xref: /sqlite-3.40.0/src/select.c (revision cd7274ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.361 2007/11/12 15:40:42 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   Parse *pParse,        /* Parsing context */
43   ExprList *pEList,     /* which columns to include in the result */
44   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
45   Expr *pWhere,         /* the WHERE clause */
46   ExprList *pGroupBy,   /* the GROUP BY clause */
47   Expr *pHaving,        /* the HAVING clause */
48   ExprList *pOrderBy,   /* the ORDER BY clause */
49   int isDistinct,       /* true if the DISTINCT keyword is present */
50   Expr *pLimit,         /* LIMIT value.  NULL means not used */
51   Expr *pOffset         /* OFFSET value.  NULL means no offset */
52 ){
53   Select *pNew;
54   Select standin;
55   sqlite3 *db = pParse->db;
56   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
57   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
58   if( pNew==0 ){
59     pNew = &standin;
60     memset(pNew, 0, sizeof(*pNew));
61   }
62   if( pEList==0 ){
63     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
64   }
65   pNew->pEList = pEList;
66   pNew->pSrc = pSrc;
67   pNew->pWhere = pWhere;
68   pNew->pGroupBy = pGroupBy;
69   pNew->pHaving = pHaving;
70   pNew->pOrderBy = pOrderBy;
71   pNew->isDistinct = isDistinct;
72   pNew->op = TK_SELECT;
73   assert( pOffset==0 || pLimit!=0 );
74   pNew->pLimit = pLimit;
75   pNew->pOffset = pOffset;
76   pNew->iLimit = -1;
77   pNew->iOffset = -1;
78   pNew->addrOpenEphm[0] = -1;
79   pNew->addrOpenEphm[1] = -1;
80   pNew->addrOpenEphm[2] = -1;
81   if( pNew==&standin) {
82     clearSelect(pNew);
83     pNew = 0;
84   }
85   return pNew;
86 }
87 
88 /*
89 ** Delete the given Select structure and all of its substructures.
90 */
91 void sqlite3SelectDelete(Select *p){
92   if( p ){
93     clearSelect(p);
94     sqlite3_free(p);
95   }
96 }
97 
98 /*
99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
100 ** type of join.  Return an integer constant that expresses that type
101 ** in terms of the following bit values:
102 **
103 **     JT_INNER
104 **     JT_CROSS
105 **     JT_OUTER
106 **     JT_NATURAL
107 **     JT_LEFT
108 **     JT_RIGHT
109 **
110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
111 **
112 ** If an illegal or unsupported join type is seen, then still return
113 ** a join type, but put an error in the pParse structure.
114 */
115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
116   int jointype = 0;
117   Token *apAll[3];
118   Token *p;
119   static const struct {
120     const char zKeyword[8];
121     u8 nChar;
122     u8 code;
123   } keywords[] = {
124     { "natural", 7, JT_NATURAL },
125     { "left",    4, JT_LEFT|JT_OUTER },
126     { "right",   5, JT_RIGHT|JT_OUTER },
127     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
128     { "outer",   5, JT_OUTER },
129     { "inner",   5, JT_INNER },
130     { "cross",   5, JT_INNER|JT_CROSS },
131   };
132   int i, j;
133   apAll[0] = pA;
134   apAll[1] = pB;
135   apAll[2] = pC;
136   for(i=0; i<3 && apAll[i]; i++){
137     p = apAll[i];
138     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
139       if( p->n==keywords[j].nChar
140           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
141         jointype |= keywords[j].code;
142         break;
143       }
144     }
145     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
146       jointype |= JT_ERROR;
147       break;
148     }
149   }
150   if(
151      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
152      (jointype & JT_ERROR)!=0
153   ){
154     const char *zSp1 = " ";
155     const char *zSp2 = " ";
156     if( pB==0 ){ zSp1++; }
157     if( pC==0 ){ zSp2++; }
158     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
159        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
160     jointype = JT_INNER;
161   }else if( jointype & JT_RIGHT ){
162     sqlite3ErrorMsg(pParse,
163       "RIGHT and FULL OUTER JOINs are not currently supported");
164     jointype = JT_INNER;
165   }
166   return jointype;
167 }
168 
169 /*
170 ** Return the index of a column in a table.  Return -1 if the column
171 ** is not contained in the table.
172 */
173 static int columnIndex(Table *pTab, const char *zCol){
174   int i;
175   for(i=0; i<pTab->nCol; i++){
176     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
177   }
178   return -1;
179 }
180 
181 /*
182 ** Set the value of a token to a '\000'-terminated string.
183 */
184 static void setToken(Token *p, const char *z){
185   p->z = (u8*)z;
186   p->n = z ? strlen(z) : 0;
187   p->dyn = 0;
188 }
189 
190 /*
191 ** Set the token to the double-quoted and escaped version of the string pointed
192 ** to by z. For example;
193 **
194 **    {a"bc}  ->  {"a""bc"}
195 */
196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
197   p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
198   p->dyn = 1;
199   if( p->z ){
200     p->n = strlen((char *)p->z);
201   }else{
202     pParse->db->mallocFailed = 1;
203   }
204 }
205 
206 /*
207 ** Create an expression node for an identifier with the name of zName
208 */
209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
210   Token dummy;
211   setToken(&dummy, zName);
212   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
213 }
214 
215 
216 /*
217 ** Add a term to the WHERE expression in *ppExpr that requires the
218 ** zCol column to be equal in the two tables pTab1 and pTab2.
219 */
220 static void addWhereTerm(
221   Parse *pParse,           /* Parsing context */
222   const char *zCol,        /* Name of the column */
223   const Table *pTab1,      /* First table */
224   const char *zAlias1,     /* Alias for first table.  May be NULL */
225   const Table *pTab2,      /* Second table */
226   const char *zAlias2,     /* Alias for second table.  May be NULL */
227   int iRightJoinTable,     /* VDBE cursor for the right table */
228   Expr **ppExpr            /* Add the equality term to this expression */
229 ){
230   Expr *pE1a, *pE1b, *pE1c;
231   Expr *pE2a, *pE2b, *pE2c;
232   Expr *pE;
233 
234   pE1a = sqlite3CreateIdExpr(pParse, zCol);
235   pE2a = sqlite3CreateIdExpr(pParse, zCol);
236   if( zAlias1==0 ){
237     zAlias1 = pTab1->zName;
238   }
239   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
240   if( zAlias2==0 ){
241     zAlias2 = pTab2->zName;
242   }
243   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
244   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
245   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
246   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
247   if( pE ){
248     ExprSetProperty(pE, EP_FromJoin);
249     pE->iRightJoinTable = iRightJoinTable;
250   }
251   pE = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
252   if( pE ){
253     *ppExpr = pE;
254   }
255 }
256 
257 /*
258 ** Set the EP_FromJoin property on all terms of the given expression.
259 ** And set the Expr.iRightJoinTable to iTable for every term in the
260 ** expression.
261 **
262 ** The EP_FromJoin property is used on terms of an expression to tell
263 ** the LEFT OUTER JOIN processing logic that this term is part of the
264 ** join restriction specified in the ON or USING clause and not a part
265 ** of the more general WHERE clause.  These terms are moved over to the
266 ** WHERE clause during join processing but we need to remember that they
267 ** originated in the ON or USING clause.
268 **
269 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
270 ** expression depends on table iRightJoinTable even if that table is not
271 ** explicitly mentioned in the expression.  That information is needed
272 ** for cases like this:
273 **
274 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
275 **
276 ** The where clause needs to defer the handling of the t1.x=5
277 ** term until after the t2 loop of the join.  In that way, a
278 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
279 ** defer the handling of t1.x=5, it will be processed immediately
280 ** after the t1 loop and rows with t1.x!=5 will never appear in
281 ** the output, which is incorrect.
282 */
283 static void setJoinExpr(Expr *p, int iTable){
284   while( p ){
285     ExprSetProperty(p, EP_FromJoin);
286     p->iRightJoinTable = iTable;
287     setJoinExpr(p->pLeft, iTable);
288     p = p->pRight;
289   }
290 }
291 
292 /*
293 ** This routine processes the join information for a SELECT statement.
294 ** ON and USING clauses are converted into extra terms of the WHERE clause.
295 ** NATURAL joins also create extra WHERE clause terms.
296 **
297 ** The terms of a FROM clause are contained in the Select.pSrc structure.
298 ** The left most table is the first entry in Select.pSrc.  The right-most
299 ** table is the last entry.  The join operator is held in the entry to
300 ** the left.  Thus entry 0 contains the join operator for the join between
301 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
302 ** also attached to the left entry.
303 **
304 ** This routine returns the number of errors encountered.
305 */
306 static int sqliteProcessJoin(Parse *pParse, Select *p){
307   SrcList *pSrc;                  /* All tables in the FROM clause */
308   int i, j;                       /* Loop counters */
309   struct SrcList_item *pLeft;     /* Left table being joined */
310   struct SrcList_item *pRight;    /* Right table being joined */
311 
312   pSrc = p->pSrc;
313   pLeft = &pSrc->a[0];
314   pRight = &pLeft[1];
315   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
316     Table *pLeftTab = pLeft->pTab;
317     Table *pRightTab = pRight->pTab;
318 
319     if( pLeftTab==0 || pRightTab==0 ) continue;
320 
321     /* When the NATURAL keyword is present, add WHERE clause terms for
322     ** every column that the two tables have in common.
323     */
324     if( pRight->jointype & JT_NATURAL ){
325       if( pRight->pOn || pRight->pUsing ){
326         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
327            "an ON or USING clause", 0);
328         return 1;
329       }
330       for(j=0; j<pLeftTab->nCol; j++){
331         char *zName = pLeftTab->aCol[j].zName;
332         if( columnIndex(pRightTab, zName)>=0 ){
333           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
334                               pRightTab, pRight->zAlias,
335                               pRight->iCursor, &p->pWhere);
336 
337         }
338       }
339     }
340 
341     /* Disallow both ON and USING clauses in the same join
342     */
343     if( pRight->pOn && pRight->pUsing ){
344       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
345         "clauses in the same join");
346       return 1;
347     }
348 
349     /* Add the ON clause to the end of the WHERE clause, connected by
350     ** an AND operator.
351     */
352     if( pRight->pOn ){
353       setJoinExpr(pRight->pOn, pRight->iCursor);
354       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
355       pRight->pOn = 0;
356     }
357 
358     /* Create extra terms on the WHERE clause for each column named
359     ** in the USING clause.  Example: If the two tables to be joined are
360     ** A and B and the USING clause names X, Y, and Z, then add this
361     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
362     ** Report an error if any column mentioned in the USING clause is
363     ** not contained in both tables to be joined.
364     */
365     if( pRight->pUsing ){
366       IdList *pList = pRight->pUsing;
367       for(j=0; j<pList->nId; j++){
368         char *zName = pList->a[j].zName;
369         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
370           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
371             "not present in both tables", zName);
372           return 1;
373         }
374         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
375                             pRightTab, pRight->zAlias,
376                             pRight->iCursor, &p->pWhere);
377       }
378     }
379   }
380   return 0;
381 }
382 
383 /*
384 ** Insert code into "v" that will push the record on the top of the
385 ** stack into the sorter.
386 */
387 static void pushOntoSorter(
388   Parse *pParse,         /* Parser context */
389   ExprList *pOrderBy,    /* The ORDER BY clause */
390   Select *pSelect        /* The whole SELECT statement */
391 ){
392   Vdbe *v = pParse->pVdbe;
393   sqlite3ExprCodeExprList(pParse, pOrderBy);
394   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
395   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
396   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
397   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
398   if( pSelect->iLimit>=0 ){
399     int addr1, addr2;
400     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
401     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
402     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
403     sqlite3VdbeJumpHere(v, addr1);
404     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
405     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
406     sqlite3VdbeJumpHere(v, addr2);
407     pSelect->iLimit = -1;
408   }
409 }
410 
411 /*
412 ** Add code to implement the OFFSET
413 */
414 static void codeOffset(
415   Vdbe *v,          /* Generate code into this VM */
416   Select *p,        /* The SELECT statement being coded */
417   int iContinue,    /* Jump here to skip the current record */
418   int nPop          /* Number of times to pop stack when jumping */
419 ){
420   if( p->iOffset>=0 && iContinue!=0 ){
421     int addr;
422     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
423     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
424     if( nPop>0 ){
425       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
426     }
427     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
428     VdbeComment((v, "# skip OFFSET records"));
429     sqlite3VdbeJumpHere(v, addr);
430   }
431 }
432 
433 /*
434 ** Add code that will check to make sure the top N elements of the
435 ** stack are distinct.  iTab is a sorting index that holds previously
436 ** seen combinations of the N values.  A new entry is made in iTab
437 ** if the current N values are new.
438 **
439 ** A jump to addrRepeat is made and the N+1 values are popped from the
440 ** stack if the top N elements are not distinct.
441 */
442 static void codeDistinct(
443   Vdbe *v,           /* Generate code into this VM */
444   int iTab,          /* A sorting index used to test for distinctness */
445   int addrRepeat,    /* Jump to here if not distinct */
446   int N              /* The top N elements of the stack must be distinct */
447 ){
448   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
449   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
450   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
451   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
452   VdbeComment((v, "# skip indistinct records"));
453   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
454 }
455 
456 /*
457 ** Generate an error message when a SELECT is used within a subexpression
458 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
459 ** column.  We do this in a subroutine because the error occurs in multiple
460 ** places.
461 */
462 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
463   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
464     sqlite3ErrorMsg(pParse, "only a single result allowed for "
465        "a SELECT that is part of an expression");
466     return 1;
467   }else{
468     return 0;
469   }
470 }
471 
472 /*
473 ** This routine generates the code for the inside of the inner loop
474 ** of a SELECT.
475 **
476 ** If srcTab and nColumn are both zero, then the pEList expressions
477 ** are evaluated in order to get the data for this row.  If nColumn>0
478 ** then data is pulled from srcTab and pEList is used only to get the
479 ** datatypes for each column.
480 */
481 static int selectInnerLoop(
482   Parse *pParse,          /* The parser context */
483   Select *p,              /* The complete select statement being coded */
484   ExprList *pEList,       /* List of values being extracted */
485   int srcTab,             /* Pull data from this table */
486   int nColumn,            /* Number of columns in the source table */
487   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
488   int distinct,           /* If >=0, make sure results are distinct */
489   int eDest,              /* How to dispose of the results */
490   int iParm,              /* An argument to the disposal method */
491   int iContinue,          /* Jump here to continue with next row */
492   int iBreak,             /* Jump here to break out of the inner loop */
493   char *aff               /* affinity string if eDest is SRT_Union */
494 ){
495   Vdbe *v = pParse->pVdbe;
496   int i;
497   int hasDistinct;        /* True if the DISTINCT keyword is present */
498 
499   if( v==0 ) return 0;
500   assert( pEList!=0 );
501 
502   /* If there was a LIMIT clause on the SELECT statement, then do the check
503   ** to see if this row should be output.
504   */
505   hasDistinct = distinct>=0 && pEList->nExpr>0;
506   if( pOrderBy==0 && !hasDistinct ){
507     codeOffset(v, p, iContinue, 0);
508   }
509 
510   /* Pull the requested columns.
511   */
512   if( nColumn>0 ){
513     for(i=0; i<nColumn; i++){
514       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
515     }
516   }else{
517     nColumn = pEList->nExpr;
518     sqlite3ExprCodeExprList(pParse, pEList);
519   }
520 
521   /* If the DISTINCT keyword was present on the SELECT statement
522   ** and this row has been seen before, then do not make this row
523   ** part of the result.
524   */
525   if( hasDistinct ){
526     assert( pEList!=0 );
527     assert( pEList->nExpr==nColumn );
528     codeDistinct(v, distinct, iContinue, nColumn);
529     if( pOrderBy==0 ){
530       codeOffset(v, p, iContinue, nColumn);
531     }
532   }
533 
534   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
535     return 0;
536   }
537 
538   switch( eDest ){
539     /* In this mode, write each query result to the key of the temporary
540     ** table iParm.
541     */
542 #ifndef SQLITE_OMIT_COMPOUND_SELECT
543     case SRT_Union: {
544       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
545       if( aff ){
546         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
547       }
548       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
549       break;
550     }
551 
552     /* Construct a record from the query result, but instead of
553     ** saving that record, use it as a key to delete elements from
554     ** the temporary table iParm.
555     */
556     case SRT_Except: {
557       int addr;
558       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
559       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
560       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
561       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
562       break;
563     }
564 #endif
565 
566     /* Store the result as data using a unique key.
567     */
568     case SRT_Table:
569     case SRT_EphemTab: {
570       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
571       if( pOrderBy ){
572         pushOntoSorter(pParse, pOrderBy, p);
573       }else{
574         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
575         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
576         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
577       }
578       break;
579     }
580 
581 #ifndef SQLITE_OMIT_SUBQUERY
582     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
583     ** then there should be a single item on the stack.  Write this
584     ** item into the set table with bogus data.
585     */
586     case SRT_Set: {
587       int addr1 = sqlite3VdbeCurrentAddr(v);
588       int addr2;
589 
590       assert( nColumn==1 );
591       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
592       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
593       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
594       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
595       if( pOrderBy ){
596         /* At first glance you would think we could optimize out the
597         ** ORDER BY in this case since the order of entries in the set
598         ** does not matter.  But there might be a LIMIT clause, in which
599         ** case the order does matter */
600         pushOntoSorter(pParse, pOrderBy, p);
601       }else{
602         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
603         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
604       }
605       sqlite3VdbeJumpHere(v, addr2);
606       break;
607     }
608 
609     /* If any row exist in the result set, record that fact and abort.
610     */
611     case SRT_Exists: {
612       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
613       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
614       /* The LIMIT clause will terminate the loop for us */
615       break;
616     }
617 
618     /* If this is a scalar select that is part of an expression, then
619     ** store the results in the appropriate memory cell and break out
620     ** of the scan loop.
621     */
622     case SRT_Mem: {
623       assert( nColumn==1 );
624       if( pOrderBy ){
625         pushOntoSorter(pParse, pOrderBy, p);
626       }else{
627         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
628         /* The LIMIT clause will jump out of the loop for us */
629       }
630       break;
631     }
632 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
633 
634     /* Send the data to the callback function or to a subroutine.  In the
635     ** case of a subroutine, the subroutine itself is responsible for
636     ** popping the data from the stack.
637     */
638     case SRT_Subroutine:
639     case SRT_Callback: {
640       if( pOrderBy ){
641         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
642         pushOntoSorter(pParse, pOrderBy, p);
643       }else if( eDest==SRT_Subroutine ){
644         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
645       }else{
646         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
647       }
648       break;
649     }
650 
651 #if !defined(SQLITE_OMIT_TRIGGER)
652     /* Discard the results.  This is used for SELECT statements inside
653     ** the body of a TRIGGER.  The purpose of such selects is to call
654     ** user-defined functions that have side effects.  We do not care
655     ** about the actual results of the select.
656     */
657     default: {
658       assert( eDest==SRT_Discard );
659       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
660       break;
661     }
662 #endif
663   }
664 
665   /* Jump to the end of the loop if the LIMIT is reached.
666   */
667   if( p->iLimit>=0 && pOrderBy==0 ){
668     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
669     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
670   }
671   return 0;
672 }
673 
674 /*
675 ** Given an expression list, generate a KeyInfo structure that records
676 ** the collating sequence for each expression in that expression list.
677 **
678 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
679 ** KeyInfo structure is appropriate for initializing a virtual index to
680 ** implement that clause.  If the ExprList is the result set of a SELECT
681 ** then the KeyInfo structure is appropriate for initializing a virtual
682 ** index to implement a DISTINCT test.
683 **
684 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
685 ** function is responsible for seeing that this structure is eventually
686 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
687 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
688 */
689 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
690   sqlite3 *db = pParse->db;
691   int nExpr;
692   KeyInfo *pInfo;
693   struct ExprList_item *pItem;
694   int i;
695 
696   nExpr = pList->nExpr;
697   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
698   if( pInfo ){
699     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
700     pInfo->nField = nExpr;
701     pInfo->enc = ENC(db);
702     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
703       CollSeq *pColl;
704       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
705       if( !pColl ){
706         pColl = db->pDfltColl;
707       }
708       pInfo->aColl[i] = pColl;
709       pInfo->aSortOrder[i] = pItem->sortOrder;
710     }
711   }
712   return pInfo;
713 }
714 
715 
716 /*
717 ** If the inner loop was generated using a non-null pOrderBy argument,
718 ** then the results were placed in a sorter.  After the loop is terminated
719 ** we need to run the sorter and output the results.  The following
720 ** routine generates the code needed to do that.
721 */
722 static void generateSortTail(
723   Parse *pParse,   /* Parsing context */
724   Select *p,       /* The SELECT statement */
725   Vdbe *v,         /* Generate code into this VDBE */
726   int nColumn,     /* Number of columns of data */
727   int eDest,       /* Write the sorted results here */
728   int iParm        /* Optional parameter associated with eDest */
729 ){
730   int brk = sqlite3VdbeMakeLabel(v);
731   int cont = sqlite3VdbeMakeLabel(v);
732   int addr;
733   int iTab;
734   int pseudoTab = 0;
735   ExprList *pOrderBy = p->pOrderBy;
736 
737   iTab = pOrderBy->iECursor;
738   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
739     pseudoTab = pParse->nTab++;
740     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
741     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
742   }
743   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
744   codeOffset(v, p, cont, 0);
745   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
746     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
747   }
748   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
749   switch( eDest ){
750     case SRT_Table:
751     case SRT_EphemTab: {
752       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
753       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
754       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
755       break;
756     }
757 #ifndef SQLITE_OMIT_SUBQUERY
758     case SRT_Set: {
759       assert( nColumn==1 );
760       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
761       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
762       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
763       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
764       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
765       break;
766     }
767     case SRT_Mem: {
768       assert( nColumn==1 );
769       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
770       /* The LIMIT clause will terminate the loop for us */
771       break;
772     }
773 #endif
774     case SRT_Callback:
775     case SRT_Subroutine: {
776       int i;
777       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
778       for(i=0; i<nColumn; i++){
779         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
780       }
781       if( eDest==SRT_Callback ){
782         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
783       }else{
784         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
785       }
786       break;
787     }
788     default: {
789       /* Do nothing */
790       break;
791     }
792   }
793 
794   /* Jump to the end of the loop when the LIMIT is reached
795   */
796   if( p->iLimit>=0 ){
797     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
798     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
799   }
800 
801   /* The bottom of the loop
802   */
803   sqlite3VdbeResolveLabel(v, cont);
804   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
805   sqlite3VdbeResolveLabel(v, brk);
806   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
807     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
808   }
809 
810 }
811 
812 /*
813 ** Return a pointer to a string containing the 'declaration type' of the
814 ** expression pExpr. The string may be treated as static by the caller.
815 **
816 ** The declaration type is the exact datatype definition extracted from the
817 ** original CREATE TABLE statement if the expression is a column. The
818 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
819 ** is considered a column can be complex in the presence of subqueries. The
820 ** result-set expression in all of the following SELECT statements is
821 ** considered a column by this function.
822 **
823 **   SELECT col FROM tbl;
824 **   SELECT (SELECT col FROM tbl;
825 **   SELECT (SELECT col FROM tbl);
826 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
827 **
828 ** The declaration type for any expression other than a column is NULL.
829 */
830 static const char *columnType(
831   NameContext *pNC,
832   Expr *pExpr,
833   const char **pzOriginDb,
834   const char **pzOriginTab,
835   const char **pzOriginCol
836 ){
837   char const *zType = 0;
838   char const *zOriginDb = 0;
839   char const *zOriginTab = 0;
840   char const *zOriginCol = 0;
841   int j;
842   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
843 
844   switch( pExpr->op ){
845     case TK_AGG_COLUMN:
846     case TK_COLUMN: {
847       /* The expression is a column. Locate the table the column is being
848       ** extracted from in NameContext.pSrcList. This table may be real
849       ** database table or a subquery.
850       */
851       Table *pTab = 0;            /* Table structure column is extracted from */
852       Select *pS = 0;             /* Select the column is extracted from */
853       int iCol = pExpr->iColumn;  /* Index of column in pTab */
854       while( pNC && !pTab ){
855         SrcList *pTabList = pNC->pSrcList;
856         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
857         if( j<pTabList->nSrc ){
858           pTab = pTabList->a[j].pTab;
859           pS = pTabList->a[j].pSelect;
860         }else{
861           pNC = pNC->pNext;
862         }
863       }
864 
865       if( pTab==0 ){
866         /* FIX ME:
867         ** This can occurs if you have something like "SELECT new.x;" inside
868         ** a trigger.  In other words, if you reference the special "new"
869         ** table in the result set of a select.  We do not have a good way
870         ** to find the actual table type, so call it "TEXT".  This is really
871         ** something of a bug, but I do not know how to fix it.
872         **
873         ** This code does not produce the correct answer - it just prevents
874         ** a segfault.  See ticket #1229.
875         */
876         zType = "TEXT";
877         break;
878       }
879 
880       assert( pTab );
881       if( pS ){
882         /* The "table" is actually a sub-select or a view in the FROM clause
883         ** of the SELECT statement. Return the declaration type and origin
884         ** data for the result-set column of the sub-select.
885         */
886         if( iCol>=0 && iCol<pS->pEList->nExpr ){
887           /* If iCol is less than zero, then the expression requests the
888           ** rowid of the sub-select or view. This expression is legal (see
889           ** test case misc2.2.2) - it always evaluates to NULL.
890           */
891           NameContext sNC;
892           Expr *p = pS->pEList->a[iCol].pExpr;
893           sNC.pSrcList = pS->pSrc;
894           sNC.pNext = 0;
895           sNC.pParse = pNC->pParse;
896           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
897         }
898       }else if( pTab->pSchema ){
899         /* A real table */
900         assert( !pS );
901         if( iCol<0 ) iCol = pTab->iPKey;
902         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
903         if( iCol<0 ){
904           zType = "INTEGER";
905           zOriginCol = "rowid";
906         }else{
907           zType = pTab->aCol[iCol].zType;
908           zOriginCol = pTab->aCol[iCol].zName;
909         }
910         zOriginTab = pTab->zName;
911         if( pNC->pParse ){
912           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
913           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
914         }
915       }
916       break;
917     }
918 #ifndef SQLITE_OMIT_SUBQUERY
919     case TK_SELECT: {
920       /* The expression is a sub-select. Return the declaration type and
921       ** origin info for the single column in the result set of the SELECT
922       ** statement.
923       */
924       NameContext sNC;
925       Select *pS = pExpr->pSelect;
926       Expr *p = pS->pEList->a[0].pExpr;
927       sNC.pSrcList = pS->pSrc;
928       sNC.pNext = pNC;
929       sNC.pParse = pNC->pParse;
930       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
931       break;
932     }
933 #endif
934   }
935 
936   if( pzOriginDb ){
937     assert( pzOriginTab && pzOriginCol );
938     *pzOriginDb = zOriginDb;
939     *pzOriginTab = zOriginTab;
940     *pzOriginCol = zOriginCol;
941   }
942   return zType;
943 }
944 
945 /*
946 ** Generate code that will tell the VDBE the declaration types of columns
947 ** in the result set.
948 */
949 static void generateColumnTypes(
950   Parse *pParse,      /* Parser context */
951   SrcList *pTabList,  /* List of tables */
952   ExprList *pEList    /* Expressions defining the result set */
953 ){
954   Vdbe *v = pParse->pVdbe;
955   int i;
956   NameContext sNC;
957   sNC.pSrcList = pTabList;
958   sNC.pParse = pParse;
959   for(i=0; i<pEList->nExpr; i++){
960     Expr *p = pEList->a[i].pExpr;
961     const char *zOrigDb = 0;
962     const char *zOrigTab = 0;
963     const char *zOrigCol = 0;
964     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
965 
966     /* The vdbe must make it's own copy of the column-type and other
967     ** column specific strings, in case the schema is reset before this
968     ** virtual machine is deleted.
969     */
970     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
971     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
972     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
973     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
974   }
975 }
976 
977 /*
978 ** Generate code that will tell the VDBE the names of columns
979 ** in the result set.  This information is used to provide the
980 ** azCol[] values in the callback.
981 */
982 static void generateColumnNames(
983   Parse *pParse,      /* Parser context */
984   SrcList *pTabList,  /* List of tables */
985   ExprList *pEList    /* Expressions defining the result set */
986 ){
987   Vdbe *v = pParse->pVdbe;
988   int i, j;
989   sqlite3 *db = pParse->db;
990   int fullNames, shortNames;
991 
992 #ifndef SQLITE_OMIT_EXPLAIN
993   /* If this is an EXPLAIN, skip this step */
994   if( pParse->explain ){
995     return;
996   }
997 #endif
998 
999   assert( v!=0 );
1000   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1001   pParse->colNamesSet = 1;
1002   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1003   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1004   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1005   for(i=0; i<pEList->nExpr; i++){
1006     Expr *p;
1007     p = pEList->a[i].pExpr;
1008     if( p==0 ) continue;
1009     if( pEList->a[i].zName ){
1010       char *zName = pEList->a[i].zName;
1011       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1012       continue;
1013     }
1014     if( p->op==TK_COLUMN && pTabList ){
1015       Table *pTab;
1016       char *zCol;
1017       int iCol = p->iColumn;
1018       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1019       assert( j<pTabList->nSrc );
1020       pTab = pTabList->a[j].pTab;
1021       if( iCol<0 ) iCol = pTab->iPKey;
1022       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1023       if( iCol<0 ){
1024         zCol = "rowid";
1025       }else{
1026         zCol = pTab->aCol[iCol].zName;
1027       }
1028       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
1029         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1030       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1031         char *zName = 0;
1032         char *zTab;
1033 
1034         zTab = pTabList->a[j].zAlias;
1035         if( fullNames || zTab==0 ) zTab = pTab->zName;
1036         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1037         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1038       }else{
1039         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1040       }
1041     }else if( p->span.z && p->span.z[0] ){
1042       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1043       /* sqlite3VdbeCompressSpace(v, addr); */
1044     }else{
1045       char zName[30];
1046       assert( p->op!=TK_COLUMN || pTabList==0 );
1047       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1048       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1049     }
1050   }
1051   generateColumnTypes(pParse, pTabList, pEList);
1052 }
1053 
1054 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1055 /*
1056 ** Name of the connection operator, used for error messages.
1057 */
1058 static const char *selectOpName(int id){
1059   char *z;
1060   switch( id ){
1061     case TK_ALL:       z = "UNION ALL";   break;
1062     case TK_INTERSECT: z = "INTERSECT";   break;
1063     case TK_EXCEPT:    z = "EXCEPT";      break;
1064     default:           z = "UNION";       break;
1065   }
1066   return z;
1067 }
1068 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1069 
1070 /*
1071 ** Forward declaration
1072 */
1073 static int prepSelectStmt(Parse*, Select*);
1074 
1075 /*
1076 ** Given a SELECT statement, generate a Table structure that describes
1077 ** the result set of that SELECT.
1078 */
1079 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1080   Table *pTab;
1081   int i, j;
1082   ExprList *pEList;
1083   Column *aCol, *pCol;
1084   sqlite3 *db = pParse->db;
1085 
1086   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1087   if( prepSelectStmt(pParse, pSelect) ){
1088     return 0;
1089   }
1090   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1091     return 0;
1092   }
1093   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1094   if( pTab==0 ){
1095     return 0;
1096   }
1097   pTab->nRef = 1;
1098   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
1099   pEList = pSelect->pEList;
1100   pTab->nCol = pEList->nExpr;
1101   assert( pTab->nCol>0 );
1102   pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
1103   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1104     Expr *p, *pR;
1105     char *zType;
1106     char *zName;
1107     int nName;
1108     CollSeq *pColl;
1109     int cnt;
1110     NameContext sNC;
1111 
1112     /* Get an appropriate name for the column
1113     */
1114     p = pEList->a[i].pExpr;
1115     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1116     if( (zName = pEList->a[i].zName)!=0 ){
1117       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1118       zName = sqlite3DbStrDup(db, zName);
1119     }else if( p->op==TK_DOT
1120               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1121       /* For columns of the from A.B use B as the name */
1122       zName = sqlite3MPrintf(db, "%T", &pR->token);
1123     }else if( p->span.z && p->span.z[0] ){
1124       /* Use the original text of the column expression as its name */
1125       zName = sqlite3MPrintf(db, "%T", &p->span);
1126     }else{
1127       /* If all else fails, make up a name */
1128       zName = sqlite3MPrintf(db, "column%d", i+1);
1129     }
1130     if( !zName || db->mallocFailed ){
1131       db->mallocFailed = 1;
1132       sqlite3_free(zName);
1133       sqlite3DeleteTable(pTab);
1134       return 0;
1135     }
1136     sqlite3Dequote(zName);
1137 
1138     /* Make sure the column name is unique.  If the name is not unique,
1139     ** append a integer to the name so that it becomes unique.
1140     */
1141     nName = strlen(zName);
1142     for(j=cnt=0; j<i; j++){
1143       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1144         zName[nName] = 0;
1145         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
1146         j = -1;
1147         if( zName==0 ) break;
1148       }
1149     }
1150     pCol->zName = zName;
1151 
1152     /* Get the typename, type affinity, and collating sequence for the
1153     ** column.
1154     */
1155     memset(&sNC, 0, sizeof(sNC));
1156     sNC.pSrcList = pSelect->pSrc;
1157     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1158     pCol->zType = zType;
1159     pCol->affinity = sqlite3ExprAffinity(p);
1160     pColl = sqlite3ExprCollSeq(pParse, p);
1161     if( pColl ){
1162       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1163     }
1164   }
1165   pTab->iPKey = -1;
1166   return pTab;
1167 }
1168 
1169 /*
1170 ** Prepare a SELECT statement for processing by doing the following
1171 ** things:
1172 **
1173 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1174 **         element of the FROM clause.
1175 **
1176 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1177 **         defines FROM clause.  When views appear in the FROM clause,
1178 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1179 **         that implements the view.  A copy is made of the view's SELECT
1180 **         statement so that we can freely modify or delete that statement
1181 **         without worrying about messing up the presistent representation
1182 **         of the view.
1183 **
1184 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1185 **         on joins and the ON and USING clause of joins.
1186 **
1187 **    (4)  Scan the list of columns in the result set (pEList) looking
1188 **         for instances of the "*" operator or the TABLE.* operator.
1189 **         If found, expand each "*" to be every column in every table
1190 **         and TABLE.* to be every column in TABLE.
1191 **
1192 ** Return 0 on success.  If there are problems, leave an error message
1193 ** in pParse and return non-zero.
1194 */
1195 static int prepSelectStmt(Parse *pParse, Select *p){
1196   int i, j, k, rc;
1197   SrcList *pTabList;
1198   ExprList *pEList;
1199   struct SrcList_item *pFrom;
1200   sqlite3 *db = pParse->db;
1201 
1202   if( p==0 || p->pSrc==0 || db->mallocFailed ){
1203     return 1;
1204   }
1205   pTabList = p->pSrc;
1206   pEList = p->pEList;
1207 
1208   /* Make sure cursor numbers have been assigned to all entries in
1209   ** the FROM clause of the SELECT statement.
1210   */
1211   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1212 
1213   /* Look up every table named in the FROM clause of the select.  If
1214   ** an entry of the FROM clause is a subquery instead of a table or view,
1215   ** then create a transient table structure to describe the subquery.
1216   */
1217   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1218     Table *pTab;
1219     if( pFrom->pTab!=0 ){
1220       /* This statement has already been prepared.  There is no need
1221       ** to go further. */
1222       assert( i==0 );
1223       return 0;
1224     }
1225     if( pFrom->zName==0 ){
1226 #ifndef SQLITE_OMIT_SUBQUERY
1227       /* A sub-query in the FROM clause of a SELECT */
1228       assert( pFrom->pSelect!=0 );
1229       if( pFrom->zAlias==0 ){
1230         pFrom->zAlias =
1231           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
1232       }
1233       assert( pFrom->pTab==0 );
1234       pFrom->pTab = pTab =
1235         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1236       if( pTab==0 ){
1237         return 1;
1238       }
1239       /* The isEphem flag indicates that the Table structure has been
1240       ** dynamically allocated and may be freed at any time.  In other words,
1241       ** pTab is not pointing to a persistent table structure that defines
1242       ** part of the schema. */
1243       pTab->isEphem = 1;
1244 #endif
1245     }else{
1246       /* An ordinary table or view name in the FROM clause */
1247       assert( pFrom->pTab==0 );
1248       pFrom->pTab = pTab =
1249         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1250       if( pTab==0 ){
1251         return 1;
1252       }
1253       pTab->nRef++;
1254 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1255       if( pTab->pSelect || IsVirtual(pTab) ){
1256         /* We reach here if the named table is a really a view */
1257         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1258           return 1;
1259         }
1260         /* If pFrom->pSelect!=0 it means we are dealing with a
1261         ** view within a view.  The SELECT structure has already been
1262         ** copied by the outer view so we can skip the copy step here
1263         ** in the inner view.
1264         */
1265         if( pFrom->pSelect==0 ){
1266           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
1267         }
1268       }
1269 #endif
1270     }
1271   }
1272 
1273   /* Process NATURAL keywords, and ON and USING clauses of joins.
1274   */
1275   if( sqliteProcessJoin(pParse, p) ) return 1;
1276 
1277   /* For every "*" that occurs in the column list, insert the names of
1278   ** all columns in all tables.  And for every TABLE.* insert the names
1279   ** of all columns in TABLE.  The parser inserted a special expression
1280   ** with the TK_ALL operator for each "*" that it found in the column list.
1281   ** The following code just has to locate the TK_ALL expressions and expand
1282   ** each one to the list of all columns in all tables.
1283   **
1284   ** The first loop just checks to see if there are any "*" operators
1285   ** that need expanding.
1286   */
1287   for(k=0; k<pEList->nExpr; k++){
1288     Expr *pE = pEList->a[k].pExpr;
1289     if( pE->op==TK_ALL ) break;
1290     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1291          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1292   }
1293   rc = 0;
1294   if( k<pEList->nExpr ){
1295     /*
1296     ** If we get here it means the result set contains one or more "*"
1297     ** operators that need to be expanded.  Loop through each expression
1298     ** in the result set and expand them one by one.
1299     */
1300     struct ExprList_item *a = pEList->a;
1301     ExprList *pNew = 0;
1302     int flags = pParse->db->flags;
1303     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1304                       (flags & SQLITE_ShortColNames)==0;
1305 
1306     for(k=0; k<pEList->nExpr; k++){
1307       Expr *pE = a[k].pExpr;
1308       if( pE->op!=TK_ALL &&
1309            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1310         /* This particular expression does not need to be expanded.
1311         */
1312         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
1313         if( pNew ){
1314           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1315         }else{
1316           rc = 1;
1317         }
1318         a[k].pExpr = 0;
1319         a[k].zName = 0;
1320       }else{
1321         /* This expression is a "*" or a "TABLE.*" and needs to be
1322         ** expanded. */
1323         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1324         char *zTName;            /* text of name of TABLE */
1325         if( pE->op==TK_DOT && pE->pLeft ){
1326           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
1327         }else{
1328           zTName = 0;
1329         }
1330         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1331           Table *pTab = pFrom->pTab;
1332           char *zTabName = pFrom->zAlias;
1333           if( zTabName==0 || zTabName[0]==0 ){
1334             zTabName = pTab->zName;
1335           }
1336           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1337                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1338             continue;
1339           }
1340           tableSeen = 1;
1341           for(j=0; j<pTab->nCol; j++){
1342             Expr *pExpr, *pRight;
1343             char *zName = pTab->aCol[j].zName;
1344 
1345             /* If a column is marked as 'hidden' (currently only possible
1346             ** for virtual tables), do not include it in the expanded
1347             ** result-set list.
1348             */
1349             if( IsHiddenColumn(&pTab->aCol[j]) ){
1350               assert(IsVirtual(pTab));
1351               continue;
1352             }
1353 
1354             if( i>0 ){
1355               struct SrcList_item *pLeft = &pTabList->a[i-1];
1356               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1357                         columnIndex(pLeft->pTab, zName)>=0 ){
1358                 /* In a NATURAL join, omit the join columns from the
1359                 ** table on the right */
1360                 continue;
1361               }
1362               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1363                 /* In a join with a USING clause, omit columns in the
1364                 ** using clause from the table on the right. */
1365                 continue;
1366               }
1367             }
1368             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1369             if( pRight==0 ) break;
1370             setQuotedToken(pParse, &pRight->token, zName);
1371             if( zTabName && (longNames || pTabList->nSrc>1) ){
1372               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1373               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
1374               if( pExpr==0 ) break;
1375               setQuotedToken(pParse, &pLeft->token, zTabName);
1376               setToken(&pExpr->span,
1377                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
1378               pExpr->span.dyn = 1;
1379               pExpr->token.z = 0;
1380               pExpr->token.n = 0;
1381               pExpr->token.dyn = 0;
1382             }else{
1383               pExpr = pRight;
1384               pExpr->span = pExpr->token;
1385               pExpr->span.dyn = 0;
1386             }
1387             if( longNames ){
1388               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
1389             }else{
1390               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
1391             }
1392           }
1393         }
1394         if( !tableSeen ){
1395           if( zTName ){
1396             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1397           }else{
1398             sqlite3ErrorMsg(pParse, "no tables specified");
1399           }
1400           rc = 1;
1401         }
1402         sqlite3_free(zTName);
1403       }
1404     }
1405     sqlite3ExprListDelete(pEList);
1406     p->pEList = pNew;
1407   }
1408   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
1409     sqlite3ErrorMsg(pParse, "too many columns in result set");
1410     rc = SQLITE_ERROR;
1411   }
1412   if( db->mallocFailed ){
1413     rc = SQLITE_NOMEM;
1414   }
1415   return rc;
1416 }
1417 
1418 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1419 /*
1420 ** This routine associates entries in an ORDER BY expression list with
1421 ** columns in a result.  For each ORDER BY expression, the opcode of
1422 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1423 ** the top-level node is filled in with column number and the iTable
1424 ** value of the top-level node is filled with iTable parameter.
1425 **
1426 ** If there are prior SELECT clauses, they are processed first.  A match
1427 ** in an earlier SELECT takes precedence over a later SELECT.
1428 **
1429 ** Any entry that does not match is flagged as an error.  The number
1430 ** of errors is returned.
1431 */
1432 static int matchOrderbyToColumn(
1433   Parse *pParse,          /* A place to leave error messages */
1434   Select *pSelect,        /* Match to result columns of this SELECT */
1435   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1436   int iTable,             /* Insert this value in iTable */
1437   int mustComplete        /* If TRUE all ORDER BYs must match */
1438 ){
1439   int nErr = 0;
1440   int i, j;
1441   ExprList *pEList;
1442   sqlite3 *db = pParse->db;
1443 
1444   if( pSelect==0 || pOrderBy==0 ) return 1;
1445   if( mustComplete ){
1446     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1447   }
1448   if( prepSelectStmt(pParse, pSelect) ){
1449     return 1;
1450   }
1451   if( pSelect->pPrior ){
1452     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1453       return 1;
1454     }
1455   }
1456   pEList = pSelect->pEList;
1457   for(i=0; i<pOrderBy->nExpr; i++){
1458     struct ExprList_item *pItem;
1459     Expr *pE = pOrderBy->a[i].pExpr;
1460     int iCol = -1;
1461     char *zLabel;
1462 
1463     if( pOrderBy->a[i].done ) continue;
1464     if( sqlite3ExprIsInteger(pE, &iCol) ){
1465       if( iCol<=0 || iCol>pEList->nExpr ){
1466         sqlite3ErrorMsg(pParse,
1467           "ORDER BY position %d should be between 1 and %d",
1468           iCol, pEList->nExpr);
1469         nErr++;
1470         break;
1471       }
1472       if( !mustComplete ) continue;
1473       iCol--;
1474     }
1475     if( iCol<0 && (zLabel = sqlite3NameFromToken(db, &pE->token))!=0 ){
1476       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1477         char *zName;
1478         int isMatch;
1479         if( pItem->zName ){
1480           zName = sqlite3DbStrDup(db, pItem->zName);
1481         }else{
1482           zName = sqlite3NameFromToken(db, &pItem->pExpr->token);
1483         }
1484         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1485         sqlite3_free(zName);
1486         if( isMatch ){
1487           iCol = j;
1488           break;
1489         }
1490       }
1491       sqlite3_free(zLabel);
1492     }
1493     if( iCol>=0 ){
1494       pE->op = TK_COLUMN;
1495       pE->iColumn = iCol;
1496       pE->iTable = iTable;
1497       pE->iAgg = -1;
1498       pOrderBy->a[i].done = 1;
1499     }else if( mustComplete ){
1500       sqlite3ErrorMsg(pParse,
1501         "ORDER BY term number %d does not match any result column", i+1);
1502       nErr++;
1503       break;
1504     }
1505   }
1506   return nErr;
1507 }
1508 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1509 
1510 /*
1511 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1512 ** If an error occurs, return NULL and leave a message in pParse.
1513 */
1514 Vdbe *sqlite3GetVdbe(Parse *pParse){
1515   Vdbe *v = pParse->pVdbe;
1516   if( v==0 ){
1517     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1518   }
1519   return v;
1520 }
1521 
1522 
1523 /*
1524 ** Compute the iLimit and iOffset fields of the SELECT based on the
1525 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1526 ** that appear in the original SQL statement after the LIMIT and OFFSET
1527 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1528 ** are the integer memory register numbers for counters used to compute
1529 ** the limit and offset.  If there is no limit and/or offset, then
1530 ** iLimit and iOffset are negative.
1531 **
1532 ** This routine changes the values of iLimit and iOffset only if
1533 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1534 ** iOffset should have been preset to appropriate default values
1535 ** (usually but not always -1) prior to calling this routine.
1536 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1537 ** redefined.  The UNION ALL operator uses this property to force
1538 ** the reuse of the same limit and offset registers across multiple
1539 ** SELECT statements.
1540 */
1541 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1542   Vdbe *v = 0;
1543   int iLimit = 0;
1544   int iOffset;
1545   int addr1, addr2;
1546 
1547   /*
1548   ** "LIMIT -1" always shows all rows.  There is some
1549   ** contraversy about what the correct behavior should be.
1550   ** The current implementation interprets "LIMIT 0" to mean
1551   ** no rows.
1552   */
1553   if( p->pLimit ){
1554     p->iLimit = iLimit = pParse->nMem;
1555     pParse->nMem += 2;
1556     v = sqlite3GetVdbe(pParse);
1557     if( v==0 ) return;
1558     sqlite3ExprCode(pParse, p->pLimit);
1559     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1560     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
1561     VdbeComment((v, "# LIMIT counter"));
1562     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1563     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
1564   }
1565   if( p->pOffset ){
1566     p->iOffset = iOffset = pParse->nMem++;
1567     v = sqlite3GetVdbe(pParse);
1568     if( v==0 ) return;
1569     sqlite3ExprCode(pParse, p->pOffset);
1570     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1571     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1572     VdbeComment((v, "# OFFSET counter"));
1573     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1574     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1575     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1576     sqlite3VdbeJumpHere(v, addr1);
1577     if( p->pLimit ){
1578       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1579     }
1580   }
1581   if( p->pLimit ){
1582     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1583     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1584     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1585     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1586     sqlite3VdbeJumpHere(v, addr1);
1587     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1588     VdbeComment((v, "# LIMIT+OFFSET"));
1589     sqlite3VdbeJumpHere(v, addr2);
1590   }
1591 }
1592 
1593 /*
1594 ** Allocate a virtual index to use for sorting.
1595 */
1596 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1597   if( pOrderBy ){
1598     int addr;
1599     assert( pOrderBy->iECursor==0 );
1600     pOrderBy->iECursor = pParse->nTab++;
1601     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1602                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1603     assert( p->addrOpenEphm[2] == -1 );
1604     p->addrOpenEphm[2] = addr;
1605   }
1606 }
1607 
1608 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1609 /*
1610 ** Return the appropriate collating sequence for the iCol-th column of
1611 ** the result set for the compound-select statement "p".  Return NULL if
1612 ** the column has no default collating sequence.
1613 **
1614 ** The collating sequence for the compound select is taken from the
1615 ** left-most term of the select that has a collating sequence.
1616 */
1617 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1618   CollSeq *pRet;
1619   if( p->pPrior ){
1620     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1621   }else{
1622     pRet = 0;
1623   }
1624   if( pRet==0 ){
1625     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1626   }
1627   return pRet;
1628 }
1629 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1630 
1631 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1632 /*
1633 ** This routine is called to process a query that is really the union
1634 ** or intersection of two or more separate queries.
1635 **
1636 ** "p" points to the right-most of the two queries.  the query on the
1637 ** left is p->pPrior.  The left query could also be a compound query
1638 ** in which case this routine will be called recursively.
1639 **
1640 ** The results of the total query are to be written into a destination
1641 ** of type eDest with parameter iParm.
1642 **
1643 ** Example 1:  Consider a three-way compound SQL statement.
1644 **
1645 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1646 **
1647 ** This statement is parsed up as follows:
1648 **
1649 **     SELECT c FROM t3
1650 **      |
1651 **      `----->  SELECT b FROM t2
1652 **                |
1653 **                `------>  SELECT a FROM t1
1654 **
1655 ** The arrows in the diagram above represent the Select.pPrior pointer.
1656 ** So if this routine is called with p equal to the t3 query, then
1657 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1658 **
1659 ** Notice that because of the way SQLite parses compound SELECTs, the
1660 ** individual selects always group from left to right.
1661 */
1662 static int multiSelect(
1663   Parse *pParse,        /* Parsing context */
1664   Select *p,            /* The right-most of SELECTs to be coded */
1665   int eDest,            /* \___  Store query results as specified */
1666   int iParm,            /* /     by these two parameters.         */
1667   char *aff             /* If eDest is SRT_Union, the affinity string */
1668 ){
1669   int rc = SQLITE_OK;   /* Success code from a subroutine */
1670   Select *pPrior;       /* Another SELECT immediately to our left */
1671   Vdbe *v;              /* Generate code to this VDBE */
1672   int nCol;             /* Number of columns in the result set */
1673   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1674   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1675   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1676 
1677   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1678   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1679   */
1680   if( p==0 || p->pPrior==0 ){
1681     rc = 1;
1682     goto multi_select_end;
1683   }
1684   pPrior = p->pPrior;
1685   assert( pPrior->pRightmost!=pPrior );
1686   assert( pPrior->pRightmost==p->pRightmost );
1687   if( pPrior->pOrderBy ){
1688     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1689       selectOpName(p->op));
1690     rc = 1;
1691     goto multi_select_end;
1692   }
1693   if( pPrior->pLimit ){
1694     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1695       selectOpName(p->op));
1696     rc = 1;
1697     goto multi_select_end;
1698   }
1699 
1700   /* Make sure we have a valid query engine.  If not, create a new one.
1701   */
1702   v = sqlite3GetVdbe(pParse);
1703   if( v==0 ){
1704     rc = 1;
1705     goto multi_select_end;
1706   }
1707 
1708   /* Create the destination temporary table if necessary
1709   */
1710   if( eDest==SRT_EphemTab ){
1711     assert( p->pEList );
1712     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1713     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1714     eDest = SRT_Table;
1715   }
1716 
1717   /* Generate code for the left and right SELECT statements.
1718   */
1719   pOrderBy = p->pOrderBy;
1720   switch( p->op ){
1721     case TK_ALL: {
1722       if( pOrderBy==0 ){
1723         int addr = 0;
1724         assert( !pPrior->pLimit );
1725         pPrior->pLimit = p->pLimit;
1726         pPrior->pOffset = p->pOffset;
1727         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1728         p->pLimit = 0;
1729         p->pOffset = 0;
1730         if( rc ){
1731           goto multi_select_end;
1732         }
1733         p->pPrior = 0;
1734         p->iLimit = pPrior->iLimit;
1735         p->iOffset = pPrior->iOffset;
1736         if( p->iLimit>=0 ){
1737           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1738           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1739         }
1740         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1741         p->pPrior = pPrior;
1742         if( rc ){
1743           goto multi_select_end;
1744         }
1745         if( addr ){
1746           sqlite3VdbeJumpHere(v, addr);
1747         }
1748         break;
1749       }
1750       /* For UNION ALL ... ORDER BY fall through to the next case */
1751     }
1752     case TK_EXCEPT:
1753     case TK_UNION: {
1754       int unionTab;    /* Cursor number of the temporary table holding result */
1755       int op = 0;      /* One of the SRT_ operations to apply to self */
1756       int priorOp;     /* The SRT_ operation to apply to prior selects */
1757       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1758       int addr;
1759 
1760       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1761       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1762         /* We can reuse a temporary table generated by a SELECT to our
1763         ** right.
1764         */
1765         unionTab = iParm;
1766       }else{
1767         /* We will need to create our own temporary table to hold the
1768         ** intermediate results.
1769         */
1770         unionTab = pParse->nTab++;
1771         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1772           rc = 1;
1773           goto multi_select_end;
1774         }
1775         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1776         if( priorOp==SRT_Table ){
1777           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1778           aSetP2[nSetP2++] = addr;
1779         }else{
1780           assert( p->addrOpenEphm[0] == -1 );
1781           p->addrOpenEphm[0] = addr;
1782           p->pRightmost->usesEphm = 1;
1783         }
1784         createSortingIndex(pParse, p, pOrderBy);
1785         assert( p->pEList );
1786       }
1787 
1788       /* Code the SELECT statements to our left
1789       */
1790       assert( !pPrior->pOrderBy );
1791       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1792       if( rc ){
1793         goto multi_select_end;
1794       }
1795 
1796       /* Code the current SELECT statement
1797       */
1798       switch( p->op ){
1799          case TK_EXCEPT:  op = SRT_Except;   break;
1800          case TK_UNION:   op = SRT_Union;    break;
1801          case TK_ALL:     op = SRT_Table;    break;
1802       }
1803       p->pPrior = 0;
1804       p->pOrderBy = 0;
1805       p->disallowOrderBy = pOrderBy!=0;
1806       pLimit = p->pLimit;
1807       p->pLimit = 0;
1808       pOffset = p->pOffset;
1809       p->pOffset = 0;
1810       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1811       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1812       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1813       sqlite3ExprListDelete(p->pOrderBy);
1814       p->pPrior = pPrior;
1815       p->pOrderBy = pOrderBy;
1816       sqlite3ExprDelete(p->pLimit);
1817       p->pLimit = pLimit;
1818       p->pOffset = pOffset;
1819       p->iLimit = -1;
1820       p->iOffset = -1;
1821       if( rc ){
1822         goto multi_select_end;
1823       }
1824 
1825 
1826       /* Convert the data in the temporary table into whatever form
1827       ** it is that we currently need.
1828       */
1829       if( eDest!=priorOp || unionTab!=iParm ){
1830         int iCont, iBreak, iStart;
1831         assert( p->pEList );
1832         if( eDest==SRT_Callback ){
1833           Select *pFirst = p;
1834           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1835           generateColumnNames(pParse, 0, pFirst->pEList);
1836         }
1837         iBreak = sqlite3VdbeMakeLabel(v);
1838         iCont = sqlite3VdbeMakeLabel(v);
1839         computeLimitRegisters(pParse, p, iBreak);
1840         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1841         iStart = sqlite3VdbeCurrentAddr(v);
1842         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1843                              pOrderBy, -1, eDest, iParm,
1844                              iCont, iBreak, 0);
1845         if( rc ){
1846           rc = 1;
1847           goto multi_select_end;
1848         }
1849         sqlite3VdbeResolveLabel(v, iCont);
1850         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1851         sqlite3VdbeResolveLabel(v, iBreak);
1852         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1853       }
1854       break;
1855     }
1856     case TK_INTERSECT: {
1857       int tab1, tab2;
1858       int iCont, iBreak, iStart;
1859       Expr *pLimit, *pOffset;
1860       int addr;
1861 
1862       /* INTERSECT is different from the others since it requires
1863       ** two temporary tables.  Hence it has its own case.  Begin
1864       ** by allocating the tables we will need.
1865       */
1866       tab1 = pParse->nTab++;
1867       tab2 = pParse->nTab++;
1868       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1869         rc = 1;
1870         goto multi_select_end;
1871       }
1872       createSortingIndex(pParse, p, pOrderBy);
1873 
1874       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1875       assert( p->addrOpenEphm[0] == -1 );
1876       p->addrOpenEphm[0] = addr;
1877       p->pRightmost->usesEphm = 1;
1878       assert( p->pEList );
1879 
1880       /* Code the SELECTs to our left into temporary table "tab1".
1881       */
1882       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1883       if( rc ){
1884         goto multi_select_end;
1885       }
1886 
1887       /* Code the current SELECT into temporary table "tab2"
1888       */
1889       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1890       assert( p->addrOpenEphm[1] == -1 );
1891       p->addrOpenEphm[1] = addr;
1892       p->pPrior = 0;
1893       pLimit = p->pLimit;
1894       p->pLimit = 0;
1895       pOffset = p->pOffset;
1896       p->pOffset = 0;
1897       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1898       p->pPrior = pPrior;
1899       sqlite3ExprDelete(p->pLimit);
1900       p->pLimit = pLimit;
1901       p->pOffset = pOffset;
1902       if( rc ){
1903         goto multi_select_end;
1904       }
1905 
1906       /* Generate code to take the intersection of the two temporary
1907       ** tables.
1908       */
1909       assert( p->pEList );
1910       if( eDest==SRT_Callback ){
1911         Select *pFirst = p;
1912         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1913         generateColumnNames(pParse, 0, pFirst->pEList);
1914       }
1915       iBreak = sqlite3VdbeMakeLabel(v);
1916       iCont = sqlite3VdbeMakeLabel(v);
1917       computeLimitRegisters(pParse, p, iBreak);
1918       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1919       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1920       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1921       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1922                              pOrderBy, -1, eDest, iParm,
1923                              iCont, iBreak, 0);
1924       if( rc ){
1925         rc = 1;
1926         goto multi_select_end;
1927       }
1928       sqlite3VdbeResolveLabel(v, iCont);
1929       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1930       sqlite3VdbeResolveLabel(v, iBreak);
1931       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1932       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1933       break;
1934     }
1935   }
1936 
1937   /* Make sure all SELECTs in the statement have the same number of elements
1938   ** in their result sets.
1939   */
1940   assert( p->pEList && pPrior->pEList );
1941   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1942     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1943       " do not have the same number of result columns", selectOpName(p->op));
1944     rc = 1;
1945     goto multi_select_end;
1946   }
1947 
1948   /* Set the number of columns in temporary tables
1949   */
1950   nCol = p->pEList->nExpr;
1951   while( nSetP2 ){
1952     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1953   }
1954 
1955   /* Compute collating sequences used by either the ORDER BY clause or
1956   ** by any temporary tables needed to implement the compound select.
1957   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1958   ** ORDER BY processing if there is an ORDER BY clause.
1959   **
1960   ** This section is run by the right-most SELECT statement only.
1961   ** SELECT statements to the left always skip this part.  The right-most
1962   ** SELECT might also skip this part if it has no ORDER BY clause and
1963   ** no temp tables are required.
1964   */
1965   if( pOrderBy || p->usesEphm ){
1966     int i;                        /* Loop counter */
1967     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1968     Select *pLoop;                /* For looping through SELECT statements */
1969     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1970     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1971     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1972 
1973     assert( p->pRightmost==p );
1974     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1975     pKeyInfo = sqlite3DbMallocZero(pParse->db,
1976                        sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1977     if( !pKeyInfo ){
1978       rc = SQLITE_NOMEM;
1979       goto multi_select_end;
1980     }
1981 
1982     pKeyInfo->enc = ENC(pParse->db);
1983     pKeyInfo->nField = nCol;
1984 
1985     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1986       *apColl = multiSelectCollSeq(pParse, p, i);
1987       if( 0==*apColl ){
1988         *apColl = pParse->db->pDfltColl;
1989       }
1990     }
1991 
1992     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1993       for(i=0; i<2; i++){
1994         int addr = pLoop->addrOpenEphm[i];
1995         if( addr<0 ){
1996           /* If [0] is unused then [1] is also unused.  So we can
1997           ** always safely abort as soon as the first unused slot is found */
1998           assert( pLoop->addrOpenEphm[1]<0 );
1999           break;
2000         }
2001         sqlite3VdbeChangeP2(v, addr, nCol);
2002         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
2003         pLoop->addrOpenEphm[i] = -1;
2004       }
2005     }
2006 
2007     if( pOrderBy ){
2008       struct ExprList_item *pOTerm = pOrderBy->a;
2009       int nOrderByExpr = pOrderBy->nExpr;
2010       int addr;
2011       u8 *pSortOrder;
2012 
2013       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
2014       ** the compound select statements.  Except we have to change out the
2015       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
2016       ** reused when constructing the pKeyInfo for the ORDER BY, so make
2017       ** a copy.  Sufficient space to hold both the nCol entries for
2018       ** the compound select and the nOrderbyExpr entries for the ORDER BY
2019       ** was allocated above.  But we need to move the compound select
2020       ** entries out of the way before constructing the ORDER BY entries.
2021       ** Move the compound select entries into aCopy[] where they can be
2022       ** accessed and reused when constructing the ORDER BY entries.
2023       ** Because nCol might be greater than or less than nOrderByExpr
2024       ** we have to use memmove() when doing the copy.
2025       */
2026       aCopy = &pKeyInfo->aColl[nOrderByExpr];
2027       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
2028       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
2029 
2030       apColl = pKeyInfo->aColl;
2031       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
2032         Expr *pExpr = pOTerm->pExpr;
2033         if( (pExpr->flags & EP_ExpCollate) ){
2034           assert( pExpr->pColl!=0 );
2035           *apColl = pExpr->pColl;
2036         }else{
2037           *apColl = aCopy[pExpr->iColumn];
2038         }
2039         *pSortOrder = pOTerm->sortOrder;
2040       }
2041       assert( p->pRightmost==p );
2042       assert( p->addrOpenEphm[2]>=0 );
2043       addr = p->addrOpenEphm[2];
2044       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
2045       pKeyInfo->nField = nOrderByExpr;
2046       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2047       pKeyInfo = 0;
2048       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
2049     }
2050 
2051     sqlite3_free(pKeyInfo);
2052   }
2053 
2054 multi_select_end:
2055   return rc;
2056 }
2057 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2058 
2059 #ifndef SQLITE_OMIT_VIEW
2060 /* Forward Declarations */
2061 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2062 static void substSelect(sqlite3*, Select *, int, ExprList *);
2063 
2064 /*
2065 ** Scan through the expression pExpr.  Replace every reference to
2066 ** a column in table number iTable with a copy of the iColumn-th
2067 ** entry in pEList.  (But leave references to the ROWID column
2068 ** unchanged.)
2069 **
2070 ** This routine is part of the flattening procedure.  A subquery
2071 ** whose result set is defined by pEList appears as entry in the
2072 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2073 ** FORM clause entry is iTable.  This routine make the necessary
2074 ** changes to pExpr so that it refers directly to the source table
2075 ** of the subquery rather the result set of the subquery.
2076 */
2077 static void substExpr(
2078   sqlite3 *db,        /* Report malloc errors to this connection */
2079   Expr *pExpr,        /* Expr in which substitution occurs */
2080   int iTable,         /* Table to be substituted */
2081   ExprList *pEList    /* Substitute expressions */
2082 ){
2083   if( pExpr==0 ) return;
2084   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2085     if( pExpr->iColumn<0 ){
2086       pExpr->op = TK_NULL;
2087     }else{
2088       Expr *pNew;
2089       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2090       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2091       pNew = pEList->a[pExpr->iColumn].pExpr;
2092       assert( pNew!=0 );
2093       pExpr->op = pNew->op;
2094       assert( pExpr->pLeft==0 );
2095       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2096       assert( pExpr->pRight==0 );
2097       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2098       assert( pExpr->pList==0 );
2099       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2100       pExpr->iTable = pNew->iTable;
2101       pExpr->pTab = pNew->pTab;
2102       pExpr->iColumn = pNew->iColumn;
2103       pExpr->iAgg = pNew->iAgg;
2104       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2105       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2106       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2107       pExpr->flags = pNew->flags;
2108     }
2109   }else{
2110     substExpr(db, pExpr->pLeft, iTable, pEList);
2111     substExpr(db, pExpr->pRight, iTable, pEList);
2112     substSelect(db, pExpr->pSelect, iTable, pEList);
2113     substExprList(db, pExpr->pList, iTable, pEList);
2114   }
2115 }
2116 static void substExprList(
2117   sqlite3 *db,         /* Report malloc errors here */
2118   ExprList *pList,     /* List to scan and in which to make substitutes */
2119   int iTable,          /* Table to be substituted */
2120   ExprList *pEList     /* Substitute values */
2121 ){
2122   int i;
2123   if( pList==0 ) return;
2124   for(i=0; i<pList->nExpr; i++){
2125     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2126   }
2127 }
2128 static void substSelect(
2129   sqlite3 *db,         /* Report malloc errors here */
2130   Select *p,           /* SELECT statement in which to make substitutions */
2131   int iTable,          /* Table to be replaced */
2132   ExprList *pEList     /* Substitute values */
2133 ){
2134   if( !p ) return;
2135   substExprList(db, p->pEList, iTable, pEList);
2136   substExprList(db, p->pGroupBy, iTable, pEList);
2137   substExprList(db, p->pOrderBy, iTable, pEList);
2138   substExpr(db, p->pHaving, iTable, pEList);
2139   substExpr(db, p->pWhere, iTable, pEList);
2140   substSelect(db, p->pPrior, iTable, pEList);
2141 }
2142 #endif /* !defined(SQLITE_OMIT_VIEW) */
2143 
2144 #ifndef SQLITE_OMIT_VIEW
2145 /*
2146 ** This routine attempts to flatten subqueries in order to speed
2147 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2148 ** occurs.
2149 **
2150 ** To understand the concept of flattening, consider the following
2151 ** query:
2152 **
2153 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2154 **
2155 ** The default way of implementing this query is to execute the
2156 ** subquery first and store the results in a temporary table, then
2157 ** run the outer query on that temporary table.  This requires two
2158 ** passes over the data.  Furthermore, because the temporary table
2159 ** has no indices, the WHERE clause on the outer query cannot be
2160 ** optimized.
2161 **
2162 ** This routine attempts to rewrite queries such as the above into
2163 ** a single flat select, like this:
2164 **
2165 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2166 **
2167 ** The code generated for this simpification gives the same result
2168 ** but only has to scan the data once.  And because indices might
2169 ** exist on the table t1, a complete scan of the data might be
2170 ** avoided.
2171 **
2172 ** Flattening is only attempted if all of the following are true:
2173 **
2174 **   (1)  The subquery and the outer query do not both use aggregates.
2175 **
2176 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2177 **
2178 **   (3)  The subquery is not the right operand of a left outer join, or
2179 **        the subquery is not itself a join.  (Ticket #306)
2180 **
2181 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2182 **
2183 **   (5)  The subquery is not DISTINCT or the outer query does not use
2184 **        aggregates.
2185 **
2186 **   (6)  The subquery does not use aggregates or the outer query is not
2187 **        DISTINCT.
2188 **
2189 **   (7)  The subquery has a FROM clause.
2190 **
2191 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2192 **
2193 **   (9)  The subquery does not use LIMIT or the outer query does not use
2194 **        aggregates.
2195 **
2196 **  (10)  The subquery does not use aggregates or the outer query does not
2197 **        use LIMIT.
2198 **
2199 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2200 **
2201 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2202 **        subquery has no WHERE clause.  (added by ticket #350)
2203 **
2204 **  (13)  The subquery and outer query do not both use LIMIT
2205 **
2206 **  (14)  The subquery does not use OFFSET
2207 **
2208 **  (15)  The outer query is not part of a compound select or the
2209 **        subquery does not have both an ORDER BY and a LIMIT clause.
2210 **        (See ticket #2339)
2211 **
2212 ** In this routine, the "p" parameter is a pointer to the outer query.
2213 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2214 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2215 **
2216 ** If flattening is not attempted, this routine is a no-op and returns 0.
2217 ** If flattening is attempted this routine returns 1.
2218 **
2219 ** All of the expression analysis must occur on both the outer query and
2220 ** the subquery before this routine runs.
2221 */
2222 static int flattenSubquery(
2223   sqlite3 *db,         /* Database connection */
2224   Select *p,           /* The parent or outer SELECT statement */
2225   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2226   int isAgg,           /* True if outer SELECT uses aggregate functions */
2227   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2228 ){
2229   Select *pSub;       /* The inner query or "subquery" */
2230   SrcList *pSrc;      /* The FROM clause of the outer query */
2231   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2232   ExprList *pList;    /* The result set of the outer query */
2233   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2234   int i;              /* Loop counter */
2235   Expr *pWhere;                    /* The WHERE clause */
2236   struct SrcList_item *pSubitem;   /* The subquery */
2237 
2238   /* Check to see if flattening is permitted.  Return 0 if not.
2239   */
2240   if( p==0 ) return 0;
2241   pSrc = p->pSrc;
2242   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2243   pSubitem = &pSrc->a[iFrom];
2244   pSub = pSubitem->pSelect;
2245   assert( pSub!=0 );
2246   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2247   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2248   pSubSrc = pSub->pSrc;
2249   assert( pSubSrc );
2250   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2251   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2252   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2253   ** became arbitrary expressions, we were forced to add restrictions (13)
2254   ** and (14). */
2255   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2256   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2257   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2258     return 0;                                            /* Restriction (15) */
2259   }
2260   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2261   if( (pSub->isDistinct || pSub->pLimit)
2262          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2263      return 0;
2264   }
2265   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2266   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2267      return 0;                                           /* Restriction (11) */
2268   }
2269 
2270   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2271   ** not used as the right operand of an outer join.  Examples of why this
2272   ** is not allowed:
2273   **
2274   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2275   **
2276   ** If we flatten the above, we would get
2277   **
2278   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2279   **
2280   ** which is not at all the same thing.
2281   */
2282   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2283     return 0;
2284   }
2285 
2286   /* Restriction 12:  If the subquery is the right operand of a left outer
2287   ** join, make sure the subquery has no WHERE clause.
2288   ** An examples of why this is not allowed:
2289   **
2290   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2291   **
2292   ** If we flatten the above, we would get
2293   **
2294   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2295   **
2296   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2297   ** effectively converts the OUTER JOIN into an INNER JOIN.
2298   */
2299   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2300     return 0;
2301   }
2302 
2303   /* If we reach this point, it means flattening is permitted for the
2304   ** iFrom-th entry of the FROM clause in the outer query.
2305   */
2306 
2307   /* Move all of the FROM elements of the subquery into the
2308   ** the FROM clause of the outer query.  Before doing this, remember
2309   ** the cursor number for the original outer query FROM element in
2310   ** iParent.  The iParent cursor will never be used.  Subsequent code
2311   ** will scan expressions looking for iParent references and replace
2312   ** those references with expressions that resolve to the subquery FROM
2313   ** elements we are now copying in.
2314   */
2315   iParent = pSubitem->iCursor;
2316   {
2317     int nSubSrc = pSubSrc->nSrc;
2318     int jointype = pSubitem->jointype;
2319 
2320     sqlite3DeleteTable(pSubitem->pTab);
2321     sqlite3_free(pSubitem->zDatabase);
2322     sqlite3_free(pSubitem->zName);
2323     sqlite3_free(pSubitem->zAlias);
2324     if( nSubSrc>1 ){
2325       int extra = nSubSrc - 1;
2326       for(i=1; i<nSubSrc; i++){
2327         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
2328       }
2329       p->pSrc = pSrc;
2330       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2331         pSrc->a[i] = pSrc->a[i-extra];
2332       }
2333     }
2334     for(i=0; i<nSubSrc; i++){
2335       pSrc->a[i+iFrom] = pSubSrc->a[i];
2336       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2337     }
2338     pSrc->a[iFrom].jointype = jointype;
2339   }
2340 
2341   /* Now begin substituting subquery result set expressions for
2342   ** references to the iParent in the outer query.
2343   **
2344   ** Example:
2345   **
2346   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2347   **   \                     \_____________ subquery __________/          /
2348   **    \_____________________ outer query ______________________________/
2349   **
2350   ** We look at every expression in the outer query and every place we see
2351   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2352   */
2353   pList = p->pEList;
2354   for(i=0; i<pList->nExpr; i++){
2355     Expr *pExpr;
2356     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2357       pList->a[i].zName =
2358              sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2359     }
2360   }
2361   substExprList(db, p->pEList, iParent, pSub->pEList);
2362   if( isAgg ){
2363     substExprList(db, p->pGroupBy, iParent, pSub->pEList);
2364     substExpr(db, p->pHaving, iParent, pSub->pEList);
2365   }
2366   if( pSub->pOrderBy ){
2367     assert( p->pOrderBy==0 );
2368     p->pOrderBy = pSub->pOrderBy;
2369     pSub->pOrderBy = 0;
2370   }else if( p->pOrderBy ){
2371     substExprList(db, p->pOrderBy, iParent, pSub->pEList);
2372   }
2373   if( pSub->pWhere ){
2374     pWhere = sqlite3ExprDup(db, pSub->pWhere);
2375   }else{
2376     pWhere = 0;
2377   }
2378   if( subqueryIsAgg ){
2379     assert( p->pHaving==0 );
2380     p->pHaving = p->pWhere;
2381     p->pWhere = pWhere;
2382     substExpr(db, p->pHaving, iParent, pSub->pEList);
2383     p->pHaving = sqlite3ExprAnd(db, p->pHaving,
2384                                 sqlite3ExprDup(db, pSub->pHaving));
2385     assert( p->pGroupBy==0 );
2386     p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
2387   }else{
2388     substExpr(db, p->pWhere, iParent, pSub->pEList);
2389     p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
2390   }
2391 
2392   /* The flattened query is distinct if either the inner or the
2393   ** outer query is distinct.
2394   */
2395   p->isDistinct = p->isDistinct || pSub->isDistinct;
2396 
2397   /*
2398   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2399   **
2400   ** One is tempted to try to add a and b to combine the limits.  But this
2401   ** does not work if either limit is negative.
2402   */
2403   if( pSub->pLimit ){
2404     p->pLimit = pSub->pLimit;
2405     pSub->pLimit = 0;
2406   }
2407 
2408   /* Finially, delete what is left of the subquery and return
2409   ** success.
2410   */
2411   sqlite3SelectDelete(pSub);
2412   return 1;
2413 }
2414 #endif /* SQLITE_OMIT_VIEW */
2415 
2416 /*
2417 ** Analyze the SELECT statement passed in as an argument to see if it
2418 ** is a simple min() or max() query.  If it is and this query can be
2419 ** satisfied using a single seek to the beginning or end of an index,
2420 ** then generate the code for this SELECT and return 1.  If this is not a
2421 ** simple min() or max() query, then return 0;
2422 **
2423 ** A simply min() or max() query looks like this:
2424 **
2425 **    SELECT min(a) FROM table;
2426 **    SELECT max(a) FROM table;
2427 **
2428 ** The query may have only a single table in its FROM argument.  There
2429 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2430 ** be the min() or max() of a single column of the table.  The column
2431 ** in the min() or max() function must be indexed.
2432 **
2433 ** The parameters to this routine are the same as for sqlite3Select().
2434 ** See the header comment on that routine for additional information.
2435 */
2436 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2437   Expr *pExpr;
2438   int iCol;
2439   Table *pTab;
2440   Index *pIdx;
2441   int base;
2442   Vdbe *v;
2443   int seekOp;
2444   ExprList *pEList, *pList, eList;
2445   struct ExprList_item eListItem;
2446   SrcList *pSrc;
2447   int brk;
2448   int iDb;
2449 
2450   /* Check to see if this query is a simple min() or max() query.  Return
2451   ** zero if it is  not.
2452   */
2453   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2454   pSrc = p->pSrc;
2455   if( pSrc->nSrc!=1 ) return 0;
2456   pEList = p->pEList;
2457   if( pEList->nExpr!=1 ) return 0;
2458   pExpr = pEList->a[0].pExpr;
2459   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2460   pList = pExpr->pList;
2461   if( pList==0 || pList->nExpr!=1 ) return 0;
2462   if( pExpr->token.n!=3 ) return 0;
2463   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2464     seekOp = OP_Rewind;
2465   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2466     seekOp = OP_Last;
2467   }else{
2468     return 0;
2469   }
2470   pExpr = pList->a[0].pExpr;
2471   if( pExpr->op!=TK_COLUMN ) return 0;
2472   iCol = pExpr->iColumn;
2473   pTab = pSrc->a[0].pTab;
2474 
2475   /* This optimization cannot be used with virtual tables. */
2476   if( IsVirtual(pTab) ) return 0;
2477 
2478   /* If we get to here, it means the query is of the correct form.
2479   ** Check to make sure we have an index and make pIdx point to the
2480   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2481   ** key column, no index is necessary so set pIdx to NULL.  If no
2482   ** usable index is found, return 0.
2483   */
2484   if( iCol<0 ){
2485     pIdx = 0;
2486   }else{
2487     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2488     if( pColl==0 ) return 0;
2489     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2490       assert( pIdx->nColumn>=1 );
2491       if( pIdx->aiColumn[0]==iCol &&
2492           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2493         break;
2494       }
2495     }
2496     if( pIdx==0 ) return 0;
2497   }
2498 
2499   /* Identify column types if we will be using the callback.  This
2500   ** step is skipped if the output is going to a table or a memory cell.
2501   ** The column names have already been generated in the calling function.
2502   */
2503   v = sqlite3GetVdbe(pParse);
2504   if( v==0 ) return 0;
2505 
2506   /* If the output is destined for a temporary table, open that table.
2507   */
2508   if( eDest==SRT_EphemTab ){
2509     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2510   }
2511 
2512   /* Generating code to find the min or the max.  Basically all we have
2513   ** to do is find the first or the last entry in the chosen index.  If
2514   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2515   ** or last entry in the main table.
2516   */
2517   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2518   assert( iDb>=0 || pTab->isEphem );
2519   sqlite3CodeVerifySchema(pParse, iDb);
2520   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2521   base = pSrc->a[0].iCursor;
2522   brk = sqlite3VdbeMakeLabel(v);
2523   computeLimitRegisters(pParse, p, brk);
2524   if( pSrc->a[0].pSelect==0 ){
2525     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2526   }
2527   if( pIdx==0 ){
2528     sqlite3VdbeAddOp(v, seekOp, base, 0);
2529   }else{
2530     /* Even though the cursor used to open the index here is closed
2531     ** as soon as a single value has been read from it, allocate it
2532     ** using (pParse->nTab++) to prevent the cursor id from being
2533     ** reused. This is important for statements of the form
2534     ** "INSERT INTO x SELECT max() FROM x".
2535     */
2536     int iIdx;
2537     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2538     iIdx = pParse->nTab++;
2539     assert( pIdx->pSchema==pTab->pSchema );
2540     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2541     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2542         (char*)pKey, P3_KEYINFO_HANDOFF);
2543     if( seekOp==OP_Rewind ){
2544       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2545       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2546       seekOp = OP_MoveGt;
2547     }
2548     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
2549       /* Ticket #2514: invert the seek operator if we are using
2550       ** a descending index. */
2551       if( seekOp==OP_Last ){
2552         seekOp = OP_Rewind;
2553       }else{
2554         assert( seekOp==OP_MoveGt );
2555         seekOp = OP_MoveLt;
2556       }
2557     }
2558     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2559     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2560     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2561     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2562   }
2563   eList.nExpr = 1;
2564   memset(&eListItem, 0, sizeof(eListItem));
2565   eList.a = &eListItem;
2566   eList.a[0].pExpr = pExpr;
2567   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2568   sqlite3VdbeResolveLabel(v, brk);
2569   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2570 
2571   return 1;
2572 }
2573 
2574 /*
2575 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2576 ** the number of errors seen.
2577 **
2578 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2579 ** is an integer constant, then that expression is replaced by the
2580 ** corresponding entry in the result set.
2581 */
2582 static int processOrderGroupBy(
2583   NameContext *pNC,     /* Name context of the SELECT statement. */
2584   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2585   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2586 ){
2587   int i;
2588   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2589   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2590   assert( pEList );
2591 
2592   if( pOrderBy==0 ) return 0;
2593   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
2594     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
2595     return 1;
2596   }
2597   for(i=0; i<pOrderBy->nExpr; i++){
2598     int iCol;
2599     Expr *pE = pOrderBy->a[i].pExpr;
2600     if( sqlite3ExprIsInteger(pE, &iCol) ){
2601       if( iCol>0 && iCol<=pEList->nExpr ){
2602         CollSeq *pColl = pE->pColl;
2603         int flags = pE->flags & EP_ExpCollate;
2604         sqlite3ExprDelete(pE);
2605         pE = sqlite3ExprDup(pParse->db, pEList->a[iCol-1].pExpr);
2606         pOrderBy->a[i].pExpr = pE;
2607         if( pColl && flags ){
2608           pE->pColl = pColl;
2609           pE->flags |= flags;
2610         }
2611       }else{
2612         sqlite3ErrorMsg(pParse,
2613            "%s BY column number %d out of range - should be "
2614            "between 1 and %d", zType, iCol, pEList->nExpr);
2615         return 1;
2616       }
2617     }
2618     if( sqlite3ExprResolveNames(pNC, pE) ){
2619       return 1;
2620     }
2621   }
2622   return 0;
2623 }
2624 
2625 /*
2626 ** This routine resolves any names used in the result set of the
2627 ** supplied SELECT statement. If the SELECT statement being resolved
2628 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2629 ** of the parent SELECT.
2630 */
2631 int sqlite3SelectResolve(
2632   Parse *pParse,         /* The parser context */
2633   Select *p,             /* The SELECT statement being coded. */
2634   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2635 ){
2636   ExprList *pEList;          /* Result set. */
2637   int i;                     /* For-loop variable used in multiple places */
2638   NameContext sNC;           /* Local name-context */
2639   ExprList *pGroupBy;        /* The group by clause */
2640 
2641   /* If this routine has run before, return immediately. */
2642   if( p->isResolved ){
2643     assert( !pOuterNC );
2644     return SQLITE_OK;
2645   }
2646   p->isResolved = 1;
2647 
2648   /* If there have already been errors, do nothing. */
2649   if( pParse->nErr>0 ){
2650     return SQLITE_ERROR;
2651   }
2652 
2653   /* Prepare the select statement. This call will allocate all cursors
2654   ** required to handle the tables and subqueries in the FROM clause.
2655   */
2656   if( prepSelectStmt(pParse, p) ){
2657     return SQLITE_ERROR;
2658   }
2659 
2660   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2661   ** are not allowed to refer to any names, so pass an empty NameContext.
2662   */
2663   memset(&sNC, 0, sizeof(sNC));
2664   sNC.pParse = pParse;
2665   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2666       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2667     return SQLITE_ERROR;
2668   }
2669 
2670   /* Set up the local name-context to pass to ExprResolveNames() to
2671   ** resolve the expression-list.
2672   */
2673   sNC.allowAgg = 1;
2674   sNC.pSrcList = p->pSrc;
2675   sNC.pNext = pOuterNC;
2676 
2677   /* Resolve names in the result set. */
2678   pEList = p->pEList;
2679   if( !pEList ) return SQLITE_ERROR;
2680   for(i=0; i<pEList->nExpr; i++){
2681     Expr *pX = pEList->a[i].pExpr;
2682     if( sqlite3ExprResolveNames(&sNC, pX) ){
2683       return SQLITE_ERROR;
2684     }
2685   }
2686 
2687   /* If there are no aggregate functions in the result-set, and no GROUP BY
2688   ** expression, do not allow aggregates in any of the other expressions.
2689   */
2690   assert( !p->isAgg );
2691   pGroupBy = p->pGroupBy;
2692   if( pGroupBy || sNC.hasAgg ){
2693     p->isAgg = 1;
2694   }else{
2695     sNC.allowAgg = 0;
2696   }
2697 
2698   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2699   */
2700   if( p->pHaving && !pGroupBy ){
2701     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2702     return SQLITE_ERROR;
2703   }
2704 
2705   /* Add the expression list to the name-context before parsing the
2706   ** other expressions in the SELECT statement. This is so that
2707   ** expressions in the WHERE clause (etc.) can refer to expressions by
2708   ** aliases in the result set.
2709   **
2710   ** Minor point: If this is the case, then the expression will be
2711   ** re-evaluated for each reference to it.
2712   */
2713   sNC.pEList = p->pEList;
2714   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2715      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2716     return SQLITE_ERROR;
2717   }
2718   if( p->pPrior==0 ){
2719     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2720         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2721       return SQLITE_ERROR;
2722     }
2723   }
2724 
2725   if( pParse->db->mallocFailed ){
2726     return SQLITE_NOMEM;
2727   }
2728 
2729   /* Make sure the GROUP BY clause does not contain aggregate functions.
2730   */
2731   if( pGroupBy ){
2732     struct ExprList_item *pItem;
2733 
2734     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2735       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2736         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2737             "the GROUP BY clause");
2738         return SQLITE_ERROR;
2739       }
2740     }
2741   }
2742 
2743   /* If this is one SELECT of a compound, be sure to resolve names
2744   ** in the other SELECTs.
2745   */
2746   if( p->pPrior ){
2747     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2748   }else{
2749     return SQLITE_OK;
2750   }
2751 }
2752 
2753 /*
2754 ** Reset the aggregate accumulator.
2755 **
2756 ** The aggregate accumulator is a set of memory cells that hold
2757 ** intermediate results while calculating an aggregate.  This
2758 ** routine simply stores NULLs in all of those memory cells.
2759 */
2760 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2761   Vdbe *v = pParse->pVdbe;
2762   int i;
2763   struct AggInfo_func *pFunc;
2764   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2765     return;
2766   }
2767   for(i=0; i<pAggInfo->nColumn; i++){
2768     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2769   }
2770   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2771     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2772     if( pFunc->iDistinct>=0 ){
2773       Expr *pE = pFunc->pExpr;
2774       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2775         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2776            "by an expression");
2777         pFunc->iDistinct = -1;
2778       }else{
2779         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2780         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2781                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2782       }
2783     }
2784   }
2785 }
2786 
2787 /*
2788 ** Invoke the OP_AggFinalize opcode for every aggregate function
2789 ** in the AggInfo structure.
2790 */
2791 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2792   Vdbe *v = pParse->pVdbe;
2793   int i;
2794   struct AggInfo_func *pF;
2795   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2796     ExprList *pList = pF->pExpr->pList;
2797     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2798                       (void*)pF->pFunc, P3_FUNCDEF);
2799   }
2800 }
2801 
2802 /*
2803 ** Update the accumulator memory cells for an aggregate based on
2804 ** the current cursor position.
2805 */
2806 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2807   Vdbe *v = pParse->pVdbe;
2808   int i;
2809   struct AggInfo_func *pF;
2810   struct AggInfo_col *pC;
2811 
2812   pAggInfo->directMode = 1;
2813   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2814     int nArg;
2815     int addrNext = 0;
2816     ExprList *pList = pF->pExpr->pList;
2817     if( pList ){
2818       nArg = pList->nExpr;
2819       sqlite3ExprCodeExprList(pParse, pList);
2820     }else{
2821       nArg = 0;
2822     }
2823     if( pF->iDistinct>=0 ){
2824       addrNext = sqlite3VdbeMakeLabel(v);
2825       assert( nArg==1 );
2826       codeDistinct(v, pF->iDistinct, addrNext, 1);
2827     }
2828     if( pF->pFunc->needCollSeq ){
2829       CollSeq *pColl = 0;
2830       struct ExprList_item *pItem;
2831       int j;
2832       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2833       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2834         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2835       }
2836       if( !pColl ){
2837         pColl = pParse->db->pDfltColl;
2838       }
2839       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2840     }
2841     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2842     if( addrNext ){
2843       sqlite3VdbeResolveLabel(v, addrNext);
2844     }
2845   }
2846   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2847     sqlite3ExprCode(pParse, pC->pExpr);
2848     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2849   }
2850   pAggInfo->directMode = 0;
2851 }
2852 
2853 
2854 /*
2855 ** Generate code for the given SELECT statement.
2856 **
2857 ** The results are distributed in various ways depending on the
2858 ** value of eDest and iParm.
2859 **
2860 **     eDest Value       Result
2861 **     ------------    -------------------------------------------
2862 **     SRT_Callback    Invoke the callback for each row of the result.
2863 **
2864 **     SRT_Mem         Store first result in memory cell iParm
2865 **
2866 **     SRT_Set         Store results as keys of table iParm.
2867 **
2868 **     SRT_Union       Store results as a key in a temporary table iParm
2869 **
2870 **     SRT_Except      Remove results from the temporary table iParm.
2871 **
2872 **     SRT_Table       Store results in temporary table iParm
2873 **
2874 ** The table above is incomplete.  Additional eDist value have be added
2875 ** since this comment was written.  See the selectInnerLoop() function for
2876 ** a complete listing of the allowed values of eDest and their meanings.
2877 **
2878 ** This routine returns the number of errors.  If any errors are
2879 ** encountered, then an appropriate error message is left in
2880 ** pParse->zErrMsg.
2881 **
2882 ** This routine does NOT free the Select structure passed in.  The
2883 ** calling function needs to do that.
2884 **
2885 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2886 ** SELECT is a subquery.  This routine may try to combine this SELECT
2887 ** with its parent to form a single flat query.  In so doing, it might
2888 ** change the parent query from a non-aggregate to an aggregate query.
2889 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2890 ** can be changed.
2891 **
2892 ** Example 1:   The meaning of the pParent parameter.
2893 **
2894 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2895 **    \                      \_______ subquery _______/        /
2896 **     \                                                      /
2897 **      \____________________ outer query ___________________/
2898 **
2899 ** This routine is called for the outer query first.   For that call,
2900 ** pParent will be NULL.  During the processing of the outer query, this
2901 ** routine is called recursively to handle the subquery.  For the recursive
2902 ** call, pParent will point to the outer query.  Because the subquery is
2903 ** the second element in a three-way join, the parentTab parameter will
2904 ** be 1 (the 2nd value of a 0-indexed array.)
2905 */
2906 int sqlite3Select(
2907   Parse *pParse,         /* The parser context */
2908   Select *p,             /* The SELECT statement being coded. */
2909   int eDest,             /* How to dispose of the results */
2910   int iParm,             /* A parameter used by the eDest disposal method */
2911   Select *pParent,       /* Another SELECT for which this is a sub-query */
2912   int parentTab,         /* Index in pParent->pSrc of this query */
2913   int *pParentAgg,       /* True if pParent uses aggregate functions */
2914   char *aff              /* If eDest is SRT_Union, the affinity string */
2915 ){
2916   int i, j;              /* Loop counters */
2917   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2918   Vdbe *v;               /* The virtual machine under construction */
2919   int isAgg;             /* True for select lists like "count(*)" */
2920   ExprList *pEList;      /* List of columns to extract. */
2921   SrcList *pTabList;     /* List of tables to select from */
2922   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2923   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2924   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2925   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2926   int isDistinct;        /* True if the DISTINCT keyword is present */
2927   int distinct;          /* Table to use for the distinct set */
2928   int rc = 1;            /* Value to return from this function */
2929   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2930   AggInfo sAggInfo;      /* Information used by aggregate queries */
2931   int iEnd;              /* Address of the end of the query */
2932   sqlite3 *db;           /* The database connection */
2933 
2934   db = pParse->db;
2935   if( p==0 || db->mallocFailed || pParse->nErr ){
2936     return 1;
2937   }
2938   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2939   memset(&sAggInfo, 0, sizeof(sAggInfo));
2940 
2941 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2942   /* If there is are a sequence of queries, do the earlier ones first.
2943   */
2944   if( p->pPrior ){
2945     if( p->pRightmost==0 ){
2946       Select *pLoop;
2947       int cnt = 0;
2948       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
2949         pLoop->pRightmost = p;
2950       }
2951       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
2952         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
2953         return 1;
2954       }
2955     }
2956     return multiSelect(pParse, p, eDest, iParm, aff);
2957   }
2958 #endif
2959 
2960   pOrderBy = p->pOrderBy;
2961   if( IgnorableOrderby(eDest) ){
2962     p->pOrderBy = 0;
2963   }
2964   if( sqlite3SelectResolve(pParse, p, 0) ){
2965     goto select_end;
2966   }
2967   p->pOrderBy = pOrderBy;
2968 
2969   /* Make local copies of the parameters for this query.
2970   */
2971   pTabList = p->pSrc;
2972   pWhere = p->pWhere;
2973   pGroupBy = p->pGroupBy;
2974   pHaving = p->pHaving;
2975   isAgg = p->isAgg;
2976   isDistinct = p->isDistinct;
2977   pEList = p->pEList;
2978   if( pEList==0 ) goto select_end;
2979 
2980   /*
2981   ** Do not even attempt to generate any code if we have already seen
2982   ** errors before this routine starts.
2983   */
2984   if( pParse->nErr>0 ) goto select_end;
2985 
2986   /* If writing to memory or generating a set
2987   ** only a single column may be output.
2988   */
2989 #ifndef SQLITE_OMIT_SUBQUERY
2990   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
2991     goto select_end;
2992   }
2993 #endif
2994 
2995   /* ORDER BY is ignored for some destinations.
2996   */
2997   if( IgnorableOrderby(eDest) ){
2998     pOrderBy = 0;
2999   }
3000 
3001   /* Begin generating code.
3002   */
3003   v = sqlite3GetVdbe(pParse);
3004   if( v==0 ) goto select_end;
3005 
3006   /* Generate code for all sub-queries in the FROM clause
3007   */
3008 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3009   for(i=0; i<pTabList->nSrc; i++){
3010     const char *zSavedAuthContext = 0;
3011     int needRestoreContext;
3012     struct SrcList_item *pItem = &pTabList->a[i];
3013 
3014     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
3015     if( pItem->zName!=0 ){
3016       zSavedAuthContext = pParse->zAuthContext;
3017       pParse->zAuthContext = pItem->zName;
3018       needRestoreContext = 1;
3019     }else{
3020       needRestoreContext = 0;
3021     }
3022 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
3023     /* Increment Parse.nHeight by the height of the largest expression
3024     ** tree refered to by this, the parent select. The child select
3025     ** may contain expression trees of at most
3026     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3027     ** more conservative than necessary, but much easier than enforcing
3028     ** an exact limit.
3029     */
3030     pParse->nHeight += sqlite3SelectExprHeight(p);
3031 #endif
3032     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
3033                  pItem->iCursor, p, i, &isAgg, 0);
3034 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
3035     pParse->nHeight -= sqlite3SelectExprHeight(p);
3036 #endif
3037     if( needRestoreContext ){
3038       pParse->zAuthContext = zSavedAuthContext;
3039     }
3040     pTabList = p->pSrc;
3041     pWhere = p->pWhere;
3042     if( !IgnorableOrderby(eDest) ){
3043       pOrderBy = p->pOrderBy;
3044     }
3045     pGroupBy = p->pGroupBy;
3046     pHaving = p->pHaving;
3047     isDistinct = p->isDistinct;
3048   }
3049 #endif
3050 
3051   /* Check for the special case of a min() or max() function by itself
3052   ** in the result set.
3053   */
3054   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
3055     rc = 0;
3056     goto select_end;
3057   }
3058 
3059   /* Check to see if this is a subquery that can be "flattened" into its parent.
3060   ** If flattening is a possiblity, do so and return immediately.
3061   */
3062 #ifndef SQLITE_OMIT_VIEW
3063   if( pParent && pParentAgg &&
3064       flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
3065     if( isAgg ) *pParentAgg = 1;
3066     goto select_end;
3067   }
3068 #endif
3069 
3070   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3071   ** GROUP BY may use an index, DISTINCT never does.
3072   */
3073   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
3074     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
3075     pGroupBy = p->pGroupBy;
3076     p->isDistinct = 0;
3077     isDistinct = 0;
3078   }
3079 
3080   /* If there is an ORDER BY clause, then this sorting
3081   ** index might end up being unused if the data can be
3082   ** extracted in pre-sorted order.  If that is the case, then the
3083   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3084   ** we figure out that the sorting index is not needed.  The addrSortIndex
3085   ** variable is used to facilitate that change.
3086   */
3087   if( pOrderBy ){
3088     KeyInfo *pKeyInfo;
3089     if( pParse->nErr ){
3090       goto select_end;
3091     }
3092     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3093     pOrderBy->iECursor = pParse->nTab++;
3094     p->addrOpenEphm[2] = addrSortIndex =
3095       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3096   }else{
3097     addrSortIndex = -1;
3098   }
3099 
3100   /* If the output is destined for a temporary table, open that table.
3101   */
3102   if( eDest==SRT_EphemTab ){
3103     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
3104   }
3105 
3106   /* Set the limiter.
3107   */
3108   iEnd = sqlite3VdbeMakeLabel(v);
3109   computeLimitRegisters(pParse, p, iEnd);
3110 
3111   /* Open a virtual index to use for the distinct set.
3112   */
3113   if( isDistinct ){
3114     KeyInfo *pKeyInfo;
3115     assert( isAgg || pGroupBy );
3116     distinct = pParse->nTab++;
3117     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3118     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
3119                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3120   }else{
3121     distinct = -1;
3122   }
3123 
3124   /* Aggregate and non-aggregate queries are handled differently */
3125   if( !isAgg && pGroupBy==0 ){
3126     /* This case is for non-aggregate queries
3127     ** Begin the database scan
3128     */
3129     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
3130     if( pWInfo==0 ) goto select_end;
3131 
3132     /* If sorting index that was created by a prior OP_OpenEphemeral
3133     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3134     ** into an OP_Noop.
3135     */
3136     if( addrSortIndex>=0 && pOrderBy==0 ){
3137       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3138       p->addrOpenEphm[2] = -1;
3139     }
3140 
3141     /* Use the standard inner loop
3142     */
3143     assert(!isDistinct);
3144     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest,
3145                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3146        goto select_end;
3147     }
3148 
3149     /* End the database scan loop.
3150     */
3151     sqlite3WhereEnd(pWInfo);
3152   }else{
3153     /* This is the processing for aggregate queries */
3154     NameContext sNC;    /* Name context for processing aggregate information */
3155     int iAMem;          /* First Mem address for storing current GROUP BY */
3156     int iBMem;          /* First Mem address for previous GROUP BY */
3157     int iUseFlag;       /* Mem address holding flag indicating that at least
3158                         ** one row of the input to the aggregator has been
3159                         ** processed */
3160     int iAbortFlag;     /* Mem address which causes query abort if positive */
3161     int groupBySort;    /* Rows come from source in GROUP BY order */
3162 
3163 
3164     /* The following variables hold addresses or labels for parts of the
3165     ** virtual machine program we are putting together */
3166     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3167     int addrSetAbort;       /* Set the abort flag and return */
3168     int addrInitializeLoop; /* Start of code that initializes the input loop */
3169     int addrTopOfLoop;      /* Top of the input loop */
3170     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3171     int addrProcessRow;     /* Code to process a single input row */
3172     int addrEnd;            /* End of all processing */
3173     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3174     int addrReset;          /* Subroutine for resetting the accumulator */
3175 
3176     addrEnd = sqlite3VdbeMakeLabel(v);
3177 
3178     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3179     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3180     ** SELECT statement.
3181     */
3182     memset(&sNC, 0, sizeof(sNC));
3183     sNC.pParse = pParse;
3184     sNC.pSrcList = pTabList;
3185     sNC.pAggInfo = &sAggInfo;
3186     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3187     sAggInfo.pGroupBy = pGroupBy;
3188     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3189       goto select_end;
3190     }
3191     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3192       goto select_end;
3193     }
3194     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3195       goto select_end;
3196     }
3197     sAggInfo.nAccumulator = sAggInfo.nColumn;
3198     for(i=0; i<sAggInfo.nFunc; i++){
3199       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3200         goto select_end;
3201       }
3202     }
3203     if( db->mallocFailed ) goto select_end;
3204 
3205     /* Processing for aggregates with GROUP BY is very different and
3206     ** much more complex than aggregates without a GROUP BY.
3207     */
3208     if( pGroupBy ){
3209       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3210 
3211       /* Create labels that we will be needing
3212       */
3213 
3214       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3215       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3216       addrProcessRow = sqlite3VdbeMakeLabel(v);
3217 
3218       /* If there is a GROUP BY clause we might need a sorting index to
3219       ** implement it.  Allocate that sorting index now.  If it turns out
3220       ** that we do not need it after all, the OpenEphemeral instruction
3221       ** will be converted into a Noop.
3222       */
3223       sAggInfo.sortingIdx = pParse->nTab++;
3224       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3225       addrSortingIdx =
3226           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3227                          sAggInfo.nSortingColumn,
3228                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3229 
3230       /* Initialize memory locations used by GROUP BY aggregate processing
3231       */
3232       iUseFlag = pParse->nMem++;
3233       iAbortFlag = pParse->nMem++;
3234       iAMem = pParse->nMem;
3235       pParse->nMem += pGroupBy->nExpr;
3236       iBMem = pParse->nMem;
3237       pParse->nMem += pGroupBy->nExpr;
3238       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3239       VdbeComment((v, "# clear abort flag"));
3240       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3241       VdbeComment((v, "# indicate accumulator empty"));
3242       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3243 
3244       /* Generate a subroutine that outputs a single row of the result
3245       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3246       ** is less than or equal to zero, the subroutine is a no-op.  If
3247       ** the processing calls for the query to abort, this subroutine
3248       ** increments the iAbortFlag memory location before returning in
3249       ** order to signal the caller to abort.
3250       */
3251       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3252       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3253       VdbeComment((v, "# set abort flag"));
3254       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3255       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3256       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3257       VdbeComment((v, "# Groupby result generator entry point"));
3258       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3259       finalizeAggFunctions(pParse, &sAggInfo);
3260       if( pHaving ){
3261         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3262       }
3263       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3264                            distinct, eDest, iParm,
3265                            addrOutputRow+1, addrSetAbort, aff);
3266       if( rc ){
3267         goto select_end;
3268       }
3269       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3270       VdbeComment((v, "# end groupby result generator"));
3271 
3272       /* Generate a subroutine that will reset the group-by accumulator
3273       */
3274       addrReset = sqlite3VdbeCurrentAddr(v);
3275       resetAccumulator(pParse, &sAggInfo);
3276       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3277 
3278       /* Begin a loop that will extract all source rows in GROUP BY order.
3279       ** This might involve two separate loops with an OP_Sort in between, or
3280       ** it might be a single loop that uses an index to extract information
3281       ** in the right order to begin with.
3282       */
3283       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3284       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3285       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3286       if( pWInfo==0 ) goto select_end;
3287       if( pGroupBy==0 ){
3288         /* The optimizer is able to deliver rows in group by order so
3289         ** we do not have to sort.  The OP_OpenEphemeral table will be
3290         ** cancelled later because we still need to use the pKeyInfo
3291         */
3292         pGroupBy = p->pGroupBy;
3293         groupBySort = 0;
3294       }else{
3295         /* Rows are coming out in undetermined order.  We have to push
3296         ** each row into a sorting index, terminate the first loop,
3297         ** then loop over the sorting index in order to get the output
3298         ** in sorted order
3299         */
3300         groupBySort = 1;
3301         sqlite3ExprCodeExprList(pParse, pGroupBy);
3302         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3303         j = pGroupBy->nExpr+1;
3304         for(i=0; i<sAggInfo.nColumn; i++){
3305           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3306           if( pCol->iSorterColumn<j ) continue;
3307           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3308           j++;
3309         }
3310         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3311         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3312         sqlite3WhereEnd(pWInfo);
3313         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3314         VdbeComment((v, "# GROUP BY sort"));
3315         sAggInfo.useSortingIdx = 1;
3316       }
3317 
3318       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3319       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3320       ** Then compare the current GROUP BY terms against the GROUP BY terms
3321       ** from the previous row currently stored in a0, a1, a2...
3322       */
3323       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3324       for(j=0; j<pGroupBy->nExpr; j++){
3325         if( groupBySort ){
3326           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3327         }else{
3328           sAggInfo.directMode = 1;
3329           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3330         }
3331         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3332       }
3333       for(j=pGroupBy->nExpr-1; j>=0; j--){
3334         if( j<pGroupBy->nExpr-1 ){
3335           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3336         }
3337         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3338         if( j==0 ){
3339           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3340         }else{
3341           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3342         }
3343         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3344       }
3345 
3346       /* Generate code that runs whenever the GROUP BY changes.
3347       ** Change in the GROUP BY are detected by the previous code
3348       ** block.  If there were no changes, this block is skipped.
3349       **
3350       ** This code copies current group by terms in b0,b1,b2,...
3351       ** over to a0,a1,a2.  It then calls the output subroutine
3352       ** and resets the aggregate accumulator registers in preparation
3353       ** for the next GROUP BY batch.
3354       */
3355       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3356       for(j=0; j<pGroupBy->nExpr; j++){
3357         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3358       }
3359       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3360       VdbeComment((v, "# output one row"));
3361       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3362       VdbeComment((v, "# check abort flag"));
3363       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3364       VdbeComment((v, "# reset accumulator"));
3365 
3366       /* Update the aggregate accumulators based on the content of
3367       ** the current row
3368       */
3369       sqlite3VdbeResolveLabel(v, addrProcessRow);
3370       updateAccumulator(pParse, &sAggInfo);
3371       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3372       VdbeComment((v, "# indicate data in accumulator"));
3373 
3374       /* End of the loop
3375       */
3376       if( groupBySort ){
3377         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3378       }else{
3379         sqlite3WhereEnd(pWInfo);
3380         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3381       }
3382 
3383       /* Output the final row of result
3384       */
3385       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3386       VdbeComment((v, "# output final row"));
3387 
3388     } /* endif pGroupBy */
3389     else {
3390       /* This case runs if the aggregate has no GROUP BY clause.  The
3391       ** processing is much simpler since there is only a single row
3392       ** of output.
3393       */
3394       resetAccumulator(pParse, &sAggInfo);
3395       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3396       if( pWInfo==0 ) goto select_end;
3397       updateAccumulator(pParse, &sAggInfo);
3398       sqlite3WhereEnd(pWInfo);
3399       finalizeAggFunctions(pParse, &sAggInfo);
3400       pOrderBy = 0;
3401       if( pHaving ){
3402         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3403       }
3404       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3405                       eDest, iParm, addrEnd, addrEnd, aff);
3406     }
3407     sqlite3VdbeResolveLabel(v, addrEnd);
3408 
3409   } /* endif aggregate query */
3410 
3411   /* If there is an ORDER BY clause, then we need to sort the results
3412   ** and send them to the callback one by one.
3413   */
3414   if( pOrderBy ){
3415     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3416   }
3417 
3418 #ifndef SQLITE_OMIT_SUBQUERY
3419   /* If this was a subquery, we have now converted the subquery into a
3420   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3421   ** this subquery from being evaluated again and to force the use of
3422   ** the temporary table.
3423   */
3424   if( pParent ){
3425     assert( pParent->pSrc->nSrc>parentTab );
3426     assert( pParent->pSrc->a[parentTab].pSelect==p );
3427     pParent->pSrc->a[parentTab].isPopulated = 1;
3428   }
3429 #endif
3430 
3431   /* Jump here to skip this query
3432   */
3433   sqlite3VdbeResolveLabel(v, iEnd);
3434 
3435   /* The SELECT was successfully coded.   Set the return code to 0
3436   ** to indicate no errors.
3437   */
3438   rc = 0;
3439 
3440   /* Control jumps to here if an error is encountered above, or upon
3441   ** successful coding of the SELECT.
3442   */
3443 select_end:
3444 
3445   /* Identify column names if we will be using them in a callback.  This
3446   ** step is skipped if the output is going to some other destination.
3447   */
3448   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3449     generateColumnNames(pParse, pTabList, pEList);
3450   }
3451 
3452   sqlite3_free(sAggInfo.aCol);
3453   sqlite3_free(sAggInfo.aFunc);
3454   return rc;
3455 }
3456 
3457 #if defined(SQLITE_DEBUG)
3458 /*
3459 *******************************************************************************
3460 ** The following code is used for testing and debugging only.  The code
3461 ** that follows does not appear in normal builds.
3462 **
3463 ** These routines are used to print out the content of all or part of a
3464 ** parse structures such as Select or Expr.  Such printouts are useful
3465 ** for helping to understand what is happening inside the code generator
3466 ** during the execution of complex SELECT statements.
3467 **
3468 ** These routine are not called anywhere from within the normal
3469 ** code base.  Then are intended to be called from within the debugger
3470 ** or from temporary "printf" statements inserted for debugging.
3471 */
3472 void sqlite3PrintExpr(Expr *p){
3473   if( p->token.z && p->token.n>0 ){
3474     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3475   }else{
3476     sqlite3DebugPrintf("(%d", p->op);
3477   }
3478   if( p->pLeft ){
3479     sqlite3DebugPrintf(" ");
3480     sqlite3PrintExpr(p->pLeft);
3481   }
3482   if( p->pRight ){
3483     sqlite3DebugPrintf(" ");
3484     sqlite3PrintExpr(p->pRight);
3485   }
3486   sqlite3DebugPrintf(")");
3487 }
3488 void sqlite3PrintExprList(ExprList *pList){
3489   int i;
3490   for(i=0; i<pList->nExpr; i++){
3491     sqlite3PrintExpr(pList->a[i].pExpr);
3492     if( i<pList->nExpr-1 ){
3493       sqlite3DebugPrintf(", ");
3494     }
3495   }
3496 }
3497 void sqlite3PrintSelect(Select *p, int indent){
3498   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3499   sqlite3PrintExprList(p->pEList);
3500   sqlite3DebugPrintf("\n");
3501   if( p->pSrc ){
3502     char *zPrefix;
3503     int i;
3504     zPrefix = "FROM";
3505     for(i=0; i<p->pSrc->nSrc; i++){
3506       struct SrcList_item *pItem = &p->pSrc->a[i];
3507       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3508       zPrefix = "";
3509       if( pItem->pSelect ){
3510         sqlite3DebugPrintf("(\n");
3511         sqlite3PrintSelect(pItem->pSelect, indent+10);
3512         sqlite3DebugPrintf("%*s)", indent+8, "");
3513       }else if( pItem->zName ){
3514         sqlite3DebugPrintf("%s", pItem->zName);
3515       }
3516       if( pItem->pTab ){
3517         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3518       }
3519       if( pItem->zAlias ){
3520         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3521       }
3522       if( i<p->pSrc->nSrc-1 ){
3523         sqlite3DebugPrintf(",");
3524       }
3525       sqlite3DebugPrintf("\n");
3526     }
3527   }
3528   if( p->pWhere ){
3529     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3530     sqlite3PrintExpr(p->pWhere);
3531     sqlite3DebugPrintf("\n");
3532   }
3533   if( p->pGroupBy ){
3534     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3535     sqlite3PrintExprList(p->pGroupBy);
3536     sqlite3DebugPrintf("\n");
3537   }
3538   if( p->pHaving ){
3539     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3540     sqlite3PrintExpr(p->pHaving);
3541     sqlite3DebugPrintf("\n");
3542   }
3543   if( p->pOrderBy ){
3544     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3545     sqlite3PrintExprList(p->pOrderBy);
3546     sqlite3DebugPrintf("\n");
3547   }
3548 }
3549 /* End of the structure debug printing code
3550 *****************************************************************************/
3551 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3552