1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 */ 34 typedef struct SortCtx SortCtx; 35 struct SortCtx { 36 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 37 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 38 int iECursor; /* Cursor number for the sorter */ 39 int regReturn; /* Register holding block-output return address */ 40 int labelBkOut; /* Start label for the block-output subroutine */ 41 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 42 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 43 }; 44 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 45 46 /* 47 ** Delete all the content of a Select structure but do not deallocate 48 ** the select structure itself. 49 */ 50 static void clearSelect(sqlite3 *db, Select *p){ 51 sqlite3ExprListDelete(db, p->pEList); 52 sqlite3SrcListDelete(db, p->pSrc); 53 sqlite3ExprDelete(db, p->pWhere); 54 sqlite3ExprListDelete(db, p->pGroupBy); 55 sqlite3ExprDelete(db, p->pHaving); 56 sqlite3ExprListDelete(db, p->pOrderBy); 57 sqlite3SelectDelete(db, p->pPrior); 58 sqlite3ExprDelete(db, p->pLimit); 59 sqlite3ExprDelete(db, p->pOffset); 60 sqlite3WithDelete(db, p->pWith); 61 } 62 63 /* 64 ** Initialize a SelectDest structure. 65 */ 66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 67 pDest->eDest = (u8)eDest; 68 pDest->iSDParm = iParm; 69 pDest->affSdst = 0; 70 pDest->iSdst = 0; 71 pDest->nSdst = 0; 72 } 73 74 75 /* 76 ** Allocate a new Select structure and return a pointer to that 77 ** structure. 78 */ 79 Select *sqlite3SelectNew( 80 Parse *pParse, /* Parsing context */ 81 ExprList *pEList, /* which columns to include in the result */ 82 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 83 Expr *pWhere, /* the WHERE clause */ 84 ExprList *pGroupBy, /* the GROUP BY clause */ 85 Expr *pHaving, /* the HAVING clause */ 86 ExprList *pOrderBy, /* the ORDER BY clause */ 87 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 88 Expr *pLimit, /* LIMIT value. NULL means not used */ 89 Expr *pOffset /* OFFSET value. NULL means no offset */ 90 ){ 91 Select *pNew; 92 Select standin; 93 sqlite3 *db = pParse->db; 94 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 95 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 96 if( pNew==0 ){ 97 assert( db->mallocFailed ); 98 pNew = &standin; 99 memset(pNew, 0, sizeof(*pNew)); 100 } 101 if( pEList==0 ){ 102 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 103 } 104 pNew->pEList = pEList; 105 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 106 pNew->pSrc = pSrc; 107 pNew->pWhere = pWhere; 108 pNew->pGroupBy = pGroupBy; 109 pNew->pHaving = pHaving; 110 pNew->pOrderBy = pOrderBy; 111 pNew->selFlags = selFlags; 112 pNew->op = TK_SELECT; 113 pNew->pLimit = pLimit; 114 pNew->pOffset = pOffset; 115 assert( pOffset==0 || pLimit!=0 ); 116 pNew->addrOpenEphm[0] = -1; 117 pNew->addrOpenEphm[1] = -1; 118 if( db->mallocFailed ) { 119 clearSelect(db, pNew); 120 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 121 pNew = 0; 122 }else{ 123 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 124 } 125 assert( pNew!=&standin ); 126 return pNew; 127 } 128 129 /* 130 ** Delete the given Select structure and all of its substructures. 131 */ 132 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 133 if( p ){ 134 clearSelect(db, p); 135 sqlite3DbFree(db, p); 136 } 137 } 138 139 /* 140 ** Return a pointer to the right-most SELECT statement in a compound. 141 */ 142 static Select *findRightmost(Select *p){ 143 while( p->pNext ) p = p->pNext; 144 return p; 145 } 146 147 /* 148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 149 ** type of join. Return an integer constant that expresses that type 150 ** in terms of the following bit values: 151 ** 152 ** JT_INNER 153 ** JT_CROSS 154 ** JT_OUTER 155 ** JT_NATURAL 156 ** JT_LEFT 157 ** JT_RIGHT 158 ** 159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 160 ** 161 ** If an illegal or unsupported join type is seen, then still return 162 ** a join type, but put an error in the pParse structure. 163 */ 164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 165 int jointype = 0; 166 Token *apAll[3]; 167 Token *p; 168 /* 0123456789 123456789 123456789 123 */ 169 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 170 static const struct { 171 u8 i; /* Beginning of keyword text in zKeyText[] */ 172 u8 nChar; /* Length of the keyword in characters */ 173 u8 code; /* Join type mask */ 174 } aKeyword[] = { 175 /* natural */ { 0, 7, JT_NATURAL }, 176 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 177 /* outer */ { 10, 5, JT_OUTER }, 178 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 179 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 180 /* inner */ { 23, 5, JT_INNER }, 181 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 182 }; 183 int i, j; 184 apAll[0] = pA; 185 apAll[1] = pB; 186 apAll[2] = pC; 187 for(i=0; i<3 && apAll[i]; i++){ 188 p = apAll[i]; 189 for(j=0; j<ArraySize(aKeyword); j++){ 190 if( p->n==aKeyword[j].nChar 191 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 192 jointype |= aKeyword[j].code; 193 break; 194 } 195 } 196 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 197 if( j>=ArraySize(aKeyword) ){ 198 jointype |= JT_ERROR; 199 break; 200 } 201 } 202 if( 203 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 204 (jointype & JT_ERROR)!=0 205 ){ 206 const char *zSp = " "; 207 assert( pB!=0 ); 208 if( pC==0 ){ zSp++; } 209 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 210 "%T %T%s%T", pA, pB, zSp, pC); 211 jointype = JT_INNER; 212 }else if( (jointype & JT_OUTER)!=0 213 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 214 sqlite3ErrorMsg(pParse, 215 "RIGHT and FULL OUTER JOINs are not currently supported"); 216 jointype = JT_INNER; 217 } 218 return jointype; 219 } 220 221 /* 222 ** Return the index of a column in a table. Return -1 if the column 223 ** is not contained in the table. 224 */ 225 static int columnIndex(Table *pTab, const char *zCol){ 226 int i; 227 for(i=0; i<pTab->nCol; i++){ 228 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 229 } 230 return -1; 231 } 232 233 /* 234 ** Search the first N tables in pSrc, from left to right, looking for a 235 ** table that has a column named zCol. 236 ** 237 ** When found, set *piTab and *piCol to the table index and column index 238 ** of the matching column and return TRUE. 239 ** 240 ** If not found, return FALSE. 241 */ 242 static int tableAndColumnIndex( 243 SrcList *pSrc, /* Array of tables to search */ 244 int N, /* Number of tables in pSrc->a[] to search */ 245 const char *zCol, /* Name of the column we are looking for */ 246 int *piTab, /* Write index of pSrc->a[] here */ 247 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 248 ){ 249 int i; /* For looping over tables in pSrc */ 250 int iCol; /* Index of column matching zCol */ 251 252 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 253 for(i=0; i<N; i++){ 254 iCol = columnIndex(pSrc->a[i].pTab, zCol); 255 if( iCol>=0 ){ 256 if( piTab ){ 257 *piTab = i; 258 *piCol = iCol; 259 } 260 return 1; 261 } 262 } 263 return 0; 264 } 265 266 /* 267 ** This function is used to add terms implied by JOIN syntax to the 268 ** WHERE clause expression of a SELECT statement. The new term, which 269 ** is ANDed with the existing WHERE clause, is of the form: 270 ** 271 ** (tab1.col1 = tab2.col2) 272 ** 273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 275 ** column iColRight of tab2. 276 */ 277 static void addWhereTerm( 278 Parse *pParse, /* Parsing context */ 279 SrcList *pSrc, /* List of tables in FROM clause */ 280 int iLeft, /* Index of first table to join in pSrc */ 281 int iColLeft, /* Index of column in first table */ 282 int iRight, /* Index of second table in pSrc */ 283 int iColRight, /* Index of column in second table */ 284 int isOuterJoin, /* True if this is an OUTER join */ 285 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 286 ){ 287 sqlite3 *db = pParse->db; 288 Expr *pE1; 289 Expr *pE2; 290 Expr *pEq; 291 292 assert( iLeft<iRight ); 293 assert( pSrc->nSrc>iRight ); 294 assert( pSrc->a[iLeft].pTab ); 295 assert( pSrc->a[iRight].pTab ); 296 297 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 298 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 299 300 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 301 if( pEq && isOuterJoin ){ 302 ExprSetProperty(pEq, EP_FromJoin); 303 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 304 ExprSetVVAProperty(pEq, EP_NoReduce); 305 pEq->iRightJoinTable = (i16)pE2->iTable; 306 } 307 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 308 } 309 310 /* 311 ** Set the EP_FromJoin property on all terms of the given expression. 312 ** And set the Expr.iRightJoinTable to iTable for every term in the 313 ** expression. 314 ** 315 ** The EP_FromJoin property is used on terms of an expression to tell 316 ** the LEFT OUTER JOIN processing logic that this term is part of the 317 ** join restriction specified in the ON or USING clause and not a part 318 ** of the more general WHERE clause. These terms are moved over to the 319 ** WHERE clause during join processing but we need to remember that they 320 ** originated in the ON or USING clause. 321 ** 322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 323 ** expression depends on table iRightJoinTable even if that table is not 324 ** explicitly mentioned in the expression. That information is needed 325 ** for cases like this: 326 ** 327 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 328 ** 329 ** The where clause needs to defer the handling of the t1.x=5 330 ** term until after the t2 loop of the join. In that way, a 331 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 332 ** defer the handling of t1.x=5, it will be processed immediately 333 ** after the t1 loop and rows with t1.x!=5 will never appear in 334 ** the output, which is incorrect. 335 */ 336 static void setJoinExpr(Expr *p, int iTable){ 337 while( p ){ 338 ExprSetProperty(p, EP_FromJoin); 339 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(p, EP_NoReduce); 341 p->iRightJoinTable = (i16)iTable; 342 setJoinExpr(p->pLeft, iTable); 343 p = p->pRight; 344 } 345 } 346 347 /* 348 ** This routine processes the join information for a SELECT statement. 349 ** ON and USING clauses are converted into extra terms of the WHERE clause. 350 ** NATURAL joins also create extra WHERE clause terms. 351 ** 352 ** The terms of a FROM clause are contained in the Select.pSrc structure. 353 ** The left most table is the first entry in Select.pSrc. The right-most 354 ** table is the last entry. The join operator is held in the entry to 355 ** the left. Thus entry 0 contains the join operator for the join between 356 ** entries 0 and 1. Any ON or USING clauses associated with the join are 357 ** also attached to the left entry. 358 ** 359 ** This routine returns the number of errors encountered. 360 */ 361 static int sqliteProcessJoin(Parse *pParse, Select *p){ 362 SrcList *pSrc; /* All tables in the FROM clause */ 363 int i, j; /* Loop counters */ 364 struct SrcList_item *pLeft; /* Left table being joined */ 365 struct SrcList_item *pRight; /* Right table being joined */ 366 367 pSrc = p->pSrc; 368 pLeft = &pSrc->a[0]; 369 pRight = &pLeft[1]; 370 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 371 Table *pLeftTab = pLeft->pTab; 372 Table *pRightTab = pRight->pTab; 373 int isOuter; 374 375 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 376 isOuter = (pRight->jointype & JT_OUTER)!=0; 377 378 /* When the NATURAL keyword is present, add WHERE clause terms for 379 ** every column that the two tables have in common. 380 */ 381 if( pRight->jointype & JT_NATURAL ){ 382 if( pRight->pOn || pRight->pUsing ){ 383 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 384 "an ON or USING clause", 0); 385 return 1; 386 } 387 for(j=0; j<pRightTab->nCol; j++){ 388 char *zName; /* Name of column in the right table */ 389 int iLeft; /* Matching left table */ 390 int iLeftCol; /* Matching column in the left table */ 391 392 zName = pRightTab->aCol[j].zName; 393 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 394 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 395 isOuter, &p->pWhere); 396 } 397 } 398 } 399 400 /* Disallow both ON and USING clauses in the same join 401 */ 402 if( pRight->pOn && pRight->pUsing ){ 403 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 404 "clauses in the same join"); 405 return 1; 406 } 407 408 /* Add the ON clause to the end of the WHERE clause, connected by 409 ** an AND operator. 410 */ 411 if( pRight->pOn ){ 412 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 413 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 414 pRight->pOn = 0; 415 } 416 417 /* Create extra terms on the WHERE clause for each column named 418 ** in the USING clause. Example: If the two tables to be joined are 419 ** A and B and the USING clause names X, Y, and Z, then add this 420 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 421 ** Report an error if any column mentioned in the USING clause is 422 ** not contained in both tables to be joined. 423 */ 424 if( pRight->pUsing ){ 425 IdList *pList = pRight->pUsing; 426 for(j=0; j<pList->nId; j++){ 427 char *zName; /* Name of the term in the USING clause */ 428 int iLeft; /* Table on the left with matching column name */ 429 int iLeftCol; /* Column number of matching column on the left */ 430 int iRightCol; /* Column number of matching column on the right */ 431 432 zName = pList->a[j].zName; 433 iRightCol = columnIndex(pRightTab, zName); 434 if( iRightCol<0 435 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 436 ){ 437 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 438 "not present in both tables", zName); 439 return 1; 440 } 441 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 442 isOuter, &p->pWhere); 443 } 444 } 445 } 446 return 0; 447 } 448 449 /* Forward reference */ 450 static KeyInfo *keyInfoFromExprList( 451 Parse *pParse, /* Parsing context */ 452 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 453 int iStart, /* Begin with this column of pList */ 454 int nExtra /* Add this many extra columns to the end */ 455 ); 456 457 /* 458 ** Generate code that will push the record in registers regData 459 ** through regData+nData-1 onto the sorter. 460 */ 461 static void pushOntoSorter( 462 Parse *pParse, /* Parser context */ 463 SortCtx *pSort, /* Information about the ORDER BY clause */ 464 Select *pSelect, /* The whole SELECT statement */ 465 int regData, /* First register holding data to be sorted */ 466 int nData, /* Number of elements in the data array */ 467 int nPrefixReg /* No. of reg prior to regData available for use */ 468 ){ 469 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 470 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 471 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 472 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 473 int regBase; /* Regs for sorter record */ 474 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 475 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 476 int op; /* Opcode to add sorter record to sorter */ 477 478 assert( bSeq==0 || bSeq==1 ); 479 if( nPrefixReg ){ 480 assert( nPrefixReg==nExpr+bSeq ); 481 regBase = regData - nExpr - bSeq; 482 }else{ 483 regBase = pParse->nMem + 1; 484 pParse->nMem += nBase; 485 } 486 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 487 if( bSeq ){ 488 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 489 } 490 if( nPrefixReg==0 ){ 491 sqlite3VdbeAddOp3(v, OP_Move, regData, regBase+nExpr+bSeq, nData); 492 } 493 494 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 495 if( nOBSat>0 ){ 496 int regPrevKey; /* The first nOBSat columns of the previous row */ 497 int addrFirst; /* Address of the OP_IfNot opcode */ 498 int addrJmp; /* Address of the OP_Jump opcode */ 499 VdbeOp *pOp; /* Opcode that opens the sorter */ 500 int nKey; /* Number of sorting key columns, including OP_Sequence */ 501 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 502 503 regPrevKey = pParse->nMem+1; 504 pParse->nMem += pSort->nOBSat; 505 nKey = nExpr - pSort->nOBSat + bSeq; 506 if( bSeq ){ 507 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 508 }else{ 509 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 510 } 511 VdbeCoverage(v); 512 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 513 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 514 if( pParse->db->mallocFailed ) return; 515 pOp->p2 = nKey + nData; 516 pKI = pOp->p4.pKeyInfo; 517 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 518 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 519 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 520 addrJmp = sqlite3VdbeCurrentAddr(v); 521 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 522 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 523 pSort->regReturn = ++pParse->nMem; 524 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 525 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 526 sqlite3VdbeJumpHere(v, addrFirst); 527 sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat); 528 sqlite3VdbeJumpHere(v, addrJmp); 529 } 530 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 531 op = OP_SorterInsert; 532 }else{ 533 op = OP_IdxInsert; 534 } 535 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 536 if( pSelect->iLimit ){ 537 int addr1, addr2; 538 int iLimit; 539 if( pSelect->iOffset ){ 540 iLimit = pSelect->iOffset+1; 541 }else{ 542 iLimit = pSelect->iLimit; 543 } 544 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 545 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 546 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 547 sqlite3VdbeJumpHere(v, addr1); 548 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 549 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 550 sqlite3VdbeJumpHere(v, addr2); 551 } 552 } 553 554 /* 555 ** Add code to implement the OFFSET 556 */ 557 static void codeOffset( 558 Vdbe *v, /* Generate code into this VM */ 559 int iOffset, /* Register holding the offset counter */ 560 int iContinue /* Jump here to skip the current record */ 561 ){ 562 if( iOffset>0 ){ 563 int addr; 564 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 565 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 566 VdbeComment((v, "skip OFFSET records")); 567 sqlite3VdbeJumpHere(v, addr); 568 } 569 } 570 571 /* 572 ** Add code that will check to make sure the N registers starting at iMem 573 ** form a distinct entry. iTab is a sorting index that holds previously 574 ** seen combinations of the N values. A new entry is made in iTab 575 ** if the current N values are new. 576 ** 577 ** A jump to addrRepeat is made and the N+1 values are popped from the 578 ** stack if the top N elements are not distinct. 579 */ 580 static void codeDistinct( 581 Parse *pParse, /* Parsing and code generating context */ 582 int iTab, /* A sorting index used to test for distinctness */ 583 int addrRepeat, /* Jump to here if not distinct */ 584 int N, /* Number of elements */ 585 int iMem /* First element */ 586 ){ 587 Vdbe *v; 588 int r1; 589 590 v = pParse->pVdbe; 591 r1 = sqlite3GetTempReg(pParse); 592 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 593 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 594 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 595 sqlite3ReleaseTempReg(pParse, r1); 596 } 597 598 #ifndef SQLITE_OMIT_SUBQUERY 599 /* 600 ** Generate an error message when a SELECT is used within a subexpression 601 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 602 ** column. We do this in a subroutine because the error used to occur 603 ** in multiple places. (The error only occurs in one place now, but we 604 ** retain the subroutine to minimize code disruption.) 605 */ 606 static int checkForMultiColumnSelectError( 607 Parse *pParse, /* Parse context. */ 608 SelectDest *pDest, /* Destination of SELECT results */ 609 int nExpr /* Number of result columns returned by SELECT */ 610 ){ 611 int eDest = pDest->eDest; 612 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 613 sqlite3ErrorMsg(pParse, "only a single result allowed for " 614 "a SELECT that is part of an expression"); 615 return 1; 616 }else{ 617 return 0; 618 } 619 } 620 #endif 621 622 /* 623 ** This routine generates the code for the inside of the inner loop 624 ** of a SELECT. 625 ** 626 ** If srcTab is negative, then the pEList expressions 627 ** are evaluated in order to get the data for this row. If srcTab is 628 ** zero or more, then data is pulled from srcTab and pEList is used only 629 ** to get number columns and the datatype for each column. 630 */ 631 static void selectInnerLoop( 632 Parse *pParse, /* The parser context */ 633 Select *p, /* The complete select statement being coded */ 634 ExprList *pEList, /* List of values being extracted */ 635 int srcTab, /* Pull data from this table */ 636 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 637 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 638 SelectDest *pDest, /* How to dispose of the results */ 639 int iContinue, /* Jump here to continue with next row */ 640 int iBreak /* Jump here to break out of the inner loop */ 641 ){ 642 Vdbe *v = pParse->pVdbe; 643 int i; 644 int hasDistinct; /* True if the DISTINCT keyword is present */ 645 int regResult; /* Start of memory holding result set */ 646 int eDest = pDest->eDest; /* How to dispose of results */ 647 int iParm = pDest->iSDParm; /* First argument to disposal method */ 648 int nResultCol; /* Number of result columns */ 649 int nPrefixReg = 0; /* Number of extra registers before regResult */ 650 651 assert( v ); 652 assert( pEList!=0 ); 653 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 654 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 655 if( pSort==0 && !hasDistinct ){ 656 assert( iContinue!=0 ); 657 codeOffset(v, p->iOffset, iContinue); 658 } 659 660 /* Pull the requested columns. 661 */ 662 nResultCol = pEList->nExpr; 663 664 if( pDest->iSdst==0 ){ 665 if( pSort ){ 666 nPrefixReg = pSort->pOrderBy->nExpr; 667 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 668 pParse->nMem += nPrefixReg; 669 } 670 pDest->iSdst = pParse->nMem+1; 671 pParse->nMem += nResultCol; 672 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 673 /* This is an error condition that can result, for example, when a SELECT 674 ** on the right-hand side of an INSERT contains more result columns than 675 ** there are columns in the table on the left. The error will be caught 676 ** and reported later. But we need to make sure enough memory is allocated 677 ** to avoid other spurious errors in the meantime. */ 678 pParse->nMem += nResultCol; 679 } 680 pDest->nSdst = nResultCol; 681 regResult = pDest->iSdst; 682 if( srcTab>=0 ){ 683 for(i=0; i<nResultCol; i++){ 684 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 685 VdbeComment((v, "%s", pEList->a[i].zName)); 686 } 687 }else if( eDest!=SRT_Exists ){ 688 /* If the destination is an EXISTS(...) expression, the actual 689 ** values returned by the SELECT are not required. 690 */ 691 sqlite3ExprCodeExprList(pParse, pEList, regResult, 692 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 693 } 694 695 /* If the DISTINCT keyword was present on the SELECT statement 696 ** and this row has been seen before, then do not make this row 697 ** part of the result. 698 */ 699 if( hasDistinct ){ 700 switch( pDistinct->eTnctType ){ 701 case WHERE_DISTINCT_ORDERED: { 702 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 703 int iJump; /* Jump destination */ 704 int regPrev; /* Previous row content */ 705 706 /* Allocate space for the previous row */ 707 regPrev = pParse->nMem+1; 708 pParse->nMem += nResultCol; 709 710 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 711 ** sets the MEM_Cleared bit on the first register of the 712 ** previous value. This will cause the OP_Ne below to always 713 ** fail on the first iteration of the loop even if the first 714 ** row is all NULLs. 715 */ 716 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 717 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 718 pOp->opcode = OP_Null; 719 pOp->p1 = 1; 720 pOp->p2 = regPrev; 721 722 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 723 for(i=0; i<nResultCol; i++){ 724 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 725 if( i<nResultCol-1 ){ 726 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 727 VdbeCoverage(v); 728 }else{ 729 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 730 VdbeCoverage(v); 731 } 732 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 733 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 734 } 735 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 736 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 737 break; 738 } 739 740 case WHERE_DISTINCT_UNIQUE: { 741 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 742 break; 743 } 744 745 default: { 746 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 747 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 748 break; 749 } 750 } 751 if( pSort==0 ){ 752 codeOffset(v, p->iOffset, iContinue); 753 } 754 } 755 756 switch( eDest ){ 757 /* In this mode, write each query result to the key of the temporary 758 ** table iParm. 759 */ 760 #ifndef SQLITE_OMIT_COMPOUND_SELECT 761 case SRT_Union: { 762 int r1; 763 r1 = sqlite3GetTempReg(pParse); 764 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 765 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 766 sqlite3ReleaseTempReg(pParse, r1); 767 break; 768 } 769 770 /* Construct a record from the query result, but instead of 771 ** saving that record, use it as a key to delete elements from 772 ** the temporary table iParm. 773 */ 774 case SRT_Except: { 775 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 776 break; 777 } 778 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 779 780 /* Store the result as data using a unique key. 781 */ 782 case SRT_Fifo: 783 case SRT_DistFifo: 784 case SRT_Table: 785 case SRT_EphemTab: { 786 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 787 testcase( eDest==SRT_Table ); 788 testcase( eDest==SRT_EphemTab ); 789 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 790 #ifndef SQLITE_OMIT_CTE 791 if( eDest==SRT_DistFifo ){ 792 /* If the destination is DistFifo, then cursor (iParm+1) is open 793 ** on an ephemeral index. If the current row is already present 794 ** in the index, do not write it to the output. If not, add the 795 ** current row to the index and proceed with writing it to the 796 ** output table as well. */ 797 int addr = sqlite3VdbeCurrentAddr(v) + 4; 798 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 799 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 800 assert( pSort==0 ); 801 } 802 #endif 803 if( pSort ){ 804 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 805 }else{ 806 int r2 = sqlite3GetTempReg(pParse); 807 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 808 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 809 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 810 sqlite3ReleaseTempReg(pParse, r2); 811 } 812 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 813 break; 814 } 815 816 #ifndef SQLITE_OMIT_SUBQUERY 817 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 818 ** then there should be a single item on the stack. Write this 819 ** item into the set table with bogus data. 820 */ 821 case SRT_Set: { 822 assert( nResultCol==1 ); 823 pDest->affSdst = 824 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 825 if( pSort ){ 826 /* At first glance you would think we could optimize out the 827 ** ORDER BY in this case since the order of entries in the set 828 ** does not matter. But there might be a LIMIT clause, in which 829 ** case the order does matter */ 830 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 831 }else{ 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 834 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 835 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 836 sqlite3ReleaseTempReg(pParse, r1); 837 } 838 break; 839 } 840 841 /* If any row exist in the result set, record that fact and abort. 842 */ 843 case SRT_Exists: { 844 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 845 /* The LIMIT clause will terminate the loop for us */ 846 break; 847 } 848 849 /* If this is a scalar select that is part of an expression, then 850 ** store the results in the appropriate memory cell and break out 851 ** of the scan loop. 852 */ 853 case SRT_Mem: { 854 assert( nResultCol==1 ); 855 if( pSort ){ 856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 857 }else{ 858 assert( regResult==iParm ); 859 /* The LIMIT clause will jump out of the loop for us */ 860 } 861 break; 862 } 863 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 864 865 case SRT_Coroutine: /* Send data to a co-routine */ 866 case SRT_Output: { /* Return the results */ 867 testcase( eDest==SRT_Coroutine ); 868 testcase( eDest==SRT_Output ); 869 if( pSort ){ 870 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 871 }else if( eDest==SRT_Coroutine ){ 872 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 873 }else{ 874 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 875 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 876 } 877 break; 878 } 879 880 #ifndef SQLITE_OMIT_CTE 881 /* Write the results into a priority queue that is order according to 882 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 883 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 884 ** pSO->nExpr columns, then make sure all keys are unique by adding a 885 ** final OP_Sequence column. The last column is the record as a blob. 886 */ 887 case SRT_DistQueue: 888 case SRT_Queue: { 889 int nKey; 890 int r1, r2, r3; 891 int addrTest = 0; 892 ExprList *pSO; 893 pSO = pDest->pOrderBy; 894 assert( pSO ); 895 nKey = pSO->nExpr; 896 r1 = sqlite3GetTempReg(pParse); 897 r2 = sqlite3GetTempRange(pParse, nKey+2); 898 r3 = r2+nKey+1; 899 if( eDest==SRT_DistQueue ){ 900 /* If the destination is DistQueue, then cursor (iParm+1) is open 901 ** on a second ephemeral index that holds all values every previously 902 ** added to the queue. */ 903 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 904 regResult, nResultCol); 905 VdbeCoverage(v); 906 } 907 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 908 if( eDest==SRT_DistQueue ){ 909 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 910 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 911 } 912 for(i=0; i<nKey; i++){ 913 sqlite3VdbeAddOp2(v, OP_SCopy, 914 regResult + pSO->a[i].u.x.iOrderByCol - 1, 915 r2+i); 916 } 917 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 918 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 919 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 920 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 921 sqlite3ReleaseTempReg(pParse, r1); 922 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 923 break; 924 } 925 #endif /* SQLITE_OMIT_CTE */ 926 927 928 929 #if !defined(SQLITE_OMIT_TRIGGER) 930 /* Discard the results. This is used for SELECT statements inside 931 ** the body of a TRIGGER. The purpose of such selects is to call 932 ** user-defined functions that have side effects. We do not care 933 ** about the actual results of the select. 934 */ 935 default: { 936 assert( eDest==SRT_Discard ); 937 break; 938 } 939 #endif 940 } 941 942 /* Jump to the end of the loop if the LIMIT is reached. Except, if 943 ** there is a sorter, in which case the sorter has already limited 944 ** the output for us. 945 */ 946 if( pSort==0 && p->iLimit ){ 947 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 948 } 949 } 950 951 /* 952 ** Allocate a KeyInfo object sufficient for an index of N key columns and 953 ** X extra columns. 954 */ 955 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 956 KeyInfo *p = sqlite3DbMallocZero(0, 957 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 958 if( p ){ 959 p->aSortOrder = (u8*)&p->aColl[N+X]; 960 p->nField = (u16)N; 961 p->nXField = (u16)X; 962 p->enc = ENC(db); 963 p->db = db; 964 p->nRef = 1; 965 }else{ 966 db->mallocFailed = 1; 967 } 968 return p; 969 } 970 971 /* 972 ** Deallocate a KeyInfo object 973 */ 974 void sqlite3KeyInfoUnref(KeyInfo *p){ 975 if( p ){ 976 assert( p->nRef>0 ); 977 p->nRef--; 978 if( p->nRef==0 ) sqlite3DbFree(0, p); 979 } 980 } 981 982 /* 983 ** Make a new pointer to a KeyInfo object 984 */ 985 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 986 if( p ){ 987 assert( p->nRef>0 ); 988 p->nRef++; 989 } 990 return p; 991 } 992 993 #ifdef SQLITE_DEBUG 994 /* 995 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 996 ** can only be changed if this is just a single reference to the object. 997 ** 998 ** This routine is used only inside of assert() statements. 999 */ 1000 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1001 #endif /* SQLITE_DEBUG */ 1002 1003 /* 1004 ** Given an expression list, generate a KeyInfo structure that records 1005 ** the collating sequence for each expression in that expression list. 1006 ** 1007 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1008 ** KeyInfo structure is appropriate for initializing a virtual index to 1009 ** implement that clause. If the ExprList is the result set of a SELECT 1010 ** then the KeyInfo structure is appropriate for initializing a virtual 1011 ** index to implement a DISTINCT test. 1012 ** 1013 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1014 ** function is responsible for seeing that this structure is eventually 1015 ** freed. 1016 */ 1017 static KeyInfo *keyInfoFromExprList( 1018 Parse *pParse, /* Parsing context */ 1019 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1020 int iStart, /* Begin with this column of pList */ 1021 int nExtra /* Add this many extra columns to the end */ 1022 ){ 1023 int nExpr; 1024 KeyInfo *pInfo; 1025 struct ExprList_item *pItem; 1026 sqlite3 *db = pParse->db; 1027 int i; 1028 1029 nExpr = pList->nExpr; 1030 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1031 if( pInfo ){ 1032 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1033 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1034 CollSeq *pColl; 1035 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1036 if( !pColl ) pColl = db->pDfltColl; 1037 pInfo->aColl[i-iStart] = pColl; 1038 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1039 } 1040 } 1041 return pInfo; 1042 } 1043 1044 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1045 /* 1046 ** Name of the connection operator, used for error messages. 1047 */ 1048 static const char *selectOpName(int id){ 1049 char *z; 1050 switch( id ){ 1051 case TK_ALL: z = "UNION ALL"; break; 1052 case TK_INTERSECT: z = "INTERSECT"; break; 1053 case TK_EXCEPT: z = "EXCEPT"; break; 1054 default: z = "UNION"; break; 1055 } 1056 return z; 1057 } 1058 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1059 1060 #ifndef SQLITE_OMIT_EXPLAIN 1061 /* 1062 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1063 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1064 ** where the caption is of the form: 1065 ** 1066 ** "USE TEMP B-TREE FOR xxx" 1067 ** 1068 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1069 ** is determined by the zUsage argument. 1070 */ 1071 static void explainTempTable(Parse *pParse, const char *zUsage){ 1072 if( pParse->explain==2 ){ 1073 Vdbe *v = pParse->pVdbe; 1074 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1075 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1076 } 1077 } 1078 1079 /* 1080 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1081 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1082 ** in sqlite3Select() to assign values to structure member variables that 1083 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1084 ** code with #ifndef directives. 1085 */ 1086 # define explainSetInteger(a, b) a = b 1087 1088 #else 1089 /* No-op versions of the explainXXX() functions and macros. */ 1090 # define explainTempTable(y,z) 1091 # define explainSetInteger(y,z) 1092 #endif 1093 1094 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1095 /* 1096 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1097 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1098 ** where the caption is of one of the two forms: 1099 ** 1100 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1101 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1102 ** 1103 ** where iSub1 and iSub2 are the integers passed as the corresponding 1104 ** function parameters, and op is the text representation of the parameter 1105 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1106 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1107 ** false, or the second form if it is true. 1108 */ 1109 static void explainComposite( 1110 Parse *pParse, /* Parse context */ 1111 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1112 int iSub1, /* Subquery id 1 */ 1113 int iSub2, /* Subquery id 2 */ 1114 int bUseTmp /* True if a temp table was used */ 1115 ){ 1116 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1117 if( pParse->explain==2 ){ 1118 Vdbe *v = pParse->pVdbe; 1119 char *zMsg = sqlite3MPrintf( 1120 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1121 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1122 ); 1123 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1124 } 1125 } 1126 #else 1127 /* No-op versions of the explainXXX() functions and macros. */ 1128 # define explainComposite(v,w,x,y,z) 1129 #endif 1130 1131 /* 1132 ** If the inner loop was generated using a non-null pOrderBy argument, 1133 ** then the results were placed in a sorter. After the loop is terminated 1134 ** we need to run the sorter and output the results. The following 1135 ** routine generates the code needed to do that. 1136 */ 1137 static void generateSortTail( 1138 Parse *pParse, /* Parsing context */ 1139 Select *p, /* The SELECT statement */ 1140 SortCtx *pSort, /* Information on the ORDER BY clause */ 1141 int nColumn, /* Number of columns of data */ 1142 SelectDest *pDest /* Write the sorted results here */ 1143 ){ 1144 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1145 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1146 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1147 int addr; 1148 int addrOnce = 0; 1149 int iTab; 1150 ExprList *pOrderBy = pSort->pOrderBy; 1151 int eDest = pDest->eDest; 1152 int iParm = pDest->iSDParm; 1153 int regRow; 1154 int regRowid; 1155 int nKey; 1156 int iSortTab; /* Sorter cursor to read from */ 1157 int nSortData; /* Trailing values to read from sorter */ 1158 u8 p5; /* p5 parameter for 1st OP_Column */ 1159 int i; 1160 int bSeq; /* True if sorter record includes seq. no. */ 1161 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1162 struct ExprList_item *aOutEx = p->pEList->a; 1163 #endif 1164 1165 if( pSort->labelBkOut ){ 1166 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1167 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1168 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1169 } 1170 iTab = pSort->iECursor; 1171 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1172 regRowid = 0; 1173 regRow = pDest->iSdst; 1174 nSortData = nColumn; 1175 }else{ 1176 regRowid = sqlite3GetTempReg(pParse); 1177 regRow = sqlite3GetTempReg(pParse); 1178 nSortData = 1; 1179 } 1180 nKey = pOrderBy->nExpr - pSort->nOBSat; 1181 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1182 int regSortOut = ++pParse->nMem; 1183 iSortTab = pParse->nTab++; 1184 if( pSort->labelBkOut ){ 1185 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1186 } 1187 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1188 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1189 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1190 VdbeCoverage(v); 1191 codeOffset(v, p->iOffset, addrContinue); 1192 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1193 p5 = OPFLAG_CLEARCACHE; 1194 bSeq = 0; 1195 }else{ 1196 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1197 codeOffset(v, p->iOffset, addrContinue); 1198 iSortTab = iTab; 1199 p5 = 0; 1200 bSeq = 1; 1201 } 1202 for(i=0; i<nSortData; i++){ 1203 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1204 if( i==0 ) sqlite3VdbeChangeP5(v, p5); 1205 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1206 } 1207 switch( eDest ){ 1208 case SRT_Table: 1209 case SRT_EphemTab: { 1210 testcase( eDest==SRT_Table ); 1211 testcase( eDest==SRT_EphemTab ); 1212 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1213 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1214 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1215 break; 1216 } 1217 #ifndef SQLITE_OMIT_SUBQUERY 1218 case SRT_Set: { 1219 assert( nColumn==1 ); 1220 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1221 &pDest->affSdst, 1); 1222 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1223 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1224 break; 1225 } 1226 case SRT_Mem: { 1227 assert( nColumn==1 ); 1228 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1229 /* The LIMIT clause will terminate the loop for us */ 1230 break; 1231 } 1232 #endif 1233 default: { 1234 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1235 testcase( eDest==SRT_Output ); 1236 testcase( eDest==SRT_Coroutine ); 1237 if( eDest==SRT_Output ){ 1238 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1239 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1240 }else{ 1241 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1242 } 1243 break; 1244 } 1245 } 1246 if( regRowid ){ 1247 sqlite3ReleaseTempReg(pParse, regRow); 1248 sqlite3ReleaseTempReg(pParse, regRowid); 1249 } 1250 /* The bottom of the loop 1251 */ 1252 sqlite3VdbeResolveLabel(v, addrContinue); 1253 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1254 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1255 }else{ 1256 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1257 } 1258 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1259 sqlite3VdbeResolveLabel(v, addrBreak); 1260 } 1261 1262 /* 1263 ** Return a pointer to a string containing the 'declaration type' of the 1264 ** expression pExpr. The string may be treated as static by the caller. 1265 ** 1266 ** Also try to estimate the size of the returned value and return that 1267 ** result in *pEstWidth. 1268 ** 1269 ** The declaration type is the exact datatype definition extracted from the 1270 ** original CREATE TABLE statement if the expression is a column. The 1271 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1272 ** is considered a column can be complex in the presence of subqueries. The 1273 ** result-set expression in all of the following SELECT statements is 1274 ** considered a column by this function. 1275 ** 1276 ** SELECT col FROM tbl; 1277 ** SELECT (SELECT col FROM tbl; 1278 ** SELECT (SELECT col FROM tbl); 1279 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1280 ** 1281 ** The declaration type for any expression other than a column is NULL. 1282 ** 1283 ** This routine has either 3 or 6 parameters depending on whether or not 1284 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1285 */ 1286 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1287 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1288 static const char *columnTypeImpl( 1289 NameContext *pNC, 1290 Expr *pExpr, 1291 const char **pzOrigDb, 1292 const char **pzOrigTab, 1293 const char **pzOrigCol, 1294 u8 *pEstWidth 1295 ){ 1296 char const *zOrigDb = 0; 1297 char const *zOrigTab = 0; 1298 char const *zOrigCol = 0; 1299 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1300 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1301 static const char *columnTypeImpl( 1302 NameContext *pNC, 1303 Expr *pExpr, 1304 u8 *pEstWidth 1305 ){ 1306 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1307 char const *zType = 0; 1308 int j; 1309 u8 estWidth = 1; 1310 1311 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1312 switch( pExpr->op ){ 1313 case TK_AGG_COLUMN: 1314 case TK_COLUMN: { 1315 /* The expression is a column. Locate the table the column is being 1316 ** extracted from in NameContext.pSrcList. This table may be real 1317 ** database table or a subquery. 1318 */ 1319 Table *pTab = 0; /* Table structure column is extracted from */ 1320 Select *pS = 0; /* Select the column is extracted from */ 1321 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1322 testcase( pExpr->op==TK_AGG_COLUMN ); 1323 testcase( pExpr->op==TK_COLUMN ); 1324 while( pNC && !pTab ){ 1325 SrcList *pTabList = pNC->pSrcList; 1326 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1327 if( j<pTabList->nSrc ){ 1328 pTab = pTabList->a[j].pTab; 1329 pS = pTabList->a[j].pSelect; 1330 }else{ 1331 pNC = pNC->pNext; 1332 } 1333 } 1334 1335 if( pTab==0 ){ 1336 /* At one time, code such as "SELECT new.x" within a trigger would 1337 ** cause this condition to run. Since then, we have restructured how 1338 ** trigger code is generated and so this condition is no longer 1339 ** possible. However, it can still be true for statements like 1340 ** the following: 1341 ** 1342 ** CREATE TABLE t1(col INTEGER); 1343 ** SELECT (SELECT t1.col) FROM FROM t1; 1344 ** 1345 ** when columnType() is called on the expression "t1.col" in the 1346 ** sub-select. In this case, set the column type to NULL, even 1347 ** though it should really be "INTEGER". 1348 ** 1349 ** This is not a problem, as the column type of "t1.col" is never 1350 ** used. When columnType() is called on the expression 1351 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1352 ** branch below. */ 1353 break; 1354 } 1355 1356 assert( pTab && pExpr->pTab==pTab ); 1357 if( pS ){ 1358 /* The "table" is actually a sub-select or a view in the FROM clause 1359 ** of the SELECT statement. Return the declaration type and origin 1360 ** data for the result-set column of the sub-select. 1361 */ 1362 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1363 /* If iCol is less than zero, then the expression requests the 1364 ** rowid of the sub-select or view. This expression is legal (see 1365 ** test case misc2.2.2) - it always evaluates to NULL. 1366 */ 1367 NameContext sNC; 1368 Expr *p = pS->pEList->a[iCol].pExpr; 1369 sNC.pSrcList = pS->pSrc; 1370 sNC.pNext = pNC; 1371 sNC.pParse = pNC->pParse; 1372 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1373 } 1374 }else if( pTab->pSchema ){ 1375 /* A real table */ 1376 assert( !pS ); 1377 if( iCol<0 ) iCol = pTab->iPKey; 1378 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1379 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1380 if( iCol<0 ){ 1381 zType = "INTEGER"; 1382 zOrigCol = "rowid"; 1383 }else{ 1384 zType = pTab->aCol[iCol].zType; 1385 zOrigCol = pTab->aCol[iCol].zName; 1386 estWidth = pTab->aCol[iCol].szEst; 1387 } 1388 zOrigTab = pTab->zName; 1389 if( pNC->pParse ){ 1390 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1391 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1392 } 1393 #else 1394 if( iCol<0 ){ 1395 zType = "INTEGER"; 1396 }else{ 1397 zType = pTab->aCol[iCol].zType; 1398 estWidth = pTab->aCol[iCol].szEst; 1399 } 1400 #endif 1401 } 1402 break; 1403 } 1404 #ifndef SQLITE_OMIT_SUBQUERY 1405 case TK_SELECT: { 1406 /* The expression is a sub-select. Return the declaration type and 1407 ** origin info for the single column in the result set of the SELECT 1408 ** statement. 1409 */ 1410 NameContext sNC; 1411 Select *pS = pExpr->x.pSelect; 1412 Expr *p = pS->pEList->a[0].pExpr; 1413 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1414 sNC.pSrcList = pS->pSrc; 1415 sNC.pNext = pNC; 1416 sNC.pParse = pNC->pParse; 1417 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1418 break; 1419 } 1420 #endif 1421 } 1422 1423 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1424 if( pzOrigDb ){ 1425 assert( pzOrigTab && pzOrigCol ); 1426 *pzOrigDb = zOrigDb; 1427 *pzOrigTab = zOrigTab; 1428 *pzOrigCol = zOrigCol; 1429 } 1430 #endif 1431 if( pEstWidth ) *pEstWidth = estWidth; 1432 return zType; 1433 } 1434 1435 /* 1436 ** Generate code that will tell the VDBE the declaration types of columns 1437 ** in the result set. 1438 */ 1439 static void generateColumnTypes( 1440 Parse *pParse, /* Parser context */ 1441 SrcList *pTabList, /* List of tables */ 1442 ExprList *pEList /* Expressions defining the result set */ 1443 ){ 1444 #ifndef SQLITE_OMIT_DECLTYPE 1445 Vdbe *v = pParse->pVdbe; 1446 int i; 1447 NameContext sNC; 1448 sNC.pSrcList = pTabList; 1449 sNC.pParse = pParse; 1450 for(i=0; i<pEList->nExpr; i++){ 1451 Expr *p = pEList->a[i].pExpr; 1452 const char *zType; 1453 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1454 const char *zOrigDb = 0; 1455 const char *zOrigTab = 0; 1456 const char *zOrigCol = 0; 1457 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1458 1459 /* The vdbe must make its own copy of the column-type and other 1460 ** column specific strings, in case the schema is reset before this 1461 ** virtual machine is deleted. 1462 */ 1463 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1464 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1465 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1466 #else 1467 zType = columnType(&sNC, p, 0, 0, 0, 0); 1468 #endif 1469 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1470 } 1471 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1472 } 1473 1474 /* 1475 ** Generate code that will tell the VDBE the names of columns 1476 ** in the result set. This information is used to provide the 1477 ** azCol[] values in the callback. 1478 */ 1479 static void generateColumnNames( 1480 Parse *pParse, /* Parser context */ 1481 SrcList *pTabList, /* List of tables */ 1482 ExprList *pEList /* Expressions defining the result set */ 1483 ){ 1484 Vdbe *v = pParse->pVdbe; 1485 int i, j; 1486 sqlite3 *db = pParse->db; 1487 int fullNames, shortNames; 1488 1489 #ifndef SQLITE_OMIT_EXPLAIN 1490 /* If this is an EXPLAIN, skip this step */ 1491 if( pParse->explain ){ 1492 return; 1493 } 1494 #endif 1495 1496 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1497 pParse->colNamesSet = 1; 1498 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1499 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1500 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1501 for(i=0; i<pEList->nExpr; i++){ 1502 Expr *p; 1503 p = pEList->a[i].pExpr; 1504 if( NEVER(p==0) ) continue; 1505 if( pEList->a[i].zName ){ 1506 char *zName = pEList->a[i].zName; 1507 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1508 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1509 Table *pTab; 1510 char *zCol; 1511 int iCol = p->iColumn; 1512 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1513 if( pTabList->a[j].iCursor==p->iTable ) break; 1514 } 1515 assert( j<pTabList->nSrc ); 1516 pTab = pTabList->a[j].pTab; 1517 if( iCol<0 ) iCol = pTab->iPKey; 1518 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1519 if( iCol<0 ){ 1520 zCol = "rowid"; 1521 }else{ 1522 zCol = pTab->aCol[iCol].zName; 1523 } 1524 if( !shortNames && !fullNames ){ 1525 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1526 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1527 }else if( fullNames ){ 1528 char *zName = 0; 1529 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1530 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1531 }else{ 1532 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1533 } 1534 }else{ 1535 const char *z = pEList->a[i].zSpan; 1536 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1537 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1538 } 1539 } 1540 generateColumnTypes(pParse, pTabList, pEList); 1541 } 1542 1543 /* 1544 ** Given an expression list (which is really the list of expressions 1545 ** that form the result set of a SELECT statement) compute appropriate 1546 ** column names for a table that would hold the expression list. 1547 ** 1548 ** All column names will be unique. 1549 ** 1550 ** Only the column names are computed. Column.zType, Column.zColl, 1551 ** and other fields of Column are zeroed. 1552 ** 1553 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1554 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1555 */ 1556 static int selectColumnsFromExprList( 1557 Parse *pParse, /* Parsing context */ 1558 ExprList *pEList, /* Expr list from which to derive column names */ 1559 i16 *pnCol, /* Write the number of columns here */ 1560 Column **paCol /* Write the new column list here */ 1561 ){ 1562 sqlite3 *db = pParse->db; /* Database connection */ 1563 int i, j; /* Loop counters */ 1564 int cnt; /* Index added to make the name unique */ 1565 Column *aCol, *pCol; /* For looping over result columns */ 1566 int nCol; /* Number of columns in the result set */ 1567 Expr *p; /* Expression for a single result column */ 1568 char *zName; /* Column name */ 1569 int nName; /* Size of name in zName[] */ 1570 1571 if( pEList ){ 1572 nCol = pEList->nExpr; 1573 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1574 testcase( aCol==0 ); 1575 }else{ 1576 nCol = 0; 1577 aCol = 0; 1578 } 1579 *pnCol = nCol; 1580 *paCol = aCol; 1581 1582 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1583 /* Get an appropriate name for the column 1584 */ 1585 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1586 if( (zName = pEList->a[i].zName)!=0 ){ 1587 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1588 zName = sqlite3DbStrDup(db, zName); 1589 }else{ 1590 Expr *pColExpr = p; /* The expression that is the result column name */ 1591 Table *pTab; /* Table associated with this expression */ 1592 while( pColExpr->op==TK_DOT ){ 1593 pColExpr = pColExpr->pRight; 1594 assert( pColExpr!=0 ); 1595 } 1596 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1597 /* For columns use the column name name */ 1598 int iCol = pColExpr->iColumn; 1599 pTab = pColExpr->pTab; 1600 if( iCol<0 ) iCol = pTab->iPKey; 1601 zName = sqlite3MPrintf(db, "%s", 1602 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1603 }else if( pColExpr->op==TK_ID ){ 1604 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1605 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1606 }else{ 1607 /* Use the original text of the column expression as its name */ 1608 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1609 } 1610 } 1611 if( db->mallocFailed ){ 1612 sqlite3DbFree(db, zName); 1613 break; 1614 } 1615 1616 /* Make sure the column name is unique. If the name is not unique, 1617 ** append an integer to the name so that it becomes unique. 1618 */ 1619 nName = sqlite3Strlen30(zName); 1620 for(j=cnt=0; j<i; j++){ 1621 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1622 char *zNewName; 1623 int k; 1624 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1625 if( k>=0 && zName[k]==':' ) nName = k; 1626 zName[nName] = 0; 1627 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1628 sqlite3DbFree(db, zName); 1629 zName = zNewName; 1630 j = -1; 1631 if( zName==0 ) break; 1632 } 1633 } 1634 pCol->zName = zName; 1635 } 1636 if( db->mallocFailed ){ 1637 for(j=0; j<i; j++){ 1638 sqlite3DbFree(db, aCol[j].zName); 1639 } 1640 sqlite3DbFree(db, aCol); 1641 *paCol = 0; 1642 *pnCol = 0; 1643 return SQLITE_NOMEM; 1644 } 1645 return SQLITE_OK; 1646 } 1647 1648 /* 1649 ** Add type and collation information to a column list based on 1650 ** a SELECT statement. 1651 ** 1652 ** The column list presumably came from selectColumnNamesFromExprList(). 1653 ** The column list has only names, not types or collations. This 1654 ** routine goes through and adds the types and collations. 1655 ** 1656 ** This routine requires that all identifiers in the SELECT 1657 ** statement be resolved. 1658 */ 1659 static void selectAddColumnTypeAndCollation( 1660 Parse *pParse, /* Parsing contexts */ 1661 Table *pTab, /* Add column type information to this table */ 1662 Select *pSelect /* SELECT used to determine types and collations */ 1663 ){ 1664 sqlite3 *db = pParse->db; 1665 NameContext sNC; 1666 Column *pCol; 1667 CollSeq *pColl; 1668 int i; 1669 Expr *p; 1670 struct ExprList_item *a; 1671 u64 szAll = 0; 1672 1673 assert( pSelect!=0 ); 1674 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1675 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1676 if( db->mallocFailed ) return; 1677 memset(&sNC, 0, sizeof(sNC)); 1678 sNC.pSrcList = pSelect->pSrc; 1679 a = pSelect->pEList->a; 1680 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1681 p = a[i].pExpr; 1682 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1683 szAll += pCol->szEst; 1684 pCol->affinity = sqlite3ExprAffinity(p); 1685 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1686 pColl = sqlite3ExprCollSeq(pParse, p); 1687 if( pColl ){ 1688 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1689 } 1690 } 1691 pTab->szTabRow = sqlite3LogEst(szAll*4); 1692 } 1693 1694 /* 1695 ** Given a SELECT statement, generate a Table structure that describes 1696 ** the result set of that SELECT. 1697 */ 1698 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1699 Table *pTab; 1700 sqlite3 *db = pParse->db; 1701 int savedFlags; 1702 1703 savedFlags = db->flags; 1704 db->flags &= ~SQLITE_FullColNames; 1705 db->flags |= SQLITE_ShortColNames; 1706 sqlite3SelectPrep(pParse, pSelect, 0); 1707 if( pParse->nErr ) return 0; 1708 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1709 db->flags = savedFlags; 1710 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1711 if( pTab==0 ){ 1712 return 0; 1713 } 1714 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1715 ** is disabled */ 1716 assert( db->lookaside.bEnabled==0 ); 1717 pTab->nRef = 1; 1718 pTab->zName = 0; 1719 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1720 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1721 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1722 pTab->iPKey = -1; 1723 if( db->mallocFailed ){ 1724 sqlite3DeleteTable(db, pTab); 1725 return 0; 1726 } 1727 return pTab; 1728 } 1729 1730 /* 1731 ** Get a VDBE for the given parser context. Create a new one if necessary. 1732 ** If an error occurs, return NULL and leave a message in pParse. 1733 */ 1734 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1735 Vdbe *v = pParse->pVdbe; 1736 if( v==0 ){ 1737 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1738 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1739 if( pParse->pToplevel==0 1740 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1741 ){ 1742 pParse->okConstFactor = 1; 1743 } 1744 1745 } 1746 return v; 1747 } 1748 1749 1750 /* 1751 ** Compute the iLimit and iOffset fields of the SELECT based on the 1752 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1753 ** that appear in the original SQL statement after the LIMIT and OFFSET 1754 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1755 ** are the integer memory register numbers for counters used to compute 1756 ** the limit and offset. If there is no limit and/or offset, then 1757 ** iLimit and iOffset are negative. 1758 ** 1759 ** This routine changes the values of iLimit and iOffset only if 1760 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1761 ** iOffset should have been preset to appropriate default values (zero) 1762 ** prior to calling this routine. 1763 ** 1764 ** The iOffset register (if it exists) is initialized to the value 1765 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1766 ** iOffset+1 is initialized to LIMIT+OFFSET. 1767 ** 1768 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1769 ** redefined. The UNION ALL operator uses this property to force 1770 ** the reuse of the same limit and offset registers across multiple 1771 ** SELECT statements. 1772 */ 1773 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1774 Vdbe *v = 0; 1775 int iLimit = 0; 1776 int iOffset; 1777 int addr1, n; 1778 if( p->iLimit ) return; 1779 1780 /* 1781 ** "LIMIT -1" always shows all rows. There is some 1782 ** controversy about what the correct behavior should be. 1783 ** The current implementation interprets "LIMIT 0" to mean 1784 ** no rows. 1785 */ 1786 sqlite3ExprCacheClear(pParse); 1787 assert( p->pOffset==0 || p->pLimit!=0 ); 1788 if( p->pLimit ){ 1789 p->iLimit = iLimit = ++pParse->nMem; 1790 v = sqlite3GetVdbe(pParse); 1791 assert( v!=0 ); 1792 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1793 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1794 VdbeComment((v, "LIMIT counter")); 1795 if( n==0 ){ 1796 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1797 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1798 p->nSelectRow = n; 1799 } 1800 }else{ 1801 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1802 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1803 VdbeComment((v, "LIMIT counter")); 1804 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1805 } 1806 if( p->pOffset ){ 1807 p->iOffset = iOffset = ++pParse->nMem; 1808 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1809 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1810 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1811 VdbeComment((v, "OFFSET counter")); 1812 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1813 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1814 sqlite3VdbeJumpHere(v, addr1); 1815 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1816 VdbeComment((v, "LIMIT+OFFSET")); 1817 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1818 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1819 sqlite3VdbeJumpHere(v, addr1); 1820 } 1821 } 1822 } 1823 1824 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1825 /* 1826 ** Return the appropriate collating sequence for the iCol-th column of 1827 ** the result set for the compound-select statement "p". Return NULL if 1828 ** the column has no default collating sequence. 1829 ** 1830 ** The collating sequence for the compound select is taken from the 1831 ** left-most term of the select that has a collating sequence. 1832 */ 1833 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1834 CollSeq *pRet; 1835 if( p->pPrior ){ 1836 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1837 }else{ 1838 pRet = 0; 1839 } 1840 assert( iCol>=0 ); 1841 if( pRet==0 && iCol<p->pEList->nExpr ){ 1842 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1843 } 1844 return pRet; 1845 } 1846 1847 /* 1848 ** The select statement passed as the second parameter is a compound SELECT 1849 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1850 ** structure suitable for implementing the ORDER BY. 1851 ** 1852 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1853 ** function is responsible for ensuring that this structure is eventually 1854 ** freed. 1855 */ 1856 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1857 ExprList *pOrderBy = p->pOrderBy; 1858 int nOrderBy = p->pOrderBy->nExpr; 1859 sqlite3 *db = pParse->db; 1860 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1861 if( pRet ){ 1862 int i; 1863 for(i=0; i<nOrderBy; i++){ 1864 struct ExprList_item *pItem = &pOrderBy->a[i]; 1865 Expr *pTerm = pItem->pExpr; 1866 CollSeq *pColl; 1867 1868 if( pTerm->flags & EP_Collate ){ 1869 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1870 }else{ 1871 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1872 if( pColl==0 ) pColl = db->pDfltColl; 1873 pOrderBy->a[i].pExpr = 1874 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1875 } 1876 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1877 pRet->aColl[i] = pColl; 1878 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1879 } 1880 } 1881 1882 return pRet; 1883 } 1884 1885 #ifndef SQLITE_OMIT_CTE 1886 /* 1887 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1888 ** query of the form: 1889 ** 1890 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1891 ** \___________/ \_______________/ 1892 ** p->pPrior p 1893 ** 1894 ** 1895 ** There is exactly one reference to the recursive-table in the FROM clause 1896 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1897 ** 1898 ** The setup-query runs once to generate an initial set of rows that go 1899 ** into a Queue table. Rows are extracted from the Queue table one by 1900 ** one. Each row extracted from Queue is output to pDest. Then the single 1901 ** extracted row (now in the iCurrent table) becomes the content of the 1902 ** recursive-table for a recursive-query run. The output of the recursive-query 1903 ** is added back into the Queue table. Then another row is extracted from Queue 1904 ** and the iteration continues until the Queue table is empty. 1905 ** 1906 ** If the compound query operator is UNION then no duplicate rows are ever 1907 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1908 ** that have ever been inserted into Queue and causes duplicates to be 1909 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1910 ** 1911 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1912 ** ORDER BY order and the first entry is extracted for each cycle. Without 1913 ** an ORDER BY, the Queue table is just a FIFO. 1914 ** 1915 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1916 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1917 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1918 ** with a positive value, then the first OFFSET outputs are discarded rather 1919 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1920 ** rows have been skipped. 1921 */ 1922 static void generateWithRecursiveQuery( 1923 Parse *pParse, /* Parsing context */ 1924 Select *p, /* The recursive SELECT to be coded */ 1925 SelectDest *pDest /* What to do with query results */ 1926 ){ 1927 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1928 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1929 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1930 Select *pSetup = p->pPrior; /* The setup query */ 1931 int addrTop; /* Top of the loop */ 1932 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1933 int iCurrent = 0; /* The Current table */ 1934 int regCurrent; /* Register holding Current table */ 1935 int iQueue; /* The Queue table */ 1936 int iDistinct = 0; /* To ensure unique results if UNION */ 1937 int eDest = SRT_Fifo; /* How to write to Queue */ 1938 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1939 int i; /* Loop counter */ 1940 int rc; /* Result code */ 1941 ExprList *pOrderBy; /* The ORDER BY clause */ 1942 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1943 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1944 1945 /* Obtain authorization to do a recursive query */ 1946 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1947 1948 /* Process the LIMIT and OFFSET clauses, if they exist */ 1949 addrBreak = sqlite3VdbeMakeLabel(v); 1950 computeLimitRegisters(pParse, p, addrBreak); 1951 pLimit = p->pLimit; 1952 pOffset = p->pOffset; 1953 regLimit = p->iLimit; 1954 regOffset = p->iOffset; 1955 p->pLimit = p->pOffset = 0; 1956 p->iLimit = p->iOffset = 0; 1957 pOrderBy = p->pOrderBy; 1958 1959 /* Locate the cursor number of the Current table */ 1960 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1961 if( pSrc->a[i].isRecursive ){ 1962 iCurrent = pSrc->a[i].iCursor; 1963 break; 1964 } 1965 } 1966 1967 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1968 ** the Distinct table must be exactly one greater than Queue in order 1969 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1970 iQueue = pParse->nTab++; 1971 if( p->op==TK_UNION ){ 1972 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1973 iDistinct = pParse->nTab++; 1974 }else{ 1975 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1976 } 1977 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1978 1979 /* Allocate cursors for Current, Queue, and Distinct. */ 1980 regCurrent = ++pParse->nMem; 1981 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1982 if( pOrderBy ){ 1983 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1984 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1985 (char*)pKeyInfo, P4_KEYINFO); 1986 destQueue.pOrderBy = pOrderBy; 1987 }else{ 1988 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1989 } 1990 VdbeComment((v, "Queue table")); 1991 if( iDistinct ){ 1992 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1993 p->selFlags |= SF_UsesEphemeral; 1994 } 1995 1996 /* Detach the ORDER BY clause from the compound SELECT */ 1997 p->pOrderBy = 0; 1998 1999 /* Store the results of the setup-query in Queue. */ 2000 pSetup->pNext = 0; 2001 rc = sqlite3Select(pParse, pSetup, &destQueue); 2002 pSetup->pNext = p; 2003 if( rc ) goto end_of_recursive_query; 2004 2005 /* Find the next row in the Queue and output that row */ 2006 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2007 2008 /* Transfer the next row in Queue over to Current */ 2009 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2010 if( pOrderBy ){ 2011 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2012 }else{ 2013 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2014 } 2015 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2016 2017 /* Output the single row in Current */ 2018 addrCont = sqlite3VdbeMakeLabel(v); 2019 codeOffset(v, regOffset, addrCont); 2020 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2021 0, 0, pDest, addrCont, addrBreak); 2022 if( regLimit ){ 2023 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 2024 VdbeCoverage(v); 2025 } 2026 sqlite3VdbeResolveLabel(v, addrCont); 2027 2028 /* Execute the recursive SELECT taking the single row in Current as 2029 ** the value for the recursive-table. Store the results in the Queue. 2030 */ 2031 p->pPrior = 0; 2032 sqlite3Select(pParse, p, &destQueue); 2033 assert( p->pPrior==0 ); 2034 p->pPrior = pSetup; 2035 2036 /* Keep running the loop until the Queue is empty */ 2037 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2038 sqlite3VdbeResolveLabel(v, addrBreak); 2039 2040 end_of_recursive_query: 2041 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2042 p->pOrderBy = pOrderBy; 2043 p->pLimit = pLimit; 2044 p->pOffset = pOffset; 2045 return; 2046 } 2047 #endif /* SQLITE_OMIT_CTE */ 2048 2049 /* Forward references */ 2050 static int multiSelectOrderBy( 2051 Parse *pParse, /* Parsing context */ 2052 Select *p, /* The right-most of SELECTs to be coded */ 2053 SelectDest *pDest /* What to do with query results */ 2054 ); 2055 2056 2057 /* 2058 ** This routine is called to process a compound query form from 2059 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2060 ** INTERSECT 2061 ** 2062 ** "p" points to the right-most of the two queries. the query on the 2063 ** left is p->pPrior. The left query could also be a compound query 2064 ** in which case this routine will be called recursively. 2065 ** 2066 ** The results of the total query are to be written into a destination 2067 ** of type eDest with parameter iParm. 2068 ** 2069 ** Example 1: Consider a three-way compound SQL statement. 2070 ** 2071 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2072 ** 2073 ** This statement is parsed up as follows: 2074 ** 2075 ** SELECT c FROM t3 2076 ** | 2077 ** `-----> SELECT b FROM t2 2078 ** | 2079 ** `------> SELECT a FROM t1 2080 ** 2081 ** The arrows in the diagram above represent the Select.pPrior pointer. 2082 ** So if this routine is called with p equal to the t3 query, then 2083 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2084 ** 2085 ** Notice that because of the way SQLite parses compound SELECTs, the 2086 ** individual selects always group from left to right. 2087 */ 2088 static int multiSelect( 2089 Parse *pParse, /* Parsing context */ 2090 Select *p, /* The right-most of SELECTs to be coded */ 2091 SelectDest *pDest /* What to do with query results */ 2092 ){ 2093 int rc = SQLITE_OK; /* Success code from a subroutine */ 2094 Select *pPrior; /* Another SELECT immediately to our left */ 2095 Vdbe *v; /* Generate code to this VDBE */ 2096 SelectDest dest; /* Alternative data destination */ 2097 Select *pDelete = 0; /* Chain of simple selects to delete */ 2098 sqlite3 *db; /* Database connection */ 2099 #ifndef SQLITE_OMIT_EXPLAIN 2100 int iSub1 = 0; /* EQP id of left-hand query */ 2101 int iSub2 = 0; /* EQP id of right-hand query */ 2102 #endif 2103 2104 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2105 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2106 */ 2107 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2108 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2109 db = pParse->db; 2110 pPrior = p->pPrior; 2111 dest = *pDest; 2112 if( pPrior->pOrderBy ){ 2113 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2114 selectOpName(p->op)); 2115 rc = 1; 2116 goto multi_select_end; 2117 } 2118 if( pPrior->pLimit ){ 2119 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2120 selectOpName(p->op)); 2121 rc = 1; 2122 goto multi_select_end; 2123 } 2124 2125 v = sqlite3GetVdbe(pParse); 2126 assert( v!=0 ); /* The VDBE already created by calling function */ 2127 2128 /* Create the destination temporary table if necessary 2129 */ 2130 if( dest.eDest==SRT_EphemTab ){ 2131 assert( p->pEList ); 2132 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2133 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2134 dest.eDest = SRT_Table; 2135 } 2136 2137 /* Make sure all SELECTs in the statement have the same number of elements 2138 ** in their result sets. 2139 */ 2140 assert( p->pEList && pPrior->pEList ); 2141 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2142 if( p->selFlags & SF_Values ){ 2143 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2144 }else{ 2145 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2146 " do not have the same number of result columns", selectOpName(p->op)); 2147 } 2148 rc = 1; 2149 goto multi_select_end; 2150 } 2151 2152 #ifndef SQLITE_OMIT_CTE 2153 if( p->selFlags & SF_Recursive ){ 2154 generateWithRecursiveQuery(pParse, p, &dest); 2155 }else 2156 #endif 2157 2158 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2159 */ 2160 if( p->pOrderBy ){ 2161 return multiSelectOrderBy(pParse, p, pDest); 2162 }else 2163 2164 /* Generate code for the left and right SELECT statements. 2165 */ 2166 switch( p->op ){ 2167 case TK_ALL: { 2168 int addr = 0; 2169 int nLimit; 2170 assert( !pPrior->pLimit ); 2171 pPrior->iLimit = p->iLimit; 2172 pPrior->iOffset = p->iOffset; 2173 pPrior->pLimit = p->pLimit; 2174 pPrior->pOffset = p->pOffset; 2175 explainSetInteger(iSub1, pParse->iNextSelectId); 2176 rc = sqlite3Select(pParse, pPrior, &dest); 2177 p->pLimit = 0; 2178 p->pOffset = 0; 2179 if( rc ){ 2180 goto multi_select_end; 2181 } 2182 p->pPrior = 0; 2183 p->iLimit = pPrior->iLimit; 2184 p->iOffset = pPrior->iOffset; 2185 if( p->iLimit ){ 2186 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2187 VdbeComment((v, "Jump ahead if LIMIT reached")); 2188 } 2189 explainSetInteger(iSub2, pParse->iNextSelectId); 2190 rc = sqlite3Select(pParse, p, &dest); 2191 testcase( rc!=SQLITE_OK ); 2192 pDelete = p->pPrior; 2193 p->pPrior = pPrior; 2194 p->nSelectRow += pPrior->nSelectRow; 2195 if( pPrior->pLimit 2196 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2197 && nLimit>0 && p->nSelectRow > (u64)nLimit 2198 ){ 2199 p->nSelectRow = nLimit; 2200 } 2201 if( addr ){ 2202 sqlite3VdbeJumpHere(v, addr); 2203 } 2204 break; 2205 } 2206 case TK_EXCEPT: 2207 case TK_UNION: { 2208 int unionTab; /* Cursor number of the temporary table holding result */ 2209 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2210 int priorOp; /* The SRT_ operation to apply to prior selects */ 2211 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2212 int addr; 2213 SelectDest uniondest; 2214 2215 testcase( p->op==TK_EXCEPT ); 2216 testcase( p->op==TK_UNION ); 2217 priorOp = SRT_Union; 2218 if( dest.eDest==priorOp ){ 2219 /* We can reuse a temporary table generated by a SELECT to our 2220 ** right. 2221 */ 2222 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2223 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2224 unionTab = dest.iSDParm; 2225 }else{ 2226 /* We will need to create our own temporary table to hold the 2227 ** intermediate results. 2228 */ 2229 unionTab = pParse->nTab++; 2230 assert( p->pOrderBy==0 ); 2231 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2232 assert( p->addrOpenEphm[0] == -1 ); 2233 p->addrOpenEphm[0] = addr; 2234 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2235 assert( p->pEList ); 2236 } 2237 2238 /* Code the SELECT statements to our left 2239 */ 2240 assert( !pPrior->pOrderBy ); 2241 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2242 explainSetInteger(iSub1, pParse->iNextSelectId); 2243 rc = sqlite3Select(pParse, pPrior, &uniondest); 2244 if( rc ){ 2245 goto multi_select_end; 2246 } 2247 2248 /* Code the current SELECT statement 2249 */ 2250 if( p->op==TK_EXCEPT ){ 2251 op = SRT_Except; 2252 }else{ 2253 assert( p->op==TK_UNION ); 2254 op = SRT_Union; 2255 } 2256 p->pPrior = 0; 2257 pLimit = p->pLimit; 2258 p->pLimit = 0; 2259 pOffset = p->pOffset; 2260 p->pOffset = 0; 2261 uniondest.eDest = op; 2262 explainSetInteger(iSub2, pParse->iNextSelectId); 2263 rc = sqlite3Select(pParse, p, &uniondest); 2264 testcase( rc!=SQLITE_OK ); 2265 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2266 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2267 sqlite3ExprListDelete(db, p->pOrderBy); 2268 pDelete = p->pPrior; 2269 p->pPrior = pPrior; 2270 p->pOrderBy = 0; 2271 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2272 sqlite3ExprDelete(db, p->pLimit); 2273 p->pLimit = pLimit; 2274 p->pOffset = pOffset; 2275 p->iLimit = 0; 2276 p->iOffset = 0; 2277 2278 /* Convert the data in the temporary table into whatever form 2279 ** it is that we currently need. 2280 */ 2281 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2282 if( dest.eDest!=priorOp ){ 2283 int iCont, iBreak, iStart; 2284 assert( p->pEList ); 2285 if( dest.eDest==SRT_Output ){ 2286 Select *pFirst = p; 2287 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2288 generateColumnNames(pParse, 0, pFirst->pEList); 2289 } 2290 iBreak = sqlite3VdbeMakeLabel(v); 2291 iCont = sqlite3VdbeMakeLabel(v); 2292 computeLimitRegisters(pParse, p, iBreak); 2293 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2294 iStart = sqlite3VdbeCurrentAddr(v); 2295 selectInnerLoop(pParse, p, p->pEList, unionTab, 2296 0, 0, &dest, iCont, iBreak); 2297 sqlite3VdbeResolveLabel(v, iCont); 2298 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2299 sqlite3VdbeResolveLabel(v, iBreak); 2300 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2301 } 2302 break; 2303 } 2304 default: assert( p->op==TK_INTERSECT ); { 2305 int tab1, tab2; 2306 int iCont, iBreak, iStart; 2307 Expr *pLimit, *pOffset; 2308 int addr; 2309 SelectDest intersectdest; 2310 int r1; 2311 2312 /* INTERSECT is different from the others since it requires 2313 ** two temporary tables. Hence it has its own case. Begin 2314 ** by allocating the tables we will need. 2315 */ 2316 tab1 = pParse->nTab++; 2317 tab2 = pParse->nTab++; 2318 assert( p->pOrderBy==0 ); 2319 2320 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2321 assert( p->addrOpenEphm[0] == -1 ); 2322 p->addrOpenEphm[0] = addr; 2323 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2324 assert( p->pEList ); 2325 2326 /* Code the SELECTs to our left into temporary table "tab1". 2327 */ 2328 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2329 explainSetInteger(iSub1, pParse->iNextSelectId); 2330 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2331 if( rc ){ 2332 goto multi_select_end; 2333 } 2334 2335 /* Code the current SELECT into temporary table "tab2" 2336 */ 2337 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2338 assert( p->addrOpenEphm[1] == -1 ); 2339 p->addrOpenEphm[1] = addr; 2340 p->pPrior = 0; 2341 pLimit = p->pLimit; 2342 p->pLimit = 0; 2343 pOffset = p->pOffset; 2344 p->pOffset = 0; 2345 intersectdest.iSDParm = tab2; 2346 explainSetInteger(iSub2, pParse->iNextSelectId); 2347 rc = sqlite3Select(pParse, p, &intersectdest); 2348 testcase( rc!=SQLITE_OK ); 2349 pDelete = p->pPrior; 2350 p->pPrior = pPrior; 2351 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2352 sqlite3ExprDelete(db, p->pLimit); 2353 p->pLimit = pLimit; 2354 p->pOffset = pOffset; 2355 2356 /* Generate code to take the intersection of the two temporary 2357 ** tables. 2358 */ 2359 assert( p->pEList ); 2360 if( dest.eDest==SRT_Output ){ 2361 Select *pFirst = p; 2362 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2363 generateColumnNames(pParse, 0, pFirst->pEList); 2364 } 2365 iBreak = sqlite3VdbeMakeLabel(v); 2366 iCont = sqlite3VdbeMakeLabel(v); 2367 computeLimitRegisters(pParse, p, iBreak); 2368 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2369 r1 = sqlite3GetTempReg(pParse); 2370 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2371 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2372 sqlite3ReleaseTempReg(pParse, r1); 2373 selectInnerLoop(pParse, p, p->pEList, tab1, 2374 0, 0, &dest, iCont, iBreak); 2375 sqlite3VdbeResolveLabel(v, iCont); 2376 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2377 sqlite3VdbeResolveLabel(v, iBreak); 2378 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2379 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2380 break; 2381 } 2382 } 2383 2384 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2385 2386 /* Compute collating sequences used by 2387 ** temporary tables needed to implement the compound select. 2388 ** Attach the KeyInfo structure to all temporary tables. 2389 ** 2390 ** This section is run by the right-most SELECT statement only. 2391 ** SELECT statements to the left always skip this part. The right-most 2392 ** SELECT might also skip this part if it has no ORDER BY clause and 2393 ** no temp tables are required. 2394 */ 2395 if( p->selFlags & SF_UsesEphemeral ){ 2396 int i; /* Loop counter */ 2397 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2398 Select *pLoop; /* For looping through SELECT statements */ 2399 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2400 int nCol; /* Number of columns in result set */ 2401 2402 assert( p->pNext==0 ); 2403 nCol = p->pEList->nExpr; 2404 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2405 if( !pKeyInfo ){ 2406 rc = SQLITE_NOMEM; 2407 goto multi_select_end; 2408 } 2409 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2410 *apColl = multiSelectCollSeq(pParse, p, i); 2411 if( 0==*apColl ){ 2412 *apColl = db->pDfltColl; 2413 } 2414 } 2415 2416 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2417 for(i=0; i<2; i++){ 2418 int addr = pLoop->addrOpenEphm[i]; 2419 if( addr<0 ){ 2420 /* If [0] is unused then [1] is also unused. So we can 2421 ** always safely abort as soon as the first unused slot is found */ 2422 assert( pLoop->addrOpenEphm[1]<0 ); 2423 break; 2424 } 2425 sqlite3VdbeChangeP2(v, addr, nCol); 2426 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2427 P4_KEYINFO); 2428 pLoop->addrOpenEphm[i] = -1; 2429 } 2430 } 2431 sqlite3KeyInfoUnref(pKeyInfo); 2432 } 2433 2434 multi_select_end: 2435 pDest->iSdst = dest.iSdst; 2436 pDest->nSdst = dest.nSdst; 2437 sqlite3SelectDelete(db, pDelete); 2438 return rc; 2439 } 2440 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2441 2442 /* 2443 ** Code an output subroutine for a coroutine implementation of a 2444 ** SELECT statment. 2445 ** 2446 ** The data to be output is contained in pIn->iSdst. There are 2447 ** pIn->nSdst columns to be output. pDest is where the output should 2448 ** be sent. 2449 ** 2450 ** regReturn is the number of the register holding the subroutine 2451 ** return address. 2452 ** 2453 ** If regPrev>0 then it is the first register in a vector that 2454 ** records the previous output. mem[regPrev] is a flag that is false 2455 ** if there has been no previous output. If regPrev>0 then code is 2456 ** generated to suppress duplicates. pKeyInfo is used for comparing 2457 ** keys. 2458 ** 2459 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2460 ** iBreak. 2461 */ 2462 static int generateOutputSubroutine( 2463 Parse *pParse, /* Parsing context */ 2464 Select *p, /* The SELECT statement */ 2465 SelectDest *pIn, /* Coroutine supplying data */ 2466 SelectDest *pDest, /* Where to send the data */ 2467 int regReturn, /* The return address register */ 2468 int regPrev, /* Previous result register. No uniqueness if 0 */ 2469 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2470 int iBreak /* Jump here if we hit the LIMIT */ 2471 ){ 2472 Vdbe *v = pParse->pVdbe; 2473 int iContinue; 2474 int addr; 2475 2476 addr = sqlite3VdbeCurrentAddr(v); 2477 iContinue = sqlite3VdbeMakeLabel(v); 2478 2479 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2480 */ 2481 if( regPrev ){ 2482 int j1, j2; 2483 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2484 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2485 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2486 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2487 sqlite3VdbeJumpHere(v, j1); 2488 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2489 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2490 } 2491 if( pParse->db->mallocFailed ) return 0; 2492 2493 /* Suppress the first OFFSET entries if there is an OFFSET clause 2494 */ 2495 codeOffset(v, p->iOffset, iContinue); 2496 2497 switch( pDest->eDest ){ 2498 /* Store the result as data using a unique key. 2499 */ 2500 case SRT_Table: 2501 case SRT_EphemTab: { 2502 int r1 = sqlite3GetTempReg(pParse); 2503 int r2 = sqlite3GetTempReg(pParse); 2504 testcase( pDest->eDest==SRT_Table ); 2505 testcase( pDest->eDest==SRT_EphemTab ); 2506 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2507 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2508 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2509 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2510 sqlite3ReleaseTempReg(pParse, r2); 2511 sqlite3ReleaseTempReg(pParse, r1); 2512 break; 2513 } 2514 2515 #ifndef SQLITE_OMIT_SUBQUERY 2516 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2517 ** then there should be a single item on the stack. Write this 2518 ** item into the set table with bogus data. 2519 */ 2520 case SRT_Set: { 2521 int r1; 2522 assert( pIn->nSdst==1 ); 2523 pDest->affSdst = 2524 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2525 r1 = sqlite3GetTempReg(pParse); 2526 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2527 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2528 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2529 sqlite3ReleaseTempReg(pParse, r1); 2530 break; 2531 } 2532 2533 #if 0 /* Never occurs on an ORDER BY query */ 2534 /* If any row exist in the result set, record that fact and abort. 2535 */ 2536 case SRT_Exists: { 2537 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2538 /* The LIMIT clause will terminate the loop for us */ 2539 break; 2540 } 2541 #endif 2542 2543 /* If this is a scalar select that is part of an expression, then 2544 ** store the results in the appropriate memory cell and break out 2545 ** of the scan loop. 2546 */ 2547 case SRT_Mem: { 2548 assert( pIn->nSdst==1 ); 2549 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2550 /* The LIMIT clause will jump out of the loop for us */ 2551 break; 2552 } 2553 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2554 2555 /* The results are stored in a sequence of registers 2556 ** starting at pDest->iSdst. Then the co-routine yields. 2557 */ 2558 case SRT_Coroutine: { 2559 if( pDest->iSdst==0 ){ 2560 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2561 pDest->nSdst = pIn->nSdst; 2562 } 2563 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2564 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2565 break; 2566 } 2567 2568 /* If none of the above, then the result destination must be 2569 ** SRT_Output. This routine is never called with any other 2570 ** destination other than the ones handled above or SRT_Output. 2571 ** 2572 ** For SRT_Output, results are stored in a sequence of registers. 2573 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2574 ** return the next row of result. 2575 */ 2576 default: { 2577 assert( pDest->eDest==SRT_Output ); 2578 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2579 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2580 break; 2581 } 2582 } 2583 2584 /* Jump to the end of the loop if the LIMIT is reached. 2585 */ 2586 if( p->iLimit ){ 2587 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2588 } 2589 2590 /* Generate the subroutine return 2591 */ 2592 sqlite3VdbeResolveLabel(v, iContinue); 2593 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2594 2595 return addr; 2596 } 2597 2598 /* 2599 ** Alternative compound select code generator for cases when there 2600 ** is an ORDER BY clause. 2601 ** 2602 ** We assume a query of the following form: 2603 ** 2604 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2605 ** 2606 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2607 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2608 ** co-routines. Then run the co-routines in parallel and merge the results 2609 ** into the output. In addition to the two coroutines (called selectA and 2610 ** selectB) there are 7 subroutines: 2611 ** 2612 ** outA: Move the output of the selectA coroutine into the output 2613 ** of the compound query. 2614 ** 2615 ** outB: Move the output of the selectB coroutine into the output 2616 ** of the compound query. (Only generated for UNION and 2617 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2618 ** appears only in B.) 2619 ** 2620 ** AltB: Called when there is data from both coroutines and A<B. 2621 ** 2622 ** AeqB: Called when there is data from both coroutines and A==B. 2623 ** 2624 ** AgtB: Called when there is data from both coroutines and A>B. 2625 ** 2626 ** EofA: Called when data is exhausted from selectA. 2627 ** 2628 ** EofB: Called when data is exhausted from selectB. 2629 ** 2630 ** The implementation of the latter five subroutines depend on which 2631 ** <operator> is used: 2632 ** 2633 ** 2634 ** UNION ALL UNION EXCEPT INTERSECT 2635 ** ------------- ----------------- -------------- ----------------- 2636 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2637 ** 2638 ** AeqB: outA, nextA nextA nextA outA, nextA 2639 ** 2640 ** AgtB: outB, nextB outB, nextB nextB nextB 2641 ** 2642 ** EofA: outB, nextB outB, nextB halt halt 2643 ** 2644 ** EofB: outA, nextA outA, nextA outA, nextA halt 2645 ** 2646 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2647 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2648 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2649 ** following nextX causes a jump to the end of the select processing. 2650 ** 2651 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2652 ** within the output subroutine. The regPrev register set holds the previously 2653 ** output value. A comparison is made against this value and the output 2654 ** is skipped if the next results would be the same as the previous. 2655 ** 2656 ** The implementation plan is to implement the two coroutines and seven 2657 ** subroutines first, then put the control logic at the bottom. Like this: 2658 ** 2659 ** goto Init 2660 ** coA: coroutine for left query (A) 2661 ** coB: coroutine for right query (B) 2662 ** outA: output one row of A 2663 ** outB: output one row of B (UNION and UNION ALL only) 2664 ** EofA: ... 2665 ** EofB: ... 2666 ** AltB: ... 2667 ** AeqB: ... 2668 ** AgtB: ... 2669 ** Init: initialize coroutine registers 2670 ** yield coA 2671 ** if eof(A) goto EofA 2672 ** yield coB 2673 ** if eof(B) goto EofB 2674 ** Cmpr: Compare A, B 2675 ** Jump AltB, AeqB, AgtB 2676 ** End: ... 2677 ** 2678 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2679 ** actually called using Gosub and they do not Return. EofA and EofB loop 2680 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2681 ** and AgtB jump to either L2 or to one of EofA or EofB. 2682 */ 2683 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2684 static int multiSelectOrderBy( 2685 Parse *pParse, /* Parsing context */ 2686 Select *p, /* The right-most of SELECTs to be coded */ 2687 SelectDest *pDest /* What to do with query results */ 2688 ){ 2689 int i, j; /* Loop counters */ 2690 Select *pPrior; /* Another SELECT immediately to our left */ 2691 Vdbe *v; /* Generate code to this VDBE */ 2692 SelectDest destA; /* Destination for coroutine A */ 2693 SelectDest destB; /* Destination for coroutine B */ 2694 int regAddrA; /* Address register for select-A coroutine */ 2695 int regAddrB; /* Address register for select-B coroutine */ 2696 int addrSelectA; /* Address of the select-A coroutine */ 2697 int addrSelectB; /* Address of the select-B coroutine */ 2698 int regOutA; /* Address register for the output-A subroutine */ 2699 int regOutB; /* Address register for the output-B subroutine */ 2700 int addrOutA; /* Address of the output-A subroutine */ 2701 int addrOutB = 0; /* Address of the output-B subroutine */ 2702 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2703 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2704 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2705 int addrAltB; /* Address of the A<B subroutine */ 2706 int addrAeqB; /* Address of the A==B subroutine */ 2707 int addrAgtB; /* Address of the A>B subroutine */ 2708 int regLimitA; /* Limit register for select-A */ 2709 int regLimitB; /* Limit register for select-A */ 2710 int regPrev; /* A range of registers to hold previous output */ 2711 int savedLimit; /* Saved value of p->iLimit */ 2712 int savedOffset; /* Saved value of p->iOffset */ 2713 int labelCmpr; /* Label for the start of the merge algorithm */ 2714 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2715 int j1; /* Jump instructions that get retargetted */ 2716 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2717 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2718 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2719 sqlite3 *db; /* Database connection */ 2720 ExprList *pOrderBy; /* The ORDER BY clause */ 2721 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2722 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2723 #ifndef SQLITE_OMIT_EXPLAIN 2724 int iSub1; /* EQP id of left-hand query */ 2725 int iSub2; /* EQP id of right-hand query */ 2726 #endif 2727 2728 assert( p->pOrderBy!=0 ); 2729 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2730 db = pParse->db; 2731 v = pParse->pVdbe; 2732 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2733 labelEnd = sqlite3VdbeMakeLabel(v); 2734 labelCmpr = sqlite3VdbeMakeLabel(v); 2735 2736 2737 /* Patch up the ORDER BY clause 2738 */ 2739 op = p->op; 2740 pPrior = p->pPrior; 2741 assert( pPrior->pOrderBy==0 ); 2742 pOrderBy = p->pOrderBy; 2743 assert( pOrderBy ); 2744 nOrderBy = pOrderBy->nExpr; 2745 2746 /* For operators other than UNION ALL we have to make sure that 2747 ** the ORDER BY clause covers every term of the result set. Add 2748 ** terms to the ORDER BY clause as necessary. 2749 */ 2750 if( op!=TK_ALL ){ 2751 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2752 struct ExprList_item *pItem; 2753 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2754 assert( pItem->u.x.iOrderByCol>0 ); 2755 if( pItem->u.x.iOrderByCol==i ) break; 2756 } 2757 if( j==nOrderBy ){ 2758 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2759 if( pNew==0 ) return SQLITE_NOMEM; 2760 pNew->flags |= EP_IntValue; 2761 pNew->u.iValue = i; 2762 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2763 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2764 } 2765 } 2766 } 2767 2768 /* Compute the comparison permutation and keyinfo that is used with 2769 ** the permutation used to determine if the next 2770 ** row of results comes from selectA or selectB. Also add explicit 2771 ** collations to the ORDER BY clause terms so that when the subqueries 2772 ** to the right and the left are evaluated, they use the correct 2773 ** collation. 2774 */ 2775 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2776 if( aPermute ){ 2777 struct ExprList_item *pItem; 2778 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2779 assert( pItem->u.x.iOrderByCol>0 2780 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2781 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2782 } 2783 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2784 }else{ 2785 pKeyMerge = 0; 2786 } 2787 2788 /* Reattach the ORDER BY clause to the query. 2789 */ 2790 p->pOrderBy = pOrderBy; 2791 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2792 2793 /* Allocate a range of temporary registers and the KeyInfo needed 2794 ** for the logic that removes duplicate result rows when the 2795 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2796 */ 2797 if( op==TK_ALL ){ 2798 regPrev = 0; 2799 }else{ 2800 int nExpr = p->pEList->nExpr; 2801 assert( nOrderBy>=nExpr || db->mallocFailed ); 2802 regPrev = pParse->nMem+1; 2803 pParse->nMem += nExpr+1; 2804 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2805 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2806 if( pKeyDup ){ 2807 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2808 for(i=0; i<nExpr; i++){ 2809 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2810 pKeyDup->aSortOrder[i] = 0; 2811 } 2812 } 2813 } 2814 2815 /* Separate the left and the right query from one another 2816 */ 2817 p->pPrior = 0; 2818 pPrior->pNext = 0; 2819 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2820 if( pPrior->pPrior==0 ){ 2821 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2822 } 2823 2824 /* Compute the limit registers */ 2825 computeLimitRegisters(pParse, p, labelEnd); 2826 if( p->iLimit && op==TK_ALL ){ 2827 regLimitA = ++pParse->nMem; 2828 regLimitB = ++pParse->nMem; 2829 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2830 regLimitA); 2831 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2832 }else{ 2833 regLimitA = regLimitB = 0; 2834 } 2835 sqlite3ExprDelete(db, p->pLimit); 2836 p->pLimit = 0; 2837 sqlite3ExprDelete(db, p->pOffset); 2838 p->pOffset = 0; 2839 2840 regAddrA = ++pParse->nMem; 2841 regAddrB = ++pParse->nMem; 2842 regOutA = ++pParse->nMem; 2843 regOutB = ++pParse->nMem; 2844 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2845 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2846 2847 /* Generate a coroutine to evaluate the SELECT statement to the 2848 ** left of the compound operator - the "A" select. 2849 */ 2850 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2851 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2852 VdbeComment((v, "left SELECT")); 2853 pPrior->iLimit = regLimitA; 2854 explainSetInteger(iSub1, pParse->iNextSelectId); 2855 sqlite3Select(pParse, pPrior, &destA); 2856 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2857 sqlite3VdbeJumpHere(v, j1); 2858 2859 /* Generate a coroutine to evaluate the SELECT statement on 2860 ** the right - the "B" select 2861 */ 2862 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2863 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2864 VdbeComment((v, "right SELECT")); 2865 savedLimit = p->iLimit; 2866 savedOffset = p->iOffset; 2867 p->iLimit = regLimitB; 2868 p->iOffset = 0; 2869 explainSetInteger(iSub2, pParse->iNextSelectId); 2870 sqlite3Select(pParse, p, &destB); 2871 p->iLimit = savedLimit; 2872 p->iOffset = savedOffset; 2873 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2874 2875 /* Generate a subroutine that outputs the current row of the A 2876 ** select as the next output row of the compound select. 2877 */ 2878 VdbeNoopComment((v, "Output routine for A")); 2879 addrOutA = generateOutputSubroutine(pParse, 2880 p, &destA, pDest, regOutA, 2881 regPrev, pKeyDup, labelEnd); 2882 2883 /* Generate a subroutine that outputs the current row of the B 2884 ** select as the next output row of the compound select. 2885 */ 2886 if( op==TK_ALL || op==TK_UNION ){ 2887 VdbeNoopComment((v, "Output routine for B")); 2888 addrOutB = generateOutputSubroutine(pParse, 2889 p, &destB, pDest, regOutB, 2890 regPrev, pKeyDup, labelEnd); 2891 } 2892 sqlite3KeyInfoUnref(pKeyDup); 2893 2894 /* Generate a subroutine to run when the results from select A 2895 ** are exhausted and only data in select B remains. 2896 */ 2897 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2898 addrEofA_noB = addrEofA = labelEnd; 2899 }else{ 2900 VdbeNoopComment((v, "eof-A subroutine")); 2901 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2902 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2903 VdbeCoverage(v); 2904 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2905 p->nSelectRow += pPrior->nSelectRow; 2906 } 2907 2908 /* Generate a subroutine to run when the results from select B 2909 ** are exhausted and only data in select A remains. 2910 */ 2911 if( op==TK_INTERSECT ){ 2912 addrEofB = addrEofA; 2913 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2914 }else{ 2915 VdbeNoopComment((v, "eof-B subroutine")); 2916 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2917 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 2918 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2919 } 2920 2921 /* Generate code to handle the case of A<B 2922 */ 2923 VdbeNoopComment((v, "A-lt-B subroutine")); 2924 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2925 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2927 2928 /* Generate code to handle the case of A==B 2929 */ 2930 if( op==TK_ALL ){ 2931 addrAeqB = addrAltB; 2932 }else if( op==TK_INTERSECT ){ 2933 addrAeqB = addrAltB; 2934 addrAltB++; 2935 }else{ 2936 VdbeNoopComment((v, "A-eq-B subroutine")); 2937 addrAeqB = 2938 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2939 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2940 } 2941 2942 /* Generate code to handle the case of A>B 2943 */ 2944 VdbeNoopComment((v, "A-gt-B subroutine")); 2945 addrAgtB = sqlite3VdbeCurrentAddr(v); 2946 if( op==TK_ALL || op==TK_UNION ){ 2947 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2948 } 2949 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2950 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2951 2952 /* This code runs once to initialize everything. 2953 */ 2954 sqlite3VdbeJumpHere(v, j1); 2955 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 2956 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2957 2958 /* Implement the main merge loop 2959 */ 2960 sqlite3VdbeResolveLabel(v, labelCmpr); 2961 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2962 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2963 (char*)pKeyMerge, P4_KEYINFO); 2964 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2965 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 2966 2967 /* Jump to the this point in order to terminate the query. 2968 */ 2969 sqlite3VdbeResolveLabel(v, labelEnd); 2970 2971 /* Set the number of output columns 2972 */ 2973 if( pDest->eDest==SRT_Output ){ 2974 Select *pFirst = pPrior; 2975 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2976 generateColumnNames(pParse, 0, pFirst->pEList); 2977 } 2978 2979 /* Reassembly the compound query so that it will be freed correctly 2980 ** by the calling function */ 2981 if( p->pPrior ){ 2982 sqlite3SelectDelete(db, p->pPrior); 2983 } 2984 p->pPrior = pPrior; 2985 pPrior->pNext = p; 2986 2987 /*** TBD: Insert subroutine calls to close cursors on incomplete 2988 **** subqueries ****/ 2989 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2990 return SQLITE_OK; 2991 } 2992 #endif 2993 2994 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2995 /* Forward Declarations */ 2996 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2997 static void substSelect(sqlite3*, Select *, int, ExprList *); 2998 2999 /* 3000 ** Scan through the expression pExpr. Replace every reference to 3001 ** a column in table number iTable with a copy of the iColumn-th 3002 ** entry in pEList. (But leave references to the ROWID column 3003 ** unchanged.) 3004 ** 3005 ** This routine is part of the flattening procedure. A subquery 3006 ** whose result set is defined by pEList appears as entry in the 3007 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3008 ** FORM clause entry is iTable. This routine make the necessary 3009 ** changes to pExpr so that it refers directly to the source table 3010 ** of the subquery rather the result set of the subquery. 3011 */ 3012 static Expr *substExpr( 3013 sqlite3 *db, /* Report malloc errors to this connection */ 3014 Expr *pExpr, /* Expr in which substitution occurs */ 3015 int iTable, /* Table to be substituted */ 3016 ExprList *pEList /* Substitute expressions */ 3017 ){ 3018 if( pExpr==0 ) return 0; 3019 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3020 if( pExpr->iColumn<0 ){ 3021 pExpr->op = TK_NULL; 3022 }else{ 3023 Expr *pNew; 3024 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3025 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3026 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3027 sqlite3ExprDelete(db, pExpr); 3028 pExpr = pNew; 3029 } 3030 }else{ 3031 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3032 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3033 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3034 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3035 }else{ 3036 substExprList(db, pExpr->x.pList, iTable, pEList); 3037 } 3038 } 3039 return pExpr; 3040 } 3041 static void substExprList( 3042 sqlite3 *db, /* Report malloc errors here */ 3043 ExprList *pList, /* List to scan and in which to make substitutes */ 3044 int iTable, /* Table to be substituted */ 3045 ExprList *pEList /* Substitute values */ 3046 ){ 3047 int i; 3048 if( pList==0 ) return; 3049 for(i=0; i<pList->nExpr; i++){ 3050 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3051 } 3052 } 3053 static void substSelect( 3054 sqlite3 *db, /* Report malloc errors here */ 3055 Select *p, /* SELECT statement in which to make substitutions */ 3056 int iTable, /* Table to be replaced */ 3057 ExprList *pEList /* Substitute values */ 3058 ){ 3059 SrcList *pSrc; 3060 struct SrcList_item *pItem; 3061 int i; 3062 if( !p ) return; 3063 substExprList(db, p->pEList, iTable, pEList); 3064 substExprList(db, p->pGroupBy, iTable, pEList); 3065 substExprList(db, p->pOrderBy, iTable, pEList); 3066 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3067 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3068 substSelect(db, p->pPrior, iTable, pEList); 3069 pSrc = p->pSrc; 3070 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3071 if( ALWAYS(pSrc) ){ 3072 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3073 substSelect(db, pItem->pSelect, iTable, pEList); 3074 } 3075 } 3076 } 3077 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3078 3079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3080 /* 3081 ** This routine attempts to flatten subqueries as a performance optimization. 3082 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3083 ** 3084 ** To understand the concept of flattening, consider the following 3085 ** query: 3086 ** 3087 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3088 ** 3089 ** The default way of implementing this query is to execute the 3090 ** subquery first and store the results in a temporary table, then 3091 ** run the outer query on that temporary table. This requires two 3092 ** passes over the data. Furthermore, because the temporary table 3093 ** has no indices, the WHERE clause on the outer query cannot be 3094 ** optimized. 3095 ** 3096 ** This routine attempts to rewrite queries such as the above into 3097 ** a single flat select, like this: 3098 ** 3099 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3100 ** 3101 ** The code generated for this simplification gives the same result 3102 ** but only has to scan the data once. And because indices might 3103 ** exist on the table t1, a complete scan of the data might be 3104 ** avoided. 3105 ** 3106 ** Flattening is only attempted if all of the following are true: 3107 ** 3108 ** (1) The subquery and the outer query do not both use aggregates. 3109 ** 3110 ** (2) The subquery is not an aggregate or the outer query is not a join. 3111 ** 3112 ** (3) The subquery is not the right operand of a left outer join 3113 ** (Originally ticket #306. Strengthened by ticket #3300) 3114 ** 3115 ** (4) The subquery is not DISTINCT. 3116 ** 3117 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3118 ** sub-queries that were excluded from this optimization. Restriction 3119 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3120 ** 3121 ** (6) The subquery does not use aggregates or the outer query is not 3122 ** DISTINCT. 3123 ** 3124 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3125 ** A FROM clause, consider adding a FROM close with the special 3126 ** table sqlite_once that consists of a single row containing a 3127 ** single NULL. 3128 ** 3129 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3130 ** 3131 ** (9) The subquery does not use LIMIT or the outer query does not use 3132 ** aggregates. 3133 ** 3134 ** (10) The subquery does not use aggregates or the outer query does not 3135 ** use LIMIT. 3136 ** 3137 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3138 ** 3139 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3140 ** a separate restriction deriving from ticket #350. 3141 ** 3142 ** (13) The subquery and outer query do not both use LIMIT. 3143 ** 3144 ** (14) The subquery does not use OFFSET. 3145 ** 3146 ** (15) The outer query is not part of a compound select or the 3147 ** subquery does not have a LIMIT clause. 3148 ** (See ticket #2339 and ticket [02a8e81d44]). 3149 ** 3150 ** (16) The outer query is not an aggregate or the subquery does 3151 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3152 ** until we introduced the group_concat() function. 3153 ** 3154 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3155 ** compound clause made up entirely of non-aggregate queries, and 3156 ** the parent query: 3157 ** 3158 ** * is not itself part of a compound select, 3159 ** * is not an aggregate or DISTINCT query, and 3160 ** * is not a join 3161 ** 3162 ** The parent and sub-query may contain WHERE clauses. Subject to 3163 ** rules (11), (13) and (14), they may also contain ORDER BY, 3164 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3165 ** operator other than UNION ALL because all the other compound 3166 ** operators have an implied DISTINCT which is disallowed by 3167 ** restriction (4). 3168 ** 3169 ** Also, each component of the sub-query must return the same number 3170 ** of result columns. This is actually a requirement for any compound 3171 ** SELECT statement, but all the code here does is make sure that no 3172 ** such (illegal) sub-query is flattened. The caller will detect the 3173 ** syntax error and return a detailed message. 3174 ** 3175 ** (18) If the sub-query is a compound select, then all terms of the 3176 ** ORDER by clause of the parent must be simple references to 3177 ** columns of the sub-query. 3178 ** 3179 ** (19) The subquery does not use LIMIT or the outer query does not 3180 ** have a WHERE clause. 3181 ** 3182 ** (20) If the sub-query is a compound select, then it must not use 3183 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3184 ** somewhat by saying that the terms of the ORDER BY clause must 3185 ** appear as unmodified result columns in the outer query. But we 3186 ** have other optimizations in mind to deal with that case. 3187 ** 3188 ** (21) The subquery does not use LIMIT or the outer query is not 3189 ** DISTINCT. (See ticket [752e1646fc]). 3190 ** 3191 ** (22) The subquery is not a recursive CTE. 3192 ** 3193 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3194 ** compound query. This restriction is because transforming the 3195 ** parent to a compound query confuses the code that handles 3196 ** recursive queries in multiSelect(). 3197 ** 3198 ** 3199 ** In this routine, the "p" parameter is a pointer to the outer query. 3200 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3201 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3202 ** 3203 ** If flattening is not attempted, this routine is a no-op and returns 0. 3204 ** If flattening is attempted this routine returns 1. 3205 ** 3206 ** All of the expression analysis must occur on both the outer query and 3207 ** the subquery before this routine runs. 3208 */ 3209 static int flattenSubquery( 3210 Parse *pParse, /* Parsing context */ 3211 Select *p, /* The parent or outer SELECT statement */ 3212 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3213 int isAgg, /* True if outer SELECT uses aggregate functions */ 3214 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3215 ){ 3216 const char *zSavedAuthContext = pParse->zAuthContext; 3217 Select *pParent; 3218 Select *pSub; /* The inner query or "subquery" */ 3219 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3220 SrcList *pSrc; /* The FROM clause of the outer query */ 3221 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3222 ExprList *pList; /* The result set of the outer query */ 3223 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3224 int i; /* Loop counter */ 3225 Expr *pWhere; /* The WHERE clause */ 3226 struct SrcList_item *pSubitem; /* The subquery */ 3227 sqlite3 *db = pParse->db; 3228 3229 /* Check to see if flattening is permitted. Return 0 if not. 3230 */ 3231 assert( p!=0 ); 3232 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3233 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3234 pSrc = p->pSrc; 3235 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3236 pSubitem = &pSrc->a[iFrom]; 3237 iParent = pSubitem->iCursor; 3238 pSub = pSubitem->pSelect; 3239 assert( pSub!=0 ); 3240 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3241 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3242 pSubSrc = pSub->pSrc; 3243 assert( pSubSrc ); 3244 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3245 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3246 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3247 ** became arbitrary expressions, we were forced to add restrictions (13) 3248 ** and (14). */ 3249 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3250 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3251 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3252 return 0; /* Restriction (15) */ 3253 } 3254 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3255 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3256 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3257 return 0; /* Restrictions (8)(9) */ 3258 } 3259 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3260 return 0; /* Restriction (6) */ 3261 } 3262 if( p->pOrderBy && pSub->pOrderBy ){ 3263 return 0; /* Restriction (11) */ 3264 } 3265 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3266 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3267 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3268 return 0; /* Restriction (21) */ 3269 } 3270 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3271 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3272 3273 /* OBSOLETE COMMENT 1: 3274 ** Restriction 3: If the subquery is a join, make sure the subquery is 3275 ** not used as the right operand of an outer join. Examples of why this 3276 ** is not allowed: 3277 ** 3278 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3279 ** 3280 ** If we flatten the above, we would get 3281 ** 3282 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3283 ** 3284 ** which is not at all the same thing. 3285 ** 3286 ** OBSOLETE COMMENT 2: 3287 ** Restriction 12: If the subquery is the right operand of a left outer 3288 ** join, make sure the subquery has no WHERE clause. 3289 ** An examples of why this is not allowed: 3290 ** 3291 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3292 ** 3293 ** If we flatten the above, we would get 3294 ** 3295 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3296 ** 3297 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3298 ** effectively converts the OUTER JOIN into an INNER JOIN. 3299 ** 3300 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3301 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3302 ** is fraught with danger. Best to avoid the whole thing. If the 3303 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3304 */ 3305 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3306 return 0; 3307 } 3308 3309 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3310 ** use only the UNION ALL operator. And none of the simple select queries 3311 ** that make up the compound SELECT are allowed to be aggregate or distinct 3312 ** queries. 3313 */ 3314 if( pSub->pPrior ){ 3315 if( pSub->pOrderBy ){ 3316 return 0; /* Restriction 20 */ 3317 } 3318 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3319 return 0; 3320 } 3321 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3322 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3323 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3324 assert( pSub->pSrc!=0 ); 3325 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3326 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3327 || pSub1->pSrc->nSrc<1 3328 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3329 ){ 3330 return 0; 3331 } 3332 testcase( pSub1->pSrc->nSrc>1 ); 3333 } 3334 3335 /* Restriction 18. */ 3336 if( p->pOrderBy ){ 3337 int ii; 3338 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3339 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3340 } 3341 } 3342 } 3343 3344 /***** If we reach this point, flattening is permitted. *****/ 3345 3346 /* Authorize the subquery */ 3347 pParse->zAuthContext = pSubitem->zName; 3348 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3349 testcase( i==SQLITE_DENY ); 3350 pParse->zAuthContext = zSavedAuthContext; 3351 3352 /* If the sub-query is a compound SELECT statement, then (by restrictions 3353 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3354 ** be of the form: 3355 ** 3356 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3357 ** 3358 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3359 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3360 ** OFFSET clauses and joins them to the left-hand-side of the original 3361 ** using UNION ALL operators. In this case N is the number of simple 3362 ** select statements in the compound sub-query. 3363 ** 3364 ** Example: 3365 ** 3366 ** SELECT a+1 FROM ( 3367 ** SELECT x FROM tab 3368 ** UNION ALL 3369 ** SELECT y FROM tab 3370 ** UNION ALL 3371 ** SELECT abs(z*2) FROM tab2 3372 ** ) WHERE a!=5 ORDER BY 1 3373 ** 3374 ** Transformed into: 3375 ** 3376 ** SELECT x+1 FROM tab WHERE x+1!=5 3377 ** UNION ALL 3378 ** SELECT y+1 FROM tab WHERE y+1!=5 3379 ** UNION ALL 3380 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3381 ** ORDER BY 1 3382 ** 3383 ** We call this the "compound-subquery flattening". 3384 */ 3385 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3386 Select *pNew; 3387 ExprList *pOrderBy = p->pOrderBy; 3388 Expr *pLimit = p->pLimit; 3389 Expr *pOffset = p->pOffset; 3390 Select *pPrior = p->pPrior; 3391 p->pOrderBy = 0; 3392 p->pSrc = 0; 3393 p->pPrior = 0; 3394 p->pLimit = 0; 3395 p->pOffset = 0; 3396 pNew = sqlite3SelectDup(db, p, 0); 3397 p->pOffset = pOffset; 3398 p->pLimit = pLimit; 3399 p->pOrderBy = pOrderBy; 3400 p->pSrc = pSrc; 3401 p->op = TK_ALL; 3402 if( pNew==0 ){ 3403 p->pPrior = pPrior; 3404 }else{ 3405 pNew->pPrior = pPrior; 3406 if( pPrior ) pPrior->pNext = pNew; 3407 pNew->pNext = p; 3408 p->pPrior = pNew; 3409 } 3410 if( db->mallocFailed ) return 1; 3411 } 3412 3413 /* Begin flattening the iFrom-th entry of the FROM clause 3414 ** in the outer query. 3415 */ 3416 pSub = pSub1 = pSubitem->pSelect; 3417 3418 /* Delete the transient table structure associated with the 3419 ** subquery 3420 */ 3421 sqlite3DbFree(db, pSubitem->zDatabase); 3422 sqlite3DbFree(db, pSubitem->zName); 3423 sqlite3DbFree(db, pSubitem->zAlias); 3424 pSubitem->zDatabase = 0; 3425 pSubitem->zName = 0; 3426 pSubitem->zAlias = 0; 3427 pSubitem->pSelect = 0; 3428 3429 /* Defer deleting the Table object associated with the 3430 ** subquery until code generation is 3431 ** complete, since there may still exist Expr.pTab entries that 3432 ** refer to the subquery even after flattening. Ticket #3346. 3433 ** 3434 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3435 */ 3436 if( ALWAYS(pSubitem->pTab!=0) ){ 3437 Table *pTabToDel = pSubitem->pTab; 3438 if( pTabToDel->nRef==1 ){ 3439 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3440 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3441 pToplevel->pZombieTab = pTabToDel; 3442 }else{ 3443 pTabToDel->nRef--; 3444 } 3445 pSubitem->pTab = 0; 3446 } 3447 3448 /* The following loop runs once for each term in a compound-subquery 3449 ** flattening (as described above). If we are doing a different kind 3450 ** of flattening - a flattening other than a compound-subquery flattening - 3451 ** then this loop only runs once. 3452 ** 3453 ** This loop moves all of the FROM elements of the subquery into the 3454 ** the FROM clause of the outer query. Before doing this, remember 3455 ** the cursor number for the original outer query FROM element in 3456 ** iParent. The iParent cursor will never be used. Subsequent code 3457 ** will scan expressions looking for iParent references and replace 3458 ** those references with expressions that resolve to the subquery FROM 3459 ** elements we are now copying in. 3460 */ 3461 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3462 int nSubSrc; 3463 u8 jointype = 0; 3464 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3465 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3466 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3467 3468 if( pSrc ){ 3469 assert( pParent==p ); /* First time through the loop */ 3470 jointype = pSubitem->jointype; 3471 }else{ 3472 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3473 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3474 if( pSrc==0 ){ 3475 assert( db->mallocFailed ); 3476 break; 3477 } 3478 } 3479 3480 /* The subquery uses a single slot of the FROM clause of the outer 3481 ** query. If the subquery has more than one element in its FROM clause, 3482 ** then expand the outer query to make space for it to hold all elements 3483 ** of the subquery. 3484 ** 3485 ** Example: 3486 ** 3487 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3488 ** 3489 ** The outer query has 3 slots in its FROM clause. One slot of the 3490 ** outer query (the middle slot) is used by the subquery. The next 3491 ** block of code will expand the out query to 4 slots. The middle 3492 ** slot is expanded to two slots in order to make space for the 3493 ** two elements in the FROM clause of the subquery. 3494 */ 3495 if( nSubSrc>1 ){ 3496 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3497 if( db->mallocFailed ){ 3498 break; 3499 } 3500 } 3501 3502 /* Transfer the FROM clause terms from the subquery into the 3503 ** outer query. 3504 */ 3505 for(i=0; i<nSubSrc; i++){ 3506 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3507 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3508 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3509 } 3510 pSrc->a[iFrom].jointype = jointype; 3511 3512 /* Now begin substituting subquery result set expressions for 3513 ** references to the iParent in the outer query. 3514 ** 3515 ** Example: 3516 ** 3517 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3518 ** \ \_____________ subquery __________/ / 3519 ** \_____________________ outer query ______________________________/ 3520 ** 3521 ** We look at every expression in the outer query and every place we see 3522 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3523 */ 3524 pList = pParent->pEList; 3525 for(i=0; i<pList->nExpr; i++){ 3526 if( pList->a[i].zName==0 ){ 3527 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3528 sqlite3Dequote(zName); 3529 pList->a[i].zName = zName; 3530 } 3531 } 3532 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3533 if( isAgg ){ 3534 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3535 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3536 } 3537 if( pSub->pOrderBy ){ 3538 assert( pParent->pOrderBy==0 ); 3539 pParent->pOrderBy = pSub->pOrderBy; 3540 pSub->pOrderBy = 0; 3541 }else if( pParent->pOrderBy ){ 3542 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3543 } 3544 if( pSub->pWhere ){ 3545 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3546 }else{ 3547 pWhere = 0; 3548 } 3549 if( subqueryIsAgg ){ 3550 assert( pParent->pHaving==0 ); 3551 pParent->pHaving = pParent->pWhere; 3552 pParent->pWhere = pWhere; 3553 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3554 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3555 sqlite3ExprDup(db, pSub->pHaving, 0)); 3556 assert( pParent->pGroupBy==0 ); 3557 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3558 }else{ 3559 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3560 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3561 } 3562 3563 /* The flattened query is distinct if either the inner or the 3564 ** outer query is distinct. 3565 */ 3566 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3567 3568 /* 3569 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3570 ** 3571 ** One is tempted to try to add a and b to combine the limits. But this 3572 ** does not work if either limit is negative. 3573 */ 3574 if( pSub->pLimit ){ 3575 pParent->pLimit = pSub->pLimit; 3576 pSub->pLimit = 0; 3577 } 3578 } 3579 3580 /* Finially, delete what is left of the subquery and return 3581 ** success. 3582 */ 3583 sqlite3SelectDelete(db, pSub1); 3584 3585 return 1; 3586 } 3587 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3588 3589 /* 3590 ** Based on the contents of the AggInfo structure indicated by the first 3591 ** argument, this function checks if the following are true: 3592 ** 3593 ** * the query contains just a single aggregate function, 3594 ** * the aggregate function is either min() or max(), and 3595 ** * the argument to the aggregate function is a column value. 3596 ** 3597 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3598 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3599 ** list of arguments passed to the aggregate before returning. 3600 ** 3601 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3602 ** WHERE_ORDERBY_NORMAL is returned. 3603 */ 3604 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3605 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3606 3607 *ppMinMax = 0; 3608 if( pAggInfo->nFunc==1 ){ 3609 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3610 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3611 3612 assert( pExpr->op==TK_AGG_FUNCTION ); 3613 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3614 const char *zFunc = pExpr->u.zToken; 3615 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3616 eRet = WHERE_ORDERBY_MIN; 3617 *ppMinMax = pEList; 3618 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3619 eRet = WHERE_ORDERBY_MAX; 3620 *ppMinMax = pEList; 3621 } 3622 } 3623 } 3624 3625 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3626 return eRet; 3627 } 3628 3629 /* 3630 ** The select statement passed as the first argument is an aggregate query. 3631 ** The second argument is the associated aggregate-info object. This 3632 ** function tests if the SELECT is of the form: 3633 ** 3634 ** SELECT count(*) FROM <tbl> 3635 ** 3636 ** where table is a database table, not a sub-select or view. If the query 3637 ** does match this pattern, then a pointer to the Table object representing 3638 ** <tbl> is returned. Otherwise, 0 is returned. 3639 */ 3640 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3641 Table *pTab; 3642 Expr *pExpr; 3643 3644 assert( !p->pGroupBy ); 3645 3646 if( p->pWhere || p->pEList->nExpr!=1 3647 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3648 ){ 3649 return 0; 3650 } 3651 pTab = p->pSrc->a[0].pTab; 3652 pExpr = p->pEList->a[0].pExpr; 3653 assert( pTab && !pTab->pSelect && pExpr ); 3654 3655 if( IsVirtual(pTab) ) return 0; 3656 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3657 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3658 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3659 if( pExpr->flags&EP_Distinct ) return 0; 3660 3661 return pTab; 3662 } 3663 3664 /* 3665 ** If the source-list item passed as an argument was augmented with an 3666 ** INDEXED BY clause, then try to locate the specified index. If there 3667 ** was such a clause and the named index cannot be found, return 3668 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3669 ** pFrom->pIndex and return SQLITE_OK. 3670 */ 3671 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3672 if( pFrom->pTab && pFrom->zIndex ){ 3673 Table *pTab = pFrom->pTab; 3674 char *zIndex = pFrom->zIndex; 3675 Index *pIdx; 3676 for(pIdx=pTab->pIndex; 3677 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3678 pIdx=pIdx->pNext 3679 ); 3680 if( !pIdx ){ 3681 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3682 pParse->checkSchema = 1; 3683 return SQLITE_ERROR; 3684 } 3685 pFrom->pIndex = pIdx; 3686 } 3687 return SQLITE_OK; 3688 } 3689 /* 3690 ** Detect compound SELECT statements that use an ORDER BY clause with 3691 ** an alternative collating sequence. 3692 ** 3693 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3694 ** 3695 ** These are rewritten as a subquery: 3696 ** 3697 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3698 ** ORDER BY ... COLLATE ... 3699 ** 3700 ** This transformation is necessary because the multiSelectOrderBy() routine 3701 ** above that generates the code for a compound SELECT with an ORDER BY clause 3702 ** uses a merge algorithm that requires the same collating sequence on the 3703 ** result columns as on the ORDER BY clause. See ticket 3704 ** http://www.sqlite.org/src/info/6709574d2a 3705 ** 3706 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3707 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3708 ** there are COLLATE terms in the ORDER BY. 3709 */ 3710 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3711 int i; 3712 Select *pNew; 3713 Select *pX; 3714 sqlite3 *db; 3715 struct ExprList_item *a; 3716 SrcList *pNewSrc; 3717 Parse *pParse; 3718 Token dummy; 3719 3720 if( p->pPrior==0 ) return WRC_Continue; 3721 if( p->pOrderBy==0 ) return WRC_Continue; 3722 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3723 if( pX==0 ) return WRC_Continue; 3724 a = p->pOrderBy->a; 3725 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3726 if( a[i].pExpr->flags & EP_Collate ) break; 3727 } 3728 if( i<0 ) return WRC_Continue; 3729 3730 /* If we reach this point, that means the transformation is required. */ 3731 3732 pParse = pWalker->pParse; 3733 db = pParse->db; 3734 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3735 if( pNew==0 ) return WRC_Abort; 3736 memset(&dummy, 0, sizeof(dummy)); 3737 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3738 if( pNewSrc==0 ) return WRC_Abort; 3739 *pNew = *p; 3740 p->pSrc = pNewSrc; 3741 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3742 p->op = TK_SELECT; 3743 p->pWhere = 0; 3744 pNew->pGroupBy = 0; 3745 pNew->pHaving = 0; 3746 pNew->pOrderBy = 0; 3747 p->pPrior = 0; 3748 p->pNext = 0; 3749 p->selFlags &= ~SF_Compound; 3750 assert( pNew->pPrior!=0 ); 3751 pNew->pPrior->pNext = pNew; 3752 pNew->pLimit = 0; 3753 pNew->pOffset = 0; 3754 return WRC_Continue; 3755 } 3756 3757 #ifndef SQLITE_OMIT_CTE 3758 /* 3759 ** Argument pWith (which may be NULL) points to a linked list of nested 3760 ** WITH contexts, from inner to outermost. If the table identified by 3761 ** FROM clause element pItem is really a common-table-expression (CTE) 3762 ** then return a pointer to the CTE definition for that table. Otherwise 3763 ** return NULL. 3764 ** 3765 ** If a non-NULL value is returned, set *ppContext to point to the With 3766 ** object that the returned CTE belongs to. 3767 */ 3768 static struct Cte *searchWith( 3769 With *pWith, /* Current outermost WITH clause */ 3770 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3771 With **ppContext /* OUT: WITH clause return value belongs to */ 3772 ){ 3773 const char *zName; 3774 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3775 With *p; 3776 for(p=pWith; p; p=p->pOuter){ 3777 int i; 3778 for(i=0; i<p->nCte; i++){ 3779 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3780 *ppContext = p; 3781 return &p->a[i]; 3782 } 3783 } 3784 } 3785 } 3786 return 0; 3787 } 3788 3789 /* The code generator maintains a stack of active WITH clauses 3790 ** with the inner-most WITH clause being at the top of the stack. 3791 ** 3792 ** This routine pushes the WITH clause passed as the second argument 3793 ** onto the top of the stack. If argument bFree is true, then this 3794 ** WITH clause will never be popped from the stack. In this case it 3795 ** should be freed along with the Parse object. In other cases, when 3796 ** bFree==0, the With object will be freed along with the SELECT 3797 ** statement with which it is associated. 3798 */ 3799 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3800 assert( bFree==0 || pParse->pWith==0 ); 3801 if( pWith ){ 3802 pWith->pOuter = pParse->pWith; 3803 pParse->pWith = pWith; 3804 pParse->bFreeWith = bFree; 3805 } 3806 } 3807 3808 /* 3809 ** This function checks if argument pFrom refers to a CTE declared by 3810 ** a WITH clause on the stack currently maintained by the parser. And, 3811 ** if currently processing a CTE expression, if it is a recursive 3812 ** reference to the current CTE. 3813 ** 3814 ** If pFrom falls into either of the two categories above, pFrom->pTab 3815 ** and other fields are populated accordingly. The caller should check 3816 ** (pFrom->pTab!=0) to determine whether or not a successful match 3817 ** was found. 3818 ** 3819 ** Whether or not a match is found, SQLITE_OK is returned if no error 3820 ** occurs. If an error does occur, an error message is stored in the 3821 ** parser and some error code other than SQLITE_OK returned. 3822 */ 3823 static int withExpand( 3824 Walker *pWalker, 3825 struct SrcList_item *pFrom 3826 ){ 3827 Parse *pParse = pWalker->pParse; 3828 sqlite3 *db = pParse->db; 3829 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3830 With *pWith; /* WITH clause that pCte belongs to */ 3831 3832 assert( pFrom->pTab==0 ); 3833 3834 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3835 if( pCte ){ 3836 Table *pTab; 3837 ExprList *pEList; 3838 Select *pSel; 3839 Select *pLeft; /* Left-most SELECT statement */ 3840 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3841 With *pSavedWith; /* Initial value of pParse->pWith */ 3842 3843 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3844 ** recursive reference to CTE pCte. Leave an error in pParse and return 3845 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3846 ** In this case, proceed. */ 3847 if( pCte->zErr ){ 3848 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3849 return SQLITE_ERROR; 3850 } 3851 3852 assert( pFrom->pTab==0 ); 3853 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3854 if( pTab==0 ) return WRC_Abort; 3855 pTab->nRef = 1; 3856 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3857 pTab->iPKey = -1; 3858 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3859 pTab->tabFlags |= TF_Ephemeral; 3860 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3861 if( db->mallocFailed ) return SQLITE_NOMEM; 3862 assert( pFrom->pSelect ); 3863 3864 /* Check if this is a recursive CTE. */ 3865 pSel = pFrom->pSelect; 3866 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3867 if( bMayRecursive ){ 3868 int i; 3869 SrcList *pSrc = pFrom->pSelect->pSrc; 3870 for(i=0; i<pSrc->nSrc; i++){ 3871 struct SrcList_item *pItem = &pSrc->a[i]; 3872 if( pItem->zDatabase==0 3873 && pItem->zName!=0 3874 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3875 ){ 3876 pItem->pTab = pTab; 3877 pItem->isRecursive = 1; 3878 pTab->nRef++; 3879 pSel->selFlags |= SF_Recursive; 3880 } 3881 } 3882 } 3883 3884 /* Only one recursive reference is permitted. */ 3885 if( pTab->nRef>2 ){ 3886 sqlite3ErrorMsg( 3887 pParse, "multiple references to recursive table: %s", pCte->zName 3888 ); 3889 return SQLITE_ERROR; 3890 } 3891 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3892 3893 pCte->zErr = "circular reference: %s"; 3894 pSavedWith = pParse->pWith; 3895 pParse->pWith = pWith; 3896 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3897 3898 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3899 pEList = pLeft->pEList; 3900 if( pCte->pCols ){ 3901 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3902 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3903 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3904 ); 3905 pParse->pWith = pSavedWith; 3906 return SQLITE_ERROR; 3907 } 3908 pEList = pCte->pCols; 3909 } 3910 3911 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3912 if( bMayRecursive ){ 3913 if( pSel->selFlags & SF_Recursive ){ 3914 pCte->zErr = "multiple recursive references: %s"; 3915 }else{ 3916 pCte->zErr = "recursive reference in a subquery: %s"; 3917 } 3918 sqlite3WalkSelect(pWalker, pSel); 3919 } 3920 pCte->zErr = 0; 3921 pParse->pWith = pSavedWith; 3922 } 3923 3924 return SQLITE_OK; 3925 } 3926 #endif 3927 3928 #ifndef SQLITE_OMIT_CTE 3929 /* 3930 ** If the SELECT passed as the second argument has an associated WITH 3931 ** clause, pop it from the stack stored as part of the Parse object. 3932 ** 3933 ** This function is used as the xSelectCallback2() callback by 3934 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3935 ** names and other FROM clause elements. 3936 */ 3937 static void selectPopWith(Walker *pWalker, Select *p){ 3938 Parse *pParse = pWalker->pParse; 3939 With *pWith = findRightmost(p)->pWith; 3940 if( pWith!=0 ){ 3941 assert( pParse->pWith==pWith ); 3942 pParse->pWith = pWith->pOuter; 3943 } 3944 } 3945 #else 3946 #define selectPopWith 0 3947 #endif 3948 3949 /* 3950 ** This routine is a Walker callback for "expanding" a SELECT statement. 3951 ** "Expanding" means to do the following: 3952 ** 3953 ** (1) Make sure VDBE cursor numbers have been assigned to every 3954 ** element of the FROM clause. 3955 ** 3956 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3957 ** defines FROM clause. When views appear in the FROM clause, 3958 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3959 ** that implements the view. A copy is made of the view's SELECT 3960 ** statement so that we can freely modify or delete that statement 3961 ** without worrying about messing up the persistent representation 3962 ** of the view. 3963 ** 3964 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 3965 ** on joins and the ON and USING clause of joins. 3966 ** 3967 ** (4) Scan the list of columns in the result set (pEList) looking 3968 ** for instances of the "*" operator or the TABLE.* operator. 3969 ** If found, expand each "*" to be every column in every table 3970 ** and TABLE.* to be every column in TABLE. 3971 ** 3972 */ 3973 static int selectExpander(Walker *pWalker, Select *p){ 3974 Parse *pParse = pWalker->pParse; 3975 int i, j, k; 3976 SrcList *pTabList; 3977 ExprList *pEList; 3978 struct SrcList_item *pFrom; 3979 sqlite3 *db = pParse->db; 3980 Expr *pE, *pRight, *pExpr; 3981 u16 selFlags = p->selFlags; 3982 3983 p->selFlags |= SF_Expanded; 3984 if( db->mallocFailed ){ 3985 return WRC_Abort; 3986 } 3987 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3988 return WRC_Prune; 3989 } 3990 pTabList = p->pSrc; 3991 pEList = p->pEList; 3992 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 3993 3994 /* Make sure cursor numbers have been assigned to all entries in 3995 ** the FROM clause of the SELECT statement. 3996 */ 3997 sqlite3SrcListAssignCursors(pParse, pTabList); 3998 3999 /* Look up every table named in the FROM clause of the select. If 4000 ** an entry of the FROM clause is a subquery instead of a table or view, 4001 ** then create a transient table structure to describe the subquery. 4002 */ 4003 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4004 Table *pTab; 4005 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4006 if( pFrom->isRecursive ) continue; 4007 if( pFrom->pTab!=0 ){ 4008 /* This statement has already been prepared. There is no need 4009 ** to go further. */ 4010 assert( i==0 ); 4011 #ifndef SQLITE_OMIT_CTE 4012 selectPopWith(pWalker, p); 4013 #endif 4014 return WRC_Prune; 4015 } 4016 #ifndef SQLITE_OMIT_CTE 4017 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4018 if( pFrom->pTab ) {} else 4019 #endif 4020 if( pFrom->zName==0 ){ 4021 #ifndef SQLITE_OMIT_SUBQUERY 4022 Select *pSel = pFrom->pSelect; 4023 /* A sub-query in the FROM clause of a SELECT */ 4024 assert( pSel!=0 ); 4025 assert( pFrom->pTab==0 ); 4026 sqlite3WalkSelect(pWalker, pSel); 4027 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4028 if( pTab==0 ) return WRC_Abort; 4029 pTab->nRef = 1; 4030 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4031 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4032 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4033 pTab->iPKey = -1; 4034 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4035 pTab->tabFlags |= TF_Ephemeral; 4036 #endif 4037 }else{ 4038 /* An ordinary table or view name in the FROM clause */ 4039 assert( pFrom->pTab==0 ); 4040 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4041 if( pTab==0 ) return WRC_Abort; 4042 if( pTab->nRef==0xffff ){ 4043 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4044 pTab->zName); 4045 pFrom->pTab = 0; 4046 return WRC_Abort; 4047 } 4048 pTab->nRef++; 4049 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4050 if( pTab->pSelect || IsVirtual(pTab) ){ 4051 /* We reach here if the named table is a really a view */ 4052 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4053 assert( pFrom->pSelect==0 ); 4054 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4055 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4056 } 4057 #endif 4058 } 4059 4060 /* Locate the index named by the INDEXED BY clause, if any. */ 4061 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4062 return WRC_Abort; 4063 } 4064 } 4065 4066 /* Process NATURAL keywords, and ON and USING clauses of joins. 4067 */ 4068 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4069 return WRC_Abort; 4070 } 4071 4072 /* For every "*" that occurs in the column list, insert the names of 4073 ** all columns in all tables. And for every TABLE.* insert the names 4074 ** of all columns in TABLE. The parser inserted a special expression 4075 ** with the TK_ALL operator for each "*" that it found in the column list. 4076 ** The following code just has to locate the TK_ALL expressions and expand 4077 ** each one to the list of all columns in all tables. 4078 ** 4079 ** The first loop just checks to see if there are any "*" operators 4080 ** that need expanding. 4081 */ 4082 for(k=0; k<pEList->nExpr; k++){ 4083 pE = pEList->a[k].pExpr; 4084 if( pE->op==TK_ALL ) break; 4085 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4086 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4087 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4088 } 4089 if( k<pEList->nExpr ){ 4090 /* 4091 ** If we get here it means the result set contains one or more "*" 4092 ** operators that need to be expanded. Loop through each expression 4093 ** in the result set and expand them one by one. 4094 */ 4095 struct ExprList_item *a = pEList->a; 4096 ExprList *pNew = 0; 4097 int flags = pParse->db->flags; 4098 int longNames = (flags & SQLITE_FullColNames)!=0 4099 && (flags & SQLITE_ShortColNames)==0; 4100 4101 /* When processing FROM-clause subqueries, it is always the case 4102 ** that full_column_names=OFF and short_column_names=ON. The 4103 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4104 assert( (p->selFlags & SF_NestedFrom)==0 4105 || ((flags & SQLITE_FullColNames)==0 && 4106 (flags & SQLITE_ShortColNames)!=0) ); 4107 4108 for(k=0; k<pEList->nExpr; k++){ 4109 pE = a[k].pExpr; 4110 pRight = pE->pRight; 4111 assert( pE->op!=TK_DOT || pRight!=0 ); 4112 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4113 /* This particular expression does not need to be expanded. 4114 */ 4115 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4116 if( pNew ){ 4117 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4118 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4119 a[k].zName = 0; 4120 a[k].zSpan = 0; 4121 } 4122 a[k].pExpr = 0; 4123 }else{ 4124 /* This expression is a "*" or a "TABLE.*" and needs to be 4125 ** expanded. */ 4126 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4127 char *zTName = 0; /* text of name of TABLE */ 4128 if( pE->op==TK_DOT ){ 4129 assert( pE->pLeft!=0 ); 4130 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4131 zTName = pE->pLeft->u.zToken; 4132 } 4133 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4134 Table *pTab = pFrom->pTab; 4135 Select *pSub = pFrom->pSelect; 4136 char *zTabName = pFrom->zAlias; 4137 const char *zSchemaName = 0; 4138 int iDb; 4139 if( zTabName==0 ){ 4140 zTabName = pTab->zName; 4141 } 4142 if( db->mallocFailed ) break; 4143 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4144 pSub = 0; 4145 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4146 continue; 4147 } 4148 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4149 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4150 } 4151 for(j=0; j<pTab->nCol; j++){ 4152 char *zName = pTab->aCol[j].zName; 4153 char *zColname; /* The computed column name */ 4154 char *zToFree; /* Malloced string that needs to be freed */ 4155 Token sColname; /* Computed column name as a token */ 4156 4157 assert( zName ); 4158 if( zTName && pSub 4159 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4160 ){ 4161 continue; 4162 } 4163 4164 /* If a column is marked as 'hidden' (currently only possible 4165 ** for virtual tables), do not include it in the expanded 4166 ** result-set list. 4167 */ 4168 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4169 assert(IsVirtual(pTab)); 4170 continue; 4171 } 4172 tableSeen = 1; 4173 4174 if( i>0 && zTName==0 ){ 4175 if( (pFrom->jointype & JT_NATURAL)!=0 4176 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4177 ){ 4178 /* In a NATURAL join, omit the join columns from the 4179 ** table to the right of the join */ 4180 continue; 4181 } 4182 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4183 /* In a join with a USING clause, omit columns in the 4184 ** using clause from the table on the right. */ 4185 continue; 4186 } 4187 } 4188 pRight = sqlite3Expr(db, TK_ID, zName); 4189 zColname = zName; 4190 zToFree = 0; 4191 if( longNames || pTabList->nSrc>1 ){ 4192 Expr *pLeft; 4193 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4194 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4195 if( zSchemaName ){ 4196 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4197 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4198 } 4199 if( longNames ){ 4200 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4201 zToFree = zColname; 4202 } 4203 }else{ 4204 pExpr = pRight; 4205 } 4206 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4207 sColname.z = zColname; 4208 sColname.n = sqlite3Strlen30(zColname); 4209 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4210 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4211 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4212 if( pSub ){ 4213 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4214 testcase( pX->zSpan==0 ); 4215 }else{ 4216 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4217 zSchemaName, zTabName, zColname); 4218 testcase( pX->zSpan==0 ); 4219 } 4220 pX->bSpanIsTab = 1; 4221 } 4222 sqlite3DbFree(db, zToFree); 4223 } 4224 } 4225 if( !tableSeen ){ 4226 if( zTName ){ 4227 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4228 }else{ 4229 sqlite3ErrorMsg(pParse, "no tables specified"); 4230 } 4231 } 4232 } 4233 } 4234 sqlite3ExprListDelete(db, pEList); 4235 p->pEList = pNew; 4236 } 4237 #if SQLITE_MAX_COLUMN 4238 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4239 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4240 } 4241 #endif 4242 return WRC_Continue; 4243 } 4244 4245 /* 4246 ** No-op routine for the parse-tree walker. 4247 ** 4248 ** When this routine is the Walker.xExprCallback then expression trees 4249 ** are walked without any actions being taken at each node. Presumably, 4250 ** when this routine is used for Walker.xExprCallback then 4251 ** Walker.xSelectCallback is set to do something useful for every 4252 ** subquery in the parser tree. 4253 */ 4254 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4255 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4256 return WRC_Continue; 4257 } 4258 4259 /* 4260 ** This routine "expands" a SELECT statement and all of its subqueries. 4261 ** For additional information on what it means to "expand" a SELECT 4262 ** statement, see the comment on the selectExpand worker callback above. 4263 ** 4264 ** Expanding a SELECT statement is the first step in processing a 4265 ** SELECT statement. The SELECT statement must be expanded before 4266 ** name resolution is performed. 4267 ** 4268 ** If anything goes wrong, an error message is written into pParse. 4269 ** The calling function can detect the problem by looking at pParse->nErr 4270 ** and/or pParse->db->mallocFailed. 4271 */ 4272 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4273 Walker w; 4274 memset(&w, 0, sizeof(w)); 4275 w.xExprCallback = exprWalkNoop; 4276 w.pParse = pParse; 4277 if( pParse->hasCompound ){ 4278 w.xSelectCallback = convertCompoundSelectToSubquery; 4279 sqlite3WalkSelect(&w, pSelect); 4280 } 4281 w.xSelectCallback = selectExpander; 4282 w.xSelectCallback2 = selectPopWith; 4283 sqlite3WalkSelect(&w, pSelect); 4284 } 4285 4286 4287 #ifndef SQLITE_OMIT_SUBQUERY 4288 /* 4289 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4290 ** interface. 4291 ** 4292 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4293 ** information to the Table structure that represents the result set 4294 ** of that subquery. 4295 ** 4296 ** The Table structure that represents the result set was constructed 4297 ** by selectExpander() but the type and collation information was omitted 4298 ** at that point because identifiers had not yet been resolved. This 4299 ** routine is called after identifier resolution. 4300 */ 4301 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4302 Parse *pParse; 4303 int i; 4304 SrcList *pTabList; 4305 struct SrcList_item *pFrom; 4306 4307 assert( p->selFlags & SF_Resolved ); 4308 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4309 p->selFlags |= SF_HasTypeInfo; 4310 pParse = pWalker->pParse; 4311 pTabList = p->pSrc; 4312 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4313 Table *pTab = pFrom->pTab; 4314 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4315 /* A sub-query in the FROM clause of a SELECT */ 4316 Select *pSel = pFrom->pSelect; 4317 if( pSel ){ 4318 while( pSel->pPrior ) pSel = pSel->pPrior; 4319 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4320 } 4321 } 4322 } 4323 } 4324 } 4325 #endif 4326 4327 4328 /* 4329 ** This routine adds datatype and collating sequence information to 4330 ** the Table structures of all FROM-clause subqueries in a 4331 ** SELECT statement. 4332 ** 4333 ** Use this routine after name resolution. 4334 */ 4335 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4336 #ifndef SQLITE_OMIT_SUBQUERY 4337 Walker w; 4338 memset(&w, 0, sizeof(w)); 4339 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4340 w.xExprCallback = exprWalkNoop; 4341 w.pParse = pParse; 4342 sqlite3WalkSelect(&w, pSelect); 4343 #endif 4344 } 4345 4346 4347 /* 4348 ** This routine sets up a SELECT statement for processing. The 4349 ** following is accomplished: 4350 ** 4351 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4352 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4353 ** * ON and USING clauses are shifted into WHERE statements 4354 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4355 ** * Identifiers in expression are matched to tables. 4356 ** 4357 ** This routine acts recursively on all subqueries within the SELECT. 4358 */ 4359 void sqlite3SelectPrep( 4360 Parse *pParse, /* The parser context */ 4361 Select *p, /* The SELECT statement being coded. */ 4362 NameContext *pOuterNC /* Name context for container */ 4363 ){ 4364 sqlite3 *db; 4365 if( NEVER(p==0) ) return; 4366 db = pParse->db; 4367 if( db->mallocFailed ) return; 4368 if( p->selFlags & SF_HasTypeInfo ) return; 4369 sqlite3SelectExpand(pParse, p); 4370 if( pParse->nErr || db->mallocFailed ) return; 4371 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4372 if( pParse->nErr || db->mallocFailed ) return; 4373 sqlite3SelectAddTypeInfo(pParse, p); 4374 } 4375 4376 /* 4377 ** Reset the aggregate accumulator. 4378 ** 4379 ** The aggregate accumulator is a set of memory cells that hold 4380 ** intermediate results while calculating an aggregate. This 4381 ** routine generates code that stores NULLs in all of those memory 4382 ** cells. 4383 */ 4384 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4385 Vdbe *v = pParse->pVdbe; 4386 int i; 4387 struct AggInfo_func *pFunc; 4388 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4389 if( nReg==0 ) return; 4390 #ifdef SQLITE_DEBUG 4391 /* Verify that all AggInfo registers are within the range specified by 4392 ** AggInfo.mnReg..AggInfo.mxReg */ 4393 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4394 for(i=0; i<pAggInfo->nColumn; i++){ 4395 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4396 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4397 } 4398 for(i=0; i<pAggInfo->nFunc; i++){ 4399 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4400 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4401 } 4402 #endif 4403 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4404 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4405 if( pFunc->iDistinct>=0 ){ 4406 Expr *pE = pFunc->pExpr; 4407 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4408 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4409 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4410 "argument"); 4411 pFunc->iDistinct = -1; 4412 }else{ 4413 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4414 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4415 (char*)pKeyInfo, P4_KEYINFO); 4416 } 4417 } 4418 } 4419 } 4420 4421 /* 4422 ** Invoke the OP_AggFinalize opcode for every aggregate function 4423 ** in the AggInfo structure. 4424 */ 4425 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4426 Vdbe *v = pParse->pVdbe; 4427 int i; 4428 struct AggInfo_func *pF; 4429 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4430 ExprList *pList = pF->pExpr->x.pList; 4431 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4432 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4433 (void*)pF->pFunc, P4_FUNCDEF); 4434 } 4435 } 4436 4437 /* 4438 ** Update the accumulator memory cells for an aggregate based on 4439 ** the current cursor position. 4440 */ 4441 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4442 Vdbe *v = pParse->pVdbe; 4443 int i; 4444 int regHit = 0; 4445 int addrHitTest = 0; 4446 struct AggInfo_func *pF; 4447 struct AggInfo_col *pC; 4448 4449 pAggInfo->directMode = 1; 4450 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4451 int nArg; 4452 int addrNext = 0; 4453 int regAgg; 4454 ExprList *pList = pF->pExpr->x.pList; 4455 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4456 if( pList ){ 4457 nArg = pList->nExpr; 4458 regAgg = sqlite3GetTempRange(pParse, nArg); 4459 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4460 }else{ 4461 nArg = 0; 4462 regAgg = 0; 4463 } 4464 if( pF->iDistinct>=0 ){ 4465 addrNext = sqlite3VdbeMakeLabel(v); 4466 assert( nArg==1 ); 4467 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4468 } 4469 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4470 CollSeq *pColl = 0; 4471 struct ExprList_item *pItem; 4472 int j; 4473 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4474 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4475 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4476 } 4477 if( !pColl ){ 4478 pColl = pParse->db->pDfltColl; 4479 } 4480 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4481 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4482 } 4483 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4484 (void*)pF->pFunc, P4_FUNCDEF); 4485 sqlite3VdbeChangeP5(v, (u8)nArg); 4486 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4487 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4488 if( addrNext ){ 4489 sqlite3VdbeResolveLabel(v, addrNext); 4490 sqlite3ExprCacheClear(pParse); 4491 } 4492 } 4493 4494 /* Before populating the accumulator registers, clear the column cache. 4495 ** Otherwise, if any of the required column values are already present 4496 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4497 ** to pC->iMem. But by the time the value is used, the original register 4498 ** may have been used, invalidating the underlying buffer holding the 4499 ** text or blob value. See ticket [883034dcb5]. 4500 ** 4501 ** Another solution would be to change the OP_SCopy used to copy cached 4502 ** values to an OP_Copy. 4503 */ 4504 if( regHit ){ 4505 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4506 } 4507 sqlite3ExprCacheClear(pParse); 4508 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4509 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4510 } 4511 pAggInfo->directMode = 0; 4512 sqlite3ExprCacheClear(pParse); 4513 if( addrHitTest ){ 4514 sqlite3VdbeJumpHere(v, addrHitTest); 4515 } 4516 } 4517 4518 /* 4519 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4520 ** count(*) query ("SELECT count(*) FROM pTab"). 4521 */ 4522 #ifndef SQLITE_OMIT_EXPLAIN 4523 static void explainSimpleCount( 4524 Parse *pParse, /* Parse context */ 4525 Table *pTab, /* Table being queried */ 4526 Index *pIdx /* Index used to optimize scan, or NULL */ 4527 ){ 4528 if( pParse->explain==2 ){ 4529 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4530 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4531 pTab->zName, 4532 bCover ? " USING COVERING INDEX " : "", 4533 bCover ? pIdx->zName : "" 4534 ); 4535 sqlite3VdbeAddOp4( 4536 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4537 ); 4538 } 4539 } 4540 #else 4541 # define explainSimpleCount(a,b,c) 4542 #endif 4543 4544 /* 4545 ** Generate code for the SELECT statement given in the p argument. 4546 ** 4547 ** The results are returned according to the SelectDest structure. 4548 ** See comments in sqliteInt.h for further information. 4549 ** 4550 ** This routine returns the number of errors. If any errors are 4551 ** encountered, then an appropriate error message is left in 4552 ** pParse->zErrMsg. 4553 ** 4554 ** This routine does NOT free the Select structure passed in. The 4555 ** calling function needs to do that. 4556 */ 4557 int sqlite3Select( 4558 Parse *pParse, /* The parser context */ 4559 Select *p, /* The SELECT statement being coded. */ 4560 SelectDest *pDest /* What to do with the query results */ 4561 ){ 4562 int i, j; /* Loop counters */ 4563 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4564 Vdbe *v; /* The virtual machine under construction */ 4565 int isAgg; /* True for select lists like "count(*)" */ 4566 ExprList *pEList; /* List of columns to extract. */ 4567 SrcList *pTabList; /* List of tables to select from */ 4568 Expr *pWhere; /* The WHERE clause. May be NULL */ 4569 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4570 Expr *pHaving; /* The HAVING clause. May be NULL */ 4571 int rc = 1; /* Value to return from this function */ 4572 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4573 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4574 AggInfo sAggInfo; /* Information used by aggregate queries */ 4575 int iEnd; /* Address of the end of the query */ 4576 sqlite3 *db; /* The database connection */ 4577 4578 #ifndef SQLITE_OMIT_EXPLAIN 4579 int iRestoreSelectId = pParse->iSelectId; 4580 pParse->iSelectId = pParse->iNextSelectId++; 4581 #endif 4582 4583 db = pParse->db; 4584 if( p==0 || db->mallocFailed || pParse->nErr ){ 4585 return 1; 4586 } 4587 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4588 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4589 4590 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4591 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4592 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4593 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4594 if( IgnorableOrderby(pDest) ){ 4595 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4596 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4597 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4598 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4599 /* If ORDER BY makes no difference in the output then neither does 4600 ** DISTINCT so it can be removed too. */ 4601 sqlite3ExprListDelete(db, p->pOrderBy); 4602 p->pOrderBy = 0; 4603 p->selFlags &= ~SF_Distinct; 4604 } 4605 sqlite3SelectPrep(pParse, p, 0); 4606 memset(&sSort, 0, sizeof(sSort)); 4607 sSort.pOrderBy = p->pOrderBy; 4608 pTabList = p->pSrc; 4609 pEList = p->pEList; 4610 if( pParse->nErr || db->mallocFailed ){ 4611 goto select_end; 4612 } 4613 isAgg = (p->selFlags & SF_Aggregate)!=0; 4614 assert( pEList!=0 ); 4615 4616 /* Begin generating code. 4617 */ 4618 v = sqlite3GetVdbe(pParse); 4619 if( v==0 ) goto select_end; 4620 4621 /* If writing to memory or generating a set 4622 ** only a single column may be output. 4623 */ 4624 #ifndef SQLITE_OMIT_SUBQUERY 4625 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4626 goto select_end; 4627 } 4628 #endif 4629 4630 /* Generate code for all sub-queries in the FROM clause 4631 */ 4632 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4633 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4634 struct SrcList_item *pItem = &pTabList->a[i]; 4635 SelectDest dest; 4636 Select *pSub = pItem->pSelect; 4637 int isAggSub; 4638 4639 if( pSub==0 ) continue; 4640 4641 /* Sometimes the code for a subquery will be generated more than 4642 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4643 ** for example. In that case, do not regenerate the code to manifest 4644 ** a view or the co-routine to implement a view. The first instance 4645 ** is sufficient, though the subroutine to manifest the view does need 4646 ** to be invoked again. */ 4647 if( pItem->addrFillSub ){ 4648 if( pItem->viaCoroutine==0 ){ 4649 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4650 } 4651 continue; 4652 } 4653 4654 /* Increment Parse.nHeight by the height of the largest expression 4655 ** tree referred to by this, the parent select. The child select 4656 ** may contain expression trees of at most 4657 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4658 ** more conservative than necessary, but much easier than enforcing 4659 ** an exact limit. 4660 */ 4661 pParse->nHeight += sqlite3SelectExprHeight(p); 4662 4663 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4664 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4665 /* This subquery can be absorbed into its parent. */ 4666 if( isAggSub ){ 4667 isAgg = 1; 4668 p->selFlags |= SF_Aggregate; 4669 } 4670 i = -1; 4671 }else if( pTabList->nSrc==1 4672 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4673 ){ 4674 /* Implement a co-routine that will return a single row of the result 4675 ** set on each invocation. 4676 */ 4677 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4678 pItem->regReturn = ++pParse->nMem; 4679 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4680 VdbeComment((v, "%s", pItem->pTab->zName)); 4681 pItem->addrFillSub = addrTop; 4682 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4683 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4684 sqlite3Select(pParse, pSub, &dest); 4685 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4686 pItem->viaCoroutine = 1; 4687 pItem->regResult = dest.iSdst; 4688 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4689 sqlite3VdbeJumpHere(v, addrTop-1); 4690 sqlite3ClearTempRegCache(pParse); 4691 }else{ 4692 /* Generate a subroutine that will fill an ephemeral table with 4693 ** the content of this subquery. pItem->addrFillSub will point 4694 ** to the address of the generated subroutine. pItem->regReturn 4695 ** is a register allocated to hold the subroutine return address 4696 */ 4697 int topAddr; 4698 int onceAddr = 0; 4699 int retAddr; 4700 assert( pItem->addrFillSub==0 ); 4701 pItem->regReturn = ++pParse->nMem; 4702 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4703 pItem->addrFillSub = topAddr+1; 4704 if( pItem->isCorrelated==0 ){ 4705 /* If the subquery is not correlated and if we are not inside of 4706 ** a trigger, then we only need to compute the value of the subquery 4707 ** once. */ 4708 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4709 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4710 }else{ 4711 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4712 } 4713 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4714 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4715 sqlite3Select(pParse, pSub, &dest); 4716 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4717 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4718 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4719 VdbeComment((v, "end %s", pItem->pTab->zName)); 4720 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4721 sqlite3ClearTempRegCache(pParse); 4722 } 4723 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4724 goto select_end; 4725 } 4726 pParse->nHeight -= sqlite3SelectExprHeight(p); 4727 pTabList = p->pSrc; 4728 if( !IgnorableOrderby(pDest) ){ 4729 sSort.pOrderBy = p->pOrderBy; 4730 } 4731 } 4732 pEList = p->pEList; 4733 #endif 4734 pWhere = p->pWhere; 4735 pGroupBy = p->pGroupBy; 4736 pHaving = p->pHaving; 4737 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4738 4739 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4740 /* If there is are a sequence of queries, do the earlier ones first. 4741 */ 4742 if( p->pPrior ){ 4743 rc = multiSelect(pParse, p, pDest); 4744 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4745 return rc; 4746 } 4747 #endif 4748 4749 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4750 ** if the select-list is the same as the ORDER BY list, then this query 4751 ** can be rewritten as a GROUP BY. In other words, this: 4752 ** 4753 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4754 ** 4755 ** is transformed to: 4756 ** 4757 ** SELECT xyz FROM ... GROUP BY xyz 4758 ** 4759 ** The second form is preferred as a single index (or temp-table) may be 4760 ** used for both the ORDER BY and DISTINCT processing. As originally 4761 ** written the query must use a temp-table for at least one of the ORDER 4762 ** BY and DISTINCT, and an index or separate temp-table for the other. 4763 */ 4764 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4765 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4766 ){ 4767 p->selFlags &= ~SF_Distinct; 4768 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4769 pGroupBy = p->pGroupBy; 4770 sSort.pOrderBy = 0; 4771 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4772 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4773 ** original setting of the SF_Distinct flag, not the current setting */ 4774 assert( sDistinct.isTnct ); 4775 } 4776 4777 /* If there is an ORDER BY clause, then this sorting 4778 ** index might end up being unused if the data can be 4779 ** extracted in pre-sorted order. If that is the case, then the 4780 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4781 ** we figure out that the sorting index is not needed. The addrSortIndex 4782 ** variable is used to facilitate that change. 4783 */ 4784 if( sSort.pOrderBy ){ 4785 KeyInfo *pKeyInfo; 4786 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4787 sSort.iECursor = pParse->nTab++; 4788 sSort.addrSortIndex = 4789 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4790 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4791 (char*)pKeyInfo, P4_KEYINFO 4792 ); 4793 }else{ 4794 sSort.addrSortIndex = -1; 4795 } 4796 4797 /* If the output is destined for a temporary table, open that table. 4798 */ 4799 if( pDest->eDest==SRT_EphemTab ){ 4800 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4801 } 4802 4803 /* Set the limiter. 4804 */ 4805 iEnd = sqlite3VdbeMakeLabel(v); 4806 p->nSelectRow = LARGEST_INT64; 4807 computeLimitRegisters(pParse, p, iEnd); 4808 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4809 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4810 sSort.sortFlags |= SORTFLAG_UseSorter; 4811 } 4812 4813 /* Open a virtual index to use for the distinct set. 4814 */ 4815 if( p->selFlags & SF_Distinct ){ 4816 sDistinct.tabTnct = pParse->nTab++; 4817 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4818 sDistinct.tabTnct, 0, 0, 4819 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4820 P4_KEYINFO); 4821 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4822 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4823 }else{ 4824 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4825 } 4826 4827 if( !isAgg && pGroupBy==0 ){ 4828 /* No aggregate functions and no GROUP BY clause */ 4829 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4830 4831 /* Begin the database scan. */ 4832 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4833 p->pEList, wctrlFlags, 0); 4834 if( pWInfo==0 ) goto select_end; 4835 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4836 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4837 } 4838 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4839 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4840 } 4841 if( sSort.pOrderBy ){ 4842 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4843 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4844 sSort.pOrderBy = 0; 4845 } 4846 } 4847 4848 /* If sorting index that was created by a prior OP_OpenEphemeral 4849 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4850 ** into an OP_Noop. 4851 */ 4852 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4853 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4854 } 4855 4856 /* Use the standard inner loop. */ 4857 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4858 sqlite3WhereContinueLabel(pWInfo), 4859 sqlite3WhereBreakLabel(pWInfo)); 4860 4861 /* End the database scan loop. 4862 */ 4863 sqlite3WhereEnd(pWInfo); 4864 }else{ 4865 /* This case when there exist aggregate functions or a GROUP BY clause 4866 ** or both */ 4867 NameContext sNC; /* Name context for processing aggregate information */ 4868 int iAMem; /* First Mem address for storing current GROUP BY */ 4869 int iBMem; /* First Mem address for previous GROUP BY */ 4870 int iUseFlag; /* Mem address holding flag indicating that at least 4871 ** one row of the input to the aggregator has been 4872 ** processed */ 4873 int iAbortFlag; /* Mem address which causes query abort if positive */ 4874 int groupBySort; /* Rows come from source in GROUP BY order */ 4875 int addrEnd; /* End of processing for this SELECT */ 4876 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4877 int sortOut = 0; /* Output register from the sorter */ 4878 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 4879 4880 /* Remove any and all aliases between the result set and the 4881 ** GROUP BY clause. 4882 */ 4883 if( pGroupBy ){ 4884 int k; /* Loop counter */ 4885 struct ExprList_item *pItem; /* For looping over expression in a list */ 4886 4887 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4888 pItem->u.x.iAlias = 0; 4889 } 4890 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4891 pItem->u.x.iAlias = 0; 4892 } 4893 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4894 }else{ 4895 p->nSelectRow = 1; 4896 } 4897 4898 4899 /* If there is both a GROUP BY and an ORDER BY clause and they are 4900 ** identical, then it may be possible to disable the ORDER BY clause 4901 ** on the grounds that the GROUP BY will cause elements to come out 4902 ** in the correct order. It also may not - the GROUP BY may use a 4903 ** database index that causes rows to be grouped together as required 4904 ** but not actually sorted. Either way, record the fact that the 4905 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 4906 ** variable. */ 4907 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 4908 orderByGrp = 1; 4909 } 4910 4911 /* Create a label to jump to when we want to abort the query */ 4912 addrEnd = sqlite3VdbeMakeLabel(v); 4913 4914 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4915 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4916 ** SELECT statement. 4917 */ 4918 memset(&sNC, 0, sizeof(sNC)); 4919 sNC.pParse = pParse; 4920 sNC.pSrcList = pTabList; 4921 sNC.pAggInfo = &sAggInfo; 4922 sAggInfo.mnReg = pParse->nMem+1; 4923 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 4924 sAggInfo.pGroupBy = pGroupBy; 4925 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4926 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 4927 if( pHaving ){ 4928 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4929 } 4930 sAggInfo.nAccumulator = sAggInfo.nColumn; 4931 for(i=0; i<sAggInfo.nFunc; i++){ 4932 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4933 sNC.ncFlags |= NC_InAggFunc; 4934 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4935 sNC.ncFlags &= ~NC_InAggFunc; 4936 } 4937 sAggInfo.mxReg = pParse->nMem; 4938 if( db->mallocFailed ) goto select_end; 4939 4940 /* Processing for aggregates with GROUP BY is very different and 4941 ** much more complex than aggregates without a GROUP BY. 4942 */ 4943 if( pGroupBy ){ 4944 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4945 int j1; /* A-vs-B comparision jump */ 4946 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4947 int regOutputRow; /* Return address register for output subroutine */ 4948 int addrSetAbort; /* Set the abort flag and return */ 4949 int addrTopOfLoop; /* Top of the input loop */ 4950 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4951 int addrReset; /* Subroutine for resetting the accumulator */ 4952 int regReset; /* Return address register for reset subroutine */ 4953 4954 /* If there is a GROUP BY clause we might need a sorting index to 4955 ** implement it. Allocate that sorting index now. If it turns out 4956 ** that we do not need it after all, the OP_SorterOpen instruction 4957 ** will be converted into a Noop. 4958 */ 4959 sAggInfo.sortingIdx = pParse->nTab++; 4960 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 4961 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4962 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4963 0, (char*)pKeyInfo, P4_KEYINFO); 4964 4965 /* Initialize memory locations used by GROUP BY aggregate processing 4966 */ 4967 iUseFlag = ++pParse->nMem; 4968 iAbortFlag = ++pParse->nMem; 4969 regOutputRow = ++pParse->nMem; 4970 addrOutputRow = sqlite3VdbeMakeLabel(v); 4971 regReset = ++pParse->nMem; 4972 addrReset = sqlite3VdbeMakeLabel(v); 4973 iAMem = pParse->nMem + 1; 4974 pParse->nMem += pGroupBy->nExpr; 4975 iBMem = pParse->nMem + 1; 4976 pParse->nMem += pGroupBy->nExpr; 4977 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4978 VdbeComment((v, "clear abort flag")); 4979 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4980 VdbeComment((v, "indicate accumulator empty")); 4981 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4982 4983 /* Begin a loop that will extract all source rows in GROUP BY order. 4984 ** This might involve two separate loops with an OP_Sort in between, or 4985 ** it might be a single loop that uses an index to extract information 4986 ** in the right order to begin with. 4987 */ 4988 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4989 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4990 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 4991 ); 4992 if( pWInfo==0 ) goto select_end; 4993 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 4994 /* The optimizer is able to deliver rows in group by order so 4995 ** we do not have to sort. The OP_OpenEphemeral table will be 4996 ** cancelled later because we still need to use the pKeyInfo 4997 */ 4998 groupBySort = 0; 4999 }else{ 5000 /* Rows are coming out in undetermined order. We have to push 5001 ** each row into a sorting index, terminate the first loop, 5002 ** then loop over the sorting index in order to get the output 5003 ** in sorted order 5004 */ 5005 int regBase; 5006 int regRecord; 5007 int nCol; 5008 int nGroupBy; 5009 5010 explainTempTable(pParse, 5011 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5012 "DISTINCT" : "GROUP BY"); 5013 5014 groupBySort = 1; 5015 nGroupBy = pGroupBy->nExpr; 5016 nCol = nGroupBy; 5017 j = nGroupBy; 5018 for(i=0; i<sAggInfo.nColumn; i++){ 5019 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5020 nCol++; 5021 j++; 5022 } 5023 } 5024 regBase = sqlite3GetTempRange(pParse, nCol); 5025 sqlite3ExprCacheClear(pParse); 5026 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5027 j = nGroupBy; 5028 for(i=0; i<sAggInfo.nColumn; i++){ 5029 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5030 if( pCol->iSorterColumn>=j ){ 5031 int r1 = j + regBase; 5032 int r2; 5033 5034 r2 = sqlite3ExprCodeGetColumn(pParse, 5035 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5036 if( r1!=r2 ){ 5037 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5038 } 5039 j++; 5040 } 5041 } 5042 regRecord = sqlite3GetTempReg(pParse); 5043 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5044 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5045 sqlite3ReleaseTempReg(pParse, regRecord); 5046 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5047 sqlite3WhereEnd(pWInfo); 5048 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5049 sortOut = sqlite3GetTempReg(pParse); 5050 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5051 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5052 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5053 sAggInfo.useSortingIdx = 1; 5054 sqlite3ExprCacheClear(pParse); 5055 5056 } 5057 5058 /* If the index or temporary table used by the GROUP BY sort 5059 ** will naturally deliver rows in the order required by the ORDER BY 5060 ** clause, cancel the ephemeral table open coded earlier. 5061 ** 5062 ** This is an optimization - the correct answer should result regardless. 5063 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5064 ** disable this optimization for testing purposes. */ 5065 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5066 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5067 ){ 5068 sSort.pOrderBy = 0; 5069 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5070 } 5071 5072 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5073 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5074 ** Then compare the current GROUP BY terms against the GROUP BY terms 5075 ** from the previous row currently stored in a0, a1, a2... 5076 */ 5077 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5078 sqlite3ExprCacheClear(pParse); 5079 if( groupBySort ){ 5080 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 5081 } 5082 for(j=0; j<pGroupBy->nExpr; j++){ 5083 if( groupBySort ){ 5084 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5085 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 5086 }else{ 5087 sAggInfo.directMode = 1; 5088 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5089 } 5090 } 5091 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5092 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5093 j1 = sqlite3VdbeCurrentAddr(v); 5094 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5095 5096 /* Generate code that runs whenever the GROUP BY changes. 5097 ** Changes in the GROUP BY are detected by the previous code 5098 ** block. If there were no changes, this block is skipped. 5099 ** 5100 ** This code copies current group by terms in b0,b1,b2,... 5101 ** over to a0,a1,a2. It then calls the output subroutine 5102 ** and resets the aggregate accumulator registers in preparation 5103 ** for the next GROUP BY batch. 5104 */ 5105 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5106 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5107 VdbeComment((v, "output one row")); 5108 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5109 VdbeComment((v, "check abort flag")); 5110 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5111 VdbeComment((v, "reset accumulator")); 5112 5113 /* Update the aggregate accumulators based on the content of 5114 ** the current row 5115 */ 5116 sqlite3VdbeJumpHere(v, j1); 5117 updateAccumulator(pParse, &sAggInfo); 5118 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5119 VdbeComment((v, "indicate data in accumulator")); 5120 5121 /* End of the loop 5122 */ 5123 if( groupBySort ){ 5124 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5125 VdbeCoverage(v); 5126 }else{ 5127 sqlite3WhereEnd(pWInfo); 5128 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5129 } 5130 5131 /* Output the final row of result 5132 */ 5133 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5134 VdbeComment((v, "output final row")); 5135 5136 /* Jump over the subroutines 5137 */ 5138 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5139 5140 /* Generate a subroutine that outputs a single row of the result 5141 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5142 ** is less than or equal to zero, the subroutine is a no-op. If 5143 ** the processing calls for the query to abort, this subroutine 5144 ** increments the iAbortFlag memory location before returning in 5145 ** order to signal the caller to abort. 5146 */ 5147 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5148 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5149 VdbeComment((v, "set abort flag")); 5150 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5151 sqlite3VdbeResolveLabel(v, addrOutputRow); 5152 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5153 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5154 VdbeComment((v, "Groupby result generator entry point")); 5155 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5156 finalizeAggFunctions(pParse, &sAggInfo); 5157 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5158 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5159 &sDistinct, pDest, 5160 addrOutputRow+1, addrSetAbort); 5161 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5162 VdbeComment((v, "end groupby result generator")); 5163 5164 /* Generate a subroutine that will reset the group-by accumulator 5165 */ 5166 sqlite3VdbeResolveLabel(v, addrReset); 5167 resetAccumulator(pParse, &sAggInfo); 5168 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5169 5170 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5171 else { 5172 ExprList *pDel = 0; 5173 #ifndef SQLITE_OMIT_BTREECOUNT 5174 Table *pTab; 5175 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5176 /* If isSimpleCount() returns a pointer to a Table structure, then 5177 ** the SQL statement is of the form: 5178 ** 5179 ** SELECT count(*) FROM <tbl> 5180 ** 5181 ** where the Table structure returned represents table <tbl>. 5182 ** 5183 ** This statement is so common that it is optimized specially. The 5184 ** OP_Count instruction is executed either on the intkey table that 5185 ** contains the data for table <tbl> or on one of its indexes. It 5186 ** is better to execute the op on an index, as indexes are almost 5187 ** always spread across less pages than their corresponding tables. 5188 */ 5189 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5190 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5191 Index *pIdx; /* Iterator variable */ 5192 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5193 Index *pBest = 0; /* Best index found so far */ 5194 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5195 5196 sqlite3CodeVerifySchema(pParse, iDb); 5197 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5198 5199 /* Search for the index that has the lowest scan cost. 5200 ** 5201 ** (2011-04-15) Do not do a full scan of an unordered index. 5202 ** 5203 ** (2013-10-03) Do not count the entries in a partial index. 5204 ** 5205 ** In practice the KeyInfo structure will not be used. It is only 5206 ** passed to keep OP_OpenRead happy. 5207 */ 5208 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5209 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5210 if( pIdx->bUnordered==0 5211 && pIdx->szIdxRow<pTab->szTabRow 5212 && pIdx->pPartIdxWhere==0 5213 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5214 ){ 5215 pBest = pIdx; 5216 } 5217 } 5218 if( pBest ){ 5219 iRoot = pBest->tnum; 5220 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5221 } 5222 5223 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5224 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5225 if( pKeyInfo ){ 5226 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5227 } 5228 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5229 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5230 explainSimpleCount(pParse, pTab, pBest); 5231 }else 5232 #endif /* SQLITE_OMIT_BTREECOUNT */ 5233 { 5234 /* Check if the query is of one of the following forms: 5235 ** 5236 ** SELECT min(x) FROM ... 5237 ** SELECT max(x) FROM ... 5238 ** 5239 ** If it is, then ask the code in where.c to attempt to sort results 5240 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5241 ** If where.c is able to produce results sorted in this order, then 5242 ** add vdbe code to break out of the processing loop after the 5243 ** first iteration (since the first iteration of the loop is 5244 ** guaranteed to operate on the row with the minimum or maximum 5245 ** value of x, the only row required). 5246 ** 5247 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5248 ** modify behavior as follows: 5249 ** 5250 ** + If the query is a "SELECT min(x)", then the loop coded by 5251 ** where.c should not iterate over any values with a NULL value 5252 ** for x. 5253 ** 5254 ** + The optimizer code in where.c (the thing that decides which 5255 ** index or indices to use) should place a different priority on 5256 ** satisfying the 'ORDER BY' clause than it does in other cases. 5257 ** Refer to code and comments in where.c for details. 5258 */ 5259 ExprList *pMinMax = 0; 5260 u8 flag = WHERE_ORDERBY_NORMAL; 5261 5262 assert( p->pGroupBy==0 ); 5263 assert( flag==0 ); 5264 if( p->pHaving==0 ){ 5265 flag = minMaxQuery(&sAggInfo, &pMinMax); 5266 } 5267 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5268 5269 if( flag ){ 5270 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5271 pDel = pMinMax; 5272 if( pMinMax && !db->mallocFailed ){ 5273 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5274 pMinMax->a[0].pExpr->op = TK_COLUMN; 5275 } 5276 } 5277 5278 /* This case runs if the aggregate has no GROUP BY clause. The 5279 ** processing is much simpler since there is only a single row 5280 ** of output. 5281 */ 5282 resetAccumulator(pParse, &sAggInfo); 5283 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5284 if( pWInfo==0 ){ 5285 sqlite3ExprListDelete(db, pDel); 5286 goto select_end; 5287 } 5288 updateAccumulator(pParse, &sAggInfo); 5289 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5290 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5291 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5292 VdbeComment((v, "%s() by index", 5293 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5294 } 5295 sqlite3WhereEnd(pWInfo); 5296 finalizeAggFunctions(pParse, &sAggInfo); 5297 } 5298 5299 sSort.pOrderBy = 0; 5300 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5301 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5302 pDest, addrEnd, addrEnd); 5303 sqlite3ExprListDelete(db, pDel); 5304 } 5305 sqlite3VdbeResolveLabel(v, addrEnd); 5306 5307 } /* endif aggregate query */ 5308 5309 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5310 explainTempTable(pParse, "DISTINCT"); 5311 } 5312 5313 /* If there is an ORDER BY clause, then we need to sort the results 5314 ** and send them to the callback one by one. 5315 */ 5316 if( sSort.pOrderBy ){ 5317 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5318 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5319 } 5320 5321 /* Jump here to skip this query 5322 */ 5323 sqlite3VdbeResolveLabel(v, iEnd); 5324 5325 /* The SELECT was successfully coded. Set the return code to 0 5326 ** to indicate no errors. 5327 */ 5328 rc = 0; 5329 5330 /* Control jumps to here if an error is encountered above, or upon 5331 ** successful coding of the SELECT. 5332 */ 5333 select_end: 5334 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5335 5336 /* Identify column names if results of the SELECT are to be output. 5337 */ 5338 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5339 generateColumnNames(pParse, pTabList, pEList); 5340 } 5341 5342 sqlite3DbFree(db, sAggInfo.aCol); 5343 sqlite3DbFree(db, sAggInfo.aFunc); 5344 return rc; 5345 } 5346 5347 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5348 /* 5349 ** Generate a human-readable description of a the Select object. 5350 */ 5351 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5352 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5353 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5354 if( p->selFlags & SF_Distinct ){ 5355 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5356 } 5357 if( p->selFlags & SF_Aggregate ){ 5358 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5359 } 5360 sqlite3ExplainNL(pVdbe); 5361 sqlite3ExplainPrintf(pVdbe, " "); 5362 } 5363 sqlite3ExplainExprList(pVdbe, p->pEList); 5364 sqlite3ExplainNL(pVdbe); 5365 if( p->pSrc && p->pSrc->nSrc ){ 5366 int i; 5367 sqlite3ExplainPrintf(pVdbe, "FROM "); 5368 sqlite3ExplainPush(pVdbe); 5369 for(i=0; i<p->pSrc->nSrc; i++){ 5370 struct SrcList_item *pItem = &p->pSrc->a[i]; 5371 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5372 if( pItem->pSelect ){ 5373 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5374 if( pItem->pTab ){ 5375 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5376 } 5377 }else if( pItem->zName ){ 5378 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5379 } 5380 if( pItem->zAlias ){ 5381 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5382 } 5383 if( pItem->jointype & JT_LEFT ){ 5384 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5385 } 5386 sqlite3ExplainNL(pVdbe); 5387 } 5388 sqlite3ExplainPop(pVdbe); 5389 } 5390 if( p->pWhere ){ 5391 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5392 sqlite3ExplainExpr(pVdbe, p->pWhere); 5393 sqlite3ExplainNL(pVdbe); 5394 } 5395 if( p->pGroupBy ){ 5396 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5397 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5398 sqlite3ExplainNL(pVdbe); 5399 } 5400 if( p->pHaving ){ 5401 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5402 sqlite3ExplainExpr(pVdbe, p->pHaving); 5403 sqlite3ExplainNL(pVdbe); 5404 } 5405 if( p->pOrderBy ){ 5406 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5407 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5408 sqlite3ExplainNL(pVdbe); 5409 } 5410 if( p->pLimit ){ 5411 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5412 sqlite3ExplainExpr(pVdbe, p->pLimit); 5413 sqlite3ExplainNL(pVdbe); 5414 } 5415 if( p->pOffset ){ 5416 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5417 sqlite3ExplainExpr(pVdbe, p->pOffset); 5418 sqlite3ExplainNL(pVdbe); 5419 } 5420 } 5421 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5422 if( p==0 ){ 5423 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5424 return; 5425 } 5426 sqlite3ExplainPush(pVdbe); 5427 while( p ){ 5428 explainOneSelect(pVdbe, p); 5429 p = p->pNext; 5430 if( p==0 ) break; 5431 sqlite3ExplainNL(pVdbe); 5432 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5433 } 5434 sqlite3ExplainPrintf(pVdbe, "END"); 5435 sqlite3ExplainPop(pVdbe); 5436 } 5437 5438 /* End of the structure debug printing code 5439 *****************************************************************************/ 5440 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5441