1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 }; 60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 61 62 /* 63 ** Delete all the content of a Select structure. Deallocate the structure 64 ** itself only if bFree is true. 65 */ 66 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 67 while( p ){ 68 Select *pPrior = p->pPrior; 69 sqlite3ExprListDelete(db, p->pEList); 70 sqlite3SrcListDelete(db, p->pSrc); 71 sqlite3ExprDelete(db, p->pWhere); 72 sqlite3ExprListDelete(db, p->pGroupBy); 73 sqlite3ExprDelete(db, p->pHaving); 74 sqlite3ExprListDelete(db, p->pOrderBy); 75 sqlite3ExprDelete(db, p->pLimit); 76 sqlite3ExprDelete(db, p->pOffset); 77 sqlite3WithDelete(db, p->pWith); 78 if( bFree ) sqlite3DbFree(db, p); 79 p = pPrior; 80 bFree = 1; 81 } 82 } 83 84 /* 85 ** Initialize a SelectDest structure. 86 */ 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 88 pDest->eDest = (u8)eDest; 89 pDest->iSDParm = iParm; 90 pDest->affSdst = 0; 91 pDest->iSdst = 0; 92 pDest->nSdst = 0; 93 } 94 95 96 /* 97 ** Allocate a new Select structure and return a pointer to that 98 ** structure. 99 */ 100 Select *sqlite3SelectNew( 101 Parse *pParse, /* Parsing context */ 102 ExprList *pEList, /* which columns to include in the result */ 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 104 Expr *pWhere, /* the WHERE clause */ 105 ExprList *pGroupBy, /* the GROUP BY clause */ 106 Expr *pHaving, /* the HAVING clause */ 107 ExprList *pOrderBy, /* the ORDER BY clause */ 108 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 109 Expr *pLimit, /* LIMIT value. NULL means not used */ 110 Expr *pOffset /* OFFSET value. NULL means no offset */ 111 ){ 112 Select *pNew; 113 Select standin; 114 sqlite3 *db = pParse->db; 115 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 146 if( db->mallocFailed ) { 147 clearSelect(db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nXField>2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nXField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 590 if( iLimit ){ 591 int addr; 592 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 593 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 594 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 595 sqlite3VdbeJumpHere(v, addr); 596 } 597 } 598 599 /* 600 ** Add code to implement the OFFSET 601 */ 602 static void codeOffset( 603 Vdbe *v, /* Generate code into this VM */ 604 int iOffset, /* Register holding the offset counter */ 605 int iContinue /* Jump here to skip the current record */ 606 ){ 607 if( iOffset>0 ){ 608 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 609 VdbeComment((v, "OFFSET")); 610 } 611 } 612 613 /* 614 ** Add code that will check to make sure the N registers starting at iMem 615 ** form a distinct entry. iTab is a sorting index that holds previously 616 ** seen combinations of the N values. A new entry is made in iTab 617 ** if the current N values are new. 618 ** 619 ** A jump to addrRepeat is made and the N+1 values are popped from the 620 ** stack if the top N elements are not distinct. 621 */ 622 static void codeDistinct( 623 Parse *pParse, /* Parsing and code generating context */ 624 int iTab, /* A sorting index used to test for distinctness */ 625 int addrRepeat, /* Jump to here if not distinct */ 626 int N, /* Number of elements */ 627 int iMem /* First element */ 628 ){ 629 Vdbe *v; 630 int r1; 631 632 v = pParse->pVdbe; 633 r1 = sqlite3GetTempReg(pParse); 634 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 635 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 636 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 637 sqlite3ReleaseTempReg(pParse, r1); 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* 642 ** Generate an error message when a SELECT is used within a subexpression 643 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 644 ** column. We do this in a subroutine because the error used to occur 645 ** in multiple places. (The error only occurs in one place now, but we 646 ** retain the subroutine to minimize code disruption.) 647 */ 648 static int checkForMultiColumnSelectError( 649 Parse *pParse, /* Parse context. */ 650 SelectDest *pDest, /* Destination of SELECT results */ 651 int nExpr /* Number of result columns returned by SELECT */ 652 ){ 653 int eDest = pDest->eDest; 654 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 655 sqlite3ErrorMsg(pParse, "only a single result allowed for " 656 "a SELECT that is part of an expression"); 657 return 1; 658 }else{ 659 return 0; 660 } 661 } 662 #endif 663 664 /* 665 ** This routine generates the code for the inside of the inner loop 666 ** of a SELECT. 667 ** 668 ** If srcTab is negative, then the pEList expressions 669 ** are evaluated in order to get the data for this row. If srcTab is 670 ** zero or more, then data is pulled from srcTab and pEList is used only 671 ** to get number columns and the datatype for each column. 672 */ 673 static void selectInnerLoop( 674 Parse *pParse, /* The parser context */ 675 Select *p, /* The complete select statement being coded */ 676 ExprList *pEList, /* List of values being extracted */ 677 int srcTab, /* Pull data from this table */ 678 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 679 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 680 SelectDest *pDest, /* How to dispose of the results */ 681 int iContinue, /* Jump here to continue with next row */ 682 int iBreak /* Jump here to break out of the inner loop */ 683 ){ 684 Vdbe *v = pParse->pVdbe; 685 int i; 686 int hasDistinct; /* True if the DISTINCT keyword is present */ 687 int regResult; /* Start of memory holding result set */ 688 int eDest = pDest->eDest; /* How to dispose of results */ 689 int iParm = pDest->iSDParm; /* First argument to disposal method */ 690 int nResultCol; /* Number of result columns */ 691 int nPrefixReg = 0; /* Number of extra registers before regResult */ 692 693 assert( v ); 694 assert( pEList!=0 ); 695 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 696 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 697 if( pSort==0 && !hasDistinct ){ 698 assert( iContinue!=0 ); 699 codeOffset(v, p->iOffset, iContinue); 700 } 701 702 /* Pull the requested columns. 703 */ 704 nResultCol = pEList->nExpr; 705 706 if( pDest->iSdst==0 ){ 707 if( pSort ){ 708 nPrefixReg = pSort->pOrderBy->nExpr; 709 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 710 pParse->nMem += nPrefixReg; 711 } 712 pDest->iSdst = pParse->nMem+1; 713 pParse->nMem += nResultCol; 714 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 715 /* This is an error condition that can result, for example, when a SELECT 716 ** on the right-hand side of an INSERT contains more result columns than 717 ** there are columns in the table on the left. The error will be caught 718 ** and reported later. But we need to make sure enough memory is allocated 719 ** to avoid other spurious errors in the meantime. */ 720 pParse->nMem += nResultCol; 721 } 722 pDest->nSdst = nResultCol; 723 regResult = pDest->iSdst; 724 if( srcTab>=0 ){ 725 for(i=0; i<nResultCol; i++){ 726 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 727 VdbeComment((v, "%s", pEList->a[i].zName)); 728 } 729 }else if( eDest!=SRT_Exists ){ 730 /* If the destination is an EXISTS(...) expression, the actual 731 ** values returned by the SELECT are not required. 732 */ 733 u8 ecelFlags; 734 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 735 ecelFlags = SQLITE_ECEL_DUP; 736 }else{ 737 ecelFlags = 0; 738 } 739 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 740 } 741 742 /* If the DISTINCT keyword was present on the SELECT statement 743 ** and this row has been seen before, then do not make this row 744 ** part of the result. 745 */ 746 if( hasDistinct ){ 747 switch( pDistinct->eTnctType ){ 748 case WHERE_DISTINCT_ORDERED: { 749 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 750 int iJump; /* Jump destination */ 751 int regPrev; /* Previous row content */ 752 753 /* Allocate space for the previous row */ 754 regPrev = pParse->nMem+1; 755 pParse->nMem += nResultCol; 756 757 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 758 ** sets the MEM_Cleared bit on the first register of the 759 ** previous value. This will cause the OP_Ne below to always 760 ** fail on the first iteration of the loop even if the first 761 ** row is all NULLs. 762 */ 763 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 764 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 765 pOp->opcode = OP_Null; 766 pOp->p1 = 1; 767 pOp->p2 = regPrev; 768 769 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 770 for(i=0; i<nResultCol; i++){ 771 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 772 if( i<nResultCol-1 ){ 773 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 774 VdbeCoverage(v); 775 }else{ 776 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 777 VdbeCoverage(v); 778 } 779 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 780 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 781 } 782 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 783 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 784 break; 785 } 786 787 case WHERE_DISTINCT_UNIQUE: { 788 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 789 break; 790 } 791 792 default: { 793 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 794 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 795 regResult); 796 break; 797 } 798 } 799 if( pSort==0 ){ 800 codeOffset(v, p->iOffset, iContinue); 801 } 802 } 803 804 switch( eDest ){ 805 /* In this mode, write each query result to the key of the temporary 806 ** table iParm. 807 */ 808 #ifndef SQLITE_OMIT_COMPOUND_SELECT 809 case SRT_Union: { 810 int r1; 811 r1 = sqlite3GetTempReg(pParse); 812 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 813 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 814 sqlite3ReleaseTempReg(pParse, r1); 815 break; 816 } 817 818 /* Construct a record from the query result, but instead of 819 ** saving that record, use it as a key to delete elements from 820 ** the temporary table iParm. 821 */ 822 case SRT_Except: { 823 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 824 break; 825 } 826 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 827 828 /* Store the result as data using a unique key. 829 */ 830 case SRT_Fifo: 831 case SRT_DistFifo: 832 case SRT_Table: 833 case SRT_EphemTab: { 834 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 835 testcase( eDest==SRT_Table ); 836 testcase( eDest==SRT_EphemTab ); 837 testcase( eDest==SRT_Fifo ); 838 testcase( eDest==SRT_DistFifo ); 839 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 840 #ifndef SQLITE_OMIT_CTE 841 if( eDest==SRT_DistFifo ){ 842 /* If the destination is DistFifo, then cursor (iParm+1) is open 843 ** on an ephemeral index. If the current row is already present 844 ** in the index, do not write it to the output. If not, add the 845 ** current row to the index and proceed with writing it to the 846 ** output table as well. */ 847 int addr = sqlite3VdbeCurrentAddr(v) + 4; 848 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 849 VdbeCoverage(v); 850 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 851 assert( pSort==0 ); 852 } 853 #endif 854 if( pSort ){ 855 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 856 }else{ 857 int r2 = sqlite3GetTempReg(pParse); 858 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 859 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 860 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 861 sqlite3ReleaseTempReg(pParse, r2); 862 } 863 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 864 break; 865 } 866 867 #ifndef SQLITE_OMIT_SUBQUERY 868 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 869 ** then there should be a single item on the stack. Write this 870 ** item into the set table with bogus data. 871 */ 872 case SRT_Set: { 873 assert( nResultCol==1 ); 874 pDest->affSdst = 875 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 876 if( pSort ){ 877 /* At first glance you would think we could optimize out the 878 ** ORDER BY in this case since the order of entries in the set 879 ** does not matter. But there might be a LIMIT clause, in which 880 ** case the order does matter */ 881 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 882 }else{ 883 int r1 = sqlite3GetTempReg(pParse); 884 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 885 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 886 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 887 sqlite3ReleaseTempReg(pParse, r1); 888 } 889 break; 890 } 891 892 /* If any row exist in the result set, record that fact and abort. 893 */ 894 case SRT_Exists: { 895 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 896 /* The LIMIT clause will terminate the loop for us */ 897 break; 898 } 899 900 /* If this is a scalar select that is part of an expression, then 901 ** store the results in the appropriate memory cell and break out 902 ** of the scan loop. 903 */ 904 case SRT_Mem: { 905 assert( nResultCol==1 ); 906 if( pSort ){ 907 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 908 }else{ 909 assert( regResult==iParm ); 910 /* The LIMIT clause will jump out of the loop for us */ 911 } 912 break; 913 } 914 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 915 916 case SRT_Coroutine: /* Send data to a co-routine */ 917 case SRT_Output: { /* Return the results */ 918 testcase( eDest==SRT_Coroutine ); 919 testcase( eDest==SRT_Output ); 920 if( pSort ){ 921 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 922 nPrefixReg); 923 }else if( eDest==SRT_Coroutine ){ 924 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 925 }else{ 926 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 927 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 928 } 929 break; 930 } 931 932 #ifndef SQLITE_OMIT_CTE 933 /* Write the results into a priority queue that is order according to 934 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 935 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 936 ** pSO->nExpr columns, then make sure all keys are unique by adding a 937 ** final OP_Sequence column. The last column is the record as a blob. 938 */ 939 case SRT_DistQueue: 940 case SRT_Queue: { 941 int nKey; 942 int r1, r2, r3; 943 int addrTest = 0; 944 ExprList *pSO; 945 pSO = pDest->pOrderBy; 946 assert( pSO ); 947 nKey = pSO->nExpr; 948 r1 = sqlite3GetTempReg(pParse); 949 r2 = sqlite3GetTempRange(pParse, nKey+2); 950 r3 = r2+nKey+1; 951 if( eDest==SRT_DistQueue ){ 952 /* If the destination is DistQueue, then cursor (iParm+1) is open 953 ** on a second ephemeral index that holds all values every previously 954 ** added to the queue. */ 955 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 956 regResult, nResultCol); 957 VdbeCoverage(v); 958 } 959 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 960 if( eDest==SRT_DistQueue ){ 961 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 962 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 963 } 964 for(i=0; i<nKey; i++){ 965 sqlite3VdbeAddOp2(v, OP_SCopy, 966 regResult + pSO->a[i].u.x.iOrderByCol - 1, 967 r2+i); 968 } 969 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 970 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 971 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 972 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 973 sqlite3ReleaseTempReg(pParse, r1); 974 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 975 break; 976 } 977 #endif /* SQLITE_OMIT_CTE */ 978 979 980 981 #if !defined(SQLITE_OMIT_TRIGGER) 982 /* Discard the results. This is used for SELECT statements inside 983 ** the body of a TRIGGER. The purpose of such selects is to call 984 ** user-defined functions that have side effects. We do not care 985 ** about the actual results of the select. 986 */ 987 default: { 988 assert( eDest==SRT_Discard ); 989 break; 990 } 991 #endif 992 } 993 994 /* Jump to the end of the loop if the LIMIT is reached. Except, if 995 ** there is a sorter, in which case the sorter has already limited 996 ** the output for us. 997 */ 998 if( pSort==0 && p->iLimit ){ 999 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1000 } 1001 } 1002 1003 /* 1004 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1005 ** X extra columns. 1006 */ 1007 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1008 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1009 KeyInfo *p = sqlite3Malloc(sizeof(KeyInfo) + nExtra); 1010 if( p ){ 1011 p->aSortOrder = (u8*)&p->aColl[N+X]; 1012 p->nField = (u16)N; 1013 p->nXField = (u16)X; 1014 p->enc = ENC(db); 1015 p->db = db; 1016 p->nRef = 1; 1017 memset(&p[1], 0, nExtra); 1018 }else{ 1019 sqlite3OomFault(db); 1020 } 1021 return p; 1022 } 1023 1024 /* 1025 ** Deallocate a KeyInfo object 1026 */ 1027 void sqlite3KeyInfoUnref(KeyInfo *p){ 1028 if( p ){ 1029 assert( p->nRef>0 ); 1030 p->nRef--; 1031 if( p->nRef==0 ) sqlite3DbFree(0, p); 1032 } 1033 } 1034 1035 /* 1036 ** Make a new pointer to a KeyInfo object 1037 */ 1038 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1039 if( p ){ 1040 assert( p->nRef>0 ); 1041 p->nRef++; 1042 } 1043 return p; 1044 } 1045 1046 #ifdef SQLITE_DEBUG 1047 /* 1048 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1049 ** can only be changed if this is just a single reference to the object. 1050 ** 1051 ** This routine is used only inside of assert() statements. 1052 */ 1053 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1054 #endif /* SQLITE_DEBUG */ 1055 1056 /* 1057 ** Given an expression list, generate a KeyInfo structure that records 1058 ** the collating sequence for each expression in that expression list. 1059 ** 1060 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1061 ** KeyInfo structure is appropriate for initializing a virtual index to 1062 ** implement that clause. If the ExprList is the result set of a SELECT 1063 ** then the KeyInfo structure is appropriate for initializing a virtual 1064 ** index to implement a DISTINCT test. 1065 ** 1066 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1067 ** function is responsible for seeing that this structure is eventually 1068 ** freed. 1069 */ 1070 static KeyInfo *keyInfoFromExprList( 1071 Parse *pParse, /* Parsing context */ 1072 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1073 int iStart, /* Begin with this column of pList */ 1074 int nExtra /* Add this many extra columns to the end */ 1075 ){ 1076 int nExpr; 1077 KeyInfo *pInfo; 1078 struct ExprList_item *pItem; 1079 sqlite3 *db = pParse->db; 1080 int i; 1081 1082 nExpr = pList->nExpr; 1083 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1084 if( pInfo ){ 1085 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1086 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1087 CollSeq *pColl; 1088 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1089 if( !pColl ) pColl = db->pDfltColl; 1090 pInfo->aColl[i-iStart] = pColl; 1091 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1092 } 1093 } 1094 return pInfo; 1095 } 1096 1097 /* 1098 ** Name of the connection operator, used for error messages. 1099 */ 1100 static const char *selectOpName(int id){ 1101 char *z; 1102 switch( id ){ 1103 case TK_ALL: z = "UNION ALL"; break; 1104 case TK_INTERSECT: z = "INTERSECT"; break; 1105 case TK_EXCEPT: z = "EXCEPT"; break; 1106 default: z = "UNION"; break; 1107 } 1108 return z; 1109 } 1110 1111 #ifndef SQLITE_OMIT_EXPLAIN 1112 /* 1113 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1114 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1115 ** where the caption is of the form: 1116 ** 1117 ** "USE TEMP B-TREE FOR xxx" 1118 ** 1119 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1120 ** is determined by the zUsage argument. 1121 */ 1122 static void explainTempTable(Parse *pParse, const char *zUsage){ 1123 if( pParse->explain==2 ){ 1124 Vdbe *v = pParse->pVdbe; 1125 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1126 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1127 } 1128 } 1129 1130 /* 1131 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1132 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1133 ** in sqlite3Select() to assign values to structure member variables that 1134 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1135 ** code with #ifndef directives. 1136 */ 1137 # define explainSetInteger(a, b) a = b 1138 1139 #else 1140 /* No-op versions of the explainXXX() functions and macros. */ 1141 # define explainTempTable(y,z) 1142 # define explainSetInteger(y,z) 1143 #endif 1144 1145 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1146 /* 1147 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1148 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1149 ** where the caption is of one of the two forms: 1150 ** 1151 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1152 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1153 ** 1154 ** where iSub1 and iSub2 are the integers passed as the corresponding 1155 ** function parameters, and op is the text representation of the parameter 1156 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1157 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1158 ** false, or the second form if it is true. 1159 */ 1160 static void explainComposite( 1161 Parse *pParse, /* Parse context */ 1162 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1163 int iSub1, /* Subquery id 1 */ 1164 int iSub2, /* Subquery id 2 */ 1165 int bUseTmp /* True if a temp table was used */ 1166 ){ 1167 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1168 if( pParse->explain==2 ){ 1169 Vdbe *v = pParse->pVdbe; 1170 char *zMsg = sqlite3MPrintf( 1171 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1172 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1173 ); 1174 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1175 } 1176 } 1177 #else 1178 /* No-op versions of the explainXXX() functions and macros. */ 1179 # define explainComposite(v,w,x,y,z) 1180 #endif 1181 1182 /* 1183 ** If the inner loop was generated using a non-null pOrderBy argument, 1184 ** then the results were placed in a sorter. After the loop is terminated 1185 ** we need to run the sorter and output the results. The following 1186 ** routine generates the code needed to do that. 1187 */ 1188 static void generateSortTail( 1189 Parse *pParse, /* Parsing context */ 1190 Select *p, /* The SELECT statement */ 1191 SortCtx *pSort, /* Information on the ORDER BY clause */ 1192 int nColumn, /* Number of columns of data */ 1193 SelectDest *pDest /* Write the sorted results here */ 1194 ){ 1195 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1196 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1197 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1198 int addr; 1199 int addrOnce = 0; 1200 int iTab; 1201 ExprList *pOrderBy = pSort->pOrderBy; 1202 int eDest = pDest->eDest; 1203 int iParm = pDest->iSDParm; 1204 int regRow; 1205 int regRowid; 1206 int nKey; 1207 int iSortTab; /* Sorter cursor to read from */ 1208 int nSortData; /* Trailing values to read from sorter */ 1209 int i; 1210 int bSeq; /* True if sorter record includes seq. no. */ 1211 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1212 struct ExprList_item *aOutEx = p->pEList->a; 1213 #endif 1214 1215 assert( addrBreak<0 ); 1216 if( pSort->labelBkOut ){ 1217 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1218 sqlite3VdbeGoto(v, addrBreak); 1219 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1220 } 1221 iTab = pSort->iECursor; 1222 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1223 regRowid = 0; 1224 regRow = pDest->iSdst; 1225 nSortData = nColumn; 1226 }else{ 1227 regRowid = sqlite3GetTempReg(pParse); 1228 regRow = sqlite3GetTempReg(pParse); 1229 nSortData = 1; 1230 } 1231 nKey = pOrderBy->nExpr - pSort->nOBSat; 1232 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1233 int regSortOut = ++pParse->nMem; 1234 iSortTab = pParse->nTab++; 1235 if( pSort->labelBkOut ){ 1236 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1237 } 1238 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1239 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1240 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1241 VdbeCoverage(v); 1242 codeOffset(v, p->iOffset, addrContinue); 1243 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1244 bSeq = 0; 1245 }else{ 1246 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1247 codeOffset(v, p->iOffset, addrContinue); 1248 iSortTab = iTab; 1249 bSeq = 1; 1250 } 1251 for(i=0; i<nSortData; i++){ 1252 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1253 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1254 } 1255 switch( eDest ){ 1256 case SRT_EphemTab: { 1257 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1258 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1259 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1260 break; 1261 } 1262 #ifndef SQLITE_OMIT_SUBQUERY 1263 case SRT_Set: { 1264 assert( nColumn==1 ); 1265 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1266 &pDest->affSdst, 1); 1267 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1268 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1269 break; 1270 } 1271 case SRT_Mem: { 1272 assert( nColumn==1 ); 1273 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1274 /* The LIMIT clause will terminate the loop for us */ 1275 break; 1276 } 1277 #endif 1278 default: { 1279 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1280 testcase( eDest==SRT_Output ); 1281 testcase( eDest==SRT_Coroutine ); 1282 if( eDest==SRT_Output ){ 1283 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1284 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1285 }else{ 1286 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1287 } 1288 break; 1289 } 1290 } 1291 if( regRowid ){ 1292 sqlite3ReleaseTempReg(pParse, regRow); 1293 sqlite3ReleaseTempReg(pParse, regRowid); 1294 } 1295 /* The bottom of the loop 1296 */ 1297 sqlite3VdbeResolveLabel(v, addrContinue); 1298 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1299 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1300 }else{ 1301 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1302 } 1303 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1304 sqlite3VdbeResolveLabel(v, addrBreak); 1305 } 1306 1307 /* 1308 ** Return a pointer to a string containing the 'declaration type' of the 1309 ** expression pExpr. The string may be treated as static by the caller. 1310 ** 1311 ** Also try to estimate the size of the returned value and return that 1312 ** result in *pEstWidth. 1313 ** 1314 ** The declaration type is the exact datatype definition extracted from the 1315 ** original CREATE TABLE statement if the expression is a column. The 1316 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1317 ** is considered a column can be complex in the presence of subqueries. The 1318 ** result-set expression in all of the following SELECT statements is 1319 ** considered a column by this function. 1320 ** 1321 ** SELECT col FROM tbl; 1322 ** SELECT (SELECT col FROM tbl; 1323 ** SELECT (SELECT col FROM tbl); 1324 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1325 ** 1326 ** The declaration type for any expression other than a column is NULL. 1327 ** 1328 ** This routine has either 3 or 6 parameters depending on whether or not 1329 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1330 */ 1331 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1332 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1333 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1334 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1335 #endif 1336 static const char *columnTypeImpl( 1337 NameContext *pNC, 1338 Expr *pExpr, 1339 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1340 const char **pzOrigDb, 1341 const char **pzOrigTab, 1342 const char **pzOrigCol, 1343 #endif 1344 u8 *pEstWidth 1345 ){ 1346 char const *zType = 0; 1347 int j; 1348 u8 estWidth = 1; 1349 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1350 char const *zOrigDb = 0; 1351 char const *zOrigTab = 0; 1352 char const *zOrigCol = 0; 1353 #endif 1354 1355 assert( pExpr!=0 ); 1356 assert( pNC->pSrcList!=0 ); 1357 switch( pExpr->op ){ 1358 case TK_AGG_COLUMN: 1359 case TK_COLUMN: { 1360 /* The expression is a column. Locate the table the column is being 1361 ** extracted from in NameContext.pSrcList. This table may be real 1362 ** database table or a subquery. 1363 */ 1364 Table *pTab = 0; /* Table structure column is extracted from */ 1365 Select *pS = 0; /* Select the column is extracted from */ 1366 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1367 testcase( pExpr->op==TK_AGG_COLUMN ); 1368 testcase( pExpr->op==TK_COLUMN ); 1369 while( pNC && !pTab ){ 1370 SrcList *pTabList = pNC->pSrcList; 1371 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1372 if( j<pTabList->nSrc ){ 1373 pTab = pTabList->a[j].pTab; 1374 pS = pTabList->a[j].pSelect; 1375 }else{ 1376 pNC = pNC->pNext; 1377 } 1378 } 1379 1380 if( pTab==0 ){ 1381 /* At one time, code such as "SELECT new.x" within a trigger would 1382 ** cause this condition to run. Since then, we have restructured how 1383 ** trigger code is generated and so this condition is no longer 1384 ** possible. However, it can still be true for statements like 1385 ** the following: 1386 ** 1387 ** CREATE TABLE t1(col INTEGER); 1388 ** SELECT (SELECT t1.col) FROM FROM t1; 1389 ** 1390 ** when columnType() is called on the expression "t1.col" in the 1391 ** sub-select. In this case, set the column type to NULL, even 1392 ** though it should really be "INTEGER". 1393 ** 1394 ** This is not a problem, as the column type of "t1.col" is never 1395 ** used. When columnType() is called on the expression 1396 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1397 ** branch below. */ 1398 break; 1399 } 1400 1401 assert( pTab && pExpr->pTab==pTab ); 1402 if( pS ){ 1403 /* The "table" is actually a sub-select or a view in the FROM clause 1404 ** of the SELECT statement. Return the declaration type and origin 1405 ** data for the result-set column of the sub-select. 1406 */ 1407 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1408 /* If iCol is less than zero, then the expression requests the 1409 ** rowid of the sub-select or view. This expression is legal (see 1410 ** test case misc2.2.2) - it always evaluates to NULL. 1411 ** 1412 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1413 ** caught already by name resolution. 1414 */ 1415 NameContext sNC; 1416 Expr *p = pS->pEList->a[iCol].pExpr; 1417 sNC.pSrcList = pS->pSrc; 1418 sNC.pNext = pNC; 1419 sNC.pParse = pNC->pParse; 1420 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1421 } 1422 }else if( pTab->pSchema ){ 1423 /* A real table */ 1424 assert( !pS ); 1425 if( iCol<0 ) iCol = pTab->iPKey; 1426 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1427 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1428 if( iCol<0 ){ 1429 zType = "INTEGER"; 1430 zOrigCol = "rowid"; 1431 }else{ 1432 zType = pTab->aCol[iCol].zType; 1433 zOrigCol = pTab->aCol[iCol].zName; 1434 estWidth = pTab->aCol[iCol].szEst; 1435 } 1436 zOrigTab = pTab->zName; 1437 if( pNC->pParse ){ 1438 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1439 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1440 } 1441 #else 1442 if( iCol<0 ){ 1443 zType = "INTEGER"; 1444 }else{ 1445 zType = pTab->aCol[iCol].zType; 1446 estWidth = pTab->aCol[iCol].szEst; 1447 } 1448 #endif 1449 } 1450 break; 1451 } 1452 #ifndef SQLITE_OMIT_SUBQUERY 1453 case TK_SELECT: { 1454 /* The expression is a sub-select. Return the declaration type and 1455 ** origin info for the single column in the result set of the SELECT 1456 ** statement. 1457 */ 1458 NameContext sNC; 1459 Select *pS = pExpr->x.pSelect; 1460 Expr *p = pS->pEList->a[0].pExpr; 1461 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1462 sNC.pSrcList = pS->pSrc; 1463 sNC.pNext = pNC; 1464 sNC.pParse = pNC->pParse; 1465 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1466 break; 1467 } 1468 #endif 1469 } 1470 1471 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1472 if( pzOrigDb ){ 1473 assert( pzOrigTab && pzOrigCol ); 1474 *pzOrigDb = zOrigDb; 1475 *pzOrigTab = zOrigTab; 1476 *pzOrigCol = zOrigCol; 1477 } 1478 #endif 1479 if( pEstWidth ) *pEstWidth = estWidth; 1480 return zType; 1481 } 1482 1483 /* 1484 ** Generate code that will tell the VDBE the declaration types of columns 1485 ** in the result set. 1486 */ 1487 static void generateColumnTypes( 1488 Parse *pParse, /* Parser context */ 1489 SrcList *pTabList, /* List of tables */ 1490 ExprList *pEList /* Expressions defining the result set */ 1491 ){ 1492 #ifndef SQLITE_OMIT_DECLTYPE 1493 Vdbe *v = pParse->pVdbe; 1494 int i; 1495 NameContext sNC; 1496 sNC.pSrcList = pTabList; 1497 sNC.pParse = pParse; 1498 for(i=0; i<pEList->nExpr; i++){ 1499 Expr *p = pEList->a[i].pExpr; 1500 const char *zType; 1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1502 const char *zOrigDb = 0; 1503 const char *zOrigTab = 0; 1504 const char *zOrigCol = 0; 1505 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1506 1507 /* The vdbe must make its own copy of the column-type and other 1508 ** column specific strings, in case the schema is reset before this 1509 ** virtual machine is deleted. 1510 */ 1511 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1512 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1513 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1514 #else 1515 zType = columnType(&sNC, p, 0, 0, 0, 0); 1516 #endif 1517 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1518 } 1519 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1520 } 1521 1522 /* 1523 ** Generate code that will tell the VDBE the names of columns 1524 ** in the result set. This information is used to provide the 1525 ** azCol[] values in the callback. 1526 */ 1527 static void generateColumnNames( 1528 Parse *pParse, /* Parser context */ 1529 SrcList *pTabList, /* List of tables */ 1530 ExprList *pEList /* Expressions defining the result set */ 1531 ){ 1532 Vdbe *v = pParse->pVdbe; 1533 int i, j; 1534 sqlite3 *db = pParse->db; 1535 int fullNames, shortNames; 1536 1537 #ifndef SQLITE_OMIT_EXPLAIN 1538 /* If this is an EXPLAIN, skip this step */ 1539 if( pParse->explain ){ 1540 return; 1541 } 1542 #endif 1543 1544 if( pParse->colNamesSet || db->mallocFailed ) return; 1545 assert( v!=0 ); 1546 assert( pTabList!=0 ); 1547 pParse->colNamesSet = 1; 1548 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1549 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1550 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1551 for(i=0; i<pEList->nExpr; i++){ 1552 Expr *p; 1553 p = pEList->a[i].pExpr; 1554 if( NEVER(p==0) ) continue; 1555 if( pEList->a[i].zName ){ 1556 char *zName = pEList->a[i].zName; 1557 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1558 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1559 Table *pTab; 1560 char *zCol; 1561 int iCol = p->iColumn; 1562 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1563 if( pTabList->a[j].iCursor==p->iTable ) break; 1564 } 1565 assert( j<pTabList->nSrc ); 1566 pTab = pTabList->a[j].pTab; 1567 if( iCol<0 ) iCol = pTab->iPKey; 1568 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1569 if( iCol<0 ){ 1570 zCol = "rowid"; 1571 }else{ 1572 zCol = pTab->aCol[iCol].zName; 1573 } 1574 if( !shortNames && !fullNames ){ 1575 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1576 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1577 }else if( fullNames ){ 1578 char *zName = 0; 1579 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1580 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1581 }else{ 1582 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1583 } 1584 }else{ 1585 const char *z = pEList->a[i].zSpan; 1586 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1587 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1588 } 1589 } 1590 generateColumnTypes(pParse, pTabList, pEList); 1591 } 1592 1593 /* 1594 ** Given an expression list (which is really the list of expressions 1595 ** that form the result set of a SELECT statement) compute appropriate 1596 ** column names for a table that would hold the expression list. 1597 ** 1598 ** All column names will be unique. 1599 ** 1600 ** Only the column names are computed. Column.zType, Column.zColl, 1601 ** and other fields of Column are zeroed. 1602 ** 1603 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1604 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1605 */ 1606 int sqlite3ColumnsFromExprList( 1607 Parse *pParse, /* Parsing context */ 1608 ExprList *pEList, /* Expr list from which to derive column names */ 1609 i16 *pnCol, /* Write the number of columns here */ 1610 Column **paCol /* Write the new column list here */ 1611 ){ 1612 sqlite3 *db = pParse->db; /* Database connection */ 1613 int i, j; /* Loop counters */ 1614 u32 cnt; /* Index added to make the name unique */ 1615 Column *aCol, *pCol; /* For looping over result columns */ 1616 int nCol; /* Number of columns in the result set */ 1617 Expr *p; /* Expression for a single result column */ 1618 char *zName; /* Column name */ 1619 int nName; /* Size of name in zName[] */ 1620 Hash ht; /* Hash table of column names */ 1621 1622 sqlite3HashInit(&ht); 1623 if( pEList ){ 1624 nCol = pEList->nExpr; 1625 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1626 testcase( aCol==0 ); 1627 }else{ 1628 nCol = 0; 1629 aCol = 0; 1630 } 1631 assert( nCol==(i16)nCol ); 1632 *pnCol = nCol; 1633 *paCol = aCol; 1634 1635 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1636 /* Get an appropriate name for the column 1637 */ 1638 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1639 if( (zName = pEList->a[i].zName)!=0 ){ 1640 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1641 }else{ 1642 Expr *pColExpr = p; /* The expression that is the result column name */ 1643 Table *pTab; /* Table associated with this expression */ 1644 while( pColExpr->op==TK_DOT ){ 1645 pColExpr = pColExpr->pRight; 1646 assert( pColExpr!=0 ); 1647 } 1648 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1649 /* For columns use the column name name */ 1650 int iCol = pColExpr->iColumn; 1651 pTab = pColExpr->pTab; 1652 if( iCol<0 ) iCol = pTab->iPKey; 1653 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1654 }else if( pColExpr->op==TK_ID ){ 1655 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1656 zName = pColExpr->u.zToken; 1657 }else{ 1658 /* Use the original text of the column expression as its name */ 1659 zName = pEList->a[i].zSpan; 1660 } 1661 } 1662 zName = sqlite3MPrintf(db, "%s", zName); 1663 1664 /* Make sure the column name is unique. If the name is not unique, 1665 ** append an integer to the name so that it becomes unique. 1666 */ 1667 cnt = 0; 1668 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1669 nName = sqlite3Strlen30(zName); 1670 if( nName>0 ){ 1671 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1672 if( zName[j]==':' ) nName = j; 1673 } 1674 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1675 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1676 } 1677 pCol->zName = zName; 1678 sqlite3ColumnPropertiesFromName(0, pCol); 1679 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1680 sqlite3OomFault(db); 1681 } 1682 } 1683 sqlite3HashClear(&ht); 1684 if( db->mallocFailed ){ 1685 for(j=0; j<i; j++){ 1686 sqlite3DbFree(db, aCol[j].zName); 1687 } 1688 sqlite3DbFree(db, aCol); 1689 *paCol = 0; 1690 *pnCol = 0; 1691 return SQLITE_NOMEM; 1692 } 1693 return SQLITE_OK; 1694 } 1695 1696 /* 1697 ** Add type and collation information to a column list based on 1698 ** a SELECT statement. 1699 ** 1700 ** The column list presumably came from selectColumnNamesFromExprList(). 1701 ** The column list has only names, not types or collations. This 1702 ** routine goes through and adds the types and collations. 1703 ** 1704 ** This routine requires that all identifiers in the SELECT 1705 ** statement be resolved. 1706 */ 1707 static void selectAddColumnTypeAndCollation( 1708 Parse *pParse, /* Parsing contexts */ 1709 Table *pTab, /* Add column type information to this table */ 1710 Select *pSelect /* SELECT used to determine types and collations */ 1711 ){ 1712 sqlite3 *db = pParse->db; 1713 NameContext sNC; 1714 Column *pCol; 1715 CollSeq *pColl; 1716 int i; 1717 Expr *p; 1718 struct ExprList_item *a; 1719 u64 szAll = 0; 1720 1721 assert( pSelect!=0 ); 1722 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1723 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1724 if( db->mallocFailed ) return; 1725 memset(&sNC, 0, sizeof(sNC)); 1726 sNC.pSrcList = pSelect->pSrc; 1727 a = pSelect->pEList->a; 1728 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1729 p = a[i].pExpr; 1730 if( pCol->zType==0 ){ 1731 pCol->zType = sqlite3DbStrDup(db, 1732 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1733 } 1734 szAll += pCol->szEst; 1735 pCol->affinity = sqlite3ExprAffinity(p); 1736 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1737 pColl = sqlite3ExprCollSeq(pParse, p); 1738 if( pColl && pCol->zColl==0 ){ 1739 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1740 } 1741 } 1742 pTab->szTabRow = sqlite3LogEst(szAll*4); 1743 } 1744 1745 /* 1746 ** Given a SELECT statement, generate a Table structure that describes 1747 ** the result set of that SELECT. 1748 */ 1749 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1750 Table *pTab; 1751 sqlite3 *db = pParse->db; 1752 int savedFlags; 1753 1754 savedFlags = db->flags; 1755 db->flags &= ~SQLITE_FullColNames; 1756 db->flags |= SQLITE_ShortColNames; 1757 sqlite3SelectPrep(pParse, pSelect, 0); 1758 if( pParse->nErr ) return 0; 1759 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1760 db->flags = savedFlags; 1761 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1762 if( pTab==0 ){ 1763 return 0; 1764 } 1765 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1766 ** is disabled */ 1767 assert( db->lookaside.bDisable ); 1768 pTab->nRef = 1; 1769 pTab->zName = 0; 1770 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1771 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1772 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1773 pTab->iPKey = -1; 1774 if( db->mallocFailed ){ 1775 sqlite3DeleteTable(db, pTab); 1776 return 0; 1777 } 1778 return pTab; 1779 } 1780 1781 /* 1782 ** Get a VDBE for the given parser context. Create a new one if necessary. 1783 ** If an error occurs, return NULL and leave a message in pParse. 1784 */ 1785 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1786 Vdbe *v = pParse->pVdbe; 1787 if( v==0 ){ 1788 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1789 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1790 if( pParse->pToplevel==0 1791 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1792 ){ 1793 pParse->okConstFactor = 1; 1794 } 1795 1796 } 1797 return v; 1798 } 1799 1800 1801 /* 1802 ** Compute the iLimit and iOffset fields of the SELECT based on the 1803 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1804 ** that appear in the original SQL statement after the LIMIT and OFFSET 1805 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1806 ** are the integer memory register numbers for counters used to compute 1807 ** the limit and offset. If there is no limit and/or offset, then 1808 ** iLimit and iOffset are negative. 1809 ** 1810 ** This routine changes the values of iLimit and iOffset only if 1811 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1812 ** iOffset should have been preset to appropriate default values (zero) 1813 ** prior to calling this routine. 1814 ** 1815 ** The iOffset register (if it exists) is initialized to the value 1816 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1817 ** iOffset+1 is initialized to LIMIT+OFFSET. 1818 ** 1819 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1820 ** redefined. The UNION ALL operator uses this property to force 1821 ** the reuse of the same limit and offset registers across multiple 1822 ** SELECT statements. 1823 */ 1824 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1825 Vdbe *v = 0; 1826 int iLimit = 0; 1827 int iOffset; 1828 int n; 1829 if( p->iLimit ) return; 1830 1831 /* 1832 ** "LIMIT -1" always shows all rows. There is some 1833 ** controversy about what the correct behavior should be. 1834 ** The current implementation interprets "LIMIT 0" to mean 1835 ** no rows. 1836 */ 1837 sqlite3ExprCacheClear(pParse); 1838 assert( p->pOffset==0 || p->pLimit!=0 ); 1839 if( p->pLimit ){ 1840 p->iLimit = iLimit = ++pParse->nMem; 1841 v = sqlite3GetVdbe(pParse); 1842 assert( v!=0 ); 1843 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1844 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1845 VdbeComment((v, "LIMIT counter")); 1846 if( n==0 ){ 1847 sqlite3VdbeGoto(v, iBreak); 1848 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1849 p->nSelectRow = n; 1850 } 1851 }else{ 1852 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1853 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1854 VdbeComment((v, "LIMIT counter")); 1855 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1856 } 1857 if( p->pOffset ){ 1858 p->iOffset = iOffset = ++pParse->nMem; 1859 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1860 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1861 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1862 VdbeComment((v, "OFFSET counter")); 1863 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1864 VdbeComment((v, "LIMIT+OFFSET")); 1865 } 1866 } 1867 } 1868 1869 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1870 /* 1871 ** Return the appropriate collating sequence for the iCol-th column of 1872 ** the result set for the compound-select statement "p". Return NULL if 1873 ** the column has no default collating sequence. 1874 ** 1875 ** The collating sequence for the compound select is taken from the 1876 ** left-most term of the select that has a collating sequence. 1877 */ 1878 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1879 CollSeq *pRet; 1880 if( p->pPrior ){ 1881 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1882 }else{ 1883 pRet = 0; 1884 } 1885 assert( iCol>=0 ); 1886 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1887 ** have been thrown during name resolution and we would not have gotten 1888 ** this far */ 1889 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1890 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1891 } 1892 return pRet; 1893 } 1894 1895 /* 1896 ** The select statement passed as the second parameter is a compound SELECT 1897 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1898 ** structure suitable for implementing the ORDER BY. 1899 ** 1900 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1901 ** function is responsible for ensuring that this structure is eventually 1902 ** freed. 1903 */ 1904 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1905 ExprList *pOrderBy = p->pOrderBy; 1906 int nOrderBy = p->pOrderBy->nExpr; 1907 sqlite3 *db = pParse->db; 1908 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1909 if( pRet ){ 1910 int i; 1911 for(i=0; i<nOrderBy; i++){ 1912 struct ExprList_item *pItem = &pOrderBy->a[i]; 1913 Expr *pTerm = pItem->pExpr; 1914 CollSeq *pColl; 1915 1916 if( pTerm->flags & EP_Collate ){ 1917 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1918 }else{ 1919 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1920 if( pColl==0 ) pColl = db->pDfltColl; 1921 pOrderBy->a[i].pExpr = 1922 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1923 } 1924 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1925 pRet->aColl[i] = pColl; 1926 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1927 } 1928 } 1929 1930 return pRet; 1931 } 1932 1933 #ifndef SQLITE_OMIT_CTE 1934 /* 1935 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1936 ** query of the form: 1937 ** 1938 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1939 ** \___________/ \_______________/ 1940 ** p->pPrior p 1941 ** 1942 ** 1943 ** There is exactly one reference to the recursive-table in the FROM clause 1944 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1945 ** 1946 ** The setup-query runs once to generate an initial set of rows that go 1947 ** into a Queue table. Rows are extracted from the Queue table one by 1948 ** one. Each row extracted from Queue is output to pDest. Then the single 1949 ** extracted row (now in the iCurrent table) becomes the content of the 1950 ** recursive-table for a recursive-query run. The output of the recursive-query 1951 ** is added back into the Queue table. Then another row is extracted from Queue 1952 ** and the iteration continues until the Queue table is empty. 1953 ** 1954 ** If the compound query operator is UNION then no duplicate rows are ever 1955 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1956 ** that have ever been inserted into Queue and causes duplicates to be 1957 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1958 ** 1959 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1960 ** ORDER BY order and the first entry is extracted for each cycle. Without 1961 ** an ORDER BY, the Queue table is just a FIFO. 1962 ** 1963 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1964 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1965 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1966 ** with a positive value, then the first OFFSET outputs are discarded rather 1967 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1968 ** rows have been skipped. 1969 */ 1970 static void generateWithRecursiveQuery( 1971 Parse *pParse, /* Parsing context */ 1972 Select *p, /* The recursive SELECT to be coded */ 1973 SelectDest *pDest /* What to do with query results */ 1974 ){ 1975 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1976 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1977 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1978 Select *pSetup = p->pPrior; /* The setup query */ 1979 int addrTop; /* Top of the loop */ 1980 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1981 int iCurrent = 0; /* The Current table */ 1982 int regCurrent; /* Register holding Current table */ 1983 int iQueue; /* The Queue table */ 1984 int iDistinct = 0; /* To ensure unique results if UNION */ 1985 int eDest = SRT_Fifo; /* How to write to Queue */ 1986 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1987 int i; /* Loop counter */ 1988 int rc; /* Result code */ 1989 ExprList *pOrderBy; /* The ORDER BY clause */ 1990 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1991 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1992 1993 /* Obtain authorization to do a recursive query */ 1994 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1995 1996 /* Process the LIMIT and OFFSET clauses, if they exist */ 1997 addrBreak = sqlite3VdbeMakeLabel(v); 1998 computeLimitRegisters(pParse, p, addrBreak); 1999 pLimit = p->pLimit; 2000 pOffset = p->pOffset; 2001 regLimit = p->iLimit; 2002 regOffset = p->iOffset; 2003 p->pLimit = p->pOffset = 0; 2004 p->iLimit = p->iOffset = 0; 2005 pOrderBy = p->pOrderBy; 2006 2007 /* Locate the cursor number of the Current table */ 2008 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2009 if( pSrc->a[i].fg.isRecursive ){ 2010 iCurrent = pSrc->a[i].iCursor; 2011 break; 2012 } 2013 } 2014 2015 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2016 ** the Distinct table must be exactly one greater than Queue in order 2017 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2018 iQueue = pParse->nTab++; 2019 if( p->op==TK_UNION ){ 2020 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2021 iDistinct = pParse->nTab++; 2022 }else{ 2023 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2024 } 2025 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2026 2027 /* Allocate cursors for Current, Queue, and Distinct. */ 2028 regCurrent = ++pParse->nMem; 2029 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2030 if( pOrderBy ){ 2031 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2032 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2033 (char*)pKeyInfo, P4_KEYINFO); 2034 destQueue.pOrderBy = pOrderBy; 2035 }else{ 2036 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2037 } 2038 VdbeComment((v, "Queue table")); 2039 if( iDistinct ){ 2040 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2041 p->selFlags |= SF_UsesEphemeral; 2042 } 2043 2044 /* Detach the ORDER BY clause from the compound SELECT */ 2045 p->pOrderBy = 0; 2046 2047 /* Store the results of the setup-query in Queue. */ 2048 pSetup->pNext = 0; 2049 rc = sqlite3Select(pParse, pSetup, &destQueue); 2050 pSetup->pNext = p; 2051 if( rc ) goto end_of_recursive_query; 2052 2053 /* Find the next row in the Queue and output that row */ 2054 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2055 2056 /* Transfer the next row in Queue over to Current */ 2057 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2058 if( pOrderBy ){ 2059 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2060 }else{ 2061 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2062 } 2063 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2064 2065 /* Output the single row in Current */ 2066 addrCont = sqlite3VdbeMakeLabel(v); 2067 codeOffset(v, regOffset, addrCont); 2068 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2069 0, 0, pDest, addrCont, addrBreak); 2070 if( regLimit ){ 2071 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2072 VdbeCoverage(v); 2073 } 2074 sqlite3VdbeResolveLabel(v, addrCont); 2075 2076 /* Execute the recursive SELECT taking the single row in Current as 2077 ** the value for the recursive-table. Store the results in the Queue. 2078 */ 2079 if( p->selFlags & SF_Aggregate ){ 2080 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2081 }else{ 2082 p->pPrior = 0; 2083 sqlite3Select(pParse, p, &destQueue); 2084 assert( p->pPrior==0 ); 2085 p->pPrior = pSetup; 2086 } 2087 2088 /* Keep running the loop until the Queue is empty */ 2089 sqlite3VdbeGoto(v, addrTop); 2090 sqlite3VdbeResolveLabel(v, addrBreak); 2091 2092 end_of_recursive_query: 2093 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2094 p->pOrderBy = pOrderBy; 2095 p->pLimit = pLimit; 2096 p->pOffset = pOffset; 2097 return; 2098 } 2099 #endif /* SQLITE_OMIT_CTE */ 2100 2101 /* Forward references */ 2102 static int multiSelectOrderBy( 2103 Parse *pParse, /* Parsing context */ 2104 Select *p, /* The right-most of SELECTs to be coded */ 2105 SelectDest *pDest /* What to do with query results */ 2106 ); 2107 2108 /* 2109 ** Handle the special case of a compound-select that originates from a 2110 ** VALUES clause. By handling this as a special case, we avoid deep 2111 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2112 ** on a VALUES clause. 2113 ** 2114 ** Because the Select object originates from a VALUES clause: 2115 ** (1) It has no LIMIT or OFFSET 2116 ** (2) All terms are UNION ALL 2117 ** (3) There is no ORDER BY clause 2118 */ 2119 static int multiSelectValues( 2120 Parse *pParse, /* Parsing context */ 2121 Select *p, /* The right-most of SELECTs to be coded */ 2122 SelectDest *pDest /* What to do with query results */ 2123 ){ 2124 Select *pPrior; 2125 int nRow = 1; 2126 int rc = 0; 2127 assert( p->selFlags & SF_MultiValue ); 2128 do{ 2129 assert( p->selFlags & SF_Values ); 2130 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2131 assert( p->pLimit==0 ); 2132 assert( p->pOffset==0 ); 2133 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2134 if( p->pPrior==0 ) break; 2135 assert( p->pPrior->pNext==p ); 2136 p = p->pPrior; 2137 nRow++; 2138 }while(1); 2139 while( p ){ 2140 pPrior = p->pPrior; 2141 p->pPrior = 0; 2142 rc = sqlite3Select(pParse, p, pDest); 2143 p->pPrior = pPrior; 2144 if( rc ) break; 2145 p->nSelectRow = nRow; 2146 p = p->pNext; 2147 } 2148 return rc; 2149 } 2150 2151 /* 2152 ** This routine is called to process a compound query form from 2153 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2154 ** INTERSECT 2155 ** 2156 ** "p" points to the right-most of the two queries. the query on the 2157 ** left is p->pPrior. The left query could also be a compound query 2158 ** in which case this routine will be called recursively. 2159 ** 2160 ** The results of the total query are to be written into a destination 2161 ** of type eDest with parameter iParm. 2162 ** 2163 ** Example 1: Consider a three-way compound SQL statement. 2164 ** 2165 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2166 ** 2167 ** This statement is parsed up as follows: 2168 ** 2169 ** SELECT c FROM t3 2170 ** | 2171 ** `-----> SELECT b FROM t2 2172 ** | 2173 ** `------> SELECT a FROM t1 2174 ** 2175 ** The arrows in the diagram above represent the Select.pPrior pointer. 2176 ** So if this routine is called with p equal to the t3 query, then 2177 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2178 ** 2179 ** Notice that because of the way SQLite parses compound SELECTs, the 2180 ** individual selects always group from left to right. 2181 */ 2182 static int multiSelect( 2183 Parse *pParse, /* Parsing context */ 2184 Select *p, /* The right-most of SELECTs to be coded */ 2185 SelectDest *pDest /* What to do with query results */ 2186 ){ 2187 int rc = SQLITE_OK; /* Success code from a subroutine */ 2188 Select *pPrior; /* Another SELECT immediately to our left */ 2189 Vdbe *v; /* Generate code to this VDBE */ 2190 SelectDest dest; /* Alternative data destination */ 2191 Select *pDelete = 0; /* Chain of simple selects to delete */ 2192 sqlite3 *db; /* Database connection */ 2193 #ifndef SQLITE_OMIT_EXPLAIN 2194 int iSub1 = 0; /* EQP id of left-hand query */ 2195 int iSub2 = 0; /* EQP id of right-hand query */ 2196 #endif 2197 2198 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2199 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2200 */ 2201 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2202 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2203 db = pParse->db; 2204 pPrior = p->pPrior; 2205 dest = *pDest; 2206 if( pPrior->pOrderBy ){ 2207 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2208 selectOpName(p->op)); 2209 rc = 1; 2210 goto multi_select_end; 2211 } 2212 if( pPrior->pLimit ){ 2213 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2214 selectOpName(p->op)); 2215 rc = 1; 2216 goto multi_select_end; 2217 } 2218 2219 v = sqlite3GetVdbe(pParse); 2220 assert( v!=0 ); /* The VDBE already created by calling function */ 2221 2222 /* Create the destination temporary table if necessary 2223 */ 2224 if( dest.eDest==SRT_EphemTab ){ 2225 assert( p->pEList ); 2226 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2227 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2228 dest.eDest = SRT_Table; 2229 } 2230 2231 /* Special handling for a compound-select that originates as a VALUES clause. 2232 */ 2233 if( p->selFlags & SF_MultiValue ){ 2234 rc = multiSelectValues(pParse, p, &dest); 2235 goto multi_select_end; 2236 } 2237 2238 /* Make sure all SELECTs in the statement have the same number of elements 2239 ** in their result sets. 2240 */ 2241 assert( p->pEList && pPrior->pEList ); 2242 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2243 2244 #ifndef SQLITE_OMIT_CTE 2245 if( p->selFlags & SF_Recursive ){ 2246 generateWithRecursiveQuery(pParse, p, &dest); 2247 }else 2248 #endif 2249 2250 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2251 */ 2252 if( p->pOrderBy ){ 2253 return multiSelectOrderBy(pParse, p, pDest); 2254 }else 2255 2256 /* Generate code for the left and right SELECT statements. 2257 */ 2258 switch( p->op ){ 2259 case TK_ALL: { 2260 int addr = 0; 2261 int nLimit; 2262 assert( !pPrior->pLimit ); 2263 pPrior->iLimit = p->iLimit; 2264 pPrior->iOffset = p->iOffset; 2265 pPrior->pLimit = p->pLimit; 2266 pPrior->pOffset = p->pOffset; 2267 explainSetInteger(iSub1, pParse->iNextSelectId); 2268 rc = sqlite3Select(pParse, pPrior, &dest); 2269 p->pLimit = 0; 2270 p->pOffset = 0; 2271 if( rc ){ 2272 goto multi_select_end; 2273 } 2274 p->pPrior = 0; 2275 p->iLimit = pPrior->iLimit; 2276 p->iOffset = pPrior->iOffset; 2277 if( p->iLimit ){ 2278 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2279 VdbeComment((v, "Jump ahead if LIMIT reached")); 2280 if( p->iOffset ){ 2281 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2282 p->iLimit, p->iOffset+1, p->iOffset); 2283 } 2284 } 2285 explainSetInteger(iSub2, pParse->iNextSelectId); 2286 rc = sqlite3Select(pParse, p, &dest); 2287 testcase( rc!=SQLITE_OK ); 2288 pDelete = p->pPrior; 2289 p->pPrior = pPrior; 2290 p->nSelectRow += pPrior->nSelectRow; 2291 if( pPrior->pLimit 2292 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2293 && nLimit>0 && p->nSelectRow > (u64)nLimit 2294 ){ 2295 p->nSelectRow = nLimit; 2296 } 2297 if( addr ){ 2298 sqlite3VdbeJumpHere(v, addr); 2299 } 2300 break; 2301 } 2302 case TK_EXCEPT: 2303 case TK_UNION: { 2304 int unionTab; /* Cursor number of the temporary table holding result */ 2305 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2306 int priorOp; /* The SRT_ operation to apply to prior selects */ 2307 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2308 int addr; 2309 SelectDest uniondest; 2310 2311 testcase( p->op==TK_EXCEPT ); 2312 testcase( p->op==TK_UNION ); 2313 priorOp = SRT_Union; 2314 if( dest.eDest==priorOp ){ 2315 /* We can reuse a temporary table generated by a SELECT to our 2316 ** right. 2317 */ 2318 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2319 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2320 unionTab = dest.iSDParm; 2321 }else{ 2322 /* We will need to create our own temporary table to hold the 2323 ** intermediate results. 2324 */ 2325 unionTab = pParse->nTab++; 2326 assert( p->pOrderBy==0 ); 2327 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2328 assert( p->addrOpenEphm[0] == -1 ); 2329 p->addrOpenEphm[0] = addr; 2330 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2331 assert( p->pEList ); 2332 } 2333 2334 /* Code the SELECT statements to our left 2335 */ 2336 assert( !pPrior->pOrderBy ); 2337 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2338 explainSetInteger(iSub1, pParse->iNextSelectId); 2339 rc = sqlite3Select(pParse, pPrior, &uniondest); 2340 if( rc ){ 2341 goto multi_select_end; 2342 } 2343 2344 /* Code the current SELECT statement 2345 */ 2346 if( p->op==TK_EXCEPT ){ 2347 op = SRT_Except; 2348 }else{ 2349 assert( p->op==TK_UNION ); 2350 op = SRT_Union; 2351 } 2352 p->pPrior = 0; 2353 pLimit = p->pLimit; 2354 p->pLimit = 0; 2355 pOffset = p->pOffset; 2356 p->pOffset = 0; 2357 uniondest.eDest = op; 2358 explainSetInteger(iSub2, pParse->iNextSelectId); 2359 rc = sqlite3Select(pParse, p, &uniondest); 2360 testcase( rc!=SQLITE_OK ); 2361 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2362 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2363 sqlite3ExprListDelete(db, p->pOrderBy); 2364 pDelete = p->pPrior; 2365 p->pPrior = pPrior; 2366 p->pOrderBy = 0; 2367 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2368 sqlite3ExprDelete(db, p->pLimit); 2369 p->pLimit = pLimit; 2370 p->pOffset = pOffset; 2371 p->iLimit = 0; 2372 p->iOffset = 0; 2373 2374 /* Convert the data in the temporary table into whatever form 2375 ** it is that we currently need. 2376 */ 2377 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2378 if( dest.eDest!=priorOp ){ 2379 int iCont, iBreak, iStart; 2380 assert( p->pEList ); 2381 if( dest.eDest==SRT_Output ){ 2382 Select *pFirst = p; 2383 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2384 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2385 } 2386 iBreak = sqlite3VdbeMakeLabel(v); 2387 iCont = sqlite3VdbeMakeLabel(v); 2388 computeLimitRegisters(pParse, p, iBreak); 2389 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2390 iStart = sqlite3VdbeCurrentAddr(v); 2391 selectInnerLoop(pParse, p, p->pEList, unionTab, 2392 0, 0, &dest, iCont, iBreak); 2393 sqlite3VdbeResolveLabel(v, iCont); 2394 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2395 sqlite3VdbeResolveLabel(v, iBreak); 2396 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2397 } 2398 break; 2399 } 2400 default: assert( p->op==TK_INTERSECT ); { 2401 int tab1, tab2; 2402 int iCont, iBreak, iStart; 2403 Expr *pLimit, *pOffset; 2404 int addr; 2405 SelectDest intersectdest; 2406 int r1; 2407 2408 /* INTERSECT is different from the others since it requires 2409 ** two temporary tables. Hence it has its own case. Begin 2410 ** by allocating the tables we will need. 2411 */ 2412 tab1 = pParse->nTab++; 2413 tab2 = pParse->nTab++; 2414 assert( p->pOrderBy==0 ); 2415 2416 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2417 assert( p->addrOpenEphm[0] == -1 ); 2418 p->addrOpenEphm[0] = addr; 2419 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2420 assert( p->pEList ); 2421 2422 /* Code the SELECTs to our left into temporary table "tab1". 2423 */ 2424 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2425 explainSetInteger(iSub1, pParse->iNextSelectId); 2426 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2427 if( rc ){ 2428 goto multi_select_end; 2429 } 2430 2431 /* Code the current SELECT into temporary table "tab2" 2432 */ 2433 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2434 assert( p->addrOpenEphm[1] == -1 ); 2435 p->addrOpenEphm[1] = addr; 2436 p->pPrior = 0; 2437 pLimit = p->pLimit; 2438 p->pLimit = 0; 2439 pOffset = p->pOffset; 2440 p->pOffset = 0; 2441 intersectdest.iSDParm = tab2; 2442 explainSetInteger(iSub2, pParse->iNextSelectId); 2443 rc = sqlite3Select(pParse, p, &intersectdest); 2444 testcase( rc!=SQLITE_OK ); 2445 pDelete = p->pPrior; 2446 p->pPrior = pPrior; 2447 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2448 sqlite3ExprDelete(db, p->pLimit); 2449 p->pLimit = pLimit; 2450 p->pOffset = pOffset; 2451 2452 /* Generate code to take the intersection of the two temporary 2453 ** tables. 2454 */ 2455 assert( p->pEList ); 2456 if( dest.eDest==SRT_Output ){ 2457 Select *pFirst = p; 2458 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2459 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2460 } 2461 iBreak = sqlite3VdbeMakeLabel(v); 2462 iCont = sqlite3VdbeMakeLabel(v); 2463 computeLimitRegisters(pParse, p, iBreak); 2464 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2465 r1 = sqlite3GetTempReg(pParse); 2466 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2467 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2468 sqlite3ReleaseTempReg(pParse, r1); 2469 selectInnerLoop(pParse, p, p->pEList, tab1, 2470 0, 0, &dest, iCont, iBreak); 2471 sqlite3VdbeResolveLabel(v, iCont); 2472 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2473 sqlite3VdbeResolveLabel(v, iBreak); 2474 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2475 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2476 break; 2477 } 2478 } 2479 2480 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2481 2482 /* Compute collating sequences used by 2483 ** temporary tables needed to implement the compound select. 2484 ** Attach the KeyInfo structure to all temporary tables. 2485 ** 2486 ** This section is run by the right-most SELECT statement only. 2487 ** SELECT statements to the left always skip this part. The right-most 2488 ** SELECT might also skip this part if it has no ORDER BY clause and 2489 ** no temp tables are required. 2490 */ 2491 if( p->selFlags & SF_UsesEphemeral ){ 2492 int i; /* Loop counter */ 2493 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2494 Select *pLoop; /* For looping through SELECT statements */ 2495 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2496 int nCol; /* Number of columns in result set */ 2497 2498 assert( p->pNext==0 ); 2499 nCol = p->pEList->nExpr; 2500 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2501 if( !pKeyInfo ){ 2502 rc = SQLITE_NOMEM; 2503 goto multi_select_end; 2504 } 2505 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2506 *apColl = multiSelectCollSeq(pParse, p, i); 2507 if( 0==*apColl ){ 2508 *apColl = db->pDfltColl; 2509 } 2510 } 2511 2512 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2513 for(i=0; i<2; i++){ 2514 int addr = pLoop->addrOpenEphm[i]; 2515 if( addr<0 ){ 2516 /* If [0] is unused then [1] is also unused. So we can 2517 ** always safely abort as soon as the first unused slot is found */ 2518 assert( pLoop->addrOpenEphm[1]<0 ); 2519 break; 2520 } 2521 sqlite3VdbeChangeP2(v, addr, nCol); 2522 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2523 P4_KEYINFO); 2524 pLoop->addrOpenEphm[i] = -1; 2525 } 2526 } 2527 sqlite3KeyInfoUnref(pKeyInfo); 2528 } 2529 2530 multi_select_end: 2531 pDest->iSdst = dest.iSdst; 2532 pDest->nSdst = dest.nSdst; 2533 sqlite3SelectDelete(db, pDelete); 2534 return rc; 2535 } 2536 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2537 2538 /* 2539 ** Error message for when two or more terms of a compound select have different 2540 ** size result sets. 2541 */ 2542 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2543 if( p->selFlags & SF_Values ){ 2544 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2545 }else{ 2546 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2547 " do not have the same number of result columns", selectOpName(p->op)); 2548 } 2549 } 2550 2551 /* 2552 ** Code an output subroutine for a coroutine implementation of a 2553 ** SELECT statment. 2554 ** 2555 ** The data to be output is contained in pIn->iSdst. There are 2556 ** pIn->nSdst columns to be output. pDest is where the output should 2557 ** be sent. 2558 ** 2559 ** regReturn is the number of the register holding the subroutine 2560 ** return address. 2561 ** 2562 ** If regPrev>0 then it is the first register in a vector that 2563 ** records the previous output. mem[regPrev] is a flag that is false 2564 ** if there has been no previous output. If regPrev>0 then code is 2565 ** generated to suppress duplicates. pKeyInfo is used for comparing 2566 ** keys. 2567 ** 2568 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2569 ** iBreak. 2570 */ 2571 static int generateOutputSubroutine( 2572 Parse *pParse, /* Parsing context */ 2573 Select *p, /* The SELECT statement */ 2574 SelectDest *pIn, /* Coroutine supplying data */ 2575 SelectDest *pDest, /* Where to send the data */ 2576 int regReturn, /* The return address register */ 2577 int regPrev, /* Previous result register. No uniqueness if 0 */ 2578 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2579 int iBreak /* Jump here if we hit the LIMIT */ 2580 ){ 2581 Vdbe *v = pParse->pVdbe; 2582 int iContinue; 2583 int addr; 2584 2585 addr = sqlite3VdbeCurrentAddr(v); 2586 iContinue = sqlite3VdbeMakeLabel(v); 2587 2588 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2589 */ 2590 if( regPrev ){ 2591 int addr1, addr2; 2592 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2593 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2594 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2595 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2596 sqlite3VdbeJumpHere(v, addr1); 2597 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2598 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2599 } 2600 if( pParse->db->mallocFailed ) return 0; 2601 2602 /* Suppress the first OFFSET entries if there is an OFFSET clause 2603 */ 2604 codeOffset(v, p->iOffset, iContinue); 2605 2606 assert( pDest->eDest!=SRT_Exists ); 2607 assert( pDest->eDest!=SRT_Table ); 2608 switch( pDest->eDest ){ 2609 /* Store the result as data using a unique key. 2610 */ 2611 case SRT_EphemTab: { 2612 int r1 = sqlite3GetTempReg(pParse); 2613 int r2 = sqlite3GetTempReg(pParse); 2614 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2615 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2616 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2617 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2618 sqlite3ReleaseTempReg(pParse, r2); 2619 sqlite3ReleaseTempReg(pParse, r1); 2620 break; 2621 } 2622 2623 #ifndef SQLITE_OMIT_SUBQUERY 2624 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2625 ** then there should be a single item on the stack. Write this 2626 ** item into the set table with bogus data. 2627 */ 2628 case SRT_Set: { 2629 int r1; 2630 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2631 pDest->affSdst = 2632 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2633 r1 = sqlite3GetTempReg(pParse); 2634 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2635 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2636 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2637 sqlite3ReleaseTempReg(pParse, r1); 2638 break; 2639 } 2640 2641 /* If this is a scalar select that is part of an expression, then 2642 ** store the results in the appropriate memory cell and break out 2643 ** of the scan loop. 2644 */ 2645 case SRT_Mem: { 2646 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2647 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2648 /* The LIMIT clause will jump out of the loop for us */ 2649 break; 2650 } 2651 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2652 2653 /* The results are stored in a sequence of registers 2654 ** starting at pDest->iSdst. Then the co-routine yields. 2655 */ 2656 case SRT_Coroutine: { 2657 if( pDest->iSdst==0 ){ 2658 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2659 pDest->nSdst = pIn->nSdst; 2660 } 2661 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2662 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2663 break; 2664 } 2665 2666 /* If none of the above, then the result destination must be 2667 ** SRT_Output. This routine is never called with any other 2668 ** destination other than the ones handled above or SRT_Output. 2669 ** 2670 ** For SRT_Output, results are stored in a sequence of registers. 2671 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2672 ** return the next row of result. 2673 */ 2674 default: { 2675 assert( pDest->eDest==SRT_Output ); 2676 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2677 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2678 break; 2679 } 2680 } 2681 2682 /* Jump to the end of the loop if the LIMIT is reached. 2683 */ 2684 if( p->iLimit ){ 2685 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2686 } 2687 2688 /* Generate the subroutine return 2689 */ 2690 sqlite3VdbeResolveLabel(v, iContinue); 2691 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2692 2693 return addr; 2694 } 2695 2696 /* 2697 ** Alternative compound select code generator for cases when there 2698 ** is an ORDER BY clause. 2699 ** 2700 ** We assume a query of the following form: 2701 ** 2702 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2703 ** 2704 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2705 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2706 ** co-routines. Then run the co-routines in parallel and merge the results 2707 ** into the output. In addition to the two coroutines (called selectA and 2708 ** selectB) there are 7 subroutines: 2709 ** 2710 ** outA: Move the output of the selectA coroutine into the output 2711 ** of the compound query. 2712 ** 2713 ** outB: Move the output of the selectB coroutine into the output 2714 ** of the compound query. (Only generated for UNION and 2715 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2716 ** appears only in B.) 2717 ** 2718 ** AltB: Called when there is data from both coroutines and A<B. 2719 ** 2720 ** AeqB: Called when there is data from both coroutines and A==B. 2721 ** 2722 ** AgtB: Called when there is data from both coroutines and A>B. 2723 ** 2724 ** EofA: Called when data is exhausted from selectA. 2725 ** 2726 ** EofB: Called when data is exhausted from selectB. 2727 ** 2728 ** The implementation of the latter five subroutines depend on which 2729 ** <operator> is used: 2730 ** 2731 ** 2732 ** UNION ALL UNION EXCEPT INTERSECT 2733 ** ------------- ----------------- -------------- ----------------- 2734 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2735 ** 2736 ** AeqB: outA, nextA nextA nextA outA, nextA 2737 ** 2738 ** AgtB: outB, nextB outB, nextB nextB nextB 2739 ** 2740 ** EofA: outB, nextB outB, nextB halt halt 2741 ** 2742 ** EofB: outA, nextA outA, nextA outA, nextA halt 2743 ** 2744 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2745 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2746 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2747 ** following nextX causes a jump to the end of the select processing. 2748 ** 2749 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2750 ** within the output subroutine. The regPrev register set holds the previously 2751 ** output value. A comparison is made against this value and the output 2752 ** is skipped if the next results would be the same as the previous. 2753 ** 2754 ** The implementation plan is to implement the two coroutines and seven 2755 ** subroutines first, then put the control logic at the bottom. Like this: 2756 ** 2757 ** goto Init 2758 ** coA: coroutine for left query (A) 2759 ** coB: coroutine for right query (B) 2760 ** outA: output one row of A 2761 ** outB: output one row of B (UNION and UNION ALL only) 2762 ** EofA: ... 2763 ** EofB: ... 2764 ** AltB: ... 2765 ** AeqB: ... 2766 ** AgtB: ... 2767 ** Init: initialize coroutine registers 2768 ** yield coA 2769 ** if eof(A) goto EofA 2770 ** yield coB 2771 ** if eof(B) goto EofB 2772 ** Cmpr: Compare A, B 2773 ** Jump AltB, AeqB, AgtB 2774 ** End: ... 2775 ** 2776 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2777 ** actually called using Gosub and they do not Return. EofA and EofB loop 2778 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2779 ** and AgtB jump to either L2 or to one of EofA or EofB. 2780 */ 2781 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2782 static int multiSelectOrderBy( 2783 Parse *pParse, /* Parsing context */ 2784 Select *p, /* The right-most of SELECTs to be coded */ 2785 SelectDest *pDest /* What to do with query results */ 2786 ){ 2787 int i, j; /* Loop counters */ 2788 Select *pPrior; /* Another SELECT immediately to our left */ 2789 Vdbe *v; /* Generate code to this VDBE */ 2790 SelectDest destA; /* Destination for coroutine A */ 2791 SelectDest destB; /* Destination for coroutine B */ 2792 int regAddrA; /* Address register for select-A coroutine */ 2793 int regAddrB; /* Address register for select-B coroutine */ 2794 int addrSelectA; /* Address of the select-A coroutine */ 2795 int addrSelectB; /* Address of the select-B coroutine */ 2796 int regOutA; /* Address register for the output-A subroutine */ 2797 int regOutB; /* Address register for the output-B subroutine */ 2798 int addrOutA; /* Address of the output-A subroutine */ 2799 int addrOutB = 0; /* Address of the output-B subroutine */ 2800 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2801 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2802 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2803 int addrAltB; /* Address of the A<B subroutine */ 2804 int addrAeqB; /* Address of the A==B subroutine */ 2805 int addrAgtB; /* Address of the A>B subroutine */ 2806 int regLimitA; /* Limit register for select-A */ 2807 int regLimitB; /* Limit register for select-A */ 2808 int regPrev; /* A range of registers to hold previous output */ 2809 int savedLimit; /* Saved value of p->iLimit */ 2810 int savedOffset; /* Saved value of p->iOffset */ 2811 int labelCmpr; /* Label for the start of the merge algorithm */ 2812 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2813 int addr1; /* Jump instructions that get retargetted */ 2814 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2815 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2816 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2817 sqlite3 *db; /* Database connection */ 2818 ExprList *pOrderBy; /* The ORDER BY clause */ 2819 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2820 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2821 #ifndef SQLITE_OMIT_EXPLAIN 2822 int iSub1; /* EQP id of left-hand query */ 2823 int iSub2; /* EQP id of right-hand query */ 2824 #endif 2825 2826 assert( p->pOrderBy!=0 ); 2827 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2828 db = pParse->db; 2829 v = pParse->pVdbe; 2830 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2831 labelEnd = sqlite3VdbeMakeLabel(v); 2832 labelCmpr = sqlite3VdbeMakeLabel(v); 2833 2834 2835 /* Patch up the ORDER BY clause 2836 */ 2837 op = p->op; 2838 pPrior = p->pPrior; 2839 assert( pPrior->pOrderBy==0 ); 2840 pOrderBy = p->pOrderBy; 2841 assert( pOrderBy ); 2842 nOrderBy = pOrderBy->nExpr; 2843 2844 /* For operators other than UNION ALL we have to make sure that 2845 ** the ORDER BY clause covers every term of the result set. Add 2846 ** terms to the ORDER BY clause as necessary. 2847 */ 2848 if( op!=TK_ALL ){ 2849 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2850 struct ExprList_item *pItem; 2851 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2852 assert( pItem->u.x.iOrderByCol>0 ); 2853 if( pItem->u.x.iOrderByCol==i ) break; 2854 } 2855 if( j==nOrderBy ){ 2856 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2857 if( pNew==0 ) return SQLITE_NOMEM; 2858 pNew->flags |= EP_IntValue; 2859 pNew->u.iValue = i; 2860 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2861 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2862 } 2863 } 2864 } 2865 2866 /* Compute the comparison permutation and keyinfo that is used with 2867 ** the permutation used to determine if the next 2868 ** row of results comes from selectA or selectB. Also add explicit 2869 ** collations to the ORDER BY clause terms so that when the subqueries 2870 ** to the right and the left are evaluated, they use the correct 2871 ** collation. 2872 */ 2873 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2874 if( aPermute ){ 2875 struct ExprList_item *pItem; 2876 aPermute[0] = nOrderBy; 2877 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2878 assert( pItem->u.x.iOrderByCol>0 ); 2879 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2880 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2881 } 2882 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2883 }else{ 2884 pKeyMerge = 0; 2885 } 2886 2887 /* Reattach the ORDER BY clause to the query. 2888 */ 2889 p->pOrderBy = pOrderBy; 2890 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2891 2892 /* Allocate a range of temporary registers and the KeyInfo needed 2893 ** for the logic that removes duplicate result rows when the 2894 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2895 */ 2896 if( op==TK_ALL ){ 2897 regPrev = 0; 2898 }else{ 2899 int nExpr = p->pEList->nExpr; 2900 assert( nOrderBy>=nExpr || db->mallocFailed ); 2901 regPrev = pParse->nMem+1; 2902 pParse->nMem += nExpr+1; 2903 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2904 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2905 if( pKeyDup ){ 2906 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2907 for(i=0; i<nExpr; i++){ 2908 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2909 pKeyDup->aSortOrder[i] = 0; 2910 } 2911 } 2912 } 2913 2914 /* Separate the left and the right query from one another 2915 */ 2916 p->pPrior = 0; 2917 pPrior->pNext = 0; 2918 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2919 if( pPrior->pPrior==0 ){ 2920 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2921 } 2922 2923 /* Compute the limit registers */ 2924 computeLimitRegisters(pParse, p, labelEnd); 2925 if( p->iLimit && op==TK_ALL ){ 2926 regLimitA = ++pParse->nMem; 2927 regLimitB = ++pParse->nMem; 2928 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2929 regLimitA); 2930 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2931 }else{ 2932 regLimitA = regLimitB = 0; 2933 } 2934 sqlite3ExprDelete(db, p->pLimit); 2935 p->pLimit = 0; 2936 sqlite3ExprDelete(db, p->pOffset); 2937 p->pOffset = 0; 2938 2939 regAddrA = ++pParse->nMem; 2940 regAddrB = ++pParse->nMem; 2941 regOutA = ++pParse->nMem; 2942 regOutB = ++pParse->nMem; 2943 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2944 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2945 2946 /* Generate a coroutine to evaluate the SELECT statement to the 2947 ** left of the compound operator - the "A" select. 2948 */ 2949 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2950 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2951 VdbeComment((v, "left SELECT")); 2952 pPrior->iLimit = regLimitA; 2953 explainSetInteger(iSub1, pParse->iNextSelectId); 2954 sqlite3Select(pParse, pPrior, &destA); 2955 sqlite3VdbeEndCoroutine(v, regAddrA); 2956 sqlite3VdbeJumpHere(v, addr1); 2957 2958 /* Generate a coroutine to evaluate the SELECT statement on 2959 ** the right - the "B" select 2960 */ 2961 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2962 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2963 VdbeComment((v, "right SELECT")); 2964 savedLimit = p->iLimit; 2965 savedOffset = p->iOffset; 2966 p->iLimit = regLimitB; 2967 p->iOffset = 0; 2968 explainSetInteger(iSub2, pParse->iNextSelectId); 2969 sqlite3Select(pParse, p, &destB); 2970 p->iLimit = savedLimit; 2971 p->iOffset = savedOffset; 2972 sqlite3VdbeEndCoroutine(v, regAddrB); 2973 2974 /* Generate a subroutine that outputs the current row of the A 2975 ** select as the next output row of the compound select. 2976 */ 2977 VdbeNoopComment((v, "Output routine for A")); 2978 addrOutA = generateOutputSubroutine(pParse, 2979 p, &destA, pDest, regOutA, 2980 regPrev, pKeyDup, labelEnd); 2981 2982 /* Generate a subroutine that outputs the current row of the B 2983 ** select as the next output row of the compound select. 2984 */ 2985 if( op==TK_ALL || op==TK_UNION ){ 2986 VdbeNoopComment((v, "Output routine for B")); 2987 addrOutB = generateOutputSubroutine(pParse, 2988 p, &destB, pDest, regOutB, 2989 regPrev, pKeyDup, labelEnd); 2990 } 2991 sqlite3KeyInfoUnref(pKeyDup); 2992 2993 /* Generate a subroutine to run when the results from select A 2994 ** are exhausted and only data in select B remains. 2995 */ 2996 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2997 addrEofA_noB = addrEofA = labelEnd; 2998 }else{ 2999 VdbeNoopComment((v, "eof-A subroutine")); 3000 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3001 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3002 VdbeCoverage(v); 3003 sqlite3VdbeGoto(v, addrEofA); 3004 p->nSelectRow += pPrior->nSelectRow; 3005 } 3006 3007 /* Generate a subroutine to run when the results from select B 3008 ** are exhausted and only data in select A remains. 3009 */ 3010 if( op==TK_INTERSECT ){ 3011 addrEofB = addrEofA; 3012 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3013 }else{ 3014 VdbeNoopComment((v, "eof-B subroutine")); 3015 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3016 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3017 sqlite3VdbeGoto(v, addrEofB); 3018 } 3019 3020 /* Generate code to handle the case of A<B 3021 */ 3022 VdbeNoopComment((v, "A-lt-B subroutine")); 3023 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3024 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3025 sqlite3VdbeGoto(v, labelCmpr); 3026 3027 /* Generate code to handle the case of A==B 3028 */ 3029 if( op==TK_ALL ){ 3030 addrAeqB = addrAltB; 3031 }else if( op==TK_INTERSECT ){ 3032 addrAeqB = addrAltB; 3033 addrAltB++; 3034 }else{ 3035 VdbeNoopComment((v, "A-eq-B subroutine")); 3036 addrAeqB = 3037 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3038 sqlite3VdbeGoto(v, labelCmpr); 3039 } 3040 3041 /* Generate code to handle the case of A>B 3042 */ 3043 VdbeNoopComment((v, "A-gt-B subroutine")); 3044 addrAgtB = sqlite3VdbeCurrentAddr(v); 3045 if( op==TK_ALL || op==TK_UNION ){ 3046 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3047 } 3048 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3049 sqlite3VdbeGoto(v, labelCmpr); 3050 3051 /* This code runs once to initialize everything. 3052 */ 3053 sqlite3VdbeJumpHere(v, addr1); 3054 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3055 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3056 3057 /* Implement the main merge loop 3058 */ 3059 sqlite3VdbeResolveLabel(v, labelCmpr); 3060 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3061 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3062 (char*)pKeyMerge, P4_KEYINFO); 3063 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3064 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3065 3066 /* Jump to the this point in order to terminate the query. 3067 */ 3068 sqlite3VdbeResolveLabel(v, labelEnd); 3069 3070 /* Set the number of output columns 3071 */ 3072 if( pDest->eDest==SRT_Output ){ 3073 Select *pFirst = pPrior; 3074 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3075 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3076 } 3077 3078 /* Reassembly the compound query so that it will be freed correctly 3079 ** by the calling function */ 3080 if( p->pPrior ){ 3081 sqlite3SelectDelete(db, p->pPrior); 3082 } 3083 p->pPrior = pPrior; 3084 pPrior->pNext = p; 3085 3086 /*** TBD: Insert subroutine calls to close cursors on incomplete 3087 **** subqueries ****/ 3088 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3089 return pParse->nErr!=0; 3090 } 3091 #endif 3092 3093 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3094 /* Forward Declarations */ 3095 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3096 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3097 3098 /* 3099 ** Scan through the expression pExpr. Replace every reference to 3100 ** a column in table number iTable with a copy of the iColumn-th 3101 ** entry in pEList. (But leave references to the ROWID column 3102 ** unchanged.) 3103 ** 3104 ** This routine is part of the flattening procedure. A subquery 3105 ** whose result set is defined by pEList appears as entry in the 3106 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3107 ** FORM clause entry is iTable. This routine make the necessary 3108 ** changes to pExpr so that it refers directly to the source table 3109 ** of the subquery rather the result set of the subquery. 3110 */ 3111 static Expr *substExpr( 3112 sqlite3 *db, /* Report malloc errors to this connection */ 3113 Expr *pExpr, /* Expr in which substitution occurs */ 3114 int iTable, /* Table to be substituted */ 3115 ExprList *pEList /* Substitute expressions */ 3116 ){ 3117 if( pExpr==0 ) return 0; 3118 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3119 if( pExpr->iColumn<0 ){ 3120 pExpr->op = TK_NULL; 3121 }else{ 3122 Expr *pNew; 3123 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3124 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3125 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3126 sqlite3ExprDelete(db, pExpr); 3127 pExpr = pNew; 3128 } 3129 }else{ 3130 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3131 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3132 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3133 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3134 }else{ 3135 substExprList(db, pExpr->x.pList, iTable, pEList); 3136 } 3137 } 3138 return pExpr; 3139 } 3140 static void substExprList( 3141 sqlite3 *db, /* Report malloc errors here */ 3142 ExprList *pList, /* List to scan and in which to make substitutes */ 3143 int iTable, /* Table to be substituted */ 3144 ExprList *pEList /* Substitute values */ 3145 ){ 3146 int i; 3147 if( pList==0 ) return; 3148 for(i=0; i<pList->nExpr; i++){ 3149 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3150 } 3151 } 3152 static void substSelect( 3153 sqlite3 *db, /* Report malloc errors here */ 3154 Select *p, /* SELECT statement in which to make substitutions */ 3155 int iTable, /* Table to be replaced */ 3156 ExprList *pEList, /* Substitute values */ 3157 int doPrior /* Do substitutes on p->pPrior too */ 3158 ){ 3159 SrcList *pSrc; 3160 struct SrcList_item *pItem; 3161 int i; 3162 if( !p ) return; 3163 do{ 3164 substExprList(db, p->pEList, iTable, pEList); 3165 substExprList(db, p->pGroupBy, iTable, pEList); 3166 substExprList(db, p->pOrderBy, iTable, pEList); 3167 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3168 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3169 pSrc = p->pSrc; 3170 assert( pSrc!=0 ); 3171 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3172 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3173 if( pItem->fg.isTabFunc ){ 3174 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3175 } 3176 } 3177 }while( doPrior && (p = p->pPrior)!=0 ); 3178 } 3179 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3180 3181 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3182 /* 3183 ** This routine attempts to flatten subqueries as a performance optimization. 3184 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3185 ** 3186 ** To understand the concept of flattening, consider the following 3187 ** query: 3188 ** 3189 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3190 ** 3191 ** The default way of implementing this query is to execute the 3192 ** subquery first and store the results in a temporary table, then 3193 ** run the outer query on that temporary table. This requires two 3194 ** passes over the data. Furthermore, because the temporary table 3195 ** has no indices, the WHERE clause on the outer query cannot be 3196 ** optimized. 3197 ** 3198 ** This routine attempts to rewrite queries such as the above into 3199 ** a single flat select, like this: 3200 ** 3201 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3202 ** 3203 ** The code generated for this simplification gives the same result 3204 ** but only has to scan the data once. And because indices might 3205 ** exist on the table t1, a complete scan of the data might be 3206 ** avoided. 3207 ** 3208 ** Flattening is only attempted if all of the following are true: 3209 ** 3210 ** (1) The subquery and the outer query do not both use aggregates. 3211 ** 3212 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3213 ** and (2b) the outer query does not use subqueries other than the one 3214 ** FROM-clause subquery that is a candidate for flattening. (2b is 3215 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3216 ** 3217 ** (3) The subquery is not the right operand of a left outer join 3218 ** (Originally ticket #306. Strengthened by ticket #3300) 3219 ** 3220 ** (4) The subquery is not DISTINCT. 3221 ** 3222 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3223 ** sub-queries that were excluded from this optimization. Restriction 3224 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3225 ** 3226 ** (6) The subquery does not use aggregates or the outer query is not 3227 ** DISTINCT. 3228 ** 3229 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3230 ** A FROM clause, consider adding a FROM close with the special 3231 ** table sqlite_once that consists of a single row containing a 3232 ** single NULL. 3233 ** 3234 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3235 ** 3236 ** (9) The subquery does not use LIMIT or the outer query does not use 3237 ** aggregates. 3238 ** 3239 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3240 ** accidently carried the comment forward until 2014-09-15. Original 3241 ** text: "The subquery does not use aggregates or the outer query 3242 ** does not use LIMIT." 3243 ** 3244 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3245 ** 3246 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3247 ** a separate restriction deriving from ticket #350. 3248 ** 3249 ** (13) The subquery and outer query do not both use LIMIT. 3250 ** 3251 ** (14) The subquery does not use OFFSET. 3252 ** 3253 ** (15) The outer query is not part of a compound select or the 3254 ** subquery does not have a LIMIT clause. 3255 ** (See ticket #2339 and ticket [02a8e81d44]). 3256 ** 3257 ** (16) The outer query is not an aggregate or the subquery does 3258 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3259 ** until we introduced the group_concat() function. 3260 ** 3261 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3262 ** compound clause made up entirely of non-aggregate queries, and 3263 ** the parent query: 3264 ** 3265 ** * is not itself part of a compound select, 3266 ** * is not an aggregate or DISTINCT query, and 3267 ** * is not a join 3268 ** 3269 ** The parent and sub-query may contain WHERE clauses. Subject to 3270 ** rules (11), (13) and (14), they may also contain ORDER BY, 3271 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3272 ** operator other than UNION ALL because all the other compound 3273 ** operators have an implied DISTINCT which is disallowed by 3274 ** restriction (4). 3275 ** 3276 ** Also, each component of the sub-query must return the same number 3277 ** of result columns. This is actually a requirement for any compound 3278 ** SELECT statement, but all the code here does is make sure that no 3279 ** such (illegal) sub-query is flattened. The caller will detect the 3280 ** syntax error and return a detailed message. 3281 ** 3282 ** (18) If the sub-query is a compound select, then all terms of the 3283 ** ORDER by clause of the parent must be simple references to 3284 ** columns of the sub-query. 3285 ** 3286 ** (19) The subquery does not use LIMIT or the outer query does not 3287 ** have a WHERE clause. 3288 ** 3289 ** (20) If the sub-query is a compound select, then it must not use 3290 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3291 ** somewhat by saying that the terms of the ORDER BY clause must 3292 ** appear as unmodified result columns in the outer query. But we 3293 ** have other optimizations in mind to deal with that case. 3294 ** 3295 ** (21) The subquery does not use LIMIT or the outer query is not 3296 ** DISTINCT. (See ticket [752e1646fc]). 3297 ** 3298 ** (22) The subquery is not a recursive CTE. 3299 ** 3300 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3301 ** compound query. This restriction is because transforming the 3302 ** parent to a compound query confuses the code that handles 3303 ** recursive queries in multiSelect(). 3304 ** 3305 ** (24) The subquery is not an aggregate that uses the built-in min() or 3306 ** or max() functions. (Without this restriction, a query like: 3307 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3308 ** return the value X for which Y was maximal.) 3309 ** 3310 ** 3311 ** In this routine, the "p" parameter is a pointer to the outer query. 3312 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3313 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3314 ** 3315 ** If flattening is not attempted, this routine is a no-op and returns 0. 3316 ** If flattening is attempted this routine returns 1. 3317 ** 3318 ** All of the expression analysis must occur on both the outer query and 3319 ** the subquery before this routine runs. 3320 */ 3321 static int flattenSubquery( 3322 Parse *pParse, /* Parsing context */ 3323 Select *p, /* The parent or outer SELECT statement */ 3324 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3325 int isAgg, /* True if outer SELECT uses aggregate functions */ 3326 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3327 ){ 3328 const char *zSavedAuthContext = pParse->zAuthContext; 3329 Select *pParent; /* Current UNION ALL term of the other query */ 3330 Select *pSub; /* The inner query or "subquery" */ 3331 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3332 SrcList *pSrc; /* The FROM clause of the outer query */ 3333 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3334 ExprList *pList; /* The result set of the outer query */ 3335 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3336 int i; /* Loop counter */ 3337 Expr *pWhere; /* The WHERE clause */ 3338 struct SrcList_item *pSubitem; /* The subquery */ 3339 sqlite3 *db = pParse->db; 3340 3341 /* Check to see if flattening is permitted. Return 0 if not. 3342 */ 3343 assert( p!=0 ); 3344 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3345 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3346 pSrc = p->pSrc; 3347 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3348 pSubitem = &pSrc->a[iFrom]; 3349 iParent = pSubitem->iCursor; 3350 pSub = pSubitem->pSelect; 3351 assert( pSub!=0 ); 3352 if( subqueryIsAgg ){ 3353 if( isAgg ) return 0; /* Restriction (1) */ 3354 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3355 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3356 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3357 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3358 ){ 3359 return 0; /* Restriction (2b) */ 3360 } 3361 } 3362 3363 pSubSrc = pSub->pSrc; 3364 assert( pSubSrc ); 3365 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3366 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3367 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3368 ** became arbitrary expressions, we were forced to add restrictions (13) 3369 ** and (14). */ 3370 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3371 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3372 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3373 return 0; /* Restriction (15) */ 3374 } 3375 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3376 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3377 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3378 return 0; /* Restrictions (8)(9) */ 3379 } 3380 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3381 return 0; /* Restriction (6) */ 3382 } 3383 if( p->pOrderBy && pSub->pOrderBy ){ 3384 return 0; /* Restriction (11) */ 3385 } 3386 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3387 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3388 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3389 return 0; /* Restriction (21) */ 3390 } 3391 testcase( pSub->selFlags & SF_Recursive ); 3392 testcase( pSub->selFlags & SF_MinMaxAgg ); 3393 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3394 return 0; /* Restrictions (22) and (24) */ 3395 } 3396 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3397 return 0; /* Restriction (23) */ 3398 } 3399 3400 /* OBSOLETE COMMENT 1: 3401 ** Restriction 3: If the subquery is a join, make sure the subquery is 3402 ** not used as the right operand of an outer join. Examples of why this 3403 ** is not allowed: 3404 ** 3405 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3406 ** 3407 ** If we flatten the above, we would get 3408 ** 3409 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3410 ** 3411 ** which is not at all the same thing. 3412 ** 3413 ** OBSOLETE COMMENT 2: 3414 ** Restriction 12: If the subquery is the right operand of a left outer 3415 ** join, make sure the subquery has no WHERE clause. 3416 ** An examples of why this is not allowed: 3417 ** 3418 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3419 ** 3420 ** If we flatten the above, we would get 3421 ** 3422 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3423 ** 3424 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3425 ** effectively converts the OUTER JOIN into an INNER JOIN. 3426 ** 3427 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3428 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3429 ** is fraught with danger. Best to avoid the whole thing. If the 3430 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3431 */ 3432 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3433 return 0; 3434 } 3435 3436 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3437 ** use only the UNION ALL operator. And none of the simple select queries 3438 ** that make up the compound SELECT are allowed to be aggregate or distinct 3439 ** queries. 3440 */ 3441 if( pSub->pPrior ){ 3442 if( pSub->pOrderBy ){ 3443 return 0; /* Restriction 20 */ 3444 } 3445 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3446 return 0; 3447 } 3448 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3449 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3450 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3451 assert( pSub->pSrc!=0 ); 3452 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3453 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3454 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3455 || pSub1->pSrc->nSrc<1 3456 ){ 3457 return 0; 3458 } 3459 testcase( pSub1->pSrc->nSrc>1 ); 3460 } 3461 3462 /* Restriction 18. */ 3463 if( p->pOrderBy ){ 3464 int ii; 3465 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3466 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3467 } 3468 } 3469 } 3470 3471 /***** If we reach this point, flattening is permitted. *****/ 3472 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3473 pSub->zSelName, pSub, iFrom)); 3474 3475 /* Authorize the subquery */ 3476 pParse->zAuthContext = pSubitem->zName; 3477 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3478 testcase( i==SQLITE_DENY ); 3479 pParse->zAuthContext = zSavedAuthContext; 3480 3481 /* If the sub-query is a compound SELECT statement, then (by restrictions 3482 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3483 ** be of the form: 3484 ** 3485 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3486 ** 3487 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3488 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3489 ** OFFSET clauses and joins them to the left-hand-side of the original 3490 ** using UNION ALL operators. In this case N is the number of simple 3491 ** select statements in the compound sub-query. 3492 ** 3493 ** Example: 3494 ** 3495 ** SELECT a+1 FROM ( 3496 ** SELECT x FROM tab 3497 ** UNION ALL 3498 ** SELECT y FROM tab 3499 ** UNION ALL 3500 ** SELECT abs(z*2) FROM tab2 3501 ** ) WHERE a!=5 ORDER BY 1 3502 ** 3503 ** Transformed into: 3504 ** 3505 ** SELECT x+1 FROM tab WHERE x+1!=5 3506 ** UNION ALL 3507 ** SELECT y+1 FROM tab WHERE y+1!=5 3508 ** UNION ALL 3509 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3510 ** ORDER BY 1 3511 ** 3512 ** We call this the "compound-subquery flattening". 3513 */ 3514 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3515 Select *pNew; 3516 ExprList *pOrderBy = p->pOrderBy; 3517 Expr *pLimit = p->pLimit; 3518 Expr *pOffset = p->pOffset; 3519 Select *pPrior = p->pPrior; 3520 p->pOrderBy = 0; 3521 p->pSrc = 0; 3522 p->pPrior = 0; 3523 p->pLimit = 0; 3524 p->pOffset = 0; 3525 pNew = sqlite3SelectDup(db, p, 0); 3526 sqlite3SelectSetName(pNew, pSub->zSelName); 3527 p->pOffset = pOffset; 3528 p->pLimit = pLimit; 3529 p->pOrderBy = pOrderBy; 3530 p->pSrc = pSrc; 3531 p->op = TK_ALL; 3532 if( pNew==0 ){ 3533 p->pPrior = pPrior; 3534 }else{ 3535 pNew->pPrior = pPrior; 3536 if( pPrior ) pPrior->pNext = pNew; 3537 pNew->pNext = p; 3538 p->pPrior = pNew; 3539 SELECTTRACE(2,pParse,p, 3540 ("compound-subquery flattener creates %s.%p as peer\n", 3541 pNew->zSelName, pNew)); 3542 } 3543 if( db->mallocFailed ) return 1; 3544 } 3545 3546 /* Begin flattening the iFrom-th entry of the FROM clause 3547 ** in the outer query. 3548 */ 3549 pSub = pSub1 = pSubitem->pSelect; 3550 3551 /* Delete the transient table structure associated with the 3552 ** subquery 3553 */ 3554 sqlite3DbFree(db, pSubitem->zDatabase); 3555 sqlite3DbFree(db, pSubitem->zName); 3556 sqlite3DbFree(db, pSubitem->zAlias); 3557 pSubitem->zDatabase = 0; 3558 pSubitem->zName = 0; 3559 pSubitem->zAlias = 0; 3560 pSubitem->pSelect = 0; 3561 3562 /* Defer deleting the Table object associated with the 3563 ** subquery until code generation is 3564 ** complete, since there may still exist Expr.pTab entries that 3565 ** refer to the subquery even after flattening. Ticket #3346. 3566 ** 3567 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3568 */ 3569 if( ALWAYS(pSubitem->pTab!=0) ){ 3570 Table *pTabToDel = pSubitem->pTab; 3571 if( pTabToDel->nRef==1 ){ 3572 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3573 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3574 pToplevel->pZombieTab = pTabToDel; 3575 }else{ 3576 pTabToDel->nRef--; 3577 } 3578 pSubitem->pTab = 0; 3579 } 3580 3581 /* The following loop runs once for each term in a compound-subquery 3582 ** flattening (as described above). If we are doing a different kind 3583 ** of flattening - a flattening other than a compound-subquery flattening - 3584 ** then this loop only runs once. 3585 ** 3586 ** This loop moves all of the FROM elements of the subquery into the 3587 ** the FROM clause of the outer query. Before doing this, remember 3588 ** the cursor number for the original outer query FROM element in 3589 ** iParent. The iParent cursor will never be used. Subsequent code 3590 ** will scan expressions looking for iParent references and replace 3591 ** those references with expressions that resolve to the subquery FROM 3592 ** elements we are now copying in. 3593 */ 3594 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3595 int nSubSrc; 3596 u8 jointype = 0; 3597 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3598 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3599 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3600 3601 if( pSrc ){ 3602 assert( pParent==p ); /* First time through the loop */ 3603 jointype = pSubitem->fg.jointype; 3604 }else{ 3605 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3606 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3607 if( pSrc==0 ){ 3608 assert( db->mallocFailed ); 3609 break; 3610 } 3611 } 3612 3613 /* The subquery uses a single slot of the FROM clause of the outer 3614 ** query. If the subquery has more than one element in its FROM clause, 3615 ** then expand the outer query to make space for it to hold all elements 3616 ** of the subquery. 3617 ** 3618 ** Example: 3619 ** 3620 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3621 ** 3622 ** The outer query has 3 slots in its FROM clause. One slot of the 3623 ** outer query (the middle slot) is used by the subquery. The next 3624 ** block of code will expand the outer query FROM clause to 4 slots. 3625 ** The middle slot is expanded to two slots in order to make space 3626 ** for the two elements in the FROM clause of the subquery. 3627 */ 3628 if( nSubSrc>1 ){ 3629 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3630 if( db->mallocFailed ){ 3631 break; 3632 } 3633 } 3634 3635 /* Transfer the FROM clause terms from the subquery into the 3636 ** outer query. 3637 */ 3638 for(i=0; i<nSubSrc; i++){ 3639 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3640 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3641 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3642 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3643 } 3644 pSrc->a[iFrom].fg.jointype = jointype; 3645 3646 /* Now begin substituting subquery result set expressions for 3647 ** references to the iParent in the outer query. 3648 ** 3649 ** Example: 3650 ** 3651 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3652 ** \ \_____________ subquery __________/ / 3653 ** \_____________________ outer query ______________________________/ 3654 ** 3655 ** We look at every expression in the outer query and every place we see 3656 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3657 */ 3658 pList = pParent->pEList; 3659 for(i=0; i<pList->nExpr; i++){ 3660 if( pList->a[i].zName==0 ){ 3661 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3662 sqlite3Dequote(zName); 3663 pList->a[i].zName = zName; 3664 } 3665 } 3666 if( pSub->pOrderBy ){ 3667 /* At this point, any non-zero iOrderByCol values indicate that the 3668 ** ORDER BY column expression is identical to the iOrderByCol'th 3669 ** expression returned by SELECT statement pSub. Since these values 3670 ** do not necessarily correspond to columns in SELECT statement pParent, 3671 ** zero them before transfering the ORDER BY clause. 3672 ** 3673 ** Not doing this may cause an error if a subsequent call to this 3674 ** function attempts to flatten a compound sub-query into pParent 3675 ** (the only way this can happen is if the compound sub-query is 3676 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3677 ExprList *pOrderBy = pSub->pOrderBy; 3678 for(i=0; i<pOrderBy->nExpr; i++){ 3679 pOrderBy->a[i].u.x.iOrderByCol = 0; 3680 } 3681 assert( pParent->pOrderBy==0 ); 3682 assert( pSub->pPrior==0 ); 3683 pParent->pOrderBy = pOrderBy; 3684 pSub->pOrderBy = 0; 3685 } 3686 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3687 if( subqueryIsAgg ){ 3688 assert( pParent->pHaving==0 ); 3689 pParent->pHaving = pParent->pWhere; 3690 pParent->pWhere = pWhere; 3691 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3692 sqlite3ExprDup(db, pSub->pHaving, 0)); 3693 assert( pParent->pGroupBy==0 ); 3694 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3695 }else{ 3696 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3697 } 3698 substSelect(db, pParent, iParent, pSub->pEList, 0); 3699 3700 /* The flattened query is distinct if either the inner or the 3701 ** outer query is distinct. 3702 */ 3703 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3704 3705 /* 3706 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3707 ** 3708 ** One is tempted to try to add a and b to combine the limits. But this 3709 ** does not work if either limit is negative. 3710 */ 3711 if( pSub->pLimit ){ 3712 pParent->pLimit = pSub->pLimit; 3713 pSub->pLimit = 0; 3714 } 3715 } 3716 3717 /* Finially, delete what is left of the subquery and return 3718 ** success. 3719 */ 3720 sqlite3SelectDelete(db, pSub1); 3721 3722 #if SELECTTRACE_ENABLED 3723 if( sqlite3SelectTrace & 0x100 ){ 3724 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3725 sqlite3TreeViewSelect(0, p, 0); 3726 } 3727 #endif 3728 3729 return 1; 3730 } 3731 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3732 3733 3734 3735 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3736 /* 3737 ** Make copies of relevant WHERE clause terms of the outer query into 3738 ** the WHERE clause of subquery. Example: 3739 ** 3740 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3741 ** 3742 ** Transformed into: 3743 ** 3744 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3745 ** WHERE x=5 AND y=10; 3746 ** 3747 ** The hope is that the terms added to the inner query will make it more 3748 ** efficient. 3749 ** 3750 ** Do not attempt this optimization if: 3751 ** 3752 ** (1) The inner query is an aggregate. (In that case, we'd really want 3753 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3754 ** inner query. But they probably won't help there so do not bother.) 3755 ** 3756 ** (2) The inner query is the recursive part of a common table expression. 3757 ** 3758 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3759 ** close would change the meaning of the LIMIT). 3760 ** 3761 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3762 ** enforces this restriction since this routine does not have enough 3763 ** information to know.) 3764 ** 3765 ** (5) The WHERE clause expression originates in the ON or USING clause 3766 ** of a LEFT JOIN. 3767 ** 3768 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3769 ** terms are duplicated into the subquery. 3770 */ 3771 static int pushDownWhereTerms( 3772 sqlite3 *db, /* The database connection (for malloc()) */ 3773 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3774 Expr *pWhere, /* The WHERE clause of the outer query */ 3775 int iCursor /* Cursor number of the subquery */ 3776 ){ 3777 Expr *pNew; 3778 int nChng = 0; 3779 if( pWhere==0 ) return 0; 3780 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3781 return 0; /* restrictions (1) and (2) */ 3782 } 3783 if( pSubq->pLimit!=0 ){ 3784 return 0; /* restriction (3) */ 3785 } 3786 while( pWhere->op==TK_AND ){ 3787 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3788 pWhere = pWhere->pLeft; 3789 } 3790 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3791 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3792 nChng++; 3793 while( pSubq ){ 3794 pNew = sqlite3ExprDup(db, pWhere, 0); 3795 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3796 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3797 pSubq = pSubq->pPrior; 3798 } 3799 } 3800 return nChng; 3801 } 3802 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3803 3804 /* 3805 ** Based on the contents of the AggInfo structure indicated by the first 3806 ** argument, this function checks if the following are true: 3807 ** 3808 ** * the query contains just a single aggregate function, 3809 ** * the aggregate function is either min() or max(), and 3810 ** * the argument to the aggregate function is a column value. 3811 ** 3812 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3813 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3814 ** list of arguments passed to the aggregate before returning. 3815 ** 3816 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3817 ** WHERE_ORDERBY_NORMAL is returned. 3818 */ 3819 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3820 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3821 3822 *ppMinMax = 0; 3823 if( pAggInfo->nFunc==1 ){ 3824 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3825 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3826 3827 assert( pExpr->op==TK_AGG_FUNCTION ); 3828 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3829 const char *zFunc = pExpr->u.zToken; 3830 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3831 eRet = WHERE_ORDERBY_MIN; 3832 *ppMinMax = pEList; 3833 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3834 eRet = WHERE_ORDERBY_MAX; 3835 *ppMinMax = pEList; 3836 } 3837 } 3838 } 3839 3840 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3841 return eRet; 3842 } 3843 3844 /* 3845 ** The select statement passed as the first argument is an aggregate query. 3846 ** The second argument is the associated aggregate-info object. This 3847 ** function tests if the SELECT is of the form: 3848 ** 3849 ** SELECT count(*) FROM <tbl> 3850 ** 3851 ** where table is a database table, not a sub-select or view. If the query 3852 ** does match this pattern, then a pointer to the Table object representing 3853 ** <tbl> is returned. Otherwise, 0 is returned. 3854 */ 3855 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3856 Table *pTab; 3857 Expr *pExpr; 3858 3859 assert( !p->pGroupBy ); 3860 3861 if( p->pWhere || p->pEList->nExpr!=1 3862 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3863 ){ 3864 return 0; 3865 } 3866 pTab = p->pSrc->a[0].pTab; 3867 pExpr = p->pEList->a[0].pExpr; 3868 assert( pTab && !pTab->pSelect && pExpr ); 3869 3870 if( IsVirtual(pTab) ) return 0; 3871 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3872 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3873 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3874 if( pExpr->flags&EP_Distinct ) return 0; 3875 3876 return pTab; 3877 } 3878 3879 /* 3880 ** If the source-list item passed as an argument was augmented with an 3881 ** INDEXED BY clause, then try to locate the specified index. If there 3882 ** was such a clause and the named index cannot be found, return 3883 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3884 ** pFrom->pIndex and return SQLITE_OK. 3885 */ 3886 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3887 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3888 Table *pTab = pFrom->pTab; 3889 char *zIndexedBy = pFrom->u1.zIndexedBy; 3890 Index *pIdx; 3891 for(pIdx=pTab->pIndex; 3892 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3893 pIdx=pIdx->pNext 3894 ); 3895 if( !pIdx ){ 3896 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3897 pParse->checkSchema = 1; 3898 return SQLITE_ERROR; 3899 } 3900 pFrom->pIBIndex = pIdx; 3901 } 3902 return SQLITE_OK; 3903 } 3904 /* 3905 ** Detect compound SELECT statements that use an ORDER BY clause with 3906 ** an alternative collating sequence. 3907 ** 3908 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3909 ** 3910 ** These are rewritten as a subquery: 3911 ** 3912 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3913 ** ORDER BY ... COLLATE ... 3914 ** 3915 ** This transformation is necessary because the multiSelectOrderBy() routine 3916 ** above that generates the code for a compound SELECT with an ORDER BY clause 3917 ** uses a merge algorithm that requires the same collating sequence on the 3918 ** result columns as on the ORDER BY clause. See ticket 3919 ** http://www.sqlite.org/src/info/6709574d2a 3920 ** 3921 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3922 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3923 ** there are COLLATE terms in the ORDER BY. 3924 */ 3925 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3926 int i; 3927 Select *pNew; 3928 Select *pX; 3929 sqlite3 *db; 3930 struct ExprList_item *a; 3931 SrcList *pNewSrc; 3932 Parse *pParse; 3933 Token dummy; 3934 3935 if( p->pPrior==0 ) return WRC_Continue; 3936 if( p->pOrderBy==0 ) return WRC_Continue; 3937 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3938 if( pX==0 ) return WRC_Continue; 3939 a = p->pOrderBy->a; 3940 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3941 if( a[i].pExpr->flags & EP_Collate ) break; 3942 } 3943 if( i<0 ) return WRC_Continue; 3944 3945 /* If we reach this point, that means the transformation is required. */ 3946 3947 pParse = pWalker->pParse; 3948 db = pParse->db; 3949 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3950 if( pNew==0 ) return WRC_Abort; 3951 memset(&dummy, 0, sizeof(dummy)); 3952 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3953 if( pNewSrc==0 ) return WRC_Abort; 3954 *pNew = *p; 3955 p->pSrc = pNewSrc; 3956 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3957 p->op = TK_SELECT; 3958 p->pWhere = 0; 3959 pNew->pGroupBy = 0; 3960 pNew->pHaving = 0; 3961 pNew->pOrderBy = 0; 3962 p->pPrior = 0; 3963 p->pNext = 0; 3964 p->pWith = 0; 3965 p->selFlags &= ~SF_Compound; 3966 assert( (p->selFlags & SF_Converted)==0 ); 3967 p->selFlags |= SF_Converted; 3968 assert( pNew->pPrior!=0 ); 3969 pNew->pPrior->pNext = pNew; 3970 pNew->pLimit = 0; 3971 pNew->pOffset = 0; 3972 return WRC_Continue; 3973 } 3974 3975 /* 3976 ** Check to see if the FROM clause term pFrom has table-valued function 3977 ** arguments. If it does, leave an error message in pParse and return 3978 ** non-zero, since pFrom is not allowed to be a table-valued function. 3979 */ 3980 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 3981 if( pFrom->fg.isTabFunc ){ 3982 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 3983 return 1; 3984 } 3985 return 0; 3986 } 3987 3988 #ifndef SQLITE_OMIT_CTE 3989 /* 3990 ** Argument pWith (which may be NULL) points to a linked list of nested 3991 ** WITH contexts, from inner to outermost. If the table identified by 3992 ** FROM clause element pItem is really a common-table-expression (CTE) 3993 ** then return a pointer to the CTE definition for that table. Otherwise 3994 ** return NULL. 3995 ** 3996 ** If a non-NULL value is returned, set *ppContext to point to the With 3997 ** object that the returned CTE belongs to. 3998 */ 3999 static struct Cte *searchWith( 4000 With *pWith, /* Current innermost WITH clause */ 4001 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4002 With **ppContext /* OUT: WITH clause return value belongs to */ 4003 ){ 4004 const char *zName; 4005 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4006 With *p; 4007 for(p=pWith; p; p=p->pOuter){ 4008 int i; 4009 for(i=0; i<p->nCte; i++){ 4010 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4011 *ppContext = p; 4012 return &p->a[i]; 4013 } 4014 } 4015 } 4016 } 4017 return 0; 4018 } 4019 4020 /* The code generator maintains a stack of active WITH clauses 4021 ** with the inner-most WITH clause being at the top of the stack. 4022 ** 4023 ** This routine pushes the WITH clause passed as the second argument 4024 ** onto the top of the stack. If argument bFree is true, then this 4025 ** WITH clause will never be popped from the stack. In this case it 4026 ** should be freed along with the Parse object. In other cases, when 4027 ** bFree==0, the With object will be freed along with the SELECT 4028 ** statement with which it is associated. 4029 */ 4030 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4031 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4032 if( pWith ){ 4033 assert( pParse->pWith!=pWith ); 4034 pWith->pOuter = pParse->pWith; 4035 pParse->pWith = pWith; 4036 if( bFree ) pParse->pWithToFree = pWith; 4037 } 4038 } 4039 4040 /* 4041 ** This function checks if argument pFrom refers to a CTE declared by 4042 ** a WITH clause on the stack currently maintained by the parser. And, 4043 ** if currently processing a CTE expression, if it is a recursive 4044 ** reference to the current CTE. 4045 ** 4046 ** If pFrom falls into either of the two categories above, pFrom->pTab 4047 ** and other fields are populated accordingly. The caller should check 4048 ** (pFrom->pTab!=0) to determine whether or not a successful match 4049 ** was found. 4050 ** 4051 ** Whether or not a match is found, SQLITE_OK is returned if no error 4052 ** occurs. If an error does occur, an error message is stored in the 4053 ** parser and some error code other than SQLITE_OK returned. 4054 */ 4055 static int withExpand( 4056 Walker *pWalker, 4057 struct SrcList_item *pFrom 4058 ){ 4059 Parse *pParse = pWalker->pParse; 4060 sqlite3 *db = pParse->db; 4061 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4062 With *pWith; /* WITH clause that pCte belongs to */ 4063 4064 assert( pFrom->pTab==0 ); 4065 4066 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4067 if( pCte ){ 4068 Table *pTab; 4069 ExprList *pEList; 4070 Select *pSel; 4071 Select *pLeft; /* Left-most SELECT statement */ 4072 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4073 With *pSavedWith; /* Initial value of pParse->pWith */ 4074 4075 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4076 ** recursive reference to CTE pCte. Leave an error in pParse and return 4077 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4078 ** In this case, proceed. */ 4079 if( pCte->zCteErr ){ 4080 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4081 return SQLITE_ERROR; 4082 } 4083 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4084 4085 assert( pFrom->pTab==0 ); 4086 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4087 if( pTab==0 ) return WRC_Abort; 4088 pTab->nRef = 1; 4089 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4090 pTab->iPKey = -1; 4091 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4092 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4093 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4094 if( db->mallocFailed ) return SQLITE_NOMEM; 4095 assert( pFrom->pSelect ); 4096 4097 /* Check if this is a recursive CTE. */ 4098 pSel = pFrom->pSelect; 4099 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4100 if( bMayRecursive ){ 4101 int i; 4102 SrcList *pSrc = pFrom->pSelect->pSrc; 4103 for(i=0; i<pSrc->nSrc; i++){ 4104 struct SrcList_item *pItem = &pSrc->a[i]; 4105 if( pItem->zDatabase==0 4106 && pItem->zName!=0 4107 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4108 ){ 4109 pItem->pTab = pTab; 4110 pItem->fg.isRecursive = 1; 4111 pTab->nRef++; 4112 pSel->selFlags |= SF_Recursive; 4113 } 4114 } 4115 } 4116 4117 /* Only one recursive reference is permitted. */ 4118 if( pTab->nRef>2 ){ 4119 sqlite3ErrorMsg( 4120 pParse, "multiple references to recursive table: %s", pCte->zName 4121 ); 4122 return SQLITE_ERROR; 4123 } 4124 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4125 4126 pCte->zCteErr = "circular reference: %s"; 4127 pSavedWith = pParse->pWith; 4128 pParse->pWith = pWith; 4129 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4130 pParse->pWith = pWith; 4131 4132 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4133 pEList = pLeft->pEList; 4134 if( pCte->pCols ){ 4135 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4136 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4137 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4138 ); 4139 pParse->pWith = pSavedWith; 4140 return SQLITE_ERROR; 4141 } 4142 pEList = pCte->pCols; 4143 } 4144 4145 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4146 if( bMayRecursive ){ 4147 if( pSel->selFlags & SF_Recursive ){ 4148 pCte->zCteErr = "multiple recursive references: %s"; 4149 }else{ 4150 pCte->zCteErr = "recursive reference in a subquery: %s"; 4151 } 4152 sqlite3WalkSelect(pWalker, pSel); 4153 } 4154 pCte->zCteErr = 0; 4155 pParse->pWith = pSavedWith; 4156 } 4157 4158 return SQLITE_OK; 4159 } 4160 #endif 4161 4162 #ifndef SQLITE_OMIT_CTE 4163 /* 4164 ** If the SELECT passed as the second argument has an associated WITH 4165 ** clause, pop it from the stack stored as part of the Parse object. 4166 ** 4167 ** This function is used as the xSelectCallback2() callback by 4168 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4169 ** names and other FROM clause elements. 4170 */ 4171 static void selectPopWith(Walker *pWalker, Select *p){ 4172 Parse *pParse = pWalker->pParse; 4173 With *pWith = findRightmost(p)->pWith; 4174 if( pWith!=0 ){ 4175 assert( pParse->pWith==pWith ); 4176 pParse->pWith = pWith->pOuter; 4177 } 4178 } 4179 #else 4180 #define selectPopWith 0 4181 #endif 4182 4183 /* 4184 ** This routine is a Walker callback for "expanding" a SELECT statement. 4185 ** "Expanding" means to do the following: 4186 ** 4187 ** (1) Make sure VDBE cursor numbers have been assigned to every 4188 ** element of the FROM clause. 4189 ** 4190 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4191 ** defines FROM clause. When views appear in the FROM clause, 4192 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4193 ** that implements the view. A copy is made of the view's SELECT 4194 ** statement so that we can freely modify or delete that statement 4195 ** without worrying about messing up the persistent representation 4196 ** of the view. 4197 ** 4198 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4199 ** on joins and the ON and USING clause of joins. 4200 ** 4201 ** (4) Scan the list of columns in the result set (pEList) looking 4202 ** for instances of the "*" operator or the TABLE.* operator. 4203 ** If found, expand each "*" to be every column in every table 4204 ** and TABLE.* to be every column in TABLE. 4205 ** 4206 */ 4207 static int selectExpander(Walker *pWalker, Select *p){ 4208 Parse *pParse = pWalker->pParse; 4209 int i, j, k; 4210 SrcList *pTabList; 4211 ExprList *pEList; 4212 struct SrcList_item *pFrom; 4213 sqlite3 *db = pParse->db; 4214 Expr *pE, *pRight, *pExpr; 4215 u16 selFlags = p->selFlags; 4216 4217 p->selFlags |= SF_Expanded; 4218 if( db->mallocFailed ){ 4219 return WRC_Abort; 4220 } 4221 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4222 return WRC_Prune; 4223 } 4224 pTabList = p->pSrc; 4225 pEList = p->pEList; 4226 if( pWalker->xSelectCallback2==selectPopWith ){ 4227 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4228 } 4229 4230 /* Make sure cursor numbers have been assigned to all entries in 4231 ** the FROM clause of the SELECT statement. 4232 */ 4233 sqlite3SrcListAssignCursors(pParse, pTabList); 4234 4235 /* Look up every table named in the FROM clause of the select. If 4236 ** an entry of the FROM clause is a subquery instead of a table or view, 4237 ** then create a transient table structure to describe the subquery. 4238 */ 4239 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4240 Table *pTab; 4241 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4242 if( pFrom->fg.isRecursive ) continue; 4243 assert( pFrom->pTab==0 ); 4244 #ifndef SQLITE_OMIT_CTE 4245 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4246 if( pFrom->pTab ) {} else 4247 #endif 4248 if( pFrom->zName==0 ){ 4249 #ifndef SQLITE_OMIT_SUBQUERY 4250 Select *pSel = pFrom->pSelect; 4251 /* A sub-query in the FROM clause of a SELECT */ 4252 assert( pSel!=0 ); 4253 assert( pFrom->pTab==0 ); 4254 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4255 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4256 if( pTab==0 ) return WRC_Abort; 4257 pTab->nRef = 1; 4258 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4259 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4260 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4261 pTab->iPKey = -1; 4262 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4263 pTab->tabFlags |= TF_Ephemeral; 4264 #endif 4265 }else{ 4266 /* An ordinary table or view name in the FROM clause */ 4267 assert( pFrom->pTab==0 ); 4268 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4269 if( pTab==0 ) return WRC_Abort; 4270 if( pTab->nRef==0xffff ){ 4271 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4272 pTab->zName); 4273 pFrom->pTab = 0; 4274 return WRC_Abort; 4275 } 4276 pTab->nRef++; 4277 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4278 return WRC_Abort; 4279 } 4280 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4281 if( IsVirtual(pTab) || pTab->pSelect ){ 4282 i16 nCol; 4283 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4284 assert( pFrom->pSelect==0 ); 4285 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4286 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4287 nCol = pTab->nCol; 4288 pTab->nCol = -1; 4289 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4290 pTab->nCol = nCol; 4291 } 4292 #endif 4293 } 4294 4295 /* Locate the index named by the INDEXED BY clause, if any. */ 4296 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4297 return WRC_Abort; 4298 } 4299 } 4300 4301 /* Process NATURAL keywords, and ON and USING clauses of joins. 4302 */ 4303 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4304 return WRC_Abort; 4305 } 4306 4307 /* For every "*" that occurs in the column list, insert the names of 4308 ** all columns in all tables. And for every TABLE.* insert the names 4309 ** of all columns in TABLE. The parser inserted a special expression 4310 ** with the TK_ASTERISK operator for each "*" that it found in the column 4311 ** list. The following code just has to locate the TK_ASTERISK 4312 ** expressions and expand each one to the list of all columns in 4313 ** all tables. 4314 ** 4315 ** The first loop just checks to see if there are any "*" operators 4316 ** that need expanding. 4317 */ 4318 for(k=0; k<pEList->nExpr; k++){ 4319 pE = pEList->a[k].pExpr; 4320 if( pE->op==TK_ASTERISK ) break; 4321 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4322 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4323 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4324 } 4325 if( k<pEList->nExpr ){ 4326 /* 4327 ** If we get here it means the result set contains one or more "*" 4328 ** operators that need to be expanded. Loop through each expression 4329 ** in the result set and expand them one by one. 4330 */ 4331 struct ExprList_item *a = pEList->a; 4332 ExprList *pNew = 0; 4333 int flags = pParse->db->flags; 4334 int longNames = (flags & SQLITE_FullColNames)!=0 4335 && (flags & SQLITE_ShortColNames)==0; 4336 4337 for(k=0; k<pEList->nExpr; k++){ 4338 pE = a[k].pExpr; 4339 pRight = pE->pRight; 4340 assert( pE->op!=TK_DOT || pRight!=0 ); 4341 if( pE->op!=TK_ASTERISK 4342 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4343 ){ 4344 /* This particular expression does not need to be expanded. 4345 */ 4346 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4347 if( pNew ){ 4348 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4349 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4350 a[k].zName = 0; 4351 a[k].zSpan = 0; 4352 } 4353 a[k].pExpr = 0; 4354 }else{ 4355 /* This expression is a "*" or a "TABLE.*" and needs to be 4356 ** expanded. */ 4357 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4358 char *zTName = 0; /* text of name of TABLE */ 4359 if( pE->op==TK_DOT ){ 4360 assert( pE->pLeft!=0 ); 4361 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4362 zTName = pE->pLeft->u.zToken; 4363 } 4364 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4365 Table *pTab = pFrom->pTab; 4366 Select *pSub = pFrom->pSelect; 4367 char *zTabName = pFrom->zAlias; 4368 const char *zSchemaName = 0; 4369 int iDb; 4370 if( zTabName==0 ){ 4371 zTabName = pTab->zName; 4372 } 4373 if( db->mallocFailed ) break; 4374 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4375 pSub = 0; 4376 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4377 continue; 4378 } 4379 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4380 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4381 } 4382 for(j=0; j<pTab->nCol; j++){ 4383 char *zName = pTab->aCol[j].zName; 4384 char *zColname; /* The computed column name */ 4385 char *zToFree; /* Malloced string that needs to be freed */ 4386 Token sColname; /* Computed column name as a token */ 4387 4388 assert( zName ); 4389 if( zTName && pSub 4390 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4391 ){ 4392 continue; 4393 } 4394 4395 /* If a column is marked as 'hidden', omit it from the expanded 4396 ** result-set list unless the SELECT has the SF_IncludeHidden 4397 ** bit set. 4398 */ 4399 if( (p->selFlags & SF_IncludeHidden)==0 4400 && IsHiddenColumn(&pTab->aCol[j]) 4401 ){ 4402 continue; 4403 } 4404 tableSeen = 1; 4405 4406 if( i>0 && zTName==0 ){ 4407 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4408 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4409 ){ 4410 /* In a NATURAL join, omit the join columns from the 4411 ** table to the right of the join */ 4412 continue; 4413 } 4414 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4415 /* In a join with a USING clause, omit columns in the 4416 ** using clause from the table on the right. */ 4417 continue; 4418 } 4419 } 4420 pRight = sqlite3Expr(db, TK_ID, zName); 4421 zColname = zName; 4422 zToFree = 0; 4423 if( longNames || pTabList->nSrc>1 ){ 4424 Expr *pLeft; 4425 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4426 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4427 if( zSchemaName ){ 4428 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4429 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4430 } 4431 if( longNames ){ 4432 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4433 zToFree = zColname; 4434 } 4435 }else{ 4436 pExpr = pRight; 4437 } 4438 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4439 sqlite3TokenInit(&sColname, zColname); 4440 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4441 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4442 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4443 if( pSub ){ 4444 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4445 testcase( pX->zSpan==0 ); 4446 }else{ 4447 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4448 zSchemaName, zTabName, zColname); 4449 testcase( pX->zSpan==0 ); 4450 } 4451 pX->bSpanIsTab = 1; 4452 } 4453 sqlite3DbFree(db, zToFree); 4454 } 4455 } 4456 if( !tableSeen ){ 4457 if( zTName ){ 4458 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4459 }else{ 4460 sqlite3ErrorMsg(pParse, "no tables specified"); 4461 } 4462 } 4463 } 4464 } 4465 sqlite3ExprListDelete(db, pEList); 4466 p->pEList = pNew; 4467 } 4468 #if SQLITE_MAX_COLUMN 4469 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4470 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4471 return WRC_Abort; 4472 } 4473 #endif 4474 return WRC_Continue; 4475 } 4476 4477 /* 4478 ** No-op routine for the parse-tree walker. 4479 ** 4480 ** When this routine is the Walker.xExprCallback then expression trees 4481 ** are walked without any actions being taken at each node. Presumably, 4482 ** when this routine is used for Walker.xExprCallback then 4483 ** Walker.xSelectCallback is set to do something useful for every 4484 ** subquery in the parser tree. 4485 */ 4486 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4487 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4488 return WRC_Continue; 4489 } 4490 4491 /* 4492 ** This routine "expands" a SELECT statement and all of its subqueries. 4493 ** For additional information on what it means to "expand" a SELECT 4494 ** statement, see the comment on the selectExpand worker callback above. 4495 ** 4496 ** Expanding a SELECT statement is the first step in processing a 4497 ** SELECT statement. The SELECT statement must be expanded before 4498 ** name resolution is performed. 4499 ** 4500 ** If anything goes wrong, an error message is written into pParse. 4501 ** The calling function can detect the problem by looking at pParse->nErr 4502 ** and/or pParse->db->mallocFailed. 4503 */ 4504 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4505 Walker w; 4506 memset(&w, 0, sizeof(w)); 4507 w.xExprCallback = sqlite3ExprWalkNoop; 4508 w.pParse = pParse; 4509 if( pParse->hasCompound ){ 4510 w.xSelectCallback = convertCompoundSelectToSubquery; 4511 sqlite3WalkSelect(&w, pSelect); 4512 } 4513 w.xSelectCallback = selectExpander; 4514 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4515 w.xSelectCallback2 = selectPopWith; 4516 } 4517 sqlite3WalkSelect(&w, pSelect); 4518 } 4519 4520 4521 #ifndef SQLITE_OMIT_SUBQUERY 4522 /* 4523 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4524 ** interface. 4525 ** 4526 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4527 ** information to the Table structure that represents the result set 4528 ** of that subquery. 4529 ** 4530 ** The Table structure that represents the result set was constructed 4531 ** by selectExpander() but the type and collation information was omitted 4532 ** at that point because identifiers had not yet been resolved. This 4533 ** routine is called after identifier resolution. 4534 */ 4535 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4536 Parse *pParse; 4537 int i; 4538 SrcList *pTabList; 4539 struct SrcList_item *pFrom; 4540 4541 assert( p->selFlags & SF_Resolved ); 4542 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4543 p->selFlags |= SF_HasTypeInfo; 4544 pParse = pWalker->pParse; 4545 pTabList = p->pSrc; 4546 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4547 Table *pTab = pFrom->pTab; 4548 assert( pTab!=0 ); 4549 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4550 /* A sub-query in the FROM clause of a SELECT */ 4551 Select *pSel = pFrom->pSelect; 4552 if( pSel ){ 4553 while( pSel->pPrior ) pSel = pSel->pPrior; 4554 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4555 } 4556 } 4557 } 4558 } 4559 #endif 4560 4561 4562 /* 4563 ** This routine adds datatype and collating sequence information to 4564 ** the Table structures of all FROM-clause subqueries in a 4565 ** SELECT statement. 4566 ** 4567 ** Use this routine after name resolution. 4568 */ 4569 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4570 #ifndef SQLITE_OMIT_SUBQUERY 4571 Walker w; 4572 memset(&w, 0, sizeof(w)); 4573 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4574 w.xExprCallback = sqlite3ExprWalkNoop; 4575 w.pParse = pParse; 4576 sqlite3WalkSelect(&w, pSelect); 4577 #endif 4578 } 4579 4580 4581 /* 4582 ** This routine sets up a SELECT statement for processing. The 4583 ** following is accomplished: 4584 ** 4585 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4586 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4587 ** * ON and USING clauses are shifted into WHERE statements 4588 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4589 ** * Identifiers in expression are matched to tables. 4590 ** 4591 ** This routine acts recursively on all subqueries within the SELECT. 4592 */ 4593 void sqlite3SelectPrep( 4594 Parse *pParse, /* The parser context */ 4595 Select *p, /* The SELECT statement being coded. */ 4596 NameContext *pOuterNC /* Name context for container */ 4597 ){ 4598 sqlite3 *db; 4599 if( NEVER(p==0) ) return; 4600 db = pParse->db; 4601 if( db->mallocFailed ) return; 4602 if( p->selFlags & SF_HasTypeInfo ) return; 4603 sqlite3SelectExpand(pParse, p); 4604 if( pParse->nErr || db->mallocFailed ) return; 4605 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4606 if( pParse->nErr || db->mallocFailed ) return; 4607 sqlite3SelectAddTypeInfo(pParse, p); 4608 } 4609 4610 /* 4611 ** Reset the aggregate accumulator. 4612 ** 4613 ** The aggregate accumulator is a set of memory cells that hold 4614 ** intermediate results while calculating an aggregate. This 4615 ** routine generates code that stores NULLs in all of those memory 4616 ** cells. 4617 */ 4618 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4619 Vdbe *v = pParse->pVdbe; 4620 int i; 4621 struct AggInfo_func *pFunc; 4622 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4623 if( nReg==0 ) return; 4624 #ifdef SQLITE_DEBUG 4625 /* Verify that all AggInfo registers are within the range specified by 4626 ** AggInfo.mnReg..AggInfo.mxReg */ 4627 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4628 for(i=0; i<pAggInfo->nColumn; i++){ 4629 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4630 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4631 } 4632 for(i=0; i<pAggInfo->nFunc; i++){ 4633 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4634 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4635 } 4636 #endif 4637 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4638 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4639 if( pFunc->iDistinct>=0 ){ 4640 Expr *pE = pFunc->pExpr; 4641 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4642 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4643 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4644 "argument"); 4645 pFunc->iDistinct = -1; 4646 }else{ 4647 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4648 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4649 (char*)pKeyInfo, P4_KEYINFO); 4650 } 4651 } 4652 } 4653 } 4654 4655 /* 4656 ** Invoke the OP_AggFinalize opcode for every aggregate function 4657 ** in the AggInfo structure. 4658 */ 4659 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4660 Vdbe *v = pParse->pVdbe; 4661 int i; 4662 struct AggInfo_func *pF; 4663 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4664 ExprList *pList = pF->pExpr->x.pList; 4665 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4666 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4667 (void*)pF->pFunc, P4_FUNCDEF); 4668 } 4669 } 4670 4671 /* 4672 ** Update the accumulator memory cells for an aggregate based on 4673 ** the current cursor position. 4674 */ 4675 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4676 Vdbe *v = pParse->pVdbe; 4677 int i; 4678 int regHit = 0; 4679 int addrHitTest = 0; 4680 struct AggInfo_func *pF; 4681 struct AggInfo_col *pC; 4682 4683 pAggInfo->directMode = 1; 4684 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4685 int nArg; 4686 int addrNext = 0; 4687 int regAgg; 4688 ExprList *pList = pF->pExpr->x.pList; 4689 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4690 if( pList ){ 4691 nArg = pList->nExpr; 4692 regAgg = sqlite3GetTempRange(pParse, nArg); 4693 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4694 }else{ 4695 nArg = 0; 4696 regAgg = 0; 4697 } 4698 if( pF->iDistinct>=0 ){ 4699 addrNext = sqlite3VdbeMakeLabel(v); 4700 testcase( nArg==0 ); /* Error condition */ 4701 testcase( nArg>1 ); /* Also an error */ 4702 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4703 } 4704 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4705 CollSeq *pColl = 0; 4706 struct ExprList_item *pItem; 4707 int j; 4708 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4709 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4710 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4711 } 4712 if( !pColl ){ 4713 pColl = pParse->db->pDfltColl; 4714 } 4715 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4716 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4717 } 4718 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4719 (void*)pF->pFunc, P4_FUNCDEF); 4720 sqlite3VdbeChangeP5(v, (u8)nArg); 4721 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4722 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4723 if( addrNext ){ 4724 sqlite3VdbeResolveLabel(v, addrNext); 4725 sqlite3ExprCacheClear(pParse); 4726 } 4727 } 4728 4729 /* Before populating the accumulator registers, clear the column cache. 4730 ** Otherwise, if any of the required column values are already present 4731 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4732 ** to pC->iMem. But by the time the value is used, the original register 4733 ** may have been used, invalidating the underlying buffer holding the 4734 ** text or blob value. See ticket [883034dcb5]. 4735 ** 4736 ** Another solution would be to change the OP_SCopy used to copy cached 4737 ** values to an OP_Copy. 4738 */ 4739 if( regHit ){ 4740 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4741 } 4742 sqlite3ExprCacheClear(pParse); 4743 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4744 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4745 } 4746 pAggInfo->directMode = 0; 4747 sqlite3ExprCacheClear(pParse); 4748 if( addrHitTest ){ 4749 sqlite3VdbeJumpHere(v, addrHitTest); 4750 } 4751 } 4752 4753 /* 4754 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4755 ** count(*) query ("SELECT count(*) FROM pTab"). 4756 */ 4757 #ifndef SQLITE_OMIT_EXPLAIN 4758 static void explainSimpleCount( 4759 Parse *pParse, /* Parse context */ 4760 Table *pTab, /* Table being queried */ 4761 Index *pIdx /* Index used to optimize scan, or NULL */ 4762 ){ 4763 if( pParse->explain==2 ){ 4764 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4765 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4766 pTab->zName, 4767 bCover ? " USING COVERING INDEX " : "", 4768 bCover ? pIdx->zName : "" 4769 ); 4770 sqlite3VdbeAddOp4( 4771 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4772 ); 4773 } 4774 } 4775 #else 4776 # define explainSimpleCount(a,b,c) 4777 #endif 4778 4779 /* 4780 ** Generate code for the SELECT statement given in the p argument. 4781 ** 4782 ** The results are returned according to the SelectDest structure. 4783 ** See comments in sqliteInt.h for further information. 4784 ** 4785 ** This routine returns the number of errors. If any errors are 4786 ** encountered, then an appropriate error message is left in 4787 ** pParse->zErrMsg. 4788 ** 4789 ** This routine does NOT free the Select structure passed in. The 4790 ** calling function needs to do that. 4791 */ 4792 int sqlite3Select( 4793 Parse *pParse, /* The parser context */ 4794 Select *p, /* The SELECT statement being coded. */ 4795 SelectDest *pDest /* What to do with the query results */ 4796 ){ 4797 int i, j; /* Loop counters */ 4798 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4799 Vdbe *v; /* The virtual machine under construction */ 4800 int isAgg; /* True for select lists like "count(*)" */ 4801 ExprList *pEList = 0; /* List of columns to extract. */ 4802 SrcList *pTabList; /* List of tables to select from */ 4803 Expr *pWhere; /* The WHERE clause. May be NULL */ 4804 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4805 Expr *pHaving; /* The HAVING clause. May be NULL */ 4806 int rc = 1; /* Value to return from this function */ 4807 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4808 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4809 AggInfo sAggInfo; /* Information used by aggregate queries */ 4810 int iEnd; /* Address of the end of the query */ 4811 sqlite3 *db; /* The database connection */ 4812 4813 #ifndef SQLITE_OMIT_EXPLAIN 4814 int iRestoreSelectId = pParse->iSelectId; 4815 pParse->iSelectId = pParse->iNextSelectId++; 4816 #endif 4817 4818 db = pParse->db; 4819 if( p==0 || db->mallocFailed || pParse->nErr ){ 4820 return 1; 4821 } 4822 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4823 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4824 #if SELECTTRACE_ENABLED 4825 pParse->nSelectIndent++; 4826 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4827 if( sqlite3SelectTrace & 0x100 ){ 4828 sqlite3TreeViewSelect(0, p, 0); 4829 } 4830 #endif 4831 4832 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4833 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4834 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4835 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4836 if( IgnorableOrderby(pDest) ){ 4837 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4838 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4839 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4840 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4841 /* If ORDER BY makes no difference in the output then neither does 4842 ** DISTINCT so it can be removed too. */ 4843 sqlite3ExprListDelete(db, p->pOrderBy); 4844 p->pOrderBy = 0; 4845 p->selFlags &= ~SF_Distinct; 4846 } 4847 sqlite3SelectPrep(pParse, p, 0); 4848 memset(&sSort, 0, sizeof(sSort)); 4849 sSort.pOrderBy = p->pOrderBy; 4850 pTabList = p->pSrc; 4851 if( pParse->nErr || db->mallocFailed ){ 4852 goto select_end; 4853 } 4854 assert( p->pEList!=0 ); 4855 isAgg = (p->selFlags & SF_Aggregate)!=0; 4856 #if SELECTTRACE_ENABLED 4857 if( sqlite3SelectTrace & 0x100 ){ 4858 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4859 sqlite3TreeViewSelect(0, p, 0); 4860 } 4861 #endif 4862 4863 4864 /* If writing to memory or generating a set 4865 ** only a single column may be output. 4866 */ 4867 #ifndef SQLITE_OMIT_SUBQUERY 4868 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4869 goto select_end; 4870 } 4871 #endif 4872 4873 /* Try to flatten subqueries in the FROM clause up into the main query 4874 */ 4875 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4876 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4877 struct SrcList_item *pItem = &pTabList->a[i]; 4878 Select *pSub = pItem->pSelect; 4879 int isAggSub; 4880 Table *pTab = pItem->pTab; 4881 if( pSub==0 ) continue; 4882 4883 /* Catch mismatch in the declared columns of a view and the number of 4884 ** columns in the SELECT on the RHS */ 4885 if( pTab->nCol!=pSub->pEList->nExpr ){ 4886 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4887 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4888 goto select_end; 4889 } 4890 4891 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4892 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4893 /* This subquery can be absorbed into its parent. */ 4894 if( isAggSub ){ 4895 isAgg = 1; 4896 p->selFlags |= SF_Aggregate; 4897 } 4898 i = -1; 4899 } 4900 pTabList = p->pSrc; 4901 if( db->mallocFailed ) goto select_end; 4902 if( !IgnorableOrderby(pDest) ){ 4903 sSort.pOrderBy = p->pOrderBy; 4904 } 4905 } 4906 #endif 4907 4908 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4909 ** does not already exist */ 4910 v = sqlite3GetVdbe(pParse); 4911 if( v==0 ) goto select_end; 4912 4913 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4914 /* Handle compound SELECT statements using the separate multiSelect() 4915 ** procedure. 4916 */ 4917 if( p->pPrior ){ 4918 rc = multiSelect(pParse, p, pDest); 4919 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4920 #if SELECTTRACE_ENABLED 4921 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4922 pParse->nSelectIndent--; 4923 #endif 4924 return rc; 4925 } 4926 #endif 4927 4928 /* Generate code for all sub-queries in the FROM clause 4929 */ 4930 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4931 for(i=0; i<pTabList->nSrc; i++){ 4932 struct SrcList_item *pItem = &pTabList->a[i]; 4933 SelectDest dest; 4934 Select *pSub = pItem->pSelect; 4935 if( pSub==0 ) continue; 4936 4937 /* Sometimes the code for a subquery will be generated more than 4938 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4939 ** for example. In that case, do not regenerate the code to manifest 4940 ** a view or the co-routine to implement a view. The first instance 4941 ** is sufficient, though the subroutine to manifest the view does need 4942 ** to be invoked again. */ 4943 if( pItem->addrFillSub ){ 4944 if( pItem->fg.viaCoroutine==0 ){ 4945 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4946 } 4947 continue; 4948 } 4949 4950 /* Increment Parse.nHeight by the height of the largest expression 4951 ** tree referred to by this, the parent select. The child select 4952 ** may contain expression trees of at most 4953 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4954 ** more conservative than necessary, but much easier than enforcing 4955 ** an exact limit. 4956 */ 4957 pParse->nHeight += sqlite3SelectExprHeight(p); 4958 4959 /* Make copies of constant WHERE-clause terms in the outer query down 4960 ** inside the subquery. This can help the subquery to run more efficiently. 4961 */ 4962 if( (pItem->fg.jointype & JT_OUTER)==0 4963 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4964 ){ 4965 #if SELECTTRACE_ENABLED 4966 if( sqlite3SelectTrace & 0x100 ){ 4967 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4968 sqlite3TreeViewSelect(0, p, 0); 4969 } 4970 #endif 4971 } 4972 4973 /* Generate code to implement the subquery 4974 */ 4975 if( pTabList->nSrc==1 4976 && (p->selFlags & SF_All)==0 4977 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4978 ){ 4979 /* Implement a co-routine that will return a single row of the result 4980 ** set on each invocation. 4981 */ 4982 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4983 pItem->regReturn = ++pParse->nMem; 4984 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4985 VdbeComment((v, "%s", pItem->pTab->zName)); 4986 pItem->addrFillSub = addrTop; 4987 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4988 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4989 sqlite3Select(pParse, pSub, &dest); 4990 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4991 pItem->fg.viaCoroutine = 1; 4992 pItem->regResult = dest.iSdst; 4993 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 4994 sqlite3VdbeJumpHere(v, addrTop-1); 4995 sqlite3ClearTempRegCache(pParse); 4996 }else{ 4997 /* Generate a subroutine that will fill an ephemeral table with 4998 ** the content of this subquery. pItem->addrFillSub will point 4999 ** to the address of the generated subroutine. pItem->regReturn 5000 ** is a register allocated to hold the subroutine return address 5001 */ 5002 int topAddr; 5003 int onceAddr = 0; 5004 int retAddr; 5005 assert( pItem->addrFillSub==0 ); 5006 pItem->regReturn = ++pParse->nMem; 5007 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5008 pItem->addrFillSub = topAddr+1; 5009 if( pItem->fg.isCorrelated==0 ){ 5010 /* If the subquery is not correlated and if we are not inside of 5011 ** a trigger, then we only need to compute the value of the subquery 5012 ** once. */ 5013 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 5014 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5015 }else{ 5016 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5017 } 5018 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5019 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5020 sqlite3Select(pParse, pSub, &dest); 5021 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 5022 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5023 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5024 VdbeComment((v, "end %s", pItem->pTab->zName)); 5025 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5026 sqlite3ClearTempRegCache(pParse); 5027 } 5028 if( db->mallocFailed ) goto select_end; 5029 pParse->nHeight -= sqlite3SelectExprHeight(p); 5030 } 5031 #endif 5032 5033 /* Various elements of the SELECT copied into local variables for 5034 ** convenience */ 5035 pEList = p->pEList; 5036 pWhere = p->pWhere; 5037 pGroupBy = p->pGroupBy; 5038 pHaving = p->pHaving; 5039 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5040 5041 #if SELECTTRACE_ENABLED 5042 if( sqlite3SelectTrace & 0x400 ){ 5043 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5044 sqlite3TreeViewSelect(0, p, 0); 5045 } 5046 #endif 5047 5048 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5049 ** if the select-list is the same as the ORDER BY list, then this query 5050 ** can be rewritten as a GROUP BY. In other words, this: 5051 ** 5052 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5053 ** 5054 ** is transformed to: 5055 ** 5056 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5057 ** 5058 ** The second form is preferred as a single index (or temp-table) may be 5059 ** used for both the ORDER BY and DISTINCT processing. As originally 5060 ** written the query must use a temp-table for at least one of the ORDER 5061 ** BY and DISTINCT, and an index or separate temp-table for the other. 5062 */ 5063 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5064 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5065 ){ 5066 p->selFlags &= ~SF_Distinct; 5067 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5068 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5069 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5070 ** original setting of the SF_Distinct flag, not the current setting */ 5071 assert( sDistinct.isTnct ); 5072 } 5073 5074 /* If there is an ORDER BY clause, then create an ephemeral index to 5075 ** do the sorting. But this sorting ephemeral index might end up 5076 ** being unused if the data can be extracted in pre-sorted order. 5077 ** If that is the case, then the OP_OpenEphemeral instruction will be 5078 ** changed to an OP_Noop once we figure out that the sorting index is 5079 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5080 ** that change. 5081 */ 5082 if( sSort.pOrderBy ){ 5083 KeyInfo *pKeyInfo; 5084 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5085 sSort.iECursor = pParse->nTab++; 5086 sSort.addrSortIndex = 5087 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5088 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5089 (char*)pKeyInfo, P4_KEYINFO 5090 ); 5091 }else{ 5092 sSort.addrSortIndex = -1; 5093 } 5094 5095 /* If the output is destined for a temporary table, open that table. 5096 */ 5097 if( pDest->eDest==SRT_EphemTab ){ 5098 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5099 } 5100 5101 /* Set the limiter. 5102 */ 5103 iEnd = sqlite3VdbeMakeLabel(v); 5104 p->nSelectRow = LARGEST_INT64; 5105 computeLimitRegisters(pParse, p, iEnd); 5106 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5107 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5108 sSort.sortFlags |= SORTFLAG_UseSorter; 5109 } 5110 5111 /* Open an ephemeral index to use for the distinct set. 5112 */ 5113 if( p->selFlags & SF_Distinct ){ 5114 sDistinct.tabTnct = pParse->nTab++; 5115 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5116 sDistinct.tabTnct, 0, 0, 5117 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5118 P4_KEYINFO); 5119 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5120 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5121 }else{ 5122 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5123 } 5124 5125 if( !isAgg && pGroupBy==0 ){ 5126 /* No aggregate functions and no GROUP BY clause */ 5127 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5128 5129 /* Begin the database scan. */ 5130 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5131 p->pEList, wctrlFlags, 0); 5132 if( pWInfo==0 ) goto select_end; 5133 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5134 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5135 } 5136 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5137 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5138 } 5139 if( sSort.pOrderBy ){ 5140 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5141 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5142 sSort.pOrderBy = 0; 5143 } 5144 } 5145 5146 /* If sorting index that was created by a prior OP_OpenEphemeral 5147 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5148 ** into an OP_Noop. 5149 */ 5150 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5151 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5152 } 5153 5154 /* Use the standard inner loop. */ 5155 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5156 sqlite3WhereContinueLabel(pWInfo), 5157 sqlite3WhereBreakLabel(pWInfo)); 5158 5159 /* End the database scan loop. 5160 */ 5161 sqlite3WhereEnd(pWInfo); 5162 }else{ 5163 /* This case when there exist aggregate functions or a GROUP BY clause 5164 ** or both */ 5165 NameContext sNC; /* Name context for processing aggregate information */ 5166 int iAMem; /* First Mem address for storing current GROUP BY */ 5167 int iBMem; /* First Mem address for previous GROUP BY */ 5168 int iUseFlag; /* Mem address holding flag indicating that at least 5169 ** one row of the input to the aggregator has been 5170 ** processed */ 5171 int iAbortFlag; /* Mem address which causes query abort if positive */ 5172 int groupBySort; /* Rows come from source in GROUP BY order */ 5173 int addrEnd; /* End of processing for this SELECT */ 5174 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5175 int sortOut = 0; /* Output register from the sorter */ 5176 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5177 5178 /* Remove any and all aliases between the result set and the 5179 ** GROUP BY clause. 5180 */ 5181 if( pGroupBy ){ 5182 int k; /* Loop counter */ 5183 struct ExprList_item *pItem; /* For looping over expression in a list */ 5184 5185 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5186 pItem->u.x.iAlias = 0; 5187 } 5188 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5189 pItem->u.x.iAlias = 0; 5190 } 5191 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5192 }else{ 5193 p->nSelectRow = 1; 5194 } 5195 5196 /* If there is both a GROUP BY and an ORDER BY clause and they are 5197 ** identical, then it may be possible to disable the ORDER BY clause 5198 ** on the grounds that the GROUP BY will cause elements to come out 5199 ** in the correct order. It also may not - the GROUP BY might use a 5200 ** database index that causes rows to be grouped together as required 5201 ** but not actually sorted. Either way, record the fact that the 5202 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5203 ** variable. */ 5204 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5205 orderByGrp = 1; 5206 } 5207 5208 /* Create a label to jump to when we want to abort the query */ 5209 addrEnd = sqlite3VdbeMakeLabel(v); 5210 5211 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5212 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5213 ** SELECT statement. 5214 */ 5215 memset(&sNC, 0, sizeof(sNC)); 5216 sNC.pParse = pParse; 5217 sNC.pSrcList = pTabList; 5218 sNC.pAggInfo = &sAggInfo; 5219 sAggInfo.mnReg = pParse->nMem+1; 5220 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5221 sAggInfo.pGroupBy = pGroupBy; 5222 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5223 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5224 if( pHaving ){ 5225 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5226 } 5227 sAggInfo.nAccumulator = sAggInfo.nColumn; 5228 for(i=0; i<sAggInfo.nFunc; i++){ 5229 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5230 sNC.ncFlags |= NC_InAggFunc; 5231 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5232 sNC.ncFlags &= ~NC_InAggFunc; 5233 } 5234 sAggInfo.mxReg = pParse->nMem; 5235 if( db->mallocFailed ) goto select_end; 5236 5237 /* Processing for aggregates with GROUP BY is very different and 5238 ** much more complex than aggregates without a GROUP BY. 5239 */ 5240 if( pGroupBy ){ 5241 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5242 int addr1; /* A-vs-B comparision jump */ 5243 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5244 int regOutputRow; /* Return address register for output subroutine */ 5245 int addrSetAbort; /* Set the abort flag and return */ 5246 int addrTopOfLoop; /* Top of the input loop */ 5247 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5248 int addrReset; /* Subroutine for resetting the accumulator */ 5249 int regReset; /* Return address register for reset subroutine */ 5250 5251 /* If there is a GROUP BY clause we might need a sorting index to 5252 ** implement it. Allocate that sorting index now. If it turns out 5253 ** that we do not need it after all, the OP_SorterOpen instruction 5254 ** will be converted into a Noop. 5255 */ 5256 sAggInfo.sortingIdx = pParse->nTab++; 5257 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5258 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5259 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5260 0, (char*)pKeyInfo, P4_KEYINFO); 5261 5262 /* Initialize memory locations used by GROUP BY aggregate processing 5263 */ 5264 iUseFlag = ++pParse->nMem; 5265 iAbortFlag = ++pParse->nMem; 5266 regOutputRow = ++pParse->nMem; 5267 addrOutputRow = sqlite3VdbeMakeLabel(v); 5268 regReset = ++pParse->nMem; 5269 addrReset = sqlite3VdbeMakeLabel(v); 5270 iAMem = pParse->nMem + 1; 5271 pParse->nMem += pGroupBy->nExpr; 5272 iBMem = pParse->nMem + 1; 5273 pParse->nMem += pGroupBy->nExpr; 5274 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5275 VdbeComment((v, "clear abort flag")); 5276 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5277 VdbeComment((v, "indicate accumulator empty")); 5278 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5279 5280 /* Begin a loop that will extract all source rows in GROUP BY order. 5281 ** This might involve two separate loops with an OP_Sort in between, or 5282 ** it might be a single loop that uses an index to extract information 5283 ** in the right order to begin with. 5284 */ 5285 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5286 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5287 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5288 ); 5289 if( pWInfo==0 ) goto select_end; 5290 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5291 /* The optimizer is able to deliver rows in group by order so 5292 ** we do not have to sort. The OP_OpenEphemeral table will be 5293 ** cancelled later because we still need to use the pKeyInfo 5294 */ 5295 groupBySort = 0; 5296 }else{ 5297 /* Rows are coming out in undetermined order. We have to push 5298 ** each row into a sorting index, terminate the first loop, 5299 ** then loop over the sorting index in order to get the output 5300 ** in sorted order 5301 */ 5302 int regBase; 5303 int regRecord; 5304 int nCol; 5305 int nGroupBy; 5306 5307 explainTempTable(pParse, 5308 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5309 "DISTINCT" : "GROUP BY"); 5310 5311 groupBySort = 1; 5312 nGroupBy = pGroupBy->nExpr; 5313 nCol = nGroupBy; 5314 j = nGroupBy; 5315 for(i=0; i<sAggInfo.nColumn; i++){ 5316 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5317 nCol++; 5318 j++; 5319 } 5320 } 5321 regBase = sqlite3GetTempRange(pParse, nCol); 5322 sqlite3ExprCacheClear(pParse); 5323 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5324 j = nGroupBy; 5325 for(i=0; i<sAggInfo.nColumn; i++){ 5326 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5327 if( pCol->iSorterColumn>=j ){ 5328 int r1 = j + regBase; 5329 sqlite3ExprCodeGetColumnToReg(pParse, 5330 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5331 j++; 5332 } 5333 } 5334 regRecord = sqlite3GetTempReg(pParse); 5335 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5336 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5337 sqlite3ReleaseTempReg(pParse, regRecord); 5338 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5339 sqlite3WhereEnd(pWInfo); 5340 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5341 sortOut = sqlite3GetTempReg(pParse); 5342 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5343 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5344 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5345 sAggInfo.useSortingIdx = 1; 5346 sqlite3ExprCacheClear(pParse); 5347 5348 } 5349 5350 /* If the index or temporary table used by the GROUP BY sort 5351 ** will naturally deliver rows in the order required by the ORDER BY 5352 ** clause, cancel the ephemeral table open coded earlier. 5353 ** 5354 ** This is an optimization - the correct answer should result regardless. 5355 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5356 ** disable this optimization for testing purposes. */ 5357 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5358 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5359 ){ 5360 sSort.pOrderBy = 0; 5361 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5362 } 5363 5364 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5365 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5366 ** Then compare the current GROUP BY terms against the GROUP BY terms 5367 ** from the previous row currently stored in a0, a1, a2... 5368 */ 5369 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5370 sqlite3ExprCacheClear(pParse); 5371 if( groupBySort ){ 5372 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5373 sortOut, sortPTab); 5374 } 5375 for(j=0; j<pGroupBy->nExpr; j++){ 5376 if( groupBySort ){ 5377 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5378 }else{ 5379 sAggInfo.directMode = 1; 5380 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5381 } 5382 } 5383 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5384 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5385 addr1 = sqlite3VdbeCurrentAddr(v); 5386 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5387 5388 /* Generate code that runs whenever the GROUP BY changes. 5389 ** Changes in the GROUP BY are detected by the previous code 5390 ** block. If there were no changes, this block is skipped. 5391 ** 5392 ** This code copies current group by terms in b0,b1,b2,... 5393 ** over to a0,a1,a2. It then calls the output subroutine 5394 ** and resets the aggregate accumulator registers in preparation 5395 ** for the next GROUP BY batch. 5396 */ 5397 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5398 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5399 VdbeComment((v, "output one row")); 5400 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5401 VdbeComment((v, "check abort flag")); 5402 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5403 VdbeComment((v, "reset accumulator")); 5404 5405 /* Update the aggregate accumulators based on the content of 5406 ** the current row 5407 */ 5408 sqlite3VdbeJumpHere(v, addr1); 5409 updateAccumulator(pParse, &sAggInfo); 5410 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5411 VdbeComment((v, "indicate data in accumulator")); 5412 5413 /* End of the loop 5414 */ 5415 if( groupBySort ){ 5416 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5417 VdbeCoverage(v); 5418 }else{ 5419 sqlite3WhereEnd(pWInfo); 5420 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5421 } 5422 5423 /* Output the final row of result 5424 */ 5425 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5426 VdbeComment((v, "output final row")); 5427 5428 /* Jump over the subroutines 5429 */ 5430 sqlite3VdbeGoto(v, addrEnd); 5431 5432 /* Generate a subroutine that outputs a single row of the result 5433 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5434 ** is less than or equal to zero, the subroutine is a no-op. If 5435 ** the processing calls for the query to abort, this subroutine 5436 ** increments the iAbortFlag memory location before returning in 5437 ** order to signal the caller to abort. 5438 */ 5439 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5440 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5441 VdbeComment((v, "set abort flag")); 5442 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5443 sqlite3VdbeResolveLabel(v, addrOutputRow); 5444 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5445 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5446 VdbeCoverage(v); 5447 VdbeComment((v, "Groupby result generator entry point")); 5448 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5449 finalizeAggFunctions(pParse, &sAggInfo); 5450 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5451 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5452 &sDistinct, pDest, 5453 addrOutputRow+1, addrSetAbort); 5454 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5455 VdbeComment((v, "end groupby result generator")); 5456 5457 /* Generate a subroutine that will reset the group-by accumulator 5458 */ 5459 sqlite3VdbeResolveLabel(v, addrReset); 5460 resetAccumulator(pParse, &sAggInfo); 5461 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5462 5463 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5464 else { 5465 ExprList *pDel = 0; 5466 #ifndef SQLITE_OMIT_BTREECOUNT 5467 Table *pTab; 5468 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5469 /* If isSimpleCount() returns a pointer to a Table structure, then 5470 ** the SQL statement is of the form: 5471 ** 5472 ** SELECT count(*) FROM <tbl> 5473 ** 5474 ** where the Table structure returned represents table <tbl>. 5475 ** 5476 ** This statement is so common that it is optimized specially. The 5477 ** OP_Count instruction is executed either on the intkey table that 5478 ** contains the data for table <tbl> or on one of its indexes. It 5479 ** is better to execute the op on an index, as indexes are almost 5480 ** always spread across less pages than their corresponding tables. 5481 */ 5482 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5483 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5484 Index *pIdx; /* Iterator variable */ 5485 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5486 Index *pBest = 0; /* Best index found so far */ 5487 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5488 5489 sqlite3CodeVerifySchema(pParse, iDb); 5490 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5491 5492 /* Search for the index that has the lowest scan cost. 5493 ** 5494 ** (2011-04-15) Do not do a full scan of an unordered index. 5495 ** 5496 ** (2013-10-03) Do not count the entries in a partial index. 5497 ** 5498 ** In practice the KeyInfo structure will not be used. It is only 5499 ** passed to keep OP_OpenRead happy. 5500 */ 5501 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5502 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5503 if( pIdx->bUnordered==0 5504 && pIdx->szIdxRow<pTab->szTabRow 5505 && pIdx->pPartIdxWhere==0 5506 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5507 ){ 5508 pBest = pIdx; 5509 } 5510 } 5511 if( pBest ){ 5512 iRoot = pBest->tnum; 5513 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5514 } 5515 5516 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5517 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5518 if( pKeyInfo ){ 5519 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5520 } 5521 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5522 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5523 explainSimpleCount(pParse, pTab, pBest); 5524 }else 5525 #endif /* SQLITE_OMIT_BTREECOUNT */ 5526 { 5527 /* Check if the query is of one of the following forms: 5528 ** 5529 ** SELECT min(x) FROM ... 5530 ** SELECT max(x) FROM ... 5531 ** 5532 ** If it is, then ask the code in where.c to attempt to sort results 5533 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5534 ** If where.c is able to produce results sorted in this order, then 5535 ** add vdbe code to break out of the processing loop after the 5536 ** first iteration (since the first iteration of the loop is 5537 ** guaranteed to operate on the row with the minimum or maximum 5538 ** value of x, the only row required). 5539 ** 5540 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5541 ** modify behavior as follows: 5542 ** 5543 ** + If the query is a "SELECT min(x)", then the loop coded by 5544 ** where.c should not iterate over any values with a NULL value 5545 ** for x. 5546 ** 5547 ** + The optimizer code in where.c (the thing that decides which 5548 ** index or indices to use) should place a different priority on 5549 ** satisfying the 'ORDER BY' clause than it does in other cases. 5550 ** Refer to code and comments in where.c for details. 5551 */ 5552 ExprList *pMinMax = 0; 5553 u8 flag = WHERE_ORDERBY_NORMAL; 5554 5555 assert( p->pGroupBy==0 ); 5556 assert( flag==0 ); 5557 if( p->pHaving==0 ){ 5558 flag = minMaxQuery(&sAggInfo, &pMinMax); 5559 } 5560 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5561 5562 if( flag ){ 5563 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5564 pDel = pMinMax; 5565 assert( db->mallocFailed || pMinMax!=0 ); 5566 if( !db->mallocFailed ){ 5567 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5568 pMinMax->a[0].pExpr->op = TK_COLUMN; 5569 } 5570 } 5571 5572 /* This case runs if the aggregate has no GROUP BY clause. The 5573 ** processing is much simpler since there is only a single row 5574 ** of output. 5575 */ 5576 resetAccumulator(pParse, &sAggInfo); 5577 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5578 if( pWInfo==0 ){ 5579 sqlite3ExprListDelete(db, pDel); 5580 goto select_end; 5581 } 5582 updateAccumulator(pParse, &sAggInfo); 5583 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5584 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5585 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5586 VdbeComment((v, "%s() by index", 5587 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5588 } 5589 sqlite3WhereEnd(pWInfo); 5590 finalizeAggFunctions(pParse, &sAggInfo); 5591 } 5592 5593 sSort.pOrderBy = 0; 5594 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5595 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5596 pDest, addrEnd, addrEnd); 5597 sqlite3ExprListDelete(db, pDel); 5598 } 5599 sqlite3VdbeResolveLabel(v, addrEnd); 5600 5601 } /* endif aggregate query */ 5602 5603 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5604 explainTempTable(pParse, "DISTINCT"); 5605 } 5606 5607 /* If there is an ORDER BY clause, then we need to sort the results 5608 ** and send them to the callback one by one. 5609 */ 5610 if( sSort.pOrderBy ){ 5611 explainTempTable(pParse, 5612 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5613 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5614 } 5615 5616 /* Jump here to skip this query 5617 */ 5618 sqlite3VdbeResolveLabel(v, iEnd); 5619 5620 /* The SELECT has been coded. If there is an error in the Parse structure, 5621 ** set the return code to 1. Otherwise 0. */ 5622 rc = (pParse->nErr>0); 5623 5624 /* Control jumps to here if an error is encountered above, or upon 5625 ** successful coding of the SELECT. 5626 */ 5627 select_end: 5628 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5629 5630 /* Identify column names if results of the SELECT are to be output. 5631 */ 5632 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5633 generateColumnNames(pParse, pTabList, pEList); 5634 } 5635 5636 sqlite3DbFree(db, sAggInfo.aCol); 5637 sqlite3DbFree(db, sAggInfo.aFunc); 5638 #if SELECTTRACE_ENABLED 5639 SELECTTRACE(1,pParse,p,("end processing\n")); 5640 pParse->nSelectIndent--; 5641 #endif 5642 return rc; 5643 } 5644