800 #endif 6801 6802 /* Issue SQLITE_READ authorizations with a fake column name for any 6803 ** tables that are referenced but from which no values are extracted. 6804 ** Examples of where these kinds of null SQLITE_READ authorizations 6805 ** would occur: 6806 ** 6807 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6808 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6809 ** 6810 ** The fake column name is an empty string. It is possible for a table to 6811 ** have a column named by the empty string, in which case there is no way to 6812 ** distinguish between an unreferenced table and an actual reference to the 6813 ** "" column. The original design was for the fake column name to be a NULL, 6814 ** which would be unambiguous. But legacy authorization callbacks might 6815 ** assume the column name is non-NULL and segfault. The use of an empty 6816 ** string for the fake column name seems safer. 6817 */ 6818 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6819 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6820 } 6821 6822 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6823 /* Generate code for all sub-queries in the FROM clause 6824 */ 6825 pSub = pItem->pSelect; 6826 if( pSub==0 ) continue; 6827 6828 /* The code for a subquery should only be generated once. */ 6829 assert( pItem->addrFillSub==0 ); 6830 6831 /* Increment Parse.nHeight by the height of the largest expression 6832 ** tree referred to by this, the parent select. The child select 6833 ** may contain expression trees of at most 6834 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6835 ** more conservative than necessary, but much easier than enforcing 6836 ** an exact limit. 6837 */ 6838 pParse->nHeight += sqlite3SelectExprHeight(p); 6839 6840 /* Make copies of constant WHERE-clause terms in the outer query down 6841 ** inside the subquery. This can help the subquery to run more efficiently. 6842 */ 6843 if( OptimizationEnabled(db, SQLITE_PushDown) 6844 && (pItem->fg.isCte==0 6845 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6846 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6847 ){ 6848 #if TREETRACE_ENABLED 6849 if( sqlite3TreeTrace & 0x100 ){ 6850 SELECTTRACE(0x100,pParse,p, 6851 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6852 sqlite3TreeViewSelect(0, p, 0); 6853 } 6854 #endif 6855 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6856 }else{ 6857 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6858 } 6859 6860 zSavedAuthContext = pParse->zAuthContext; 6861 pParse->zAuthContext = pItem->zName; 6862 6863 /* Generate code to implement the subquery 6864 ** 6865 ** The subquery is implemented as a co-routine all of the following are 6866 ** true: 6867 ** 6868 ** (1) the subquery is guaranteed to be the outer loop (so that 6869 ** it does not need to be computed more than once), and 6870 ** (2) the subquery is not a CTE that should be materialized 6871 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 6872 */ 6873 if( i==0 6874 && (pTabList->nSrc==1 6875 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 6876 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6877 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 6878 ){ 6879 /* Implement a co-routine that will return a single row of the result 6880 ** set on each invocation. 6881 */ 6882 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6883 6884 pItem->regReturn = ++pParse->nMem; 6885 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6886 VdbeComment((v, "%!S", pItem)); 6887 pItem->addrFillSub = addrTop; 6888 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6889 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6890 sqlite3Select(pParse, pSub, &dest); 6891 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6892 pItem->fg.viaCoroutine = 1; 6893 pItem->regResult = dest.iSdst; 6894 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6895 sqlite3VdbeJumpHere(v, addrTop-1); 6896 sqlite3ClearTempRegCache(pParse); 6897 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6898 /* This is a CTE for which materialization code has already been 6899 ** generated. Invoke the subroutine to compute the materialization, 6900 ** the make the pItem->iCursor be a copy of the ephemerial table that 6901 ** holds the result of the materialization. */ 6902 CteUse *pCteUse = pItem->u2.pCteUse; 6903 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6904 if( pItem->iCursor!=pCteUse->iCur ){ 6905 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6906 VdbeComment((v, "%!S", pItem)); 6907 } 6908 pSub->nSelectRow = pCteUse->nRowEst; 6909 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6910 /* This view has already been materialized by a prior entry in 6911 ** this same FROM clause. Reuse it. */ 6912 if( pPrior->addrFillSub ){ 6913 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6914 } 6915 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6916 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6917 }else{ 6918 /* Materialize the view. If the view is not correlated, generate a 6919 ** subroutine to do the materialization so that subsequent uses of 6920 ** the same view can reuse the materialization. */ 6921 int topAddr; 6922 int onceAddr = 0; 6923 int retAddr; 6924 6925 pItem->regReturn = ++pParse->nMem; 6926 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6927 pItem->addrFillSub = topAddr+1; 6928 if( pItem->fg.isCorrelated==0 ){ 6929 /* If the subquery is not correlated and if we are not inside of 6930 ** a trigger, then we only need to compute the value of the subquery 6931 ** once. */ 6932 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6933 VdbeComment((v, "materialize %!S", pItem)); 6934 }else{ 6935 VdbeNoopComment((v, "materialize %!S", pItem)); 6936 } 6937 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6938 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6939 sqlite3Select(pParse, pSub, &dest); 6940 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6941 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6942 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6943 VdbeComment((v, "end %!S", pItem)); 6944 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6945 sqlite3ClearTempRegCache(pParse); 6946 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6947 CteUse *pCteUse = pItem->u2.pCteUse; 6948 pCteUse->addrM9e = pItem->addrFillSub; 6949 pCteUse->regRtn = pItem->regReturn; 6950 pCteUse->iCur = pItem->iCursor; 6951 pCteUse->nRowEst = pSub->nSelectRow; 6952 } 6953 } 6954 if( db->mallocFailed ) goto select_end; 6955 pParse->nHeight -= sqlite3SelectExprHeight(p); 6956 pParse->zAuthContext = zSavedAuthContext; 6957 #endif 6958 } 6959 6960 /* Various elements of the SELECT copied into local variables for 6961 ** convenience */ 6962 pEList = p->pEList; 6963 pWhere = p->pWhere; 6964 pGroupBy = p->pGroupBy; 6965 pHaving = p->pHaving; 6966 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6967 6968 #if TREETRACE_ENABLED 6969 if( sqlite3TreeTrace & 0x400 ){ 6970 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6971 sqlite3TreeViewSelect(0, p, 0); 6972 } 6973 #endif 6974 6975 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6976 ** if the select-list is the same as the ORDER BY list, then this query 6977 ** can be rewritten as a GROUP BY. In other words, this: 6978 ** 6979 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6980 ** 6981 ** is transformed to: 6982 ** 6983 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6984 ** 6985 ** The second form is preferred as a single index (or temp-table) may be 6986 ** used for both the ORDER BY and DISTINCT processing. As originally 6987 ** written the query must use a temp-table for at least one of the ORDER 6988 ** BY and DISTINCT, and an index or separate temp-table for the other. 6989 */ 6990 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6991 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6992 #ifndef SQLITE_OMIT_WINDOWFUNC 6993 && p->pWin==0 6994 #endif 6995 ){ 6996 p->selFlags &= ~SF_Distinct; 6997 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6998 p->selFlags |= SF_Aggregate; 6999 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7000 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7001 ** original setting of the SF_Distinct flag, not the current setting */ 7002 assert( sDistinct.isTnct ); 7003 sDistinct.isTnct = 2; 7004 7005 #if TREETRACE_ENABLED 7006 if( sqlite3TreeTrace & 0x400 ){ 7007 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7008 sqlite3TreeViewSelect(0, p, 0); 7009 } 7010 #endif 7011 } 7012 7013 /* If there is an ORDER BY clause, then create an ephemeral index to 7014 ** do the sorting. But this sorting ephemeral index might end up 7015 ** being unused if the data can be extracted in pre-sorted order. 7016 ** If that is the case, then the OP_OpenEphemeral instruction will be 7017 ** changed to an OP_Noop once we figure out that the sorting index is 7018 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7019 ** that change. 7020 */ 7021 if( sSort.pOrderBy ){ 7022 KeyInfo *pKeyInfo; 7023 pKeyInfo = sqlite3KeyInfoFromExprList( 7024 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7025 sSort.iECursor = pParse->nTab++; 7026 sSort.addrSortIndex = 7027 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7028 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7029 (char*)pKeyInfo, P4_KEYINFO 7030 ); 7031 }else{ 7032 sSort.addrSortIndex = -1; 7033 } 7034 7035 /* If the output is destined for a temporary table, open that table. 7036 */ 7037 if( pDest->eDest==SRT_EphemTab ){ 7038 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7039 if( p->selFlags & SF_NestedFrom ){ 7040 /* Delete or NULL-out result columns that will never be used */ 7041 int ii; 7042 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].bUsed==0; ii--){ 7043 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7044 sqlite3DbFree(db, pEList->a[ii].zEName); 7045 pEList->nExpr--; 7046 } 7047 for(ii=0; ii<pEList->nExpr; ii++){ 7048 if( pEList->a[ii].bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7049 } 7050 } 7051 } 7052 7053 /* Set the limiter. 7054 */ 7055 iEnd = sqlite3VdbeMakeLabel(pParse); 7056 if( (p->selFlags & SF_FixedLimit)==0 ){ 7057 p->nSelectRow = 320; /* 4 billion rows */ 7058 } 7059 computeLimitRegisters(pParse, p, iEnd); 7060 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7061 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7062 sSort.sortFlags |= SORTFLAG_UseSorter; 7063 } 7064 7065 /* Open an ephemeral index to use for the distinct set. 7066 */ 7067 if( p->selFlags & SF_Distinct ){ 7068 sDistinct.tabTnct = pParse->nTab++; 7069 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7070 sDistinct.tabTnct, 0, 0, 7071 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7072 P4_KEYINFO); 7073 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7074 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7075 }else{ 7076 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7077 } 7078 7079 if( !isAgg && pGroupBy==0 ){ 7080 /* No aggregate functions and no GROUP BY clause */ 7081 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7082 | (p->selFlags & SF_FixedLimit); 7083 #ifndef SQLITE_OMIT_WINDOWFUNC 7084 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7085 if( pWin ){ 7086 sqlite3WindowCodeInit(pParse, p); 7087 } 7088 #endif 7089 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7090 7091 7092 /* Begin the database scan. */ 7093 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7094 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7095 p->pEList, p, wctrlFlags, p->nSelectRow); 7096 if( pWInfo==0 ) goto select_end; 7097 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7098 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7099 } 7100 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7101 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7102 } 7103 if( sSort.pOrderBy ){ 7104 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7105 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7106 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7107 sSort.pOrderBy = 0; 7108 } 7109 } 7110 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7111 7112 /* If sorting index that was created by a prior OP_OpenEphemeral 7113 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7114 ** into an OP_Noop. 7115 */ 7116 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7117 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7118 } 7119 7120 assert( p->pEList==pEList ); 7121 #ifndef SQLITE_OMIT_WINDOWFUNC 7122 if( pWin ){ 7123 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7124 int iCont = sqlite3VdbeMakeLabel(pParse); 7125 int iBreak = sqlite3VdbeMakeLabel(pParse); 7126 int regGosub = ++pParse->nMem; 7127 7128 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7129 7130 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7131 sqlite3VdbeResolveLabel(v, addrGosub); 7132 VdbeNoopComment((v, "inner-loop subroutine")); 7133 sSort.labelOBLopt = 0; 7134 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7135 sqlite3VdbeResolveLabel(v, iCont); 7136 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7137 VdbeComment((v, "end inner-loop subroutine")); 7138 sqlite3VdbeResolveLabel(v, iBreak); 7139 }else 7140 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7141 { 7142 /* Use the standard inner loop. */ 7143 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7144 sqlite3WhereContinueLabel(pWInfo), 7145 sqlite3WhereBreakLabel(pWInfo)); 7146 7147 /* End the database scan loop. 7148 */ 7149 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7150 sqlite3WhereEnd(pWInfo); 7151 } 7152 }else{ 7153 /* This case when there exist aggregate functions or a GROUP BY clause 7154 ** or both */ 7155 NameContext sNC; /* Name context for processing aggregate information */ 7156 int iAMem; /* First Mem address for storing current GROUP BY */ 7157 int iBMem; /* First Mem address for previous GROUP BY */ 7158 int iUseFlag; /* Mem address holding flag indicating that at least 7159 ** one row of the input to the aggregator has been 7160 ** processed */ 7161 int iAbortFlag; /* Mem address which causes query abort if positive */ 7162 int groupBySort; /* Rows come from source in GROUP BY order */ 7163 int addrEnd; /* End of processing for this SELECT */ 7164 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7165 int sortOut = 0; /* Output register from the sorter */ 7166 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7167 7168 /* Remove any and all aliases between the result set and the 7169 ** GROUP BY clause. 7170 */ 7171 if( pGroupBy ){ 7172 int k; /* Loop counter */ 7173 struct ExprList_item *pItem; /* For looping over expression in a list */ 7174 7175 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7176 pItem->u.x.iAlias = 0; 7177 } 7178 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7179 pItem->u.x.iAlias = 0; 7180 } 7181 assert( 66==sqlite3LogEst(100) ); 7182 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7183 7184 /* If there is both a GROUP BY and an ORDER BY clause and they are 7185 ** identical, then it may be possible to disable the ORDER BY clause 7186 ** on the grounds that the GROUP BY will cause elements to come out 7187 ** in the correct order. It also may not - the GROUP BY might use a 7188 ** database index that causes rows to be grouped together as required 7189 ** but not actually sorted. Either way, record the fact that the 7190 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7191 ** variable. */ 7192 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7193 int ii; 7194 /* The GROUP BY processing doesn't care whether rows are delivered in 7195 ** ASC or DESC order - only that each group is returned contiguously. 7196 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7197 ** ORDER BY to maximize the chances of rows being delivered in an 7198 ** order that makes the ORDER BY redundant. */ 7199 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7200 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 7201 pGroupBy->a[ii].sortFlags = sortFlags; 7202 } 7203 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7204 orderByGrp = 1; 7205 } 7206 } 7207 }else{ 7208 assert( 0==sqlite3LogEst(1) ); 7209 p->nSelectRow = 0; 7210 } 7211 7212 /* Create a label to jump to when we want to abort the query */ 7213 addrEnd = sqlite3VdbeMakeLabel(pParse); 7214 7215 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7216 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7217 ** SELECT statement. 7218 */ 7219 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7220 if( pAggInfo ){ 7221 sqlite3ParserAddCleanup(pParse, 7222 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7223 testcase( pParse->earlyCleanup ); 7224 } 7225 if( db->mallocFailed ){ 7226 goto select_end; 7227 } 7228 pAggInfo->selId = p->selId; 7229 memset(&sNC, 0, sizeof(sNC)); 7230 sNC.pParse = pParse; 7231 sNC.pSrcList = pTabList; 7232 sNC.uNC.pAggInfo = pAggInfo; 7233 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7234 pAggInfo->mnReg = pParse->nMem+1; 7235 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7236 pAggInfo->pGroupBy = pGroupBy; 7237 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7238 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7239 if( pHaving ){ 7240 if( pGroupBy ){ 7241 assert( pWhere==p->pWhere ); 7242 assert( pHaving==p->pHaving ); 7243 assert( pGroupBy==p->pGroupBy ); 7244 havingToWhere(pParse, p); 7245 pWhere = p->pWhere; 7246 } 7247 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7248 } 7249 pAggInfo->nAccumulator = pAggInfo->nColumn; 7250 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7251 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7252 }else{ 7253 minMaxFlag = WHERE_ORDERBY_NORMAL; 7254 } 7255 for(i=0; i<pAggInfo->nFunc; i++){ 7256 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7257 assert( ExprUseXList(pExpr) ); 7258 sNC.ncFlags |= NC_InAggFunc; 7259 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7260 #ifndef SQLITE_OMIT_WINDOWFUNC 7261 assert( !IsWindowFunc(pExpr) ); 7262 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7263 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7264 } 7265 #endif 7266 sNC.ncFlags &= ~NC_InAggFunc; 7267 } 7268 pAggInfo->mxReg = pParse->nMem; 7269 if( db->mallocFailed ) goto select_end; 7270 #if TREETRACE_ENABLED 7271 if( sqlite3TreeTrace & 0x400 ){ 7272 int ii; 7273 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7274 sqlite3TreeViewSelect(0, p, 0); 7275 if( minMaxFlag ){ 7276 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7277 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7278 } 7279 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7280 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7281 ii, pAggInfo->aCol[ii].iMem); 7282 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7283 } 7284 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7285 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7286 ii, pAggInfo->aFunc[ii].iMem); 7287 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7288 } 7289 } 7290 #endif 7291 7292 7293 /* Processing for aggregates with GROUP BY is very different and 7294 ** much more complex than aggregates without a GROUP BY. 7295 */ 7296 if( pGroupBy ){ 7297 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7298 int addr1; /* A-vs-B comparision jump */ 7299 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7300 int regOutputRow; /* Return address register for output subroutine */ 7301 int addrSetAbort; /* Set the abort flag and return */ 7302 int addrTopOfLoop; /* Top of the input loop */ 7303 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7304 int addrReset; /* Subroutine for resetting the accumulator */ 7305 int regReset; /* Return address register for reset subroutine */ 7306 ExprList *pDistinct = 0; 7307 u16 distFlag = 0; 7308 int eDist = WHERE_DISTINCT_NOOP; 7309 7310 if( pAggInfo->nFunc==1 7311 && pAggInfo->aFunc[0].iDistinct>=0 7312 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7313 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7314 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7315 ){ 7316 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7317 pExpr = sqlite3ExprDup(db, pExpr, 0); 7318 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7319 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7320 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7321 } 7322 7323 /* If there is a GROUP BY clause we might need a sorting index to 7324 ** implement it. Allocate that sorting index now. If it turns out 7325 ** that we do not need it after all, the OP_SorterOpen instruction 7326 ** will be converted into a Noop. 7327 */ 7328 pAggInfo->sortingIdx = pParse->nTab++; 7329 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7330 0, pAggInfo->nColumn); 7331 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7332 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7333 0, (char*)pKeyInfo, P4_KEYINFO); 7334 7335 /* Initialize memory locations used by GROUP BY aggregate processing 7336 */ 7337 iUseFlag = ++pParse->nMem; 7338 iAbortFlag = ++pParse->nMem; 7339 regOutputRow = ++pParse->nMem; 7340 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7341 regReset = ++pParse->nMem; 7342 addrReset = sqlite3VdbeMakeLabel(pParse); 7343 iAMem = pParse->nMem + 1; 7344 pParse->nMem += pGroupBy->nExpr; 7345 iBMem = pParse->nMem + 1; 7346 pParse->nMem += pGroupBy->nExpr; 7347 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7348 VdbeComment((v, "clear abort flag")); 7349 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7350 7351 /* Begin a loop that will extract all source rows in GROUP BY order. 7352 ** This might involve two separate loops with an OP_Sort in between, or 7353 ** it might be a single loop that uses an index to extract information 7354 ** in the right order to begin with. 7355 */ 7356 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7357 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7358 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7359 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7360 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7361 ); 7362 if( pWInfo==0 ){ 7363 sqlite3ExprListDelete(db, pDistinct); 7364 goto select_end; 7365 } 7366 eDist = sqlite3WhereIsDistinct(pWInfo); 7367 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7368 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7369 /* The optimizer is able to deliver rows in group by order so 7370 ** we do not have to sort. The OP_OpenEphemeral table will be 7371 ** cancelled later because we still need to use the pKeyInfo 7372 */ 7373 groupBySort = 0; 7374 }else{ 7375 /* Rows are coming out in undetermined order. We have to push 7376 ** each row into a sorting index, terminate the first loop, 7377 ** then loop over the sorting index in order to get the output 7378 ** in sorted order 7379 */ 7380 int regBase; 7381 int regRecord; 7382 int nCol; 7383 int nGroupBy; 7384 7385 explainTempTable(pParse, 7386 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7387 "DISTINCT" : "GROUP BY"); 7388 7389 groupBySort = 1; 7390 nGroupBy = pGroupBy->nExpr; 7391 nCol = nGroupBy; 7392 j = nGroupBy; 7393 for(i=0; i<pAggInfo->nColumn; i++){ 7394 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7395 nCol++; 7396 j++; 7397 } 7398 } 7399 regBase = sqlite3GetTempRange(pParse, nCol); 7400 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7401 j = nGroupBy; 7402 for(i=0; i<pAggInfo->nColumn; i++){ 7403 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7404 if( pCol->iSorterColumn>=j ){ 7405 int r1 = j + regBase; 7406 sqlite3ExprCodeGetColumnOfTable(v, 7407 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7408 j++; 7409 } 7410 } 7411 regRecord = sqlite3GetTempReg(pParse); 7412 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7413 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7414 sqlite3ReleaseTempReg(pParse, regRecord); 7415 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7416 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7417 sqlite3WhereEnd(pWInfo); 7418 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7419 sortOut = sqlite3GetTempReg(pParse); 7420 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7421 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7422 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7423 pAggInfo->useSortingIdx = 1; 7424 } 7425 7426 /* If the index or temporary table used by the GROUP BY sort 7427 ** will naturally deliver rows in the order required by the ORDER BY 7428 ** clause, cancel the ephemeral table open coded earlier. 7429 ** 7430 ** This is an optimization - the correct answer should result regardless. 7431 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7432 ** disable this optimization for testing purposes. */ 7433 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7434 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7435 ){ 7436 sSort.pOrderBy = 0; 7437 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7438 } 7439 7440 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7441 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7442 ** Then compare the current GROUP BY terms against the GROUP BY terms 7443 ** from the previous row currently stored in a0, a1, a2... 7444 */ 7445 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7446 if( groupBySort ){ 7447 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7448 sortOut, sortPTab); 7449 } 7450 for(j=0; j<pGroupBy->nExpr; j++){ 7451 if( groupBySort ){ 7452 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7453 }else{ 7454 pAggInfo->directMode = 1; 7455 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7456 } 7457 } 7458 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7459 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7460 addr1 = sqlite3VdbeCurrentAddr(v); 7461 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7462 7463 /* Generate code that runs whenever the GROUP BY changes. 7464 ** Changes in the GROUP BY are detected by the previous code 7465 ** block. If there were no changes, this block is skipped. 7466 ** 7467 ** This code copies current group by terms in b0,b1,b2,... 7468 ** over to a0,a1,a2. It then calls the output subroutine 7469 ** and resets the aggregate accumulator registers in preparation 7470 ** for the next GROUP BY batch. 7471 */ 7472 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7473 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7474 VdbeComment((v, "output one row")); 7475 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7476 VdbeComment((v, "check abort flag")); 7477 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7478 VdbeComment((v, "reset accumulator")); 7479 7480 /* Update the aggregate accumulators based on the content of 7481 ** the current row 7482 */ 7483 sqlite3VdbeJumpHere(v, addr1); 7484 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7485 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7486 VdbeComment((v, "indicate data in accumulator")); 7487 7488 /* End of the loop 7489 */ 7490 if( groupBySort ){ 7491 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7492 VdbeCoverage(v); 7493 }else{ 7494 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7495 sqlite3WhereEnd(pWInfo); 7496 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7497 } 7498 sqlite3ExprListDelete(db, pDistinct); 7499 7500 /* Output the final row of result 7501 */ 7502 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7503 VdbeComment((v, "output final row")); 7504 7505 /* Jump over the subroutines 7506 */ 7507 sqlite3VdbeGoto(v, addrEnd); 7508 7509 /* Generate a subroutine that outputs a single row of the result 7510 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7511 ** is less than or equal to zero, the subroutine is a no-op. If 7512 ** the processing calls for the query to abort, this subroutine 7513 ** increments the iAbortFlag memory location before returning in 7514 ** order to signal the caller to abort. 7515 */ 7516 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7517 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7518 VdbeComment((v, "set abort flag")); 7519 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7520 sqlite3VdbeResolveLabel(v, addrOutputRow); 7521 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7522 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7523 VdbeCoverage(v); 7524 VdbeComment((v, "Groupby result generator entry point")); 7525 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7526 finalizeAggFunctions(pParse, pAggInfo); 7527 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7528 selectInnerLoop(pParse, p, -1, &sSort, 7529 &sDistinct, pDest, 7530 addrOutputRow+1, addrSetAbort); 7531 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7532 VdbeComment((v, "end groupby result generator")); 7533 7534 /* Generate a subroutine that will reset the group-by accumulator 7535 */ 7536 sqlite3VdbeResolveLabel(v, addrReset); 7537 resetAccumulator(pParse, pAggInfo); 7538 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7539 VdbeComment((v, "indicate accumulator empty")); 7540 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7541 7542 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7543 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7544 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7545 } 7546 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7547 else { 7548 Table *pTab; 7549 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7550 /* If isSimpleCount() returns a pointer to a Table structure, then 7551 ** the SQL statement is of the form: 7552 ** 7553 ** SELECT count(*) FROM <tbl> 7554 ** 7555 ** where the Table structure returned represents table <tbl>. 7556 ** 7557 ** This statement is so common that it is optimized specially. The 7558 ** OP_Count instruction is executed either on the intkey table that 7559 ** contains the data for table <tbl> or on one of its indexes. It 7560 ** is better to execute the op on an index, as indexes are almost 7561 ** always spread across less pages than their corresponding tables. 7562 */ 7563 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7564 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7565 Index *pIdx; /* Iterator variable */ 7566 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7567 Index *pBest = 0; /* Best index found so far */ 7568 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7569 7570 sqlite3CodeVerifySchema(pParse, iDb); 7571 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7572 7573 /* Search for the index that has the lowest scan cost. 7574 ** 7575 ** (2011-04-15) Do not do a full scan of an unordered index. 7576 ** 7577 ** (2013-10-03) Do not count the entries in a partial index. 7578 ** 7579 ** In practice the KeyInfo structure will not be used. It is only 7580 ** passed to keep OP_OpenRead happy. 7581 */ 7582 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7583 if( !p->pSrc->a[0].fg.notIndexed ){ 7584 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7585 if( pIdx->bUnordered==0 7586 && pIdx->szIdxRow<pTab->szTabRow 7587 && pIdx->pPartIdxWhere==0 7588 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7589 ){ 7590 pBest = pIdx; 7591 } 7592 } 7593 } 7594 if( pBest ){ 7595 iRoot = pBest->tnum; 7596 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7597 } 7598 7599 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7600 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7601 if( pKeyInfo ){ 7602 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7603 } 7604 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7605 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7606 explainSimpleCount(pParse, pTab, pBest); 7607 }else{ 7608 int regAcc = 0; /* "populate accumulators" flag */ 7609 ExprList *pDistinct = 0; 7610 u16 distFlag = 0; 7611 int eDist; 7612 7613 /* If there are accumulator registers but no min() or max() functions 7614 ** without FILTER clauses, allocate register regAcc. Register regAcc 7615 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7616 ** The code generated by updateAccumulator() uses this to ensure 7617 ** that the accumulator registers are (a) updated only once if 7618 ** there are no min() or max functions or (b) always updated for the 7619 ** first row visited by the aggregate, so that they are updated at 7620 ** least once even if the FILTER clause means the min() or max() 7621 ** function visits zero rows. */ 7622 if( pAggInfo->nAccumulator ){ 7623 for(i=0; i<pAggInfo->nFunc; i++){ 7624 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7625 continue; 7626 } 7627 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7628 break; 7629 } 7630 } 7631 if( i==pAggInfo->nFunc ){ 7632 regAcc = ++pParse->nMem; 7633 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7634 } 7635 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7636 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7637 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7638 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7639 } 7640 7641 /* This case runs if the aggregate has no GROUP BY clause. The 7642 ** processing is much simpler since there is only a single row 7643 ** of output. 7644 */ 7645 assert( p->pGroupBy==0 ); 7646 resetAccumulator(pParse, pAggInfo); 7647 7648 /* If this query is a candidate for the min/max optimization, then 7649 ** minMaxFlag will have been previously set to either 7650 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7651 ** be an appropriate ORDER BY expression for the optimization. 7652 */ 7653 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7654 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7655 7656 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7657 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7658 pDistinct, 0, minMaxFlag|distFlag, 0); 7659 if( pWInfo==0 ){ 7660 goto select_end; 7661 } 7662 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7663 eDist = sqlite3WhereIsDistinct(pWInfo); 7664 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7665 if( eDist!=WHERE_DISTINCT_NOOP ){ 7666 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7667 if( pF ){ 7668 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7669 } 7670 } 7671 7672 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7673 if( minMaxFlag ){ 7674 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7675 } 7676 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7677 sqlite3WhereEnd(pWInfo); 7678 finalizeAggFunctions(pParse, pAggInfo); 7679 } 7680 7681 sSort.pOrderBy = 0; 7682 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7683 selectInnerLoop(pParse, p, -1, 0, 0, 7684 pDest, addrEnd, addrEnd); 7685 } 7686 sqlite3VdbeResolveLabel(v, addrEnd); 7687 7688 } /* endif aggregate query */ 7689 7690 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7691 explainTempTable(pParse, "DISTINCT"); 7692 } 7693 7694 /* If there is an ORDER BY clause, then we need to sort the results 7695 ** and send them to the callback one by one. 7696 */ 7697 if( sSort.pOrderBy ){ 7698 explainTempTable(pParse, 7699 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7700 assert( p->pEList==pEList ); 7701 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7702 } 7703 7704 /* Jump here to skip this query 7705 */ 7706 sqlite3VdbeResolveLabel(v, iEnd); 7707 7708 /* The SELECT has been coded. If there is an error in the Parse structure, 7709 ** set the return code to 1. Otherwise 0. */ 7710 rc = (pParse->nErr>0); 7711 7712 /* Control jumps to here if an error is encountered above, or upon 7713 ** successful coding of the SELECT. 7714 */ 7715 select_end: 7716 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7717 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7718 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7719 #ifdef SQLITE_DEBUG 7720 if( pAggInfo && !db->mallocFailed ){ 7721 for(i=0; i<pAggInfo->nColumn; i++){ 7722 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7723 assert( pExpr!=0 ); 7724 assert( pExpr->pAggInfo==pAggInfo ); 7725 assert( pExpr->iAgg==i ); 7726 } 7727 for(i=0; i<pAggInfo->nFunc; i++){ 7728 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7729 assert( pExpr!=0 ); 7730 assert( pExpr->pAggInfo==pAggInfo ); 7731 assert( pExpr->iAgg==i ); 7732 } 7733 } 7734 #endif 7735 7736 #if TREETRACE_ENABLED 7737 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7738 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7739 sqlite3TreeViewSelect(0, p, 0); 7740 } 7741 #endif 7742 ExplainQueryPlanPop(pParse); 7743 return rc; 7744 } 7745