1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 57 }; 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 59 60 /* 61 ** Delete all the content of a Select structure. Deallocate the structure 62 ** itself only if bFree is true. 63 */ 64 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 65 while( p ){ 66 Select *pPrior = p->pPrior; 67 sqlite3ExprListDelete(db, p->pEList); 68 sqlite3SrcListDelete(db, p->pSrc); 69 sqlite3ExprDelete(db, p->pWhere); 70 sqlite3ExprListDelete(db, p->pGroupBy); 71 sqlite3ExprDelete(db, p->pHaving); 72 sqlite3ExprListDelete(db, p->pOrderBy); 73 sqlite3ExprDelete(db, p->pLimit); 74 sqlite3ExprDelete(db, p->pOffset); 75 sqlite3WithDelete(db, p->pWith); 76 if( bFree ) sqlite3DbFree(db, p); 77 p = pPrior; 78 bFree = 1; 79 } 80 } 81 82 /* 83 ** Initialize a SelectDest structure. 84 */ 85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 86 pDest->eDest = (u8)eDest; 87 pDest->iSDParm = iParm; 88 pDest->affSdst = 0; 89 pDest->iSdst = 0; 90 pDest->nSdst = 0; 91 } 92 93 94 /* 95 ** Allocate a new Select structure and return a pointer to that 96 ** structure. 97 */ 98 Select *sqlite3SelectNew( 99 Parse *pParse, /* Parsing context */ 100 ExprList *pEList, /* which columns to include in the result */ 101 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 102 Expr *pWhere, /* the WHERE clause */ 103 ExprList *pGroupBy, /* the GROUP BY clause */ 104 Expr *pHaving, /* the HAVING clause */ 105 ExprList *pOrderBy, /* the ORDER BY clause */ 106 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 107 Expr *pLimit, /* LIMIT value. NULL means not used */ 108 Expr *pOffset /* OFFSET value. NULL means no offset */ 109 ){ 110 Select *pNew; 111 Select standin; 112 sqlite3 *db = pParse->db; 113 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 114 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 setJoinExpr(p->pLeft, iTable); 370 p = p->pRight; 371 } 372 } 373 374 /* 375 ** This routine processes the join information for a SELECT statement. 376 ** ON and USING clauses are converted into extra terms of the WHERE clause. 377 ** NATURAL joins also create extra WHERE clause terms. 378 ** 379 ** The terms of a FROM clause are contained in the Select.pSrc structure. 380 ** The left most table is the first entry in Select.pSrc. The right-most 381 ** table is the last entry. The join operator is held in the entry to 382 ** the left. Thus entry 0 contains the join operator for the join between 383 ** entries 0 and 1. Any ON or USING clauses associated with the join are 384 ** also attached to the left entry. 385 ** 386 ** This routine returns the number of errors encountered. 387 */ 388 static int sqliteProcessJoin(Parse *pParse, Select *p){ 389 SrcList *pSrc; /* All tables in the FROM clause */ 390 int i, j; /* Loop counters */ 391 struct SrcList_item *pLeft; /* Left table being joined */ 392 struct SrcList_item *pRight; /* Right table being joined */ 393 394 pSrc = p->pSrc; 395 pLeft = &pSrc->a[0]; 396 pRight = &pLeft[1]; 397 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 398 Table *pLeftTab = pLeft->pTab; 399 Table *pRightTab = pRight->pTab; 400 int isOuter; 401 402 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 403 isOuter = (pRight->jointype & JT_OUTER)!=0; 404 405 /* When the NATURAL keyword is present, add WHERE clause terms for 406 ** every column that the two tables have in common. 407 */ 408 if( pRight->jointype & JT_NATURAL ){ 409 if( pRight->pOn || pRight->pUsing ){ 410 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 411 "an ON or USING clause", 0); 412 return 1; 413 } 414 for(j=0; j<pRightTab->nCol; j++){ 415 char *zName; /* Name of column in the right table */ 416 int iLeft; /* Matching left table */ 417 int iLeftCol; /* Matching column in the left table */ 418 419 zName = pRightTab->aCol[j].zName; 420 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 421 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 422 isOuter, &p->pWhere); 423 } 424 } 425 } 426 427 /* Disallow both ON and USING clauses in the same join 428 */ 429 if( pRight->pOn && pRight->pUsing ){ 430 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 431 "clauses in the same join"); 432 return 1; 433 } 434 435 /* Add the ON clause to the end of the WHERE clause, connected by 436 ** an AND operator. 437 */ 438 if( pRight->pOn ){ 439 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 440 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 441 pRight->pOn = 0; 442 } 443 444 /* Create extra terms on the WHERE clause for each column named 445 ** in the USING clause. Example: If the two tables to be joined are 446 ** A and B and the USING clause names X, Y, and Z, then add this 447 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 448 ** Report an error if any column mentioned in the USING clause is 449 ** not contained in both tables to be joined. 450 */ 451 if( pRight->pUsing ){ 452 IdList *pList = pRight->pUsing; 453 for(j=0; j<pList->nId; j++){ 454 char *zName; /* Name of the term in the USING clause */ 455 int iLeft; /* Table on the left with matching column name */ 456 int iLeftCol; /* Column number of matching column on the left */ 457 int iRightCol; /* Column number of matching column on the right */ 458 459 zName = pList->a[j].zName; 460 iRightCol = columnIndex(pRightTab, zName); 461 if( iRightCol<0 462 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 463 ){ 464 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 465 "not present in both tables", zName); 466 return 1; 467 } 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 return 0; 474 } 475 476 /* Forward reference */ 477 static KeyInfo *keyInfoFromExprList( 478 Parse *pParse, /* Parsing context */ 479 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 480 int iStart, /* Begin with this column of pList */ 481 int nExtra /* Add this many extra columns to the end */ 482 ); 483 484 /* 485 ** Generate code that will push the record in registers regData 486 ** through regData+nData-1 onto the sorter. 487 */ 488 static void pushOntoSorter( 489 Parse *pParse, /* Parser context */ 490 SortCtx *pSort, /* Information about the ORDER BY clause */ 491 Select *pSelect, /* The whole SELECT statement */ 492 int regData, /* First register holding data to be sorted */ 493 int nData, /* Number of elements in the data array */ 494 int nPrefixReg /* No. of reg prior to regData available for use */ 495 ){ 496 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 497 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 498 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 499 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 500 int regBase; /* Regs for sorter record */ 501 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 502 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 503 int op; /* Opcode to add sorter record to sorter */ 504 505 assert( bSeq==0 || bSeq==1 ); 506 if( nPrefixReg ){ 507 assert( nPrefixReg==nExpr+bSeq ); 508 regBase = regData - nExpr - bSeq; 509 }else{ 510 regBase = pParse->nMem + 1; 511 pParse->nMem += nBase; 512 } 513 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 514 if( bSeq ){ 515 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 516 } 517 if( nPrefixReg==0 ){ 518 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 519 } 520 521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 522 if( nOBSat>0 ){ 523 int regPrevKey; /* The first nOBSat columns of the previous row */ 524 int addrFirst; /* Address of the OP_IfNot opcode */ 525 int addrJmp; /* Address of the OP_Jump opcode */ 526 VdbeOp *pOp; /* Opcode that opens the sorter */ 527 int nKey; /* Number of sorting key columns, including OP_Sequence */ 528 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 529 530 regPrevKey = pParse->nMem+1; 531 pParse->nMem += pSort->nOBSat; 532 nKey = nExpr - pSort->nOBSat + bSeq; 533 if( bSeq ){ 534 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 535 }else{ 536 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 537 } 538 VdbeCoverage(v); 539 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 540 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 541 if( pParse->db->mallocFailed ) return; 542 pOp->p2 = nKey + nData; 543 pKI = pOp->p4.pKeyInfo; 544 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 545 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 546 testcase( pKI->nXField>2 ); 547 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 548 pKI->nXField-1); 549 addrJmp = sqlite3VdbeCurrentAddr(v); 550 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 551 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 552 pSort->regReturn = ++pParse->nMem; 553 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 554 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 555 sqlite3VdbeJumpHere(v, addrFirst); 556 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 557 sqlite3VdbeJumpHere(v, addrJmp); 558 } 559 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 560 op = OP_SorterInsert; 561 }else{ 562 op = OP_IdxInsert; 563 } 564 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 565 if( pSelect->iLimit ){ 566 int addr; 567 int iLimit; 568 if( pSelect->iOffset ){ 569 iLimit = pSelect->iOffset+1; 570 }else{ 571 iLimit = pSelect->iLimit; 572 } 573 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 576 sqlite3VdbeJumpHere(v, addr); 577 } 578 } 579 580 /* 581 ** Add code to implement the OFFSET 582 */ 583 static void codeOffset( 584 Vdbe *v, /* Generate code into this VM */ 585 int iOffset, /* Register holding the offset counter */ 586 int iContinue /* Jump here to skip the current record */ 587 ){ 588 if( iOffset>0 ){ 589 int addr; 590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 592 VdbeComment((v, "skip OFFSET records")); 593 sqlite3VdbeJumpHere(v, addr); 594 } 595 } 596 597 /* 598 ** Add code that will check to make sure the N registers starting at iMem 599 ** form a distinct entry. iTab is a sorting index that holds previously 600 ** seen combinations of the N values. A new entry is made in iTab 601 ** if the current N values are new. 602 ** 603 ** A jump to addrRepeat is made and the N+1 values are popped from the 604 ** stack if the top N elements are not distinct. 605 */ 606 static void codeDistinct( 607 Parse *pParse, /* Parsing and code generating context */ 608 int iTab, /* A sorting index used to test for distinctness */ 609 int addrRepeat, /* Jump to here if not distinct */ 610 int N, /* Number of elements */ 611 int iMem /* First element */ 612 ){ 613 Vdbe *v; 614 int r1; 615 616 v = pParse->pVdbe; 617 r1 = sqlite3GetTempReg(pParse); 618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 621 sqlite3ReleaseTempReg(pParse, r1); 622 } 623 624 #ifndef SQLITE_OMIT_SUBQUERY 625 /* 626 ** Generate an error message when a SELECT is used within a subexpression 627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 628 ** column. We do this in a subroutine because the error used to occur 629 ** in multiple places. (The error only occurs in one place now, but we 630 ** retain the subroutine to minimize code disruption.) 631 */ 632 static int checkForMultiColumnSelectError( 633 Parse *pParse, /* Parse context. */ 634 SelectDest *pDest, /* Destination of SELECT results */ 635 int nExpr /* Number of result columns returned by SELECT */ 636 ){ 637 int eDest = pDest->eDest; 638 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 639 sqlite3ErrorMsg(pParse, "only a single result allowed for " 640 "a SELECT that is part of an expression"); 641 return 1; 642 }else{ 643 return 0; 644 } 645 } 646 #endif 647 648 /* 649 ** This routine generates the code for the inside of the inner loop 650 ** of a SELECT. 651 ** 652 ** If srcTab is negative, then the pEList expressions 653 ** are evaluated in order to get the data for this row. If srcTab is 654 ** zero or more, then data is pulled from srcTab and pEList is used only 655 ** to get number columns and the datatype for each column. 656 */ 657 static void selectInnerLoop( 658 Parse *pParse, /* The parser context */ 659 Select *p, /* The complete select statement being coded */ 660 ExprList *pEList, /* List of values being extracted */ 661 int srcTab, /* Pull data from this table */ 662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 664 SelectDest *pDest, /* How to dispose of the results */ 665 int iContinue, /* Jump here to continue with next row */ 666 int iBreak /* Jump here to break out of the inner loop */ 667 ){ 668 Vdbe *v = pParse->pVdbe; 669 int i; 670 int hasDistinct; /* True if the DISTINCT keyword is present */ 671 int regResult; /* Start of memory holding result set */ 672 int eDest = pDest->eDest; /* How to dispose of results */ 673 int iParm = pDest->iSDParm; /* First argument to disposal method */ 674 int nResultCol; /* Number of result columns */ 675 int nPrefixReg = 0; /* Number of extra registers before regResult */ 676 677 assert( v ); 678 assert( pEList!=0 ); 679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 680 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 681 if( pSort==0 && !hasDistinct ){ 682 assert( iContinue!=0 ); 683 codeOffset(v, p->iOffset, iContinue); 684 } 685 686 /* Pull the requested columns. 687 */ 688 nResultCol = pEList->nExpr; 689 690 if( pDest->iSdst==0 ){ 691 if( pSort ){ 692 nPrefixReg = pSort->pOrderBy->nExpr; 693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 694 pParse->nMem += nPrefixReg; 695 } 696 pDest->iSdst = pParse->nMem+1; 697 pParse->nMem += nResultCol; 698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 699 /* This is an error condition that can result, for example, when a SELECT 700 ** on the right-hand side of an INSERT contains more result columns than 701 ** there are columns in the table on the left. The error will be caught 702 ** and reported later. But we need to make sure enough memory is allocated 703 ** to avoid other spurious errors in the meantime. */ 704 pParse->nMem += nResultCol; 705 } 706 pDest->nSdst = nResultCol; 707 regResult = pDest->iSdst; 708 if( srcTab>=0 ){ 709 for(i=0; i<nResultCol; i++){ 710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 711 VdbeComment((v, "%s", pEList->a[i].zName)); 712 } 713 }else if( eDest!=SRT_Exists ){ 714 /* If the destination is an EXISTS(...) expression, the actual 715 ** values returned by the SELECT are not required. 716 */ 717 sqlite3ExprCodeExprList(pParse, pEList, regResult, 718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 719 } 720 721 /* If the DISTINCT keyword was present on the SELECT statement 722 ** and this row has been seen before, then do not make this row 723 ** part of the result. 724 */ 725 if( hasDistinct ){ 726 switch( pDistinct->eTnctType ){ 727 case WHERE_DISTINCT_ORDERED: { 728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 729 int iJump; /* Jump destination */ 730 int regPrev; /* Previous row content */ 731 732 /* Allocate space for the previous row */ 733 regPrev = pParse->nMem+1; 734 pParse->nMem += nResultCol; 735 736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 737 ** sets the MEM_Cleared bit on the first register of the 738 ** previous value. This will cause the OP_Ne below to always 739 ** fail on the first iteration of the loop even if the first 740 ** row is all NULLs. 741 */ 742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 744 pOp->opcode = OP_Null; 745 pOp->p1 = 1; 746 pOp->p2 = regPrev; 747 748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 749 for(i=0; i<nResultCol; i++){ 750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 751 if( i<nResultCol-1 ){ 752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 753 VdbeCoverage(v); 754 }else{ 755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 756 VdbeCoverage(v); 757 } 758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 760 } 761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 763 break; 764 } 765 766 case WHERE_DISTINCT_UNIQUE: { 767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 768 break; 769 } 770 771 default: { 772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 774 break; 775 } 776 } 777 if( pSort==0 ){ 778 codeOffset(v, p->iOffset, iContinue); 779 } 780 } 781 782 switch( eDest ){ 783 /* In this mode, write each query result to the key of the temporary 784 ** table iParm. 785 */ 786 #ifndef SQLITE_OMIT_COMPOUND_SELECT 787 case SRT_Union: { 788 int r1; 789 r1 = sqlite3GetTempReg(pParse); 790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 792 sqlite3ReleaseTempReg(pParse, r1); 793 break; 794 } 795 796 /* Construct a record from the query result, but instead of 797 ** saving that record, use it as a key to delete elements from 798 ** the temporary table iParm. 799 */ 800 case SRT_Except: { 801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 802 break; 803 } 804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 805 806 /* Store the result as data using a unique key. 807 */ 808 case SRT_Fifo: 809 case SRT_DistFifo: 810 case SRT_Table: 811 case SRT_EphemTab: { 812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 813 testcase( eDest==SRT_Table ); 814 testcase( eDest==SRT_EphemTab ); 815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 816 #ifndef SQLITE_OMIT_CTE 817 if( eDest==SRT_DistFifo ){ 818 /* If the destination is DistFifo, then cursor (iParm+1) is open 819 ** on an ephemeral index. If the current row is already present 820 ** in the index, do not write it to the output. If not, add the 821 ** current row to the index and proceed with writing it to the 822 ** output table as well. */ 823 int addr = sqlite3VdbeCurrentAddr(v) + 4; 824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 826 assert( pSort==0 ); 827 } 828 #endif 829 if( pSort ){ 830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 831 }else{ 832 int r2 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 836 sqlite3ReleaseTempReg(pParse, r2); 837 } 838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 839 break; 840 } 841 842 #ifndef SQLITE_OMIT_SUBQUERY 843 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 844 ** then there should be a single item on the stack. Write this 845 ** item into the set table with bogus data. 846 */ 847 case SRT_Set: { 848 assert( nResultCol==1 ); 849 pDest->affSdst = 850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 851 if( pSort ){ 852 /* At first glance you would think we could optimize out the 853 ** ORDER BY in this case since the order of entries in the set 854 ** does not matter. But there might be a LIMIT clause, in which 855 ** case the order does matter */ 856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 857 }else{ 858 int r1 = sqlite3GetTempReg(pParse); 859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 862 sqlite3ReleaseTempReg(pParse, r1); 863 } 864 break; 865 } 866 867 /* If any row exist in the result set, record that fact and abort. 868 */ 869 case SRT_Exists: { 870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 871 /* The LIMIT clause will terminate the loop for us */ 872 break; 873 } 874 875 /* If this is a scalar select that is part of an expression, then 876 ** store the results in the appropriate memory cell and break out 877 ** of the scan loop. 878 */ 879 case SRT_Mem: { 880 assert( nResultCol==1 ); 881 if( pSort ){ 882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 883 }else{ 884 assert( regResult==iParm ); 885 /* The LIMIT clause will jump out of the loop for us */ 886 } 887 break; 888 } 889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 890 891 case SRT_Coroutine: /* Send data to a co-routine */ 892 case SRT_Output: { /* Return the results */ 893 testcase( eDest==SRT_Coroutine ); 894 testcase( eDest==SRT_Output ); 895 if( pSort ){ 896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 897 }else if( eDest==SRT_Coroutine ){ 898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 899 }else{ 900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 902 } 903 break; 904 } 905 906 #ifndef SQLITE_OMIT_CTE 907 /* Write the results into a priority queue that is order according to 908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 910 ** pSO->nExpr columns, then make sure all keys are unique by adding a 911 ** final OP_Sequence column. The last column is the record as a blob. 912 */ 913 case SRT_DistQueue: 914 case SRT_Queue: { 915 int nKey; 916 int r1, r2, r3; 917 int addrTest = 0; 918 ExprList *pSO; 919 pSO = pDest->pOrderBy; 920 assert( pSO ); 921 nKey = pSO->nExpr; 922 r1 = sqlite3GetTempReg(pParse); 923 r2 = sqlite3GetTempRange(pParse, nKey+2); 924 r3 = r2+nKey+1; 925 if( eDest==SRT_DistQueue ){ 926 /* If the destination is DistQueue, then cursor (iParm+1) is open 927 ** on a second ephemeral index that holds all values every previously 928 ** added to the queue. */ 929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 930 regResult, nResultCol); 931 VdbeCoverage(v); 932 } 933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 934 if( eDest==SRT_DistQueue ){ 935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 937 } 938 for(i=0; i<nKey; i++){ 939 sqlite3VdbeAddOp2(v, OP_SCopy, 940 regResult + pSO->a[i].u.x.iOrderByCol - 1, 941 r2+i); 942 } 943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 947 sqlite3ReleaseTempReg(pParse, r1); 948 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 949 break; 950 } 951 #endif /* SQLITE_OMIT_CTE */ 952 953 954 955 #if !defined(SQLITE_OMIT_TRIGGER) 956 /* Discard the results. This is used for SELECT statements inside 957 ** the body of a TRIGGER. The purpose of such selects is to call 958 ** user-defined functions that have side effects. We do not care 959 ** about the actual results of the select. 960 */ 961 default: { 962 assert( eDest==SRT_Discard ); 963 break; 964 } 965 #endif 966 } 967 968 /* Jump to the end of the loop if the LIMIT is reached. Except, if 969 ** there is a sorter, in which case the sorter has already limited 970 ** the output for us. 971 */ 972 if( pSort==0 && p->iLimit ){ 973 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 974 } 975 } 976 977 /* 978 ** Allocate a KeyInfo object sufficient for an index of N key columns and 979 ** X extra columns. 980 */ 981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 982 KeyInfo *p = sqlite3DbMallocZero(0, 983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 984 if( p ){ 985 p->aSortOrder = (u8*)&p->aColl[N+X]; 986 p->nField = (u16)N; 987 p->nXField = (u16)X; 988 p->enc = ENC(db); 989 p->db = db; 990 p->nRef = 1; 991 }else{ 992 db->mallocFailed = 1; 993 } 994 return p; 995 } 996 997 /* 998 ** Deallocate a KeyInfo object 999 */ 1000 void sqlite3KeyInfoUnref(KeyInfo *p){ 1001 if( p ){ 1002 assert( p->nRef>0 ); 1003 p->nRef--; 1004 if( p->nRef==0 ) sqlite3DbFree(0, p); 1005 } 1006 } 1007 1008 /* 1009 ** Make a new pointer to a KeyInfo object 1010 */ 1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1012 if( p ){ 1013 assert( p->nRef>0 ); 1014 p->nRef++; 1015 } 1016 return p; 1017 } 1018 1019 #ifdef SQLITE_DEBUG 1020 /* 1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1022 ** can only be changed if this is just a single reference to the object. 1023 ** 1024 ** This routine is used only inside of assert() statements. 1025 */ 1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1027 #endif /* SQLITE_DEBUG */ 1028 1029 /* 1030 ** Given an expression list, generate a KeyInfo structure that records 1031 ** the collating sequence for each expression in that expression list. 1032 ** 1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1034 ** KeyInfo structure is appropriate for initializing a virtual index to 1035 ** implement that clause. If the ExprList is the result set of a SELECT 1036 ** then the KeyInfo structure is appropriate for initializing a virtual 1037 ** index to implement a DISTINCT test. 1038 ** 1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1040 ** function is responsible for seeing that this structure is eventually 1041 ** freed. 1042 */ 1043 static KeyInfo *keyInfoFromExprList( 1044 Parse *pParse, /* Parsing context */ 1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1046 int iStart, /* Begin with this column of pList */ 1047 int nExtra /* Add this many extra columns to the end */ 1048 ){ 1049 int nExpr; 1050 KeyInfo *pInfo; 1051 struct ExprList_item *pItem; 1052 sqlite3 *db = pParse->db; 1053 int i; 1054 1055 nExpr = pList->nExpr; 1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1057 if( pInfo ){ 1058 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1060 CollSeq *pColl; 1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1062 if( !pColl ) pColl = db->pDfltColl; 1063 pInfo->aColl[i-iStart] = pColl; 1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1065 } 1066 } 1067 return pInfo; 1068 } 1069 1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1071 /* 1072 ** Name of the connection operator, used for error messages. 1073 */ 1074 static const char *selectOpName(int id){ 1075 char *z; 1076 switch( id ){ 1077 case TK_ALL: z = "UNION ALL"; break; 1078 case TK_INTERSECT: z = "INTERSECT"; break; 1079 case TK_EXCEPT: z = "EXCEPT"; break; 1080 default: z = "UNION"; break; 1081 } 1082 return z; 1083 } 1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1085 1086 #ifndef SQLITE_OMIT_EXPLAIN 1087 /* 1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1090 ** where the caption is of the form: 1091 ** 1092 ** "USE TEMP B-TREE FOR xxx" 1093 ** 1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1095 ** is determined by the zUsage argument. 1096 */ 1097 static void explainTempTable(Parse *pParse, const char *zUsage){ 1098 if( pParse->explain==2 ){ 1099 Vdbe *v = pParse->pVdbe; 1100 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1102 } 1103 } 1104 1105 /* 1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1108 ** in sqlite3Select() to assign values to structure member variables that 1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1110 ** code with #ifndef directives. 1111 */ 1112 # define explainSetInteger(a, b) a = b 1113 1114 #else 1115 /* No-op versions of the explainXXX() functions and macros. */ 1116 # define explainTempTable(y,z) 1117 # define explainSetInteger(y,z) 1118 #endif 1119 1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1121 /* 1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1124 ** where the caption is of one of the two forms: 1125 ** 1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1128 ** 1129 ** where iSub1 and iSub2 are the integers passed as the corresponding 1130 ** function parameters, and op is the text representation of the parameter 1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1133 ** false, or the second form if it is true. 1134 */ 1135 static void explainComposite( 1136 Parse *pParse, /* Parse context */ 1137 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1138 int iSub1, /* Subquery id 1 */ 1139 int iSub2, /* Subquery id 2 */ 1140 int bUseTmp /* True if a temp table was used */ 1141 ){ 1142 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1143 if( pParse->explain==2 ){ 1144 Vdbe *v = pParse->pVdbe; 1145 char *zMsg = sqlite3MPrintf( 1146 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1147 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1148 ); 1149 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1150 } 1151 } 1152 #else 1153 /* No-op versions of the explainXXX() functions and macros. */ 1154 # define explainComposite(v,w,x,y,z) 1155 #endif 1156 1157 /* 1158 ** If the inner loop was generated using a non-null pOrderBy argument, 1159 ** then the results were placed in a sorter. After the loop is terminated 1160 ** we need to run the sorter and output the results. The following 1161 ** routine generates the code needed to do that. 1162 */ 1163 static void generateSortTail( 1164 Parse *pParse, /* Parsing context */ 1165 Select *p, /* The SELECT statement */ 1166 SortCtx *pSort, /* Information on the ORDER BY clause */ 1167 int nColumn, /* Number of columns of data */ 1168 SelectDest *pDest /* Write the sorted results here */ 1169 ){ 1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1173 int addr; 1174 int addrOnce = 0; 1175 int iTab; 1176 ExprList *pOrderBy = pSort->pOrderBy; 1177 int eDest = pDest->eDest; 1178 int iParm = pDest->iSDParm; 1179 int regRow; 1180 int regRowid; 1181 int nKey; 1182 int iSortTab; /* Sorter cursor to read from */ 1183 int nSortData; /* Trailing values to read from sorter */ 1184 int i; 1185 int bSeq; /* True if sorter record includes seq. no. */ 1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1187 struct ExprList_item *aOutEx = p->pEList->a; 1188 #endif 1189 1190 if( pSort->labelBkOut ){ 1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1194 } 1195 iTab = pSort->iECursor; 1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1197 regRowid = 0; 1198 regRow = pDest->iSdst; 1199 nSortData = nColumn; 1200 }else{ 1201 regRowid = sqlite3GetTempReg(pParse); 1202 regRow = sqlite3GetTempReg(pParse); 1203 nSortData = 1; 1204 } 1205 nKey = pOrderBy->nExpr - pSort->nOBSat; 1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1207 int regSortOut = ++pParse->nMem; 1208 iSortTab = pParse->nTab++; 1209 if( pSort->labelBkOut ){ 1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1211 } 1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1215 VdbeCoverage(v); 1216 codeOffset(v, p->iOffset, addrContinue); 1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1218 bSeq = 0; 1219 }else{ 1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1221 codeOffset(v, p->iOffset, addrContinue); 1222 iSortTab = iTab; 1223 bSeq = 1; 1224 } 1225 for(i=0; i<nSortData; i++){ 1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1228 } 1229 switch( eDest ){ 1230 case SRT_Table: 1231 case SRT_EphemTab: { 1232 testcase( eDest==SRT_Table ); 1233 testcase( eDest==SRT_EphemTab ); 1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1237 break; 1238 } 1239 #ifndef SQLITE_OMIT_SUBQUERY 1240 case SRT_Set: { 1241 assert( nColumn==1 ); 1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1243 &pDest->affSdst, 1); 1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1246 break; 1247 } 1248 case SRT_Mem: { 1249 assert( nColumn==1 ); 1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1251 /* The LIMIT clause will terminate the loop for us */ 1252 break; 1253 } 1254 #endif 1255 default: { 1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1257 testcase( eDest==SRT_Output ); 1258 testcase( eDest==SRT_Coroutine ); 1259 if( eDest==SRT_Output ){ 1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1262 }else{ 1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1264 } 1265 break; 1266 } 1267 } 1268 if( regRowid ){ 1269 sqlite3ReleaseTempReg(pParse, regRow); 1270 sqlite3ReleaseTempReg(pParse, regRowid); 1271 } 1272 /* The bottom of the loop 1273 */ 1274 sqlite3VdbeResolveLabel(v, addrContinue); 1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1277 }else{ 1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1279 } 1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1281 sqlite3VdbeResolveLabel(v, addrBreak); 1282 } 1283 1284 /* 1285 ** Return a pointer to a string containing the 'declaration type' of the 1286 ** expression pExpr. The string may be treated as static by the caller. 1287 ** 1288 ** Also try to estimate the size of the returned value and return that 1289 ** result in *pEstWidth. 1290 ** 1291 ** The declaration type is the exact datatype definition extracted from the 1292 ** original CREATE TABLE statement if the expression is a column. The 1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1294 ** is considered a column can be complex in the presence of subqueries. The 1295 ** result-set expression in all of the following SELECT statements is 1296 ** considered a column by this function. 1297 ** 1298 ** SELECT col FROM tbl; 1299 ** SELECT (SELECT col FROM tbl; 1300 ** SELECT (SELECT col FROM tbl); 1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1302 ** 1303 ** The declaration type for any expression other than a column is NULL. 1304 ** 1305 ** This routine has either 3 or 6 parameters depending on whether or not 1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1307 */ 1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1310 static const char *columnTypeImpl( 1311 NameContext *pNC, 1312 Expr *pExpr, 1313 const char **pzOrigDb, 1314 const char **pzOrigTab, 1315 const char **pzOrigCol, 1316 u8 *pEstWidth 1317 ){ 1318 char const *zOrigDb = 0; 1319 char const *zOrigTab = 0; 1320 char const *zOrigCol = 0; 1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1323 static const char *columnTypeImpl( 1324 NameContext *pNC, 1325 Expr *pExpr, 1326 u8 *pEstWidth 1327 ){ 1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1329 char const *zType = 0; 1330 int j; 1331 u8 estWidth = 1; 1332 1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1334 switch( pExpr->op ){ 1335 case TK_AGG_COLUMN: 1336 case TK_COLUMN: { 1337 /* The expression is a column. Locate the table the column is being 1338 ** extracted from in NameContext.pSrcList. This table may be real 1339 ** database table or a subquery. 1340 */ 1341 Table *pTab = 0; /* Table structure column is extracted from */ 1342 Select *pS = 0; /* Select the column is extracted from */ 1343 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1344 testcase( pExpr->op==TK_AGG_COLUMN ); 1345 testcase( pExpr->op==TK_COLUMN ); 1346 while( pNC && !pTab ){ 1347 SrcList *pTabList = pNC->pSrcList; 1348 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1349 if( j<pTabList->nSrc ){ 1350 pTab = pTabList->a[j].pTab; 1351 pS = pTabList->a[j].pSelect; 1352 }else{ 1353 pNC = pNC->pNext; 1354 } 1355 } 1356 1357 if( pTab==0 ){ 1358 /* At one time, code such as "SELECT new.x" within a trigger would 1359 ** cause this condition to run. Since then, we have restructured how 1360 ** trigger code is generated and so this condition is no longer 1361 ** possible. However, it can still be true for statements like 1362 ** the following: 1363 ** 1364 ** CREATE TABLE t1(col INTEGER); 1365 ** SELECT (SELECT t1.col) FROM FROM t1; 1366 ** 1367 ** when columnType() is called on the expression "t1.col" in the 1368 ** sub-select. In this case, set the column type to NULL, even 1369 ** though it should really be "INTEGER". 1370 ** 1371 ** This is not a problem, as the column type of "t1.col" is never 1372 ** used. When columnType() is called on the expression 1373 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1374 ** branch below. */ 1375 break; 1376 } 1377 1378 assert( pTab && pExpr->pTab==pTab ); 1379 if( pS ){ 1380 /* The "table" is actually a sub-select or a view in the FROM clause 1381 ** of the SELECT statement. Return the declaration type and origin 1382 ** data for the result-set column of the sub-select. 1383 */ 1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1385 /* If iCol is less than zero, then the expression requests the 1386 ** rowid of the sub-select or view. This expression is legal (see 1387 ** test case misc2.2.2) - it always evaluates to NULL. 1388 */ 1389 NameContext sNC; 1390 Expr *p = pS->pEList->a[iCol].pExpr; 1391 sNC.pSrcList = pS->pSrc; 1392 sNC.pNext = pNC; 1393 sNC.pParse = pNC->pParse; 1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1395 } 1396 }else if( pTab->pSchema ){ 1397 /* A real table */ 1398 assert( !pS ); 1399 if( iCol<0 ) iCol = pTab->iPKey; 1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1402 if( iCol<0 ){ 1403 zType = "INTEGER"; 1404 zOrigCol = "rowid"; 1405 }else{ 1406 zType = pTab->aCol[iCol].zType; 1407 zOrigCol = pTab->aCol[iCol].zName; 1408 estWidth = pTab->aCol[iCol].szEst; 1409 } 1410 zOrigTab = pTab->zName; 1411 if( pNC->pParse ){ 1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1414 } 1415 #else 1416 if( iCol<0 ){ 1417 zType = "INTEGER"; 1418 }else{ 1419 zType = pTab->aCol[iCol].zType; 1420 estWidth = pTab->aCol[iCol].szEst; 1421 } 1422 #endif 1423 } 1424 break; 1425 } 1426 #ifndef SQLITE_OMIT_SUBQUERY 1427 case TK_SELECT: { 1428 /* The expression is a sub-select. Return the declaration type and 1429 ** origin info for the single column in the result set of the SELECT 1430 ** statement. 1431 */ 1432 NameContext sNC; 1433 Select *pS = pExpr->x.pSelect; 1434 Expr *p = pS->pEList->a[0].pExpr; 1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1436 sNC.pSrcList = pS->pSrc; 1437 sNC.pNext = pNC; 1438 sNC.pParse = pNC->pParse; 1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1440 break; 1441 } 1442 #endif 1443 } 1444 1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1446 if( pzOrigDb ){ 1447 assert( pzOrigTab && pzOrigCol ); 1448 *pzOrigDb = zOrigDb; 1449 *pzOrigTab = zOrigTab; 1450 *pzOrigCol = zOrigCol; 1451 } 1452 #endif 1453 if( pEstWidth ) *pEstWidth = estWidth; 1454 return zType; 1455 } 1456 1457 /* 1458 ** Generate code that will tell the VDBE the declaration types of columns 1459 ** in the result set. 1460 */ 1461 static void generateColumnTypes( 1462 Parse *pParse, /* Parser context */ 1463 SrcList *pTabList, /* List of tables */ 1464 ExprList *pEList /* Expressions defining the result set */ 1465 ){ 1466 #ifndef SQLITE_OMIT_DECLTYPE 1467 Vdbe *v = pParse->pVdbe; 1468 int i; 1469 NameContext sNC; 1470 sNC.pSrcList = pTabList; 1471 sNC.pParse = pParse; 1472 for(i=0; i<pEList->nExpr; i++){ 1473 Expr *p = pEList->a[i].pExpr; 1474 const char *zType; 1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1476 const char *zOrigDb = 0; 1477 const char *zOrigTab = 0; 1478 const char *zOrigCol = 0; 1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1480 1481 /* The vdbe must make its own copy of the column-type and other 1482 ** column specific strings, in case the schema is reset before this 1483 ** virtual machine is deleted. 1484 */ 1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1488 #else 1489 zType = columnType(&sNC, p, 0, 0, 0, 0); 1490 #endif 1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1492 } 1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1494 } 1495 1496 /* 1497 ** Generate code that will tell the VDBE the names of columns 1498 ** in the result set. This information is used to provide the 1499 ** azCol[] values in the callback. 1500 */ 1501 static void generateColumnNames( 1502 Parse *pParse, /* Parser context */ 1503 SrcList *pTabList, /* List of tables */ 1504 ExprList *pEList /* Expressions defining the result set */ 1505 ){ 1506 Vdbe *v = pParse->pVdbe; 1507 int i, j; 1508 sqlite3 *db = pParse->db; 1509 int fullNames, shortNames; 1510 1511 #ifndef SQLITE_OMIT_EXPLAIN 1512 /* If this is an EXPLAIN, skip this step */ 1513 if( pParse->explain ){ 1514 return; 1515 } 1516 #endif 1517 1518 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1519 pParse->colNamesSet = 1; 1520 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1521 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1522 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1523 for(i=0; i<pEList->nExpr; i++){ 1524 Expr *p; 1525 p = pEList->a[i].pExpr; 1526 if( NEVER(p==0) ) continue; 1527 if( pEList->a[i].zName ){ 1528 char *zName = pEList->a[i].zName; 1529 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1530 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1531 Table *pTab; 1532 char *zCol; 1533 int iCol = p->iColumn; 1534 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1535 if( pTabList->a[j].iCursor==p->iTable ) break; 1536 } 1537 assert( j<pTabList->nSrc ); 1538 pTab = pTabList->a[j].pTab; 1539 if( iCol<0 ) iCol = pTab->iPKey; 1540 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1541 if( iCol<0 ){ 1542 zCol = "rowid"; 1543 }else{ 1544 zCol = pTab->aCol[iCol].zName; 1545 } 1546 if( !shortNames && !fullNames ){ 1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1549 }else if( fullNames ){ 1550 char *zName = 0; 1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1553 }else{ 1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1555 } 1556 }else{ 1557 const char *z = pEList->a[i].zSpan; 1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1560 } 1561 } 1562 generateColumnTypes(pParse, pTabList, pEList); 1563 } 1564 1565 /* 1566 ** Given an expression list (which is really the list of expressions 1567 ** that form the result set of a SELECT statement) compute appropriate 1568 ** column names for a table that would hold the expression list. 1569 ** 1570 ** All column names will be unique. 1571 ** 1572 ** Only the column names are computed. Column.zType, Column.zColl, 1573 ** and other fields of Column are zeroed. 1574 ** 1575 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1577 */ 1578 static int selectColumnsFromExprList( 1579 Parse *pParse, /* Parsing context */ 1580 ExprList *pEList, /* Expr list from which to derive column names */ 1581 i16 *pnCol, /* Write the number of columns here */ 1582 Column **paCol /* Write the new column list here */ 1583 ){ 1584 sqlite3 *db = pParse->db; /* Database connection */ 1585 int i, j; /* Loop counters */ 1586 int cnt; /* Index added to make the name unique */ 1587 Column *aCol, *pCol; /* For looping over result columns */ 1588 int nCol; /* Number of columns in the result set */ 1589 Expr *p; /* Expression for a single result column */ 1590 char *zName; /* Column name */ 1591 int nName; /* Size of name in zName[] */ 1592 1593 if( pEList ){ 1594 nCol = pEList->nExpr; 1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1596 testcase( aCol==0 ); 1597 }else{ 1598 nCol = 0; 1599 aCol = 0; 1600 } 1601 *pnCol = nCol; 1602 *paCol = aCol; 1603 1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1605 /* Get an appropriate name for the column 1606 */ 1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1608 if( (zName = pEList->a[i].zName)!=0 ){ 1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1610 zName = sqlite3DbStrDup(db, zName); 1611 }else{ 1612 Expr *pColExpr = p; /* The expression that is the result column name */ 1613 Table *pTab; /* Table associated with this expression */ 1614 while( pColExpr->op==TK_DOT ){ 1615 pColExpr = pColExpr->pRight; 1616 assert( pColExpr!=0 ); 1617 } 1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1619 /* For columns use the column name name */ 1620 int iCol = pColExpr->iColumn; 1621 pTab = pColExpr->pTab; 1622 if( iCol<0 ) iCol = pTab->iPKey; 1623 zName = sqlite3MPrintf(db, "%s", 1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1625 }else if( pColExpr->op==TK_ID ){ 1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1628 }else{ 1629 /* Use the original text of the column expression as its name */ 1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1631 } 1632 } 1633 if( db->mallocFailed ){ 1634 sqlite3DbFree(db, zName); 1635 break; 1636 } 1637 1638 /* Make sure the column name is unique. If the name is not unique, 1639 ** append an integer to the name so that it becomes unique. 1640 */ 1641 nName = sqlite3Strlen30(zName); 1642 for(j=cnt=0; j<i; j++){ 1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1644 char *zNewName; 1645 int k; 1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1647 if( k>=0 && zName[k]==':' ) nName = k; 1648 zName[nName] = 0; 1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1650 sqlite3DbFree(db, zName); 1651 zName = zNewName; 1652 j = -1; 1653 if( zName==0 ) break; 1654 } 1655 } 1656 pCol->zName = zName; 1657 } 1658 if( db->mallocFailed ){ 1659 for(j=0; j<i; j++){ 1660 sqlite3DbFree(db, aCol[j].zName); 1661 } 1662 sqlite3DbFree(db, aCol); 1663 *paCol = 0; 1664 *pnCol = 0; 1665 return SQLITE_NOMEM; 1666 } 1667 return SQLITE_OK; 1668 } 1669 1670 /* 1671 ** Add type and collation information to a column list based on 1672 ** a SELECT statement. 1673 ** 1674 ** The column list presumably came from selectColumnNamesFromExprList(). 1675 ** The column list has only names, not types or collations. This 1676 ** routine goes through and adds the types and collations. 1677 ** 1678 ** This routine requires that all identifiers in the SELECT 1679 ** statement be resolved. 1680 */ 1681 static void selectAddColumnTypeAndCollation( 1682 Parse *pParse, /* Parsing contexts */ 1683 Table *pTab, /* Add column type information to this table */ 1684 Select *pSelect /* SELECT used to determine types and collations */ 1685 ){ 1686 sqlite3 *db = pParse->db; 1687 NameContext sNC; 1688 Column *pCol; 1689 CollSeq *pColl; 1690 int i; 1691 Expr *p; 1692 struct ExprList_item *a; 1693 u64 szAll = 0; 1694 1695 assert( pSelect!=0 ); 1696 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1698 if( db->mallocFailed ) return; 1699 memset(&sNC, 0, sizeof(sNC)); 1700 sNC.pSrcList = pSelect->pSrc; 1701 a = pSelect->pEList->a; 1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1703 p = a[i].pExpr; 1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1705 szAll += pCol->szEst; 1706 pCol->affinity = sqlite3ExprAffinity(p); 1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1708 pColl = sqlite3ExprCollSeq(pParse, p); 1709 if( pColl ){ 1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1711 } 1712 } 1713 pTab->szTabRow = sqlite3LogEst(szAll*4); 1714 } 1715 1716 /* 1717 ** Given a SELECT statement, generate a Table structure that describes 1718 ** the result set of that SELECT. 1719 */ 1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1721 Table *pTab; 1722 sqlite3 *db = pParse->db; 1723 int savedFlags; 1724 1725 savedFlags = db->flags; 1726 db->flags &= ~SQLITE_FullColNames; 1727 db->flags |= SQLITE_ShortColNames; 1728 sqlite3SelectPrep(pParse, pSelect, 0); 1729 if( pParse->nErr ) return 0; 1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1731 db->flags = savedFlags; 1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1733 if( pTab==0 ){ 1734 return 0; 1735 } 1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1737 ** is disabled */ 1738 assert( db->lookaside.bEnabled==0 ); 1739 pTab->nRef = 1; 1740 pTab->zName = 0; 1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1744 pTab->iPKey = -1; 1745 if( db->mallocFailed ){ 1746 sqlite3DeleteTable(db, pTab); 1747 return 0; 1748 } 1749 return pTab; 1750 } 1751 1752 /* 1753 ** Get a VDBE for the given parser context. Create a new one if necessary. 1754 ** If an error occurs, return NULL and leave a message in pParse. 1755 */ 1756 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1757 Vdbe *v = pParse->pVdbe; 1758 if( v==0 ){ 1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1761 if( pParse->pToplevel==0 1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1763 ){ 1764 pParse->okConstFactor = 1; 1765 } 1766 1767 } 1768 return v; 1769 } 1770 1771 1772 /* 1773 ** Compute the iLimit and iOffset fields of the SELECT based on the 1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1775 ** that appear in the original SQL statement after the LIMIT and OFFSET 1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1777 ** are the integer memory register numbers for counters used to compute 1778 ** the limit and offset. If there is no limit and/or offset, then 1779 ** iLimit and iOffset are negative. 1780 ** 1781 ** This routine changes the values of iLimit and iOffset only if 1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1783 ** iOffset should have been preset to appropriate default values (zero) 1784 ** prior to calling this routine. 1785 ** 1786 ** The iOffset register (if it exists) is initialized to the value 1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1788 ** iOffset+1 is initialized to LIMIT+OFFSET. 1789 ** 1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1791 ** redefined. The UNION ALL operator uses this property to force 1792 ** the reuse of the same limit and offset registers across multiple 1793 ** SELECT statements. 1794 */ 1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1796 Vdbe *v = 0; 1797 int iLimit = 0; 1798 int iOffset; 1799 int addr1, n; 1800 if( p->iLimit ) return; 1801 1802 /* 1803 ** "LIMIT -1" always shows all rows. There is some 1804 ** controversy about what the correct behavior should be. 1805 ** The current implementation interprets "LIMIT 0" to mean 1806 ** no rows. 1807 */ 1808 sqlite3ExprCacheClear(pParse); 1809 assert( p->pOffset==0 || p->pLimit!=0 ); 1810 if( p->pLimit ){ 1811 p->iLimit = iLimit = ++pParse->nMem; 1812 v = sqlite3GetVdbe(pParse); 1813 assert( v!=0 ); 1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1816 VdbeComment((v, "LIMIT counter")); 1817 if( n==0 ){ 1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1819 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1820 p->nSelectRow = n; 1821 } 1822 }else{ 1823 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1825 VdbeComment((v, "LIMIT counter")); 1826 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1827 } 1828 if( p->pOffset ){ 1829 p->iOffset = iOffset = ++pParse->nMem; 1830 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1831 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1833 VdbeComment((v, "OFFSET counter")); 1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1836 sqlite3VdbeJumpHere(v, addr1); 1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1838 VdbeComment((v, "LIMIT+OFFSET")); 1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1841 sqlite3VdbeJumpHere(v, addr1); 1842 } 1843 } 1844 } 1845 1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1847 /* 1848 ** Return the appropriate collating sequence for the iCol-th column of 1849 ** the result set for the compound-select statement "p". Return NULL if 1850 ** the column has no default collating sequence. 1851 ** 1852 ** The collating sequence for the compound select is taken from the 1853 ** left-most term of the select that has a collating sequence. 1854 */ 1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1856 CollSeq *pRet; 1857 if( p->pPrior ){ 1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1859 }else{ 1860 pRet = 0; 1861 } 1862 assert( iCol>=0 ); 1863 if( pRet==0 && iCol<p->pEList->nExpr ){ 1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1865 } 1866 return pRet; 1867 } 1868 1869 /* 1870 ** The select statement passed as the second parameter is a compound SELECT 1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1872 ** structure suitable for implementing the ORDER BY. 1873 ** 1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1875 ** function is responsible for ensuring that this structure is eventually 1876 ** freed. 1877 */ 1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1879 ExprList *pOrderBy = p->pOrderBy; 1880 int nOrderBy = p->pOrderBy->nExpr; 1881 sqlite3 *db = pParse->db; 1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1883 if( pRet ){ 1884 int i; 1885 for(i=0; i<nOrderBy; i++){ 1886 struct ExprList_item *pItem = &pOrderBy->a[i]; 1887 Expr *pTerm = pItem->pExpr; 1888 CollSeq *pColl; 1889 1890 if( pTerm->flags & EP_Collate ){ 1891 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1892 }else{ 1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1894 if( pColl==0 ) pColl = db->pDfltColl; 1895 pOrderBy->a[i].pExpr = 1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1897 } 1898 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1899 pRet->aColl[i] = pColl; 1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1901 } 1902 } 1903 1904 return pRet; 1905 } 1906 1907 #ifndef SQLITE_OMIT_CTE 1908 /* 1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1910 ** query of the form: 1911 ** 1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1913 ** \___________/ \_______________/ 1914 ** p->pPrior p 1915 ** 1916 ** 1917 ** There is exactly one reference to the recursive-table in the FROM clause 1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1919 ** 1920 ** The setup-query runs once to generate an initial set of rows that go 1921 ** into a Queue table. Rows are extracted from the Queue table one by 1922 ** one. Each row extracted from Queue is output to pDest. Then the single 1923 ** extracted row (now in the iCurrent table) becomes the content of the 1924 ** recursive-table for a recursive-query run. The output of the recursive-query 1925 ** is added back into the Queue table. Then another row is extracted from Queue 1926 ** and the iteration continues until the Queue table is empty. 1927 ** 1928 ** If the compound query operator is UNION then no duplicate rows are ever 1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1930 ** that have ever been inserted into Queue and causes duplicates to be 1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1932 ** 1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1934 ** ORDER BY order and the first entry is extracted for each cycle. Without 1935 ** an ORDER BY, the Queue table is just a FIFO. 1936 ** 1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1940 ** with a positive value, then the first OFFSET outputs are discarded rather 1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1942 ** rows have been skipped. 1943 */ 1944 static void generateWithRecursiveQuery( 1945 Parse *pParse, /* Parsing context */ 1946 Select *p, /* The recursive SELECT to be coded */ 1947 SelectDest *pDest /* What to do with query results */ 1948 ){ 1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1952 Select *pSetup = p->pPrior; /* The setup query */ 1953 int addrTop; /* Top of the loop */ 1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1955 int iCurrent = 0; /* The Current table */ 1956 int regCurrent; /* Register holding Current table */ 1957 int iQueue; /* The Queue table */ 1958 int iDistinct = 0; /* To ensure unique results if UNION */ 1959 int eDest = SRT_Fifo; /* How to write to Queue */ 1960 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1961 int i; /* Loop counter */ 1962 int rc; /* Result code */ 1963 ExprList *pOrderBy; /* The ORDER BY clause */ 1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1966 1967 /* Obtain authorization to do a recursive query */ 1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1969 1970 /* Process the LIMIT and OFFSET clauses, if they exist */ 1971 addrBreak = sqlite3VdbeMakeLabel(v); 1972 computeLimitRegisters(pParse, p, addrBreak); 1973 pLimit = p->pLimit; 1974 pOffset = p->pOffset; 1975 regLimit = p->iLimit; 1976 regOffset = p->iOffset; 1977 p->pLimit = p->pOffset = 0; 1978 p->iLimit = p->iOffset = 0; 1979 pOrderBy = p->pOrderBy; 1980 1981 /* Locate the cursor number of the Current table */ 1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1983 if( pSrc->a[i].isRecursive ){ 1984 iCurrent = pSrc->a[i].iCursor; 1985 break; 1986 } 1987 } 1988 1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1990 ** the Distinct table must be exactly one greater than Queue in order 1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1992 iQueue = pParse->nTab++; 1993 if( p->op==TK_UNION ){ 1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1995 iDistinct = pParse->nTab++; 1996 }else{ 1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1998 } 1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2000 2001 /* Allocate cursors for Current, Queue, and Distinct. */ 2002 regCurrent = ++pParse->nMem; 2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2004 if( pOrderBy ){ 2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2007 (char*)pKeyInfo, P4_KEYINFO); 2008 destQueue.pOrderBy = pOrderBy; 2009 }else{ 2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2011 } 2012 VdbeComment((v, "Queue table")); 2013 if( iDistinct ){ 2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2015 p->selFlags |= SF_UsesEphemeral; 2016 } 2017 2018 /* Detach the ORDER BY clause from the compound SELECT */ 2019 p->pOrderBy = 0; 2020 2021 /* Store the results of the setup-query in Queue. */ 2022 pSetup->pNext = 0; 2023 rc = sqlite3Select(pParse, pSetup, &destQueue); 2024 pSetup->pNext = p; 2025 if( rc ) goto end_of_recursive_query; 2026 2027 /* Find the next row in the Queue and output that row */ 2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2029 2030 /* Transfer the next row in Queue over to Current */ 2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2032 if( pOrderBy ){ 2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2034 }else{ 2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2036 } 2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2038 2039 /* Output the single row in Current */ 2040 addrCont = sqlite3VdbeMakeLabel(v); 2041 codeOffset(v, regOffset, addrCont); 2042 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2043 0, 0, pDest, addrCont, addrBreak); 2044 if( regLimit ){ 2045 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2046 VdbeCoverage(v); 2047 } 2048 sqlite3VdbeResolveLabel(v, addrCont); 2049 2050 /* Execute the recursive SELECT taking the single row in Current as 2051 ** the value for the recursive-table. Store the results in the Queue. 2052 */ 2053 p->pPrior = 0; 2054 sqlite3Select(pParse, p, &destQueue); 2055 assert( p->pPrior==0 ); 2056 p->pPrior = pSetup; 2057 2058 /* Keep running the loop until the Queue is empty */ 2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2060 sqlite3VdbeResolveLabel(v, addrBreak); 2061 2062 end_of_recursive_query: 2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2064 p->pOrderBy = pOrderBy; 2065 p->pLimit = pLimit; 2066 p->pOffset = pOffset; 2067 return; 2068 } 2069 #endif /* SQLITE_OMIT_CTE */ 2070 2071 /* Forward references */ 2072 static int multiSelectOrderBy( 2073 Parse *pParse, /* Parsing context */ 2074 Select *p, /* The right-most of SELECTs to be coded */ 2075 SelectDest *pDest /* What to do with query results */ 2076 ); 2077 2078 /* 2079 ** Error message for when two or more terms of a compound select have different 2080 ** size result sets. 2081 */ 2082 static void selectWrongNumTermsError(Parse *pParse, Select *p){ 2083 if( p->selFlags & SF_Values ){ 2084 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2085 }else{ 2086 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2087 " do not have the same number of result columns", selectOpName(p->op)); 2088 } 2089 } 2090 2091 /* 2092 ** Handle the special case of a compound-select that originates from a 2093 ** VALUES clause. By handling this as a special case, we avoid deep 2094 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2095 ** on a VALUES clause. 2096 ** 2097 ** Because the Select object originates from a VALUES clause: 2098 ** (1) It has no LIMIT or OFFSET 2099 ** (2) All terms are UNION ALL 2100 ** (3) There is no ORDER BY clause 2101 */ 2102 static int multiSelectValues( 2103 Parse *pParse, /* Parsing context */ 2104 Select *p, /* The right-most of SELECTs to be coded */ 2105 SelectDest *pDest /* What to do with query results */ 2106 ){ 2107 Select *pPrior; 2108 int nExpr = p->pEList->nExpr; 2109 int nRow = 1; 2110 int rc = 0; 2111 assert( p->pNext==0 ); 2112 assert( p->selFlags & SF_AllValues ); 2113 do{ 2114 assert( p->selFlags & SF_Values ); 2115 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2116 assert( p->pLimit==0 ); 2117 assert( p->pOffset==0 ); 2118 if( p->pEList->nExpr!=nExpr ){ 2119 selectWrongNumTermsError(pParse, p); 2120 return 1; 2121 } 2122 if( p->pPrior==0 ) break; 2123 assert( p->pPrior->pNext==p ); 2124 p = p->pPrior; 2125 nRow++; 2126 }while(1); 2127 while( p ){ 2128 pPrior = p->pPrior; 2129 p->pPrior = 0; 2130 rc = sqlite3Select(pParse, p, pDest); 2131 p->pPrior = pPrior; 2132 if( rc ) break; 2133 p->nSelectRow = nRow; 2134 p = p->pNext; 2135 } 2136 return rc; 2137 } 2138 2139 /* 2140 ** This routine is called to process a compound query form from 2141 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2142 ** INTERSECT 2143 ** 2144 ** "p" points to the right-most of the two queries. the query on the 2145 ** left is p->pPrior. The left query could also be a compound query 2146 ** in which case this routine will be called recursively. 2147 ** 2148 ** The results of the total query are to be written into a destination 2149 ** of type eDest with parameter iParm. 2150 ** 2151 ** Example 1: Consider a three-way compound SQL statement. 2152 ** 2153 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2154 ** 2155 ** This statement is parsed up as follows: 2156 ** 2157 ** SELECT c FROM t3 2158 ** | 2159 ** `-----> SELECT b FROM t2 2160 ** | 2161 ** `------> SELECT a FROM t1 2162 ** 2163 ** The arrows in the diagram above represent the Select.pPrior pointer. 2164 ** So if this routine is called with p equal to the t3 query, then 2165 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2166 ** 2167 ** Notice that because of the way SQLite parses compound SELECTs, the 2168 ** individual selects always group from left to right. 2169 */ 2170 static int multiSelect( 2171 Parse *pParse, /* Parsing context */ 2172 Select *p, /* The right-most of SELECTs to be coded */ 2173 SelectDest *pDest /* What to do with query results */ 2174 ){ 2175 int rc = SQLITE_OK; /* Success code from a subroutine */ 2176 Select *pPrior; /* Another SELECT immediately to our left */ 2177 Vdbe *v; /* Generate code to this VDBE */ 2178 SelectDest dest; /* Alternative data destination */ 2179 Select *pDelete = 0; /* Chain of simple selects to delete */ 2180 sqlite3 *db; /* Database connection */ 2181 #ifndef SQLITE_OMIT_EXPLAIN 2182 int iSub1 = 0; /* EQP id of left-hand query */ 2183 int iSub2 = 0; /* EQP id of right-hand query */ 2184 #endif 2185 2186 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2187 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2188 */ 2189 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2190 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2191 db = pParse->db; 2192 pPrior = p->pPrior; 2193 dest = *pDest; 2194 if( pPrior->pOrderBy ){ 2195 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2196 selectOpName(p->op)); 2197 rc = 1; 2198 goto multi_select_end; 2199 } 2200 if( pPrior->pLimit ){ 2201 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2202 selectOpName(p->op)); 2203 rc = 1; 2204 goto multi_select_end; 2205 } 2206 2207 v = sqlite3GetVdbe(pParse); 2208 assert( v!=0 ); /* The VDBE already created by calling function */ 2209 2210 /* Create the destination temporary table if necessary 2211 */ 2212 if( dest.eDest==SRT_EphemTab ){ 2213 assert( p->pEList ); 2214 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2215 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2216 dest.eDest = SRT_Table; 2217 } 2218 2219 /* Special handling for a compound-select that originates as a VALUES clause. 2220 */ 2221 if( p->selFlags & SF_AllValues ){ 2222 rc = multiSelectValues(pParse, p, &dest); 2223 goto multi_select_end; 2224 } 2225 2226 /* Make sure all SELECTs in the statement have the same number of elements 2227 ** in their result sets. 2228 */ 2229 assert( p->pEList && pPrior->pEList ); 2230 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2231 selectWrongNumTermsError(pParse, p); 2232 rc = 1; 2233 goto multi_select_end; 2234 } 2235 2236 #ifndef SQLITE_OMIT_CTE 2237 if( p->selFlags & SF_Recursive ){ 2238 generateWithRecursiveQuery(pParse, p, &dest); 2239 }else 2240 #endif 2241 2242 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2243 */ 2244 if( p->pOrderBy ){ 2245 return multiSelectOrderBy(pParse, p, pDest); 2246 }else 2247 2248 /* Generate code for the left and right SELECT statements. 2249 */ 2250 switch( p->op ){ 2251 case TK_ALL: { 2252 int addr = 0; 2253 int nLimit; 2254 assert( !pPrior->pLimit ); 2255 pPrior->iLimit = p->iLimit; 2256 pPrior->iOffset = p->iOffset; 2257 pPrior->pLimit = p->pLimit; 2258 pPrior->pOffset = p->pOffset; 2259 explainSetInteger(iSub1, pParse->iNextSelectId); 2260 rc = sqlite3Select(pParse, pPrior, &dest); 2261 p->pLimit = 0; 2262 p->pOffset = 0; 2263 if( rc ){ 2264 goto multi_select_end; 2265 } 2266 p->pPrior = 0; 2267 p->iLimit = pPrior->iLimit; 2268 p->iOffset = pPrior->iOffset; 2269 if( p->iLimit ){ 2270 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2271 VdbeComment((v, "Jump ahead if LIMIT reached")); 2272 } 2273 explainSetInteger(iSub2, pParse->iNextSelectId); 2274 rc = sqlite3Select(pParse, p, &dest); 2275 testcase( rc!=SQLITE_OK ); 2276 pDelete = p->pPrior; 2277 p->pPrior = pPrior; 2278 p->nSelectRow += pPrior->nSelectRow; 2279 if( pPrior->pLimit 2280 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2281 && nLimit>0 && p->nSelectRow > (u64)nLimit 2282 ){ 2283 p->nSelectRow = nLimit; 2284 } 2285 if( addr ){ 2286 sqlite3VdbeJumpHere(v, addr); 2287 } 2288 break; 2289 } 2290 case TK_EXCEPT: 2291 case TK_UNION: { 2292 int unionTab; /* Cursor number of the temporary table holding result */ 2293 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2294 int priorOp; /* The SRT_ operation to apply to prior selects */ 2295 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2296 int addr; 2297 SelectDest uniondest; 2298 2299 testcase( p->op==TK_EXCEPT ); 2300 testcase( p->op==TK_UNION ); 2301 priorOp = SRT_Union; 2302 if( dest.eDest==priorOp ){ 2303 /* We can reuse a temporary table generated by a SELECT to our 2304 ** right. 2305 */ 2306 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2307 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2308 unionTab = dest.iSDParm; 2309 }else{ 2310 /* We will need to create our own temporary table to hold the 2311 ** intermediate results. 2312 */ 2313 unionTab = pParse->nTab++; 2314 assert( p->pOrderBy==0 ); 2315 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2316 assert( p->addrOpenEphm[0] == -1 ); 2317 p->addrOpenEphm[0] = addr; 2318 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2319 assert( p->pEList ); 2320 } 2321 2322 /* Code the SELECT statements to our left 2323 */ 2324 assert( !pPrior->pOrderBy ); 2325 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2326 explainSetInteger(iSub1, pParse->iNextSelectId); 2327 rc = sqlite3Select(pParse, pPrior, &uniondest); 2328 if( rc ){ 2329 goto multi_select_end; 2330 } 2331 2332 /* Code the current SELECT statement 2333 */ 2334 if( p->op==TK_EXCEPT ){ 2335 op = SRT_Except; 2336 }else{ 2337 assert( p->op==TK_UNION ); 2338 op = SRT_Union; 2339 } 2340 p->pPrior = 0; 2341 pLimit = p->pLimit; 2342 p->pLimit = 0; 2343 pOffset = p->pOffset; 2344 p->pOffset = 0; 2345 uniondest.eDest = op; 2346 explainSetInteger(iSub2, pParse->iNextSelectId); 2347 rc = sqlite3Select(pParse, p, &uniondest); 2348 testcase( rc!=SQLITE_OK ); 2349 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2350 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2351 sqlite3ExprListDelete(db, p->pOrderBy); 2352 pDelete = p->pPrior; 2353 p->pPrior = pPrior; 2354 p->pOrderBy = 0; 2355 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2356 sqlite3ExprDelete(db, p->pLimit); 2357 p->pLimit = pLimit; 2358 p->pOffset = pOffset; 2359 p->iLimit = 0; 2360 p->iOffset = 0; 2361 2362 /* Convert the data in the temporary table into whatever form 2363 ** it is that we currently need. 2364 */ 2365 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2366 if( dest.eDest!=priorOp ){ 2367 int iCont, iBreak, iStart; 2368 assert( p->pEList ); 2369 if( dest.eDest==SRT_Output ){ 2370 Select *pFirst = p; 2371 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2372 generateColumnNames(pParse, 0, pFirst->pEList); 2373 } 2374 iBreak = sqlite3VdbeMakeLabel(v); 2375 iCont = sqlite3VdbeMakeLabel(v); 2376 computeLimitRegisters(pParse, p, iBreak); 2377 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2378 iStart = sqlite3VdbeCurrentAddr(v); 2379 selectInnerLoop(pParse, p, p->pEList, unionTab, 2380 0, 0, &dest, iCont, iBreak); 2381 sqlite3VdbeResolveLabel(v, iCont); 2382 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2383 sqlite3VdbeResolveLabel(v, iBreak); 2384 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2385 } 2386 break; 2387 } 2388 default: assert( p->op==TK_INTERSECT ); { 2389 int tab1, tab2; 2390 int iCont, iBreak, iStart; 2391 Expr *pLimit, *pOffset; 2392 int addr; 2393 SelectDest intersectdest; 2394 int r1; 2395 2396 /* INTERSECT is different from the others since it requires 2397 ** two temporary tables. Hence it has its own case. Begin 2398 ** by allocating the tables we will need. 2399 */ 2400 tab1 = pParse->nTab++; 2401 tab2 = pParse->nTab++; 2402 assert( p->pOrderBy==0 ); 2403 2404 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2405 assert( p->addrOpenEphm[0] == -1 ); 2406 p->addrOpenEphm[0] = addr; 2407 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2408 assert( p->pEList ); 2409 2410 /* Code the SELECTs to our left into temporary table "tab1". 2411 */ 2412 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2413 explainSetInteger(iSub1, pParse->iNextSelectId); 2414 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2415 if( rc ){ 2416 goto multi_select_end; 2417 } 2418 2419 /* Code the current SELECT into temporary table "tab2" 2420 */ 2421 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2422 assert( p->addrOpenEphm[1] == -1 ); 2423 p->addrOpenEphm[1] = addr; 2424 p->pPrior = 0; 2425 pLimit = p->pLimit; 2426 p->pLimit = 0; 2427 pOffset = p->pOffset; 2428 p->pOffset = 0; 2429 intersectdest.iSDParm = tab2; 2430 explainSetInteger(iSub2, pParse->iNextSelectId); 2431 rc = sqlite3Select(pParse, p, &intersectdest); 2432 testcase( rc!=SQLITE_OK ); 2433 pDelete = p->pPrior; 2434 p->pPrior = pPrior; 2435 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2436 sqlite3ExprDelete(db, p->pLimit); 2437 p->pLimit = pLimit; 2438 p->pOffset = pOffset; 2439 2440 /* Generate code to take the intersection of the two temporary 2441 ** tables. 2442 */ 2443 assert( p->pEList ); 2444 if( dest.eDest==SRT_Output ){ 2445 Select *pFirst = p; 2446 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2447 generateColumnNames(pParse, 0, pFirst->pEList); 2448 } 2449 iBreak = sqlite3VdbeMakeLabel(v); 2450 iCont = sqlite3VdbeMakeLabel(v); 2451 computeLimitRegisters(pParse, p, iBreak); 2452 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2453 r1 = sqlite3GetTempReg(pParse); 2454 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2455 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2456 sqlite3ReleaseTempReg(pParse, r1); 2457 selectInnerLoop(pParse, p, p->pEList, tab1, 2458 0, 0, &dest, iCont, iBreak); 2459 sqlite3VdbeResolveLabel(v, iCont); 2460 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2461 sqlite3VdbeResolveLabel(v, iBreak); 2462 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2463 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2464 break; 2465 } 2466 } 2467 2468 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2469 2470 /* Compute collating sequences used by 2471 ** temporary tables needed to implement the compound select. 2472 ** Attach the KeyInfo structure to all temporary tables. 2473 ** 2474 ** This section is run by the right-most SELECT statement only. 2475 ** SELECT statements to the left always skip this part. The right-most 2476 ** SELECT might also skip this part if it has no ORDER BY clause and 2477 ** no temp tables are required. 2478 */ 2479 if( p->selFlags & SF_UsesEphemeral ){ 2480 int i; /* Loop counter */ 2481 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2482 Select *pLoop; /* For looping through SELECT statements */ 2483 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2484 int nCol; /* Number of columns in result set */ 2485 2486 assert( p->pNext==0 ); 2487 nCol = p->pEList->nExpr; 2488 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2489 if( !pKeyInfo ){ 2490 rc = SQLITE_NOMEM; 2491 goto multi_select_end; 2492 } 2493 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2494 *apColl = multiSelectCollSeq(pParse, p, i); 2495 if( 0==*apColl ){ 2496 *apColl = db->pDfltColl; 2497 } 2498 } 2499 2500 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2501 for(i=0; i<2; i++){ 2502 int addr = pLoop->addrOpenEphm[i]; 2503 if( addr<0 ){ 2504 /* If [0] is unused then [1] is also unused. So we can 2505 ** always safely abort as soon as the first unused slot is found */ 2506 assert( pLoop->addrOpenEphm[1]<0 ); 2507 break; 2508 } 2509 sqlite3VdbeChangeP2(v, addr, nCol); 2510 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2511 P4_KEYINFO); 2512 pLoop->addrOpenEphm[i] = -1; 2513 } 2514 } 2515 sqlite3KeyInfoUnref(pKeyInfo); 2516 } 2517 2518 multi_select_end: 2519 pDest->iSdst = dest.iSdst; 2520 pDest->nSdst = dest.nSdst; 2521 sqlite3SelectDelete(db, pDelete); 2522 return rc; 2523 } 2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2525 2526 /* 2527 ** Code an output subroutine for a coroutine implementation of a 2528 ** SELECT statment. 2529 ** 2530 ** The data to be output is contained in pIn->iSdst. There are 2531 ** pIn->nSdst columns to be output. pDest is where the output should 2532 ** be sent. 2533 ** 2534 ** regReturn is the number of the register holding the subroutine 2535 ** return address. 2536 ** 2537 ** If regPrev>0 then it is the first register in a vector that 2538 ** records the previous output. mem[regPrev] is a flag that is false 2539 ** if there has been no previous output. If regPrev>0 then code is 2540 ** generated to suppress duplicates. pKeyInfo is used for comparing 2541 ** keys. 2542 ** 2543 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2544 ** iBreak. 2545 */ 2546 static int generateOutputSubroutine( 2547 Parse *pParse, /* Parsing context */ 2548 Select *p, /* The SELECT statement */ 2549 SelectDest *pIn, /* Coroutine supplying data */ 2550 SelectDest *pDest, /* Where to send the data */ 2551 int regReturn, /* The return address register */ 2552 int regPrev, /* Previous result register. No uniqueness if 0 */ 2553 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2554 int iBreak /* Jump here if we hit the LIMIT */ 2555 ){ 2556 Vdbe *v = pParse->pVdbe; 2557 int iContinue; 2558 int addr; 2559 2560 addr = sqlite3VdbeCurrentAddr(v); 2561 iContinue = sqlite3VdbeMakeLabel(v); 2562 2563 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2564 */ 2565 if( regPrev ){ 2566 int j1, j2; 2567 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2568 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2569 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2570 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2571 sqlite3VdbeJumpHere(v, j1); 2572 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2573 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2574 } 2575 if( pParse->db->mallocFailed ) return 0; 2576 2577 /* Suppress the first OFFSET entries if there is an OFFSET clause 2578 */ 2579 codeOffset(v, p->iOffset, iContinue); 2580 2581 switch( pDest->eDest ){ 2582 /* Store the result as data using a unique key. 2583 */ 2584 case SRT_Table: 2585 case SRT_EphemTab: { 2586 int r1 = sqlite3GetTempReg(pParse); 2587 int r2 = sqlite3GetTempReg(pParse); 2588 testcase( pDest->eDest==SRT_Table ); 2589 testcase( pDest->eDest==SRT_EphemTab ); 2590 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2591 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2592 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2593 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2594 sqlite3ReleaseTempReg(pParse, r2); 2595 sqlite3ReleaseTempReg(pParse, r1); 2596 break; 2597 } 2598 2599 #ifndef SQLITE_OMIT_SUBQUERY 2600 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2601 ** then there should be a single item on the stack. Write this 2602 ** item into the set table with bogus data. 2603 */ 2604 case SRT_Set: { 2605 int r1; 2606 assert( pIn->nSdst==1 ); 2607 pDest->affSdst = 2608 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2609 r1 = sqlite3GetTempReg(pParse); 2610 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2611 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2612 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2613 sqlite3ReleaseTempReg(pParse, r1); 2614 break; 2615 } 2616 2617 #if 0 /* Never occurs on an ORDER BY query */ 2618 /* If any row exist in the result set, record that fact and abort. 2619 */ 2620 case SRT_Exists: { 2621 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2622 /* The LIMIT clause will terminate the loop for us */ 2623 break; 2624 } 2625 #endif 2626 2627 /* If this is a scalar select that is part of an expression, then 2628 ** store the results in the appropriate memory cell and break out 2629 ** of the scan loop. 2630 */ 2631 case SRT_Mem: { 2632 assert( pIn->nSdst==1 ); 2633 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2634 /* The LIMIT clause will jump out of the loop for us */ 2635 break; 2636 } 2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2638 2639 /* The results are stored in a sequence of registers 2640 ** starting at pDest->iSdst. Then the co-routine yields. 2641 */ 2642 case SRT_Coroutine: { 2643 if( pDest->iSdst==0 ){ 2644 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2645 pDest->nSdst = pIn->nSdst; 2646 } 2647 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2648 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2649 break; 2650 } 2651 2652 /* If none of the above, then the result destination must be 2653 ** SRT_Output. This routine is never called with any other 2654 ** destination other than the ones handled above or SRT_Output. 2655 ** 2656 ** For SRT_Output, results are stored in a sequence of registers. 2657 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2658 ** return the next row of result. 2659 */ 2660 default: { 2661 assert( pDest->eDest==SRT_Output ); 2662 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2663 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2664 break; 2665 } 2666 } 2667 2668 /* Jump to the end of the loop if the LIMIT is reached. 2669 */ 2670 if( p->iLimit ){ 2671 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2672 } 2673 2674 /* Generate the subroutine return 2675 */ 2676 sqlite3VdbeResolveLabel(v, iContinue); 2677 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2678 2679 return addr; 2680 } 2681 2682 /* 2683 ** Alternative compound select code generator for cases when there 2684 ** is an ORDER BY clause. 2685 ** 2686 ** We assume a query of the following form: 2687 ** 2688 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2689 ** 2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2692 ** co-routines. Then run the co-routines in parallel and merge the results 2693 ** into the output. In addition to the two coroutines (called selectA and 2694 ** selectB) there are 7 subroutines: 2695 ** 2696 ** outA: Move the output of the selectA coroutine into the output 2697 ** of the compound query. 2698 ** 2699 ** outB: Move the output of the selectB coroutine into the output 2700 ** of the compound query. (Only generated for UNION and 2701 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2702 ** appears only in B.) 2703 ** 2704 ** AltB: Called when there is data from both coroutines and A<B. 2705 ** 2706 ** AeqB: Called when there is data from both coroutines and A==B. 2707 ** 2708 ** AgtB: Called when there is data from both coroutines and A>B. 2709 ** 2710 ** EofA: Called when data is exhausted from selectA. 2711 ** 2712 ** EofB: Called when data is exhausted from selectB. 2713 ** 2714 ** The implementation of the latter five subroutines depend on which 2715 ** <operator> is used: 2716 ** 2717 ** 2718 ** UNION ALL UNION EXCEPT INTERSECT 2719 ** ------------- ----------------- -------------- ----------------- 2720 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2721 ** 2722 ** AeqB: outA, nextA nextA nextA outA, nextA 2723 ** 2724 ** AgtB: outB, nextB outB, nextB nextB nextB 2725 ** 2726 ** EofA: outB, nextB outB, nextB halt halt 2727 ** 2728 ** EofB: outA, nextA outA, nextA outA, nextA halt 2729 ** 2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2732 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2733 ** following nextX causes a jump to the end of the select processing. 2734 ** 2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2736 ** within the output subroutine. The regPrev register set holds the previously 2737 ** output value. A comparison is made against this value and the output 2738 ** is skipped if the next results would be the same as the previous. 2739 ** 2740 ** The implementation plan is to implement the two coroutines and seven 2741 ** subroutines first, then put the control logic at the bottom. Like this: 2742 ** 2743 ** goto Init 2744 ** coA: coroutine for left query (A) 2745 ** coB: coroutine for right query (B) 2746 ** outA: output one row of A 2747 ** outB: output one row of B (UNION and UNION ALL only) 2748 ** EofA: ... 2749 ** EofB: ... 2750 ** AltB: ... 2751 ** AeqB: ... 2752 ** AgtB: ... 2753 ** Init: initialize coroutine registers 2754 ** yield coA 2755 ** if eof(A) goto EofA 2756 ** yield coB 2757 ** if eof(B) goto EofB 2758 ** Cmpr: Compare A, B 2759 ** Jump AltB, AeqB, AgtB 2760 ** End: ... 2761 ** 2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2763 ** actually called using Gosub and they do not Return. EofA and EofB loop 2764 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2765 ** and AgtB jump to either L2 or to one of EofA or EofB. 2766 */ 2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2768 static int multiSelectOrderBy( 2769 Parse *pParse, /* Parsing context */ 2770 Select *p, /* The right-most of SELECTs to be coded */ 2771 SelectDest *pDest /* What to do with query results */ 2772 ){ 2773 int i, j; /* Loop counters */ 2774 Select *pPrior; /* Another SELECT immediately to our left */ 2775 Vdbe *v; /* Generate code to this VDBE */ 2776 SelectDest destA; /* Destination for coroutine A */ 2777 SelectDest destB; /* Destination for coroutine B */ 2778 int regAddrA; /* Address register for select-A coroutine */ 2779 int regAddrB; /* Address register for select-B coroutine */ 2780 int addrSelectA; /* Address of the select-A coroutine */ 2781 int addrSelectB; /* Address of the select-B coroutine */ 2782 int regOutA; /* Address register for the output-A subroutine */ 2783 int regOutB; /* Address register for the output-B subroutine */ 2784 int addrOutA; /* Address of the output-A subroutine */ 2785 int addrOutB = 0; /* Address of the output-B subroutine */ 2786 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2787 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2788 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2789 int addrAltB; /* Address of the A<B subroutine */ 2790 int addrAeqB; /* Address of the A==B subroutine */ 2791 int addrAgtB; /* Address of the A>B subroutine */ 2792 int regLimitA; /* Limit register for select-A */ 2793 int regLimitB; /* Limit register for select-A */ 2794 int regPrev; /* A range of registers to hold previous output */ 2795 int savedLimit; /* Saved value of p->iLimit */ 2796 int savedOffset; /* Saved value of p->iOffset */ 2797 int labelCmpr; /* Label for the start of the merge algorithm */ 2798 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2799 int j1; /* Jump instructions that get retargetted */ 2800 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2801 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2802 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2803 sqlite3 *db; /* Database connection */ 2804 ExprList *pOrderBy; /* The ORDER BY clause */ 2805 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2806 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2807 #ifndef SQLITE_OMIT_EXPLAIN 2808 int iSub1; /* EQP id of left-hand query */ 2809 int iSub2; /* EQP id of right-hand query */ 2810 #endif 2811 2812 assert( p->pOrderBy!=0 ); 2813 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2814 db = pParse->db; 2815 v = pParse->pVdbe; 2816 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2817 labelEnd = sqlite3VdbeMakeLabel(v); 2818 labelCmpr = sqlite3VdbeMakeLabel(v); 2819 2820 2821 /* Patch up the ORDER BY clause 2822 */ 2823 op = p->op; 2824 pPrior = p->pPrior; 2825 assert( pPrior->pOrderBy==0 ); 2826 pOrderBy = p->pOrderBy; 2827 assert( pOrderBy ); 2828 nOrderBy = pOrderBy->nExpr; 2829 2830 /* For operators other than UNION ALL we have to make sure that 2831 ** the ORDER BY clause covers every term of the result set. Add 2832 ** terms to the ORDER BY clause as necessary. 2833 */ 2834 if( op!=TK_ALL ){ 2835 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2836 struct ExprList_item *pItem; 2837 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2838 assert( pItem->u.x.iOrderByCol>0 ); 2839 if( pItem->u.x.iOrderByCol==i ) break; 2840 } 2841 if( j==nOrderBy ){ 2842 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2843 if( pNew==0 ) return SQLITE_NOMEM; 2844 pNew->flags |= EP_IntValue; 2845 pNew->u.iValue = i; 2846 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2847 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2848 } 2849 } 2850 } 2851 2852 /* Compute the comparison permutation and keyinfo that is used with 2853 ** the permutation used to determine if the next 2854 ** row of results comes from selectA or selectB. Also add explicit 2855 ** collations to the ORDER BY clause terms so that when the subqueries 2856 ** to the right and the left are evaluated, they use the correct 2857 ** collation. 2858 */ 2859 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2860 if( aPermute ){ 2861 struct ExprList_item *pItem; 2862 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2863 assert( pItem->u.x.iOrderByCol>0 2864 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2865 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2866 } 2867 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2868 }else{ 2869 pKeyMerge = 0; 2870 } 2871 2872 /* Reattach the ORDER BY clause to the query. 2873 */ 2874 p->pOrderBy = pOrderBy; 2875 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2876 2877 /* Allocate a range of temporary registers and the KeyInfo needed 2878 ** for the logic that removes duplicate result rows when the 2879 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2880 */ 2881 if( op==TK_ALL ){ 2882 regPrev = 0; 2883 }else{ 2884 int nExpr = p->pEList->nExpr; 2885 assert( nOrderBy>=nExpr || db->mallocFailed ); 2886 regPrev = pParse->nMem+1; 2887 pParse->nMem += nExpr+1; 2888 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2889 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2890 if( pKeyDup ){ 2891 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2892 for(i=0; i<nExpr; i++){ 2893 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2894 pKeyDup->aSortOrder[i] = 0; 2895 } 2896 } 2897 } 2898 2899 /* Separate the left and the right query from one another 2900 */ 2901 p->pPrior = 0; 2902 pPrior->pNext = 0; 2903 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2904 if( pPrior->pPrior==0 ){ 2905 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2906 } 2907 2908 /* Compute the limit registers */ 2909 computeLimitRegisters(pParse, p, labelEnd); 2910 if( p->iLimit && op==TK_ALL ){ 2911 regLimitA = ++pParse->nMem; 2912 regLimitB = ++pParse->nMem; 2913 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2914 regLimitA); 2915 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2916 }else{ 2917 regLimitA = regLimitB = 0; 2918 } 2919 sqlite3ExprDelete(db, p->pLimit); 2920 p->pLimit = 0; 2921 sqlite3ExprDelete(db, p->pOffset); 2922 p->pOffset = 0; 2923 2924 regAddrA = ++pParse->nMem; 2925 regAddrB = ++pParse->nMem; 2926 regOutA = ++pParse->nMem; 2927 regOutB = ++pParse->nMem; 2928 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2929 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2930 2931 /* Generate a coroutine to evaluate the SELECT statement to the 2932 ** left of the compound operator - the "A" select. 2933 */ 2934 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2935 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2936 VdbeComment((v, "left SELECT")); 2937 pPrior->iLimit = regLimitA; 2938 explainSetInteger(iSub1, pParse->iNextSelectId); 2939 sqlite3Select(pParse, pPrior, &destA); 2940 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2941 sqlite3VdbeJumpHere(v, j1); 2942 2943 /* Generate a coroutine to evaluate the SELECT statement on 2944 ** the right - the "B" select 2945 */ 2946 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2947 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2948 VdbeComment((v, "right SELECT")); 2949 savedLimit = p->iLimit; 2950 savedOffset = p->iOffset; 2951 p->iLimit = regLimitB; 2952 p->iOffset = 0; 2953 explainSetInteger(iSub2, pParse->iNextSelectId); 2954 sqlite3Select(pParse, p, &destB); 2955 p->iLimit = savedLimit; 2956 p->iOffset = savedOffset; 2957 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2958 2959 /* Generate a subroutine that outputs the current row of the A 2960 ** select as the next output row of the compound select. 2961 */ 2962 VdbeNoopComment((v, "Output routine for A")); 2963 addrOutA = generateOutputSubroutine(pParse, 2964 p, &destA, pDest, regOutA, 2965 regPrev, pKeyDup, labelEnd); 2966 2967 /* Generate a subroutine that outputs the current row of the B 2968 ** select as the next output row of the compound select. 2969 */ 2970 if( op==TK_ALL || op==TK_UNION ){ 2971 VdbeNoopComment((v, "Output routine for B")); 2972 addrOutB = generateOutputSubroutine(pParse, 2973 p, &destB, pDest, regOutB, 2974 regPrev, pKeyDup, labelEnd); 2975 } 2976 sqlite3KeyInfoUnref(pKeyDup); 2977 2978 /* Generate a subroutine to run when the results from select A 2979 ** are exhausted and only data in select B remains. 2980 */ 2981 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2982 addrEofA_noB = addrEofA = labelEnd; 2983 }else{ 2984 VdbeNoopComment((v, "eof-A subroutine")); 2985 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2986 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2987 VdbeCoverage(v); 2988 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2989 p->nSelectRow += pPrior->nSelectRow; 2990 } 2991 2992 /* Generate a subroutine to run when the results from select B 2993 ** are exhausted and only data in select A remains. 2994 */ 2995 if( op==TK_INTERSECT ){ 2996 addrEofB = addrEofA; 2997 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2998 }else{ 2999 VdbeNoopComment((v, "eof-B subroutine")); 3000 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3001 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3002 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3003 } 3004 3005 /* Generate code to handle the case of A<B 3006 */ 3007 VdbeNoopComment((v, "A-lt-B subroutine")); 3008 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3009 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3010 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3011 3012 /* Generate code to handle the case of A==B 3013 */ 3014 if( op==TK_ALL ){ 3015 addrAeqB = addrAltB; 3016 }else if( op==TK_INTERSECT ){ 3017 addrAeqB = addrAltB; 3018 addrAltB++; 3019 }else{ 3020 VdbeNoopComment((v, "A-eq-B subroutine")); 3021 addrAeqB = 3022 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3023 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3024 } 3025 3026 /* Generate code to handle the case of A>B 3027 */ 3028 VdbeNoopComment((v, "A-gt-B subroutine")); 3029 addrAgtB = sqlite3VdbeCurrentAddr(v); 3030 if( op==TK_ALL || op==TK_UNION ){ 3031 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3032 } 3033 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3034 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3035 3036 /* This code runs once to initialize everything. 3037 */ 3038 sqlite3VdbeJumpHere(v, j1); 3039 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3040 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3041 3042 /* Implement the main merge loop 3043 */ 3044 sqlite3VdbeResolveLabel(v, labelCmpr); 3045 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3046 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3047 (char*)pKeyMerge, P4_KEYINFO); 3048 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3049 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3050 3051 /* Jump to the this point in order to terminate the query. 3052 */ 3053 sqlite3VdbeResolveLabel(v, labelEnd); 3054 3055 /* Set the number of output columns 3056 */ 3057 if( pDest->eDest==SRT_Output ){ 3058 Select *pFirst = pPrior; 3059 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3060 generateColumnNames(pParse, 0, pFirst->pEList); 3061 } 3062 3063 /* Reassembly the compound query so that it will be freed correctly 3064 ** by the calling function */ 3065 if( p->pPrior ){ 3066 sqlite3SelectDelete(db, p->pPrior); 3067 } 3068 p->pPrior = pPrior; 3069 pPrior->pNext = p; 3070 3071 /*** TBD: Insert subroutine calls to close cursors on incomplete 3072 **** subqueries ****/ 3073 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3074 return SQLITE_OK; 3075 } 3076 #endif 3077 3078 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3079 /* Forward Declarations */ 3080 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3081 static void substSelect(sqlite3*, Select *, int, ExprList *); 3082 3083 /* 3084 ** Scan through the expression pExpr. Replace every reference to 3085 ** a column in table number iTable with a copy of the iColumn-th 3086 ** entry in pEList. (But leave references to the ROWID column 3087 ** unchanged.) 3088 ** 3089 ** This routine is part of the flattening procedure. A subquery 3090 ** whose result set is defined by pEList appears as entry in the 3091 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3092 ** FORM clause entry is iTable. This routine make the necessary 3093 ** changes to pExpr so that it refers directly to the source table 3094 ** of the subquery rather the result set of the subquery. 3095 */ 3096 static Expr *substExpr( 3097 sqlite3 *db, /* Report malloc errors to this connection */ 3098 Expr *pExpr, /* Expr in which substitution occurs */ 3099 int iTable, /* Table to be substituted */ 3100 ExprList *pEList /* Substitute expressions */ 3101 ){ 3102 if( pExpr==0 ) return 0; 3103 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3104 if( pExpr->iColumn<0 ){ 3105 pExpr->op = TK_NULL; 3106 }else{ 3107 Expr *pNew; 3108 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3109 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3110 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3111 sqlite3ExprDelete(db, pExpr); 3112 pExpr = pNew; 3113 } 3114 }else{ 3115 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3116 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3117 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3118 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3119 }else{ 3120 substExprList(db, pExpr->x.pList, iTable, pEList); 3121 } 3122 } 3123 return pExpr; 3124 } 3125 static void substExprList( 3126 sqlite3 *db, /* Report malloc errors here */ 3127 ExprList *pList, /* List to scan and in which to make substitutes */ 3128 int iTable, /* Table to be substituted */ 3129 ExprList *pEList /* Substitute values */ 3130 ){ 3131 int i; 3132 if( pList==0 ) return; 3133 for(i=0; i<pList->nExpr; i++){ 3134 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3135 } 3136 } 3137 static void substSelect( 3138 sqlite3 *db, /* Report malloc errors here */ 3139 Select *p, /* SELECT statement in which to make substitutions */ 3140 int iTable, /* Table to be replaced */ 3141 ExprList *pEList /* Substitute values */ 3142 ){ 3143 SrcList *pSrc; 3144 struct SrcList_item *pItem; 3145 int i; 3146 if( !p ) return; 3147 substExprList(db, p->pEList, iTable, pEList); 3148 substExprList(db, p->pGroupBy, iTable, pEList); 3149 substExprList(db, p->pOrderBy, iTable, pEList); 3150 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3151 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3152 substSelect(db, p->pPrior, iTable, pEList); 3153 pSrc = p->pSrc; 3154 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3155 if( ALWAYS(pSrc) ){ 3156 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3157 substSelect(db, pItem->pSelect, iTable, pEList); 3158 } 3159 } 3160 } 3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3162 3163 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3164 /* 3165 ** This routine attempts to flatten subqueries as a performance optimization. 3166 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3167 ** 3168 ** To understand the concept of flattening, consider the following 3169 ** query: 3170 ** 3171 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3172 ** 3173 ** The default way of implementing this query is to execute the 3174 ** subquery first and store the results in a temporary table, then 3175 ** run the outer query on that temporary table. This requires two 3176 ** passes over the data. Furthermore, because the temporary table 3177 ** has no indices, the WHERE clause on the outer query cannot be 3178 ** optimized. 3179 ** 3180 ** This routine attempts to rewrite queries such as the above into 3181 ** a single flat select, like this: 3182 ** 3183 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3184 ** 3185 ** The code generated for this simplification gives the same result 3186 ** but only has to scan the data once. And because indices might 3187 ** exist on the table t1, a complete scan of the data might be 3188 ** avoided. 3189 ** 3190 ** Flattening is only attempted if all of the following are true: 3191 ** 3192 ** (1) The subquery and the outer query do not both use aggregates. 3193 ** 3194 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3195 ** and (2b) the outer query does not use subqueries other than the one 3196 ** FROM-clause subquery that is a candidate for flattening. (2b is 3197 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3198 ** 3199 ** (3) The subquery is not the right operand of a left outer join 3200 ** (Originally ticket #306. Strengthened by ticket #3300) 3201 ** 3202 ** (4) The subquery is not DISTINCT. 3203 ** 3204 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3205 ** sub-queries that were excluded from this optimization. Restriction 3206 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3207 ** 3208 ** (6) The subquery does not use aggregates or the outer query is not 3209 ** DISTINCT. 3210 ** 3211 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3212 ** A FROM clause, consider adding a FROM close with the special 3213 ** table sqlite_once that consists of a single row containing a 3214 ** single NULL. 3215 ** 3216 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3217 ** 3218 ** (9) The subquery does not use LIMIT or the outer query does not use 3219 ** aggregates. 3220 ** 3221 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3222 ** accidently carried the comment forward until 2014-09-15. Original 3223 ** text: "The subquery does not use aggregates or the outer query does not 3224 ** use LIMIT." 3225 ** 3226 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3227 ** 3228 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3229 ** a separate restriction deriving from ticket #350. 3230 ** 3231 ** (13) The subquery and outer query do not both use LIMIT. 3232 ** 3233 ** (14) The subquery does not use OFFSET. 3234 ** 3235 ** (15) The outer query is not part of a compound select or the 3236 ** subquery does not have a LIMIT clause. 3237 ** (See ticket #2339 and ticket [02a8e81d44]). 3238 ** 3239 ** (16) The outer query is not an aggregate or the subquery does 3240 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3241 ** until we introduced the group_concat() function. 3242 ** 3243 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3244 ** compound clause made up entirely of non-aggregate queries, and 3245 ** the parent query: 3246 ** 3247 ** * is not itself part of a compound select, 3248 ** * is not an aggregate or DISTINCT query, and 3249 ** * is not a join 3250 ** 3251 ** The parent and sub-query may contain WHERE clauses. Subject to 3252 ** rules (11), (13) and (14), they may also contain ORDER BY, 3253 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3254 ** operator other than UNION ALL because all the other compound 3255 ** operators have an implied DISTINCT which is disallowed by 3256 ** restriction (4). 3257 ** 3258 ** Also, each component of the sub-query must return the same number 3259 ** of result columns. This is actually a requirement for any compound 3260 ** SELECT statement, but all the code here does is make sure that no 3261 ** such (illegal) sub-query is flattened. The caller will detect the 3262 ** syntax error and return a detailed message. 3263 ** 3264 ** (18) If the sub-query is a compound select, then all terms of the 3265 ** ORDER by clause of the parent must be simple references to 3266 ** columns of the sub-query. 3267 ** 3268 ** (19) The subquery does not use LIMIT or the outer query does not 3269 ** have a WHERE clause. 3270 ** 3271 ** (20) If the sub-query is a compound select, then it must not use 3272 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3273 ** somewhat by saying that the terms of the ORDER BY clause must 3274 ** appear as unmodified result columns in the outer query. But we 3275 ** have other optimizations in mind to deal with that case. 3276 ** 3277 ** (21) The subquery does not use LIMIT or the outer query is not 3278 ** DISTINCT. (See ticket [752e1646fc]). 3279 ** 3280 ** (22) The subquery is not a recursive CTE. 3281 ** 3282 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3283 ** compound query. This restriction is because transforming the 3284 ** parent to a compound query confuses the code that handles 3285 ** recursive queries in multiSelect(). 3286 ** 3287 ** (24) The subquery is not an aggregate that uses the built-in min() or 3288 ** or max() functions. (Without this restriction, a query like: 3289 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3290 ** return the value X for which Y was maximal.) 3291 ** 3292 ** 3293 ** In this routine, the "p" parameter is a pointer to the outer query. 3294 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3296 ** 3297 ** If flattening is not attempted, this routine is a no-op and returns 0. 3298 ** If flattening is attempted this routine returns 1. 3299 ** 3300 ** All of the expression analysis must occur on both the outer query and 3301 ** the subquery before this routine runs. 3302 */ 3303 static int flattenSubquery( 3304 Parse *pParse, /* Parsing context */ 3305 Select *p, /* The parent or outer SELECT statement */ 3306 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3307 int isAgg, /* True if outer SELECT uses aggregate functions */ 3308 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3309 ){ 3310 const char *zSavedAuthContext = pParse->zAuthContext; 3311 Select *pParent; 3312 Select *pSub; /* The inner query or "subquery" */ 3313 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3314 SrcList *pSrc; /* The FROM clause of the outer query */ 3315 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3316 ExprList *pList; /* The result set of the outer query */ 3317 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3318 int i; /* Loop counter */ 3319 Expr *pWhere; /* The WHERE clause */ 3320 struct SrcList_item *pSubitem; /* The subquery */ 3321 sqlite3 *db = pParse->db; 3322 3323 /* Check to see if flattening is permitted. Return 0 if not. 3324 */ 3325 assert( p!=0 ); 3326 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3327 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3328 pSrc = p->pSrc; 3329 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3330 pSubitem = &pSrc->a[iFrom]; 3331 iParent = pSubitem->iCursor; 3332 pSub = pSubitem->pSelect; 3333 assert( pSub!=0 ); 3334 if( subqueryIsAgg ){ 3335 if( isAgg ) return 0; /* Restriction (1) */ 3336 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3337 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3338 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3339 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3340 ){ 3341 return 0; /* Restriction (2b) */ 3342 } 3343 } 3344 3345 pSubSrc = pSub->pSrc; 3346 assert( pSubSrc ); 3347 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3348 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3349 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3350 ** became arbitrary expressions, we were forced to add restrictions (13) 3351 ** and (14). */ 3352 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3353 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3354 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3355 return 0; /* Restriction (15) */ 3356 } 3357 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3358 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3359 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3360 return 0; /* Restrictions (8)(9) */ 3361 } 3362 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3363 return 0; /* Restriction (6) */ 3364 } 3365 if( p->pOrderBy && pSub->pOrderBy ){ 3366 return 0; /* Restriction (11) */ 3367 } 3368 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3369 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3370 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3371 return 0; /* Restriction (21) */ 3372 } 3373 testcase( pSub->selFlags & SF_Recursive ); 3374 testcase( pSub->selFlags & SF_MinMaxAgg ); 3375 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3376 return 0; /* Restrictions (22) and (24) */ 3377 } 3378 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3379 return 0; /* Restriction (23) */ 3380 } 3381 3382 /* OBSOLETE COMMENT 1: 3383 ** Restriction 3: If the subquery is a join, make sure the subquery is 3384 ** not used as the right operand of an outer join. Examples of why this 3385 ** is not allowed: 3386 ** 3387 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3388 ** 3389 ** If we flatten the above, we would get 3390 ** 3391 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3392 ** 3393 ** which is not at all the same thing. 3394 ** 3395 ** OBSOLETE COMMENT 2: 3396 ** Restriction 12: If the subquery is the right operand of a left outer 3397 ** join, make sure the subquery has no WHERE clause. 3398 ** An examples of why this is not allowed: 3399 ** 3400 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3401 ** 3402 ** If we flatten the above, we would get 3403 ** 3404 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3405 ** 3406 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3407 ** effectively converts the OUTER JOIN into an INNER JOIN. 3408 ** 3409 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3410 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3411 ** is fraught with danger. Best to avoid the whole thing. If the 3412 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3413 */ 3414 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3415 return 0; 3416 } 3417 3418 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3419 ** use only the UNION ALL operator. And none of the simple select queries 3420 ** that make up the compound SELECT are allowed to be aggregate or distinct 3421 ** queries. 3422 */ 3423 if( pSub->pPrior ){ 3424 if( pSub->pOrderBy ){ 3425 return 0; /* Restriction 20 */ 3426 } 3427 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3428 return 0; 3429 } 3430 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3431 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3432 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3433 assert( pSub->pSrc!=0 ); 3434 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3435 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3436 || pSub1->pSrc->nSrc<1 3437 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3438 ){ 3439 return 0; 3440 } 3441 testcase( pSub1->pSrc->nSrc>1 ); 3442 } 3443 3444 /* Restriction 18. */ 3445 if( p->pOrderBy ){ 3446 int ii; 3447 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3448 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3449 } 3450 } 3451 } 3452 3453 /***** If we reach this point, flattening is permitted. *****/ 3454 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3455 pSub->zSelName, pSub, iFrom)); 3456 3457 /* Authorize the subquery */ 3458 pParse->zAuthContext = pSubitem->zName; 3459 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3460 testcase( i==SQLITE_DENY ); 3461 pParse->zAuthContext = zSavedAuthContext; 3462 3463 /* If the sub-query is a compound SELECT statement, then (by restrictions 3464 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3465 ** be of the form: 3466 ** 3467 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3468 ** 3469 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3470 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3471 ** OFFSET clauses and joins them to the left-hand-side of the original 3472 ** using UNION ALL operators. In this case N is the number of simple 3473 ** select statements in the compound sub-query. 3474 ** 3475 ** Example: 3476 ** 3477 ** SELECT a+1 FROM ( 3478 ** SELECT x FROM tab 3479 ** UNION ALL 3480 ** SELECT y FROM tab 3481 ** UNION ALL 3482 ** SELECT abs(z*2) FROM tab2 3483 ** ) WHERE a!=5 ORDER BY 1 3484 ** 3485 ** Transformed into: 3486 ** 3487 ** SELECT x+1 FROM tab WHERE x+1!=5 3488 ** UNION ALL 3489 ** SELECT y+1 FROM tab WHERE y+1!=5 3490 ** UNION ALL 3491 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3492 ** ORDER BY 1 3493 ** 3494 ** We call this the "compound-subquery flattening". 3495 */ 3496 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3497 Select *pNew; 3498 ExprList *pOrderBy = p->pOrderBy; 3499 Expr *pLimit = p->pLimit; 3500 Expr *pOffset = p->pOffset; 3501 Select *pPrior = p->pPrior; 3502 p->pOrderBy = 0; 3503 p->pSrc = 0; 3504 p->pPrior = 0; 3505 p->pLimit = 0; 3506 p->pOffset = 0; 3507 pNew = sqlite3SelectDup(db, p, 0); 3508 sqlite3SelectSetName(pNew, pSub->zSelName); 3509 p->pOffset = pOffset; 3510 p->pLimit = pLimit; 3511 p->pOrderBy = pOrderBy; 3512 p->pSrc = pSrc; 3513 p->op = TK_ALL; 3514 if( pNew==0 ){ 3515 p->pPrior = pPrior; 3516 }else{ 3517 pNew->pPrior = pPrior; 3518 if( pPrior ) pPrior->pNext = pNew; 3519 pNew->pNext = p; 3520 p->pPrior = pNew; 3521 SELECTTRACE(2,pParse,p, 3522 ("compound-subquery flattener creates %s.%p as peer\n", 3523 pNew->zSelName, pNew)); 3524 } 3525 if( db->mallocFailed ) return 1; 3526 } 3527 3528 /* Begin flattening the iFrom-th entry of the FROM clause 3529 ** in the outer query. 3530 */ 3531 pSub = pSub1 = pSubitem->pSelect; 3532 3533 /* Delete the transient table structure associated with the 3534 ** subquery 3535 */ 3536 sqlite3DbFree(db, pSubitem->zDatabase); 3537 sqlite3DbFree(db, pSubitem->zName); 3538 sqlite3DbFree(db, pSubitem->zAlias); 3539 pSubitem->zDatabase = 0; 3540 pSubitem->zName = 0; 3541 pSubitem->zAlias = 0; 3542 pSubitem->pSelect = 0; 3543 3544 /* Defer deleting the Table object associated with the 3545 ** subquery until code generation is 3546 ** complete, since there may still exist Expr.pTab entries that 3547 ** refer to the subquery even after flattening. Ticket #3346. 3548 ** 3549 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3550 */ 3551 if( ALWAYS(pSubitem->pTab!=0) ){ 3552 Table *pTabToDel = pSubitem->pTab; 3553 if( pTabToDel->nRef==1 ){ 3554 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3555 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3556 pToplevel->pZombieTab = pTabToDel; 3557 }else{ 3558 pTabToDel->nRef--; 3559 } 3560 pSubitem->pTab = 0; 3561 } 3562 3563 /* The following loop runs once for each term in a compound-subquery 3564 ** flattening (as described above). If we are doing a different kind 3565 ** of flattening - a flattening other than a compound-subquery flattening - 3566 ** then this loop only runs once. 3567 ** 3568 ** This loop moves all of the FROM elements of the subquery into the 3569 ** the FROM clause of the outer query. Before doing this, remember 3570 ** the cursor number for the original outer query FROM element in 3571 ** iParent. The iParent cursor will never be used. Subsequent code 3572 ** will scan expressions looking for iParent references and replace 3573 ** those references with expressions that resolve to the subquery FROM 3574 ** elements we are now copying in. 3575 */ 3576 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3577 int nSubSrc; 3578 u8 jointype = 0; 3579 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3580 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3581 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3582 3583 if( pSrc ){ 3584 assert( pParent==p ); /* First time through the loop */ 3585 jointype = pSubitem->jointype; 3586 }else{ 3587 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3588 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3589 if( pSrc==0 ){ 3590 assert( db->mallocFailed ); 3591 break; 3592 } 3593 } 3594 3595 /* The subquery uses a single slot of the FROM clause of the outer 3596 ** query. If the subquery has more than one element in its FROM clause, 3597 ** then expand the outer query to make space for it to hold all elements 3598 ** of the subquery. 3599 ** 3600 ** Example: 3601 ** 3602 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3603 ** 3604 ** The outer query has 3 slots in its FROM clause. One slot of the 3605 ** outer query (the middle slot) is used by the subquery. The next 3606 ** block of code will expand the out query to 4 slots. The middle 3607 ** slot is expanded to two slots in order to make space for the 3608 ** two elements in the FROM clause of the subquery. 3609 */ 3610 if( nSubSrc>1 ){ 3611 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3612 if( db->mallocFailed ){ 3613 break; 3614 } 3615 } 3616 3617 /* Transfer the FROM clause terms from the subquery into the 3618 ** outer query. 3619 */ 3620 for(i=0; i<nSubSrc; i++){ 3621 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3622 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3623 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3624 } 3625 pSrc->a[iFrom].jointype = jointype; 3626 3627 /* Now begin substituting subquery result set expressions for 3628 ** references to the iParent in the outer query. 3629 ** 3630 ** Example: 3631 ** 3632 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3633 ** \ \_____________ subquery __________/ / 3634 ** \_____________________ outer query ______________________________/ 3635 ** 3636 ** We look at every expression in the outer query and every place we see 3637 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3638 */ 3639 pList = pParent->pEList; 3640 for(i=0; i<pList->nExpr; i++){ 3641 if( pList->a[i].zName==0 ){ 3642 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3643 sqlite3Dequote(zName); 3644 pList->a[i].zName = zName; 3645 } 3646 } 3647 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3648 if( isAgg ){ 3649 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3650 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3651 } 3652 if( pSub->pOrderBy ){ 3653 /* At this point, any non-zero iOrderByCol values indicate that the 3654 ** ORDER BY column expression is identical to the iOrderByCol'th 3655 ** expression returned by SELECT statement pSub. Since these values 3656 ** do not necessarily correspond to columns in SELECT statement pParent, 3657 ** zero them before transfering the ORDER BY clause. 3658 ** 3659 ** Not doing this may cause an error if a subsequent call to this 3660 ** function attempts to flatten a compound sub-query into pParent 3661 ** (the only way this can happen is if the compound sub-query is 3662 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3663 ExprList *pOrderBy = pSub->pOrderBy; 3664 for(i=0; i<pOrderBy->nExpr; i++){ 3665 pOrderBy->a[i].u.x.iOrderByCol = 0; 3666 } 3667 assert( pParent->pOrderBy==0 ); 3668 assert( pSub->pPrior==0 ); 3669 pParent->pOrderBy = pOrderBy; 3670 pSub->pOrderBy = 0; 3671 }else if( pParent->pOrderBy ){ 3672 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3673 } 3674 if( pSub->pWhere ){ 3675 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3676 }else{ 3677 pWhere = 0; 3678 } 3679 if( subqueryIsAgg ){ 3680 assert( pParent->pHaving==0 ); 3681 pParent->pHaving = pParent->pWhere; 3682 pParent->pWhere = pWhere; 3683 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3684 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3685 sqlite3ExprDup(db, pSub->pHaving, 0)); 3686 assert( pParent->pGroupBy==0 ); 3687 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3688 }else{ 3689 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3690 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3691 } 3692 3693 /* The flattened query is distinct if either the inner or the 3694 ** outer query is distinct. 3695 */ 3696 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3697 3698 /* 3699 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3700 ** 3701 ** One is tempted to try to add a and b to combine the limits. But this 3702 ** does not work if either limit is negative. 3703 */ 3704 if( pSub->pLimit ){ 3705 pParent->pLimit = pSub->pLimit; 3706 pSub->pLimit = 0; 3707 } 3708 } 3709 3710 /* Finially, delete what is left of the subquery and return 3711 ** success. 3712 */ 3713 sqlite3SelectDelete(db, pSub1); 3714 3715 #if SELECTTRACE_ENABLED 3716 if( sqlite3SelectTrace & 0x100 ){ 3717 sqlite3DebugPrintf("After flattening:\n"); 3718 sqlite3TreeViewSelect(0, p, 0); 3719 } 3720 #endif 3721 3722 return 1; 3723 } 3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3725 3726 /* 3727 ** Based on the contents of the AggInfo structure indicated by the first 3728 ** argument, this function checks if the following are true: 3729 ** 3730 ** * the query contains just a single aggregate function, 3731 ** * the aggregate function is either min() or max(), and 3732 ** * the argument to the aggregate function is a column value. 3733 ** 3734 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3735 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3736 ** list of arguments passed to the aggregate before returning. 3737 ** 3738 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3739 ** WHERE_ORDERBY_NORMAL is returned. 3740 */ 3741 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3742 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3743 3744 *ppMinMax = 0; 3745 if( pAggInfo->nFunc==1 ){ 3746 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3747 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3748 3749 assert( pExpr->op==TK_AGG_FUNCTION ); 3750 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3751 const char *zFunc = pExpr->u.zToken; 3752 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3753 eRet = WHERE_ORDERBY_MIN; 3754 *ppMinMax = pEList; 3755 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3756 eRet = WHERE_ORDERBY_MAX; 3757 *ppMinMax = pEList; 3758 } 3759 } 3760 } 3761 3762 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3763 return eRet; 3764 } 3765 3766 /* 3767 ** The select statement passed as the first argument is an aggregate query. 3768 ** The second argument is the associated aggregate-info object. This 3769 ** function tests if the SELECT is of the form: 3770 ** 3771 ** SELECT count(*) FROM <tbl> 3772 ** 3773 ** where table is a database table, not a sub-select or view. If the query 3774 ** does match this pattern, then a pointer to the Table object representing 3775 ** <tbl> is returned. Otherwise, 0 is returned. 3776 */ 3777 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3778 Table *pTab; 3779 Expr *pExpr; 3780 3781 assert( !p->pGroupBy ); 3782 3783 if( p->pWhere || p->pEList->nExpr!=1 3784 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3785 ){ 3786 return 0; 3787 } 3788 pTab = p->pSrc->a[0].pTab; 3789 pExpr = p->pEList->a[0].pExpr; 3790 assert( pTab && !pTab->pSelect && pExpr ); 3791 3792 if( IsVirtual(pTab) ) return 0; 3793 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3794 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3795 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3796 if( pExpr->flags&EP_Distinct ) return 0; 3797 3798 return pTab; 3799 } 3800 3801 /* 3802 ** If the source-list item passed as an argument was augmented with an 3803 ** INDEXED BY clause, then try to locate the specified index. If there 3804 ** was such a clause and the named index cannot be found, return 3805 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3806 ** pFrom->pIndex and return SQLITE_OK. 3807 */ 3808 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3809 if( pFrom->pTab && pFrom->zIndex ){ 3810 Table *pTab = pFrom->pTab; 3811 char *zIndex = pFrom->zIndex; 3812 Index *pIdx; 3813 for(pIdx=pTab->pIndex; 3814 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3815 pIdx=pIdx->pNext 3816 ); 3817 if( !pIdx ){ 3818 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3819 pParse->checkSchema = 1; 3820 return SQLITE_ERROR; 3821 } 3822 pFrom->pIndex = pIdx; 3823 } 3824 return SQLITE_OK; 3825 } 3826 /* 3827 ** Detect compound SELECT statements that use an ORDER BY clause with 3828 ** an alternative collating sequence. 3829 ** 3830 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3831 ** 3832 ** These are rewritten as a subquery: 3833 ** 3834 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3835 ** ORDER BY ... COLLATE ... 3836 ** 3837 ** This transformation is necessary because the multiSelectOrderBy() routine 3838 ** above that generates the code for a compound SELECT with an ORDER BY clause 3839 ** uses a merge algorithm that requires the same collating sequence on the 3840 ** result columns as on the ORDER BY clause. See ticket 3841 ** http://www.sqlite.org/src/info/6709574d2a 3842 ** 3843 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3844 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3845 ** there are COLLATE terms in the ORDER BY. 3846 */ 3847 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3848 int i; 3849 Select *pNew; 3850 Select *pX; 3851 sqlite3 *db; 3852 struct ExprList_item *a; 3853 SrcList *pNewSrc; 3854 Parse *pParse; 3855 Token dummy; 3856 3857 if( p->pPrior==0 ) return WRC_Continue; 3858 if( p->pOrderBy==0 ) return WRC_Continue; 3859 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3860 if( pX==0 ) return WRC_Continue; 3861 a = p->pOrderBy->a; 3862 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3863 if( a[i].pExpr->flags & EP_Collate ) break; 3864 } 3865 if( i<0 ) return WRC_Continue; 3866 3867 /* If we reach this point, that means the transformation is required. */ 3868 3869 pParse = pWalker->pParse; 3870 db = pParse->db; 3871 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3872 if( pNew==0 ) return WRC_Abort; 3873 memset(&dummy, 0, sizeof(dummy)); 3874 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3875 if( pNewSrc==0 ) return WRC_Abort; 3876 *pNew = *p; 3877 p->pSrc = pNewSrc; 3878 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3879 p->op = TK_SELECT; 3880 p->pWhere = 0; 3881 pNew->pGroupBy = 0; 3882 pNew->pHaving = 0; 3883 pNew->pOrderBy = 0; 3884 p->pPrior = 0; 3885 p->pNext = 0; 3886 p->selFlags &= ~SF_Compound; 3887 assert( pNew->pPrior!=0 ); 3888 pNew->pPrior->pNext = pNew; 3889 pNew->pLimit = 0; 3890 pNew->pOffset = 0; 3891 return WRC_Continue; 3892 } 3893 3894 #ifndef SQLITE_OMIT_CTE 3895 /* 3896 ** Argument pWith (which may be NULL) points to a linked list of nested 3897 ** WITH contexts, from inner to outermost. If the table identified by 3898 ** FROM clause element pItem is really a common-table-expression (CTE) 3899 ** then return a pointer to the CTE definition for that table. Otherwise 3900 ** return NULL. 3901 ** 3902 ** If a non-NULL value is returned, set *ppContext to point to the With 3903 ** object that the returned CTE belongs to. 3904 */ 3905 static struct Cte *searchWith( 3906 With *pWith, /* Current outermost WITH clause */ 3907 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3908 With **ppContext /* OUT: WITH clause return value belongs to */ 3909 ){ 3910 const char *zName; 3911 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3912 With *p; 3913 for(p=pWith; p; p=p->pOuter){ 3914 int i; 3915 for(i=0; i<p->nCte; i++){ 3916 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3917 *ppContext = p; 3918 return &p->a[i]; 3919 } 3920 } 3921 } 3922 } 3923 return 0; 3924 } 3925 3926 /* The code generator maintains a stack of active WITH clauses 3927 ** with the inner-most WITH clause being at the top of the stack. 3928 ** 3929 ** This routine pushes the WITH clause passed as the second argument 3930 ** onto the top of the stack. If argument bFree is true, then this 3931 ** WITH clause will never be popped from the stack. In this case it 3932 ** should be freed along with the Parse object. In other cases, when 3933 ** bFree==0, the With object will be freed along with the SELECT 3934 ** statement with which it is associated. 3935 */ 3936 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3937 assert( bFree==0 || pParse->pWith==0 ); 3938 if( pWith ){ 3939 pWith->pOuter = pParse->pWith; 3940 pParse->pWith = pWith; 3941 pParse->bFreeWith = bFree; 3942 } 3943 } 3944 3945 /* 3946 ** This function checks if argument pFrom refers to a CTE declared by 3947 ** a WITH clause on the stack currently maintained by the parser. And, 3948 ** if currently processing a CTE expression, if it is a recursive 3949 ** reference to the current CTE. 3950 ** 3951 ** If pFrom falls into either of the two categories above, pFrom->pTab 3952 ** and other fields are populated accordingly. The caller should check 3953 ** (pFrom->pTab!=0) to determine whether or not a successful match 3954 ** was found. 3955 ** 3956 ** Whether or not a match is found, SQLITE_OK is returned if no error 3957 ** occurs. If an error does occur, an error message is stored in the 3958 ** parser and some error code other than SQLITE_OK returned. 3959 */ 3960 static int withExpand( 3961 Walker *pWalker, 3962 struct SrcList_item *pFrom 3963 ){ 3964 Parse *pParse = pWalker->pParse; 3965 sqlite3 *db = pParse->db; 3966 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3967 With *pWith; /* WITH clause that pCte belongs to */ 3968 3969 assert( pFrom->pTab==0 ); 3970 3971 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3972 if( pCte ){ 3973 Table *pTab; 3974 ExprList *pEList; 3975 Select *pSel; 3976 Select *pLeft; /* Left-most SELECT statement */ 3977 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3978 With *pSavedWith; /* Initial value of pParse->pWith */ 3979 3980 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3981 ** recursive reference to CTE pCte. Leave an error in pParse and return 3982 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3983 ** In this case, proceed. */ 3984 if( pCte->zErr ){ 3985 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3986 return SQLITE_ERROR; 3987 } 3988 3989 assert( pFrom->pTab==0 ); 3990 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3991 if( pTab==0 ) return WRC_Abort; 3992 pTab->nRef = 1; 3993 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3994 pTab->iPKey = -1; 3995 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3996 pTab->tabFlags |= TF_Ephemeral; 3997 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3998 if( db->mallocFailed ) return SQLITE_NOMEM; 3999 assert( pFrom->pSelect ); 4000 4001 /* Check if this is a recursive CTE. */ 4002 pSel = pFrom->pSelect; 4003 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4004 if( bMayRecursive ){ 4005 int i; 4006 SrcList *pSrc = pFrom->pSelect->pSrc; 4007 for(i=0; i<pSrc->nSrc; i++){ 4008 struct SrcList_item *pItem = &pSrc->a[i]; 4009 if( pItem->zDatabase==0 4010 && pItem->zName!=0 4011 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4012 ){ 4013 pItem->pTab = pTab; 4014 pItem->isRecursive = 1; 4015 pTab->nRef++; 4016 pSel->selFlags |= SF_Recursive; 4017 } 4018 } 4019 } 4020 4021 /* Only one recursive reference is permitted. */ 4022 if( pTab->nRef>2 ){ 4023 sqlite3ErrorMsg( 4024 pParse, "multiple references to recursive table: %s", pCte->zName 4025 ); 4026 return SQLITE_ERROR; 4027 } 4028 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4029 4030 pCte->zErr = "circular reference: %s"; 4031 pSavedWith = pParse->pWith; 4032 pParse->pWith = pWith; 4033 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4034 4035 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4036 pEList = pLeft->pEList; 4037 if( pCte->pCols ){ 4038 if( pEList->nExpr!=pCte->pCols->nExpr ){ 4039 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4040 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4041 ); 4042 pParse->pWith = pSavedWith; 4043 return SQLITE_ERROR; 4044 } 4045 pEList = pCte->pCols; 4046 } 4047 4048 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4049 if( bMayRecursive ){ 4050 if( pSel->selFlags & SF_Recursive ){ 4051 pCte->zErr = "multiple recursive references: %s"; 4052 }else{ 4053 pCte->zErr = "recursive reference in a subquery: %s"; 4054 } 4055 sqlite3WalkSelect(pWalker, pSel); 4056 } 4057 pCte->zErr = 0; 4058 pParse->pWith = pSavedWith; 4059 } 4060 4061 return SQLITE_OK; 4062 } 4063 #endif 4064 4065 #ifndef SQLITE_OMIT_CTE 4066 /* 4067 ** If the SELECT passed as the second argument has an associated WITH 4068 ** clause, pop it from the stack stored as part of the Parse object. 4069 ** 4070 ** This function is used as the xSelectCallback2() callback by 4071 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4072 ** names and other FROM clause elements. 4073 */ 4074 static void selectPopWith(Walker *pWalker, Select *p){ 4075 Parse *pParse = pWalker->pParse; 4076 With *pWith = findRightmost(p)->pWith; 4077 if( pWith!=0 ){ 4078 assert( pParse->pWith==pWith ); 4079 pParse->pWith = pWith->pOuter; 4080 } 4081 } 4082 #else 4083 #define selectPopWith 0 4084 #endif 4085 4086 /* 4087 ** This routine is a Walker callback for "expanding" a SELECT statement. 4088 ** "Expanding" means to do the following: 4089 ** 4090 ** (1) Make sure VDBE cursor numbers have been assigned to every 4091 ** element of the FROM clause. 4092 ** 4093 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4094 ** defines FROM clause. When views appear in the FROM clause, 4095 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4096 ** that implements the view. A copy is made of the view's SELECT 4097 ** statement so that we can freely modify or delete that statement 4098 ** without worrying about messing up the persistent representation 4099 ** of the view. 4100 ** 4101 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4102 ** on joins and the ON and USING clause of joins. 4103 ** 4104 ** (4) Scan the list of columns in the result set (pEList) looking 4105 ** for instances of the "*" operator or the TABLE.* operator. 4106 ** If found, expand each "*" to be every column in every table 4107 ** and TABLE.* to be every column in TABLE. 4108 ** 4109 */ 4110 static int selectExpander(Walker *pWalker, Select *p){ 4111 Parse *pParse = pWalker->pParse; 4112 int i, j, k; 4113 SrcList *pTabList; 4114 ExprList *pEList; 4115 struct SrcList_item *pFrom; 4116 sqlite3 *db = pParse->db; 4117 Expr *pE, *pRight, *pExpr; 4118 u16 selFlags = p->selFlags; 4119 4120 p->selFlags |= SF_Expanded; 4121 if( db->mallocFailed ){ 4122 return WRC_Abort; 4123 } 4124 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4125 return WRC_Prune; 4126 } 4127 pTabList = p->pSrc; 4128 pEList = p->pEList; 4129 if( pWalker->xSelectCallback2==selectPopWith ){ 4130 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4131 } 4132 4133 /* Make sure cursor numbers have been assigned to all entries in 4134 ** the FROM clause of the SELECT statement. 4135 */ 4136 sqlite3SrcListAssignCursors(pParse, pTabList); 4137 4138 /* Look up every table named in the FROM clause of the select. If 4139 ** an entry of the FROM clause is a subquery instead of a table or view, 4140 ** then create a transient table structure to describe the subquery. 4141 */ 4142 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4143 Table *pTab; 4144 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4145 if( pFrom->isRecursive ) continue; 4146 if( pFrom->pTab!=0 ){ 4147 /* This statement has already been prepared. There is no need 4148 ** to go further. */ 4149 assert( i==0 ); 4150 #ifndef SQLITE_OMIT_CTE 4151 selectPopWith(pWalker, p); 4152 #endif 4153 return WRC_Prune; 4154 } 4155 #ifndef SQLITE_OMIT_CTE 4156 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4157 if( pFrom->pTab ) {} else 4158 #endif 4159 if( pFrom->zName==0 ){ 4160 #ifndef SQLITE_OMIT_SUBQUERY 4161 Select *pSel = pFrom->pSelect; 4162 /* A sub-query in the FROM clause of a SELECT */ 4163 assert( pSel!=0 ); 4164 assert( pFrom->pTab==0 ); 4165 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4166 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4167 if( pTab==0 ) return WRC_Abort; 4168 pTab->nRef = 1; 4169 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4170 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4171 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4172 pTab->iPKey = -1; 4173 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4174 pTab->tabFlags |= TF_Ephemeral; 4175 #endif 4176 }else{ 4177 /* An ordinary table or view name in the FROM clause */ 4178 assert( pFrom->pTab==0 ); 4179 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4180 if( pTab==0 ) return WRC_Abort; 4181 if( pTab->nRef==0xffff ){ 4182 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4183 pTab->zName); 4184 pFrom->pTab = 0; 4185 return WRC_Abort; 4186 } 4187 pTab->nRef++; 4188 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4189 if( pTab->pSelect || IsVirtual(pTab) ){ 4190 /* We reach here if the named table is a really a view */ 4191 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4192 assert( pFrom->pSelect==0 ); 4193 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4194 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4195 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4196 } 4197 #endif 4198 } 4199 4200 /* Locate the index named by the INDEXED BY clause, if any. */ 4201 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4202 return WRC_Abort; 4203 } 4204 } 4205 4206 /* Process NATURAL keywords, and ON and USING clauses of joins. 4207 */ 4208 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4209 return WRC_Abort; 4210 } 4211 4212 /* For every "*" that occurs in the column list, insert the names of 4213 ** all columns in all tables. And for every TABLE.* insert the names 4214 ** of all columns in TABLE. The parser inserted a special expression 4215 ** with the TK_ALL operator for each "*" that it found in the column list. 4216 ** The following code just has to locate the TK_ALL expressions and expand 4217 ** each one to the list of all columns in all tables. 4218 ** 4219 ** The first loop just checks to see if there are any "*" operators 4220 ** that need expanding. 4221 */ 4222 for(k=0; k<pEList->nExpr; k++){ 4223 pE = pEList->a[k].pExpr; 4224 if( pE->op==TK_ALL ) break; 4225 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4226 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4227 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4228 } 4229 if( k<pEList->nExpr ){ 4230 /* 4231 ** If we get here it means the result set contains one or more "*" 4232 ** operators that need to be expanded. Loop through each expression 4233 ** in the result set and expand them one by one. 4234 */ 4235 struct ExprList_item *a = pEList->a; 4236 ExprList *pNew = 0; 4237 int flags = pParse->db->flags; 4238 int longNames = (flags & SQLITE_FullColNames)!=0 4239 && (flags & SQLITE_ShortColNames)==0; 4240 4241 /* When processing FROM-clause subqueries, it is always the case 4242 ** that full_column_names=OFF and short_column_names=ON. The 4243 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4244 assert( (p->selFlags & SF_NestedFrom)==0 4245 || ((flags & SQLITE_FullColNames)==0 && 4246 (flags & SQLITE_ShortColNames)!=0) ); 4247 4248 for(k=0; k<pEList->nExpr; k++){ 4249 pE = a[k].pExpr; 4250 pRight = pE->pRight; 4251 assert( pE->op!=TK_DOT || pRight!=0 ); 4252 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4253 /* This particular expression does not need to be expanded. 4254 */ 4255 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4256 if( pNew ){ 4257 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4258 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4259 a[k].zName = 0; 4260 a[k].zSpan = 0; 4261 } 4262 a[k].pExpr = 0; 4263 }else{ 4264 /* This expression is a "*" or a "TABLE.*" and needs to be 4265 ** expanded. */ 4266 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4267 char *zTName = 0; /* text of name of TABLE */ 4268 if( pE->op==TK_DOT ){ 4269 assert( pE->pLeft!=0 ); 4270 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4271 zTName = pE->pLeft->u.zToken; 4272 } 4273 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4274 Table *pTab = pFrom->pTab; 4275 Select *pSub = pFrom->pSelect; 4276 char *zTabName = pFrom->zAlias; 4277 const char *zSchemaName = 0; 4278 int iDb; 4279 if( zTabName==0 ){ 4280 zTabName = pTab->zName; 4281 } 4282 if( db->mallocFailed ) break; 4283 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4284 pSub = 0; 4285 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4286 continue; 4287 } 4288 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4289 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4290 } 4291 for(j=0; j<pTab->nCol; j++){ 4292 char *zName = pTab->aCol[j].zName; 4293 char *zColname; /* The computed column name */ 4294 char *zToFree; /* Malloced string that needs to be freed */ 4295 Token sColname; /* Computed column name as a token */ 4296 4297 assert( zName ); 4298 if( zTName && pSub 4299 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4300 ){ 4301 continue; 4302 } 4303 4304 /* If a column is marked as 'hidden' (currently only possible 4305 ** for virtual tables), do not include it in the expanded 4306 ** result-set list. 4307 */ 4308 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4309 assert(IsVirtual(pTab)); 4310 continue; 4311 } 4312 tableSeen = 1; 4313 4314 if( i>0 && zTName==0 ){ 4315 if( (pFrom->jointype & JT_NATURAL)!=0 4316 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4317 ){ 4318 /* In a NATURAL join, omit the join columns from the 4319 ** table to the right of the join */ 4320 continue; 4321 } 4322 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4323 /* In a join with a USING clause, omit columns in the 4324 ** using clause from the table on the right. */ 4325 continue; 4326 } 4327 } 4328 pRight = sqlite3Expr(db, TK_ID, zName); 4329 zColname = zName; 4330 zToFree = 0; 4331 if( longNames || pTabList->nSrc>1 ){ 4332 Expr *pLeft; 4333 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4334 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4335 if( zSchemaName ){ 4336 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4337 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4338 } 4339 if( longNames ){ 4340 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4341 zToFree = zColname; 4342 } 4343 }else{ 4344 pExpr = pRight; 4345 } 4346 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4347 sColname.z = zColname; 4348 sColname.n = sqlite3Strlen30(zColname); 4349 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4350 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4351 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4352 if( pSub ){ 4353 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4354 testcase( pX->zSpan==0 ); 4355 }else{ 4356 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4357 zSchemaName, zTabName, zColname); 4358 testcase( pX->zSpan==0 ); 4359 } 4360 pX->bSpanIsTab = 1; 4361 } 4362 sqlite3DbFree(db, zToFree); 4363 } 4364 } 4365 if( !tableSeen ){ 4366 if( zTName ){ 4367 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4368 }else{ 4369 sqlite3ErrorMsg(pParse, "no tables specified"); 4370 } 4371 } 4372 } 4373 } 4374 sqlite3ExprListDelete(db, pEList); 4375 p->pEList = pNew; 4376 } 4377 #if SQLITE_MAX_COLUMN 4378 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4379 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4380 } 4381 #endif 4382 return WRC_Continue; 4383 } 4384 4385 /* 4386 ** No-op routine for the parse-tree walker. 4387 ** 4388 ** When this routine is the Walker.xExprCallback then expression trees 4389 ** are walked without any actions being taken at each node. Presumably, 4390 ** when this routine is used for Walker.xExprCallback then 4391 ** Walker.xSelectCallback is set to do something useful for every 4392 ** subquery in the parser tree. 4393 */ 4394 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4395 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4396 return WRC_Continue; 4397 } 4398 4399 /* 4400 ** This routine "expands" a SELECT statement and all of its subqueries. 4401 ** For additional information on what it means to "expand" a SELECT 4402 ** statement, see the comment on the selectExpand worker callback above. 4403 ** 4404 ** Expanding a SELECT statement is the first step in processing a 4405 ** SELECT statement. The SELECT statement must be expanded before 4406 ** name resolution is performed. 4407 ** 4408 ** If anything goes wrong, an error message is written into pParse. 4409 ** The calling function can detect the problem by looking at pParse->nErr 4410 ** and/or pParse->db->mallocFailed. 4411 */ 4412 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4413 Walker w; 4414 memset(&w, 0, sizeof(w)); 4415 w.xExprCallback = exprWalkNoop; 4416 w.pParse = pParse; 4417 if( pParse->hasCompound ){ 4418 w.xSelectCallback = convertCompoundSelectToSubquery; 4419 sqlite3WalkSelect(&w, pSelect); 4420 } 4421 w.xSelectCallback = selectExpander; 4422 if( (pSelect->selFlags & SF_AllValues)==0 ){ 4423 w.xSelectCallback2 = selectPopWith; 4424 } 4425 sqlite3WalkSelect(&w, pSelect); 4426 } 4427 4428 4429 #ifndef SQLITE_OMIT_SUBQUERY 4430 /* 4431 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4432 ** interface. 4433 ** 4434 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4435 ** information to the Table structure that represents the result set 4436 ** of that subquery. 4437 ** 4438 ** The Table structure that represents the result set was constructed 4439 ** by selectExpander() but the type and collation information was omitted 4440 ** at that point because identifiers had not yet been resolved. This 4441 ** routine is called after identifier resolution. 4442 */ 4443 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4444 Parse *pParse; 4445 int i; 4446 SrcList *pTabList; 4447 struct SrcList_item *pFrom; 4448 4449 assert( p->selFlags & SF_Resolved ); 4450 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4451 p->selFlags |= SF_HasTypeInfo; 4452 pParse = pWalker->pParse; 4453 pTabList = p->pSrc; 4454 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4455 Table *pTab = pFrom->pTab; 4456 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4457 /* A sub-query in the FROM clause of a SELECT */ 4458 Select *pSel = pFrom->pSelect; 4459 if( pSel ){ 4460 while( pSel->pPrior ) pSel = pSel->pPrior; 4461 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4462 } 4463 } 4464 } 4465 } 4466 } 4467 #endif 4468 4469 4470 /* 4471 ** This routine adds datatype and collating sequence information to 4472 ** the Table structures of all FROM-clause subqueries in a 4473 ** SELECT statement. 4474 ** 4475 ** Use this routine after name resolution. 4476 */ 4477 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4478 #ifndef SQLITE_OMIT_SUBQUERY 4479 Walker w; 4480 memset(&w, 0, sizeof(w)); 4481 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4482 w.xExprCallback = exprWalkNoop; 4483 w.pParse = pParse; 4484 sqlite3WalkSelect(&w, pSelect); 4485 #endif 4486 } 4487 4488 4489 /* 4490 ** This routine sets up a SELECT statement for processing. The 4491 ** following is accomplished: 4492 ** 4493 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4494 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4495 ** * ON and USING clauses are shifted into WHERE statements 4496 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4497 ** * Identifiers in expression are matched to tables. 4498 ** 4499 ** This routine acts recursively on all subqueries within the SELECT. 4500 */ 4501 void sqlite3SelectPrep( 4502 Parse *pParse, /* The parser context */ 4503 Select *p, /* The SELECT statement being coded. */ 4504 NameContext *pOuterNC /* Name context for container */ 4505 ){ 4506 sqlite3 *db; 4507 if( NEVER(p==0) ) return; 4508 db = pParse->db; 4509 if( db->mallocFailed ) return; 4510 if( p->selFlags & SF_HasTypeInfo ) return; 4511 sqlite3SelectExpand(pParse, p); 4512 if( pParse->nErr || db->mallocFailed ) return; 4513 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4514 if( pParse->nErr || db->mallocFailed ) return; 4515 sqlite3SelectAddTypeInfo(pParse, p); 4516 } 4517 4518 /* 4519 ** Reset the aggregate accumulator. 4520 ** 4521 ** The aggregate accumulator is a set of memory cells that hold 4522 ** intermediate results while calculating an aggregate. This 4523 ** routine generates code that stores NULLs in all of those memory 4524 ** cells. 4525 */ 4526 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4527 Vdbe *v = pParse->pVdbe; 4528 int i; 4529 struct AggInfo_func *pFunc; 4530 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4531 if( nReg==0 ) return; 4532 #ifdef SQLITE_DEBUG 4533 /* Verify that all AggInfo registers are within the range specified by 4534 ** AggInfo.mnReg..AggInfo.mxReg */ 4535 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4536 for(i=0; i<pAggInfo->nColumn; i++){ 4537 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4538 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4539 } 4540 for(i=0; i<pAggInfo->nFunc; i++){ 4541 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4542 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4543 } 4544 #endif 4545 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4546 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4547 if( pFunc->iDistinct>=0 ){ 4548 Expr *pE = pFunc->pExpr; 4549 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4550 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4551 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4552 "argument"); 4553 pFunc->iDistinct = -1; 4554 }else{ 4555 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4556 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4557 (char*)pKeyInfo, P4_KEYINFO); 4558 } 4559 } 4560 } 4561 } 4562 4563 /* 4564 ** Invoke the OP_AggFinalize opcode for every aggregate function 4565 ** in the AggInfo structure. 4566 */ 4567 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4568 Vdbe *v = pParse->pVdbe; 4569 int i; 4570 struct AggInfo_func *pF; 4571 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4572 ExprList *pList = pF->pExpr->x.pList; 4573 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4574 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4575 (void*)pF->pFunc, P4_FUNCDEF); 4576 } 4577 } 4578 4579 /* 4580 ** Update the accumulator memory cells for an aggregate based on 4581 ** the current cursor position. 4582 */ 4583 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4584 Vdbe *v = pParse->pVdbe; 4585 int i; 4586 int regHit = 0; 4587 int addrHitTest = 0; 4588 struct AggInfo_func *pF; 4589 struct AggInfo_col *pC; 4590 4591 pAggInfo->directMode = 1; 4592 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4593 int nArg; 4594 int addrNext = 0; 4595 int regAgg; 4596 ExprList *pList = pF->pExpr->x.pList; 4597 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4598 if( pList ){ 4599 nArg = pList->nExpr; 4600 regAgg = sqlite3GetTempRange(pParse, nArg); 4601 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4602 }else{ 4603 nArg = 0; 4604 regAgg = 0; 4605 } 4606 if( pF->iDistinct>=0 ){ 4607 addrNext = sqlite3VdbeMakeLabel(v); 4608 assert( nArg==1 ); 4609 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4610 } 4611 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4612 CollSeq *pColl = 0; 4613 struct ExprList_item *pItem; 4614 int j; 4615 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4616 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4617 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4618 } 4619 if( !pColl ){ 4620 pColl = pParse->db->pDfltColl; 4621 } 4622 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4623 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4624 } 4625 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4626 (void*)pF->pFunc, P4_FUNCDEF); 4627 sqlite3VdbeChangeP5(v, (u8)nArg); 4628 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4629 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4630 if( addrNext ){ 4631 sqlite3VdbeResolveLabel(v, addrNext); 4632 sqlite3ExprCacheClear(pParse); 4633 } 4634 } 4635 4636 /* Before populating the accumulator registers, clear the column cache. 4637 ** Otherwise, if any of the required column values are already present 4638 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4639 ** to pC->iMem. But by the time the value is used, the original register 4640 ** may have been used, invalidating the underlying buffer holding the 4641 ** text or blob value. See ticket [883034dcb5]. 4642 ** 4643 ** Another solution would be to change the OP_SCopy used to copy cached 4644 ** values to an OP_Copy. 4645 */ 4646 if( regHit ){ 4647 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4648 } 4649 sqlite3ExprCacheClear(pParse); 4650 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4651 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4652 } 4653 pAggInfo->directMode = 0; 4654 sqlite3ExprCacheClear(pParse); 4655 if( addrHitTest ){ 4656 sqlite3VdbeJumpHere(v, addrHitTest); 4657 } 4658 } 4659 4660 /* 4661 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4662 ** count(*) query ("SELECT count(*) FROM pTab"). 4663 */ 4664 #ifndef SQLITE_OMIT_EXPLAIN 4665 static void explainSimpleCount( 4666 Parse *pParse, /* Parse context */ 4667 Table *pTab, /* Table being queried */ 4668 Index *pIdx /* Index used to optimize scan, or NULL */ 4669 ){ 4670 if( pParse->explain==2 ){ 4671 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4672 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4673 pTab->zName, 4674 bCover ? " USING COVERING INDEX " : "", 4675 bCover ? pIdx->zName : "" 4676 ); 4677 sqlite3VdbeAddOp4( 4678 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4679 ); 4680 } 4681 } 4682 #else 4683 # define explainSimpleCount(a,b,c) 4684 #endif 4685 4686 /* 4687 ** Generate code for the SELECT statement given in the p argument. 4688 ** 4689 ** The results are returned according to the SelectDest structure. 4690 ** See comments in sqliteInt.h for further information. 4691 ** 4692 ** This routine returns the number of errors. If any errors are 4693 ** encountered, then an appropriate error message is left in 4694 ** pParse->zErrMsg. 4695 ** 4696 ** This routine does NOT free the Select structure passed in. The 4697 ** calling function needs to do that. 4698 */ 4699 int sqlite3Select( 4700 Parse *pParse, /* The parser context */ 4701 Select *p, /* The SELECT statement being coded. */ 4702 SelectDest *pDest /* What to do with the query results */ 4703 ){ 4704 int i, j; /* Loop counters */ 4705 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4706 Vdbe *v; /* The virtual machine under construction */ 4707 int isAgg; /* True for select lists like "count(*)" */ 4708 ExprList *pEList; /* List of columns to extract. */ 4709 SrcList *pTabList; /* List of tables to select from */ 4710 Expr *pWhere; /* The WHERE clause. May be NULL */ 4711 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4712 Expr *pHaving; /* The HAVING clause. May be NULL */ 4713 int rc = 1; /* Value to return from this function */ 4714 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4715 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4716 AggInfo sAggInfo; /* Information used by aggregate queries */ 4717 int iEnd; /* Address of the end of the query */ 4718 sqlite3 *db; /* The database connection */ 4719 4720 #ifndef SQLITE_OMIT_EXPLAIN 4721 int iRestoreSelectId = pParse->iSelectId; 4722 pParse->iSelectId = pParse->iNextSelectId++; 4723 #endif 4724 4725 db = pParse->db; 4726 if( p==0 || db->mallocFailed || pParse->nErr ){ 4727 return 1; 4728 } 4729 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4730 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4731 #if SELECTTRACE_ENABLED 4732 pParse->nSelectIndent++; 4733 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4734 if( sqlite3SelectTrace & 0x100 ){ 4735 sqlite3TreeViewSelect(0, p, 0); 4736 } 4737 #endif 4738 4739 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4740 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4741 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4742 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4743 if( IgnorableOrderby(pDest) ){ 4744 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4745 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4746 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4747 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4748 /* If ORDER BY makes no difference in the output then neither does 4749 ** DISTINCT so it can be removed too. */ 4750 sqlite3ExprListDelete(db, p->pOrderBy); 4751 p->pOrderBy = 0; 4752 p->selFlags &= ~SF_Distinct; 4753 } 4754 sqlite3SelectPrep(pParse, p, 0); 4755 memset(&sSort, 0, sizeof(sSort)); 4756 sSort.pOrderBy = p->pOrderBy; 4757 pTabList = p->pSrc; 4758 pEList = p->pEList; 4759 if( pParse->nErr || db->mallocFailed ){ 4760 goto select_end; 4761 } 4762 isAgg = (p->selFlags & SF_Aggregate)!=0; 4763 assert( pEList!=0 ); 4764 #if SELECTTRACE_ENABLED 4765 if( sqlite3SelectTrace & 0x100 ){ 4766 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4767 sqlite3TreeViewSelect(0, p, 0); 4768 } 4769 #endif 4770 4771 4772 /* Begin generating code. 4773 */ 4774 v = sqlite3GetVdbe(pParse); 4775 if( v==0 ) goto select_end; 4776 4777 /* If writing to memory or generating a set 4778 ** only a single column may be output. 4779 */ 4780 #ifndef SQLITE_OMIT_SUBQUERY 4781 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4782 goto select_end; 4783 } 4784 #endif 4785 4786 /* Generate code for all sub-queries in the FROM clause 4787 */ 4788 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4789 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4790 struct SrcList_item *pItem = &pTabList->a[i]; 4791 SelectDest dest; 4792 Select *pSub = pItem->pSelect; 4793 int isAggSub; 4794 4795 if( pSub==0 ) continue; 4796 4797 /* Sometimes the code for a subquery will be generated more than 4798 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4799 ** for example. In that case, do not regenerate the code to manifest 4800 ** a view or the co-routine to implement a view. The first instance 4801 ** is sufficient, though the subroutine to manifest the view does need 4802 ** to be invoked again. */ 4803 if( pItem->addrFillSub ){ 4804 if( pItem->viaCoroutine==0 ){ 4805 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4806 } 4807 continue; 4808 } 4809 4810 /* Increment Parse.nHeight by the height of the largest expression 4811 ** tree referred to by this, the parent select. The child select 4812 ** may contain expression trees of at most 4813 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4814 ** more conservative than necessary, but much easier than enforcing 4815 ** an exact limit. 4816 */ 4817 pParse->nHeight += sqlite3SelectExprHeight(p); 4818 4819 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4820 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4821 /* This subquery can be absorbed into its parent. */ 4822 if( isAggSub ){ 4823 isAgg = 1; 4824 p->selFlags |= SF_Aggregate; 4825 } 4826 i = -1; 4827 }else if( pTabList->nSrc==1 4828 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4829 ){ 4830 /* Implement a co-routine that will return a single row of the result 4831 ** set on each invocation. 4832 */ 4833 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4834 pItem->regReturn = ++pParse->nMem; 4835 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4836 VdbeComment((v, "%s", pItem->pTab->zName)); 4837 pItem->addrFillSub = addrTop; 4838 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4839 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4840 sqlite3Select(pParse, pSub, &dest); 4841 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4842 pItem->viaCoroutine = 1; 4843 pItem->regResult = dest.iSdst; 4844 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4845 sqlite3VdbeJumpHere(v, addrTop-1); 4846 sqlite3ClearTempRegCache(pParse); 4847 }else{ 4848 /* Generate a subroutine that will fill an ephemeral table with 4849 ** the content of this subquery. pItem->addrFillSub will point 4850 ** to the address of the generated subroutine. pItem->regReturn 4851 ** is a register allocated to hold the subroutine return address 4852 */ 4853 int topAddr; 4854 int onceAddr = 0; 4855 int retAddr; 4856 assert( pItem->addrFillSub==0 ); 4857 pItem->regReturn = ++pParse->nMem; 4858 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4859 pItem->addrFillSub = topAddr+1; 4860 if( pItem->isCorrelated==0 ){ 4861 /* If the subquery is not correlated and if we are not inside of 4862 ** a trigger, then we only need to compute the value of the subquery 4863 ** once. */ 4864 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4865 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4866 }else{ 4867 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4868 } 4869 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4870 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4871 sqlite3Select(pParse, pSub, &dest); 4872 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4873 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4874 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4875 VdbeComment((v, "end %s", pItem->pTab->zName)); 4876 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4877 sqlite3ClearTempRegCache(pParse); 4878 } 4879 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4880 goto select_end; 4881 } 4882 pParse->nHeight -= sqlite3SelectExprHeight(p); 4883 pTabList = p->pSrc; 4884 if( !IgnorableOrderby(pDest) ){ 4885 sSort.pOrderBy = p->pOrderBy; 4886 } 4887 } 4888 pEList = p->pEList; 4889 #endif 4890 pWhere = p->pWhere; 4891 pGroupBy = p->pGroupBy; 4892 pHaving = p->pHaving; 4893 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4894 4895 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4896 /* If there is are a sequence of queries, do the earlier ones first. 4897 */ 4898 if( p->pPrior ){ 4899 rc = multiSelect(pParse, p, pDest); 4900 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4901 #if SELECTTRACE_ENABLED 4902 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4903 pParse->nSelectIndent--; 4904 #endif 4905 return rc; 4906 } 4907 #endif 4908 4909 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4910 ** if the select-list is the same as the ORDER BY list, then this query 4911 ** can be rewritten as a GROUP BY. In other words, this: 4912 ** 4913 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4914 ** 4915 ** is transformed to: 4916 ** 4917 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 4918 ** 4919 ** The second form is preferred as a single index (or temp-table) may be 4920 ** used for both the ORDER BY and DISTINCT processing. As originally 4921 ** written the query must use a temp-table for at least one of the ORDER 4922 ** BY and DISTINCT, and an index or separate temp-table for the other. 4923 */ 4924 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4925 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4926 ){ 4927 p->selFlags &= ~SF_Distinct; 4928 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4929 pGroupBy = p->pGroupBy; 4930 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4931 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4932 ** original setting of the SF_Distinct flag, not the current setting */ 4933 assert( sDistinct.isTnct ); 4934 } 4935 4936 /* If there is an ORDER BY clause, then this sorting 4937 ** index might end up being unused if the data can be 4938 ** extracted in pre-sorted order. If that is the case, then the 4939 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4940 ** we figure out that the sorting index is not needed. The addrSortIndex 4941 ** variable is used to facilitate that change. 4942 */ 4943 if( sSort.pOrderBy ){ 4944 KeyInfo *pKeyInfo; 4945 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 4946 sSort.iECursor = pParse->nTab++; 4947 sSort.addrSortIndex = 4948 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4949 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4950 (char*)pKeyInfo, P4_KEYINFO 4951 ); 4952 }else{ 4953 sSort.addrSortIndex = -1; 4954 } 4955 4956 /* If the output is destined for a temporary table, open that table. 4957 */ 4958 if( pDest->eDest==SRT_EphemTab ){ 4959 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4960 } 4961 4962 /* Set the limiter. 4963 */ 4964 iEnd = sqlite3VdbeMakeLabel(v); 4965 p->nSelectRow = LARGEST_INT64; 4966 computeLimitRegisters(pParse, p, iEnd); 4967 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4968 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4969 sSort.sortFlags |= SORTFLAG_UseSorter; 4970 } 4971 4972 /* Open a virtual index to use for the distinct set. 4973 */ 4974 if( p->selFlags & SF_Distinct ){ 4975 sDistinct.tabTnct = pParse->nTab++; 4976 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4977 sDistinct.tabTnct, 0, 0, 4978 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4979 P4_KEYINFO); 4980 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4981 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4982 }else{ 4983 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4984 } 4985 4986 if( !isAgg && pGroupBy==0 ){ 4987 /* No aggregate functions and no GROUP BY clause */ 4988 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4989 4990 /* Begin the database scan. */ 4991 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4992 p->pEList, wctrlFlags, 0); 4993 if( pWInfo==0 ) goto select_end; 4994 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4995 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4996 } 4997 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4998 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4999 } 5000 if( sSort.pOrderBy ){ 5001 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5002 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5003 sSort.pOrderBy = 0; 5004 } 5005 } 5006 5007 /* If sorting index that was created by a prior OP_OpenEphemeral 5008 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5009 ** into an OP_Noop. 5010 */ 5011 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5012 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5013 } 5014 5015 /* Use the standard inner loop. */ 5016 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5017 sqlite3WhereContinueLabel(pWInfo), 5018 sqlite3WhereBreakLabel(pWInfo)); 5019 5020 /* End the database scan loop. 5021 */ 5022 sqlite3WhereEnd(pWInfo); 5023 }else{ 5024 /* This case when there exist aggregate functions or a GROUP BY clause 5025 ** or both */ 5026 NameContext sNC; /* Name context for processing aggregate information */ 5027 int iAMem; /* First Mem address for storing current GROUP BY */ 5028 int iBMem; /* First Mem address for previous GROUP BY */ 5029 int iUseFlag; /* Mem address holding flag indicating that at least 5030 ** one row of the input to the aggregator has been 5031 ** processed */ 5032 int iAbortFlag; /* Mem address which causes query abort if positive */ 5033 int groupBySort; /* Rows come from source in GROUP BY order */ 5034 int addrEnd; /* End of processing for this SELECT */ 5035 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5036 int sortOut = 0; /* Output register from the sorter */ 5037 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5038 5039 /* Remove any and all aliases between the result set and the 5040 ** GROUP BY clause. 5041 */ 5042 if( pGroupBy ){ 5043 int k; /* Loop counter */ 5044 struct ExprList_item *pItem; /* For looping over expression in a list */ 5045 5046 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5047 pItem->u.x.iAlias = 0; 5048 } 5049 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5050 pItem->u.x.iAlias = 0; 5051 } 5052 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5053 }else{ 5054 p->nSelectRow = 1; 5055 } 5056 5057 5058 /* If there is both a GROUP BY and an ORDER BY clause and they are 5059 ** identical, then it may be possible to disable the ORDER BY clause 5060 ** on the grounds that the GROUP BY will cause elements to come out 5061 ** in the correct order. It also may not - the GROUP BY may use a 5062 ** database index that causes rows to be grouped together as required 5063 ** but not actually sorted. Either way, record the fact that the 5064 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5065 ** variable. */ 5066 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5067 orderByGrp = 1; 5068 } 5069 5070 /* Create a label to jump to when we want to abort the query */ 5071 addrEnd = sqlite3VdbeMakeLabel(v); 5072 5073 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5074 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5075 ** SELECT statement. 5076 */ 5077 memset(&sNC, 0, sizeof(sNC)); 5078 sNC.pParse = pParse; 5079 sNC.pSrcList = pTabList; 5080 sNC.pAggInfo = &sAggInfo; 5081 sAggInfo.mnReg = pParse->nMem+1; 5082 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5083 sAggInfo.pGroupBy = pGroupBy; 5084 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5085 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5086 if( pHaving ){ 5087 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5088 } 5089 sAggInfo.nAccumulator = sAggInfo.nColumn; 5090 for(i=0; i<sAggInfo.nFunc; i++){ 5091 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5092 sNC.ncFlags |= NC_InAggFunc; 5093 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5094 sNC.ncFlags &= ~NC_InAggFunc; 5095 } 5096 sAggInfo.mxReg = pParse->nMem; 5097 if( db->mallocFailed ) goto select_end; 5098 5099 /* Processing for aggregates with GROUP BY is very different and 5100 ** much more complex than aggregates without a GROUP BY. 5101 */ 5102 if( pGroupBy ){ 5103 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5104 int j1; /* A-vs-B comparision jump */ 5105 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5106 int regOutputRow; /* Return address register for output subroutine */ 5107 int addrSetAbort; /* Set the abort flag and return */ 5108 int addrTopOfLoop; /* Top of the input loop */ 5109 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5110 int addrReset; /* Subroutine for resetting the accumulator */ 5111 int regReset; /* Return address register for reset subroutine */ 5112 5113 /* If there is a GROUP BY clause we might need a sorting index to 5114 ** implement it. Allocate that sorting index now. If it turns out 5115 ** that we do not need it after all, the OP_SorterOpen instruction 5116 ** will be converted into a Noop. 5117 */ 5118 sAggInfo.sortingIdx = pParse->nTab++; 5119 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5120 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5121 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5122 0, (char*)pKeyInfo, P4_KEYINFO); 5123 5124 /* Initialize memory locations used by GROUP BY aggregate processing 5125 */ 5126 iUseFlag = ++pParse->nMem; 5127 iAbortFlag = ++pParse->nMem; 5128 regOutputRow = ++pParse->nMem; 5129 addrOutputRow = sqlite3VdbeMakeLabel(v); 5130 regReset = ++pParse->nMem; 5131 addrReset = sqlite3VdbeMakeLabel(v); 5132 iAMem = pParse->nMem + 1; 5133 pParse->nMem += pGroupBy->nExpr; 5134 iBMem = pParse->nMem + 1; 5135 pParse->nMem += pGroupBy->nExpr; 5136 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5137 VdbeComment((v, "clear abort flag")); 5138 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5139 VdbeComment((v, "indicate accumulator empty")); 5140 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5141 5142 /* Begin a loop that will extract all source rows in GROUP BY order. 5143 ** This might involve two separate loops with an OP_Sort in between, or 5144 ** it might be a single loop that uses an index to extract information 5145 ** in the right order to begin with. 5146 */ 5147 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5148 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5149 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5150 ); 5151 if( pWInfo==0 ) goto select_end; 5152 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5153 /* The optimizer is able to deliver rows in group by order so 5154 ** we do not have to sort. The OP_OpenEphemeral table will be 5155 ** cancelled later because we still need to use the pKeyInfo 5156 */ 5157 groupBySort = 0; 5158 }else{ 5159 /* Rows are coming out in undetermined order. We have to push 5160 ** each row into a sorting index, terminate the first loop, 5161 ** then loop over the sorting index in order to get the output 5162 ** in sorted order 5163 */ 5164 int regBase; 5165 int regRecord; 5166 int nCol; 5167 int nGroupBy; 5168 5169 explainTempTable(pParse, 5170 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5171 "DISTINCT" : "GROUP BY"); 5172 5173 groupBySort = 1; 5174 nGroupBy = pGroupBy->nExpr; 5175 nCol = nGroupBy; 5176 j = nGroupBy; 5177 for(i=0; i<sAggInfo.nColumn; i++){ 5178 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5179 nCol++; 5180 j++; 5181 } 5182 } 5183 regBase = sqlite3GetTempRange(pParse, nCol); 5184 sqlite3ExprCacheClear(pParse); 5185 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5186 j = nGroupBy; 5187 for(i=0; i<sAggInfo.nColumn; i++){ 5188 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5189 if( pCol->iSorterColumn>=j ){ 5190 int r1 = j + regBase; 5191 int r2; 5192 5193 r2 = sqlite3ExprCodeGetColumn(pParse, 5194 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5195 if( r1!=r2 ){ 5196 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5197 } 5198 j++; 5199 } 5200 } 5201 regRecord = sqlite3GetTempReg(pParse); 5202 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5203 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5204 sqlite3ReleaseTempReg(pParse, regRecord); 5205 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5206 sqlite3WhereEnd(pWInfo); 5207 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5208 sortOut = sqlite3GetTempReg(pParse); 5209 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5210 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5211 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5212 sAggInfo.useSortingIdx = 1; 5213 sqlite3ExprCacheClear(pParse); 5214 5215 } 5216 5217 /* If the index or temporary table used by the GROUP BY sort 5218 ** will naturally deliver rows in the order required by the ORDER BY 5219 ** clause, cancel the ephemeral table open coded earlier. 5220 ** 5221 ** This is an optimization - the correct answer should result regardless. 5222 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5223 ** disable this optimization for testing purposes. */ 5224 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5225 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5226 ){ 5227 sSort.pOrderBy = 0; 5228 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5229 } 5230 5231 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5232 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5233 ** Then compare the current GROUP BY terms against the GROUP BY terms 5234 ** from the previous row currently stored in a0, a1, a2... 5235 */ 5236 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5237 sqlite3ExprCacheClear(pParse); 5238 if( groupBySort ){ 5239 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); 5240 } 5241 for(j=0; j<pGroupBy->nExpr; j++){ 5242 if( groupBySort ){ 5243 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5244 }else{ 5245 sAggInfo.directMode = 1; 5246 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5247 } 5248 } 5249 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5250 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5251 j1 = sqlite3VdbeCurrentAddr(v); 5252 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5253 5254 /* Generate code that runs whenever the GROUP BY changes. 5255 ** Changes in the GROUP BY are detected by the previous code 5256 ** block. If there were no changes, this block is skipped. 5257 ** 5258 ** This code copies current group by terms in b0,b1,b2,... 5259 ** over to a0,a1,a2. It then calls the output subroutine 5260 ** and resets the aggregate accumulator registers in preparation 5261 ** for the next GROUP BY batch. 5262 */ 5263 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5264 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5265 VdbeComment((v, "output one row")); 5266 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5267 VdbeComment((v, "check abort flag")); 5268 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5269 VdbeComment((v, "reset accumulator")); 5270 5271 /* Update the aggregate accumulators based on the content of 5272 ** the current row 5273 */ 5274 sqlite3VdbeJumpHere(v, j1); 5275 updateAccumulator(pParse, &sAggInfo); 5276 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5277 VdbeComment((v, "indicate data in accumulator")); 5278 5279 /* End of the loop 5280 */ 5281 if( groupBySort ){ 5282 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5283 VdbeCoverage(v); 5284 }else{ 5285 sqlite3WhereEnd(pWInfo); 5286 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5287 } 5288 5289 /* Output the final row of result 5290 */ 5291 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5292 VdbeComment((v, "output final row")); 5293 5294 /* Jump over the subroutines 5295 */ 5296 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5297 5298 /* Generate a subroutine that outputs a single row of the result 5299 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5300 ** is less than or equal to zero, the subroutine is a no-op. If 5301 ** the processing calls for the query to abort, this subroutine 5302 ** increments the iAbortFlag memory location before returning in 5303 ** order to signal the caller to abort. 5304 */ 5305 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5306 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5307 VdbeComment((v, "set abort flag")); 5308 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5309 sqlite3VdbeResolveLabel(v, addrOutputRow); 5310 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5311 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5312 VdbeComment((v, "Groupby result generator entry point")); 5313 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5314 finalizeAggFunctions(pParse, &sAggInfo); 5315 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5316 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5317 &sDistinct, pDest, 5318 addrOutputRow+1, addrSetAbort); 5319 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5320 VdbeComment((v, "end groupby result generator")); 5321 5322 /* Generate a subroutine that will reset the group-by accumulator 5323 */ 5324 sqlite3VdbeResolveLabel(v, addrReset); 5325 resetAccumulator(pParse, &sAggInfo); 5326 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5327 5328 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5329 else { 5330 ExprList *pDel = 0; 5331 #ifndef SQLITE_OMIT_BTREECOUNT 5332 Table *pTab; 5333 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5334 /* If isSimpleCount() returns a pointer to a Table structure, then 5335 ** the SQL statement is of the form: 5336 ** 5337 ** SELECT count(*) FROM <tbl> 5338 ** 5339 ** where the Table structure returned represents table <tbl>. 5340 ** 5341 ** This statement is so common that it is optimized specially. The 5342 ** OP_Count instruction is executed either on the intkey table that 5343 ** contains the data for table <tbl> or on one of its indexes. It 5344 ** is better to execute the op on an index, as indexes are almost 5345 ** always spread across less pages than their corresponding tables. 5346 */ 5347 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5348 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5349 Index *pIdx; /* Iterator variable */ 5350 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5351 Index *pBest = 0; /* Best index found so far */ 5352 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5353 5354 sqlite3CodeVerifySchema(pParse, iDb); 5355 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5356 5357 /* Search for the index that has the lowest scan cost. 5358 ** 5359 ** (2011-04-15) Do not do a full scan of an unordered index. 5360 ** 5361 ** (2013-10-03) Do not count the entries in a partial index. 5362 ** 5363 ** In practice the KeyInfo structure will not be used. It is only 5364 ** passed to keep OP_OpenRead happy. 5365 */ 5366 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5367 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5368 if( pIdx->bUnordered==0 5369 && pIdx->szIdxRow<pTab->szTabRow 5370 && pIdx->pPartIdxWhere==0 5371 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5372 ){ 5373 pBest = pIdx; 5374 } 5375 } 5376 if( pBest ){ 5377 iRoot = pBest->tnum; 5378 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5379 } 5380 5381 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5382 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5383 if( pKeyInfo ){ 5384 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5385 } 5386 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5387 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5388 explainSimpleCount(pParse, pTab, pBest); 5389 }else 5390 #endif /* SQLITE_OMIT_BTREECOUNT */ 5391 { 5392 /* Check if the query is of one of the following forms: 5393 ** 5394 ** SELECT min(x) FROM ... 5395 ** SELECT max(x) FROM ... 5396 ** 5397 ** If it is, then ask the code in where.c to attempt to sort results 5398 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5399 ** If where.c is able to produce results sorted in this order, then 5400 ** add vdbe code to break out of the processing loop after the 5401 ** first iteration (since the first iteration of the loop is 5402 ** guaranteed to operate on the row with the minimum or maximum 5403 ** value of x, the only row required). 5404 ** 5405 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5406 ** modify behavior as follows: 5407 ** 5408 ** + If the query is a "SELECT min(x)", then the loop coded by 5409 ** where.c should not iterate over any values with a NULL value 5410 ** for x. 5411 ** 5412 ** + The optimizer code in where.c (the thing that decides which 5413 ** index or indices to use) should place a different priority on 5414 ** satisfying the 'ORDER BY' clause than it does in other cases. 5415 ** Refer to code and comments in where.c for details. 5416 */ 5417 ExprList *pMinMax = 0; 5418 u8 flag = WHERE_ORDERBY_NORMAL; 5419 5420 assert( p->pGroupBy==0 ); 5421 assert( flag==0 ); 5422 if( p->pHaving==0 ){ 5423 flag = minMaxQuery(&sAggInfo, &pMinMax); 5424 } 5425 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5426 5427 if( flag ){ 5428 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5429 pDel = pMinMax; 5430 if( pMinMax && !db->mallocFailed ){ 5431 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5432 pMinMax->a[0].pExpr->op = TK_COLUMN; 5433 } 5434 } 5435 5436 /* This case runs if the aggregate has no GROUP BY clause. The 5437 ** processing is much simpler since there is only a single row 5438 ** of output. 5439 */ 5440 resetAccumulator(pParse, &sAggInfo); 5441 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5442 if( pWInfo==0 ){ 5443 sqlite3ExprListDelete(db, pDel); 5444 goto select_end; 5445 } 5446 updateAccumulator(pParse, &sAggInfo); 5447 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5448 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5449 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5450 VdbeComment((v, "%s() by index", 5451 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5452 } 5453 sqlite3WhereEnd(pWInfo); 5454 finalizeAggFunctions(pParse, &sAggInfo); 5455 } 5456 5457 sSort.pOrderBy = 0; 5458 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5459 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5460 pDest, addrEnd, addrEnd); 5461 sqlite3ExprListDelete(db, pDel); 5462 } 5463 sqlite3VdbeResolveLabel(v, addrEnd); 5464 5465 } /* endif aggregate query */ 5466 5467 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5468 explainTempTable(pParse, "DISTINCT"); 5469 } 5470 5471 /* If there is an ORDER BY clause, then we need to sort the results 5472 ** and send them to the callback one by one. 5473 */ 5474 if( sSort.pOrderBy ){ 5475 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5476 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5477 } 5478 5479 /* Jump here to skip this query 5480 */ 5481 sqlite3VdbeResolveLabel(v, iEnd); 5482 5483 /* The SELECT was successfully coded. Set the return code to 0 5484 ** to indicate no errors. 5485 */ 5486 rc = 0; 5487 5488 /* Control jumps to here if an error is encountered above, or upon 5489 ** successful coding of the SELECT. 5490 */ 5491 select_end: 5492 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5493 5494 /* Identify column names if results of the SELECT are to be output. 5495 */ 5496 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5497 generateColumnNames(pParse, pTabList, pEList); 5498 } 5499 5500 sqlite3DbFree(db, sAggInfo.aCol); 5501 sqlite3DbFree(db, sAggInfo.aFunc); 5502 #if SELECTTRACE_ENABLED 5503 SELECTTRACE(1,pParse,p,("end processing\n")); 5504 pParse->nSelectIndent--; 5505 #endif 5506 return rc; 5507 } 5508 5509 #ifdef SQLITE_DEBUG 5510 /* 5511 ** Generate a human-readable description of a the Select object. 5512 */ 5513 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ 5514 int n = 0; 5515 pView = sqlite3TreeViewPush(pView, moreToFollow); 5516 sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)", 5517 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), 5518 ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p 5519 ); 5520 if( p->pSrc && p->pSrc->nSrc ) n++; 5521 if( p->pWhere ) n++; 5522 if( p->pGroupBy ) n++; 5523 if( p->pHaving ) n++; 5524 if( p->pOrderBy ) n++; 5525 if( p->pLimit ) n++; 5526 if( p->pOffset ) n++; 5527 if( p->pPrior ) n++; 5528 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); 5529 if( p->pSrc && p->pSrc->nSrc ){ 5530 int i; 5531 pView = sqlite3TreeViewPush(pView, (n--)>0); 5532 sqlite3TreeViewLine(pView, "FROM"); 5533 for(i=0; i<p->pSrc->nSrc; i++){ 5534 struct SrcList_item *pItem = &p->pSrc->a[i]; 5535 StrAccum x; 5536 char zLine[100]; 5537 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); 5538 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); 5539 if( pItem->zDatabase ){ 5540 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); 5541 }else if( pItem->zName ){ 5542 sqlite3XPrintf(&x, 0, " %s", pItem->zName); 5543 } 5544 if( pItem->pTab ){ 5545 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); 5546 } 5547 if( pItem->zAlias ){ 5548 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); 5549 } 5550 if( pItem->jointype & JT_LEFT ){ 5551 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); 5552 } 5553 sqlite3StrAccumFinish(&x); 5554 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 5555 if( pItem->pSelect ){ 5556 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); 5557 } 5558 sqlite3TreeViewPop(pView); 5559 } 5560 sqlite3TreeViewPop(pView); 5561 } 5562 if( p->pWhere ){ 5563 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); 5564 sqlite3TreeViewExpr(pView, p->pWhere, 0); 5565 sqlite3TreeViewPop(pView); 5566 } 5567 if( p->pGroupBy ){ 5568 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); 5569 } 5570 if( p->pHaving ){ 5571 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); 5572 sqlite3TreeViewExpr(pView, p->pHaving, 0); 5573 sqlite3TreeViewPop(pView); 5574 } 5575 if( p->pOrderBy ){ 5576 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); 5577 } 5578 if( p->pLimit ){ 5579 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); 5580 sqlite3TreeViewExpr(pView, p->pLimit, 0); 5581 sqlite3TreeViewPop(pView); 5582 } 5583 if( p->pOffset ){ 5584 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); 5585 sqlite3TreeViewExpr(pView, p->pOffset, 0); 5586 sqlite3TreeViewPop(pView); 5587 } 5588 if( p->pPrior ){ 5589 const char *zOp = "UNION"; 5590 switch( p->op ){ 5591 case TK_ALL: zOp = "UNION ALL"; break; 5592 case TK_INTERSECT: zOp = "INTERSECT"; break; 5593 case TK_EXCEPT: zOp = "EXCEPT"; break; 5594 } 5595 sqlite3TreeViewItem(pView, zOp, (n--)>0); 5596 sqlite3TreeViewSelect(pView, p->pPrior, 0); 5597 sqlite3TreeViewPop(pView); 5598 } 5599 sqlite3TreeViewPop(pView); 5600 } 5601 #endif /* SQLITE_DEBUG */ 5602