1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.361 2007/11/12 15:40:42 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 Parse *pParse, /* Parsing context */ 43 ExprList *pEList, /* which columns to include in the result */ 44 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 45 Expr *pWhere, /* the WHERE clause */ 46 ExprList *pGroupBy, /* the GROUP BY clause */ 47 Expr *pHaving, /* the HAVING clause */ 48 ExprList *pOrderBy, /* the ORDER BY clause */ 49 int isDistinct, /* true if the DISTINCT keyword is present */ 50 Expr *pLimit, /* LIMIT value. NULL means not used */ 51 Expr *pOffset /* OFFSET value. NULL means no offset */ 52 ){ 53 Select *pNew; 54 Select standin; 55 sqlite3 *db = pParse->db; 56 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 57 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 58 if( pNew==0 ){ 59 pNew = &standin; 60 memset(pNew, 0, sizeof(*pNew)); 61 } 62 if( pEList==0 ){ 63 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 64 } 65 pNew->pEList = pEList; 66 pNew->pSrc = pSrc; 67 pNew->pWhere = pWhere; 68 pNew->pGroupBy = pGroupBy; 69 pNew->pHaving = pHaving; 70 pNew->pOrderBy = pOrderBy; 71 pNew->isDistinct = isDistinct; 72 pNew->op = TK_SELECT; 73 assert( pOffset==0 || pLimit!=0 ); 74 pNew->pLimit = pLimit; 75 pNew->pOffset = pOffset; 76 pNew->iLimit = -1; 77 pNew->iOffset = -1; 78 pNew->addrOpenEphm[0] = -1; 79 pNew->addrOpenEphm[1] = -1; 80 pNew->addrOpenEphm[2] = -1; 81 if( pNew==&standin) { 82 clearSelect(pNew); 83 pNew = 0; 84 } 85 return pNew; 86 } 87 88 /* 89 ** Delete the given Select structure and all of its substructures. 90 */ 91 void sqlite3SelectDelete(Select *p){ 92 if( p ){ 93 clearSelect(p); 94 sqlite3_free(p); 95 } 96 } 97 98 /* 99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 100 ** type of join. Return an integer constant that expresses that type 101 ** in terms of the following bit values: 102 ** 103 ** JT_INNER 104 ** JT_CROSS 105 ** JT_OUTER 106 ** JT_NATURAL 107 ** JT_LEFT 108 ** JT_RIGHT 109 ** 110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 111 ** 112 ** If an illegal or unsupported join type is seen, then still return 113 ** a join type, but put an error in the pParse structure. 114 */ 115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 116 int jointype = 0; 117 Token *apAll[3]; 118 Token *p; 119 static const struct { 120 const char zKeyword[8]; 121 u8 nChar; 122 u8 code; 123 } keywords[] = { 124 { "natural", 7, JT_NATURAL }, 125 { "left", 4, JT_LEFT|JT_OUTER }, 126 { "right", 5, JT_RIGHT|JT_OUTER }, 127 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 128 { "outer", 5, JT_OUTER }, 129 { "inner", 5, JT_INNER }, 130 { "cross", 5, JT_INNER|JT_CROSS }, 131 }; 132 int i, j; 133 apAll[0] = pA; 134 apAll[1] = pB; 135 apAll[2] = pC; 136 for(i=0; i<3 && apAll[i]; i++){ 137 p = apAll[i]; 138 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 139 if( p->n==keywords[j].nChar 140 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 141 jointype |= keywords[j].code; 142 break; 143 } 144 } 145 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 146 jointype |= JT_ERROR; 147 break; 148 } 149 } 150 if( 151 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 152 (jointype & JT_ERROR)!=0 153 ){ 154 const char *zSp1 = " "; 155 const char *zSp2 = " "; 156 if( pB==0 ){ zSp1++; } 157 if( pC==0 ){ zSp2++; } 158 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 159 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 160 jointype = JT_INNER; 161 }else if( jointype & JT_RIGHT ){ 162 sqlite3ErrorMsg(pParse, 163 "RIGHT and FULL OUTER JOINs are not currently supported"); 164 jointype = JT_INNER; 165 } 166 return jointype; 167 } 168 169 /* 170 ** Return the index of a column in a table. Return -1 if the column 171 ** is not contained in the table. 172 */ 173 static int columnIndex(Table *pTab, const char *zCol){ 174 int i; 175 for(i=0; i<pTab->nCol; i++){ 176 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 177 } 178 return -1; 179 } 180 181 /* 182 ** Set the value of a token to a '\000'-terminated string. 183 */ 184 static void setToken(Token *p, const char *z){ 185 p->z = (u8*)z; 186 p->n = z ? strlen(z) : 0; 187 p->dyn = 0; 188 } 189 190 /* 191 ** Set the token to the double-quoted and escaped version of the string pointed 192 ** to by z. For example; 193 ** 194 ** {a"bc} -> {"a""bc"} 195 */ 196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 197 p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z); 198 p->dyn = 1; 199 if( p->z ){ 200 p->n = strlen((char *)p->z); 201 }else{ 202 pParse->db->mallocFailed = 1; 203 } 204 } 205 206 /* 207 ** Create an expression node for an identifier with the name of zName 208 */ 209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 210 Token dummy; 211 setToken(&dummy, zName); 212 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 213 } 214 215 216 /* 217 ** Add a term to the WHERE expression in *ppExpr that requires the 218 ** zCol column to be equal in the two tables pTab1 and pTab2. 219 */ 220 static void addWhereTerm( 221 Parse *pParse, /* Parsing context */ 222 const char *zCol, /* Name of the column */ 223 const Table *pTab1, /* First table */ 224 const char *zAlias1, /* Alias for first table. May be NULL */ 225 const Table *pTab2, /* Second table */ 226 const char *zAlias2, /* Alias for second table. May be NULL */ 227 int iRightJoinTable, /* VDBE cursor for the right table */ 228 Expr **ppExpr /* Add the equality term to this expression */ 229 ){ 230 Expr *pE1a, *pE1b, *pE1c; 231 Expr *pE2a, *pE2b, *pE2c; 232 Expr *pE; 233 234 pE1a = sqlite3CreateIdExpr(pParse, zCol); 235 pE2a = sqlite3CreateIdExpr(pParse, zCol); 236 if( zAlias1==0 ){ 237 zAlias1 = pTab1->zName; 238 } 239 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 240 if( zAlias2==0 ){ 241 zAlias2 = pTab2->zName; 242 } 243 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 244 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 245 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 246 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 247 if( pE ){ 248 ExprSetProperty(pE, EP_FromJoin); 249 pE->iRightJoinTable = iRightJoinTable; 250 } 251 pE = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 252 if( pE ){ 253 *ppExpr = pE; 254 } 255 } 256 257 /* 258 ** Set the EP_FromJoin property on all terms of the given expression. 259 ** And set the Expr.iRightJoinTable to iTable for every term in the 260 ** expression. 261 ** 262 ** The EP_FromJoin property is used on terms of an expression to tell 263 ** the LEFT OUTER JOIN processing logic that this term is part of the 264 ** join restriction specified in the ON or USING clause and not a part 265 ** of the more general WHERE clause. These terms are moved over to the 266 ** WHERE clause during join processing but we need to remember that they 267 ** originated in the ON or USING clause. 268 ** 269 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 270 ** expression depends on table iRightJoinTable even if that table is not 271 ** explicitly mentioned in the expression. That information is needed 272 ** for cases like this: 273 ** 274 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 275 ** 276 ** The where clause needs to defer the handling of the t1.x=5 277 ** term until after the t2 loop of the join. In that way, a 278 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 279 ** defer the handling of t1.x=5, it will be processed immediately 280 ** after the t1 loop and rows with t1.x!=5 will never appear in 281 ** the output, which is incorrect. 282 */ 283 static void setJoinExpr(Expr *p, int iTable){ 284 while( p ){ 285 ExprSetProperty(p, EP_FromJoin); 286 p->iRightJoinTable = iTable; 287 setJoinExpr(p->pLeft, iTable); 288 p = p->pRight; 289 } 290 } 291 292 /* 293 ** This routine processes the join information for a SELECT statement. 294 ** ON and USING clauses are converted into extra terms of the WHERE clause. 295 ** NATURAL joins also create extra WHERE clause terms. 296 ** 297 ** The terms of a FROM clause are contained in the Select.pSrc structure. 298 ** The left most table is the first entry in Select.pSrc. The right-most 299 ** table is the last entry. The join operator is held in the entry to 300 ** the left. Thus entry 0 contains the join operator for the join between 301 ** entries 0 and 1. Any ON or USING clauses associated with the join are 302 ** also attached to the left entry. 303 ** 304 ** This routine returns the number of errors encountered. 305 */ 306 static int sqliteProcessJoin(Parse *pParse, Select *p){ 307 SrcList *pSrc; /* All tables in the FROM clause */ 308 int i, j; /* Loop counters */ 309 struct SrcList_item *pLeft; /* Left table being joined */ 310 struct SrcList_item *pRight; /* Right table being joined */ 311 312 pSrc = p->pSrc; 313 pLeft = &pSrc->a[0]; 314 pRight = &pLeft[1]; 315 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 316 Table *pLeftTab = pLeft->pTab; 317 Table *pRightTab = pRight->pTab; 318 319 if( pLeftTab==0 || pRightTab==0 ) continue; 320 321 /* When the NATURAL keyword is present, add WHERE clause terms for 322 ** every column that the two tables have in common. 323 */ 324 if( pRight->jointype & JT_NATURAL ){ 325 if( pRight->pOn || pRight->pUsing ){ 326 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 327 "an ON or USING clause", 0); 328 return 1; 329 } 330 for(j=0; j<pLeftTab->nCol; j++){ 331 char *zName = pLeftTab->aCol[j].zName; 332 if( columnIndex(pRightTab, zName)>=0 ){ 333 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 334 pRightTab, pRight->zAlias, 335 pRight->iCursor, &p->pWhere); 336 337 } 338 } 339 } 340 341 /* Disallow both ON and USING clauses in the same join 342 */ 343 if( pRight->pOn && pRight->pUsing ){ 344 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 345 "clauses in the same join"); 346 return 1; 347 } 348 349 /* Add the ON clause to the end of the WHERE clause, connected by 350 ** an AND operator. 351 */ 352 if( pRight->pOn ){ 353 setJoinExpr(pRight->pOn, pRight->iCursor); 354 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 355 pRight->pOn = 0; 356 } 357 358 /* Create extra terms on the WHERE clause for each column named 359 ** in the USING clause. Example: If the two tables to be joined are 360 ** A and B and the USING clause names X, Y, and Z, then add this 361 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 362 ** Report an error if any column mentioned in the USING clause is 363 ** not contained in both tables to be joined. 364 */ 365 if( pRight->pUsing ){ 366 IdList *pList = pRight->pUsing; 367 for(j=0; j<pList->nId; j++){ 368 char *zName = pList->a[j].zName; 369 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 370 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 371 "not present in both tables", zName); 372 return 1; 373 } 374 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 375 pRightTab, pRight->zAlias, 376 pRight->iCursor, &p->pWhere); 377 } 378 } 379 } 380 return 0; 381 } 382 383 /* 384 ** Insert code into "v" that will push the record on the top of the 385 ** stack into the sorter. 386 */ 387 static void pushOntoSorter( 388 Parse *pParse, /* Parser context */ 389 ExprList *pOrderBy, /* The ORDER BY clause */ 390 Select *pSelect /* The whole SELECT statement */ 391 ){ 392 Vdbe *v = pParse->pVdbe; 393 sqlite3ExprCodeExprList(pParse, pOrderBy); 394 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 395 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 396 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 397 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 398 if( pSelect->iLimit>=0 ){ 399 int addr1, addr2; 400 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 401 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 402 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 403 sqlite3VdbeJumpHere(v, addr1); 404 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 405 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 406 sqlite3VdbeJumpHere(v, addr2); 407 pSelect->iLimit = -1; 408 } 409 } 410 411 /* 412 ** Add code to implement the OFFSET 413 */ 414 static void codeOffset( 415 Vdbe *v, /* Generate code into this VM */ 416 Select *p, /* The SELECT statement being coded */ 417 int iContinue, /* Jump here to skip the current record */ 418 int nPop /* Number of times to pop stack when jumping */ 419 ){ 420 if( p->iOffset>=0 && iContinue!=0 ){ 421 int addr; 422 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 423 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 424 if( nPop>0 ){ 425 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 426 } 427 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 428 VdbeComment((v, "# skip OFFSET records")); 429 sqlite3VdbeJumpHere(v, addr); 430 } 431 } 432 433 /* 434 ** Add code that will check to make sure the top N elements of the 435 ** stack are distinct. iTab is a sorting index that holds previously 436 ** seen combinations of the N values. A new entry is made in iTab 437 ** if the current N values are new. 438 ** 439 ** A jump to addrRepeat is made and the N+1 values are popped from the 440 ** stack if the top N elements are not distinct. 441 */ 442 static void codeDistinct( 443 Vdbe *v, /* Generate code into this VM */ 444 int iTab, /* A sorting index used to test for distinctness */ 445 int addrRepeat, /* Jump to here if not distinct */ 446 int N /* The top N elements of the stack must be distinct */ 447 ){ 448 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 449 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 450 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 451 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 452 VdbeComment((v, "# skip indistinct records")); 453 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 454 } 455 456 /* 457 ** Generate an error message when a SELECT is used within a subexpression 458 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 459 ** column. We do this in a subroutine because the error occurs in multiple 460 ** places. 461 */ 462 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ 463 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 464 sqlite3ErrorMsg(pParse, "only a single result allowed for " 465 "a SELECT that is part of an expression"); 466 return 1; 467 }else{ 468 return 0; 469 } 470 } 471 472 /* 473 ** This routine generates the code for the inside of the inner loop 474 ** of a SELECT. 475 ** 476 ** If srcTab and nColumn are both zero, then the pEList expressions 477 ** are evaluated in order to get the data for this row. If nColumn>0 478 ** then data is pulled from srcTab and pEList is used only to get the 479 ** datatypes for each column. 480 */ 481 static int selectInnerLoop( 482 Parse *pParse, /* The parser context */ 483 Select *p, /* The complete select statement being coded */ 484 ExprList *pEList, /* List of values being extracted */ 485 int srcTab, /* Pull data from this table */ 486 int nColumn, /* Number of columns in the source table */ 487 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 488 int distinct, /* If >=0, make sure results are distinct */ 489 int eDest, /* How to dispose of the results */ 490 int iParm, /* An argument to the disposal method */ 491 int iContinue, /* Jump here to continue with next row */ 492 int iBreak, /* Jump here to break out of the inner loop */ 493 char *aff /* affinity string if eDest is SRT_Union */ 494 ){ 495 Vdbe *v = pParse->pVdbe; 496 int i; 497 int hasDistinct; /* True if the DISTINCT keyword is present */ 498 499 if( v==0 ) return 0; 500 assert( pEList!=0 ); 501 502 /* If there was a LIMIT clause on the SELECT statement, then do the check 503 ** to see if this row should be output. 504 */ 505 hasDistinct = distinct>=0 && pEList->nExpr>0; 506 if( pOrderBy==0 && !hasDistinct ){ 507 codeOffset(v, p, iContinue, 0); 508 } 509 510 /* Pull the requested columns. 511 */ 512 if( nColumn>0 ){ 513 for(i=0; i<nColumn; i++){ 514 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 515 } 516 }else{ 517 nColumn = pEList->nExpr; 518 sqlite3ExprCodeExprList(pParse, pEList); 519 } 520 521 /* If the DISTINCT keyword was present on the SELECT statement 522 ** and this row has been seen before, then do not make this row 523 ** part of the result. 524 */ 525 if( hasDistinct ){ 526 assert( pEList!=0 ); 527 assert( pEList->nExpr==nColumn ); 528 codeDistinct(v, distinct, iContinue, nColumn); 529 if( pOrderBy==0 ){ 530 codeOffset(v, p, iContinue, nColumn); 531 } 532 } 533 534 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 535 return 0; 536 } 537 538 switch( eDest ){ 539 /* In this mode, write each query result to the key of the temporary 540 ** table iParm. 541 */ 542 #ifndef SQLITE_OMIT_COMPOUND_SELECT 543 case SRT_Union: { 544 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 545 if( aff ){ 546 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 547 } 548 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 549 break; 550 } 551 552 /* Construct a record from the query result, but instead of 553 ** saving that record, use it as a key to delete elements from 554 ** the temporary table iParm. 555 */ 556 case SRT_Except: { 557 int addr; 558 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 559 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 560 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 561 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 562 break; 563 } 564 #endif 565 566 /* Store the result as data using a unique key. 567 */ 568 case SRT_Table: 569 case SRT_EphemTab: { 570 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 571 if( pOrderBy ){ 572 pushOntoSorter(pParse, pOrderBy, p); 573 }else{ 574 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 575 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 576 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 577 } 578 break; 579 } 580 581 #ifndef SQLITE_OMIT_SUBQUERY 582 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 583 ** then there should be a single item on the stack. Write this 584 ** item into the set table with bogus data. 585 */ 586 case SRT_Set: { 587 int addr1 = sqlite3VdbeCurrentAddr(v); 588 int addr2; 589 590 assert( nColumn==1 ); 591 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 592 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 593 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 594 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 595 if( pOrderBy ){ 596 /* At first glance you would think we could optimize out the 597 ** ORDER BY in this case since the order of entries in the set 598 ** does not matter. But there might be a LIMIT clause, in which 599 ** case the order does matter */ 600 pushOntoSorter(pParse, pOrderBy, p); 601 }else{ 602 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 603 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 604 } 605 sqlite3VdbeJumpHere(v, addr2); 606 break; 607 } 608 609 /* If any row exist in the result set, record that fact and abort. 610 */ 611 case SRT_Exists: { 612 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 613 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 614 /* The LIMIT clause will terminate the loop for us */ 615 break; 616 } 617 618 /* If this is a scalar select that is part of an expression, then 619 ** store the results in the appropriate memory cell and break out 620 ** of the scan loop. 621 */ 622 case SRT_Mem: { 623 assert( nColumn==1 ); 624 if( pOrderBy ){ 625 pushOntoSorter(pParse, pOrderBy, p); 626 }else{ 627 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 628 /* The LIMIT clause will jump out of the loop for us */ 629 } 630 break; 631 } 632 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 633 634 /* Send the data to the callback function or to a subroutine. In the 635 ** case of a subroutine, the subroutine itself is responsible for 636 ** popping the data from the stack. 637 */ 638 case SRT_Subroutine: 639 case SRT_Callback: { 640 if( pOrderBy ){ 641 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 642 pushOntoSorter(pParse, pOrderBy, p); 643 }else if( eDest==SRT_Subroutine ){ 644 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 645 }else{ 646 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 647 } 648 break; 649 } 650 651 #if !defined(SQLITE_OMIT_TRIGGER) 652 /* Discard the results. This is used for SELECT statements inside 653 ** the body of a TRIGGER. The purpose of such selects is to call 654 ** user-defined functions that have side effects. We do not care 655 ** about the actual results of the select. 656 */ 657 default: { 658 assert( eDest==SRT_Discard ); 659 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 660 break; 661 } 662 #endif 663 } 664 665 /* Jump to the end of the loop if the LIMIT is reached. 666 */ 667 if( p->iLimit>=0 && pOrderBy==0 ){ 668 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 669 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 670 } 671 return 0; 672 } 673 674 /* 675 ** Given an expression list, generate a KeyInfo structure that records 676 ** the collating sequence for each expression in that expression list. 677 ** 678 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 679 ** KeyInfo structure is appropriate for initializing a virtual index to 680 ** implement that clause. If the ExprList is the result set of a SELECT 681 ** then the KeyInfo structure is appropriate for initializing a virtual 682 ** index to implement a DISTINCT test. 683 ** 684 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 685 ** function is responsible for seeing that this structure is eventually 686 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 687 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 688 */ 689 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 690 sqlite3 *db = pParse->db; 691 int nExpr; 692 KeyInfo *pInfo; 693 struct ExprList_item *pItem; 694 int i; 695 696 nExpr = pList->nExpr; 697 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 698 if( pInfo ){ 699 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 700 pInfo->nField = nExpr; 701 pInfo->enc = ENC(db); 702 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 703 CollSeq *pColl; 704 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 705 if( !pColl ){ 706 pColl = db->pDfltColl; 707 } 708 pInfo->aColl[i] = pColl; 709 pInfo->aSortOrder[i] = pItem->sortOrder; 710 } 711 } 712 return pInfo; 713 } 714 715 716 /* 717 ** If the inner loop was generated using a non-null pOrderBy argument, 718 ** then the results were placed in a sorter. After the loop is terminated 719 ** we need to run the sorter and output the results. The following 720 ** routine generates the code needed to do that. 721 */ 722 static void generateSortTail( 723 Parse *pParse, /* Parsing context */ 724 Select *p, /* The SELECT statement */ 725 Vdbe *v, /* Generate code into this VDBE */ 726 int nColumn, /* Number of columns of data */ 727 int eDest, /* Write the sorted results here */ 728 int iParm /* Optional parameter associated with eDest */ 729 ){ 730 int brk = sqlite3VdbeMakeLabel(v); 731 int cont = sqlite3VdbeMakeLabel(v); 732 int addr; 733 int iTab; 734 int pseudoTab = 0; 735 ExprList *pOrderBy = p->pOrderBy; 736 737 iTab = pOrderBy->iECursor; 738 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 739 pseudoTab = pParse->nTab++; 740 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 741 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 742 } 743 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 744 codeOffset(v, p, cont, 0); 745 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 746 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 747 } 748 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 749 switch( eDest ){ 750 case SRT_Table: 751 case SRT_EphemTab: { 752 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 753 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 754 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 755 break; 756 } 757 #ifndef SQLITE_OMIT_SUBQUERY 758 case SRT_Set: { 759 assert( nColumn==1 ); 760 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 761 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 762 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 763 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 764 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 765 break; 766 } 767 case SRT_Mem: { 768 assert( nColumn==1 ); 769 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 770 /* The LIMIT clause will terminate the loop for us */ 771 break; 772 } 773 #endif 774 case SRT_Callback: 775 case SRT_Subroutine: { 776 int i; 777 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 778 for(i=0; i<nColumn; i++){ 779 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 780 } 781 if( eDest==SRT_Callback ){ 782 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 783 }else{ 784 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 785 } 786 break; 787 } 788 default: { 789 /* Do nothing */ 790 break; 791 } 792 } 793 794 /* Jump to the end of the loop when the LIMIT is reached 795 */ 796 if( p->iLimit>=0 ){ 797 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 798 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 799 } 800 801 /* The bottom of the loop 802 */ 803 sqlite3VdbeResolveLabel(v, cont); 804 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 805 sqlite3VdbeResolveLabel(v, brk); 806 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 807 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 808 } 809 810 } 811 812 /* 813 ** Return a pointer to a string containing the 'declaration type' of the 814 ** expression pExpr. The string may be treated as static by the caller. 815 ** 816 ** The declaration type is the exact datatype definition extracted from the 817 ** original CREATE TABLE statement if the expression is a column. The 818 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 819 ** is considered a column can be complex in the presence of subqueries. The 820 ** result-set expression in all of the following SELECT statements is 821 ** considered a column by this function. 822 ** 823 ** SELECT col FROM tbl; 824 ** SELECT (SELECT col FROM tbl; 825 ** SELECT (SELECT col FROM tbl); 826 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 827 ** 828 ** The declaration type for any expression other than a column is NULL. 829 */ 830 static const char *columnType( 831 NameContext *pNC, 832 Expr *pExpr, 833 const char **pzOriginDb, 834 const char **pzOriginTab, 835 const char **pzOriginCol 836 ){ 837 char const *zType = 0; 838 char const *zOriginDb = 0; 839 char const *zOriginTab = 0; 840 char const *zOriginCol = 0; 841 int j; 842 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 843 844 switch( pExpr->op ){ 845 case TK_AGG_COLUMN: 846 case TK_COLUMN: { 847 /* The expression is a column. Locate the table the column is being 848 ** extracted from in NameContext.pSrcList. This table may be real 849 ** database table or a subquery. 850 */ 851 Table *pTab = 0; /* Table structure column is extracted from */ 852 Select *pS = 0; /* Select the column is extracted from */ 853 int iCol = pExpr->iColumn; /* Index of column in pTab */ 854 while( pNC && !pTab ){ 855 SrcList *pTabList = pNC->pSrcList; 856 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 857 if( j<pTabList->nSrc ){ 858 pTab = pTabList->a[j].pTab; 859 pS = pTabList->a[j].pSelect; 860 }else{ 861 pNC = pNC->pNext; 862 } 863 } 864 865 if( pTab==0 ){ 866 /* FIX ME: 867 ** This can occurs if you have something like "SELECT new.x;" inside 868 ** a trigger. In other words, if you reference the special "new" 869 ** table in the result set of a select. We do not have a good way 870 ** to find the actual table type, so call it "TEXT". This is really 871 ** something of a bug, but I do not know how to fix it. 872 ** 873 ** This code does not produce the correct answer - it just prevents 874 ** a segfault. See ticket #1229. 875 */ 876 zType = "TEXT"; 877 break; 878 } 879 880 assert( pTab ); 881 if( pS ){ 882 /* The "table" is actually a sub-select or a view in the FROM clause 883 ** of the SELECT statement. Return the declaration type and origin 884 ** data for the result-set column of the sub-select. 885 */ 886 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 887 /* If iCol is less than zero, then the expression requests the 888 ** rowid of the sub-select or view. This expression is legal (see 889 ** test case misc2.2.2) - it always evaluates to NULL. 890 */ 891 NameContext sNC; 892 Expr *p = pS->pEList->a[iCol].pExpr; 893 sNC.pSrcList = pS->pSrc; 894 sNC.pNext = 0; 895 sNC.pParse = pNC->pParse; 896 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 897 } 898 }else if( pTab->pSchema ){ 899 /* A real table */ 900 assert( !pS ); 901 if( iCol<0 ) iCol = pTab->iPKey; 902 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 903 if( iCol<0 ){ 904 zType = "INTEGER"; 905 zOriginCol = "rowid"; 906 }else{ 907 zType = pTab->aCol[iCol].zType; 908 zOriginCol = pTab->aCol[iCol].zName; 909 } 910 zOriginTab = pTab->zName; 911 if( pNC->pParse ){ 912 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 913 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 914 } 915 } 916 break; 917 } 918 #ifndef SQLITE_OMIT_SUBQUERY 919 case TK_SELECT: { 920 /* The expression is a sub-select. Return the declaration type and 921 ** origin info for the single column in the result set of the SELECT 922 ** statement. 923 */ 924 NameContext sNC; 925 Select *pS = pExpr->pSelect; 926 Expr *p = pS->pEList->a[0].pExpr; 927 sNC.pSrcList = pS->pSrc; 928 sNC.pNext = pNC; 929 sNC.pParse = pNC->pParse; 930 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 931 break; 932 } 933 #endif 934 } 935 936 if( pzOriginDb ){ 937 assert( pzOriginTab && pzOriginCol ); 938 *pzOriginDb = zOriginDb; 939 *pzOriginTab = zOriginTab; 940 *pzOriginCol = zOriginCol; 941 } 942 return zType; 943 } 944 945 /* 946 ** Generate code that will tell the VDBE the declaration types of columns 947 ** in the result set. 948 */ 949 static void generateColumnTypes( 950 Parse *pParse, /* Parser context */ 951 SrcList *pTabList, /* List of tables */ 952 ExprList *pEList /* Expressions defining the result set */ 953 ){ 954 Vdbe *v = pParse->pVdbe; 955 int i; 956 NameContext sNC; 957 sNC.pSrcList = pTabList; 958 sNC.pParse = pParse; 959 for(i=0; i<pEList->nExpr; i++){ 960 Expr *p = pEList->a[i].pExpr; 961 const char *zOrigDb = 0; 962 const char *zOrigTab = 0; 963 const char *zOrigCol = 0; 964 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 965 966 /* The vdbe must make it's own copy of the column-type and other 967 ** column specific strings, in case the schema is reset before this 968 ** virtual machine is deleted. 969 */ 970 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 971 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 972 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 973 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 974 } 975 } 976 977 /* 978 ** Generate code that will tell the VDBE the names of columns 979 ** in the result set. This information is used to provide the 980 ** azCol[] values in the callback. 981 */ 982 static void generateColumnNames( 983 Parse *pParse, /* Parser context */ 984 SrcList *pTabList, /* List of tables */ 985 ExprList *pEList /* Expressions defining the result set */ 986 ){ 987 Vdbe *v = pParse->pVdbe; 988 int i, j; 989 sqlite3 *db = pParse->db; 990 int fullNames, shortNames; 991 992 #ifndef SQLITE_OMIT_EXPLAIN 993 /* If this is an EXPLAIN, skip this step */ 994 if( pParse->explain ){ 995 return; 996 } 997 #endif 998 999 assert( v!=0 ); 1000 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 1001 pParse->colNamesSet = 1; 1002 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1003 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1004 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1005 for(i=0; i<pEList->nExpr; i++){ 1006 Expr *p; 1007 p = pEList->a[i].pExpr; 1008 if( p==0 ) continue; 1009 if( pEList->a[i].zName ){ 1010 char *zName = pEList->a[i].zName; 1011 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1012 continue; 1013 } 1014 if( p->op==TK_COLUMN && pTabList ){ 1015 Table *pTab; 1016 char *zCol; 1017 int iCol = p->iColumn; 1018 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1019 assert( j<pTabList->nSrc ); 1020 pTab = pTabList->a[j].pTab; 1021 if( iCol<0 ) iCol = pTab->iPKey; 1022 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1023 if( iCol<0 ){ 1024 zCol = "rowid"; 1025 }else{ 1026 zCol = pTab->aCol[iCol].zName; 1027 } 1028 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 1029 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1030 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1031 char *zName = 0; 1032 char *zTab; 1033 1034 zTab = pTabList->a[j].zAlias; 1035 if( fullNames || zTab==0 ) zTab = pTab->zName; 1036 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1038 }else{ 1039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1040 } 1041 }else if( p->span.z && p->span.z[0] ){ 1042 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1043 /* sqlite3VdbeCompressSpace(v, addr); */ 1044 }else{ 1045 char zName[30]; 1046 assert( p->op!=TK_COLUMN || pTabList==0 ); 1047 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1048 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1049 } 1050 } 1051 generateColumnTypes(pParse, pTabList, pEList); 1052 } 1053 1054 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1055 /* 1056 ** Name of the connection operator, used for error messages. 1057 */ 1058 static const char *selectOpName(int id){ 1059 char *z; 1060 switch( id ){ 1061 case TK_ALL: z = "UNION ALL"; break; 1062 case TK_INTERSECT: z = "INTERSECT"; break; 1063 case TK_EXCEPT: z = "EXCEPT"; break; 1064 default: z = "UNION"; break; 1065 } 1066 return z; 1067 } 1068 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1069 1070 /* 1071 ** Forward declaration 1072 */ 1073 static int prepSelectStmt(Parse*, Select*); 1074 1075 /* 1076 ** Given a SELECT statement, generate a Table structure that describes 1077 ** the result set of that SELECT. 1078 */ 1079 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1080 Table *pTab; 1081 int i, j; 1082 ExprList *pEList; 1083 Column *aCol, *pCol; 1084 sqlite3 *db = pParse->db; 1085 1086 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1087 if( prepSelectStmt(pParse, pSelect) ){ 1088 return 0; 1089 } 1090 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1091 return 0; 1092 } 1093 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1094 if( pTab==0 ){ 1095 return 0; 1096 } 1097 pTab->nRef = 1; 1098 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; 1099 pEList = pSelect->pEList; 1100 pTab->nCol = pEList->nExpr; 1101 assert( pTab->nCol>0 ); 1102 pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); 1103 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1104 Expr *p, *pR; 1105 char *zType; 1106 char *zName; 1107 int nName; 1108 CollSeq *pColl; 1109 int cnt; 1110 NameContext sNC; 1111 1112 /* Get an appropriate name for the column 1113 */ 1114 p = pEList->a[i].pExpr; 1115 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1116 if( (zName = pEList->a[i].zName)!=0 ){ 1117 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1118 zName = sqlite3DbStrDup(db, zName); 1119 }else if( p->op==TK_DOT 1120 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1121 /* For columns of the from A.B use B as the name */ 1122 zName = sqlite3MPrintf(db, "%T", &pR->token); 1123 }else if( p->span.z && p->span.z[0] ){ 1124 /* Use the original text of the column expression as its name */ 1125 zName = sqlite3MPrintf(db, "%T", &p->span); 1126 }else{ 1127 /* If all else fails, make up a name */ 1128 zName = sqlite3MPrintf(db, "column%d", i+1); 1129 } 1130 if( !zName || db->mallocFailed ){ 1131 db->mallocFailed = 1; 1132 sqlite3_free(zName); 1133 sqlite3DeleteTable(pTab); 1134 return 0; 1135 } 1136 sqlite3Dequote(zName); 1137 1138 /* Make sure the column name is unique. If the name is not unique, 1139 ** append a integer to the name so that it becomes unique. 1140 */ 1141 nName = strlen(zName); 1142 for(j=cnt=0; j<i; j++){ 1143 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1144 zName[nName] = 0; 1145 zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt); 1146 j = -1; 1147 if( zName==0 ) break; 1148 } 1149 } 1150 pCol->zName = zName; 1151 1152 /* Get the typename, type affinity, and collating sequence for the 1153 ** column. 1154 */ 1155 memset(&sNC, 0, sizeof(sNC)); 1156 sNC.pSrcList = pSelect->pSrc; 1157 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1158 pCol->zType = zType; 1159 pCol->affinity = sqlite3ExprAffinity(p); 1160 pColl = sqlite3ExprCollSeq(pParse, p); 1161 if( pColl ){ 1162 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1163 } 1164 } 1165 pTab->iPKey = -1; 1166 return pTab; 1167 } 1168 1169 /* 1170 ** Prepare a SELECT statement for processing by doing the following 1171 ** things: 1172 ** 1173 ** (1) Make sure VDBE cursor numbers have been assigned to every 1174 ** element of the FROM clause. 1175 ** 1176 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1177 ** defines FROM clause. When views appear in the FROM clause, 1178 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1179 ** that implements the view. A copy is made of the view's SELECT 1180 ** statement so that we can freely modify or delete that statement 1181 ** without worrying about messing up the presistent representation 1182 ** of the view. 1183 ** 1184 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1185 ** on joins and the ON and USING clause of joins. 1186 ** 1187 ** (4) Scan the list of columns in the result set (pEList) looking 1188 ** for instances of the "*" operator or the TABLE.* operator. 1189 ** If found, expand each "*" to be every column in every table 1190 ** and TABLE.* to be every column in TABLE. 1191 ** 1192 ** Return 0 on success. If there are problems, leave an error message 1193 ** in pParse and return non-zero. 1194 */ 1195 static int prepSelectStmt(Parse *pParse, Select *p){ 1196 int i, j, k, rc; 1197 SrcList *pTabList; 1198 ExprList *pEList; 1199 struct SrcList_item *pFrom; 1200 sqlite3 *db = pParse->db; 1201 1202 if( p==0 || p->pSrc==0 || db->mallocFailed ){ 1203 return 1; 1204 } 1205 pTabList = p->pSrc; 1206 pEList = p->pEList; 1207 1208 /* Make sure cursor numbers have been assigned to all entries in 1209 ** the FROM clause of the SELECT statement. 1210 */ 1211 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1212 1213 /* Look up every table named in the FROM clause of the select. If 1214 ** an entry of the FROM clause is a subquery instead of a table or view, 1215 ** then create a transient table structure to describe the subquery. 1216 */ 1217 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1218 Table *pTab; 1219 if( pFrom->pTab!=0 ){ 1220 /* This statement has already been prepared. There is no need 1221 ** to go further. */ 1222 assert( i==0 ); 1223 return 0; 1224 } 1225 if( pFrom->zName==0 ){ 1226 #ifndef SQLITE_OMIT_SUBQUERY 1227 /* A sub-query in the FROM clause of a SELECT */ 1228 assert( pFrom->pSelect!=0 ); 1229 if( pFrom->zAlias==0 ){ 1230 pFrom->zAlias = 1231 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); 1232 } 1233 assert( pFrom->pTab==0 ); 1234 pFrom->pTab = pTab = 1235 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1236 if( pTab==0 ){ 1237 return 1; 1238 } 1239 /* The isEphem flag indicates that the Table structure has been 1240 ** dynamically allocated and may be freed at any time. In other words, 1241 ** pTab is not pointing to a persistent table structure that defines 1242 ** part of the schema. */ 1243 pTab->isEphem = 1; 1244 #endif 1245 }else{ 1246 /* An ordinary table or view name in the FROM clause */ 1247 assert( pFrom->pTab==0 ); 1248 pFrom->pTab = pTab = 1249 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1250 if( pTab==0 ){ 1251 return 1; 1252 } 1253 pTab->nRef++; 1254 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1255 if( pTab->pSelect || IsVirtual(pTab) ){ 1256 /* We reach here if the named table is a really a view */ 1257 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1258 return 1; 1259 } 1260 /* If pFrom->pSelect!=0 it means we are dealing with a 1261 ** view within a view. The SELECT structure has already been 1262 ** copied by the outer view so we can skip the copy step here 1263 ** in the inner view. 1264 */ 1265 if( pFrom->pSelect==0 ){ 1266 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 1267 } 1268 } 1269 #endif 1270 } 1271 } 1272 1273 /* Process NATURAL keywords, and ON and USING clauses of joins. 1274 */ 1275 if( sqliteProcessJoin(pParse, p) ) return 1; 1276 1277 /* For every "*" that occurs in the column list, insert the names of 1278 ** all columns in all tables. And for every TABLE.* insert the names 1279 ** of all columns in TABLE. The parser inserted a special expression 1280 ** with the TK_ALL operator for each "*" that it found in the column list. 1281 ** The following code just has to locate the TK_ALL expressions and expand 1282 ** each one to the list of all columns in all tables. 1283 ** 1284 ** The first loop just checks to see if there are any "*" operators 1285 ** that need expanding. 1286 */ 1287 for(k=0; k<pEList->nExpr; k++){ 1288 Expr *pE = pEList->a[k].pExpr; 1289 if( pE->op==TK_ALL ) break; 1290 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1291 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1292 } 1293 rc = 0; 1294 if( k<pEList->nExpr ){ 1295 /* 1296 ** If we get here it means the result set contains one or more "*" 1297 ** operators that need to be expanded. Loop through each expression 1298 ** in the result set and expand them one by one. 1299 */ 1300 struct ExprList_item *a = pEList->a; 1301 ExprList *pNew = 0; 1302 int flags = pParse->db->flags; 1303 int longNames = (flags & SQLITE_FullColNames)!=0 && 1304 (flags & SQLITE_ShortColNames)==0; 1305 1306 for(k=0; k<pEList->nExpr; k++){ 1307 Expr *pE = a[k].pExpr; 1308 if( pE->op!=TK_ALL && 1309 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1310 /* This particular expression does not need to be expanded. 1311 */ 1312 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 1313 if( pNew ){ 1314 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1315 }else{ 1316 rc = 1; 1317 } 1318 a[k].pExpr = 0; 1319 a[k].zName = 0; 1320 }else{ 1321 /* This expression is a "*" or a "TABLE.*" and needs to be 1322 ** expanded. */ 1323 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1324 char *zTName; /* text of name of TABLE */ 1325 if( pE->op==TK_DOT && pE->pLeft ){ 1326 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 1327 }else{ 1328 zTName = 0; 1329 } 1330 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1331 Table *pTab = pFrom->pTab; 1332 char *zTabName = pFrom->zAlias; 1333 if( zTabName==0 || zTabName[0]==0 ){ 1334 zTabName = pTab->zName; 1335 } 1336 if( zTName && (zTabName==0 || zTabName[0]==0 || 1337 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1338 continue; 1339 } 1340 tableSeen = 1; 1341 for(j=0; j<pTab->nCol; j++){ 1342 Expr *pExpr, *pRight; 1343 char *zName = pTab->aCol[j].zName; 1344 1345 /* If a column is marked as 'hidden' (currently only possible 1346 ** for virtual tables), do not include it in the expanded 1347 ** result-set list. 1348 */ 1349 if( IsHiddenColumn(&pTab->aCol[j]) ){ 1350 assert(IsVirtual(pTab)); 1351 continue; 1352 } 1353 1354 if( i>0 ){ 1355 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1356 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1357 columnIndex(pLeft->pTab, zName)>=0 ){ 1358 /* In a NATURAL join, omit the join columns from the 1359 ** table on the right */ 1360 continue; 1361 } 1362 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1363 /* In a join with a USING clause, omit columns in the 1364 ** using clause from the table on the right. */ 1365 continue; 1366 } 1367 } 1368 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1369 if( pRight==0 ) break; 1370 setQuotedToken(pParse, &pRight->token, zName); 1371 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1372 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1373 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 1374 if( pExpr==0 ) break; 1375 setQuotedToken(pParse, &pLeft->token, zTabName); 1376 setToken(&pExpr->span, 1377 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 1378 pExpr->span.dyn = 1; 1379 pExpr->token.z = 0; 1380 pExpr->token.n = 0; 1381 pExpr->token.dyn = 0; 1382 }else{ 1383 pExpr = pRight; 1384 pExpr->span = pExpr->token; 1385 pExpr->span.dyn = 0; 1386 } 1387 if( longNames ){ 1388 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 1389 }else{ 1390 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 1391 } 1392 } 1393 } 1394 if( !tableSeen ){ 1395 if( zTName ){ 1396 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1397 }else{ 1398 sqlite3ErrorMsg(pParse, "no tables specified"); 1399 } 1400 rc = 1; 1401 } 1402 sqlite3_free(zTName); 1403 } 1404 } 1405 sqlite3ExprListDelete(pEList); 1406 p->pEList = pNew; 1407 } 1408 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ 1409 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1410 rc = SQLITE_ERROR; 1411 } 1412 if( db->mallocFailed ){ 1413 rc = SQLITE_NOMEM; 1414 } 1415 return rc; 1416 } 1417 1418 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1419 /* 1420 ** This routine associates entries in an ORDER BY expression list with 1421 ** columns in a result. For each ORDER BY expression, the opcode of 1422 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1423 ** the top-level node is filled in with column number and the iTable 1424 ** value of the top-level node is filled with iTable parameter. 1425 ** 1426 ** If there are prior SELECT clauses, they are processed first. A match 1427 ** in an earlier SELECT takes precedence over a later SELECT. 1428 ** 1429 ** Any entry that does not match is flagged as an error. The number 1430 ** of errors is returned. 1431 */ 1432 static int matchOrderbyToColumn( 1433 Parse *pParse, /* A place to leave error messages */ 1434 Select *pSelect, /* Match to result columns of this SELECT */ 1435 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1436 int iTable, /* Insert this value in iTable */ 1437 int mustComplete /* If TRUE all ORDER BYs must match */ 1438 ){ 1439 int nErr = 0; 1440 int i, j; 1441 ExprList *pEList; 1442 sqlite3 *db = pParse->db; 1443 1444 if( pSelect==0 || pOrderBy==0 ) return 1; 1445 if( mustComplete ){ 1446 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1447 } 1448 if( prepSelectStmt(pParse, pSelect) ){ 1449 return 1; 1450 } 1451 if( pSelect->pPrior ){ 1452 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1453 return 1; 1454 } 1455 } 1456 pEList = pSelect->pEList; 1457 for(i=0; i<pOrderBy->nExpr; i++){ 1458 struct ExprList_item *pItem; 1459 Expr *pE = pOrderBy->a[i].pExpr; 1460 int iCol = -1; 1461 char *zLabel; 1462 1463 if( pOrderBy->a[i].done ) continue; 1464 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1465 if( iCol<=0 || iCol>pEList->nExpr ){ 1466 sqlite3ErrorMsg(pParse, 1467 "ORDER BY position %d should be between 1 and %d", 1468 iCol, pEList->nExpr); 1469 nErr++; 1470 break; 1471 } 1472 if( !mustComplete ) continue; 1473 iCol--; 1474 } 1475 if( iCol<0 && (zLabel = sqlite3NameFromToken(db, &pE->token))!=0 ){ 1476 for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){ 1477 char *zName; 1478 int isMatch; 1479 if( pItem->zName ){ 1480 zName = sqlite3DbStrDup(db, pItem->zName); 1481 }else{ 1482 zName = sqlite3NameFromToken(db, &pItem->pExpr->token); 1483 } 1484 isMatch = zName && sqlite3StrICmp(zName, zLabel)==0; 1485 sqlite3_free(zName); 1486 if( isMatch ){ 1487 iCol = j; 1488 break; 1489 } 1490 } 1491 sqlite3_free(zLabel); 1492 } 1493 if( iCol>=0 ){ 1494 pE->op = TK_COLUMN; 1495 pE->iColumn = iCol; 1496 pE->iTable = iTable; 1497 pE->iAgg = -1; 1498 pOrderBy->a[i].done = 1; 1499 }else if( mustComplete ){ 1500 sqlite3ErrorMsg(pParse, 1501 "ORDER BY term number %d does not match any result column", i+1); 1502 nErr++; 1503 break; 1504 } 1505 } 1506 return nErr; 1507 } 1508 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1509 1510 /* 1511 ** Get a VDBE for the given parser context. Create a new one if necessary. 1512 ** If an error occurs, return NULL and leave a message in pParse. 1513 */ 1514 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1515 Vdbe *v = pParse->pVdbe; 1516 if( v==0 ){ 1517 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1518 } 1519 return v; 1520 } 1521 1522 1523 /* 1524 ** Compute the iLimit and iOffset fields of the SELECT based on the 1525 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1526 ** that appear in the original SQL statement after the LIMIT and OFFSET 1527 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1528 ** are the integer memory register numbers for counters used to compute 1529 ** the limit and offset. If there is no limit and/or offset, then 1530 ** iLimit and iOffset are negative. 1531 ** 1532 ** This routine changes the values of iLimit and iOffset only if 1533 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1534 ** iOffset should have been preset to appropriate default values 1535 ** (usually but not always -1) prior to calling this routine. 1536 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1537 ** redefined. The UNION ALL operator uses this property to force 1538 ** the reuse of the same limit and offset registers across multiple 1539 ** SELECT statements. 1540 */ 1541 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1542 Vdbe *v = 0; 1543 int iLimit = 0; 1544 int iOffset; 1545 int addr1, addr2; 1546 1547 /* 1548 ** "LIMIT -1" always shows all rows. There is some 1549 ** contraversy about what the correct behavior should be. 1550 ** The current implementation interprets "LIMIT 0" to mean 1551 ** no rows. 1552 */ 1553 if( p->pLimit ){ 1554 p->iLimit = iLimit = pParse->nMem; 1555 pParse->nMem += 2; 1556 v = sqlite3GetVdbe(pParse); 1557 if( v==0 ) return; 1558 sqlite3ExprCode(pParse, p->pLimit); 1559 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1560 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); 1561 VdbeComment((v, "# LIMIT counter")); 1562 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1563 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); 1564 } 1565 if( p->pOffset ){ 1566 p->iOffset = iOffset = pParse->nMem++; 1567 v = sqlite3GetVdbe(pParse); 1568 if( v==0 ) return; 1569 sqlite3ExprCode(pParse, p->pOffset); 1570 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1571 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1572 VdbeComment((v, "# OFFSET counter")); 1573 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1574 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1575 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1576 sqlite3VdbeJumpHere(v, addr1); 1577 if( p->pLimit ){ 1578 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1579 } 1580 } 1581 if( p->pLimit ){ 1582 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1583 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1584 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1585 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1586 sqlite3VdbeJumpHere(v, addr1); 1587 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1588 VdbeComment((v, "# LIMIT+OFFSET")); 1589 sqlite3VdbeJumpHere(v, addr2); 1590 } 1591 } 1592 1593 /* 1594 ** Allocate a virtual index to use for sorting. 1595 */ 1596 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1597 if( pOrderBy ){ 1598 int addr; 1599 assert( pOrderBy->iECursor==0 ); 1600 pOrderBy->iECursor = pParse->nTab++; 1601 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1602 pOrderBy->iECursor, pOrderBy->nExpr+1); 1603 assert( p->addrOpenEphm[2] == -1 ); 1604 p->addrOpenEphm[2] = addr; 1605 } 1606 } 1607 1608 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1609 /* 1610 ** Return the appropriate collating sequence for the iCol-th column of 1611 ** the result set for the compound-select statement "p". Return NULL if 1612 ** the column has no default collating sequence. 1613 ** 1614 ** The collating sequence for the compound select is taken from the 1615 ** left-most term of the select that has a collating sequence. 1616 */ 1617 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1618 CollSeq *pRet; 1619 if( p->pPrior ){ 1620 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1621 }else{ 1622 pRet = 0; 1623 } 1624 if( pRet==0 ){ 1625 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1626 } 1627 return pRet; 1628 } 1629 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1630 1631 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1632 /* 1633 ** This routine is called to process a query that is really the union 1634 ** or intersection of two or more separate queries. 1635 ** 1636 ** "p" points to the right-most of the two queries. the query on the 1637 ** left is p->pPrior. The left query could also be a compound query 1638 ** in which case this routine will be called recursively. 1639 ** 1640 ** The results of the total query are to be written into a destination 1641 ** of type eDest with parameter iParm. 1642 ** 1643 ** Example 1: Consider a three-way compound SQL statement. 1644 ** 1645 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1646 ** 1647 ** This statement is parsed up as follows: 1648 ** 1649 ** SELECT c FROM t3 1650 ** | 1651 ** `-----> SELECT b FROM t2 1652 ** | 1653 ** `------> SELECT a FROM t1 1654 ** 1655 ** The arrows in the diagram above represent the Select.pPrior pointer. 1656 ** So if this routine is called with p equal to the t3 query, then 1657 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1658 ** 1659 ** Notice that because of the way SQLite parses compound SELECTs, the 1660 ** individual selects always group from left to right. 1661 */ 1662 static int multiSelect( 1663 Parse *pParse, /* Parsing context */ 1664 Select *p, /* The right-most of SELECTs to be coded */ 1665 int eDest, /* \___ Store query results as specified */ 1666 int iParm, /* / by these two parameters. */ 1667 char *aff /* If eDest is SRT_Union, the affinity string */ 1668 ){ 1669 int rc = SQLITE_OK; /* Success code from a subroutine */ 1670 Select *pPrior; /* Another SELECT immediately to our left */ 1671 Vdbe *v; /* Generate code to this VDBE */ 1672 int nCol; /* Number of columns in the result set */ 1673 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1674 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1675 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1676 1677 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1678 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1679 */ 1680 if( p==0 || p->pPrior==0 ){ 1681 rc = 1; 1682 goto multi_select_end; 1683 } 1684 pPrior = p->pPrior; 1685 assert( pPrior->pRightmost!=pPrior ); 1686 assert( pPrior->pRightmost==p->pRightmost ); 1687 if( pPrior->pOrderBy ){ 1688 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1689 selectOpName(p->op)); 1690 rc = 1; 1691 goto multi_select_end; 1692 } 1693 if( pPrior->pLimit ){ 1694 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1695 selectOpName(p->op)); 1696 rc = 1; 1697 goto multi_select_end; 1698 } 1699 1700 /* Make sure we have a valid query engine. If not, create a new one. 1701 */ 1702 v = sqlite3GetVdbe(pParse); 1703 if( v==0 ){ 1704 rc = 1; 1705 goto multi_select_end; 1706 } 1707 1708 /* Create the destination temporary table if necessary 1709 */ 1710 if( eDest==SRT_EphemTab ){ 1711 assert( p->pEList ); 1712 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1713 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1714 eDest = SRT_Table; 1715 } 1716 1717 /* Generate code for the left and right SELECT statements. 1718 */ 1719 pOrderBy = p->pOrderBy; 1720 switch( p->op ){ 1721 case TK_ALL: { 1722 if( pOrderBy==0 ){ 1723 int addr = 0; 1724 assert( !pPrior->pLimit ); 1725 pPrior->pLimit = p->pLimit; 1726 pPrior->pOffset = p->pOffset; 1727 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1728 p->pLimit = 0; 1729 p->pOffset = 0; 1730 if( rc ){ 1731 goto multi_select_end; 1732 } 1733 p->pPrior = 0; 1734 p->iLimit = pPrior->iLimit; 1735 p->iOffset = pPrior->iOffset; 1736 if( p->iLimit>=0 ){ 1737 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1738 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1739 } 1740 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1741 p->pPrior = pPrior; 1742 if( rc ){ 1743 goto multi_select_end; 1744 } 1745 if( addr ){ 1746 sqlite3VdbeJumpHere(v, addr); 1747 } 1748 break; 1749 } 1750 /* For UNION ALL ... ORDER BY fall through to the next case */ 1751 } 1752 case TK_EXCEPT: 1753 case TK_UNION: { 1754 int unionTab; /* Cursor number of the temporary table holding result */ 1755 int op = 0; /* One of the SRT_ operations to apply to self */ 1756 int priorOp; /* The SRT_ operation to apply to prior selects */ 1757 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1758 int addr; 1759 1760 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1761 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1762 /* We can reuse a temporary table generated by a SELECT to our 1763 ** right. 1764 */ 1765 unionTab = iParm; 1766 }else{ 1767 /* We will need to create our own temporary table to hold the 1768 ** intermediate results. 1769 */ 1770 unionTab = pParse->nTab++; 1771 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1772 rc = 1; 1773 goto multi_select_end; 1774 } 1775 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1776 if( priorOp==SRT_Table ){ 1777 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1778 aSetP2[nSetP2++] = addr; 1779 }else{ 1780 assert( p->addrOpenEphm[0] == -1 ); 1781 p->addrOpenEphm[0] = addr; 1782 p->pRightmost->usesEphm = 1; 1783 } 1784 createSortingIndex(pParse, p, pOrderBy); 1785 assert( p->pEList ); 1786 } 1787 1788 /* Code the SELECT statements to our left 1789 */ 1790 assert( !pPrior->pOrderBy ); 1791 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1792 if( rc ){ 1793 goto multi_select_end; 1794 } 1795 1796 /* Code the current SELECT statement 1797 */ 1798 switch( p->op ){ 1799 case TK_EXCEPT: op = SRT_Except; break; 1800 case TK_UNION: op = SRT_Union; break; 1801 case TK_ALL: op = SRT_Table; break; 1802 } 1803 p->pPrior = 0; 1804 p->pOrderBy = 0; 1805 p->disallowOrderBy = pOrderBy!=0; 1806 pLimit = p->pLimit; 1807 p->pLimit = 0; 1808 pOffset = p->pOffset; 1809 p->pOffset = 0; 1810 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1811 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1812 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1813 sqlite3ExprListDelete(p->pOrderBy); 1814 p->pPrior = pPrior; 1815 p->pOrderBy = pOrderBy; 1816 sqlite3ExprDelete(p->pLimit); 1817 p->pLimit = pLimit; 1818 p->pOffset = pOffset; 1819 p->iLimit = -1; 1820 p->iOffset = -1; 1821 if( rc ){ 1822 goto multi_select_end; 1823 } 1824 1825 1826 /* Convert the data in the temporary table into whatever form 1827 ** it is that we currently need. 1828 */ 1829 if( eDest!=priorOp || unionTab!=iParm ){ 1830 int iCont, iBreak, iStart; 1831 assert( p->pEList ); 1832 if( eDest==SRT_Callback ){ 1833 Select *pFirst = p; 1834 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1835 generateColumnNames(pParse, 0, pFirst->pEList); 1836 } 1837 iBreak = sqlite3VdbeMakeLabel(v); 1838 iCont = sqlite3VdbeMakeLabel(v); 1839 computeLimitRegisters(pParse, p, iBreak); 1840 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1841 iStart = sqlite3VdbeCurrentAddr(v); 1842 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1843 pOrderBy, -1, eDest, iParm, 1844 iCont, iBreak, 0); 1845 if( rc ){ 1846 rc = 1; 1847 goto multi_select_end; 1848 } 1849 sqlite3VdbeResolveLabel(v, iCont); 1850 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1851 sqlite3VdbeResolveLabel(v, iBreak); 1852 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1853 } 1854 break; 1855 } 1856 case TK_INTERSECT: { 1857 int tab1, tab2; 1858 int iCont, iBreak, iStart; 1859 Expr *pLimit, *pOffset; 1860 int addr; 1861 1862 /* INTERSECT is different from the others since it requires 1863 ** two temporary tables. Hence it has its own case. Begin 1864 ** by allocating the tables we will need. 1865 */ 1866 tab1 = pParse->nTab++; 1867 tab2 = pParse->nTab++; 1868 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1869 rc = 1; 1870 goto multi_select_end; 1871 } 1872 createSortingIndex(pParse, p, pOrderBy); 1873 1874 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1875 assert( p->addrOpenEphm[0] == -1 ); 1876 p->addrOpenEphm[0] = addr; 1877 p->pRightmost->usesEphm = 1; 1878 assert( p->pEList ); 1879 1880 /* Code the SELECTs to our left into temporary table "tab1". 1881 */ 1882 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1883 if( rc ){ 1884 goto multi_select_end; 1885 } 1886 1887 /* Code the current SELECT into temporary table "tab2" 1888 */ 1889 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1890 assert( p->addrOpenEphm[1] == -1 ); 1891 p->addrOpenEphm[1] = addr; 1892 p->pPrior = 0; 1893 pLimit = p->pLimit; 1894 p->pLimit = 0; 1895 pOffset = p->pOffset; 1896 p->pOffset = 0; 1897 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1898 p->pPrior = pPrior; 1899 sqlite3ExprDelete(p->pLimit); 1900 p->pLimit = pLimit; 1901 p->pOffset = pOffset; 1902 if( rc ){ 1903 goto multi_select_end; 1904 } 1905 1906 /* Generate code to take the intersection of the two temporary 1907 ** tables. 1908 */ 1909 assert( p->pEList ); 1910 if( eDest==SRT_Callback ){ 1911 Select *pFirst = p; 1912 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1913 generateColumnNames(pParse, 0, pFirst->pEList); 1914 } 1915 iBreak = sqlite3VdbeMakeLabel(v); 1916 iCont = sqlite3VdbeMakeLabel(v); 1917 computeLimitRegisters(pParse, p, iBreak); 1918 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1919 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1920 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1921 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1922 pOrderBy, -1, eDest, iParm, 1923 iCont, iBreak, 0); 1924 if( rc ){ 1925 rc = 1; 1926 goto multi_select_end; 1927 } 1928 sqlite3VdbeResolveLabel(v, iCont); 1929 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1930 sqlite3VdbeResolveLabel(v, iBreak); 1931 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1932 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1933 break; 1934 } 1935 } 1936 1937 /* Make sure all SELECTs in the statement have the same number of elements 1938 ** in their result sets. 1939 */ 1940 assert( p->pEList && pPrior->pEList ); 1941 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1942 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1943 " do not have the same number of result columns", selectOpName(p->op)); 1944 rc = 1; 1945 goto multi_select_end; 1946 } 1947 1948 /* Set the number of columns in temporary tables 1949 */ 1950 nCol = p->pEList->nExpr; 1951 while( nSetP2 ){ 1952 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1953 } 1954 1955 /* Compute collating sequences used by either the ORDER BY clause or 1956 ** by any temporary tables needed to implement the compound select. 1957 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1958 ** ORDER BY processing if there is an ORDER BY clause. 1959 ** 1960 ** This section is run by the right-most SELECT statement only. 1961 ** SELECT statements to the left always skip this part. The right-most 1962 ** SELECT might also skip this part if it has no ORDER BY clause and 1963 ** no temp tables are required. 1964 */ 1965 if( pOrderBy || p->usesEphm ){ 1966 int i; /* Loop counter */ 1967 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1968 Select *pLoop; /* For looping through SELECT statements */ 1969 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1970 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1971 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 1972 1973 assert( p->pRightmost==p ); 1974 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1975 pKeyInfo = sqlite3DbMallocZero(pParse->db, 1976 sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1977 if( !pKeyInfo ){ 1978 rc = SQLITE_NOMEM; 1979 goto multi_select_end; 1980 } 1981 1982 pKeyInfo->enc = ENC(pParse->db); 1983 pKeyInfo->nField = nCol; 1984 1985 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1986 *apColl = multiSelectCollSeq(pParse, p, i); 1987 if( 0==*apColl ){ 1988 *apColl = pParse->db->pDfltColl; 1989 } 1990 } 1991 1992 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1993 for(i=0; i<2; i++){ 1994 int addr = pLoop->addrOpenEphm[i]; 1995 if( addr<0 ){ 1996 /* If [0] is unused then [1] is also unused. So we can 1997 ** always safely abort as soon as the first unused slot is found */ 1998 assert( pLoop->addrOpenEphm[1]<0 ); 1999 break; 2000 } 2001 sqlite3VdbeChangeP2(v, addr, nCol); 2002 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 2003 pLoop->addrOpenEphm[i] = -1; 2004 } 2005 } 2006 2007 if( pOrderBy ){ 2008 struct ExprList_item *pOTerm = pOrderBy->a; 2009 int nOrderByExpr = pOrderBy->nExpr; 2010 int addr; 2011 u8 *pSortOrder; 2012 2013 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 2014 ** the compound select statements. Except we have to change out the 2015 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 2016 ** reused when constructing the pKeyInfo for the ORDER BY, so make 2017 ** a copy. Sufficient space to hold both the nCol entries for 2018 ** the compound select and the nOrderbyExpr entries for the ORDER BY 2019 ** was allocated above. But we need to move the compound select 2020 ** entries out of the way before constructing the ORDER BY entries. 2021 ** Move the compound select entries into aCopy[] where they can be 2022 ** accessed and reused when constructing the ORDER BY entries. 2023 ** Because nCol might be greater than or less than nOrderByExpr 2024 ** we have to use memmove() when doing the copy. 2025 */ 2026 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 2027 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 2028 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 2029 2030 apColl = pKeyInfo->aColl; 2031 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 2032 Expr *pExpr = pOTerm->pExpr; 2033 if( (pExpr->flags & EP_ExpCollate) ){ 2034 assert( pExpr->pColl!=0 ); 2035 *apColl = pExpr->pColl; 2036 }else{ 2037 *apColl = aCopy[pExpr->iColumn]; 2038 } 2039 *pSortOrder = pOTerm->sortOrder; 2040 } 2041 assert( p->pRightmost==p ); 2042 assert( p->addrOpenEphm[2]>=0 ); 2043 addr = p->addrOpenEphm[2]; 2044 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); 2045 pKeyInfo->nField = nOrderByExpr; 2046 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2047 pKeyInfo = 0; 2048 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 2049 } 2050 2051 sqlite3_free(pKeyInfo); 2052 } 2053 2054 multi_select_end: 2055 return rc; 2056 } 2057 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2058 2059 #ifndef SQLITE_OMIT_VIEW 2060 /* Forward Declarations */ 2061 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2062 static void substSelect(sqlite3*, Select *, int, ExprList *); 2063 2064 /* 2065 ** Scan through the expression pExpr. Replace every reference to 2066 ** a column in table number iTable with a copy of the iColumn-th 2067 ** entry in pEList. (But leave references to the ROWID column 2068 ** unchanged.) 2069 ** 2070 ** This routine is part of the flattening procedure. A subquery 2071 ** whose result set is defined by pEList appears as entry in the 2072 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2073 ** FORM clause entry is iTable. This routine make the necessary 2074 ** changes to pExpr so that it refers directly to the source table 2075 ** of the subquery rather the result set of the subquery. 2076 */ 2077 static void substExpr( 2078 sqlite3 *db, /* Report malloc errors to this connection */ 2079 Expr *pExpr, /* Expr in which substitution occurs */ 2080 int iTable, /* Table to be substituted */ 2081 ExprList *pEList /* Substitute expressions */ 2082 ){ 2083 if( pExpr==0 ) return; 2084 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2085 if( pExpr->iColumn<0 ){ 2086 pExpr->op = TK_NULL; 2087 }else{ 2088 Expr *pNew; 2089 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2090 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2091 pNew = pEList->a[pExpr->iColumn].pExpr; 2092 assert( pNew!=0 ); 2093 pExpr->op = pNew->op; 2094 assert( pExpr->pLeft==0 ); 2095 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2096 assert( pExpr->pRight==0 ); 2097 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2098 assert( pExpr->pList==0 ); 2099 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2100 pExpr->iTable = pNew->iTable; 2101 pExpr->pTab = pNew->pTab; 2102 pExpr->iColumn = pNew->iColumn; 2103 pExpr->iAgg = pNew->iAgg; 2104 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2105 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2106 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2107 pExpr->flags = pNew->flags; 2108 } 2109 }else{ 2110 substExpr(db, pExpr->pLeft, iTable, pEList); 2111 substExpr(db, pExpr->pRight, iTable, pEList); 2112 substSelect(db, pExpr->pSelect, iTable, pEList); 2113 substExprList(db, pExpr->pList, iTable, pEList); 2114 } 2115 } 2116 static void substExprList( 2117 sqlite3 *db, /* Report malloc errors here */ 2118 ExprList *pList, /* List to scan and in which to make substitutes */ 2119 int iTable, /* Table to be substituted */ 2120 ExprList *pEList /* Substitute values */ 2121 ){ 2122 int i; 2123 if( pList==0 ) return; 2124 for(i=0; i<pList->nExpr; i++){ 2125 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2126 } 2127 } 2128 static void substSelect( 2129 sqlite3 *db, /* Report malloc errors here */ 2130 Select *p, /* SELECT statement in which to make substitutions */ 2131 int iTable, /* Table to be replaced */ 2132 ExprList *pEList /* Substitute values */ 2133 ){ 2134 if( !p ) return; 2135 substExprList(db, p->pEList, iTable, pEList); 2136 substExprList(db, p->pGroupBy, iTable, pEList); 2137 substExprList(db, p->pOrderBy, iTable, pEList); 2138 substExpr(db, p->pHaving, iTable, pEList); 2139 substExpr(db, p->pWhere, iTable, pEList); 2140 substSelect(db, p->pPrior, iTable, pEList); 2141 } 2142 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2143 2144 #ifndef SQLITE_OMIT_VIEW 2145 /* 2146 ** This routine attempts to flatten subqueries in order to speed 2147 ** execution. It returns 1 if it makes changes and 0 if no flattening 2148 ** occurs. 2149 ** 2150 ** To understand the concept of flattening, consider the following 2151 ** query: 2152 ** 2153 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2154 ** 2155 ** The default way of implementing this query is to execute the 2156 ** subquery first and store the results in a temporary table, then 2157 ** run the outer query on that temporary table. This requires two 2158 ** passes over the data. Furthermore, because the temporary table 2159 ** has no indices, the WHERE clause on the outer query cannot be 2160 ** optimized. 2161 ** 2162 ** This routine attempts to rewrite queries such as the above into 2163 ** a single flat select, like this: 2164 ** 2165 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2166 ** 2167 ** The code generated for this simpification gives the same result 2168 ** but only has to scan the data once. And because indices might 2169 ** exist on the table t1, a complete scan of the data might be 2170 ** avoided. 2171 ** 2172 ** Flattening is only attempted if all of the following are true: 2173 ** 2174 ** (1) The subquery and the outer query do not both use aggregates. 2175 ** 2176 ** (2) The subquery is not an aggregate or the outer query is not a join. 2177 ** 2178 ** (3) The subquery is not the right operand of a left outer join, or 2179 ** the subquery is not itself a join. (Ticket #306) 2180 ** 2181 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2182 ** 2183 ** (5) The subquery is not DISTINCT or the outer query does not use 2184 ** aggregates. 2185 ** 2186 ** (6) The subquery does not use aggregates or the outer query is not 2187 ** DISTINCT. 2188 ** 2189 ** (7) The subquery has a FROM clause. 2190 ** 2191 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2192 ** 2193 ** (9) The subquery does not use LIMIT or the outer query does not use 2194 ** aggregates. 2195 ** 2196 ** (10) The subquery does not use aggregates or the outer query does not 2197 ** use LIMIT. 2198 ** 2199 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2200 ** 2201 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2202 ** subquery has no WHERE clause. (added by ticket #350) 2203 ** 2204 ** (13) The subquery and outer query do not both use LIMIT 2205 ** 2206 ** (14) The subquery does not use OFFSET 2207 ** 2208 ** (15) The outer query is not part of a compound select or the 2209 ** subquery does not have both an ORDER BY and a LIMIT clause. 2210 ** (See ticket #2339) 2211 ** 2212 ** In this routine, the "p" parameter is a pointer to the outer query. 2213 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2214 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2215 ** 2216 ** If flattening is not attempted, this routine is a no-op and returns 0. 2217 ** If flattening is attempted this routine returns 1. 2218 ** 2219 ** All of the expression analysis must occur on both the outer query and 2220 ** the subquery before this routine runs. 2221 */ 2222 static int flattenSubquery( 2223 sqlite3 *db, /* Database connection */ 2224 Select *p, /* The parent or outer SELECT statement */ 2225 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2226 int isAgg, /* True if outer SELECT uses aggregate functions */ 2227 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2228 ){ 2229 Select *pSub; /* The inner query or "subquery" */ 2230 SrcList *pSrc; /* The FROM clause of the outer query */ 2231 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2232 ExprList *pList; /* The result set of the outer query */ 2233 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2234 int i; /* Loop counter */ 2235 Expr *pWhere; /* The WHERE clause */ 2236 struct SrcList_item *pSubitem; /* The subquery */ 2237 2238 /* Check to see if flattening is permitted. Return 0 if not. 2239 */ 2240 if( p==0 ) return 0; 2241 pSrc = p->pSrc; 2242 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2243 pSubitem = &pSrc->a[iFrom]; 2244 pSub = pSubitem->pSelect; 2245 assert( pSub!=0 ); 2246 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2247 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2248 pSubSrc = pSub->pSrc; 2249 assert( pSubSrc ); 2250 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2251 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2252 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2253 ** became arbitrary expressions, we were forced to add restrictions (13) 2254 ** and (14). */ 2255 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2256 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2257 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2258 return 0; /* Restriction (15) */ 2259 } 2260 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2261 if( (pSub->isDistinct || pSub->pLimit) 2262 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2263 return 0; 2264 } 2265 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2266 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2267 return 0; /* Restriction (11) */ 2268 } 2269 2270 /* Restriction 3: If the subquery is a join, make sure the subquery is 2271 ** not used as the right operand of an outer join. Examples of why this 2272 ** is not allowed: 2273 ** 2274 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2275 ** 2276 ** If we flatten the above, we would get 2277 ** 2278 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2279 ** 2280 ** which is not at all the same thing. 2281 */ 2282 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2283 return 0; 2284 } 2285 2286 /* Restriction 12: If the subquery is the right operand of a left outer 2287 ** join, make sure the subquery has no WHERE clause. 2288 ** An examples of why this is not allowed: 2289 ** 2290 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2291 ** 2292 ** If we flatten the above, we would get 2293 ** 2294 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2295 ** 2296 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2297 ** effectively converts the OUTER JOIN into an INNER JOIN. 2298 */ 2299 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2300 return 0; 2301 } 2302 2303 /* If we reach this point, it means flattening is permitted for the 2304 ** iFrom-th entry of the FROM clause in the outer query. 2305 */ 2306 2307 /* Move all of the FROM elements of the subquery into the 2308 ** the FROM clause of the outer query. Before doing this, remember 2309 ** the cursor number for the original outer query FROM element in 2310 ** iParent. The iParent cursor will never be used. Subsequent code 2311 ** will scan expressions looking for iParent references and replace 2312 ** those references with expressions that resolve to the subquery FROM 2313 ** elements we are now copying in. 2314 */ 2315 iParent = pSubitem->iCursor; 2316 { 2317 int nSubSrc = pSubSrc->nSrc; 2318 int jointype = pSubitem->jointype; 2319 2320 sqlite3DeleteTable(pSubitem->pTab); 2321 sqlite3_free(pSubitem->zDatabase); 2322 sqlite3_free(pSubitem->zName); 2323 sqlite3_free(pSubitem->zAlias); 2324 if( nSubSrc>1 ){ 2325 int extra = nSubSrc - 1; 2326 for(i=1; i<nSubSrc; i++){ 2327 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); 2328 } 2329 p->pSrc = pSrc; 2330 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2331 pSrc->a[i] = pSrc->a[i-extra]; 2332 } 2333 } 2334 for(i=0; i<nSubSrc; i++){ 2335 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2336 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2337 } 2338 pSrc->a[iFrom].jointype = jointype; 2339 } 2340 2341 /* Now begin substituting subquery result set expressions for 2342 ** references to the iParent in the outer query. 2343 ** 2344 ** Example: 2345 ** 2346 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2347 ** \ \_____________ subquery __________/ / 2348 ** \_____________________ outer query ______________________________/ 2349 ** 2350 ** We look at every expression in the outer query and every place we see 2351 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2352 */ 2353 pList = p->pEList; 2354 for(i=0; i<pList->nExpr; i++){ 2355 Expr *pExpr; 2356 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2357 pList->a[i].zName = 2358 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2359 } 2360 } 2361 substExprList(db, p->pEList, iParent, pSub->pEList); 2362 if( isAgg ){ 2363 substExprList(db, p->pGroupBy, iParent, pSub->pEList); 2364 substExpr(db, p->pHaving, iParent, pSub->pEList); 2365 } 2366 if( pSub->pOrderBy ){ 2367 assert( p->pOrderBy==0 ); 2368 p->pOrderBy = pSub->pOrderBy; 2369 pSub->pOrderBy = 0; 2370 }else if( p->pOrderBy ){ 2371 substExprList(db, p->pOrderBy, iParent, pSub->pEList); 2372 } 2373 if( pSub->pWhere ){ 2374 pWhere = sqlite3ExprDup(db, pSub->pWhere); 2375 }else{ 2376 pWhere = 0; 2377 } 2378 if( subqueryIsAgg ){ 2379 assert( p->pHaving==0 ); 2380 p->pHaving = p->pWhere; 2381 p->pWhere = pWhere; 2382 substExpr(db, p->pHaving, iParent, pSub->pEList); 2383 p->pHaving = sqlite3ExprAnd(db, p->pHaving, 2384 sqlite3ExprDup(db, pSub->pHaving)); 2385 assert( p->pGroupBy==0 ); 2386 p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 2387 }else{ 2388 substExpr(db, p->pWhere, iParent, pSub->pEList); 2389 p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere); 2390 } 2391 2392 /* The flattened query is distinct if either the inner or the 2393 ** outer query is distinct. 2394 */ 2395 p->isDistinct = p->isDistinct || pSub->isDistinct; 2396 2397 /* 2398 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2399 ** 2400 ** One is tempted to try to add a and b to combine the limits. But this 2401 ** does not work if either limit is negative. 2402 */ 2403 if( pSub->pLimit ){ 2404 p->pLimit = pSub->pLimit; 2405 pSub->pLimit = 0; 2406 } 2407 2408 /* Finially, delete what is left of the subquery and return 2409 ** success. 2410 */ 2411 sqlite3SelectDelete(pSub); 2412 return 1; 2413 } 2414 #endif /* SQLITE_OMIT_VIEW */ 2415 2416 /* 2417 ** Analyze the SELECT statement passed in as an argument to see if it 2418 ** is a simple min() or max() query. If it is and this query can be 2419 ** satisfied using a single seek to the beginning or end of an index, 2420 ** then generate the code for this SELECT and return 1. If this is not a 2421 ** simple min() or max() query, then return 0; 2422 ** 2423 ** A simply min() or max() query looks like this: 2424 ** 2425 ** SELECT min(a) FROM table; 2426 ** SELECT max(a) FROM table; 2427 ** 2428 ** The query may have only a single table in its FROM argument. There 2429 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2430 ** be the min() or max() of a single column of the table. The column 2431 ** in the min() or max() function must be indexed. 2432 ** 2433 ** The parameters to this routine are the same as for sqlite3Select(). 2434 ** See the header comment on that routine for additional information. 2435 */ 2436 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2437 Expr *pExpr; 2438 int iCol; 2439 Table *pTab; 2440 Index *pIdx; 2441 int base; 2442 Vdbe *v; 2443 int seekOp; 2444 ExprList *pEList, *pList, eList; 2445 struct ExprList_item eListItem; 2446 SrcList *pSrc; 2447 int brk; 2448 int iDb; 2449 2450 /* Check to see if this query is a simple min() or max() query. Return 2451 ** zero if it is not. 2452 */ 2453 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2454 pSrc = p->pSrc; 2455 if( pSrc->nSrc!=1 ) return 0; 2456 pEList = p->pEList; 2457 if( pEList->nExpr!=1 ) return 0; 2458 pExpr = pEList->a[0].pExpr; 2459 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2460 pList = pExpr->pList; 2461 if( pList==0 || pList->nExpr!=1 ) return 0; 2462 if( pExpr->token.n!=3 ) return 0; 2463 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2464 seekOp = OP_Rewind; 2465 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2466 seekOp = OP_Last; 2467 }else{ 2468 return 0; 2469 } 2470 pExpr = pList->a[0].pExpr; 2471 if( pExpr->op!=TK_COLUMN ) return 0; 2472 iCol = pExpr->iColumn; 2473 pTab = pSrc->a[0].pTab; 2474 2475 /* This optimization cannot be used with virtual tables. */ 2476 if( IsVirtual(pTab) ) return 0; 2477 2478 /* If we get to here, it means the query is of the correct form. 2479 ** Check to make sure we have an index and make pIdx point to the 2480 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2481 ** key column, no index is necessary so set pIdx to NULL. If no 2482 ** usable index is found, return 0. 2483 */ 2484 if( iCol<0 ){ 2485 pIdx = 0; 2486 }else{ 2487 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2488 if( pColl==0 ) return 0; 2489 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2490 assert( pIdx->nColumn>=1 ); 2491 if( pIdx->aiColumn[0]==iCol && 2492 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2493 break; 2494 } 2495 } 2496 if( pIdx==0 ) return 0; 2497 } 2498 2499 /* Identify column types if we will be using the callback. This 2500 ** step is skipped if the output is going to a table or a memory cell. 2501 ** The column names have already been generated in the calling function. 2502 */ 2503 v = sqlite3GetVdbe(pParse); 2504 if( v==0 ) return 0; 2505 2506 /* If the output is destined for a temporary table, open that table. 2507 */ 2508 if( eDest==SRT_EphemTab ){ 2509 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2510 } 2511 2512 /* Generating code to find the min or the max. Basically all we have 2513 ** to do is find the first or the last entry in the chosen index. If 2514 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2515 ** or last entry in the main table. 2516 */ 2517 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2518 assert( iDb>=0 || pTab->isEphem ); 2519 sqlite3CodeVerifySchema(pParse, iDb); 2520 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2521 base = pSrc->a[0].iCursor; 2522 brk = sqlite3VdbeMakeLabel(v); 2523 computeLimitRegisters(pParse, p, brk); 2524 if( pSrc->a[0].pSelect==0 ){ 2525 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2526 } 2527 if( pIdx==0 ){ 2528 sqlite3VdbeAddOp(v, seekOp, base, 0); 2529 }else{ 2530 /* Even though the cursor used to open the index here is closed 2531 ** as soon as a single value has been read from it, allocate it 2532 ** using (pParse->nTab++) to prevent the cursor id from being 2533 ** reused. This is important for statements of the form 2534 ** "INSERT INTO x SELECT max() FROM x". 2535 */ 2536 int iIdx; 2537 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2538 iIdx = pParse->nTab++; 2539 assert( pIdx->pSchema==pTab->pSchema ); 2540 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2541 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2542 (char*)pKey, P3_KEYINFO_HANDOFF); 2543 if( seekOp==OP_Rewind ){ 2544 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2545 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2546 seekOp = OP_MoveGt; 2547 } 2548 if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){ 2549 /* Ticket #2514: invert the seek operator if we are using 2550 ** a descending index. */ 2551 if( seekOp==OP_Last ){ 2552 seekOp = OP_Rewind; 2553 }else{ 2554 assert( seekOp==OP_MoveGt ); 2555 seekOp = OP_MoveLt; 2556 } 2557 } 2558 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2559 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2560 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2561 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2562 } 2563 eList.nExpr = 1; 2564 memset(&eListItem, 0, sizeof(eListItem)); 2565 eList.a = &eListItem; 2566 eList.a[0].pExpr = pExpr; 2567 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2568 sqlite3VdbeResolveLabel(v, brk); 2569 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2570 2571 return 1; 2572 } 2573 2574 /* 2575 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2576 ** the number of errors seen. 2577 ** 2578 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2579 ** is an integer constant, then that expression is replaced by the 2580 ** corresponding entry in the result set. 2581 */ 2582 static int processOrderGroupBy( 2583 NameContext *pNC, /* Name context of the SELECT statement. */ 2584 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2585 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2586 ){ 2587 int i; 2588 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2589 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2590 assert( pEList ); 2591 2592 if( pOrderBy==0 ) return 0; 2593 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 2594 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 2595 return 1; 2596 } 2597 for(i=0; i<pOrderBy->nExpr; i++){ 2598 int iCol; 2599 Expr *pE = pOrderBy->a[i].pExpr; 2600 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2601 if( iCol>0 && iCol<=pEList->nExpr ){ 2602 CollSeq *pColl = pE->pColl; 2603 int flags = pE->flags & EP_ExpCollate; 2604 sqlite3ExprDelete(pE); 2605 pE = sqlite3ExprDup(pParse->db, pEList->a[iCol-1].pExpr); 2606 pOrderBy->a[i].pExpr = pE; 2607 if( pColl && flags ){ 2608 pE->pColl = pColl; 2609 pE->flags |= flags; 2610 } 2611 }else{ 2612 sqlite3ErrorMsg(pParse, 2613 "%s BY column number %d out of range - should be " 2614 "between 1 and %d", zType, iCol, pEList->nExpr); 2615 return 1; 2616 } 2617 } 2618 if( sqlite3ExprResolveNames(pNC, pE) ){ 2619 return 1; 2620 } 2621 } 2622 return 0; 2623 } 2624 2625 /* 2626 ** This routine resolves any names used in the result set of the 2627 ** supplied SELECT statement. If the SELECT statement being resolved 2628 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2629 ** of the parent SELECT. 2630 */ 2631 int sqlite3SelectResolve( 2632 Parse *pParse, /* The parser context */ 2633 Select *p, /* The SELECT statement being coded. */ 2634 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2635 ){ 2636 ExprList *pEList; /* Result set. */ 2637 int i; /* For-loop variable used in multiple places */ 2638 NameContext sNC; /* Local name-context */ 2639 ExprList *pGroupBy; /* The group by clause */ 2640 2641 /* If this routine has run before, return immediately. */ 2642 if( p->isResolved ){ 2643 assert( !pOuterNC ); 2644 return SQLITE_OK; 2645 } 2646 p->isResolved = 1; 2647 2648 /* If there have already been errors, do nothing. */ 2649 if( pParse->nErr>0 ){ 2650 return SQLITE_ERROR; 2651 } 2652 2653 /* Prepare the select statement. This call will allocate all cursors 2654 ** required to handle the tables and subqueries in the FROM clause. 2655 */ 2656 if( prepSelectStmt(pParse, p) ){ 2657 return SQLITE_ERROR; 2658 } 2659 2660 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2661 ** are not allowed to refer to any names, so pass an empty NameContext. 2662 */ 2663 memset(&sNC, 0, sizeof(sNC)); 2664 sNC.pParse = pParse; 2665 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2666 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2667 return SQLITE_ERROR; 2668 } 2669 2670 /* Set up the local name-context to pass to ExprResolveNames() to 2671 ** resolve the expression-list. 2672 */ 2673 sNC.allowAgg = 1; 2674 sNC.pSrcList = p->pSrc; 2675 sNC.pNext = pOuterNC; 2676 2677 /* Resolve names in the result set. */ 2678 pEList = p->pEList; 2679 if( !pEList ) return SQLITE_ERROR; 2680 for(i=0; i<pEList->nExpr; i++){ 2681 Expr *pX = pEList->a[i].pExpr; 2682 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2683 return SQLITE_ERROR; 2684 } 2685 } 2686 2687 /* If there are no aggregate functions in the result-set, and no GROUP BY 2688 ** expression, do not allow aggregates in any of the other expressions. 2689 */ 2690 assert( !p->isAgg ); 2691 pGroupBy = p->pGroupBy; 2692 if( pGroupBy || sNC.hasAgg ){ 2693 p->isAgg = 1; 2694 }else{ 2695 sNC.allowAgg = 0; 2696 } 2697 2698 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2699 */ 2700 if( p->pHaving && !pGroupBy ){ 2701 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2702 return SQLITE_ERROR; 2703 } 2704 2705 /* Add the expression list to the name-context before parsing the 2706 ** other expressions in the SELECT statement. This is so that 2707 ** expressions in the WHERE clause (etc.) can refer to expressions by 2708 ** aliases in the result set. 2709 ** 2710 ** Minor point: If this is the case, then the expression will be 2711 ** re-evaluated for each reference to it. 2712 */ 2713 sNC.pEList = p->pEList; 2714 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2715 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2716 return SQLITE_ERROR; 2717 } 2718 if( p->pPrior==0 ){ 2719 if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2720 processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){ 2721 return SQLITE_ERROR; 2722 } 2723 } 2724 2725 if( pParse->db->mallocFailed ){ 2726 return SQLITE_NOMEM; 2727 } 2728 2729 /* Make sure the GROUP BY clause does not contain aggregate functions. 2730 */ 2731 if( pGroupBy ){ 2732 struct ExprList_item *pItem; 2733 2734 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2735 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2736 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2737 "the GROUP BY clause"); 2738 return SQLITE_ERROR; 2739 } 2740 } 2741 } 2742 2743 /* If this is one SELECT of a compound, be sure to resolve names 2744 ** in the other SELECTs. 2745 */ 2746 if( p->pPrior ){ 2747 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2748 }else{ 2749 return SQLITE_OK; 2750 } 2751 } 2752 2753 /* 2754 ** Reset the aggregate accumulator. 2755 ** 2756 ** The aggregate accumulator is a set of memory cells that hold 2757 ** intermediate results while calculating an aggregate. This 2758 ** routine simply stores NULLs in all of those memory cells. 2759 */ 2760 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2761 Vdbe *v = pParse->pVdbe; 2762 int i; 2763 struct AggInfo_func *pFunc; 2764 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2765 return; 2766 } 2767 for(i=0; i<pAggInfo->nColumn; i++){ 2768 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2769 } 2770 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2771 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2772 if( pFunc->iDistinct>=0 ){ 2773 Expr *pE = pFunc->pExpr; 2774 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2775 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2776 "by an expression"); 2777 pFunc->iDistinct = -1; 2778 }else{ 2779 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2780 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2781 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2782 } 2783 } 2784 } 2785 } 2786 2787 /* 2788 ** Invoke the OP_AggFinalize opcode for every aggregate function 2789 ** in the AggInfo structure. 2790 */ 2791 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2792 Vdbe *v = pParse->pVdbe; 2793 int i; 2794 struct AggInfo_func *pF; 2795 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2796 ExprList *pList = pF->pExpr->pList; 2797 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2798 (void*)pF->pFunc, P3_FUNCDEF); 2799 } 2800 } 2801 2802 /* 2803 ** Update the accumulator memory cells for an aggregate based on 2804 ** the current cursor position. 2805 */ 2806 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2807 Vdbe *v = pParse->pVdbe; 2808 int i; 2809 struct AggInfo_func *pF; 2810 struct AggInfo_col *pC; 2811 2812 pAggInfo->directMode = 1; 2813 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2814 int nArg; 2815 int addrNext = 0; 2816 ExprList *pList = pF->pExpr->pList; 2817 if( pList ){ 2818 nArg = pList->nExpr; 2819 sqlite3ExprCodeExprList(pParse, pList); 2820 }else{ 2821 nArg = 0; 2822 } 2823 if( pF->iDistinct>=0 ){ 2824 addrNext = sqlite3VdbeMakeLabel(v); 2825 assert( nArg==1 ); 2826 codeDistinct(v, pF->iDistinct, addrNext, 1); 2827 } 2828 if( pF->pFunc->needCollSeq ){ 2829 CollSeq *pColl = 0; 2830 struct ExprList_item *pItem; 2831 int j; 2832 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2833 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2834 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2835 } 2836 if( !pColl ){ 2837 pColl = pParse->db->pDfltColl; 2838 } 2839 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2840 } 2841 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2842 if( addrNext ){ 2843 sqlite3VdbeResolveLabel(v, addrNext); 2844 } 2845 } 2846 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2847 sqlite3ExprCode(pParse, pC->pExpr); 2848 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2849 } 2850 pAggInfo->directMode = 0; 2851 } 2852 2853 2854 /* 2855 ** Generate code for the given SELECT statement. 2856 ** 2857 ** The results are distributed in various ways depending on the 2858 ** value of eDest and iParm. 2859 ** 2860 ** eDest Value Result 2861 ** ------------ ------------------------------------------- 2862 ** SRT_Callback Invoke the callback for each row of the result. 2863 ** 2864 ** SRT_Mem Store first result in memory cell iParm 2865 ** 2866 ** SRT_Set Store results as keys of table iParm. 2867 ** 2868 ** SRT_Union Store results as a key in a temporary table iParm 2869 ** 2870 ** SRT_Except Remove results from the temporary table iParm. 2871 ** 2872 ** SRT_Table Store results in temporary table iParm 2873 ** 2874 ** The table above is incomplete. Additional eDist value have be added 2875 ** since this comment was written. See the selectInnerLoop() function for 2876 ** a complete listing of the allowed values of eDest and their meanings. 2877 ** 2878 ** This routine returns the number of errors. If any errors are 2879 ** encountered, then an appropriate error message is left in 2880 ** pParse->zErrMsg. 2881 ** 2882 ** This routine does NOT free the Select structure passed in. The 2883 ** calling function needs to do that. 2884 ** 2885 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2886 ** SELECT is a subquery. This routine may try to combine this SELECT 2887 ** with its parent to form a single flat query. In so doing, it might 2888 ** change the parent query from a non-aggregate to an aggregate query. 2889 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2890 ** can be changed. 2891 ** 2892 ** Example 1: The meaning of the pParent parameter. 2893 ** 2894 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2895 ** \ \_______ subquery _______/ / 2896 ** \ / 2897 ** \____________________ outer query ___________________/ 2898 ** 2899 ** This routine is called for the outer query first. For that call, 2900 ** pParent will be NULL. During the processing of the outer query, this 2901 ** routine is called recursively to handle the subquery. For the recursive 2902 ** call, pParent will point to the outer query. Because the subquery is 2903 ** the second element in a three-way join, the parentTab parameter will 2904 ** be 1 (the 2nd value of a 0-indexed array.) 2905 */ 2906 int sqlite3Select( 2907 Parse *pParse, /* The parser context */ 2908 Select *p, /* The SELECT statement being coded. */ 2909 int eDest, /* How to dispose of the results */ 2910 int iParm, /* A parameter used by the eDest disposal method */ 2911 Select *pParent, /* Another SELECT for which this is a sub-query */ 2912 int parentTab, /* Index in pParent->pSrc of this query */ 2913 int *pParentAgg, /* True if pParent uses aggregate functions */ 2914 char *aff /* If eDest is SRT_Union, the affinity string */ 2915 ){ 2916 int i, j; /* Loop counters */ 2917 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2918 Vdbe *v; /* The virtual machine under construction */ 2919 int isAgg; /* True for select lists like "count(*)" */ 2920 ExprList *pEList; /* List of columns to extract. */ 2921 SrcList *pTabList; /* List of tables to select from */ 2922 Expr *pWhere; /* The WHERE clause. May be NULL */ 2923 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2924 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2925 Expr *pHaving; /* The HAVING clause. May be NULL */ 2926 int isDistinct; /* True if the DISTINCT keyword is present */ 2927 int distinct; /* Table to use for the distinct set */ 2928 int rc = 1; /* Value to return from this function */ 2929 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2930 AggInfo sAggInfo; /* Information used by aggregate queries */ 2931 int iEnd; /* Address of the end of the query */ 2932 sqlite3 *db; /* The database connection */ 2933 2934 db = pParse->db; 2935 if( p==0 || db->mallocFailed || pParse->nErr ){ 2936 return 1; 2937 } 2938 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2939 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2940 2941 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2942 /* If there is are a sequence of queries, do the earlier ones first. 2943 */ 2944 if( p->pPrior ){ 2945 if( p->pRightmost==0 ){ 2946 Select *pLoop; 2947 int cnt = 0; 2948 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 2949 pLoop->pRightmost = p; 2950 } 2951 if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){ 2952 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 2953 return 1; 2954 } 2955 } 2956 return multiSelect(pParse, p, eDest, iParm, aff); 2957 } 2958 #endif 2959 2960 pOrderBy = p->pOrderBy; 2961 if( IgnorableOrderby(eDest) ){ 2962 p->pOrderBy = 0; 2963 } 2964 if( sqlite3SelectResolve(pParse, p, 0) ){ 2965 goto select_end; 2966 } 2967 p->pOrderBy = pOrderBy; 2968 2969 /* Make local copies of the parameters for this query. 2970 */ 2971 pTabList = p->pSrc; 2972 pWhere = p->pWhere; 2973 pGroupBy = p->pGroupBy; 2974 pHaving = p->pHaving; 2975 isAgg = p->isAgg; 2976 isDistinct = p->isDistinct; 2977 pEList = p->pEList; 2978 if( pEList==0 ) goto select_end; 2979 2980 /* 2981 ** Do not even attempt to generate any code if we have already seen 2982 ** errors before this routine starts. 2983 */ 2984 if( pParse->nErr>0 ) goto select_end; 2985 2986 /* If writing to memory or generating a set 2987 ** only a single column may be output. 2988 */ 2989 #ifndef SQLITE_OMIT_SUBQUERY 2990 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 2991 goto select_end; 2992 } 2993 #endif 2994 2995 /* ORDER BY is ignored for some destinations. 2996 */ 2997 if( IgnorableOrderby(eDest) ){ 2998 pOrderBy = 0; 2999 } 3000 3001 /* Begin generating code. 3002 */ 3003 v = sqlite3GetVdbe(pParse); 3004 if( v==0 ) goto select_end; 3005 3006 /* Generate code for all sub-queries in the FROM clause 3007 */ 3008 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3009 for(i=0; i<pTabList->nSrc; i++){ 3010 const char *zSavedAuthContext = 0; 3011 int needRestoreContext; 3012 struct SrcList_item *pItem = &pTabList->a[i]; 3013 3014 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 3015 if( pItem->zName!=0 ){ 3016 zSavedAuthContext = pParse->zAuthContext; 3017 pParse->zAuthContext = pItem->zName; 3018 needRestoreContext = 1; 3019 }else{ 3020 needRestoreContext = 0; 3021 } 3022 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 3023 /* Increment Parse.nHeight by the height of the largest expression 3024 ** tree refered to by this, the parent select. The child select 3025 ** may contain expression trees of at most 3026 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3027 ** more conservative than necessary, but much easier than enforcing 3028 ** an exact limit. 3029 */ 3030 pParse->nHeight += sqlite3SelectExprHeight(p); 3031 #endif 3032 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 3033 pItem->iCursor, p, i, &isAgg, 0); 3034 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 3035 pParse->nHeight -= sqlite3SelectExprHeight(p); 3036 #endif 3037 if( needRestoreContext ){ 3038 pParse->zAuthContext = zSavedAuthContext; 3039 } 3040 pTabList = p->pSrc; 3041 pWhere = p->pWhere; 3042 if( !IgnorableOrderby(eDest) ){ 3043 pOrderBy = p->pOrderBy; 3044 } 3045 pGroupBy = p->pGroupBy; 3046 pHaving = p->pHaving; 3047 isDistinct = p->isDistinct; 3048 } 3049 #endif 3050 3051 /* Check for the special case of a min() or max() function by itself 3052 ** in the result set. 3053 */ 3054 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 3055 rc = 0; 3056 goto select_end; 3057 } 3058 3059 /* Check to see if this is a subquery that can be "flattened" into its parent. 3060 ** If flattening is a possiblity, do so and return immediately. 3061 */ 3062 #ifndef SQLITE_OMIT_VIEW 3063 if( pParent && pParentAgg && 3064 flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){ 3065 if( isAgg ) *pParentAgg = 1; 3066 goto select_end; 3067 } 3068 #endif 3069 3070 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3071 ** GROUP BY may use an index, DISTINCT never does. 3072 */ 3073 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ 3074 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3075 pGroupBy = p->pGroupBy; 3076 p->isDistinct = 0; 3077 isDistinct = 0; 3078 } 3079 3080 /* If there is an ORDER BY clause, then this sorting 3081 ** index might end up being unused if the data can be 3082 ** extracted in pre-sorted order. If that is the case, then the 3083 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3084 ** we figure out that the sorting index is not needed. The addrSortIndex 3085 ** variable is used to facilitate that change. 3086 */ 3087 if( pOrderBy ){ 3088 KeyInfo *pKeyInfo; 3089 if( pParse->nErr ){ 3090 goto select_end; 3091 } 3092 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3093 pOrderBy->iECursor = pParse->nTab++; 3094 p->addrOpenEphm[2] = addrSortIndex = 3095 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3096 }else{ 3097 addrSortIndex = -1; 3098 } 3099 3100 /* If the output is destined for a temporary table, open that table. 3101 */ 3102 if( eDest==SRT_EphemTab ){ 3103 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 3104 } 3105 3106 /* Set the limiter. 3107 */ 3108 iEnd = sqlite3VdbeMakeLabel(v); 3109 computeLimitRegisters(pParse, p, iEnd); 3110 3111 /* Open a virtual index to use for the distinct set. 3112 */ 3113 if( isDistinct ){ 3114 KeyInfo *pKeyInfo; 3115 assert( isAgg || pGroupBy ); 3116 distinct = pParse->nTab++; 3117 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3118 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 3119 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3120 }else{ 3121 distinct = -1; 3122 } 3123 3124 /* Aggregate and non-aggregate queries are handled differently */ 3125 if( !isAgg && pGroupBy==0 ){ 3126 /* This case is for non-aggregate queries 3127 ** Begin the database scan 3128 */ 3129 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 3130 if( pWInfo==0 ) goto select_end; 3131 3132 /* If sorting index that was created by a prior OP_OpenEphemeral 3133 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3134 ** into an OP_Noop. 3135 */ 3136 if( addrSortIndex>=0 && pOrderBy==0 ){ 3137 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3138 p->addrOpenEphm[2] = -1; 3139 } 3140 3141 /* Use the standard inner loop 3142 */ 3143 assert(!isDistinct); 3144 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest, 3145 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3146 goto select_end; 3147 } 3148 3149 /* End the database scan loop. 3150 */ 3151 sqlite3WhereEnd(pWInfo); 3152 }else{ 3153 /* This is the processing for aggregate queries */ 3154 NameContext sNC; /* Name context for processing aggregate information */ 3155 int iAMem; /* First Mem address for storing current GROUP BY */ 3156 int iBMem; /* First Mem address for previous GROUP BY */ 3157 int iUseFlag; /* Mem address holding flag indicating that at least 3158 ** one row of the input to the aggregator has been 3159 ** processed */ 3160 int iAbortFlag; /* Mem address which causes query abort if positive */ 3161 int groupBySort; /* Rows come from source in GROUP BY order */ 3162 3163 3164 /* The following variables hold addresses or labels for parts of the 3165 ** virtual machine program we are putting together */ 3166 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3167 int addrSetAbort; /* Set the abort flag and return */ 3168 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3169 int addrTopOfLoop; /* Top of the input loop */ 3170 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3171 int addrProcessRow; /* Code to process a single input row */ 3172 int addrEnd; /* End of all processing */ 3173 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3174 int addrReset; /* Subroutine for resetting the accumulator */ 3175 3176 addrEnd = sqlite3VdbeMakeLabel(v); 3177 3178 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3179 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3180 ** SELECT statement. 3181 */ 3182 memset(&sNC, 0, sizeof(sNC)); 3183 sNC.pParse = pParse; 3184 sNC.pSrcList = pTabList; 3185 sNC.pAggInfo = &sAggInfo; 3186 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3187 sAggInfo.pGroupBy = pGroupBy; 3188 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3189 goto select_end; 3190 } 3191 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3192 goto select_end; 3193 } 3194 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3195 goto select_end; 3196 } 3197 sAggInfo.nAccumulator = sAggInfo.nColumn; 3198 for(i=0; i<sAggInfo.nFunc; i++){ 3199 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3200 goto select_end; 3201 } 3202 } 3203 if( db->mallocFailed ) goto select_end; 3204 3205 /* Processing for aggregates with GROUP BY is very different and 3206 ** much more complex than aggregates without a GROUP BY. 3207 */ 3208 if( pGroupBy ){ 3209 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3210 3211 /* Create labels that we will be needing 3212 */ 3213 3214 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3215 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3216 addrProcessRow = sqlite3VdbeMakeLabel(v); 3217 3218 /* If there is a GROUP BY clause we might need a sorting index to 3219 ** implement it. Allocate that sorting index now. If it turns out 3220 ** that we do not need it after all, the OpenEphemeral instruction 3221 ** will be converted into a Noop. 3222 */ 3223 sAggInfo.sortingIdx = pParse->nTab++; 3224 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3225 addrSortingIdx = 3226 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3227 sAggInfo.nSortingColumn, 3228 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3229 3230 /* Initialize memory locations used by GROUP BY aggregate processing 3231 */ 3232 iUseFlag = pParse->nMem++; 3233 iAbortFlag = pParse->nMem++; 3234 iAMem = pParse->nMem; 3235 pParse->nMem += pGroupBy->nExpr; 3236 iBMem = pParse->nMem; 3237 pParse->nMem += pGroupBy->nExpr; 3238 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3239 VdbeComment((v, "# clear abort flag")); 3240 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3241 VdbeComment((v, "# indicate accumulator empty")); 3242 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3243 3244 /* Generate a subroutine that outputs a single row of the result 3245 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3246 ** is less than or equal to zero, the subroutine is a no-op. If 3247 ** the processing calls for the query to abort, this subroutine 3248 ** increments the iAbortFlag memory location before returning in 3249 ** order to signal the caller to abort. 3250 */ 3251 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3252 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3253 VdbeComment((v, "# set abort flag")); 3254 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3255 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3256 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3257 VdbeComment((v, "# Groupby result generator entry point")); 3258 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3259 finalizeAggFunctions(pParse, &sAggInfo); 3260 if( pHaving ){ 3261 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3262 } 3263 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3264 distinct, eDest, iParm, 3265 addrOutputRow+1, addrSetAbort, aff); 3266 if( rc ){ 3267 goto select_end; 3268 } 3269 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3270 VdbeComment((v, "# end groupby result generator")); 3271 3272 /* Generate a subroutine that will reset the group-by accumulator 3273 */ 3274 addrReset = sqlite3VdbeCurrentAddr(v); 3275 resetAccumulator(pParse, &sAggInfo); 3276 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3277 3278 /* Begin a loop that will extract all source rows in GROUP BY order. 3279 ** This might involve two separate loops with an OP_Sort in between, or 3280 ** it might be a single loop that uses an index to extract information 3281 ** in the right order to begin with. 3282 */ 3283 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3284 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3285 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3286 if( pWInfo==0 ) goto select_end; 3287 if( pGroupBy==0 ){ 3288 /* The optimizer is able to deliver rows in group by order so 3289 ** we do not have to sort. The OP_OpenEphemeral table will be 3290 ** cancelled later because we still need to use the pKeyInfo 3291 */ 3292 pGroupBy = p->pGroupBy; 3293 groupBySort = 0; 3294 }else{ 3295 /* Rows are coming out in undetermined order. We have to push 3296 ** each row into a sorting index, terminate the first loop, 3297 ** then loop over the sorting index in order to get the output 3298 ** in sorted order 3299 */ 3300 groupBySort = 1; 3301 sqlite3ExprCodeExprList(pParse, pGroupBy); 3302 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3303 j = pGroupBy->nExpr+1; 3304 for(i=0; i<sAggInfo.nColumn; i++){ 3305 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3306 if( pCol->iSorterColumn<j ) continue; 3307 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3308 j++; 3309 } 3310 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3311 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3312 sqlite3WhereEnd(pWInfo); 3313 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3314 VdbeComment((v, "# GROUP BY sort")); 3315 sAggInfo.useSortingIdx = 1; 3316 } 3317 3318 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3319 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3320 ** Then compare the current GROUP BY terms against the GROUP BY terms 3321 ** from the previous row currently stored in a0, a1, a2... 3322 */ 3323 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3324 for(j=0; j<pGroupBy->nExpr; j++){ 3325 if( groupBySort ){ 3326 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3327 }else{ 3328 sAggInfo.directMode = 1; 3329 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3330 } 3331 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3332 } 3333 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3334 if( j<pGroupBy->nExpr-1 ){ 3335 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3336 } 3337 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3338 if( j==0 ){ 3339 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3340 }else{ 3341 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3342 } 3343 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3344 } 3345 3346 /* Generate code that runs whenever the GROUP BY changes. 3347 ** Change in the GROUP BY are detected by the previous code 3348 ** block. If there were no changes, this block is skipped. 3349 ** 3350 ** This code copies current group by terms in b0,b1,b2,... 3351 ** over to a0,a1,a2. It then calls the output subroutine 3352 ** and resets the aggregate accumulator registers in preparation 3353 ** for the next GROUP BY batch. 3354 */ 3355 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3356 for(j=0; j<pGroupBy->nExpr; j++){ 3357 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3358 } 3359 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3360 VdbeComment((v, "# output one row")); 3361 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3362 VdbeComment((v, "# check abort flag")); 3363 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3364 VdbeComment((v, "# reset accumulator")); 3365 3366 /* Update the aggregate accumulators based on the content of 3367 ** the current row 3368 */ 3369 sqlite3VdbeResolveLabel(v, addrProcessRow); 3370 updateAccumulator(pParse, &sAggInfo); 3371 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3372 VdbeComment((v, "# indicate data in accumulator")); 3373 3374 /* End of the loop 3375 */ 3376 if( groupBySort ){ 3377 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3378 }else{ 3379 sqlite3WhereEnd(pWInfo); 3380 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3381 } 3382 3383 /* Output the final row of result 3384 */ 3385 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3386 VdbeComment((v, "# output final row")); 3387 3388 } /* endif pGroupBy */ 3389 else { 3390 /* This case runs if the aggregate has no GROUP BY clause. The 3391 ** processing is much simpler since there is only a single row 3392 ** of output. 3393 */ 3394 resetAccumulator(pParse, &sAggInfo); 3395 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3396 if( pWInfo==0 ) goto select_end; 3397 updateAccumulator(pParse, &sAggInfo); 3398 sqlite3WhereEnd(pWInfo); 3399 finalizeAggFunctions(pParse, &sAggInfo); 3400 pOrderBy = 0; 3401 if( pHaving ){ 3402 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3403 } 3404 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3405 eDest, iParm, addrEnd, addrEnd, aff); 3406 } 3407 sqlite3VdbeResolveLabel(v, addrEnd); 3408 3409 } /* endif aggregate query */ 3410 3411 /* If there is an ORDER BY clause, then we need to sort the results 3412 ** and send them to the callback one by one. 3413 */ 3414 if( pOrderBy ){ 3415 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3416 } 3417 3418 #ifndef SQLITE_OMIT_SUBQUERY 3419 /* If this was a subquery, we have now converted the subquery into a 3420 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3421 ** this subquery from being evaluated again and to force the use of 3422 ** the temporary table. 3423 */ 3424 if( pParent ){ 3425 assert( pParent->pSrc->nSrc>parentTab ); 3426 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3427 pParent->pSrc->a[parentTab].isPopulated = 1; 3428 } 3429 #endif 3430 3431 /* Jump here to skip this query 3432 */ 3433 sqlite3VdbeResolveLabel(v, iEnd); 3434 3435 /* The SELECT was successfully coded. Set the return code to 0 3436 ** to indicate no errors. 3437 */ 3438 rc = 0; 3439 3440 /* Control jumps to here if an error is encountered above, or upon 3441 ** successful coding of the SELECT. 3442 */ 3443 select_end: 3444 3445 /* Identify column names if we will be using them in a callback. This 3446 ** step is skipped if the output is going to some other destination. 3447 */ 3448 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3449 generateColumnNames(pParse, pTabList, pEList); 3450 } 3451 3452 sqlite3_free(sAggInfo.aCol); 3453 sqlite3_free(sAggInfo.aFunc); 3454 return rc; 3455 } 3456 3457 #if defined(SQLITE_DEBUG) 3458 /* 3459 ******************************************************************************* 3460 ** The following code is used for testing and debugging only. The code 3461 ** that follows does not appear in normal builds. 3462 ** 3463 ** These routines are used to print out the content of all or part of a 3464 ** parse structures such as Select or Expr. Such printouts are useful 3465 ** for helping to understand what is happening inside the code generator 3466 ** during the execution of complex SELECT statements. 3467 ** 3468 ** These routine are not called anywhere from within the normal 3469 ** code base. Then are intended to be called from within the debugger 3470 ** or from temporary "printf" statements inserted for debugging. 3471 */ 3472 void sqlite3PrintExpr(Expr *p){ 3473 if( p->token.z && p->token.n>0 ){ 3474 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3475 }else{ 3476 sqlite3DebugPrintf("(%d", p->op); 3477 } 3478 if( p->pLeft ){ 3479 sqlite3DebugPrintf(" "); 3480 sqlite3PrintExpr(p->pLeft); 3481 } 3482 if( p->pRight ){ 3483 sqlite3DebugPrintf(" "); 3484 sqlite3PrintExpr(p->pRight); 3485 } 3486 sqlite3DebugPrintf(")"); 3487 } 3488 void sqlite3PrintExprList(ExprList *pList){ 3489 int i; 3490 for(i=0; i<pList->nExpr; i++){ 3491 sqlite3PrintExpr(pList->a[i].pExpr); 3492 if( i<pList->nExpr-1 ){ 3493 sqlite3DebugPrintf(", "); 3494 } 3495 } 3496 } 3497 void sqlite3PrintSelect(Select *p, int indent){ 3498 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3499 sqlite3PrintExprList(p->pEList); 3500 sqlite3DebugPrintf("\n"); 3501 if( p->pSrc ){ 3502 char *zPrefix; 3503 int i; 3504 zPrefix = "FROM"; 3505 for(i=0; i<p->pSrc->nSrc; i++){ 3506 struct SrcList_item *pItem = &p->pSrc->a[i]; 3507 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3508 zPrefix = ""; 3509 if( pItem->pSelect ){ 3510 sqlite3DebugPrintf("(\n"); 3511 sqlite3PrintSelect(pItem->pSelect, indent+10); 3512 sqlite3DebugPrintf("%*s)", indent+8, ""); 3513 }else if( pItem->zName ){ 3514 sqlite3DebugPrintf("%s", pItem->zName); 3515 } 3516 if( pItem->pTab ){ 3517 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3518 } 3519 if( pItem->zAlias ){ 3520 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3521 } 3522 if( i<p->pSrc->nSrc-1 ){ 3523 sqlite3DebugPrintf(","); 3524 } 3525 sqlite3DebugPrintf("\n"); 3526 } 3527 } 3528 if( p->pWhere ){ 3529 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3530 sqlite3PrintExpr(p->pWhere); 3531 sqlite3DebugPrintf("\n"); 3532 } 3533 if( p->pGroupBy ){ 3534 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3535 sqlite3PrintExprList(p->pGroupBy); 3536 sqlite3DebugPrintf("\n"); 3537 } 3538 if( p->pHaving ){ 3539 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3540 sqlite3PrintExpr(p->pHaving); 3541 sqlite3DebugPrintf("\n"); 3542 } 3543 if( p->pOrderBy ){ 3544 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3545 sqlite3PrintExprList(p->pOrderBy); 3546 sqlite3DebugPrintf("\n"); 3547 } 3548 } 3549 /* End of the structure debug printing code 3550 *****************************************************************************/ 3551 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3552