1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.340 2007/05/04 13:15:56 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 assert( pOffset==0 || pLimit!=0 ); 72 pNew->pLimit = pLimit; 73 pNew->pOffset = pOffset; 74 pNew->iLimit = -1; 75 pNew->iOffset = -1; 76 pNew->addrOpenEphm[0] = -1; 77 pNew->addrOpenEphm[1] = -1; 78 pNew->addrOpenEphm[2] = -1; 79 if( pNew==&standin) { 80 clearSelect(pNew); 81 pNew = 0; 82 } 83 return pNew; 84 } 85 86 /* 87 ** Delete the given Select structure and all of its substructures. 88 */ 89 void sqlite3SelectDelete(Select *p){ 90 if( p ){ 91 clearSelect(p); 92 sqliteFree(p); 93 } 94 } 95 96 /* 97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 98 ** type of join. Return an integer constant that expresses that type 99 ** in terms of the following bit values: 100 ** 101 ** JT_INNER 102 ** JT_CROSS 103 ** JT_OUTER 104 ** JT_NATURAL 105 ** JT_LEFT 106 ** JT_RIGHT 107 ** 108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 109 ** 110 ** If an illegal or unsupported join type is seen, then still return 111 ** a join type, but put an error in the pParse structure. 112 */ 113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 114 int jointype = 0; 115 Token *apAll[3]; 116 Token *p; 117 static const struct { 118 const char zKeyword[8]; 119 u8 nChar; 120 u8 code; 121 } keywords[] = { 122 { "natural", 7, JT_NATURAL }, 123 { "left", 4, JT_LEFT|JT_OUTER }, 124 { "right", 5, JT_RIGHT|JT_OUTER }, 125 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 126 { "outer", 5, JT_OUTER }, 127 { "inner", 5, JT_INNER }, 128 { "cross", 5, JT_INNER|JT_CROSS }, 129 }; 130 int i, j; 131 apAll[0] = pA; 132 apAll[1] = pB; 133 apAll[2] = pC; 134 for(i=0; i<3 && apAll[i]; i++){ 135 p = apAll[i]; 136 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 137 if( p->n==keywords[j].nChar 138 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 139 jointype |= keywords[j].code; 140 break; 141 } 142 } 143 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 144 jointype |= JT_ERROR; 145 break; 146 } 147 } 148 if( 149 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 150 (jointype & JT_ERROR)!=0 151 ){ 152 const char *zSp1 = " "; 153 const char *zSp2 = " "; 154 if( pB==0 ){ zSp1++; } 155 if( pC==0 ){ zSp2++; } 156 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 157 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 158 jointype = JT_INNER; 159 }else if( jointype & JT_RIGHT ){ 160 sqlite3ErrorMsg(pParse, 161 "RIGHT and FULL OUTER JOINs are not currently supported"); 162 jointype = JT_INNER; 163 } 164 return jointype; 165 } 166 167 /* 168 ** Return the index of a column in a table. Return -1 if the column 169 ** is not contained in the table. 170 */ 171 static int columnIndex(Table *pTab, const char *zCol){ 172 int i; 173 for(i=0; i<pTab->nCol; i++){ 174 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 175 } 176 return -1; 177 } 178 179 /* 180 ** Set the value of a token to a '\000'-terminated string. 181 */ 182 static void setToken(Token *p, const char *z){ 183 p->z = (u8*)z; 184 p->n = z ? strlen(z) : 0; 185 p->dyn = 0; 186 } 187 188 /* 189 ** Create an expression node for an identifier with the name of zName 190 */ 191 Expr *sqlite3CreateIdExpr(const char *zName){ 192 Token dummy; 193 setToken(&dummy, zName); 194 return sqlite3Expr(TK_ID, 0, 0, &dummy); 195 } 196 197 198 /* 199 ** Add a term to the WHERE expression in *ppExpr that requires the 200 ** zCol column to be equal in the two tables pTab1 and pTab2. 201 */ 202 static void addWhereTerm( 203 const char *zCol, /* Name of the column */ 204 const Table *pTab1, /* First table */ 205 const char *zAlias1, /* Alias for first table. May be NULL */ 206 const Table *pTab2, /* Second table */ 207 const char *zAlias2, /* Alias for second table. May be NULL */ 208 int iRightJoinTable, /* VDBE cursor for the right table */ 209 Expr **ppExpr /* Add the equality term to this expression */ 210 ){ 211 Expr *pE1a, *pE1b, *pE1c; 212 Expr *pE2a, *pE2b, *pE2c; 213 Expr *pE; 214 215 pE1a = sqlite3CreateIdExpr(zCol); 216 pE2a = sqlite3CreateIdExpr(zCol); 217 if( zAlias1==0 ){ 218 zAlias1 = pTab1->zName; 219 } 220 pE1b = sqlite3CreateIdExpr(zAlias1); 221 if( zAlias2==0 ){ 222 zAlias2 = pTab2->zName; 223 } 224 pE2b = sqlite3CreateIdExpr(zAlias2); 225 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 226 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 227 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 228 if( pE ){ 229 ExprSetProperty(pE, EP_FromJoin); 230 pE->iRightJoinTable = iRightJoinTable; 231 } 232 pE = sqlite3ExprAnd(*ppExpr, pE); 233 if( pE ){ 234 *ppExpr = pE; 235 } 236 } 237 238 /* 239 ** Set the EP_FromJoin property on all terms of the given expression. 240 ** And set the Expr.iRightJoinTable to iTable for every term in the 241 ** expression. 242 ** 243 ** The EP_FromJoin property is used on terms of an expression to tell 244 ** the LEFT OUTER JOIN processing logic that this term is part of the 245 ** join restriction specified in the ON or USING clause and not a part 246 ** of the more general WHERE clause. These terms are moved over to the 247 ** WHERE clause during join processing but we need to remember that they 248 ** originated in the ON or USING clause. 249 ** 250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 251 ** expression depends on table iRightJoinTable even if that table is not 252 ** explicitly mentioned in the expression. That information is needed 253 ** for cases like this: 254 ** 255 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 256 ** 257 ** The where clause needs to defer the handling of the t1.x=5 258 ** term until after the t2 loop of the join. In that way, a 259 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 260 ** defer the handling of t1.x=5, it will be processed immediately 261 ** after the t1 loop and rows with t1.x!=5 will never appear in 262 ** the output, which is incorrect. 263 */ 264 static void setJoinExpr(Expr *p, int iTable){ 265 while( p ){ 266 ExprSetProperty(p, EP_FromJoin); 267 p->iRightJoinTable = iTable; 268 setJoinExpr(p->pLeft, iTable); 269 p = p->pRight; 270 } 271 } 272 273 /* 274 ** This routine processes the join information for a SELECT statement. 275 ** ON and USING clauses are converted into extra terms of the WHERE clause. 276 ** NATURAL joins also create extra WHERE clause terms. 277 ** 278 ** The terms of a FROM clause are contained in the Select.pSrc structure. 279 ** The left most table is the first entry in Select.pSrc. The right-most 280 ** table is the last entry. The join operator is held in the entry to 281 ** the left. Thus entry 0 contains the join operator for the join between 282 ** entries 0 and 1. Any ON or USING clauses associated with the join are 283 ** also attached to the left entry. 284 ** 285 ** This routine returns the number of errors encountered. 286 */ 287 static int sqliteProcessJoin(Parse *pParse, Select *p){ 288 SrcList *pSrc; /* All tables in the FROM clause */ 289 int i, j; /* Loop counters */ 290 struct SrcList_item *pLeft; /* Left table being joined */ 291 struct SrcList_item *pRight; /* Right table being joined */ 292 293 pSrc = p->pSrc; 294 pLeft = &pSrc->a[0]; 295 pRight = &pLeft[1]; 296 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 297 Table *pLeftTab = pLeft->pTab; 298 Table *pRightTab = pRight->pTab; 299 300 if( pLeftTab==0 || pRightTab==0 ) continue; 301 302 /* When the NATURAL keyword is present, add WHERE clause terms for 303 ** every column that the two tables have in common. 304 */ 305 if( pRight->jointype & JT_NATURAL ){ 306 if( pRight->pOn || pRight->pUsing ){ 307 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 308 "an ON or USING clause", 0); 309 return 1; 310 } 311 for(j=0; j<pLeftTab->nCol; j++){ 312 char *zName = pLeftTab->aCol[j].zName; 313 if( columnIndex(pRightTab, zName)>=0 ){ 314 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 315 pRightTab, pRight->zAlias, 316 pRight->iCursor, &p->pWhere); 317 318 } 319 } 320 } 321 322 /* Disallow both ON and USING clauses in the same join 323 */ 324 if( pRight->pOn && pRight->pUsing ){ 325 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 326 "clauses in the same join"); 327 return 1; 328 } 329 330 /* Add the ON clause to the end of the WHERE clause, connected by 331 ** an AND operator. 332 */ 333 if( pRight->pOn ){ 334 setJoinExpr(pRight->pOn, pRight->iCursor); 335 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 336 pRight->pOn = 0; 337 } 338 339 /* Create extra terms on the WHERE clause for each column named 340 ** in the USING clause. Example: If the two tables to be joined are 341 ** A and B and the USING clause names X, Y, and Z, then add this 342 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 343 ** Report an error if any column mentioned in the USING clause is 344 ** not contained in both tables to be joined. 345 */ 346 if( pRight->pUsing ){ 347 IdList *pList = pRight->pUsing; 348 for(j=0; j<pList->nId; j++){ 349 char *zName = pList->a[j].zName; 350 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 351 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 352 "not present in both tables", zName); 353 return 1; 354 } 355 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 356 pRightTab, pRight->zAlias, 357 pRight->iCursor, &p->pWhere); 358 } 359 } 360 } 361 return 0; 362 } 363 364 /* 365 ** Insert code into "v" that will push the record on the top of the 366 ** stack into the sorter. 367 */ 368 static void pushOntoSorter( 369 Parse *pParse, /* Parser context */ 370 ExprList *pOrderBy, /* The ORDER BY clause */ 371 Select *pSelect /* The whole SELECT statement */ 372 ){ 373 Vdbe *v = pParse->pVdbe; 374 sqlite3ExprCodeExprList(pParse, pOrderBy); 375 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 376 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 377 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 378 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 379 if( pSelect->iLimit>=0 ){ 380 int addr1, addr2; 381 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 382 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 383 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 384 sqlite3VdbeJumpHere(v, addr1); 385 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 386 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 387 sqlite3VdbeJumpHere(v, addr2); 388 pSelect->iLimit = -1; 389 } 390 } 391 392 /* 393 ** Add code to implement the OFFSET 394 */ 395 static void codeOffset( 396 Vdbe *v, /* Generate code into this VM */ 397 Select *p, /* The SELECT statement being coded */ 398 int iContinue, /* Jump here to skip the current record */ 399 int nPop /* Number of times to pop stack when jumping */ 400 ){ 401 if( p->iOffset>=0 && iContinue!=0 ){ 402 int addr; 403 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 404 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 405 if( nPop>0 ){ 406 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 407 } 408 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 409 VdbeComment((v, "# skip OFFSET records")); 410 sqlite3VdbeJumpHere(v, addr); 411 } 412 } 413 414 /* 415 ** Add code that will check to make sure the top N elements of the 416 ** stack are distinct. iTab is a sorting index that holds previously 417 ** seen combinations of the N values. A new entry is made in iTab 418 ** if the current N values are new. 419 ** 420 ** A jump to addrRepeat is made and the N+1 values are popped from the 421 ** stack if the top N elements are not distinct. 422 */ 423 static void codeDistinct( 424 Vdbe *v, /* Generate code into this VM */ 425 int iTab, /* A sorting index used to test for distinctness */ 426 int addrRepeat, /* Jump to here if not distinct */ 427 int N /* The top N elements of the stack must be distinct */ 428 ){ 429 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 430 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 431 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 432 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 433 VdbeComment((v, "# skip indistinct records")); 434 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 435 } 436 437 438 /* 439 ** This routine generates the code for the inside of the inner loop 440 ** of a SELECT. 441 ** 442 ** If srcTab and nColumn are both zero, then the pEList expressions 443 ** are evaluated in order to get the data for this row. If nColumn>0 444 ** then data is pulled from srcTab and pEList is used only to get the 445 ** datatypes for each column. 446 */ 447 static int selectInnerLoop( 448 Parse *pParse, /* The parser context */ 449 Select *p, /* The complete select statement being coded */ 450 ExprList *pEList, /* List of values being extracted */ 451 int srcTab, /* Pull data from this table */ 452 int nColumn, /* Number of columns in the source table */ 453 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 454 int distinct, /* If >=0, make sure results are distinct */ 455 int eDest, /* How to dispose of the results */ 456 int iParm, /* An argument to the disposal method */ 457 int iContinue, /* Jump here to continue with next row */ 458 int iBreak, /* Jump here to break out of the inner loop */ 459 char *aff /* affinity string if eDest is SRT_Union */ 460 ){ 461 Vdbe *v = pParse->pVdbe; 462 int i; 463 int hasDistinct; /* True if the DISTINCT keyword is present */ 464 465 if( v==0 ) return 0; 466 assert( pEList!=0 ); 467 468 /* If there was a LIMIT clause on the SELECT statement, then do the check 469 ** to see if this row should be output. 470 */ 471 hasDistinct = distinct>=0 && pEList->nExpr>0; 472 if( pOrderBy==0 && !hasDistinct ){ 473 codeOffset(v, p, iContinue, 0); 474 } 475 476 /* Pull the requested columns. 477 */ 478 if( nColumn>0 ){ 479 for(i=0; i<nColumn; i++){ 480 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 481 } 482 }else{ 483 nColumn = pEList->nExpr; 484 sqlite3ExprCodeExprList(pParse, pEList); 485 } 486 487 /* If the DISTINCT keyword was present on the SELECT statement 488 ** and this row has been seen before, then do not make this row 489 ** part of the result. 490 */ 491 if( hasDistinct ){ 492 assert( pEList!=0 ); 493 assert( pEList->nExpr==nColumn ); 494 codeDistinct(v, distinct, iContinue, nColumn); 495 if( pOrderBy==0 ){ 496 codeOffset(v, p, iContinue, nColumn); 497 } 498 } 499 500 switch( eDest ){ 501 /* In this mode, write each query result to the key of the temporary 502 ** table iParm. 503 */ 504 #ifndef SQLITE_OMIT_COMPOUND_SELECT 505 case SRT_Union: { 506 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 507 if( aff ){ 508 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 509 } 510 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 511 break; 512 } 513 514 /* Construct a record from the query result, but instead of 515 ** saving that record, use it as a key to delete elements from 516 ** the temporary table iParm. 517 */ 518 case SRT_Except: { 519 int addr; 520 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 521 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 522 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 523 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 524 break; 525 } 526 #endif 527 528 /* Store the result as data using a unique key. 529 */ 530 case SRT_Table: 531 case SRT_EphemTab: { 532 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 533 if( pOrderBy ){ 534 pushOntoSorter(pParse, pOrderBy, p); 535 }else{ 536 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 537 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 538 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 539 } 540 break; 541 } 542 543 #ifndef SQLITE_OMIT_SUBQUERY 544 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 545 ** then there should be a single item on the stack. Write this 546 ** item into the set table with bogus data. 547 */ 548 case SRT_Set: { 549 int addr1 = sqlite3VdbeCurrentAddr(v); 550 int addr2; 551 552 assert( nColumn==1 ); 553 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 554 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 555 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 556 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 557 if( pOrderBy ){ 558 /* At first glance you would think we could optimize out the 559 ** ORDER BY in this case since the order of entries in the set 560 ** does not matter. But there might be a LIMIT clause, in which 561 ** case the order does matter */ 562 pushOntoSorter(pParse, pOrderBy, p); 563 }else{ 564 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 565 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 566 } 567 sqlite3VdbeJumpHere(v, addr2); 568 break; 569 } 570 571 /* If any row exist in the result set, record that fact and abort. 572 */ 573 case SRT_Exists: { 574 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 575 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 576 /* The LIMIT clause will terminate the loop for us */ 577 break; 578 } 579 580 /* If this is a scalar select that is part of an expression, then 581 ** store the results in the appropriate memory cell and break out 582 ** of the scan loop. 583 */ 584 case SRT_Mem: { 585 assert( nColumn==1 ); 586 if( pOrderBy ){ 587 pushOntoSorter(pParse, pOrderBy, p); 588 }else{ 589 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 590 /* The LIMIT clause will jump out of the loop for us */ 591 } 592 break; 593 } 594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 595 596 /* Send the data to the callback function or to a subroutine. In the 597 ** case of a subroutine, the subroutine itself is responsible for 598 ** popping the data from the stack. 599 */ 600 case SRT_Subroutine: 601 case SRT_Callback: { 602 if( pOrderBy ){ 603 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 604 pushOntoSorter(pParse, pOrderBy, p); 605 }else if( eDest==SRT_Subroutine ){ 606 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 607 }else{ 608 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 609 } 610 break; 611 } 612 613 #if !defined(SQLITE_OMIT_TRIGGER) 614 /* Discard the results. This is used for SELECT statements inside 615 ** the body of a TRIGGER. The purpose of such selects is to call 616 ** user-defined functions that have side effects. We do not care 617 ** about the actual results of the select. 618 */ 619 default: { 620 assert( eDest==SRT_Discard ); 621 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 622 break; 623 } 624 #endif 625 } 626 627 /* Jump to the end of the loop if the LIMIT is reached. 628 */ 629 if( p->iLimit>=0 && pOrderBy==0 ){ 630 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 631 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 632 } 633 return 0; 634 } 635 636 /* 637 ** Given an expression list, generate a KeyInfo structure that records 638 ** the collating sequence for each expression in that expression list. 639 ** 640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 641 ** KeyInfo structure is appropriate for initializing a virtual index to 642 ** implement that clause. If the ExprList is the result set of a SELECT 643 ** then the KeyInfo structure is appropriate for initializing a virtual 644 ** index to implement a DISTINCT test. 645 ** 646 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 647 ** function is responsible for seeing that this structure is eventually 648 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 650 */ 651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 652 sqlite3 *db = pParse->db; 653 int nExpr; 654 KeyInfo *pInfo; 655 struct ExprList_item *pItem; 656 int i; 657 658 nExpr = pList->nExpr; 659 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 660 if( pInfo ){ 661 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 662 pInfo->nField = nExpr; 663 pInfo->enc = ENC(db); 664 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 665 CollSeq *pColl; 666 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 667 if( !pColl ){ 668 pColl = db->pDfltColl; 669 } 670 pInfo->aColl[i] = pColl; 671 pInfo->aSortOrder[i] = pItem->sortOrder; 672 } 673 } 674 return pInfo; 675 } 676 677 678 /* 679 ** If the inner loop was generated using a non-null pOrderBy argument, 680 ** then the results were placed in a sorter. After the loop is terminated 681 ** we need to run the sorter and output the results. The following 682 ** routine generates the code needed to do that. 683 */ 684 static void generateSortTail( 685 Parse *pParse, /* Parsing context */ 686 Select *p, /* The SELECT statement */ 687 Vdbe *v, /* Generate code into this VDBE */ 688 int nColumn, /* Number of columns of data */ 689 int eDest, /* Write the sorted results here */ 690 int iParm /* Optional parameter associated with eDest */ 691 ){ 692 int brk = sqlite3VdbeMakeLabel(v); 693 int cont = sqlite3VdbeMakeLabel(v); 694 int addr; 695 int iTab; 696 int pseudoTab = 0; 697 ExprList *pOrderBy = p->pOrderBy; 698 699 iTab = pOrderBy->iECursor; 700 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 701 pseudoTab = pParse->nTab++; 702 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 703 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 704 } 705 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 706 codeOffset(v, p, cont, 0); 707 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 708 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 709 } 710 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 711 switch( eDest ){ 712 case SRT_Table: 713 case SRT_EphemTab: { 714 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 715 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 716 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 717 break; 718 } 719 #ifndef SQLITE_OMIT_SUBQUERY 720 case SRT_Set: { 721 assert( nColumn==1 ); 722 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 723 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 724 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 725 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 726 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 727 break; 728 } 729 case SRT_Mem: { 730 assert( nColumn==1 ); 731 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 732 /* The LIMIT clause will terminate the loop for us */ 733 break; 734 } 735 #endif 736 case SRT_Callback: 737 case SRT_Subroutine: { 738 int i; 739 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 740 for(i=0; i<nColumn; i++){ 741 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 742 } 743 if( eDest==SRT_Callback ){ 744 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 745 }else{ 746 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 747 } 748 break; 749 } 750 default: { 751 /* Do nothing */ 752 break; 753 } 754 } 755 756 /* Jump to the end of the loop when the LIMIT is reached 757 */ 758 if( p->iLimit>=0 ){ 759 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 760 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 761 } 762 763 /* The bottom of the loop 764 */ 765 sqlite3VdbeResolveLabel(v, cont); 766 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 767 sqlite3VdbeResolveLabel(v, brk); 768 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 769 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 770 } 771 772 } 773 774 /* 775 ** Return a pointer to a string containing the 'declaration type' of the 776 ** expression pExpr. The string may be treated as static by the caller. 777 ** 778 ** The declaration type is the exact datatype definition extracted from the 779 ** original CREATE TABLE statement if the expression is a column. The 780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 781 ** is considered a column can be complex in the presence of subqueries. The 782 ** result-set expression in all of the following SELECT statements is 783 ** considered a column by this function. 784 ** 785 ** SELECT col FROM tbl; 786 ** SELECT (SELECT col FROM tbl; 787 ** SELECT (SELECT col FROM tbl); 788 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 789 ** 790 ** The declaration type for any expression other than a column is NULL. 791 */ 792 static const char *columnType( 793 NameContext *pNC, 794 Expr *pExpr, 795 const char **pzOriginDb, 796 const char **pzOriginTab, 797 const char **pzOriginCol 798 ){ 799 char const *zType = 0; 800 char const *zOriginDb = 0; 801 char const *zOriginTab = 0; 802 char const *zOriginCol = 0; 803 int j; 804 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 805 806 /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING, 807 ** and LIMIT clauses. But pExpr originates in the result set of a 808 ** SELECT. So pExpr can never contain an AS operator. 809 */ 810 assert( pExpr->op!=TK_AS ); 811 812 switch( pExpr->op ){ 813 case TK_AGG_COLUMN: 814 case TK_COLUMN: { 815 /* The expression is a column. Locate the table the column is being 816 ** extracted from in NameContext.pSrcList. This table may be real 817 ** database table or a subquery. 818 */ 819 Table *pTab = 0; /* Table structure column is extracted from */ 820 Select *pS = 0; /* Select the column is extracted from */ 821 int iCol = pExpr->iColumn; /* Index of column in pTab */ 822 while( pNC && !pTab ){ 823 SrcList *pTabList = pNC->pSrcList; 824 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 825 if( j<pTabList->nSrc ){ 826 pTab = pTabList->a[j].pTab; 827 pS = pTabList->a[j].pSelect; 828 }else{ 829 pNC = pNC->pNext; 830 } 831 } 832 833 if( pTab==0 ){ 834 /* FIX ME: 835 ** This can occurs if you have something like "SELECT new.x;" inside 836 ** a trigger. In other words, if you reference the special "new" 837 ** table in the result set of a select. We do not have a good way 838 ** to find the actual table type, so call it "TEXT". This is really 839 ** something of a bug, but I do not know how to fix it. 840 ** 841 ** This code does not produce the correct answer - it just prevents 842 ** a segfault. See ticket #1229. 843 */ 844 zType = "TEXT"; 845 break; 846 } 847 848 assert( pTab ); 849 if( pS ){ 850 /* The "table" is actually a sub-select or a view in the FROM clause 851 ** of the SELECT statement. Return the declaration type and origin 852 ** data for the result-set column of the sub-select. 853 */ 854 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 855 /* If iCol is less than zero, then the expression requests the 856 ** rowid of the sub-select or view. This expression is legal (see 857 ** test case misc2.2.2) - it always evaluates to NULL. 858 */ 859 NameContext sNC; 860 Expr *p = pS->pEList->a[iCol].pExpr; 861 sNC.pSrcList = pS->pSrc; 862 sNC.pNext = 0; 863 sNC.pParse = pNC->pParse; 864 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 865 } 866 }else if( pTab->pSchema ){ 867 /* A real table */ 868 assert( !pS ); 869 if( iCol<0 ) iCol = pTab->iPKey; 870 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 871 if( iCol<0 ){ 872 zType = "INTEGER"; 873 zOriginCol = "rowid"; 874 }else{ 875 zType = pTab->aCol[iCol].zType; 876 zOriginCol = pTab->aCol[iCol].zName; 877 } 878 zOriginTab = pTab->zName; 879 if( pNC->pParse ){ 880 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 881 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 882 } 883 } 884 break; 885 } 886 #ifndef SQLITE_OMIT_SUBQUERY 887 case TK_SELECT: { 888 /* The expression is a sub-select. Return the declaration type and 889 ** origin info for the single column in the result set of the SELECT 890 ** statement. 891 */ 892 NameContext sNC; 893 Select *pS = pExpr->pSelect; 894 Expr *p = pS->pEList->a[0].pExpr; 895 sNC.pSrcList = pS->pSrc; 896 sNC.pNext = pNC; 897 sNC.pParse = pNC->pParse; 898 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 899 break; 900 } 901 #endif 902 } 903 904 if( pzOriginDb ){ 905 assert( pzOriginTab && pzOriginCol ); 906 *pzOriginDb = zOriginDb; 907 *pzOriginTab = zOriginTab; 908 *pzOriginCol = zOriginCol; 909 } 910 return zType; 911 } 912 913 /* 914 ** Generate code that will tell the VDBE the declaration types of columns 915 ** in the result set. 916 */ 917 static void generateColumnTypes( 918 Parse *pParse, /* Parser context */ 919 SrcList *pTabList, /* List of tables */ 920 ExprList *pEList /* Expressions defining the result set */ 921 ){ 922 Vdbe *v = pParse->pVdbe; 923 int i; 924 NameContext sNC; 925 sNC.pSrcList = pTabList; 926 sNC.pParse = pParse; 927 for(i=0; i<pEList->nExpr; i++){ 928 Expr *p = pEList->a[i].pExpr; 929 const char *zOrigDb = 0; 930 const char *zOrigTab = 0; 931 const char *zOrigCol = 0; 932 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 933 934 /* The vdbe must make it's own copy of the column-type and other 935 ** column specific strings, in case the schema is reset before this 936 ** virtual machine is deleted. 937 */ 938 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 939 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 940 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 941 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 942 } 943 } 944 945 /* 946 ** Generate code that will tell the VDBE the names of columns 947 ** in the result set. This information is used to provide the 948 ** azCol[] values in the callback. 949 */ 950 static void generateColumnNames( 951 Parse *pParse, /* Parser context */ 952 SrcList *pTabList, /* List of tables */ 953 ExprList *pEList /* Expressions defining the result set */ 954 ){ 955 Vdbe *v = pParse->pVdbe; 956 int i, j; 957 sqlite3 *db = pParse->db; 958 int fullNames, shortNames; 959 960 #ifndef SQLITE_OMIT_EXPLAIN 961 /* If this is an EXPLAIN, skip this step */ 962 if( pParse->explain ){ 963 return; 964 } 965 #endif 966 967 assert( v!=0 ); 968 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 969 pParse->colNamesSet = 1; 970 fullNames = (db->flags & SQLITE_FullColNames)!=0; 971 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 972 sqlite3VdbeSetNumCols(v, pEList->nExpr); 973 for(i=0; i<pEList->nExpr; i++){ 974 Expr *p; 975 p = pEList->a[i].pExpr; 976 if( p==0 ) continue; 977 if( pEList->a[i].zName ){ 978 char *zName = pEList->a[i].zName; 979 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 980 continue; 981 } 982 if( p->op==TK_COLUMN && pTabList ){ 983 Table *pTab; 984 char *zCol; 985 int iCol = p->iColumn; 986 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 987 assert( j<pTabList->nSrc ); 988 pTab = pTabList->a[j].pTab; 989 if( iCol<0 ) iCol = pTab->iPKey; 990 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 991 if( iCol<0 ){ 992 zCol = "rowid"; 993 }else{ 994 zCol = pTab->aCol[iCol].zName; 995 } 996 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 997 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 998 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 999 char *zName = 0; 1000 char *zTab; 1001 1002 zTab = pTabList->a[j].zAlias; 1003 if( fullNames || zTab==0 ) zTab = pTab->zName; 1004 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1005 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1006 }else{ 1007 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1008 } 1009 }else if( p->span.z && p->span.z[0] ){ 1010 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1011 /* sqlite3VdbeCompressSpace(v, addr); */ 1012 }else{ 1013 char zName[30]; 1014 assert( p->op!=TK_COLUMN || pTabList==0 ); 1015 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1016 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1017 } 1018 } 1019 generateColumnTypes(pParse, pTabList, pEList); 1020 } 1021 1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1023 /* 1024 ** Name of the connection operator, used for error messages. 1025 */ 1026 static const char *selectOpName(int id){ 1027 char *z; 1028 switch( id ){ 1029 case TK_ALL: z = "UNION ALL"; break; 1030 case TK_INTERSECT: z = "INTERSECT"; break; 1031 case TK_EXCEPT: z = "EXCEPT"; break; 1032 default: z = "UNION"; break; 1033 } 1034 return z; 1035 } 1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1037 1038 /* 1039 ** Forward declaration 1040 */ 1041 static int prepSelectStmt(Parse*, Select*); 1042 1043 /* 1044 ** Given a SELECT statement, generate a Table structure that describes 1045 ** the result set of that SELECT. 1046 */ 1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1048 Table *pTab; 1049 int i, j; 1050 ExprList *pEList; 1051 Column *aCol, *pCol; 1052 1053 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1054 if( prepSelectStmt(pParse, pSelect) ){ 1055 return 0; 1056 } 1057 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1058 return 0; 1059 } 1060 pTab = sqliteMalloc( sizeof(Table) ); 1061 if( pTab==0 ){ 1062 return 0; 1063 } 1064 pTab->nRef = 1; 1065 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1066 pEList = pSelect->pEList; 1067 pTab->nCol = pEList->nExpr; 1068 assert( pTab->nCol>0 ); 1069 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1070 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1071 Expr *p, *pR; 1072 char *zType; 1073 char *zName; 1074 int nName; 1075 CollSeq *pColl; 1076 int cnt; 1077 NameContext sNC; 1078 1079 /* Get an appropriate name for the column 1080 */ 1081 p = pEList->a[i].pExpr; 1082 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1083 if( (zName = pEList->a[i].zName)!=0 ){ 1084 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1085 zName = sqliteStrDup(zName); 1086 }else if( p->op==TK_DOT 1087 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1088 /* For columns of the from A.B use B as the name */ 1089 zName = sqlite3MPrintf("%T", &pR->token); 1090 }else if( p->span.z && p->span.z[0] ){ 1091 /* Use the original text of the column expression as its name */ 1092 zName = sqlite3MPrintf("%T", &p->span); 1093 }else{ 1094 /* If all else fails, make up a name */ 1095 zName = sqlite3MPrintf("column%d", i+1); 1096 } 1097 sqlite3Dequote(zName); 1098 if( sqlite3MallocFailed() ){ 1099 sqliteFree(zName); 1100 sqlite3DeleteTable(pTab); 1101 return 0; 1102 } 1103 1104 /* Make sure the column name is unique. If the name is not unique, 1105 ** append a integer to the name so that it becomes unique. 1106 */ 1107 nName = strlen(zName); 1108 for(j=cnt=0; j<i; j++){ 1109 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1110 zName[nName] = 0; 1111 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1112 j = -1; 1113 if( zName==0 ) break; 1114 } 1115 } 1116 pCol->zName = zName; 1117 1118 /* Get the typename, type affinity, and collating sequence for the 1119 ** column. 1120 */ 1121 memset(&sNC, 0, sizeof(sNC)); 1122 sNC.pSrcList = pSelect->pSrc; 1123 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1124 pCol->zType = zType; 1125 pCol->affinity = sqlite3ExprAffinity(p); 1126 pColl = sqlite3ExprCollSeq(pParse, p); 1127 if( pColl ){ 1128 pCol->zColl = sqliteStrDup(pColl->zName); 1129 } 1130 } 1131 pTab->iPKey = -1; 1132 return pTab; 1133 } 1134 1135 /* 1136 ** Prepare a SELECT statement for processing by doing the following 1137 ** things: 1138 ** 1139 ** (1) Make sure VDBE cursor numbers have been assigned to every 1140 ** element of the FROM clause. 1141 ** 1142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1143 ** defines FROM clause. When views appear in the FROM clause, 1144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1145 ** that implements the view. A copy is made of the view's SELECT 1146 ** statement so that we can freely modify or delete that statement 1147 ** without worrying about messing up the presistent representation 1148 ** of the view. 1149 ** 1150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1151 ** on joins and the ON and USING clause of joins. 1152 ** 1153 ** (4) Scan the list of columns in the result set (pEList) looking 1154 ** for instances of the "*" operator or the TABLE.* operator. 1155 ** If found, expand each "*" to be every column in every table 1156 ** and TABLE.* to be every column in TABLE. 1157 ** 1158 ** Return 0 on success. If there are problems, leave an error message 1159 ** in pParse and return non-zero. 1160 */ 1161 static int prepSelectStmt(Parse *pParse, Select *p){ 1162 int i, j, k, rc; 1163 SrcList *pTabList; 1164 ExprList *pEList; 1165 struct SrcList_item *pFrom; 1166 1167 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1168 return 1; 1169 } 1170 pTabList = p->pSrc; 1171 pEList = p->pEList; 1172 1173 /* Make sure cursor numbers have been assigned to all entries in 1174 ** the FROM clause of the SELECT statement. 1175 */ 1176 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1177 1178 /* Look up every table named in the FROM clause of the select. If 1179 ** an entry of the FROM clause is a subquery instead of a table or view, 1180 ** then create a transient table structure to describe the subquery. 1181 */ 1182 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1183 Table *pTab; 1184 if( pFrom->pTab!=0 ){ 1185 /* This statement has already been prepared. There is no need 1186 ** to go further. */ 1187 assert( i==0 ); 1188 return 0; 1189 } 1190 if( pFrom->zName==0 ){ 1191 #ifndef SQLITE_OMIT_SUBQUERY 1192 /* A sub-query in the FROM clause of a SELECT */ 1193 assert( pFrom->pSelect!=0 ); 1194 if( pFrom->zAlias==0 ){ 1195 pFrom->zAlias = 1196 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1197 } 1198 assert( pFrom->pTab==0 ); 1199 pFrom->pTab = pTab = 1200 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1201 if( pTab==0 ){ 1202 return 1; 1203 } 1204 /* The isEphem flag indicates that the Table structure has been 1205 ** dynamically allocated and may be freed at any time. In other words, 1206 ** pTab is not pointing to a persistent table structure that defines 1207 ** part of the schema. */ 1208 pTab->isEphem = 1; 1209 #endif 1210 }else{ 1211 /* An ordinary table or view name in the FROM clause */ 1212 assert( pFrom->pTab==0 ); 1213 pFrom->pTab = pTab = 1214 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1215 if( pTab==0 ){ 1216 return 1; 1217 } 1218 pTab->nRef++; 1219 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1220 if( pTab->pSelect || IsVirtual(pTab) ){ 1221 /* We reach here if the named table is a really a view */ 1222 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1223 return 1; 1224 } 1225 /* If pFrom->pSelect!=0 it means we are dealing with a 1226 ** view within a view. The SELECT structure has already been 1227 ** copied by the outer view so we can skip the copy step here 1228 ** in the inner view. 1229 */ 1230 if( pFrom->pSelect==0 ){ 1231 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1232 } 1233 } 1234 #endif 1235 } 1236 } 1237 1238 /* Process NATURAL keywords, and ON and USING clauses of joins. 1239 */ 1240 if( sqliteProcessJoin(pParse, p) ) return 1; 1241 1242 /* For every "*" that occurs in the column list, insert the names of 1243 ** all columns in all tables. And for every TABLE.* insert the names 1244 ** of all columns in TABLE. The parser inserted a special expression 1245 ** with the TK_ALL operator for each "*" that it found in the column list. 1246 ** The following code just has to locate the TK_ALL expressions and expand 1247 ** each one to the list of all columns in all tables. 1248 ** 1249 ** The first loop just checks to see if there are any "*" operators 1250 ** that need expanding. 1251 */ 1252 for(k=0; k<pEList->nExpr; k++){ 1253 Expr *pE = pEList->a[k].pExpr; 1254 if( pE->op==TK_ALL ) break; 1255 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1256 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1257 } 1258 rc = 0; 1259 if( k<pEList->nExpr ){ 1260 /* 1261 ** If we get here it means the result set contains one or more "*" 1262 ** operators that need to be expanded. Loop through each expression 1263 ** in the result set and expand them one by one. 1264 */ 1265 struct ExprList_item *a = pEList->a; 1266 ExprList *pNew = 0; 1267 int flags = pParse->db->flags; 1268 int longNames = (flags & SQLITE_FullColNames)!=0 && 1269 (flags & SQLITE_ShortColNames)==0; 1270 1271 for(k=0; k<pEList->nExpr; k++){ 1272 Expr *pE = a[k].pExpr; 1273 if( pE->op!=TK_ALL && 1274 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1275 /* This particular expression does not need to be expanded. 1276 */ 1277 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1278 if( pNew ){ 1279 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1280 }else{ 1281 rc = 1; 1282 } 1283 a[k].pExpr = 0; 1284 a[k].zName = 0; 1285 }else{ 1286 /* This expression is a "*" or a "TABLE.*" and needs to be 1287 ** expanded. */ 1288 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1289 char *zTName; /* text of name of TABLE */ 1290 if( pE->op==TK_DOT && pE->pLeft ){ 1291 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1292 }else{ 1293 zTName = 0; 1294 } 1295 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1296 Table *pTab = pFrom->pTab; 1297 char *zTabName = pFrom->zAlias; 1298 if( zTabName==0 || zTabName[0]==0 ){ 1299 zTabName = pTab->zName; 1300 } 1301 if( zTName && (zTabName==0 || zTabName[0]==0 || 1302 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1303 continue; 1304 } 1305 tableSeen = 1; 1306 for(j=0; j<pTab->nCol; j++){ 1307 Expr *pExpr, *pRight; 1308 char *zName = pTab->aCol[j].zName; 1309 1310 if( i>0 ){ 1311 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1312 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1313 columnIndex(pLeft->pTab, zName)>=0 ){ 1314 /* In a NATURAL join, omit the join columns from the 1315 ** table on the right */ 1316 continue; 1317 } 1318 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1319 /* In a join with a USING clause, omit columns in the 1320 ** using clause from the table on the right. */ 1321 continue; 1322 } 1323 } 1324 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1325 if( pRight==0 ) break; 1326 setToken(&pRight->token, zName); 1327 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1328 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1329 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1330 if( pExpr==0 ) break; 1331 setToken(&pLeft->token, zTabName); 1332 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1333 pExpr->span.dyn = 1; 1334 pExpr->token.z = 0; 1335 pExpr->token.n = 0; 1336 pExpr->token.dyn = 0; 1337 }else{ 1338 pExpr = pRight; 1339 pExpr->span = pExpr->token; 1340 } 1341 if( longNames ){ 1342 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1343 }else{ 1344 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1345 } 1346 } 1347 } 1348 if( !tableSeen ){ 1349 if( zTName ){ 1350 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1351 }else{ 1352 sqlite3ErrorMsg(pParse, "no tables specified"); 1353 } 1354 rc = 1; 1355 } 1356 sqliteFree(zTName); 1357 } 1358 } 1359 sqlite3ExprListDelete(pEList); 1360 p->pEList = pNew; 1361 } 1362 return rc; 1363 } 1364 1365 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1366 /* 1367 ** This routine associates entries in an ORDER BY expression list with 1368 ** columns in a result. For each ORDER BY expression, the opcode of 1369 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1370 ** the top-level node is filled in with column number and the iTable 1371 ** value of the top-level node is filled with iTable parameter. 1372 ** 1373 ** If there are prior SELECT clauses, they are processed first. A match 1374 ** in an earlier SELECT takes precedence over a later SELECT. 1375 ** 1376 ** Any entry that does not match is flagged as an error. The number 1377 ** of errors is returned. 1378 */ 1379 static int matchOrderbyToColumn( 1380 Parse *pParse, /* A place to leave error messages */ 1381 Select *pSelect, /* Match to result columns of this SELECT */ 1382 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1383 int iTable, /* Insert this value in iTable */ 1384 int mustComplete /* If TRUE all ORDER BYs must match */ 1385 ){ 1386 int nErr = 0; 1387 int i, j; 1388 ExprList *pEList; 1389 1390 if( pSelect==0 || pOrderBy==0 ) return 1; 1391 if( mustComplete ){ 1392 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1393 } 1394 if( prepSelectStmt(pParse, pSelect) ){ 1395 return 1; 1396 } 1397 if( pSelect->pPrior ){ 1398 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1399 return 1; 1400 } 1401 } 1402 pEList = pSelect->pEList; 1403 for(i=0; i<pOrderBy->nExpr; i++){ 1404 struct ExprList_item *pItem; 1405 Expr *pE = pOrderBy->a[i].pExpr; 1406 int iCol = -1; 1407 char *zLabel; 1408 1409 if( pOrderBy->a[i].done ) continue; 1410 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1411 if( iCol<=0 || iCol>pEList->nExpr ){ 1412 sqlite3ErrorMsg(pParse, 1413 "ORDER BY position %d should be between 1 and %d", 1414 iCol, pEList->nExpr); 1415 nErr++; 1416 break; 1417 } 1418 if( !mustComplete ) continue; 1419 iCol--; 1420 } 1421 if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){ 1422 for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){ 1423 char *zName; 1424 int isMatch; 1425 if( pItem->zName ){ 1426 zName = sqlite3StrDup(pItem->zName); 1427 }else{ 1428 zName = sqlite3NameFromToken(&pItem->pExpr->token); 1429 } 1430 isMatch = zName && sqlite3StrICmp(zName, zLabel)==0; 1431 sqliteFree(zName); 1432 if( isMatch ){ 1433 iCol = j; 1434 break; 1435 } 1436 } 1437 sqliteFree(zLabel); 1438 } 1439 if( iCol>=0 ){ 1440 pE->op = TK_COLUMN; 1441 pE->iColumn = iCol; 1442 pE->iTable = iTable; 1443 pE->iAgg = -1; 1444 pOrderBy->a[i].done = 1; 1445 }else if( mustComplete ){ 1446 sqlite3ErrorMsg(pParse, 1447 "ORDER BY term number %d does not match any result column", i+1); 1448 nErr++; 1449 break; 1450 } 1451 } 1452 return nErr; 1453 } 1454 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1455 1456 /* 1457 ** Get a VDBE for the given parser context. Create a new one if necessary. 1458 ** If an error occurs, return NULL and leave a message in pParse. 1459 */ 1460 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1461 Vdbe *v = pParse->pVdbe; 1462 if( v==0 ){ 1463 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1464 } 1465 return v; 1466 } 1467 1468 1469 /* 1470 ** Compute the iLimit and iOffset fields of the SELECT based on the 1471 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1472 ** that appear in the original SQL statement after the LIMIT and OFFSET 1473 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1474 ** are the integer memory register numbers for counters used to compute 1475 ** the limit and offset. If there is no limit and/or offset, then 1476 ** iLimit and iOffset are negative. 1477 ** 1478 ** This routine changes the values of iLimit and iOffset only if 1479 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1480 ** iOffset should have been preset to appropriate default values 1481 ** (usually but not always -1) prior to calling this routine. 1482 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1483 ** redefined. The UNION ALL operator uses this property to force 1484 ** the reuse of the same limit and offset registers across multiple 1485 ** SELECT statements. 1486 */ 1487 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1488 Vdbe *v = 0; 1489 int iLimit = 0; 1490 int iOffset; 1491 int addr1, addr2; 1492 1493 /* 1494 ** "LIMIT -1" always shows all rows. There is some 1495 ** contraversy about what the correct behavior should be. 1496 ** The current implementation interprets "LIMIT 0" to mean 1497 ** no rows. 1498 */ 1499 if( p->pLimit ){ 1500 p->iLimit = iLimit = pParse->nMem; 1501 pParse->nMem += 2; 1502 v = sqlite3GetVdbe(pParse); 1503 if( v==0 ) return; 1504 sqlite3ExprCode(pParse, p->pLimit); 1505 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1506 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0); 1507 VdbeComment((v, "# LIMIT counter")); 1508 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1509 } 1510 if( p->pOffset ){ 1511 p->iOffset = iOffset = pParse->nMem++; 1512 v = sqlite3GetVdbe(pParse); 1513 if( v==0 ) return; 1514 sqlite3ExprCode(pParse, p->pOffset); 1515 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1516 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1517 VdbeComment((v, "# OFFSET counter")); 1518 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1519 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1520 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1521 sqlite3VdbeJumpHere(v, addr1); 1522 if( p->pLimit ){ 1523 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1524 } 1525 } 1526 if( p->pLimit ){ 1527 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1528 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1529 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1530 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1531 sqlite3VdbeJumpHere(v, addr1); 1532 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1533 VdbeComment((v, "# LIMIT+OFFSET")); 1534 sqlite3VdbeJumpHere(v, addr2); 1535 } 1536 } 1537 1538 /* 1539 ** Allocate a virtual index to use for sorting. 1540 */ 1541 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1542 if( pOrderBy ){ 1543 int addr; 1544 assert( pOrderBy->iECursor==0 ); 1545 pOrderBy->iECursor = pParse->nTab++; 1546 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1547 pOrderBy->iECursor, pOrderBy->nExpr+1); 1548 assert( p->addrOpenEphm[2] == -1 ); 1549 p->addrOpenEphm[2] = addr; 1550 } 1551 } 1552 1553 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1554 /* 1555 ** Return the appropriate collating sequence for the iCol-th column of 1556 ** the result set for the compound-select statement "p". Return NULL if 1557 ** the column has no default collating sequence. 1558 ** 1559 ** The collating sequence for the compound select is taken from the 1560 ** left-most term of the select that has a collating sequence. 1561 */ 1562 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1563 CollSeq *pRet; 1564 if( p->pPrior ){ 1565 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1566 }else{ 1567 pRet = 0; 1568 } 1569 if( pRet==0 ){ 1570 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1571 } 1572 return pRet; 1573 } 1574 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1575 1576 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1577 /* 1578 ** This routine is called to process a query that is really the union 1579 ** or intersection of two or more separate queries. 1580 ** 1581 ** "p" points to the right-most of the two queries. the query on the 1582 ** left is p->pPrior. The left query could also be a compound query 1583 ** in which case this routine will be called recursively. 1584 ** 1585 ** The results of the total query are to be written into a destination 1586 ** of type eDest with parameter iParm. 1587 ** 1588 ** Example 1: Consider a three-way compound SQL statement. 1589 ** 1590 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1591 ** 1592 ** This statement is parsed up as follows: 1593 ** 1594 ** SELECT c FROM t3 1595 ** | 1596 ** `-----> SELECT b FROM t2 1597 ** | 1598 ** `------> SELECT a FROM t1 1599 ** 1600 ** The arrows in the diagram above represent the Select.pPrior pointer. 1601 ** So if this routine is called with p equal to the t3 query, then 1602 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1603 ** 1604 ** Notice that because of the way SQLite parses compound SELECTs, the 1605 ** individual selects always group from left to right. 1606 */ 1607 static int multiSelect( 1608 Parse *pParse, /* Parsing context */ 1609 Select *p, /* The right-most of SELECTs to be coded */ 1610 int eDest, /* \___ Store query results as specified */ 1611 int iParm, /* / by these two parameters. */ 1612 char *aff /* If eDest is SRT_Union, the affinity string */ 1613 ){ 1614 int rc = SQLITE_OK; /* Success code from a subroutine */ 1615 Select *pPrior; /* Another SELECT immediately to our left */ 1616 Vdbe *v; /* Generate code to this VDBE */ 1617 int nCol; /* Number of columns in the result set */ 1618 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1619 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1620 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1621 1622 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1623 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1624 */ 1625 if( p==0 || p->pPrior==0 ){ 1626 rc = 1; 1627 goto multi_select_end; 1628 } 1629 pPrior = p->pPrior; 1630 assert( pPrior->pRightmost!=pPrior ); 1631 assert( pPrior->pRightmost==p->pRightmost ); 1632 if( pPrior->pOrderBy ){ 1633 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1634 selectOpName(p->op)); 1635 rc = 1; 1636 goto multi_select_end; 1637 } 1638 if( pPrior->pLimit ){ 1639 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1640 selectOpName(p->op)); 1641 rc = 1; 1642 goto multi_select_end; 1643 } 1644 1645 /* Make sure we have a valid query engine. If not, create a new one. 1646 */ 1647 v = sqlite3GetVdbe(pParse); 1648 if( v==0 ){ 1649 rc = 1; 1650 goto multi_select_end; 1651 } 1652 1653 /* Create the destination temporary table if necessary 1654 */ 1655 if( eDest==SRT_EphemTab ){ 1656 assert( p->pEList ); 1657 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1658 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1659 eDest = SRT_Table; 1660 } 1661 1662 /* Generate code for the left and right SELECT statements. 1663 */ 1664 pOrderBy = p->pOrderBy; 1665 switch( p->op ){ 1666 case TK_ALL: { 1667 if( pOrderBy==0 ){ 1668 int addr = 0; 1669 assert( !pPrior->pLimit ); 1670 pPrior->pLimit = p->pLimit; 1671 pPrior->pOffset = p->pOffset; 1672 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1673 p->pLimit = 0; 1674 p->pOffset = 0; 1675 if( rc ){ 1676 goto multi_select_end; 1677 } 1678 p->pPrior = 0; 1679 p->iLimit = pPrior->iLimit; 1680 p->iOffset = pPrior->iOffset; 1681 if( p->iLimit>=0 ){ 1682 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1683 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1684 } 1685 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1686 p->pPrior = pPrior; 1687 if( rc ){ 1688 goto multi_select_end; 1689 } 1690 if( addr ){ 1691 sqlite3VdbeJumpHere(v, addr); 1692 } 1693 break; 1694 } 1695 /* For UNION ALL ... ORDER BY fall through to the next case */ 1696 } 1697 case TK_EXCEPT: 1698 case TK_UNION: { 1699 int unionTab; /* Cursor number of the temporary table holding result */ 1700 int op = 0; /* One of the SRT_ operations to apply to self */ 1701 int priorOp; /* The SRT_ operation to apply to prior selects */ 1702 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1703 int addr; 1704 1705 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1706 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1707 /* We can reuse a temporary table generated by a SELECT to our 1708 ** right. 1709 */ 1710 unionTab = iParm; 1711 }else{ 1712 /* We will need to create our own temporary table to hold the 1713 ** intermediate results. 1714 */ 1715 unionTab = pParse->nTab++; 1716 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1717 rc = 1; 1718 goto multi_select_end; 1719 } 1720 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1721 if( priorOp==SRT_Table ){ 1722 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1723 aSetP2[nSetP2++] = addr; 1724 }else{ 1725 assert( p->addrOpenEphm[0] == -1 ); 1726 p->addrOpenEphm[0] = addr; 1727 p->pRightmost->usesEphm = 1; 1728 } 1729 createSortingIndex(pParse, p, pOrderBy); 1730 assert( p->pEList ); 1731 } 1732 1733 /* Code the SELECT statements to our left 1734 */ 1735 assert( !pPrior->pOrderBy ); 1736 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1737 if( rc ){ 1738 goto multi_select_end; 1739 } 1740 1741 /* Code the current SELECT statement 1742 */ 1743 switch( p->op ){ 1744 case TK_EXCEPT: op = SRT_Except; break; 1745 case TK_UNION: op = SRT_Union; break; 1746 case TK_ALL: op = SRT_Table; break; 1747 } 1748 p->pPrior = 0; 1749 p->pOrderBy = 0; 1750 p->disallowOrderBy = pOrderBy!=0; 1751 pLimit = p->pLimit; 1752 p->pLimit = 0; 1753 pOffset = p->pOffset; 1754 p->pOffset = 0; 1755 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1756 p->pPrior = pPrior; 1757 p->pOrderBy = pOrderBy; 1758 sqlite3ExprDelete(p->pLimit); 1759 p->pLimit = pLimit; 1760 p->pOffset = pOffset; 1761 p->iLimit = -1; 1762 p->iOffset = -1; 1763 if( rc ){ 1764 goto multi_select_end; 1765 } 1766 1767 1768 /* Convert the data in the temporary table into whatever form 1769 ** it is that we currently need. 1770 */ 1771 if( eDest!=priorOp || unionTab!=iParm ){ 1772 int iCont, iBreak, iStart; 1773 assert( p->pEList ); 1774 if( eDest==SRT_Callback ){ 1775 Select *pFirst = p; 1776 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1777 generateColumnNames(pParse, 0, pFirst->pEList); 1778 } 1779 iBreak = sqlite3VdbeMakeLabel(v); 1780 iCont = sqlite3VdbeMakeLabel(v); 1781 computeLimitRegisters(pParse, p, iBreak); 1782 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1783 iStart = sqlite3VdbeCurrentAddr(v); 1784 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1785 pOrderBy, -1, eDest, iParm, 1786 iCont, iBreak, 0); 1787 if( rc ){ 1788 rc = 1; 1789 goto multi_select_end; 1790 } 1791 sqlite3VdbeResolveLabel(v, iCont); 1792 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1793 sqlite3VdbeResolveLabel(v, iBreak); 1794 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1795 } 1796 break; 1797 } 1798 case TK_INTERSECT: { 1799 int tab1, tab2; 1800 int iCont, iBreak, iStart; 1801 Expr *pLimit, *pOffset; 1802 int addr; 1803 1804 /* INTERSECT is different from the others since it requires 1805 ** two temporary tables. Hence it has its own case. Begin 1806 ** by allocating the tables we will need. 1807 */ 1808 tab1 = pParse->nTab++; 1809 tab2 = pParse->nTab++; 1810 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1811 rc = 1; 1812 goto multi_select_end; 1813 } 1814 createSortingIndex(pParse, p, pOrderBy); 1815 1816 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1817 assert( p->addrOpenEphm[0] == -1 ); 1818 p->addrOpenEphm[0] = addr; 1819 p->pRightmost->usesEphm = 1; 1820 assert( p->pEList ); 1821 1822 /* Code the SELECTs to our left into temporary table "tab1". 1823 */ 1824 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1825 if( rc ){ 1826 goto multi_select_end; 1827 } 1828 1829 /* Code the current SELECT into temporary table "tab2" 1830 */ 1831 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1832 assert( p->addrOpenEphm[1] == -1 ); 1833 p->addrOpenEphm[1] = addr; 1834 p->pPrior = 0; 1835 pLimit = p->pLimit; 1836 p->pLimit = 0; 1837 pOffset = p->pOffset; 1838 p->pOffset = 0; 1839 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1840 p->pPrior = pPrior; 1841 sqlite3ExprDelete(p->pLimit); 1842 p->pLimit = pLimit; 1843 p->pOffset = pOffset; 1844 if( rc ){ 1845 goto multi_select_end; 1846 } 1847 1848 /* Generate code to take the intersection of the two temporary 1849 ** tables. 1850 */ 1851 assert( p->pEList ); 1852 if( eDest==SRT_Callback ){ 1853 Select *pFirst = p; 1854 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1855 generateColumnNames(pParse, 0, pFirst->pEList); 1856 } 1857 iBreak = sqlite3VdbeMakeLabel(v); 1858 iCont = sqlite3VdbeMakeLabel(v); 1859 computeLimitRegisters(pParse, p, iBreak); 1860 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1861 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1862 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1863 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1864 pOrderBy, -1, eDest, iParm, 1865 iCont, iBreak, 0); 1866 if( rc ){ 1867 rc = 1; 1868 goto multi_select_end; 1869 } 1870 sqlite3VdbeResolveLabel(v, iCont); 1871 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1872 sqlite3VdbeResolveLabel(v, iBreak); 1873 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1874 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1875 break; 1876 } 1877 } 1878 1879 /* Make sure all SELECTs in the statement have the same number of elements 1880 ** in their result sets. 1881 */ 1882 assert( p->pEList && pPrior->pEList ); 1883 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1884 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1885 " do not have the same number of result columns", selectOpName(p->op)); 1886 rc = 1; 1887 goto multi_select_end; 1888 } 1889 1890 /* Set the number of columns in temporary tables 1891 */ 1892 nCol = p->pEList->nExpr; 1893 while( nSetP2 ){ 1894 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1895 } 1896 1897 /* Compute collating sequences used by either the ORDER BY clause or 1898 ** by any temporary tables needed to implement the compound select. 1899 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1900 ** ORDER BY processing if there is an ORDER BY clause. 1901 ** 1902 ** This section is run by the right-most SELECT statement only. 1903 ** SELECT statements to the left always skip this part. The right-most 1904 ** SELECT might also skip this part if it has no ORDER BY clause and 1905 ** no temp tables are required. 1906 */ 1907 if( pOrderBy || p->usesEphm ){ 1908 int i; /* Loop counter */ 1909 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1910 Select *pLoop; /* For looping through SELECT statements */ 1911 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1912 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1913 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 1914 1915 assert( p->pRightmost==p ); 1916 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1917 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1918 if( !pKeyInfo ){ 1919 rc = SQLITE_NOMEM; 1920 goto multi_select_end; 1921 } 1922 1923 pKeyInfo->enc = ENC(pParse->db); 1924 pKeyInfo->nField = nCol; 1925 1926 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1927 *apColl = multiSelectCollSeq(pParse, p, i); 1928 if( 0==*apColl ){ 1929 *apColl = pParse->db->pDfltColl; 1930 } 1931 } 1932 1933 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1934 for(i=0; i<2; i++){ 1935 int addr = pLoop->addrOpenEphm[i]; 1936 if( addr<0 ){ 1937 /* If [0] is unused then [1] is also unused. So we can 1938 ** always safely abort as soon as the first unused slot is found */ 1939 assert( pLoop->addrOpenEphm[1]<0 ); 1940 break; 1941 } 1942 sqlite3VdbeChangeP2(v, addr, nCol); 1943 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1944 pLoop->addrOpenEphm[i] = -1; 1945 } 1946 } 1947 1948 if( pOrderBy ){ 1949 struct ExprList_item *pOTerm = pOrderBy->a; 1950 int nOrderByExpr = pOrderBy->nExpr; 1951 int addr; 1952 u8 *pSortOrder; 1953 1954 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 1955 ** the compound select statements. Except we have to change out the 1956 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 1957 ** reused when constructing the pKeyInfo for the ORDER BY, so make 1958 ** a copy. Sufficient space to hold both the nCol entries for 1959 ** the compound select and the nOrderbyExpr entries for the ORDER BY 1960 ** was allocated above. But we need to move the compound select 1961 ** entries out of the way before constructing the ORDER BY entries. 1962 ** Move the compound select entries into aCopy[] where they can be 1963 ** accessed and reused when constructing the ORDER BY entries. 1964 ** Because nCol might be greater than or less than nOrderByExpr 1965 ** we have to use memmove() when doing the copy. 1966 */ 1967 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 1968 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 1969 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 1970 1971 apColl = pKeyInfo->aColl; 1972 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 1973 Expr *pExpr = pOTerm->pExpr; 1974 if( (pExpr->flags & EP_ExpCollate) ){ 1975 assert( pExpr->pColl!=0 ); 1976 *apColl = pExpr->pColl; 1977 }else{ 1978 *apColl = aCopy[pExpr->iColumn]; 1979 } 1980 *pSortOrder = pOTerm->sortOrder; 1981 } 1982 assert( p->pRightmost==p ); 1983 assert( p->addrOpenEphm[2]>=0 ); 1984 addr = p->addrOpenEphm[2]; 1985 sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2); 1986 pKeyInfo->nField = nOrderByExpr; 1987 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 1988 pKeyInfo = 0; 1989 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 1990 } 1991 1992 sqliteFree(pKeyInfo); 1993 } 1994 1995 multi_select_end: 1996 return rc; 1997 } 1998 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1999 2000 #ifndef SQLITE_OMIT_VIEW 2001 /* 2002 ** Scan through the expression pExpr. Replace every reference to 2003 ** a column in table number iTable with a copy of the iColumn-th 2004 ** entry in pEList. (But leave references to the ROWID column 2005 ** unchanged.) 2006 ** 2007 ** This routine is part of the flattening procedure. A subquery 2008 ** whose result set is defined by pEList appears as entry in the 2009 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2010 ** FORM clause entry is iTable. This routine make the necessary 2011 ** changes to pExpr so that it refers directly to the source table 2012 ** of the subquery rather the result set of the subquery. 2013 */ 2014 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 2015 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 2016 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 2017 if( pExpr==0 ) return; 2018 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2019 if( pExpr->iColumn<0 ){ 2020 pExpr->op = TK_NULL; 2021 }else{ 2022 Expr *pNew; 2023 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2024 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2025 pNew = pEList->a[pExpr->iColumn].pExpr; 2026 assert( pNew!=0 ); 2027 pExpr->op = pNew->op; 2028 assert( pExpr->pLeft==0 ); 2029 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2030 assert( pExpr->pRight==0 ); 2031 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2032 assert( pExpr->pList==0 ); 2033 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2034 pExpr->iTable = pNew->iTable; 2035 pExpr->pTab = pNew->pTab; 2036 pExpr->iColumn = pNew->iColumn; 2037 pExpr->iAgg = pNew->iAgg; 2038 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2039 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2040 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2041 pExpr->flags = pNew->flags; 2042 } 2043 }else{ 2044 substExpr(pExpr->pLeft, iTable, pEList); 2045 substExpr(pExpr->pRight, iTable, pEList); 2046 substSelect(pExpr->pSelect, iTable, pEList); 2047 substExprList(pExpr->pList, iTable, pEList); 2048 } 2049 } 2050 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2051 int i; 2052 if( pList==0 ) return; 2053 for(i=0; i<pList->nExpr; i++){ 2054 substExpr(pList->a[i].pExpr, iTable, pEList); 2055 } 2056 } 2057 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2058 if( !p ) return; 2059 substExprList(p->pEList, iTable, pEList); 2060 substExprList(p->pGroupBy, iTable, pEList); 2061 substExprList(p->pOrderBy, iTable, pEList); 2062 substExpr(p->pHaving, iTable, pEList); 2063 substExpr(p->pWhere, iTable, pEList); 2064 } 2065 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2066 2067 #ifndef SQLITE_OMIT_VIEW 2068 /* 2069 ** This routine attempts to flatten subqueries in order to speed 2070 ** execution. It returns 1 if it makes changes and 0 if no flattening 2071 ** occurs. 2072 ** 2073 ** To understand the concept of flattening, consider the following 2074 ** query: 2075 ** 2076 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2077 ** 2078 ** The default way of implementing this query is to execute the 2079 ** subquery first and store the results in a temporary table, then 2080 ** run the outer query on that temporary table. This requires two 2081 ** passes over the data. Furthermore, because the temporary table 2082 ** has no indices, the WHERE clause on the outer query cannot be 2083 ** optimized. 2084 ** 2085 ** This routine attempts to rewrite queries such as the above into 2086 ** a single flat select, like this: 2087 ** 2088 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2089 ** 2090 ** The code generated for this simpification gives the same result 2091 ** but only has to scan the data once. And because indices might 2092 ** exist on the table t1, a complete scan of the data might be 2093 ** avoided. 2094 ** 2095 ** Flattening is only attempted if all of the following are true: 2096 ** 2097 ** (1) The subquery and the outer query do not both use aggregates. 2098 ** 2099 ** (2) The subquery is not an aggregate or the outer query is not a join. 2100 ** 2101 ** (3) The subquery is not the right operand of a left outer join, or 2102 ** the subquery is not itself a join. (Ticket #306) 2103 ** 2104 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2105 ** 2106 ** (5) The subquery is not DISTINCT or the outer query does not use 2107 ** aggregates. 2108 ** 2109 ** (6) The subquery does not use aggregates or the outer query is not 2110 ** DISTINCT. 2111 ** 2112 ** (7) The subquery has a FROM clause. 2113 ** 2114 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2115 ** 2116 ** (9) The subquery does not use LIMIT or the outer query does not use 2117 ** aggregates. 2118 ** 2119 ** (10) The subquery does not use aggregates or the outer query does not 2120 ** use LIMIT. 2121 ** 2122 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2123 ** 2124 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2125 ** subquery has no WHERE clause. (added by ticket #350) 2126 ** 2127 ** (13) The subquery and outer query do not both use LIMIT 2128 ** 2129 ** (14) The subquery does not use OFFSET 2130 ** 2131 ** In this routine, the "p" parameter is a pointer to the outer query. 2132 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2133 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2134 ** 2135 ** If flattening is not attempted, this routine is a no-op and returns 0. 2136 ** If flattening is attempted this routine returns 1. 2137 ** 2138 ** All of the expression analysis must occur on both the outer query and 2139 ** the subquery before this routine runs. 2140 */ 2141 static int flattenSubquery( 2142 Select *p, /* The parent or outer SELECT statement */ 2143 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2144 int isAgg, /* True if outer SELECT uses aggregate functions */ 2145 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2146 ){ 2147 Select *pSub; /* The inner query or "subquery" */ 2148 SrcList *pSrc; /* The FROM clause of the outer query */ 2149 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2150 ExprList *pList; /* The result set of the outer query */ 2151 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2152 int i; /* Loop counter */ 2153 Expr *pWhere; /* The WHERE clause */ 2154 struct SrcList_item *pSubitem; /* The subquery */ 2155 2156 /* Check to see if flattening is permitted. Return 0 if not. 2157 */ 2158 if( p==0 ) return 0; 2159 pSrc = p->pSrc; 2160 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2161 pSubitem = &pSrc->a[iFrom]; 2162 pSub = pSubitem->pSelect; 2163 assert( pSub!=0 ); 2164 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2165 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2166 pSubSrc = pSub->pSrc; 2167 assert( pSubSrc ); 2168 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2169 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2170 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2171 ** became arbitrary expressions, we were forced to add restrictions (13) 2172 ** and (14). */ 2173 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2174 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2175 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2176 if( (pSub->isDistinct || pSub->pLimit) 2177 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2178 return 0; 2179 } 2180 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2181 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2182 return 0; /* Restriction (11) */ 2183 } 2184 2185 /* Restriction 3: If the subquery is a join, make sure the subquery is 2186 ** not used as the right operand of an outer join. Examples of why this 2187 ** is not allowed: 2188 ** 2189 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2190 ** 2191 ** If we flatten the above, we would get 2192 ** 2193 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2194 ** 2195 ** which is not at all the same thing. 2196 */ 2197 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2198 return 0; 2199 } 2200 2201 /* Restriction 12: If the subquery is the right operand of a left outer 2202 ** join, make sure the subquery has no WHERE clause. 2203 ** An examples of why this is not allowed: 2204 ** 2205 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2206 ** 2207 ** If we flatten the above, we would get 2208 ** 2209 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2210 ** 2211 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2212 ** effectively converts the OUTER JOIN into an INNER JOIN. 2213 */ 2214 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2215 return 0; 2216 } 2217 2218 /* If we reach this point, it means flattening is permitted for the 2219 ** iFrom-th entry of the FROM clause in the outer query. 2220 */ 2221 2222 /* Move all of the FROM elements of the subquery into the 2223 ** the FROM clause of the outer query. Before doing this, remember 2224 ** the cursor number for the original outer query FROM element in 2225 ** iParent. The iParent cursor will never be used. Subsequent code 2226 ** will scan expressions looking for iParent references and replace 2227 ** those references with expressions that resolve to the subquery FROM 2228 ** elements we are now copying in. 2229 */ 2230 iParent = pSubitem->iCursor; 2231 { 2232 int nSubSrc = pSubSrc->nSrc; 2233 int jointype = pSubitem->jointype; 2234 2235 sqlite3DeleteTable(pSubitem->pTab); 2236 sqliteFree(pSubitem->zDatabase); 2237 sqliteFree(pSubitem->zName); 2238 sqliteFree(pSubitem->zAlias); 2239 if( nSubSrc>1 ){ 2240 int extra = nSubSrc - 1; 2241 for(i=1; i<nSubSrc; i++){ 2242 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2243 } 2244 p->pSrc = pSrc; 2245 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2246 pSrc->a[i] = pSrc->a[i-extra]; 2247 } 2248 } 2249 for(i=0; i<nSubSrc; i++){ 2250 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2251 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2252 } 2253 pSrc->a[iFrom].jointype = jointype; 2254 } 2255 2256 /* Now begin substituting subquery result set expressions for 2257 ** references to the iParent in the outer query. 2258 ** 2259 ** Example: 2260 ** 2261 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2262 ** \ \_____________ subquery __________/ / 2263 ** \_____________________ outer query ______________________________/ 2264 ** 2265 ** We look at every expression in the outer query and every place we see 2266 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2267 */ 2268 pList = p->pEList; 2269 for(i=0; i<pList->nExpr; i++){ 2270 Expr *pExpr; 2271 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2272 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2273 } 2274 } 2275 substExprList(p->pEList, iParent, pSub->pEList); 2276 if( isAgg ){ 2277 substExprList(p->pGroupBy, iParent, pSub->pEList); 2278 substExpr(p->pHaving, iParent, pSub->pEList); 2279 } 2280 if( pSub->pOrderBy ){ 2281 assert( p->pOrderBy==0 ); 2282 p->pOrderBy = pSub->pOrderBy; 2283 pSub->pOrderBy = 0; 2284 }else if( p->pOrderBy ){ 2285 substExprList(p->pOrderBy, iParent, pSub->pEList); 2286 } 2287 if( pSub->pWhere ){ 2288 pWhere = sqlite3ExprDup(pSub->pWhere); 2289 }else{ 2290 pWhere = 0; 2291 } 2292 if( subqueryIsAgg ){ 2293 assert( p->pHaving==0 ); 2294 p->pHaving = p->pWhere; 2295 p->pWhere = pWhere; 2296 substExpr(p->pHaving, iParent, pSub->pEList); 2297 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2298 assert( p->pGroupBy==0 ); 2299 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2300 }else{ 2301 substExpr(p->pWhere, iParent, pSub->pEList); 2302 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2303 } 2304 2305 /* The flattened query is distinct if either the inner or the 2306 ** outer query is distinct. 2307 */ 2308 p->isDistinct = p->isDistinct || pSub->isDistinct; 2309 2310 /* 2311 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2312 ** 2313 ** One is tempted to try to add a and b to combine the limits. But this 2314 ** does not work if either limit is negative. 2315 */ 2316 if( pSub->pLimit ){ 2317 p->pLimit = pSub->pLimit; 2318 pSub->pLimit = 0; 2319 } 2320 2321 /* Finially, delete what is left of the subquery and return 2322 ** success. 2323 */ 2324 sqlite3SelectDelete(pSub); 2325 return 1; 2326 } 2327 #endif /* SQLITE_OMIT_VIEW */ 2328 2329 /* 2330 ** Analyze the SELECT statement passed in as an argument to see if it 2331 ** is a simple min() or max() query. If it is and this query can be 2332 ** satisfied using a single seek to the beginning or end of an index, 2333 ** then generate the code for this SELECT and return 1. If this is not a 2334 ** simple min() or max() query, then return 0; 2335 ** 2336 ** A simply min() or max() query looks like this: 2337 ** 2338 ** SELECT min(a) FROM table; 2339 ** SELECT max(a) FROM table; 2340 ** 2341 ** The query may have only a single table in its FROM argument. There 2342 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2343 ** be the min() or max() of a single column of the table. The column 2344 ** in the min() or max() function must be indexed. 2345 ** 2346 ** The parameters to this routine are the same as for sqlite3Select(). 2347 ** See the header comment on that routine for additional information. 2348 */ 2349 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2350 Expr *pExpr; 2351 int iCol; 2352 Table *pTab; 2353 Index *pIdx; 2354 int base; 2355 Vdbe *v; 2356 int seekOp; 2357 ExprList *pEList, *pList, eList; 2358 struct ExprList_item eListItem; 2359 SrcList *pSrc; 2360 int brk; 2361 int iDb; 2362 2363 /* Check to see if this query is a simple min() or max() query. Return 2364 ** zero if it is not. 2365 */ 2366 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2367 pSrc = p->pSrc; 2368 if( pSrc->nSrc!=1 ) return 0; 2369 pEList = p->pEList; 2370 if( pEList->nExpr!=1 ) return 0; 2371 pExpr = pEList->a[0].pExpr; 2372 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2373 pList = pExpr->pList; 2374 if( pList==0 || pList->nExpr!=1 ) return 0; 2375 if( pExpr->token.n!=3 ) return 0; 2376 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2377 seekOp = OP_Rewind; 2378 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2379 seekOp = OP_Last; 2380 }else{ 2381 return 0; 2382 } 2383 pExpr = pList->a[0].pExpr; 2384 if( pExpr->op!=TK_COLUMN ) return 0; 2385 iCol = pExpr->iColumn; 2386 pTab = pSrc->a[0].pTab; 2387 2388 /* This optimization cannot be used with virtual tables. */ 2389 if( IsVirtual(pTab) ) return 0; 2390 2391 /* If we get to here, it means the query is of the correct form. 2392 ** Check to make sure we have an index and make pIdx point to the 2393 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2394 ** key column, no index is necessary so set pIdx to NULL. If no 2395 ** usable index is found, return 0. 2396 */ 2397 if( iCol<0 ){ 2398 pIdx = 0; 2399 }else{ 2400 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2401 if( pColl==0 ) return 0; 2402 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2403 assert( pIdx->nColumn>=1 ); 2404 if( pIdx->aiColumn[0]==iCol && 2405 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2406 break; 2407 } 2408 } 2409 if( pIdx==0 ) return 0; 2410 } 2411 2412 /* Identify column types if we will be using the callback. This 2413 ** step is skipped if the output is going to a table or a memory cell. 2414 ** The column names have already been generated in the calling function. 2415 */ 2416 v = sqlite3GetVdbe(pParse); 2417 if( v==0 ) return 0; 2418 2419 /* If the output is destined for a temporary table, open that table. 2420 */ 2421 if( eDest==SRT_EphemTab ){ 2422 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2423 } 2424 2425 /* Generating code to find the min or the max. Basically all we have 2426 ** to do is find the first or the last entry in the chosen index. If 2427 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2428 ** or last entry in the main table. 2429 */ 2430 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2431 assert( iDb>=0 || pTab->isEphem ); 2432 sqlite3CodeVerifySchema(pParse, iDb); 2433 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2434 base = pSrc->a[0].iCursor; 2435 brk = sqlite3VdbeMakeLabel(v); 2436 computeLimitRegisters(pParse, p, brk); 2437 if( pSrc->a[0].pSelect==0 ){ 2438 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2439 } 2440 if( pIdx==0 ){ 2441 sqlite3VdbeAddOp(v, seekOp, base, 0); 2442 }else{ 2443 /* Even though the cursor used to open the index here is closed 2444 ** as soon as a single value has been read from it, allocate it 2445 ** using (pParse->nTab++) to prevent the cursor id from being 2446 ** reused. This is important for statements of the form 2447 ** "INSERT INTO x SELECT max() FROM x". 2448 */ 2449 int iIdx; 2450 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2451 iIdx = pParse->nTab++; 2452 assert( pIdx->pSchema==pTab->pSchema ); 2453 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2454 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2455 (char*)pKey, P3_KEYINFO_HANDOFF); 2456 if( seekOp==OP_Rewind ){ 2457 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2458 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2459 seekOp = OP_MoveGt; 2460 } 2461 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2462 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2463 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2464 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2465 } 2466 eList.nExpr = 1; 2467 memset(&eListItem, 0, sizeof(eListItem)); 2468 eList.a = &eListItem; 2469 eList.a[0].pExpr = pExpr; 2470 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2471 sqlite3VdbeResolveLabel(v, brk); 2472 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2473 2474 return 1; 2475 } 2476 2477 /* 2478 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2479 ** the number of errors seen. 2480 ** 2481 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2482 ** is an integer constant, then that expression is replaced by the 2483 ** corresponding entry in the result set. 2484 */ 2485 static int processOrderGroupBy( 2486 NameContext *pNC, /* Name context of the SELECT statement. */ 2487 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2488 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2489 ){ 2490 int i; 2491 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2492 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2493 assert( pEList ); 2494 2495 if( pOrderBy==0 ) return 0; 2496 for(i=0; i<pOrderBy->nExpr; i++){ 2497 int iCol; 2498 Expr *pE = pOrderBy->a[i].pExpr; 2499 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2500 if( iCol>0 && iCol<=pEList->nExpr ){ 2501 CollSeq *pColl = pE->pColl; 2502 int flags = pE->flags & EP_ExpCollate; 2503 sqlite3ExprDelete(pE); 2504 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2505 if( pColl && flags ){ 2506 pE->pColl = pColl; 2507 pE->flags |= flags; 2508 } 2509 }else{ 2510 sqlite3ErrorMsg(pParse, 2511 "%s BY column number %d out of range - should be " 2512 "between 1 and %d", zType, iCol, pEList->nExpr); 2513 return 1; 2514 } 2515 } 2516 if( sqlite3ExprResolveNames(pNC, pE) ){ 2517 return 1; 2518 } 2519 } 2520 return 0; 2521 } 2522 2523 /* 2524 ** This routine resolves any names used in the result set of the 2525 ** supplied SELECT statement. If the SELECT statement being resolved 2526 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2527 ** of the parent SELECT. 2528 */ 2529 int sqlite3SelectResolve( 2530 Parse *pParse, /* The parser context */ 2531 Select *p, /* The SELECT statement being coded. */ 2532 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2533 ){ 2534 ExprList *pEList; /* Result set. */ 2535 int i; /* For-loop variable used in multiple places */ 2536 NameContext sNC; /* Local name-context */ 2537 ExprList *pGroupBy; /* The group by clause */ 2538 2539 /* If this routine has run before, return immediately. */ 2540 if( p->isResolved ){ 2541 assert( !pOuterNC ); 2542 return SQLITE_OK; 2543 } 2544 p->isResolved = 1; 2545 2546 /* If there have already been errors, do nothing. */ 2547 if( pParse->nErr>0 ){ 2548 return SQLITE_ERROR; 2549 } 2550 2551 /* Prepare the select statement. This call will allocate all cursors 2552 ** required to handle the tables and subqueries in the FROM clause. 2553 */ 2554 if( prepSelectStmt(pParse, p) ){ 2555 return SQLITE_ERROR; 2556 } 2557 2558 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2559 ** are not allowed to refer to any names, so pass an empty NameContext. 2560 */ 2561 memset(&sNC, 0, sizeof(sNC)); 2562 sNC.pParse = pParse; 2563 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2564 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2565 return SQLITE_ERROR; 2566 } 2567 2568 /* Set up the local name-context to pass to ExprResolveNames() to 2569 ** resolve the expression-list. 2570 */ 2571 sNC.allowAgg = 1; 2572 sNC.pSrcList = p->pSrc; 2573 sNC.pNext = pOuterNC; 2574 2575 /* Resolve names in the result set. */ 2576 pEList = p->pEList; 2577 if( !pEList ) return SQLITE_ERROR; 2578 for(i=0; i<pEList->nExpr; i++){ 2579 Expr *pX = pEList->a[i].pExpr; 2580 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2581 return SQLITE_ERROR; 2582 } 2583 } 2584 2585 /* If there are no aggregate functions in the result-set, and no GROUP BY 2586 ** expression, do not allow aggregates in any of the other expressions. 2587 */ 2588 assert( !p->isAgg ); 2589 pGroupBy = p->pGroupBy; 2590 if( pGroupBy || sNC.hasAgg ){ 2591 p->isAgg = 1; 2592 }else{ 2593 sNC.allowAgg = 0; 2594 } 2595 2596 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2597 */ 2598 if( p->pHaving && !pGroupBy ){ 2599 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2600 return SQLITE_ERROR; 2601 } 2602 2603 /* Add the expression list to the name-context before parsing the 2604 ** other expressions in the SELECT statement. This is so that 2605 ** expressions in the WHERE clause (etc.) can refer to expressions by 2606 ** aliases in the result set. 2607 ** 2608 ** Minor point: If this is the case, then the expression will be 2609 ** re-evaluated for each reference to it. 2610 */ 2611 sNC.pEList = p->pEList; 2612 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2613 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2614 return SQLITE_ERROR; 2615 } 2616 if( p->pPrior==0 ){ 2617 if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2618 processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){ 2619 return SQLITE_ERROR; 2620 } 2621 } 2622 2623 /* Make sure the GROUP BY clause does not contain aggregate functions. 2624 */ 2625 if( pGroupBy ){ 2626 struct ExprList_item *pItem; 2627 2628 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2629 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2630 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2631 "the GROUP BY clause"); 2632 return SQLITE_ERROR; 2633 } 2634 } 2635 } 2636 2637 /* If this is one SELECT of a compound, be sure to resolve names 2638 ** in the other SELECTs. 2639 */ 2640 if( p->pPrior ){ 2641 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2642 }else{ 2643 return SQLITE_OK; 2644 } 2645 } 2646 2647 /* 2648 ** Reset the aggregate accumulator. 2649 ** 2650 ** The aggregate accumulator is a set of memory cells that hold 2651 ** intermediate results while calculating an aggregate. This 2652 ** routine simply stores NULLs in all of those memory cells. 2653 */ 2654 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2655 Vdbe *v = pParse->pVdbe; 2656 int i; 2657 struct AggInfo_func *pFunc; 2658 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2659 return; 2660 } 2661 for(i=0; i<pAggInfo->nColumn; i++){ 2662 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2663 } 2664 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2665 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2666 if( pFunc->iDistinct>=0 ){ 2667 Expr *pE = pFunc->pExpr; 2668 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2669 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2670 "by an expression"); 2671 pFunc->iDistinct = -1; 2672 }else{ 2673 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2674 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2675 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2676 } 2677 } 2678 } 2679 } 2680 2681 /* 2682 ** Invoke the OP_AggFinalize opcode for every aggregate function 2683 ** in the AggInfo structure. 2684 */ 2685 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2686 Vdbe *v = pParse->pVdbe; 2687 int i; 2688 struct AggInfo_func *pF; 2689 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2690 ExprList *pList = pF->pExpr->pList; 2691 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2692 (void*)pF->pFunc, P3_FUNCDEF); 2693 } 2694 } 2695 2696 /* 2697 ** Update the accumulator memory cells for an aggregate based on 2698 ** the current cursor position. 2699 */ 2700 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2701 Vdbe *v = pParse->pVdbe; 2702 int i; 2703 struct AggInfo_func *pF; 2704 struct AggInfo_col *pC; 2705 2706 pAggInfo->directMode = 1; 2707 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2708 int nArg; 2709 int addrNext = 0; 2710 ExprList *pList = pF->pExpr->pList; 2711 if( pList ){ 2712 nArg = pList->nExpr; 2713 sqlite3ExprCodeExprList(pParse, pList); 2714 }else{ 2715 nArg = 0; 2716 } 2717 if( pF->iDistinct>=0 ){ 2718 addrNext = sqlite3VdbeMakeLabel(v); 2719 assert( nArg==1 ); 2720 codeDistinct(v, pF->iDistinct, addrNext, 1); 2721 } 2722 if( pF->pFunc->needCollSeq ){ 2723 CollSeq *pColl = 0; 2724 struct ExprList_item *pItem; 2725 int j; 2726 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2727 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2728 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2729 } 2730 if( !pColl ){ 2731 pColl = pParse->db->pDfltColl; 2732 } 2733 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2734 } 2735 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2736 if( addrNext ){ 2737 sqlite3VdbeResolveLabel(v, addrNext); 2738 } 2739 } 2740 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2741 sqlite3ExprCode(pParse, pC->pExpr); 2742 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2743 } 2744 pAggInfo->directMode = 0; 2745 } 2746 2747 2748 /* 2749 ** Generate code for the given SELECT statement. 2750 ** 2751 ** The results are distributed in various ways depending on the 2752 ** value of eDest and iParm. 2753 ** 2754 ** eDest Value Result 2755 ** ------------ ------------------------------------------- 2756 ** SRT_Callback Invoke the callback for each row of the result. 2757 ** 2758 ** SRT_Mem Store first result in memory cell iParm 2759 ** 2760 ** SRT_Set Store results as keys of table iParm. 2761 ** 2762 ** SRT_Union Store results as a key in a temporary table iParm 2763 ** 2764 ** SRT_Except Remove results from the temporary table iParm. 2765 ** 2766 ** SRT_Table Store results in temporary table iParm 2767 ** 2768 ** The table above is incomplete. Additional eDist value have be added 2769 ** since this comment was written. See the selectInnerLoop() function for 2770 ** a complete listing of the allowed values of eDest and their meanings. 2771 ** 2772 ** This routine returns the number of errors. If any errors are 2773 ** encountered, then an appropriate error message is left in 2774 ** pParse->zErrMsg. 2775 ** 2776 ** This routine does NOT free the Select structure passed in. The 2777 ** calling function needs to do that. 2778 ** 2779 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2780 ** SELECT is a subquery. This routine may try to combine this SELECT 2781 ** with its parent to form a single flat query. In so doing, it might 2782 ** change the parent query from a non-aggregate to an aggregate query. 2783 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2784 ** can be changed. 2785 ** 2786 ** Example 1: The meaning of the pParent parameter. 2787 ** 2788 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2789 ** \ \_______ subquery _______/ / 2790 ** \ / 2791 ** \____________________ outer query ___________________/ 2792 ** 2793 ** This routine is called for the outer query first. For that call, 2794 ** pParent will be NULL. During the processing of the outer query, this 2795 ** routine is called recursively to handle the subquery. For the recursive 2796 ** call, pParent will point to the outer query. Because the subquery is 2797 ** the second element in a three-way join, the parentTab parameter will 2798 ** be 1 (the 2nd value of a 0-indexed array.) 2799 */ 2800 int sqlite3Select( 2801 Parse *pParse, /* The parser context */ 2802 Select *p, /* The SELECT statement being coded. */ 2803 int eDest, /* How to dispose of the results */ 2804 int iParm, /* A parameter used by the eDest disposal method */ 2805 Select *pParent, /* Another SELECT for which this is a sub-query */ 2806 int parentTab, /* Index in pParent->pSrc of this query */ 2807 int *pParentAgg, /* True if pParent uses aggregate functions */ 2808 char *aff /* If eDest is SRT_Union, the affinity string */ 2809 ){ 2810 int i, j; /* Loop counters */ 2811 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2812 Vdbe *v; /* The virtual machine under construction */ 2813 int isAgg; /* True for select lists like "count(*)" */ 2814 ExprList *pEList; /* List of columns to extract. */ 2815 SrcList *pTabList; /* List of tables to select from */ 2816 Expr *pWhere; /* The WHERE clause. May be NULL */ 2817 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2818 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2819 Expr *pHaving; /* The HAVING clause. May be NULL */ 2820 int isDistinct; /* True if the DISTINCT keyword is present */ 2821 int distinct; /* Table to use for the distinct set */ 2822 int rc = 1; /* Value to return from this function */ 2823 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2824 AggInfo sAggInfo; /* Information used by aggregate queries */ 2825 int iEnd; /* Address of the end of the query */ 2826 2827 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2828 return 1; 2829 } 2830 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2831 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2832 2833 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2834 /* If there is are a sequence of queries, do the earlier ones first. 2835 */ 2836 if( p->pPrior ){ 2837 if( p->pRightmost==0 ){ 2838 Select *pLoop; 2839 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2840 pLoop->pRightmost = p; 2841 } 2842 } 2843 return multiSelect(pParse, p, eDest, iParm, aff); 2844 } 2845 #endif 2846 2847 pOrderBy = p->pOrderBy; 2848 if( IgnorableOrderby(eDest) ){ 2849 p->pOrderBy = 0; 2850 } 2851 if( sqlite3SelectResolve(pParse, p, 0) ){ 2852 goto select_end; 2853 } 2854 p->pOrderBy = pOrderBy; 2855 2856 /* Make local copies of the parameters for this query. 2857 */ 2858 pTabList = p->pSrc; 2859 pWhere = p->pWhere; 2860 pGroupBy = p->pGroupBy; 2861 pHaving = p->pHaving; 2862 isAgg = p->isAgg; 2863 isDistinct = p->isDistinct; 2864 pEList = p->pEList; 2865 if( pEList==0 ) goto select_end; 2866 2867 /* 2868 ** Do not even attempt to generate any code if we have already seen 2869 ** errors before this routine starts. 2870 */ 2871 if( pParse->nErr>0 ) goto select_end; 2872 2873 /* If writing to memory or generating a set 2874 ** only a single column may be output. 2875 */ 2876 #ifndef SQLITE_OMIT_SUBQUERY 2877 if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ 2878 sqlite3ErrorMsg(pParse, "only a single result allowed for " 2879 "a SELECT that is part of an expression"); 2880 goto select_end; 2881 } 2882 #endif 2883 2884 /* ORDER BY is ignored for some destinations. 2885 */ 2886 if( IgnorableOrderby(eDest) ){ 2887 pOrderBy = 0; 2888 } 2889 2890 /* Begin generating code. 2891 */ 2892 v = sqlite3GetVdbe(pParse); 2893 if( v==0 ) goto select_end; 2894 2895 /* Generate code for all sub-queries in the FROM clause 2896 */ 2897 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2898 for(i=0; i<pTabList->nSrc; i++){ 2899 const char *zSavedAuthContext = 0; 2900 int needRestoreContext; 2901 struct SrcList_item *pItem = &pTabList->a[i]; 2902 2903 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2904 if( pItem->zName!=0 ){ 2905 zSavedAuthContext = pParse->zAuthContext; 2906 pParse->zAuthContext = pItem->zName; 2907 needRestoreContext = 1; 2908 }else{ 2909 needRestoreContext = 0; 2910 } 2911 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2912 pItem->iCursor, p, i, &isAgg, 0); 2913 if( needRestoreContext ){ 2914 pParse->zAuthContext = zSavedAuthContext; 2915 } 2916 pTabList = p->pSrc; 2917 pWhere = p->pWhere; 2918 if( !IgnorableOrderby(eDest) ){ 2919 pOrderBy = p->pOrderBy; 2920 } 2921 pGroupBy = p->pGroupBy; 2922 pHaving = p->pHaving; 2923 isDistinct = p->isDistinct; 2924 } 2925 #endif 2926 2927 /* Check for the special case of a min() or max() function by itself 2928 ** in the result set. 2929 */ 2930 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 2931 rc = 0; 2932 goto select_end; 2933 } 2934 2935 /* Check to see if this is a subquery that can be "flattened" into its parent. 2936 ** If flattening is a possiblity, do so and return immediately. 2937 */ 2938 #ifndef SQLITE_OMIT_VIEW 2939 if( pParent && pParentAgg && 2940 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 2941 if( isAgg ) *pParentAgg = 1; 2942 goto select_end; 2943 } 2944 #endif 2945 2946 /* If there is an ORDER BY clause, then this sorting 2947 ** index might end up being unused if the data can be 2948 ** extracted in pre-sorted order. If that is the case, then the 2949 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 2950 ** we figure out that the sorting index is not needed. The addrSortIndex 2951 ** variable is used to facilitate that change. 2952 */ 2953 if( pOrderBy ){ 2954 KeyInfo *pKeyInfo; 2955 if( pParse->nErr ){ 2956 goto select_end; 2957 } 2958 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 2959 pOrderBy->iECursor = pParse->nTab++; 2960 p->addrOpenEphm[2] = addrSortIndex = 2961 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2962 }else{ 2963 addrSortIndex = -1; 2964 } 2965 2966 /* If the output is destined for a temporary table, open that table. 2967 */ 2968 if( eDest==SRT_EphemTab ){ 2969 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 2970 } 2971 2972 /* Set the limiter. 2973 */ 2974 iEnd = sqlite3VdbeMakeLabel(v); 2975 computeLimitRegisters(pParse, p, iEnd); 2976 2977 /* Open a virtual index to use for the distinct set. 2978 */ 2979 if( isDistinct ){ 2980 KeyInfo *pKeyInfo; 2981 distinct = pParse->nTab++; 2982 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 2983 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 2984 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2985 }else{ 2986 distinct = -1; 2987 } 2988 2989 /* Aggregate and non-aggregate queries are handled differently */ 2990 if( !isAgg && pGroupBy==0 ){ 2991 /* This case is for non-aggregate queries 2992 ** Begin the database scan 2993 */ 2994 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 2995 if( pWInfo==0 ) goto select_end; 2996 2997 /* If sorting index that was created by a prior OP_OpenEphemeral 2998 ** instruction ended up not being needed, then change the OP_OpenEphemeral 2999 ** into an OP_Noop. 3000 */ 3001 if( addrSortIndex>=0 && pOrderBy==0 ){ 3002 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3003 p->addrOpenEphm[2] = -1; 3004 } 3005 3006 /* Use the standard inner loop 3007 */ 3008 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 3009 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3010 goto select_end; 3011 } 3012 3013 /* End the database scan loop. 3014 */ 3015 sqlite3WhereEnd(pWInfo); 3016 }else{ 3017 /* This is the processing for aggregate queries */ 3018 NameContext sNC; /* Name context for processing aggregate information */ 3019 int iAMem; /* First Mem address for storing current GROUP BY */ 3020 int iBMem; /* First Mem address for previous GROUP BY */ 3021 int iUseFlag; /* Mem address holding flag indicating that at least 3022 ** one row of the input to the aggregator has been 3023 ** processed */ 3024 int iAbortFlag; /* Mem address which causes query abort if positive */ 3025 int groupBySort; /* Rows come from source in GROUP BY order */ 3026 3027 3028 /* The following variables hold addresses or labels for parts of the 3029 ** virtual machine program we are putting together */ 3030 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3031 int addrSetAbort; /* Set the abort flag and return */ 3032 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3033 int addrTopOfLoop; /* Top of the input loop */ 3034 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3035 int addrProcessRow; /* Code to process a single input row */ 3036 int addrEnd; /* End of all processing */ 3037 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3038 int addrReset; /* Subroutine for resetting the accumulator */ 3039 3040 addrEnd = sqlite3VdbeMakeLabel(v); 3041 3042 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3043 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3044 ** SELECT statement. 3045 */ 3046 memset(&sNC, 0, sizeof(sNC)); 3047 sNC.pParse = pParse; 3048 sNC.pSrcList = pTabList; 3049 sNC.pAggInfo = &sAggInfo; 3050 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3051 sAggInfo.pGroupBy = pGroupBy; 3052 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3053 goto select_end; 3054 } 3055 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3056 goto select_end; 3057 } 3058 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3059 goto select_end; 3060 } 3061 sAggInfo.nAccumulator = sAggInfo.nColumn; 3062 for(i=0; i<sAggInfo.nFunc; i++){ 3063 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3064 goto select_end; 3065 } 3066 } 3067 if( sqlite3MallocFailed() ) goto select_end; 3068 3069 /* Processing for aggregates with GROUP BY is very different and 3070 ** much more complex tha aggregates without a GROUP BY. 3071 */ 3072 if( pGroupBy ){ 3073 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3074 3075 /* Create labels that we will be needing 3076 */ 3077 3078 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3079 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3080 addrProcessRow = sqlite3VdbeMakeLabel(v); 3081 3082 /* If there is a GROUP BY clause we might need a sorting index to 3083 ** implement it. Allocate that sorting index now. If it turns out 3084 ** that we do not need it after all, the OpenEphemeral instruction 3085 ** will be converted into a Noop. 3086 */ 3087 sAggInfo.sortingIdx = pParse->nTab++; 3088 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3089 addrSortingIdx = 3090 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3091 sAggInfo.nSortingColumn, 3092 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3093 3094 /* Initialize memory locations used by GROUP BY aggregate processing 3095 */ 3096 iUseFlag = pParse->nMem++; 3097 iAbortFlag = pParse->nMem++; 3098 iAMem = pParse->nMem; 3099 pParse->nMem += pGroupBy->nExpr; 3100 iBMem = pParse->nMem; 3101 pParse->nMem += pGroupBy->nExpr; 3102 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3103 VdbeComment((v, "# clear abort flag")); 3104 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3105 VdbeComment((v, "# indicate accumulator empty")); 3106 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3107 3108 /* Generate a subroutine that outputs a single row of the result 3109 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3110 ** is less than or equal to zero, the subroutine is a no-op. If 3111 ** the processing calls for the query to abort, this subroutine 3112 ** increments the iAbortFlag memory location before returning in 3113 ** order to signal the caller to abort. 3114 */ 3115 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3116 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3117 VdbeComment((v, "# set abort flag")); 3118 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3119 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3120 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3121 VdbeComment((v, "# Groupby result generator entry point")); 3122 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3123 finalizeAggFunctions(pParse, &sAggInfo); 3124 if( pHaving ){ 3125 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3126 } 3127 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3128 distinct, eDest, iParm, 3129 addrOutputRow+1, addrSetAbort, aff); 3130 if( rc ){ 3131 goto select_end; 3132 } 3133 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3134 VdbeComment((v, "# end groupby result generator")); 3135 3136 /* Generate a subroutine that will reset the group-by accumulator 3137 */ 3138 addrReset = sqlite3VdbeCurrentAddr(v); 3139 resetAccumulator(pParse, &sAggInfo); 3140 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3141 3142 /* Begin a loop that will extract all source rows in GROUP BY order. 3143 ** This might involve two separate loops with an OP_Sort in between, or 3144 ** it might be a single loop that uses an index to extract information 3145 ** in the right order to begin with. 3146 */ 3147 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3148 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3149 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3150 if( pWInfo==0 ) goto select_end; 3151 if( pGroupBy==0 ){ 3152 /* The optimizer is able to deliver rows in group by order so 3153 ** we do not have to sort. The OP_OpenEphemeral table will be 3154 ** cancelled later because we still need to use the pKeyInfo 3155 */ 3156 pGroupBy = p->pGroupBy; 3157 groupBySort = 0; 3158 }else{ 3159 /* Rows are coming out in undetermined order. We have to push 3160 ** each row into a sorting index, terminate the first loop, 3161 ** then loop over the sorting index in order to get the output 3162 ** in sorted order 3163 */ 3164 groupBySort = 1; 3165 sqlite3ExprCodeExprList(pParse, pGroupBy); 3166 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3167 j = pGroupBy->nExpr+1; 3168 for(i=0; i<sAggInfo.nColumn; i++){ 3169 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3170 if( pCol->iSorterColumn<j ) continue; 3171 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3172 j++; 3173 } 3174 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3175 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3176 sqlite3WhereEnd(pWInfo); 3177 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3178 VdbeComment((v, "# GROUP BY sort")); 3179 sAggInfo.useSortingIdx = 1; 3180 } 3181 3182 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3183 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3184 ** Then compare the current GROUP BY terms against the GROUP BY terms 3185 ** from the previous row currently stored in a0, a1, a2... 3186 */ 3187 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3188 for(j=0; j<pGroupBy->nExpr; j++){ 3189 if( groupBySort ){ 3190 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3191 }else{ 3192 sAggInfo.directMode = 1; 3193 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3194 } 3195 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3196 } 3197 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3198 if( j<pGroupBy->nExpr-1 ){ 3199 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3200 } 3201 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3202 if( j==0 ){ 3203 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3204 }else{ 3205 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3206 } 3207 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3208 } 3209 3210 /* Generate code that runs whenever the GROUP BY changes. 3211 ** Change in the GROUP BY are detected by the previous code 3212 ** block. If there were no changes, this block is skipped. 3213 ** 3214 ** This code copies current group by terms in b0,b1,b2,... 3215 ** over to a0,a1,a2. It then calls the output subroutine 3216 ** and resets the aggregate accumulator registers in preparation 3217 ** for the next GROUP BY batch. 3218 */ 3219 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3220 for(j=0; j<pGroupBy->nExpr; j++){ 3221 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3222 } 3223 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3224 VdbeComment((v, "# output one row")); 3225 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3226 VdbeComment((v, "# check abort flag")); 3227 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3228 VdbeComment((v, "# reset accumulator")); 3229 3230 /* Update the aggregate accumulators based on the content of 3231 ** the current row 3232 */ 3233 sqlite3VdbeResolveLabel(v, addrProcessRow); 3234 updateAccumulator(pParse, &sAggInfo); 3235 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3236 VdbeComment((v, "# indicate data in accumulator")); 3237 3238 /* End of the loop 3239 */ 3240 if( groupBySort ){ 3241 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3242 }else{ 3243 sqlite3WhereEnd(pWInfo); 3244 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3245 } 3246 3247 /* Output the final row of result 3248 */ 3249 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3250 VdbeComment((v, "# output final row")); 3251 3252 } /* endif pGroupBy */ 3253 else { 3254 /* This case runs if the aggregate has no GROUP BY clause. The 3255 ** processing is much simpler since there is only a single row 3256 ** of output. 3257 */ 3258 resetAccumulator(pParse, &sAggInfo); 3259 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3260 if( pWInfo==0 ) goto select_end; 3261 updateAccumulator(pParse, &sAggInfo); 3262 sqlite3WhereEnd(pWInfo); 3263 finalizeAggFunctions(pParse, &sAggInfo); 3264 pOrderBy = 0; 3265 if( pHaving ){ 3266 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3267 } 3268 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3269 eDest, iParm, addrEnd, addrEnd, aff); 3270 } 3271 sqlite3VdbeResolveLabel(v, addrEnd); 3272 3273 } /* endif aggregate query */ 3274 3275 /* If there is an ORDER BY clause, then we need to sort the results 3276 ** and send them to the callback one by one. 3277 */ 3278 if( pOrderBy ){ 3279 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3280 } 3281 3282 #ifndef SQLITE_OMIT_SUBQUERY 3283 /* If this was a subquery, we have now converted the subquery into a 3284 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3285 ** this subquery from being evaluated again and to force the use of 3286 ** the temporary table. 3287 */ 3288 if( pParent ){ 3289 assert( pParent->pSrc->nSrc>parentTab ); 3290 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3291 pParent->pSrc->a[parentTab].isPopulated = 1; 3292 } 3293 #endif 3294 3295 /* Jump here to skip this query 3296 */ 3297 sqlite3VdbeResolveLabel(v, iEnd); 3298 3299 /* The SELECT was successfully coded. Set the return code to 0 3300 ** to indicate no errors. 3301 */ 3302 rc = 0; 3303 3304 /* Control jumps to here if an error is encountered above, or upon 3305 ** successful coding of the SELECT. 3306 */ 3307 select_end: 3308 3309 /* Identify column names if we will be using them in a callback. This 3310 ** step is skipped if the output is going to some other destination. 3311 */ 3312 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3313 generateColumnNames(pParse, pTabList, pEList); 3314 } 3315 3316 sqliteFree(sAggInfo.aCol); 3317 sqliteFree(sAggInfo.aFunc); 3318 return rc; 3319 } 3320 3321 #if defined(SQLITE_DEBUG) 3322 /* 3323 ******************************************************************************* 3324 ** The following code is used for testing and debugging only. The code 3325 ** that follows does not appear in normal builds. 3326 ** 3327 ** These routines are used to print out the content of all or part of a 3328 ** parse structures such as Select or Expr. Such printouts are useful 3329 ** for helping to understand what is happening inside the code generator 3330 ** during the execution of complex SELECT statements. 3331 ** 3332 ** These routine are not called anywhere from within the normal 3333 ** code base. Then are intended to be called from within the debugger 3334 ** or from temporary "printf" statements inserted for debugging. 3335 */ 3336 void sqlite3PrintExpr(Expr *p){ 3337 if( p->token.z && p->token.n>0 ){ 3338 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3339 }else{ 3340 sqlite3DebugPrintf("(%d", p->op); 3341 } 3342 if( p->pLeft ){ 3343 sqlite3DebugPrintf(" "); 3344 sqlite3PrintExpr(p->pLeft); 3345 } 3346 if( p->pRight ){ 3347 sqlite3DebugPrintf(" "); 3348 sqlite3PrintExpr(p->pRight); 3349 } 3350 sqlite3DebugPrintf(")"); 3351 } 3352 void sqlite3PrintExprList(ExprList *pList){ 3353 int i; 3354 for(i=0; i<pList->nExpr; i++){ 3355 sqlite3PrintExpr(pList->a[i].pExpr); 3356 if( i<pList->nExpr-1 ){ 3357 sqlite3DebugPrintf(", "); 3358 } 3359 } 3360 } 3361 void sqlite3PrintSelect(Select *p, int indent){ 3362 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3363 sqlite3PrintExprList(p->pEList); 3364 sqlite3DebugPrintf("\n"); 3365 if( p->pSrc ){ 3366 char *zPrefix; 3367 int i; 3368 zPrefix = "FROM"; 3369 for(i=0; i<p->pSrc->nSrc; i++){ 3370 struct SrcList_item *pItem = &p->pSrc->a[i]; 3371 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3372 zPrefix = ""; 3373 if( pItem->pSelect ){ 3374 sqlite3DebugPrintf("(\n"); 3375 sqlite3PrintSelect(pItem->pSelect, indent+10); 3376 sqlite3DebugPrintf("%*s)", indent+8, ""); 3377 }else if( pItem->zName ){ 3378 sqlite3DebugPrintf("%s", pItem->zName); 3379 } 3380 if( pItem->pTab ){ 3381 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3382 } 3383 if( pItem->zAlias ){ 3384 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3385 } 3386 if( i<p->pSrc->nSrc-1 ){ 3387 sqlite3DebugPrintf(","); 3388 } 3389 sqlite3DebugPrintf("\n"); 3390 } 3391 } 3392 if( p->pWhere ){ 3393 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3394 sqlite3PrintExpr(p->pWhere); 3395 sqlite3DebugPrintf("\n"); 3396 } 3397 if( p->pGroupBy ){ 3398 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3399 sqlite3PrintExprList(p->pGroupBy); 3400 sqlite3DebugPrintf("\n"); 3401 } 3402 if( p->pHaving ){ 3403 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3404 sqlite3PrintExpr(p->pHaving); 3405 sqlite3DebugPrintf("\n"); 3406 } 3407 if( p->pOrderBy ){ 3408 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3409 sqlite3PrintExprList(p->pOrderBy); 3410 sqlite3DebugPrintf("\n"); 3411 } 3412 } 3413 /* End of the structure debug printing code 3414 *****************************************************************************/ 3415 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3416