xref: /sqlite-3.40.0/src/select.c (revision cc285c5a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
59 
60 /*
61 ** Delete all the content of a Select structure.  Deallocate the structure
62 ** itself only if bFree is true.
63 */
64 static void clearSelect(sqlite3 *db, Select *p, int bFree){
65   while( p ){
66     Select *pPrior = p->pPrior;
67     sqlite3ExprListDelete(db, p->pEList);
68     sqlite3SrcListDelete(db, p->pSrc);
69     sqlite3ExprDelete(db, p->pWhere);
70     sqlite3ExprListDelete(db, p->pGroupBy);
71     sqlite3ExprDelete(db, p->pHaving);
72     sqlite3ExprListDelete(db, p->pOrderBy);
73     sqlite3ExprDelete(db, p->pLimit);
74     sqlite3ExprDelete(db, p->pOffset);
75     sqlite3WithDelete(db, p->pWith);
76     if( bFree ) sqlite3DbFree(db, p);
77     p = pPrior;
78     bFree = 1;
79   }
80 }
81 
82 /*
83 ** Initialize a SelectDest structure.
84 */
85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
86   pDest->eDest = (u8)eDest;
87   pDest->iSDParm = iParm;
88   pDest->affSdst = 0;
89   pDest->iSdst = 0;
90   pDest->nSdst = 0;
91 }
92 
93 
94 /*
95 ** Allocate a new Select structure and return a pointer to that
96 ** structure.
97 */
98 Select *sqlite3SelectNew(
99   Parse *pParse,        /* Parsing context */
100   ExprList *pEList,     /* which columns to include in the result */
101   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
102   Expr *pWhere,         /* the WHERE clause */
103   ExprList *pGroupBy,   /* the GROUP BY clause */
104   Expr *pHaving,        /* the HAVING clause */
105   ExprList *pOrderBy,   /* the ORDER BY clause */
106   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
107   Expr *pLimit,         /* LIMIT value.  NULL means not used */
108   Expr *pOffset         /* OFFSET value.  NULL means no offset */
109 ){
110   Select *pNew;
111   Select standin;
112   sqlite3 *db = pParse->db;
113   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
114   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     setJoinExpr(p->pLeft, iTable);
370     p = p->pRight;
371   }
372 }
373 
374 /*
375 ** This routine processes the join information for a SELECT statement.
376 ** ON and USING clauses are converted into extra terms of the WHERE clause.
377 ** NATURAL joins also create extra WHERE clause terms.
378 **
379 ** The terms of a FROM clause are contained in the Select.pSrc structure.
380 ** The left most table is the first entry in Select.pSrc.  The right-most
381 ** table is the last entry.  The join operator is held in the entry to
382 ** the left.  Thus entry 0 contains the join operator for the join between
383 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
384 ** also attached to the left entry.
385 **
386 ** This routine returns the number of errors encountered.
387 */
388 static int sqliteProcessJoin(Parse *pParse, Select *p){
389   SrcList *pSrc;                  /* All tables in the FROM clause */
390   int i, j;                       /* Loop counters */
391   struct SrcList_item *pLeft;     /* Left table being joined */
392   struct SrcList_item *pRight;    /* Right table being joined */
393 
394   pSrc = p->pSrc;
395   pLeft = &pSrc->a[0];
396   pRight = &pLeft[1];
397   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
398     Table *pLeftTab = pLeft->pTab;
399     Table *pRightTab = pRight->pTab;
400     int isOuter;
401 
402     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
403     isOuter = (pRight->jointype & JT_OUTER)!=0;
404 
405     /* When the NATURAL keyword is present, add WHERE clause terms for
406     ** every column that the two tables have in common.
407     */
408     if( pRight->jointype & JT_NATURAL ){
409       if( pRight->pOn || pRight->pUsing ){
410         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
411            "an ON or USING clause", 0);
412         return 1;
413       }
414       for(j=0; j<pRightTab->nCol; j++){
415         char *zName;   /* Name of column in the right table */
416         int iLeft;     /* Matching left table */
417         int iLeftCol;  /* Matching column in the left table */
418 
419         zName = pRightTab->aCol[j].zName;
420         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
421           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
422                        isOuter, &p->pWhere);
423         }
424       }
425     }
426 
427     /* Disallow both ON and USING clauses in the same join
428     */
429     if( pRight->pOn && pRight->pUsing ){
430       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
431         "clauses in the same join");
432       return 1;
433     }
434 
435     /* Add the ON clause to the end of the WHERE clause, connected by
436     ** an AND operator.
437     */
438     if( pRight->pOn ){
439       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
440       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
441       pRight->pOn = 0;
442     }
443 
444     /* Create extra terms on the WHERE clause for each column named
445     ** in the USING clause.  Example: If the two tables to be joined are
446     ** A and B and the USING clause names X, Y, and Z, then add this
447     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
448     ** Report an error if any column mentioned in the USING clause is
449     ** not contained in both tables to be joined.
450     */
451     if( pRight->pUsing ){
452       IdList *pList = pRight->pUsing;
453       for(j=0; j<pList->nId; j++){
454         char *zName;     /* Name of the term in the USING clause */
455         int iLeft;       /* Table on the left with matching column name */
456         int iLeftCol;    /* Column number of matching column on the left */
457         int iRightCol;   /* Column number of matching column on the right */
458 
459         zName = pList->a[j].zName;
460         iRightCol = columnIndex(pRightTab, zName);
461         if( iRightCol<0
462          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
463         ){
464           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
465             "not present in both tables", zName);
466           return 1;
467         }
468         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
469                      isOuter, &p->pWhere);
470       }
471     }
472   }
473   return 0;
474 }
475 
476 /* Forward reference */
477 static KeyInfo *keyInfoFromExprList(
478   Parse *pParse,       /* Parsing context */
479   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
480   int iStart,          /* Begin with this column of pList */
481   int nExtra           /* Add this many extra columns to the end */
482 );
483 
484 /*
485 ** Generate code that will push the record in registers regData
486 ** through regData+nData-1 onto the sorter.
487 */
488 static void pushOntoSorter(
489   Parse *pParse,         /* Parser context */
490   SortCtx *pSort,        /* Information about the ORDER BY clause */
491   Select *pSelect,       /* The whole SELECT statement */
492   int regData,           /* First register holding data to be sorted */
493   int nData,             /* Number of elements in the data array */
494   int nPrefixReg         /* No. of reg prior to regData available for use */
495 ){
496   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
497   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
498   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
499   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
500   int regBase;                                     /* Regs for sorter record */
501   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
502   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
503   int op;                            /* Opcode to add sorter record to sorter */
504 
505   assert( bSeq==0 || bSeq==1 );
506   if( nPrefixReg ){
507     assert( nPrefixReg==nExpr+bSeq );
508     regBase = regData - nExpr - bSeq;
509   }else{
510     regBase = pParse->nMem + 1;
511     pParse->nMem += nBase;
512   }
513   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
514   if( bSeq ){
515     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
516   }
517   if( nPrefixReg==0 ){
518     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
519   }
520 
521   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
522   if( nOBSat>0 ){
523     int regPrevKey;   /* The first nOBSat columns of the previous row */
524     int addrFirst;    /* Address of the OP_IfNot opcode */
525     int addrJmp;      /* Address of the OP_Jump opcode */
526     VdbeOp *pOp;      /* Opcode that opens the sorter */
527     int nKey;         /* Number of sorting key columns, including OP_Sequence */
528     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
529 
530     regPrevKey = pParse->nMem+1;
531     pParse->nMem += pSort->nOBSat;
532     nKey = nExpr - pSort->nOBSat + bSeq;
533     if( bSeq ){
534       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
535     }else{
536       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
537     }
538     VdbeCoverage(v);
539     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
540     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
541     if( pParse->db->mallocFailed ) return;
542     pOp->p2 = nKey + nData;
543     pKI = pOp->p4.pKeyInfo;
544     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
545     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
546     testcase( pKI->nXField>2 );
547     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
548                                            pKI->nXField-1);
549     addrJmp = sqlite3VdbeCurrentAddr(v);
550     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
551     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
552     pSort->regReturn = ++pParse->nMem;
553     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
554     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
555     sqlite3VdbeJumpHere(v, addrFirst);
556     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
557     sqlite3VdbeJumpHere(v, addrJmp);
558   }
559   if( pSort->sortFlags & SORTFLAG_UseSorter ){
560     op = OP_SorterInsert;
561   }else{
562     op = OP_IdxInsert;
563   }
564   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
565   if( pSelect->iLimit ){
566     int addr;
567     int iLimit;
568     if( pSelect->iOffset ){
569       iLimit = pSelect->iOffset+1;
570     }else{
571       iLimit = pSelect->iLimit;
572     }
573     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
574     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
575     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
576     sqlite3VdbeJumpHere(v, addr);
577   }
578 }
579 
580 /*
581 ** Add code to implement the OFFSET
582 */
583 static void codeOffset(
584   Vdbe *v,          /* Generate code into this VM */
585   int iOffset,      /* Register holding the offset counter */
586   int iContinue     /* Jump here to skip the current record */
587 ){
588   if( iOffset>0 ){
589     int addr;
590     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
591     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
592     VdbeComment((v, "skip OFFSET records"));
593     sqlite3VdbeJumpHere(v, addr);
594   }
595 }
596 
597 /*
598 ** Add code that will check to make sure the N registers starting at iMem
599 ** form a distinct entry.  iTab is a sorting index that holds previously
600 ** seen combinations of the N values.  A new entry is made in iTab
601 ** if the current N values are new.
602 **
603 ** A jump to addrRepeat is made and the N+1 values are popped from the
604 ** stack if the top N elements are not distinct.
605 */
606 static void codeDistinct(
607   Parse *pParse,     /* Parsing and code generating context */
608   int iTab,          /* A sorting index used to test for distinctness */
609   int addrRepeat,    /* Jump to here if not distinct */
610   int N,             /* Number of elements */
611   int iMem           /* First element */
612 ){
613   Vdbe *v;
614   int r1;
615 
616   v = pParse->pVdbe;
617   r1 = sqlite3GetTempReg(pParse);
618   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
619   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
620   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
621   sqlite3ReleaseTempReg(pParse, r1);
622 }
623 
624 #ifndef SQLITE_OMIT_SUBQUERY
625 /*
626 ** Generate an error message when a SELECT is used within a subexpression
627 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
628 ** column.  We do this in a subroutine because the error used to occur
629 ** in multiple places.  (The error only occurs in one place now, but we
630 ** retain the subroutine to minimize code disruption.)
631 */
632 static int checkForMultiColumnSelectError(
633   Parse *pParse,       /* Parse context. */
634   SelectDest *pDest,   /* Destination of SELECT results */
635   int nExpr            /* Number of result columns returned by SELECT */
636 ){
637   int eDest = pDest->eDest;
638   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
639     sqlite3ErrorMsg(pParse, "only a single result allowed for "
640        "a SELECT that is part of an expression");
641     return 1;
642   }else{
643     return 0;
644   }
645 }
646 #endif
647 
648 /*
649 ** This routine generates the code for the inside of the inner loop
650 ** of a SELECT.
651 **
652 ** If srcTab is negative, then the pEList expressions
653 ** are evaluated in order to get the data for this row.  If srcTab is
654 ** zero or more, then data is pulled from srcTab and pEList is used only
655 ** to get number columns and the datatype for each column.
656 */
657 static void selectInnerLoop(
658   Parse *pParse,          /* The parser context */
659   Select *p,              /* The complete select statement being coded */
660   ExprList *pEList,       /* List of values being extracted */
661   int srcTab,             /* Pull data from this table */
662   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
663   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
664   SelectDest *pDest,      /* How to dispose of the results */
665   int iContinue,          /* Jump here to continue with next row */
666   int iBreak              /* Jump here to break out of the inner loop */
667 ){
668   Vdbe *v = pParse->pVdbe;
669   int i;
670   int hasDistinct;        /* True if the DISTINCT keyword is present */
671   int regResult;              /* Start of memory holding result set */
672   int eDest = pDest->eDest;   /* How to dispose of results */
673   int iParm = pDest->iSDParm; /* First argument to disposal method */
674   int nResultCol;             /* Number of result columns */
675   int nPrefixReg = 0;         /* Number of extra registers before regResult */
676 
677   assert( v );
678   assert( pEList!=0 );
679   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
680   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
681   if( pSort==0 && !hasDistinct ){
682     assert( iContinue!=0 );
683     codeOffset(v, p->iOffset, iContinue);
684   }
685 
686   /* Pull the requested columns.
687   */
688   nResultCol = pEList->nExpr;
689 
690   if( pDest->iSdst==0 ){
691     if( pSort ){
692       nPrefixReg = pSort->pOrderBy->nExpr;
693       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
694       pParse->nMem += nPrefixReg;
695     }
696     pDest->iSdst = pParse->nMem+1;
697     pParse->nMem += nResultCol;
698   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
699     /* This is an error condition that can result, for example, when a SELECT
700     ** on the right-hand side of an INSERT contains more result columns than
701     ** there are columns in the table on the left.  The error will be caught
702     ** and reported later.  But we need to make sure enough memory is allocated
703     ** to avoid other spurious errors in the meantime. */
704     pParse->nMem += nResultCol;
705   }
706   pDest->nSdst = nResultCol;
707   regResult = pDest->iSdst;
708   if( srcTab>=0 ){
709     for(i=0; i<nResultCol; i++){
710       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
711       VdbeComment((v, "%s", pEList->a[i].zName));
712     }
713   }else if( eDest!=SRT_Exists ){
714     /* If the destination is an EXISTS(...) expression, the actual
715     ** values returned by the SELECT are not required.
716     */
717     sqlite3ExprCodeExprList(pParse, pEList, regResult,
718                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
719   }
720 
721   /* If the DISTINCT keyword was present on the SELECT statement
722   ** and this row has been seen before, then do not make this row
723   ** part of the result.
724   */
725   if( hasDistinct ){
726     switch( pDistinct->eTnctType ){
727       case WHERE_DISTINCT_ORDERED: {
728         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
729         int iJump;              /* Jump destination */
730         int regPrev;            /* Previous row content */
731 
732         /* Allocate space for the previous row */
733         regPrev = pParse->nMem+1;
734         pParse->nMem += nResultCol;
735 
736         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
737         ** sets the MEM_Cleared bit on the first register of the
738         ** previous value.  This will cause the OP_Ne below to always
739         ** fail on the first iteration of the loop even if the first
740         ** row is all NULLs.
741         */
742         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
743         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
744         pOp->opcode = OP_Null;
745         pOp->p1 = 1;
746         pOp->p2 = regPrev;
747 
748         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
749         for(i=0; i<nResultCol; i++){
750           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
751           if( i<nResultCol-1 ){
752             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
753             VdbeCoverage(v);
754           }else{
755             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
756             VdbeCoverage(v);
757            }
758           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
759           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
760         }
761         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
762         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
763         break;
764       }
765 
766       case WHERE_DISTINCT_UNIQUE: {
767         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
768         break;
769       }
770 
771       default: {
772         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
773         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
774         break;
775       }
776     }
777     if( pSort==0 ){
778       codeOffset(v, p->iOffset, iContinue);
779     }
780   }
781 
782   switch( eDest ){
783     /* In this mode, write each query result to the key of the temporary
784     ** table iParm.
785     */
786 #ifndef SQLITE_OMIT_COMPOUND_SELECT
787     case SRT_Union: {
788       int r1;
789       r1 = sqlite3GetTempReg(pParse);
790       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
791       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
792       sqlite3ReleaseTempReg(pParse, r1);
793       break;
794     }
795 
796     /* Construct a record from the query result, but instead of
797     ** saving that record, use it as a key to delete elements from
798     ** the temporary table iParm.
799     */
800     case SRT_Except: {
801       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
802       break;
803     }
804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
805 
806     /* Store the result as data using a unique key.
807     */
808     case SRT_Fifo:
809     case SRT_DistFifo:
810     case SRT_Table:
811     case SRT_EphemTab: {
812       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
813       testcase( eDest==SRT_Table );
814       testcase( eDest==SRT_EphemTab );
815       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
816 #ifndef SQLITE_OMIT_CTE
817       if( eDest==SRT_DistFifo ){
818         /* If the destination is DistFifo, then cursor (iParm+1) is open
819         ** on an ephemeral index. If the current row is already present
820         ** in the index, do not write it to the output. If not, add the
821         ** current row to the index and proceed with writing it to the
822         ** output table as well.  */
823         int addr = sqlite3VdbeCurrentAddr(v) + 4;
824         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
825         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
826         assert( pSort==0 );
827       }
828 #endif
829       if( pSort ){
830         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
831       }else{
832         int r2 = sqlite3GetTempReg(pParse);
833         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
834         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
835         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
836         sqlite3ReleaseTempReg(pParse, r2);
837       }
838       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
839       break;
840     }
841 
842 #ifndef SQLITE_OMIT_SUBQUERY
843     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
844     ** then there should be a single item on the stack.  Write this
845     ** item into the set table with bogus data.
846     */
847     case SRT_Set: {
848       assert( nResultCol==1 );
849       pDest->affSdst =
850                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
851       if( pSort ){
852         /* At first glance you would think we could optimize out the
853         ** ORDER BY in this case since the order of entries in the set
854         ** does not matter.  But there might be a LIMIT clause, in which
855         ** case the order does matter */
856         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
857       }else{
858         int r1 = sqlite3GetTempReg(pParse);
859         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
860         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
861         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
862         sqlite3ReleaseTempReg(pParse, r1);
863       }
864       break;
865     }
866 
867     /* If any row exist in the result set, record that fact and abort.
868     */
869     case SRT_Exists: {
870       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
871       /* The LIMIT clause will terminate the loop for us */
872       break;
873     }
874 
875     /* If this is a scalar select that is part of an expression, then
876     ** store the results in the appropriate memory cell and break out
877     ** of the scan loop.
878     */
879     case SRT_Mem: {
880       assert( nResultCol==1 );
881       if( pSort ){
882         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
883       }else{
884         assert( regResult==iParm );
885         /* The LIMIT clause will jump out of the loop for us */
886       }
887       break;
888     }
889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
890 
891     case SRT_Coroutine:       /* Send data to a co-routine */
892     case SRT_Output: {        /* Return the results */
893       testcase( eDest==SRT_Coroutine );
894       testcase( eDest==SRT_Output );
895       if( pSort ){
896         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
897       }else if( eDest==SRT_Coroutine ){
898         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
899       }else{
900         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
901         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
902       }
903       break;
904     }
905 
906 #ifndef SQLITE_OMIT_CTE
907     /* Write the results into a priority queue that is order according to
908     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
909     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
910     ** pSO->nExpr columns, then make sure all keys are unique by adding a
911     ** final OP_Sequence column.  The last column is the record as a blob.
912     */
913     case SRT_DistQueue:
914     case SRT_Queue: {
915       int nKey;
916       int r1, r2, r3;
917       int addrTest = 0;
918       ExprList *pSO;
919       pSO = pDest->pOrderBy;
920       assert( pSO );
921       nKey = pSO->nExpr;
922       r1 = sqlite3GetTempReg(pParse);
923       r2 = sqlite3GetTempRange(pParse, nKey+2);
924       r3 = r2+nKey+1;
925       if( eDest==SRT_DistQueue ){
926         /* If the destination is DistQueue, then cursor (iParm+1) is open
927         ** on a second ephemeral index that holds all values every previously
928         ** added to the queue. */
929         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
930                                         regResult, nResultCol);
931         VdbeCoverage(v);
932       }
933       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
934       if( eDest==SRT_DistQueue ){
935         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
936         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
937       }
938       for(i=0; i<nKey; i++){
939         sqlite3VdbeAddOp2(v, OP_SCopy,
940                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
941                           r2+i);
942       }
943       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
944       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
945       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
946       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
947       sqlite3ReleaseTempReg(pParse, r1);
948       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
949       break;
950     }
951 #endif /* SQLITE_OMIT_CTE */
952 
953 
954 
955 #if !defined(SQLITE_OMIT_TRIGGER)
956     /* Discard the results.  This is used for SELECT statements inside
957     ** the body of a TRIGGER.  The purpose of such selects is to call
958     ** user-defined functions that have side effects.  We do not care
959     ** about the actual results of the select.
960     */
961     default: {
962       assert( eDest==SRT_Discard );
963       break;
964     }
965 #endif
966   }
967 
968   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
969   ** there is a sorter, in which case the sorter has already limited
970   ** the output for us.
971   */
972   if( pSort==0 && p->iLimit ){
973     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
974   }
975 }
976 
977 /*
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and
979 ** X extra columns.
980 */
981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
982   KeyInfo *p = sqlite3DbMallocZero(0,
983                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
984   if( p ){
985     p->aSortOrder = (u8*)&p->aColl[N+X];
986     p->nField = (u16)N;
987     p->nXField = (u16)X;
988     p->enc = ENC(db);
989     p->db = db;
990     p->nRef = 1;
991   }else{
992     db->mallocFailed = 1;
993   }
994   return p;
995 }
996 
997 /*
998 ** Deallocate a KeyInfo object
999 */
1000 void sqlite3KeyInfoUnref(KeyInfo *p){
1001   if( p ){
1002     assert( p->nRef>0 );
1003     p->nRef--;
1004     if( p->nRef==0 ) sqlite3DbFree(0, p);
1005   }
1006 }
1007 
1008 /*
1009 ** Make a new pointer to a KeyInfo object
1010 */
1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1012   if( p ){
1013     assert( p->nRef>0 );
1014     p->nRef++;
1015   }
1016   return p;
1017 }
1018 
1019 #ifdef SQLITE_DEBUG
1020 /*
1021 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1022 ** can only be changed if this is just a single reference to the object.
1023 **
1024 ** This routine is used only inside of assert() statements.
1025 */
1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1027 #endif /* SQLITE_DEBUG */
1028 
1029 /*
1030 ** Given an expression list, generate a KeyInfo structure that records
1031 ** the collating sequence for each expression in that expression list.
1032 **
1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1034 ** KeyInfo structure is appropriate for initializing a virtual index to
1035 ** implement that clause.  If the ExprList is the result set of a SELECT
1036 ** then the KeyInfo structure is appropriate for initializing a virtual
1037 ** index to implement a DISTINCT test.
1038 **
1039 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1040 ** function is responsible for seeing that this structure is eventually
1041 ** freed.
1042 */
1043 static KeyInfo *keyInfoFromExprList(
1044   Parse *pParse,       /* Parsing context */
1045   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1046   int iStart,          /* Begin with this column of pList */
1047   int nExtra           /* Add this many extra columns to the end */
1048 ){
1049   int nExpr;
1050   KeyInfo *pInfo;
1051   struct ExprList_item *pItem;
1052   sqlite3 *db = pParse->db;
1053   int i;
1054 
1055   nExpr = pList->nExpr;
1056   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1057   if( pInfo ){
1058     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1059     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1060       CollSeq *pColl;
1061       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1062       if( !pColl ) pColl = db->pDfltColl;
1063       pInfo->aColl[i-iStart] = pColl;
1064       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1065     }
1066   }
1067   return pInfo;
1068 }
1069 
1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1071 /*
1072 ** Name of the connection operator, used for error messages.
1073 */
1074 static const char *selectOpName(int id){
1075   char *z;
1076   switch( id ){
1077     case TK_ALL:       z = "UNION ALL";   break;
1078     case TK_INTERSECT: z = "INTERSECT";   break;
1079     case TK_EXCEPT:    z = "EXCEPT";      break;
1080     default:           z = "UNION";       break;
1081   }
1082   return z;
1083 }
1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1085 
1086 #ifndef SQLITE_OMIT_EXPLAIN
1087 /*
1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1090 ** where the caption is of the form:
1091 **
1092 **   "USE TEMP B-TREE FOR xxx"
1093 **
1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1095 ** is determined by the zUsage argument.
1096 */
1097 static void explainTempTable(Parse *pParse, const char *zUsage){
1098   if( pParse->explain==2 ){
1099     Vdbe *v = pParse->pVdbe;
1100     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1101     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1102   }
1103 }
1104 
1105 /*
1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1108 ** in sqlite3Select() to assign values to structure member variables that
1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1110 ** code with #ifndef directives.
1111 */
1112 # define explainSetInteger(a, b) a = b
1113 
1114 #else
1115 /* No-op versions of the explainXXX() functions and macros. */
1116 # define explainTempTable(y,z)
1117 # define explainSetInteger(y,z)
1118 #endif
1119 
1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1121 /*
1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1124 ** where the caption is of one of the two forms:
1125 **
1126 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1127 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1128 **
1129 ** where iSub1 and iSub2 are the integers passed as the corresponding
1130 ** function parameters, and op is the text representation of the parameter
1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1133 ** false, or the second form if it is true.
1134 */
1135 static void explainComposite(
1136   Parse *pParse,                  /* Parse context */
1137   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1138   int iSub1,                      /* Subquery id 1 */
1139   int iSub2,                      /* Subquery id 2 */
1140   int bUseTmp                     /* True if a temp table was used */
1141 ){
1142   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1143   if( pParse->explain==2 ){
1144     Vdbe *v = pParse->pVdbe;
1145     char *zMsg = sqlite3MPrintf(
1146         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1147         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1148     );
1149     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1150   }
1151 }
1152 #else
1153 /* No-op versions of the explainXXX() functions and macros. */
1154 # define explainComposite(v,w,x,y,z)
1155 #endif
1156 
1157 /*
1158 ** If the inner loop was generated using a non-null pOrderBy argument,
1159 ** then the results were placed in a sorter.  After the loop is terminated
1160 ** we need to run the sorter and output the results.  The following
1161 ** routine generates the code needed to do that.
1162 */
1163 static void generateSortTail(
1164   Parse *pParse,    /* Parsing context */
1165   Select *p,        /* The SELECT statement */
1166   SortCtx *pSort,   /* Information on the ORDER BY clause */
1167   int nColumn,      /* Number of columns of data */
1168   SelectDest *pDest /* Write the sorted results here */
1169 ){
1170   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1171   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1172   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1173   int addr;
1174   int addrOnce = 0;
1175   int iTab;
1176   ExprList *pOrderBy = pSort->pOrderBy;
1177   int eDest = pDest->eDest;
1178   int iParm = pDest->iSDParm;
1179   int regRow;
1180   int regRowid;
1181   int nKey;
1182   int iSortTab;                   /* Sorter cursor to read from */
1183   int nSortData;                  /* Trailing values to read from sorter */
1184   int i;
1185   int bSeq;                       /* True if sorter record includes seq. no. */
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1187   struct ExprList_item *aOutEx = p->pEList->a;
1188 #endif
1189 
1190   if( pSort->labelBkOut ){
1191     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1192     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1193     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1194   }
1195   iTab = pSort->iECursor;
1196   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1197     regRowid = 0;
1198     regRow = pDest->iSdst;
1199     nSortData = nColumn;
1200   }else{
1201     regRowid = sqlite3GetTempReg(pParse);
1202     regRow = sqlite3GetTempReg(pParse);
1203     nSortData = 1;
1204   }
1205   nKey = pOrderBy->nExpr - pSort->nOBSat;
1206   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1207     int regSortOut = ++pParse->nMem;
1208     iSortTab = pParse->nTab++;
1209     if( pSort->labelBkOut ){
1210       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1211     }
1212     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1213     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1214     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1215     VdbeCoverage(v);
1216     codeOffset(v, p->iOffset, addrContinue);
1217     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1218     bSeq = 0;
1219   }else{
1220     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1221     codeOffset(v, p->iOffset, addrContinue);
1222     iSortTab = iTab;
1223     bSeq = 1;
1224   }
1225   for(i=0; i<nSortData; i++){
1226     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1227     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1228   }
1229   switch( eDest ){
1230     case SRT_Table:
1231     case SRT_EphemTab: {
1232       testcase( eDest==SRT_Table );
1233       testcase( eDest==SRT_EphemTab );
1234       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1235       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1236       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1237       break;
1238     }
1239 #ifndef SQLITE_OMIT_SUBQUERY
1240     case SRT_Set: {
1241       assert( nColumn==1 );
1242       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1243                         &pDest->affSdst, 1);
1244       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1245       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1246       break;
1247     }
1248     case SRT_Mem: {
1249       assert( nColumn==1 );
1250       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1251       /* The LIMIT clause will terminate the loop for us */
1252       break;
1253     }
1254 #endif
1255     default: {
1256       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1257       testcase( eDest==SRT_Output );
1258       testcase( eDest==SRT_Coroutine );
1259       if( eDest==SRT_Output ){
1260         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1261         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1262       }else{
1263         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1264       }
1265       break;
1266     }
1267   }
1268   if( regRowid ){
1269     sqlite3ReleaseTempReg(pParse, regRow);
1270     sqlite3ReleaseTempReg(pParse, regRowid);
1271   }
1272   /* The bottom of the loop
1273   */
1274   sqlite3VdbeResolveLabel(v, addrContinue);
1275   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1276     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1277   }else{
1278     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1279   }
1280   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1281   sqlite3VdbeResolveLabel(v, addrBreak);
1282 }
1283 
1284 /*
1285 ** Return a pointer to a string containing the 'declaration type' of the
1286 ** expression pExpr. The string may be treated as static by the caller.
1287 **
1288 ** Also try to estimate the size of the returned value and return that
1289 ** result in *pEstWidth.
1290 **
1291 ** The declaration type is the exact datatype definition extracted from the
1292 ** original CREATE TABLE statement if the expression is a column. The
1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1294 ** is considered a column can be complex in the presence of subqueries. The
1295 ** result-set expression in all of the following SELECT statements is
1296 ** considered a column by this function.
1297 **
1298 **   SELECT col FROM tbl;
1299 **   SELECT (SELECT col FROM tbl;
1300 **   SELECT (SELECT col FROM tbl);
1301 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1302 **
1303 ** The declaration type for any expression other than a column is NULL.
1304 **
1305 ** This routine has either 3 or 6 parameters depending on whether or not
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1307 */
1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1310 static const char *columnTypeImpl(
1311   NameContext *pNC,
1312   Expr *pExpr,
1313   const char **pzOrigDb,
1314   const char **pzOrigTab,
1315   const char **pzOrigCol,
1316   u8 *pEstWidth
1317 ){
1318   char const *zOrigDb = 0;
1319   char const *zOrigTab = 0;
1320   char const *zOrigCol = 0;
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 static const char *columnTypeImpl(
1324   NameContext *pNC,
1325   Expr *pExpr,
1326   u8 *pEstWidth
1327 ){
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1329   char const *zType = 0;
1330   int j;
1331   u8 estWidth = 1;
1332 
1333   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1334   switch( pExpr->op ){
1335     case TK_AGG_COLUMN:
1336     case TK_COLUMN: {
1337       /* The expression is a column. Locate the table the column is being
1338       ** extracted from in NameContext.pSrcList. This table may be real
1339       ** database table or a subquery.
1340       */
1341       Table *pTab = 0;            /* Table structure column is extracted from */
1342       Select *pS = 0;             /* Select the column is extracted from */
1343       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1344       testcase( pExpr->op==TK_AGG_COLUMN );
1345       testcase( pExpr->op==TK_COLUMN );
1346       while( pNC && !pTab ){
1347         SrcList *pTabList = pNC->pSrcList;
1348         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1349         if( j<pTabList->nSrc ){
1350           pTab = pTabList->a[j].pTab;
1351           pS = pTabList->a[j].pSelect;
1352         }else{
1353           pNC = pNC->pNext;
1354         }
1355       }
1356 
1357       if( pTab==0 ){
1358         /* At one time, code such as "SELECT new.x" within a trigger would
1359         ** cause this condition to run.  Since then, we have restructured how
1360         ** trigger code is generated and so this condition is no longer
1361         ** possible. However, it can still be true for statements like
1362         ** the following:
1363         **
1364         **   CREATE TABLE t1(col INTEGER);
1365         **   SELECT (SELECT t1.col) FROM FROM t1;
1366         **
1367         ** when columnType() is called on the expression "t1.col" in the
1368         ** sub-select. In this case, set the column type to NULL, even
1369         ** though it should really be "INTEGER".
1370         **
1371         ** This is not a problem, as the column type of "t1.col" is never
1372         ** used. When columnType() is called on the expression
1373         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1374         ** branch below.  */
1375         break;
1376       }
1377 
1378       assert( pTab && pExpr->pTab==pTab );
1379       if( pS ){
1380         /* The "table" is actually a sub-select or a view in the FROM clause
1381         ** of the SELECT statement. Return the declaration type and origin
1382         ** data for the result-set column of the sub-select.
1383         */
1384         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1385           /* If iCol is less than zero, then the expression requests the
1386           ** rowid of the sub-select or view. This expression is legal (see
1387           ** test case misc2.2.2) - it always evaluates to NULL.
1388           */
1389           NameContext sNC;
1390           Expr *p = pS->pEList->a[iCol].pExpr;
1391           sNC.pSrcList = pS->pSrc;
1392           sNC.pNext = pNC;
1393           sNC.pParse = pNC->pParse;
1394           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1395         }
1396       }else if( pTab->pSchema ){
1397         /* A real table */
1398         assert( !pS );
1399         if( iCol<0 ) iCol = pTab->iPKey;
1400         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1402         if( iCol<0 ){
1403           zType = "INTEGER";
1404           zOrigCol = "rowid";
1405         }else{
1406           zType = pTab->aCol[iCol].zType;
1407           zOrigCol = pTab->aCol[iCol].zName;
1408           estWidth = pTab->aCol[iCol].szEst;
1409         }
1410         zOrigTab = pTab->zName;
1411         if( pNC->pParse ){
1412           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1413           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1414         }
1415 #else
1416         if( iCol<0 ){
1417           zType = "INTEGER";
1418         }else{
1419           zType = pTab->aCol[iCol].zType;
1420           estWidth = pTab->aCol[iCol].szEst;
1421         }
1422 #endif
1423       }
1424       break;
1425     }
1426 #ifndef SQLITE_OMIT_SUBQUERY
1427     case TK_SELECT: {
1428       /* The expression is a sub-select. Return the declaration type and
1429       ** origin info for the single column in the result set of the SELECT
1430       ** statement.
1431       */
1432       NameContext sNC;
1433       Select *pS = pExpr->x.pSelect;
1434       Expr *p = pS->pEList->a[0].pExpr;
1435       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1436       sNC.pSrcList = pS->pSrc;
1437       sNC.pNext = pNC;
1438       sNC.pParse = pNC->pParse;
1439       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1440       break;
1441     }
1442 #endif
1443   }
1444 
1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1446   if( pzOrigDb ){
1447     assert( pzOrigTab && pzOrigCol );
1448     *pzOrigDb = zOrigDb;
1449     *pzOrigTab = zOrigTab;
1450     *pzOrigCol = zOrigCol;
1451   }
1452 #endif
1453   if( pEstWidth ) *pEstWidth = estWidth;
1454   return zType;
1455 }
1456 
1457 /*
1458 ** Generate code that will tell the VDBE the declaration types of columns
1459 ** in the result set.
1460 */
1461 static void generateColumnTypes(
1462   Parse *pParse,      /* Parser context */
1463   SrcList *pTabList,  /* List of tables */
1464   ExprList *pEList    /* Expressions defining the result set */
1465 ){
1466 #ifndef SQLITE_OMIT_DECLTYPE
1467   Vdbe *v = pParse->pVdbe;
1468   int i;
1469   NameContext sNC;
1470   sNC.pSrcList = pTabList;
1471   sNC.pParse = pParse;
1472   for(i=0; i<pEList->nExpr; i++){
1473     Expr *p = pEList->a[i].pExpr;
1474     const char *zType;
1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1476     const char *zOrigDb = 0;
1477     const char *zOrigTab = 0;
1478     const char *zOrigCol = 0;
1479     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1480 
1481     /* The vdbe must make its own copy of the column-type and other
1482     ** column specific strings, in case the schema is reset before this
1483     ** virtual machine is deleted.
1484     */
1485     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1486     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1487     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1488 #else
1489     zType = columnType(&sNC, p, 0, 0, 0, 0);
1490 #endif
1491     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1492   }
1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1494 }
1495 
1496 /*
1497 ** Generate code that will tell the VDBE the names of columns
1498 ** in the result set.  This information is used to provide the
1499 ** azCol[] values in the callback.
1500 */
1501 static void generateColumnNames(
1502   Parse *pParse,      /* Parser context */
1503   SrcList *pTabList,  /* List of tables */
1504   ExprList *pEList    /* Expressions defining the result set */
1505 ){
1506   Vdbe *v = pParse->pVdbe;
1507   int i, j;
1508   sqlite3 *db = pParse->db;
1509   int fullNames, shortNames;
1510 
1511 #ifndef SQLITE_OMIT_EXPLAIN
1512   /* If this is an EXPLAIN, skip this step */
1513   if( pParse->explain ){
1514     return;
1515   }
1516 #endif
1517 
1518   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1519   pParse->colNamesSet = 1;
1520   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1521   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1522   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1523   for(i=0; i<pEList->nExpr; i++){
1524     Expr *p;
1525     p = pEList->a[i].pExpr;
1526     if( NEVER(p==0) ) continue;
1527     if( pEList->a[i].zName ){
1528       char *zName = pEList->a[i].zName;
1529       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1530     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1531       Table *pTab;
1532       char *zCol;
1533       int iCol = p->iColumn;
1534       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1535         if( pTabList->a[j].iCursor==p->iTable ) break;
1536       }
1537       assert( j<pTabList->nSrc );
1538       pTab = pTabList->a[j].pTab;
1539       if( iCol<0 ) iCol = pTab->iPKey;
1540       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1541       if( iCol<0 ){
1542         zCol = "rowid";
1543       }else{
1544         zCol = pTab->aCol[iCol].zName;
1545       }
1546       if( !shortNames && !fullNames ){
1547         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1548             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1549       }else if( fullNames ){
1550         char *zName = 0;
1551         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1552         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1553       }else{
1554         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1555       }
1556     }else{
1557       const char *z = pEList->a[i].zSpan;
1558       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1559       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1560     }
1561   }
1562   generateColumnTypes(pParse, pTabList, pEList);
1563 }
1564 
1565 /*
1566 ** Given an expression list (which is really the list of expressions
1567 ** that form the result set of a SELECT statement) compute appropriate
1568 ** column names for a table that would hold the expression list.
1569 **
1570 ** All column names will be unique.
1571 **
1572 ** Only the column names are computed.  Column.zType, Column.zColl,
1573 ** and other fields of Column are zeroed.
1574 **
1575 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1577 */
1578 static int selectColumnsFromExprList(
1579   Parse *pParse,          /* Parsing context */
1580   ExprList *pEList,       /* Expr list from which to derive column names */
1581   i16 *pnCol,             /* Write the number of columns here */
1582   Column **paCol          /* Write the new column list here */
1583 ){
1584   sqlite3 *db = pParse->db;   /* Database connection */
1585   int i, j;                   /* Loop counters */
1586   int cnt;                    /* Index added to make the name unique */
1587   Column *aCol, *pCol;        /* For looping over result columns */
1588   int nCol;                   /* Number of columns in the result set */
1589   Expr *p;                    /* Expression for a single result column */
1590   char *zName;                /* Column name */
1591   int nName;                  /* Size of name in zName[] */
1592 
1593   if( pEList ){
1594     nCol = pEList->nExpr;
1595     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1596     testcase( aCol==0 );
1597   }else{
1598     nCol = 0;
1599     aCol = 0;
1600   }
1601   *pnCol = nCol;
1602   *paCol = aCol;
1603 
1604   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1605     /* Get an appropriate name for the column
1606     */
1607     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1608     if( (zName = pEList->a[i].zName)!=0 ){
1609       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1610       zName = sqlite3DbStrDup(db, zName);
1611     }else{
1612       Expr *pColExpr = p;  /* The expression that is the result column name */
1613       Table *pTab;         /* Table associated with this expression */
1614       while( pColExpr->op==TK_DOT ){
1615         pColExpr = pColExpr->pRight;
1616         assert( pColExpr!=0 );
1617       }
1618       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1619         /* For columns use the column name name */
1620         int iCol = pColExpr->iColumn;
1621         pTab = pColExpr->pTab;
1622         if( iCol<0 ) iCol = pTab->iPKey;
1623         zName = sqlite3MPrintf(db, "%s",
1624                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1625       }else if( pColExpr->op==TK_ID ){
1626         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1627         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1628       }else{
1629         /* Use the original text of the column expression as its name */
1630         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1631       }
1632     }
1633     if( db->mallocFailed ){
1634       sqlite3DbFree(db, zName);
1635       break;
1636     }
1637 
1638     /* Make sure the column name is unique.  If the name is not unique,
1639     ** append an integer to the name so that it becomes unique.
1640     */
1641     nName = sqlite3Strlen30(zName);
1642     for(j=cnt=0; j<i; j++){
1643       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1644         char *zNewName;
1645         int k;
1646         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1647         if( k>=0 && zName[k]==':' ) nName = k;
1648         zName[nName] = 0;
1649         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1650         sqlite3DbFree(db, zName);
1651         zName = zNewName;
1652         j = -1;
1653         if( zName==0 ) break;
1654       }
1655     }
1656     pCol->zName = zName;
1657   }
1658   if( db->mallocFailed ){
1659     for(j=0; j<i; j++){
1660       sqlite3DbFree(db, aCol[j].zName);
1661     }
1662     sqlite3DbFree(db, aCol);
1663     *paCol = 0;
1664     *pnCol = 0;
1665     return SQLITE_NOMEM;
1666   }
1667   return SQLITE_OK;
1668 }
1669 
1670 /*
1671 ** Add type and collation information to a column list based on
1672 ** a SELECT statement.
1673 **
1674 ** The column list presumably came from selectColumnNamesFromExprList().
1675 ** The column list has only names, not types or collations.  This
1676 ** routine goes through and adds the types and collations.
1677 **
1678 ** This routine requires that all identifiers in the SELECT
1679 ** statement be resolved.
1680 */
1681 static void selectAddColumnTypeAndCollation(
1682   Parse *pParse,        /* Parsing contexts */
1683   Table *pTab,          /* Add column type information to this table */
1684   Select *pSelect       /* SELECT used to determine types and collations */
1685 ){
1686   sqlite3 *db = pParse->db;
1687   NameContext sNC;
1688   Column *pCol;
1689   CollSeq *pColl;
1690   int i;
1691   Expr *p;
1692   struct ExprList_item *a;
1693   u64 szAll = 0;
1694 
1695   assert( pSelect!=0 );
1696   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1697   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1698   if( db->mallocFailed ) return;
1699   memset(&sNC, 0, sizeof(sNC));
1700   sNC.pSrcList = pSelect->pSrc;
1701   a = pSelect->pEList->a;
1702   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1703     p = a[i].pExpr;
1704     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1705     szAll += pCol->szEst;
1706     pCol->affinity = sqlite3ExprAffinity(p);
1707     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1708     pColl = sqlite3ExprCollSeq(pParse, p);
1709     if( pColl ){
1710       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1711     }
1712   }
1713   pTab->szTabRow = sqlite3LogEst(szAll*4);
1714 }
1715 
1716 /*
1717 ** Given a SELECT statement, generate a Table structure that describes
1718 ** the result set of that SELECT.
1719 */
1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1721   Table *pTab;
1722   sqlite3 *db = pParse->db;
1723   int savedFlags;
1724 
1725   savedFlags = db->flags;
1726   db->flags &= ~SQLITE_FullColNames;
1727   db->flags |= SQLITE_ShortColNames;
1728   sqlite3SelectPrep(pParse, pSelect, 0);
1729   if( pParse->nErr ) return 0;
1730   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1731   db->flags = savedFlags;
1732   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1733   if( pTab==0 ){
1734     return 0;
1735   }
1736   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1737   ** is disabled */
1738   assert( db->lookaside.bEnabled==0 );
1739   pTab->nRef = 1;
1740   pTab->zName = 0;
1741   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1742   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1743   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1744   pTab->iPKey = -1;
1745   if( db->mallocFailed ){
1746     sqlite3DeleteTable(db, pTab);
1747     return 0;
1748   }
1749   return pTab;
1750 }
1751 
1752 /*
1753 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1754 ** If an error occurs, return NULL and leave a message in pParse.
1755 */
1756 Vdbe *sqlite3GetVdbe(Parse *pParse){
1757   Vdbe *v = pParse->pVdbe;
1758   if( v==0 ){
1759     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1760     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1761     if( pParse->pToplevel==0
1762      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1763     ){
1764       pParse->okConstFactor = 1;
1765     }
1766 
1767   }
1768   return v;
1769 }
1770 
1771 
1772 /*
1773 ** Compute the iLimit and iOffset fields of the SELECT based on the
1774 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1775 ** that appear in the original SQL statement after the LIMIT and OFFSET
1776 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1777 ** are the integer memory register numbers for counters used to compute
1778 ** the limit and offset.  If there is no limit and/or offset, then
1779 ** iLimit and iOffset are negative.
1780 **
1781 ** This routine changes the values of iLimit and iOffset only if
1782 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1783 ** iOffset should have been preset to appropriate default values (zero)
1784 ** prior to calling this routine.
1785 **
1786 ** The iOffset register (if it exists) is initialized to the value
1787 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1788 ** iOffset+1 is initialized to LIMIT+OFFSET.
1789 **
1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1791 ** redefined.  The UNION ALL operator uses this property to force
1792 ** the reuse of the same limit and offset registers across multiple
1793 ** SELECT statements.
1794 */
1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1796   Vdbe *v = 0;
1797   int iLimit = 0;
1798   int iOffset;
1799   int addr1, n;
1800   if( p->iLimit ) return;
1801 
1802   /*
1803   ** "LIMIT -1" always shows all rows.  There is some
1804   ** controversy about what the correct behavior should be.
1805   ** The current implementation interprets "LIMIT 0" to mean
1806   ** no rows.
1807   */
1808   sqlite3ExprCacheClear(pParse);
1809   assert( p->pOffset==0 || p->pLimit!=0 );
1810   if( p->pLimit ){
1811     p->iLimit = iLimit = ++pParse->nMem;
1812     v = sqlite3GetVdbe(pParse);
1813     assert( v!=0 );
1814     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1815       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1816       VdbeComment((v, "LIMIT counter"));
1817       if( n==0 ){
1818         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1819       }else if( n>=0 && p->nSelectRow>(u64)n ){
1820         p->nSelectRow = n;
1821       }
1822     }else{
1823       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1824       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1825       VdbeComment((v, "LIMIT counter"));
1826       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1827     }
1828     if( p->pOffset ){
1829       p->iOffset = iOffset = ++pParse->nMem;
1830       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1831       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1832       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1833       VdbeComment((v, "OFFSET counter"));
1834       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1835       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1836       sqlite3VdbeJumpHere(v, addr1);
1837       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1838       VdbeComment((v, "LIMIT+OFFSET"));
1839       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1840       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1841       sqlite3VdbeJumpHere(v, addr1);
1842     }
1843   }
1844 }
1845 
1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1847 /*
1848 ** Return the appropriate collating sequence for the iCol-th column of
1849 ** the result set for the compound-select statement "p".  Return NULL if
1850 ** the column has no default collating sequence.
1851 **
1852 ** The collating sequence for the compound select is taken from the
1853 ** left-most term of the select that has a collating sequence.
1854 */
1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1856   CollSeq *pRet;
1857   if( p->pPrior ){
1858     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1859   }else{
1860     pRet = 0;
1861   }
1862   assert( iCol>=0 );
1863   if( pRet==0 && iCol<p->pEList->nExpr ){
1864     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1865   }
1866   return pRet;
1867 }
1868 
1869 /*
1870 ** The select statement passed as the second parameter is a compound SELECT
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1872 ** structure suitable for implementing the ORDER BY.
1873 **
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1875 ** function is responsible for ensuring that this structure is eventually
1876 ** freed.
1877 */
1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1879   ExprList *pOrderBy = p->pOrderBy;
1880   int nOrderBy = p->pOrderBy->nExpr;
1881   sqlite3 *db = pParse->db;
1882   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1883   if( pRet ){
1884     int i;
1885     for(i=0; i<nOrderBy; i++){
1886       struct ExprList_item *pItem = &pOrderBy->a[i];
1887       Expr *pTerm = pItem->pExpr;
1888       CollSeq *pColl;
1889 
1890       if( pTerm->flags & EP_Collate ){
1891         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1892       }else{
1893         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1894         if( pColl==0 ) pColl = db->pDfltColl;
1895         pOrderBy->a[i].pExpr =
1896           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1897       }
1898       assert( sqlite3KeyInfoIsWriteable(pRet) );
1899       pRet->aColl[i] = pColl;
1900       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1901     }
1902   }
1903 
1904   return pRet;
1905 }
1906 
1907 #ifndef SQLITE_OMIT_CTE
1908 /*
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1910 ** query of the form:
1911 **
1912 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1913 **                         \___________/             \_______________/
1914 **                           p->pPrior                      p
1915 **
1916 **
1917 ** There is exactly one reference to the recursive-table in the FROM clause
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1919 **
1920 ** The setup-query runs once to generate an initial set of rows that go
1921 ** into a Queue table.  Rows are extracted from the Queue table one by
1922 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1923 ** extracted row (now in the iCurrent table) becomes the content of the
1924 ** recursive-table for a recursive-query run.  The output of the recursive-query
1925 ** is added back into the Queue table.  Then another row is extracted from Queue
1926 ** and the iteration continues until the Queue table is empty.
1927 **
1928 ** If the compound query operator is UNION then no duplicate rows are ever
1929 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1930 ** that have ever been inserted into Queue and causes duplicates to be
1931 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1932 **
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1934 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1935 ** an ORDER BY, the Queue table is just a FIFO.
1936 **
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1938 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1939 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1940 ** with a positive value, then the first OFFSET outputs are discarded rather
1941 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1942 ** rows have been skipped.
1943 */
1944 static void generateWithRecursiveQuery(
1945   Parse *pParse,        /* Parsing context */
1946   Select *p,            /* The recursive SELECT to be coded */
1947   SelectDest *pDest     /* What to do with query results */
1948 ){
1949   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1950   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1951   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1952   Select *pSetup = p->pPrior;   /* The setup query */
1953   int addrTop;                  /* Top of the loop */
1954   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1955   int iCurrent = 0;             /* The Current table */
1956   int regCurrent;               /* Register holding Current table */
1957   int iQueue;                   /* The Queue table */
1958   int iDistinct = 0;            /* To ensure unique results if UNION */
1959   int eDest = SRT_Fifo;         /* How to write to Queue */
1960   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1961   int i;                        /* Loop counter */
1962   int rc;                       /* Result code */
1963   ExprList *pOrderBy;           /* The ORDER BY clause */
1964   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1965   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1966 
1967   /* Obtain authorization to do a recursive query */
1968   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1969 
1970   /* Process the LIMIT and OFFSET clauses, if they exist */
1971   addrBreak = sqlite3VdbeMakeLabel(v);
1972   computeLimitRegisters(pParse, p, addrBreak);
1973   pLimit = p->pLimit;
1974   pOffset = p->pOffset;
1975   regLimit = p->iLimit;
1976   regOffset = p->iOffset;
1977   p->pLimit = p->pOffset = 0;
1978   p->iLimit = p->iOffset = 0;
1979   pOrderBy = p->pOrderBy;
1980 
1981   /* Locate the cursor number of the Current table */
1982   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1983     if( pSrc->a[i].isRecursive ){
1984       iCurrent = pSrc->a[i].iCursor;
1985       break;
1986     }
1987   }
1988 
1989   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1990   ** the Distinct table must be exactly one greater than Queue in order
1991   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1992   iQueue = pParse->nTab++;
1993   if( p->op==TK_UNION ){
1994     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1995     iDistinct = pParse->nTab++;
1996   }else{
1997     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1998   }
1999   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2000 
2001   /* Allocate cursors for Current, Queue, and Distinct. */
2002   regCurrent = ++pParse->nMem;
2003   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2004   if( pOrderBy ){
2005     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2006     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2007                       (char*)pKeyInfo, P4_KEYINFO);
2008     destQueue.pOrderBy = pOrderBy;
2009   }else{
2010     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2011   }
2012   VdbeComment((v, "Queue table"));
2013   if( iDistinct ){
2014     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2015     p->selFlags |= SF_UsesEphemeral;
2016   }
2017 
2018   /* Detach the ORDER BY clause from the compound SELECT */
2019   p->pOrderBy = 0;
2020 
2021   /* Store the results of the setup-query in Queue. */
2022   pSetup->pNext = 0;
2023   rc = sqlite3Select(pParse, pSetup, &destQueue);
2024   pSetup->pNext = p;
2025   if( rc ) goto end_of_recursive_query;
2026 
2027   /* Find the next row in the Queue and output that row */
2028   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2029 
2030   /* Transfer the next row in Queue over to Current */
2031   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2032   if( pOrderBy ){
2033     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2034   }else{
2035     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2036   }
2037   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2038 
2039   /* Output the single row in Current */
2040   addrCont = sqlite3VdbeMakeLabel(v);
2041   codeOffset(v, regOffset, addrCont);
2042   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2043       0, 0, pDest, addrCont, addrBreak);
2044   if( regLimit ){
2045     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2046     VdbeCoverage(v);
2047   }
2048   sqlite3VdbeResolveLabel(v, addrCont);
2049 
2050   /* Execute the recursive SELECT taking the single row in Current as
2051   ** the value for the recursive-table. Store the results in the Queue.
2052   */
2053   p->pPrior = 0;
2054   sqlite3Select(pParse, p, &destQueue);
2055   assert( p->pPrior==0 );
2056   p->pPrior = pSetup;
2057 
2058   /* Keep running the loop until the Queue is empty */
2059   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2060   sqlite3VdbeResolveLabel(v, addrBreak);
2061 
2062 end_of_recursive_query:
2063   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2064   p->pOrderBy = pOrderBy;
2065   p->pLimit = pLimit;
2066   p->pOffset = pOffset;
2067   return;
2068 }
2069 #endif /* SQLITE_OMIT_CTE */
2070 
2071 /* Forward references */
2072 static int multiSelectOrderBy(
2073   Parse *pParse,        /* Parsing context */
2074   Select *p,            /* The right-most of SELECTs to be coded */
2075   SelectDest *pDest     /* What to do with query results */
2076 );
2077 
2078 /*
2079 ** Error message for when two or more terms of a compound select have different
2080 ** size result sets.
2081 */
2082 static void selectWrongNumTermsError(Parse *pParse, Select *p){
2083   if( p->selFlags & SF_Values ){
2084     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2085   }else{
2086     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2087       " do not have the same number of result columns", selectOpName(p->op));
2088   }
2089 }
2090 
2091 /*
2092 ** Handle the special case of a compound-select that originates from a
2093 ** VALUES clause.  By handling this as a special case, we avoid deep
2094 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2095 ** on a VALUES clause.
2096 **
2097 ** Because the Select object originates from a VALUES clause:
2098 **   (1) It has no LIMIT or OFFSET
2099 **   (2) All terms are UNION ALL
2100 **   (3) There is no ORDER BY clause
2101 */
2102 static int multiSelectValues(
2103   Parse *pParse,        /* Parsing context */
2104   Select *p,            /* The right-most of SELECTs to be coded */
2105   SelectDest *pDest     /* What to do with query results */
2106 ){
2107   Select *pPrior;
2108   int nExpr = p->pEList->nExpr;
2109   int nRow = 1;
2110   int rc = 0;
2111   assert( p->pNext==0 );
2112   assert( p->selFlags & SF_AllValues );
2113   do{
2114     assert( p->selFlags & SF_Values );
2115     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2116     assert( p->pLimit==0 );
2117     assert( p->pOffset==0 );
2118     if( p->pEList->nExpr!=nExpr ){
2119       selectWrongNumTermsError(pParse, p);
2120       return 1;
2121     }
2122     if( p->pPrior==0 ) break;
2123     assert( p->pPrior->pNext==p );
2124     p = p->pPrior;
2125     nRow++;
2126   }while(1);
2127   while( p ){
2128     pPrior = p->pPrior;
2129     p->pPrior = 0;
2130     rc = sqlite3Select(pParse, p, pDest);
2131     p->pPrior = pPrior;
2132     if( rc ) break;
2133     p->nSelectRow = nRow;
2134     p = p->pNext;
2135   }
2136   return rc;
2137 }
2138 
2139 /*
2140 ** This routine is called to process a compound query form from
2141 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2142 ** INTERSECT
2143 **
2144 ** "p" points to the right-most of the two queries.  the query on the
2145 ** left is p->pPrior.  The left query could also be a compound query
2146 ** in which case this routine will be called recursively.
2147 **
2148 ** The results of the total query are to be written into a destination
2149 ** of type eDest with parameter iParm.
2150 **
2151 ** Example 1:  Consider a three-way compound SQL statement.
2152 **
2153 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2154 **
2155 ** This statement is parsed up as follows:
2156 **
2157 **     SELECT c FROM t3
2158 **      |
2159 **      `----->  SELECT b FROM t2
2160 **                |
2161 **                `------>  SELECT a FROM t1
2162 **
2163 ** The arrows in the diagram above represent the Select.pPrior pointer.
2164 ** So if this routine is called with p equal to the t3 query, then
2165 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2166 **
2167 ** Notice that because of the way SQLite parses compound SELECTs, the
2168 ** individual selects always group from left to right.
2169 */
2170 static int multiSelect(
2171   Parse *pParse,        /* Parsing context */
2172   Select *p,            /* The right-most of SELECTs to be coded */
2173   SelectDest *pDest     /* What to do with query results */
2174 ){
2175   int rc = SQLITE_OK;   /* Success code from a subroutine */
2176   Select *pPrior;       /* Another SELECT immediately to our left */
2177   Vdbe *v;              /* Generate code to this VDBE */
2178   SelectDest dest;      /* Alternative data destination */
2179   Select *pDelete = 0;  /* Chain of simple selects to delete */
2180   sqlite3 *db;          /* Database connection */
2181 #ifndef SQLITE_OMIT_EXPLAIN
2182   int iSub1 = 0;        /* EQP id of left-hand query */
2183   int iSub2 = 0;        /* EQP id of right-hand query */
2184 #endif
2185 
2186   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2187   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2188   */
2189   assert( p && p->pPrior );  /* Calling function guarantees this much */
2190   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2191   db = pParse->db;
2192   pPrior = p->pPrior;
2193   dest = *pDest;
2194   if( pPrior->pOrderBy ){
2195     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2196       selectOpName(p->op));
2197     rc = 1;
2198     goto multi_select_end;
2199   }
2200   if( pPrior->pLimit ){
2201     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2202       selectOpName(p->op));
2203     rc = 1;
2204     goto multi_select_end;
2205   }
2206 
2207   v = sqlite3GetVdbe(pParse);
2208   assert( v!=0 );  /* The VDBE already created by calling function */
2209 
2210   /* Create the destination temporary table if necessary
2211   */
2212   if( dest.eDest==SRT_EphemTab ){
2213     assert( p->pEList );
2214     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2215     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2216     dest.eDest = SRT_Table;
2217   }
2218 
2219   /* Special handling for a compound-select that originates as a VALUES clause.
2220   */
2221   if( p->selFlags & SF_AllValues ){
2222     rc = multiSelectValues(pParse, p, &dest);
2223     goto multi_select_end;
2224   }
2225 
2226   /* Make sure all SELECTs in the statement have the same number of elements
2227   ** in their result sets.
2228   */
2229   assert( p->pEList && pPrior->pEList );
2230   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2231     selectWrongNumTermsError(pParse, p);
2232     rc = 1;
2233     goto multi_select_end;
2234   }
2235 
2236 #ifndef SQLITE_OMIT_CTE
2237   if( p->selFlags & SF_Recursive ){
2238     generateWithRecursiveQuery(pParse, p, &dest);
2239   }else
2240 #endif
2241 
2242   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2243   */
2244   if( p->pOrderBy ){
2245     return multiSelectOrderBy(pParse, p, pDest);
2246   }else
2247 
2248   /* Generate code for the left and right SELECT statements.
2249   */
2250   switch( p->op ){
2251     case TK_ALL: {
2252       int addr = 0;
2253       int nLimit;
2254       assert( !pPrior->pLimit );
2255       pPrior->iLimit = p->iLimit;
2256       pPrior->iOffset = p->iOffset;
2257       pPrior->pLimit = p->pLimit;
2258       pPrior->pOffset = p->pOffset;
2259       explainSetInteger(iSub1, pParse->iNextSelectId);
2260       rc = sqlite3Select(pParse, pPrior, &dest);
2261       p->pLimit = 0;
2262       p->pOffset = 0;
2263       if( rc ){
2264         goto multi_select_end;
2265       }
2266       p->pPrior = 0;
2267       p->iLimit = pPrior->iLimit;
2268       p->iOffset = pPrior->iOffset;
2269       if( p->iLimit ){
2270         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2271         VdbeComment((v, "Jump ahead if LIMIT reached"));
2272       }
2273       explainSetInteger(iSub2, pParse->iNextSelectId);
2274       rc = sqlite3Select(pParse, p, &dest);
2275       testcase( rc!=SQLITE_OK );
2276       pDelete = p->pPrior;
2277       p->pPrior = pPrior;
2278       p->nSelectRow += pPrior->nSelectRow;
2279       if( pPrior->pLimit
2280        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2281        && nLimit>0 && p->nSelectRow > (u64)nLimit
2282       ){
2283         p->nSelectRow = nLimit;
2284       }
2285       if( addr ){
2286         sqlite3VdbeJumpHere(v, addr);
2287       }
2288       break;
2289     }
2290     case TK_EXCEPT:
2291     case TK_UNION: {
2292       int unionTab;    /* Cursor number of the temporary table holding result */
2293       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2294       int priorOp;     /* The SRT_ operation to apply to prior selects */
2295       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2296       int addr;
2297       SelectDest uniondest;
2298 
2299       testcase( p->op==TK_EXCEPT );
2300       testcase( p->op==TK_UNION );
2301       priorOp = SRT_Union;
2302       if( dest.eDest==priorOp ){
2303         /* We can reuse a temporary table generated by a SELECT to our
2304         ** right.
2305         */
2306         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2307         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2308         unionTab = dest.iSDParm;
2309       }else{
2310         /* We will need to create our own temporary table to hold the
2311         ** intermediate results.
2312         */
2313         unionTab = pParse->nTab++;
2314         assert( p->pOrderBy==0 );
2315         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2316         assert( p->addrOpenEphm[0] == -1 );
2317         p->addrOpenEphm[0] = addr;
2318         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2319         assert( p->pEList );
2320       }
2321 
2322       /* Code the SELECT statements to our left
2323       */
2324       assert( !pPrior->pOrderBy );
2325       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2326       explainSetInteger(iSub1, pParse->iNextSelectId);
2327       rc = sqlite3Select(pParse, pPrior, &uniondest);
2328       if( rc ){
2329         goto multi_select_end;
2330       }
2331 
2332       /* Code the current SELECT statement
2333       */
2334       if( p->op==TK_EXCEPT ){
2335         op = SRT_Except;
2336       }else{
2337         assert( p->op==TK_UNION );
2338         op = SRT_Union;
2339       }
2340       p->pPrior = 0;
2341       pLimit = p->pLimit;
2342       p->pLimit = 0;
2343       pOffset = p->pOffset;
2344       p->pOffset = 0;
2345       uniondest.eDest = op;
2346       explainSetInteger(iSub2, pParse->iNextSelectId);
2347       rc = sqlite3Select(pParse, p, &uniondest);
2348       testcase( rc!=SQLITE_OK );
2349       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2350       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2351       sqlite3ExprListDelete(db, p->pOrderBy);
2352       pDelete = p->pPrior;
2353       p->pPrior = pPrior;
2354       p->pOrderBy = 0;
2355       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2356       sqlite3ExprDelete(db, p->pLimit);
2357       p->pLimit = pLimit;
2358       p->pOffset = pOffset;
2359       p->iLimit = 0;
2360       p->iOffset = 0;
2361 
2362       /* Convert the data in the temporary table into whatever form
2363       ** it is that we currently need.
2364       */
2365       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2366       if( dest.eDest!=priorOp ){
2367         int iCont, iBreak, iStart;
2368         assert( p->pEList );
2369         if( dest.eDest==SRT_Output ){
2370           Select *pFirst = p;
2371           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2372           generateColumnNames(pParse, 0, pFirst->pEList);
2373         }
2374         iBreak = sqlite3VdbeMakeLabel(v);
2375         iCont = sqlite3VdbeMakeLabel(v);
2376         computeLimitRegisters(pParse, p, iBreak);
2377         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2378         iStart = sqlite3VdbeCurrentAddr(v);
2379         selectInnerLoop(pParse, p, p->pEList, unionTab,
2380                         0, 0, &dest, iCont, iBreak);
2381         sqlite3VdbeResolveLabel(v, iCont);
2382         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2383         sqlite3VdbeResolveLabel(v, iBreak);
2384         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2385       }
2386       break;
2387     }
2388     default: assert( p->op==TK_INTERSECT ); {
2389       int tab1, tab2;
2390       int iCont, iBreak, iStart;
2391       Expr *pLimit, *pOffset;
2392       int addr;
2393       SelectDest intersectdest;
2394       int r1;
2395 
2396       /* INTERSECT is different from the others since it requires
2397       ** two temporary tables.  Hence it has its own case.  Begin
2398       ** by allocating the tables we will need.
2399       */
2400       tab1 = pParse->nTab++;
2401       tab2 = pParse->nTab++;
2402       assert( p->pOrderBy==0 );
2403 
2404       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2405       assert( p->addrOpenEphm[0] == -1 );
2406       p->addrOpenEphm[0] = addr;
2407       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2408       assert( p->pEList );
2409 
2410       /* Code the SELECTs to our left into temporary table "tab1".
2411       */
2412       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2413       explainSetInteger(iSub1, pParse->iNextSelectId);
2414       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2415       if( rc ){
2416         goto multi_select_end;
2417       }
2418 
2419       /* Code the current SELECT into temporary table "tab2"
2420       */
2421       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2422       assert( p->addrOpenEphm[1] == -1 );
2423       p->addrOpenEphm[1] = addr;
2424       p->pPrior = 0;
2425       pLimit = p->pLimit;
2426       p->pLimit = 0;
2427       pOffset = p->pOffset;
2428       p->pOffset = 0;
2429       intersectdest.iSDParm = tab2;
2430       explainSetInteger(iSub2, pParse->iNextSelectId);
2431       rc = sqlite3Select(pParse, p, &intersectdest);
2432       testcase( rc!=SQLITE_OK );
2433       pDelete = p->pPrior;
2434       p->pPrior = pPrior;
2435       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2436       sqlite3ExprDelete(db, p->pLimit);
2437       p->pLimit = pLimit;
2438       p->pOffset = pOffset;
2439 
2440       /* Generate code to take the intersection of the two temporary
2441       ** tables.
2442       */
2443       assert( p->pEList );
2444       if( dest.eDest==SRT_Output ){
2445         Select *pFirst = p;
2446         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2447         generateColumnNames(pParse, 0, pFirst->pEList);
2448       }
2449       iBreak = sqlite3VdbeMakeLabel(v);
2450       iCont = sqlite3VdbeMakeLabel(v);
2451       computeLimitRegisters(pParse, p, iBreak);
2452       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2453       r1 = sqlite3GetTempReg(pParse);
2454       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2455       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2456       sqlite3ReleaseTempReg(pParse, r1);
2457       selectInnerLoop(pParse, p, p->pEList, tab1,
2458                       0, 0, &dest, iCont, iBreak);
2459       sqlite3VdbeResolveLabel(v, iCont);
2460       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2461       sqlite3VdbeResolveLabel(v, iBreak);
2462       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2463       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2464       break;
2465     }
2466   }
2467 
2468   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2469 
2470   /* Compute collating sequences used by
2471   ** temporary tables needed to implement the compound select.
2472   ** Attach the KeyInfo structure to all temporary tables.
2473   **
2474   ** This section is run by the right-most SELECT statement only.
2475   ** SELECT statements to the left always skip this part.  The right-most
2476   ** SELECT might also skip this part if it has no ORDER BY clause and
2477   ** no temp tables are required.
2478   */
2479   if( p->selFlags & SF_UsesEphemeral ){
2480     int i;                        /* Loop counter */
2481     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2482     Select *pLoop;                /* For looping through SELECT statements */
2483     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2484     int nCol;                     /* Number of columns in result set */
2485 
2486     assert( p->pNext==0 );
2487     nCol = p->pEList->nExpr;
2488     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2489     if( !pKeyInfo ){
2490       rc = SQLITE_NOMEM;
2491       goto multi_select_end;
2492     }
2493     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2494       *apColl = multiSelectCollSeq(pParse, p, i);
2495       if( 0==*apColl ){
2496         *apColl = db->pDfltColl;
2497       }
2498     }
2499 
2500     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2501       for(i=0; i<2; i++){
2502         int addr = pLoop->addrOpenEphm[i];
2503         if( addr<0 ){
2504           /* If [0] is unused then [1] is also unused.  So we can
2505           ** always safely abort as soon as the first unused slot is found */
2506           assert( pLoop->addrOpenEphm[1]<0 );
2507           break;
2508         }
2509         sqlite3VdbeChangeP2(v, addr, nCol);
2510         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2511                             P4_KEYINFO);
2512         pLoop->addrOpenEphm[i] = -1;
2513       }
2514     }
2515     sqlite3KeyInfoUnref(pKeyInfo);
2516   }
2517 
2518 multi_select_end:
2519   pDest->iSdst = dest.iSdst;
2520   pDest->nSdst = dest.nSdst;
2521   sqlite3SelectDelete(db, pDelete);
2522   return rc;
2523 }
2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2525 
2526 /*
2527 ** Code an output subroutine for a coroutine implementation of a
2528 ** SELECT statment.
2529 **
2530 ** The data to be output is contained in pIn->iSdst.  There are
2531 ** pIn->nSdst columns to be output.  pDest is where the output should
2532 ** be sent.
2533 **
2534 ** regReturn is the number of the register holding the subroutine
2535 ** return address.
2536 **
2537 ** If regPrev>0 then it is the first register in a vector that
2538 ** records the previous output.  mem[regPrev] is a flag that is false
2539 ** if there has been no previous output.  If regPrev>0 then code is
2540 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2541 ** keys.
2542 **
2543 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2544 ** iBreak.
2545 */
2546 static int generateOutputSubroutine(
2547   Parse *pParse,          /* Parsing context */
2548   Select *p,              /* The SELECT statement */
2549   SelectDest *pIn,        /* Coroutine supplying data */
2550   SelectDest *pDest,      /* Where to send the data */
2551   int regReturn,          /* The return address register */
2552   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2553   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2554   int iBreak              /* Jump here if we hit the LIMIT */
2555 ){
2556   Vdbe *v = pParse->pVdbe;
2557   int iContinue;
2558   int addr;
2559 
2560   addr = sqlite3VdbeCurrentAddr(v);
2561   iContinue = sqlite3VdbeMakeLabel(v);
2562 
2563   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2564   */
2565   if( regPrev ){
2566     int j1, j2;
2567     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2568     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2569                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2570     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2571     sqlite3VdbeJumpHere(v, j1);
2572     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2573     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2574   }
2575   if( pParse->db->mallocFailed ) return 0;
2576 
2577   /* Suppress the first OFFSET entries if there is an OFFSET clause
2578   */
2579   codeOffset(v, p->iOffset, iContinue);
2580 
2581   switch( pDest->eDest ){
2582     /* Store the result as data using a unique key.
2583     */
2584     case SRT_Table:
2585     case SRT_EphemTab: {
2586       int r1 = sqlite3GetTempReg(pParse);
2587       int r2 = sqlite3GetTempReg(pParse);
2588       testcase( pDest->eDest==SRT_Table );
2589       testcase( pDest->eDest==SRT_EphemTab );
2590       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2591       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2592       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2593       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2594       sqlite3ReleaseTempReg(pParse, r2);
2595       sqlite3ReleaseTempReg(pParse, r1);
2596       break;
2597     }
2598 
2599 #ifndef SQLITE_OMIT_SUBQUERY
2600     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2601     ** then there should be a single item on the stack.  Write this
2602     ** item into the set table with bogus data.
2603     */
2604     case SRT_Set: {
2605       int r1;
2606       assert( pIn->nSdst==1 );
2607       pDest->affSdst =
2608          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2609       r1 = sqlite3GetTempReg(pParse);
2610       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2611       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2612       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2613       sqlite3ReleaseTempReg(pParse, r1);
2614       break;
2615     }
2616 
2617 #if 0  /* Never occurs on an ORDER BY query */
2618     /* If any row exist in the result set, record that fact and abort.
2619     */
2620     case SRT_Exists: {
2621       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2622       /* The LIMIT clause will terminate the loop for us */
2623       break;
2624     }
2625 #endif
2626 
2627     /* If this is a scalar select that is part of an expression, then
2628     ** store the results in the appropriate memory cell and break out
2629     ** of the scan loop.
2630     */
2631     case SRT_Mem: {
2632       assert( pIn->nSdst==1 );
2633       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2634       /* The LIMIT clause will jump out of the loop for us */
2635       break;
2636     }
2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2638 
2639     /* The results are stored in a sequence of registers
2640     ** starting at pDest->iSdst.  Then the co-routine yields.
2641     */
2642     case SRT_Coroutine: {
2643       if( pDest->iSdst==0 ){
2644         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2645         pDest->nSdst = pIn->nSdst;
2646       }
2647       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2648       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2649       break;
2650     }
2651 
2652     /* If none of the above, then the result destination must be
2653     ** SRT_Output.  This routine is never called with any other
2654     ** destination other than the ones handled above or SRT_Output.
2655     **
2656     ** For SRT_Output, results are stored in a sequence of registers.
2657     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2658     ** return the next row of result.
2659     */
2660     default: {
2661       assert( pDest->eDest==SRT_Output );
2662       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2663       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2664       break;
2665     }
2666   }
2667 
2668   /* Jump to the end of the loop if the LIMIT is reached.
2669   */
2670   if( p->iLimit ){
2671     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2672   }
2673 
2674   /* Generate the subroutine return
2675   */
2676   sqlite3VdbeResolveLabel(v, iContinue);
2677   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2678 
2679   return addr;
2680 }
2681 
2682 /*
2683 ** Alternative compound select code generator for cases when there
2684 ** is an ORDER BY clause.
2685 **
2686 ** We assume a query of the following form:
2687 **
2688 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2689 **
2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2692 ** co-routines.  Then run the co-routines in parallel and merge the results
2693 ** into the output.  In addition to the two coroutines (called selectA and
2694 ** selectB) there are 7 subroutines:
2695 **
2696 **    outA:    Move the output of the selectA coroutine into the output
2697 **             of the compound query.
2698 **
2699 **    outB:    Move the output of the selectB coroutine into the output
2700 **             of the compound query.  (Only generated for UNION and
2701 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2702 **             appears only in B.)
2703 **
2704 **    AltB:    Called when there is data from both coroutines and A<B.
2705 **
2706 **    AeqB:    Called when there is data from both coroutines and A==B.
2707 **
2708 **    AgtB:    Called when there is data from both coroutines and A>B.
2709 **
2710 **    EofA:    Called when data is exhausted from selectA.
2711 **
2712 **    EofB:    Called when data is exhausted from selectB.
2713 **
2714 ** The implementation of the latter five subroutines depend on which
2715 ** <operator> is used:
2716 **
2717 **
2718 **             UNION ALL         UNION            EXCEPT          INTERSECT
2719 **          -------------  -----------------  --------------  -----------------
2720 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2721 **
2722 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2723 **
2724 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2725 **
2726 **   EofA:   outB, nextB      outB, nextB          halt             halt
2727 **
2728 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2729 **
2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2732 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2733 ** following nextX causes a jump to the end of the select processing.
2734 **
2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2736 ** within the output subroutine.  The regPrev register set holds the previously
2737 ** output value.  A comparison is made against this value and the output
2738 ** is skipped if the next results would be the same as the previous.
2739 **
2740 ** The implementation plan is to implement the two coroutines and seven
2741 ** subroutines first, then put the control logic at the bottom.  Like this:
2742 **
2743 **          goto Init
2744 **     coA: coroutine for left query (A)
2745 **     coB: coroutine for right query (B)
2746 **    outA: output one row of A
2747 **    outB: output one row of B (UNION and UNION ALL only)
2748 **    EofA: ...
2749 **    EofB: ...
2750 **    AltB: ...
2751 **    AeqB: ...
2752 **    AgtB: ...
2753 **    Init: initialize coroutine registers
2754 **          yield coA
2755 **          if eof(A) goto EofA
2756 **          yield coB
2757 **          if eof(B) goto EofB
2758 **    Cmpr: Compare A, B
2759 **          Jump AltB, AeqB, AgtB
2760 **     End: ...
2761 **
2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2763 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2764 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2765 ** and AgtB jump to either L2 or to one of EofA or EofB.
2766 */
2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2768 static int multiSelectOrderBy(
2769   Parse *pParse,        /* Parsing context */
2770   Select *p,            /* The right-most of SELECTs to be coded */
2771   SelectDest *pDest     /* What to do with query results */
2772 ){
2773   int i, j;             /* Loop counters */
2774   Select *pPrior;       /* Another SELECT immediately to our left */
2775   Vdbe *v;              /* Generate code to this VDBE */
2776   SelectDest destA;     /* Destination for coroutine A */
2777   SelectDest destB;     /* Destination for coroutine B */
2778   int regAddrA;         /* Address register for select-A coroutine */
2779   int regAddrB;         /* Address register for select-B coroutine */
2780   int addrSelectA;      /* Address of the select-A coroutine */
2781   int addrSelectB;      /* Address of the select-B coroutine */
2782   int regOutA;          /* Address register for the output-A subroutine */
2783   int regOutB;          /* Address register for the output-B subroutine */
2784   int addrOutA;         /* Address of the output-A subroutine */
2785   int addrOutB = 0;     /* Address of the output-B subroutine */
2786   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2787   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2788   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2789   int addrAltB;         /* Address of the A<B subroutine */
2790   int addrAeqB;         /* Address of the A==B subroutine */
2791   int addrAgtB;         /* Address of the A>B subroutine */
2792   int regLimitA;        /* Limit register for select-A */
2793   int regLimitB;        /* Limit register for select-A */
2794   int regPrev;          /* A range of registers to hold previous output */
2795   int savedLimit;       /* Saved value of p->iLimit */
2796   int savedOffset;      /* Saved value of p->iOffset */
2797   int labelCmpr;        /* Label for the start of the merge algorithm */
2798   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2799   int j1;               /* Jump instructions that get retargetted */
2800   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2801   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2802   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2803   sqlite3 *db;          /* Database connection */
2804   ExprList *pOrderBy;   /* The ORDER BY clause */
2805   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2806   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2807 #ifndef SQLITE_OMIT_EXPLAIN
2808   int iSub1;            /* EQP id of left-hand query */
2809   int iSub2;            /* EQP id of right-hand query */
2810 #endif
2811 
2812   assert( p->pOrderBy!=0 );
2813   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2814   db = pParse->db;
2815   v = pParse->pVdbe;
2816   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2817   labelEnd = sqlite3VdbeMakeLabel(v);
2818   labelCmpr = sqlite3VdbeMakeLabel(v);
2819 
2820 
2821   /* Patch up the ORDER BY clause
2822   */
2823   op = p->op;
2824   pPrior = p->pPrior;
2825   assert( pPrior->pOrderBy==0 );
2826   pOrderBy = p->pOrderBy;
2827   assert( pOrderBy );
2828   nOrderBy = pOrderBy->nExpr;
2829 
2830   /* For operators other than UNION ALL we have to make sure that
2831   ** the ORDER BY clause covers every term of the result set.  Add
2832   ** terms to the ORDER BY clause as necessary.
2833   */
2834   if( op!=TK_ALL ){
2835     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2836       struct ExprList_item *pItem;
2837       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2838         assert( pItem->u.x.iOrderByCol>0 );
2839         if( pItem->u.x.iOrderByCol==i ) break;
2840       }
2841       if( j==nOrderBy ){
2842         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2843         if( pNew==0 ) return SQLITE_NOMEM;
2844         pNew->flags |= EP_IntValue;
2845         pNew->u.iValue = i;
2846         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2847         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2848       }
2849     }
2850   }
2851 
2852   /* Compute the comparison permutation and keyinfo that is used with
2853   ** the permutation used to determine if the next
2854   ** row of results comes from selectA or selectB.  Also add explicit
2855   ** collations to the ORDER BY clause terms so that when the subqueries
2856   ** to the right and the left are evaluated, they use the correct
2857   ** collation.
2858   */
2859   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2860   if( aPermute ){
2861     struct ExprList_item *pItem;
2862     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2863       assert( pItem->u.x.iOrderByCol>0
2864           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2865       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2866     }
2867     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2868   }else{
2869     pKeyMerge = 0;
2870   }
2871 
2872   /* Reattach the ORDER BY clause to the query.
2873   */
2874   p->pOrderBy = pOrderBy;
2875   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2876 
2877   /* Allocate a range of temporary registers and the KeyInfo needed
2878   ** for the logic that removes duplicate result rows when the
2879   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2880   */
2881   if( op==TK_ALL ){
2882     regPrev = 0;
2883   }else{
2884     int nExpr = p->pEList->nExpr;
2885     assert( nOrderBy>=nExpr || db->mallocFailed );
2886     regPrev = pParse->nMem+1;
2887     pParse->nMem += nExpr+1;
2888     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2889     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2890     if( pKeyDup ){
2891       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2892       for(i=0; i<nExpr; i++){
2893         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2894         pKeyDup->aSortOrder[i] = 0;
2895       }
2896     }
2897   }
2898 
2899   /* Separate the left and the right query from one another
2900   */
2901   p->pPrior = 0;
2902   pPrior->pNext = 0;
2903   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2904   if( pPrior->pPrior==0 ){
2905     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2906   }
2907 
2908   /* Compute the limit registers */
2909   computeLimitRegisters(pParse, p, labelEnd);
2910   if( p->iLimit && op==TK_ALL ){
2911     regLimitA = ++pParse->nMem;
2912     regLimitB = ++pParse->nMem;
2913     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2914                                   regLimitA);
2915     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2916   }else{
2917     regLimitA = regLimitB = 0;
2918   }
2919   sqlite3ExprDelete(db, p->pLimit);
2920   p->pLimit = 0;
2921   sqlite3ExprDelete(db, p->pOffset);
2922   p->pOffset = 0;
2923 
2924   regAddrA = ++pParse->nMem;
2925   regAddrB = ++pParse->nMem;
2926   regOutA = ++pParse->nMem;
2927   regOutB = ++pParse->nMem;
2928   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2929   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2930 
2931   /* Generate a coroutine to evaluate the SELECT statement to the
2932   ** left of the compound operator - the "A" select.
2933   */
2934   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2935   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2936   VdbeComment((v, "left SELECT"));
2937   pPrior->iLimit = regLimitA;
2938   explainSetInteger(iSub1, pParse->iNextSelectId);
2939   sqlite3Select(pParse, pPrior, &destA);
2940   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2941   sqlite3VdbeJumpHere(v, j1);
2942 
2943   /* Generate a coroutine to evaluate the SELECT statement on
2944   ** the right - the "B" select
2945   */
2946   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2947   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2948   VdbeComment((v, "right SELECT"));
2949   savedLimit = p->iLimit;
2950   savedOffset = p->iOffset;
2951   p->iLimit = regLimitB;
2952   p->iOffset = 0;
2953   explainSetInteger(iSub2, pParse->iNextSelectId);
2954   sqlite3Select(pParse, p, &destB);
2955   p->iLimit = savedLimit;
2956   p->iOffset = savedOffset;
2957   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2958 
2959   /* Generate a subroutine that outputs the current row of the A
2960   ** select as the next output row of the compound select.
2961   */
2962   VdbeNoopComment((v, "Output routine for A"));
2963   addrOutA = generateOutputSubroutine(pParse,
2964                  p, &destA, pDest, regOutA,
2965                  regPrev, pKeyDup, labelEnd);
2966 
2967   /* Generate a subroutine that outputs the current row of the B
2968   ** select as the next output row of the compound select.
2969   */
2970   if( op==TK_ALL || op==TK_UNION ){
2971     VdbeNoopComment((v, "Output routine for B"));
2972     addrOutB = generateOutputSubroutine(pParse,
2973                  p, &destB, pDest, regOutB,
2974                  regPrev, pKeyDup, labelEnd);
2975   }
2976   sqlite3KeyInfoUnref(pKeyDup);
2977 
2978   /* Generate a subroutine to run when the results from select A
2979   ** are exhausted and only data in select B remains.
2980   */
2981   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2982     addrEofA_noB = addrEofA = labelEnd;
2983   }else{
2984     VdbeNoopComment((v, "eof-A subroutine"));
2985     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2986     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2987                                      VdbeCoverage(v);
2988     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2989     p->nSelectRow += pPrior->nSelectRow;
2990   }
2991 
2992   /* Generate a subroutine to run when the results from select B
2993   ** are exhausted and only data in select A remains.
2994   */
2995   if( op==TK_INTERSECT ){
2996     addrEofB = addrEofA;
2997     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2998   }else{
2999     VdbeNoopComment((v, "eof-B subroutine"));
3000     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3001     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3002     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3003   }
3004 
3005   /* Generate code to handle the case of A<B
3006   */
3007   VdbeNoopComment((v, "A-lt-B subroutine"));
3008   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3009   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3010   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3011 
3012   /* Generate code to handle the case of A==B
3013   */
3014   if( op==TK_ALL ){
3015     addrAeqB = addrAltB;
3016   }else if( op==TK_INTERSECT ){
3017     addrAeqB = addrAltB;
3018     addrAltB++;
3019   }else{
3020     VdbeNoopComment((v, "A-eq-B subroutine"));
3021     addrAeqB =
3022     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3023     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3024   }
3025 
3026   /* Generate code to handle the case of A>B
3027   */
3028   VdbeNoopComment((v, "A-gt-B subroutine"));
3029   addrAgtB = sqlite3VdbeCurrentAddr(v);
3030   if( op==TK_ALL || op==TK_UNION ){
3031     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3032   }
3033   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3034   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3035 
3036   /* This code runs once to initialize everything.
3037   */
3038   sqlite3VdbeJumpHere(v, j1);
3039   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3040   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3041 
3042   /* Implement the main merge loop
3043   */
3044   sqlite3VdbeResolveLabel(v, labelCmpr);
3045   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3046   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3047                          (char*)pKeyMerge, P4_KEYINFO);
3048   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3049   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3050 
3051   /* Jump to the this point in order to terminate the query.
3052   */
3053   sqlite3VdbeResolveLabel(v, labelEnd);
3054 
3055   /* Set the number of output columns
3056   */
3057   if( pDest->eDest==SRT_Output ){
3058     Select *pFirst = pPrior;
3059     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3060     generateColumnNames(pParse, 0, pFirst->pEList);
3061   }
3062 
3063   /* Reassembly the compound query so that it will be freed correctly
3064   ** by the calling function */
3065   if( p->pPrior ){
3066     sqlite3SelectDelete(db, p->pPrior);
3067   }
3068   p->pPrior = pPrior;
3069   pPrior->pNext = p;
3070 
3071   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3072   **** subqueries ****/
3073   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3074   return SQLITE_OK;
3075 }
3076 #endif
3077 
3078 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3079 /* Forward Declarations */
3080 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3081 static void substSelect(sqlite3*, Select *, int, ExprList *);
3082 
3083 /*
3084 ** Scan through the expression pExpr.  Replace every reference to
3085 ** a column in table number iTable with a copy of the iColumn-th
3086 ** entry in pEList.  (But leave references to the ROWID column
3087 ** unchanged.)
3088 **
3089 ** This routine is part of the flattening procedure.  A subquery
3090 ** whose result set is defined by pEList appears as entry in the
3091 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3092 ** FORM clause entry is iTable.  This routine make the necessary
3093 ** changes to pExpr so that it refers directly to the source table
3094 ** of the subquery rather the result set of the subquery.
3095 */
3096 static Expr *substExpr(
3097   sqlite3 *db,        /* Report malloc errors to this connection */
3098   Expr *pExpr,        /* Expr in which substitution occurs */
3099   int iTable,         /* Table to be substituted */
3100   ExprList *pEList    /* Substitute expressions */
3101 ){
3102   if( pExpr==0 ) return 0;
3103   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3104     if( pExpr->iColumn<0 ){
3105       pExpr->op = TK_NULL;
3106     }else{
3107       Expr *pNew;
3108       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3109       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3110       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3111       sqlite3ExprDelete(db, pExpr);
3112       pExpr = pNew;
3113     }
3114   }else{
3115     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3116     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3117     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3118       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3119     }else{
3120       substExprList(db, pExpr->x.pList, iTable, pEList);
3121     }
3122   }
3123   return pExpr;
3124 }
3125 static void substExprList(
3126   sqlite3 *db,         /* Report malloc errors here */
3127   ExprList *pList,     /* List to scan and in which to make substitutes */
3128   int iTable,          /* Table to be substituted */
3129   ExprList *pEList     /* Substitute values */
3130 ){
3131   int i;
3132   if( pList==0 ) return;
3133   for(i=0; i<pList->nExpr; i++){
3134     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3135   }
3136 }
3137 static void substSelect(
3138   sqlite3 *db,         /* Report malloc errors here */
3139   Select *p,           /* SELECT statement in which to make substitutions */
3140   int iTable,          /* Table to be replaced */
3141   ExprList *pEList     /* Substitute values */
3142 ){
3143   SrcList *pSrc;
3144   struct SrcList_item *pItem;
3145   int i;
3146   if( !p ) return;
3147   substExprList(db, p->pEList, iTable, pEList);
3148   substExprList(db, p->pGroupBy, iTable, pEList);
3149   substExprList(db, p->pOrderBy, iTable, pEList);
3150   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3151   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3152   substSelect(db, p->pPrior, iTable, pEList);
3153   pSrc = p->pSrc;
3154   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3155   if( ALWAYS(pSrc) ){
3156     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3157       substSelect(db, pItem->pSelect, iTable, pEList);
3158     }
3159   }
3160 }
3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3162 
3163 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3164 /*
3165 ** This routine attempts to flatten subqueries as a performance optimization.
3166 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3167 **
3168 ** To understand the concept of flattening, consider the following
3169 ** query:
3170 **
3171 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3172 **
3173 ** The default way of implementing this query is to execute the
3174 ** subquery first and store the results in a temporary table, then
3175 ** run the outer query on that temporary table.  This requires two
3176 ** passes over the data.  Furthermore, because the temporary table
3177 ** has no indices, the WHERE clause on the outer query cannot be
3178 ** optimized.
3179 **
3180 ** This routine attempts to rewrite queries such as the above into
3181 ** a single flat select, like this:
3182 **
3183 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3184 **
3185 ** The code generated for this simplification gives the same result
3186 ** but only has to scan the data once.  And because indices might
3187 ** exist on the table t1, a complete scan of the data might be
3188 ** avoided.
3189 **
3190 ** Flattening is only attempted if all of the following are true:
3191 **
3192 **   (1)  The subquery and the outer query do not both use aggregates.
3193 **
3194 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3195 **        and (2b) the outer query does not use subqueries other than the one
3196 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3197 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3198 **
3199 **   (3)  The subquery is not the right operand of a left outer join
3200 **        (Originally ticket #306.  Strengthened by ticket #3300)
3201 **
3202 **   (4)  The subquery is not DISTINCT.
3203 **
3204 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3205 **        sub-queries that were excluded from this optimization. Restriction
3206 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3207 **
3208 **   (6)  The subquery does not use aggregates or the outer query is not
3209 **        DISTINCT.
3210 **
3211 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3212 **        A FROM clause, consider adding a FROM close with the special
3213 **        table sqlite_once that consists of a single row containing a
3214 **        single NULL.
3215 **
3216 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3217 **
3218 **   (9)  The subquery does not use LIMIT or the outer query does not use
3219 **        aggregates.
3220 **
3221 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3222 **        accidently carried the comment forward until 2014-09-15.  Original
3223 **        text: "The subquery does not use aggregates or the outer query does not
3224 **        use LIMIT."
3225 **
3226 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3227 **
3228 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3229 **        a separate restriction deriving from ticket #350.
3230 **
3231 **  (13)  The subquery and outer query do not both use LIMIT.
3232 **
3233 **  (14)  The subquery does not use OFFSET.
3234 **
3235 **  (15)  The outer query is not part of a compound select or the
3236 **        subquery does not have a LIMIT clause.
3237 **        (See ticket #2339 and ticket [02a8e81d44]).
3238 **
3239 **  (16)  The outer query is not an aggregate or the subquery does
3240 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3241 **        until we introduced the group_concat() function.
3242 **
3243 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3244 **        compound clause made up entirely of non-aggregate queries, and
3245 **        the parent query:
3246 **
3247 **          * is not itself part of a compound select,
3248 **          * is not an aggregate or DISTINCT query, and
3249 **          * is not a join
3250 **
3251 **        The parent and sub-query may contain WHERE clauses. Subject to
3252 **        rules (11), (13) and (14), they may also contain ORDER BY,
3253 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3254 **        operator other than UNION ALL because all the other compound
3255 **        operators have an implied DISTINCT which is disallowed by
3256 **        restriction (4).
3257 **
3258 **        Also, each component of the sub-query must return the same number
3259 **        of result columns. This is actually a requirement for any compound
3260 **        SELECT statement, but all the code here does is make sure that no
3261 **        such (illegal) sub-query is flattened. The caller will detect the
3262 **        syntax error and return a detailed message.
3263 **
3264 **  (18)  If the sub-query is a compound select, then all terms of the
3265 **        ORDER by clause of the parent must be simple references to
3266 **        columns of the sub-query.
3267 **
3268 **  (19)  The subquery does not use LIMIT or the outer query does not
3269 **        have a WHERE clause.
3270 **
3271 **  (20)  If the sub-query is a compound select, then it must not use
3272 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3273 **        somewhat by saying that the terms of the ORDER BY clause must
3274 **        appear as unmodified result columns in the outer query.  But we
3275 **        have other optimizations in mind to deal with that case.
3276 **
3277 **  (21)  The subquery does not use LIMIT or the outer query is not
3278 **        DISTINCT.  (See ticket [752e1646fc]).
3279 **
3280 **  (22)  The subquery is not a recursive CTE.
3281 **
3282 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3283 **        compound query. This restriction is because transforming the
3284 **        parent to a compound query confuses the code that handles
3285 **        recursive queries in multiSelect().
3286 **
3287 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3288 **        or max() functions.  (Without this restriction, a query like:
3289 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3290 **        return the value X for which Y was maximal.)
3291 **
3292 **
3293 ** In this routine, the "p" parameter is a pointer to the outer query.
3294 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3296 **
3297 ** If flattening is not attempted, this routine is a no-op and returns 0.
3298 ** If flattening is attempted this routine returns 1.
3299 **
3300 ** All of the expression analysis must occur on both the outer query and
3301 ** the subquery before this routine runs.
3302 */
3303 static int flattenSubquery(
3304   Parse *pParse,       /* Parsing context */
3305   Select *p,           /* The parent or outer SELECT statement */
3306   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3307   int isAgg,           /* True if outer SELECT uses aggregate functions */
3308   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3309 ){
3310   const char *zSavedAuthContext = pParse->zAuthContext;
3311   Select *pParent;
3312   Select *pSub;       /* The inner query or "subquery" */
3313   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3314   SrcList *pSrc;      /* The FROM clause of the outer query */
3315   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3316   ExprList *pList;    /* The result set of the outer query */
3317   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3318   int i;              /* Loop counter */
3319   Expr *pWhere;                    /* The WHERE clause */
3320   struct SrcList_item *pSubitem;   /* The subquery */
3321   sqlite3 *db = pParse->db;
3322 
3323   /* Check to see if flattening is permitted.  Return 0 if not.
3324   */
3325   assert( p!=0 );
3326   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3327   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3328   pSrc = p->pSrc;
3329   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3330   pSubitem = &pSrc->a[iFrom];
3331   iParent = pSubitem->iCursor;
3332   pSub = pSubitem->pSelect;
3333   assert( pSub!=0 );
3334   if( subqueryIsAgg ){
3335     if( isAgg ) return 0;                                /* Restriction (1)   */
3336     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3337     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3338      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3339      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3340     ){
3341       return 0;                                          /* Restriction (2b)  */
3342     }
3343   }
3344 
3345   pSubSrc = pSub->pSrc;
3346   assert( pSubSrc );
3347   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3348   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3349   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3350   ** became arbitrary expressions, we were forced to add restrictions (13)
3351   ** and (14). */
3352   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3353   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3354   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3355     return 0;                                            /* Restriction (15) */
3356   }
3357   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3358   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3359   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3360      return 0;         /* Restrictions (8)(9) */
3361   }
3362   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3363      return 0;         /* Restriction (6)  */
3364   }
3365   if( p->pOrderBy && pSub->pOrderBy ){
3366      return 0;                                           /* Restriction (11) */
3367   }
3368   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3369   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3370   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3371      return 0;         /* Restriction (21) */
3372   }
3373   testcase( pSub->selFlags & SF_Recursive );
3374   testcase( pSub->selFlags & SF_MinMaxAgg );
3375   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3376     return 0; /* Restrictions (22) and (24) */
3377   }
3378   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3379     return 0; /* Restriction (23) */
3380   }
3381 
3382   /* OBSOLETE COMMENT 1:
3383   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3384   ** not used as the right operand of an outer join.  Examples of why this
3385   ** is not allowed:
3386   **
3387   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3388   **
3389   ** If we flatten the above, we would get
3390   **
3391   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3392   **
3393   ** which is not at all the same thing.
3394   **
3395   ** OBSOLETE COMMENT 2:
3396   ** Restriction 12:  If the subquery is the right operand of a left outer
3397   ** join, make sure the subquery has no WHERE clause.
3398   ** An examples of why this is not allowed:
3399   **
3400   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3401   **
3402   ** If we flatten the above, we would get
3403   **
3404   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3405   **
3406   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3407   ** effectively converts the OUTER JOIN into an INNER JOIN.
3408   **
3409   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3410   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3411   ** is fraught with danger.  Best to avoid the whole thing.  If the
3412   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3413   */
3414   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3415     return 0;
3416   }
3417 
3418   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3419   ** use only the UNION ALL operator. And none of the simple select queries
3420   ** that make up the compound SELECT are allowed to be aggregate or distinct
3421   ** queries.
3422   */
3423   if( pSub->pPrior ){
3424     if( pSub->pOrderBy ){
3425       return 0;  /* Restriction 20 */
3426     }
3427     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3428       return 0;
3429     }
3430     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3431       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3432       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3433       assert( pSub->pSrc!=0 );
3434       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3435        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3436        || pSub1->pSrc->nSrc<1
3437        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3438       ){
3439         return 0;
3440       }
3441       testcase( pSub1->pSrc->nSrc>1 );
3442     }
3443 
3444     /* Restriction 18. */
3445     if( p->pOrderBy ){
3446       int ii;
3447       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3448         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3449       }
3450     }
3451   }
3452 
3453   /***** If we reach this point, flattening is permitted. *****/
3454   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3455                    pSub->zSelName, pSub, iFrom));
3456 
3457   /* Authorize the subquery */
3458   pParse->zAuthContext = pSubitem->zName;
3459   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3460   testcase( i==SQLITE_DENY );
3461   pParse->zAuthContext = zSavedAuthContext;
3462 
3463   /* If the sub-query is a compound SELECT statement, then (by restrictions
3464   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3465   ** be of the form:
3466   **
3467   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3468   **
3469   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3470   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3471   ** OFFSET clauses and joins them to the left-hand-side of the original
3472   ** using UNION ALL operators. In this case N is the number of simple
3473   ** select statements in the compound sub-query.
3474   **
3475   ** Example:
3476   **
3477   **     SELECT a+1 FROM (
3478   **        SELECT x FROM tab
3479   **        UNION ALL
3480   **        SELECT y FROM tab
3481   **        UNION ALL
3482   **        SELECT abs(z*2) FROM tab2
3483   **     ) WHERE a!=5 ORDER BY 1
3484   **
3485   ** Transformed into:
3486   **
3487   **     SELECT x+1 FROM tab WHERE x+1!=5
3488   **     UNION ALL
3489   **     SELECT y+1 FROM tab WHERE y+1!=5
3490   **     UNION ALL
3491   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3492   **     ORDER BY 1
3493   **
3494   ** We call this the "compound-subquery flattening".
3495   */
3496   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3497     Select *pNew;
3498     ExprList *pOrderBy = p->pOrderBy;
3499     Expr *pLimit = p->pLimit;
3500     Expr *pOffset = p->pOffset;
3501     Select *pPrior = p->pPrior;
3502     p->pOrderBy = 0;
3503     p->pSrc = 0;
3504     p->pPrior = 0;
3505     p->pLimit = 0;
3506     p->pOffset = 0;
3507     pNew = sqlite3SelectDup(db, p, 0);
3508     sqlite3SelectSetName(pNew, pSub->zSelName);
3509     p->pOffset = pOffset;
3510     p->pLimit = pLimit;
3511     p->pOrderBy = pOrderBy;
3512     p->pSrc = pSrc;
3513     p->op = TK_ALL;
3514     if( pNew==0 ){
3515       p->pPrior = pPrior;
3516     }else{
3517       pNew->pPrior = pPrior;
3518       if( pPrior ) pPrior->pNext = pNew;
3519       pNew->pNext = p;
3520       p->pPrior = pNew;
3521       SELECTTRACE(2,pParse,p,
3522          ("compound-subquery flattener creates %s.%p as peer\n",
3523          pNew->zSelName, pNew));
3524     }
3525     if( db->mallocFailed ) return 1;
3526   }
3527 
3528   /* Begin flattening the iFrom-th entry of the FROM clause
3529   ** in the outer query.
3530   */
3531   pSub = pSub1 = pSubitem->pSelect;
3532 
3533   /* Delete the transient table structure associated with the
3534   ** subquery
3535   */
3536   sqlite3DbFree(db, pSubitem->zDatabase);
3537   sqlite3DbFree(db, pSubitem->zName);
3538   sqlite3DbFree(db, pSubitem->zAlias);
3539   pSubitem->zDatabase = 0;
3540   pSubitem->zName = 0;
3541   pSubitem->zAlias = 0;
3542   pSubitem->pSelect = 0;
3543 
3544   /* Defer deleting the Table object associated with the
3545   ** subquery until code generation is
3546   ** complete, since there may still exist Expr.pTab entries that
3547   ** refer to the subquery even after flattening.  Ticket #3346.
3548   **
3549   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3550   */
3551   if( ALWAYS(pSubitem->pTab!=0) ){
3552     Table *pTabToDel = pSubitem->pTab;
3553     if( pTabToDel->nRef==1 ){
3554       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3555       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3556       pToplevel->pZombieTab = pTabToDel;
3557     }else{
3558       pTabToDel->nRef--;
3559     }
3560     pSubitem->pTab = 0;
3561   }
3562 
3563   /* The following loop runs once for each term in a compound-subquery
3564   ** flattening (as described above).  If we are doing a different kind
3565   ** of flattening - a flattening other than a compound-subquery flattening -
3566   ** then this loop only runs once.
3567   **
3568   ** This loop moves all of the FROM elements of the subquery into the
3569   ** the FROM clause of the outer query.  Before doing this, remember
3570   ** the cursor number for the original outer query FROM element in
3571   ** iParent.  The iParent cursor will never be used.  Subsequent code
3572   ** will scan expressions looking for iParent references and replace
3573   ** those references with expressions that resolve to the subquery FROM
3574   ** elements we are now copying in.
3575   */
3576   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3577     int nSubSrc;
3578     u8 jointype = 0;
3579     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3580     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3581     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3582 
3583     if( pSrc ){
3584       assert( pParent==p );  /* First time through the loop */
3585       jointype = pSubitem->jointype;
3586     }else{
3587       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3588       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3589       if( pSrc==0 ){
3590         assert( db->mallocFailed );
3591         break;
3592       }
3593     }
3594 
3595     /* The subquery uses a single slot of the FROM clause of the outer
3596     ** query.  If the subquery has more than one element in its FROM clause,
3597     ** then expand the outer query to make space for it to hold all elements
3598     ** of the subquery.
3599     **
3600     ** Example:
3601     **
3602     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3603     **
3604     ** The outer query has 3 slots in its FROM clause.  One slot of the
3605     ** outer query (the middle slot) is used by the subquery.  The next
3606     ** block of code will expand the out query to 4 slots.  The middle
3607     ** slot is expanded to two slots in order to make space for the
3608     ** two elements in the FROM clause of the subquery.
3609     */
3610     if( nSubSrc>1 ){
3611       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3612       if( db->mallocFailed ){
3613         break;
3614       }
3615     }
3616 
3617     /* Transfer the FROM clause terms from the subquery into the
3618     ** outer query.
3619     */
3620     for(i=0; i<nSubSrc; i++){
3621       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3622       pSrc->a[i+iFrom] = pSubSrc->a[i];
3623       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3624     }
3625     pSrc->a[iFrom].jointype = jointype;
3626 
3627     /* Now begin substituting subquery result set expressions for
3628     ** references to the iParent in the outer query.
3629     **
3630     ** Example:
3631     **
3632     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3633     **   \                     \_____________ subquery __________/          /
3634     **    \_____________________ outer query ______________________________/
3635     **
3636     ** We look at every expression in the outer query and every place we see
3637     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3638     */
3639     pList = pParent->pEList;
3640     for(i=0; i<pList->nExpr; i++){
3641       if( pList->a[i].zName==0 ){
3642         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3643         sqlite3Dequote(zName);
3644         pList->a[i].zName = zName;
3645       }
3646     }
3647     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3648     if( isAgg ){
3649       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3650       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3651     }
3652     if( pSub->pOrderBy ){
3653       /* At this point, any non-zero iOrderByCol values indicate that the
3654       ** ORDER BY column expression is identical to the iOrderByCol'th
3655       ** expression returned by SELECT statement pSub. Since these values
3656       ** do not necessarily correspond to columns in SELECT statement pParent,
3657       ** zero them before transfering the ORDER BY clause.
3658       **
3659       ** Not doing this may cause an error if a subsequent call to this
3660       ** function attempts to flatten a compound sub-query into pParent
3661       ** (the only way this can happen is if the compound sub-query is
3662       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3663       ExprList *pOrderBy = pSub->pOrderBy;
3664       for(i=0; i<pOrderBy->nExpr; i++){
3665         pOrderBy->a[i].u.x.iOrderByCol = 0;
3666       }
3667       assert( pParent->pOrderBy==0 );
3668       assert( pSub->pPrior==0 );
3669       pParent->pOrderBy = pOrderBy;
3670       pSub->pOrderBy = 0;
3671     }else if( pParent->pOrderBy ){
3672       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3673     }
3674     if( pSub->pWhere ){
3675       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3676     }else{
3677       pWhere = 0;
3678     }
3679     if( subqueryIsAgg ){
3680       assert( pParent->pHaving==0 );
3681       pParent->pHaving = pParent->pWhere;
3682       pParent->pWhere = pWhere;
3683       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3684       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3685                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3686       assert( pParent->pGroupBy==0 );
3687       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3688     }else{
3689       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3690       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3691     }
3692 
3693     /* The flattened query is distinct if either the inner or the
3694     ** outer query is distinct.
3695     */
3696     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3697 
3698     /*
3699     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3700     **
3701     ** One is tempted to try to add a and b to combine the limits.  But this
3702     ** does not work if either limit is negative.
3703     */
3704     if( pSub->pLimit ){
3705       pParent->pLimit = pSub->pLimit;
3706       pSub->pLimit = 0;
3707     }
3708   }
3709 
3710   /* Finially, delete what is left of the subquery and return
3711   ** success.
3712   */
3713   sqlite3SelectDelete(db, pSub1);
3714 
3715 #if SELECTTRACE_ENABLED
3716   if( sqlite3SelectTrace & 0x100 ){
3717     sqlite3DebugPrintf("After flattening:\n");
3718     sqlite3TreeViewSelect(0, p, 0);
3719   }
3720 #endif
3721 
3722   return 1;
3723 }
3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3725 
3726 /*
3727 ** Based on the contents of the AggInfo structure indicated by the first
3728 ** argument, this function checks if the following are true:
3729 **
3730 **    * the query contains just a single aggregate function,
3731 **    * the aggregate function is either min() or max(), and
3732 **    * the argument to the aggregate function is a column value.
3733 **
3734 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3735 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3736 ** list of arguments passed to the aggregate before returning.
3737 **
3738 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3739 ** WHERE_ORDERBY_NORMAL is returned.
3740 */
3741 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3742   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3743 
3744   *ppMinMax = 0;
3745   if( pAggInfo->nFunc==1 ){
3746     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3747     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3748 
3749     assert( pExpr->op==TK_AGG_FUNCTION );
3750     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3751       const char *zFunc = pExpr->u.zToken;
3752       if( sqlite3StrICmp(zFunc, "min")==0 ){
3753         eRet = WHERE_ORDERBY_MIN;
3754         *ppMinMax = pEList;
3755       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3756         eRet = WHERE_ORDERBY_MAX;
3757         *ppMinMax = pEList;
3758       }
3759     }
3760   }
3761 
3762   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3763   return eRet;
3764 }
3765 
3766 /*
3767 ** The select statement passed as the first argument is an aggregate query.
3768 ** The second argument is the associated aggregate-info object. This
3769 ** function tests if the SELECT is of the form:
3770 **
3771 **   SELECT count(*) FROM <tbl>
3772 **
3773 ** where table is a database table, not a sub-select or view. If the query
3774 ** does match this pattern, then a pointer to the Table object representing
3775 ** <tbl> is returned. Otherwise, 0 is returned.
3776 */
3777 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3778   Table *pTab;
3779   Expr *pExpr;
3780 
3781   assert( !p->pGroupBy );
3782 
3783   if( p->pWhere || p->pEList->nExpr!=1
3784    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3785   ){
3786     return 0;
3787   }
3788   pTab = p->pSrc->a[0].pTab;
3789   pExpr = p->pEList->a[0].pExpr;
3790   assert( pTab && !pTab->pSelect && pExpr );
3791 
3792   if( IsVirtual(pTab) ) return 0;
3793   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3794   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3795   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3796   if( pExpr->flags&EP_Distinct ) return 0;
3797 
3798   return pTab;
3799 }
3800 
3801 /*
3802 ** If the source-list item passed as an argument was augmented with an
3803 ** INDEXED BY clause, then try to locate the specified index. If there
3804 ** was such a clause and the named index cannot be found, return
3805 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3806 ** pFrom->pIndex and return SQLITE_OK.
3807 */
3808 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3809   if( pFrom->pTab && pFrom->zIndex ){
3810     Table *pTab = pFrom->pTab;
3811     char *zIndex = pFrom->zIndex;
3812     Index *pIdx;
3813     for(pIdx=pTab->pIndex;
3814         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3815         pIdx=pIdx->pNext
3816     );
3817     if( !pIdx ){
3818       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3819       pParse->checkSchema = 1;
3820       return SQLITE_ERROR;
3821     }
3822     pFrom->pIndex = pIdx;
3823   }
3824   return SQLITE_OK;
3825 }
3826 /*
3827 ** Detect compound SELECT statements that use an ORDER BY clause with
3828 ** an alternative collating sequence.
3829 **
3830 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3831 **
3832 ** These are rewritten as a subquery:
3833 **
3834 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3835 **     ORDER BY ... COLLATE ...
3836 **
3837 ** This transformation is necessary because the multiSelectOrderBy() routine
3838 ** above that generates the code for a compound SELECT with an ORDER BY clause
3839 ** uses a merge algorithm that requires the same collating sequence on the
3840 ** result columns as on the ORDER BY clause.  See ticket
3841 ** http://www.sqlite.org/src/info/6709574d2a
3842 **
3843 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3844 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3845 ** there are COLLATE terms in the ORDER BY.
3846 */
3847 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3848   int i;
3849   Select *pNew;
3850   Select *pX;
3851   sqlite3 *db;
3852   struct ExprList_item *a;
3853   SrcList *pNewSrc;
3854   Parse *pParse;
3855   Token dummy;
3856 
3857   if( p->pPrior==0 ) return WRC_Continue;
3858   if( p->pOrderBy==0 ) return WRC_Continue;
3859   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3860   if( pX==0 ) return WRC_Continue;
3861   a = p->pOrderBy->a;
3862   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3863     if( a[i].pExpr->flags & EP_Collate ) break;
3864   }
3865   if( i<0 ) return WRC_Continue;
3866 
3867   /* If we reach this point, that means the transformation is required. */
3868 
3869   pParse = pWalker->pParse;
3870   db = pParse->db;
3871   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3872   if( pNew==0 ) return WRC_Abort;
3873   memset(&dummy, 0, sizeof(dummy));
3874   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3875   if( pNewSrc==0 ) return WRC_Abort;
3876   *pNew = *p;
3877   p->pSrc = pNewSrc;
3878   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3879   p->op = TK_SELECT;
3880   p->pWhere = 0;
3881   pNew->pGroupBy = 0;
3882   pNew->pHaving = 0;
3883   pNew->pOrderBy = 0;
3884   p->pPrior = 0;
3885   p->pNext = 0;
3886   p->selFlags &= ~SF_Compound;
3887   assert( pNew->pPrior!=0 );
3888   pNew->pPrior->pNext = pNew;
3889   pNew->pLimit = 0;
3890   pNew->pOffset = 0;
3891   return WRC_Continue;
3892 }
3893 
3894 #ifndef SQLITE_OMIT_CTE
3895 /*
3896 ** Argument pWith (which may be NULL) points to a linked list of nested
3897 ** WITH contexts, from inner to outermost. If the table identified by
3898 ** FROM clause element pItem is really a common-table-expression (CTE)
3899 ** then return a pointer to the CTE definition for that table. Otherwise
3900 ** return NULL.
3901 **
3902 ** If a non-NULL value is returned, set *ppContext to point to the With
3903 ** object that the returned CTE belongs to.
3904 */
3905 static struct Cte *searchWith(
3906   With *pWith,                    /* Current outermost WITH clause */
3907   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3908   With **ppContext                /* OUT: WITH clause return value belongs to */
3909 ){
3910   const char *zName;
3911   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3912     With *p;
3913     for(p=pWith; p; p=p->pOuter){
3914       int i;
3915       for(i=0; i<p->nCte; i++){
3916         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3917           *ppContext = p;
3918           return &p->a[i];
3919         }
3920       }
3921     }
3922   }
3923   return 0;
3924 }
3925 
3926 /* The code generator maintains a stack of active WITH clauses
3927 ** with the inner-most WITH clause being at the top of the stack.
3928 **
3929 ** This routine pushes the WITH clause passed as the second argument
3930 ** onto the top of the stack. If argument bFree is true, then this
3931 ** WITH clause will never be popped from the stack. In this case it
3932 ** should be freed along with the Parse object. In other cases, when
3933 ** bFree==0, the With object will be freed along with the SELECT
3934 ** statement with which it is associated.
3935 */
3936 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3937   assert( bFree==0 || pParse->pWith==0 );
3938   if( pWith ){
3939     pWith->pOuter = pParse->pWith;
3940     pParse->pWith = pWith;
3941     pParse->bFreeWith = bFree;
3942   }
3943 }
3944 
3945 /*
3946 ** This function checks if argument pFrom refers to a CTE declared by
3947 ** a WITH clause on the stack currently maintained by the parser. And,
3948 ** if currently processing a CTE expression, if it is a recursive
3949 ** reference to the current CTE.
3950 **
3951 ** If pFrom falls into either of the two categories above, pFrom->pTab
3952 ** and other fields are populated accordingly. The caller should check
3953 ** (pFrom->pTab!=0) to determine whether or not a successful match
3954 ** was found.
3955 **
3956 ** Whether or not a match is found, SQLITE_OK is returned if no error
3957 ** occurs. If an error does occur, an error message is stored in the
3958 ** parser and some error code other than SQLITE_OK returned.
3959 */
3960 static int withExpand(
3961   Walker *pWalker,
3962   struct SrcList_item *pFrom
3963 ){
3964   Parse *pParse = pWalker->pParse;
3965   sqlite3 *db = pParse->db;
3966   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3967   With *pWith;                    /* WITH clause that pCte belongs to */
3968 
3969   assert( pFrom->pTab==0 );
3970 
3971   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3972   if( pCte ){
3973     Table *pTab;
3974     ExprList *pEList;
3975     Select *pSel;
3976     Select *pLeft;                /* Left-most SELECT statement */
3977     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3978     With *pSavedWith;             /* Initial value of pParse->pWith */
3979 
3980     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3981     ** recursive reference to CTE pCte. Leave an error in pParse and return
3982     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3983     ** In this case, proceed.  */
3984     if( pCte->zErr ){
3985       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3986       return SQLITE_ERROR;
3987     }
3988 
3989     assert( pFrom->pTab==0 );
3990     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3991     if( pTab==0 ) return WRC_Abort;
3992     pTab->nRef = 1;
3993     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3994     pTab->iPKey = -1;
3995     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3996     pTab->tabFlags |= TF_Ephemeral;
3997     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3998     if( db->mallocFailed ) return SQLITE_NOMEM;
3999     assert( pFrom->pSelect );
4000 
4001     /* Check if this is a recursive CTE. */
4002     pSel = pFrom->pSelect;
4003     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4004     if( bMayRecursive ){
4005       int i;
4006       SrcList *pSrc = pFrom->pSelect->pSrc;
4007       for(i=0; i<pSrc->nSrc; i++){
4008         struct SrcList_item *pItem = &pSrc->a[i];
4009         if( pItem->zDatabase==0
4010          && pItem->zName!=0
4011          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4012           ){
4013           pItem->pTab = pTab;
4014           pItem->isRecursive = 1;
4015           pTab->nRef++;
4016           pSel->selFlags |= SF_Recursive;
4017         }
4018       }
4019     }
4020 
4021     /* Only one recursive reference is permitted. */
4022     if( pTab->nRef>2 ){
4023       sqlite3ErrorMsg(
4024           pParse, "multiple references to recursive table: %s", pCte->zName
4025       );
4026       return SQLITE_ERROR;
4027     }
4028     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4029 
4030     pCte->zErr = "circular reference: %s";
4031     pSavedWith = pParse->pWith;
4032     pParse->pWith = pWith;
4033     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4034 
4035     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4036     pEList = pLeft->pEList;
4037     if( pCte->pCols ){
4038       if( pEList->nExpr!=pCte->pCols->nExpr ){
4039         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4040             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4041         );
4042         pParse->pWith = pSavedWith;
4043         return SQLITE_ERROR;
4044       }
4045       pEList = pCte->pCols;
4046     }
4047 
4048     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4049     if( bMayRecursive ){
4050       if( pSel->selFlags & SF_Recursive ){
4051         pCte->zErr = "multiple recursive references: %s";
4052       }else{
4053         pCte->zErr = "recursive reference in a subquery: %s";
4054       }
4055       sqlite3WalkSelect(pWalker, pSel);
4056     }
4057     pCte->zErr = 0;
4058     pParse->pWith = pSavedWith;
4059   }
4060 
4061   return SQLITE_OK;
4062 }
4063 #endif
4064 
4065 #ifndef SQLITE_OMIT_CTE
4066 /*
4067 ** If the SELECT passed as the second argument has an associated WITH
4068 ** clause, pop it from the stack stored as part of the Parse object.
4069 **
4070 ** This function is used as the xSelectCallback2() callback by
4071 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4072 ** names and other FROM clause elements.
4073 */
4074 static void selectPopWith(Walker *pWalker, Select *p){
4075   Parse *pParse = pWalker->pParse;
4076   With *pWith = findRightmost(p)->pWith;
4077   if( pWith!=0 ){
4078     assert( pParse->pWith==pWith );
4079     pParse->pWith = pWith->pOuter;
4080   }
4081 }
4082 #else
4083 #define selectPopWith 0
4084 #endif
4085 
4086 /*
4087 ** This routine is a Walker callback for "expanding" a SELECT statement.
4088 ** "Expanding" means to do the following:
4089 **
4090 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4091 **         element of the FROM clause.
4092 **
4093 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4094 **         defines FROM clause.  When views appear in the FROM clause,
4095 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4096 **         that implements the view.  A copy is made of the view's SELECT
4097 **         statement so that we can freely modify or delete that statement
4098 **         without worrying about messing up the persistent representation
4099 **         of the view.
4100 **
4101 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4102 **         on joins and the ON and USING clause of joins.
4103 **
4104 **    (4)  Scan the list of columns in the result set (pEList) looking
4105 **         for instances of the "*" operator or the TABLE.* operator.
4106 **         If found, expand each "*" to be every column in every table
4107 **         and TABLE.* to be every column in TABLE.
4108 **
4109 */
4110 static int selectExpander(Walker *pWalker, Select *p){
4111   Parse *pParse = pWalker->pParse;
4112   int i, j, k;
4113   SrcList *pTabList;
4114   ExprList *pEList;
4115   struct SrcList_item *pFrom;
4116   sqlite3 *db = pParse->db;
4117   Expr *pE, *pRight, *pExpr;
4118   u16 selFlags = p->selFlags;
4119 
4120   p->selFlags |= SF_Expanded;
4121   if( db->mallocFailed  ){
4122     return WRC_Abort;
4123   }
4124   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4125     return WRC_Prune;
4126   }
4127   pTabList = p->pSrc;
4128   pEList = p->pEList;
4129   if( pWalker->xSelectCallback2==selectPopWith ){
4130     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4131   }
4132 
4133   /* Make sure cursor numbers have been assigned to all entries in
4134   ** the FROM clause of the SELECT statement.
4135   */
4136   sqlite3SrcListAssignCursors(pParse, pTabList);
4137 
4138   /* Look up every table named in the FROM clause of the select.  If
4139   ** an entry of the FROM clause is a subquery instead of a table or view,
4140   ** then create a transient table structure to describe the subquery.
4141   */
4142   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4143     Table *pTab;
4144     assert( pFrom->isRecursive==0 || pFrom->pTab );
4145     if( pFrom->isRecursive ) continue;
4146     if( pFrom->pTab!=0 ){
4147       /* This statement has already been prepared.  There is no need
4148       ** to go further. */
4149       assert( i==0 );
4150 #ifndef SQLITE_OMIT_CTE
4151       selectPopWith(pWalker, p);
4152 #endif
4153       return WRC_Prune;
4154     }
4155 #ifndef SQLITE_OMIT_CTE
4156     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4157     if( pFrom->pTab ) {} else
4158 #endif
4159     if( pFrom->zName==0 ){
4160 #ifndef SQLITE_OMIT_SUBQUERY
4161       Select *pSel = pFrom->pSelect;
4162       /* A sub-query in the FROM clause of a SELECT */
4163       assert( pSel!=0 );
4164       assert( pFrom->pTab==0 );
4165       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4166       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4167       if( pTab==0 ) return WRC_Abort;
4168       pTab->nRef = 1;
4169       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4170       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4171       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4172       pTab->iPKey = -1;
4173       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4174       pTab->tabFlags |= TF_Ephemeral;
4175 #endif
4176     }else{
4177       /* An ordinary table or view name in the FROM clause */
4178       assert( pFrom->pTab==0 );
4179       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4180       if( pTab==0 ) return WRC_Abort;
4181       if( pTab->nRef==0xffff ){
4182         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4183            pTab->zName);
4184         pFrom->pTab = 0;
4185         return WRC_Abort;
4186       }
4187       pTab->nRef++;
4188 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4189       if( pTab->pSelect || IsVirtual(pTab) ){
4190         /* We reach here if the named table is a really a view */
4191         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4192         assert( pFrom->pSelect==0 );
4193         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4194         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4195         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4196       }
4197 #endif
4198     }
4199 
4200     /* Locate the index named by the INDEXED BY clause, if any. */
4201     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4202       return WRC_Abort;
4203     }
4204   }
4205 
4206   /* Process NATURAL keywords, and ON and USING clauses of joins.
4207   */
4208   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4209     return WRC_Abort;
4210   }
4211 
4212   /* For every "*" that occurs in the column list, insert the names of
4213   ** all columns in all tables.  And for every TABLE.* insert the names
4214   ** of all columns in TABLE.  The parser inserted a special expression
4215   ** with the TK_ALL operator for each "*" that it found in the column list.
4216   ** The following code just has to locate the TK_ALL expressions and expand
4217   ** each one to the list of all columns in all tables.
4218   **
4219   ** The first loop just checks to see if there are any "*" operators
4220   ** that need expanding.
4221   */
4222   for(k=0; k<pEList->nExpr; k++){
4223     pE = pEList->a[k].pExpr;
4224     if( pE->op==TK_ALL ) break;
4225     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4226     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4227     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4228   }
4229   if( k<pEList->nExpr ){
4230     /*
4231     ** If we get here it means the result set contains one or more "*"
4232     ** operators that need to be expanded.  Loop through each expression
4233     ** in the result set and expand them one by one.
4234     */
4235     struct ExprList_item *a = pEList->a;
4236     ExprList *pNew = 0;
4237     int flags = pParse->db->flags;
4238     int longNames = (flags & SQLITE_FullColNames)!=0
4239                       && (flags & SQLITE_ShortColNames)==0;
4240 
4241     /* When processing FROM-clause subqueries, it is always the case
4242     ** that full_column_names=OFF and short_column_names=ON.  The
4243     ** sqlite3ResultSetOfSelect() routine makes it so. */
4244     assert( (p->selFlags & SF_NestedFrom)==0
4245           || ((flags & SQLITE_FullColNames)==0 &&
4246               (flags & SQLITE_ShortColNames)!=0) );
4247 
4248     for(k=0; k<pEList->nExpr; k++){
4249       pE = a[k].pExpr;
4250       pRight = pE->pRight;
4251       assert( pE->op!=TK_DOT || pRight!=0 );
4252       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4253         /* This particular expression does not need to be expanded.
4254         */
4255         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4256         if( pNew ){
4257           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4258           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4259           a[k].zName = 0;
4260           a[k].zSpan = 0;
4261         }
4262         a[k].pExpr = 0;
4263       }else{
4264         /* This expression is a "*" or a "TABLE.*" and needs to be
4265         ** expanded. */
4266         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4267         char *zTName = 0;       /* text of name of TABLE */
4268         if( pE->op==TK_DOT ){
4269           assert( pE->pLeft!=0 );
4270           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4271           zTName = pE->pLeft->u.zToken;
4272         }
4273         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4274           Table *pTab = pFrom->pTab;
4275           Select *pSub = pFrom->pSelect;
4276           char *zTabName = pFrom->zAlias;
4277           const char *zSchemaName = 0;
4278           int iDb;
4279           if( zTabName==0 ){
4280             zTabName = pTab->zName;
4281           }
4282           if( db->mallocFailed ) break;
4283           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4284             pSub = 0;
4285             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4286               continue;
4287             }
4288             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4289             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4290           }
4291           for(j=0; j<pTab->nCol; j++){
4292             char *zName = pTab->aCol[j].zName;
4293             char *zColname;  /* The computed column name */
4294             char *zToFree;   /* Malloced string that needs to be freed */
4295             Token sColname;  /* Computed column name as a token */
4296 
4297             assert( zName );
4298             if( zTName && pSub
4299              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4300             ){
4301               continue;
4302             }
4303 
4304             /* If a column is marked as 'hidden' (currently only possible
4305             ** for virtual tables), do not include it in the expanded
4306             ** result-set list.
4307             */
4308             if( IsHiddenColumn(&pTab->aCol[j]) ){
4309               assert(IsVirtual(pTab));
4310               continue;
4311             }
4312             tableSeen = 1;
4313 
4314             if( i>0 && zTName==0 ){
4315               if( (pFrom->jointype & JT_NATURAL)!=0
4316                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4317               ){
4318                 /* In a NATURAL join, omit the join columns from the
4319                 ** table to the right of the join */
4320                 continue;
4321               }
4322               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4323                 /* In a join with a USING clause, omit columns in the
4324                 ** using clause from the table on the right. */
4325                 continue;
4326               }
4327             }
4328             pRight = sqlite3Expr(db, TK_ID, zName);
4329             zColname = zName;
4330             zToFree = 0;
4331             if( longNames || pTabList->nSrc>1 ){
4332               Expr *pLeft;
4333               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4334               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4335               if( zSchemaName ){
4336                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4337                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4338               }
4339               if( longNames ){
4340                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4341                 zToFree = zColname;
4342               }
4343             }else{
4344               pExpr = pRight;
4345             }
4346             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4347             sColname.z = zColname;
4348             sColname.n = sqlite3Strlen30(zColname);
4349             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4350             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4351               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4352               if( pSub ){
4353                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4354                 testcase( pX->zSpan==0 );
4355               }else{
4356                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4357                                            zSchemaName, zTabName, zColname);
4358                 testcase( pX->zSpan==0 );
4359               }
4360               pX->bSpanIsTab = 1;
4361             }
4362             sqlite3DbFree(db, zToFree);
4363           }
4364         }
4365         if( !tableSeen ){
4366           if( zTName ){
4367             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4368           }else{
4369             sqlite3ErrorMsg(pParse, "no tables specified");
4370           }
4371         }
4372       }
4373     }
4374     sqlite3ExprListDelete(db, pEList);
4375     p->pEList = pNew;
4376   }
4377 #if SQLITE_MAX_COLUMN
4378   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4379     sqlite3ErrorMsg(pParse, "too many columns in result set");
4380   }
4381 #endif
4382   return WRC_Continue;
4383 }
4384 
4385 /*
4386 ** No-op routine for the parse-tree walker.
4387 **
4388 ** When this routine is the Walker.xExprCallback then expression trees
4389 ** are walked without any actions being taken at each node.  Presumably,
4390 ** when this routine is used for Walker.xExprCallback then
4391 ** Walker.xSelectCallback is set to do something useful for every
4392 ** subquery in the parser tree.
4393 */
4394 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4395   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4396   return WRC_Continue;
4397 }
4398 
4399 /*
4400 ** This routine "expands" a SELECT statement and all of its subqueries.
4401 ** For additional information on what it means to "expand" a SELECT
4402 ** statement, see the comment on the selectExpand worker callback above.
4403 **
4404 ** Expanding a SELECT statement is the first step in processing a
4405 ** SELECT statement.  The SELECT statement must be expanded before
4406 ** name resolution is performed.
4407 **
4408 ** If anything goes wrong, an error message is written into pParse.
4409 ** The calling function can detect the problem by looking at pParse->nErr
4410 ** and/or pParse->db->mallocFailed.
4411 */
4412 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4413   Walker w;
4414   memset(&w, 0, sizeof(w));
4415   w.xExprCallback = exprWalkNoop;
4416   w.pParse = pParse;
4417   if( pParse->hasCompound ){
4418     w.xSelectCallback = convertCompoundSelectToSubquery;
4419     sqlite3WalkSelect(&w, pSelect);
4420   }
4421   w.xSelectCallback = selectExpander;
4422   if( (pSelect->selFlags & SF_AllValues)==0 ){
4423     w.xSelectCallback2 = selectPopWith;
4424   }
4425   sqlite3WalkSelect(&w, pSelect);
4426 }
4427 
4428 
4429 #ifndef SQLITE_OMIT_SUBQUERY
4430 /*
4431 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4432 ** interface.
4433 **
4434 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4435 ** information to the Table structure that represents the result set
4436 ** of that subquery.
4437 **
4438 ** The Table structure that represents the result set was constructed
4439 ** by selectExpander() but the type and collation information was omitted
4440 ** at that point because identifiers had not yet been resolved.  This
4441 ** routine is called after identifier resolution.
4442 */
4443 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4444   Parse *pParse;
4445   int i;
4446   SrcList *pTabList;
4447   struct SrcList_item *pFrom;
4448 
4449   assert( p->selFlags & SF_Resolved );
4450   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4451     p->selFlags |= SF_HasTypeInfo;
4452     pParse = pWalker->pParse;
4453     pTabList = p->pSrc;
4454     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4455       Table *pTab = pFrom->pTab;
4456       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4457         /* A sub-query in the FROM clause of a SELECT */
4458         Select *pSel = pFrom->pSelect;
4459         if( pSel ){
4460           while( pSel->pPrior ) pSel = pSel->pPrior;
4461           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4462         }
4463       }
4464     }
4465   }
4466 }
4467 #endif
4468 
4469 
4470 /*
4471 ** This routine adds datatype and collating sequence information to
4472 ** the Table structures of all FROM-clause subqueries in a
4473 ** SELECT statement.
4474 **
4475 ** Use this routine after name resolution.
4476 */
4477 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4478 #ifndef SQLITE_OMIT_SUBQUERY
4479   Walker w;
4480   memset(&w, 0, sizeof(w));
4481   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4482   w.xExprCallback = exprWalkNoop;
4483   w.pParse = pParse;
4484   sqlite3WalkSelect(&w, pSelect);
4485 #endif
4486 }
4487 
4488 
4489 /*
4490 ** This routine sets up a SELECT statement for processing.  The
4491 ** following is accomplished:
4492 **
4493 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4494 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4495 **     *  ON and USING clauses are shifted into WHERE statements
4496 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4497 **     *  Identifiers in expression are matched to tables.
4498 **
4499 ** This routine acts recursively on all subqueries within the SELECT.
4500 */
4501 void sqlite3SelectPrep(
4502   Parse *pParse,         /* The parser context */
4503   Select *p,             /* The SELECT statement being coded. */
4504   NameContext *pOuterNC  /* Name context for container */
4505 ){
4506   sqlite3 *db;
4507   if( NEVER(p==0) ) return;
4508   db = pParse->db;
4509   if( db->mallocFailed ) return;
4510   if( p->selFlags & SF_HasTypeInfo ) return;
4511   sqlite3SelectExpand(pParse, p);
4512   if( pParse->nErr || db->mallocFailed ) return;
4513   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4514   if( pParse->nErr || db->mallocFailed ) return;
4515   sqlite3SelectAddTypeInfo(pParse, p);
4516 }
4517 
4518 /*
4519 ** Reset the aggregate accumulator.
4520 **
4521 ** The aggregate accumulator is a set of memory cells that hold
4522 ** intermediate results while calculating an aggregate.  This
4523 ** routine generates code that stores NULLs in all of those memory
4524 ** cells.
4525 */
4526 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4527   Vdbe *v = pParse->pVdbe;
4528   int i;
4529   struct AggInfo_func *pFunc;
4530   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4531   if( nReg==0 ) return;
4532 #ifdef SQLITE_DEBUG
4533   /* Verify that all AggInfo registers are within the range specified by
4534   ** AggInfo.mnReg..AggInfo.mxReg */
4535   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4536   for(i=0; i<pAggInfo->nColumn; i++){
4537     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4538          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4539   }
4540   for(i=0; i<pAggInfo->nFunc; i++){
4541     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4542          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4543   }
4544 #endif
4545   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4546   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4547     if( pFunc->iDistinct>=0 ){
4548       Expr *pE = pFunc->pExpr;
4549       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4550       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4551         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4552            "argument");
4553         pFunc->iDistinct = -1;
4554       }else{
4555         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4556         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4557                           (char*)pKeyInfo, P4_KEYINFO);
4558       }
4559     }
4560   }
4561 }
4562 
4563 /*
4564 ** Invoke the OP_AggFinalize opcode for every aggregate function
4565 ** in the AggInfo structure.
4566 */
4567 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4568   Vdbe *v = pParse->pVdbe;
4569   int i;
4570   struct AggInfo_func *pF;
4571   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4572     ExprList *pList = pF->pExpr->x.pList;
4573     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4574     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4575                       (void*)pF->pFunc, P4_FUNCDEF);
4576   }
4577 }
4578 
4579 /*
4580 ** Update the accumulator memory cells for an aggregate based on
4581 ** the current cursor position.
4582 */
4583 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4584   Vdbe *v = pParse->pVdbe;
4585   int i;
4586   int regHit = 0;
4587   int addrHitTest = 0;
4588   struct AggInfo_func *pF;
4589   struct AggInfo_col *pC;
4590 
4591   pAggInfo->directMode = 1;
4592   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4593     int nArg;
4594     int addrNext = 0;
4595     int regAgg;
4596     ExprList *pList = pF->pExpr->x.pList;
4597     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4598     if( pList ){
4599       nArg = pList->nExpr;
4600       regAgg = sqlite3GetTempRange(pParse, nArg);
4601       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4602     }else{
4603       nArg = 0;
4604       regAgg = 0;
4605     }
4606     if( pF->iDistinct>=0 ){
4607       addrNext = sqlite3VdbeMakeLabel(v);
4608       assert( nArg==1 );
4609       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4610     }
4611     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4612       CollSeq *pColl = 0;
4613       struct ExprList_item *pItem;
4614       int j;
4615       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4616       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4617         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4618       }
4619       if( !pColl ){
4620         pColl = pParse->db->pDfltColl;
4621       }
4622       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4623       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4624     }
4625     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4626                       (void*)pF->pFunc, P4_FUNCDEF);
4627     sqlite3VdbeChangeP5(v, (u8)nArg);
4628     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4629     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4630     if( addrNext ){
4631       sqlite3VdbeResolveLabel(v, addrNext);
4632       sqlite3ExprCacheClear(pParse);
4633     }
4634   }
4635 
4636   /* Before populating the accumulator registers, clear the column cache.
4637   ** Otherwise, if any of the required column values are already present
4638   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4639   ** to pC->iMem. But by the time the value is used, the original register
4640   ** may have been used, invalidating the underlying buffer holding the
4641   ** text or blob value. See ticket [883034dcb5].
4642   **
4643   ** Another solution would be to change the OP_SCopy used to copy cached
4644   ** values to an OP_Copy.
4645   */
4646   if( regHit ){
4647     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4648   }
4649   sqlite3ExprCacheClear(pParse);
4650   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4651     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4652   }
4653   pAggInfo->directMode = 0;
4654   sqlite3ExprCacheClear(pParse);
4655   if( addrHitTest ){
4656     sqlite3VdbeJumpHere(v, addrHitTest);
4657   }
4658 }
4659 
4660 /*
4661 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4662 ** count(*) query ("SELECT count(*) FROM pTab").
4663 */
4664 #ifndef SQLITE_OMIT_EXPLAIN
4665 static void explainSimpleCount(
4666   Parse *pParse,                  /* Parse context */
4667   Table *pTab,                    /* Table being queried */
4668   Index *pIdx                     /* Index used to optimize scan, or NULL */
4669 ){
4670   if( pParse->explain==2 ){
4671     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4672     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4673         pTab->zName,
4674         bCover ? " USING COVERING INDEX " : "",
4675         bCover ? pIdx->zName : ""
4676     );
4677     sqlite3VdbeAddOp4(
4678         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4679     );
4680   }
4681 }
4682 #else
4683 # define explainSimpleCount(a,b,c)
4684 #endif
4685 
4686 /*
4687 ** Generate code for the SELECT statement given in the p argument.
4688 **
4689 ** The results are returned according to the SelectDest structure.
4690 ** See comments in sqliteInt.h for further information.
4691 **
4692 ** This routine returns the number of errors.  If any errors are
4693 ** encountered, then an appropriate error message is left in
4694 ** pParse->zErrMsg.
4695 **
4696 ** This routine does NOT free the Select structure passed in.  The
4697 ** calling function needs to do that.
4698 */
4699 int sqlite3Select(
4700   Parse *pParse,         /* The parser context */
4701   Select *p,             /* The SELECT statement being coded. */
4702   SelectDest *pDest      /* What to do with the query results */
4703 ){
4704   int i, j;              /* Loop counters */
4705   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4706   Vdbe *v;               /* The virtual machine under construction */
4707   int isAgg;             /* True for select lists like "count(*)" */
4708   ExprList *pEList;      /* List of columns to extract. */
4709   SrcList *pTabList;     /* List of tables to select from */
4710   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4711   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4712   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4713   int rc = 1;            /* Value to return from this function */
4714   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4715   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4716   AggInfo sAggInfo;      /* Information used by aggregate queries */
4717   int iEnd;              /* Address of the end of the query */
4718   sqlite3 *db;           /* The database connection */
4719 
4720 #ifndef SQLITE_OMIT_EXPLAIN
4721   int iRestoreSelectId = pParse->iSelectId;
4722   pParse->iSelectId = pParse->iNextSelectId++;
4723 #endif
4724 
4725   db = pParse->db;
4726   if( p==0 || db->mallocFailed || pParse->nErr ){
4727     return 1;
4728   }
4729   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4730   memset(&sAggInfo, 0, sizeof(sAggInfo));
4731 #if SELECTTRACE_ENABLED
4732   pParse->nSelectIndent++;
4733   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4734   if( sqlite3SelectTrace & 0x100 ){
4735     sqlite3TreeViewSelect(0, p, 0);
4736   }
4737 #endif
4738 
4739   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4740   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4741   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4742   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4743   if( IgnorableOrderby(pDest) ){
4744     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4745            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4746            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4747            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4748     /* If ORDER BY makes no difference in the output then neither does
4749     ** DISTINCT so it can be removed too. */
4750     sqlite3ExprListDelete(db, p->pOrderBy);
4751     p->pOrderBy = 0;
4752     p->selFlags &= ~SF_Distinct;
4753   }
4754   sqlite3SelectPrep(pParse, p, 0);
4755   memset(&sSort, 0, sizeof(sSort));
4756   sSort.pOrderBy = p->pOrderBy;
4757   pTabList = p->pSrc;
4758   pEList = p->pEList;
4759   if( pParse->nErr || db->mallocFailed ){
4760     goto select_end;
4761   }
4762   isAgg = (p->selFlags & SF_Aggregate)!=0;
4763   assert( pEList!=0 );
4764 #if SELECTTRACE_ENABLED
4765   if( sqlite3SelectTrace & 0x100 ){
4766     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4767     sqlite3TreeViewSelect(0, p, 0);
4768   }
4769 #endif
4770 
4771 
4772   /* Begin generating code.
4773   */
4774   v = sqlite3GetVdbe(pParse);
4775   if( v==0 ) goto select_end;
4776 
4777   /* If writing to memory or generating a set
4778   ** only a single column may be output.
4779   */
4780 #ifndef SQLITE_OMIT_SUBQUERY
4781   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4782     goto select_end;
4783   }
4784 #endif
4785 
4786   /* Generate code for all sub-queries in the FROM clause
4787   */
4788 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4789   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4790     struct SrcList_item *pItem = &pTabList->a[i];
4791     SelectDest dest;
4792     Select *pSub = pItem->pSelect;
4793     int isAggSub;
4794 
4795     if( pSub==0 ) continue;
4796 
4797     /* Sometimes the code for a subquery will be generated more than
4798     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4799     ** for example.  In that case, do not regenerate the code to manifest
4800     ** a view or the co-routine to implement a view.  The first instance
4801     ** is sufficient, though the subroutine to manifest the view does need
4802     ** to be invoked again. */
4803     if( pItem->addrFillSub ){
4804       if( pItem->viaCoroutine==0 ){
4805         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4806       }
4807       continue;
4808     }
4809 
4810     /* Increment Parse.nHeight by the height of the largest expression
4811     ** tree referred to by this, the parent select. The child select
4812     ** may contain expression trees of at most
4813     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4814     ** more conservative than necessary, but much easier than enforcing
4815     ** an exact limit.
4816     */
4817     pParse->nHeight += sqlite3SelectExprHeight(p);
4818 
4819     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4820     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4821       /* This subquery can be absorbed into its parent. */
4822       if( isAggSub ){
4823         isAgg = 1;
4824         p->selFlags |= SF_Aggregate;
4825       }
4826       i = -1;
4827     }else if( pTabList->nSrc==1
4828            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4829     ){
4830       /* Implement a co-routine that will return a single row of the result
4831       ** set on each invocation.
4832       */
4833       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4834       pItem->regReturn = ++pParse->nMem;
4835       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4836       VdbeComment((v, "%s", pItem->pTab->zName));
4837       pItem->addrFillSub = addrTop;
4838       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4839       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4840       sqlite3Select(pParse, pSub, &dest);
4841       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4842       pItem->viaCoroutine = 1;
4843       pItem->regResult = dest.iSdst;
4844       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4845       sqlite3VdbeJumpHere(v, addrTop-1);
4846       sqlite3ClearTempRegCache(pParse);
4847     }else{
4848       /* Generate a subroutine that will fill an ephemeral table with
4849       ** the content of this subquery.  pItem->addrFillSub will point
4850       ** to the address of the generated subroutine.  pItem->regReturn
4851       ** is a register allocated to hold the subroutine return address
4852       */
4853       int topAddr;
4854       int onceAddr = 0;
4855       int retAddr;
4856       assert( pItem->addrFillSub==0 );
4857       pItem->regReturn = ++pParse->nMem;
4858       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4859       pItem->addrFillSub = topAddr+1;
4860       if( pItem->isCorrelated==0 ){
4861         /* If the subquery is not correlated and if we are not inside of
4862         ** a trigger, then we only need to compute the value of the subquery
4863         ** once. */
4864         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4865         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4866       }else{
4867         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4868       }
4869       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4870       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4871       sqlite3Select(pParse, pSub, &dest);
4872       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4873       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4874       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4875       VdbeComment((v, "end %s", pItem->pTab->zName));
4876       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4877       sqlite3ClearTempRegCache(pParse);
4878     }
4879     if( /*pParse->nErr ||*/ db->mallocFailed ){
4880       goto select_end;
4881     }
4882     pParse->nHeight -= sqlite3SelectExprHeight(p);
4883     pTabList = p->pSrc;
4884     if( !IgnorableOrderby(pDest) ){
4885       sSort.pOrderBy = p->pOrderBy;
4886     }
4887   }
4888   pEList = p->pEList;
4889 #endif
4890   pWhere = p->pWhere;
4891   pGroupBy = p->pGroupBy;
4892   pHaving = p->pHaving;
4893   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4894 
4895 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4896   /* If there is are a sequence of queries, do the earlier ones first.
4897   */
4898   if( p->pPrior ){
4899     rc = multiSelect(pParse, p, pDest);
4900     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4901 #if SELECTTRACE_ENABLED
4902     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4903     pParse->nSelectIndent--;
4904 #endif
4905     return rc;
4906   }
4907 #endif
4908 
4909   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4910   ** if the select-list is the same as the ORDER BY list, then this query
4911   ** can be rewritten as a GROUP BY. In other words, this:
4912   **
4913   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4914   **
4915   ** is transformed to:
4916   **
4917   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
4918   **
4919   ** The second form is preferred as a single index (or temp-table) may be
4920   ** used for both the ORDER BY and DISTINCT processing. As originally
4921   ** written the query must use a temp-table for at least one of the ORDER
4922   ** BY and DISTINCT, and an index or separate temp-table for the other.
4923   */
4924   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4925    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4926   ){
4927     p->selFlags &= ~SF_Distinct;
4928     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4929     pGroupBy = p->pGroupBy;
4930     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4931     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4932     ** original setting of the SF_Distinct flag, not the current setting */
4933     assert( sDistinct.isTnct );
4934   }
4935 
4936   /* If there is an ORDER BY clause, then this sorting
4937   ** index might end up being unused if the data can be
4938   ** extracted in pre-sorted order.  If that is the case, then the
4939   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4940   ** we figure out that the sorting index is not needed.  The addrSortIndex
4941   ** variable is used to facilitate that change.
4942   */
4943   if( sSort.pOrderBy ){
4944     KeyInfo *pKeyInfo;
4945     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
4946     sSort.iECursor = pParse->nTab++;
4947     sSort.addrSortIndex =
4948       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4949           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4950           (char*)pKeyInfo, P4_KEYINFO
4951       );
4952   }else{
4953     sSort.addrSortIndex = -1;
4954   }
4955 
4956   /* If the output is destined for a temporary table, open that table.
4957   */
4958   if( pDest->eDest==SRT_EphemTab ){
4959     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4960   }
4961 
4962   /* Set the limiter.
4963   */
4964   iEnd = sqlite3VdbeMakeLabel(v);
4965   p->nSelectRow = LARGEST_INT64;
4966   computeLimitRegisters(pParse, p, iEnd);
4967   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4968     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4969     sSort.sortFlags |= SORTFLAG_UseSorter;
4970   }
4971 
4972   /* Open a virtual index to use for the distinct set.
4973   */
4974   if( p->selFlags & SF_Distinct ){
4975     sDistinct.tabTnct = pParse->nTab++;
4976     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4977                                 sDistinct.tabTnct, 0, 0,
4978                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4979                                 P4_KEYINFO);
4980     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4981     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4982   }else{
4983     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4984   }
4985 
4986   if( !isAgg && pGroupBy==0 ){
4987     /* No aggregate functions and no GROUP BY clause */
4988     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4989 
4990     /* Begin the database scan. */
4991     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4992                                p->pEList, wctrlFlags, 0);
4993     if( pWInfo==0 ) goto select_end;
4994     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4995       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4996     }
4997     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4998       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4999     }
5000     if( sSort.pOrderBy ){
5001       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5002       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5003         sSort.pOrderBy = 0;
5004       }
5005     }
5006 
5007     /* If sorting index that was created by a prior OP_OpenEphemeral
5008     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5009     ** into an OP_Noop.
5010     */
5011     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5012       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5013     }
5014 
5015     /* Use the standard inner loop. */
5016     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5017                     sqlite3WhereContinueLabel(pWInfo),
5018                     sqlite3WhereBreakLabel(pWInfo));
5019 
5020     /* End the database scan loop.
5021     */
5022     sqlite3WhereEnd(pWInfo);
5023   }else{
5024     /* This case when there exist aggregate functions or a GROUP BY clause
5025     ** or both */
5026     NameContext sNC;    /* Name context for processing aggregate information */
5027     int iAMem;          /* First Mem address for storing current GROUP BY */
5028     int iBMem;          /* First Mem address for previous GROUP BY */
5029     int iUseFlag;       /* Mem address holding flag indicating that at least
5030                         ** one row of the input to the aggregator has been
5031                         ** processed */
5032     int iAbortFlag;     /* Mem address which causes query abort if positive */
5033     int groupBySort;    /* Rows come from source in GROUP BY order */
5034     int addrEnd;        /* End of processing for this SELECT */
5035     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5036     int sortOut = 0;    /* Output register from the sorter */
5037     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5038 
5039     /* Remove any and all aliases between the result set and the
5040     ** GROUP BY clause.
5041     */
5042     if( pGroupBy ){
5043       int k;                        /* Loop counter */
5044       struct ExprList_item *pItem;  /* For looping over expression in a list */
5045 
5046       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5047         pItem->u.x.iAlias = 0;
5048       }
5049       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5050         pItem->u.x.iAlias = 0;
5051       }
5052       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5053     }else{
5054       p->nSelectRow = 1;
5055     }
5056 
5057 
5058     /* If there is both a GROUP BY and an ORDER BY clause and they are
5059     ** identical, then it may be possible to disable the ORDER BY clause
5060     ** on the grounds that the GROUP BY will cause elements to come out
5061     ** in the correct order. It also may not - the GROUP BY may use a
5062     ** database index that causes rows to be grouped together as required
5063     ** but not actually sorted. Either way, record the fact that the
5064     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5065     ** variable.  */
5066     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5067       orderByGrp = 1;
5068     }
5069 
5070     /* Create a label to jump to when we want to abort the query */
5071     addrEnd = sqlite3VdbeMakeLabel(v);
5072 
5073     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5074     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5075     ** SELECT statement.
5076     */
5077     memset(&sNC, 0, sizeof(sNC));
5078     sNC.pParse = pParse;
5079     sNC.pSrcList = pTabList;
5080     sNC.pAggInfo = &sAggInfo;
5081     sAggInfo.mnReg = pParse->nMem+1;
5082     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5083     sAggInfo.pGroupBy = pGroupBy;
5084     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5085     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5086     if( pHaving ){
5087       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5088     }
5089     sAggInfo.nAccumulator = sAggInfo.nColumn;
5090     for(i=0; i<sAggInfo.nFunc; i++){
5091       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5092       sNC.ncFlags |= NC_InAggFunc;
5093       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5094       sNC.ncFlags &= ~NC_InAggFunc;
5095     }
5096     sAggInfo.mxReg = pParse->nMem;
5097     if( db->mallocFailed ) goto select_end;
5098 
5099     /* Processing for aggregates with GROUP BY is very different and
5100     ** much more complex than aggregates without a GROUP BY.
5101     */
5102     if( pGroupBy ){
5103       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5104       int j1;             /* A-vs-B comparision jump */
5105       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5106       int regOutputRow;   /* Return address register for output subroutine */
5107       int addrSetAbort;   /* Set the abort flag and return */
5108       int addrTopOfLoop;  /* Top of the input loop */
5109       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5110       int addrReset;      /* Subroutine for resetting the accumulator */
5111       int regReset;       /* Return address register for reset subroutine */
5112 
5113       /* If there is a GROUP BY clause we might need a sorting index to
5114       ** implement it.  Allocate that sorting index now.  If it turns out
5115       ** that we do not need it after all, the OP_SorterOpen instruction
5116       ** will be converted into a Noop.
5117       */
5118       sAggInfo.sortingIdx = pParse->nTab++;
5119       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5120       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5121           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5122           0, (char*)pKeyInfo, P4_KEYINFO);
5123 
5124       /* Initialize memory locations used by GROUP BY aggregate processing
5125       */
5126       iUseFlag = ++pParse->nMem;
5127       iAbortFlag = ++pParse->nMem;
5128       regOutputRow = ++pParse->nMem;
5129       addrOutputRow = sqlite3VdbeMakeLabel(v);
5130       regReset = ++pParse->nMem;
5131       addrReset = sqlite3VdbeMakeLabel(v);
5132       iAMem = pParse->nMem + 1;
5133       pParse->nMem += pGroupBy->nExpr;
5134       iBMem = pParse->nMem + 1;
5135       pParse->nMem += pGroupBy->nExpr;
5136       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5137       VdbeComment((v, "clear abort flag"));
5138       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5139       VdbeComment((v, "indicate accumulator empty"));
5140       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5141 
5142       /* Begin a loop that will extract all source rows in GROUP BY order.
5143       ** This might involve two separate loops with an OP_Sort in between, or
5144       ** it might be a single loop that uses an index to extract information
5145       ** in the right order to begin with.
5146       */
5147       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5148       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5149           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5150       );
5151       if( pWInfo==0 ) goto select_end;
5152       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5153         /* The optimizer is able to deliver rows in group by order so
5154         ** we do not have to sort.  The OP_OpenEphemeral table will be
5155         ** cancelled later because we still need to use the pKeyInfo
5156         */
5157         groupBySort = 0;
5158       }else{
5159         /* Rows are coming out in undetermined order.  We have to push
5160         ** each row into a sorting index, terminate the first loop,
5161         ** then loop over the sorting index in order to get the output
5162         ** in sorted order
5163         */
5164         int regBase;
5165         int regRecord;
5166         int nCol;
5167         int nGroupBy;
5168 
5169         explainTempTable(pParse,
5170             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5171                     "DISTINCT" : "GROUP BY");
5172 
5173         groupBySort = 1;
5174         nGroupBy = pGroupBy->nExpr;
5175         nCol = nGroupBy;
5176         j = nGroupBy;
5177         for(i=0; i<sAggInfo.nColumn; i++){
5178           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5179             nCol++;
5180             j++;
5181           }
5182         }
5183         regBase = sqlite3GetTempRange(pParse, nCol);
5184         sqlite3ExprCacheClear(pParse);
5185         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5186         j = nGroupBy;
5187         for(i=0; i<sAggInfo.nColumn; i++){
5188           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5189           if( pCol->iSorterColumn>=j ){
5190             int r1 = j + regBase;
5191             int r2;
5192 
5193             r2 = sqlite3ExprCodeGetColumn(pParse,
5194                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5195             if( r1!=r2 ){
5196               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5197             }
5198             j++;
5199           }
5200         }
5201         regRecord = sqlite3GetTempReg(pParse);
5202         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5203         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5204         sqlite3ReleaseTempReg(pParse, regRecord);
5205         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5206         sqlite3WhereEnd(pWInfo);
5207         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5208         sortOut = sqlite3GetTempReg(pParse);
5209         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5210         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5211         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5212         sAggInfo.useSortingIdx = 1;
5213         sqlite3ExprCacheClear(pParse);
5214 
5215       }
5216 
5217       /* If the index or temporary table used by the GROUP BY sort
5218       ** will naturally deliver rows in the order required by the ORDER BY
5219       ** clause, cancel the ephemeral table open coded earlier.
5220       **
5221       ** This is an optimization - the correct answer should result regardless.
5222       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5223       ** disable this optimization for testing purposes.  */
5224       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5225        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5226       ){
5227         sSort.pOrderBy = 0;
5228         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5229       }
5230 
5231       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5232       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5233       ** Then compare the current GROUP BY terms against the GROUP BY terms
5234       ** from the previous row currently stored in a0, a1, a2...
5235       */
5236       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5237       sqlite3ExprCacheClear(pParse);
5238       if( groupBySort ){
5239         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5240       }
5241       for(j=0; j<pGroupBy->nExpr; j++){
5242         if( groupBySort ){
5243           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5244         }else{
5245           sAggInfo.directMode = 1;
5246           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5247         }
5248       }
5249       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5250                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5251       j1 = sqlite3VdbeCurrentAddr(v);
5252       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5253 
5254       /* Generate code that runs whenever the GROUP BY changes.
5255       ** Changes in the GROUP BY are detected by the previous code
5256       ** block.  If there were no changes, this block is skipped.
5257       **
5258       ** This code copies current group by terms in b0,b1,b2,...
5259       ** over to a0,a1,a2.  It then calls the output subroutine
5260       ** and resets the aggregate accumulator registers in preparation
5261       ** for the next GROUP BY batch.
5262       */
5263       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5264       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5265       VdbeComment((v, "output one row"));
5266       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5267       VdbeComment((v, "check abort flag"));
5268       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5269       VdbeComment((v, "reset accumulator"));
5270 
5271       /* Update the aggregate accumulators based on the content of
5272       ** the current row
5273       */
5274       sqlite3VdbeJumpHere(v, j1);
5275       updateAccumulator(pParse, &sAggInfo);
5276       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5277       VdbeComment((v, "indicate data in accumulator"));
5278 
5279       /* End of the loop
5280       */
5281       if( groupBySort ){
5282         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5283         VdbeCoverage(v);
5284       }else{
5285         sqlite3WhereEnd(pWInfo);
5286         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5287       }
5288 
5289       /* Output the final row of result
5290       */
5291       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5292       VdbeComment((v, "output final row"));
5293 
5294       /* Jump over the subroutines
5295       */
5296       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5297 
5298       /* Generate a subroutine that outputs a single row of the result
5299       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5300       ** is less than or equal to zero, the subroutine is a no-op.  If
5301       ** the processing calls for the query to abort, this subroutine
5302       ** increments the iAbortFlag memory location before returning in
5303       ** order to signal the caller to abort.
5304       */
5305       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5306       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5307       VdbeComment((v, "set abort flag"));
5308       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5309       sqlite3VdbeResolveLabel(v, addrOutputRow);
5310       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5311       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5312       VdbeComment((v, "Groupby result generator entry point"));
5313       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5314       finalizeAggFunctions(pParse, &sAggInfo);
5315       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5316       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5317                       &sDistinct, pDest,
5318                       addrOutputRow+1, addrSetAbort);
5319       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5320       VdbeComment((v, "end groupby result generator"));
5321 
5322       /* Generate a subroutine that will reset the group-by accumulator
5323       */
5324       sqlite3VdbeResolveLabel(v, addrReset);
5325       resetAccumulator(pParse, &sAggInfo);
5326       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5327 
5328     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5329     else {
5330       ExprList *pDel = 0;
5331 #ifndef SQLITE_OMIT_BTREECOUNT
5332       Table *pTab;
5333       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5334         /* If isSimpleCount() returns a pointer to a Table structure, then
5335         ** the SQL statement is of the form:
5336         **
5337         **   SELECT count(*) FROM <tbl>
5338         **
5339         ** where the Table structure returned represents table <tbl>.
5340         **
5341         ** This statement is so common that it is optimized specially. The
5342         ** OP_Count instruction is executed either on the intkey table that
5343         ** contains the data for table <tbl> or on one of its indexes. It
5344         ** is better to execute the op on an index, as indexes are almost
5345         ** always spread across less pages than their corresponding tables.
5346         */
5347         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5348         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5349         Index *pIdx;                         /* Iterator variable */
5350         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5351         Index *pBest = 0;                    /* Best index found so far */
5352         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5353 
5354         sqlite3CodeVerifySchema(pParse, iDb);
5355         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5356 
5357         /* Search for the index that has the lowest scan cost.
5358         **
5359         ** (2011-04-15) Do not do a full scan of an unordered index.
5360         **
5361         ** (2013-10-03) Do not count the entries in a partial index.
5362         **
5363         ** In practice the KeyInfo structure will not be used. It is only
5364         ** passed to keep OP_OpenRead happy.
5365         */
5366         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5367         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5368           if( pIdx->bUnordered==0
5369            && pIdx->szIdxRow<pTab->szTabRow
5370            && pIdx->pPartIdxWhere==0
5371            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5372           ){
5373             pBest = pIdx;
5374           }
5375         }
5376         if( pBest ){
5377           iRoot = pBest->tnum;
5378           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5379         }
5380 
5381         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5382         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5383         if( pKeyInfo ){
5384           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5385         }
5386         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5387         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5388         explainSimpleCount(pParse, pTab, pBest);
5389       }else
5390 #endif /* SQLITE_OMIT_BTREECOUNT */
5391       {
5392         /* Check if the query is of one of the following forms:
5393         **
5394         **   SELECT min(x) FROM ...
5395         **   SELECT max(x) FROM ...
5396         **
5397         ** If it is, then ask the code in where.c to attempt to sort results
5398         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5399         ** If where.c is able to produce results sorted in this order, then
5400         ** add vdbe code to break out of the processing loop after the
5401         ** first iteration (since the first iteration of the loop is
5402         ** guaranteed to operate on the row with the minimum or maximum
5403         ** value of x, the only row required).
5404         **
5405         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5406         ** modify behavior as follows:
5407         **
5408         **   + If the query is a "SELECT min(x)", then the loop coded by
5409         **     where.c should not iterate over any values with a NULL value
5410         **     for x.
5411         **
5412         **   + The optimizer code in where.c (the thing that decides which
5413         **     index or indices to use) should place a different priority on
5414         **     satisfying the 'ORDER BY' clause than it does in other cases.
5415         **     Refer to code and comments in where.c for details.
5416         */
5417         ExprList *pMinMax = 0;
5418         u8 flag = WHERE_ORDERBY_NORMAL;
5419 
5420         assert( p->pGroupBy==0 );
5421         assert( flag==0 );
5422         if( p->pHaving==0 ){
5423           flag = minMaxQuery(&sAggInfo, &pMinMax);
5424         }
5425         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5426 
5427         if( flag ){
5428           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5429           pDel = pMinMax;
5430           if( pMinMax && !db->mallocFailed ){
5431             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5432             pMinMax->a[0].pExpr->op = TK_COLUMN;
5433           }
5434         }
5435 
5436         /* This case runs if the aggregate has no GROUP BY clause.  The
5437         ** processing is much simpler since there is only a single row
5438         ** of output.
5439         */
5440         resetAccumulator(pParse, &sAggInfo);
5441         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5442         if( pWInfo==0 ){
5443           sqlite3ExprListDelete(db, pDel);
5444           goto select_end;
5445         }
5446         updateAccumulator(pParse, &sAggInfo);
5447         assert( pMinMax==0 || pMinMax->nExpr==1 );
5448         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5449           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5450           VdbeComment((v, "%s() by index",
5451                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5452         }
5453         sqlite3WhereEnd(pWInfo);
5454         finalizeAggFunctions(pParse, &sAggInfo);
5455       }
5456 
5457       sSort.pOrderBy = 0;
5458       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5459       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5460                       pDest, addrEnd, addrEnd);
5461       sqlite3ExprListDelete(db, pDel);
5462     }
5463     sqlite3VdbeResolveLabel(v, addrEnd);
5464 
5465   } /* endif aggregate query */
5466 
5467   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5468     explainTempTable(pParse, "DISTINCT");
5469   }
5470 
5471   /* If there is an ORDER BY clause, then we need to sort the results
5472   ** and send them to the callback one by one.
5473   */
5474   if( sSort.pOrderBy ){
5475     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5476     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5477   }
5478 
5479   /* Jump here to skip this query
5480   */
5481   sqlite3VdbeResolveLabel(v, iEnd);
5482 
5483   /* The SELECT was successfully coded.   Set the return code to 0
5484   ** to indicate no errors.
5485   */
5486   rc = 0;
5487 
5488   /* Control jumps to here if an error is encountered above, or upon
5489   ** successful coding of the SELECT.
5490   */
5491 select_end:
5492   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5493 
5494   /* Identify column names if results of the SELECT are to be output.
5495   */
5496   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5497     generateColumnNames(pParse, pTabList, pEList);
5498   }
5499 
5500   sqlite3DbFree(db, sAggInfo.aCol);
5501   sqlite3DbFree(db, sAggInfo.aFunc);
5502 #if SELECTTRACE_ENABLED
5503   SELECTTRACE(1,pParse,p,("end processing\n"));
5504   pParse->nSelectIndent--;
5505 #endif
5506   return rc;
5507 }
5508 
5509 #ifdef SQLITE_DEBUG
5510 /*
5511 ** Generate a human-readable description of a the Select object.
5512 */
5513 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5514   int n = 0;
5515   pView = sqlite3TreeViewPush(pView, moreToFollow);
5516   sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)",
5517     ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5518     ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p
5519   );
5520   if( p->pSrc && p->pSrc->nSrc ) n++;
5521   if( p->pWhere ) n++;
5522   if( p->pGroupBy ) n++;
5523   if( p->pHaving ) n++;
5524   if( p->pOrderBy ) n++;
5525   if( p->pLimit ) n++;
5526   if( p->pOffset ) n++;
5527   if( p->pPrior ) n++;
5528   sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5529   if( p->pSrc && p->pSrc->nSrc ){
5530     int i;
5531     pView = sqlite3TreeViewPush(pView, (n--)>0);
5532     sqlite3TreeViewLine(pView, "FROM");
5533     for(i=0; i<p->pSrc->nSrc; i++){
5534       struct SrcList_item *pItem = &p->pSrc->a[i];
5535       StrAccum x;
5536       char zLine[100];
5537       sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
5538       sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5539       if( pItem->zDatabase ){
5540         sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5541       }else if( pItem->zName ){
5542         sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5543       }
5544       if( pItem->pTab ){
5545         sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5546       }
5547       if( pItem->zAlias ){
5548         sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5549       }
5550       if( pItem->jointype & JT_LEFT ){
5551         sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5552       }
5553       sqlite3StrAccumFinish(&x);
5554       sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5555       if( pItem->pSelect ){
5556         sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5557       }
5558       sqlite3TreeViewPop(pView);
5559     }
5560     sqlite3TreeViewPop(pView);
5561   }
5562   if( p->pWhere ){
5563     sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5564     sqlite3TreeViewExpr(pView, p->pWhere, 0);
5565     sqlite3TreeViewPop(pView);
5566   }
5567   if( p->pGroupBy ){
5568     sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5569   }
5570   if( p->pHaving ){
5571     sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5572     sqlite3TreeViewExpr(pView, p->pHaving, 0);
5573     sqlite3TreeViewPop(pView);
5574   }
5575   if( p->pOrderBy ){
5576     sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5577   }
5578   if( p->pLimit ){
5579     sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5580     sqlite3TreeViewExpr(pView, p->pLimit, 0);
5581     sqlite3TreeViewPop(pView);
5582   }
5583   if( p->pOffset ){
5584     sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5585     sqlite3TreeViewExpr(pView, p->pOffset, 0);
5586     sqlite3TreeViewPop(pView);
5587   }
5588   if( p->pPrior ){
5589     const char *zOp = "UNION";
5590     switch( p->op ){
5591       case TK_ALL:         zOp = "UNION ALL";  break;
5592       case TK_INTERSECT:   zOp = "INTERSECT";  break;
5593       case TK_EXCEPT:      zOp = "EXCEPT";     break;
5594     }
5595     sqlite3TreeViewItem(pView, zOp, (n--)>0);
5596     sqlite3TreeViewSelect(pView, p->pPrior, 0);
5597     sqlite3TreeViewPop(pView);
5598   }
5599   sqlite3TreeViewPop(pView);
5600 }
5601 #endif /* SQLITE_DEBUG */
5602