1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->w.iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.w.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.w.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table w.iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->w.iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION ){ 395 assert( ExprUseXList(p) ); 396 if( p->x.pList ){ 397 int i; 398 for(i=0; i<p->x.pList->nExpr; i++){ 399 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 400 } 401 } 402 } 403 sqlite3SetJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 409 ** term that is marked with EP_FromJoin and w.iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->w.iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_COLUMN && p->iTable==iTable ){ 421 ExprClearProperty(p, EP_CanBeNull); 422 } 423 if( p->op==TK_FUNCTION ){ 424 assert( ExprUseXList(p) ); 425 if( p->x.pList ){ 426 int i; 427 for(i=0; i<p->x.pList->nExpr; i++){ 428 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 429 } 430 } 431 } 432 unsetJoinExpr(p->pLeft, iTable); 433 p = p->pRight; 434 } 435 } 436 437 /* 438 ** This routine processes the join information for a SELECT statement. 439 ** ON and USING clauses are converted into extra terms of the WHERE clause. 440 ** NATURAL joins also create extra WHERE clause terms. 441 ** 442 ** The terms of a FROM clause are contained in the Select.pSrc structure. 443 ** The left most table is the first entry in Select.pSrc. The right-most 444 ** table is the last entry. The join operator is held in the entry to 445 ** the left. Thus entry 0 contains the join operator for the join between 446 ** entries 0 and 1. Any ON or USING clauses associated with the join are 447 ** also attached to the left entry. 448 ** 449 ** This routine returns the number of errors encountered. 450 */ 451 static int sqliteProcessJoin(Parse *pParse, Select *p){ 452 SrcList *pSrc; /* All tables in the FROM clause */ 453 int i, j; /* Loop counters */ 454 SrcItem *pLeft; /* Left table being joined */ 455 SrcItem *pRight; /* Right table being joined */ 456 457 pSrc = p->pSrc; 458 pLeft = &pSrc->a[0]; 459 pRight = &pLeft[1]; 460 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 461 Table *pRightTab = pRight->pTab; 462 int isOuter; 463 464 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 465 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 466 467 /* When the NATURAL keyword is present, add WHERE clause terms for 468 ** every column that the two tables have in common. 469 */ 470 if( pRight->fg.jointype & JT_NATURAL ){ 471 if( pRight->fg.isUsing || pRight->u3.pOn ){ 472 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 473 "an ON or USING clause", 0); 474 return 1; 475 } 476 for(j=0; j<pRightTab->nCol; j++){ 477 char *zName; /* Name of column in the right table */ 478 int iLeft; /* Matching left table */ 479 int iLeftCol; /* Matching column in the left table */ 480 481 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 482 zName = pRightTab->aCol[j].zCnName; 483 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 490 /* Create extra terms on the WHERE clause for each column named 491 ** in the USING clause. Example: If the two tables to be joined are 492 ** A and B and the USING clause names X, Y, and Z, then add this 493 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 494 ** Report an error if any column mentioned in the USING clause is 495 ** not contained in both tables to be joined. 496 */ 497 if( pRight->fg.isUsing ){ 498 IdList *pList = pRight->u3.pUsing; 499 assert( pList!=0 ); 500 for(j=0; j<pList->nId; j++){ 501 char *zName; /* Name of the term in the USING clause */ 502 int iLeft; /* Table on the left with matching column name */ 503 int iLeftCol; /* Column number of matching column on the left */ 504 int iRightCol; /* Column number of matching column on the right */ 505 506 zName = pList->a[j].zName; 507 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 508 if( iRightCol<0 509 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 510 ){ 511 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 512 "not present in both tables", zName); 513 return 1; 514 } 515 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 516 isOuter, &p->pWhere); 517 } 518 } 519 520 /* Add the ON clause to the end of the WHERE clause, connected by 521 ** an AND operator. 522 */ 523 else if( pRight->u3.pOn ){ 524 if( isOuter ) sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor); 525 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 526 pRight->u3.pOn = 0; 527 } 528 } 529 return 0; 530 } 531 532 /* 533 ** An instance of this object holds information (beyond pParse and pSelect) 534 ** needed to load the next result row that is to be added to the sorter. 535 */ 536 typedef struct RowLoadInfo RowLoadInfo; 537 struct RowLoadInfo { 538 int regResult; /* Store results in array of registers here */ 539 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 540 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 541 ExprList *pExtra; /* Extra columns needed by sorter refs */ 542 int regExtraResult; /* Where to load the extra columns */ 543 #endif 544 }; 545 546 /* 547 ** This routine does the work of loading query data into an array of 548 ** registers so that it can be added to the sorter. 549 */ 550 static void innerLoopLoadRow( 551 Parse *pParse, /* Statement under construction */ 552 Select *pSelect, /* The query being coded */ 553 RowLoadInfo *pInfo /* Info needed to complete the row load */ 554 ){ 555 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 556 0, pInfo->ecelFlags); 557 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 558 if( pInfo->pExtra ){ 559 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 560 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 561 } 562 #endif 563 } 564 565 /* 566 ** Code the OP_MakeRecord instruction that generates the entry to be 567 ** added into the sorter. 568 ** 569 ** Return the register in which the result is stored. 570 */ 571 static int makeSorterRecord( 572 Parse *pParse, 573 SortCtx *pSort, 574 Select *pSelect, 575 int regBase, 576 int nBase 577 ){ 578 int nOBSat = pSort->nOBSat; 579 Vdbe *v = pParse->pVdbe; 580 int regOut = ++pParse->nMem; 581 if( pSort->pDeferredRowLoad ){ 582 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 583 } 584 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 585 return regOut; 586 } 587 588 /* 589 ** Generate code that will push the record in registers regData 590 ** through regData+nData-1 onto the sorter. 591 */ 592 static void pushOntoSorter( 593 Parse *pParse, /* Parser context */ 594 SortCtx *pSort, /* Information about the ORDER BY clause */ 595 Select *pSelect, /* The whole SELECT statement */ 596 int regData, /* First register holding data to be sorted */ 597 int regOrigData, /* First register holding data before packing */ 598 int nData, /* Number of elements in the regData data array */ 599 int nPrefixReg /* No. of reg prior to regData available for use */ 600 ){ 601 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 602 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 603 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 604 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 605 int regBase; /* Regs for sorter record */ 606 int regRecord = 0; /* Assembled sorter record */ 607 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 608 int op; /* Opcode to add sorter record to sorter */ 609 int iLimit; /* LIMIT counter */ 610 int iSkip = 0; /* End of the sorter insert loop */ 611 612 assert( bSeq==0 || bSeq==1 ); 613 614 /* Three cases: 615 ** (1) The data to be sorted has already been packed into a Record 616 ** by a prior OP_MakeRecord. In this case nData==1 and regData 617 ** will be completely unrelated to regOrigData. 618 ** (2) All output columns are included in the sort record. In that 619 ** case regData==regOrigData. 620 ** (3) Some output columns are omitted from the sort record due to 621 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 622 ** SQLITE_ECEL_OMITREF optimization, or due to the 623 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 624 ** regOrigData is 0 to prevent this routine from trying to copy 625 ** values that might not yet exist. 626 */ 627 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 628 629 if( nPrefixReg ){ 630 assert( nPrefixReg==nExpr+bSeq ); 631 regBase = regData - nPrefixReg; 632 }else{ 633 regBase = pParse->nMem + 1; 634 pParse->nMem += nBase; 635 } 636 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 637 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 638 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 639 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 640 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 641 if( bSeq ){ 642 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 643 } 644 if( nPrefixReg==0 && nData>0 ){ 645 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 646 } 647 if( nOBSat>0 ){ 648 int regPrevKey; /* The first nOBSat columns of the previous row */ 649 int addrFirst; /* Address of the OP_IfNot opcode */ 650 int addrJmp; /* Address of the OP_Jump opcode */ 651 VdbeOp *pOp; /* Opcode that opens the sorter */ 652 int nKey; /* Number of sorting key columns, including OP_Sequence */ 653 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 654 655 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 656 regPrevKey = pParse->nMem+1; 657 pParse->nMem += pSort->nOBSat; 658 nKey = nExpr - pSort->nOBSat + bSeq; 659 if( bSeq ){ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 661 }else{ 662 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 663 } 664 VdbeCoverage(v); 665 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 666 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 667 if( pParse->db->mallocFailed ) return; 668 pOp->p2 = nKey + nData; 669 pKI = pOp->p4.pKeyInfo; 670 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 671 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 672 testcase( pKI->nAllField > pKI->nKeyField+2 ); 673 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 674 pKI->nAllField-pKI->nKeyField-1); 675 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 676 addrJmp = sqlite3VdbeCurrentAddr(v); 677 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 678 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 679 pSort->regReturn = ++pParse->nMem; 680 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 681 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 682 if( iLimit ){ 683 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 684 VdbeCoverage(v); 685 } 686 sqlite3VdbeJumpHere(v, addrFirst); 687 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 688 sqlite3VdbeJumpHere(v, addrJmp); 689 } 690 if( iLimit ){ 691 /* At this point the values for the new sorter entry are stored 692 ** in an array of registers. They need to be composed into a record 693 ** and inserted into the sorter if either (a) there are currently 694 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 695 ** the largest record currently in the sorter. If (b) is true and there 696 ** are already LIMIT+OFFSET items in the sorter, delete the largest 697 ** entry before inserting the new one. This way there are never more 698 ** than LIMIT+OFFSET items in the sorter. 699 ** 700 ** If the new record does not need to be inserted into the sorter, 701 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 702 ** value is not zero, then it is a label of where to jump. Otherwise, 703 ** just bypass the row insert logic. See the header comment on the 704 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 705 */ 706 int iCsr = pSort->iECursor; 707 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 708 VdbeCoverage(v); 709 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 710 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 711 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 712 VdbeCoverage(v); 713 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 714 } 715 if( regRecord==0 ){ 716 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 717 } 718 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 719 op = OP_SorterInsert; 720 }else{ 721 op = OP_IdxInsert; 722 } 723 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 724 regBase+nOBSat, nBase-nOBSat); 725 if( iSkip ){ 726 sqlite3VdbeChangeP2(v, iSkip, 727 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 728 } 729 } 730 731 /* 732 ** Add code to implement the OFFSET 733 */ 734 static void codeOffset( 735 Vdbe *v, /* Generate code into this VM */ 736 int iOffset, /* Register holding the offset counter */ 737 int iContinue /* Jump here to skip the current record */ 738 ){ 739 if( iOffset>0 ){ 740 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 741 VdbeComment((v, "OFFSET")); 742 } 743 } 744 745 /* 746 ** Add code that will check to make sure the array of registers starting at 747 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 748 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 749 ** are available. Which is used depends on the value of parameter eTnctType, 750 ** as follows: 751 ** 752 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 753 ** Build an ephemeral table that contains all entries seen before and 754 ** skip entries which have been seen before. 755 ** 756 ** Parameter iTab is the cursor number of an ephemeral table that must 757 ** be opened before the VM code generated by this routine is executed. 758 ** The ephemeral cursor table is queried for a record identical to the 759 ** record formed by the current array of registers. If one is found, 760 ** jump to VM address addrRepeat. Otherwise, insert a new record into 761 ** the ephemeral cursor and proceed. 762 ** 763 ** The returned value in this case is a copy of parameter iTab. 764 ** 765 ** WHERE_DISTINCT_ORDERED: 766 ** In this case rows are being delivered sorted order. The ephermal 767 ** table is not required. Instead, the current set of values 768 ** is compared against previous row. If they match, the new row 769 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 770 ** the VM program proceeds with processing the new row. 771 ** 772 ** The returned value in this case is the register number of the first 773 ** in an array of registers used to store the previous result row so that 774 ** it can be compared to the next. The caller must ensure that this 775 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 776 ** will take care of this initialization.) 777 ** 778 ** WHERE_DISTINCT_UNIQUE: 779 ** In this case it has already been determined that the rows are distinct. 780 ** No special action is required. The return value is zero. 781 ** 782 ** Parameter pEList is the list of expressions used to generated the 783 ** contents of each row. It is used by this routine to determine (a) 784 ** how many elements there are in the array of registers and (b) the 785 ** collation sequences that should be used for the comparisons if 786 ** eTnctType is WHERE_DISTINCT_ORDERED. 787 */ 788 static int codeDistinct( 789 Parse *pParse, /* Parsing and code generating context */ 790 int eTnctType, /* WHERE_DISTINCT_* value */ 791 int iTab, /* A sorting index used to test for distinctness */ 792 int addrRepeat, /* Jump to here if not distinct */ 793 ExprList *pEList, /* Expression for each element */ 794 int regElem /* First element */ 795 ){ 796 int iRet = 0; 797 int nResultCol = pEList->nExpr; 798 Vdbe *v = pParse->pVdbe; 799 800 switch( eTnctType ){ 801 case WHERE_DISTINCT_ORDERED: { 802 int i; 803 int iJump; /* Jump destination */ 804 int regPrev; /* Previous row content */ 805 806 /* Allocate space for the previous row */ 807 iRet = regPrev = pParse->nMem+1; 808 pParse->nMem += nResultCol; 809 810 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 811 for(i=0; i<nResultCol; i++){ 812 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 813 if( i<nResultCol-1 ){ 814 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 815 VdbeCoverage(v); 816 }else{ 817 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 818 VdbeCoverage(v); 819 } 820 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 821 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 822 } 823 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 824 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 825 break; 826 } 827 828 case WHERE_DISTINCT_UNIQUE: { 829 /* nothing to do */ 830 break; 831 } 832 833 default: { 834 int r1 = sqlite3GetTempReg(pParse); 835 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 836 VdbeCoverage(v); 837 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 838 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 839 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 840 sqlite3ReleaseTempReg(pParse, r1); 841 iRet = iTab; 842 break; 843 } 844 } 845 846 return iRet; 847 } 848 849 /* 850 ** This routine runs after codeDistinct(). It makes necessary 851 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 852 ** routine made use of. This processing must be done separately since 853 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 854 ** laid down. 855 ** 856 ** WHERE_DISTINCT_NOOP: 857 ** WHERE_DISTINCT_UNORDERED: 858 ** 859 ** No adjustments necessary. This function is a no-op. 860 ** 861 ** WHERE_DISTINCT_UNIQUE: 862 ** 863 ** The ephemeral table is not needed. So change the 864 ** OP_OpenEphemeral opcode into an OP_Noop. 865 ** 866 ** WHERE_DISTINCT_ORDERED: 867 ** 868 ** The ephemeral table is not needed. But we do need register 869 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 870 ** into an OP_Null on the iVal register. 871 */ 872 static void fixDistinctOpenEph( 873 Parse *pParse, /* Parsing and code generating context */ 874 int eTnctType, /* WHERE_DISTINCT_* value */ 875 int iVal, /* Value returned by codeDistinct() */ 876 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 877 ){ 878 if( pParse->nErr==0 879 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 880 ){ 881 Vdbe *v = pParse->pVdbe; 882 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 883 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 884 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 885 } 886 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 887 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 888 ** bit on the first register of the previous value. This will cause the 889 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 890 ** the loop even if the first row is all NULLs. */ 891 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 892 pOp->opcode = OP_Null; 893 pOp->p1 = 1; 894 pOp->p2 = iVal; 895 } 896 } 897 } 898 899 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 900 /* 901 ** This function is called as part of inner-loop generation for a SELECT 902 ** statement with an ORDER BY that is not optimized by an index. It 903 ** determines the expressions, if any, that the sorter-reference 904 ** optimization should be used for. The sorter-reference optimization 905 ** is used for SELECT queries like: 906 ** 907 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 908 ** 909 ** If the optimization is used for expression "bigblob", then instead of 910 ** storing values read from that column in the sorter records, the PK of 911 ** the row from table t1 is stored instead. Then, as records are extracted from 912 ** the sorter to return to the user, the required value of bigblob is 913 ** retrieved directly from table t1. If the values are very large, this 914 ** can be more efficient than storing them directly in the sorter records. 915 ** 916 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 917 ** for which the sorter-reference optimization should be enabled. 918 ** Additionally, the pSort->aDefer[] array is populated with entries 919 ** for all cursors required to evaluate all selected expressions. Finally. 920 ** output variable (*ppExtra) is set to an expression list containing 921 ** expressions for all extra PK values that should be stored in the 922 ** sorter records. 923 */ 924 static void selectExprDefer( 925 Parse *pParse, /* Leave any error here */ 926 SortCtx *pSort, /* Sorter context */ 927 ExprList *pEList, /* Expressions destined for sorter */ 928 ExprList **ppExtra /* Expressions to append to sorter record */ 929 ){ 930 int i; 931 int nDefer = 0; 932 ExprList *pExtra = 0; 933 for(i=0; i<pEList->nExpr; i++){ 934 struct ExprList_item *pItem = &pEList->a[i]; 935 if( pItem->u.x.iOrderByCol==0 ){ 936 Expr *pExpr = pItem->pExpr; 937 Table *pTab; 938 if( pExpr->op==TK_COLUMN 939 && pExpr->iColumn>=0 940 && ALWAYS( ExprUseYTab(pExpr) ) 941 && (pTab = pExpr->y.pTab)!=0 942 && IsOrdinaryTable(pTab) 943 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 944 ){ 945 int j; 946 for(j=0; j<nDefer; j++){ 947 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 948 } 949 if( j==nDefer ){ 950 if( nDefer==ArraySize(pSort->aDefer) ){ 951 continue; 952 }else{ 953 int nKey = 1; 954 int k; 955 Index *pPk = 0; 956 if( !HasRowid(pTab) ){ 957 pPk = sqlite3PrimaryKeyIndex(pTab); 958 nKey = pPk->nKeyCol; 959 } 960 for(k=0; k<nKey; k++){ 961 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 962 if( pNew ){ 963 pNew->iTable = pExpr->iTable; 964 assert( ExprUseYTab(pNew) ); 965 pNew->y.pTab = pExpr->y.pTab; 966 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 967 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 968 } 969 } 970 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 971 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 972 pSort->aDefer[nDefer].nKey = nKey; 973 nDefer++; 974 } 975 } 976 pItem->bSorterRef = 1; 977 } 978 } 979 } 980 pSort->nDefer = (u8)nDefer; 981 *ppExtra = pExtra; 982 } 983 #endif 984 985 /* 986 ** This routine generates the code for the inside of the inner loop 987 ** of a SELECT. 988 ** 989 ** If srcTab is negative, then the p->pEList expressions 990 ** are evaluated in order to get the data for this row. If srcTab is 991 ** zero or more, then data is pulled from srcTab and p->pEList is used only 992 ** to get the number of columns and the collation sequence for each column. 993 */ 994 static void selectInnerLoop( 995 Parse *pParse, /* The parser context */ 996 Select *p, /* The complete select statement being coded */ 997 int srcTab, /* Pull data from this table if non-negative */ 998 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 999 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1000 SelectDest *pDest, /* How to dispose of the results */ 1001 int iContinue, /* Jump here to continue with next row */ 1002 int iBreak /* Jump here to break out of the inner loop */ 1003 ){ 1004 Vdbe *v = pParse->pVdbe; 1005 int i; 1006 int hasDistinct; /* True if the DISTINCT keyword is present */ 1007 int eDest = pDest->eDest; /* How to dispose of results */ 1008 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1009 int nResultCol; /* Number of result columns */ 1010 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1011 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1012 1013 /* Usually, regResult is the first cell in an array of memory cells 1014 ** containing the current result row. In this case regOrig is set to the 1015 ** same value. However, if the results are being sent to the sorter, the 1016 ** values for any expressions that are also part of the sort-key are omitted 1017 ** from this array. In this case regOrig is set to zero. */ 1018 int regResult; /* Start of memory holding current results */ 1019 int regOrig; /* Start of memory holding full result (or 0) */ 1020 1021 assert( v ); 1022 assert( p->pEList!=0 ); 1023 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1024 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1025 if( pSort==0 && !hasDistinct ){ 1026 assert( iContinue!=0 ); 1027 codeOffset(v, p->iOffset, iContinue); 1028 } 1029 1030 /* Pull the requested columns. 1031 */ 1032 nResultCol = p->pEList->nExpr; 1033 1034 if( pDest->iSdst==0 ){ 1035 if( pSort ){ 1036 nPrefixReg = pSort->pOrderBy->nExpr; 1037 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1038 pParse->nMem += nPrefixReg; 1039 } 1040 pDest->iSdst = pParse->nMem+1; 1041 pParse->nMem += nResultCol; 1042 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1043 /* This is an error condition that can result, for example, when a SELECT 1044 ** on the right-hand side of an INSERT contains more result columns than 1045 ** there are columns in the table on the left. The error will be caught 1046 ** and reported later. But we need to make sure enough memory is allocated 1047 ** to avoid other spurious errors in the meantime. */ 1048 pParse->nMem += nResultCol; 1049 } 1050 pDest->nSdst = nResultCol; 1051 regOrig = regResult = pDest->iSdst; 1052 if( srcTab>=0 ){ 1053 for(i=0; i<nResultCol; i++){ 1054 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1055 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1056 } 1057 }else if( eDest!=SRT_Exists ){ 1058 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1059 ExprList *pExtra = 0; 1060 #endif 1061 /* If the destination is an EXISTS(...) expression, the actual 1062 ** values returned by the SELECT are not required. 1063 */ 1064 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1065 ExprList *pEList; 1066 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1067 ecelFlags = SQLITE_ECEL_DUP; 1068 }else{ 1069 ecelFlags = 0; 1070 } 1071 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1072 /* For each expression in p->pEList that is a copy of an expression in 1073 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1074 ** iOrderByCol value to one more than the index of the ORDER BY 1075 ** expression within the sort-key that pushOntoSorter() will generate. 1076 ** This allows the p->pEList field to be omitted from the sorted record, 1077 ** saving space and CPU cycles. */ 1078 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1079 1080 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1081 int j; 1082 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1083 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1084 } 1085 } 1086 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1087 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1088 if( pExtra && pParse->db->mallocFailed==0 ){ 1089 /* If there are any extra PK columns to add to the sorter records, 1090 ** allocate extra memory cells and adjust the OpenEphemeral 1091 ** instruction to account for the larger records. This is only 1092 ** required if there are one or more WITHOUT ROWID tables with 1093 ** composite primary keys in the SortCtx.aDefer[] array. */ 1094 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1095 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1096 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1097 pParse->nMem += pExtra->nExpr; 1098 } 1099 #endif 1100 1101 /* Adjust nResultCol to account for columns that are omitted 1102 ** from the sorter by the optimizations in this branch */ 1103 pEList = p->pEList; 1104 for(i=0; i<pEList->nExpr; i++){ 1105 if( pEList->a[i].u.x.iOrderByCol>0 1106 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1107 || pEList->a[i].bSorterRef 1108 #endif 1109 ){ 1110 nResultCol--; 1111 regOrig = 0; 1112 } 1113 } 1114 1115 testcase( regOrig ); 1116 testcase( eDest==SRT_Set ); 1117 testcase( eDest==SRT_Mem ); 1118 testcase( eDest==SRT_Coroutine ); 1119 testcase( eDest==SRT_Output ); 1120 assert( eDest==SRT_Set || eDest==SRT_Mem 1121 || eDest==SRT_Coroutine || eDest==SRT_Output 1122 || eDest==SRT_Upfrom ); 1123 } 1124 sRowLoadInfo.regResult = regResult; 1125 sRowLoadInfo.ecelFlags = ecelFlags; 1126 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1127 sRowLoadInfo.pExtra = pExtra; 1128 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1129 if( pExtra ) nResultCol += pExtra->nExpr; 1130 #endif 1131 if( p->iLimit 1132 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1133 && nPrefixReg>0 1134 ){ 1135 assert( pSort!=0 ); 1136 assert( hasDistinct==0 ); 1137 pSort->pDeferredRowLoad = &sRowLoadInfo; 1138 regOrig = 0; 1139 }else{ 1140 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1141 } 1142 } 1143 1144 /* If the DISTINCT keyword was present on the SELECT statement 1145 ** and this row has been seen before, then do not make this row 1146 ** part of the result. 1147 */ 1148 if( hasDistinct ){ 1149 int eType = pDistinct->eTnctType; 1150 int iTab = pDistinct->tabTnct; 1151 assert( nResultCol==p->pEList->nExpr ); 1152 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1153 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1154 if( pSort==0 ){ 1155 codeOffset(v, p->iOffset, iContinue); 1156 } 1157 } 1158 1159 switch( eDest ){ 1160 /* In this mode, write each query result to the key of the temporary 1161 ** table iParm. 1162 */ 1163 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1164 case SRT_Union: { 1165 int r1; 1166 r1 = sqlite3GetTempReg(pParse); 1167 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1168 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1169 sqlite3ReleaseTempReg(pParse, r1); 1170 break; 1171 } 1172 1173 /* Construct a record from the query result, but instead of 1174 ** saving that record, use it as a key to delete elements from 1175 ** the temporary table iParm. 1176 */ 1177 case SRT_Except: { 1178 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1179 break; 1180 } 1181 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1182 1183 /* Store the result as data using a unique key. 1184 */ 1185 case SRT_Fifo: 1186 case SRT_DistFifo: 1187 case SRT_Table: 1188 case SRT_EphemTab: { 1189 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1190 testcase( eDest==SRT_Table ); 1191 testcase( eDest==SRT_EphemTab ); 1192 testcase( eDest==SRT_Fifo ); 1193 testcase( eDest==SRT_DistFifo ); 1194 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1195 #ifndef SQLITE_OMIT_CTE 1196 if( eDest==SRT_DistFifo ){ 1197 /* If the destination is DistFifo, then cursor (iParm+1) is open 1198 ** on an ephemeral index. If the current row is already present 1199 ** in the index, do not write it to the output. If not, add the 1200 ** current row to the index and proceed with writing it to the 1201 ** output table as well. */ 1202 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1203 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1204 VdbeCoverage(v); 1205 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1206 assert( pSort==0 ); 1207 } 1208 #endif 1209 if( pSort ){ 1210 assert( regResult==regOrig ); 1211 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1212 }else{ 1213 int r2 = sqlite3GetTempReg(pParse); 1214 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1215 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1216 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1217 sqlite3ReleaseTempReg(pParse, r2); 1218 } 1219 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1220 break; 1221 } 1222 1223 case SRT_Upfrom: { 1224 if( pSort ){ 1225 pushOntoSorter( 1226 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1227 }else{ 1228 int i2 = pDest->iSDParm2; 1229 int r1 = sqlite3GetTempReg(pParse); 1230 1231 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1232 ** might still be trying to return one row, because that is what 1233 ** aggregates do. Don't record that empty row in the output table. */ 1234 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1235 1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1237 regResult+(i2<0), nResultCol-(i2<0), r1); 1238 if( i2<0 ){ 1239 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1240 }else{ 1241 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1242 } 1243 } 1244 break; 1245 } 1246 1247 #ifndef SQLITE_OMIT_SUBQUERY 1248 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1249 ** then there should be a single item on the stack. Write this 1250 ** item into the set table with bogus data. 1251 */ 1252 case SRT_Set: { 1253 if( pSort ){ 1254 /* At first glance you would think we could optimize out the 1255 ** ORDER BY in this case since the order of entries in the set 1256 ** does not matter. But there might be a LIMIT clause, in which 1257 ** case the order does matter */ 1258 pushOntoSorter( 1259 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1260 }else{ 1261 int r1 = sqlite3GetTempReg(pParse); 1262 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1263 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1264 r1, pDest->zAffSdst, nResultCol); 1265 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1266 sqlite3ReleaseTempReg(pParse, r1); 1267 } 1268 break; 1269 } 1270 1271 1272 /* If any row exist in the result set, record that fact and abort. 1273 */ 1274 case SRT_Exists: { 1275 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1276 /* The LIMIT clause will terminate the loop for us */ 1277 break; 1278 } 1279 1280 /* If this is a scalar select that is part of an expression, then 1281 ** store the results in the appropriate memory cell or array of 1282 ** memory cells and break out of the scan loop. 1283 */ 1284 case SRT_Mem: { 1285 if( pSort ){ 1286 assert( nResultCol<=pDest->nSdst ); 1287 pushOntoSorter( 1288 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1289 }else{ 1290 assert( nResultCol==pDest->nSdst ); 1291 assert( regResult==iParm ); 1292 /* The LIMIT clause will jump out of the loop for us */ 1293 } 1294 break; 1295 } 1296 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1297 1298 case SRT_Coroutine: /* Send data to a co-routine */ 1299 case SRT_Output: { /* Return the results */ 1300 testcase( eDest==SRT_Coroutine ); 1301 testcase( eDest==SRT_Output ); 1302 if( pSort ){ 1303 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1304 nPrefixReg); 1305 }else if( eDest==SRT_Coroutine ){ 1306 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1307 }else{ 1308 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1309 } 1310 break; 1311 } 1312 1313 #ifndef SQLITE_OMIT_CTE 1314 /* Write the results into a priority queue that is order according to 1315 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1316 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1317 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1318 ** final OP_Sequence column. The last column is the record as a blob. 1319 */ 1320 case SRT_DistQueue: 1321 case SRT_Queue: { 1322 int nKey; 1323 int r1, r2, r3; 1324 int addrTest = 0; 1325 ExprList *pSO; 1326 pSO = pDest->pOrderBy; 1327 assert( pSO ); 1328 nKey = pSO->nExpr; 1329 r1 = sqlite3GetTempReg(pParse); 1330 r2 = sqlite3GetTempRange(pParse, nKey+2); 1331 r3 = r2+nKey+1; 1332 if( eDest==SRT_DistQueue ){ 1333 /* If the destination is DistQueue, then cursor (iParm+1) is open 1334 ** on a second ephemeral index that holds all values every previously 1335 ** added to the queue. */ 1336 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1337 regResult, nResultCol); 1338 VdbeCoverage(v); 1339 } 1340 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1341 if( eDest==SRT_DistQueue ){ 1342 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1343 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1344 } 1345 for(i=0; i<nKey; i++){ 1346 sqlite3VdbeAddOp2(v, OP_SCopy, 1347 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1348 r2+i); 1349 } 1350 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1351 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1352 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1353 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1354 sqlite3ReleaseTempReg(pParse, r1); 1355 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1356 break; 1357 } 1358 #endif /* SQLITE_OMIT_CTE */ 1359 1360 1361 1362 #if !defined(SQLITE_OMIT_TRIGGER) 1363 /* Discard the results. This is used for SELECT statements inside 1364 ** the body of a TRIGGER. The purpose of such selects is to call 1365 ** user-defined functions that have side effects. We do not care 1366 ** about the actual results of the select. 1367 */ 1368 default: { 1369 assert( eDest==SRT_Discard ); 1370 break; 1371 } 1372 #endif 1373 } 1374 1375 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1376 ** there is a sorter, in which case the sorter has already limited 1377 ** the output for us. 1378 */ 1379 if( pSort==0 && p->iLimit ){ 1380 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1381 } 1382 } 1383 1384 /* 1385 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1386 ** X extra columns. 1387 */ 1388 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1389 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1390 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1391 if( p ){ 1392 p->aSortFlags = (u8*)&p->aColl[N+X]; 1393 p->nKeyField = (u16)N; 1394 p->nAllField = (u16)(N+X); 1395 p->enc = ENC(db); 1396 p->db = db; 1397 p->nRef = 1; 1398 memset(&p[1], 0, nExtra); 1399 }else{ 1400 return (KeyInfo*)sqlite3OomFault(db); 1401 } 1402 return p; 1403 } 1404 1405 /* 1406 ** Deallocate a KeyInfo object 1407 */ 1408 void sqlite3KeyInfoUnref(KeyInfo *p){ 1409 if( p ){ 1410 assert( p->nRef>0 ); 1411 p->nRef--; 1412 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1413 } 1414 } 1415 1416 /* 1417 ** Make a new pointer to a KeyInfo object 1418 */ 1419 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1420 if( p ){ 1421 assert( p->nRef>0 ); 1422 p->nRef++; 1423 } 1424 return p; 1425 } 1426 1427 #ifdef SQLITE_DEBUG 1428 /* 1429 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1430 ** can only be changed if this is just a single reference to the object. 1431 ** 1432 ** This routine is used only inside of assert() statements. 1433 */ 1434 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1435 #endif /* SQLITE_DEBUG */ 1436 1437 /* 1438 ** Given an expression list, generate a KeyInfo structure that records 1439 ** the collating sequence for each expression in that expression list. 1440 ** 1441 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1442 ** KeyInfo structure is appropriate for initializing a virtual index to 1443 ** implement that clause. If the ExprList is the result set of a SELECT 1444 ** then the KeyInfo structure is appropriate for initializing a virtual 1445 ** index to implement a DISTINCT test. 1446 ** 1447 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1448 ** function is responsible for seeing that this structure is eventually 1449 ** freed. 1450 */ 1451 KeyInfo *sqlite3KeyInfoFromExprList( 1452 Parse *pParse, /* Parsing context */ 1453 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1454 int iStart, /* Begin with this column of pList */ 1455 int nExtra /* Add this many extra columns to the end */ 1456 ){ 1457 int nExpr; 1458 KeyInfo *pInfo; 1459 struct ExprList_item *pItem; 1460 sqlite3 *db = pParse->db; 1461 int i; 1462 1463 nExpr = pList->nExpr; 1464 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1465 if( pInfo ){ 1466 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1467 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1468 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1469 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1470 } 1471 } 1472 return pInfo; 1473 } 1474 1475 /* 1476 ** Name of the connection operator, used for error messages. 1477 */ 1478 const char *sqlite3SelectOpName(int id){ 1479 char *z; 1480 switch( id ){ 1481 case TK_ALL: z = "UNION ALL"; break; 1482 case TK_INTERSECT: z = "INTERSECT"; break; 1483 case TK_EXCEPT: z = "EXCEPT"; break; 1484 default: z = "UNION"; break; 1485 } 1486 return z; 1487 } 1488 1489 #ifndef SQLITE_OMIT_EXPLAIN 1490 /* 1491 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1492 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1493 ** where the caption is of the form: 1494 ** 1495 ** "USE TEMP B-TREE FOR xxx" 1496 ** 1497 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1498 ** is determined by the zUsage argument. 1499 */ 1500 static void explainTempTable(Parse *pParse, const char *zUsage){ 1501 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1502 } 1503 1504 /* 1505 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1506 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1507 ** in sqlite3Select() to assign values to structure member variables that 1508 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1509 ** code with #ifndef directives. 1510 */ 1511 # define explainSetInteger(a, b) a = b 1512 1513 #else 1514 /* No-op versions of the explainXXX() functions and macros. */ 1515 # define explainTempTable(y,z) 1516 # define explainSetInteger(y,z) 1517 #endif 1518 1519 1520 /* 1521 ** If the inner loop was generated using a non-null pOrderBy argument, 1522 ** then the results were placed in a sorter. After the loop is terminated 1523 ** we need to run the sorter and output the results. The following 1524 ** routine generates the code needed to do that. 1525 */ 1526 static void generateSortTail( 1527 Parse *pParse, /* Parsing context */ 1528 Select *p, /* The SELECT statement */ 1529 SortCtx *pSort, /* Information on the ORDER BY clause */ 1530 int nColumn, /* Number of columns of data */ 1531 SelectDest *pDest /* Write the sorted results here */ 1532 ){ 1533 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1534 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1535 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1536 int addr; /* Top of output loop. Jump for Next. */ 1537 int addrOnce = 0; 1538 int iTab; 1539 ExprList *pOrderBy = pSort->pOrderBy; 1540 int eDest = pDest->eDest; 1541 int iParm = pDest->iSDParm; 1542 int regRow; 1543 int regRowid; 1544 int iCol; 1545 int nKey; /* Number of key columns in sorter record */ 1546 int iSortTab; /* Sorter cursor to read from */ 1547 int i; 1548 int bSeq; /* True if sorter record includes seq. no. */ 1549 int nRefKey = 0; 1550 struct ExprList_item *aOutEx = p->pEList->a; 1551 1552 assert( addrBreak<0 ); 1553 if( pSort->labelBkOut ){ 1554 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1555 sqlite3VdbeGoto(v, addrBreak); 1556 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1557 } 1558 1559 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1560 /* Open any cursors needed for sorter-reference expressions */ 1561 for(i=0; i<pSort->nDefer; i++){ 1562 Table *pTab = pSort->aDefer[i].pTab; 1563 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1564 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1565 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1566 } 1567 #endif 1568 1569 iTab = pSort->iECursor; 1570 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1571 if( eDest==SRT_Mem && p->iOffset ){ 1572 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1573 } 1574 regRowid = 0; 1575 regRow = pDest->iSdst; 1576 }else{ 1577 regRowid = sqlite3GetTempReg(pParse); 1578 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1579 regRow = sqlite3GetTempReg(pParse); 1580 nColumn = 0; 1581 }else{ 1582 regRow = sqlite3GetTempRange(pParse, nColumn); 1583 } 1584 } 1585 nKey = pOrderBy->nExpr - pSort->nOBSat; 1586 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1587 int regSortOut = ++pParse->nMem; 1588 iSortTab = pParse->nTab++; 1589 if( pSort->labelBkOut ){ 1590 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1591 } 1592 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1593 nKey+1+nColumn+nRefKey); 1594 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1595 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1596 VdbeCoverage(v); 1597 codeOffset(v, p->iOffset, addrContinue); 1598 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1599 bSeq = 0; 1600 }else{ 1601 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1602 codeOffset(v, p->iOffset, addrContinue); 1603 iSortTab = iTab; 1604 bSeq = 1; 1605 } 1606 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1607 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1608 if( aOutEx[i].bSorterRef ) continue; 1609 #endif 1610 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1611 } 1612 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1613 if( pSort->nDefer ){ 1614 int iKey = iCol+1; 1615 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1616 1617 for(i=0; i<pSort->nDefer; i++){ 1618 int iCsr = pSort->aDefer[i].iCsr; 1619 Table *pTab = pSort->aDefer[i].pTab; 1620 int nKey = pSort->aDefer[i].nKey; 1621 1622 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1623 if( HasRowid(pTab) ){ 1624 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1625 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1626 sqlite3VdbeCurrentAddr(v)+1, regKey); 1627 }else{ 1628 int k; 1629 int iJmp; 1630 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1631 for(k=0; k<nKey; k++){ 1632 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1633 } 1634 iJmp = sqlite3VdbeCurrentAddr(v); 1635 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1636 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1637 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1638 } 1639 } 1640 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1641 } 1642 #endif 1643 for(i=nColumn-1; i>=0; i--){ 1644 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1645 if( aOutEx[i].bSorterRef ){ 1646 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1647 }else 1648 #endif 1649 { 1650 int iRead; 1651 if( aOutEx[i].u.x.iOrderByCol ){ 1652 iRead = aOutEx[i].u.x.iOrderByCol-1; 1653 }else{ 1654 iRead = iCol--; 1655 } 1656 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1657 VdbeComment((v, "%s", aOutEx[i].zEName)); 1658 } 1659 } 1660 switch( eDest ){ 1661 case SRT_Table: 1662 case SRT_EphemTab: { 1663 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1664 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1665 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1666 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1667 break; 1668 } 1669 #ifndef SQLITE_OMIT_SUBQUERY 1670 case SRT_Set: { 1671 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1672 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1673 pDest->zAffSdst, nColumn); 1674 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1675 break; 1676 } 1677 case SRT_Mem: { 1678 /* The LIMIT clause will terminate the loop for us */ 1679 break; 1680 } 1681 #endif 1682 case SRT_Upfrom: { 1683 int i2 = pDest->iSDParm2; 1684 int r1 = sqlite3GetTempReg(pParse); 1685 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1686 if( i2<0 ){ 1687 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1688 }else{ 1689 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1690 } 1691 break; 1692 } 1693 default: { 1694 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1695 testcase( eDest==SRT_Output ); 1696 testcase( eDest==SRT_Coroutine ); 1697 if( eDest==SRT_Output ){ 1698 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1699 }else{ 1700 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1701 } 1702 break; 1703 } 1704 } 1705 if( regRowid ){ 1706 if( eDest==SRT_Set ){ 1707 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1708 }else{ 1709 sqlite3ReleaseTempReg(pParse, regRow); 1710 } 1711 sqlite3ReleaseTempReg(pParse, regRowid); 1712 } 1713 /* The bottom of the loop 1714 */ 1715 sqlite3VdbeResolveLabel(v, addrContinue); 1716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1717 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1718 }else{ 1719 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1720 } 1721 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1722 sqlite3VdbeResolveLabel(v, addrBreak); 1723 } 1724 1725 /* 1726 ** Return a pointer to a string containing the 'declaration type' of the 1727 ** expression pExpr. The string may be treated as static by the caller. 1728 ** 1729 ** Also try to estimate the size of the returned value and return that 1730 ** result in *pEstWidth. 1731 ** 1732 ** The declaration type is the exact datatype definition extracted from the 1733 ** original CREATE TABLE statement if the expression is a column. The 1734 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1735 ** is considered a column can be complex in the presence of subqueries. The 1736 ** result-set expression in all of the following SELECT statements is 1737 ** considered a column by this function. 1738 ** 1739 ** SELECT col FROM tbl; 1740 ** SELECT (SELECT col FROM tbl; 1741 ** SELECT (SELECT col FROM tbl); 1742 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1743 ** 1744 ** The declaration type for any expression other than a column is NULL. 1745 ** 1746 ** This routine has either 3 or 6 parameters depending on whether or not 1747 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1748 */ 1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1750 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1751 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1752 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1753 #endif 1754 static const char *columnTypeImpl( 1755 NameContext *pNC, 1756 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1757 Expr *pExpr 1758 #else 1759 Expr *pExpr, 1760 const char **pzOrigDb, 1761 const char **pzOrigTab, 1762 const char **pzOrigCol 1763 #endif 1764 ){ 1765 char const *zType = 0; 1766 int j; 1767 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1768 char const *zOrigDb = 0; 1769 char const *zOrigTab = 0; 1770 char const *zOrigCol = 0; 1771 #endif 1772 1773 assert( pExpr!=0 ); 1774 assert( pNC->pSrcList!=0 ); 1775 switch( pExpr->op ){ 1776 case TK_COLUMN: { 1777 /* The expression is a column. Locate the table the column is being 1778 ** extracted from in NameContext.pSrcList. This table may be real 1779 ** database table or a subquery. 1780 */ 1781 Table *pTab = 0; /* Table structure column is extracted from */ 1782 Select *pS = 0; /* Select the column is extracted from */ 1783 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1784 while( pNC && !pTab ){ 1785 SrcList *pTabList = pNC->pSrcList; 1786 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1787 if( j<pTabList->nSrc ){ 1788 pTab = pTabList->a[j].pTab; 1789 pS = pTabList->a[j].pSelect; 1790 }else{ 1791 pNC = pNC->pNext; 1792 } 1793 } 1794 1795 if( pTab==0 ){ 1796 /* At one time, code such as "SELECT new.x" within a trigger would 1797 ** cause this condition to run. Since then, we have restructured how 1798 ** trigger code is generated and so this condition is no longer 1799 ** possible. However, it can still be true for statements like 1800 ** the following: 1801 ** 1802 ** CREATE TABLE t1(col INTEGER); 1803 ** SELECT (SELECT t1.col) FROM FROM t1; 1804 ** 1805 ** when columnType() is called on the expression "t1.col" in the 1806 ** sub-select. In this case, set the column type to NULL, even 1807 ** though it should really be "INTEGER". 1808 ** 1809 ** This is not a problem, as the column type of "t1.col" is never 1810 ** used. When columnType() is called on the expression 1811 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1812 ** branch below. */ 1813 break; 1814 } 1815 1816 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1817 if( pS ){ 1818 /* The "table" is actually a sub-select or a view in the FROM clause 1819 ** of the SELECT statement. Return the declaration type and origin 1820 ** data for the result-set column of the sub-select. 1821 */ 1822 if( iCol<pS->pEList->nExpr 1823 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1824 && iCol>=0 1825 #else 1826 && ALWAYS(iCol>=0) 1827 #endif 1828 ){ 1829 /* If iCol is less than zero, then the expression requests the 1830 ** rowid of the sub-select or view. This expression is legal (see 1831 ** test case misc2.2.2) - it always evaluates to NULL. 1832 */ 1833 NameContext sNC; 1834 Expr *p = pS->pEList->a[iCol].pExpr; 1835 sNC.pSrcList = pS->pSrc; 1836 sNC.pNext = pNC; 1837 sNC.pParse = pNC->pParse; 1838 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1839 } 1840 }else{ 1841 /* A real table or a CTE table */ 1842 assert( !pS ); 1843 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1844 if( iCol<0 ) iCol = pTab->iPKey; 1845 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1846 if( iCol<0 ){ 1847 zType = "INTEGER"; 1848 zOrigCol = "rowid"; 1849 }else{ 1850 zOrigCol = pTab->aCol[iCol].zCnName; 1851 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1852 } 1853 zOrigTab = pTab->zName; 1854 if( pNC->pParse && pTab->pSchema ){ 1855 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1856 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1857 } 1858 #else 1859 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1860 if( iCol<0 ){ 1861 zType = "INTEGER"; 1862 }else{ 1863 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1864 } 1865 #endif 1866 } 1867 break; 1868 } 1869 #ifndef SQLITE_OMIT_SUBQUERY 1870 case TK_SELECT: { 1871 /* The expression is a sub-select. Return the declaration type and 1872 ** origin info for the single column in the result set of the SELECT 1873 ** statement. 1874 */ 1875 NameContext sNC; 1876 Select *pS; 1877 Expr *p; 1878 assert( ExprUseXSelect(pExpr) ); 1879 pS = pExpr->x.pSelect; 1880 p = pS->pEList->a[0].pExpr; 1881 sNC.pSrcList = pS->pSrc; 1882 sNC.pNext = pNC; 1883 sNC.pParse = pNC->pParse; 1884 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1885 break; 1886 } 1887 #endif 1888 } 1889 1890 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1891 if( pzOrigDb ){ 1892 assert( pzOrigTab && pzOrigCol ); 1893 *pzOrigDb = zOrigDb; 1894 *pzOrigTab = zOrigTab; 1895 *pzOrigCol = zOrigCol; 1896 } 1897 #endif 1898 return zType; 1899 } 1900 1901 /* 1902 ** Generate code that will tell the VDBE the declaration types of columns 1903 ** in the result set. 1904 */ 1905 static void generateColumnTypes( 1906 Parse *pParse, /* Parser context */ 1907 SrcList *pTabList, /* List of tables */ 1908 ExprList *pEList /* Expressions defining the result set */ 1909 ){ 1910 #ifndef SQLITE_OMIT_DECLTYPE 1911 Vdbe *v = pParse->pVdbe; 1912 int i; 1913 NameContext sNC; 1914 sNC.pSrcList = pTabList; 1915 sNC.pParse = pParse; 1916 sNC.pNext = 0; 1917 for(i=0; i<pEList->nExpr; i++){ 1918 Expr *p = pEList->a[i].pExpr; 1919 const char *zType; 1920 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1921 const char *zOrigDb = 0; 1922 const char *zOrigTab = 0; 1923 const char *zOrigCol = 0; 1924 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1925 1926 /* The vdbe must make its own copy of the column-type and other 1927 ** column specific strings, in case the schema is reset before this 1928 ** virtual machine is deleted. 1929 */ 1930 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1931 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1932 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1933 #else 1934 zType = columnType(&sNC, p, 0, 0, 0); 1935 #endif 1936 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1937 } 1938 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1939 } 1940 1941 1942 /* 1943 ** Compute the column names for a SELECT statement. 1944 ** 1945 ** The only guarantee that SQLite makes about column names is that if the 1946 ** column has an AS clause assigning it a name, that will be the name used. 1947 ** That is the only documented guarantee. However, countless applications 1948 ** developed over the years have made baseless assumptions about column names 1949 ** and will break if those assumptions changes. Hence, use extreme caution 1950 ** when modifying this routine to avoid breaking legacy. 1951 ** 1952 ** See Also: sqlite3ColumnsFromExprList() 1953 ** 1954 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1955 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1956 ** applications should operate this way. Nevertheless, we need to support the 1957 ** other modes for legacy: 1958 ** 1959 ** short=OFF, full=OFF: Column name is the text of the expression has it 1960 ** originally appears in the SELECT statement. In 1961 ** other words, the zSpan of the result expression. 1962 ** 1963 ** short=ON, full=OFF: (This is the default setting). If the result 1964 ** refers directly to a table column, then the 1965 ** result column name is just the table column 1966 ** name: COLUMN. Otherwise use zSpan. 1967 ** 1968 ** full=ON, short=ANY: If the result refers directly to a table column, 1969 ** then the result column name with the table name 1970 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1971 */ 1972 void sqlite3GenerateColumnNames( 1973 Parse *pParse, /* Parser context */ 1974 Select *pSelect /* Generate column names for this SELECT statement */ 1975 ){ 1976 Vdbe *v = pParse->pVdbe; 1977 int i; 1978 Table *pTab; 1979 SrcList *pTabList; 1980 ExprList *pEList; 1981 sqlite3 *db = pParse->db; 1982 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1983 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1984 1985 #ifndef SQLITE_OMIT_EXPLAIN 1986 /* If this is an EXPLAIN, skip this step */ 1987 if( pParse->explain ){ 1988 return; 1989 } 1990 #endif 1991 1992 if( pParse->colNamesSet ) return; 1993 /* Column names are determined by the left-most term of a compound select */ 1994 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1995 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1996 pTabList = pSelect->pSrc; 1997 pEList = pSelect->pEList; 1998 assert( v!=0 ); 1999 assert( pTabList!=0 ); 2000 pParse->colNamesSet = 1; 2001 fullName = (db->flags & SQLITE_FullColNames)!=0; 2002 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2003 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2004 for(i=0; i<pEList->nExpr; i++){ 2005 Expr *p = pEList->a[i].pExpr; 2006 2007 assert( p!=0 ); 2008 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2009 assert( p->op!=TK_COLUMN 2010 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2011 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2012 /* An AS clause always takes first priority */ 2013 char *zName = pEList->a[i].zEName; 2014 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2015 }else if( srcName && p->op==TK_COLUMN ){ 2016 char *zCol; 2017 int iCol = p->iColumn; 2018 pTab = p->y.pTab; 2019 assert( pTab!=0 ); 2020 if( iCol<0 ) iCol = pTab->iPKey; 2021 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2022 if( iCol<0 ){ 2023 zCol = "rowid"; 2024 }else{ 2025 zCol = pTab->aCol[iCol].zCnName; 2026 } 2027 if( fullName ){ 2028 char *zName = 0; 2029 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2030 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2031 }else{ 2032 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2033 } 2034 }else{ 2035 const char *z = pEList->a[i].zEName; 2036 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2038 } 2039 } 2040 generateColumnTypes(pParse, pTabList, pEList); 2041 } 2042 2043 /* 2044 ** Given an expression list (which is really the list of expressions 2045 ** that form the result set of a SELECT statement) compute appropriate 2046 ** column names for a table that would hold the expression list. 2047 ** 2048 ** All column names will be unique. 2049 ** 2050 ** Only the column names are computed. Column.zType, Column.zColl, 2051 ** and other fields of Column are zeroed. 2052 ** 2053 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2054 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2055 ** 2056 ** The only guarantee that SQLite makes about column names is that if the 2057 ** column has an AS clause assigning it a name, that will be the name used. 2058 ** That is the only documented guarantee. However, countless applications 2059 ** developed over the years have made baseless assumptions about column names 2060 ** and will break if those assumptions changes. Hence, use extreme caution 2061 ** when modifying this routine to avoid breaking legacy. 2062 ** 2063 ** See Also: sqlite3GenerateColumnNames() 2064 */ 2065 int sqlite3ColumnsFromExprList( 2066 Parse *pParse, /* Parsing context */ 2067 ExprList *pEList, /* Expr list from which to derive column names */ 2068 i16 *pnCol, /* Write the number of columns here */ 2069 Column **paCol /* Write the new column list here */ 2070 ){ 2071 sqlite3 *db = pParse->db; /* Database connection */ 2072 int i, j; /* Loop counters */ 2073 u32 cnt; /* Index added to make the name unique */ 2074 Column *aCol, *pCol; /* For looping over result columns */ 2075 int nCol; /* Number of columns in the result set */ 2076 char *zName; /* Column name */ 2077 int nName; /* Size of name in zName[] */ 2078 Hash ht; /* Hash table of column names */ 2079 Table *pTab; 2080 2081 sqlite3HashInit(&ht); 2082 if( pEList ){ 2083 nCol = pEList->nExpr; 2084 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2085 testcase( aCol==0 ); 2086 if( NEVER(nCol>32767) ) nCol = 32767; 2087 }else{ 2088 nCol = 0; 2089 aCol = 0; 2090 } 2091 assert( nCol==(i16)nCol ); 2092 *pnCol = nCol; 2093 *paCol = aCol; 2094 2095 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2096 /* Get an appropriate name for the column 2097 */ 2098 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2099 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2100 }else{ 2101 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2102 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2103 pColExpr = pColExpr->pRight; 2104 assert( pColExpr!=0 ); 2105 } 2106 if( pColExpr->op==TK_COLUMN 2107 && ALWAYS( ExprUseYTab(pColExpr) ) 2108 && (pTab = pColExpr->y.pTab)!=0 2109 ){ 2110 /* For columns use the column name name */ 2111 int iCol = pColExpr->iColumn; 2112 if( iCol<0 ) iCol = pTab->iPKey; 2113 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2114 }else if( pColExpr->op==TK_ID ){ 2115 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2116 zName = pColExpr->u.zToken; 2117 }else{ 2118 /* Use the original text of the column expression as its name */ 2119 zName = pEList->a[i].zEName; 2120 } 2121 } 2122 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2123 zName = sqlite3DbStrDup(db, zName); 2124 }else{ 2125 zName = sqlite3MPrintf(db,"column%d",i+1); 2126 } 2127 2128 /* Make sure the column name is unique. If the name is not unique, 2129 ** append an integer to the name so that it becomes unique. 2130 */ 2131 cnt = 0; 2132 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2133 nName = sqlite3Strlen30(zName); 2134 if( nName>0 ){ 2135 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2136 if( zName[j]==':' ) nName = j; 2137 } 2138 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2139 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2140 } 2141 pCol->zCnName = zName; 2142 pCol->hName = sqlite3StrIHash(zName); 2143 sqlite3ColumnPropertiesFromName(0, pCol); 2144 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2145 sqlite3OomFault(db); 2146 } 2147 } 2148 sqlite3HashClear(&ht); 2149 if( db->mallocFailed ){ 2150 for(j=0; j<i; j++){ 2151 sqlite3DbFree(db, aCol[j].zCnName); 2152 } 2153 sqlite3DbFree(db, aCol); 2154 *paCol = 0; 2155 *pnCol = 0; 2156 return SQLITE_NOMEM_BKPT; 2157 } 2158 return SQLITE_OK; 2159 } 2160 2161 /* 2162 ** Add type and collation information to a column list based on 2163 ** a SELECT statement. 2164 ** 2165 ** The column list presumably came from selectColumnNamesFromExprList(). 2166 ** The column list has only names, not types or collations. This 2167 ** routine goes through and adds the types and collations. 2168 ** 2169 ** This routine requires that all identifiers in the SELECT 2170 ** statement be resolved. 2171 */ 2172 void sqlite3SelectAddColumnTypeAndCollation( 2173 Parse *pParse, /* Parsing contexts */ 2174 Table *pTab, /* Add column type information to this table */ 2175 Select *pSelect, /* SELECT used to determine types and collations */ 2176 char aff /* Default affinity for columns */ 2177 ){ 2178 sqlite3 *db = pParse->db; 2179 NameContext sNC; 2180 Column *pCol; 2181 CollSeq *pColl; 2182 int i; 2183 Expr *p; 2184 struct ExprList_item *a; 2185 2186 assert( pSelect!=0 ); 2187 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2188 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2189 if( db->mallocFailed ) return; 2190 memset(&sNC, 0, sizeof(sNC)); 2191 sNC.pSrcList = pSelect->pSrc; 2192 a = pSelect->pEList->a; 2193 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2194 const char *zType; 2195 i64 n, m; 2196 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2197 p = a[i].pExpr; 2198 zType = columnType(&sNC, p, 0, 0, 0); 2199 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2200 pCol->affinity = sqlite3ExprAffinity(p); 2201 if( zType ){ 2202 m = sqlite3Strlen30(zType); 2203 n = sqlite3Strlen30(pCol->zCnName); 2204 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2205 if( pCol->zCnName ){ 2206 memcpy(&pCol->zCnName[n+1], zType, m+1); 2207 pCol->colFlags |= COLFLAG_HASTYPE; 2208 }else{ 2209 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2210 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2211 } 2212 } 2213 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2214 pColl = sqlite3ExprCollSeq(pParse, p); 2215 if( pColl ){ 2216 assert( pTab->pIndex==0 ); 2217 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2218 } 2219 } 2220 pTab->szTabRow = 1; /* Any non-zero value works */ 2221 } 2222 2223 /* 2224 ** Given a SELECT statement, generate a Table structure that describes 2225 ** the result set of that SELECT. 2226 */ 2227 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2228 Table *pTab; 2229 sqlite3 *db = pParse->db; 2230 u64 savedFlags; 2231 2232 savedFlags = db->flags; 2233 db->flags &= ~(u64)SQLITE_FullColNames; 2234 db->flags |= SQLITE_ShortColNames; 2235 sqlite3SelectPrep(pParse, pSelect, 0); 2236 db->flags = savedFlags; 2237 if( pParse->nErr ) return 0; 2238 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2239 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2240 if( pTab==0 ){ 2241 return 0; 2242 } 2243 pTab->nTabRef = 1; 2244 pTab->zName = 0; 2245 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2246 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2247 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2248 pTab->iPKey = -1; 2249 if( db->mallocFailed ){ 2250 sqlite3DeleteTable(db, pTab); 2251 return 0; 2252 } 2253 return pTab; 2254 } 2255 2256 /* 2257 ** Get a VDBE for the given parser context. Create a new one if necessary. 2258 ** If an error occurs, return NULL and leave a message in pParse. 2259 */ 2260 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2261 if( pParse->pVdbe ){ 2262 return pParse->pVdbe; 2263 } 2264 if( pParse->pToplevel==0 2265 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2266 ){ 2267 pParse->okConstFactor = 1; 2268 } 2269 return sqlite3VdbeCreate(pParse); 2270 } 2271 2272 2273 /* 2274 ** Compute the iLimit and iOffset fields of the SELECT based on the 2275 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2276 ** that appear in the original SQL statement after the LIMIT and OFFSET 2277 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2278 ** are the integer memory register numbers for counters used to compute 2279 ** the limit and offset. If there is no limit and/or offset, then 2280 ** iLimit and iOffset are negative. 2281 ** 2282 ** This routine changes the values of iLimit and iOffset only if 2283 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2284 ** and iOffset should have been preset to appropriate default values (zero) 2285 ** prior to calling this routine. 2286 ** 2287 ** The iOffset register (if it exists) is initialized to the value 2288 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2289 ** iOffset+1 is initialized to LIMIT+OFFSET. 2290 ** 2291 ** Only if pLimit->pLeft!=0 do the limit registers get 2292 ** redefined. The UNION ALL operator uses this property to force 2293 ** the reuse of the same limit and offset registers across multiple 2294 ** SELECT statements. 2295 */ 2296 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2297 Vdbe *v = 0; 2298 int iLimit = 0; 2299 int iOffset; 2300 int n; 2301 Expr *pLimit = p->pLimit; 2302 2303 if( p->iLimit ) return; 2304 2305 /* 2306 ** "LIMIT -1" always shows all rows. There is some 2307 ** controversy about what the correct behavior should be. 2308 ** The current implementation interprets "LIMIT 0" to mean 2309 ** no rows. 2310 */ 2311 if( pLimit ){ 2312 assert( pLimit->op==TK_LIMIT ); 2313 assert( pLimit->pLeft!=0 ); 2314 p->iLimit = iLimit = ++pParse->nMem; 2315 v = sqlite3GetVdbe(pParse); 2316 assert( v!=0 ); 2317 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2318 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2319 VdbeComment((v, "LIMIT counter")); 2320 if( n==0 ){ 2321 sqlite3VdbeGoto(v, iBreak); 2322 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2323 p->nSelectRow = sqlite3LogEst((u64)n); 2324 p->selFlags |= SF_FixedLimit; 2325 } 2326 }else{ 2327 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2328 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2329 VdbeComment((v, "LIMIT counter")); 2330 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2331 } 2332 if( pLimit->pRight ){ 2333 p->iOffset = iOffset = ++pParse->nMem; 2334 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2335 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2336 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2337 VdbeComment((v, "OFFSET counter")); 2338 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2339 VdbeComment((v, "LIMIT+OFFSET")); 2340 } 2341 } 2342 } 2343 2344 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2345 /* 2346 ** Return the appropriate collating sequence for the iCol-th column of 2347 ** the result set for the compound-select statement "p". Return NULL if 2348 ** the column has no default collating sequence. 2349 ** 2350 ** The collating sequence for the compound select is taken from the 2351 ** left-most term of the select that has a collating sequence. 2352 */ 2353 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2354 CollSeq *pRet; 2355 if( p->pPrior ){ 2356 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2357 }else{ 2358 pRet = 0; 2359 } 2360 assert( iCol>=0 ); 2361 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2362 ** have been thrown during name resolution and we would not have gotten 2363 ** this far */ 2364 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2365 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2366 } 2367 return pRet; 2368 } 2369 2370 /* 2371 ** The select statement passed as the second parameter is a compound SELECT 2372 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2373 ** structure suitable for implementing the ORDER BY. 2374 ** 2375 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2376 ** function is responsible for ensuring that this structure is eventually 2377 ** freed. 2378 */ 2379 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2380 ExprList *pOrderBy = p->pOrderBy; 2381 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2382 sqlite3 *db = pParse->db; 2383 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2384 if( pRet ){ 2385 int i; 2386 for(i=0; i<nOrderBy; i++){ 2387 struct ExprList_item *pItem = &pOrderBy->a[i]; 2388 Expr *pTerm = pItem->pExpr; 2389 CollSeq *pColl; 2390 2391 if( pTerm->flags & EP_Collate ){ 2392 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2393 }else{ 2394 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2395 if( pColl==0 ) pColl = db->pDfltColl; 2396 pOrderBy->a[i].pExpr = 2397 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2398 } 2399 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2400 pRet->aColl[i] = pColl; 2401 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2402 } 2403 } 2404 2405 return pRet; 2406 } 2407 2408 #ifndef SQLITE_OMIT_CTE 2409 /* 2410 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2411 ** query of the form: 2412 ** 2413 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2414 ** \___________/ \_______________/ 2415 ** p->pPrior p 2416 ** 2417 ** 2418 ** There is exactly one reference to the recursive-table in the FROM clause 2419 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2420 ** 2421 ** The setup-query runs once to generate an initial set of rows that go 2422 ** into a Queue table. Rows are extracted from the Queue table one by 2423 ** one. Each row extracted from Queue is output to pDest. Then the single 2424 ** extracted row (now in the iCurrent table) becomes the content of the 2425 ** recursive-table for a recursive-query run. The output of the recursive-query 2426 ** is added back into the Queue table. Then another row is extracted from Queue 2427 ** and the iteration continues until the Queue table is empty. 2428 ** 2429 ** If the compound query operator is UNION then no duplicate rows are ever 2430 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2431 ** that have ever been inserted into Queue and causes duplicates to be 2432 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2433 ** 2434 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2435 ** ORDER BY order and the first entry is extracted for each cycle. Without 2436 ** an ORDER BY, the Queue table is just a FIFO. 2437 ** 2438 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2439 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2440 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2441 ** with a positive value, then the first OFFSET outputs are discarded rather 2442 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2443 ** rows have been skipped. 2444 */ 2445 static void generateWithRecursiveQuery( 2446 Parse *pParse, /* Parsing context */ 2447 Select *p, /* The recursive SELECT to be coded */ 2448 SelectDest *pDest /* What to do with query results */ 2449 ){ 2450 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2451 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2452 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2453 Select *pSetup; /* The setup query */ 2454 Select *pFirstRec; /* Left-most recursive term */ 2455 int addrTop; /* Top of the loop */ 2456 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2457 int iCurrent = 0; /* The Current table */ 2458 int regCurrent; /* Register holding Current table */ 2459 int iQueue; /* The Queue table */ 2460 int iDistinct = 0; /* To ensure unique results if UNION */ 2461 int eDest = SRT_Fifo; /* How to write to Queue */ 2462 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2463 int i; /* Loop counter */ 2464 int rc; /* Result code */ 2465 ExprList *pOrderBy; /* The ORDER BY clause */ 2466 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2467 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2468 2469 #ifndef SQLITE_OMIT_WINDOWFUNC 2470 if( p->pWin ){ 2471 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2472 return; 2473 } 2474 #endif 2475 2476 /* Obtain authorization to do a recursive query */ 2477 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2478 2479 /* Process the LIMIT and OFFSET clauses, if they exist */ 2480 addrBreak = sqlite3VdbeMakeLabel(pParse); 2481 p->nSelectRow = 320; /* 4 billion rows */ 2482 computeLimitRegisters(pParse, p, addrBreak); 2483 pLimit = p->pLimit; 2484 regLimit = p->iLimit; 2485 regOffset = p->iOffset; 2486 p->pLimit = 0; 2487 p->iLimit = p->iOffset = 0; 2488 pOrderBy = p->pOrderBy; 2489 2490 /* Locate the cursor number of the Current table */ 2491 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2492 if( pSrc->a[i].fg.isRecursive ){ 2493 iCurrent = pSrc->a[i].iCursor; 2494 break; 2495 } 2496 } 2497 2498 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2499 ** the Distinct table must be exactly one greater than Queue in order 2500 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2501 iQueue = pParse->nTab++; 2502 if( p->op==TK_UNION ){ 2503 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2504 iDistinct = pParse->nTab++; 2505 }else{ 2506 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2507 } 2508 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2509 2510 /* Allocate cursors for Current, Queue, and Distinct. */ 2511 regCurrent = ++pParse->nMem; 2512 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2513 if( pOrderBy ){ 2514 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2515 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2516 (char*)pKeyInfo, P4_KEYINFO); 2517 destQueue.pOrderBy = pOrderBy; 2518 }else{ 2519 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2520 } 2521 VdbeComment((v, "Queue table")); 2522 if( iDistinct ){ 2523 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2524 p->selFlags |= SF_UsesEphemeral; 2525 } 2526 2527 /* Detach the ORDER BY clause from the compound SELECT */ 2528 p->pOrderBy = 0; 2529 2530 /* Figure out how many elements of the compound SELECT are part of the 2531 ** recursive query. Make sure no recursive elements use aggregate 2532 ** functions. Mark the recursive elements as UNION ALL even if they 2533 ** are really UNION because the distinctness will be enforced by the 2534 ** iDistinct table. pFirstRec is left pointing to the left-most 2535 ** recursive term of the CTE. 2536 */ 2537 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2538 if( pFirstRec->selFlags & SF_Aggregate ){ 2539 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2540 goto end_of_recursive_query; 2541 } 2542 pFirstRec->op = TK_ALL; 2543 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2544 } 2545 2546 /* Store the results of the setup-query in Queue. */ 2547 pSetup = pFirstRec->pPrior; 2548 pSetup->pNext = 0; 2549 ExplainQueryPlan((pParse, 1, "SETUP")); 2550 rc = sqlite3Select(pParse, pSetup, &destQueue); 2551 pSetup->pNext = p; 2552 if( rc ) goto end_of_recursive_query; 2553 2554 /* Find the next row in the Queue and output that row */ 2555 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2556 2557 /* Transfer the next row in Queue over to Current */ 2558 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2559 if( pOrderBy ){ 2560 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2561 }else{ 2562 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2563 } 2564 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2565 2566 /* Output the single row in Current */ 2567 addrCont = sqlite3VdbeMakeLabel(pParse); 2568 codeOffset(v, regOffset, addrCont); 2569 selectInnerLoop(pParse, p, iCurrent, 2570 0, 0, pDest, addrCont, addrBreak); 2571 if( regLimit ){ 2572 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2573 VdbeCoverage(v); 2574 } 2575 sqlite3VdbeResolveLabel(v, addrCont); 2576 2577 /* Execute the recursive SELECT taking the single row in Current as 2578 ** the value for the recursive-table. Store the results in the Queue. 2579 */ 2580 pFirstRec->pPrior = 0; 2581 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2582 sqlite3Select(pParse, p, &destQueue); 2583 assert( pFirstRec->pPrior==0 ); 2584 pFirstRec->pPrior = pSetup; 2585 2586 /* Keep running the loop until the Queue is empty */ 2587 sqlite3VdbeGoto(v, addrTop); 2588 sqlite3VdbeResolveLabel(v, addrBreak); 2589 2590 end_of_recursive_query: 2591 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2592 p->pOrderBy = pOrderBy; 2593 p->pLimit = pLimit; 2594 return; 2595 } 2596 #endif /* SQLITE_OMIT_CTE */ 2597 2598 /* Forward references */ 2599 static int multiSelectOrderBy( 2600 Parse *pParse, /* Parsing context */ 2601 Select *p, /* The right-most of SELECTs to be coded */ 2602 SelectDest *pDest /* What to do with query results */ 2603 ); 2604 2605 /* 2606 ** Handle the special case of a compound-select that originates from a 2607 ** VALUES clause. By handling this as a special case, we avoid deep 2608 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2609 ** on a VALUES clause. 2610 ** 2611 ** Because the Select object originates from a VALUES clause: 2612 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2613 ** (2) All terms are UNION ALL 2614 ** (3) There is no ORDER BY clause 2615 ** 2616 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2617 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2618 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2619 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2620 */ 2621 static int multiSelectValues( 2622 Parse *pParse, /* Parsing context */ 2623 Select *p, /* The right-most of SELECTs to be coded */ 2624 SelectDest *pDest /* What to do with query results */ 2625 ){ 2626 int nRow = 1; 2627 int rc = 0; 2628 int bShowAll = p->pLimit==0; 2629 assert( p->selFlags & SF_MultiValue ); 2630 do{ 2631 assert( p->selFlags & SF_Values ); 2632 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2633 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2634 #ifndef SQLITE_OMIT_WINDOWFUNC 2635 if( p->pWin ) return -1; 2636 #endif 2637 if( p->pPrior==0 ) break; 2638 assert( p->pPrior->pNext==p ); 2639 p = p->pPrior; 2640 nRow += bShowAll; 2641 }while(1); 2642 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2643 nRow==1 ? "" : "S")); 2644 while( p ){ 2645 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2646 if( !bShowAll ) break; 2647 p->nSelectRow = nRow; 2648 p = p->pNext; 2649 } 2650 return rc; 2651 } 2652 2653 /* 2654 ** Return true if the SELECT statement which is known to be the recursive 2655 ** part of a recursive CTE still has its anchor terms attached. If the 2656 ** anchor terms have already been removed, then return false. 2657 */ 2658 static int hasAnchor(Select *p){ 2659 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2660 return p!=0; 2661 } 2662 2663 /* 2664 ** This routine is called to process a compound query form from 2665 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2666 ** INTERSECT 2667 ** 2668 ** "p" points to the right-most of the two queries. the query on the 2669 ** left is p->pPrior. The left query could also be a compound query 2670 ** in which case this routine will be called recursively. 2671 ** 2672 ** The results of the total query are to be written into a destination 2673 ** of type eDest with parameter iParm. 2674 ** 2675 ** Example 1: Consider a three-way compound SQL statement. 2676 ** 2677 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2678 ** 2679 ** This statement is parsed up as follows: 2680 ** 2681 ** SELECT c FROM t3 2682 ** | 2683 ** `-----> SELECT b FROM t2 2684 ** | 2685 ** `------> SELECT a FROM t1 2686 ** 2687 ** The arrows in the diagram above represent the Select.pPrior pointer. 2688 ** So if this routine is called with p equal to the t3 query, then 2689 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2690 ** 2691 ** Notice that because of the way SQLite parses compound SELECTs, the 2692 ** individual selects always group from left to right. 2693 */ 2694 static int multiSelect( 2695 Parse *pParse, /* Parsing context */ 2696 Select *p, /* The right-most of SELECTs to be coded */ 2697 SelectDest *pDest /* What to do with query results */ 2698 ){ 2699 int rc = SQLITE_OK; /* Success code from a subroutine */ 2700 Select *pPrior; /* Another SELECT immediately to our left */ 2701 Vdbe *v; /* Generate code to this VDBE */ 2702 SelectDest dest; /* Alternative data destination */ 2703 Select *pDelete = 0; /* Chain of simple selects to delete */ 2704 sqlite3 *db; /* Database connection */ 2705 2706 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2707 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2708 */ 2709 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2710 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2711 assert( p->selFlags & SF_Compound ); 2712 db = pParse->db; 2713 pPrior = p->pPrior; 2714 dest = *pDest; 2715 assert( pPrior->pOrderBy==0 ); 2716 assert( pPrior->pLimit==0 ); 2717 2718 v = sqlite3GetVdbe(pParse); 2719 assert( v!=0 ); /* The VDBE already created by calling function */ 2720 2721 /* Create the destination temporary table if necessary 2722 */ 2723 if( dest.eDest==SRT_EphemTab ){ 2724 assert( p->pEList ); 2725 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2726 dest.eDest = SRT_Table; 2727 } 2728 2729 /* Special handling for a compound-select that originates as a VALUES clause. 2730 */ 2731 if( p->selFlags & SF_MultiValue ){ 2732 rc = multiSelectValues(pParse, p, &dest); 2733 if( rc>=0 ) goto multi_select_end; 2734 rc = SQLITE_OK; 2735 } 2736 2737 /* Make sure all SELECTs in the statement have the same number of elements 2738 ** in their result sets. 2739 */ 2740 assert( p->pEList && pPrior->pEList ); 2741 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2742 2743 #ifndef SQLITE_OMIT_CTE 2744 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2745 generateWithRecursiveQuery(pParse, p, &dest); 2746 }else 2747 #endif 2748 2749 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2750 */ 2751 if( p->pOrderBy ){ 2752 return multiSelectOrderBy(pParse, p, pDest); 2753 }else{ 2754 2755 #ifndef SQLITE_OMIT_EXPLAIN 2756 if( pPrior->pPrior==0 ){ 2757 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2758 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2759 } 2760 #endif 2761 2762 /* Generate code for the left and right SELECT statements. 2763 */ 2764 switch( p->op ){ 2765 case TK_ALL: { 2766 int addr = 0; 2767 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2768 assert( !pPrior->pLimit ); 2769 pPrior->iLimit = p->iLimit; 2770 pPrior->iOffset = p->iOffset; 2771 pPrior->pLimit = p->pLimit; 2772 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2773 rc = sqlite3Select(pParse, pPrior, &dest); 2774 pPrior->pLimit = 0; 2775 if( rc ){ 2776 goto multi_select_end; 2777 } 2778 p->pPrior = 0; 2779 p->iLimit = pPrior->iLimit; 2780 p->iOffset = pPrior->iOffset; 2781 if( p->iLimit ){ 2782 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2783 VdbeComment((v, "Jump ahead if LIMIT reached")); 2784 if( p->iOffset ){ 2785 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2786 p->iLimit, p->iOffset+1, p->iOffset); 2787 } 2788 } 2789 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2790 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2791 rc = sqlite3Select(pParse, p, &dest); 2792 testcase( rc!=SQLITE_OK ); 2793 pDelete = p->pPrior; 2794 p->pPrior = pPrior; 2795 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2796 if( p->pLimit 2797 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2798 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2799 ){ 2800 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2801 } 2802 if( addr ){ 2803 sqlite3VdbeJumpHere(v, addr); 2804 } 2805 break; 2806 } 2807 case TK_EXCEPT: 2808 case TK_UNION: { 2809 int unionTab; /* Cursor number of the temp table holding result */ 2810 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2811 int priorOp; /* The SRT_ operation to apply to prior selects */ 2812 Expr *pLimit; /* Saved values of p->nLimit */ 2813 int addr; 2814 SelectDest uniondest; 2815 2816 testcase( p->op==TK_EXCEPT ); 2817 testcase( p->op==TK_UNION ); 2818 priorOp = SRT_Union; 2819 if( dest.eDest==priorOp ){ 2820 /* We can reuse a temporary table generated by a SELECT to our 2821 ** right. 2822 */ 2823 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2824 unionTab = dest.iSDParm; 2825 }else{ 2826 /* We will need to create our own temporary table to hold the 2827 ** intermediate results. 2828 */ 2829 unionTab = pParse->nTab++; 2830 assert( p->pOrderBy==0 ); 2831 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2832 assert( p->addrOpenEphm[0] == -1 ); 2833 p->addrOpenEphm[0] = addr; 2834 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2835 assert( p->pEList ); 2836 } 2837 2838 2839 /* Code the SELECT statements to our left 2840 */ 2841 assert( !pPrior->pOrderBy ); 2842 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2843 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2844 rc = sqlite3Select(pParse, pPrior, &uniondest); 2845 if( rc ){ 2846 goto multi_select_end; 2847 } 2848 2849 /* Code the current SELECT statement 2850 */ 2851 if( p->op==TK_EXCEPT ){ 2852 op = SRT_Except; 2853 }else{ 2854 assert( p->op==TK_UNION ); 2855 op = SRT_Union; 2856 } 2857 p->pPrior = 0; 2858 pLimit = p->pLimit; 2859 p->pLimit = 0; 2860 uniondest.eDest = op; 2861 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2862 sqlite3SelectOpName(p->op))); 2863 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2864 rc = sqlite3Select(pParse, p, &uniondest); 2865 testcase( rc!=SQLITE_OK ); 2866 assert( p->pOrderBy==0 ); 2867 pDelete = p->pPrior; 2868 p->pPrior = pPrior; 2869 p->pOrderBy = 0; 2870 if( p->op==TK_UNION ){ 2871 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2872 } 2873 sqlite3ExprDelete(db, p->pLimit); 2874 p->pLimit = pLimit; 2875 p->iLimit = 0; 2876 p->iOffset = 0; 2877 2878 /* Convert the data in the temporary table into whatever form 2879 ** it is that we currently need. 2880 */ 2881 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2882 assert( p->pEList || db->mallocFailed ); 2883 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2884 int iCont, iBreak, iStart; 2885 iBreak = sqlite3VdbeMakeLabel(pParse); 2886 iCont = sqlite3VdbeMakeLabel(pParse); 2887 computeLimitRegisters(pParse, p, iBreak); 2888 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2889 iStart = sqlite3VdbeCurrentAddr(v); 2890 selectInnerLoop(pParse, p, unionTab, 2891 0, 0, &dest, iCont, iBreak); 2892 sqlite3VdbeResolveLabel(v, iCont); 2893 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2894 sqlite3VdbeResolveLabel(v, iBreak); 2895 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2896 } 2897 break; 2898 } 2899 default: assert( p->op==TK_INTERSECT ); { 2900 int tab1, tab2; 2901 int iCont, iBreak, iStart; 2902 Expr *pLimit; 2903 int addr; 2904 SelectDest intersectdest; 2905 int r1; 2906 2907 /* INTERSECT is different from the others since it requires 2908 ** two temporary tables. Hence it has its own case. Begin 2909 ** by allocating the tables we will need. 2910 */ 2911 tab1 = pParse->nTab++; 2912 tab2 = pParse->nTab++; 2913 assert( p->pOrderBy==0 ); 2914 2915 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2916 assert( p->addrOpenEphm[0] == -1 ); 2917 p->addrOpenEphm[0] = addr; 2918 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2919 assert( p->pEList ); 2920 2921 /* Code the SELECTs to our left into temporary table "tab1". 2922 */ 2923 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2924 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2925 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2926 if( rc ){ 2927 goto multi_select_end; 2928 } 2929 2930 /* Code the current SELECT into temporary table "tab2" 2931 */ 2932 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2933 assert( p->addrOpenEphm[1] == -1 ); 2934 p->addrOpenEphm[1] = addr; 2935 p->pPrior = 0; 2936 pLimit = p->pLimit; 2937 p->pLimit = 0; 2938 intersectdest.iSDParm = tab2; 2939 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2940 sqlite3SelectOpName(p->op))); 2941 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2942 rc = sqlite3Select(pParse, p, &intersectdest); 2943 testcase( rc!=SQLITE_OK ); 2944 pDelete = p->pPrior; 2945 p->pPrior = pPrior; 2946 if( p->nSelectRow>pPrior->nSelectRow ){ 2947 p->nSelectRow = pPrior->nSelectRow; 2948 } 2949 sqlite3ExprDelete(db, p->pLimit); 2950 p->pLimit = pLimit; 2951 2952 /* Generate code to take the intersection of the two temporary 2953 ** tables. 2954 */ 2955 if( rc ) break; 2956 assert( p->pEList ); 2957 iBreak = sqlite3VdbeMakeLabel(pParse); 2958 iCont = sqlite3VdbeMakeLabel(pParse); 2959 computeLimitRegisters(pParse, p, iBreak); 2960 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2961 r1 = sqlite3GetTempReg(pParse); 2962 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2963 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2964 VdbeCoverage(v); 2965 sqlite3ReleaseTempReg(pParse, r1); 2966 selectInnerLoop(pParse, p, tab1, 2967 0, 0, &dest, iCont, iBreak); 2968 sqlite3VdbeResolveLabel(v, iCont); 2969 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2970 sqlite3VdbeResolveLabel(v, iBreak); 2971 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2972 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2973 break; 2974 } 2975 } 2976 2977 #ifndef SQLITE_OMIT_EXPLAIN 2978 if( p->pNext==0 ){ 2979 ExplainQueryPlanPop(pParse); 2980 } 2981 #endif 2982 } 2983 if( pParse->nErr ) goto multi_select_end; 2984 2985 /* Compute collating sequences used by 2986 ** temporary tables needed to implement the compound select. 2987 ** Attach the KeyInfo structure to all temporary tables. 2988 ** 2989 ** This section is run by the right-most SELECT statement only. 2990 ** SELECT statements to the left always skip this part. The right-most 2991 ** SELECT might also skip this part if it has no ORDER BY clause and 2992 ** no temp tables are required. 2993 */ 2994 if( p->selFlags & SF_UsesEphemeral ){ 2995 int i; /* Loop counter */ 2996 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2997 Select *pLoop; /* For looping through SELECT statements */ 2998 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2999 int nCol; /* Number of columns in result set */ 3000 3001 assert( p->pNext==0 ); 3002 assert( p->pEList!=0 ); 3003 nCol = p->pEList->nExpr; 3004 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3005 if( !pKeyInfo ){ 3006 rc = SQLITE_NOMEM_BKPT; 3007 goto multi_select_end; 3008 } 3009 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3010 *apColl = multiSelectCollSeq(pParse, p, i); 3011 if( 0==*apColl ){ 3012 *apColl = db->pDfltColl; 3013 } 3014 } 3015 3016 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3017 for(i=0; i<2; i++){ 3018 int addr = pLoop->addrOpenEphm[i]; 3019 if( addr<0 ){ 3020 /* If [0] is unused then [1] is also unused. So we can 3021 ** always safely abort as soon as the first unused slot is found */ 3022 assert( pLoop->addrOpenEphm[1]<0 ); 3023 break; 3024 } 3025 sqlite3VdbeChangeP2(v, addr, nCol); 3026 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3027 P4_KEYINFO); 3028 pLoop->addrOpenEphm[i] = -1; 3029 } 3030 } 3031 sqlite3KeyInfoUnref(pKeyInfo); 3032 } 3033 3034 multi_select_end: 3035 pDest->iSdst = dest.iSdst; 3036 pDest->nSdst = dest.nSdst; 3037 if( pDelete ){ 3038 sqlite3ParserAddCleanup(pParse, 3039 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3040 pDelete); 3041 } 3042 return rc; 3043 } 3044 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3045 3046 /* 3047 ** Error message for when two or more terms of a compound select have different 3048 ** size result sets. 3049 */ 3050 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3051 if( p->selFlags & SF_Values ){ 3052 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3053 }else{ 3054 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3055 " do not have the same number of result columns", 3056 sqlite3SelectOpName(p->op)); 3057 } 3058 } 3059 3060 /* 3061 ** Code an output subroutine for a coroutine implementation of a 3062 ** SELECT statment. 3063 ** 3064 ** The data to be output is contained in pIn->iSdst. There are 3065 ** pIn->nSdst columns to be output. pDest is where the output should 3066 ** be sent. 3067 ** 3068 ** regReturn is the number of the register holding the subroutine 3069 ** return address. 3070 ** 3071 ** If regPrev>0 then it is the first register in a vector that 3072 ** records the previous output. mem[regPrev] is a flag that is false 3073 ** if there has been no previous output. If regPrev>0 then code is 3074 ** generated to suppress duplicates. pKeyInfo is used for comparing 3075 ** keys. 3076 ** 3077 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3078 ** iBreak. 3079 */ 3080 static int generateOutputSubroutine( 3081 Parse *pParse, /* Parsing context */ 3082 Select *p, /* The SELECT statement */ 3083 SelectDest *pIn, /* Coroutine supplying data */ 3084 SelectDest *pDest, /* Where to send the data */ 3085 int regReturn, /* The return address register */ 3086 int regPrev, /* Previous result register. No uniqueness if 0 */ 3087 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3088 int iBreak /* Jump here if we hit the LIMIT */ 3089 ){ 3090 Vdbe *v = pParse->pVdbe; 3091 int iContinue; 3092 int addr; 3093 3094 addr = sqlite3VdbeCurrentAddr(v); 3095 iContinue = sqlite3VdbeMakeLabel(pParse); 3096 3097 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3098 */ 3099 if( regPrev ){ 3100 int addr1, addr2; 3101 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3102 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3103 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3104 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3105 sqlite3VdbeJumpHere(v, addr1); 3106 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3107 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3108 } 3109 if( pParse->db->mallocFailed ) return 0; 3110 3111 /* Suppress the first OFFSET entries if there is an OFFSET clause 3112 */ 3113 codeOffset(v, p->iOffset, iContinue); 3114 3115 assert( pDest->eDest!=SRT_Exists ); 3116 assert( pDest->eDest!=SRT_Table ); 3117 switch( pDest->eDest ){ 3118 /* Store the result as data using a unique key. 3119 */ 3120 case SRT_EphemTab: { 3121 int r1 = sqlite3GetTempReg(pParse); 3122 int r2 = sqlite3GetTempReg(pParse); 3123 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3124 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3125 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3126 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3127 sqlite3ReleaseTempReg(pParse, r2); 3128 sqlite3ReleaseTempReg(pParse, r1); 3129 break; 3130 } 3131 3132 #ifndef SQLITE_OMIT_SUBQUERY 3133 /* If we are creating a set for an "expr IN (SELECT ...)". 3134 */ 3135 case SRT_Set: { 3136 int r1; 3137 testcase( pIn->nSdst>1 ); 3138 r1 = sqlite3GetTempReg(pParse); 3139 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3140 r1, pDest->zAffSdst, pIn->nSdst); 3141 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3142 pIn->iSdst, pIn->nSdst); 3143 sqlite3ReleaseTempReg(pParse, r1); 3144 break; 3145 } 3146 3147 /* If this is a scalar select that is part of an expression, then 3148 ** store the results in the appropriate memory cell and break out 3149 ** of the scan loop. Note that the select might return multiple columns 3150 ** if it is the RHS of a row-value IN operator. 3151 */ 3152 case SRT_Mem: { 3153 testcase( pIn->nSdst>1 ); 3154 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3155 /* The LIMIT clause will jump out of the loop for us */ 3156 break; 3157 } 3158 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3159 3160 /* The results are stored in a sequence of registers 3161 ** starting at pDest->iSdst. Then the co-routine yields. 3162 */ 3163 case SRT_Coroutine: { 3164 if( pDest->iSdst==0 ){ 3165 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3166 pDest->nSdst = pIn->nSdst; 3167 } 3168 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3169 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3170 break; 3171 } 3172 3173 /* If none of the above, then the result destination must be 3174 ** SRT_Output. This routine is never called with any other 3175 ** destination other than the ones handled above or SRT_Output. 3176 ** 3177 ** For SRT_Output, results are stored in a sequence of registers. 3178 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3179 ** return the next row of result. 3180 */ 3181 default: { 3182 assert( pDest->eDest==SRT_Output ); 3183 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3184 break; 3185 } 3186 } 3187 3188 /* Jump to the end of the loop if the LIMIT is reached. 3189 */ 3190 if( p->iLimit ){ 3191 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3192 } 3193 3194 /* Generate the subroutine return 3195 */ 3196 sqlite3VdbeResolveLabel(v, iContinue); 3197 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3198 3199 return addr; 3200 } 3201 3202 /* 3203 ** Alternative compound select code generator for cases when there 3204 ** is an ORDER BY clause. 3205 ** 3206 ** We assume a query of the following form: 3207 ** 3208 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3209 ** 3210 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3211 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3212 ** co-routines. Then run the co-routines in parallel and merge the results 3213 ** into the output. In addition to the two coroutines (called selectA and 3214 ** selectB) there are 7 subroutines: 3215 ** 3216 ** outA: Move the output of the selectA coroutine into the output 3217 ** of the compound query. 3218 ** 3219 ** outB: Move the output of the selectB coroutine into the output 3220 ** of the compound query. (Only generated for UNION and 3221 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3222 ** appears only in B.) 3223 ** 3224 ** AltB: Called when there is data from both coroutines and A<B. 3225 ** 3226 ** AeqB: Called when there is data from both coroutines and A==B. 3227 ** 3228 ** AgtB: Called when there is data from both coroutines and A>B. 3229 ** 3230 ** EofA: Called when data is exhausted from selectA. 3231 ** 3232 ** EofB: Called when data is exhausted from selectB. 3233 ** 3234 ** The implementation of the latter five subroutines depend on which 3235 ** <operator> is used: 3236 ** 3237 ** 3238 ** UNION ALL UNION EXCEPT INTERSECT 3239 ** ------------- ----------------- -------------- ----------------- 3240 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3241 ** 3242 ** AeqB: outA, nextA nextA nextA outA, nextA 3243 ** 3244 ** AgtB: outB, nextB outB, nextB nextB nextB 3245 ** 3246 ** EofA: outB, nextB outB, nextB halt halt 3247 ** 3248 ** EofB: outA, nextA outA, nextA outA, nextA halt 3249 ** 3250 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3251 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3252 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3253 ** following nextX causes a jump to the end of the select processing. 3254 ** 3255 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3256 ** within the output subroutine. The regPrev register set holds the previously 3257 ** output value. A comparison is made against this value and the output 3258 ** is skipped if the next results would be the same as the previous. 3259 ** 3260 ** The implementation plan is to implement the two coroutines and seven 3261 ** subroutines first, then put the control logic at the bottom. Like this: 3262 ** 3263 ** goto Init 3264 ** coA: coroutine for left query (A) 3265 ** coB: coroutine for right query (B) 3266 ** outA: output one row of A 3267 ** outB: output one row of B (UNION and UNION ALL only) 3268 ** EofA: ... 3269 ** EofB: ... 3270 ** AltB: ... 3271 ** AeqB: ... 3272 ** AgtB: ... 3273 ** Init: initialize coroutine registers 3274 ** yield coA 3275 ** if eof(A) goto EofA 3276 ** yield coB 3277 ** if eof(B) goto EofB 3278 ** Cmpr: Compare A, B 3279 ** Jump AltB, AeqB, AgtB 3280 ** End: ... 3281 ** 3282 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3283 ** actually called using Gosub and they do not Return. EofA and EofB loop 3284 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3285 ** and AgtB jump to either L2 or to one of EofA or EofB. 3286 */ 3287 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3288 static int multiSelectOrderBy( 3289 Parse *pParse, /* Parsing context */ 3290 Select *p, /* The right-most of SELECTs to be coded */ 3291 SelectDest *pDest /* What to do with query results */ 3292 ){ 3293 int i, j; /* Loop counters */ 3294 Select *pPrior; /* Another SELECT immediately to our left */ 3295 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3296 int nSelect; /* Number of SELECT statements in the compound */ 3297 Vdbe *v; /* Generate code to this VDBE */ 3298 SelectDest destA; /* Destination for coroutine A */ 3299 SelectDest destB; /* Destination for coroutine B */ 3300 int regAddrA; /* Address register for select-A coroutine */ 3301 int regAddrB; /* Address register for select-B coroutine */ 3302 int addrSelectA; /* Address of the select-A coroutine */ 3303 int addrSelectB; /* Address of the select-B coroutine */ 3304 int regOutA; /* Address register for the output-A subroutine */ 3305 int regOutB; /* Address register for the output-B subroutine */ 3306 int addrOutA; /* Address of the output-A subroutine */ 3307 int addrOutB = 0; /* Address of the output-B subroutine */ 3308 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3309 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3310 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3311 int addrAltB; /* Address of the A<B subroutine */ 3312 int addrAeqB; /* Address of the A==B subroutine */ 3313 int addrAgtB; /* Address of the A>B subroutine */ 3314 int regLimitA; /* Limit register for select-A */ 3315 int regLimitB; /* Limit register for select-A */ 3316 int regPrev; /* A range of registers to hold previous output */ 3317 int savedLimit; /* Saved value of p->iLimit */ 3318 int savedOffset; /* Saved value of p->iOffset */ 3319 int labelCmpr; /* Label for the start of the merge algorithm */ 3320 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3321 int addr1; /* Jump instructions that get retargetted */ 3322 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3323 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3324 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3325 sqlite3 *db; /* Database connection */ 3326 ExprList *pOrderBy; /* The ORDER BY clause */ 3327 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3328 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3329 3330 assert( p->pOrderBy!=0 ); 3331 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3332 db = pParse->db; 3333 v = pParse->pVdbe; 3334 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3335 labelEnd = sqlite3VdbeMakeLabel(pParse); 3336 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3337 3338 3339 /* Patch up the ORDER BY clause 3340 */ 3341 op = p->op; 3342 assert( p->pPrior->pOrderBy==0 ); 3343 pOrderBy = p->pOrderBy; 3344 assert( pOrderBy ); 3345 nOrderBy = pOrderBy->nExpr; 3346 3347 /* For operators other than UNION ALL we have to make sure that 3348 ** the ORDER BY clause covers every term of the result set. Add 3349 ** terms to the ORDER BY clause as necessary. 3350 */ 3351 if( op!=TK_ALL ){ 3352 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3353 struct ExprList_item *pItem; 3354 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3355 assert( pItem!=0 ); 3356 assert( pItem->u.x.iOrderByCol>0 ); 3357 if( pItem->u.x.iOrderByCol==i ) break; 3358 } 3359 if( j==nOrderBy ){ 3360 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3361 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3362 pNew->flags |= EP_IntValue; 3363 pNew->u.iValue = i; 3364 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3365 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3366 } 3367 } 3368 } 3369 3370 /* Compute the comparison permutation and keyinfo that is used with 3371 ** the permutation used to determine if the next 3372 ** row of results comes from selectA or selectB. Also add explicit 3373 ** collations to the ORDER BY clause terms so that when the subqueries 3374 ** to the right and the left are evaluated, they use the correct 3375 ** collation. 3376 */ 3377 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3378 if( aPermute ){ 3379 struct ExprList_item *pItem; 3380 aPermute[0] = nOrderBy; 3381 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3382 assert( pItem!=0 ); 3383 assert( pItem->u.x.iOrderByCol>0 ); 3384 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3385 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3386 } 3387 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3388 }else{ 3389 pKeyMerge = 0; 3390 } 3391 3392 /* Allocate a range of temporary registers and the KeyInfo needed 3393 ** for the logic that removes duplicate result rows when the 3394 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3395 */ 3396 if( op==TK_ALL ){ 3397 regPrev = 0; 3398 }else{ 3399 int nExpr = p->pEList->nExpr; 3400 assert( nOrderBy>=nExpr || db->mallocFailed ); 3401 regPrev = pParse->nMem+1; 3402 pParse->nMem += nExpr+1; 3403 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3404 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3405 if( pKeyDup ){ 3406 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3407 for(i=0; i<nExpr; i++){ 3408 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3409 pKeyDup->aSortFlags[i] = 0; 3410 } 3411 } 3412 } 3413 3414 /* Separate the left and the right query from one another 3415 */ 3416 nSelect = 1; 3417 if( (op==TK_ALL || op==TK_UNION) 3418 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3419 ){ 3420 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3421 nSelect++; 3422 assert( pSplit->pPrior->pNext==pSplit ); 3423 } 3424 } 3425 if( nSelect<=3 ){ 3426 pSplit = p; 3427 }else{ 3428 pSplit = p; 3429 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3430 } 3431 pPrior = pSplit->pPrior; 3432 assert( pPrior!=0 ); 3433 pSplit->pPrior = 0; 3434 pPrior->pNext = 0; 3435 assert( p->pOrderBy == pOrderBy ); 3436 assert( pOrderBy!=0 || db->mallocFailed ); 3437 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3438 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3439 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3440 3441 /* Compute the limit registers */ 3442 computeLimitRegisters(pParse, p, labelEnd); 3443 if( p->iLimit && op==TK_ALL ){ 3444 regLimitA = ++pParse->nMem; 3445 regLimitB = ++pParse->nMem; 3446 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3447 regLimitA); 3448 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3449 }else{ 3450 regLimitA = regLimitB = 0; 3451 } 3452 sqlite3ExprDelete(db, p->pLimit); 3453 p->pLimit = 0; 3454 3455 regAddrA = ++pParse->nMem; 3456 regAddrB = ++pParse->nMem; 3457 regOutA = ++pParse->nMem; 3458 regOutB = ++pParse->nMem; 3459 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3460 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3461 3462 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3463 3464 /* Generate a coroutine to evaluate the SELECT statement to the 3465 ** left of the compound operator - the "A" select. 3466 */ 3467 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3468 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3469 VdbeComment((v, "left SELECT")); 3470 pPrior->iLimit = regLimitA; 3471 ExplainQueryPlan((pParse, 1, "LEFT")); 3472 sqlite3Select(pParse, pPrior, &destA); 3473 sqlite3VdbeEndCoroutine(v, regAddrA); 3474 sqlite3VdbeJumpHere(v, addr1); 3475 3476 /* Generate a coroutine to evaluate the SELECT statement on 3477 ** the right - the "B" select 3478 */ 3479 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3480 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3481 VdbeComment((v, "right SELECT")); 3482 savedLimit = p->iLimit; 3483 savedOffset = p->iOffset; 3484 p->iLimit = regLimitB; 3485 p->iOffset = 0; 3486 ExplainQueryPlan((pParse, 1, "RIGHT")); 3487 sqlite3Select(pParse, p, &destB); 3488 p->iLimit = savedLimit; 3489 p->iOffset = savedOffset; 3490 sqlite3VdbeEndCoroutine(v, regAddrB); 3491 3492 /* Generate a subroutine that outputs the current row of the A 3493 ** select as the next output row of the compound select. 3494 */ 3495 VdbeNoopComment((v, "Output routine for A")); 3496 addrOutA = generateOutputSubroutine(pParse, 3497 p, &destA, pDest, regOutA, 3498 regPrev, pKeyDup, labelEnd); 3499 3500 /* Generate a subroutine that outputs the current row of the B 3501 ** select as the next output row of the compound select. 3502 */ 3503 if( op==TK_ALL || op==TK_UNION ){ 3504 VdbeNoopComment((v, "Output routine for B")); 3505 addrOutB = generateOutputSubroutine(pParse, 3506 p, &destB, pDest, regOutB, 3507 regPrev, pKeyDup, labelEnd); 3508 } 3509 sqlite3KeyInfoUnref(pKeyDup); 3510 3511 /* Generate a subroutine to run when the results from select A 3512 ** are exhausted and only data in select B remains. 3513 */ 3514 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3515 addrEofA_noB = addrEofA = labelEnd; 3516 }else{ 3517 VdbeNoopComment((v, "eof-A subroutine")); 3518 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3519 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3520 VdbeCoverage(v); 3521 sqlite3VdbeGoto(v, addrEofA); 3522 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3523 } 3524 3525 /* Generate a subroutine to run when the results from select B 3526 ** are exhausted and only data in select A remains. 3527 */ 3528 if( op==TK_INTERSECT ){ 3529 addrEofB = addrEofA; 3530 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3531 }else{ 3532 VdbeNoopComment((v, "eof-B subroutine")); 3533 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3534 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3535 sqlite3VdbeGoto(v, addrEofB); 3536 } 3537 3538 /* Generate code to handle the case of A<B 3539 */ 3540 VdbeNoopComment((v, "A-lt-B subroutine")); 3541 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3542 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3543 sqlite3VdbeGoto(v, labelCmpr); 3544 3545 /* Generate code to handle the case of A==B 3546 */ 3547 if( op==TK_ALL ){ 3548 addrAeqB = addrAltB; 3549 }else if( op==TK_INTERSECT ){ 3550 addrAeqB = addrAltB; 3551 addrAltB++; 3552 }else{ 3553 VdbeNoopComment((v, "A-eq-B subroutine")); 3554 addrAeqB = 3555 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3556 sqlite3VdbeGoto(v, labelCmpr); 3557 } 3558 3559 /* Generate code to handle the case of A>B 3560 */ 3561 VdbeNoopComment((v, "A-gt-B subroutine")); 3562 addrAgtB = sqlite3VdbeCurrentAddr(v); 3563 if( op==TK_ALL || op==TK_UNION ){ 3564 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3565 } 3566 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3567 sqlite3VdbeGoto(v, labelCmpr); 3568 3569 /* This code runs once to initialize everything. 3570 */ 3571 sqlite3VdbeJumpHere(v, addr1); 3572 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3573 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3574 3575 /* Implement the main merge loop 3576 */ 3577 sqlite3VdbeResolveLabel(v, labelCmpr); 3578 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3579 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3580 (char*)pKeyMerge, P4_KEYINFO); 3581 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3582 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3583 3584 /* Jump to the this point in order to terminate the query. 3585 */ 3586 sqlite3VdbeResolveLabel(v, labelEnd); 3587 3588 /* Reassembly the compound query so that it will be freed correctly 3589 ** by the calling function */ 3590 if( pSplit->pPrior ){ 3591 sqlite3SelectDelete(db, pSplit->pPrior); 3592 } 3593 pSplit->pPrior = pPrior; 3594 pPrior->pNext = pSplit; 3595 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3596 pPrior->pOrderBy = 0; 3597 3598 /*** TBD: Insert subroutine calls to close cursors on incomplete 3599 **** subqueries ****/ 3600 ExplainQueryPlanPop(pParse); 3601 return pParse->nErr!=0; 3602 } 3603 #endif 3604 3605 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3606 3607 /* An instance of the SubstContext object describes an substitution edit 3608 ** to be performed on a parse tree. 3609 ** 3610 ** All references to columns in table iTable are to be replaced by corresponding 3611 ** expressions in pEList. 3612 */ 3613 typedef struct SubstContext { 3614 Parse *pParse; /* The parsing context */ 3615 int iTable; /* Replace references to this table */ 3616 int iNewTable; /* New table number */ 3617 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3618 ExprList *pEList; /* Replacement expressions */ 3619 } SubstContext; 3620 3621 /* Forward Declarations */ 3622 static void substExprList(SubstContext*, ExprList*); 3623 static void substSelect(SubstContext*, Select*, int); 3624 3625 /* 3626 ** Scan through the expression pExpr. Replace every reference to 3627 ** a column in table number iTable with a copy of the iColumn-th 3628 ** entry in pEList. (But leave references to the ROWID column 3629 ** unchanged.) 3630 ** 3631 ** This routine is part of the flattening procedure. A subquery 3632 ** whose result set is defined by pEList appears as entry in the 3633 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3634 ** FORM clause entry is iTable. This routine makes the necessary 3635 ** changes to pExpr so that it refers directly to the source table 3636 ** of the subquery rather the result set of the subquery. 3637 */ 3638 static Expr *substExpr( 3639 SubstContext *pSubst, /* Description of the substitution */ 3640 Expr *pExpr /* Expr in which substitution occurs */ 3641 ){ 3642 if( pExpr==0 ) return 0; 3643 if( ExprHasProperty(pExpr, EP_FromJoin) 3644 && pExpr->w.iRightJoinTable==pSubst->iTable 3645 ){ 3646 pExpr->w.iRightJoinTable = pSubst->iNewTable; 3647 } 3648 if( pExpr->op==TK_COLUMN 3649 && pExpr->iTable==pSubst->iTable 3650 && !ExprHasProperty(pExpr, EP_FixedCol) 3651 ){ 3652 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3653 if( pExpr->iColumn<0 ){ 3654 pExpr->op = TK_NULL; 3655 }else 3656 #endif 3657 { 3658 Expr *pNew; 3659 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3660 Expr ifNullRow; 3661 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3662 assert( pExpr->pRight==0 ); 3663 if( sqlite3ExprIsVector(pCopy) ){ 3664 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3665 }else{ 3666 sqlite3 *db = pSubst->pParse->db; 3667 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3668 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3669 ifNullRow.op = TK_IF_NULL_ROW; 3670 ifNullRow.pLeft = pCopy; 3671 ifNullRow.iTable = pSubst->iNewTable; 3672 ifNullRow.flags = EP_IfNullRow; 3673 pCopy = &ifNullRow; 3674 } 3675 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3676 pNew = sqlite3ExprDup(db, pCopy, 0); 3677 if( db->mallocFailed ){ 3678 sqlite3ExprDelete(db, pNew); 3679 return pExpr; 3680 } 3681 if( pSubst->isLeftJoin ){ 3682 ExprSetProperty(pNew, EP_CanBeNull); 3683 } 3684 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3685 sqlite3SetJoinExpr(pNew, pExpr->w.iRightJoinTable); 3686 } 3687 sqlite3ExprDelete(db, pExpr); 3688 pExpr = pNew; 3689 3690 /* Ensure that the expression now has an implicit collation sequence, 3691 ** just as it did when it was a column of a view or sub-query. */ 3692 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3693 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3694 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3695 (pColl ? pColl->zName : "BINARY") 3696 ); 3697 } 3698 ExprClearProperty(pExpr, EP_Collate); 3699 } 3700 } 3701 }else{ 3702 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3703 pExpr->iTable = pSubst->iNewTable; 3704 } 3705 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3706 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3707 if( ExprUseXSelect(pExpr) ){ 3708 substSelect(pSubst, pExpr->x.pSelect, 1); 3709 }else{ 3710 substExprList(pSubst, pExpr->x.pList); 3711 } 3712 #ifndef SQLITE_OMIT_WINDOWFUNC 3713 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3714 Window *pWin = pExpr->y.pWin; 3715 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3716 substExprList(pSubst, pWin->pPartition); 3717 substExprList(pSubst, pWin->pOrderBy); 3718 } 3719 #endif 3720 } 3721 return pExpr; 3722 } 3723 static void substExprList( 3724 SubstContext *pSubst, /* Description of the substitution */ 3725 ExprList *pList /* List to scan and in which to make substitutes */ 3726 ){ 3727 int i; 3728 if( pList==0 ) return; 3729 for(i=0; i<pList->nExpr; i++){ 3730 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3731 } 3732 } 3733 static void substSelect( 3734 SubstContext *pSubst, /* Description of the substitution */ 3735 Select *p, /* SELECT statement in which to make substitutions */ 3736 int doPrior /* Do substitutes on p->pPrior too */ 3737 ){ 3738 SrcList *pSrc; 3739 SrcItem *pItem; 3740 int i; 3741 if( !p ) return; 3742 do{ 3743 substExprList(pSubst, p->pEList); 3744 substExprList(pSubst, p->pGroupBy); 3745 substExprList(pSubst, p->pOrderBy); 3746 p->pHaving = substExpr(pSubst, p->pHaving); 3747 p->pWhere = substExpr(pSubst, p->pWhere); 3748 pSrc = p->pSrc; 3749 assert( pSrc!=0 ); 3750 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3751 substSelect(pSubst, pItem->pSelect, 1); 3752 if( pItem->fg.isTabFunc ){ 3753 substExprList(pSubst, pItem->u1.pFuncArg); 3754 } 3755 } 3756 }while( doPrior && (p = p->pPrior)!=0 ); 3757 } 3758 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3759 3760 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3761 /* 3762 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3763 ** clause of that SELECT. 3764 ** 3765 ** This routine scans the entire SELECT statement and recomputes the 3766 ** pSrcItem->colUsed mask. 3767 */ 3768 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3769 SrcItem *pItem; 3770 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3771 pItem = pWalker->u.pSrcItem; 3772 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3773 if( pExpr->iColumn<0 ) return WRC_Continue; 3774 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3775 return WRC_Continue; 3776 } 3777 static void recomputeColumnsUsed( 3778 Select *pSelect, /* The complete SELECT statement */ 3779 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3780 ){ 3781 Walker w; 3782 if( NEVER(pSrcItem->pTab==0) ) return; 3783 memset(&w, 0, sizeof(w)); 3784 w.xExprCallback = recomputeColumnsUsedExpr; 3785 w.xSelectCallback = sqlite3SelectWalkNoop; 3786 w.u.pSrcItem = pSrcItem; 3787 pSrcItem->colUsed = 0; 3788 sqlite3WalkSelect(&w, pSelect); 3789 } 3790 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3791 3792 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3793 /* 3794 ** Assign new cursor numbers to each of the items in pSrc. For each 3795 ** new cursor number assigned, set an entry in the aCsrMap[] array 3796 ** to map the old cursor number to the new: 3797 ** 3798 ** aCsrMap[iOld+1] = iNew; 3799 ** 3800 ** The array is guaranteed by the caller to be large enough for all 3801 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3802 ** 3803 ** If pSrc contains any sub-selects, call this routine recursively 3804 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3805 */ 3806 static void srclistRenumberCursors( 3807 Parse *pParse, /* Parse context */ 3808 int *aCsrMap, /* Array to store cursor mappings in */ 3809 SrcList *pSrc, /* FROM clause to renumber */ 3810 int iExcept /* FROM clause item to skip */ 3811 ){ 3812 int i; 3813 SrcItem *pItem; 3814 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3815 if( i!=iExcept ){ 3816 Select *p; 3817 assert( pItem->iCursor < aCsrMap[0] ); 3818 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3819 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3820 } 3821 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3822 for(p=pItem->pSelect; p; p=p->pPrior){ 3823 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3824 } 3825 } 3826 } 3827 } 3828 3829 /* 3830 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3831 */ 3832 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3833 int *aCsrMap = pWalker->u.aiCol; 3834 int iCsr = *piCursor; 3835 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3836 *piCursor = aCsrMap[iCsr+1]; 3837 } 3838 } 3839 3840 /* 3841 ** Expression walker callback used by renumberCursors() to update 3842 ** Expr objects to match newly assigned cursor numbers. 3843 */ 3844 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3845 int op = pExpr->op; 3846 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3847 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3848 } 3849 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3850 renumberCursorDoMapping(pWalker, &pExpr->w.iRightJoinTable); 3851 } 3852 return WRC_Continue; 3853 } 3854 3855 /* 3856 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3857 ** of the SELECT statement passed as the second argument, and to each 3858 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3859 ** Except, do not assign a new cursor number to the iExcept'th element in 3860 ** the FROM clause of (*p). Update all expressions and other references 3861 ** to refer to the new cursor numbers. 3862 ** 3863 ** Argument aCsrMap is an array that may be used for temporary working 3864 ** space. Two guarantees are made by the caller: 3865 ** 3866 ** * the array is larger than the largest cursor number used within the 3867 ** select statement passed as an argument, and 3868 ** 3869 ** * the array entries for all cursor numbers that do *not* appear in 3870 ** FROM clauses of the select statement as described above are 3871 ** initialized to zero. 3872 */ 3873 static void renumberCursors( 3874 Parse *pParse, /* Parse context */ 3875 Select *p, /* Select to renumber cursors within */ 3876 int iExcept, /* FROM clause item to skip */ 3877 int *aCsrMap /* Working space */ 3878 ){ 3879 Walker w; 3880 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3881 memset(&w, 0, sizeof(w)); 3882 w.u.aiCol = aCsrMap; 3883 w.xExprCallback = renumberCursorsCb; 3884 w.xSelectCallback = sqlite3SelectWalkNoop; 3885 sqlite3WalkSelect(&w, p); 3886 } 3887 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3888 3889 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3890 /* 3891 ** This routine attempts to flatten subqueries as a performance optimization. 3892 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3893 ** 3894 ** To understand the concept of flattening, consider the following 3895 ** query: 3896 ** 3897 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3898 ** 3899 ** The default way of implementing this query is to execute the 3900 ** subquery first and store the results in a temporary table, then 3901 ** run the outer query on that temporary table. This requires two 3902 ** passes over the data. Furthermore, because the temporary table 3903 ** has no indices, the WHERE clause on the outer query cannot be 3904 ** optimized. 3905 ** 3906 ** This routine attempts to rewrite queries such as the above into 3907 ** a single flat select, like this: 3908 ** 3909 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3910 ** 3911 ** The code generated for this simplification gives the same result 3912 ** but only has to scan the data once. And because indices might 3913 ** exist on the table t1, a complete scan of the data might be 3914 ** avoided. 3915 ** 3916 ** Flattening is subject to the following constraints: 3917 ** 3918 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3919 ** The subquery and the outer query cannot both be aggregates. 3920 ** 3921 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3922 ** (2) If the subquery is an aggregate then 3923 ** (2a) the outer query must not be a join and 3924 ** (2b) the outer query must not use subqueries 3925 ** other than the one FROM-clause subquery that is a candidate 3926 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3927 ** from 2015-02-09.) 3928 ** 3929 ** (3) If the subquery is the right operand of a LEFT JOIN then 3930 ** (3a) the subquery may not be a join and 3931 ** (3b) the FROM clause of the subquery may not contain a virtual 3932 ** table and 3933 ** (3c) the outer query may not be an aggregate. 3934 ** (3d) the outer query may not be DISTINCT. 3935 ** 3936 ** (4) The subquery can not be DISTINCT. 3937 ** 3938 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3939 ** sub-queries that were excluded from this optimization. Restriction 3940 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3941 ** 3942 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3943 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3944 ** 3945 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3946 ** A FROM clause, consider adding a FROM clause with the special 3947 ** table sqlite_once that consists of a single row containing a 3948 ** single NULL. 3949 ** 3950 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3951 ** 3952 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3953 ** 3954 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3955 ** accidently carried the comment forward until 2014-09-15. Original 3956 ** constraint: "If the subquery is aggregate then the outer query 3957 ** may not use LIMIT." 3958 ** 3959 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3960 ** 3961 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3962 ** a separate restriction deriving from ticket #350. 3963 ** 3964 ** (13) The subquery and outer query may not both use LIMIT. 3965 ** 3966 ** (14) The subquery may not use OFFSET. 3967 ** 3968 ** (15) If the outer query is part of a compound select, then the 3969 ** subquery may not use LIMIT. 3970 ** (See ticket #2339 and ticket [02a8e81d44]). 3971 ** 3972 ** (16) If the outer query is aggregate, then the subquery may not 3973 ** use ORDER BY. (Ticket #2942) This used to not matter 3974 ** until we introduced the group_concat() function. 3975 ** 3976 ** (17) If the subquery is a compound select, then 3977 ** (17a) all compound operators must be a UNION ALL, and 3978 ** (17b) no terms within the subquery compound may be aggregate 3979 ** or DISTINCT, and 3980 ** (17c) every term within the subquery compound must have a FROM clause 3981 ** (17d) the outer query may not be 3982 ** (17d1) aggregate, or 3983 ** (17d2) DISTINCT 3984 ** (17e) the subquery may not contain window functions, and 3985 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3986 ** 3987 ** The parent and sub-query may contain WHERE clauses. Subject to 3988 ** rules (11), (13) and (14), they may also contain ORDER BY, 3989 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3990 ** operator other than UNION ALL because all the other compound 3991 ** operators have an implied DISTINCT which is disallowed by 3992 ** restriction (4). 3993 ** 3994 ** Also, each component of the sub-query must return the same number 3995 ** of result columns. This is actually a requirement for any compound 3996 ** SELECT statement, but all the code here does is make sure that no 3997 ** such (illegal) sub-query is flattened. The caller will detect the 3998 ** syntax error and return a detailed message. 3999 ** 4000 ** (18) If the sub-query is a compound select, then all terms of the 4001 ** ORDER BY clause of the parent must be copies of a term returned 4002 ** by the parent query. 4003 ** 4004 ** (19) If the subquery uses LIMIT then the outer query may not 4005 ** have a WHERE clause. 4006 ** 4007 ** (20) If the sub-query is a compound select, then it must not use 4008 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4009 ** somewhat by saying that the terms of the ORDER BY clause must 4010 ** appear as unmodified result columns in the outer query. But we 4011 ** have other optimizations in mind to deal with that case. 4012 ** 4013 ** (21) If the subquery uses LIMIT then the outer query may not be 4014 ** DISTINCT. (See ticket [752e1646fc]). 4015 ** 4016 ** (22) The subquery may not be a recursive CTE. 4017 ** 4018 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4019 ** a compound query. This restriction is because transforming the 4020 ** parent to a compound query confuses the code that handles 4021 ** recursive queries in multiSelect(). 4022 ** 4023 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4024 ** The subquery may not be an aggregate that uses the built-in min() or 4025 ** or max() functions. (Without this restriction, a query like: 4026 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4027 ** return the value X for which Y was maximal.) 4028 ** 4029 ** (25) If either the subquery or the parent query contains a window 4030 ** function in the select list or ORDER BY clause, flattening 4031 ** is not attempted. 4032 ** 4033 ** 4034 ** In this routine, the "p" parameter is a pointer to the outer query. 4035 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4036 ** uses aggregates. 4037 ** 4038 ** If flattening is not attempted, this routine is a no-op and returns 0. 4039 ** If flattening is attempted this routine returns 1. 4040 ** 4041 ** All of the expression analysis must occur on both the outer query and 4042 ** the subquery before this routine runs. 4043 */ 4044 static int flattenSubquery( 4045 Parse *pParse, /* Parsing context */ 4046 Select *p, /* The parent or outer SELECT statement */ 4047 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4048 int isAgg /* True if outer SELECT uses aggregate functions */ 4049 ){ 4050 const char *zSavedAuthContext = pParse->zAuthContext; 4051 Select *pParent; /* Current UNION ALL term of the other query */ 4052 Select *pSub; /* The inner query or "subquery" */ 4053 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4054 SrcList *pSrc; /* The FROM clause of the outer query */ 4055 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4056 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4057 int iNewParent = -1;/* Replacement table for iParent */ 4058 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4059 int i; /* Loop counter */ 4060 Expr *pWhere; /* The WHERE clause */ 4061 SrcItem *pSubitem; /* The subquery */ 4062 sqlite3 *db = pParse->db; 4063 Walker w; /* Walker to persist agginfo data */ 4064 int *aCsrMap = 0; 4065 4066 /* Check to see if flattening is permitted. Return 0 if not. 4067 */ 4068 assert( p!=0 ); 4069 assert( p->pPrior==0 ); 4070 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4071 pSrc = p->pSrc; 4072 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4073 pSubitem = &pSrc->a[iFrom]; 4074 iParent = pSubitem->iCursor; 4075 pSub = pSubitem->pSelect; 4076 assert( pSub!=0 ); 4077 4078 #ifndef SQLITE_OMIT_WINDOWFUNC 4079 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4080 #endif 4081 4082 pSubSrc = pSub->pSrc; 4083 assert( pSubSrc ); 4084 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4085 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4086 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4087 ** became arbitrary expressions, we were forced to add restrictions (13) 4088 ** and (14). */ 4089 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4090 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4091 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4092 return 0; /* Restriction (15) */ 4093 } 4094 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4095 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4096 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4097 return 0; /* Restrictions (8)(9) */ 4098 } 4099 if( p->pOrderBy && pSub->pOrderBy ){ 4100 return 0; /* Restriction (11) */ 4101 } 4102 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4103 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4104 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4105 return 0; /* Restriction (21) */ 4106 } 4107 if( pSub->selFlags & (SF_Recursive) ){ 4108 return 0; /* Restrictions (22) */ 4109 } 4110 4111 /* 4112 ** If the subquery is the right operand of a LEFT JOIN, then the 4113 ** subquery may not be a join itself (3a). Example of why this is not 4114 ** allowed: 4115 ** 4116 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4117 ** 4118 ** If we flatten the above, we would get 4119 ** 4120 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4121 ** 4122 ** which is not at all the same thing. 4123 ** 4124 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4125 ** query cannot be an aggregate. (3c) This is an artifact of the way 4126 ** aggregates are processed - there is no mechanism to determine if 4127 ** the LEFT JOIN table should be all-NULL. 4128 ** 4129 ** See also tickets #306, #350, and #3300. 4130 */ 4131 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4132 isLeftJoin = 1; 4133 if( pSubSrc->nSrc>1 /* (3a) */ 4134 || isAgg /* (3b) */ 4135 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4136 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4137 ){ 4138 return 0; 4139 } 4140 } 4141 #ifdef SQLITE_EXTRA_IFNULLROW 4142 else if( iFrom>0 && !isAgg ){ 4143 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4144 ** every reference to any result column from subquery in a join, even 4145 ** though they are not necessary. This will stress-test the OP_IfNullRow 4146 ** opcode. */ 4147 isLeftJoin = -1; 4148 } 4149 #endif 4150 4151 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4152 ** use only the UNION ALL operator. And none of the simple select queries 4153 ** that make up the compound SELECT are allowed to be aggregate or distinct 4154 ** queries. 4155 */ 4156 if( pSub->pPrior ){ 4157 if( pSub->pOrderBy ){ 4158 return 0; /* Restriction (20) */ 4159 } 4160 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4161 return 0; /* (17d1), (17d2), or (17f) */ 4162 } 4163 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4164 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4165 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4166 assert( pSub->pSrc!=0 ); 4167 assert( (pSub->selFlags & SF_Recursive)==0 ); 4168 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4169 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4170 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4171 || pSub1->pSrc->nSrc<1 /* (17c) */ 4172 #ifndef SQLITE_OMIT_WINDOWFUNC 4173 || pSub1->pWin /* (17e) */ 4174 #endif 4175 ){ 4176 return 0; 4177 } 4178 testcase( pSub1->pSrc->nSrc>1 ); 4179 } 4180 4181 /* Restriction (18). */ 4182 if( p->pOrderBy ){ 4183 int ii; 4184 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4185 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4186 } 4187 } 4188 4189 /* Restriction (23) */ 4190 if( (p->selFlags & SF_Recursive) ) return 0; 4191 4192 if( pSrc->nSrc>1 ){ 4193 if( pParse->nSelect>500 ) return 0; 4194 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4195 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4196 } 4197 } 4198 4199 /***** If we reach this point, flattening is permitted. *****/ 4200 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4201 pSub->selId, pSub, iFrom)); 4202 4203 /* Authorize the subquery */ 4204 pParse->zAuthContext = pSubitem->zName; 4205 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4206 testcase( i==SQLITE_DENY ); 4207 pParse->zAuthContext = zSavedAuthContext; 4208 4209 /* Delete the transient structures associated with thesubquery */ 4210 pSub1 = pSubitem->pSelect; 4211 sqlite3DbFree(db, pSubitem->zDatabase); 4212 sqlite3DbFree(db, pSubitem->zName); 4213 sqlite3DbFree(db, pSubitem->zAlias); 4214 pSubitem->zDatabase = 0; 4215 pSubitem->zName = 0; 4216 pSubitem->zAlias = 0; 4217 pSubitem->pSelect = 0; 4218 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4219 4220 /* If the sub-query is a compound SELECT statement, then (by restrictions 4221 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4222 ** be of the form: 4223 ** 4224 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4225 ** 4226 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4227 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4228 ** OFFSET clauses and joins them to the left-hand-side of the original 4229 ** using UNION ALL operators. In this case N is the number of simple 4230 ** select statements in the compound sub-query. 4231 ** 4232 ** Example: 4233 ** 4234 ** SELECT a+1 FROM ( 4235 ** SELECT x FROM tab 4236 ** UNION ALL 4237 ** SELECT y FROM tab 4238 ** UNION ALL 4239 ** SELECT abs(z*2) FROM tab2 4240 ** ) WHERE a!=5 ORDER BY 1 4241 ** 4242 ** Transformed into: 4243 ** 4244 ** SELECT x+1 FROM tab WHERE x+1!=5 4245 ** UNION ALL 4246 ** SELECT y+1 FROM tab WHERE y+1!=5 4247 ** UNION ALL 4248 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4249 ** ORDER BY 1 4250 ** 4251 ** We call this the "compound-subquery flattening". 4252 */ 4253 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4254 Select *pNew; 4255 ExprList *pOrderBy = p->pOrderBy; 4256 Expr *pLimit = p->pLimit; 4257 Select *pPrior = p->pPrior; 4258 Table *pItemTab = pSubitem->pTab; 4259 pSubitem->pTab = 0; 4260 p->pOrderBy = 0; 4261 p->pPrior = 0; 4262 p->pLimit = 0; 4263 pNew = sqlite3SelectDup(db, p, 0); 4264 p->pLimit = pLimit; 4265 p->pOrderBy = pOrderBy; 4266 p->op = TK_ALL; 4267 pSubitem->pTab = pItemTab; 4268 if( pNew==0 ){ 4269 p->pPrior = pPrior; 4270 }else{ 4271 pNew->selId = ++pParse->nSelect; 4272 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4273 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4274 } 4275 pNew->pPrior = pPrior; 4276 if( pPrior ) pPrior->pNext = pNew; 4277 pNew->pNext = p; 4278 p->pPrior = pNew; 4279 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4280 " creates %u as peer\n",pNew->selId)); 4281 } 4282 assert( pSubitem->pSelect==0 ); 4283 } 4284 sqlite3DbFree(db, aCsrMap); 4285 if( db->mallocFailed ){ 4286 pSubitem->pSelect = pSub1; 4287 return 1; 4288 } 4289 4290 /* Defer deleting the Table object associated with the 4291 ** subquery until code generation is 4292 ** complete, since there may still exist Expr.pTab entries that 4293 ** refer to the subquery even after flattening. Ticket #3346. 4294 ** 4295 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4296 */ 4297 if( ALWAYS(pSubitem->pTab!=0) ){ 4298 Table *pTabToDel = pSubitem->pTab; 4299 if( pTabToDel->nTabRef==1 ){ 4300 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4301 sqlite3ParserAddCleanup(pToplevel, 4302 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4303 pTabToDel); 4304 testcase( pToplevel->earlyCleanup ); 4305 }else{ 4306 pTabToDel->nTabRef--; 4307 } 4308 pSubitem->pTab = 0; 4309 } 4310 4311 /* The following loop runs once for each term in a compound-subquery 4312 ** flattening (as described above). If we are doing a different kind 4313 ** of flattening - a flattening other than a compound-subquery flattening - 4314 ** then this loop only runs once. 4315 ** 4316 ** This loop moves all of the FROM elements of the subquery into the 4317 ** the FROM clause of the outer query. Before doing this, remember 4318 ** the cursor number for the original outer query FROM element in 4319 ** iParent. The iParent cursor will never be used. Subsequent code 4320 ** will scan expressions looking for iParent references and replace 4321 ** those references with expressions that resolve to the subquery FROM 4322 ** elements we are now copying in. 4323 */ 4324 pSub = pSub1; 4325 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4326 int nSubSrc; 4327 u8 jointype = 0; 4328 assert( pSub!=0 ); 4329 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4330 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4331 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4332 4333 if( pParent==p ){ 4334 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4335 } 4336 4337 /* The subquery uses a single slot of the FROM clause of the outer 4338 ** query. If the subquery has more than one element in its FROM clause, 4339 ** then expand the outer query to make space for it to hold all elements 4340 ** of the subquery. 4341 ** 4342 ** Example: 4343 ** 4344 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4345 ** 4346 ** The outer query has 3 slots in its FROM clause. One slot of the 4347 ** outer query (the middle slot) is used by the subquery. The next 4348 ** block of code will expand the outer query FROM clause to 4 slots. 4349 ** The middle slot is expanded to two slots in order to make space 4350 ** for the two elements in the FROM clause of the subquery. 4351 */ 4352 if( nSubSrc>1 ){ 4353 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4354 if( pSrc==0 ) break; 4355 pParent->pSrc = pSrc; 4356 } 4357 4358 /* Transfer the FROM clause terms from the subquery into the 4359 ** outer query. 4360 */ 4361 for(i=0; i<nSubSrc; i++){ 4362 SrcItem *pItem = &pSrc->a[i+iFrom]; 4363 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4364 assert( pItem->fg.isTabFunc==0 ); 4365 *pItem = pSubSrc->a[i]; 4366 iNewParent = pSubSrc->a[i].iCursor; 4367 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4368 } 4369 pSrc->a[iFrom].fg.jointype = jointype; 4370 4371 /* Now begin substituting subquery result set expressions for 4372 ** references to the iParent in the outer query. 4373 ** 4374 ** Example: 4375 ** 4376 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4377 ** \ \_____________ subquery __________/ / 4378 ** \_____________________ outer query ______________________________/ 4379 ** 4380 ** We look at every expression in the outer query and every place we see 4381 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4382 */ 4383 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4384 /* At this point, any non-zero iOrderByCol values indicate that the 4385 ** ORDER BY column expression is identical to the iOrderByCol'th 4386 ** expression returned by SELECT statement pSub. Since these values 4387 ** do not necessarily correspond to columns in SELECT statement pParent, 4388 ** zero them before transfering the ORDER BY clause. 4389 ** 4390 ** Not doing this may cause an error if a subsequent call to this 4391 ** function attempts to flatten a compound sub-query into pParent 4392 ** (the only way this can happen is if the compound sub-query is 4393 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4394 ExprList *pOrderBy = pSub->pOrderBy; 4395 for(i=0; i<pOrderBy->nExpr; i++){ 4396 pOrderBy->a[i].u.x.iOrderByCol = 0; 4397 } 4398 assert( pParent->pOrderBy==0 ); 4399 pParent->pOrderBy = pOrderBy; 4400 pSub->pOrderBy = 0; 4401 } 4402 pWhere = pSub->pWhere; 4403 pSub->pWhere = 0; 4404 if( isLeftJoin>0 ){ 4405 sqlite3SetJoinExpr(pWhere, iNewParent); 4406 } 4407 if( pWhere ){ 4408 if( pParent->pWhere ){ 4409 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4410 }else{ 4411 pParent->pWhere = pWhere; 4412 } 4413 } 4414 if( db->mallocFailed==0 ){ 4415 SubstContext x; 4416 x.pParse = pParse; 4417 x.iTable = iParent; 4418 x.iNewTable = iNewParent; 4419 x.isLeftJoin = isLeftJoin; 4420 x.pEList = pSub->pEList; 4421 substSelect(&x, pParent, 0); 4422 } 4423 4424 /* The flattened query is a compound if either the inner or the 4425 ** outer query is a compound. */ 4426 pParent->selFlags |= pSub->selFlags & SF_Compound; 4427 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4428 4429 /* 4430 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4431 ** 4432 ** One is tempted to try to add a and b to combine the limits. But this 4433 ** does not work if either limit is negative. 4434 */ 4435 if( pSub->pLimit ){ 4436 pParent->pLimit = pSub->pLimit; 4437 pSub->pLimit = 0; 4438 } 4439 4440 /* Recompute the SrcList_item.colUsed masks for the flattened 4441 ** tables. */ 4442 for(i=0; i<nSubSrc; i++){ 4443 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4444 } 4445 } 4446 4447 /* Finially, delete what is left of the subquery and return 4448 ** success. 4449 */ 4450 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4451 sqlite3WalkSelect(&w,pSub1); 4452 sqlite3SelectDelete(db, pSub1); 4453 4454 #if TREETRACE_ENABLED 4455 if( sqlite3TreeTrace & 0x100 ){ 4456 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4457 sqlite3TreeViewSelect(0, p, 0); 4458 } 4459 #endif 4460 4461 return 1; 4462 } 4463 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4464 4465 /* 4466 ** A structure to keep track of all of the column values that are fixed to 4467 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4468 */ 4469 typedef struct WhereConst WhereConst; 4470 struct WhereConst { 4471 Parse *pParse; /* Parsing context */ 4472 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4473 int nConst; /* Number for COLUMN=CONSTANT terms */ 4474 int nChng; /* Number of times a constant is propagated */ 4475 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4476 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4477 }; 4478 4479 /* 4480 ** Add a new entry to the pConst object. Except, do not add duplicate 4481 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4482 ** 4483 ** The caller guarantees the pColumn is a column and pValue is a constant. 4484 ** This routine has to do some additional checks before completing the 4485 ** insert. 4486 */ 4487 static void constInsert( 4488 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4489 Expr *pColumn, /* The COLUMN part of the constraint */ 4490 Expr *pValue, /* The VALUE part of the constraint */ 4491 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4492 ){ 4493 int i; 4494 assert( pColumn->op==TK_COLUMN ); 4495 assert( sqlite3ExprIsConstant(pValue) ); 4496 4497 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4498 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4499 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4500 return; 4501 } 4502 4503 /* 2018-10-25 ticket [cf5ed20f] 4504 ** Make sure the same pColumn is not inserted more than once */ 4505 for(i=0; i<pConst->nConst; i++){ 4506 const Expr *pE2 = pConst->apExpr[i*2]; 4507 assert( pE2->op==TK_COLUMN ); 4508 if( pE2->iTable==pColumn->iTable 4509 && pE2->iColumn==pColumn->iColumn 4510 ){ 4511 return; /* Already present. Return without doing anything. */ 4512 } 4513 } 4514 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4515 pConst->bHasAffBlob = 1; 4516 } 4517 4518 pConst->nConst++; 4519 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4520 pConst->nConst*2*sizeof(Expr*)); 4521 if( pConst->apExpr==0 ){ 4522 pConst->nConst = 0; 4523 }else{ 4524 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4525 pConst->apExpr[pConst->nConst*2-1] = pValue; 4526 } 4527 } 4528 4529 /* 4530 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4531 ** is a constant expression and where the term must be true because it 4532 ** is part of the AND-connected terms of the expression. For each term 4533 ** found, add it to the pConst structure. 4534 */ 4535 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4536 Expr *pRight, *pLeft; 4537 if( NEVER(pExpr==0) ) return; 4538 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4539 if( pExpr->op==TK_AND ){ 4540 findConstInWhere(pConst, pExpr->pRight); 4541 findConstInWhere(pConst, pExpr->pLeft); 4542 return; 4543 } 4544 if( pExpr->op!=TK_EQ ) return; 4545 pRight = pExpr->pRight; 4546 pLeft = pExpr->pLeft; 4547 assert( pRight!=0 ); 4548 assert( pLeft!=0 ); 4549 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4550 constInsert(pConst,pRight,pLeft,pExpr); 4551 } 4552 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4553 constInsert(pConst,pLeft,pRight,pExpr); 4554 } 4555 } 4556 4557 /* 4558 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4559 ** 4560 ** Argument pExpr is a candidate expression to be replaced by a value. If 4561 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4562 ** then overwrite it with the corresponding value. Except, do not do so 4563 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4564 ** is SQLITE_AFF_BLOB. 4565 */ 4566 static int propagateConstantExprRewriteOne( 4567 WhereConst *pConst, 4568 Expr *pExpr, 4569 int bIgnoreAffBlob 4570 ){ 4571 int i; 4572 if( pConst->pOomFault[0] ) return WRC_Prune; 4573 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4574 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4575 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4576 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4577 return WRC_Continue; 4578 } 4579 for(i=0; i<pConst->nConst; i++){ 4580 Expr *pColumn = pConst->apExpr[i*2]; 4581 if( pColumn==pExpr ) continue; 4582 if( pColumn->iTable!=pExpr->iTable ) continue; 4583 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4584 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4585 break; 4586 } 4587 /* A match is found. Add the EP_FixedCol property */ 4588 pConst->nChng++; 4589 ExprClearProperty(pExpr, EP_Leaf); 4590 ExprSetProperty(pExpr, EP_FixedCol); 4591 assert( pExpr->pLeft==0 ); 4592 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4593 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4594 break; 4595 } 4596 return WRC_Prune; 4597 } 4598 4599 /* 4600 ** This is a Walker expression callback. pExpr is a node from the WHERE 4601 ** clause of a SELECT statement. This function examines pExpr to see if 4602 ** any substitutions based on the contents of pWalker->u.pConst should 4603 ** be made to pExpr or its immediate children. 4604 ** 4605 ** A substitution is made if: 4606 ** 4607 ** + pExpr is a column with an affinity other than BLOB that matches 4608 ** one of the columns in pWalker->u.pConst, or 4609 ** 4610 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4611 ** uses an affinity other than TEXT and one of its immediate 4612 ** children is a column that matches one of the columns in 4613 ** pWalker->u.pConst. 4614 */ 4615 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4616 WhereConst *pConst = pWalker->u.pConst; 4617 assert( TK_GT==TK_EQ+1 ); 4618 assert( TK_LE==TK_EQ+2 ); 4619 assert( TK_LT==TK_EQ+3 ); 4620 assert( TK_GE==TK_EQ+4 ); 4621 if( pConst->bHasAffBlob ){ 4622 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4623 || pExpr->op==TK_IS 4624 ){ 4625 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4626 if( pConst->pOomFault[0] ) return WRC_Prune; 4627 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4628 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4629 } 4630 } 4631 } 4632 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4633 } 4634 4635 /* 4636 ** The WHERE-clause constant propagation optimization. 4637 ** 4638 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4639 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4640 ** part of a ON clause from a LEFT JOIN, then throughout the query 4641 ** replace all other occurrences of COLUMN with CONSTANT. 4642 ** 4643 ** For example, the query: 4644 ** 4645 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4646 ** 4647 ** Is transformed into 4648 ** 4649 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4650 ** 4651 ** Return true if any transformations where made and false if not. 4652 ** 4653 ** Implementation note: Constant propagation is tricky due to affinity 4654 ** and collating sequence interactions. Consider this example: 4655 ** 4656 ** CREATE TABLE t1(a INT,b TEXT); 4657 ** INSERT INTO t1 VALUES(123,'0123'); 4658 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4659 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4660 ** 4661 ** The two SELECT statements above should return different answers. b=a 4662 ** is alway true because the comparison uses numeric affinity, but b=123 4663 ** is false because it uses text affinity and '0123' is not the same as '123'. 4664 ** To work around this, the expression tree is not actually changed from 4665 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4666 ** and the "123" value is hung off of the pLeft pointer. Code generator 4667 ** routines know to generate the constant "123" instead of looking up the 4668 ** column value. Also, to avoid collation problems, this optimization is 4669 ** only attempted if the "a=123" term uses the default BINARY collation. 4670 ** 4671 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4672 ** 4673 ** CREATE TABLE t1(x); 4674 ** INSERT INTO t1 VALUES(10.0); 4675 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4676 ** 4677 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4678 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4679 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4680 ** resulting in a false positive. To avoid this, constant propagation for 4681 ** columns with BLOB affinity is only allowed if the constant is used with 4682 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4683 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4684 ** for details. 4685 */ 4686 static int propagateConstants( 4687 Parse *pParse, /* The parsing context */ 4688 Select *p /* The query in which to propagate constants */ 4689 ){ 4690 WhereConst x; 4691 Walker w; 4692 int nChng = 0; 4693 x.pParse = pParse; 4694 x.pOomFault = &pParse->db->mallocFailed; 4695 do{ 4696 x.nConst = 0; 4697 x.nChng = 0; 4698 x.apExpr = 0; 4699 x.bHasAffBlob = 0; 4700 findConstInWhere(&x, p->pWhere); 4701 if( x.nConst ){ 4702 memset(&w, 0, sizeof(w)); 4703 w.pParse = pParse; 4704 w.xExprCallback = propagateConstantExprRewrite; 4705 w.xSelectCallback = sqlite3SelectWalkNoop; 4706 w.xSelectCallback2 = 0; 4707 w.walkerDepth = 0; 4708 w.u.pConst = &x; 4709 sqlite3WalkExpr(&w, p->pWhere); 4710 sqlite3DbFree(x.pParse->db, x.apExpr); 4711 nChng += x.nChng; 4712 } 4713 }while( x.nChng ); 4714 return nChng; 4715 } 4716 4717 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4718 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4719 /* 4720 ** This function is called to determine whether or not it is safe to 4721 ** push WHERE clause expression pExpr down to FROM clause sub-query 4722 ** pSubq, which contains at least one window function. Return 1 4723 ** if it is safe and the expression should be pushed down, or 0 4724 ** otherwise. 4725 ** 4726 ** It is only safe to push the expression down if it consists only 4727 ** of constants and copies of expressions that appear in the PARTITION 4728 ** BY clause of all window function used by the sub-query. It is safe 4729 ** to filter out entire partitions, but not rows within partitions, as 4730 ** this may change the results of the window functions. 4731 ** 4732 ** At the time this function is called it is guaranteed that 4733 ** 4734 ** * the sub-query uses only one distinct window frame, and 4735 ** * that the window frame has a PARTITION BY clase. 4736 */ 4737 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4738 assert( pSubq->pWin->pPartition ); 4739 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4740 assert( pSubq->pPrior==0 ); 4741 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4742 } 4743 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4744 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4745 4746 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4747 /* 4748 ** Make copies of relevant WHERE clause terms of the outer query into 4749 ** the WHERE clause of subquery. Example: 4750 ** 4751 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4752 ** 4753 ** Transformed into: 4754 ** 4755 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4756 ** WHERE x=5 AND y=10; 4757 ** 4758 ** The hope is that the terms added to the inner query will make it more 4759 ** efficient. 4760 ** 4761 ** Do not attempt this optimization if: 4762 ** 4763 ** (1) (** This restriction was removed on 2017-09-29. We used to 4764 ** disallow this optimization for aggregate subqueries, but now 4765 ** it is allowed by putting the extra terms on the HAVING clause. 4766 ** The added HAVING clause is pointless if the subquery lacks 4767 ** a GROUP BY clause. But such a HAVING clause is also harmless 4768 ** so there does not appear to be any reason to add extra logic 4769 ** to suppress it. **) 4770 ** 4771 ** (2) The inner query is the recursive part of a common table expression. 4772 ** 4773 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4774 ** clause would change the meaning of the LIMIT). 4775 ** 4776 ** (4) The inner query is the right operand of a LEFT JOIN and the 4777 ** expression to be pushed down does not come from the ON clause 4778 ** on that LEFT JOIN. 4779 ** 4780 ** (5) The WHERE clause expression originates in the ON or USING clause 4781 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4782 ** left join. An example: 4783 ** 4784 ** SELECT * 4785 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4786 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4787 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4788 ** 4789 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4790 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4791 ** then the (1,1,NULL) row would be suppressed. 4792 ** 4793 ** (6) Window functions make things tricky as changes to the WHERE clause 4794 ** of the inner query could change the window over which window 4795 ** functions are calculated. Therefore, do not attempt the optimization 4796 ** if: 4797 ** 4798 ** (6a) The inner query uses multiple incompatible window partitions. 4799 ** 4800 ** (6b) The inner query is a compound and uses window-functions. 4801 ** 4802 ** (6c) The WHERE clause does not consist entirely of constants and 4803 ** copies of expressions found in the PARTITION BY clause of 4804 ** all window-functions used by the sub-query. It is safe to 4805 ** filter out entire partitions, as this does not change the 4806 ** window over which any window-function is calculated. 4807 ** 4808 ** (7) The inner query is a Common Table Expression (CTE) that should 4809 ** be materialized. (This restriction is implemented in the calling 4810 ** routine.) 4811 ** 4812 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4813 ** terms are duplicated into the subquery. 4814 */ 4815 static int pushDownWhereTerms( 4816 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4817 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4818 Expr *pWhere, /* The WHERE clause of the outer query */ 4819 int iCursor, /* Cursor number of the subquery */ 4820 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4821 ){ 4822 Expr *pNew; 4823 int nChng = 0; 4824 if( pWhere==0 ) return 0; 4825 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4826 4827 #ifndef SQLITE_OMIT_WINDOWFUNC 4828 if( pSubq->pPrior ){ 4829 Select *pSel; 4830 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4831 if( pSel->pWin ) return 0; /* restriction (6b) */ 4832 } 4833 }else{ 4834 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4835 } 4836 #endif 4837 4838 #ifdef SQLITE_DEBUG 4839 /* Only the first term of a compound can have a WITH clause. But make 4840 ** sure no other terms are marked SF_Recursive in case something changes 4841 ** in the future. 4842 */ 4843 { 4844 Select *pX; 4845 for(pX=pSubq; pX; pX=pX->pPrior){ 4846 assert( (pX->selFlags & (SF_Recursive))==0 ); 4847 } 4848 } 4849 #endif 4850 4851 if( pSubq->pLimit!=0 ){ 4852 return 0; /* restriction (3) */ 4853 } 4854 while( pWhere->op==TK_AND ){ 4855 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4856 iCursor, isLeftJoin); 4857 pWhere = pWhere->pLeft; 4858 } 4859 if( isLeftJoin 4860 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4861 || pWhere->w.iRightJoinTable!=iCursor) 4862 ){ 4863 return 0; /* restriction (4) */ 4864 } 4865 if( ExprHasProperty(pWhere,EP_FromJoin) 4866 && pWhere->w.iRightJoinTable!=iCursor 4867 ){ 4868 return 0; /* restriction (5) */ 4869 } 4870 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4871 nChng++; 4872 pSubq->selFlags |= SF_PushDown; 4873 while( pSubq ){ 4874 SubstContext x; 4875 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4876 unsetJoinExpr(pNew, -1); 4877 x.pParse = pParse; 4878 x.iTable = iCursor; 4879 x.iNewTable = iCursor; 4880 x.isLeftJoin = 0; 4881 x.pEList = pSubq->pEList; 4882 pNew = substExpr(&x, pNew); 4883 #ifndef SQLITE_OMIT_WINDOWFUNC 4884 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4885 /* Restriction 6c has prevented push-down in this case */ 4886 sqlite3ExprDelete(pParse->db, pNew); 4887 nChng--; 4888 break; 4889 } 4890 #endif 4891 if( pSubq->selFlags & SF_Aggregate ){ 4892 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4893 }else{ 4894 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4895 } 4896 pSubq = pSubq->pPrior; 4897 } 4898 } 4899 return nChng; 4900 } 4901 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4902 4903 /* 4904 ** The pFunc is the only aggregate function in the query. Check to see 4905 ** if the query is a candidate for the min/max optimization. 4906 ** 4907 ** If the query is a candidate for the min/max optimization, then set 4908 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4909 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4910 ** whether pFunc is a min() or max() function. 4911 ** 4912 ** If the query is not a candidate for the min/max optimization, return 4913 ** WHERE_ORDERBY_NORMAL (which must be zero). 4914 ** 4915 ** This routine must be called after aggregate functions have been 4916 ** located but before their arguments have been subjected to aggregate 4917 ** analysis. 4918 */ 4919 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4920 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4921 ExprList *pEList; /* Arguments to agg function */ 4922 const char *zFunc; /* Name of aggregate function pFunc */ 4923 ExprList *pOrderBy; 4924 u8 sortFlags = 0; 4925 4926 assert( *ppMinMax==0 ); 4927 assert( pFunc->op==TK_AGG_FUNCTION ); 4928 assert( !IsWindowFunc(pFunc) ); 4929 assert( ExprUseXList(pFunc) ); 4930 pEList = pFunc->x.pList; 4931 if( pEList==0 4932 || pEList->nExpr!=1 4933 || ExprHasProperty(pFunc, EP_WinFunc) 4934 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4935 ){ 4936 return eRet; 4937 } 4938 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 4939 zFunc = pFunc->u.zToken; 4940 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4941 eRet = WHERE_ORDERBY_MIN; 4942 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4943 sortFlags = KEYINFO_ORDER_BIGNULL; 4944 } 4945 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4946 eRet = WHERE_ORDERBY_MAX; 4947 sortFlags = KEYINFO_ORDER_DESC; 4948 }else{ 4949 return eRet; 4950 } 4951 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4952 assert( pOrderBy!=0 || db->mallocFailed ); 4953 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4954 return eRet; 4955 } 4956 4957 /* 4958 ** The select statement passed as the first argument is an aggregate query. 4959 ** The second argument is the associated aggregate-info object. This 4960 ** function tests if the SELECT is of the form: 4961 ** 4962 ** SELECT count(*) FROM <tbl> 4963 ** 4964 ** where table is a database table, not a sub-select or view. If the query 4965 ** does match this pattern, then a pointer to the Table object representing 4966 ** <tbl> is returned. Otherwise, NULL is returned. 4967 ** 4968 ** This routine checks to see if it is safe to use the count optimization. 4969 ** A correct answer is still obtained (though perhaps more slowly) if 4970 ** this routine returns NULL when it could have returned a table pointer. 4971 ** But returning the pointer when NULL should have been returned can 4972 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 4973 */ 4974 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4975 Table *pTab; 4976 Expr *pExpr; 4977 4978 assert( !p->pGroupBy ); 4979 4980 if( p->pWhere 4981 || p->pEList->nExpr!=1 4982 || p->pSrc->nSrc!=1 4983 || p->pSrc->a[0].pSelect 4984 || pAggInfo->nFunc!=1 4985 ){ 4986 return 0; 4987 } 4988 pTab = p->pSrc->a[0].pTab; 4989 assert( pTab!=0 ); 4990 assert( !IsView(pTab) ); 4991 if( !IsOrdinaryTable(pTab) ) return 0; 4992 pExpr = p->pEList->a[0].pExpr; 4993 assert( pExpr!=0 ); 4994 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4995 if( pExpr->pAggInfo!=pAggInfo ) return 0; 4996 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4997 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 4998 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 4999 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5000 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5001 5002 return pTab; 5003 } 5004 5005 /* 5006 ** If the source-list item passed as an argument was augmented with an 5007 ** INDEXED BY clause, then try to locate the specified index. If there 5008 ** was such a clause and the named index cannot be found, return 5009 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5010 ** pFrom->pIndex and return SQLITE_OK. 5011 */ 5012 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5013 Table *pTab = pFrom->pTab; 5014 char *zIndexedBy = pFrom->u1.zIndexedBy; 5015 Index *pIdx; 5016 assert( pTab!=0 ); 5017 assert( pFrom->fg.isIndexedBy!=0 ); 5018 5019 for(pIdx=pTab->pIndex; 5020 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5021 pIdx=pIdx->pNext 5022 ); 5023 if( !pIdx ){ 5024 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5025 pParse->checkSchema = 1; 5026 return SQLITE_ERROR; 5027 } 5028 assert( pFrom->fg.isCte==0 ); 5029 pFrom->u2.pIBIndex = pIdx; 5030 return SQLITE_OK; 5031 } 5032 5033 /* 5034 ** Detect compound SELECT statements that use an ORDER BY clause with 5035 ** an alternative collating sequence. 5036 ** 5037 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5038 ** 5039 ** These are rewritten as a subquery: 5040 ** 5041 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5042 ** ORDER BY ... COLLATE ... 5043 ** 5044 ** This transformation is necessary because the multiSelectOrderBy() routine 5045 ** above that generates the code for a compound SELECT with an ORDER BY clause 5046 ** uses a merge algorithm that requires the same collating sequence on the 5047 ** result columns as on the ORDER BY clause. See ticket 5048 ** http://www.sqlite.org/src/info/6709574d2a 5049 ** 5050 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5051 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5052 ** there are COLLATE terms in the ORDER BY. 5053 */ 5054 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5055 int i; 5056 Select *pNew; 5057 Select *pX; 5058 sqlite3 *db; 5059 struct ExprList_item *a; 5060 SrcList *pNewSrc; 5061 Parse *pParse; 5062 Token dummy; 5063 5064 if( p->pPrior==0 ) return WRC_Continue; 5065 if( p->pOrderBy==0 ) return WRC_Continue; 5066 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5067 if( pX==0 ) return WRC_Continue; 5068 a = p->pOrderBy->a; 5069 #ifndef SQLITE_OMIT_WINDOWFUNC 5070 /* If iOrderByCol is already non-zero, then it has already been matched 5071 ** to a result column of the SELECT statement. This occurs when the 5072 ** SELECT is rewritten for window-functions processing and then passed 5073 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5074 ** by this function is not required in this case. */ 5075 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5076 #endif 5077 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5078 if( a[i].pExpr->flags & EP_Collate ) break; 5079 } 5080 if( i<0 ) return WRC_Continue; 5081 5082 /* If we reach this point, that means the transformation is required. */ 5083 5084 pParse = pWalker->pParse; 5085 db = pParse->db; 5086 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5087 if( pNew==0 ) return WRC_Abort; 5088 memset(&dummy, 0, sizeof(dummy)); 5089 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5090 if( pNewSrc==0 ) return WRC_Abort; 5091 *pNew = *p; 5092 p->pSrc = pNewSrc; 5093 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5094 p->op = TK_SELECT; 5095 p->pWhere = 0; 5096 pNew->pGroupBy = 0; 5097 pNew->pHaving = 0; 5098 pNew->pOrderBy = 0; 5099 p->pPrior = 0; 5100 p->pNext = 0; 5101 p->pWith = 0; 5102 #ifndef SQLITE_OMIT_WINDOWFUNC 5103 p->pWinDefn = 0; 5104 #endif 5105 p->selFlags &= ~SF_Compound; 5106 assert( (p->selFlags & SF_Converted)==0 ); 5107 p->selFlags |= SF_Converted; 5108 assert( pNew->pPrior!=0 ); 5109 pNew->pPrior->pNext = pNew; 5110 pNew->pLimit = 0; 5111 return WRC_Continue; 5112 } 5113 5114 /* 5115 ** Check to see if the FROM clause term pFrom has table-valued function 5116 ** arguments. If it does, leave an error message in pParse and return 5117 ** non-zero, since pFrom is not allowed to be a table-valued function. 5118 */ 5119 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5120 if( pFrom->fg.isTabFunc ){ 5121 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5122 return 1; 5123 } 5124 return 0; 5125 } 5126 5127 #ifndef SQLITE_OMIT_CTE 5128 /* 5129 ** Argument pWith (which may be NULL) points to a linked list of nested 5130 ** WITH contexts, from inner to outermost. If the table identified by 5131 ** FROM clause element pItem is really a common-table-expression (CTE) 5132 ** then return a pointer to the CTE definition for that table. Otherwise 5133 ** return NULL. 5134 ** 5135 ** If a non-NULL value is returned, set *ppContext to point to the With 5136 ** object that the returned CTE belongs to. 5137 */ 5138 static struct Cte *searchWith( 5139 With *pWith, /* Current innermost WITH clause */ 5140 SrcItem *pItem, /* FROM clause element to resolve */ 5141 With **ppContext /* OUT: WITH clause return value belongs to */ 5142 ){ 5143 const char *zName = pItem->zName; 5144 With *p; 5145 assert( pItem->zDatabase==0 ); 5146 assert( zName!=0 ); 5147 for(p=pWith; p; p=p->pOuter){ 5148 int i; 5149 for(i=0; i<p->nCte; i++){ 5150 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5151 *ppContext = p; 5152 return &p->a[i]; 5153 } 5154 } 5155 if( p->bView ) break; 5156 } 5157 return 0; 5158 } 5159 5160 /* The code generator maintains a stack of active WITH clauses 5161 ** with the inner-most WITH clause being at the top of the stack. 5162 ** 5163 ** This routine pushes the WITH clause passed as the second argument 5164 ** onto the top of the stack. If argument bFree is true, then this 5165 ** WITH clause will never be popped from the stack but should instead 5166 ** be freed along with the Parse object. In other cases, when 5167 ** bFree==0, the With object will be freed along with the SELECT 5168 ** statement with which it is associated. 5169 ** 5170 ** This routine returns a copy of pWith. Or, if bFree is true and 5171 ** the pWith object is destroyed immediately due to an OOM condition, 5172 ** then this routine return NULL. 5173 ** 5174 ** If bFree is true, do not continue to use the pWith pointer after 5175 ** calling this routine, Instead, use only the return value. 5176 */ 5177 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5178 if( pWith ){ 5179 if( bFree ){ 5180 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5181 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5182 pWith); 5183 if( pWith==0 ) return 0; 5184 } 5185 if( pParse->nErr==0 ){ 5186 assert( pParse->pWith!=pWith ); 5187 pWith->pOuter = pParse->pWith; 5188 pParse->pWith = pWith; 5189 } 5190 } 5191 return pWith; 5192 } 5193 5194 /* 5195 ** This function checks if argument pFrom refers to a CTE declared by 5196 ** a WITH clause on the stack currently maintained by the parser (on the 5197 ** pParse->pWith linked list). And if currently processing a CTE 5198 ** CTE expression, through routine checks to see if the reference is 5199 ** a recursive reference to the CTE. 5200 ** 5201 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5202 ** and other fields are populated accordingly. 5203 ** 5204 ** Return 0 if no match is found. 5205 ** Return 1 if a match is found. 5206 ** Return 2 if an error condition is detected. 5207 */ 5208 static int resolveFromTermToCte( 5209 Parse *pParse, /* The parsing context */ 5210 Walker *pWalker, /* Current tree walker */ 5211 SrcItem *pFrom /* The FROM clause term to check */ 5212 ){ 5213 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5214 With *pWith; /* The matching WITH */ 5215 5216 assert( pFrom->pTab==0 ); 5217 if( pParse->pWith==0 ){ 5218 /* There are no WITH clauses in the stack. No match is possible */ 5219 return 0; 5220 } 5221 if( pParse->nErr ){ 5222 /* Prior errors might have left pParse->pWith in a goofy state, so 5223 ** go no further. */ 5224 return 0; 5225 } 5226 if( pFrom->zDatabase!=0 ){ 5227 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5228 ** it cannot possibly be a CTE reference. */ 5229 return 0; 5230 } 5231 if( pFrom->fg.notCte ){ 5232 /* The FROM term is specifically excluded from matching a CTE. 5233 ** (1) It is part of a trigger that used to have zDatabase but had 5234 ** zDatabase removed by sqlite3FixTriggerStep(). 5235 ** (2) This is the first term in the FROM clause of an UPDATE. 5236 */ 5237 return 0; 5238 } 5239 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5240 if( pCte ){ 5241 sqlite3 *db = pParse->db; 5242 Table *pTab; 5243 ExprList *pEList; 5244 Select *pSel; 5245 Select *pLeft; /* Left-most SELECT statement */ 5246 Select *pRecTerm; /* Left-most recursive term */ 5247 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5248 With *pSavedWith; /* Initial value of pParse->pWith */ 5249 int iRecTab = -1; /* Cursor for recursive table */ 5250 CteUse *pCteUse; 5251 5252 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5253 ** recursive reference to CTE pCte. Leave an error in pParse and return 5254 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5255 ** In this case, proceed. */ 5256 if( pCte->zCteErr ){ 5257 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5258 return 2; 5259 } 5260 if( cannotBeFunction(pParse, pFrom) ) return 2; 5261 5262 assert( pFrom->pTab==0 ); 5263 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5264 if( pTab==0 ) return 2; 5265 pCteUse = pCte->pUse; 5266 if( pCteUse==0 ){ 5267 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5268 if( pCteUse==0 5269 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5270 ){ 5271 sqlite3DbFree(db, pTab); 5272 return 2; 5273 } 5274 pCteUse->eM10d = pCte->eM10d; 5275 } 5276 pFrom->pTab = pTab; 5277 pTab->nTabRef = 1; 5278 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5279 pTab->iPKey = -1; 5280 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5281 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5282 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5283 if( db->mallocFailed ) return 2; 5284 pFrom->pSelect->selFlags |= SF_CopyCte; 5285 assert( pFrom->pSelect ); 5286 if( pFrom->fg.isIndexedBy ){ 5287 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5288 return 2; 5289 } 5290 pFrom->fg.isCte = 1; 5291 pFrom->u2.pCteUse = pCteUse; 5292 pCteUse->nUse++; 5293 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5294 pCteUse->eM10d = M10d_Yes; 5295 } 5296 5297 /* Check if this is a recursive CTE. */ 5298 pRecTerm = pSel = pFrom->pSelect; 5299 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5300 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5301 int i; 5302 SrcList *pSrc = pRecTerm->pSrc; 5303 assert( pRecTerm->pPrior!=0 ); 5304 for(i=0; i<pSrc->nSrc; i++){ 5305 SrcItem *pItem = &pSrc->a[i]; 5306 if( pItem->zDatabase==0 5307 && pItem->zName!=0 5308 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5309 ){ 5310 pItem->pTab = pTab; 5311 pTab->nTabRef++; 5312 pItem->fg.isRecursive = 1; 5313 if( pRecTerm->selFlags & SF_Recursive ){ 5314 sqlite3ErrorMsg(pParse, 5315 "multiple references to recursive table: %s", pCte->zName 5316 ); 5317 return 2; 5318 } 5319 pRecTerm->selFlags |= SF_Recursive; 5320 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5321 pItem->iCursor = iRecTab; 5322 } 5323 } 5324 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5325 pRecTerm = pRecTerm->pPrior; 5326 } 5327 5328 pCte->zCteErr = "circular reference: %s"; 5329 pSavedWith = pParse->pWith; 5330 pParse->pWith = pWith; 5331 if( pSel->selFlags & SF_Recursive ){ 5332 int rc; 5333 assert( pRecTerm!=0 ); 5334 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5335 assert( pRecTerm->pNext!=0 ); 5336 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5337 assert( pRecTerm->pWith==0 ); 5338 pRecTerm->pWith = pSel->pWith; 5339 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5340 pRecTerm->pWith = 0; 5341 if( rc ){ 5342 pParse->pWith = pSavedWith; 5343 return 2; 5344 } 5345 }else{ 5346 if( sqlite3WalkSelect(pWalker, pSel) ){ 5347 pParse->pWith = pSavedWith; 5348 return 2; 5349 } 5350 } 5351 pParse->pWith = pWith; 5352 5353 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5354 pEList = pLeft->pEList; 5355 if( pCte->pCols ){ 5356 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5357 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5358 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5359 ); 5360 pParse->pWith = pSavedWith; 5361 return 2; 5362 } 5363 pEList = pCte->pCols; 5364 } 5365 5366 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5367 if( bMayRecursive ){ 5368 if( pSel->selFlags & SF_Recursive ){ 5369 pCte->zCteErr = "multiple recursive references: %s"; 5370 }else{ 5371 pCte->zCteErr = "recursive reference in a subquery: %s"; 5372 } 5373 sqlite3WalkSelect(pWalker, pSel); 5374 } 5375 pCte->zCteErr = 0; 5376 pParse->pWith = pSavedWith; 5377 return 1; /* Success */ 5378 } 5379 return 0; /* No match */ 5380 } 5381 #endif 5382 5383 #ifndef SQLITE_OMIT_CTE 5384 /* 5385 ** If the SELECT passed as the second argument has an associated WITH 5386 ** clause, pop it from the stack stored as part of the Parse object. 5387 ** 5388 ** This function is used as the xSelectCallback2() callback by 5389 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5390 ** names and other FROM clause elements. 5391 */ 5392 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5393 Parse *pParse = pWalker->pParse; 5394 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5395 With *pWith = findRightmost(p)->pWith; 5396 if( pWith!=0 ){ 5397 assert( pParse->pWith==pWith || pParse->nErr ); 5398 pParse->pWith = pWith->pOuter; 5399 } 5400 } 5401 } 5402 #endif 5403 5404 /* 5405 ** The SrcList_item structure passed as the second argument represents a 5406 ** sub-query in the FROM clause of a SELECT statement. This function 5407 ** allocates and populates the SrcList_item.pTab object. If successful, 5408 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5409 ** SQLITE_NOMEM. 5410 */ 5411 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5412 Select *pSel = pFrom->pSelect; 5413 Table *pTab; 5414 5415 assert( pSel ); 5416 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5417 if( pTab==0 ) return SQLITE_NOMEM; 5418 pTab->nTabRef = 1; 5419 if( pFrom->zAlias ){ 5420 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5421 }else{ 5422 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5423 } 5424 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5425 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5426 pTab->iPKey = -1; 5427 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5428 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5429 /* The usual case - do not allow ROWID on a subquery */ 5430 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5431 #else 5432 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5433 #endif 5434 5435 5436 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5437 } 5438 5439 /* 5440 ** This routine is a Walker callback for "expanding" a SELECT statement. 5441 ** "Expanding" means to do the following: 5442 ** 5443 ** (1) Make sure VDBE cursor numbers have been assigned to every 5444 ** element of the FROM clause. 5445 ** 5446 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5447 ** defines FROM clause. When views appear in the FROM clause, 5448 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5449 ** that implements the view. A copy is made of the view's SELECT 5450 ** statement so that we can freely modify or delete that statement 5451 ** without worrying about messing up the persistent representation 5452 ** of the view. 5453 ** 5454 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5455 ** on joins and the ON and USING clause of joins. 5456 ** 5457 ** (4) Scan the list of columns in the result set (pEList) looking 5458 ** for instances of the "*" operator or the TABLE.* operator. 5459 ** If found, expand each "*" to be every column in every table 5460 ** and TABLE.* to be every column in TABLE. 5461 ** 5462 */ 5463 static int selectExpander(Walker *pWalker, Select *p){ 5464 Parse *pParse = pWalker->pParse; 5465 int i, j, k, rc; 5466 SrcList *pTabList; 5467 ExprList *pEList; 5468 SrcItem *pFrom; 5469 sqlite3 *db = pParse->db; 5470 Expr *pE, *pRight, *pExpr; 5471 u16 selFlags = p->selFlags; 5472 u32 elistFlags = 0; 5473 5474 p->selFlags |= SF_Expanded; 5475 if( db->mallocFailed ){ 5476 return WRC_Abort; 5477 } 5478 assert( p->pSrc!=0 ); 5479 if( (selFlags & SF_Expanded)!=0 ){ 5480 return WRC_Prune; 5481 } 5482 if( pWalker->eCode ){ 5483 /* Renumber selId because it has been copied from a view */ 5484 p->selId = ++pParse->nSelect; 5485 } 5486 pTabList = p->pSrc; 5487 pEList = p->pEList; 5488 if( pParse->pWith && (p->selFlags & SF_View) ){ 5489 if( p->pWith==0 ){ 5490 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5491 if( p->pWith==0 ){ 5492 return WRC_Abort; 5493 } 5494 } 5495 p->pWith->bView = 1; 5496 } 5497 sqlite3WithPush(pParse, p->pWith, 0); 5498 5499 /* Make sure cursor numbers have been assigned to all entries in 5500 ** the FROM clause of the SELECT statement. 5501 */ 5502 sqlite3SrcListAssignCursors(pParse, pTabList); 5503 5504 /* Look up every table named in the FROM clause of the select. If 5505 ** an entry of the FROM clause is a subquery instead of a table or view, 5506 ** then create a transient table structure to describe the subquery. 5507 */ 5508 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5509 Table *pTab; 5510 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5511 if( pFrom->pTab ) continue; 5512 assert( pFrom->fg.isRecursive==0 ); 5513 if( pFrom->zName==0 ){ 5514 #ifndef SQLITE_OMIT_SUBQUERY 5515 Select *pSel = pFrom->pSelect; 5516 /* A sub-query in the FROM clause of a SELECT */ 5517 assert( pSel!=0 ); 5518 assert( pFrom->pTab==0 ); 5519 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5520 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5521 #endif 5522 #ifndef SQLITE_OMIT_CTE 5523 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5524 if( rc>1 ) return WRC_Abort; 5525 pTab = pFrom->pTab; 5526 assert( pTab!=0 ); 5527 #endif 5528 }else{ 5529 /* An ordinary table or view name in the FROM clause */ 5530 assert( pFrom->pTab==0 ); 5531 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5532 if( pTab==0 ) return WRC_Abort; 5533 if( pTab->nTabRef>=0xffff ){ 5534 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5535 pTab->zName); 5536 pFrom->pTab = 0; 5537 return WRC_Abort; 5538 } 5539 pTab->nTabRef++; 5540 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5541 return WRC_Abort; 5542 } 5543 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5544 if( !IsOrdinaryTable(pTab) ){ 5545 i16 nCol; 5546 u8 eCodeOrig = pWalker->eCode; 5547 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5548 assert( pFrom->pSelect==0 ); 5549 if( IsView(pTab) ){ 5550 if( (db->flags & SQLITE_EnableView)==0 5551 && pTab->pSchema!=db->aDb[1].pSchema 5552 ){ 5553 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5554 pTab->zName); 5555 } 5556 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5557 } 5558 #ifndef SQLITE_OMIT_VIRTUALTABLE 5559 else if( ALWAYS(IsVirtual(pTab)) 5560 && pFrom->fg.fromDDL 5561 && ALWAYS(pTab->u.vtab.p!=0) 5562 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5563 ){ 5564 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5565 pTab->zName); 5566 } 5567 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5568 #endif 5569 nCol = pTab->nCol; 5570 pTab->nCol = -1; 5571 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5572 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5573 pWalker->eCode = eCodeOrig; 5574 pTab->nCol = nCol; 5575 } 5576 #endif 5577 } 5578 5579 /* Locate the index named by the INDEXED BY clause, if any. */ 5580 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5581 return WRC_Abort; 5582 } 5583 } 5584 5585 /* Process NATURAL keywords, and ON and USING clauses of joins. 5586 */ 5587 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5588 if( pParse->nErr || sqliteProcessJoin(pParse, p) ){ 5589 return WRC_Abort; 5590 } 5591 5592 /* For every "*" that occurs in the column list, insert the names of 5593 ** all columns in all tables. And for every TABLE.* insert the names 5594 ** of all columns in TABLE. The parser inserted a special expression 5595 ** with the TK_ASTERISK operator for each "*" that it found in the column 5596 ** list. The following code just has to locate the TK_ASTERISK 5597 ** expressions and expand each one to the list of all columns in 5598 ** all tables. 5599 ** 5600 ** The first loop just checks to see if there are any "*" operators 5601 ** that need expanding. 5602 */ 5603 for(k=0; k<pEList->nExpr; k++){ 5604 pE = pEList->a[k].pExpr; 5605 if( pE->op==TK_ASTERISK ) break; 5606 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5607 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5608 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5609 elistFlags |= pE->flags; 5610 } 5611 if( k<pEList->nExpr ){ 5612 /* 5613 ** If we get here it means the result set contains one or more "*" 5614 ** operators that need to be expanded. Loop through each expression 5615 ** in the result set and expand them one by one. 5616 */ 5617 struct ExprList_item *a = pEList->a; 5618 ExprList *pNew = 0; 5619 int flags = pParse->db->flags; 5620 int longNames = (flags & SQLITE_FullColNames)!=0 5621 && (flags & SQLITE_ShortColNames)==0; 5622 5623 for(k=0; k<pEList->nExpr; k++){ 5624 pE = a[k].pExpr; 5625 elistFlags |= pE->flags; 5626 pRight = pE->pRight; 5627 assert( pE->op!=TK_DOT || pRight!=0 ); 5628 if( pE->op!=TK_ASTERISK 5629 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5630 ){ 5631 /* This particular expression does not need to be expanded. 5632 */ 5633 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5634 if( pNew ){ 5635 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5636 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5637 a[k].zEName = 0; 5638 } 5639 a[k].pExpr = 0; 5640 }else{ 5641 /* This expression is a "*" or a "TABLE.*" and needs to be 5642 ** expanded. */ 5643 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5644 char *zTName = 0; /* text of name of TABLE */ 5645 if( pE->op==TK_DOT ){ 5646 assert( pE->pLeft!=0 ); 5647 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5648 zTName = pE->pLeft->u.zToken; 5649 } 5650 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5651 Table *pTab = pFrom->pTab; 5652 Select *pSub = pFrom->pSelect; 5653 char *zTabName = pFrom->zAlias; 5654 const char *zSchemaName = 0; 5655 int iDb; 5656 if( zTabName==0 ){ 5657 zTabName = pTab->zName; 5658 } 5659 if( db->mallocFailed ) break; 5660 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5661 pSub = 0; 5662 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5663 continue; 5664 } 5665 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5666 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5667 } 5668 for(j=0; j<pTab->nCol; j++){ 5669 char *zName = pTab->aCol[j].zCnName; 5670 char *zColname; /* The computed column name */ 5671 char *zToFree; /* Malloced string that needs to be freed */ 5672 Token sColname; /* Computed column name as a token */ 5673 5674 assert( zName ); 5675 if( zTName && pSub 5676 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5677 ){ 5678 continue; 5679 } 5680 5681 /* If a column is marked as 'hidden', omit it from the expanded 5682 ** result-set list unless the SELECT has the SF_IncludeHidden 5683 ** bit set. 5684 */ 5685 if( (p->selFlags & SF_IncludeHidden)==0 5686 && IsHiddenColumn(&pTab->aCol[j]) 5687 ){ 5688 continue; 5689 } 5690 tableSeen = 1; 5691 5692 if( i>0 && zTName==0 ){ 5693 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5694 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5695 ){ 5696 /* In a NATURAL join, omit the join columns from the 5697 ** table to the right of the join */ 5698 continue; 5699 } 5700 if( pFrom->fg.isUsing 5701 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5702 ){ 5703 /* In a join with a USING clause, omit columns in the 5704 ** using clause from the table on the right. */ 5705 continue; 5706 } 5707 } 5708 pRight = sqlite3Expr(db, TK_ID, zName); 5709 zColname = zName; 5710 zToFree = 0; 5711 if( longNames || pTabList->nSrc>1 ){ 5712 Expr *pLeft; 5713 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5714 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5715 if( zSchemaName ){ 5716 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5717 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5718 } 5719 if( longNames ){ 5720 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5721 zToFree = zColname; 5722 } 5723 }else{ 5724 pExpr = pRight; 5725 } 5726 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5727 sqlite3TokenInit(&sColname, zColname); 5728 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5729 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5730 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5731 sqlite3DbFree(db, pX->zEName); 5732 if( pSub ){ 5733 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5734 testcase( pX->zEName==0 ); 5735 }else{ 5736 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5737 zSchemaName, zTabName, zColname); 5738 testcase( pX->zEName==0 ); 5739 } 5740 pX->eEName = ENAME_TAB; 5741 } 5742 sqlite3DbFree(db, zToFree); 5743 } 5744 } 5745 if( !tableSeen ){ 5746 if( zTName ){ 5747 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5748 }else{ 5749 sqlite3ErrorMsg(pParse, "no tables specified"); 5750 } 5751 } 5752 } 5753 } 5754 sqlite3ExprListDelete(db, pEList); 5755 p->pEList = pNew; 5756 } 5757 if( p->pEList ){ 5758 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5759 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5760 return WRC_Abort; 5761 } 5762 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5763 p->selFlags |= SF_ComplexResult; 5764 } 5765 } 5766 return WRC_Continue; 5767 } 5768 5769 #if SQLITE_DEBUG 5770 /* 5771 ** Always assert. This xSelectCallback2 implementation proves that the 5772 ** xSelectCallback2 is never invoked. 5773 */ 5774 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5775 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5776 assert( 0 ); 5777 } 5778 #endif 5779 /* 5780 ** This routine "expands" a SELECT statement and all of its subqueries. 5781 ** For additional information on what it means to "expand" a SELECT 5782 ** statement, see the comment on the selectExpand worker callback above. 5783 ** 5784 ** Expanding a SELECT statement is the first step in processing a 5785 ** SELECT statement. The SELECT statement must be expanded before 5786 ** name resolution is performed. 5787 ** 5788 ** If anything goes wrong, an error message is written into pParse. 5789 ** The calling function can detect the problem by looking at pParse->nErr 5790 ** and/or pParse->db->mallocFailed. 5791 */ 5792 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5793 Walker w; 5794 w.xExprCallback = sqlite3ExprWalkNoop; 5795 w.pParse = pParse; 5796 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5797 w.xSelectCallback = convertCompoundSelectToSubquery; 5798 w.xSelectCallback2 = 0; 5799 sqlite3WalkSelect(&w, pSelect); 5800 } 5801 w.xSelectCallback = selectExpander; 5802 w.xSelectCallback2 = sqlite3SelectPopWith; 5803 w.eCode = 0; 5804 sqlite3WalkSelect(&w, pSelect); 5805 } 5806 5807 5808 #ifndef SQLITE_OMIT_SUBQUERY 5809 /* 5810 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5811 ** interface. 5812 ** 5813 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5814 ** information to the Table structure that represents the result set 5815 ** of that subquery. 5816 ** 5817 ** The Table structure that represents the result set was constructed 5818 ** by selectExpander() but the type and collation information was omitted 5819 ** at that point because identifiers had not yet been resolved. This 5820 ** routine is called after identifier resolution. 5821 */ 5822 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5823 Parse *pParse; 5824 int i; 5825 SrcList *pTabList; 5826 SrcItem *pFrom; 5827 5828 assert( p->selFlags & SF_Resolved ); 5829 if( p->selFlags & SF_HasTypeInfo ) return; 5830 p->selFlags |= SF_HasTypeInfo; 5831 pParse = pWalker->pParse; 5832 pTabList = p->pSrc; 5833 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5834 Table *pTab = pFrom->pTab; 5835 assert( pTab!=0 ); 5836 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5837 /* A sub-query in the FROM clause of a SELECT */ 5838 Select *pSel = pFrom->pSelect; 5839 if( pSel ){ 5840 while( pSel->pPrior ) pSel = pSel->pPrior; 5841 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5842 SQLITE_AFF_NONE); 5843 } 5844 } 5845 } 5846 } 5847 #endif 5848 5849 5850 /* 5851 ** This routine adds datatype and collating sequence information to 5852 ** the Table structures of all FROM-clause subqueries in a 5853 ** SELECT statement. 5854 ** 5855 ** Use this routine after name resolution. 5856 */ 5857 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5858 #ifndef SQLITE_OMIT_SUBQUERY 5859 Walker w; 5860 w.xSelectCallback = sqlite3SelectWalkNoop; 5861 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5862 w.xExprCallback = sqlite3ExprWalkNoop; 5863 w.pParse = pParse; 5864 sqlite3WalkSelect(&w, pSelect); 5865 #endif 5866 } 5867 5868 5869 /* 5870 ** This routine sets up a SELECT statement for processing. The 5871 ** following is accomplished: 5872 ** 5873 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5874 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5875 ** * ON and USING clauses are shifted into WHERE statements 5876 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5877 ** * Identifiers in expression are matched to tables. 5878 ** 5879 ** This routine acts recursively on all subqueries within the SELECT. 5880 */ 5881 void sqlite3SelectPrep( 5882 Parse *pParse, /* The parser context */ 5883 Select *p, /* The SELECT statement being coded. */ 5884 NameContext *pOuterNC /* Name context for container */ 5885 ){ 5886 assert( p!=0 || pParse->db->mallocFailed ); 5887 assert( pParse->db->pParse==pParse ); 5888 if( pParse->db->mallocFailed ) return; 5889 if( p->selFlags & SF_HasTypeInfo ) return; 5890 sqlite3SelectExpand(pParse, p); 5891 if( pParse->nErr ) return; 5892 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5893 if( pParse->nErr ) return; 5894 sqlite3SelectAddTypeInfo(pParse, p); 5895 } 5896 5897 /* 5898 ** Reset the aggregate accumulator. 5899 ** 5900 ** The aggregate accumulator is a set of memory cells that hold 5901 ** intermediate results while calculating an aggregate. This 5902 ** routine generates code that stores NULLs in all of those memory 5903 ** cells. 5904 */ 5905 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5906 Vdbe *v = pParse->pVdbe; 5907 int i; 5908 struct AggInfo_func *pFunc; 5909 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5910 assert( pParse->db->pParse==pParse ); 5911 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 5912 if( nReg==0 ) return; 5913 if( pParse->nErr ) return; 5914 #ifdef SQLITE_DEBUG 5915 /* Verify that all AggInfo registers are within the range specified by 5916 ** AggInfo.mnReg..AggInfo.mxReg */ 5917 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5918 for(i=0; i<pAggInfo->nColumn; i++){ 5919 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5920 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5921 } 5922 for(i=0; i<pAggInfo->nFunc; i++){ 5923 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5924 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5925 } 5926 #endif 5927 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5928 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5929 if( pFunc->iDistinct>=0 ){ 5930 Expr *pE = pFunc->pFExpr; 5931 assert( ExprUseXList(pE) ); 5932 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5933 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5934 "argument"); 5935 pFunc->iDistinct = -1; 5936 }else{ 5937 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5938 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5939 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5940 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5941 pFunc->pFunc->zName)); 5942 } 5943 } 5944 } 5945 } 5946 5947 /* 5948 ** Invoke the OP_AggFinalize opcode for every aggregate function 5949 ** in the AggInfo structure. 5950 */ 5951 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5952 Vdbe *v = pParse->pVdbe; 5953 int i; 5954 struct AggInfo_func *pF; 5955 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5956 ExprList *pList; 5957 assert( ExprUseXList(pF->pFExpr) ); 5958 pList = pF->pFExpr->x.pList; 5959 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5960 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5961 } 5962 } 5963 5964 5965 /* 5966 ** Update the accumulator memory cells for an aggregate based on 5967 ** the current cursor position. 5968 ** 5969 ** If regAcc is non-zero and there are no min() or max() aggregates 5970 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5971 ** registers if register regAcc contains 0. The caller will take care 5972 ** of setting and clearing regAcc. 5973 */ 5974 static void updateAccumulator( 5975 Parse *pParse, 5976 int regAcc, 5977 AggInfo *pAggInfo, 5978 int eDistinctType 5979 ){ 5980 Vdbe *v = pParse->pVdbe; 5981 int i; 5982 int regHit = 0; 5983 int addrHitTest = 0; 5984 struct AggInfo_func *pF; 5985 struct AggInfo_col *pC; 5986 5987 pAggInfo->directMode = 1; 5988 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5989 int nArg; 5990 int addrNext = 0; 5991 int regAgg; 5992 ExprList *pList; 5993 assert( ExprUseXList(pF->pFExpr) ); 5994 assert( !IsWindowFunc(pF->pFExpr) ); 5995 pList = pF->pFExpr->x.pList; 5996 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5997 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5998 if( pAggInfo->nAccumulator 5999 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6000 && regAcc 6001 ){ 6002 /* If regAcc==0, there there exists some min() or max() function 6003 ** without a FILTER clause that will ensure the magnet registers 6004 ** are populated. */ 6005 if( regHit==0 ) regHit = ++pParse->nMem; 6006 /* If this is the first row of the group (regAcc contains 0), clear the 6007 ** "magnet" register regHit so that the accumulator registers 6008 ** are populated if the FILTER clause jumps over the the 6009 ** invocation of min() or max() altogether. Or, if this is not 6010 ** the first row (regAcc contains 1), set the magnet register so that 6011 ** the accumulators are not populated unless the min()/max() is invoked 6012 ** and indicates that they should be. */ 6013 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6014 } 6015 addrNext = sqlite3VdbeMakeLabel(pParse); 6016 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6017 } 6018 if( pList ){ 6019 nArg = pList->nExpr; 6020 regAgg = sqlite3GetTempRange(pParse, nArg); 6021 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6022 }else{ 6023 nArg = 0; 6024 regAgg = 0; 6025 } 6026 if( pF->iDistinct>=0 && pList ){ 6027 if( addrNext==0 ){ 6028 addrNext = sqlite3VdbeMakeLabel(pParse); 6029 } 6030 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6031 pF->iDistinct, addrNext, pList, regAgg); 6032 } 6033 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6034 CollSeq *pColl = 0; 6035 struct ExprList_item *pItem; 6036 int j; 6037 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6038 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6039 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6040 } 6041 if( !pColl ){ 6042 pColl = pParse->db->pDfltColl; 6043 } 6044 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6045 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6046 } 6047 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6048 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6049 sqlite3VdbeChangeP5(v, (u8)nArg); 6050 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6051 if( addrNext ){ 6052 sqlite3VdbeResolveLabel(v, addrNext); 6053 } 6054 } 6055 if( regHit==0 && pAggInfo->nAccumulator ){ 6056 regHit = regAcc; 6057 } 6058 if( regHit ){ 6059 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6060 } 6061 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6062 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6063 } 6064 6065 pAggInfo->directMode = 0; 6066 if( addrHitTest ){ 6067 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6068 } 6069 } 6070 6071 /* 6072 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6073 ** count(*) query ("SELECT count(*) FROM pTab"). 6074 */ 6075 #ifndef SQLITE_OMIT_EXPLAIN 6076 static void explainSimpleCount( 6077 Parse *pParse, /* Parse context */ 6078 Table *pTab, /* Table being queried */ 6079 Index *pIdx /* Index used to optimize scan, or NULL */ 6080 ){ 6081 if( pParse->explain==2 ){ 6082 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6083 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6084 pTab->zName, 6085 bCover ? " USING COVERING INDEX " : "", 6086 bCover ? pIdx->zName : "" 6087 ); 6088 } 6089 } 6090 #else 6091 # define explainSimpleCount(a,b,c) 6092 #endif 6093 6094 /* 6095 ** sqlite3WalkExpr() callback used by havingToWhere(). 6096 ** 6097 ** If the node passed to the callback is a TK_AND node, return 6098 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6099 ** 6100 ** Otherwise, return WRC_Prune. In this case, also check if the 6101 ** sub-expression matches the criteria for being moved to the WHERE 6102 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6103 ** within the HAVING expression with a constant "1". 6104 */ 6105 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6106 if( pExpr->op!=TK_AND ){ 6107 Select *pS = pWalker->u.pSelect; 6108 /* This routine is called before the HAVING clause of the current 6109 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6110 ** here, it indicates that the expression is a correlated reference to a 6111 ** column from an outer aggregate query, or an aggregate function that 6112 ** belongs to an outer query. Do not move the expression to the WHERE 6113 ** clause in this obscure case, as doing so may corrupt the outer Select 6114 ** statements AggInfo structure. */ 6115 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6116 && ExprAlwaysFalse(pExpr)==0 6117 && pExpr->pAggInfo==0 6118 ){ 6119 sqlite3 *db = pWalker->pParse->db; 6120 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6121 if( pNew ){ 6122 Expr *pWhere = pS->pWhere; 6123 SWAP(Expr, *pNew, *pExpr); 6124 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6125 pS->pWhere = pNew; 6126 pWalker->eCode = 1; 6127 } 6128 } 6129 return WRC_Prune; 6130 } 6131 return WRC_Continue; 6132 } 6133 6134 /* 6135 ** Transfer eligible terms from the HAVING clause of a query, which is 6136 ** processed after grouping, to the WHERE clause, which is processed before 6137 ** grouping. For example, the query: 6138 ** 6139 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6140 ** 6141 ** can be rewritten as: 6142 ** 6143 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6144 ** 6145 ** A term of the HAVING expression is eligible for transfer if it consists 6146 ** entirely of constants and expressions that are also GROUP BY terms that 6147 ** use the "BINARY" collation sequence. 6148 */ 6149 static void havingToWhere(Parse *pParse, Select *p){ 6150 Walker sWalker; 6151 memset(&sWalker, 0, sizeof(sWalker)); 6152 sWalker.pParse = pParse; 6153 sWalker.xExprCallback = havingToWhereExprCb; 6154 sWalker.u.pSelect = p; 6155 sqlite3WalkExpr(&sWalker, p->pHaving); 6156 #if TREETRACE_ENABLED 6157 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6158 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6159 sqlite3TreeViewSelect(0, p, 0); 6160 } 6161 #endif 6162 } 6163 6164 /* 6165 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6166 ** If it is, then return the SrcList_item for the prior view. If it is not, 6167 ** then return 0. 6168 */ 6169 static SrcItem *isSelfJoinView( 6170 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6171 SrcItem *pThis /* Search for prior reference to this subquery */ 6172 ){ 6173 SrcItem *pItem; 6174 assert( pThis->pSelect!=0 ); 6175 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6176 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6177 Select *pS1; 6178 if( pItem->pSelect==0 ) continue; 6179 if( pItem->fg.viaCoroutine ) continue; 6180 if( pItem->zName==0 ) continue; 6181 assert( pItem->pTab!=0 ); 6182 assert( pThis->pTab!=0 ); 6183 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6184 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6185 pS1 = pItem->pSelect; 6186 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6187 /* The query flattener left two different CTE tables with identical 6188 ** names in the same FROM clause. */ 6189 continue; 6190 } 6191 if( pItem->pSelect->selFlags & SF_PushDown ){ 6192 /* The view was modified by some other optimization such as 6193 ** pushDownWhereTerms() */ 6194 continue; 6195 } 6196 return pItem; 6197 } 6198 return 0; 6199 } 6200 6201 /* 6202 ** Deallocate a single AggInfo object 6203 */ 6204 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6205 sqlite3DbFree(db, p->aCol); 6206 sqlite3DbFree(db, p->aFunc); 6207 sqlite3DbFreeNN(db, p); 6208 } 6209 6210 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6211 /* 6212 ** Attempt to transform a query of the form 6213 ** 6214 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6215 ** 6216 ** Into this: 6217 ** 6218 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6219 ** 6220 ** The transformation only works if all of the following are true: 6221 ** 6222 ** * The subquery is a UNION ALL of two or more terms 6223 ** * The subquery does not have a LIMIT clause 6224 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6225 ** * The outer query is a simple count(*) with no WHERE clause or other 6226 ** extraneous syntax. 6227 ** 6228 ** Return TRUE if the optimization is undertaken. 6229 */ 6230 static int countOfViewOptimization(Parse *pParse, Select *p){ 6231 Select *pSub, *pPrior; 6232 Expr *pExpr; 6233 Expr *pCount; 6234 sqlite3 *db; 6235 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6236 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6237 if( p->pWhere ) return 0; 6238 if( p->pGroupBy ) return 0; 6239 pExpr = p->pEList->a[0].pExpr; 6240 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6241 assert( ExprUseUToken(pExpr) ); 6242 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6243 assert( ExprUseXList(pExpr) ); 6244 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6245 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6246 pSub = p->pSrc->a[0].pSelect; 6247 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6248 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6249 do{ 6250 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6251 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6252 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6253 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6254 pSub = pSub->pPrior; /* Repeat over compound */ 6255 }while( pSub ); 6256 6257 /* If we reach this point then it is OK to perform the transformation */ 6258 6259 db = pParse->db; 6260 pCount = pExpr; 6261 pExpr = 0; 6262 pSub = p->pSrc->a[0].pSelect; 6263 p->pSrc->a[0].pSelect = 0; 6264 sqlite3SrcListDelete(db, p->pSrc); 6265 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6266 while( pSub ){ 6267 Expr *pTerm; 6268 pPrior = pSub->pPrior; 6269 pSub->pPrior = 0; 6270 pSub->pNext = 0; 6271 pSub->selFlags |= SF_Aggregate; 6272 pSub->selFlags &= ~SF_Compound; 6273 pSub->nSelectRow = 0; 6274 sqlite3ExprListDelete(db, pSub->pEList); 6275 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6276 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6277 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6278 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6279 if( pExpr==0 ){ 6280 pExpr = pTerm; 6281 }else{ 6282 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6283 } 6284 pSub = pPrior; 6285 } 6286 p->pEList->a[0].pExpr = pExpr; 6287 p->selFlags &= ~SF_Aggregate; 6288 6289 #if TREETRACE_ENABLED 6290 if( sqlite3TreeTrace & 0x400 ){ 6291 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6292 sqlite3TreeViewSelect(0, p, 0); 6293 } 6294 #endif 6295 return 1; 6296 } 6297 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6298 6299 /* 6300 ** Generate code for the SELECT statement given in the p argument. 6301 ** 6302 ** The results are returned according to the SelectDest structure. 6303 ** See comments in sqliteInt.h for further information. 6304 ** 6305 ** This routine returns the number of errors. If any errors are 6306 ** encountered, then an appropriate error message is left in 6307 ** pParse->zErrMsg. 6308 ** 6309 ** This routine does NOT free the Select structure passed in. The 6310 ** calling function needs to do that. 6311 */ 6312 int sqlite3Select( 6313 Parse *pParse, /* The parser context */ 6314 Select *p, /* The SELECT statement being coded. */ 6315 SelectDest *pDest /* What to do with the query results */ 6316 ){ 6317 int i, j; /* Loop counters */ 6318 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6319 Vdbe *v; /* The virtual machine under construction */ 6320 int isAgg; /* True for select lists like "count(*)" */ 6321 ExprList *pEList = 0; /* List of columns to extract. */ 6322 SrcList *pTabList; /* List of tables to select from */ 6323 Expr *pWhere; /* The WHERE clause. May be NULL */ 6324 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6325 Expr *pHaving; /* The HAVING clause. May be NULL */ 6326 AggInfo *pAggInfo = 0; /* Aggregate information */ 6327 int rc = 1; /* Value to return from this function */ 6328 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6329 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6330 int iEnd; /* Address of the end of the query */ 6331 sqlite3 *db; /* The database connection */ 6332 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6333 u8 minMaxFlag; /* Flag for min/max queries */ 6334 6335 db = pParse->db; 6336 assert( pParse==db->pParse ); 6337 v = sqlite3GetVdbe(pParse); 6338 if( p==0 || pParse->nErr ){ 6339 return 1; 6340 } 6341 assert( db->mallocFailed==0 ); 6342 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6343 #if TREETRACE_ENABLED 6344 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6345 if( sqlite3TreeTrace & 0x10100 ){ 6346 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6347 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6348 __FILE__, __LINE__); 6349 } 6350 sqlite3ShowSelect(p); 6351 } 6352 #endif 6353 6354 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6355 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6356 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6357 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6358 if( IgnorableDistinct(pDest) ){ 6359 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6360 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6361 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6362 /* All of these destinations are also able to ignore the ORDER BY clause */ 6363 if( p->pOrderBy ){ 6364 #if TREETRACE_ENABLED 6365 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6366 if( sqlite3TreeTrace & 0x100 ){ 6367 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6368 } 6369 #endif 6370 sqlite3ParserAddCleanup(pParse, 6371 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6372 p->pOrderBy); 6373 testcase( pParse->earlyCleanup ); 6374 p->pOrderBy = 0; 6375 } 6376 p->selFlags &= ~SF_Distinct; 6377 p->selFlags |= SF_NoopOrderBy; 6378 } 6379 sqlite3SelectPrep(pParse, p, 0); 6380 if( pParse->nErr ){ 6381 goto select_end; 6382 } 6383 assert( db->mallocFailed==0 ); 6384 assert( p->pEList!=0 ); 6385 #if TREETRACE_ENABLED 6386 if( sqlite3TreeTrace & 0x104 ){ 6387 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6388 sqlite3TreeViewSelect(0, p, 0); 6389 } 6390 #endif 6391 6392 /* If the SF_UFSrcCheck flag is set, then this function is being called 6393 ** as part of populating the temp table for an UPDATE...FROM statement. 6394 ** In this case, it is an error if the target object (pSrc->a[0]) name 6395 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6396 ** 6397 ** Postgres disallows this case too. The reason is that some other 6398 ** systems handle this case differently, and not all the same way, 6399 ** which is just confusing. To avoid this, we follow PG's lead and 6400 ** disallow it altogether. */ 6401 if( p->selFlags & SF_UFSrcCheck ){ 6402 SrcItem *p0 = &p->pSrc->a[0]; 6403 for(i=1; i<p->pSrc->nSrc; i++){ 6404 SrcItem *p1 = &p->pSrc->a[i]; 6405 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6406 sqlite3ErrorMsg(pParse, 6407 "target object/alias may not appear in FROM clause: %s", 6408 p0->zAlias ? p0->zAlias : p0->pTab->zName 6409 ); 6410 goto select_end; 6411 } 6412 } 6413 6414 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6415 ** and leaving this flag set can cause errors if a compound sub-query 6416 ** in p->pSrc is flattened into this query and this function called 6417 ** again as part of compound SELECT processing. */ 6418 p->selFlags &= ~SF_UFSrcCheck; 6419 } 6420 6421 if( pDest->eDest==SRT_Output ){ 6422 sqlite3GenerateColumnNames(pParse, p); 6423 } 6424 6425 #ifndef SQLITE_OMIT_WINDOWFUNC 6426 if( sqlite3WindowRewrite(pParse, p) ){ 6427 assert( pParse->nErr ); 6428 goto select_end; 6429 } 6430 #if TREETRACE_ENABLED 6431 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6432 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6433 sqlite3TreeViewSelect(0, p, 0); 6434 } 6435 #endif 6436 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6437 pTabList = p->pSrc; 6438 isAgg = (p->selFlags & SF_Aggregate)!=0; 6439 memset(&sSort, 0, sizeof(sSort)); 6440 sSort.pOrderBy = p->pOrderBy; 6441 6442 /* Try to do various optimizations (flattening subqueries, and strength 6443 ** reduction of join operators) in the FROM clause up into the main query 6444 */ 6445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6446 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6447 SrcItem *pItem = &pTabList->a[i]; 6448 Select *pSub = pItem->pSelect; 6449 Table *pTab = pItem->pTab; 6450 6451 /* The expander should have already created transient Table objects 6452 ** even for FROM clause elements such as subqueries that do not correspond 6453 ** to a real table */ 6454 assert( pTab!=0 ); 6455 6456 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6457 ** of the LEFT JOIN used in the WHERE clause. 6458 */ 6459 if( (pItem->fg.jointype & JT_LEFT)!=0 6460 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6461 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6462 ){ 6463 SELECTTRACE(0x100,pParse,p, 6464 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6465 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6466 unsetJoinExpr(p->pWhere, pItem->iCursor); 6467 } 6468 6469 /* No futher action if this term of the FROM clause is no a subquery */ 6470 if( pSub==0 ) continue; 6471 6472 /* Catch mismatch in the declared columns of a view and the number of 6473 ** columns in the SELECT on the RHS */ 6474 if( pTab->nCol!=pSub->pEList->nExpr ){ 6475 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6476 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6477 goto select_end; 6478 } 6479 6480 /* Do not try to flatten an aggregate subquery. 6481 ** 6482 ** Flattening an aggregate subquery is only possible if the outer query 6483 ** is not a join. But if the outer query is not a join, then the subquery 6484 ** will be implemented as a co-routine and there is no advantage to 6485 ** flattening in that case. 6486 */ 6487 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6488 assert( pSub->pGroupBy==0 ); 6489 6490 /* If a FROM-clause subquery has an ORDER BY clause that is not 6491 ** really doing anything, then delete it now so that it does not 6492 ** interfere with query flattening. See the discussion at 6493 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6494 ** 6495 ** Beware of these cases where the ORDER BY clause may not be safely 6496 ** omitted: 6497 ** 6498 ** (1) There is also a LIMIT clause 6499 ** (2) The subquery was added to help with window-function 6500 ** processing 6501 ** (3) The subquery is in the FROM clause of an UPDATE 6502 ** (4) The outer query uses an aggregate function other than 6503 ** the built-in count(), min(), or max(). 6504 ** (5) The ORDER BY isn't going to accomplish anything because 6505 ** one of: 6506 ** (a) The outer query has a different ORDER BY clause 6507 ** (b) The subquery is part of a join 6508 ** See forum post 062d576715d277c8 6509 */ 6510 if( pSub->pOrderBy!=0 6511 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6512 && pSub->pLimit==0 /* Condition (1) */ 6513 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6514 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6515 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6516 ){ 6517 SELECTTRACE(0x100,pParse,p, 6518 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6519 sqlite3ExprListDelete(db, pSub->pOrderBy); 6520 pSub->pOrderBy = 0; 6521 } 6522 6523 /* If the outer query contains a "complex" result set (that is, 6524 ** if the result set of the outer query uses functions or subqueries) 6525 ** and if the subquery contains an ORDER BY clause and if 6526 ** it will be implemented as a co-routine, then do not flatten. This 6527 ** restriction allows SQL constructs like this: 6528 ** 6529 ** SELECT expensive_function(x) 6530 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6531 ** 6532 ** The expensive_function() is only computed on the 10 rows that 6533 ** are output, rather than every row of the table. 6534 ** 6535 ** The requirement that the outer query have a complex result set 6536 ** means that flattening does occur on simpler SQL constraints without 6537 ** the expensive_function() like: 6538 ** 6539 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6540 */ 6541 if( pSub->pOrderBy!=0 6542 && i==0 6543 && (p->selFlags & SF_ComplexResult)!=0 6544 && (pTabList->nSrc==1 6545 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6546 ){ 6547 continue; 6548 } 6549 6550 if( flattenSubquery(pParse, p, i, isAgg) ){ 6551 if( pParse->nErr ) goto select_end; 6552 /* This subquery can be absorbed into its parent. */ 6553 i = -1; 6554 } 6555 pTabList = p->pSrc; 6556 if( db->mallocFailed ) goto select_end; 6557 if( !IgnorableOrderby(pDest) ){ 6558 sSort.pOrderBy = p->pOrderBy; 6559 } 6560 } 6561 #endif 6562 6563 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6564 /* Handle compound SELECT statements using the separate multiSelect() 6565 ** procedure. 6566 */ 6567 if( p->pPrior ){ 6568 rc = multiSelect(pParse, p, pDest); 6569 #if TREETRACE_ENABLED 6570 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6571 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6572 sqlite3TreeViewSelect(0, p, 0); 6573 } 6574 #endif 6575 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6576 return rc; 6577 } 6578 #endif 6579 6580 /* Do the WHERE-clause constant propagation optimization if this is 6581 ** a join. No need to speed time on this operation for non-join queries 6582 ** as the equivalent optimization will be handled by query planner in 6583 ** sqlite3WhereBegin(). 6584 */ 6585 if( p->pWhere!=0 6586 && p->pWhere->op==TK_AND 6587 && OptimizationEnabled(db, SQLITE_PropagateConst) 6588 && propagateConstants(pParse, p) 6589 ){ 6590 #if TREETRACE_ENABLED 6591 if( sqlite3TreeTrace & 0x100 ){ 6592 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6593 sqlite3TreeViewSelect(0, p, 0); 6594 } 6595 #endif 6596 }else{ 6597 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6598 } 6599 6600 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6601 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6602 && countOfViewOptimization(pParse, p) 6603 ){ 6604 if( db->mallocFailed ) goto select_end; 6605 pEList = p->pEList; 6606 pTabList = p->pSrc; 6607 } 6608 #endif 6609 6610 /* For each term in the FROM clause, do two things: 6611 ** (1) Authorized unreferenced tables 6612 ** (2) Generate code for all sub-queries 6613 */ 6614 for(i=0; i<pTabList->nSrc; i++){ 6615 SrcItem *pItem = &pTabList->a[i]; 6616 SrcItem *pPrior; 6617 SelectDest dest; 6618 Select *pSub; 6619 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6620 const char *zSavedAuthContext; 6621 #endif 6622 6623 /* Issue SQLITE_READ authorizations with a fake column name for any 6624 ** tables that are referenced but from which no values are extracted. 6625 ** Examples of where these kinds of null SQLITE_READ authorizations 6626 ** would occur: 6627 ** 6628 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6629 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6630 ** 6631 ** The fake column name is an empty string. It is possible for a table to 6632 ** have a column named by the empty string, in which case there is no way to 6633 ** distinguish between an unreferenced table and an actual reference to the 6634 ** "" column. The original design was for the fake column name to be a NULL, 6635 ** which would be unambiguous. But legacy authorization callbacks might 6636 ** assume the column name is non-NULL and segfault. The use of an empty 6637 ** string for the fake column name seems safer. 6638 */ 6639 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6640 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6641 } 6642 6643 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6644 /* Generate code for all sub-queries in the FROM clause 6645 */ 6646 pSub = pItem->pSelect; 6647 if( pSub==0 ) continue; 6648 6649 /* The code for a subquery should only be generated once. */ 6650 assert( pItem->addrFillSub==0 ); 6651 6652 /* Increment Parse.nHeight by the height of the largest expression 6653 ** tree referred to by this, the parent select. The child select 6654 ** may contain expression trees of at most 6655 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6656 ** more conservative than necessary, but much easier than enforcing 6657 ** an exact limit. 6658 */ 6659 pParse->nHeight += sqlite3SelectExprHeight(p); 6660 6661 /* Make copies of constant WHERE-clause terms in the outer query down 6662 ** inside the subquery. This can help the subquery to run more efficiently. 6663 */ 6664 if( OptimizationEnabled(db, SQLITE_PushDown) 6665 && (pItem->fg.isCte==0 6666 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6667 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6668 (pItem->fg.jointype & JT_OUTER)!=0) 6669 ){ 6670 #if TREETRACE_ENABLED 6671 if( sqlite3TreeTrace & 0x100 ){ 6672 SELECTTRACE(0x100,pParse,p, 6673 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6674 sqlite3TreeViewSelect(0, p, 0); 6675 } 6676 #endif 6677 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6678 }else{ 6679 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6680 } 6681 6682 zSavedAuthContext = pParse->zAuthContext; 6683 pParse->zAuthContext = pItem->zName; 6684 6685 /* Generate code to implement the subquery 6686 ** 6687 ** The subquery is implemented as a co-routine if: 6688 ** (1) the subquery is guaranteed to be the outer loop (so that 6689 ** it does not need to be computed more than once), and 6690 ** (2) the subquery is not a CTE that should be materialized 6691 ** 6692 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6693 ** implementation? 6694 */ 6695 if( i==0 6696 && (pTabList->nSrc==1 6697 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6698 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6699 ){ 6700 /* Implement a co-routine that will return a single row of the result 6701 ** set on each invocation. 6702 */ 6703 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6704 6705 pItem->regReturn = ++pParse->nMem; 6706 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6707 VdbeComment((v, "%!S", pItem)); 6708 pItem->addrFillSub = addrTop; 6709 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6710 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6711 sqlite3Select(pParse, pSub, &dest); 6712 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6713 pItem->fg.viaCoroutine = 1; 6714 pItem->regResult = dest.iSdst; 6715 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6716 sqlite3VdbeJumpHere(v, addrTop-1); 6717 sqlite3ClearTempRegCache(pParse); 6718 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6719 /* This is a CTE for which materialization code has already been 6720 ** generated. Invoke the subroutine to compute the materialization, 6721 ** the make the pItem->iCursor be a copy of the ephemerial table that 6722 ** holds the result of the materialization. */ 6723 CteUse *pCteUse = pItem->u2.pCteUse; 6724 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6725 if( pItem->iCursor!=pCteUse->iCur ){ 6726 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6727 VdbeComment((v, "%!S", pItem)); 6728 } 6729 pSub->nSelectRow = pCteUse->nRowEst; 6730 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6731 /* This view has already been materialized by a prior entry in 6732 ** this same FROM clause. Reuse it. */ 6733 if( pPrior->addrFillSub ){ 6734 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6735 } 6736 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6737 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6738 }else{ 6739 /* Materialize the view. If the view is not correlated, generate a 6740 ** subroutine to do the materialization so that subsequent uses of 6741 ** the same view can reuse the materialization. */ 6742 int topAddr; 6743 int onceAddr = 0; 6744 int retAddr; 6745 6746 pItem->regReturn = ++pParse->nMem; 6747 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6748 pItem->addrFillSub = topAddr+1; 6749 if( pItem->fg.isCorrelated==0 ){ 6750 /* If the subquery is not correlated and if we are not inside of 6751 ** a trigger, then we only need to compute the value of the subquery 6752 ** once. */ 6753 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6754 VdbeComment((v, "materialize %!S", pItem)); 6755 }else{ 6756 VdbeNoopComment((v, "materialize %!S", pItem)); 6757 } 6758 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6759 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6760 sqlite3Select(pParse, pSub, &dest); 6761 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6762 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6763 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6764 VdbeComment((v, "end %!S", pItem)); 6765 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6766 sqlite3ClearTempRegCache(pParse); 6767 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6768 CteUse *pCteUse = pItem->u2.pCteUse; 6769 pCteUse->addrM9e = pItem->addrFillSub; 6770 pCteUse->regRtn = pItem->regReturn; 6771 pCteUse->iCur = pItem->iCursor; 6772 pCteUse->nRowEst = pSub->nSelectRow; 6773 } 6774 } 6775 if( db->mallocFailed ) goto select_end; 6776 pParse->nHeight -= sqlite3SelectExprHeight(p); 6777 pParse->zAuthContext = zSavedAuthContext; 6778 #endif 6779 } 6780 6781 /* Various elements of the SELECT copied into local variables for 6782 ** convenience */ 6783 pEList = p->pEList; 6784 pWhere = p->pWhere; 6785 pGroupBy = p->pGroupBy; 6786 pHaving = p->pHaving; 6787 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6788 6789 #if TREETRACE_ENABLED 6790 if( sqlite3TreeTrace & 0x400 ){ 6791 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6792 sqlite3TreeViewSelect(0, p, 0); 6793 } 6794 #endif 6795 6796 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6797 ** if the select-list is the same as the ORDER BY list, then this query 6798 ** can be rewritten as a GROUP BY. In other words, this: 6799 ** 6800 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6801 ** 6802 ** is transformed to: 6803 ** 6804 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6805 ** 6806 ** The second form is preferred as a single index (or temp-table) may be 6807 ** used for both the ORDER BY and DISTINCT processing. As originally 6808 ** written the query must use a temp-table for at least one of the ORDER 6809 ** BY and DISTINCT, and an index or separate temp-table for the other. 6810 */ 6811 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6812 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6813 #ifndef SQLITE_OMIT_WINDOWFUNC 6814 && p->pWin==0 6815 #endif 6816 ){ 6817 p->selFlags &= ~SF_Distinct; 6818 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6819 p->selFlags |= SF_Aggregate; 6820 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6821 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6822 ** original setting of the SF_Distinct flag, not the current setting */ 6823 assert( sDistinct.isTnct ); 6824 sDistinct.isTnct = 2; 6825 6826 #if TREETRACE_ENABLED 6827 if( sqlite3TreeTrace & 0x400 ){ 6828 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6829 sqlite3TreeViewSelect(0, p, 0); 6830 } 6831 #endif 6832 } 6833 6834 /* If there is an ORDER BY clause, then create an ephemeral index to 6835 ** do the sorting. But this sorting ephemeral index might end up 6836 ** being unused if the data can be extracted in pre-sorted order. 6837 ** If that is the case, then the OP_OpenEphemeral instruction will be 6838 ** changed to an OP_Noop once we figure out that the sorting index is 6839 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6840 ** that change. 6841 */ 6842 if( sSort.pOrderBy ){ 6843 KeyInfo *pKeyInfo; 6844 pKeyInfo = sqlite3KeyInfoFromExprList( 6845 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6846 sSort.iECursor = pParse->nTab++; 6847 sSort.addrSortIndex = 6848 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6849 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6850 (char*)pKeyInfo, P4_KEYINFO 6851 ); 6852 }else{ 6853 sSort.addrSortIndex = -1; 6854 } 6855 6856 /* If the output is destined for a temporary table, open that table. 6857 */ 6858 if( pDest->eDest==SRT_EphemTab ){ 6859 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6860 } 6861 6862 /* Set the limiter. 6863 */ 6864 iEnd = sqlite3VdbeMakeLabel(pParse); 6865 if( (p->selFlags & SF_FixedLimit)==0 ){ 6866 p->nSelectRow = 320; /* 4 billion rows */ 6867 } 6868 computeLimitRegisters(pParse, p, iEnd); 6869 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6870 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6871 sSort.sortFlags |= SORTFLAG_UseSorter; 6872 } 6873 6874 /* Open an ephemeral index to use for the distinct set. 6875 */ 6876 if( p->selFlags & SF_Distinct ){ 6877 sDistinct.tabTnct = pParse->nTab++; 6878 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6879 sDistinct.tabTnct, 0, 0, 6880 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6881 P4_KEYINFO); 6882 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6883 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6884 }else{ 6885 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6886 } 6887 6888 if( !isAgg && pGroupBy==0 ){ 6889 /* No aggregate functions and no GROUP BY clause */ 6890 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6891 | (p->selFlags & SF_FixedLimit); 6892 #ifndef SQLITE_OMIT_WINDOWFUNC 6893 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6894 if( pWin ){ 6895 sqlite3WindowCodeInit(pParse, p); 6896 } 6897 #endif 6898 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6899 6900 6901 /* Begin the database scan. */ 6902 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6903 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6904 p->pEList, p, wctrlFlags, p->nSelectRow); 6905 if( pWInfo==0 ) goto select_end; 6906 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6907 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6908 } 6909 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6910 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6911 } 6912 if( sSort.pOrderBy ){ 6913 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6914 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6915 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6916 sSort.pOrderBy = 0; 6917 } 6918 } 6919 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6920 6921 /* If sorting index that was created by a prior OP_OpenEphemeral 6922 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6923 ** into an OP_Noop. 6924 */ 6925 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6926 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6927 } 6928 6929 assert( p->pEList==pEList ); 6930 #ifndef SQLITE_OMIT_WINDOWFUNC 6931 if( pWin ){ 6932 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6933 int iCont = sqlite3VdbeMakeLabel(pParse); 6934 int iBreak = sqlite3VdbeMakeLabel(pParse); 6935 int regGosub = ++pParse->nMem; 6936 6937 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6938 6939 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6940 sqlite3VdbeResolveLabel(v, addrGosub); 6941 VdbeNoopComment((v, "inner-loop subroutine")); 6942 sSort.labelOBLopt = 0; 6943 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6944 sqlite3VdbeResolveLabel(v, iCont); 6945 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6946 VdbeComment((v, "end inner-loop subroutine")); 6947 sqlite3VdbeResolveLabel(v, iBreak); 6948 }else 6949 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6950 { 6951 /* Use the standard inner loop. */ 6952 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6953 sqlite3WhereContinueLabel(pWInfo), 6954 sqlite3WhereBreakLabel(pWInfo)); 6955 6956 /* End the database scan loop. 6957 */ 6958 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6959 sqlite3WhereEnd(pWInfo); 6960 } 6961 }else{ 6962 /* This case when there exist aggregate functions or a GROUP BY clause 6963 ** or both */ 6964 NameContext sNC; /* Name context for processing aggregate information */ 6965 int iAMem; /* First Mem address for storing current GROUP BY */ 6966 int iBMem; /* First Mem address for previous GROUP BY */ 6967 int iUseFlag; /* Mem address holding flag indicating that at least 6968 ** one row of the input to the aggregator has been 6969 ** processed */ 6970 int iAbortFlag; /* Mem address which causes query abort if positive */ 6971 int groupBySort; /* Rows come from source in GROUP BY order */ 6972 int addrEnd; /* End of processing for this SELECT */ 6973 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6974 int sortOut = 0; /* Output register from the sorter */ 6975 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6976 6977 /* Remove any and all aliases between the result set and the 6978 ** GROUP BY clause. 6979 */ 6980 if( pGroupBy ){ 6981 int k; /* Loop counter */ 6982 struct ExprList_item *pItem; /* For looping over expression in a list */ 6983 6984 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6985 pItem->u.x.iAlias = 0; 6986 } 6987 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6988 pItem->u.x.iAlias = 0; 6989 } 6990 assert( 66==sqlite3LogEst(100) ); 6991 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6992 6993 /* If there is both a GROUP BY and an ORDER BY clause and they are 6994 ** identical, then it may be possible to disable the ORDER BY clause 6995 ** on the grounds that the GROUP BY will cause elements to come out 6996 ** in the correct order. It also may not - the GROUP BY might use a 6997 ** database index that causes rows to be grouped together as required 6998 ** but not actually sorted. Either way, record the fact that the 6999 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7000 ** variable. */ 7001 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7002 int ii; 7003 /* The GROUP BY processing doesn't care whether rows are delivered in 7004 ** ASC or DESC order - only that each group is returned contiguously. 7005 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7006 ** ORDER BY to maximize the chances of rows being delivered in an 7007 ** order that makes the ORDER BY redundant. */ 7008 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7009 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 7010 pGroupBy->a[ii].sortFlags = sortFlags; 7011 } 7012 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7013 orderByGrp = 1; 7014 } 7015 } 7016 }else{ 7017 assert( 0==sqlite3LogEst(1) ); 7018 p->nSelectRow = 0; 7019 } 7020 7021 /* Create a label to jump to when we want to abort the query */ 7022 addrEnd = sqlite3VdbeMakeLabel(pParse); 7023 7024 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7025 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7026 ** SELECT statement. 7027 */ 7028 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7029 if( pAggInfo ){ 7030 sqlite3ParserAddCleanup(pParse, 7031 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7032 testcase( pParse->earlyCleanup ); 7033 } 7034 if( db->mallocFailed ){ 7035 goto select_end; 7036 } 7037 pAggInfo->selId = p->selId; 7038 memset(&sNC, 0, sizeof(sNC)); 7039 sNC.pParse = pParse; 7040 sNC.pSrcList = pTabList; 7041 sNC.uNC.pAggInfo = pAggInfo; 7042 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7043 pAggInfo->mnReg = pParse->nMem+1; 7044 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7045 pAggInfo->pGroupBy = pGroupBy; 7046 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7047 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7048 if( pHaving ){ 7049 if( pGroupBy ){ 7050 assert( pWhere==p->pWhere ); 7051 assert( pHaving==p->pHaving ); 7052 assert( pGroupBy==p->pGroupBy ); 7053 havingToWhere(pParse, p); 7054 pWhere = p->pWhere; 7055 } 7056 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7057 } 7058 pAggInfo->nAccumulator = pAggInfo->nColumn; 7059 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7060 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7061 }else{ 7062 minMaxFlag = WHERE_ORDERBY_NORMAL; 7063 } 7064 for(i=0; i<pAggInfo->nFunc; i++){ 7065 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7066 assert( ExprUseXList(pExpr) ); 7067 sNC.ncFlags |= NC_InAggFunc; 7068 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7069 #ifndef SQLITE_OMIT_WINDOWFUNC 7070 assert( !IsWindowFunc(pExpr) ); 7071 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7072 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7073 } 7074 #endif 7075 sNC.ncFlags &= ~NC_InAggFunc; 7076 } 7077 pAggInfo->mxReg = pParse->nMem; 7078 if( db->mallocFailed ) goto select_end; 7079 #if TREETRACE_ENABLED 7080 if( sqlite3TreeTrace & 0x400 ){ 7081 int ii; 7082 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7083 sqlite3TreeViewSelect(0, p, 0); 7084 if( minMaxFlag ){ 7085 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7086 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7087 } 7088 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7089 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7090 ii, pAggInfo->aCol[ii].iMem); 7091 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7092 } 7093 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7094 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7095 ii, pAggInfo->aFunc[ii].iMem); 7096 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7097 } 7098 } 7099 #endif 7100 7101 7102 /* Processing for aggregates with GROUP BY is very different and 7103 ** much more complex than aggregates without a GROUP BY. 7104 */ 7105 if( pGroupBy ){ 7106 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7107 int addr1; /* A-vs-B comparision jump */ 7108 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7109 int regOutputRow; /* Return address register for output subroutine */ 7110 int addrSetAbort; /* Set the abort flag and return */ 7111 int addrTopOfLoop; /* Top of the input loop */ 7112 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7113 int addrReset; /* Subroutine for resetting the accumulator */ 7114 int regReset; /* Return address register for reset subroutine */ 7115 ExprList *pDistinct = 0; 7116 u16 distFlag = 0; 7117 int eDist = WHERE_DISTINCT_NOOP; 7118 7119 if( pAggInfo->nFunc==1 7120 && pAggInfo->aFunc[0].iDistinct>=0 7121 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7122 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7123 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7124 ){ 7125 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7126 pExpr = sqlite3ExprDup(db, pExpr, 0); 7127 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7128 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7129 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7130 } 7131 7132 /* If there is a GROUP BY clause we might need a sorting index to 7133 ** implement it. Allocate that sorting index now. If it turns out 7134 ** that we do not need it after all, the OP_SorterOpen instruction 7135 ** will be converted into a Noop. 7136 */ 7137 pAggInfo->sortingIdx = pParse->nTab++; 7138 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7139 0, pAggInfo->nColumn); 7140 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7141 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7142 0, (char*)pKeyInfo, P4_KEYINFO); 7143 7144 /* Initialize memory locations used by GROUP BY aggregate processing 7145 */ 7146 iUseFlag = ++pParse->nMem; 7147 iAbortFlag = ++pParse->nMem; 7148 regOutputRow = ++pParse->nMem; 7149 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7150 regReset = ++pParse->nMem; 7151 addrReset = sqlite3VdbeMakeLabel(pParse); 7152 iAMem = pParse->nMem + 1; 7153 pParse->nMem += pGroupBy->nExpr; 7154 iBMem = pParse->nMem + 1; 7155 pParse->nMem += pGroupBy->nExpr; 7156 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7157 VdbeComment((v, "clear abort flag")); 7158 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7159 7160 /* Begin a loop that will extract all source rows in GROUP BY order. 7161 ** This might involve two separate loops with an OP_Sort in between, or 7162 ** it might be a single loop that uses an index to extract information 7163 ** in the right order to begin with. 7164 */ 7165 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7166 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7167 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7168 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7169 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7170 ); 7171 if( pWInfo==0 ){ 7172 sqlite3ExprListDelete(db, pDistinct); 7173 goto select_end; 7174 } 7175 eDist = sqlite3WhereIsDistinct(pWInfo); 7176 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7177 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7178 /* The optimizer is able to deliver rows in group by order so 7179 ** we do not have to sort. The OP_OpenEphemeral table will be 7180 ** cancelled later because we still need to use the pKeyInfo 7181 */ 7182 groupBySort = 0; 7183 }else{ 7184 /* Rows are coming out in undetermined order. We have to push 7185 ** each row into a sorting index, terminate the first loop, 7186 ** then loop over the sorting index in order to get the output 7187 ** in sorted order 7188 */ 7189 int regBase; 7190 int regRecord; 7191 int nCol; 7192 int nGroupBy; 7193 7194 explainTempTable(pParse, 7195 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7196 "DISTINCT" : "GROUP BY"); 7197 7198 groupBySort = 1; 7199 nGroupBy = pGroupBy->nExpr; 7200 nCol = nGroupBy; 7201 j = nGroupBy; 7202 for(i=0; i<pAggInfo->nColumn; i++){ 7203 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7204 nCol++; 7205 j++; 7206 } 7207 } 7208 regBase = sqlite3GetTempRange(pParse, nCol); 7209 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7210 j = nGroupBy; 7211 for(i=0; i<pAggInfo->nColumn; i++){ 7212 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7213 if( pCol->iSorterColumn>=j ){ 7214 int r1 = j + regBase; 7215 sqlite3ExprCodeGetColumnOfTable(v, 7216 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7217 j++; 7218 } 7219 } 7220 regRecord = sqlite3GetTempReg(pParse); 7221 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7222 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7223 sqlite3ReleaseTempReg(pParse, regRecord); 7224 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7225 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7226 sqlite3WhereEnd(pWInfo); 7227 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7228 sortOut = sqlite3GetTempReg(pParse); 7229 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7230 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7231 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7232 pAggInfo->useSortingIdx = 1; 7233 } 7234 7235 /* If the index or temporary table used by the GROUP BY sort 7236 ** will naturally deliver rows in the order required by the ORDER BY 7237 ** clause, cancel the ephemeral table open coded earlier. 7238 ** 7239 ** This is an optimization - the correct answer should result regardless. 7240 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7241 ** disable this optimization for testing purposes. */ 7242 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7243 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7244 ){ 7245 sSort.pOrderBy = 0; 7246 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7247 } 7248 7249 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7250 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7251 ** Then compare the current GROUP BY terms against the GROUP BY terms 7252 ** from the previous row currently stored in a0, a1, a2... 7253 */ 7254 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7255 if( groupBySort ){ 7256 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7257 sortOut, sortPTab); 7258 } 7259 for(j=0; j<pGroupBy->nExpr; j++){ 7260 if( groupBySort ){ 7261 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7262 }else{ 7263 pAggInfo->directMode = 1; 7264 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7265 } 7266 } 7267 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7268 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7269 addr1 = sqlite3VdbeCurrentAddr(v); 7270 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7271 7272 /* Generate code that runs whenever the GROUP BY changes. 7273 ** Changes in the GROUP BY are detected by the previous code 7274 ** block. If there were no changes, this block is skipped. 7275 ** 7276 ** This code copies current group by terms in b0,b1,b2,... 7277 ** over to a0,a1,a2. It then calls the output subroutine 7278 ** and resets the aggregate accumulator registers in preparation 7279 ** for the next GROUP BY batch. 7280 */ 7281 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7282 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7283 VdbeComment((v, "output one row")); 7284 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7285 VdbeComment((v, "check abort flag")); 7286 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7287 VdbeComment((v, "reset accumulator")); 7288 7289 /* Update the aggregate accumulators based on the content of 7290 ** the current row 7291 */ 7292 sqlite3VdbeJumpHere(v, addr1); 7293 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7294 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7295 VdbeComment((v, "indicate data in accumulator")); 7296 7297 /* End of the loop 7298 */ 7299 if( groupBySort ){ 7300 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7301 VdbeCoverage(v); 7302 }else{ 7303 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7304 sqlite3WhereEnd(pWInfo); 7305 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7306 } 7307 sqlite3ExprListDelete(db, pDistinct); 7308 7309 /* Output the final row of result 7310 */ 7311 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7312 VdbeComment((v, "output final row")); 7313 7314 /* Jump over the subroutines 7315 */ 7316 sqlite3VdbeGoto(v, addrEnd); 7317 7318 /* Generate a subroutine that outputs a single row of the result 7319 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7320 ** is less than or equal to zero, the subroutine is a no-op. If 7321 ** the processing calls for the query to abort, this subroutine 7322 ** increments the iAbortFlag memory location before returning in 7323 ** order to signal the caller to abort. 7324 */ 7325 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7326 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7327 VdbeComment((v, "set abort flag")); 7328 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7329 sqlite3VdbeResolveLabel(v, addrOutputRow); 7330 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7331 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7332 VdbeCoverage(v); 7333 VdbeComment((v, "Groupby result generator entry point")); 7334 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7335 finalizeAggFunctions(pParse, pAggInfo); 7336 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7337 selectInnerLoop(pParse, p, -1, &sSort, 7338 &sDistinct, pDest, 7339 addrOutputRow+1, addrSetAbort); 7340 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7341 VdbeComment((v, "end groupby result generator")); 7342 7343 /* Generate a subroutine that will reset the group-by accumulator 7344 */ 7345 sqlite3VdbeResolveLabel(v, addrReset); 7346 resetAccumulator(pParse, pAggInfo); 7347 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7348 VdbeComment((v, "indicate accumulator empty")); 7349 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7350 7351 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7352 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7353 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7354 } 7355 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7356 else { 7357 Table *pTab; 7358 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7359 /* If isSimpleCount() returns a pointer to a Table structure, then 7360 ** the SQL statement is of the form: 7361 ** 7362 ** SELECT count(*) FROM <tbl> 7363 ** 7364 ** where the Table structure returned represents table <tbl>. 7365 ** 7366 ** This statement is so common that it is optimized specially. The 7367 ** OP_Count instruction is executed either on the intkey table that 7368 ** contains the data for table <tbl> or on one of its indexes. It 7369 ** is better to execute the op on an index, as indexes are almost 7370 ** always spread across less pages than their corresponding tables. 7371 */ 7372 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7373 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7374 Index *pIdx; /* Iterator variable */ 7375 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7376 Index *pBest = 0; /* Best index found so far */ 7377 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7378 7379 sqlite3CodeVerifySchema(pParse, iDb); 7380 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7381 7382 /* Search for the index that has the lowest scan cost. 7383 ** 7384 ** (2011-04-15) Do not do a full scan of an unordered index. 7385 ** 7386 ** (2013-10-03) Do not count the entries in a partial index. 7387 ** 7388 ** In practice the KeyInfo structure will not be used. It is only 7389 ** passed to keep OP_OpenRead happy. 7390 */ 7391 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7392 if( !p->pSrc->a[0].fg.notIndexed ){ 7393 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7394 if( pIdx->bUnordered==0 7395 && pIdx->szIdxRow<pTab->szTabRow 7396 && pIdx->pPartIdxWhere==0 7397 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7398 ){ 7399 pBest = pIdx; 7400 } 7401 } 7402 } 7403 if( pBest ){ 7404 iRoot = pBest->tnum; 7405 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7406 } 7407 7408 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7409 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7410 if( pKeyInfo ){ 7411 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7412 } 7413 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7414 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7415 explainSimpleCount(pParse, pTab, pBest); 7416 }else{ 7417 int regAcc = 0; /* "populate accumulators" flag */ 7418 ExprList *pDistinct = 0; 7419 u16 distFlag = 0; 7420 int eDist; 7421 7422 /* If there are accumulator registers but no min() or max() functions 7423 ** without FILTER clauses, allocate register regAcc. Register regAcc 7424 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7425 ** The code generated by updateAccumulator() uses this to ensure 7426 ** that the accumulator registers are (a) updated only once if 7427 ** there are no min() or max functions or (b) always updated for the 7428 ** first row visited by the aggregate, so that they are updated at 7429 ** least once even if the FILTER clause means the min() or max() 7430 ** function visits zero rows. */ 7431 if( pAggInfo->nAccumulator ){ 7432 for(i=0; i<pAggInfo->nFunc; i++){ 7433 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7434 continue; 7435 } 7436 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7437 break; 7438 } 7439 } 7440 if( i==pAggInfo->nFunc ){ 7441 regAcc = ++pParse->nMem; 7442 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7443 } 7444 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7445 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7446 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7447 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7448 } 7449 7450 /* This case runs if the aggregate has no GROUP BY clause. The 7451 ** processing is much simpler since there is only a single row 7452 ** of output. 7453 */ 7454 assert( p->pGroupBy==0 ); 7455 resetAccumulator(pParse, pAggInfo); 7456 7457 /* If this query is a candidate for the min/max optimization, then 7458 ** minMaxFlag will have been previously set to either 7459 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7460 ** be an appropriate ORDER BY expression for the optimization. 7461 */ 7462 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7463 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7464 7465 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7466 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7467 pDistinct, 0, minMaxFlag|distFlag, 0); 7468 if( pWInfo==0 ){ 7469 goto select_end; 7470 } 7471 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7472 eDist = sqlite3WhereIsDistinct(pWInfo); 7473 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7474 if( eDist!=WHERE_DISTINCT_NOOP ){ 7475 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7476 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7477 } 7478 7479 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7480 if( minMaxFlag ){ 7481 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7482 } 7483 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7484 sqlite3WhereEnd(pWInfo); 7485 finalizeAggFunctions(pParse, pAggInfo); 7486 } 7487 7488 sSort.pOrderBy = 0; 7489 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7490 selectInnerLoop(pParse, p, -1, 0, 0, 7491 pDest, addrEnd, addrEnd); 7492 } 7493 sqlite3VdbeResolveLabel(v, addrEnd); 7494 7495 } /* endif aggregate query */ 7496 7497 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7498 explainTempTable(pParse, "DISTINCT"); 7499 } 7500 7501 /* If there is an ORDER BY clause, then we need to sort the results 7502 ** and send them to the callback one by one. 7503 */ 7504 if( sSort.pOrderBy ){ 7505 explainTempTable(pParse, 7506 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7507 assert( p->pEList==pEList ); 7508 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7509 } 7510 7511 /* Jump here to skip this query 7512 */ 7513 sqlite3VdbeResolveLabel(v, iEnd); 7514 7515 /* The SELECT has been coded. If there is an error in the Parse structure, 7516 ** set the return code to 1. Otherwise 0. */ 7517 rc = (pParse->nErr>0); 7518 7519 /* Control jumps to here if an error is encountered above, or upon 7520 ** successful coding of the SELECT. 7521 */ 7522 select_end: 7523 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7524 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7525 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7526 #ifdef SQLITE_DEBUG 7527 if( pAggInfo && !db->mallocFailed ){ 7528 for(i=0; i<pAggInfo->nColumn; i++){ 7529 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7530 assert( pExpr!=0 ); 7531 assert( pExpr->pAggInfo==pAggInfo ); 7532 assert( pExpr->iAgg==i ); 7533 } 7534 for(i=0; i<pAggInfo->nFunc; i++){ 7535 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7536 assert( pExpr!=0 ); 7537 assert( pExpr->pAggInfo==pAggInfo ); 7538 assert( pExpr->iAgg==i ); 7539 } 7540 } 7541 #endif 7542 7543 #if TREETRACE_ENABLED 7544 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7545 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7546 sqlite3TreeViewSelect(0, p, 0); 7547 } 7548 #endif 7549 ExplainQueryPlanPop(pParse); 7550 return rc; 7551 } 7552