xref: /sqlite-3.40.0/src/select.c (revision d4530979)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 */
34 typedef struct SortCtx SortCtx;
35 struct SortCtx {
36   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
37   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
38   int iECursor;         /* Cursor number for the sorter */
39   int regReturn;        /* Register holding block-output return address */
40   int labelBkOut;       /* Start label for the block-output subroutine */
41   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
42   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
43 };
44 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
45 
46 /*
47 ** Delete all the content of a Select structure but do not deallocate
48 ** the select structure itself.
49 */
50 static void clearSelect(sqlite3 *db, Select *p){
51   sqlite3ExprListDelete(db, p->pEList);
52   sqlite3SrcListDelete(db, p->pSrc);
53   sqlite3ExprDelete(db, p->pWhere);
54   sqlite3ExprListDelete(db, p->pGroupBy);
55   sqlite3ExprDelete(db, p->pHaving);
56   sqlite3ExprListDelete(db, p->pOrderBy);
57   sqlite3SelectDelete(db, p->pPrior);
58   sqlite3ExprDelete(db, p->pLimit);
59   sqlite3ExprDelete(db, p->pOffset);
60   sqlite3WithDelete(db, p->pWith);
61 }
62 
63 /*
64 ** Initialize a SelectDest structure.
65 */
66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
67   pDest->eDest = (u8)eDest;
68   pDest->iSDParm = iParm;
69   pDest->affSdst = 0;
70   pDest->iSdst = 0;
71   pDest->nSdst = 0;
72 }
73 
74 
75 /*
76 ** Allocate a new Select structure and return a pointer to that
77 ** structure.
78 */
79 Select *sqlite3SelectNew(
80   Parse *pParse,        /* Parsing context */
81   ExprList *pEList,     /* which columns to include in the result */
82   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
83   Expr *pWhere,         /* the WHERE clause */
84   ExprList *pGroupBy,   /* the GROUP BY clause */
85   Expr *pHaving,        /* the HAVING clause */
86   ExprList *pOrderBy,   /* the ORDER BY clause */
87   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
88   Expr *pLimit,         /* LIMIT value.  NULL means not used */
89   Expr *pOffset         /* OFFSET value.  NULL means no offset */
90 ){
91   Select *pNew;
92   Select standin;
93   sqlite3 *db = pParse->db;
94   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
95   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
96   if( pNew==0 ){
97     assert( db->mallocFailed );
98     pNew = &standin;
99     memset(pNew, 0, sizeof(*pNew));
100   }
101   if( pEList==0 ){
102     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
103   }
104   pNew->pEList = pEList;
105   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
106   pNew->pSrc = pSrc;
107   pNew->pWhere = pWhere;
108   pNew->pGroupBy = pGroupBy;
109   pNew->pHaving = pHaving;
110   pNew->pOrderBy = pOrderBy;
111   pNew->selFlags = selFlags;
112   pNew->op = TK_SELECT;
113   pNew->pLimit = pLimit;
114   pNew->pOffset = pOffset;
115   assert( pOffset==0 || pLimit!=0 );
116   pNew->addrOpenEphm[0] = -1;
117   pNew->addrOpenEphm[1] = -1;
118   if( db->mallocFailed ) {
119     clearSelect(db, pNew);
120     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
121     pNew = 0;
122   }else{
123     assert( pNew->pSrc!=0 || pParse->nErr>0 );
124   }
125   assert( pNew!=&standin );
126   return pNew;
127 }
128 
129 /*
130 ** Delete the given Select structure and all of its substructures.
131 */
132 void sqlite3SelectDelete(sqlite3 *db, Select *p){
133   if( p ){
134     clearSelect(db, p);
135     sqlite3DbFree(db, p);
136   }
137 }
138 
139 /*
140 ** Return a pointer to the right-most SELECT statement in a compound.
141 */
142 static Select *findRightmost(Select *p){
143   while( p->pNext ) p = p->pNext;
144   return p;
145 }
146 
147 /*
148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
149 ** type of join.  Return an integer constant that expresses that type
150 ** in terms of the following bit values:
151 **
152 **     JT_INNER
153 **     JT_CROSS
154 **     JT_OUTER
155 **     JT_NATURAL
156 **     JT_LEFT
157 **     JT_RIGHT
158 **
159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
160 **
161 ** If an illegal or unsupported join type is seen, then still return
162 ** a join type, but put an error in the pParse structure.
163 */
164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
165   int jointype = 0;
166   Token *apAll[3];
167   Token *p;
168                              /*   0123456789 123456789 123456789 123 */
169   static const char zKeyText[] = "naturaleftouterightfullinnercross";
170   static const struct {
171     u8 i;        /* Beginning of keyword text in zKeyText[] */
172     u8 nChar;    /* Length of the keyword in characters */
173     u8 code;     /* Join type mask */
174   } aKeyword[] = {
175     /* natural */ { 0,  7, JT_NATURAL                },
176     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
177     /* outer   */ { 10, 5, JT_OUTER                  },
178     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
179     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
180     /* inner   */ { 23, 5, JT_INNER                  },
181     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
182   };
183   int i, j;
184   apAll[0] = pA;
185   apAll[1] = pB;
186   apAll[2] = pC;
187   for(i=0; i<3 && apAll[i]; i++){
188     p = apAll[i];
189     for(j=0; j<ArraySize(aKeyword); j++){
190       if( p->n==aKeyword[j].nChar
191           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
192         jointype |= aKeyword[j].code;
193         break;
194       }
195     }
196     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
197     if( j>=ArraySize(aKeyword) ){
198       jointype |= JT_ERROR;
199       break;
200     }
201   }
202   if(
203      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
204      (jointype & JT_ERROR)!=0
205   ){
206     const char *zSp = " ";
207     assert( pB!=0 );
208     if( pC==0 ){ zSp++; }
209     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
210        "%T %T%s%T", pA, pB, zSp, pC);
211     jointype = JT_INNER;
212   }else if( (jointype & JT_OUTER)!=0
213          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
214     sqlite3ErrorMsg(pParse,
215       "RIGHT and FULL OUTER JOINs are not currently supported");
216     jointype = JT_INNER;
217   }
218   return jointype;
219 }
220 
221 /*
222 ** Return the index of a column in a table.  Return -1 if the column
223 ** is not contained in the table.
224 */
225 static int columnIndex(Table *pTab, const char *zCol){
226   int i;
227   for(i=0; i<pTab->nCol; i++){
228     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
229   }
230   return -1;
231 }
232 
233 /*
234 ** Search the first N tables in pSrc, from left to right, looking for a
235 ** table that has a column named zCol.
236 **
237 ** When found, set *piTab and *piCol to the table index and column index
238 ** of the matching column and return TRUE.
239 **
240 ** If not found, return FALSE.
241 */
242 static int tableAndColumnIndex(
243   SrcList *pSrc,       /* Array of tables to search */
244   int N,               /* Number of tables in pSrc->a[] to search */
245   const char *zCol,    /* Name of the column we are looking for */
246   int *piTab,          /* Write index of pSrc->a[] here */
247   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
248 ){
249   int i;               /* For looping over tables in pSrc */
250   int iCol;            /* Index of column matching zCol */
251 
252   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
253   for(i=0; i<N; i++){
254     iCol = columnIndex(pSrc->a[i].pTab, zCol);
255     if( iCol>=0 ){
256       if( piTab ){
257         *piTab = i;
258         *piCol = iCol;
259       }
260       return 1;
261     }
262   }
263   return 0;
264 }
265 
266 /*
267 ** This function is used to add terms implied by JOIN syntax to the
268 ** WHERE clause expression of a SELECT statement. The new term, which
269 ** is ANDed with the existing WHERE clause, is of the form:
270 **
271 **    (tab1.col1 = tab2.col2)
272 **
273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
275 ** column iColRight of tab2.
276 */
277 static void addWhereTerm(
278   Parse *pParse,                  /* Parsing context */
279   SrcList *pSrc,                  /* List of tables in FROM clause */
280   int iLeft,                      /* Index of first table to join in pSrc */
281   int iColLeft,                   /* Index of column in first table */
282   int iRight,                     /* Index of second table in pSrc */
283   int iColRight,                  /* Index of column in second table */
284   int isOuterJoin,                /* True if this is an OUTER join */
285   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
286 ){
287   sqlite3 *db = pParse->db;
288   Expr *pE1;
289   Expr *pE2;
290   Expr *pEq;
291 
292   assert( iLeft<iRight );
293   assert( pSrc->nSrc>iRight );
294   assert( pSrc->a[iLeft].pTab );
295   assert( pSrc->a[iRight].pTab );
296 
297   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
298   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
299 
300   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
301   if( pEq && isOuterJoin ){
302     ExprSetProperty(pEq, EP_FromJoin);
303     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
304     ExprSetVVAProperty(pEq, EP_NoReduce);
305     pEq->iRightJoinTable = (i16)pE2->iTable;
306   }
307   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
308 }
309 
310 /*
311 ** Set the EP_FromJoin property on all terms of the given expression.
312 ** And set the Expr.iRightJoinTable to iTable for every term in the
313 ** expression.
314 **
315 ** The EP_FromJoin property is used on terms of an expression to tell
316 ** the LEFT OUTER JOIN processing logic that this term is part of the
317 ** join restriction specified in the ON or USING clause and not a part
318 ** of the more general WHERE clause.  These terms are moved over to the
319 ** WHERE clause during join processing but we need to remember that they
320 ** originated in the ON or USING clause.
321 **
322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
323 ** expression depends on table iRightJoinTable even if that table is not
324 ** explicitly mentioned in the expression.  That information is needed
325 ** for cases like this:
326 **
327 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
328 **
329 ** The where clause needs to defer the handling of the t1.x=5
330 ** term until after the t2 loop of the join.  In that way, a
331 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
332 ** defer the handling of t1.x=5, it will be processed immediately
333 ** after the t1 loop and rows with t1.x!=5 will never appear in
334 ** the output, which is incorrect.
335 */
336 static void setJoinExpr(Expr *p, int iTable){
337   while( p ){
338     ExprSetProperty(p, EP_FromJoin);
339     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(p, EP_NoReduce);
341     p->iRightJoinTable = (i16)iTable;
342     setJoinExpr(p->pLeft, iTable);
343     p = p->pRight;
344   }
345 }
346 
347 /*
348 ** This routine processes the join information for a SELECT statement.
349 ** ON and USING clauses are converted into extra terms of the WHERE clause.
350 ** NATURAL joins also create extra WHERE clause terms.
351 **
352 ** The terms of a FROM clause are contained in the Select.pSrc structure.
353 ** The left most table is the first entry in Select.pSrc.  The right-most
354 ** table is the last entry.  The join operator is held in the entry to
355 ** the left.  Thus entry 0 contains the join operator for the join between
356 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
357 ** also attached to the left entry.
358 **
359 ** This routine returns the number of errors encountered.
360 */
361 static int sqliteProcessJoin(Parse *pParse, Select *p){
362   SrcList *pSrc;                  /* All tables in the FROM clause */
363   int i, j;                       /* Loop counters */
364   struct SrcList_item *pLeft;     /* Left table being joined */
365   struct SrcList_item *pRight;    /* Right table being joined */
366 
367   pSrc = p->pSrc;
368   pLeft = &pSrc->a[0];
369   pRight = &pLeft[1];
370   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
371     Table *pLeftTab = pLeft->pTab;
372     Table *pRightTab = pRight->pTab;
373     int isOuter;
374 
375     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
376     isOuter = (pRight->jointype & JT_OUTER)!=0;
377 
378     /* When the NATURAL keyword is present, add WHERE clause terms for
379     ** every column that the two tables have in common.
380     */
381     if( pRight->jointype & JT_NATURAL ){
382       if( pRight->pOn || pRight->pUsing ){
383         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
384            "an ON or USING clause", 0);
385         return 1;
386       }
387       for(j=0; j<pRightTab->nCol; j++){
388         char *zName;   /* Name of column in the right table */
389         int iLeft;     /* Matching left table */
390         int iLeftCol;  /* Matching column in the left table */
391 
392         zName = pRightTab->aCol[j].zName;
393         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
394           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
395                        isOuter, &p->pWhere);
396         }
397       }
398     }
399 
400     /* Disallow both ON and USING clauses in the same join
401     */
402     if( pRight->pOn && pRight->pUsing ){
403       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
404         "clauses in the same join");
405       return 1;
406     }
407 
408     /* Add the ON clause to the end of the WHERE clause, connected by
409     ** an AND operator.
410     */
411     if( pRight->pOn ){
412       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
413       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
414       pRight->pOn = 0;
415     }
416 
417     /* Create extra terms on the WHERE clause for each column named
418     ** in the USING clause.  Example: If the two tables to be joined are
419     ** A and B and the USING clause names X, Y, and Z, then add this
420     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
421     ** Report an error if any column mentioned in the USING clause is
422     ** not contained in both tables to be joined.
423     */
424     if( pRight->pUsing ){
425       IdList *pList = pRight->pUsing;
426       for(j=0; j<pList->nId; j++){
427         char *zName;     /* Name of the term in the USING clause */
428         int iLeft;       /* Table on the left with matching column name */
429         int iLeftCol;    /* Column number of matching column on the left */
430         int iRightCol;   /* Column number of matching column on the right */
431 
432         zName = pList->a[j].zName;
433         iRightCol = columnIndex(pRightTab, zName);
434         if( iRightCol<0
435          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
436         ){
437           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
438             "not present in both tables", zName);
439           return 1;
440         }
441         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
442                      isOuter, &p->pWhere);
443       }
444     }
445   }
446   return 0;
447 }
448 
449 /* Forward reference */
450 static KeyInfo *keyInfoFromExprList(
451   Parse *pParse,       /* Parsing context */
452   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
453   int iStart,          /* Begin with this column of pList */
454   int nExtra           /* Add this many extra columns to the end */
455 );
456 
457 /*
458 ** Generate code that will push the record in registers regData
459 ** through regData+nData-1 onto the sorter.
460 */
461 static void pushOntoSorter(
462   Parse *pParse,         /* Parser context */
463   SortCtx *pSort,        /* Information about the ORDER BY clause */
464   Select *pSelect,       /* The whole SELECT statement */
465   int regData,           /* First register holding data to be sorted */
466   int nData,             /* Number of elements in the data array */
467   int nPrefixReg         /* No. of reg prior to regData available for use */
468 ){
469   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
470   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
471   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
472   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
473   int regBase;                                     /* Regs for sorter record */
474   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
475   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
476   int op;                            /* Opcode to add sorter record to sorter */
477 
478   assert( bSeq==0 || bSeq==1 );
479   if( nPrefixReg ){
480     assert( nPrefixReg==nExpr+bSeq );
481     regBase = regData - nExpr - bSeq;
482   }else{
483     regBase = pParse->nMem + 1;
484     pParse->nMem += nBase;
485   }
486   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
487   if( bSeq ){
488     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
489   }
490   if( nPrefixReg==0 ){
491     sqlite3VdbeAddOp3(v, OP_Move, regData, regBase+nExpr+bSeq, nData);
492   }
493 
494   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
495   if( nOBSat>0 ){
496     int regPrevKey;   /* The first nOBSat columns of the previous row */
497     int addrFirst;    /* Address of the OP_IfNot opcode */
498     int addrJmp;      /* Address of the OP_Jump opcode */
499     VdbeOp *pOp;      /* Opcode that opens the sorter */
500     int nKey;         /* Number of sorting key columns, including OP_Sequence */
501     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
502 
503     regPrevKey = pParse->nMem+1;
504     pParse->nMem += pSort->nOBSat;
505     nKey = nExpr - pSort->nOBSat + bSeq;
506     if( bSeq ){
507       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
508     }else{
509       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
510     }
511     VdbeCoverage(v);
512     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
513     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
514     if( pParse->db->mallocFailed ) return;
515     pOp->p2 = nKey + nData;
516     pKI = pOp->p4.pKeyInfo;
517     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
518     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
519     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
520     addrJmp = sqlite3VdbeCurrentAddr(v);
521     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
522     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
523     pSort->regReturn = ++pParse->nMem;
524     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
525     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
526     sqlite3VdbeJumpHere(v, addrFirst);
527     sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
528     sqlite3VdbeJumpHere(v, addrJmp);
529   }
530   if( pSort->sortFlags & SORTFLAG_UseSorter ){
531     op = OP_SorterInsert;
532   }else{
533     op = OP_IdxInsert;
534   }
535   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
536   if( pSelect->iLimit ){
537     int addr1, addr2;
538     int iLimit;
539     if( pSelect->iOffset ){
540       iLimit = pSelect->iOffset+1;
541     }else{
542       iLimit = pSelect->iLimit;
543     }
544     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
545     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
546     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
547     sqlite3VdbeJumpHere(v, addr1);
548     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
549     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
550     sqlite3VdbeJumpHere(v, addr2);
551   }
552 }
553 
554 /*
555 ** Add code to implement the OFFSET
556 */
557 static void codeOffset(
558   Vdbe *v,          /* Generate code into this VM */
559   int iOffset,      /* Register holding the offset counter */
560   int iContinue     /* Jump here to skip the current record */
561 ){
562   if( iOffset>0 ){
563     int addr;
564     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
565     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
566     VdbeComment((v, "skip OFFSET records"));
567     sqlite3VdbeJumpHere(v, addr);
568   }
569 }
570 
571 /*
572 ** Add code that will check to make sure the N registers starting at iMem
573 ** form a distinct entry.  iTab is a sorting index that holds previously
574 ** seen combinations of the N values.  A new entry is made in iTab
575 ** if the current N values are new.
576 **
577 ** A jump to addrRepeat is made and the N+1 values are popped from the
578 ** stack if the top N elements are not distinct.
579 */
580 static void codeDistinct(
581   Parse *pParse,     /* Parsing and code generating context */
582   int iTab,          /* A sorting index used to test for distinctness */
583   int addrRepeat,    /* Jump to here if not distinct */
584   int N,             /* Number of elements */
585   int iMem           /* First element */
586 ){
587   Vdbe *v;
588   int r1;
589 
590   v = pParse->pVdbe;
591   r1 = sqlite3GetTempReg(pParse);
592   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
593   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
594   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
595   sqlite3ReleaseTempReg(pParse, r1);
596 }
597 
598 #ifndef SQLITE_OMIT_SUBQUERY
599 /*
600 ** Generate an error message when a SELECT is used within a subexpression
601 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
602 ** column.  We do this in a subroutine because the error used to occur
603 ** in multiple places.  (The error only occurs in one place now, but we
604 ** retain the subroutine to minimize code disruption.)
605 */
606 static int checkForMultiColumnSelectError(
607   Parse *pParse,       /* Parse context. */
608   SelectDest *pDest,   /* Destination of SELECT results */
609   int nExpr            /* Number of result columns returned by SELECT */
610 ){
611   int eDest = pDest->eDest;
612   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
613     sqlite3ErrorMsg(pParse, "only a single result allowed for "
614        "a SELECT that is part of an expression");
615     return 1;
616   }else{
617     return 0;
618   }
619 }
620 #endif
621 
622 /*
623 ** This routine generates the code for the inside of the inner loop
624 ** of a SELECT.
625 **
626 ** If srcTab is negative, then the pEList expressions
627 ** are evaluated in order to get the data for this row.  If srcTab is
628 ** zero or more, then data is pulled from srcTab and pEList is used only
629 ** to get number columns and the datatype for each column.
630 */
631 static void selectInnerLoop(
632   Parse *pParse,          /* The parser context */
633   Select *p,              /* The complete select statement being coded */
634   ExprList *pEList,       /* List of values being extracted */
635   int srcTab,             /* Pull data from this table */
636   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
637   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
638   SelectDest *pDest,      /* How to dispose of the results */
639   int iContinue,          /* Jump here to continue with next row */
640   int iBreak              /* Jump here to break out of the inner loop */
641 ){
642   Vdbe *v = pParse->pVdbe;
643   int i;
644   int hasDistinct;        /* True if the DISTINCT keyword is present */
645   int regResult;              /* Start of memory holding result set */
646   int eDest = pDest->eDest;   /* How to dispose of results */
647   int iParm = pDest->iSDParm; /* First argument to disposal method */
648   int nResultCol;             /* Number of result columns */
649   int nPrefixReg = 0;         /* Number of extra registers before regResult */
650 
651   assert( v );
652   assert( pEList!=0 );
653   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
654   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
655   if( pSort==0 && !hasDistinct ){
656     assert( iContinue!=0 );
657     codeOffset(v, p->iOffset, iContinue);
658   }
659 
660   /* Pull the requested columns.
661   */
662   nResultCol = pEList->nExpr;
663 
664   if( pDest->iSdst==0 ){
665     if( pSort ){
666       nPrefixReg = pSort->pOrderBy->nExpr;
667       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
668       pParse->nMem += nPrefixReg;
669     }
670     pDest->iSdst = pParse->nMem+1;
671     pParse->nMem += nResultCol;
672   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
673     /* This is an error condition that can result, for example, when a SELECT
674     ** on the right-hand side of an INSERT contains more result columns than
675     ** there are columns in the table on the left.  The error will be caught
676     ** and reported later.  But we need to make sure enough memory is allocated
677     ** to avoid other spurious errors in the meantime. */
678     pParse->nMem += nResultCol;
679   }
680   pDest->nSdst = nResultCol;
681   regResult = pDest->iSdst;
682   if( srcTab>=0 ){
683     for(i=0; i<nResultCol; i++){
684       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
685       VdbeComment((v, "%s", pEList->a[i].zName));
686     }
687   }else if( eDest!=SRT_Exists ){
688     /* If the destination is an EXISTS(...) expression, the actual
689     ** values returned by the SELECT are not required.
690     */
691     sqlite3ExprCodeExprList(pParse, pEList, regResult,
692                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
693   }
694 
695   /* If the DISTINCT keyword was present on the SELECT statement
696   ** and this row has been seen before, then do not make this row
697   ** part of the result.
698   */
699   if( hasDistinct ){
700     switch( pDistinct->eTnctType ){
701       case WHERE_DISTINCT_ORDERED: {
702         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
703         int iJump;              /* Jump destination */
704         int regPrev;            /* Previous row content */
705 
706         /* Allocate space for the previous row */
707         regPrev = pParse->nMem+1;
708         pParse->nMem += nResultCol;
709 
710         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
711         ** sets the MEM_Cleared bit on the first register of the
712         ** previous value.  This will cause the OP_Ne below to always
713         ** fail on the first iteration of the loop even if the first
714         ** row is all NULLs.
715         */
716         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
717         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
718         pOp->opcode = OP_Null;
719         pOp->p1 = 1;
720         pOp->p2 = regPrev;
721 
722         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
723         for(i=0; i<nResultCol; i++){
724           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
725           if( i<nResultCol-1 ){
726             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
727             VdbeCoverage(v);
728           }else{
729             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
730             VdbeCoverage(v);
731            }
732           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
733           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
734         }
735         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
736         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
737         break;
738       }
739 
740       case WHERE_DISTINCT_UNIQUE: {
741         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
742         break;
743       }
744 
745       default: {
746         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
747         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
748         break;
749       }
750     }
751     if( pSort==0 ){
752       codeOffset(v, p->iOffset, iContinue);
753     }
754   }
755 
756   switch( eDest ){
757     /* In this mode, write each query result to the key of the temporary
758     ** table iParm.
759     */
760 #ifndef SQLITE_OMIT_COMPOUND_SELECT
761     case SRT_Union: {
762       int r1;
763       r1 = sqlite3GetTempReg(pParse);
764       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
765       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
766       sqlite3ReleaseTempReg(pParse, r1);
767       break;
768     }
769 
770     /* Construct a record from the query result, but instead of
771     ** saving that record, use it as a key to delete elements from
772     ** the temporary table iParm.
773     */
774     case SRT_Except: {
775       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
776       break;
777     }
778 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
779 
780     /* Store the result as data using a unique key.
781     */
782     case SRT_Fifo:
783     case SRT_DistFifo:
784     case SRT_Table:
785     case SRT_EphemTab: {
786       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
787       testcase( eDest==SRT_Table );
788       testcase( eDest==SRT_EphemTab );
789       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
790 #ifndef SQLITE_OMIT_CTE
791       if( eDest==SRT_DistFifo ){
792         /* If the destination is DistFifo, then cursor (iParm+1) is open
793         ** on an ephemeral index. If the current row is already present
794         ** in the index, do not write it to the output. If not, add the
795         ** current row to the index and proceed with writing it to the
796         ** output table as well.  */
797         int addr = sqlite3VdbeCurrentAddr(v) + 4;
798         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
799         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
800         assert( pSort==0 );
801       }
802 #endif
803       if( pSort ){
804         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
805       }else{
806         int r2 = sqlite3GetTempReg(pParse);
807         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
808         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
809         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
810         sqlite3ReleaseTempReg(pParse, r2);
811       }
812       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
813       break;
814     }
815 
816 #ifndef SQLITE_OMIT_SUBQUERY
817     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
818     ** then there should be a single item on the stack.  Write this
819     ** item into the set table with bogus data.
820     */
821     case SRT_Set: {
822       assert( nResultCol==1 );
823       pDest->affSdst =
824                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
825       if( pSort ){
826         /* At first glance you would think we could optimize out the
827         ** ORDER BY in this case since the order of entries in the set
828         ** does not matter.  But there might be a LIMIT clause, in which
829         ** case the order does matter */
830         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
831       }else{
832         int r1 = sqlite3GetTempReg(pParse);
833         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
834         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
835         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
836         sqlite3ReleaseTempReg(pParse, r1);
837       }
838       break;
839     }
840 
841     /* If any row exist in the result set, record that fact and abort.
842     */
843     case SRT_Exists: {
844       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
845       /* The LIMIT clause will terminate the loop for us */
846       break;
847     }
848 
849     /* If this is a scalar select that is part of an expression, then
850     ** store the results in the appropriate memory cell and break out
851     ** of the scan loop.
852     */
853     case SRT_Mem: {
854       assert( nResultCol==1 );
855       if( pSort ){
856         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
857       }else{
858         assert( regResult==iParm );
859         /* The LIMIT clause will jump out of the loop for us */
860       }
861       break;
862     }
863 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
864 
865     case SRT_Coroutine:       /* Send data to a co-routine */
866     case SRT_Output: {        /* Return the results */
867       testcase( eDest==SRT_Coroutine );
868       testcase( eDest==SRT_Output );
869       if( pSort ){
870         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
871       }else if( eDest==SRT_Coroutine ){
872         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
873       }else{
874         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
875         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
876       }
877       break;
878     }
879 
880 #ifndef SQLITE_OMIT_CTE
881     /* Write the results into a priority queue that is order according to
882     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
883     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
884     ** pSO->nExpr columns, then make sure all keys are unique by adding a
885     ** final OP_Sequence column.  The last column is the record as a blob.
886     */
887     case SRT_DistQueue:
888     case SRT_Queue: {
889       int nKey;
890       int r1, r2, r3;
891       int addrTest = 0;
892       ExprList *pSO;
893       pSO = pDest->pOrderBy;
894       assert( pSO );
895       nKey = pSO->nExpr;
896       r1 = sqlite3GetTempReg(pParse);
897       r2 = sqlite3GetTempRange(pParse, nKey+2);
898       r3 = r2+nKey+1;
899       if( eDest==SRT_DistQueue ){
900         /* If the destination is DistQueue, then cursor (iParm+1) is open
901         ** on a second ephemeral index that holds all values every previously
902         ** added to the queue. */
903         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
904                                         regResult, nResultCol);
905         VdbeCoverage(v);
906       }
907       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
908       if( eDest==SRT_DistQueue ){
909         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
910         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
911       }
912       for(i=0; i<nKey; i++){
913         sqlite3VdbeAddOp2(v, OP_SCopy,
914                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
915                           r2+i);
916       }
917       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
918       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
919       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
920       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
921       sqlite3ReleaseTempReg(pParse, r1);
922       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
923       break;
924     }
925 #endif /* SQLITE_OMIT_CTE */
926 
927 
928 
929 #if !defined(SQLITE_OMIT_TRIGGER)
930     /* Discard the results.  This is used for SELECT statements inside
931     ** the body of a TRIGGER.  The purpose of such selects is to call
932     ** user-defined functions that have side effects.  We do not care
933     ** about the actual results of the select.
934     */
935     default: {
936       assert( eDest==SRT_Discard );
937       break;
938     }
939 #endif
940   }
941 
942   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
943   ** there is a sorter, in which case the sorter has already limited
944   ** the output for us.
945   */
946   if( pSort==0 && p->iLimit ){
947     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
948   }
949 }
950 
951 /*
952 ** Allocate a KeyInfo object sufficient for an index of N key columns and
953 ** X extra columns.
954 */
955 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
956   KeyInfo *p = sqlite3DbMallocZero(0,
957                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
958   if( p ){
959     p->aSortOrder = (u8*)&p->aColl[N+X];
960     p->nField = (u16)N;
961     p->nXField = (u16)X;
962     p->enc = ENC(db);
963     p->db = db;
964     p->nRef = 1;
965   }else{
966     db->mallocFailed = 1;
967   }
968   return p;
969 }
970 
971 /*
972 ** Deallocate a KeyInfo object
973 */
974 void sqlite3KeyInfoUnref(KeyInfo *p){
975   if( p ){
976     assert( p->nRef>0 );
977     p->nRef--;
978     if( p->nRef==0 ) sqlite3DbFree(0, p);
979   }
980 }
981 
982 /*
983 ** Make a new pointer to a KeyInfo object
984 */
985 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
986   if( p ){
987     assert( p->nRef>0 );
988     p->nRef++;
989   }
990   return p;
991 }
992 
993 #ifdef SQLITE_DEBUG
994 /*
995 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
996 ** can only be changed if this is just a single reference to the object.
997 **
998 ** This routine is used only inside of assert() statements.
999 */
1000 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1001 #endif /* SQLITE_DEBUG */
1002 
1003 /*
1004 ** Given an expression list, generate a KeyInfo structure that records
1005 ** the collating sequence for each expression in that expression list.
1006 **
1007 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1008 ** KeyInfo structure is appropriate for initializing a virtual index to
1009 ** implement that clause.  If the ExprList is the result set of a SELECT
1010 ** then the KeyInfo structure is appropriate for initializing a virtual
1011 ** index to implement a DISTINCT test.
1012 **
1013 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1014 ** function is responsible for seeing that this structure is eventually
1015 ** freed.
1016 */
1017 static KeyInfo *keyInfoFromExprList(
1018   Parse *pParse,       /* Parsing context */
1019   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1020   int iStart,          /* Begin with this column of pList */
1021   int nExtra           /* Add this many extra columns to the end */
1022 ){
1023   int nExpr;
1024   KeyInfo *pInfo;
1025   struct ExprList_item *pItem;
1026   sqlite3 *db = pParse->db;
1027   int i;
1028 
1029   nExpr = pList->nExpr;
1030   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1031   if( pInfo ){
1032     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1033     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1034       CollSeq *pColl;
1035       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1036       if( !pColl ) pColl = db->pDfltColl;
1037       pInfo->aColl[i-iStart] = pColl;
1038       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1039     }
1040   }
1041   return pInfo;
1042 }
1043 
1044 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1045 /*
1046 ** Name of the connection operator, used for error messages.
1047 */
1048 static const char *selectOpName(int id){
1049   char *z;
1050   switch( id ){
1051     case TK_ALL:       z = "UNION ALL";   break;
1052     case TK_INTERSECT: z = "INTERSECT";   break;
1053     case TK_EXCEPT:    z = "EXCEPT";      break;
1054     default:           z = "UNION";       break;
1055   }
1056   return z;
1057 }
1058 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1059 
1060 #ifndef SQLITE_OMIT_EXPLAIN
1061 /*
1062 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1063 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1064 ** where the caption is of the form:
1065 **
1066 **   "USE TEMP B-TREE FOR xxx"
1067 **
1068 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1069 ** is determined by the zUsage argument.
1070 */
1071 static void explainTempTable(Parse *pParse, const char *zUsage){
1072   if( pParse->explain==2 ){
1073     Vdbe *v = pParse->pVdbe;
1074     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1075     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1076   }
1077 }
1078 
1079 /*
1080 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1081 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1082 ** in sqlite3Select() to assign values to structure member variables that
1083 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1084 ** code with #ifndef directives.
1085 */
1086 # define explainSetInteger(a, b) a = b
1087 
1088 #else
1089 /* No-op versions of the explainXXX() functions and macros. */
1090 # define explainTempTable(y,z)
1091 # define explainSetInteger(y,z)
1092 #endif
1093 
1094 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1095 /*
1096 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1097 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1098 ** where the caption is of one of the two forms:
1099 **
1100 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1101 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1102 **
1103 ** where iSub1 and iSub2 are the integers passed as the corresponding
1104 ** function parameters, and op is the text representation of the parameter
1105 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1106 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1107 ** false, or the second form if it is true.
1108 */
1109 static void explainComposite(
1110   Parse *pParse,                  /* Parse context */
1111   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1112   int iSub1,                      /* Subquery id 1 */
1113   int iSub2,                      /* Subquery id 2 */
1114   int bUseTmp                     /* True if a temp table was used */
1115 ){
1116   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1117   if( pParse->explain==2 ){
1118     Vdbe *v = pParse->pVdbe;
1119     char *zMsg = sqlite3MPrintf(
1120         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1121         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1122     );
1123     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1124   }
1125 }
1126 #else
1127 /* No-op versions of the explainXXX() functions and macros. */
1128 # define explainComposite(v,w,x,y,z)
1129 #endif
1130 
1131 /*
1132 ** If the inner loop was generated using a non-null pOrderBy argument,
1133 ** then the results were placed in a sorter.  After the loop is terminated
1134 ** we need to run the sorter and output the results.  The following
1135 ** routine generates the code needed to do that.
1136 */
1137 static void generateSortTail(
1138   Parse *pParse,    /* Parsing context */
1139   Select *p,        /* The SELECT statement */
1140   SortCtx *pSort,   /* Information on the ORDER BY clause */
1141   int nColumn,      /* Number of columns of data */
1142   SelectDest *pDest /* Write the sorted results here */
1143 ){
1144   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1145   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1146   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1147   int addr;
1148   int addrOnce = 0;
1149   int iTab;
1150   ExprList *pOrderBy = pSort->pOrderBy;
1151   int eDest = pDest->eDest;
1152   int iParm = pDest->iSDParm;
1153   int regRow;
1154   int regRowid;
1155   int nKey;
1156   int iSortTab;                   /* Sorter cursor to read from */
1157   int nSortData;                  /* Trailing values to read from sorter */
1158   u8 p5;                          /* p5 parameter for 1st OP_Column */
1159   int i;
1160   int bSeq;                       /* True if sorter record includes seq. no. */
1161 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1162   struct ExprList_item *aOutEx = p->pEList->a;
1163 #endif
1164 
1165   if( pSort->labelBkOut ){
1166     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1167     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1168     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1169   }
1170   iTab = pSort->iECursor;
1171   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1172     regRowid = 0;
1173     regRow = pDest->iSdst;
1174     nSortData = nColumn;
1175   }else{
1176     regRowid = sqlite3GetTempReg(pParse);
1177     regRow = sqlite3GetTempReg(pParse);
1178     nSortData = 1;
1179   }
1180   nKey = pOrderBy->nExpr - pSort->nOBSat;
1181   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1182     int regSortOut = ++pParse->nMem;
1183     iSortTab = pParse->nTab++;
1184     if( pSort->labelBkOut ){
1185       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1186     }
1187     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1188     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1189     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1190     VdbeCoverage(v);
1191     codeOffset(v, p->iOffset, addrContinue);
1192     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
1193     p5 = OPFLAG_CLEARCACHE;
1194     bSeq = 0;
1195   }else{
1196     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1197     codeOffset(v, p->iOffset, addrContinue);
1198     iSortTab = iTab;
1199     p5 = 0;
1200     bSeq = 1;
1201   }
1202   for(i=0; i<nSortData; i++){
1203     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1204     if( i==0 ) sqlite3VdbeChangeP5(v, p5);
1205     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1206   }
1207   switch( eDest ){
1208     case SRT_Table:
1209     case SRT_EphemTab: {
1210       testcase( eDest==SRT_Table );
1211       testcase( eDest==SRT_EphemTab );
1212       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1213       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1214       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1215       break;
1216     }
1217 #ifndef SQLITE_OMIT_SUBQUERY
1218     case SRT_Set: {
1219       assert( nColumn==1 );
1220       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1221                         &pDest->affSdst, 1);
1222       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1223       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1224       break;
1225     }
1226     case SRT_Mem: {
1227       assert( nColumn==1 );
1228       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1229       /* The LIMIT clause will terminate the loop for us */
1230       break;
1231     }
1232 #endif
1233     default: {
1234       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1235       testcase( eDest==SRT_Output );
1236       testcase( eDest==SRT_Coroutine );
1237       if( eDest==SRT_Output ){
1238         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1239         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1240       }else{
1241         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1242       }
1243       break;
1244     }
1245   }
1246   if( regRowid ){
1247     sqlite3ReleaseTempReg(pParse, regRow);
1248     sqlite3ReleaseTempReg(pParse, regRowid);
1249   }
1250   /* The bottom of the loop
1251   */
1252   sqlite3VdbeResolveLabel(v, addrContinue);
1253   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1254     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1255   }else{
1256     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1257   }
1258   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1259   sqlite3VdbeResolveLabel(v, addrBreak);
1260 }
1261 
1262 /*
1263 ** Return a pointer to a string containing the 'declaration type' of the
1264 ** expression pExpr. The string may be treated as static by the caller.
1265 **
1266 ** Also try to estimate the size of the returned value and return that
1267 ** result in *pEstWidth.
1268 **
1269 ** The declaration type is the exact datatype definition extracted from the
1270 ** original CREATE TABLE statement if the expression is a column. The
1271 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1272 ** is considered a column can be complex in the presence of subqueries. The
1273 ** result-set expression in all of the following SELECT statements is
1274 ** considered a column by this function.
1275 **
1276 **   SELECT col FROM tbl;
1277 **   SELECT (SELECT col FROM tbl;
1278 **   SELECT (SELECT col FROM tbl);
1279 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1280 **
1281 ** The declaration type for any expression other than a column is NULL.
1282 **
1283 ** This routine has either 3 or 6 parameters depending on whether or not
1284 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1285 */
1286 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1287 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1288 static const char *columnTypeImpl(
1289   NameContext *pNC,
1290   Expr *pExpr,
1291   const char **pzOrigDb,
1292   const char **pzOrigTab,
1293   const char **pzOrigCol,
1294   u8 *pEstWidth
1295 ){
1296   char const *zOrigDb = 0;
1297   char const *zOrigTab = 0;
1298   char const *zOrigCol = 0;
1299 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1300 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1301 static const char *columnTypeImpl(
1302   NameContext *pNC,
1303   Expr *pExpr,
1304   u8 *pEstWidth
1305 ){
1306 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1307   char const *zType = 0;
1308   int j;
1309   u8 estWidth = 1;
1310 
1311   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1312   switch( pExpr->op ){
1313     case TK_AGG_COLUMN:
1314     case TK_COLUMN: {
1315       /* The expression is a column. Locate the table the column is being
1316       ** extracted from in NameContext.pSrcList. This table may be real
1317       ** database table or a subquery.
1318       */
1319       Table *pTab = 0;            /* Table structure column is extracted from */
1320       Select *pS = 0;             /* Select the column is extracted from */
1321       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1322       testcase( pExpr->op==TK_AGG_COLUMN );
1323       testcase( pExpr->op==TK_COLUMN );
1324       while( pNC && !pTab ){
1325         SrcList *pTabList = pNC->pSrcList;
1326         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1327         if( j<pTabList->nSrc ){
1328           pTab = pTabList->a[j].pTab;
1329           pS = pTabList->a[j].pSelect;
1330         }else{
1331           pNC = pNC->pNext;
1332         }
1333       }
1334 
1335       if( pTab==0 ){
1336         /* At one time, code such as "SELECT new.x" within a trigger would
1337         ** cause this condition to run.  Since then, we have restructured how
1338         ** trigger code is generated and so this condition is no longer
1339         ** possible. However, it can still be true for statements like
1340         ** the following:
1341         **
1342         **   CREATE TABLE t1(col INTEGER);
1343         **   SELECT (SELECT t1.col) FROM FROM t1;
1344         **
1345         ** when columnType() is called on the expression "t1.col" in the
1346         ** sub-select. In this case, set the column type to NULL, even
1347         ** though it should really be "INTEGER".
1348         **
1349         ** This is not a problem, as the column type of "t1.col" is never
1350         ** used. When columnType() is called on the expression
1351         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1352         ** branch below.  */
1353         break;
1354       }
1355 
1356       assert( pTab && pExpr->pTab==pTab );
1357       if( pS ){
1358         /* The "table" is actually a sub-select or a view in the FROM clause
1359         ** of the SELECT statement. Return the declaration type and origin
1360         ** data for the result-set column of the sub-select.
1361         */
1362         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1363           /* If iCol is less than zero, then the expression requests the
1364           ** rowid of the sub-select or view. This expression is legal (see
1365           ** test case misc2.2.2) - it always evaluates to NULL.
1366           */
1367           NameContext sNC;
1368           Expr *p = pS->pEList->a[iCol].pExpr;
1369           sNC.pSrcList = pS->pSrc;
1370           sNC.pNext = pNC;
1371           sNC.pParse = pNC->pParse;
1372           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1373         }
1374       }else if( pTab->pSchema ){
1375         /* A real table */
1376         assert( !pS );
1377         if( iCol<0 ) iCol = pTab->iPKey;
1378         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1379 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1380         if( iCol<0 ){
1381           zType = "INTEGER";
1382           zOrigCol = "rowid";
1383         }else{
1384           zType = pTab->aCol[iCol].zType;
1385           zOrigCol = pTab->aCol[iCol].zName;
1386           estWidth = pTab->aCol[iCol].szEst;
1387         }
1388         zOrigTab = pTab->zName;
1389         if( pNC->pParse ){
1390           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1391           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1392         }
1393 #else
1394         if( iCol<0 ){
1395           zType = "INTEGER";
1396         }else{
1397           zType = pTab->aCol[iCol].zType;
1398           estWidth = pTab->aCol[iCol].szEst;
1399         }
1400 #endif
1401       }
1402       break;
1403     }
1404 #ifndef SQLITE_OMIT_SUBQUERY
1405     case TK_SELECT: {
1406       /* The expression is a sub-select. Return the declaration type and
1407       ** origin info for the single column in the result set of the SELECT
1408       ** statement.
1409       */
1410       NameContext sNC;
1411       Select *pS = pExpr->x.pSelect;
1412       Expr *p = pS->pEList->a[0].pExpr;
1413       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1414       sNC.pSrcList = pS->pSrc;
1415       sNC.pNext = pNC;
1416       sNC.pParse = pNC->pParse;
1417       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1418       break;
1419     }
1420 #endif
1421   }
1422 
1423 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1424   if( pzOrigDb ){
1425     assert( pzOrigTab && pzOrigCol );
1426     *pzOrigDb = zOrigDb;
1427     *pzOrigTab = zOrigTab;
1428     *pzOrigCol = zOrigCol;
1429   }
1430 #endif
1431   if( pEstWidth ) *pEstWidth = estWidth;
1432   return zType;
1433 }
1434 
1435 /*
1436 ** Generate code that will tell the VDBE the declaration types of columns
1437 ** in the result set.
1438 */
1439 static void generateColumnTypes(
1440   Parse *pParse,      /* Parser context */
1441   SrcList *pTabList,  /* List of tables */
1442   ExprList *pEList    /* Expressions defining the result set */
1443 ){
1444 #ifndef SQLITE_OMIT_DECLTYPE
1445   Vdbe *v = pParse->pVdbe;
1446   int i;
1447   NameContext sNC;
1448   sNC.pSrcList = pTabList;
1449   sNC.pParse = pParse;
1450   for(i=0; i<pEList->nExpr; i++){
1451     Expr *p = pEList->a[i].pExpr;
1452     const char *zType;
1453 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1454     const char *zOrigDb = 0;
1455     const char *zOrigTab = 0;
1456     const char *zOrigCol = 0;
1457     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1458 
1459     /* The vdbe must make its own copy of the column-type and other
1460     ** column specific strings, in case the schema is reset before this
1461     ** virtual machine is deleted.
1462     */
1463     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1464     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1465     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1466 #else
1467     zType = columnType(&sNC, p, 0, 0, 0, 0);
1468 #endif
1469     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1470   }
1471 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1472 }
1473 
1474 /*
1475 ** Generate code that will tell the VDBE the names of columns
1476 ** in the result set.  This information is used to provide the
1477 ** azCol[] values in the callback.
1478 */
1479 static void generateColumnNames(
1480   Parse *pParse,      /* Parser context */
1481   SrcList *pTabList,  /* List of tables */
1482   ExprList *pEList    /* Expressions defining the result set */
1483 ){
1484   Vdbe *v = pParse->pVdbe;
1485   int i, j;
1486   sqlite3 *db = pParse->db;
1487   int fullNames, shortNames;
1488 
1489 #ifndef SQLITE_OMIT_EXPLAIN
1490   /* If this is an EXPLAIN, skip this step */
1491   if( pParse->explain ){
1492     return;
1493   }
1494 #endif
1495 
1496   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1497   pParse->colNamesSet = 1;
1498   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1499   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1500   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1501   for(i=0; i<pEList->nExpr; i++){
1502     Expr *p;
1503     p = pEList->a[i].pExpr;
1504     if( NEVER(p==0) ) continue;
1505     if( pEList->a[i].zName ){
1506       char *zName = pEList->a[i].zName;
1507       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1508     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1509       Table *pTab;
1510       char *zCol;
1511       int iCol = p->iColumn;
1512       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1513         if( pTabList->a[j].iCursor==p->iTable ) break;
1514       }
1515       assert( j<pTabList->nSrc );
1516       pTab = pTabList->a[j].pTab;
1517       if( iCol<0 ) iCol = pTab->iPKey;
1518       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1519       if( iCol<0 ){
1520         zCol = "rowid";
1521       }else{
1522         zCol = pTab->aCol[iCol].zName;
1523       }
1524       if( !shortNames && !fullNames ){
1525         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1526             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1527       }else if( fullNames ){
1528         char *zName = 0;
1529         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1530         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1531       }else{
1532         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1533       }
1534     }else{
1535       const char *z = pEList->a[i].zSpan;
1536       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1537       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1538     }
1539   }
1540   generateColumnTypes(pParse, pTabList, pEList);
1541 }
1542 
1543 /*
1544 ** Given an expression list (which is really the list of expressions
1545 ** that form the result set of a SELECT statement) compute appropriate
1546 ** column names for a table that would hold the expression list.
1547 **
1548 ** All column names will be unique.
1549 **
1550 ** Only the column names are computed.  Column.zType, Column.zColl,
1551 ** and other fields of Column are zeroed.
1552 **
1553 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1554 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1555 */
1556 static int selectColumnsFromExprList(
1557   Parse *pParse,          /* Parsing context */
1558   ExprList *pEList,       /* Expr list from which to derive column names */
1559   i16 *pnCol,             /* Write the number of columns here */
1560   Column **paCol          /* Write the new column list here */
1561 ){
1562   sqlite3 *db = pParse->db;   /* Database connection */
1563   int i, j;                   /* Loop counters */
1564   int cnt;                    /* Index added to make the name unique */
1565   Column *aCol, *pCol;        /* For looping over result columns */
1566   int nCol;                   /* Number of columns in the result set */
1567   Expr *p;                    /* Expression for a single result column */
1568   char *zName;                /* Column name */
1569   int nName;                  /* Size of name in zName[] */
1570 
1571   if( pEList ){
1572     nCol = pEList->nExpr;
1573     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1574     testcase( aCol==0 );
1575   }else{
1576     nCol = 0;
1577     aCol = 0;
1578   }
1579   *pnCol = nCol;
1580   *paCol = aCol;
1581 
1582   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1583     /* Get an appropriate name for the column
1584     */
1585     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1586     if( (zName = pEList->a[i].zName)!=0 ){
1587       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1588       zName = sqlite3DbStrDup(db, zName);
1589     }else{
1590       Expr *pColExpr = p;  /* The expression that is the result column name */
1591       Table *pTab;         /* Table associated with this expression */
1592       while( pColExpr->op==TK_DOT ){
1593         pColExpr = pColExpr->pRight;
1594         assert( pColExpr!=0 );
1595       }
1596       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1597         /* For columns use the column name name */
1598         int iCol = pColExpr->iColumn;
1599         pTab = pColExpr->pTab;
1600         if( iCol<0 ) iCol = pTab->iPKey;
1601         zName = sqlite3MPrintf(db, "%s",
1602                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1603       }else if( pColExpr->op==TK_ID ){
1604         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1605         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1606       }else{
1607         /* Use the original text of the column expression as its name */
1608         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1609       }
1610     }
1611     if( db->mallocFailed ){
1612       sqlite3DbFree(db, zName);
1613       break;
1614     }
1615 
1616     /* Make sure the column name is unique.  If the name is not unique,
1617     ** append an integer to the name so that it becomes unique.
1618     */
1619     nName = sqlite3Strlen30(zName);
1620     for(j=cnt=0; j<i; j++){
1621       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1622         char *zNewName;
1623         int k;
1624         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1625         if( k>=0 && zName[k]==':' ) nName = k;
1626         zName[nName] = 0;
1627         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1628         sqlite3DbFree(db, zName);
1629         zName = zNewName;
1630         j = -1;
1631         if( zName==0 ) break;
1632       }
1633     }
1634     pCol->zName = zName;
1635   }
1636   if( db->mallocFailed ){
1637     for(j=0; j<i; j++){
1638       sqlite3DbFree(db, aCol[j].zName);
1639     }
1640     sqlite3DbFree(db, aCol);
1641     *paCol = 0;
1642     *pnCol = 0;
1643     return SQLITE_NOMEM;
1644   }
1645   return SQLITE_OK;
1646 }
1647 
1648 /*
1649 ** Add type and collation information to a column list based on
1650 ** a SELECT statement.
1651 **
1652 ** The column list presumably came from selectColumnNamesFromExprList().
1653 ** The column list has only names, not types or collations.  This
1654 ** routine goes through and adds the types and collations.
1655 **
1656 ** This routine requires that all identifiers in the SELECT
1657 ** statement be resolved.
1658 */
1659 static void selectAddColumnTypeAndCollation(
1660   Parse *pParse,        /* Parsing contexts */
1661   Table *pTab,          /* Add column type information to this table */
1662   Select *pSelect       /* SELECT used to determine types and collations */
1663 ){
1664   sqlite3 *db = pParse->db;
1665   NameContext sNC;
1666   Column *pCol;
1667   CollSeq *pColl;
1668   int i;
1669   Expr *p;
1670   struct ExprList_item *a;
1671   u64 szAll = 0;
1672 
1673   assert( pSelect!=0 );
1674   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1675   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1676   if( db->mallocFailed ) return;
1677   memset(&sNC, 0, sizeof(sNC));
1678   sNC.pSrcList = pSelect->pSrc;
1679   a = pSelect->pEList->a;
1680   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1681     p = a[i].pExpr;
1682     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1683     szAll += pCol->szEst;
1684     pCol->affinity = sqlite3ExprAffinity(p);
1685     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1686     pColl = sqlite3ExprCollSeq(pParse, p);
1687     if( pColl ){
1688       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1689     }
1690   }
1691   pTab->szTabRow = sqlite3LogEst(szAll*4);
1692 }
1693 
1694 /*
1695 ** Given a SELECT statement, generate a Table structure that describes
1696 ** the result set of that SELECT.
1697 */
1698 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1699   Table *pTab;
1700   sqlite3 *db = pParse->db;
1701   int savedFlags;
1702 
1703   savedFlags = db->flags;
1704   db->flags &= ~SQLITE_FullColNames;
1705   db->flags |= SQLITE_ShortColNames;
1706   sqlite3SelectPrep(pParse, pSelect, 0);
1707   if( pParse->nErr ) return 0;
1708   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1709   db->flags = savedFlags;
1710   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1711   if( pTab==0 ){
1712     return 0;
1713   }
1714   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1715   ** is disabled */
1716   assert( db->lookaside.bEnabled==0 );
1717   pTab->nRef = 1;
1718   pTab->zName = 0;
1719   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1720   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1721   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1722   pTab->iPKey = -1;
1723   if( db->mallocFailed ){
1724     sqlite3DeleteTable(db, pTab);
1725     return 0;
1726   }
1727   return pTab;
1728 }
1729 
1730 /*
1731 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1732 ** If an error occurs, return NULL and leave a message in pParse.
1733 */
1734 Vdbe *sqlite3GetVdbe(Parse *pParse){
1735   Vdbe *v = pParse->pVdbe;
1736   if( v==0 ){
1737     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1738     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1739     if( pParse->pToplevel==0
1740      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1741     ){
1742       pParse->okConstFactor = 1;
1743     }
1744 
1745   }
1746   return v;
1747 }
1748 
1749 
1750 /*
1751 ** Compute the iLimit and iOffset fields of the SELECT based on the
1752 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1753 ** that appear in the original SQL statement after the LIMIT and OFFSET
1754 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1755 ** are the integer memory register numbers for counters used to compute
1756 ** the limit and offset.  If there is no limit and/or offset, then
1757 ** iLimit and iOffset are negative.
1758 **
1759 ** This routine changes the values of iLimit and iOffset only if
1760 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1761 ** iOffset should have been preset to appropriate default values (zero)
1762 ** prior to calling this routine.
1763 **
1764 ** The iOffset register (if it exists) is initialized to the value
1765 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1766 ** iOffset+1 is initialized to LIMIT+OFFSET.
1767 **
1768 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1769 ** redefined.  The UNION ALL operator uses this property to force
1770 ** the reuse of the same limit and offset registers across multiple
1771 ** SELECT statements.
1772 */
1773 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1774   Vdbe *v = 0;
1775   int iLimit = 0;
1776   int iOffset;
1777   int addr1, n;
1778   if( p->iLimit ) return;
1779 
1780   /*
1781   ** "LIMIT -1" always shows all rows.  There is some
1782   ** controversy about what the correct behavior should be.
1783   ** The current implementation interprets "LIMIT 0" to mean
1784   ** no rows.
1785   */
1786   sqlite3ExprCacheClear(pParse);
1787   assert( p->pOffset==0 || p->pLimit!=0 );
1788   if( p->pLimit ){
1789     p->iLimit = iLimit = ++pParse->nMem;
1790     v = sqlite3GetVdbe(pParse);
1791     assert( v!=0 );
1792     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1793       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1794       VdbeComment((v, "LIMIT counter"));
1795       if( n==0 ){
1796         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1797       }else if( n>=0 && p->nSelectRow>(u64)n ){
1798         p->nSelectRow = n;
1799       }
1800     }else{
1801       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1802       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1803       VdbeComment((v, "LIMIT counter"));
1804       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1805     }
1806     if( p->pOffset ){
1807       p->iOffset = iOffset = ++pParse->nMem;
1808       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1809       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1810       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1811       VdbeComment((v, "OFFSET counter"));
1812       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1813       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1814       sqlite3VdbeJumpHere(v, addr1);
1815       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1816       VdbeComment((v, "LIMIT+OFFSET"));
1817       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1818       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1819       sqlite3VdbeJumpHere(v, addr1);
1820     }
1821   }
1822 }
1823 
1824 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1825 /*
1826 ** Return the appropriate collating sequence for the iCol-th column of
1827 ** the result set for the compound-select statement "p".  Return NULL if
1828 ** the column has no default collating sequence.
1829 **
1830 ** The collating sequence for the compound select is taken from the
1831 ** left-most term of the select that has a collating sequence.
1832 */
1833 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1834   CollSeq *pRet;
1835   if( p->pPrior ){
1836     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1837   }else{
1838     pRet = 0;
1839   }
1840   assert( iCol>=0 );
1841   if( pRet==0 && iCol<p->pEList->nExpr ){
1842     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1843   }
1844   return pRet;
1845 }
1846 
1847 /*
1848 ** The select statement passed as the second parameter is a compound SELECT
1849 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1850 ** structure suitable for implementing the ORDER BY.
1851 **
1852 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1853 ** function is responsible for ensuring that this structure is eventually
1854 ** freed.
1855 */
1856 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1857   ExprList *pOrderBy = p->pOrderBy;
1858   int nOrderBy = p->pOrderBy->nExpr;
1859   sqlite3 *db = pParse->db;
1860   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1861   if( pRet ){
1862     int i;
1863     for(i=0; i<nOrderBy; i++){
1864       struct ExprList_item *pItem = &pOrderBy->a[i];
1865       Expr *pTerm = pItem->pExpr;
1866       CollSeq *pColl;
1867 
1868       if( pTerm->flags & EP_Collate ){
1869         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1870       }else{
1871         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1872         if( pColl==0 ) pColl = db->pDfltColl;
1873         pOrderBy->a[i].pExpr =
1874           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1875       }
1876       assert( sqlite3KeyInfoIsWriteable(pRet) );
1877       pRet->aColl[i] = pColl;
1878       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1879     }
1880   }
1881 
1882   return pRet;
1883 }
1884 
1885 #ifndef SQLITE_OMIT_CTE
1886 /*
1887 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1888 ** query of the form:
1889 **
1890 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1891 **                         \___________/             \_______________/
1892 **                           p->pPrior                      p
1893 **
1894 **
1895 ** There is exactly one reference to the recursive-table in the FROM clause
1896 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1897 **
1898 ** The setup-query runs once to generate an initial set of rows that go
1899 ** into a Queue table.  Rows are extracted from the Queue table one by
1900 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1901 ** extracted row (now in the iCurrent table) becomes the content of the
1902 ** recursive-table for a recursive-query run.  The output of the recursive-query
1903 ** is added back into the Queue table.  Then another row is extracted from Queue
1904 ** and the iteration continues until the Queue table is empty.
1905 **
1906 ** If the compound query operator is UNION then no duplicate rows are ever
1907 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1908 ** that have ever been inserted into Queue and causes duplicates to be
1909 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1910 **
1911 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1912 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1913 ** an ORDER BY, the Queue table is just a FIFO.
1914 **
1915 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1916 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1917 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1918 ** with a positive value, then the first OFFSET outputs are discarded rather
1919 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1920 ** rows have been skipped.
1921 */
1922 static void generateWithRecursiveQuery(
1923   Parse *pParse,        /* Parsing context */
1924   Select *p,            /* The recursive SELECT to be coded */
1925   SelectDest *pDest     /* What to do with query results */
1926 ){
1927   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1928   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1929   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1930   Select *pSetup = p->pPrior;   /* The setup query */
1931   int addrTop;                  /* Top of the loop */
1932   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1933   int iCurrent = 0;             /* The Current table */
1934   int regCurrent;               /* Register holding Current table */
1935   int iQueue;                   /* The Queue table */
1936   int iDistinct = 0;            /* To ensure unique results if UNION */
1937   int eDest = SRT_Fifo;         /* How to write to Queue */
1938   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1939   int i;                        /* Loop counter */
1940   int rc;                       /* Result code */
1941   ExprList *pOrderBy;           /* The ORDER BY clause */
1942   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1943   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1944 
1945   /* Obtain authorization to do a recursive query */
1946   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1947 
1948   /* Process the LIMIT and OFFSET clauses, if they exist */
1949   addrBreak = sqlite3VdbeMakeLabel(v);
1950   computeLimitRegisters(pParse, p, addrBreak);
1951   pLimit = p->pLimit;
1952   pOffset = p->pOffset;
1953   regLimit = p->iLimit;
1954   regOffset = p->iOffset;
1955   p->pLimit = p->pOffset = 0;
1956   p->iLimit = p->iOffset = 0;
1957   pOrderBy = p->pOrderBy;
1958 
1959   /* Locate the cursor number of the Current table */
1960   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1961     if( pSrc->a[i].isRecursive ){
1962       iCurrent = pSrc->a[i].iCursor;
1963       break;
1964     }
1965   }
1966 
1967   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1968   ** the Distinct table must be exactly one greater than Queue in order
1969   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1970   iQueue = pParse->nTab++;
1971   if( p->op==TK_UNION ){
1972     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1973     iDistinct = pParse->nTab++;
1974   }else{
1975     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1976   }
1977   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
1978 
1979   /* Allocate cursors for Current, Queue, and Distinct. */
1980   regCurrent = ++pParse->nMem;
1981   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
1982   if( pOrderBy ){
1983     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
1984     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
1985                       (char*)pKeyInfo, P4_KEYINFO);
1986     destQueue.pOrderBy = pOrderBy;
1987   }else{
1988     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
1989   }
1990   VdbeComment((v, "Queue table"));
1991   if( iDistinct ){
1992     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
1993     p->selFlags |= SF_UsesEphemeral;
1994   }
1995 
1996   /* Detach the ORDER BY clause from the compound SELECT */
1997   p->pOrderBy = 0;
1998 
1999   /* Store the results of the setup-query in Queue. */
2000   pSetup->pNext = 0;
2001   rc = sqlite3Select(pParse, pSetup, &destQueue);
2002   pSetup->pNext = p;
2003   if( rc ) goto end_of_recursive_query;
2004 
2005   /* Find the next row in the Queue and output that row */
2006   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2007 
2008   /* Transfer the next row in Queue over to Current */
2009   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2010   if( pOrderBy ){
2011     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2012   }else{
2013     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2014   }
2015   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2016 
2017   /* Output the single row in Current */
2018   addrCont = sqlite3VdbeMakeLabel(v);
2019   codeOffset(v, regOffset, addrCont);
2020   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2021       0, 0, pDest, addrCont, addrBreak);
2022   if( regLimit ){
2023     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2024     VdbeCoverage(v);
2025   }
2026   sqlite3VdbeResolveLabel(v, addrCont);
2027 
2028   /* Execute the recursive SELECT taking the single row in Current as
2029   ** the value for the recursive-table. Store the results in the Queue.
2030   */
2031   p->pPrior = 0;
2032   sqlite3Select(pParse, p, &destQueue);
2033   assert( p->pPrior==0 );
2034   p->pPrior = pSetup;
2035 
2036   /* Keep running the loop until the Queue is empty */
2037   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2038   sqlite3VdbeResolveLabel(v, addrBreak);
2039 
2040 end_of_recursive_query:
2041   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2042   p->pOrderBy = pOrderBy;
2043   p->pLimit = pLimit;
2044   p->pOffset = pOffset;
2045   return;
2046 }
2047 #endif /* SQLITE_OMIT_CTE */
2048 
2049 /* Forward references */
2050 static int multiSelectOrderBy(
2051   Parse *pParse,        /* Parsing context */
2052   Select *p,            /* The right-most of SELECTs to be coded */
2053   SelectDest *pDest     /* What to do with query results */
2054 );
2055 
2056 
2057 /*
2058 ** This routine is called to process a compound query form from
2059 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2060 ** INTERSECT
2061 **
2062 ** "p" points to the right-most of the two queries.  the query on the
2063 ** left is p->pPrior.  The left query could also be a compound query
2064 ** in which case this routine will be called recursively.
2065 **
2066 ** The results of the total query are to be written into a destination
2067 ** of type eDest with parameter iParm.
2068 **
2069 ** Example 1:  Consider a three-way compound SQL statement.
2070 **
2071 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2072 **
2073 ** This statement is parsed up as follows:
2074 **
2075 **     SELECT c FROM t3
2076 **      |
2077 **      `----->  SELECT b FROM t2
2078 **                |
2079 **                `------>  SELECT a FROM t1
2080 **
2081 ** The arrows in the diagram above represent the Select.pPrior pointer.
2082 ** So if this routine is called with p equal to the t3 query, then
2083 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2084 **
2085 ** Notice that because of the way SQLite parses compound SELECTs, the
2086 ** individual selects always group from left to right.
2087 */
2088 static int multiSelect(
2089   Parse *pParse,        /* Parsing context */
2090   Select *p,            /* The right-most of SELECTs to be coded */
2091   SelectDest *pDest     /* What to do with query results */
2092 ){
2093   int rc = SQLITE_OK;   /* Success code from a subroutine */
2094   Select *pPrior;       /* Another SELECT immediately to our left */
2095   Vdbe *v;              /* Generate code to this VDBE */
2096   SelectDest dest;      /* Alternative data destination */
2097   Select *pDelete = 0;  /* Chain of simple selects to delete */
2098   sqlite3 *db;          /* Database connection */
2099 #ifndef SQLITE_OMIT_EXPLAIN
2100   int iSub1 = 0;        /* EQP id of left-hand query */
2101   int iSub2 = 0;        /* EQP id of right-hand query */
2102 #endif
2103 
2104   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2105   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2106   */
2107   assert( p && p->pPrior );  /* Calling function guarantees this much */
2108   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2109   db = pParse->db;
2110   pPrior = p->pPrior;
2111   dest = *pDest;
2112   if( pPrior->pOrderBy ){
2113     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2114       selectOpName(p->op));
2115     rc = 1;
2116     goto multi_select_end;
2117   }
2118   if( pPrior->pLimit ){
2119     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2120       selectOpName(p->op));
2121     rc = 1;
2122     goto multi_select_end;
2123   }
2124 
2125   v = sqlite3GetVdbe(pParse);
2126   assert( v!=0 );  /* The VDBE already created by calling function */
2127 
2128   /* Create the destination temporary table if necessary
2129   */
2130   if( dest.eDest==SRT_EphemTab ){
2131     assert( p->pEList );
2132     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2133     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2134     dest.eDest = SRT_Table;
2135   }
2136 
2137   /* Make sure all SELECTs in the statement have the same number of elements
2138   ** in their result sets.
2139   */
2140   assert( p->pEList && pPrior->pEList );
2141   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2142     if( p->selFlags & SF_Values ){
2143       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2144     }else{
2145       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2146         " do not have the same number of result columns", selectOpName(p->op));
2147     }
2148     rc = 1;
2149     goto multi_select_end;
2150   }
2151 
2152 #ifndef SQLITE_OMIT_CTE
2153   if( p->selFlags & SF_Recursive ){
2154     generateWithRecursiveQuery(pParse, p, &dest);
2155   }else
2156 #endif
2157 
2158   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2159   */
2160   if( p->pOrderBy ){
2161     return multiSelectOrderBy(pParse, p, pDest);
2162   }else
2163 
2164   /* Generate code for the left and right SELECT statements.
2165   */
2166   switch( p->op ){
2167     case TK_ALL: {
2168       int addr = 0;
2169       int nLimit;
2170       assert( !pPrior->pLimit );
2171       pPrior->iLimit = p->iLimit;
2172       pPrior->iOffset = p->iOffset;
2173       pPrior->pLimit = p->pLimit;
2174       pPrior->pOffset = p->pOffset;
2175       explainSetInteger(iSub1, pParse->iNextSelectId);
2176       rc = sqlite3Select(pParse, pPrior, &dest);
2177       p->pLimit = 0;
2178       p->pOffset = 0;
2179       if( rc ){
2180         goto multi_select_end;
2181       }
2182       p->pPrior = 0;
2183       p->iLimit = pPrior->iLimit;
2184       p->iOffset = pPrior->iOffset;
2185       if( p->iLimit ){
2186         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2187         VdbeComment((v, "Jump ahead if LIMIT reached"));
2188       }
2189       explainSetInteger(iSub2, pParse->iNextSelectId);
2190       rc = sqlite3Select(pParse, p, &dest);
2191       testcase( rc!=SQLITE_OK );
2192       pDelete = p->pPrior;
2193       p->pPrior = pPrior;
2194       p->nSelectRow += pPrior->nSelectRow;
2195       if( pPrior->pLimit
2196        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2197        && nLimit>0 && p->nSelectRow > (u64)nLimit
2198       ){
2199         p->nSelectRow = nLimit;
2200       }
2201       if( addr ){
2202         sqlite3VdbeJumpHere(v, addr);
2203       }
2204       break;
2205     }
2206     case TK_EXCEPT:
2207     case TK_UNION: {
2208       int unionTab;    /* Cursor number of the temporary table holding result */
2209       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2210       int priorOp;     /* The SRT_ operation to apply to prior selects */
2211       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2212       int addr;
2213       SelectDest uniondest;
2214 
2215       testcase( p->op==TK_EXCEPT );
2216       testcase( p->op==TK_UNION );
2217       priorOp = SRT_Union;
2218       if( dest.eDest==priorOp ){
2219         /* We can reuse a temporary table generated by a SELECT to our
2220         ** right.
2221         */
2222         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2223         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2224         unionTab = dest.iSDParm;
2225       }else{
2226         /* We will need to create our own temporary table to hold the
2227         ** intermediate results.
2228         */
2229         unionTab = pParse->nTab++;
2230         assert( p->pOrderBy==0 );
2231         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2232         assert( p->addrOpenEphm[0] == -1 );
2233         p->addrOpenEphm[0] = addr;
2234         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2235         assert( p->pEList );
2236       }
2237 
2238       /* Code the SELECT statements to our left
2239       */
2240       assert( !pPrior->pOrderBy );
2241       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2242       explainSetInteger(iSub1, pParse->iNextSelectId);
2243       rc = sqlite3Select(pParse, pPrior, &uniondest);
2244       if( rc ){
2245         goto multi_select_end;
2246       }
2247 
2248       /* Code the current SELECT statement
2249       */
2250       if( p->op==TK_EXCEPT ){
2251         op = SRT_Except;
2252       }else{
2253         assert( p->op==TK_UNION );
2254         op = SRT_Union;
2255       }
2256       p->pPrior = 0;
2257       pLimit = p->pLimit;
2258       p->pLimit = 0;
2259       pOffset = p->pOffset;
2260       p->pOffset = 0;
2261       uniondest.eDest = op;
2262       explainSetInteger(iSub2, pParse->iNextSelectId);
2263       rc = sqlite3Select(pParse, p, &uniondest);
2264       testcase( rc!=SQLITE_OK );
2265       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2266       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2267       sqlite3ExprListDelete(db, p->pOrderBy);
2268       pDelete = p->pPrior;
2269       p->pPrior = pPrior;
2270       p->pOrderBy = 0;
2271       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2272       sqlite3ExprDelete(db, p->pLimit);
2273       p->pLimit = pLimit;
2274       p->pOffset = pOffset;
2275       p->iLimit = 0;
2276       p->iOffset = 0;
2277 
2278       /* Convert the data in the temporary table into whatever form
2279       ** it is that we currently need.
2280       */
2281       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2282       if( dest.eDest!=priorOp ){
2283         int iCont, iBreak, iStart;
2284         assert( p->pEList );
2285         if( dest.eDest==SRT_Output ){
2286           Select *pFirst = p;
2287           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2288           generateColumnNames(pParse, 0, pFirst->pEList);
2289         }
2290         iBreak = sqlite3VdbeMakeLabel(v);
2291         iCont = sqlite3VdbeMakeLabel(v);
2292         computeLimitRegisters(pParse, p, iBreak);
2293         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2294         iStart = sqlite3VdbeCurrentAddr(v);
2295         selectInnerLoop(pParse, p, p->pEList, unionTab,
2296                         0, 0, &dest, iCont, iBreak);
2297         sqlite3VdbeResolveLabel(v, iCont);
2298         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2299         sqlite3VdbeResolveLabel(v, iBreak);
2300         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2301       }
2302       break;
2303     }
2304     default: assert( p->op==TK_INTERSECT ); {
2305       int tab1, tab2;
2306       int iCont, iBreak, iStart;
2307       Expr *pLimit, *pOffset;
2308       int addr;
2309       SelectDest intersectdest;
2310       int r1;
2311 
2312       /* INTERSECT is different from the others since it requires
2313       ** two temporary tables.  Hence it has its own case.  Begin
2314       ** by allocating the tables we will need.
2315       */
2316       tab1 = pParse->nTab++;
2317       tab2 = pParse->nTab++;
2318       assert( p->pOrderBy==0 );
2319 
2320       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2321       assert( p->addrOpenEphm[0] == -1 );
2322       p->addrOpenEphm[0] = addr;
2323       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2324       assert( p->pEList );
2325 
2326       /* Code the SELECTs to our left into temporary table "tab1".
2327       */
2328       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2329       explainSetInteger(iSub1, pParse->iNextSelectId);
2330       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2331       if( rc ){
2332         goto multi_select_end;
2333       }
2334 
2335       /* Code the current SELECT into temporary table "tab2"
2336       */
2337       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2338       assert( p->addrOpenEphm[1] == -1 );
2339       p->addrOpenEphm[1] = addr;
2340       p->pPrior = 0;
2341       pLimit = p->pLimit;
2342       p->pLimit = 0;
2343       pOffset = p->pOffset;
2344       p->pOffset = 0;
2345       intersectdest.iSDParm = tab2;
2346       explainSetInteger(iSub2, pParse->iNextSelectId);
2347       rc = sqlite3Select(pParse, p, &intersectdest);
2348       testcase( rc!=SQLITE_OK );
2349       pDelete = p->pPrior;
2350       p->pPrior = pPrior;
2351       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2352       sqlite3ExprDelete(db, p->pLimit);
2353       p->pLimit = pLimit;
2354       p->pOffset = pOffset;
2355 
2356       /* Generate code to take the intersection of the two temporary
2357       ** tables.
2358       */
2359       assert( p->pEList );
2360       if( dest.eDest==SRT_Output ){
2361         Select *pFirst = p;
2362         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2363         generateColumnNames(pParse, 0, pFirst->pEList);
2364       }
2365       iBreak = sqlite3VdbeMakeLabel(v);
2366       iCont = sqlite3VdbeMakeLabel(v);
2367       computeLimitRegisters(pParse, p, iBreak);
2368       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2369       r1 = sqlite3GetTempReg(pParse);
2370       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2371       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2372       sqlite3ReleaseTempReg(pParse, r1);
2373       selectInnerLoop(pParse, p, p->pEList, tab1,
2374                       0, 0, &dest, iCont, iBreak);
2375       sqlite3VdbeResolveLabel(v, iCont);
2376       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2377       sqlite3VdbeResolveLabel(v, iBreak);
2378       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2379       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2380       break;
2381     }
2382   }
2383 
2384   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2385 
2386   /* Compute collating sequences used by
2387   ** temporary tables needed to implement the compound select.
2388   ** Attach the KeyInfo structure to all temporary tables.
2389   **
2390   ** This section is run by the right-most SELECT statement only.
2391   ** SELECT statements to the left always skip this part.  The right-most
2392   ** SELECT might also skip this part if it has no ORDER BY clause and
2393   ** no temp tables are required.
2394   */
2395   if( p->selFlags & SF_UsesEphemeral ){
2396     int i;                        /* Loop counter */
2397     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2398     Select *pLoop;                /* For looping through SELECT statements */
2399     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2400     int nCol;                     /* Number of columns in result set */
2401 
2402     assert( p->pNext==0 );
2403     nCol = p->pEList->nExpr;
2404     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2405     if( !pKeyInfo ){
2406       rc = SQLITE_NOMEM;
2407       goto multi_select_end;
2408     }
2409     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2410       *apColl = multiSelectCollSeq(pParse, p, i);
2411       if( 0==*apColl ){
2412         *apColl = db->pDfltColl;
2413       }
2414     }
2415 
2416     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2417       for(i=0; i<2; i++){
2418         int addr = pLoop->addrOpenEphm[i];
2419         if( addr<0 ){
2420           /* If [0] is unused then [1] is also unused.  So we can
2421           ** always safely abort as soon as the first unused slot is found */
2422           assert( pLoop->addrOpenEphm[1]<0 );
2423           break;
2424         }
2425         sqlite3VdbeChangeP2(v, addr, nCol);
2426         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2427                             P4_KEYINFO);
2428         pLoop->addrOpenEphm[i] = -1;
2429       }
2430     }
2431     sqlite3KeyInfoUnref(pKeyInfo);
2432   }
2433 
2434 multi_select_end:
2435   pDest->iSdst = dest.iSdst;
2436   pDest->nSdst = dest.nSdst;
2437   sqlite3SelectDelete(db, pDelete);
2438   return rc;
2439 }
2440 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2441 
2442 /*
2443 ** Code an output subroutine for a coroutine implementation of a
2444 ** SELECT statment.
2445 **
2446 ** The data to be output is contained in pIn->iSdst.  There are
2447 ** pIn->nSdst columns to be output.  pDest is where the output should
2448 ** be sent.
2449 **
2450 ** regReturn is the number of the register holding the subroutine
2451 ** return address.
2452 **
2453 ** If regPrev>0 then it is the first register in a vector that
2454 ** records the previous output.  mem[regPrev] is a flag that is false
2455 ** if there has been no previous output.  If regPrev>0 then code is
2456 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2457 ** keys.
2458 **
2459 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2460 ** iBreak.
2461 */
2462 static int generateOutputSubroutine(
2463   Parse *pParse,          /* Parsing context */
2464   Select *p,              /* The SELECT statement */
2465   SelectDest *pIn,        /* Coroutine supplying data */
2466   SelectDest *pDest,      /* Where to send the data */
2467   int regReturn,          /* The return address register */
2468   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2469   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2470   int iBreak              /* Jump here if we hit the LIMIT */
2471 ){
2472   Vdbe *v = pParse->pVdbe;
2473   int iContinue;
2474   int addr;
2475 
2476   addr = sqlite3VdbeCurrentAddr(v);
2477   iContinue = sqlite3VdbeMakeLabel(v);
2478 
2479   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2480   */
2481   if( regPrev ){
2482     int j1, j2;
2483     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2484     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2485                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2486     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2487     sqlite3VdbeJumpHere(v, j1);
2488     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2489     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2490   }
2491   if( pParse->db->mallocFailed ) return 0;
2492 
2493   /* Suppress the first OFFSET entries if there is an OFFSET clause
2494   */
2495   codeOffset(v, p->iOffset, iContinue);
2496 
2497   switch( pDest->eDest ){
2498     /* Store the result as data using a unique key.
2499     */
2500     case SRT_Table:
2501     case SRT_EphemTab: {
2502       int r1 = sqlite3GetTempReg(pParse);
2503       int r2 = sqlite3GetTempReg(pParse);
2504       testcase( pDest->eDest==SRT_Table );
2505       testcase( pDest->eDest==SRT_EphemTab );
2506       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2507       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2508       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2509       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2510       sqlite3ReleaseTempReg(pParse, r2);
2511       sqlite3ReleaseTempReg(pParse, r1);
2512       break;
2513     }
2514 
2515 #ifndef SQLITE_OMIT_SUBQUERY
2516     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2517     ** then there should be a single item on the stack.  Write this
2518     ** item into the set table with bogus data.
2519     */
2520     case SRT_Set: {
2521       int r1;
2522       assert( pIn->nSdst==1 );
2523       pDest->affSdst =
2524          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2525       r1 = sqlite3GetTempReg(pParse);
2526       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2527       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2528       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2529       sqlite3ReleaseTempReg(pParse, r1);
2530       break;
2531     }
2532 
2533 #if 0  /* Never occurs on an ORDER BY query */
2534     /* If any row exist in the result set, record that fact and abort.
2535     */
2536     case SRT_Exists: {
2537       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2538       /* The LIMIT clause will terminate the loop for us */
2539       break;
2540     }
2541 #endif
2542 
2543     /* If this is a scalar select that is part of an expression, then
2544     ** store the results in the appropriate memory cell and break out
2545     ** of the scan loop.
2546     */
2547     case SRT_Mem: {
2548       assert( pIn->nSdst==1 );
2549       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2550       /* The LIMIT clause will jump out of the loop for us */
2551       break;
2552     }
2553 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2554 
2555     /* The results are stored in a sequence of registers
2556     ** starting at pDest->iSdst.  Then the co-routine yields.
2557     */
2558     case SRT_Coroutine: {
2559       if( pDest->iSdst==0 ){
2560         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2561         pDest->nSdst = pIn->nSdst;
2562       }
2563       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2564       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2565       break;
2566     }
2567 
2568     /* If none of the above, then the result destination must be
2569     ** SRT_Output.  This routine is never called with any other
2570     ** destination other than the ones handled above or SRT_Output.
2571     **
2572     ** For SRT_Output, results are stored in a sequence of registers.
2573     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2574     ** return the next row of result.
2575     */
2576     default: {
2577       assert( pDest->eDest==SRT_Output );
2578       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2579       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2580       break;
2581     }
2582   }
2583 
2584   /* Jump to the end of the loop if the LIMIT is reached.
2585   */
2586   if( p->iLimit ){
2587     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2588   }
2589 
2590   /* Generate the subroutine return
2591   */
2592   sqlite3VdbeResolveLabel(v, iContinue);
2593   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2594 
2595   return addr;
2596 }
2597 
2598 /*
2599 ** Alternative compound select code generator for cases when there
2600 ** is an ORDER BY clause.
2601 **
2602 ** We assume a query of the following form:
2603 **
2604 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2605 **
2606 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2607 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2608 ** co-routines.  Then run the co-routines in parallel and merge the results
2609 ** into the output.  In addition to the two coroutines (called selectA and
2610 ** selectB) there are 7 subroutines:
2611 **
2612 **    outA:    Move the output of the selectA coroutine into the output
2613 **             of the compound query.
2614 **
2615 **    outB:    Move the output of the selectB coroutine into the output
2616 **             of the compound query.  (Only generated for UNION and
2617 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2618 **             appears only in B.)
2619 **
2620 **    AltB:    Called when there is data from both coroutines and A<B.
2621 **
2622 **    AeqB:    Called when there is data from both coroutines and A==B.
2623 **
2624 **    AgtB:    Called when there is data from both coroutines and A>B.
2625 **
2626 **    EofA:    Called when data is exhausted from selectA.
2627 **
2628 **    EofB:    Called when data is exhausted from selectB.
2629 **
2630 ** The implementation of the latter five subroutines depend on which
2631 ** <operator> is used:
2632 **
2633 **
2634 **             UNION ALL         UNION            EXCEPT          INTERSECT
2635 **          -------------  -----------------  --------------  -----------------
2636 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2637 **
2638 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2639 **
2640 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2641 **
2642 **   EofA:   outB, nextB      outB, nextB          halt             halt
2643 **
2644 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2645 **
2646 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2647 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2648 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2649 ** following nextX causes a jump to the end of the select processing.
2650 **
2651 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2652 ** within the output subroutine.  The regPrev register set holds the previously
2653 ** output value.  A comparison is made against this value and the output
2654 ** is skipped if the next results would be the same as the previous.
2655 **
2656 ** The implementation plan is to implement the two coroutines and seven
2657 ** subroutines first, then put the control logic at the bottom.  Like this:
2658 **
2659 **          goto Init
2660 **     coA: coroutine for left query (A)
2661 **     coB: coroutine for right query (B)
2662 **    outA: output one row of A
2663 **    outB: output one row of B (UNION and UNION ALL only)
2664 **    EofA: ...
2665 **    EofB: ...
2666 **    AltB: ...
2667 **    AeqB: ...
2668 **    AgtB: ...
2669 **    Init: initialize coroutine registers
2670 **          yield coA
2671 **          if eof(A) goto EofA
2672 **          yield coB
2673 **          if eof(B) goto EofB
2674 **    Cmpr: Compare A, B
2675 **          Jump AltB, AeqB, AgtB
2676 **     End: ...
2677 **
2678 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2679 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2680 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2681 ** and AgtB jump to either L2 or to one of EofA or EofB.
2682 */
2683 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2684 static int multiSelectOrderBy(
2685   Parse *pParse,        /* Parsing context */
2686   Select *p,            /* The right-most of SELECTs to be coded */
2687   SelectDest *pDest     /* What to do with query results */
2688 ){
2689   int i, j;             /* Loop counters */
2690   Select *pPrior;       /* Another SELECT immediately to our left */
2691   Vdbe *v;              /* Generate code to this VDBE */
2692   SelectDest destA;     /* Destination for coroutine A */
2693   SelectDest destB;     /* Destination for coroutine B */
2694   int regAddrA;         /* Address register for select-A coroutine */
2695   int regAddrB;         /* Address register for select-B coroutine */
2696   int addrSelectA;      /* Address of the select-A coroutine */
2697   int addrSelectB;      /* Address of the select-B coroutine */
2698   int regOutA;          /* Address register for the output-A subroutine */
2699   int regOutB;          /* Address register for the output-B subroutine */
2700   int addrOutA;         /* Address of the output-A subroutine */
2701   int addrOutB = 0;     /* Address of the output-B subroutine */
2702   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2703   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2704   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2705   int addrAltB;         /* Address of the A<B subroutine */
2706   int addrAeqB;         /* Address of the A==B subroutine */
2707   int addrAgtB;         /* Address of the A>B subroutine */
2708   int regLimitA;        /* Limit register for select-A */
2709   int regLimitB;        /* Limit register for select-A */
2710   int regPrev;          /* A range of registers to hold previous output */
2711   int savedLimit;       /* Saved value of p->iLimit */
2712   int savedOffset;      /* Saved value of p->iOffset */
2713   int labelCmpr;        /* Label for the start of the merge algorithm */
2714   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2715   int j1;               /* Jump instructions that get retargetted */
2716   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2717   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2718   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2719   sqlite3 *db;          /* Database connection */
2720   ExprList *pOrderBy;   /* The ORDER BY clause */
2721   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2722   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2723 #ifndef SQLITE_OMIT_EXPLAIN
2724   int iSub1;            /* EQP id of left-hand query */
2725   int iSub2;            /* EQP id of right-hand query */
2726 #endif
2727 
2728   assert( p->pOrderBy!=0 );
2729   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2730   db = pParse->db;
2731   v = pParse->pVdbe;
2732   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2733   labelEnd = sqlite3VdbeMakeLabel(v);
2734   labelCmpr = sqlite3VdbeMakeLabel(v);
2735 
2736 
2737   /* Patch up the ORDER BY clause
2738   */
2739   op = p->op;
2740   pPrior = p->pPrior;
2741   assert( pPrior->pOrderBy==0 );
2742   pOrderBy = p->pOrderBy;
2743   assert( pOrderBy );
2744   nOrderBy = pOrderBy->nExpr;
2745 
2746   /* For operators other than UNION ALL we have to make sure that
2747   ** the ORDER BY clause covers every term of the result set.  Add
2748   ** terms to the ORDER BY clause as necessary.
2749   */
2750   if( op!=TK_ALL ){
2751     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2752       struct ExprList_item *pItem;
2753       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2754         assert( pItem->u.x.iOrderByCol>0 );
2755         if( pItem->u.x.iOrderByCol==i ) break;
2756       }
2757       if( j==nOrderBy ){
2758         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2759         if( pNew==0 ) return SQLITE_NOMEM;
2760         pNew->flags |= EP_IntValue;
2761         pNew->u.iValue = i;
2762         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2763         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2764       }
2765     }
2766   }
2767 
2768   /* Compute the comparison permutation and keyinfo that is used with
2769   ** the permutation used to determine if the next
2770   ** row of results comes from selectA or selectB.  Also add explicit
2771   ** collations to the ORDER BY clause terms so that when the subqueries
2772   ** to the right and the left are evaluated, they use the correct
2773   ** collation.
2774   */
2775   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2776   if( aPermute ){
2777     struct ExprList_item *pItem;
2778     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2779       assert( pItem->u.x.iOrderByCol>0
2780           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2781       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2782     }
2783     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2784   }else{
2785     pKeyMerge = 0;
2786   }
2787 
2788   /* Reattach the ORDER BY clause to the query.
2789   */
2790   p->pOrderBy = pOrderBy;
2791   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2792 
2793   /* Allocate a range of temporary registers and the KeyInfo needed
2794   ** for the logic that removes duplicate result rows when the
2795   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2796   */
2797   if( op==TK_ALL ){
2798     regPrev = 0;
2799   }else{
2800     int nExpr = p->pEList->nExpr;
2801     assert( nOrderBy>=nExpr || db->mallocFailed );
2802     regPrev = pParse->nMem+1;
2803     pParse->nMem += nExpr+1;
2804     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2805     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2806     if( pKeyDup ){
2807       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2808       for(i=0; i<nExpr; i++){
2809         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2810         pKeyDup->aSortOrder[i] = 0;
2811       }
2812     }
2813   }
2814 
2815   /* Separate the left and the right query from one another
2816   */
2817   p->pPrior = 0;
2818   pPrior->pNext = 0;
2819   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2820   if( pPrior->pPrior==0 ){
2821     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2822   }
2823 
2824   /* Compute the limit registers */
2825   computeLimitRegisters(pParse, p, labelEnd);
2826   if( p->iLimit && op==TK_ALL ){
2827     regLimitA = ++pParse->nMem;
2828     regLimitB = ++pParse->nMem;
2829     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2830                                   regLimitA);
2831     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2832   }else{
2833     regLimitA = regLimitB = 0;
2834   }
2835   sqlite3ExprDelete(db, p->pLimit);
2836   p->pLimit = 0;
2837   sqlite3ExprDelete(db, p->pOffset);
2838   p->pOffset = 0;
2839 
2840   regAddrA = ++pParse->nMem;
2841   regAddrB = ++pParse->nMem;
2842   regOutA = ++pParse->nMem;
2843   regOutB = ++pParse->nMem;
2844   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2845   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2846 
2847   /* Generate a coroutine to evaluate the SELECT statement to the
2848   ** left of the compound operator - the "A" select.
2849   */
2850   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2851   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2852   VdbeComment((v, "left SELECT"));
2853   pPrior->iLimit = regLimitA;
2854   explainSetInteger(iSub1, pParse->iNextSelectId);
2855   sqlite3Select(pParse, pPrior, &destA);
2856   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2857   sqlite3VdbeJumpHere(v, j1);
2858 
2859   /* Generate a coroutine to evaluate the SELECT statement on
2860   ** the right - the "B" select
2861   */
2862   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2863   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2864   VdbeComment((v, "right SELECT"));
2865   savedLimit = p->iLimit;
2866   savedOffset = p->iOffset;
2867   p->iLimit = regLimitB;
2868   p->iOffset = 0;
2869   explainSetInteger(iSub2, pParse->iNextSelectId);
2870   sqlite3Select(pParse, p, &destB);
2871   p->iLimit = savedLimit;
2872   p->iOffset = savedOffset;
2873   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2874 
2875   /* Generate a subroutine that outputs the current row of the A
2876   ** select as the next output row of the compound select.
2877   */
2878   VdbeNoopComment((v, "Output routine for A"));
2879   addrOutA = generateOutputSubroutine(pParse,
2880                  p, &destA, pDest, regOutA,
2881                  regPrev, pKeyDup, labelEnd);
2882 
2883   /* Generate a subroutine that outputs the current row of the B
2884   ** select as the next output row of the compound select.
2885   */
2886   if( op==TK_ALL || op==TK_UNION ){
2887     VdbeNoopComment((v, "Output routine for B"));
2888     addrOutB = generateOutputSubroutine(pParse,
2889                  p, &destB, pDest, regOutB,
2890                  regPrev, pKeyDup, labelEnd);
2891   }
2892   sqlite3KeyInfoUnref(pKeyDup);
2893 
2894   /* Generate a subroutine to run when the results from select A
2895   ** are exhausted and only data in select B remains.
2896   */
2897   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2898     addrEofA_noB = addrEofA = labelEnd;
2899   }else{
2900     VdbeNoopComment((v, "eof-A subroutine"));
2901     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2902     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2903                                      VdbeCoverage(v);
2904     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2905     p->nSelectRow += pPrior->nSelectRow;
2906   }
2907 
2908   /* Generate a subroutine to run when the results from select B
2909   ** are exhausted and only data in select A remains.
2910   */
2911   if( op==TK_INTERSECT ){
2912     addrEofB = addrEofA;
2913     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2914   }else{
2915     VdbeNoopComment((v, "eof-B subroutine"));
2916     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2917     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2918     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2919   }
2920 
2921   /* Generate code to handle the case of A<B
2922   */
2923   VdbeNoopComment((v, "A-lt-B subroutine"));
2924   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2925   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2926   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2927 
2928   /* Generate code to handle the case of A==B
2929   */
2930   if( op==TK_ALL ){
2931     addrAeqB = addrAltB;
2932   }else if( op==TK_INTERSECT ){
2933     addrAeqB = addrAltB;
2934     addrAltB++;
2935   }else{
2936     VdbeNoopComment((v, "A-eq-B subroutine"));
2937     addrAeqB =
2938     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2939     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2940   }
2941 
2942   /* Generate code to handle the case of A>B
2943   */
2944   VdbeNoopComment((v, "A-gt-B subroutine"));
2945   addrAgtB = sqlite3VdbeCurrentAddr(v);
2946   if( op==TK_ALL || op==TK_UNION ){
2947     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2948   }
2949   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2950   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2951 
2952   /* This code runs once to initialize everything.
2953   */
2954   sqlite3VdbeJumpHere(v, j1);
2955   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2956   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2957 
2958   /* Implement the main merge loop
2959   */
2960   sqlite3VdbeResolveLabel(v, labelCmpr);
2961   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2962   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2963                          (char*)pKeyMerge, P4_KEYINFO);
2964   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2965   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2966 
2967   /* Jump to the this point in order to terminate the query.
2968   */
2969   sqlite3VdbeResolveLabel(v, labelEnd);
2970 
2971   /* Set the number of output columns
2972   */
2973   if( pDest->eDest==SRT_Output ){
2974     Select *pFirst = pPrior;
2975     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2976     generateColumnNames(pParse, 0, pFirst->pEList);
2977   }
2978 
2979   /* Reassembly the compound query so that it will be freed correctly
2980   ** by the calling function */
2981   if( p->pPrior ){
2982     sqlite3SelectDelete(db, p->pPrior);
2983   }
2984   p->pPrior = pPrior;
2985   pPrior->pNext = p;
2986 
2987   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2988   **** subqueries ****/
2989   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2990   return SQLITE_OK;
2991 }
2992 #endif
2993 
2994 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2995 /* Forward Declarations */
2996 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2997 static void substSelect(sqlite3*, Select *, int, ExprList *);
2998 
2999 /*
3000 ** Scan through the expression pExpr.  Replace every reference to
3001 ** a column in table number iTable with a copy of the iColumn-th
3002 ** entry in pEList.  (But leave references to the ROWID column
3003 ** unchanged.)
3004 **
3005 ** This routine is part of the flattening procedure.  A subquery
3006 ** whose result set is defined by pEList appears as entry in the
3007 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3008 ** FORM clause entry is iTable.  This routine make the necessary
3009 ** changes to pExpr so that it refers directly to the source table
3010 ** of the subquery rather the result set of the subquery.
3011 */
3012 static Expr *substExpr(
3013   sqlite3 *db,        /* Report malloc errors to this connection */
3014   Expr *pExpr,        /* Expr in which substitution occurs */
3015   int iTable,         /* Table to be substituted */
3016   ExprList *pEList    /* Substitute expressions */
3017 ){
3018   if( pExpr==0 ) return 0;
3019   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3020     if( pExpr->iColumn<0 ){
3021       pExpr->op = TK_NULL;
3022     }else{
3023       Expr *pNew;
3024       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3025       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3026       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3027       sqlite3ExprDelete(db, pExpr);
3028       pExpr = pNew;
3029     }
3030   }else{
3031     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3032     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3033     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3034       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3035     }else{
3036       substExprList(db, pExpr->x.pList, iTable, pEList);
3037     }
3038   }
3039   return pExpr;
3040 }
3041 static void substExprList(
3042   sqlite3 *db,         /* Report malloc errors here */
3043   ExprList *pList,     /* List to scan and in which to make substitutes */
3044   int iTable,          /* Table to be substituted */
3045   ExprList *pEList     /* Substitute values */
3046 ){
3047   int i;
3048   if( pList==0 ) return;
3049   for(i=0; i<pList->nExpr; i++){
3050     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3051   }
3052 }
3053 static void substSelect(
3054   sqlite3 *db,         /* Report malloc errors here */
3055   Select *p,           /* SELECT statement in which to make substitutions */
3056   int iTable,          /* Table to be replaced */
3057   ExprList *pEList     /* Substitute values */
3058 ){
3059   SrcList *pSrc;
3060   struct SrcList_item *pItem;
3061   int i;
3062   if( !p ) return;
3063   substExprList(db, p->pEList, iTable, pEList);
3064   substExprList(db, p->pGroupBy, iTable, pEList);
3065   substExprList(db, p->pOrderBy, iTable, pEList);
3066   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3067   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3068   substSelect(db, p->pPrior, iTable, pEList);
3069   pSrc = p->pSrc;
3070   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3071   if( ALWAYS(pSrc) ){
3072     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3073       substSelect(db, pItem->pSelect, iTable, pEList);
3074     }
3075   }
3076 }
3077 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3078 
3079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3080 /*
3081 ** This routine attempts to flatten subqueries as a performance optimization.
3082 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3083 **
3084 ** To understand the concept of flattening, consider the following
3085 ** query:
3086 **
3087 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3088 **
3089 ** The default way of implementing this query is to execute the
3090 ** subquery first and store the results in a temporary table, then
3091 ** run the outer query on that temporary table.  This requires two
3092 ** passes over the data.  Furthermore, because the temporary table
3093 ** has no indices, the WHERE clause on the outer query cannot be
3094 ** optimized.
3095 **
3096 ** This routine attempts to rewrite queries such as the above into
3097 ** a single flat select, like this:
3098 **
3099 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3100 **
3101 ** The code generated for this simplification gives the same result
3102 ** but only has to scan the data once.  And because indices might
3103 ** exist on the table t1, a complete scan of the data might be
3104 ** avoided.
3105 **
3106 ** Flattening is only attempted if all of the following are true:
3107 **
3108 **   (1)  The subquery and the outer query do not both use aggregates.
3109 **
3110 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3111 **
3112 **   (3)  The subquery is not the right operand of a left outer join
3113 **        (Originally ticket #306.  Strengthened by ticket #3300)
3114 **
3115 **   (4)  The subquery is not DISTINCT.
3116 **
3117 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3118 **        sub-queries that were excluded from this optimization. Restriction
3119 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3120 **
3121 **   (6)  The subquery does not use aggregates or the outer query is not
3122 **        DISTINCT.
3123 **
3124 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3125 **        A FROM clause, consider adding a FROM close with the special
3126 **        table sqlite_once that consists of a single row containing a
3127 **        single NULL.
3128 **
3129 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3130 **
3131 **   (9)  The subquery does not use LIMIT or the outer query does not use
3132 **        aggregates.
3133 **
3134 **  (10)  The subquery does not use aggregates or the outer query does not
3135 **        use LIMIT.
3136 **
3137 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3138 **
3139 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3140 **        a separate restriction deriving from ticket #350.
3141 **
3142 **  (13)  The subquery and outer query do not both use LIMIT.
3143 **
3144 **  (14)  The subquery does not use OFFSET.
3145 **
3146 **  (15)  The outer query is not part of a compound select or the
3147 **        subquery does not have a LIMIT clause.
3148 **        (See ticket #2339 and ticket [02a8e81d44]).
3149 **
3150 **  (16)  The outer query is not an aggregate or the subquery does
3151 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3152 **        until we introduced the group_concat() function.
3153 **
3154 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3155 **        compound clause made up entirely of non-aggregate queries, and
3156 **        the parent query:
3157 **
3158 **          * is not itself part of a compound select,
3159 **          * is not an aggregate or DISTINCT query, and
3160 **          * is not a join
3161 **
3162 **        The parent and sub-query may contain WHERE clauses. Subject to
3163 **        rules (11), (13) and (14), they may also contain ORDER BY,
3164 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3165 **        operator other than UNION ALL because all the other compound
3166 **        operators have an implied DISTINCT which is disallowed by
3167 **        restriction (4).
3168 **
3169 **        Also, each component of the sub-query must return the same number
3170 **        of result columns. This is actually a requirement for any compound
3171 **        SELECT statement, but all the code here does is make sure that no
3172 **        such (illegal) sub-query is flattened. The caller will detect the
3173 **        syntax error and return a detailed message.
3174 **
3175 **  (18)  If the sub-query is a compound select, then all terms of the
3176 **        ORDER by clause of the parent must be simple references to
3177 **        columns of the sub-query.
3178 **
3179 **  (19)  The subquery does not use LIMIT or the outer query does not
3180 **        have a WHERE clause.
3181 **
3182 **  (20)  If the sub-query is a compound select, then it must not use
3183 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3184 **        somewhat by saying that the terms of the ORDER BY clause must
3185 **        appear as unmodified result columns in the outer query.  But we
3186 **        have other optimizations in mind to deal with that case.
3187 **
3188 **  (21)  The subquery does not use LIMIT or the outer query is not
3189 **        DISTINCT.  (See ticket [752e1646fc]).
3190 **
3191 **  (22)  The subquery is not a recursive CTE.
3192 **
3193 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3194 **        compound query. This restriction is because transforming the
3195 **        parent to a compound query confuses the code that handles
3196 **        recursive queries in multiSelect().
3197 **
3198 **
3199 ** In this routine, the "p" parameter is a pointer to the outer query.
3200 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3201 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3202 **
3203 ** If flattening is not attempted, this routine is a no-op and returns 0.
3204 ** If flattening is attempted this routine returns 1.
3205 **
3206 ** All of the expression analysis must occur on both the outer query and
3207 ** the subquery before this routine runs.
3208 */
3209 static int flattenSubquery(
3210   Parse *pParse,       /* Parsing context */
3211   Select *p,           /* The parent or outer SELECT statement */
3212   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3213   int isAgg,           /* True if outer SELECT uses aggregate functions */
3214   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3215 ){
3216   const char *zSavedAuthContext = pParse->zAuthContext;
3217   Select *pParent;
3218   Select *pSub;       /* The inner query or "subquery" */
3219   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3220   SrcList *pSrc;      /* The FROM clause of the outer query */
3221   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3222   ExprList *pList;    /* The result set of the outer query */
3223   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3224   int i;              /* Loop counter */
3225   Expr *pWhere;                    /* The WHERE clause */
3226   struct SrcList_item *pSubitem;   /* The subquery */
3227   sqlite3 *db = pParse->db;
3228 
3229   /* Check to see if flattening is permitted.  Return 0 if not.
3230   */
3231   assert( p!=0 );
3232   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3233   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3234   pSrc = p->pSrc;
3235   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3236   pSubitem = &pSrc->a[iFrom];
3237   iParent = pSubitem->iCursor;
3238   pSub = pSubitem->pSelect;
3239   assert( pSub!=0 );
3240   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3241   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3242   pSubSrc = pSub->pSrc;
3243   assert( pSubSrc );
3244   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3245   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3246   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3247   ** became arbitrary expressions, we were forced to add restrictions (13)
3248   ** and (14). */
3249   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3250   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3251   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3252     return 0;                                            /* Restriction (15) */
3253   }
3254   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3255   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3256   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3257      return 0;         /* Restrictions (8)(9) */
3258   }
3259   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3260      return 0;         /* Restriction (6)  */
3261   }
3262   if( p->pOrderBy && pSub->pOrderBy ){
3263      return 0;                                           /* Restriction (11) */
3264   }
3265   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3266   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3267   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3268      return 0;         /* Restriction (21) */
3269   }
3270   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
3271   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
3272 
3273   /* OBSOLETE COMMENT 1:
3274   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3275   ** not used as the right operand of an outer join.  Examples of why this
3276   ** is not allowed:
3277   **
3278   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3279   **
3280   ** If we flatten the above, we would get
3281   **
3282   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3283   **
3284   ** which is not at all the same thing.
3285   **
3286   ** OBSOLETE COMMENT 2:
3287   ** Restriction 12:  If the subquery is the right operand of a left outer
3288   ** join, make sure the subquery has no WHERE clause.
3289   ** An examples of why this is not allowed:
3290   **
3291   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3292   **
3293   ** If we flatten the above, we would get
3294   **
3295   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3296   **
3297   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3298   ** effectively converts the OUTER JOIN into an INNER JOIN.
3299   **
3300   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3301   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3302   ** is fraught with danger.  Best to avoid the whole thing.  If the
3303   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3304   */
3305   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3306     return 0;
3307   }
3308 
3309   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3310   ** use only the UNION ALL operator. And none of the simple select queries
3311   ** that make up the compound SELECT are allowed to be aggregate or distinct
3312   ** queries.
3313   */
3314   if( pSub->pPrior ){
3315     if( pSub->pOrderBy ){
3316       return 0;  /* Restriction 20 */
3317     }
3318     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3319       return 0;
3320     }
3321     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3322       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3323       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3324       assert( pSub->pSrc!=0 );
3325       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3326        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3327        || pSub1->pSrc->nSrc<1
3328        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3329       ){
3330         return 0;
3331       }
3332       testcase( pSub1->pSrc->nSrc>1 );
3333     }
3334 
3335     /* Restriction 18. */
3336     if( p->pOrderBy ){
3337       int ii;
3338       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3339         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3340       }
3341     }
3342   }
3343 
3344   /***** If we reach this point, flattening is permitted. *****/
3345 
3346   /* Authorize the subquery */
3347   pParse->zAuthContext = pSubitem->zName;
3348   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3349   testcase( i==SQLITE_DENY );
3350   pParse->zAuthContext = zSavedAuthContext;
3351 
3352   /* If the sub-query is a compound SELECT statement, then (by restrictions
3353   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3354   ** be of the form:
3355   **
3356   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3357   **
3358   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3359   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3360   ** OFFSET clauses and joins them to the left-hand-side of the original
3361   ** using UNION ALL operators. In this case N is the number of simple
3362   ** select statements in the compound sub-query.
3363   **
3364   ** Example:
3365   **
3366   **     SELECT a+1 FROM (
3367   **        SELECT x FROM tab
3368   **        UNION ALL
3369   **        SELECT y FROM tab
3370   **        UNION ALL
3371   **        SELECT abs(z*2) FROM tab2
3372   **     ) WHERE a!=5 ORDER BY 1
3373   **
3374   ** Transformed into:
3375   **
3376   **     SELECT x+1 FROM tab WHERE x+1!=5
3377   **     UNION ALL
3378   **     SELECT y+1 FROM tab WHERE y+1!=5
3379   **     UNION ALL
3380   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3381   **     ORDER BY 1
3382   **
3383   ** We call this the "compound-subquery flattening".
3384   */
3385   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3386     Select *pNew;
3387     ExprList *pOrderBy = p->pOrderBy;
3388     Expr *pLimit = p->pLimit;
3389     Expr *pOffset = p->pOffset;
3390     Select *pPrior = p->pPrior;
3391     p->pOrderBy = 0;
3392     p->pSrc = 0;
3393     p->pPrior = 0;
3394     p->pLimit = 0;
3395     p->pOffset = 0;
3396     pNew = sqlite3SelectDup(db, p, 0);
3397     p->pOffset = pOffset;
3398     p->pLimit = pLimit;
3399     p->pOrderBy = pOrderBy;
3400     p->pSrc = pSrc;
3401     p->op = TK_ALL;
3402     if( pNew==0 ){
3403       p->pPrior = pPrior;
3404     }else{
3405       pNew->pPrior = pPrior;
3406       if( pPrior ) pPrior->pNext = pNew;
3407       pNew->pNext = p;
3408       p->pPrior = pNew;
3409     }
3410     if( db->mallocFailed ) return 1;
3411   }
3412 
3413   /* Begin flattening the iFrom-th entry of the FROM clause
3414   ** in the outer query.
3415   */
3416   pSub = pSub1 = pSubitem->pSelect;
3417 
3418   /* Delete the transient table structure associated with the
3419   ** subquery
3420   */
3421   sqlite3DbFree(db, pSubitem->zDatabase);
3422   sqlite3DbFree(db, pSubitem->zName);
3423   sqlite3DbFree(db, pSubitem->zAlias);
3424   pSubitem->zDatabase = 0;
3425   pSubitem->zName = 0;
3426   pSubitem->zAlias = 0;
3427   pSubitem->pSelect = 0;
3428 
3429   /* Defer deleting the Table object associated with the
3430   ** subquery until code generation is
3431   ** complete, since there may still exist Expr.pTab entries that
3432   ** refer to the subquery even after flattening.  Ticket #3346.
3433   **
3434   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3435   */
3436   if( ALWAYS(pSubitem->pTab!=0) ){
3437     Table *pTabToDel = pSubitem->pTab;
3438     if( pTabToDel->nRef==1 ){
3439       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3440       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3441       pToplevel->pZombieTab = pTabToDel;
3442     }else{
3443       pTabToDel->nRef--;
3444     }
3445     pSubitem->pTab = 0;
3446   }
3447 
3448   /* The following loop runs once for each term in a compound-subquery
3449   ** flattening (as described above).  If we are doing a different kind
3450   ** of flattening - a flattening other than a compound-subquery flattening -
3451   ** then this loop only runs once.
3452   **
3453   ** This loop moves all of the FROM elements of the subquery into the
3454   ** the FROM clause of the outer query.  Before doing this, remember
3455   ** the cursor number for the original outer query FROM element in
3456   ** iParent.  The iParent cursor will never be used.  Subsequent code
3457   ** will scan expressions looking for iParent references and replace
3458   ** those references with expressions that resolve to the subquery FROM
3459   ** elements we are now copying in.
3460   */
3461   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3462     int nSubSrc;
3463     u8 jointype = 0;
3464     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3465     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3466     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3467 
3468     if( pSrc ){
3469       assert( pParent==p );  /* First time through the loop */
3470       jointype = pSubitem->jointype;
3471     }else{
3472       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3473       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3474       if( pSrc==0 ){
3475         assert( db->mallocFailed );
3476         break;
3477       }
3478     }
3479 
3480     /* The subquery uses a single slot of the FROM clause of the outer
3481     ** query.  If the subquery has more than one element in its FROM clause,
3482     ** then expand the outer query to make space for it to hold all elements
3483     ** of the subquery.
3484     **
3485     ** Example:
3486     **
3487     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3488     **
3489     ** The outer query has 3 slots in its FROM clause.  One slot of the
3490     ** outer query (the middle slot) is used by the subquery.  The next
3491     ** block of code will expand the out query to 4 slots.  The middle
3492     ** slot is expanded to two slots in order to make space for the
3493     ** two elements in the FROM clause of the subquery.
3494     */
3495     if( nSubSrc>1 ){
3496       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3497       if( db->mallocFailed ){
3498         break;
3499       }
3500     }
3501 
3502     /* Transfer the FROM clause terms from the subquery into the
3503     ** outer query.
3504     */
3505     for(i=0; i<nSubSrc; i++){
3506       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3507       pSrc->a[i+iFrom] = pSubSrc->a[i];
3508       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3509     }
3510     pSrc->a[iFrom].jointype = jointype;
3511 
3512     /* Now begin substituting subquery result set expressions for
3513     ** references to the iParent in the outer query.
3514     **
3515     ** Example:
3516     **
3517     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3518     **   \                     \_____________ subquery __________/          /
3519     **    \_____________________ outer query ______________________________/
3520     **
3521     ** We look at every expression in the outer query and every place we see
3522     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3523     */
3524     pList = pParent->pEList;
3525     for(i=0; i<pList->nExpr; i++){
3526       if( pList->a[i].zName==0 ){
3527         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3528         sqlite3Dequote(zName);
3529         pList->a[i].zName = zName;
3530       }
3531     }
3532     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3533     if( isAgg ){
3534       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3535       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3536     }
3537     if( pSub->pOrderBy ){
3538       assert( pParent->pOrderBy==0 );
3539       pParent->pOrderBy = pSub->pOrderBy;
3540       pSub->pOrderBy = 0;
3541     }else if( pParent->pOrderBy ){
3542       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3543     }
3544     if( pSub->pWhere ){
3545       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3546     }else{
3547       pWhere = 0;
3548     }
3549     if( subqueryIsAgg ){
3550       assert( pParent->pHaving==0 );
3551       pParent->pHaving = pParent->pWhere;
3552       pParent->pWhere = pWhere;
3553       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3554       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3555                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3556       assert( pParent->pGroupBy==0 );
3557       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3558     }else{
3559       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3560       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3561     }
3562 
3563     /* The flattened query is distinct if either the inner or the
3564     ** outer query is distinct.
3565     */
3566     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3567 
3568     /*
3569     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3570     **
3571     ** One is tempted to try to add a and b to combine the limits.  But this
3572     ** does not work if either limit is negative.
3573     */
3574     if( pSub->pLimit ){
3575       pParent->pLimit = pSub->pLimit;
3576       pSub->pLimit = 0;
3577     }
3578   }
3579 
3580   /* Finially, delete what is left of the subquery and return
3581   ** success.
3582   */
3583   sqlite3SelectDelete(db, pSub1);
3584 
3585   return 1;
3586 }
3587 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3588 
3589 /*
3590 ** Based on the contents of the AggInfo structure indicated by the first
3591 ** argument, this function checks if the following are true:
3592 **
3593 **    * the query contains just a single aggregate function,
3594 **    * the aggregate function is either min() or max(), and
3595 **    * the argument to the aggregate function is a column value.
3596 **
3597 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3598 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3599 ** list of arguments passed to the aggregate before returning.
3600 **
3601 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3602 ** WHERE_ORDERBY_NORMAL is returned.
3603 */
3604 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3605   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3606 
3607   *ppMinMax = 0;
3608   if( pAggInfo->nFunc==1 ){
3609     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3610     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3611 
3612     assert( pExpr->op==TK_AGG_FUNCTION );
3613     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3614       const char *zFunc = pExpr->u.zToken;
3615       if( sqlite3StrICmp(zFunc, "min")==0 ){
3616         eRet = WHERE_ORDERBY_MIN;
3617         *ppMinMax = pEList;
3618       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3619         eRet = WHERE_ORDERBY_MAX;
3620         *ppMinMax = pEList;
3621       }
3622     }
3623   }
3624 
3625   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3626   return eRet;
3627 }
3628 
3629 /*
3630 ** The select statement passed as the first argument is an aggregate query.
3631 ** The second argument is the associated aggregate-info object. This
3632 ** function tests if the SELECT is of the form:
3633 **
3634 **   SELECT count(*) FROM <tbl>
3635 **
3636 ** where table is a database table, not a sub-select or view. If the query
3637 ** does match this pattern, then a pointer to the Table object representing
3638 ** <tbl> is returned. Otherwise, 0 is returned.
3639 */
3640 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3641   Table *pTab;
3642   Expr *pExpr;
3643 
3644   assert( !p->pGroupBy );
3645 
3646   if( p->pWhere || p->pEList->nExpr!=1
3647    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3648   ){
3649     return 0;
3650   }
3651   pTab = p->pSrc->a[0].pTab;
3652   pExpr = p->pEList->a[0].pExpr;
3653   assert( pTab && !pTab->pSelect && pExpr );
3654 
3655   if( IsVirtual(pTab) ) return 0;
3656   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3657   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3658   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3659   if( pExpr->flags&EP_Distinct ) return 0;
3660 
3661   return pTab;
3662 }
3663 
3664 /*
3665 ** If the source-list item passed as an argument was augmented with an
3666 ** INDEXED BY clause, then try to locate the specified index. If there
3667 ** was such a clause and the named index cannot be found, return
3668 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3669 ** pFrom->pIndex and return SQLITE_OK.
3670 */
3671 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3672   if( pFrom->pTab && pFrom->zIndex ){
3673     Table *pTab = pFrom->pTab;
3674     char *zIndex = pFrom->zIndex;
3675     Index *pIdx;
3676     for(pIdx=pTab->pIndex;
3677         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3678         pIdx=pIdx->pNext
3679     );
3680     if( !pIdx ){
3681       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3682       pParse->checkSchema = 1;
3683       return SQLITE_ERROR;
3684     }
3685     pFrom->pIndex = pIdx;
3686   }
3687   return SQLITE_OK;
3688 }
3689 /*
3690 ** Detect compound SELECT statements that use an ORDER BY clause with
3691 ** an alternative collating sequence.
3692 **
3693 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3694 **
3695 ** These are rewritten as a subquery:
3696 **
3697 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3698 **     ORDER BY ... COLLATE ...
3699 **
3700 ** This transformation is necessary because the multiSelectOrderBy() routine
3701 ** above that generates the code for a compound SELECT with an ORDER BY clause
3702 ** uses a merge algorithm that requires the same collating sequence on the
3703 ** result columns as on the ORDER BY clause.  See ticket
3704 ** http://www.sqlite.org/src/info/6709574d2a
3705 **
3706 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3707 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3708 ** there are COLLATE terms in the ORDER BY.
3709 */
3710 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3711   int i;
3712   Select *pNew;
3713   Select *pX;
3714   sqlite3 *db;
3715   struct ExprList_item *a;
3716   SrcList *pNewSrc;
3717   Parse *pParse;
3718   Token dummy;
3719 
3720   if( p->pPrior==0 ) return WRC_Continue;
3721   if( p->pOrderBy==0 ) return WRC_Continue;
3722   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3723   if( pX==0 ) return WRC_Continue;
3724   a = p->pOrderBy->a;
3725   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3726     if( a[i].pExpr->flags & EP_Collate ) break;
3727   }
3728   if( i<0 ) return WRC_Continue;
3729 
3730   /* If we reach this point, that means the transformation is required. */
3731 
3732   pParse = pWalker->pParse;
3733   db = pParse->db;
3734   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3735   if( pNew==0 ) return WRC_Abort;
3736   memset(&dummy, 0, sizeof(dummy));
3737   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3738   if( pNewSrc==0 ) return WRC_Abort;
3739   *pNew = *p;
3740   p->pSrc = pNewSrc;
3741   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3742   p->op = TK_SELECT;
3743   p->pWhere = 0;
3744   pNew->pGroupBy = 0;
3745   pNew->pHaving = 0;
3746   pNew->pOrderBy = 0;
3747   p->pPrior = 0;
3748   p->pNext = 0;
3749   p->selFlags &= ~SF_Compound;
3750   assert( pNew->pPrior!=0 );
3751   pNew->pPrior->pNext = pNew;
3752   pNew->pLimit = 0;
3753   pNew->pOffset = 0;
3754   return WRC_Continue;
3755 }
3756 
3757 #ifndef SQLITE_OMIT_CTE
3758 /*
3759 ** Argument pWith (which may be NULL) points to a linked list of nested
3760 ** WITH contexts, from inner to outermost. If the table identified by
3761 ** FROM clause element pItem is really a common-table-expression (CTE)
3762 ** then return a pointer to the CTE definition for that table. Otherwise
3763 ** return NULL.
3764 **
3765 ** If a non-NULL value is returned, set *ppContext to point to the With
3766 ** object that the returned CTE belongs to.
3767 */
3768 static struct Cte *searchWith(
3769   With *pWith,                    /* Current outermost WITH clause */
3770   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3771   With **ppContext                /* OUT: WITH clause return value belongs to */
3772 ){
3773   const char *zName;
3774   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3775     With *p;
3776     for(p=pWith; p; p=p->pOuter){
3777       int i;
3778       for(i=0; i<p->nCte; i++){
3779         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3780           *ppContext = p;
3781           return &p->a[i];
3782         }
3783       }
3784     }
3785   }
3786   return 0;
3787 }
3788 
3789 /* The code generator maintains a stack of active WITH clauses
3790 ** with the inner-most WITH clause being at the top of the stack.
3791 **
3792 ** This routine pushes the WITH clause passed as the second argument
3793 ** onto the top of the stack. If argument bFree is true, then this
3794 ** WITH clause will never be popped from the stack. In this case it
3795 ** should be freed along with the Parse object. In other cases, when
3796 ** bFree==0, the With object will be freed along with the SELECT
3797 ** statement with which it is associated.
3798 */
3799 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3800   assert( bFree==0 || pParse->pWith==0 );
3801   if( pWith ){
3802     pWith->pOuter = pParse->pWith;
3803     pParse->pWith = pWith;
3804     pParse->bFreeWith = bFree;
3805   }
3806 }
3807 
3808 /*
3809 ** This function checks if argument pFrom refers to a CTE declared by
3810 ** a WITH clause on the stack currently maintained by the parser. And,
3811 ** if currently processing a CTE expression, if it is a recursive
3812 ** reference to the current CTE.
3813 **
3814 ** If pFrom falls into either of the two categories above, pFrom->pTab
3815 ** and other fields are populated accordingly. The caller should check
3816 ** (pFrom->pTab!=0) to determine whether or not a successful match
3817 ** was found.
3818 **
3819 ** Whether or not a match is found, SQLITE_OK is returned if no error
3820 ** occurs. If an error does occur, an error message is stored in the
3821 ** parser and some error code other than SQLITE_OK returned.
3822 */
3823 static int withExpand(
3824   Walker *pWalker,
3825   struct SrcList_item *pFrom
3826 ){
3827   Parse *pParse = pWalker->pParse;
3828   sqlite3 *db = pParse->db;
3829   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3830   With *pWith;                    /* WITH clause that pCte belongs to */
3831 
3832   assert( pFrom->pTab==0 );
3833 
3834   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3835   if( pCte ){
3836     Table *pTab;
3837     ExprList *pEList;
3838     Select *pSel;
3839     Select *pLeft;                /* Left-most SELECT statement */
3840     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3841     With *pSavedWith;             /* Initial value of pParse->pWith */
3842 
3843     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3844     ** recursive reference to CTE pCte. Leave an error in pParse and return
3845     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3846     ** In this case, proceed.  */
3847     if( pCte->zErr ){
3848       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3849       return SQLITE_ERROR;
3850     }
3851 
3852     assert( pFrom->pTab==0 );
3853     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3854     if( pTab==0 ) return WRC_Abort;
3855     pTab->nRef = 1;
3856     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3857     pTab->iPKey = -1;
3858     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3859     pTab->tabFlags |= TF_Ephemeral;
3860     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3861     if( db->mallocFailed ) return SQLITE_NOMEM;
3862     assert( pFrom->pSelect );
3863 
3864     /* Check if this is a recursive CTE. */
3865     pSel = pFrom->pSelect;
3866     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3867     if( bMayRecursive ){
3868       int i;
3869       SrcList *pSrc = pFrom->pSelect->pSrc;
3870       for(i=0; i<pSrc->nSrc; i++){
3871         struct SrcList_item *pItem = &pSrc->a[i];
3872         if( pItem->zDatabase==0
3873          && pItem->zName!=0
3874          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3875           ){
3876           pItem->pTab = pTab;
3877           pItem->isRecursive = 1;
3878           pTab->nRef++;
3879           pSel->selFlags |= SF_Recursive;
3880         }
3881       }
3882     }
3883 
3884     /* Only one recursive reference is permitted. */
3885     if( pTab->nRef>2 ){
3886       sqlite3ErrorMsg(
3887           pParse, "multiple references to recursive table: %s", pCte->zName
3888       );
3889       return SQLITE_ERROR;
3890     }
3891     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3892 
3893     pCte->zErr = "circular reference: %s";
3894     pSavedWith = pParse->pWith;
3895     pParse->pWith = pWith;
3896     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3897 
3898     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3899     pEList = pLeft->pEList;
3900     if( pCte->pCols ){
3901       if( pEList->nExpr!=pCte->pCols->nExpr ){
3902         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3903             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3904         );
3905         pParse->pWith = pSavedWith;
3906         return SQLITE_ERROR;
3907       }
3908       pEList = pCte->pCols;
3909     }
3910 
3911     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3912     if( bMayRecursive ){
3913       if( pSel->selFlags & SF_Recursive ){
3914         pCte->zErr = "multiple recursive references: %s";
3915       }else{
3916         pCte->zErr = "recursive reference in a subquery: %s";
3917       }
3918       sqlite3WalkSelect(pWalker, pSel);
3919     }
3920     pCte->zErr = 0;
3921     pParse->pWith = pSavedWith;
3922   }
3923 
3924   return SQLITE_OK;
3925 }
3926 #endif
3927 
3928 #ifndef SQLITE_OMIT_CTE
3929 /*
3930 ** If the SELECT passed as the second argument has an associated WITH
3931 ** clause, pop it from the stack stored as part of the Parse object.
3932 **
3933 ** This function is used as the xSelectCallback2() callback by
3934 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3935 ** names and other FROM clause elements.
3936 */
3937 static void selectPopWith(Walker *pWalker, Select *p){
3938   Parse *pParse = pWalker->pParse;
3939   With *pWith = findRightmost(p)->pWith;
3940   if( pWith!=0 ){
3941     assert( pParse->pWith==pWith );
3942     pParse->pWith = pWith->pOuter;
3943   }
3944 }
3945 #else
3946 #define selectPopWith 0
3947 #endif
3948 
3949 /*
3950 ** This routine is a Walker callback for "expanding" a SELECT statement.
3951 ** "Expanding" means to do the following:
3952 **
3953 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3954 **         element of the FROM clause.
3955 **
3956 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3957 **         defines FROM clause.  When views appear in the FROM clause,
3958 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3959 **         that implements the view.  A copy is made of the view's SELECT
3960 **         statement so that we can freely modify or delete that statement
3961 **         without worrying about messing up the persistent representation
3962 **         of the view.
3963 **
3964 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
3965 **         on joins and the ON and USING clause of joins.
3966 **
3967 **    (4)  Scan the list of columns in the result set (pEList) looking
3968 **         for instances of the "*" operator or the TABLE.* operator.
3969 **         If found, expand each "*" to be every column in every table
3970 **         and TABLE.* to be every column in TABLE.
3971 **
3972 */
3973 static int selectExpander(Walker *pWalker, Select *p){
3974   Parse *pParse = pWalker->pParse;
3975   int i, j, k;
3976   SrcList *pTabList;
3977   ExprList *pEList;
3978   struct SrcList_item *pFrom;
3979   sqlite3 *db = pParse->db;
3980   Expr *pE, *pRight, *pExpr;
3981   u16 selFlags = p->selFlags;
3982 
3983   p->selFlags |= SF_Expanded;
3984   if( db->mallocFailed  ){
3985     return WRC_Abort;
3986   }
3987   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3988     return WRC_Prune;
3989   }
3990   pTabList = p->pSrc;
3991   pEList = p->pEList;
3992   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
3993 
3994   /* Make sure cursor numbers have been assigned to all entries in
3995   ** the FROM clause of the SELECT statement.
3996   */
3997   sqlite3SrcListAssignCursors(pParse, pTabList);
3998 
3999   /* Look up every table named in the FROM clause of the select.  If
4000   ** an entry of the FROM clause is a subquery instead of a table or view,
4001   ** then create a transient table structure to describe the subquery.
4002   */
4003   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4004     Table *pTab;
4005     assert( pFrom->isRecursive==0 || pFrom->pTab );
4006     if( pFrom->isRecursive ) continue;
4007     if( pFrom->pTab!=0 ){
4008       /* This statement has already been prepared.  There is no need
4009       ** to go further. */
4010       assert( i==0 );
4011 #ifndef SQLITE_OMIT_CTE
4012       selectPopWith(pWalker, p);
4013 #endif
4014       return WRC_Prune;
4015     }
4016 #ifndef SQLITE_OMIT_CTE
4017     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4018     if( pFrom->pTab ) {} else
4019 #endif
4020     if( pFrom->zName==0 ){
4021 #ifndef SQLITE_OMIT_SUBQUERY
4022       Select *pSel = pFrom->pSelect;
4023       /* A sub-query in the FROM clause of a SELECT */
4024       assert( pSel!=0 );
4025       assert( pFrom->pTab==0 );
4026       sqlite3WalkSelect(pWalker, pSel);
4027       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4028       if( pTab==0 ) return WRC_Abort;
4029       pTab->nRef = 1;
4030       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4031       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4032       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4033       pTab->iPKey = -1;
4034       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4035       pTab->tabFlags |= TF_Ephemeral;
4036 #endif
4037     }else{
4038       /* An ordinary table or view name in the FROM clause */
4039       assert( pFrom->pTab==0 );
4040       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4041       if( pTab==0 ) return WRC_Abort;
4042       if( pTab->nRef==0xffff ){
4043         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4044            pTab->zName);
4045         pFrom->pTab = 0;
4046         return WRC_Abort;
4047       }
4048       pTab->nRef++;
4049 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4050       if( pTab->pSelect || IsVirtual(pTab) ){
4051         /* We reach here if the named table is a really a view */
4052         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4053         assert( pFrom->pSelect==0 );
4054         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4055         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4056       }
4057 #endif
4058     }
4059 
4060     /* Locate the index named by the INDEXED BY clause, if any. */
4061     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4062       return WRC_Abort;
4063     }
4064   }
4065 
4066   /* Process NATURAL keywords, and ON and USING clauses of joins.
4067   */
4068   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4069     return WRC_Abort;
4070   }
4071 
4072   /* For every "*" that occurs in the column list, insert the names of
4073   ** all columns in all tables.  And for every TABLE.* insert the names
4074   ** of all columns in TABLE.  The parser inserted a special expression
4075   ** with the TK_ALL operator for each "*" that it found in the column list.
4076   ** The following code just has to locate the TK_ALL expressions and expand
4077   ** each one to the list of all columns in all tables.
4078   **
4079   ** The first loop just checks to see if there are any "*" operators
4080   ** that need expanding.
4081   */
4082   for(k=0; k<pEList->nExpr; k++){
4083     pE = pEList->a[k].pExpr;
4084     if( pE->op==TK_ALL ) break;
4085     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4086     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4087     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4088   }
4089   if( k<pEList->nExpr ){
4090     /*
4091     ** If we get here it means the result set contains one or more "*"
4092     ** operators that need to be expanded.  Loop through each expression
4093     ** in the result set and expand them one by one.
4094     */
4095     struct ExprList_item *a = pEList->a;
4096     ExprList *pNew = 0;
4097     int flags = pParse->db->flags;
4098     int longNames = (flags & SQLITE_FullColNames)!=0
4099                       && (flags & SQLITE_ShortColNames)==0;
4100 
4101     /* When processing FROM-clause subqueries, it is always the case
4102     ** that full_column_names=OFF and short_column_names=ON.  The
4103     ** sqlite3ResultSetOfSelect() routine makes it so. */
4104     assert( (p->selFlags & SF_NestedFrom)==0
4105           || ((flags & SQLITE_FullColNames)==0 &&
4106               (flags & SQLITE_ShortColNames)!=0) );
4107 
4108     for(k=0; k<pEList->nExpr; k++){
4109       pE = a[k].pExpr;
4110       pRight = pE->pRight;
4111       assert( pE->op!=TK_DOT || pRight!=0 );
4112       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4113         /* This particular expression does not need to be expanded.
4114         */
4115         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4116         if( pNew ){
4117           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4118           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4119           a[k].zName = 0;
4120           a[k].zSpan = 0;
4121         }
4122         a[k].pExpr = 0;
4123       }else{
4124         /* This expression is a "*" or a "TABLE.*" and needs to be
4125         ** expanded. */
4126         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4127         char *zTName = 0;       /* text of name of TABLE */
4128         if( pE->op==TK_DOT ){
4129           assert( pE->pLeft!=0 );
4130           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4131           zTName = pE->pLeft->u.zToken;
4132         }
4133         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4134           Table *pTab = pFrom->pTab;
4135           Select *pSub = pFrom->pSelect;
4136           char *zTabName = pFrom->zAlias;
4137           const char *zSchemaName = 0;
4138           int iDb;
4139           if( zTabName==0 ){
4140             zTabName = pTab->zName;
4141           }
4142           if( db->mallocFailed ) break;
4143           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4144             pSub = 0;
4145             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4146               continue;
4147             }
4148             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4149             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4150           }
4151           for(j=0; j<pTab->nCol; j++){
4152             char *zName = pTab->aCol[j].zName;
4153             char *zColname;  /* The computed column name */
4154             char *zToFree;   /* Malloced string that needs to be freed */
4155             Token sColname;  /* Computed column name as a token */
4156 
4157             assert( zName );
4158             if( zTName && pSub
4159              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4160             ){
4161               continue;
4162             }
4163 
4164             /* If a column is marked as 'hidden' (currently only possible
4165             ** for virtual tables), do not include it in the expanded
4166             ** result-set list.
4167             */
4168             if( IsHiddenColumn(&pTab->aCol[j]) ){
4169               assert(IsVirtual(pTab));
4170               continue;
4171             }
4172             tableSeen = 1;
4173 
4174             if( i>0 && zTName==0 ){
4175               if( (pFrom->jointype & JT_NATURAL)!=0
4176                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4177               ){
4178                 /* In a NATURAL join, omit the join columns from the
4179                 ** table to the right of the join */
4180                 continue;
4181               }
4182               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4183                 /* In a join with a USING clause, omit columns in the
4184                 ** using clause from the table on the right. */
4185                 continue;
4186               }
4187             }
4188             pRight = sqlite3Expr(db, TK_ID, zName);
4189             zColname = zName;
4190             zToFree = 0;
4191             if( longNames || pTabList->nSrc>1 ){
4192               Expr *pLeft;
4193               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4194               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4195               if( zSchemaName ){
4196                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4197                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4198               }
4199               if( longNames ){
4200                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4201                 zToFree = zColname;
4202               }
4203             }else{
4204               pExpr = pRight;
4205             }
4206             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4207             sColname.z = zColname;
4208             sColname.n = sqlite3Strlen30(zColname);
4209             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4210             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4211               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4212               if( pSub ){
4213                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4214                 testcase( pX->zSpan==0 );
4215               }else{
4216                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4217                                            zSchemaName, zTabName, zColname);
4218                 testcase( pX->zSpan==0 );
4219               }
4220               pX->bSpanIsTab = 1;
4221             }
4222             sqlite3DbFree(db, zToFree);
4223           }
4224         }
4225         if( !tableSeen ){
4226           if( zTName ){
4227             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4228           }else{
4229             sqlite3ErrorMsg(pParse, "no tables specified");
4230           }
4231         }
4232       }
4233     }
4234     sqlite3ExprListDelete(db, pEList);
4235     p->pEList = pNew;
4236   }
4237 #if SQLITE_MAX_COLUMN
4238   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4239     sqlite3ErrorMsg(pParse, "too many columns in result set");
4240   }
4241 #endif
4242   return WRC_Continue;
4243 }
4244 
4245 /*
4246 ** No-op routine for the parse-tree walker.
4247 **
4248 ** When this routine is the Walker.xExprCallback then expression trees
4249 ** are walked without any actions being taken at each node.  Presumably,
4250 ** when this routine is used for Walker.xExprCallback then
4251 ** Walker.xSelectCallback is set to do something useful for every
4252 ** subquery in the parser tree.
4253 */
4254 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4255   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4256   return WRC_Continue;
4257 }
4258 
4259 /*
4260 ** This routine "expands" a SELECT statement and all of its subqueries.
4261 ** For additional information on what it means to "expand" a SELECT
4262 ** statement, see the comment on the selectExpand worker callback above.
4263 **
4264 ** Expanding a SELECT statement is the first step in processing a
4265 ** SELECT statement.  The SELECT statement must be expanded before
4266 ** name resolution is performed.
4267 **
4268 ** If anything goes wrong, an error message is written into pParse.
4269 ** The calling function can detect the problem by looking at pParse->nErr
4270 ** and/or pParse->db->mallocFailed.
4271 */
4272 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4273   Walker w;
4274   memset(&w, 0, sizeof(w));
4275   w.xExprCallback = exprWalkNoop;
4276   w.pParse = pParse;
4277   if( pParse->hasCompound ){
4278     w.xSelectCallback = convertCompoundSelectToSubquery;
4279     sqlite3WalkSelect(&w, pSelect);
4280   }
4281   w.xSelectCallback = selectExpander;
4282   w.xSelectCallback2 = selectPopWith;
4283   sqlite3WalkSelect(&w, pSelect);
4284 }
4285 
4286 
4287 #ifndef SQLITE_OMIT_SUBQUERY
4288 /*
4289 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4290 ** interface.
4291 **
4292 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4293 ** information to the Table structure that represents the result set
4294 ** of that subquery.
4295 **
4296 ** The Table structure that represents the result set was constructed
4297 ** by selectExpander() but the type and collation information was omitted
4298 ** at that point because identifiers had not yet been resolved.  This
4299 ** routine is called after identifier resolution.
4300 */
4301 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4302   Parse *pParse;
4303   int i;
4304   SrcList *pTabList;
4305   struct SrcList_item *pFrom;
4306 
4307   assert( p->selFlags & SF_Resolved );
4308   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4309     p->selFlags |= SF_HasTypeInfo;
4310     pParse = pWalker->pParse;
4311     pTabList = p->pSrc;
4312     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4313       Table *pTab = pFrom->pTab;
4314       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4315         /* A sub-query in the FROM clause of a SELECT */
4316         Select *pSel = pFrom->pSelect;
4317         if( pSel ){
4318           while( pSel->pPrior ) pSel = pSel->pPrior;
4319           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4320         }
4321       }
4322     }
4323   }
4324 }
4325 #endif
4326 
4327 
4328 /*
4329 ** This routine adds datatype and collating sequence information to
4330 ** the Table structures of all FROM-clause subqueries in a
4331 ** SELECT statement.
4332 **
4333 ** Use this routine after name resolution.
4334 */
4335 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4336 #ifndef SQLITE_OMIT_SUBQUERY
4337   Walker w;
4338   memset(&w, 0, sizeof(w));
4339   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4340   w.xExprCallback = exprWalkNoop;
4341   w.pParse = pParse;
4342   sqlite3WalkSelect(&w, pSelect);
4343 #endif
4344 }
4345 
4346 
4347 /*
4348 ** This routine sets up a SELECT statement for processing.  The
4349 ** following is accomplished:
4350 **
4351 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4352 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4353 **     *  ON and USING clauses are shifted into WHERE statements
4354 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4355 **     *  Identifiers in expression are matched to tables.
4356 **
4357 ** This routine acts recursively on all subqueries within the SELECT.
4358 */
4359 void sqlite3SelectPrep(
4360   Parse *pParse,         /* The parser context */
4361   Select *p,             /* The SELECT statement being coded. */
4362   NameContext *pOuterNC  /* Name context for container */
4363 ){
4364   sqlite3 *db;
4365   if( NEVER(p==0) ) return;
4366   db = pParse->db;
4367   if( db->mallocFailed ) return;
4368   if( p->selFlags & SF_HasTypeInfo ) return;
4369   sqlite3SelectExpand(pParse, p);
4370   if( pParse->nErr || db->mallocFailed ) return;
4371   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4372   if( pParse->nErr || db->mallocFailed ) return;
4373   sqlite3SelectAddTypeInfo(pParse, p);
4374 }
4375 
4376 /*
4377 ** Reset the aggregate accumulator.
4378 **
4379 ** The aggregate accumulator is a set of memory cells that hold
4380 ** intermediate results while calculating an aggregate.  This
4381 ** routine generates code that stores NULLs in all of those memory
4382 ** cells.
4383 */
4384 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4385   Vdbe *v = pParse->pVdbe;
4386   int i;
4387   struct AggInfo_func *pFunc;
4388   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4389   if( nReg==0 ) return;
4390 #ifdef SQLITE_DEBUG
4391   /* Verify that all AggInfo registers are within the range specified by
4392   ** AggInfo.mnReg..AggInfo.mxReg */
4393   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4394   for(i=0; i<pAggInfo->nColumn; i++){
4395     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4396          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4397   }
4398   for(i=0; i<pAggInfo->nFunc; i++){
4399     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4400          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4401   }
4402 #endif
4403   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4404   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4405     if( pFunc->iDistinct>=0 ){
4406       Expr *pE = pFunc->pExpr;
4407       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4408       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4409         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4410            "argument");
4411         pFunc->iDistinct = -1;
4412       }else{
4413         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4414         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4415                           (char*)pKeyInfo, P4_KEYINFO);
4416       }
4417     }
4418   }
4419 }
4420 
4421 /*
4422 ** Invoke the OP_AggFinalize opcode for every aggregate function
4423 ** in the AggInfo structure.
4424 */
4425 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4426   Vdbe *v = pParse->pVdbe;
4427   int i;
4428   struct AggInfo_func *pF;
4429   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4430     ExprList *pList = pF->pExpr->x.pList;
4431     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4432     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4433                       (void*)pF->pFunc, P4_FUNCDEF);
4434   }
4435 }
4436 
4437 /*
4438 ** Update the accumulator memory cells for an aggregate based on
4439 ** the current cursor position.
4440 */
4441 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4442   Vdbe *v = pParse->pVdbe;
4443   int i;
4444   int regHit = 0;
4445   int addrHitTest = 0;
4446   struct AggInfo_func *pF;
4447   struct AggInfo_col *pC;
4448 
4449   pAggInfo->directMode = 1;
4450   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4451     int nArg;
4452     int addrNext = 0;
4453     int regAgg;
4454     ExprList *pList = pF->pExpr->x.pList;
4455     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4456     if( pList ){
4457       nArg = pList->nExpr;
4458       regAgg = sqlite3GetTempRange(pParse, nArg);
4459       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4460     }else{
4461       nArg = 0;
4462       regAgg = 0;
4463     }
4464     if( pF->iDistinct>=0 ){
4465       addrNext = sqlite3VdbeMakeLabel(v);
4466       assert( nArg==1 );
4467       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4468     }
4469     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4470       CollSeq *pColl = 0;
4471       struct ExprList_item *pItem;
4472       int j;
4473       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4474       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4475         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4476       }
4477       if( !pColl ){
4478         pColl = pParse->db->pDfltColl;
4479       }
4480       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4481       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4482     }
4483     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4484                       (void*)pF->pFunc, P4_FUNCDEF);
4485     sqlite3VdbeChangeP5(v, (u8)nArg);
4486     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4487     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4488     if( addrNext ){
4489       sqlite3VdbeResolveLabel(v, addrNext);
4490       sqlite3ExprCacheClear(pParse);
4491     }
4492   }
4493 
4494   /* Before populating the accumulator registers, clear the column cache.
4495   ** Otherwise, if any of the required column values are already present
4496   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4497   ** to pC->iMem. But by the time the value is used, the original register
4498   ** may have been used, invalidating the underlying buffer holding the
4499   ** text or blob value. See ticket [883034dcb5].
4500   **
4501   ** Another solution would be to change the OP_SCopy used to copy cached
4502   ** values to an OP_Copy.
4503   */
4504   if( regHit ){
4505     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4506   }
4507   sqlite3ExprCacheClear(pParse);
4508   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4509     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4510   }
4511   pAggInfo->directMode = 0;
4512   sqlite3ExprCacheClear(pParse);
4513   if( addrHitTest ){
4514     sqlite3VdbeJumpHere(v, addrHitTest);
4515   }
4516 }
4517 
4518 /*
4519 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4520 ** count(*) query ("SELECT count(*) FROM pTab").
4521 */
4522 #ifndef SQLITE_OMIT_EXPLAIN
4523 static void explainSimpleCount(
4524   Parse *pParse,                  /* Parse context */
4525   Table *pTab,                    /* Table being queried */
4526   Index *pIdx                     /* Index used to optimize scan, or NULL */
4527 ){
4528   if( pParse->explain==2 ){
4529     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4530     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4531         pTab->zName,
4532         bCover ? " USING COVERING INDEX " : "",
4533         bCover ? pIdx->zName : ""
4534     );
4535     sqlite3VdbeAddOp4(
4536         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4537     );
4538   }
4539 }
4540 #else
4541 # define explainSimpleCount(a,b,c)
4542 #endif
4543 
4544 /*
4545 ** Generate code for the SELECT statement given in the p argument.
4546 **
4547 ** The results are returned according to the SelectDest structure.
4548 ** See comments in sqliteInt.h for further information.
4549 **
4550 ** This routine returns the number of errors.  If any errors are
4551 ** encountered, then an appropriate error message is left in
4552 ** pParse->zErrMsg.
4553 **
4554 ** This routine does NOT free the Select structure passed in.  The
4555 ** calling function needs to do that.
4556 */
4557 int sqlite3Select(
4558   Parse *pParse,         /* The parser context */
4559   Select *p,             /* The SELECT statement being coded. */
4560   SelectDest *pDest      /* What to do with the query results */
4561 ){
4562   int i, j;              /* Loop counters */
4563   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4564   Vdbe *v;               /* The virtual machine under construction */
4565   int isAgg;             /* True for select lists like "count(*)" */
4566   ExprList *pEList;      /* List of columns to extract. */
4567   SrcList *pTabList;     /* List of tables to select from */
4568   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4569   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4570   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4571   int rc = 1;            /* Value to return from this function */
4572   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4573   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4574   AggInfo sAggInfo;      /* Information used by aggregate queries */
4575   int iEnd;              /* Address of the end of the query */
4576   sqlite3 *db;           /* The database connection */
4577 
4578 #ifndef SQLITE_OMIT_EXPLAIN
4579   int iRestoreSelectId = pParse->iSelectId;
4580   pParse->iSelectId = pParse->iNextSelectId++;
4581 #endif
4582 
4583   db = pParse->db;
4584   if( p==0 || db->mallocFailed || pParse->nErr ){
4585     return 1;
4586   }
4587   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4588   memset(&sAggInfo, 0, sizeof(sAggInfo));
4589 
4590   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4591   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4592   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4593   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4594   if( IgnorableOrderby(pDest) ){
4595     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4596            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4597            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4598            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4599     /* If ORDER BY makes no difference in the output then neither does
4600     ** DISTINCT so it can be removed too. */
4601     sqlite3ExprListDelete(db, p->pOrderBy);
4602     p->pOrderBy = 0;
4603     p->selFlags &= ~SF_Distinct;
4604   }
4605   sqlite3SelectPrep(pParse, p, 0);
4606   memset(&sSort, 0, sizeof(sSort));
4607   sSort.pOrderBy = p->pOrderBy;
4608   pTabList = p->pSrc;
4609   pEList = p->pEList;
4610   if( pParse->nErr || db->mallocFailed ){
4611     goto select_end;
4612   }
4613   isAgg = (p->selFlags & SF_Aggregate)!=0;
4614   assert( pEList!=0 );
4615 
4616   /* Begin generating code.
4617   */
4618   v = sqlite3GetVdbe(pParse);
4619   if( v==0 ) goto select_end;
4620 
4621   /* If writing to memory or generating a set
4622   ** only a single column may be output.
4623   */
4624 #ifndef SQLITE_OMIT_SUBQUERY
4625   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4626     goto select_end;
4627   }
4628 #endif
4629 
4630   /* Generate code for all sub-queries in the FROM clause
4631   */
4632 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4633   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4634     struct SrcList_item *pItem = &pTabList->a[i];
4635     SelectDest dest;
4636     Select *pSub = pItem->pSelect;
4637     int isAggSub;
4638 
4639     if( pSub==0 ) continue;
4640 
4641     /* Sometimes the code for a subquery will be generated more than
4642     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4643     ** for example.  In that case, do not regenerate the code to manifest
4644     ** a view or the co-routine to implement a view.  The first instance
4645     ** is sufficient, though the subroutine to manifest the view does need
4646     ** to be invoked again. */
4647     if( pItem->addrFillSub ){
4648       if( pItem->viaCoroutine==0 ){
4649         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4650       }
4651       continue;
4652     }
4653 
4654     /* Increment Parse.nHeight by the height of the largest expression
4655     ** tree referred to by this, the parent select. The child select
4656     ** may contain expression trees of at most
4657     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4658     ** more conservative than necessary, but much easier than enforcing
4659     ** an exact limit.
4660     */
4661     pParse->nHeight += sqlite3SelectExprHeight(p);
4662 
4663     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4664     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4665       /* This subquery can be absorbed into its parent. */
4666       if( isAggSub ){
4667         isAgg = 1;
4668         p->selFlags |= SF_Aggregate;
4669       }
4670       i = -1;
4671     }else if( pTabList->nSrc==1
4672            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4673     ){
4674       /* Implement a co-routine that will return a single row of the result
4675       ** set on each invocation.
4676       */
4677       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4678       pItem->regReturn = ++pParse->nMem;
4679       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4680       VdbeComment((v, "%s", pItem->pTab->zName));
4681       pItem->addrFillSub = addrTop;
4682       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4683       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4684       sqlite3Select(pParse, pSub, &dest);
4685       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4686       pItem->viaCoroutine = 1;
4687       pItem->regResult = dest.iSdst;
4688       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4689       sqlite3VdbeJumpHere(v, addrTop-1);
4690       sqlite3ClearTempRegCache(pParse);
4691     }else{
4692       /* Generate a subroutine that will fill an ephemeral table with
4693       ** the content of this subquery.  pItem->addrFillSub will point
4694       ** to the address of the generated subroutine.  pItem->regReturn
4695       ** is a register allocated to hold the subroutine return address
4696       */
4697       int topAddr;
4698       int onceAddr = 0;
4699       int retAddr;
4700       assert( pItem->addrFillSub==0 );
4701       pItem->regReturn = ++pParse->nMem;
4702       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4703       pItem->addrFillSub = topAddr+1;
4704       if( pItem->isCorrelated==0 ){
4705         /* If the subquery is not correlated and if we are not inside of
4706         ** a trigger, then we only need to compute the value of the subquery
4707         ** once. */
4708         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4709         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4710       }else{
4711         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4712       }
4713       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4714       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4715       sqlite3Select(pParse, pSub, &dest);
4716       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4717       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4718       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4719       VdbeComment((v, "end %s", pItem->pTab->zName));
4720       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4721       sqlite3ClearTempRegCache(pParse);
4722     }
4723     if( /*pParse->nErr ||*/ db->mallocFailed ){
4724       goto select_end;
4725     }
4726     pParse->nHeight -= sqlite3SelectExprHeight(p);
4727     pTabList = p->pSrc;
4728     if( !IgnorableOrderby(pDest) ){
4729       sSort.pOrderBy = p->pOrderBy;
4730     }
4731   }
4732   pEList = p->pEList;
4733 #endif
4734   pWhere = p->pWhere;
4735   pGroupBy = p->pGroupBy;
4736   pHaving = p->pHaving;
4737   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4738 
4739 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4740   /* If there is are a sequence of queries, do the earlier ones first.
4741   */
4742   if( p->pPrior ){
4743     rc = multiSelect(pParse, p, pDest);
4744     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4745     return rc;
4746   }
4747 #endif
4748 
4749   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4750   ** if the select-list is the same as the ORDER BY list, then this query
4751   ** can be rewritten as a GROUP BY. In other words, this:
4752   **
4753   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4754   **
4755   ** is transformed to:
4756   **
4757   **     SELECT xyz FROM ... GROUP BY xyz
4758   **
4759   ** The second form is preferred as a single index (or temp-table) may be
4760   ** used for both the ORDER BY and DISTINCT processing. As originally
4761   ** written the query must use a temp-table for at least one of the ORDER
4762   ** BY and DISTINCT, and an index or separate temp-table for the other.
4763   */
4764   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4765    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4766   ){
4767     p->selFlags &= ~SF_Distinct;
4768     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4769     pGroupBy = p->pGroupBy;
4770     sSort.pOrderBy = 0;
4771     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4772     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4773     ** original setting of the SF_Distinct flag, not the current setting */
4774     assert( sDistinct.isTnct );
4775   }
4776 
4777   /* If there is an ORDER BY clause, then this sorting
4778   ** index might end up being unused if the data can be
4779   ** extracted in pre-sorted order.  If that is the case, then the
4780   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4781   ** we figure out that the sorting index is not needed.  The addrSortIndex
4782   ** variable is used to facilitate that change.
4783   */
4784   if( sSort.pOrderBy ){
4785     KeyInfo *pKeyInfo;
4786     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4787     sSort.iECursor = pParse->nTab++;
4788     sSort.addrSortIndex =
4789       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4790           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4791           (char*)pKeyInfo, P4_KEYINFO
4792       );
4793   }else{
4794     sSort.addrSortIndex = -1;
4795   }
4796 
4797   /* If the output is destined for a temporary table, open that table.
4798   */
4799   if( pDest->eDest==SRT_EphemTab ){
4800     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4801   }
4802 
4803   /* Set the limiter.
4804   */
4805   iEnd = sqlite3VdbeMakeLabel(v);
4806   p->nSelectRow = LARGEST_INT64;
4807   computeLimitRegisters(pParse, p, iEnd);
4808   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4809     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4810     sSort.sortFlags |= SORTFLAG_UseSorter;
4811   }
4812 
4813   /* Open a virtual index to use for the distinct set.
4814   */
4815   if( p->selFlags & SF_Distinct ){
4816     sDistinct.tabTnct = pParse->nTab++;
4817     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4818                                 sDistinct.tabTnct, 0, 0,
4819                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4820                                 P4_KEYINFO);
4821     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4822     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4823   }else{
4824     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4825   }
4826 
4827   if( !isAgg && pGroupBy==0 ){
4828     /* No aggregate functions and no GROUP BY clause */
4829     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4830 
4831     /* Begin the database scan. */
4832     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4833                                p->pEList, wctrlFlags, 0);
4834     if( pWInfo==0 ) goto select_end;
4835     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4836       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4837     }
4838     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4839       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4840     }
4841     if( sSort.pOrderBy ){
4842       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4843       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4844         sSort.pOrderBy = 0;
4845       }
4846     }
4847 
4848     /* If sorting index that was created by a prior OP_OpenEphemeral
4849     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4850     ** into an OP_Noop.
4851     */
4852     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4853       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4854     }
4855 
4856     /* Use the standard inner loop. */
4857     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4858                     sqlite3WhereContinueLabel(pWInfo),
4859                     sqlite3WhereBreakLabel(pWInfo));
4860 
4861     /* End the database scan loop.
4862     */
4863     sqlite3WhereEnd(pWInfo);
4864   }else{
4865     /* This case when there exist aggregate functions or a GROUP BY clause
4866     ** or both */
4867     NameContext sNC;    /* Name context for processing aggregate information */
4868     int iAMem;          /* First Mem address for storing current GROUP BY */
4869     int iBMem;          /* First Mem address for previous GROUP BY */
4870     int iUseFlag;       /* Mem address holding flag indicating that at least
4871                         ** one row of the input to the aggregator has been
4872                         ** processed */
4873     int iAbortFlag;     /* Mem address which causes query abort if positive */
4874     int groupBySort;    /* Rows come from source in GROUP BY order */
4875     int addrEnd;        /* End of processing for this SELECT */
4876     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4877     int sortOut = 0;    /* Output register from the sorter */
4878     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4879 
4880     /* Remove any and all aliases between the result set and the
4881     ** GROUP BY clause.
4882     */
4883     if( pGroupBy ){
4884       int k;                        /* Loop counter */
4885       struct ExprList_item *pItem;  /* For looping over expression in a list */
4886 
4887       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4888         pItem->u.x.iAlias = 0;
4889       }
4890       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4891         pItem->u.x.iAlias = 0;
4892       }
4893       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4894     }else{
4895       p->nSelectRow = 1;
4896     }
4897 
4898 
4899     /* If there is both a GROUP BY and an ORDER BY clause and they are
4900     ** identical, then it may be possible to disable the ORDER BY clause
4901     ** on the grounds that the GROUP BY will cause elements to come out
4902     ** in the correct order. It also may not - the GROUP BY may use a
4903     ** database index that causes rows to be grouped together as required
4904     ** but not actually sorted. Either way, record the fact that the
4905     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4906     ** variable.  */
4907     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4908       orderByGrp = 1;
4909     }
4910 
4911     /* Create a label to jump to when we want to abort the query */
4912     addrEnd = sqlite3VdbeMakeLabel(v);
4913 
4914     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4915     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4916     ** SELECT statement.
4917     */
4918     memset(&sNC, 0, sizeof(sNC));
4919     sNC.pParse = pParse;
4920     sNC.pSrcList = pTabList;
4921     sNC.pAggInfo = &sAggInfo;
4922     sAggInfo.mnReg = pParse->nMem+1;
4923     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
4924     sAggInfo.pGroupBy = pGroupBy;
4925     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4926     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
4927     if( pHaving ){
4928       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4929     }
4930     sAggInfo.nAccumulator = sAggInfo.nColumn;
4931     for(i=0; i<sAggInfo.nFunc; i++){
4932       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4933       sNC.ncFlags |= NC_InAggFunc;
4934       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4935       sNC.ncFlags &= ~NC_InAggFunc;
4936     }
4937     sAggInfo.mxReg = pParse->nMem;
4938     if( db->mallocFailed ) goto select_end;
4939 
4940     /* Processing for aggregates with GROUP BY is very different and
4941     ** much more complex than aggregates without a GROUP BY.
4942     */
4943     if( pGroupBy ){
4944       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4945       int j1;             /* A-vs-B comparision jump */
4946       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4947       int regOutputRow;   /* Return address register for output subroutine */
4948       int addrSetAbort;   /* Set the abort flag and return */
4949       int addrTopOfLoop;  /* Top of the input loop */
4950       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4951       int addrReset;      /* Subroutine for resetting the accumulator */
4952       int regReset;       /* Return address register for reset subroutine */
4953 
4954       /* If there is a GROUP BY clause we might need a sorting index to
4955       ** implement it.  Allocate that sorting index now.  If it turns out
4956       ** that we do not need it after all, the OP_SorterOpen instruction
4957       ** will be converted into a Noop.
4958       */
4959       sAggInfo.sortingIdx = pParse->nTab++;
4960       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
4961       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4962           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4963           0, (char*)pKeyInfo, P4_KEYINFO);
4964 
4965       /* Initialize memory locations used by GROUP BY aggregate processing
4966       */
4967       iUseFlag = ++pParse->nMem;
4968       iAbortFlag = ++pParse->nMem;
4969       regOutputRow = ++pParse->nMem;
4970       addrOutputRow = sqlite3VdbeMakeLabel(v);
4971       regReset = ++pParse->nMem;
4972       addrReset = sqlite3VdbeMakeLabel(v);
4973       iAMem = pParse->nMem + 1;
4974       pParse->nMem += pGroupBy->nExpr;
4975       iBMem = pParse->nMem + 1;
4976       pParse->nMem += pGroupBy->nExpr;
4977       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4978       VdbeComment((v, "clear abort flag"));
4979       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4980       VdbeComment((v, "indicate accumulator empty"));
4981       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4982 
4983       /* Begin a loop that will extract all source rows in GROUP BY order.
4984       ** This might involve two separate loops with an OP_Sort in between, or
4985       ** it might be a single loop that uses an index to extract information
4986       ** in the right order to begin with.
4987       */
4988       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4989       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
4990           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
4991       );
4992       if( pWInfo==0 ) goto select_end;
4993       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
4994         /* The optimizer is able to deliver rows in group by order so
4995         ** we do not have to sort.  The OP_OpenEphemeral table will be
4996         ** cancelled later because we still need to use the pKeyInfo
4997         */
4998         groupBySort = 0;
4999       }else{
5000         /* Rows are coming out in undetermined order.  We have to push
5001         ** each row into a sorting index, terminate the first loop,
5002         ** then loop over the sorting index in order to get the output
5003         ** in sorted order
5004         */
5005         int regBase;
5006         int regRecord;
5007         int nCol;
5008         int nGroupBy;
5009 
5010         explainTempTable(pParse,
5011             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5012                     "DISTINCT" : "GROUP BY");
5013 
5014         groupBySort = 1;
5015         nGroupBy = pGroupBy->nExpr;
5016         nCol = nGroupBy;
5017         j = nGroupBy;
5018         for(i=0; i<sAggInfo.nColumn; i++){
5019           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5020             nCol++;
5021             j++;
5022           }
5023         }
5024         regBase = sqlite3GetTempRange(pParse, nCol);
5025         sqlite3ExprCacheClear(pParse);
5026         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5027         j = nGroupBy;
5028         for(i=0; i<sAggInfo.nColumn; i++){
5029           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5030           if( pCol->iSorterColumn>=j ){
5031             int r1 = j + regBase;
5032             int r2;
5033 
5034             r2 = sqlite3ExprCodeGetColumn(pParse,
5035                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5036             if( r1!=r2 ){
5037               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5038             }
5039             j++;
5040           }
5041         }
5042         regRecord = sqlite3GetTempReg(pParse);
5043         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5044         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5045         sqlite3ReleaseTempReg(pParse, regRecord);
5046         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5047         sqlite3WhereEnd(pWInfo);
5048         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5049         sortOut = sqlite3GetTempReg(pParse);
5050         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5051         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5052         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5053         sAggInfo.useSortingIdx = 1;
5054         sqlite3ExprCacheClear(pParse);
5055 
5056       }
5057 
5058       /* If the index or temporary table used by the GROUP BY sort
5059       ** will naturally deliver rows in the order required by the ORDER BY
5060       ** clause, cancel the ephemeral table open coded earlier.
5061       **
5062       ** This is an optimization - the correct answer should result regardless.
5063       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5064       ** disable this optimization for testing purposes.  */
5065       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5066        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5067       ){
5068         sSort.pOrderBy = 0;
5069         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5070       }
5071 
5072       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5073       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5074       ** Then compare the current GROUP BY terms against the GROUP BY terms
5075       ** from the previous row currently stored in a0, a1, a2...
5076       */
5077       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5078       sqlite3ExprCacheClear(pParse);
5079       if( groupBySort ){
5080         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
5081       }
5082       for(j=0; j<pGroupBy->nExpr; j++){
5083         if( groupBySort ){
5084           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5085           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
5086         }else{
5087           sAggInfo.directMode = 1;
5088           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5089         }
5090       }
5091       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5092                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5093       j1 = sqlite3VdbeCurrentAddr(v);
5094       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5095 
5096       /* Generate code that runs whenever the GROUP BY changes.
5097       ** Changes in the GROUP BY are detected by the previous code
5098       ** block.  If there were no changes, this block is skipped.
5099       **
5100       ** This code copies current group by terms in b0,b1,b2,...
5101       ** over to a0,a1,a2.  It then calls the output subroutine
5102       ** and resets the aggregate accumulator registers in preparation
5103       ** for the next GROUP BY batch.
5104       */
5105       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5106       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5107       VdbeComment((v, "output one row"));
5108       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5109       VdbeComment((v, "check abort flag"));
5110       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5111       VdbeComment((v, "reset accumulator"));
5112 
5113       /* Update the aggregate accumulators based on the content of
5114       ** the current row
5115       */
5116       sqlite3VdbeJumpHere(v, j1);
5117       updateAccumulator(pParse, &sAggInfo);
5118       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5119       VdbeComment((v, "indicate data in accumulator"));
5120 
5121       /* End of the loop
5122       */
5123       if( groupBySort ){
5124         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5125         VdbeCoverage(v);
5126       }else{
5127         sqlite3WhereEnd(pWInfo);
5128         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5129       }
5130 
5131       /* Output the final row of result
5132       */
5133       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5134       VdbeComment((v, "output final row"));
5135 
5136       /* Jump over the subroutines
5137       */
5138       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5139 
5140       /* Generate a subroutine that outputs a single row of the result
5141       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5142       ** is less than or equal to zero, the subroutine is a no-op.  If
5143       ** the processing calls for the query to abort, this subroutine
5144       ** increments the iAbortFlag memory location before returning in
5145       ** order to signal the caller to abort.
5146       */
5147       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5148       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5149       VdbeComment((v, "set abort flag"));
5150       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5151       sqlite3VdbeResolveLabel(v, addrOutputRow);
5152       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5153       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5154       VdbeComment((v, "Groupby result generator entry point"));
5155       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5156       finalizeAggFunctions(pParse, &sAggInfo);
5157       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5158       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5159                       &sDistinct, pDest,
5160                       addrOutputRow+1, addrSetAbort);
5161       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5162       VdbeComment((v, "end groupby result generator"));
5163 
5164       /* Generate a subroutine that will reset the group-by accumulator
5165       */
5166       sqlite3VdbeResolveLabel(v, addrReset);
5167       resetAccumulator(pParse, &sAggInfo);
5168       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5169 
5170     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5171     else {
5172       ExprList *pDel = 0;
5173 #ifndef SQLITE_OMIT_BTREECOUNT
5174       Table *pTab;
5175       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5176         /* If isSimpleCount() returns a pointer to a Table structure, then
5177         ** the SQL statement is of the form:
5178         **
5179         **   SELECT count(*) FROM <tbl>
5180         **
5181         ** where the Table structure returned represents table <tbl>.
5182         **
5183         ** This statement is so common that it is optimized specially. The
5184         ** OP_Count instruction is executed either on the intkey table that
5185         ** contains the data for table <tbl> or on one of its indexes. It
5186         ** is better to execute the op on an index, as indexes are almost
5187         ** always spread across less pages than their corresponding tables.
5188         */
5189         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5190         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5191         Index *pIdx;                         /* Iterator variable */
5192         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5193         Index *pBest = 0;                    /* Best index found so far */
5194         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5195 
5196         sqlite3CodeVerifySchema(pParse, iDb);
5197         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5198 
5199         /* Search for the index that has the lowest scan cost.
5200         **
5201         ** (2011-04-15) Do not do a full scan of an unordered index.
5202         **
5203         ** (2013-10-03) Do not count the entries in a partial index.
5204         **
5205         ** In practice the KeyInfo structure will not be used. It is only
5206         ** passed to keep OP_OpenRead happy.
5207         */
5208         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5209         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5210           if( pIdx->bUnordered==0
5211            && pIdx->szIdxRow<pTab->szTabRow
5212            && pIdx->pPartIdxWhere==0
5213            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5214           ){
5215             pBest = pIdx;
5216           }
5217         }
5218         if( pBest ){
5219           iRoot = pBest->tnum;
5220           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5221         }
5222 
5223         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5224         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5225         if( pKeyInfo ){
5226           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5227         }
5228         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5229         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5230         explainSimpleCount(pParse, pTab, pBest);
5231       }else
5232 #endif /* SQLITE_OMIT_BTREECOUNT */
5233       {
5234         /* Check if the query is of one of the following forms:
5235         **
5236         **   SELECT min(x) FROM ...
5237         **   SELECT max(x) FROM ...
5238         **
5239         ** If it is, then ask the code in where.c to attempt to sort results
5240         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5241         ** If where.c is able to produce results sorted in this order, then
5242         ** add vdbe code to break out of the processing loop after the
5243         ** first iteration (since the first iteration of the loop is
5244         ** guaranteed to operate on the row with the minimum or maximum
5245         ** value of x, the only row required).
5246         **
5247         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5248         ** modify behavior as follows:
5249         **
5250         **   + If the query is a "SELECT min(x)", then the loop coded by
5251         **     where.c should not iterate over any values with a NULL value
5252         **     for x.
5253         **
5254         **   + The optimizer code in where.c (the thing that decides which
5255         **     index or indices to use) should place a different priority on
5256         **     satisfying the 'ORDER BY' clause than it does in other cases.
5257         **     Refer to code and comments in where.c for details.
5258         */
5259         ExprList *pMinMax = 0;
5260         u8 flag = WHERE_ORDERBY_NORMAL;
5261 
5262         assert( p->pGroupBy==0 );
5263         assert( flag==0 );
5264         if( p->pHaving==0 ){
5265           flag = minMaxQuery(&sAggInfo, &pMinMax);
5266         }
5267         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5268 
5269         if( flag ){
5270           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5271           pDel = pMinMax;
5272           if( pMinMax && !db->mallocFailed ){
5273             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5274             pMinMax->a[0].pExpr->op = TK_COLUMN;
5275           }
5276         }
5277 
5278         /* This case runs if the aggregate has no GROUP BY clause.  The
5279         ** processing is much simpler since there is only a single row
5280         ** of output.
5281         */
5282         resetAccumulator(pParse, &sAggInfo);
5283         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5284         if( pWInfo==0 ){
5285           sqlite3ExprListDelete(db, pDel);
5286           goto select_end;
5287         }
5288         updateAccumulator(pParse, &sAggInfo);
5289         assert( pMinMax==0 || pMinMax->nExpr==1 );
5290         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5291           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5292           VdbeComment((v, "%s() by index",
5293                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5294         }
5295         sqlite3WhereEnd(pWInfo);
5296         finalizeAggFunctions(pParse, &sAggInfo);
5297       }
5298 
5299       sSort.pOrderBy = 0;
5300       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5301       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5302                       pDest, addrEnd, addrEnd);
5303       sqlite3ExprListDelete(db, pDel);
5304     }
5305     sqlite3VdbeResolveLabel(v, addrEnd);
5306 
5307   } /* endif aggregate query */
5308 
5309   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5310     explainTempTable(pParse, "DISTINCT");
5311   }
5312 
5313   /* If there is an ORDER BY clause, then we need to sort the results
5314   ** and send them to the callback one by one.
5315   */
5316   if( sSort.pOrderBy ){
5317     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5318     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5319   }
5320 
5321   /* Jump here to skip this query
5322   */
5323   sqlite3VdbeResolveLabel(v, iEnd);
5324 
5325   /* The SELECT was successfully coded.   Set the return code to 0
5326   ** to indicate no errors.
5327   */
5328   rc = 0;
5329 
5330   /* Control jumps to here if an error is encountered above, or upon
5331   ** successful coding of the SELECT.
5332   */
5333 select_end:
5334   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5335 
5336   /* Identify column names if results of the SELECT are to be output.
5337   */
5338   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5339     generateColumnNames(pParse, pTabList, pEList);
5340   }
5341 
5342   sqlite3DbFree(db, sAggInfo.aCol);
5343   sqlite3DbFree(db, sAggInfo.aFunc);
5344   return rc;
5345 }
5346 
5347 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
5348 /*
5349 ** Generate a human-readable description of a the Select object.
5350 */
5351 static void explainOneSelect(Vdbe *pVdbe, Select *p){
5352   sqlite3ExplainPrintf(pVdbe, "SELECT ");
5353   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
5354     if( p->selFlags & SF_Distinct ){
5355       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
5356     }
5357     if( p->selFlags & SF_Aggregate ){
5358       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
5359     }
5360     sqlite3ExplainNL(pVdbe);
5361     sqlite3ExplainPrintf(pVdbe, "   ");
5362   }
5363   sqlite3ExplainExprList(pVdbe, p->pEList);
5364   sqlite3ExplainNL(pVdbe);
5365   if( p->pSrc && p->pSrc->nSrc ){
5366     int i;
5367     sqlite3ExplainPrintf(pVdbe, "FROM ");
5368     sqlite3ExplainPush(pVdbe);
5369     for(i=0; i<p->pSrc->nSrc; i++){
5370       struct SrcList_item *pItem = &p->pSrc->a[i];
5371       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
5372       if( pItem->pSelect ){
5373         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
5374         if( pItem->pTab ){
5375           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
5376         }
5377       }else if( pItem->zName ){
5378         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
5379       }
5380       if( pItem->zAlias ){
5381         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
5382       }
5383       if( pItem->jointype & JT_LEFT ){
5384         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
5385       }
5386       sqlite3ExplainNL(pVdbe);
5387     }
5388     sqlite3ExplainPop(pVdbe);
5389   }
5390   if( p->pWhere ){
5391     sqlite3ExplainPrintf(pVdbe, "WHERE ");
5392     sqlite3ExplainExpr(pVdbe, p->pWhere);
5393     sqlite3ExplainNL(pVdbe);
5394   }
5395   if( p->pGroupBy ){
5396     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
5397     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
5398     sqlite3ExplainNL(pVdbe);
5399   }
5400   if( p->pHaving ){
5401     sqlite3ExplainPrintf(pVdbe, "HAVING ");
5402     sqlite3ExplainExpr(pVdbe, p->pHaving);
5403     sqlite3ExplainNL(pVdbe);
5404   }
5405   if( p->pOrderBy ){
5406     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
5407     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
5408     sqlite3ExplainNL(pVdbe);
5409   }
5410   if( p->pLimit ){
5411     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
5412     sqlite3ExplainExpr(pVdbe, p->pLimit);
5413     sqlite3ExplainNL(pVdbe);
5414   }
5415   if( p->pOffset ){
5416     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
5417     sqlite3ExplainExpr(pVdbe, p->pOffset);
5418     sqlite3ExplainNL(pVdbe);
5419   }
5420 }
5421 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
5422   if( p==0 ){
5423     sqlite3ExplainPrintf(pVdbe, "(null-select)");
5424     return;
5425   }
5426   sqlite3ExplainPush(pVdbe);
5427   while( p ){
5428     explainOneSelect(pVdbe, p);
5429     p = p->pNext;
5430     if( p==0 ) break;
5431     sqlite3ExplainNL(pVdbe);
5432     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
5433   }
5434   sqlite3ExplainPrintf(pVdbe, "END");
5435   sqlite3ExplainPop(pVdbe);
5436 }
5437 
5438 /* End of the structure debug printing code
5439 *****************************************************************************/
5440 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
5441