xref: /sqlite-3.40.0/src/select.c (revision d230f648)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.340 2007/05/04 13:15:56 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   assert( pOffset==0 || pLimit!=0 );
72   pNew->pLimit = pLimit;
73   pNew->pOffset = pOffset;
74   pNew->iLimit = -1;
75   pNew->iOffset = -1;
76   pNew->addrOpenEphm[0] = -1;
77   pNew->addrOpenEphm[1] = -1;
78   pNew->addrOpenEphm[2] = -1;
79   if( pNew==&standin) {
80     clearSelect(pNew);
81     pNew = 0;
82   }
83   return pNew;
84 }
85 
86 /*
87 ** Delete the given Select structure and all of its substructures.
88 */
89 void sqlite3SelectDelete(Select *p){
90   if( p ){
91     clearSelect(p);
92     sqliteFree(p);
93   }
94 }
95 
96 /*
97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
98 ** type of join.  Return an integer constant that expresses that type
99 ** in terms of the following bit values:
100 **
101 **     JT_INNER
102 **     JT_CROSS
103 **     JT_OUTER
104 **     JT_NATURAL
105 **     JT_LEFT
106 **     JT_RIGHT
107 **
108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
109 **
110 ** If an illegal or unsupported join type is seen, then still return
111 ** a join type, but put an error in the pParse structure.
112 */
113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
114   int jointype = 0;
115   Token *apAll[3];
116   Token *p;
117   static const struct {
118     const char zKeyword[8];
119     u8 nChar;
120     u8 code;
121   } keywords[] = {
122     { "natural", 7, JT_NATURAL },
123     { "left",    4, JT_LEFT|JT_OUTER },
124     { "right",   5, JT_RIGHT|JT_OUTER },
125     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
126     { "outer",   5, JT_OUTER },
127     { "inner",   5, JT_INNER },
128     { "cross",   5, JT_INNER|JT_CROSS },
129   };
130   int i, j;
131   apAll[0] = pA;
132   apAll[1] = pB;
133   apAll[2] = pC;
134   for(i=0; i<3 && apAll[i]; i++){
135     p = apAll[i];
136     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
137       if( p->n==keywords[j].nChar
138           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
139         jointype |= keywords[j].code;
140         break;
141       }
142     }
143     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
144       jointype |= JT_ERROR;
145       break;
146     }
147   }
148   if(
149      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
150      (jointype & JT_ERROR)!=0
151   ){
152     const char *zSp1 = " ";
153     const char *zSp2 = " ";
154     if( pB==0 ){ zSp1++; }
155     if( pC==0 ){ zSp2++; }
156     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
157        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
158     jointype = JT_INNER;
159   }else if( jointype & JT_RIGHT ){
160     sqlite3ErrorMsg(pParse,
161       "RIGHT and FULL OUTER JOINs are not currently supported");
162     jointype = JT_INNER;
163   }
164   return jointype;
165 }
166 
167 /*
168 ** Return the index of a column in a table.  Return -1 if the column
169 ** is not contained in the table.
170 */
171 static int columnIndex(Table *pTab, const char *zCol){
172   int i;
173   for(i=0; i<pTab->nCol; i++){
174     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
175   }
176   return -1;
177 }
178 
179 /*
180 ** Set the value of a token to a '\000'-terminated string.
181 */
182 static void setToken(Token *p, const char *z){
183   p->z = (u8*)z;
184   p->n = z ? strlen(z) : 0;
185   p->dyn = 0;
186 }
187 
188 /*
189 ** Create an expression node for an identifier with the name of zName
190 */
191 Expr *sqlite3CreateIdExpr(const char *zName){
192   Token dummy;
193   setToken(&dummy, zName);
194   return sqlite3Expr(TK_ID, 0, 0, &dummy);
195 }
196 
197 
198 /*
199 ** Add a term to the WHERE expression in *ppExpr that requires the
200 ** zCol column to be equal in the two tables pTab1 and pTab2.
201 */
202 static void addWhereTerm(
203   const char *zCol,        /* Name of the column */
204   const Table *pTab1,      /* First table */
205   const char *zAlias1,     /* Alias for first table.  May be NULL */
206   const Table *pTab2,      /* Second table */
207   const char *zAlias2,     /* Alias for second table.  May be NULL */
208   int iRightJoinTable,     /* VDBE cursor for the right table */
209   Expr **ppExpr            /* Add the equality term to this expression */
210 ){
211   Expr *pE1a, *pE1b, *pE1c;
212   Expr *pE2a, *pE2b, *pE2c;
213   Expr *pE;
214 
215   pE1a = sqlite3CreateIdExpr(zCol);
216   pE2a = sqlite3CreateIdExpr(zCol);
217   if( zAlias1==0 ){
218     zAlias1 = pTab1->zName;
219   }
220   pE1b = sqlite3CreateIdExpr(zAlias1);
221   if( zAlias2==0 ){
222     zAlias2 = pTab2->zName;
223   }
224   pE2b = sqlite3CreateIdExpr(zAlias2);
225   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
226   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
227   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
228   if( pE ){
229     ExprSetProperty(pE, EP_FromJoin);
230     pE->iRightJoinTable = iRightJoinTable;
231   }
232   pE = sqlite3ExprAnd(*ppExpr, pE);
233   if( pE ){
234     *ppExpr = pE;
235   }
236 }
237 
238 /*
239 ** Set the EP_FromJoin property on all terms of the given expression.
240 ** And set the Expr.iRightJoinTable to iTable for every term in the
241 ** expression.
242 **
243 ** The EP_FromJoin property is used on terms of an expression to tell
244 ** the LEFT OUTER JOIN processing logic that this term is part of the
245 ** join restriction specified in the ON or USING clause and not a part
246 ** of the more general WHERE clause.  These terms are moved over to the
247 ** WHERE clause during join processing but we need to remember that they
248 ** originated in the ON or USING clause.
249 **
250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
251 ** expression depends on table iRightJoinTable even if that table is not
252 ** explicitly mentioned in the expression.  That information is needed
253 ** for cases like this:
254 **
255 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
256 **
257 ** The where clause needs to defer the handling of the t1.x=5
258 ** term until after the t2 loop of the join.  In that way, a
259 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
260 ** defer the handling of t1.x=5, it will be processed immediately
261 ** after the t1 loop and rows with t1.x!=5 will never appear in
262 ** the output, which is incorrect.
263 */
264 static void setJoinExpr(Expr *p, int iTable){
265   while( p ){
266     ExprSetProperty(p, EP_FromJoin);
267     p->iRightJoinTable = iTable;
268     setJoinExpr(p->pLeft, iTable);
269     p = p->pRight;
270   }
271 }
272 
273 /*
274 ** This routine processes the join information for a SELECT statement.
275 ** ON and USING clauses are converted into extra terms of the WHERE clause.
276 ** NATURAL joins also create extra WHERE clause terms.
277 **
278 ** The terms of a FROM clause are contained in the Select.pSrc structure.
279 ** The left most table is the first entry in Select.pSrc.  The right-most
280 ** table is the last entry.  The join operator is held in the entry to
281 ** the left.  Thus entry 0 contains the join operator for the join between
282 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
283 ** also attached to the left entry.
284 **
285 ** This routine returns the number of errors encountered.
286 */
287 static int sqliteProcessJoin(Parse *pParse, Select *p){
288   SrcList *pSrc;                  /* All tables in the FROM clause */
289   int i, j;                       /* Loop counters */
290   struct SrcList_item *pLeft;     /* Left table being joined */
291   struct SrcList_item *pRight;    /* Right table being joined */
292 
293   pSrc = p->pSrc;
294   pLeft = &pSrc->a[0];
295   pRight = &pLeft[1];
296   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
297     Table *pLeftTab = pLeft->pTab;
298     Table *pRightTab = pRight->pTab;
299 
300     if( pLeftTab==0 || pRightTab==0 ) continue;
301 
302     /* When the NATURAL keyword is present, add WHERE clause terms for
303     ** every column that the two tables have in common.
304     */
305     if( pRight->jointype & JT_NATURAL ){
306       if( pRight->pOn || pRight->pUsing ){
307         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
308            "an ON or USING clause", 0);
309         return 1;
310       }
311       for(j=0; j<pLeftTab->nCol; j++){
312         char *zName = pLeftTab->aCol[j].zName;
313         if( columnIndex(pRightTab, zName)>=0 ){
314           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
315                               pRightTab, pRight->zAlias,
316                               pRight->iCursor, &p->pWhere);
317 
318         }
319       }
320     }
321 
322     /* Disallow both ON and USING clauses in the same join
323     */
324     if( pRight->pOn && pRight->pUsing ){
325       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
326         "clauses in the same join");
327       return 1;
328     }
329 
330     /* Add the ON clause to the end of the WHERE clause, connected by
331     ** an AND operator.
332     */
333     if( pRight->pOn ){
334       setJoinExpr(pRight->pOn, pRight->iCursor);
335       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
336       pRight->pOn = 0;
337     }
338 
339     /* Create extra terms on the WHERE clause for each column named
340     ** in the USING clause.  Example: If the two tables to be joined are
341     ** A and B and the USING clause names X, Y, and Z, then add this
342     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
343     ** Report an error if any column mentioned in the USING clause is
344     ** not contained in both tables to be joined.
345     */
346     if( pRight->pUsing ){
347       IdList *pList = pRight->pUsing;
348       for(j=0; j<pList->nId; j++){
349         char *zName = pList->a[j].zName;
350         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
351           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
352             "not present in both tables", zName);
353           return 1;
354         }
355         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
356                             pRightTab, pRight->zAlias,
357                             pRight->iCursor, &p->pWhere);
358       }
359     }
360   }
361   return 0;
362 }
363 
364 /*
365 ** Insert code into "v" that will push the record on the top of the
366 ** stack into the sorter.
367 */
368 static void pushOntoSorter(
369   Parse *pParse,         /* Parser context */
370   ExprList *pOrderBy,    /* The ORDER BY clause */
371   Select *pSelect        /* The whole SELECT statement */
372 ){
373   Vdbe *v = pParse->pVdbe;
374   sqlite3ExprCodeExprList(pParse, pOrderBy);
375   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
376   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
377   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
378   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
379   if( pSelect->iLimit>=0 ){
380     int addr1, addr2;
381     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
382     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
383     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
384     sqlite3VdbeJumpHere(v, addr1);
385     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
386     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
387     sqlite3VdbeJumpHere(v, addr2);
388     pSelect->iLimit = -1;
389   }
390 }
391 
392 /*
393 ** Add code to implement the OFFSET
394 */
395 static void codeOffset(
396   Vdbe *v,          /* Generate code into this VM */
397   Select *p,        /* The SELECT statement being coded */
398   int iContinue,    /* Jump here to skip the current record */
399   int nPop          /* Number of times to pop stack when jumping */
400 ){
401   if( p->iOffset>=0 && iContinue!=0 ){
402     int addr;
403     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
404     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
405     if( nPop>0 ){
406       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
407     }
408     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
409     VdbeComment((v, "# skip OFFSET records"));
410     sqlite3VdbeJumpHere(v, addr);
411   }
412 }
413 
414 /*
415 ** Add code that will check to make sure the top N elements of the
416 ** stack are distinct.  iTab is a sorting index that holds previously
417 ** seen combinations of the N values.  A new entry is made in iTab
418 ** if the current N values are new.
419 **
420 ** A jump to addrRepeat is made and the N+1 values are popped from the
421 ** stack if the top N elements are not distinct.
422 */
423 static void codeDistinct(
424   Vdbe *v,           /* Generate code into this VM */
425   int iTab,          /* A sorting index used to test for distinctness */
426   int addrRepeat,    /* Jump to here if not distinct */
427   int N              /* The top N elements of the stack must be distinct */
428 ){
429   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
430   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
431   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
432   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
433   VdbeComment((v, "# skip indistinct records"));
434   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
435 }
436 
437 
438 /*
439 ** This routine generates the code for the inside of the inner loop
440 ** of a SELECT.
441 **
442 ** If srcTab and nColumn are both zero, then the pEList expressions
443 ** are evaluated in order to get the data for this row.  If nColumn>0
444 ** then data is pulled from srcTab and pEList is used only to get the
445 ** datatypes for each column.
446 */
447 static int selectInnerLoop(
448   Parse *pParse,          /* The parser context */
449   Select *p,              /* The complete select statement being coded */
450   ExprList *pEList,       /* List of values being extracted */
451   int srcTab,             /* Pull data from this table */
452   int nColumn,            /* Number of columns in the source table */
453   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
454   int distinct,           /* If >=0, make sure results are distinct */
455   int eDest,              /* How to dispose of the results */
456   int iParm,              /* An argument to the disposal method */
457   int iContinue,          /* Jump here to continue with next row */
458   int iBreak,             /* Jump here to break out of the inner loop */
459   char *aff               /* affinity string if eDest is SRT_Union */
460 ){
461   Vdbe *v = pParse->pVdbe;
462   int i;
463   int hasDistinct;        /* True if the DISTINCT keyword is present */
464 
465   if( v==0 ) return 0;
466   assert( pEList!=0 );
467 
468   /* If there was a LIMIT clause on the SELECT statement, then do the check
469   ** to see if this row should be output.
470   */
471   hasDistinct = distinct>=0 && pEList->nExpr>0;
472   if( pOrderBy==0 && !hasDistinct ){
473     codeOffset(v, p, iContinue, 0);
474   }
475 
476   /* Pull the requested columns.
477   */
478   if( nColumn>0 ){
479     for(i=0; i<nColumn; i++){
480       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
481     }
482   }else{
483     nColumn = pEList->nExpr;
484     sqlite3ExprCodeExprList(pParse, pEList);
485   }
486 
487   /* If the DISTINCT keyword was present on the SELECT statement
488   ** and this row has been seen before, then do not make this row
489   ** part of the result.
490   */
491   if( hasDistinct ){
492     assert( pEList!=0 );
493     assert( pEList->nExpr==nColumn );
494     codeDistinct(v, distinct, iContinue, nColumn);
495     if( pOrderBy==0 ){
496       codeOffset(v, p, iContinue, nColumn);
497     }
498   }
499 
500   switch( eDest ){
501     /* In this mode, write each query result to the key of the temporary
502     ** table iParm.
503     */
504 #ifndef SQLITE_OMIT_COMPOUND_SELECT
505     case SRT_Union: {
506       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
507       if( aff ){
508         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
509       }
510       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
511       break;
512     }
513 
514     /* Construct a record from the query result, but instead of
515     ** saving that record, use it as a key to delete elements from
516     ** the temporary table iParm.
517     */
518     case SRT_Except: {
519       int addr;
520       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
521       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
522       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
523       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
524       break;
525     }
526 #endif
527 
528     /* Store the result as data using a unique key.
529     */
530     case SRT_Table:
531     case SRT_EphemTab: {
532       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
533       if( pOrderBy ){
534         pushOntoSorter(pParse, pOrderBy, p);
535       }else{
536         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
537         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
538         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
539       }
540       break;
541     }
542 
543 #ifndef SQLITE_OMIT_SUBQUERY
544     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
545     ** then there should be a single item on the stack.  Write this
546     ** item into the set table with bogus data.
547     */
548     case SRT_Set: {
549       int addr1 = sqlite3VdbeCurrentAddr(v);
550       int addr2;
551 
552       assert( nColumn==1 );
553       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
554       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
555       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
556       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
557       if( pOrderBy ){
558         /* At first glance you would think we could optimize out the
559         ** ORDER BY in this case since the order of entries in the set
560         ** does not matter.  But there might be a LIMIT clause, in which
561         ** case the order does matter */
562         pushOntoSorter(pParse, pOrderBy, p);
563       }else{
564         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
565         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
566       }
567       sqlite3VdbeJumpHere(v, addr2);
568       break;
569     }
570 
571     /* If any row exist in the result set, record that fact and abort.
572     */
573     case SRT_Exists: {
574       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
575       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
576       /* The LIMIT clause will terminate the loop for us */
577       break;
578     }
579 
580     /* If this is a scalar select that is part of an expression, then
581     ** store the results in the appropriate memory cell and break out
582     ** of the scan loop.
583     */
584     case SRT_Mem: {
585       assert( nColumn==1 );
586       if( pOrderBy ){
587         pushOntoSorter(pParse, pOrderBy, p);
588       }else{
589         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
590         /* The LIMIT clause will jump out of the loop for us */
591       }
592       break;
593     }
594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
595 
596     /* Send the data to the callback function or to a subroutine.  In the
597     ** case of a subroutine, the subroutine itself is responsible for
598     ** popping the data from the stack.
599     */
600     case SRT_Subroutine:
601     case SRT_Callback: {
602       if( pOrderBy ){
603         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
604         pushOntoSorter(pParse, pOrderBy, p);
605       }else if( eDest==SRT_Subroutine ){
606         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
607       }else{
608         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
609       }
610       break;
611     }
612 
613 #if !defined(SQLITE_OMIT_TRIGGER)
614     /* Discard the results.  This is used for SELECT statements inside
615     ** the body of a TRIGGER.  The purpose of such selects is to call
616     ** user-defined functions that have side effects.  We do not care
617     ** about the actual results of the select.
618     */
619     default: {
620       assert( eDest==SRT_Discard );
621       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
622       break;
623     }
624 #endif
625   }
626 
627   /* Jump to the end of the loop if the LIMIT is reached.
628   */
629   if( p->iLimit>=0 && pOrderBy==0 ){
630     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
631     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
632   }
633   return 0;
634 }
635 
636 /*
637 ** Given an expression list, generate a KeyInfo structure that records
638 ** the collating sequence for each expression in that expression list.
639 **
640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
641 ** KeyInfo structure is appropriate for initializing a virtual index to
642 ** implement that clause.  If the ExprList is the result set of a SELECT
643 ** then the KeyInfo structure is appropriate for initializing a virtual
644 ** index to implement a DISTINCT test.
645 **
646 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
647 ** function is responsible for seeing that this structure is eventually
648 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
650 */
651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
652   sqlite3 *db = pParse->db;
653   int nExpr;
654   KeyInfo *pInfo;
655   struct ExprList_item *pItem;
656   int i;
657 
658   nExpr = pList->nExpr;
659   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
660   if( pInfo ){
661     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
662     pInfo->nField = nExpr;
663     pInfo->enc = ENC(db);
664     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
665       CollSeq *pColl;
666       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
667       if( !pColl ){
668         pColl = db->pDfltColl;
669       }
670       pInfo->aColl[i] = pColl;
671       pInfo->aSortOrder[i] = pItem->sortOrder;
672     }
673   }
674   return pInfo;
675 }
676 
677 
678 /*
679 ** If the inner loop was generated using a non-null pOrderBy argument,
680 ** then the results were placed in a sorter.  After the loop is terminated
681 ** we need to run the sorter and output the results.  The following
682 ** routine generates the code needed to do that.
683 */
684 static void generateSortTail(
685   Parse *pParse,   /* Parsing context */
686   Select *p,       /* The SELECT statement */
687   Vdbe *v,         /* Generate code into this VDBE */
688   int nColumn,     /* Number of columns of data */
689   int eDest,       /* Write the sorted results here */
690   int iParm        /* Optional parameter associated with eDest */
691 ){
692   int brk = sqlite3VdbeMakeLabel(v);
693   int cont = sqlite3VdbeMakeLabel(v);
694   int addr;
695   int iTab;
696   int pseudoTab = 0;
697   ExprList *pOrderBy = p->pOrderBy;
698 
699   iTab = pOrderBy->iECursor;
700   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
701     pseudoTab = pParse->nTab++;
702     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
703     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
704   }
705   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
706   codeOffset(v, p, cont, 0);
707   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
708     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
709   }
710   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
711   switch( eDest ){
712     case SRT_Table:
713     case SRT_EphemTab: {
714       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
715       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
716       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
717       break;
718     }
719 #ifndef SQLITE_OMIT_SUBQUERY
720     case SRT_Set: {
721       assert( nColumn==1 );
722       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
723       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
724       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
725       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
726       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
727       break;
728     }
729     case SRT_Mem: {
730       assert( nColumn==1 );
731       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
732       /* The LIMIT clause will terminate the loop for us */
733       break;
734     }
735 #endif
736     case SRT_Callback:
737     case SRT_Subroutine: {
738       int i;
739       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
740       for(i=0; i<nColumn; i++){
741         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
742       }
743       if( eDest==SRT_Callback ){
744         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
745       }else{
746         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
747       }
748       break;
749     }
750     default: {
751       /* Do nothing */
752       break;
753     }
754   }
755 
756   /* Jump to the end of the loop when the LIMIT is reached
757   */
758   if( p->iLimit>=0 ){
759     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
760     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
761   }
762 
763   /* The bottom of the loop
764   */
765   sqlite3VdbeResolveLabel(v, cont);
766   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
767   sqlite3VdbeResolveLabel(v, brk);
768   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
769     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
770   }
771 
772 }
773 
774 /*
775 ** Return a pointer to a string containing the 'declaration type' of the
776 ** expression pExpr. The string may be treated as static by the caller.
777 **
778 ** The declaration type is the exact datatype definition extracted from the
779 ** original CREATE TABLE statement if the expression is a column. The
780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
781 ** is considered a column can be complex in the presence of subqueries. The
782 ** result-set expression in all of the following SELECT statements is
783 ** considered a column by this function.
784 **
785 **   SELECT col FROM tbl;
786 **   SELECT (SELECT col FROM tbl;
787 **   SELECT (SELECT col FROM tbl);
788 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
789 **
790 ** The declaration type for any expression other than a column is NULL.
791 */
792 static const char *columnType(
793   NameContext *pNC,
794   Expr *pExpr,
795   const char **pzOriginDb,
796   const char **pzOriginTab,
797   const char **pzOriginCol
798 ){
799   char const *zType = 0;
800   char const *zOriginDb = 0;
801   char const *zOriginTab = 0;
802   char const *zOriginCol = 0;
803   int j;
804   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
805 
806   /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
807   ** and LIMIT clauses.  But pExpr originates in the result set of a
808   ** SELECT.  So pExpr can never contain an AS operator.
809   */
810   assert( pExpr->op!=TK_AS );
811 
812   switch( pExpr->op ){
813     case TK_AGG_COLUMN:
814     case TK_COLUMN: {
815       /* The expression is a column. Locate the table the column is being
816       ** extracted from in NameContext.pSrcList. This table may be real
817       ** database table or a subquery.
818       */
819       Table *pTab = 0;            /* Table structure column is extracted from */
820       Select *pS = 0;             /* Select the column is extracted from */
821       int iCol = pExpr->iColumn;  /* Index of column in pTab */
822       while( pNC && !pTab ){
823         SrcList *pTabList = pNC->pSrcList;
824         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
825         if( j<pTabList->nSrc ){
826           pTab = pTabList->a[j].pTab;
827           pS = pTabList->a[j].pSelect;
828         }else{
829           pNC = pNC->pNext;
830         }
831       }
832 
833       if( pTab==0 ){
834         /* FIX ME:
835         ** This can occurs if you have something like "SELECT new.x;" inside
836         ** a trigger.  In other words, if you reference the special "new"
837         ** table in the result set of a select.  We do not have a good way
838         ** to find the actual table type, so call it "TEXT".  This is really
839         ** something of a bug, but I do not know how to fix it.
840         **
841         ** This code does not produce the correct answer - it just prevents
842         ** a segfault.  See ticket #1229.
843         */
844         zType = "TEXT";
845         break;
846       }
847 
848       assert( pTab );
849       if( pS ){
850         /* The "table" is actually a sub-select or a view in the FROM clause
851         ** of the SELECT statement. Return the declaration type and origin
852         ** data for the result-set column of the sub-select.
853         */
854         if( iCol>=0 && iCol<pS->pEList->nExpr ){
855           /* If iCol is less than zero, then the expression requests the
856           ** rowid of the sub-select or view. This expression is legal (see
857           ** test case misc2.2.2) - it always evaluates to NULL.
858           */
859           NameContext sNC;
860           Expr *p = pS->pEList->a[iCol].pExpr;
861           sNC.pSrcList = pS->pSrc;
862           sNC.pNext = 0;
863           sNC.pParse = pNC->pParse;
864           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
865         }
866       }else if( pTab->pSchema ){
867         /* A real table */
868         assert( !pS );
869         if( iCol<0 ) iCol = pTab->iPKey;
870         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
871         if( iCol<0 ){
872           zType = "INTEGER";
873           zOriginCol = "rowid";
874         }else{
875           zType = pTab->aCol[iCol].zType;
876           zOriginCol = pTab->aCol[iCol].zName;
877         }
878         zOriginTab = pTab->zName;
879         if( pNC->pParse ){
880           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
881           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
882         }
883       }
884       break;
885     }
886 #ifndef SQLITE_OMIT_SUBQUERY
887     case TK_SELECT: {
888       /* The expression is a sub-select. Return the declaration type and
889       ** origin info for the single column in the result set of the SELECT
890       ** statement.
891       */
892       NameContext sNC;
893       Select *pS = pExpr->pSelect;
894       Expr *p = pS->pEList->a[0].pExpr;
895       sNC.pSrcList = pS->pSrc;
896       sNC.pNext = pNC;
897       sNC.pParse = pNC->pParse;
898       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
899       break;
900     }
901 #endif
902   }
903 
904   if( pzOriginDb ){
905     assert( pzOriginTab && pzOriginCol );
906     *pzOriginDb = zOriginDb;
907     *pzOriginTab = zOriginTab;
908     *pzOriginCol = zOriginCol;
909   }
910   return zType;
911 }
912 
913 /*
914 ** Generate code that will tell the VDBE the declaration types of columns
915 ** in the result set.
916 */
917 static void generateColumnTypes(
918   Parse *pParse,      /* Parser context */
919   SrcList *pTabList,  /* List of tables */
920   ExprList *pEList    /* Expressions defining the result set */
921 ){
922   Vdbe *v = pParse->pVdbe;
923   int i;
924   NameContext sNC;
925   sNC.pSrcList = pTabList;
926   sNC.pParse = pParse;
927   for(i=0; i<pEList->nExpr; i++){
928     Expr *p = pEList->a[i].pExpr;
929     const char *zOrigDb = 0;
930     const char *zOrigTab = 0;
931     const char *zOrigCol = 0;
932     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
933 
934     /* The vdbe must make it's own copy of the column-type and other
935     ** column specific strings, in case the schema is reset before this
936     ** virtual machine is deleted.
937     */
938     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
939     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
940     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
941     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
942   }
943 }
944 
945 /*
946 ** Generate code that will tell the VDBE the names of columns
947 ** in the result set.  This information is used to provide the
948 ** azCol[] values in the callback.
949 */
950 static void generateColumnNames(
951   Parse *pParse,      /* Parser context */
952   SrcList *pTabList,  /* List of tables */
953   ExprList *pEList    /* Expressions defining the result set */
954 ){
955   Vdbe *v = pParse->pVdbe;
956   int i, j;
957   sqlite3 *db = pParse->db;
958   int fullNames, shortNames;
959 
960 #ifndef SQLITE_OMIT_EXPLAIN
961   /* If this is an EXPLAIN, skip this step */
962   if( pParse->explain ){
963     return;
964   }
965 #endif
966 
967   assert( v!=0 );
968   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
969   pParse->colNamesSet = 1;
970   fullNames = (db->flags & SQLITE_FullColNames)!=0;
971   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
972   sqlite3VdbeSetNumCols(v, pEList->nExpr);
973   for(i=0; i<pEList->nExpr; i++){
974     Expr *p;
975     p = pEList->a[i].pExpr;
976     if( p==0 ) continue;
977     if( pEList->a[i].zName ){
978       char *zName = pEList->a[i].zName;
979       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
980       continue;
981     }
982     if( p->op==TK_COLUMN && pTabList ){
983       Table *pTab;
984       char *zCol;
985       int iCol = p->iColumn;
986       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
987       assert( j<pTabList->nSrc );
988       pTab = pTabList->a[j].pTab;
989       if( iCol<0 ) iCol = pTab->iPKey;
990       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
991       if( iCol<0 ){
992         zCol = "rowid";
993       }else{
994         zCol = pTab->aCol[iCol].zName;
995       }
996       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
997         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
998       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
999         char *zName = 0;
1000         char *zTab;
1001 
1002         zTab = pTabList->a[j].zAlias;
1003         if( fullNames || zTab==0 ) zTab = pTab->zName;
1004         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1005         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1006       }else{
1007         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1008       }
1009     }else if( p->span.z && p->span.z[0] ){
1010       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1011       /* sqlite3VdbeCompressSpace(v, addr); */
1012     }else{
1013       char zName[30];
1014       assert( p->op!=TK_COLUMN || pTabList==0 );
1015       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1016       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1017     }
1018   }
1019   generateColumnTypes(pParse, pTabList, pEList);
1020 }
1021 
1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1023 /*
1024 ** Name of the connection operator, used for error messages.
1025 */
1026 static const char *selectOpName(int id){
1027   char *z;
1028   switch( id ){
1029     case TK_ALL:       z = "UNION ALL";   break;
1030     case TK_INTERSECT: z = "INTERSECT";   break;
1031     case TK_EXCEPT:    z = "EXCEPT";      break;
1032     default:           z = "UNION";       break;
1033   }
1034   return z;
1035 }
1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1037 
1038 /*
1039 ** Forward declaration
1040 */
1041 static int prepSelectStmt(Parse*, Select*);
1042 
1043 /*
1044 ** Given a SELECT statement, generate a Table structure that describes
1045 ** the result set of that SELECT.
1046 */
1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1048   Table *pTab;
1049   int i, j;
1050   ExprList *pEList;
1051   Column *aCol, *pCol;
1052 
1053   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1054   if( prepSelectStmt(pParse, pSelect) ){
1055     return 0;
1056   }
1057   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1058     return 0;
1059   }
1060   pTab = sqliteMalloc( sizeof(Table) );
1061   if( pTab==0 ){
1062     return 0;
1063   }
1064   pTab->nRef = 1;
1065   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1066   pEList = pSelect->pEList;
1067   pTab->nCol = pEList->nExpr;
1068   assert( pTab->nCol>0 );
1069   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1070   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1071     Expr *p, *pR;
1072     char *zType;
1073     char *zName;
1074     int nName;
1075     CollSeq *pColl;
1076     int cnt;
1077     NameContext sNC;
1078 
1079     /* Get an appropriate name for the column
1080     */
1081     p = pEList->a[i].pExpr;
1082     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1083     if( (zName = pEList->a[i].zName)!=0 ){
1084       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1085       zName = sqliteStrDup(zName);
1086     }else if( p->op==TK_DOT
1087               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1088       /* For columns of the from A.B use B as the name */
1089       zName = sqlite3MPrintf("%T", &pR->token);
1090     }else if( p->span.z && p->span.z[0] ){
1091       /* Use the original text of the column expression as its name */
1092       zName = sqlite3MPrintf("%T", &p->span);
1093     }else{
1094       /* If all else fails, make up a name */
1095       zName = sqlite3MPrintf("column%d", i+1);
1096     }
1097     sqlite3Dequote(zName);
1098     if( sqlite3MallocFailed() ){
1099       sqliteFree(zName);
1100       sqlite3DeleteTable(pTab);
1101       return 0;
1102     }
1103 
1104     /* Make sure the column name is unique.  If the name is not unique,
1105     ** append a integer to the name so that it becomes unique.
1106     */
1107     nName = strlen(zName);
1108     for(j=cnt=0; j<i; j++){
1109       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1110         zName[nName] = 0;
1111         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1112         j = -1;
1113         if( zName==0 ) break;
1114       }
1115     }
1116     pCol->zName = zName;
1117 
1118     /* Get the typename, type affinity, and collating sequence for the
1119     ** column.
1120     */
1121     memset(&sNC, 0, sizeof(sNC));
1122     sNC.pSrcList = pSelect->pSrc;
1123     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1124     pCol->zType = zType;
1125     pCol->affinity = sqlite3ExprAffinity(p);
1126     pColl = sqlite3ExprCollSeq(pParse, p);
1127     if( pColl ){
1128       pCol->zColl = sqliteStrDup(pColl->zName);
1129     }
1130   }
1131   pTab->iPKey = -1;
1132   return pTab;
1133 }
1134 
1135 /*
1136 ** Prepare a SELECT statement for processing by doing the following
1137 ** things:
1138 **
1139 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1140 **         element of the FROM clause.
1141 **
1142 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1143 **         defines FROM clause.  When views appear in the FROM clause,
1144 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1145 **         that implements the view.  A copy is made of the view's SELECT
1146 **         statement so that we can freely modify or delete that statement
1147 **         without worrying about messing up the presistent representation
1148 **         of the view.
1149 **
1150 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1151 **         on joins and the ON and USING clause of joins.
1152 **
1153 **    (4)  Scan the list of columns in the result set (pEList) looking
1154 **         for instances of the "*" operator or the TABLE.* operator.
1155 **         If found, expand each "*" to be every column in every table
1156 **         and TABLE.* to be every column in TABLE.
1157 **
1158 ** Return 0 on success.  If there are problems, leave an error message
1159 ** in pParse and return non-zero.
1160 */
1161 static int prepSelectStmt(Parse *pParse, Select *p){
1162   int i, j, k, rc;
1163   SrcList *pTabList;
1164   ExprList *pEList;
1165   struct SrcList_item *pFrom;
1166 
1167   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1168     return 1;
1169   }
1170   pTabList = p->pSrc;
1171   pEList = p->pEList;
1172 
1173   /* Make sure cursor numbers have been assigned to all entries in
1174   ** the FROM clause of the SELECT statement.
1175   */
1176   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1177 
1178   /* Look up every table named in the FROM clause of the select.  If
1179   ** an entry of the FROM clause is a subquery instead of a table or view,
1180   ** then create a transient table structure to describe the subquery.
1181   */
1182   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1183     Table *pTab;
1184     if( pFrom->pTab!=0 ){
1185       /* This statement has already been prepared.  There is no need
1186       ** to go further. */
1187       assert( i==0 );
1188       return 0;
1189     }
1190     if( pFrom->zName==0 ){
1191 #ifndef SQLITE_OMIT_SUBQUERY
1192       /* A sub-query in the FROM clause of a SELECT */
1193       assert( pFrom->pSelect!=0 );
1194       if( pFrom->zAlias==0 ){
1195         pFrom->zAlias =
1196           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1197       }
1198       assert( pFrom->pTab==0 );
1199       pFrom->pTab = pTab =
1200         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1201       if( pTab==0 ){
1202         return 1;
1203       }
1204       /* The isEphem flag indicates that the Table structure has been
1205       ** dynamically allocated and may be freed at any time.  In other words,
1206       ** pTab is not pointing to a persistent table structure that defines
1207       ** part of the schema. */
1208       pTab->isEphem = 1;
1209 #endif
1210     }else{
1211       /* An ordinary table or view name in the FROM clause */
1212       assert( pFrom->pTab==0 );
1213       pFrom->pTab = pTab =
1214         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1215       if( pTab==0 ){
1216         return 1;
1217       }
1218       pTab->nRef++;
1219 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1220       if( pTab->pSelect || IsVirtual(pTab) ){
1221         /* We reach here if the named table is a really a view */
1222         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1223           return 1;
1224         }
1225         /* If pFrom->pSelect!=0 it means we are dealing with a
1226         ** view within a view.  The SELECT structure has already been
1227         ** copied by the outer view so we can skip the copy step here
1228         ** in the inner view.
1229         */
1230         if( pFrom->pSelect==0 ){
1231           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1232         }
1233       }
1234 #endif
1235     }
1236   }
1237 
1238   /* Process NATURAL keywords, and ON and USING clauses of joins.
1239   */
1240   if( sqliteProcessJoin(pParse, p) ) return 1;
1241 
1242   /* For every "*" that occurs in the column list, insert the names of
1243   ** all columns in all tables.  And for every TABLE.* insert the names
1244   ** of all columns in TABLE.  The parser inserted a special expression
1245   ** with the TK_ALL operator for each "*" that it found in the column list.
1246   ** The following code just has to locate the TK_ALL expressions and expand
1247   ** each one to the list of all columns in all tables.
1248   **
1249   ** The first loop just checks to see if there are any "*" operators
1250   ** that need expanding.
1251   */
1252   for(k=0; k<pEList->nExpr; k++){
1253     Expr *pE = pEList->a[k].pExpr;
1254     if( pE->op==TK_ALL ) break;
1255     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1256          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1257   }
1258   rc = 0;
1259   if( k<pEList->nExpr ){
1260     /*
1261     ** If we get here it means the result set contains one or more "*"
1262     ** operators that need to be expanded.  Loop through each expression
1263     ** in the result set and expand them one by one.
1264     */
1265     struct ExprList_item *a = pEList->a;
1266     ExprList *pNew = 0;
1267     int flags = pParse->db->flags;
1268     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1269                       (flags & SQLITE_ShortColNames)==0;
1270 
1271     for(k=0; k<pEList->nExpr; k++){
1272       Expr *pE = a[k].pExpr;
1273       if( pE->op!=TK_ALL &&
1274            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1275         /* This particular expression does not need to be expanded.
1276         */
1277         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1278         if( pNew ){
1279           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1280         }else{
1281           rc = 1;
1282         }
1283         a[k].pExpr = 0;
1284         a[k].zName = 0;
1285       }else{
1286         /* This expression is a "*" or a "TABLE.*" and needs to be
1287         ** expanded. */
1288         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1289         char *zTName;            /* text of name of TABLE */
1290         if( pE->op==TK_DOT && pE->pLeft ){
1291           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1292         }else{
1293           zTName = 0;
1294         }
1295         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1296           Table *pTab = pFrom->pTab;
1297           char *zTabName = pFrom->zAlias;
1298           if( zTabName==0 || zTabName[0]==0 ){
1299             zTabName = pTab->zName;
1300           }
1301           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1302                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1303             continue;
1304           }
1305           tableSeen = 1;
1306           for(j=0; j<pTab->nCol; j++){
1307             Expr *pExpr, *pRight;
1308             char *zName = pTab->aCol[j].zName;
1309 
1310             if( i>0 ){
1311               struct SrcList_item *pLeft = &pTabList->a[i-1];
1312               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1313                         columnIndex(pLeft->pTab, zName)>=0 ){
1314                 /* In a NATURAL join, omit the join columns from the
1315                 ** table on the right */
1316                 continue;
1317               }
1318               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1319                 /* In a join with a USING clause, omit columns in the
1320                 ** using clause from the table on the right. */
1321                 continue;
1322               }
1323             }
1324             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1325             if( pRight==0 ) break;
1326             setToken(&pRight->token, zName);
1327             if( zTabName && (longNames || pTabList->nSrc>1) ){
1328               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1329               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1330               if( pExpr==0 ) break;
1331               setToken(&pLeft->token, zTabName);
1332               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1333               pExpr->span.dyn = 1;
1334               pExpr->token.z = 0;
1335               pExpr->token.n = 0;
1336               pExpr->token.dyn = 0;
1337             }else{
1338               pExpr = pRight;
1339               pExpr->span = pExpr->token;
1340             }
1341             if( longNames ){
1342               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1343             }else{
1344               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1345             }
1346           }
1347         }
1348         if( !tableSeen ){
1349           if( zTName ){
1350             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1351           }else{
1352             sqlite3ErrorMsg(pParse, "no tables specified");
1353           }
1354           rc = 1;
1355         }
1356         sqliteFree(zTName);
1357       }
1358     }
1359     sqlite3ExprListDelete(pEList);
1360     p->pEList = pNew;
1361   }
1362   return rc;
1363 }
1364 
1365 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1366 /*
1367 ** This routine associates entries in an ORDER BY expression list with
1368 ** columns in a result.  For each ORDER BY expression, the opcode of
1369 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1370 ** the top-level node is filled in with column number and the iTable
1371 ** value of the top-level node is filled with iTable parameter.
1372 **
1373 ** If there are prior SELECT clauses, they are processed first.  A match
1374 ** in an earlier SELECT takes precedence over a later SELECT.
1375 **
1376 ** Any entry that does not match is flagged as an error.  The number
1377 ** of errors is returned.
1378 */
1379 static int matchOrderbyToColumn(
1380   Parse *pParse,          /* A place to leave error messages */
1381   Select *pSelect,        /* Match to result columns of this SELECT */
1382   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1383   int iTable,             /* Insert this value in iTable */
1384   int mustComplete        /* If TRUE all ORDER BYs must match */
1385 ){
1386   int nErr = 0;
1387   int i, j;
1388   ExprList *pEList;
1389 
1390   if( pSelect==0 || pOrderBy==0 ) return 1;
1391   if( mustComplete ){
1392     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1393   }
1394   if( prepSelectStmt(pParse, pSelect) ){
1395     return 1;
1396   }
1397   if( pSelect->pPrior ){
1398     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1399       return 1;
1400     }
1401   }
1402   pEList = pSelect->pEList;
1403   for(i=0; i<pOrderBy->nExpr; i++){
1404     struct ExprList_item *pItem;
1405     Expr *pE = pOrderBy->a[i].pExpr;
1406     int iCol = -1;
1407     char *zLabel;
1408 
1409     if( pOrderBy->a[i].done ) continue;
1410     if( sqlite3ExprIsInteger(pE, &iCol) ){
1411       if( iCol<=0 || iCol>pEList->nExpr ){
1412         sqlite3ErrorMsg(pParse,
1413           "ORDER BY position %d should be between 1 and %d",
1414           iCol, pEList->nExpr);
1415         nErr++;
1416         break;
1417       }
1418       if( !mustComplete ) continue;
1419       iCol--;
1420     }
1421     if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
1422       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1423         char *zName;
1424         int isMatch;
1425         if( pItem->zName ){
1426           zName = sqlite3StrDup(pItem->zName);
1427         }else{
1428           zName = sqlite3NameFromToken(&pItem->pExpr->token);
1429         }
1430         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1431         sqliteFree(zName);
1432         if( isMatch ){
1433           iCol = j;
1434           break;
1435         }
1436       }
1437       sqliteFree(zLabel);
1438     }
1439     if( iCol>=0 ){
1440       pE->op = TK_COLUMN;
1441       pE->iColumn = iCol;
1442       pE->iTable = iTable;
1443       pE->iAgg = -1;
1444       pOrderBy->a[i].done = 1;
1445     }else if( mustComplete ){
1446       sqlite3ErrorMsg(pParse,
1447         "ORDER BY term number %d does not match any result column", i+1);
1448       nErr++;
1449       break;
1450     }
1451   }
1452   return nErr;
1453 }
1454 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1455 
1456 /*
1457 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1458 ** If an error occurs, return NULL and leave a message in pParse.
1459 */
1460 Vdbe *sqlite3GetVdbe(Parse *pParse){
1461   Vdbe *v = pParse->pVdbe;
1462   if( v==0 ){
1463     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1464   }
1465   return v;
1466 }
1467 
1468 
1469 /*
1470 ** Compute the iLimit and iOffset fields of the SELECT based on the
1471 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1472 ** that appear in the original SQL statement after the LIMIT and OFFSET
1473 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1474 ** are the integer memory register numbers for counters used to compute
1475 ** the limit and offset.  If there is no limit and/or offset, then
1476 ** iLimit and iOffset are negative.
1477 **
1478 ** This routine changes the values of iLimit and iOffset only if
1479 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1480 ** iOffset should have been preset to appropriate default values
1481 ** (usually but not always -1) prior to calling this routine.
1482 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1483 ** redefined.  The UNION ALL operator uses this property to force
1484 ** the reuse of the same limit and offset registers across multiple
1485 ** SELECT statements.
1486 */
1487 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1488   Vdbe *v = 0;
1489   int iLimit = 0;
1490   int iOffset;
1491   int addr1, addr2;
1492 
1493   /*
1494   ** "LIMIT -1" always shows all rows.  There is some
1495   ** contraversy about what the correct behavior should be.
1496   ** The current implementation interprets "LIMIT 0" to mean
1497   ** no rows.
1498   */
1499   if( p->pLimit ){
1500     p->iLimit = iLimit = pParse->nMem;
1501     pParse->nMem += 2;
1502     v = sqlite3GetVdbe(pParse);
1503     if( v==0 ) return;
1504     sqlite3ExprCode(pParse, p->pLimit);
1505     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1506     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0);
1507     VdbeComment((v, "# LIMIT counter"));
1508     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1509   }
1510   if( p->pOffset ){
1511     p->iOffset = iOffset = pParse->nMem++;
1512     v = sqlite3GetVdbe(pParse);
1513     if( v==0 ) return;
1514     sqlite3ExprCode(pParse, p->pOffset);
1515     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1516     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1517     VdbeComment((v, "# OFFSET counter"));
1518     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1519     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1520     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1521     sqlite3VdbeJumpHere(v, addr1);
1522     if( p->pLimit ){
1523       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1524     }
1525   }
1526   if( p->pLimit ){
1527     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1528     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1529     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1530     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1531     sqlite3VdbeJumpHere(v, addr1);
1532     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1533     VdbeComment((v, "# LIMIT+OFFSET"));
1534     sqlite3VdbeJumpHere(v, addr2);
1535   }
1536 }
1537 
1538 /*
1539 ** Allocate a virtual index to use for sorting.
1540 */
1541 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1542   if( pOrderBy ){
1543     int addr;
1544     assert( pOrderBy->iECursor==0 );
1545     pOrderBy->iECursor = pParse->nTab++;
1546     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1547                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1548     assert( p->addrOpenEphm[2] == -1 );
1549     p->addrOpenEphm[2] = addr;
1550   }
1551 }
1552 
1553 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1554 /*
1555 ** Return the appropriate collating sequence for the iCol-th column of
1556 ** the result set for the compound-select statement "p".  Return NULL if
1557 ** the column has no default collating sequence.
1558 **
1559 ** The collating sequence for the compound select is taken from the
1560 ** left-most term of the select that has a collating sequence.
1561 */
1562 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1563   CollSeq *pRet;
1564   if( p->pPrior ){
1565     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1566   }else{
1567     pRet = 0;
1568   }
1569   if( pRet==0 ){
1570     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1571   }
1572   return pRet;
1573 }
1574 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1575 
1576 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1577 /*
1578 ** This routine is called to process a query that is really the union
1579 ** or intersection of two or more separate queries.
1580 **
1581 ** "p" points to the right-most of the two queries.  the query on the
1582 ** left is p->pPrior.  The left query could also be a compound query
1583 ** in which case this routine will be called recursively.
1584 **
1585 ** The results of the total query are to be written into a destination
1586 ** of type eDest with parameter iParm.
1587 **
1588 ** Example 1:  Consider a three-way compound SQL statement.
1589 **
1590 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1591 **
1592 ** This statement is parsed up as follows:
1593 **
1594 **     SELECT c FROM t3
1595 **      |
1596 **      `----->  SELECT b FROM t2
1597 **                |
1598 **                `------>  SELECT a FROM t1
1599 **
1600 ** The arrows in the diagram above represent the Select.pPrior pointer.
1601 ** So if this routine is called with p equal to the t3 query, then
1602 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1603 **
1604 ** Notice that because of the way SQLite parses compound SELECTs, the
1605 ** individual selects always group from left to right.
1606 */
1607 static int multiSelect(
1608   Parse *pParse,        /* Parsing context */
1609   Select *p,            /* The right-most of SELECTs to be coded */
1610   int eDest,            /* \___  Store query results as specified */
1611   int iParm,            /* /     by these two parameters.         */
1612   char *aff             /* If eDest is SRT_Union, the affinity string */
1613 ){
1614   int rc = SQLITE_OK;   /* Success code from a subroutine */
1615   Select *pPrior;       /* Another SELECT immediately to our left */
1616   Vdbe *v;              /* Generate code to this VDBE */
1617   int nCol;             /* Number of columns in the result set */
1618   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1619   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1620   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1621 
1622   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1623   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1624   */
1625   if( p==0 || p->pPrior==0 ){
1626     rc = 1;
1627     goto multi_select_end;
1628   }
1629   pPrior = p->pPrior;
1630   assert( pPrior->pRightmost!=pPrior );
1631   assert( pPrior->pRightmost==p->pRightmost );
1632   if( pPrior->pOrderBy ){
1633     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1634       selectOpName(p->op));
1635     rc = 1;
1636     goto multi_select_end;
1637   }
1638   if( pPrior->pLimit ){
1639     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1640       selectOpName(p->op));
1641     rc = 1;
1642     goto multi_select_end;
1643   }
1644 
1645   /* Make sure we have a valid query engine.  If not, create a new one.
1646   */
1647   v = sqlite3GetVdbe(pParse);
1648   if( v==0 ){
1649     rc = 1;
1650     goto multi_select_end;
1651   }
1652 
1653   /* Create the destination temporary table if necessary
1654   */
1655   if( eDest==SRT_EphemTab ){
1656     assert( p->pEList );
1657     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1658     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1659     eDest = SRT_Table;
1660   }
1661 
1662   /* Generate code for the left and right SELECT statements.
1663   */
1664   pOrderBy = p->pOrderBy;
1665   switch( p->op ){
1666     case TK_ALL: {
1667       if( pOrderBy==0 ){
1668         int addr = 0;
1669         assert( !pPrior->pLimit );
1670         pPrior->pLimit = p->pLimit;
1671         pPrior->pOffset = p->pOffset;
1672         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1673         p->pLimit = 0;
1674         p->pOffset = 0;
1675         if( rc ){
1676           goto multi_select_end;
1677         }
1678         p->pPrior = 0;
1679         p->iLimit = pPrior->iLimit;
1680         p->iOffset = pPrior->iOffset;
1681         if( p->iLimit>=0 ){
1682           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1683           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1684         }
1685         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1686         p->pPrior = pPrior;
1687         if( rc ){
1688           goto multi_select_end;
1689         }
1690         if( addr ){
1691           sqlite3VdbeJumpHere(v, addr);
1692         }
1693         break;
1694       }
1695       /* For UNION ALL ... ORDER BY fall through to the next case */
1696     }
1697     case TK_EXCEPT:
1698     case TK_UNION: {
1699       int unionTab;    /* Cursor number of the temporary table holding result */
1700       int op = 0;      /* One of the SRT_ operations to apply to self */
1701       int priorOp;     /* The SRT_ operation to apply to prior selects */
1702       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1703       int addr;
1704 
1705       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1706       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1707         /* We can reuse a temporary table generated by a SELECT to our
1708         ** right.
1709         */
1710         unionTab = iParm;
1711       }else{
1712         /* We will need to create our own temporary table to hold the
1713         ** intermediate results.
1714         */
1715         unionTab = pParse->nTab++;
1716         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1717           rc = 1;
1718           goto multi_select_end;
1719         }
1720         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1721         if( priorOp==SRT_Table ){
1722           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1723           aSetP2[nSetP2++] = addr;
1724         }else{
1725           assert( p->addrOpenEphm[0] == -1 );
1726           p->addrOpenEphm[0] = addr;
1727           p->pRightmost->usesEphm = 1;
1728         }
1729         createSortingIndex(pParse, p, pOrderBy);
1730         assert( p->pEList );
1731       }
1732 
1733       /* Code the SELECT statements to our left
1734       */
1735       assert( !pPrior->pOrderBy );
1736       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1737       if( rc ){
1738         goto multi_select_end;
1739       }
1740 
1741       /* Code the current SELECT statement
1742       */
1743       switch( p->op ){
1744          case TK_EXCEPT:  op = SRT_Except;   break;
1745          case TK_UNION:   op = SRT_Union;    break;
1746          case TK_ALL:     op = SRT_Table;    break;
1747       }
1748       p->pPrior = 0;
1749       p->pOrderBy = 0;
1750       p->disallowOrderBy = pOrderBy!=0;
1751       pLimit = p->pLimit;
1752       p->pLimit = 0;
1753       pOffset = p->pOffset;
1754       p->pOffset = 0;
1755       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1756       p->pPrior = pPrior;
1757       p->pOrderBy = pOrderBy;
1758       sqlite3ExprDelete(p->pLimit);
1759       p->pLimit = pLimit;
1760       p->pOffset = pOffset;
1761       p->iLimit = -1;
1762       p->iOffset = -1;
1763       if( rc ){
1764         goto multi_select_end;
1765       }
1766 
1767 
1768       /* Convert the data in the temporary table into whatever form
1769       ** it is that we currently need.
1770       */
1771       if( eDest!=priorOp || unionTab!=iParm ){
1772         int iCont, iBreak, iStart;
1773         assert( p->pEList );
1774         if( eDest==SRT_Callback ){
1775           Select *pFirst = p;
1776           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1777           generateColumnNames(pParse, 0, pFirst->pEList);
1778         }
1779         iBreak = sqlite3VdbeMakeLabel(v);
1780         iCont = sqlite3VdbeMakeLabel(v);
1781         computeLimitRegisters(pParse, p, iBreak);
1782         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1783         iStart = sqlite3VdbeCurrentAddr(v);
1784         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1785                              pOrderBy, -1, eDest, iParm,
1786                              iCont, iBreak, 0);
1787         if( rc ){
1788           rc = 1;
1789           goto multi_select_end;
1790         }
1791         sqlite3VdbeResolveLabel(v, iCont);
1792         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1793         sqlite3VdbeResolveLabel(v, iBreak);
1794         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1795       }
1796       break;
1797     }
1798     case TK_INTERSECT: {
1799       int tab1, tab2;
1800       int iCont, iBreak, iStart;
1801       Expr *pLimit, *pOffset;
1802       int addr;
1803 
1804       /* INTERSECT is different from the others since it requires
1805       ** two temporary tables.  Hence it has its own case.  Begin
1806       ** by allocating the tables we will need.
1807       */
1808       tab1 = pParse->nTab++;
1809       tab2 = pParse->nTab++;
1810       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1811         rc = 1;
1812         goto multi_select_end;
1813       }
1814       createSortingIndex(pParse, p, pOrderBy);
1815 
1816       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1817       assert( p->addrOpenEphm[0] == -1 );
1818       p->addrOpenEphm[0] = addr;
1819       p->pRightmost->usesEphm = 1;
1820       assert( p->pEList );
1821 
1822       /* Code the SELECTs to our left into temporary table "tab1".
1823       */
1824       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1825       if( rc ){
1826         goto multi_select_end;
1827       }
1828 
1829       /* Code the current SELECT into temporary table "tab2"
1830       */
1831       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1832       assert( p->addrOpenEphm[1] == -1 );
1833       p->addrOpenEphm[1] = addr;
1834       p->pPrior = 0;
1835       pLimit = p->pLimit;
1836       p->pLimit = 0;
1837       pOffset = p->pOffset;
1838       p->pOffset = 0;
1839       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1840       p->pPrior = pPrior;
1841       sqlite3ExprDelete(p->pLimit);
1842       p->pLimit = pLimit;
1843       p->pOffset = pOffset;
1844       if( rc ){
1845         goto multi_select_end;
1846       }
1847 
1848       /* Generate code to take the intersection of the two temporary
1849       ** tables.
1850       */
1851       assert( p->pEList );
1852       if( eDest==SRT_Callback ){
1853         Select *pFirst = p;
1854         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1855         generateColumnNames(pParse, 0, pFirst->pEList);
1856       }
1857       iBreak = sqlite3VdbeMakeLabel(v);
1858       iCont = sqlite3VdbeMakeLabel(v);
1859       computeLimitRegisters(pParse, p, iBreak);
1860       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1861       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1862       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1863       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1864                              pOrderBy, -1, eDest, iParm,
1865                              iCont, iBreak, 0);
1866       if( rc ){
1867         rc = 1;
1868         goto multi_select_end;
1869       }
1870       sqlite3VdbeResolveLabel(v, iCont);
1871       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1872       sqlite3VdbeResolveLabel(v, iBreak);
1873       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1874       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1875       break;
1876     }
1877   }
1878 
1879   /* Make sure all SELECTs in the statement have the same number of elements
1880   ** in their result sets.
1881   */
1882   assert( p->pEList && pPrior->pEList );
1883   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1884     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1885       " do not have the same number of result columns", selectOpName(p->op));
1886     rc = 1;
1887     goto multi_select_end;
1888   }
1889 
1890   /* Set the number of columns in temporary tables
1891   */
1892   nCol = p->pEList->nExpr;
1893   while( nSetP2 ){
1894     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1895   }
1896 
1897   /* Compute collating sequences used by either the ORDER BY clause or
1898   ** by any temporary tables needed to implement the compound select.
1899   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1900   ** ORDER BY processing if there is an ORDER BY clause.
1901   **
1902   ** This section is run by the right-most SELECT statement only.
1903   ** SELECT statements to the left always skip this part.  The right-most
1904   ** SELECT might also skip this part if it has no ORDER BY clause and
1905   ** no temp tables are required.
1906   */
1907   if( pOrderBy || p->usesEphm ){
1908     int i;                        /* Loop counter */
1909     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1910     Select *pLoop;                /* For looping through SELECT statements */
1911     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1912     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1913     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1914 
1915     assert( p->pRightmost==p );
1916     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1917     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1918     if( !pKeyInfo ){
1919       rc = SQLITE_NOMEM;
1920       goto multi_select_end;
1921     }
1922 
1923     pKeyInfo->enc = ENC(pParse->db);
1924     pKeyInfo->nField = nCol;
1925 
1926     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1927       *apColl = multiSelectCollSeq(pParse, p, i);
1928       if( 0==*apColl ){
1929         *apColl = pParse->db->pDfltColl;
1930       }
1931     }
1932 
1933     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1934       for(i=0; i<2; i++){
1935         int addr = pLoop->addrOpenEphm[i];
1936         if( addr<0 ){
1937           /* If [0] is unused then [1] is also unused.  So we can
1938           ** always safely abort as soon as the first unused slot is found */
1939           assert( pLoop->addrOpenEphm[1]<0 );
1940           break;
1941         }
1942         sqlite3VdbeChangeP2(v, addr, nCol);
1943         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1944         pLoop->addrOpenEphm[i] = -1;
1945       }
1946     }
1947 
1948     if( pOrderBy ){
1949       struct ExprList_item *pOTerm = pOrderBy->a;
1950       int nOrderByExpr = pOrderBy->nExpr;
1951       int addr;
1952       u8 *pSortOrder;
1953 
1954       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
1955       ** the compound select statements.  Except we have to change out the
1956       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
1957       ** reused when constructing the pKeyInfo for the ORDER BY, so make
1958       ** a copy.  Sufficient space to hold both the nCol entries for
1959       ** the compound select and the nOrderbyExpr entries for the ORDER BY
1960       ** was allocated above.  But we need to move the compound select
1961       ** entries out of the way before constructing the ORDER BY entries.
1962       ** Move the compound select entries into aCopy[] where they can be
1963       ** accessed and reused when constructing the ORDER BY entries.
1964       ** Because nCol might be greater than or less than nOrderByExpr
1965       ** we have to use memmove() when doing the copy.
1966       */
1967       aCopy = &pKeyInfo->aColl[nOrderByExpr];
1968       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
1969       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
1970 
1971       apColl = pKeyInfo->aColl;
1972       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
1973         Expr *pExpr = pOTerm->pExpr;
1974         if( (pExpr->flags & EP_ExpCollate) ){
1975           assert( pExpr->pColl!=0 );
1976           *apColl = pExpr->pColl;
1977         }else{
1978           *apColl = aCopy[pExpr->iColumn];
1979         }
1980         *pSortOrder = pOTerm->sortOrder;
1981       }
1982       assert( p->pRightmost==p );
1983       assert( p->addrOpenEphm[2]>=0 );
1984       addr = p->addrOpenEphm[2];
1985       sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2);
1986       pKeyInfo->nField = nOrderByExpr;
1987       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
1988       pKeyInfo = 0;
1989       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
1990     }
1991 
1992     sqliteFree(pKeyInfo);
1993   }
1994 
1995 multi_select_end:
1996   return rc;
1997 }
1998 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1999 
2000 #ifndef SQLITE_OMIT_VIEW
2001 /*
2002 ** Scan through the expression pExpr.  Replace every reference to
2003 ** a column in table number iTable with a copy of the iColumn-th
2004 ** entry in pEList.  (But leave references to the ROWID column
2005 ** unchanged.)
2006 **
2007 ** This routine is part of the flattening procedure.  A subquery
2008 ** whose result set is defined by pEList appears as entry in the
2009 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2010 ** FORM clause entry is iTable.  This routine make the necessary
2011 ** changes to pExpr so that it refers directly to the source table
2012 ** of the subquery rather the result set of the subquery.
2013 */
2014 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
2015 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
2016 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
2017   if( pExpr==0 ) return;
2018   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2019     if( pExpr->iColumn<0 ){
2020       pExpr->op = TK_NULL;
2021     }else{
2022       Expr *pNew;
2023       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2024       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2025       pNew = pEList->a[pExpr->iColumn].pExpr;
2026       assert( pNew!=0 );
2027       pExpr->op = pNew->op;
2028       assert( pExpr->pLeft==0 );
2029       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2030       assert( pExpr->pRight==0 );
2031       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2032       assert( pExpr->pList==0 );
2033       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2034       pExpr->iTable = pNew->iTable;
2035       pExpr->pTab = pNew->pTab;
2036       pExpr->iColumn = pNew->iColumn;
2037       pExpr->iAgg = pNew->iAgg;
2038       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2039       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2040       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2041       pExpr->flags = pNew->flags;
2042     }
2043   }else{
2044     substExpr(pExpr->pLeft, iTable, pEList);
2045     substExpr(pExpr->pRight, iTable, pEList);
2046     substSelect(pExpr->pSelect, iTable, pEList);
2047     substExprList(pExpr->pList, iTable, pEList);
2048   }
2049 }
2050 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2051   int i;
2052   if( pList==0 ) return;
2053   for(i=0; i<pList->nExpr; i++){
2054     substExpr(pList->a[i].pExpr, iTable, pEList);
2055   }
2056 }
2057 static void substSelect(Select *p, int iTable, ExprList *pEList){
2058   if( !p ) return;
2059   substExprList(p->pEList, iTable, pEList);
2060   substExprList(p->pGroupBy, iTable, pEList);
2061   substExprList(p->pOrderBy, iTable, pEList);
2062   substExpr(p->pHaving, iTable, pEList);
2063   substExpr(p->pWhere, iTable, pEList);
2064 }
2065 #endif /* !defined(SQLITE_OMIT_VIEW) */
2066 
2067 #ifndef SQLITE_OMIT_VIEW
2068 /*
2069 ** This routine attempts to flatten subqueries in order to speed
2070 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2071 ** occurs.
2072 **
2073 ** To understand the concept of flattening, consider the following
2074 ** query:
2075 **
2076 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2077 **
2078 ** The default way of implementing this query is to execute the
2079 ** subquery first and store the results in a temporary table, then
2080 ** run the outer query on that temporary table.  This requires two
2081 ** passes over the data.  Furthermore, because the temporary table
2082 ** has no indices, the WHERE clause on the outer query cannot be
2083 ** optimized.
2084 **
2085 ** This routine attempts to rewrite queries such as the above into
2086 ** a single flat select, like this:
2087 **
2088 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2089 **
2090 ** The code generated for this simpification gives the same result
2091 ** but only has to scan the data once.  And because indices might
2092 ** exist on the table t1, a complete scan of the data might be
2093 ** avoided.
2094 **
2095 ** Flattening is only attempted if all of the following are true:
2096 **
2097 **   (1)  The subquery and the outer query do not both use aggregates.
2098 **
2099 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2100 **
2101 **   (3)  The subquery is not the right operand of a left outer join, or
2102 **        the subquery is not itself a join.  (Ticket #306)
2103 **
2104 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2105 **
2106 **   (5)  The subquery is not DISTINCT or the outer query does not use
2107 **        aggregates.
2108 **
2109 **   (6)  The subquery does not use aggregates or the outer query is not
2110 **        DISTINCT.
2111 **
2112 **   (7)  The subquery has a FROM clause.
2113 **
2114 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2115 **
2116 **   (9)  The subquery does not use LIMIT or the outer query does not use
2117 **        aggregates.
2118 **
2119 **  (10)  The subquery does not use aggregates or the outer query does not
2120 **        use LIMIT.
2121 **
2122 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2123 **
2124 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2125 **        subquery has no WHERE clause.  (added by ticket #350)
2126 **
2127 **  (13)  The subquery and outer query do not both use LIMIT
2128 **
2129 **  (14)  The subquery does not use OFFSET
2130 **
2131 ** In this routine, the "p" parameter is a pointer to the outer query.
2132 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2133 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2134 **
2135 ** If flattening is not attempted, this routine is a no-op and returns 0.
2136 ** If flattening is attempted this routine returns 1.
2137 **
2138 ** All of the expression analysis must occur on both the outer query and
2139 ** the subquery before this routine runs.
2140 */
2141 static int flattenSubquery(
2142   Select *p,           /* The parent or outer SELECT statement */
2143   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2144   int isAgg,           /* True if outer SELECT uses aggregate functions */
2145   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2146 ){
2147   Select *pSub;       /* The inner query or "subquery" */
2148   SrcList *pSrc;      /* The FROM clause of the outer query */
2149   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2150   ExprList *pList;    /* The result set of the outer query */
2151   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2152   int i;              /* Loop counter */
2153   Expr *pWhere;                    /* The WHERE clause */
2154   struct SrcList_item *pSubitem;   /* The subquery */
2155 
2156   /* Check to see if flattening is permitted.  Return 0 if not.
2157   */
2158   if( p==0 ) return 0;
2159   pSrc = p->pSrc;
2160   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2161   pSubitem = &pSrc->a[iFrom];
2162   pSub = pSubitem->pSelect;
2163   assert( pSub!=0 );
2164   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2165   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2166   pSubSrc = pSub->pSrc;
2167   assert( pSubSrc );
2168   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2169   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2170   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2171   ** became arbitrary expressions, we were forced to add restrictions (13)
2172   ** and (14). */
2173   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2174   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2175   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2176   if( (pSub->isDistinct || pSub->pLimit)
2177          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2178      return 0;
2179   }
2180   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2181   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2182      return 0;                                           /* Restriction (11) */
2183   }
2184 
2185   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2186   ** not used as the right operand of an outer join.  Examples of why this
2187   ** is not allowed:
2188   **
2189   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2190   **
2191   ** If we flatten the above, we would get
2192   **
2193   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2194   **
2195   ** which is not at all the same thing.
2196   */
2197   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2198     return 0;
2199   }
2200 
2201   /* Restriction 12:  If the subquery is the right operand of a left outer
2202   ** join, make sure the subquery has no WHERE clause.
2203   ** An examples of why this is not allowed:
2204   **
2205   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2206   **
2207   ** If we flatten the above, we would get
2208   **
2209   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2210   **
2211   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2212   ** effectively converts the OUTER JOIN into an INNER JOIN.
2213   */
2214   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2215     return 0;
2216   }
2217 
2218   /* If we reach this point, it means flattening is permitted for the
2219   ** iFrom-th entry of the FROM clause in the outer query.
2220   */
2221 
2222   /* Move all of the FROM elements of the subquery into the
2223   ** the FROM clause of the outer query.  Before doing this, remember
2224   ** the cursor number for the original outer query FROM element in
2225   ** iParent.  The iParent cursor will never be used.  Subsequent code
2226   ** will scan expressions looking for iParent references and replace
2227   ** those references with expressions that resolve to the subquery FROM
2228   ** elements we are now copying in.
2229   */
2230   iParent = pSubitem->iCursor;
2231   {
2232     int nSubSrc = pSubSrc->nSrc;
2233     int jointype = pSubitem->jointype;
2234 
2235     sqlite3DeleteTable(pSubitem->pTab);
2236     sqliteFree(pSubitem->zDatabase);
2237     sqliteFree(pSubitem->zName);
2238     sqliteFree(pSubitem->zAlias);
2239     if( nSubSrc>1 ){
2240       int extra = nSubSrc - 1;
2241       for(i=1; i<nSubSrc; i++){
2242         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2243       }
2244       p->pSrc = pSrc;
2245       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2246         pSrc->a[i] = pSrc->a[i-extra];
2247       }
2248     }
2249     for(i=0; i<nSubSrc; i++){
2250       pSrc->a[i+iFrom] = pSubSrc->a[i];
2251       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2252     }
2253     pSrc->a[iFrom].jointype = jointype;
2254   }
2255 
2256   /* Now begin substituting subquery result set expressions for
2257   ** references to the iParent in the outer query.
2258   **
2259   ** Example:
2260   **
2261   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2262   **   \                     \_____________ subquery __________/          /
2263   **    \_____________________ outer query ______________________________/
2264   **
2265   ** We look at every expression in the outer query and every place we see
2266   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2267   */
2268   pList = p->pEList;
2269   for(i=0; i<pList->nExpr; i++){
2270     Expr *pExpr;
2271     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2272       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2273     }
2274   }
2275   substExprList(p->pEList, iParent, pSub->pEList);
2276   if( isAgg ){
2277     substExprList(p->pGroupBy, iParent, pSub->pEList);
2278     substExpr(p->pHaving, iParent, pSub->pEList);
2279   }
2280   if( pSub->pOrderBy ){
2281     assert( p->pOrderBy==0 );
2282     p->pOrderBy = pSub->pOrderBy;
2283     pSub->pOrderBy = 0;
2284   }else if( p->pOrderBy ){
2285     substExprList(p->pOrderBy, iParent, pSub->pEList);
2286   }
2287   if( pSub->pWhere ){
2288     pWhere = sqlite3ExprDup(pSub->pWhere);
2289   }else{
2290     pWhere = 0;
2291   }
2292   if( subqueryIsAgg ){
2293     assert( p->pHaving==0 );
2294     p->pHaving = p->pWhere;
2295     p->pWhere = pWhere;
2296     substExpr(p->pHaving, iParent, pSub->pEList);
2297     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2298     assert( p->pGroupBy==0 );
2299     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2300   }else{
2301     substExpr(p->pWhere, iParent, pSub->pEList);
2302     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2303   }
2304 
2305   /* The flattened query is distinct if either the inner or the
2306   ** outer query is distinct.
2307   */
2308   p->isDistinct = p->isDistinct || pSub->isDistinct;
2309 
2310   /*
2311   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2312   **
2313   ** One is tempted to try to add a and b to combine the limits.  But this
2314   ** does not work if either limit is negative.
2315   */
2316   if( pSub->pLimit ){
2317     p->pLimit = pSub->pLimit;
2318     pSub->pLimit = 0;
2319   }
2320 
2321   /* Finially, delete what is left of the subquery and return
2322   ** success.
2323   */
2324   sqlite3SelectDelete(pSub);
2325   return 1;
2326 }
2327 #endif /* SQLITE_OMIT_VIEW */
2328 
2329 /*
2330 ** Analyze the SELECT statement passed in as an argument to see if it
2331 ** is a simple min() or max() query.  If it is and this query can be
2332 ** satisfied using a single seek to the beginning or end of an index,
2333 ** then generate the code for this SELECT and return 1.  If this is not a
2334 ** simple min() or max() query, then return 0;
2335 **
2336 ** A simply min() or max() query looks like this:
2337 **
2338 **    SELECT min(a) FROM table;
2339 **    SELECT max(a) FROM table;
2340 **
2341 ** The query may have only a single table in its FROM argument.  There
2342 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2343 ** be the min() or max() of a single column of the table.  The column
2344 ** in the min() or max() function must be indexed.
2345 **
2346 ** The parameters to this routine are the same as for sqlite3Select().
2347 ** See the header comment on that routine for additional information.
2348 */
2349 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2350   Expr *pExpr;
2351   int iCol;
2352   Table *pTab;
2353   Index *pIdx;
2354   int base;
2355   Vdbe *v;
2356   int seekOp;
2357   ExprList *pEList, *pList, eList;
2358   struct ExprList_item eListItem;
2359   SrcList *pSrc;
2360   int brk;
2361   int iDb;
2362 
2363   /* Check to see if this query is a simple min() or max() query.  Return
2364   ** zero if it is  not.
2365   */
2366   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2367   pSrc = p->pSrc;
2368   if( pSrc->nSrc!=1 ) return 0;
2369   pEList = p->pEList;
2370   if( pEList->nExpr!=1 ) return 0;
2371   pExpr = pEList->a[0].pExpr;
2372   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2373   pList = pExpr->pList;
2374   if( pList==0 || pList->nExpr!=1 ) return 0;
2375   if( pExpr->token.n!=3 ) return 0;
2376   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2377     seekOp = OP_Rewind;
2378   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2379     seekOp = OP_Last;
2380   }else{
2381     return 0;
2382   }
2383   pExpr = pList->a[0].pExpr;
2384   if( pExpr->op!=TK_COLUMN ) return 0;
2385   iCol = pExpr->iColumn;
2386   pTab = pSrc->a[0].pTab;
2387 
2388   /* This optimization cannot be used with virtual tables. */
2389   if( IsVirtual(pTab) ) return 0;
2390 
2391   /* If we get to here, it means the query is of the correct form.
2392   ** Check to make sure we have an index and make pIdx point to the
2393   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2394   ** key column, no index is necessary so set pIdx to NULL.  If no
2395   ** usable index is found, return 0.
2396   */
2397   if( iCol<0 ){
2398     pIdx = 0;
2399   }else{
2400     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2401     if( pColl==0 ) return 0;
2402     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2403       assert( pIdx->nColumn>=1 );
2404       if( pIdx->aiColumn[0]==iCol &&
2405           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2406         break;
2407       }
2408     }
2409     if( pIdx==0 ) return 0;
2410   }
2411 
2412   /* Identify column types if we will be using the callback.  This
2413   ** step is skipped if the output is going to a table or a memory cell.
2414   ** The column names have already been generated in the calling function.
2415   */
2416   v = sqlite3GetVdbe(pParse);
2417   if( v==0 ) return 0;
2418 
2419   /* If the output is destined for a temporary table, open that table.
2420   */
2421   if( eDest==SRT_EphemTab ){
2422     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2423   }
2424 
2425   /* Generating code to find the min or the max.  Basically all we have
2426   ** to do is find the first or the last entry in the chosen index.  If
2427   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2428   ** or last entry in the main table.
2429   */
2430   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2431   assert( iDb>=0 || pTab->isEphem );
2432   sqlite3CodeVerifySchema(pParse, iDb);
2433   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2434   base = pSrc->a[0].iCursor;
2435   brk = sqlite3VdbeMakeLabel(v);
2436   computeLimitRegisters(pParse, p, brk);
2437   if( pSrc->a[0].pSelect==0 ){
2438     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2439   }
2440   if( pIdx==0 ){
2441     sqlite3VdbeAddOp(v, seekOp, base, 0);
2442   }else{
2443     /* Even though the cursor used to open the index here is closed
2444     ** as soon as a single value has been read from it, allocate it
2445     ** using (pParse->nTab++) to prevent the cursor id from being
2446     ** reused. This is important for statements of the form
2447     ** "INSERT INTO x SELECT max() FROM x".
2448     */
2449     int iIdx;
2450     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2451     iIdx = pParse->nTab++;
2452     assert( pIdx->pSchema==pTab->pSchema );
2453     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2454     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2455         (char*)pKey, P3_KEYINFO_HANDOFF);
2456     if( seekOp==OP_Rewind ){
2457       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2458       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2459       seekOp = OP_MoveGt;
2460     }
2461     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2462     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2463     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2464     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2465   }
2466   eList.nExpr = 1;
2467   memset(&eListItem, 0, sizeof(eListItem));
2468   eList.a = &eListItem;
2469   eList.a[0].pExpr = pExpr;
2470   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2471   sqlite3VdbeResolveLabel(v, brk);
2472   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2473 
2474   return 1;
2475 }
2476 
2477 /*
2478 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2479 ** the number of errors seen.
2480 **
2481 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2482 ** is an integer constant, then that expression is replaced by the
2483 ** corresponding entry in the result set.
2484 */
2485 static int processOrderGroupBy(
2486   NameContext *pNC,     /* Name context of the SELECT statement. */
2487   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2488   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2489 ){
2490   int i;
2491   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2492   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2493   assert( pEList );
2494 
2495   if( pOrderBy==0 ) return 0;
2496   for(i=0; i<pOrderBy->nExpr; i++){
2497     int iCol;
2498     Expr *pE = pOrderBy->a[i].pExpr;
2499     if( sqlite3ExprIsInteger(pE, &iCol) ){
2500       if( iCol>0 && iCol<=pEList->nExpr ){
2501         CollSeq *pColl = pE->pColl;
2502         int flags = pE->flags & EP_ExpCollate;
2503         sqlite3ExprDelete(pE);
2504         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2505         if( pColl && flags ){
2506           pE->pColl = pColl;
2507           pE->flags |= flags;
2508         }
2509       }else{
2510         sqlite3ErrorMsg(pParse,
2511            "%s BY column number %d out of range - should be "
2512            "between 1 and %d", zType, iCol, pEList->nExpr);
2513         return 1;
2514       }
2515     }
2516     if( sqlite3ExprResolveNames(pNC, pE) ){
2517       return 1;
2518     }
2519   }
2520   return 0;
2521 }
2522 
2523 /*
2524 ** This routine resolves any names used in the result set of the
2525 ** supplied SELECT statement. If the SELECT statement being resolved
2526 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2527 ** of the parent SELECT.
2528 */
2529 int sqlite3SelectResolve(
2530   Parse *pParse,         /* The parser context */
2531   Select *p,             /* The SELECT statement being coded. */
2532   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2533 ){
2534   ExprList *pEList;          /* Result set. */
2535   int i;                     /* For-loop variable used in multiple places */
2536   NameContext sNC;           /* Local name-context */
2537   ExprList *pGroupBy;        /* The group by clause */
2538 
2539   /* If this routine has run before, return immediately. */
2540   if( p->isResolved ){
2541     assert( !pOuterNC );
2542     return SQLITE_OK;
2543   }
2544   p->isResolved = 1;
2545 
2546   /* If there have already been errors, do nothing. */
2547   if( pParse->nErr>0 ){
2548     return SQLITE_ERROR;
2549   }
2550 
2551   /* Prepare the select statement. This call will allocate all cursors
2552   ** required to handle the tables and subqueries in the FROM clause.
2553   */
2554   if( prepSelectStmt(pParse, p) ){
2555     return SQLITE_ERROR;
2556   }
2557 
2558   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2559   ** are not allowed to refer to any names, so pass an empty NameContext.
2560   */
2561   memset(&sNC, 0, sizeof(sNC));
2562   sNC.pParse = pParse;
2563   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2564       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2565     return SQLITE_ERROR;
2566   }
2567 
2568   /* Set up the local name-context to pass to ExprResolveNames() to
2569   ** resolve the expression-list.
2570   */
2571   sNC.allowAgg = 1;
2572   sNC.pSrcList = p->pSrc;
2573   sNC.pNext = pOuterNC;
2574 
2575   /* Resolve names in the result set. */
2576   pEList = p->pEList;
2577   if( !pEList ) return SQLITE_ERROR;
2578   for(i=0; i<pEList->nExpr; i++){
2579     Expr *pX = pEList->a[i].pExpr;
2580     if( sqlite3ExprResolveNames(&sNC, pX) ){
2581       return SQLITE_ERROR;
2582     }
2583   }
2584 
2585   /* If there are no aggregate functions in the result-set, and no GROUP BY
2586   ** expression, do not allow aggregates in any of the other expressions.
2587   */
2588   assert( !p->isAgg );
2589   pGroupBy = p->pGroupBy;
2590   if( pGroupBy || sNC.hasAgg ){
2591     p->isAgg = 1;
2592   }else{
2593     sNC.allowAgg = 0;
2594   }
2595 
2596   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2597   */
2598   if( p->pHaving && !pGroupBy ){
2599     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2600     return SQLITE_ERROR;
2601   }
2602 
2603   /* Add the expression list to the name-context before parsing the
2604   ** other expressions in the SELECT statement. This is so that
2605   ** expressions in the WHERE clause (etc.) can refer to expressions by
2606   ** aliases in the result set.
2607   **
2608   ** Minor point: If this is the case, then the expression will be
2609   ** re-evaluated for each reference to it.
2610   */
2611   sNC.pEList = p->pEList;
2612   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2613      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2614     return SQLITE_ERROR;
2615   }
2616   if( p->pPrior==0 ){
2617     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2618         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2619       return SQLITE_ERROR;
2620     }
2621   }
2622 
2623   /* Make sure the GROUP BY clause does not contain aggregate functions.
2624   */
2625   if( pGroupBy ){
2626     struct ExprList_item *pItem;
2627 
2628     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2629       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2630         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2631             "the GROUP BY clause");
2632         return SQLITE_ERROR;
2633       }
2634     }
2635   }
2636 
2637   /* If this is one SELECT of a compound, be sure to resolve names
2638   ** in the other SELECTs.
2639   */
2640   if( p->pPrior ){
2641     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2642   }else{
2643     return SQLITE_OK;
2644   }
2645 }
2646 
2647 /*
2648 ** Reset the aggregate accumulator.
2649 **
2650 ** The aggregate accumulator is a set of memory cells that hold
2651 ** intermediate results while calculating an aggregate.  This
2652 ** routine simply stores NULLs in all of those memory cells.
2653 */
2654 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2655   Vdbe *v = pParse->pVdbe;
2656   int i;
2657   struct AggInfo_func *pFunc;
2658   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2659     return;
2660   }
2661   for(i=0; i<pAggInfo->nColumn; i++){
2662     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2663   }
2664   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2665     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2666     if( pFunc->iDistinct>=0 ){
2667       Expr *pE = pFunc->pExpr;
2668       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2669         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2670            "by an expression");
2671         pFunc->iDistinct = -1;
2672       }else{
2673         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2674         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2675                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2676       }
2677     }
2678   }
2679 }
2680 
2681 /*
2682 ** Invoke the OP_AggFinalize opcode for every aggregate function
2683 ** in the AggInfo structure.
2684 */
2685 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2686   Vdbe *v = pParse->pVdbe;
2687   int i;
2688   struct AggInfo_func *pF;
2689   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2690     ExprList *pList = pF->pExpr->pList;
2691     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2692                       (void*)pF->pFunc, P3_FUNCDEF);
2693   }
2694 }
2695 
2696 /*
2697 ** Update the accumulator memory cells for an aggregate based on
2698 ** the current cursor position.
2699 */
2700 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2701   Vdbe *v = pParse->pVdbe;
2702   int i;
2703   struct AggInfo_func *pF;
2704   struct AggInfo_col *pC;
2705 
2706   pAggInfo->directMode = 1;
2707   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2708     int nArg;
2709     int addrNext = 0;
2710     ExprList *pList = pF->pExpr->pList;
2711     if( pList ){
2712       nArg = pList->nExpr;
2713       sqlite3ExprCodeExprList(pParse, pList);
2714     }else{
2715       nArg = 0;
2716     }
2717     if( pF->iDistinct>=0 ){
2718       addrNext = sqlite3VdbeMakeLabel(v);
2719       assert( nArg==1 );
2720       codeDistinct(v, pF->iDistinct, addrNext, 1);
2721     }
2722     if( pF->pFunc->needCollSeq ){
2723       CollSeq *pColl = 0;
2724       struct ExprList_item *pItem;
2725       int j;
2726       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2727       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2728         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2729       }
2730       if( !pColl ){
2731         pColl = pParse->db->pDfltColl;
2732       }
2733       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2734     }
2735     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2736     if( addrNext ){
2737       sqlite3VdbeResolveLabel(v, addrNext);
2738     }
2739   }
2740   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2741     sqlite3ExprCode(pParse, pC->pExpr);
2742     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2743   }
2744   pAggInfo->directMode = 0;
2745 }
2746 
2747 
2748 /*
2749 ** Generate code for the given SELECT statement.
2750 **
2751 ** The results are distributed in various ways depending on the
2752 ** value of eDest and iParm.
2753 **
2754 **     eDest Value       Result
2755 **     ------------    -------------------------------------------
2756 **     SRT_Callback    Invoke the callback for each row of the result.
2757 **
2758 **     SRT_Mem         Store first result in memory cell iParm
2759 **
2760 **     SRT_Set         Store results as keys of table iParm.
2761 **
2762 **     SRT_Union       Store results as a key in a temporary table iParm
2763 **
2764 **     SRT_Except      Remove results from the temporary table iParm.
2765 **
2766 **     SRT_Table       Store results in temporary table iParm
2767 **
2768 ** The table above is incomplete.  Additional eDist value have be added
2769 ** since this comment was written.  See the selectInnerLoop() function for
2770 ** a complete listing of the allowed values of eDest and their meanings.
2771 **
2772 ** This routine returns the number of errors.  If any errors are
2773 ** encountered, then an appropriate error message is left in
2774 ** pParse->zErrMsg.
2775 **
2776 ** This routine does NOT free the Select structure passed in.  The
2777 ** calling function needs to do that.
2778 **
2779 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2780 ** SELECT is a subquery.  This routine may try to combine this SELECT
2781 ** with its parent to form a single flat query.  In so doing, it might
2782 ** change the parent query from a non-aggregate to an aggregate query.
2783 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2784 ** can be changed.
2785 **
2786 ** Example 1:   The meaning of the pParent parameter.
2787 **
2788 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2789 **    \                      \_______ subquery _______/        /
2790 **     \                                                      /
2791 **      \____________________ outer query ___________________/
2792 **
2793 ** This routine is called for the outer query first.   For that call,
2794 ** pParent will be NULL.  During the processing of the outer query, this
2795 ** routine is called recursively to handle the subquery.  For the recursive
2796 ** call, pParent will point to the outer query.  Because the subquery is
2797 ** the second element in a three-way join, the parentTab parameter will
2798 ** be 1 (the 2nd value of a 0-indexed array.)
2799 */
2800 int sqlite3Select(
2801   Parse *pParse,         /* The parser context */
2802   Select *p,             /* The SELECT statement being coded. */
2803   int eDest,             /* How to dispose of the results */
2804   int iParm,             /* A parameter used by the eDest disposal method */
2805   Select *pParent,       /* Another SELECT for which this is a sub-query */
2806   int parentTab,         /* Index in pParent->pSrc of this query */
2807   int *pParentAgg,       /* True if pParent uses aggregate functions */
2808   char *aff              /* If eDest is SRT_Union, the affinity string */
2809 ){
2810   int i, j;              /* Loop counters */
2811   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2812   Vdbe *v;               /* The virtual machine under construction */
2813   int isAgg;             /* True for select lists like "count(*)" */
2814   ExprList *pEList;      /* List of columns to extract. */
2815   SrcList *pTabList;     /* List of tables to select from */
2816   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2817   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2818   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2819   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2820   int isDistinct;        /* True if the DISTINCT keyword is present */
2821   int distinct;          /* Table to use for the distinct set */
2822   int rc = 1;            /* Value to return from this function */
2823   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2824   AggInfo sAggInfo;      /* Information used by aggregate queries */
2825   int iEnd;              /* Address of the end of the query */
2826 
2827   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2828     return 1;
2829   }
2830   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2831   memset(&sAggInfo, 0, sizeof(sAggInfo));
2832 
2833 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2834   /* If there is are a sequence of queries, do the earlier ones first.
2835   */
2836   if( p->pPrior ){
2837     if( p->pRightmost==0 ){
2838       Select *pLoop;
2839       for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2840         pLoop->pRightmost = p;
2841       }
2842     }
2843     return multiSelect(pParse, p, eDest, iParm, aff);
2844   }
2845 #endif
2846 
2847   pOrderBy = p->pOrderBy;
2848   if( IgnorableOrderby(eDest) ){
2849     p->pOrderBy = 0;
2850   }
2851   if( sqlite3SelectResolve(pParse, p, 0) ){
2852     goto select_end;
2853   }
2854   p->pOrderBy = pOrderBy;
2855 
2856   /* Make local copies of the parameters for this query.
2857   */
2858   pTabList = p->pSrc;
2859   pWhere = p->pWhere;
2860   pGroupBy = p->pGroupBy;
2861   pHaving = p->pHaving;
2862   isAgg = p->isAgg;
2863   isDistinct = p->isDistinct;
2864   pEList = p->pEList;
2865   if( pEList==0 ) goto select_end;
2866 
2867   /*
2868   ** Do not even attempt to generate any code if we have already seen
2869   ** errors before this routine starts.
2870   */
2871   if( pParse->nErr>0 ) goto select_end;
2872 
2873   /* If writing to memory or generating a set
2874   ** only a single column may be output.
2875   */
2876 #ifndef SQLITE_OMIT_SUBQUERY
2877   if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
2878     sqlite3ErrorMsg(pParse, "only a single result allowed for "
2879        "a SELECT that is part of an expression");
2880     goto select_end;
2881   }
2882 #endif
2883 
2884   /* ORDER BY is ignored for some destinations.
2885   */
2886   if( IgnorableOrderby(eDest) ){
2887     pOrderBy = 0;
2888   }
2889 
2890   /* Begin generating code.
2891   */
2892   v = sqlite3GetVdbe(pParse);
2893   if( v==0 ) goto select_end;
2894 
2895   /* Generate code for all sub-queries in the FROM clause
2896   */
2897 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2898   for(i=0; i<pTabList->nSrc; i++){
2899     const char *zSavedAuthContext = 0;
2900     int needRestoreContext;
2901     struct SrcList_item *pItem = &pTabList->a[i];
2902 
2903     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2904     if( pItem->zName!=0 ){
2905       zSavedAuthContext = pParse->zAuthContext;
2906       pParse->zAuthContext = pItem->zName;
2907       needRestoreContext = 1;
2908     }else{
2909       needRestoreContext = 0;
2910     }
2911     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2912                  pItem->iCursor, p, i, &isAgg, 0);
2913     if( needRestoreContext ){
2914       pParse->zAuthContext = zSavedAuthContext;
2915     }
2916     pTabList = p->pSrc;
2917     pWhere = p->pWhere;
2918     if( !IgnorableOrderby(eDest) ){
2919       pOrderBy = p->pOrderBy;
2920     }
2921     pGroupBy = p->pGroupBy;
2922     pHaving = p->pHaving;
2923     isDistinct = p->isDistinct;
2924   }
2925 #endif
2926 
2927   /* Check for the special case of a min() or max() function by itself
2928   ** in the result set.
2929   */
2930   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
2931     rc = 0;
2932     goto select_end;
2933   }
2934 
2935   /* Check to see if this is a subquery that can be "flattened" into its parent.
2936   ** If flattening is a possiblity, do so and return immediately.
2937   */
2938 #ifndef SQLITE_OMIT_VIEW
2939   if( pParent && pParentAgg &&
2940       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
2941     if( isAgg ) *pParentAgg = 1;
2942     goto select_end;
2943   }
2944 #endif
2945 
2946   /* If there is an ORDER BY clause, then this sorting
2947   ** index might end up being unused if the data can be
2948   ** extracted in pre-sorted order.  If that is the case, then the
2949   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
2950   ** we figure out that the sorting index is not needed.  The addrSortIndex
2951   ** variable is used to facilitate that change.
2952   */
2953   if( pOrderBy ){
2954     KeyInfo *pKeyInfo;
2955     if( pParse->nErr ){
2956       goto select_end;
2957     }
2958     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
2959     pOrderBy->iECursor = pParse->nTab++;
2960     p->addrOpenEphm[2] = addrSortIndex =
2961       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2962   }else{
2963     addrSortIndex = -1;
2964   }
2965 
2966   /* If the output is destined for a temporary table, open that table.
2967   */
2968   if( eDest==SRT_EphemTab ){
2969     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
2970   }
2971 
2972   /* Set the limiter.
2973   */
2974   iEnd = sqlite3VdbeMakeLabel(v);
2975   computeLimitRegisters(pParse, p, iEnd);
2976 
2977   /* Open a virtual index to use for the distinct set.
2978   */
2979   if( isDistinct ){
2980     KeyInfo *pKeyInfo;
2981     distinct = pParse->nTab++;
2982     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
2983     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
2984                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2985   }else{
2986     distinct = -1;
2987   }
2988 
2989   /* Aggregate and non-aggregate queries are handled differently */
2990   if( !isAgg && pGroupBy==0 ){
2991     /* This case is for non-aggregate queries
2992     ** Begin the database scan
2993     */
2994     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
2995     if( pWInfo==0 ) goto select_end;
2996 
2997     /* If sorting index that was created by a prior OP_OpenEphemeral
2998     ** instruction ended up not being needed, then change the OP_OpenEphemeral
2999     ** into an OP_Noop.
3000     */
3001     if( addrSortIndex>=0 && pOrderBy==0 ){
3002       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3003       p->addrOpenEphm[2] = -1;
3004     }
3005 
3006     /* Use the standard inner loop
3007     */
3008     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
3009                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3010        goto select_end;
3011     }
3012 
3013     /* End the database scan loop.
3014     */
3015     sqlite3WhereEnd(pWInfo);
3016   }else{
3017     /* This is the processing for aggregate queries */
3018     NameContext sNC;    /* Name context for processing aggregate information */
3019     int iAMem;          /* First Mem address for storing current GROUP BY */
3020     int iBMem;          /* First Mem address for previous GROUP BY */
3021     int iUseFlag;       /* Mem address holding flag indicating that at least
3022                         ** one row of the input to the aggregator has been
3023                         ** processed */
3024     int iAbortFlag;     /* Mem address which causes query abort if positive */
3025     int groupBySort;    /* Rows come from source in GROUP BY order */
3026 
3027 
3028     /* The following variables hold addresses or labels for parts of the
3029     ** virtual machine program we are putting together */
3030     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3031     int addrSetAbort;       /* Set the abort flag and return */
3032     int addrInitializeLoop; /* Start of code that initializes the input loop */
3033     int addrTopOfLoop;      /* Top of the input loop */
3034     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3035     int addrProcessRow;     /* Code to process a single input row */
3036     int addrEnd;            /* End of all processing */
3037     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3038     int addrReset;          /* Subroutine for resetting the accumulator */
3039 
3040     addrEnd = sqlite3VdbeMakeLabel(v);
3041 
3042     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3043     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3044     ** SELECT statement.
3045     */
3046     memset(&sNC, 0, sizeof(sNC));
3047     sNC.pParse = pParse;
3048     sNC.pSrcList = pTabList;
3049     sNC.pAggInfo = &sAggInfo;
3050     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3051     sAggInfo.pGroupBy = pGroupBy;
3052     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3053       goto select_end;
3054     }
3055     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3056       goto select_end;
3057     }
3058     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3059       goto select_end;
3060     }
3061     sAggInfo.nAccumulator = sAggInfo.nColumn;
3062     for(i=0; i<sAggInfo.nFunc; i++){
3063       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3064         goto select_end;
3065       }
3066     }
3067     if( sqlite3MallocFailed() ) goto select_end;
3068 
3069     /* Processing for aggregates with GROUP BY is very different and
3070     ** much more complex tha aggregates without a GROUP BY.
3071     */
3072     if( pGroupBy ){
3073       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3074 
3075       /* Create labels that we will be needing
3076       */
3077 
3078       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3079       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3080       addrProcessRow = sqlite3VdbeMakeLabel(v);
3081 
3082       /* If there is a GROUP BY clause we might need a sorting index to
3083       ** implement it.  Allocate that sorting index now.  If it turns out
3084       ** that we do not need it after all, the OpenEphemeral instruction
3085       ** will be converted into a Noop.
3086       */
3087       sAggInfo.sortingIdx = pParse->nTab++;
3088       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3089       addrSortingIdx =
3090           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3091                          sAggInfo.nSortingColumn,
3092                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3093 
3094       /* Initialize memory locations used by GROUP BY aggregate processing
3095       */
3096       iUseFlag = pParse->nMem++;
3097       iAbortFlag = pParse->nMem++;
3098       iAMem = pParse->nMem;
3099       pParse->nMem += pGroupBy->nExpr;
3100       iBMem = pParse->nMem;
3101       pParse->nMem += pGroupBy->nExpr;
3102       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3103       VdbeComment((v, "# clear abort flag"));
3104       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3105       VdbeComment((v, "# indicate accumulator empty"));
3106       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3107 
3108       /* Generate a subroutine that outputs a single row of the result
3109       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3110       ** is less than or equal to zero, the subroutine is a no-op.  If
3111       ** the processing calls for the query to abort, this subroutine
3112       ** increments the iAbortFlag memory location before returning in
3113       ** order to signal the caller to abort.
3114       */
3115       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3116       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3117       VdbeComment((v, "# set abort flag"));
3118       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3119       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3120       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3121       VdbeComment((v, "# Groupby result generator entry point"));
3122       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3123       finalizeAggFunctions(pParse, &sAggInfo);
3124       if( pHaving ){
3125         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3126       }
3127       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3128                            distinct, eDest, iParm,
3129                            addrOutputRow+1, addrSetAbort, aff);
3130       if( rc ){
3131         goto select_end;
3132       }
3133       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3134       VdbeComment((v, "# end groupby result generator"));
3135 
3136       /* Generate a subroutine that will reset the group-by accumulator
3137       */
3138       addrReset = sqlite3VdbeCurrentAddr(v);
3139       resetAccumulator(pParse, &sAggInfo);
3140       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3141 
3142       /* Begin a loop that will extract all source rows in GROUP BY order.
3143       ** This might involve two separate loops with an OP_Sort in between, or
3144       ** it might be a single loop that uses an index to extract information
3145       ** in the right order to begin with.
3146       */
3147       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3148       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3149       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3150       if( pWInfo==0 ) goto select_end;
3151       if( pGroupBy==0 ){
3152         /* The optimizer is able to deliver rows in group by order so
3153         ** we do not have to sort.  The OP_OpenEphemeral table will be
3154         ** cancelled later because we still need to use the pKeyInfo
3155         */
3156         pGroupBy = p->pGroupBy;
3157         groupBySort = 0;
3158       }else{
3159         /* Rows are coming out in undetermined order.  We have to push
3160         ** each row into a sorting index, terminate the first loop,
3161         ** then loop over the sorting index in order to get the output
3162         ** in sorted order
3163         */
3164         groupBySort = 1;
3165         sqlite3ExprCodeExprList(pParse, pGroupBy);
3166         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3167         j = pGroupBy->nExpr+1;
3168         for(i=0; i<sAggInfo.nColumn; i++){
3169           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3170           if( pCol->iSorterColumn<j ) continue;
3171           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3172           j++;
3173         }
3174         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3175         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3176         sqlite3WhereEnd(pWInfo);
3177         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3178         VdbeComment((v, "# GROUP BY sort"));
3179         sAggInfo.useSortingIdx = 1;
3180       }
3181 
3182       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3183       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3184       ** Then compare the current GROUP BY terms against the GROUP BY terms
3185       ** from the previous row currently stored in a0, a1, a2...
3186       */
3187       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3188       for(j=0; j<pGroupBy->nExpr; j++){
3189         if( groupBySort ){
3190           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3191         }else{
3192           sAggInfo.directMode = 1;
3193           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3194         }
3195         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3196       }
3197       for(j=pGroupBy->nExpr-1; j>=0; j--){
3198         if( j<pGroupBy->nExpr-1 ){
3199           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3200         }
3201         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3202         if( j==0 ){
3203           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3204         }else{
3205           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3206         }
3207         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3208       }
3209 
3210       /* Generate code that runs whenever the GROUP BY changes.
3211       ** Change in the GROUP BY are detected by the previous code
3212       ** block.  If there were no changes, this block is skipped.
3213       **
3214       ** This code copies current group by terms in b0,b1,b2,...
3215       ** over to a0,a1,a2.  It then calls the output subroutine
3216       ** and resets the aggregate accumulator registers in preparation
3217       ** for the next GROUP BY batch.
3218       */
3219       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3220       for(j=0; j<pGroupBy->nExpr; j++){
3221         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3222       }
3223       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3224       VdbeComment((v, "# output one row"));
3225       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3226       VdbeComment((v, "# check abort flag"));
3227       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3228       VdbeComment((v, "# reset accumulator"));
3229 
3230       /* Update the aggregate accumulators based on the content of
3231       ** the current row
3232       */
3233       sqlite3VdbeResolveLabel(v, addrProcessRow);
3234       updateAccumulator(pParse, &sAggInfo);
3235       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3236       VdbeComment((v, "# indicate data in accumulator"));
3237 
3238       /* End of the loop
3239       */
3240       if( groupBySort ){
3241         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3242       }else{
3243         sqlite3WhereEnd(pWInfo);
3244         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3245       }
3246 
3247       /* Output the final row of result
3248       */
3249       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3250       VdbeComment((v, "# output final row"));
3251 
3252     } /* endif pGroupBy */
3253     else {
3254       /* This case runs if the aggregate has no GROUP BY clause.  The
3255       ** processing is much simpler since there is only a single row
3256       ** of output.
3257       */
3258       resetAccumulator(pParse, &sAggInfo);
3259       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3260       if( pWInfo==0 ) goto select_end;
3261       updateAccumulator(pParse, &sAggInfo);
3262       sqlite3WhereEnd(pWInfo);
3263       finalizeAggFunctions(pParse, &sAggInfo);
3264       pOrderBy = 0;
3265       if( pHaving ){
3266         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3267       }
3268       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3269                       eDest, iParm, addrEnd, addrEnd, aff);
3270     }
3271     sqlite3VdbeResolveLabel(v, addrEnd);
3272 
3273   } /* endif aggregate query */
3274 
3275   /* If there is an ORDER BY clause, then we need to sort the results
3276   ** and send them to the callback one by one.
3277   */
3278   if( pOrderBy ){
3279     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3280   }
3281 
3282 #ifndef SQLITE_OMIT_SUBQUERY
3283   /* If this was a subquery, we have now converted the subquery into a
3284   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3285   ** this subquery from being evaluated again and to force the use of
3286   ** the temporary table.
3287   */
3288   if( pParent ){
3289     assert( pParent->pSrc->nSrc>parentTab );
3290     assert( pParent->pSrc->a[parentTab].pSelect==p );
3291     pParent->pSrc->a[parentTab].isPopulated = 1;
3292   }
3293 #endif
3294 
3295   /* Jump here to skip this query
3296   */
3297   sqlite3VdbeResolveLabel(v, iEnd);
3298 
3299   /* The SELECT was successfully coded.   Set the return code to 0
3300   ** to indicate no errors.
3301   */
3302   rc = 0;
3303 
3304   /* Control jumps to here if an error is encountered above, or upon
3305   ** successful coding of the SELECT.
3306   */
3307 select_end:
3308 
3309   /* Identify column names if we will be using them in a callback.  This
3310   ** step is skipped if the output is going to some other destination.
3311   */
3312   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3313     generateColumnNames(pParse, pTabList, pEList);
3314   }
3315 
3316   sqliteFree(sAggInfo.aCol);
3317   sqliteFree(sAggInfo.aFunc);
3318   return rc;
3319 }
3320 
3321 #if defined(SQLITE_DEBUG)
3322 /*
3323 *******************************************************************************
3324 ** The following code is used for testing and debugging only.  The code
3325 ** that follows does not appear in normal builds.
3326 **
3327 ** These routines are used to print out the content of all or part of a
3328 ** parse structures such as Select or Expr.  Such printouts are useful
3329 ** for helping to understand what is happening inside the code generator
3330 ** during the execution of complex SELECT statements.
3331 **
3332 ** These routine are not called anywhere from within the normal
3333 ** code base.  Then are intended to be called from within the debugger
3334 ** or from temporary "printf" statements inserted for debugging.
3335 */
3336 void sqlite3PrintExpr(Expr *p){
3337   if( p->token.z && p->token.n>0 ){
3338     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3339   }else{
3340     sqlite3DebugPrintf("(%d", p->op);
3341   }
3342   if( p->pLeft ){
3343     sqlite3DebugPrintf(" ");
3344     sqlite3PrintExpr(p->pLeft);
3345   }
3346   if( p->pRight ){
3347     sqlite3DebugPrintf(" ");
3348     sqlite3PrintExpr(p->pRight);
3349   }
3350   sqlite3DebugPrintf(")");
3351 }
3352 void sqlite3PrintExprList(ExprList *pList){
3353   int i;
3354   for(i=0; i<pList->nExpr; i++){
3355     sqlite3PrintExpr(pList->a[i].pExpr);
3356     if( i<pList->nExpr-1 ){
3357       sqlite3DebugPrintf(", ");
3358     }
3359   }
3360 }
3361 void sqlite3PrintSelect(Select *p, int indent){
3362   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3363   sqlite3PrintExprList(p->pEList);
3364   sqlite3DebugPrintf("\n");
3365   if( p->pSrc ){
3366     char *zPrefix;
3367     int i;
3368     zPrefix = "FROM";
3369     for(i=0; i<p->pSrc->nSrc; i++){
3370       struct SrcList_item *pItem = &p->pSrc->a[i];
3371       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3372       zPrefix = "";
3373       if( pItem->pSelect ){
3374         sqlite3DebugPrintf("(\n");
3375         sqlite3PrintSelect(pItem->pSelect, indent+10);
3376         sqlite3DebugPrintf("%*s)", indent+8, "");
3377       }else if( pItem->zName ){
3378         sqlite3DebugPrintf("%s", pItem->zName);
3379       }
3380       if( pItem->pTab ){
3381         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3382       }
3383       if( pItem->zAlias ){
3384         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3385       }
3386       if( i<p->pSrc->nSrc-1 ){
3387         sqlite3DebugPrintf(",");
3388       }
3389       sqlite3DebugPrintf("\n");
3390     }
3391   }
3392   if( p->pWhere ){
3393     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3394     sqlite3PrintExpr(p->pWhere);
3395     sqlite3DebugPrintf("\n");
3396   }
3397   if( p->pGroupBy ){
3398     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3399     sqlite3PrintExprList(p->pGroupBy);
3400     sqlite3DebugPrintf("\n");
3401   }
3402   if( p->pHaving ){
3403     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3404     sqlite3PrintExpr(p->pHaving);
3405     sqlite3DebugPrintf("\n");
3406   }
3407   if( p->pOrderBy ){
3408     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3409     sqlite3PrintExprList(p->pOrderBy);
3410     sqlite3DebugPrintf("\n");
3411   }
3412 }
3413 /* End of the structure debug printing code
3414 *****************************************************************************/
3415 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3416