xref: /sqlite-3.40.0/src/select.c (revision cb6acda9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
78     if( bFree ) sqlite3DbFreeNN(db, p);
79     p = pPrior;
80     bFree = 1;
81   }
82 }
83 
84 /*
85 ** Initialize a SelectDest structure.
86 */
87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
88   pDest->eDest = (u8)eDest;
89   pDest->iSDParm = iParm;
90   pDest->zAffSdst = 0;
91   pDest->iSdst = 0;
92   pDest->nSdst = 0;
93 }
94 
95 
96 /*
97 ** Allocate a new Select structure and return a pointer to that
98 ** structure.
99 */
100 Select *sqlite3SelectNew(
101   Parse *pParse,        /* Parsing context */
102   ExprList *pEList,     /* which columns to include in the result */
103   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
104   Expr *pWhere,         /* the WHERE clause */
105   ExprList *pGroupBy,   /* the GROUP BY clause */
106   Expr *pHaving,        /* the HAVING clause */
107   ExprList *pOrderBy,   /* the ORDER BY clause */
108   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
109   Expr *pLimit          /* LIMIT value.  NULL means not used */
110 ){
111   Select *pNew;
112   Select standin;
113   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
114   if( pNew==0 ){
115     assert( pParse->db->mallocFailed );
116     pNew = &standin;
117   }
118   if( pEList==0 ){
119     pEList = sqlite3ExprListAppend(pParse, 0,
120                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
121   }
122   pNew->pEList = pEList;
123   pNew->op = TK_SELECT;
124   pNew->selFlags = selFlags;
125   pNew->iLimit = 0;
126   pNew->iOffset = 0;
127 #if SELECTTRACE_ENABLED
128   pNew->zSelName[0] = 0;
129 #endif
130   pNew->addrOpenEphm[0] = -1;
131   pNew->addrOpenEphm[1] = -1;
132   pNew->nSelectRow = 0;
133   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
134   pNew->pSrc = pSrc;
135   pNew->pWhere = pWhere;
136   pNew->pGroupBy = pGroupBy;
137   pNew->pHaving = pHaving;
138   pNew->pOrderBy = pOrderBy;
139   pNew->pPrior = 0;
140   pNew->pNext = 0;
141   pNew->pLimit = pLimit;
142   pNew->pWith = 0;
143   if( pParse->db->mallocFailed ) {
144     clearSelect(pParse->db, pNew, pNew!=&standin);
145     pNew = 0;
146   }else{
147     assert( pNew->pSrc!=0 || pParse->nErr>0 );
148   }
149   assert( pNew!=&standin );
150   return pNew;
151 }
152 
153 #if SELECTTRACE_ENABLED
154 /*
155 ** Set the name of a Select object
156 */
157 void sqlite3SelectSetName(Select *p, const char *zName){
158   if( p && zName ){
159     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
160   }
161 }
162 #endif
163 
164 
165 /*
166 ** Delete the given Select structure and all of its substructures.
167 */
168 void sqlite3SelectDelete(sqlite3 *db, Select *p){
169   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
170 }
171 
172 /*
173 ** Return a pointer to the right-most SELECT statement in a compound.
174 */
175 static Select *findRightmost(Select *p){
176   while( p->pNext ) p = p->pNext;
177   return p;
178 }
179 
180 /*
181 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
182 ** type of join.  Return an integer constant that expresses that type
183 ** in terms of the following bit values:
184 **
185 **     JT_INNER
186 **     JT_CROSS
187 **     JT_OUTER
188 **     JT_NATURAL
189 **     JT_LEFT
190 **     JT_RIGHT
191 **
192 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
193 **
194 ** If an illegal or unsupported join type is seen, then still return
195 ** a join type, but put an error in the pParse structure.
196 */
197 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
198   int jointype = 0;
199   Token *apAll[3];
200   Token *p;
201                              /*   0123456789 123456789 123456789 123 */
202   static const char zKeyText[] = "naturaleftouterightfullinnercross";
203   static const struct {
204     u8 i;        /* Beginning of keyword text in zKeyText[] */
205     u8 nChar;    /* Length of the keyword in characters */
206     u8 code;     /* Join type mask */
207   } aKeyword[] = {
208     /* natural */ { 0,  7, JT_NATURAL                },
209     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
210     /* outer   */ { 10, 5, JT_OUTER                  },
211     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
212     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
213     /* inner   */ { 23, 5, JT_INNER                  },
214     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
215   };
216   int i, j;
217   apAll[0] = pA;
218   apAll[1] = pB;
219   apAll[2] = pC;
220   for(i=0; i<3 && apAll[i]; i++){
221     p = apAll[i];
222     for(j=0; j<ArraySize(aKeyword); j++){
223       if( p->n==aKeyword[j].nChar
224           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
225         jointype |= aKeyword[j].code;
226         break;
227       }
228     }
229     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
230     if( j>=ArraySize(aKeyword) ){
231       jointype |= JT_ERROR;
232       break;
233     }
234   }
235   if(
236      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
237      (jointype & JT_ERROR)!=0
238   ){
239     const char *zSp = " ";
240     assert( pB!=0 );
241     if( pC==0 ){ zSp++; }
242     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
243        "%T %T%s%T", pA, pB, zSp, pC);
244     jointype = JT_INNER;
245   }else if( (jointype & JT_OUTER)!=0
246          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
247     sqlite3ErrorMsg(pParse,
248       "RIGHT and FULL OUTER JOINs are not currently supported");
249     jointype = JT_INNER;
250   }
251   return jointype;
252 }
253 
254 /*
255 ** Return the index of a column in a table.  Return -1 if the column
256 ** is not contained in the table.
257 */
258 static int columnIndex(Table *pTab, const char *zCol){
259   int i;
260   for(i=0; i<pTab->nCol; i++){
261     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
262   }
263   return -1;
264 }
265 
266 /*
267 ** Search the first N tables in pSrc, from left to right, looking for a
268 ** table that has a column named zCol.
269 **
270 ** When found, set *piTab and *piCol to the table index and column index
271 ** of the matching column and return TRUE.
272 **
273 ** If not found, return FALSE.
274 */
275 static int tableAndColumnIndex(
276   SrcList *pSrc,       /* Array of tables to search */
277   int N,               /* Number of tables in pSrc->a[] to search */
278   const char *zCol,    /* Name of the column we are looking for */
279   int *piTab,          /* Write index of pSrc->a[] here */
280   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
281 ){
282   int i;               /* For looping over tables in pSrc */
283   int iCol;            /* Index of column matching zCol */
284 
285   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
286   for(i=0; i<N; i++){
287     iCol = columnIndex(pSrc->a[i].pTab, zCol);
288     if( iCol>=0 ){
289       if( piTab ){
290         *piTab = i;
291         *piCol = iCol;
292       }
293       return 1;
294     }
295   }
296   return 0;
297 }
298 
299 /*
300 ** This function is used to add terms implied by JOIN syntax to the
301 ** WHERE clause expression of a SELECT statement. The new term, which
302 ** is ANDed with the existing WHERE clause, is of the form:
303 **
304 **    (tab1.col1 = tab2.col2)
305 **
306 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
307 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
308 ** column iColRight of tab2.
309 */
310 static void addWhereTerm(
311   Parse *pParse,                  /* Parsing context */
312   SrcList *pSrc,                  /* List of tables in FROM clause */
313   int iLeft,                      /* Index of first table to join in pSrc */
314   int iColLeft,                   /* Index of column in first table */
315   int iRight,                     /* Index of second table in pSrc */
316   int iColRight,                  /* Index of column in second table */
317   int isOuterJoin,                /* True if this is an OUTER join */
318   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
319 ){
320   sqlite3 *db = pParse->db;
321   Expr *pE1;
322   Expr *pE2;
323   Expr *pEq;
324 
325   assert( iLeft<iRight );
326   assert( pSrc->nSrc>iRight );
327   assert( pSrc->a[iLeft].pTab );
328   assert( pSrc->a[iRight].pTab );
329 
330   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
331   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
332 
333   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
334   if( pEq && isOuterJoin ){
335     ExprSetProperty(pEq, EP_FromJoin);
336     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
337     ExprSetVVAProperty(pEq, EP_NoReduce);
338     pEq->iRightJoinTable = (i16)pE2->iTable;
339   }
340   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
341 }
342 
343 /*
344 ** Set the EP_FromJoin property on all terms of the given expression.
345 ** And set the Expr.iRightJoinTable to iTable for every term in the
346 ** expression.
347 **
348 ** The EP_FromJoin property is used on terms of an expression to tell
349 ** the LEFT OUTER JOIN processing logic that this term is part of the
350 ** join restriction specified in the ON or USING clause and not a part
351 ** of the more general WHERE clause.  These terms are moved over to the
352 ** WHERE clause during join processing but we need to remember that they
353 ** originated in the ON or USING clause.
354 **
355 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
356 ** expression depends on table iRightJoinTable even if that table is not
357 ** explicitly mentioned in the expression.  That information is needed
358 ** for cases like this:
359 **
360 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
361 **
362 ** The where clause needs to defer the handling of the t1.x=5
363 ** term until after the t2 loop of the join.  In that way, a
364 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
365 ** defer the handling of t1.x=5, it will be processed immediately
366 ** after the t1 loop and rows with t1.x!=5 will never appear in
367 ** the output, which is incorrect.
368 */
369 static void setJoinExpr(Expr *p, int iTable){
370   while( p ){
371     ExprSetProperty(p, EP_FromJoin);
372     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
373     ExprSetVVAProperty(p, EP_NoReduce);
374     p->iRightJoinTable = (i16)iTable;
375     if( p->op==TK_FUNCTION && p->x.pList ){
376       int i;
377       for(i=0; i<p->x.pList->nExpr; i++){
378         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
379       }
380     }
381     setJoinExpr(p->pLeft, iTable);
382     p = p->pRight;
383   }
384 }
385 
386 /*
387 ** This routine processes the join information for a SELECT statement.
388 ** ON and USING clauses are converted into extra terms of the WHERE clause.
389 ** NATURAL joins also create extra WHERE clause terms.
390 **
391 ** The terms of a FROM clause are contained in the Select.pSrc structure.
392 ** The left most table is the first entry in Select.pSrc.  The right-most
393 ** table is the last entry.  The join operator is held in the entry to
394 ** the left.  Thus entry 0 contains the join operator for the join between
395 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
396 ** also attached to the left entry.
397 **
398 ** This routine returns the number of errors encountered.
399 */
400 static int sqliteProcessJoin(Parse *pParse, Select *p){
401   SrcList *pSrc;                  /* All tables in the FROM clause */
402   int i, j;                       /* Loop counters */
403   struct SrcList_item *pLeft;     /* Left table being joined */
404   struct SrcList_item *pRight;    /* Right table being joined */
405 
406   pSrc = p->pSrc;
407   pLeft = &pSrc->a[0];
408   pRight = &pLeft[1];
409   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
410     Table *pRightTab = pRight->pTab;
411     int isOuter;
412 
413     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
414     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
415 
416     /* When the NATURAL keyword is present, add WHERE clause terms for
417     ** every column that the two tables have in common.
418     */
419     if( pRight->fg.jointype & JT_NATURAL ){
420       if( pRight->pOn || pRight->pUsing ){
421         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
422            "an ON or USING clause", 0);
423         return 1;
424       }
425       for(j=0; j<pRightTab->nCol; j++){
426         char *zName;   /* Name of column in the right table */
427         int iLeft;     /* Matching left table */
428         int iLeftCol;  /* Matching column in the left table */
429 
430         zName = pRightTab->aCol[j].zName;
431         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
432           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
433                        isOuter, &p->pWhere);
434         }
435       }
436     }
437 
438     /* Disallow both ON and USING clauses in the same join
439     */
440     if( pRight->pOn && pRight->pUsing ){
441       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
442         "clauses in the same join");
443       return 1;
444     }
445 
446     /* Add the ON clause to the end of the WHERE clause, connected by
447     ** an AND operator.
448     */
449     if( pRight->pOn ){
450       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
451       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
452       pRight->pOn = 0;
453     }
454 
455     /* Create extra terms on the WHERE clause for each column named
456     ** in the USING clause.  Example: If the two tables to be joined are
457     ** A and B and the USING clause names X, Y, and Z, then add this
458     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
459     ** Report an error if any column mentioned in the USING clause is
460     ** not contained in both tables to be joined.
461     */
462     if( pRight->pUsing ){
463       IdList *pList = pRight->pUsing;
464       for(j=0; j<pList->nId; j++){
465         char *zName;     /* Name of the term in the USING clause */
466         int iLeft;       /* Table on the left with matching column name */
467         int iLeftCol;    /* Column number of matching column on the left */
468         int iRightCol;   /* Column number of matching column on the right */
469 
470         zName = pList->a[j].zName;
471         iRightCol = columnIndex(pRightTab, zName);
472         if( iRightCol<0
473          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
474         ){
475           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
476             "not present in both tables", zName);
477           return 1;
478         }
479         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
480                      isOuter, &p->pWhere);
481       }
482     }
483   }
484   return 0;
485 }
486 
487 /* Forward reference */
488 static KeyInfo *keyInfoFromExprList(
489   Parse *pParse,       /* Parsing context */
490   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
491   int iStart,          /* Begin with this column of pList */
492   int nExtra           /* Add this many extra columns to the end */
493 );
494 
495 /*
496 ** Generate code that will push the record in registers regData
497 ** through regData+nData-1 onto the sorter.
498 */
499 static void pushOntoSorter(
500   Parse *pParse,         /* Parser context */
501   SortCtx *pSort,        /* Information about the ORDER BY clause */
502   Select *pSelect,       /* The whole SELECT statement */
503   int regData,           /* First register holding data to be sorted */
504   int regOrigData,       /* First register holding data before packing */
505   int nData,             /* Number of elements in the data array */
506   int nPrefixReg         /* No. of reg prior to regData available for use */
507 ){
508   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
509   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
510   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
511   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
512   int regBase;                                     /* Regs for sorter record */
513   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
514   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
515   int op;                            /* Opcode to add sorter record to sorter */
516   int iLimit;                        /* LIMIT counter */
517 
518   assert( bSeq==0 || bSeq==1 );
519   assert( nData==1 || regData==regOrigData || regOrigData==0 );
520   if( nPrefixReg ){
521     assert( nPrefixReg==nExpr+bSeq );
522     regBase = regData - nExpr - bSeq;
523   }else{
524     regBase = pParse->nMem + 1;
525     pParse->nMem += nBase;
526   }
527   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
528   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
529   pSort->labelDone = sqlite3VdbeMakeLabel(v);
530   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
531                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
532   if( bSeq ){
533     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
534   }
535   if( nPrefixReg==0 && nData>0 ){
536     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
537   }
538   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
539   if( nOBSat>0 ){
540     int regPrevKey;   /* The first nOBSat columns of the previous row */
541     int addrFirst;    /* Address of the OP_IfNot opcode */
542     int addrJmp;      /* Address of the OP_Jump opcode */
543     VdbeOp *pOp;      /* Opcode that opens the sorter */
544     int nKey;         /* Number of sorting key columns, including OP_Sequence */
545     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
546 
547     regPrevKey = pParse->nMem+1;
548     pParse->nMem += pSort->nOBSat;
549     nKey = nExpr - pSort->nOBSat + bSeq;
550     if( bSeq ){
551       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
552     }else{
553       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
554     }
555     VdbeCoverage(v);
556     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
557     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
558     if( pParse->db->mallocFailed ) return;
559     pOp->p2 = nKey + nData;
560     pKI = pOp->p4.pKeyInfo;
561     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
562     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
563     testcase( pKI->nAllField > pKI->nKeyField+2 );
564     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
565                                            pKI->nAllField-pKI->nKeyField-1);
566     addrJmp = sqlite3VdbeCurrentAddr(v);
567     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
568     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
569     pSort->regReturn = ++pParse->nMem;
570     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
571     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
572     if( iLimit ){
573       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
574       VdbeCoverage(v);
575     }
576     sqlite3VdbeJumpHere(v, addrFirst);
577     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
578     sqlite3VdbeJumpHere(v, addrJmp);
579   }
580   if( pSort->sortFlags & SORTFLAG_UseSorter ){
581     op = OP_SorterInsert;
582   }else{
583     op = OP_IdxInsert;
584   }
585   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
586                        regBase+nOBSat, nBase-nOBSat);
587   if( iLimit ){
588     int addr;
589     int r1 = 0;
590     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
591     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
592     ** fills up, delete the least entry in the sorter after each insert.
593     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
594     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
595     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
596     if( pSort->bOrderedInnerLoop ){
597       r1 = ++pParse->nMem;
598       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
599       VdbeComment((v, "seq"));
600     }
601     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
602     if( pSort->bOrderedInnerLoop ){
603       /* If the inner loop is driven by an index such that values from
604       ** the same iteration of the inner loop are in sorted order, then
605       ** immediately jump to the next iteration of an inner loop if the
606       ** entry from the current iteration does not fit into the top
607       ** LIMIT+OFFSET entries of the sorter. */
608       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
609       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
610       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
611       VdbeCoverage(v);
612     }
613     sqlite3VdbeJumpHere(v, addr);
614   }
615 }
616 
617 /*
618 ** Add code to implement the OFFSET
619 */
620 static void codeOffset(
621   Vdbe *v,          /* Generate code into this VM */
622   int iOffset,      /* Register holding the offset counter */
623   int iContinue     /* Jump here to skip the current record */
624 ){
625   if( iOffset>0 ){
626     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
627     VdbeComment((v, "OFFSET"));
628   }
629 }
630 
631 /*
632 ** Add code that will check to make sure the N registers starting at iMem
633 ** form a distinct entry.  iTab is a sorting index that holds previously
634 ** seen combinations of the N values.  A new entry is made in iTab
635 ** if the current N values are new.
636 **
637 ** A jump to addrRepeat is made and the N+1 values are popped from the
638 ** stack if the top N elements are not distinct.
639 */
640 static void codeDistinct(
641   Parse *pParse,     /* Parsing and code generating context */
642   int iTab,          /* A sorting index used to test for distinctness */
643   int addrRepeat,    /* Jump to here if not distinct */
644   int N,             /* Number of elements */
645   int iMem           /* First element */
646 ){
647   Vdbe *v;
648   int r1;
649 
650   v = pParse->pVdbe;
651   r1 = sqlite3GetTempReg(pParse);
652   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
653   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
654   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
655   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
656   sqlite3ReleaseTempReg(pParse, r1);
657 }
658 
659 /*
660 ** This routine generates the code for the inside of the inner loop
661 ** of a SELECT.
662 **
663 ** If srcTab is negative, then the p->pEList expressions
664 ** are evaluated in order to get the data for this row.  If srcTab is
665 ** zero or more, then data is pulled from srcTab and p->pEList is used only
666 ** to get the number of columns and the collation sequence for each column.
667 */
668 static void selectInnerLoop(
669   Parse *pParse,          /* The parser context */
670   Select *p,              /* The complete select statement being coded */
671   int srcTab,             /* Pull data from this table if non-negative */
672   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
673   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
674   SelectDest *pDest,      /* How to dispose of the results */
675   int iContinue,          /* Jump here to continue with next row */
676   int iBreak              /* Jump here to break out of the inner loop */
677 ){
678   Vdbe *v = pParse->pVdbe;
679   int i;
680   int hasDistinct;            /* True if the DISTINCT keyword is present */
681   int eDest = pDest->eDest;   /* How to dispose of results */
682   int iParm = pDest->iSDParm; /* First argument to disposal method */
683   int nResultCol;             /* Number of result columns */
684   int nPrefixReg = 0;         /* Number of extra registers before regResult */
685 
686   /* Usually, regResult is the first cell in an array of memory cells
687   ** containing the current result row. In this case regOrig is set to the
688   ** same value. However, if the results are being sent to the sorter, the
689   ** values for any expressions that are also part of the sort-key are omitted
690   ** from this array. In this case regOrig is set to zero.  */
691   int regResult;              /* Start of memory holding current results */
692   int regOrig;                /* Start of memory holding full result (or 0) */
693 
694   assert( v );
695   assert( p->pEList!=0 );
696   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
697   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
698   if( pSort==0 && !hasDistinct ){
699     assert( iContinue!=0 );
700     codeOffset(v, p->iOffset, iContinue);
701   }
702 
703   /* Pull the requested columns.
704   */
705   nResultCol = p->pEList->nExpr;
706 
707   if( pDest->iSdst==0 ){
708     if( pSort ){
709       nPrefixReg = pSort->pOrderBy->nExpr;
710       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
711       pParse->nMem += nPrefixReg;
712     }
713     pDest->iSdst = pParse->nMem+1;
714     pParse->nMem += nResultCol;
715   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
716     /* This is an error condition that can result, for example, when a SELECT
717     ** on the right-hand side of an INSERT contains more result columns than
718     ** there are columns in the table on the left.  The error will be caught
719     ** and reported later.  But we need to make sure enough memory is allocated
720     ** to avoid other spurious errors in the meantime. */
721     pParse->nMem += nResultCol;
722   }
723   pDest->nSdst = nResultCol;
724   regOrig = regResult = pDest->iSdst;
725   if( srcTab>=0 ){
726     for(i=0; i<nResultCol; i++){
727       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
728       VdbeComment((v, "%s", p->pEList->a[i].zName));
729     }
730   }else if( eDest!=SRT_Exists ){
731     /* If the destination is an EXISTS(...) expression, the actual
732     ** values returned by the SELECT are not required.
733     */
734     u8 ecelFlags;
735     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
736       ecelFlags = SQLITE_ECEL_DUP;
737     }else{
738       ecelFlags = 0;
739     }
740     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
741       /* For each expression in p->pEList that is a copy of an expression in
742       ** the ORDER BY clause (pSort->pOrderBy), set the associated
743       ** iOrderByCol value to one more than the index of the ORDER BY
744       ** expression within the sort-key that pushOntoSorter() will generate.
745       ** This allows the p->pEList field to be omitted from the sorted record,
746       ** saving space and CPU cycles.  */
747       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
748       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
749         int j;
750         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
751           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
752         }
753       }
754       regOrig = 0;
755       assert( eDest==SRT_Set || eDest==SRT_Mem
756            || eDest==SRT_Coroutine || eDest==SRT_Output );
757     }
758     nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
759                                          0,ecelFlags);
760   }
761 
762   /* If the DISTINCT keyword was present on the SELECT statement
763   ** and this row has been seen before, then do not make this row
764   ** part of the result.
765   */
766   if( hasDistinct ){
767     switch( pDistinct->eTnctType ){
768       case WHERE_DISTINCT_ORDERED: {
769         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
770         int iJump;              /* Jump destination */
771         int regPrev;            /* Previous row content */
772 
773         /* Allocate space for the previous row */
774         regPrev = pParse->nMem+1;
775         pParse->nMem += nResultCol;
776 
777         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
778         ** sets the MEM_Cleared bit on the first register of the
779         ** previous value.  This will cause the OP_Ne below to always
780         ** fail on the first iteration of the loop even if the first
781         ** row is all NULLs.
782         */
783         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
784         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
785         pOp->opcode = OP_Null;
786         pOp->p1 = 1;
787         pOp->p2 = regPrev;
788 
789         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
790         for(i=0; i<nResultCol; i++){
791           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
792           if( i<nResultCol-1 ){
793             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
794             VdbeCoverage(v);
795           }else{
796             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
797             VdbeCoverage(v);
798            }
799           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
800           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
801         }
802         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
803         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
804         break;
805       }
806 
807       case WHERE_DISTINCT_UNIQUE: {
808         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
809         break;
810       }
811 
812       default: {
813         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
814         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
815                      regResult);
816         break;
817       }
818     }
819     if( pSort==0 ){
820       codeOffset(v, p->iOffset, iContinue);
821     }
822   }
823 
824   switch( eDest ){
825     /* In this mode, write each query result to the key of the temporary
826     ** table iParm.
827     */
828 #ifndef SQLITE_OMIT_COMPOUND_SELECT
829     case SRT_Union: {
830       int r1;
831       r1 = sqlite3GetTempReg(pParse);
832       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
833       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
834       sqlite3ReleaseTempReg(pParse, r1);
835       break;
836     }
837 
838     /* Construct a record from the query result, but instead of
839     ** saving that record, use it as a key to delete elements from
840     ** the temporary table iParm.
841     */
842     case SRT_Except: {
843       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
844       break;
845     }
846 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
847 
848     /* Store the result as data using a unique key.
849     */
850     case SRT_Fifo:
851     case SRT_DistFifo:
852     case SRT_Table:
853     case SRT_EphemTab: {
854       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
855       testcase( eDest==SRT_Table );
856       testcase( eDest==SRT_EphemTab );
857       testcase( eDest==SRT_Fifo );
858       testcase( eDest==SRT_DistFifo );
859       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
860 #ifndef SQLITE_OMIT_CTE
861       if( eDest==SRT_DistFifo ){
862         /* If the destination is DistFifo, then cursor (iParm+1) is open
863         ** on an ephemeral index. If the current row is already present
864         ** in the index, do not write it to the output. If not, add the
865         ** current row to the index and proceed with writing it to the
866         ** output table as well.  */
867         int addr = sqlite3VdbeCurrentAddr(v) + 4;
868         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
869         VdbeCoverage(v);
870         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
871         assert( pSort==0 );
872       }
873 #endif
874       if( pSort ){
875         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
876       }else{
877         int r2 = sqlite3GetTempReg(pParse);
878         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
879         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
880         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
881         sqlite3ReleaseTempReg(pParse, r2);
882       }
883       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
884       break;
885     }
886 
887 #ifndef SQLITE_OMIT_SUBQUERY
888     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
889     ** then there should be a single item on the stack.  Write this
890     ** item into the set table with bogus data.
891     */
892     case SRT_Set: {
893       if( pSort ){
894         /* At first glance you would think we could optimize out the
895         ** ORDER BY in this case since the order of entries in the set
896         ** does not matter.  But there might be a LIMIT clause, in which
897         ** case the order does matter */
898         pushOntoSorter(
899             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
900       }else{
901         int r1 = sqlite3GetTempReg(pParse);
902         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
903         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
904             r1, pDest->zAffSdst, nResultCol);
905         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
906         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
907         sqlite3ReleaseTempReg(pParse, r1);
908       }
909       break;
910     }
911 
912     /* If any row exist in the result set, record that fact and abort.
913     */
914     case SRT_Exists: {
915       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
916       /* The LIMIT clause will terminate the loop for us */
917       break;
918     }
919 
920     /* If this is a scalar select that is part of an expression, then
921     ** store the results in the appropriate memory cell or array of
922     ** memory cells and break out of the scan loop.
923     */
924     case SRT_Mem: {
925       if( pSort ){
926         assert( nResultCol<=pDest->nSdst );
927         pushOntoSorter(
928             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
929       }else{
930         assert( nResultCol==pDest->nSdst );
931         assert( regResult==iParm );
932         /* The LIMIT clause will jump out of the loop for us */
933       }
934       break;
935     }
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
937 
938     case SRT_Coroutine:       /* Send data to a co-routine */
939     case SRT_Output: {        /* Return the results */
940       testcase( eDest==SRT_Coroutine );
941       testcase( eDest==SRT_Output );
942       if( pSort ){
943         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
944                        nPrefixReg);
945       }else if( eDest==SRT_Coroutine ){
946         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
947       }else{
948         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
949         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
950       }
951       break;
952     }
953 
954 #ifndef SQLITE_OMIT_CTE
955     /* Write the results into a priority queue that is order according to
956     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
957     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
958     ** pSO->nExpr columns, then make sure all keys are unique by adding a
959     ** final OP_Sequence column.  The last column is the record as a blob.
960     */
961     case SRT_DistQueue:
962     case SRT_Queue: {
963       int nKey;
964       int r1, r2, r3;
965       int addrTest = 0;
966       ExprList *pSO;
967       pSO = pDest->pOrderBy;
968       assert( pSO );
969       nKey = pSO->nExpr;
970       r1 = sqlite3GetTempReg(pParse);
971       r2 = sqlite3GetTempRange(pParse, nKey+2);
972       r3 = r2+nKey+1;
973       if( eDest==SRT_DistQueue ){
974         /* If the destination is DistQueue, then cursor (iParm+1) is open
975         ** on a second ephemeral index that holds all values every previously
976         ** added to the queue. */
977         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
978                                         regResult, nResultCol);
979         VdbeCoverage(v);
980       }
981       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
982       if( eDest==SRT_DistQueue ){
983         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
984         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
985       }
986       for(i=0; i<nKey; i++){
987         sqlite3VdbeAddOp2(v, OP_SCopy,
988                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
989                           r2+i);
990       }
991       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
992       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
993       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
994       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
995       sqlite3ReleaseTempReg(pParse, r1);
996       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
997       break;
998     }
999 #endif /* SQLITE_OMIT_CTE */
1000 
1001 
1002 
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004     /* Discard the results.  This is used for SELECT statements inside
1005     ** the body of a TRIGGER.  The purpose of such selects is to call
1006     ** user-defined functions that have side effects.  We do not care
1007     ** about the actual results of the select.
1008     */
1009     default: {
1010       assert( eDest==SRT_Discard );
1011       break;
1012     }
1013 #endif
1014   }
1015 
1016   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1017   ** there is a sorter, in which case the sorter has already limited
1018   ** the output for us.
1019   */
1020   if( pSort==0 && p->iLimit ){
1021     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1022   }
1023 }
1024 
1025 /*
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1027 ** X extra columns.
1028 */
1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1030   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1031   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1032   if( p ){
1033     p->aSortOrder = (u8*)&p->aColl[N+X];
1034     p->nKeyField = (u16)N;
1035     p->nAllField = (u16)(N+X);
1036     p->enc = ENC(db);
1037     p->db = db;
1038     p->nRef = 1;
1039     memset(&p[1], 0, nExtra);
1040   }else{
1041     sqlite3OomFault(db);
1042   }
1043   return p;
1044 }
1045 
1046 /*
1047 ** Deallocate a KeyInfo object
1048 */
1049 void sqlite3KeyInfoUnref(KeyInfo *p){
1050   if( p ){
1051     assert( p->nRef>0 );
1052     p->nRef--;
1053     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1054   }
1055 }
1056 
1057 /*
1058 ** Make a new pointer to a KeyInfo object
1059 */
1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1061   if( p ){
1062     assert( p->nRef>0 );
1063     p->nRef++;
1064   }
1065   return p;
1066 }
1067 
1068 #ifdef SQLITE_DEBUG
1069 /*
1070 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1072 **
1073 ** This routine is used only inside of assert() statements.
1074 */
1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1076 #endif /* SQLITE_DEBUG */
1077 
1078 /*
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1081 **
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause.  If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1087 **
1088 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1089 ** function is responsible for seeing that this structure is eventually
1090 ** freed.
1091 */
1092 static KeyInfo *keyInfoFromExprList(
1093   Parse *pParse,       /* Parsing context */
1094   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1095   int iStart,          /* Begin with this column of pList */
1096   int nExtra           /* Add this many extra columns to the end */
1097 ){
1098   int nExpr;
1099   KeyInfo *pInfo;
1100   struct ExprList_item *pItem;
1101   sqlite3 *db = pParse->db;
1102   int i;
1103 
1104   nExpr = pList->nExpr;
1105   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1106   if( pInfo ){
1107     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1108     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1109       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1110       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1111     }
1112   }
1113   return pInfo;
1114 }
1115 
1116 /*
1117 ** Name of the connection operator, used for error messages.
1118 */
1119 static const char *selectOpName(int id){
1120   char *z;
1121   switch( id ){
1122     case TK_ALL:       z = "UNION ALL";   break;
1123     case TK_INTERSECT: z = "INTERSECT";   break;
1124     case TK_EXCEPT:    z = "EXCEPT";      break;
1125     default:           z = "UNION";       break;
1126   }
1127   return z;
1128 }
1129 
1130 #ifndef SQLITE_OMIT_EXPLAIN
1131 /*
1132 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1133 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1134 ** where the caption is of the form:
1135 **
1136 **   "USE TEMP B-TREE FOR xxx"
1137 **
1138 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1139 ** is determined by the zUsage argument.
1140 */
1141 static void explainTempTable(Parse *pParse, const char *zUsage){
1142   if( pParse->explain==2 ){
1143     Vdbe *v = pParse->pVdbe;
1144     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1145     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1146   }
1147 }
1148 
1149 /*
1150 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1151 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1152 ** in sqlite3Select() to assign values to structure member variables that
1153 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1154 ** code with #ifndef directives.
1155 */
1156 # define explainSetInteger(a, b) a = b
1157 
1158 #else
1159 /* No-op versions of the explainXXX() functions and macros. */
1160 # define explainTempTable(y,z)
1161 # define explainSetInteger(y,z)
1162 #endif
1163 
1164 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1165 /*
1166 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1167 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1168 ** where the caption is of one of the two forms:
1169 **
1170 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1171 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1172 **
1173 ** where iSub1 and iSub2 are the integers passed as the corresponding
1174 ** function parameters, and op is the text representation of the parameter
1175 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1176 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1177 ** false, or the second form if it is true.
1178 */
1179 static void explainComposite(
1180   Parse *pParse,                  /* Parse context */
1181   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1182   int iSub1,                      /* Subquery id 1 */
1183   int iSub2,                      /* Subquery id 2 */
1184   int bUseTmp                     /* True if a temp table was used */
1185 ){
1186   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1187   if( pParse->explain==2 ){
1188     Vdbe *v = pParse->pVdbe;
1189     char *zMsg = sqlite3MPrintf(
1190         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1191         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1192     );
1193     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1194   }
1195 }
1196 #else
1197 /* No-op versions of the explainXXX() functions and macros. */
1198 # define explainComposite(v,w,x,y,z)
1199 #endif
1200 
1201 /*
1202 ** If the inner loop was generated using a non-null pOrderBy argument,
1203 ** then the results were placed in a sorter.  After the loop is terminated
1204 ** we need to run the sorter and output the results.  The following
1205 ** routine generates the code needed to do that.
1206 */
1207 static void generateSortTail(
1208   Parse *pParse,    /* Parsing context */
1209   Select *p,        /* The SELECT statement */
1210   SortCtx *pSort,   /* Information on the ORDER BY clause */
1211   int nColumn,      /* Number of columns of data */
1212   SelectDest *pDest /* Write the sorted results here */
1213 ){
1214   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1215   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1216   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1217   int addr;
1218   int addrOnce = 0;
1219   int iTab;
1220   ExprList *pOrderBy = pSort->pOrderBy;
1221   int eDest = pDest->eDest;
1222   int iParm = pDest->iSDParm;
1223   int regRow;
1224   int regRowid;
1225   int iCol;
1226   int nKey;
1227   int iSortTab;                   /* Sorter cursor to read from */
1228   int nSortData;                  /* Trailing values to read from sorter */
1229   int i;
1230   int bSeq;                       /* True if sorter record includes seq. no. */
1231   struct ExprList_item *aOutEx = p->pEList->a;
1232 
1233   assert( addrBreak<0 );
1234   if( pSort->labelBkOut ){
1235     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1236     sqlite3VdbeGoto(v, addrBreak);
1237     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1238   }
1239   iTab = pSort->iECursor;
1240   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1241     regRowid = 0;
1242     regRow = pDest->iSdst;
1243     nSortData = nColumn;
1244   }else{
1245     regRowid = sqlite3GetTempReg(pParse);
1246     regRow = sqlite3GetTempRange(pParse, nColumn);
1247     nSortData = nColumn;
1248   }
1249   nKey = pOrderBy->nExpr - pSort->nOBSat;
1250   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1251     int regSortOut = ++pParse->nMem;
1252     iSortTab = pParse->nTab++;
1253     if( pSort->labelBkOut ){
1254       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1255     }
1256     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1257     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1258     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1259     VdbeCoverage(v);
1260     codeOffset(v, p->iOffset, addrContinue);
1261     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1262     bSeq = 0;
1263   }else{
1264     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1265     codeOffset(v, p->iOffset, addrContinue);
1266     iSortTab = iTab;
1267     bSeq = 1;
1268   }
1269   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1270     int iRead;
1271     if( aOutEx[i].u.x.iOrderByCol ){
1272       iRead = aOutEx[i].u.x.iOrderByCol-1;
1273     }else{
1274       iRead = iCol++;
1275     }
1276     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1277     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1278   }
1279   switch( eDest ){
1280     case SRT_Table:
1281     case SRT_EphemTab: {
1282       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1283       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1284       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1285       break;
1286     }
1287 #ifndef SQLITE_OMIT_SUBQUERY
1288     case SRT_Set: {
1289       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1290       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1291                         pDest->zAffSdst, nColumn);
1292       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1293       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1294       break;
1295     }
1296     case SRT_Mem: {
1297       /* The LIMIT clause will terminate the loop for us */
1298       break;
1299     }
1300 #endif
1301     default: {
1302       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1303       testcase( eDest==SRT_Output );
1304       testcase( eDest==SRT_Coroutine );
1305       if( eDest==SRT_Output ){
1306         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1307         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1308       }else{
1309         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1310       }
1311       break;
1312     }
1313   }
1314   if( regRowid ){
1315     if( eDest==SRT_Set ){
1316       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1317     }else{
1318       sqlite3ReleaseTempReg(pParse, regRow);
1319     }
1320     sqlite3ReleaseTempReg(pParse, regRowid);
1321   }
1322   /* The bottom of the loop
1323   */
1324   sqlite3VdbeResolveLabel(v, addrContinue);
1325   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1326     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1327   }else{
1328     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1329   }
1330   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1331   sqlite3VdbeResolveLabel(v, addrBreak);
1332 }
1333 
1334 /*
1335 ** Return a pointer to a string containing the 'declaration type' of the
1336 ** expression pExpr. The string may be treated as static by the caller.
1337 **
1338 ** Also try to estimate the size of the returned value and return that
1339 ** result in *pEstWidth.
1340 **
1341 ** The declaration type is the exact datatype definition extracted from the
1342 ** original CREATE TABLE statement if the expression is a column. The
1343 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1344 ** is considered a column can be complex in the presence of subqueries. The
1345 ** result-set expression in all of the following SELECT statements is
1346 ** considered a column by this function.
1347 **
1348 **   SELECT col FROM tbl;
1349 **   SELECT (SELECT col FROM tbl;
1350 **   SELECT (SELECT col FROM tbl);
1351 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1352 **
1353 ** The declaration type for any expression other than a column is NULL.
1354 **
1355 ** This routine has either 3 or 6 parameters depending on whether or not
1356 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1357 */
1358 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1359 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1360 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1361 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1362 #endif
1363 static const char *columnTypeImpl(
1364   NameContext *pNC,
1365 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1366   Expr *pExpr
1367 #else
1368   Expr *pExpr,
1369   const char **pzOrigDb,
1370   const char **pzOrigTab,
1371   const char **pzOrigCol
1372 #endif
1373 ){
1374   char const *zType = 0;
1375   int j;
1376 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1377   char const *zOrigDb = 0;
1378   char const *zOrigTab = 0;
1379   char const *zOrigCol = 0;
1380 #endif
1381 
1382   assert( pExpr!=0 );
1383   assert( pNC->pSrcList!=0 );
1384   switch( pExpr->op ){
1385     case TK_AGG_COLUMN:
1386     case TK_COLUMN: {
1387       /* The expression is a column. Locate the table the column is being
1388       ** extracted from in NameContext.pSrcList. This table may be real
1389       ** database table or a subquery.
1390       */
1391       Table *pTab = 0;            /* Table structure column is extracted from */
1392       Select *pS = 0;             /* Select the column is extracted from */
1393       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1394       testcase( pExpr->op==TK_AGG_COLUMN );
1395       testcase( pExpr->op==TK_COLUMN );
1396       while( pNC && !pTab ){
1397         SrcList *pTabList = pNC->pSrcList;
1398         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1399         if( j<pTabList->nSrc ){
1400           pTab = pTabList->a[j].pTab;
1401           pS = pTabList->a[j].pSelect;
1402         }else{
1403           pNC = pNC->pNext;
1404         }
1405       }
1406 
1407       if( pTab==0 ){
1408         /* At one time, code such as "SELECT new.x" within a trigger would
1409         ** cause this condition to run.  Since then, we have restructured how
1410         ** trigger code is generated and so this condition is no longer
1411         ** possible. However, it can still be true for statements like
1412         ** the following:
1413         **
1414         **   CREATE TABLE t1(col INTEGER);
1415         **   SELECT (SELECT t1.col) FROM FROM t1;
1416         **
1417         ** when columnType() is called on the expression "t1.col" in the
1418         ** sub-select. In this case, set the column type to NULL, even
1419         ** though it should really be "INTEGER".
1420         **
1421         ** This is not a problem, as the column type of "t1.col" is never
1422         ** used. When columnType() is called on the expression
1423         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1424         ** branch below.  */
1425         break;
1426       }
1427 
1428       assert( pTab && pExpr->pTab==pTab );
1429       if( pS ){
1430         /* The "table" is actually a sub-select or a view in the FROM clause
1431         ** of the SELECT statement. Return the declaration type and origin
1432         ** data for the result-set column of the sub-select.
1433         */
1434         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1435           /* If iCol is less than zero, then the expression requests the
1436           ** rowid of the sub-select or view. This expression is legal (see
1437           ** test case misc2.2.2) - it always evaluates to NULL.
1438           */
1439           NameContext sNC;
1440           Expr *p = pS->pEList->a[iCol].pExpr;
1441           sNC.pSrcList = pS->pSrc;
1442           sNC.pNext = pNC;
1443           sNC.pParse = pNC->pParse;
1444           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1445         }
1446       }else{
1447         /* A real table or a CTE table */
1448         assert( !pS );
1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1450         if( iCol<0 ) iCol = pTab->iPKey;
1451         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1452         if( iCol<0 ){
1453           zType = "INTEGER";
1454           zOrigCol = "rowid";
1455         }else{
1456           zOrigCol = pTab->aCol[iCol].zName;
1457           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1458         }
1459         zOrigTab = pTab->zName;
1460         if( pNC->pParse && pTab->pSchema ){
1461           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1462           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1463         }
1464 #else
1465         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1466         if( iCol<0 ){
1467           zType = "INTEGER";
1468         }else{
1469           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1470         }
1471 #endif
1472       }
1473       break;
1474     }
1475 #ifndef SQLITE_OMIT_SUBQUERY
1476     case TK_SELECT: {
1477       /* The expression is a sub-select. Return the declaration type and
1478       ** origin info for the single column in the result set of the SELECT
1479       ** statement.
1480       */
1481       NameContext sNC;
1482       Select *pS = pExpr->x.pSelect;
1483       Expr *p = pS->pEList->a[0].pExpr;
1484       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1485       sNC.pSrcList = pS->pSrc;
1486       sNC.pNext = pNC;
1487       sNC.pParse = pNC->pParse;
1488       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1489       break;
1490     }
1491 #endif
1492   }
1493 
1494 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1495   if( pzOrigDb ){
1496     assert( pzOrigTab && pzOrigCol );
1497     *pzOrigDb = zOrigDb;
1498     *pzOrigTab = zOrigTab;
1499     *pzOrigCol = zOrigCol;
1500   }
1501 #endif
1502   return zType;
1503 }
1504 
1505 /*
1506 ** Generate code that will tell the VDBE the declaration types of columns
1507 ** in the result set.
1508 */
1509 static void generateColumnTypes(
1510   Parse *pParse,      /* Parser context */
1511   SrcList *pTabList,  /* List of tables */
1512   ExprList *pEList    /* Expressions defining the result set */
1513 ){
1514 #ifndef SQLITE_OMIT_DECLTYPE
1515   Vdbe *v = pParse->pVdbe;
1516   int i;
1517   NameContext sNC;
1518   sNC.pSrcList = pTabList;
1519   sNC.pParse = pParse;
1520   sNC.pNext = 0;
1521   for(i=0; i<pEList->nExpr; i++){
1522     Expr *p = pEList->a[i].pExpr;
1523     const char *zType;
1524 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1525     const char *zOrigDb = 0;
1526     const char *zOrigTab = 0;
1527     const char *zOrigCol = 0;
1528     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1529 
1530     /* The vdbe must make its own copy of the column-type and other
1531     ** column specific strings, in case the schema is reset before this
1532     ** virtual machine is deleted.
1533     */
1534     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1535     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1536     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1537 #else
1538     zType = columnType(&sNC, p, 0, 0, 0);
1539 #endif
1540     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1541   }
1542 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1543 }
1544 
1545 
1546 /*
1547 ** Compute the column names for a SELECT statement.
1548 **
1549 ** The only guarantee that SQLite makes about column names is that if the
1550 ** column has an AS clause assigning it a name, that will be the name used.
1551 ** That is the only documented guarantee.  However, countless applications
1552 ** developed over the years have made baseless assumptions about column names
1553 ** and will break if those assumptions changes.  Hence, use extreme caution
1554 ** when modifying this routine to avoid breaking legacy.
1555 **
1556 ** See Also: sqlite3ColumnsFromExprList()
1557 **
1558 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1559 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1560 ** applications should operate this way.  Nevertheless, we need to support the
1561 ** other modes for legacy:
1562 **
1563 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1564 **                              originally appears in the SELECT statement.  In
1565 **                              other words, the zSpan of the result expression.
1566 **
1567 **    short=ON, full=OFF:       (This is the default setting).  If the result
1568 **                              refers directly to a table column, then the
1569 **                              result column name is just the table column
1570 **                              name: COLUMN.  Otherwise use zSpan.
1571 **
1572 **    full=ON, short=ANY:       If the result refers directly to a table column,
1573 **                              then the result column name with the table name
1574 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1575 */
1576 static void generateColumnNames(
1577   Parse *pParse,      /* Parser context */
1578   Select *pSelect     /* Generate column names for this SELECT statement */
1579 ){
1580   Vdbe *v = pParse->pVdbe;
1581   int i;
1582   Table *pTab;
1583   SrcList *pTabList;
1584   ExprList *pEList;
1585   sqlite3 *db = pParse->db;
1586   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1587   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1588 
1589 #ifndef SQLITE_OMIT_EXPLAIN
1590   /* If this is an EXPLAIN, skip this step */
1591   if( pParse->explain ){
1592     return;
1593   }
1594 #endif
1595 
1596   if( pParse->colNamesSet || db->mallocFailed ) return;
1597   /* Column names are determined by the left-most term of a compound select */
1598   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1599   pTabList = pSelect->pSrc;
1600   pEList = pSelect->pEList;
1601   assert( v!=0 );
1602   assert( pTabList!=0 );
1603   pParse->colNamesSet = 1;
1604   fullName = (db->flags & SQLITE_FullColNames)!=0;
1605   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1606   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1607   for(i=0; i<pEList->nExpr; i++){
1608     Expr *p = pEList->a[i].pExpr;
1609 
1610     assert( p!=0 );
1611     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1612     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1613     if( pEList->a[i].zName ){
1614       /* An AS clause always takes first priority */
1615       char *zName = pEList->a[i].zName;
1616       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1617     }else if( srcName && p->op==TK_COLUMN ){
1618       char *zCol;
1619       int iCol = p->iColumn;
1620       pTab = p->pTab;
1621       assert( pTab!=0 );
1622       if( iCol<0 ) iCol = pTab->iPKey;
1623       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1624       if( iCol<0 ){
1625         zCol = "rowid";
1626       }else{
1627         zCol = pTab->aCol[iCol].zName;
1628       }
1629       if( fullName ){
1630         char *zName = 0;
1631         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1632         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1633       }else{
1634         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1635       }
1636     }else{
1637       const char *z = pEList->a[i].zSpan;
1638       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1639       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1640     }
1641   }
1642   generateColumnTypes(pParse, pTabList, pEList);
1643 }
1644 
1645 /*
1646 ** Given an expression list (which is really the list of expressions
1647 ** that form the result set of a SELECT statement) compute appropriate
1648 ** column names for a table that would hold the expression list.
1649 **
1650 ** All column names will be unique.
1651 **
1652 ** Only the column names are computed.  Column.zType, Column.zColl,
1653 ** and other fields of Column are zeroed.
1654 **
1655 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1656 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1657 **
1658 ** The only guarantee that SQLite makes about column names is that if the
1659 ** column has an AS clause assigning it a name, that will be the name used.
1660 ** That is the only documented guarantee.  However, countless applications
1661 ** developed over the years have made baseless assumptions about column names
1662 ** and will break if those assumptions changes.  Hence, use extreme caution
1663 ** when modifying this routine to avoid breaking legacy.
1664 **
1665 ** See Also: generateColumnNames()
1666 */
1667 int sqlite3ColumnsFromExprList(
1668   Parse *pParse,          /* Parsing context */
1669   ExprList *pEList,       /* Expr list from which to derive column names */
1670   i16 *pnCol,             /* Write the number of columns here */
1671   Column **paCol          /* Write the new column list here */
1672 ){
1673   sqlite3 *db = pParse->db;   /* Database connection */
1674   int i, j;                   /* Loop counters */
1675   u32 cnt;                    /* Index added to make the name unique */
1676   Column *aCol, *pCol;        /* For looping over result columns */
1677   int nCol;                   /* Number of columns in the result set */
1678   char *zName;                /* Column name */
1679   int nName;                  /* Size of name in zName[] */
1680   Hash ht;                    /* Hash table of column names */
1681 
1682   sqlite3HashInit(&ht);
1683   if( pEList ){
1684     nCol = pEList->nExpr;
1685     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1686     testcase( aCol==0 );
1687     if( nCol>32767 ) nCol = 32767;
1688   }else{
1689     nCol = 0;
1690     aCol = 0;
1691   }
1692   assert( nCol==(i16)nCol );
1693   *pnCol = nCol;
1694   *paCol = aCol;
1695 
1696   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1697     /* Get an appropriate name for the column
1698     */
1699     if( (zName = pEList->a[i].zName)!=0 ){
1700       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1701     }else{
1702       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1703       while( pColExpr->op==TK_DOT ){
1704         pColExpr = pColExpr->pRight;
1705         assert( pColExpr!=0 );
1706       }
1707       if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
1708        && pColExpr->pTab!=0
1709       ){
1710         /* For columns use the column name name */
1711         int iCol = pColExpr->iColumn;
1712         Table *pTab = pColExpr->pTab;
1713         if( iCol<0 ) iCol = pTab->iPKey;
1714         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1715       }else if( pColExpr->op==TK_ID ){
1716         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1717         zName = pColExpr->u.zToken;
1718       }else{
1719         /* Use the original text of the column expression as its name */
1720         zName = pEList->a[i].zSpan;
1721       }
1722     }
1723     if( zName ){
1724       zName = sqlite3DbStrDup(db, zName);
1725     }else{
1726       zName = sqlite3MPrintf(db,"column%d",i+1);
1727     }
1728 
1729     /* Make sure the column name is unique.  If the name is not unique,
1730     ** append an integer to the name so that it becomes unique.
1731     */
1732     cnt = 0;
1733     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1734       nName = sqlite3Strlen30(zName);
1735       if( nName>0 ){
1736         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1737         if( zName[j]==':' ) nName = j;
1738       }
1739       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1740       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1741     }
1742     pCol->zName = zName;
1743     sqlite3ColumnPropertiesFromName(0, pCol);
1744     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1745       sqlite3OomFault(db);
1746     }
1747   }
1748   sqlite3HashClear(&ht);
1749   if( db->mallocFailed ){
1750     for(j=0; j<i; j++){
1751       sqlite3DbFree(db, aCol[j].zName);
1752     }
1753     sqlite3DbFree(db, aCol);
1754     *paCol = 0;
1755     *pnCol = 0;
1756     return SQLITE_NOMEM_BKPT;
1757   }
1758   return SQLITE_OK;
1759 }
1760 
1761 /*
1762 ** Add type and collation information to a column list based on
1763 ** a SELECT statement.
1764 **
1765 ** The column list presumably came from selectColumnNamesFromExprList().
1766 ** The column list has only names, not types or collations.  This
1767 ** routine goes through and adds the types and collations.
1768 **
1769 ** This routine requires that all identifiers in the SELECT
1770 ** statement be resolved.
1771 */
1772 void sqlite3SelectAddColumnTypeAndCollation(
1773   Parse *pParse,        /* Parsing contexts */
1774   Table *pTab,          /* Add column type information to this table */
1775   Select *pSelect       /* SELECT used to determine types and collations */
1776 ){
1777   sqlite3 *db = pParse->db;
1778   NameContext sNC;
1779   Column *pCol;
1780   CollSeq *pColl;
1781   int i;
1782   Expr *p;
1783   struct ExprList_item *a;
1784 
1785   assert( pSelect!=0 );
1786   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1787   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1788   if( db->mallocFailed ) return;
1789   memset(&sNC, 0, sizeof(sNC));
1790   sNC.pSrcList = pSelect->pSrc;
1791   a = pSelect->pEList->a;
1792   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1793     const char *zType;
1794     int n, m;
1795     p = a[i].pExpr;
1796     zType = columnType(&sNC, p, 0, 0, 0);
1797     /* pCol->szEst = ... // Column size est for SELECT tables never used */
1798     pCol->affinity = sqlite3ExprAffinity(p);
1799     if( zType ){
1800       m = sqlite3Strlen30(zType);
1801       n = sqlite3Strlen30(pCol->zName);
1802       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1803       if( pCol->zName ){
1804         memcpy(&pCol->zName[n+1], zType, m+1);
1805         pCol->colFlags |= COLFLAG_HASTYPE;
1806       }
1807     }
1808     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1809     pColl = sqlite3ExprCollSeq(pParse, p);
1810     if( pColl && pCol->zColl==0 ){
1811       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1812     }
1813   }
1814   pTab->szTabRow = 1; /* Any non-zero value works */
1815 }
1816 
1817 /*
1818 ** Given a SELECT statement, generate a Table structure that describes
1819 ** the result set of that SELECT.
1820 */
1821 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1822   Table *pTab;
1823   sqlite3 *db = pParse->db;
1824   int savedFlags;
1825 
1826   savedFlags = db->flags;
1827   db->flags &= ~SQLITE_FullColNames;
1828   db->flags |= SQLITE_ShortColNames;
1829   sqlite3SelectPrep(pParse, pSelect, 0);
1830   if( pParse->nErr ) return 0;
1831   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1832   db->flags = savedFlags;
1833   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1834   if( pTab==0 ){
1835     return 0;
1836   }
1837   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1838   ** is disabled */
1839   assert( db->lookaside.bDisable );
1840   pTab->nTabRef = 1;
1841   pTab->zName = 0;
1842   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1843   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1844   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1845   pTab->iPKey = -1;
1846   if( db->mallocFailed ){
1847     sqlite3DeleteTable(db, pTab);
1848     return 0;
1849   }
1850   return pTab;
1851 }
1852 
1853 /*
1854 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1855 ** If an error occurs, return NULL and leave a message in pParse.
1856 */
1857 Vdbe *sqlite3GetVdbe(Parse *pParse){
1858   if( pParse->pVdbe ){
1859     return pParse->pVdbe;
1860   }
1861   if( pParse->pToplevel==0
1862    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1863   ){
1864     pParse->okConstFactor = 1;
1865   }
1866   return sqlite3VdbeCreate(pParse);
1867 }
1868 
1869 
1870 /*
1871 ** Compute the iLimit and iOffset fields of the SELECT based on the
1872 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
1873 ** that appear in the original SQL statement after the LIMIT and OFFSET
1874 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1875 ** are the integer memory register numbers for counters used to compute
1876 ** the limit and offset.  If there is no limit and/or offset, then
1877 ** iLimit and iOffset are negative.
1878 **
1879 ** This routine changes the values of iLimit and iOffset only if
1880 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
1881 ** and iOffset should have been preset to appropriate default values (zero)
1882 ** prior to calling this routine.
1883 **
1884 ** The iOffset register (if it exists) is initialized to the value
1885 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1886 ** iOffset+1 is initialized to LIMIT+OFFSET.
1887 **
1888 ** Only if pLimit->pLeft!=0 do the limit registers get
1889 ** redefined.  The UNION ALL operator uses this property to force
1890 ** the reuse of the same limit and offset registers across multiple
1891 ** SELECT statements.
1892 */
1893 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1894   Vdbe *v = 0;
1895   int iLimit = 0;
1896   int iOffset;
1897   int n;
1898   Expr *pLimit = p->pLimit;
1899 
1900   if( p->iLimit ) return;
1901 
1902   /*
1903   ** "LIMIT -1" always shows all rows.  There is some
1904   ** controversy about what the correct behavior should be.
1905   ** The current implementation interprets "LIMIT 0" to mean
1906   ** no rows.
1907   */
1908   sqlite3ExprCacheClear(pParse);
1909   if( pLimit ){
1910     assert( pLimit->op==TK_LIMIT );
1911     assert( pLimit->pLeft!=0 );
1912     p->iLimit = iLimit = ++pParse->nMem;
1913     v = sqlite3GetVdbe(pParse);
1914     assert( v!=0 );
1915     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
1916       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1917       VdbeComment((v, "LIMIT counter"));
1918       if( n==0 ){
1919         sqlite3VdbeGoto(v, iBreak);
1920       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1921         p->nSelectRow = sqlite3LogEst((u64)n);
1922         p->selFlags |= SF_FixedLimit;
1923       }
1924     }else{
1925       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
1926       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1927       VdbeComment((v, "LIMIT counter"));
1928       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1929     }
1930     if( pLimit->pRight ){
1931       p->iOffset = iOffset = ++pParse->nMem;
1932       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1933       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
1934       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1935       VdbeComment((v, "OFFSET counter"));
1936       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1937       VdbeComment((v, "LIMIT+OFFSET"));
1938     }
1939   }
1940 }
1941 
1942 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1943 /*
1944 ** Return the appropriate collating sequence for the iCol-th column of
1945 ** the result set for the compound-select statement "p".  Return NULL if
1946 ** the column has no default collating sequence.
1947 **
1948 ** The collating sequence for the compound select is taken from the
1949 ** left-most term of the select that has a collating sequence.
1950 */
1951 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1952   CollSeq *pRet;
1953   if( p->pPrior ){
1954     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1955   }else{
1956     pRet = 0;
1957   }
1958   assert( iCol>=0 );
1959   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1960   ** have been thrown during name resolution and we would not have gotten
1961   ** this far */
1962   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1963     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1964   }
1965   return pRet;
1966 }
1967 
1968 /*
1969 ** The select statement passed as the second parameter is a compound SELECT
1970 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1971 ** structure suitable for implementing the ORDER BY.
1972 **
1973 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1974 ** function is responsible for ensuring that this structure is eventually
1975 ** freed.
1976 */
1977 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1978   ExprList *pOrderBy = p->pOrderBy;
1979   int nOrderBy = p->pOrderBy->nExpr;
1980   sqlite3 *db = pParse->db;
1981   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1982   if( pRet ){
1983     int i;
1984     for(i=0; i<nOrderBy; i++){
1985       struct ExprList_item *pItem = &pOrderBy->a[i];
1986       Expr *pTerm = pItem->pExpr;
1987       CollSeq *pColl;
1988 
1989       if( pTerm->flags & EP_Collate ){
1990         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1991       }else{
1992         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1993         if( pColl==0 ) pColl = db->pDfltColl;
1994         pOrderBy->a[i].pExpr =
1995           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1996       }
1997       assert( sqlite3KeyInfoIsWriteable(pRet) );
1998       pRet->aColl[i] = pColl;
1999       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2000     }
2001   }
2002 
2003   return pRet;
2004 }
2005 
2006 #ifndef SQLITE_OMIT_CTE
2007 /*
2008 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2009 ** query of the form:
2010 **
2011 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2012 **                         \___________/             \_______________/
2013 **                           p->pPrior                      p
2014 **
2015 **
2016 ** There is exactly one reference to the recursive-table in the FROM clause
2017 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2018 **
2019 ** The setup-query runs once to generate an initial set of rows that go
2020 ** into a Queue table.  Rows are extracted from the Queue table one by
2021 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2022 ** extracted row (now in the iCurrent table) becomes the content of the
2023 ** recursive-table for a recursive-query run.  The output of the recursive-query
2024 ** is added back into the Queue table.  Then another row is extracted from Queue
2025 ** and the iteration continues until the Queue table is empty.
2026 **
2027 ** If the compound query operator is UNION then no duplicate rows are ever
2028 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2029 ** that have ever been inserted into Queue and causes duplicates to be
2030 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2031 **
2032 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2033 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2034 ** an ORDER BY, the Queue table is just a FIFO.
2035 **
2036 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2037 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2038 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2039 ** with a positive value, then the first OFFSET outputs are discarded rather
2040 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2041 ** rows have been skipped.
2042 */
2043 static void generateWithRecursiveQuery(
2044   Parse *pParse,        /* Parsing context */
2045   Select *p,            /* The recursive SELECT to be coded */
2046   SelectDest *pDest     /* What to do with query results */
2047 ){
2048   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2049   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2050   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2051   Select *pSetup = p->pPrior;   /* The setup query */
2052   int addrTop;                  /* Top of the loop */
2053   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2054   int iCurrent = 0;             /* The Current table */
2055   int regCurrent;               /* Register holding Current table */
2056   int iQueue;                   /* The Queue table */
2057   int iDistinct = 0;            /* To ensure unique results if UNION */
2058   int eDest = SRT_Fifo;         /* How to write to Queue */
2059   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2060   int i;                        /* Loop counter */
2061   int rc;                       /* Result code */
2062   ExprList *pOrderBy;           /* The ORDER BY clause */
2063   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2064   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2065 
2066   /* Obtain authorization to do a recursive query */
2067   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2068 
2069   /* Process the LIMIT and OFFSET clauses, if they exist */
2070   addrBreak = sqlite3VdbeMakeLabel(v);
2071   p->nSelectRow = 320;  /* 4 billion rows */
2072   computeLimitRegisters(pParse, p, addrBreak);
2073   pLimit = p->pLimit;
2074   regLimit = p->iLimit;
2075   regOffset = p->iOffset;
2076   p->pLimit = 0;
2077   p->iLimit = p->iOffset = 0;
2078   pOrderBy = p->pOrderBy;
2079 
2080   /* Locate the cursor number of the Current table */
2081   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2082     if( pSrc->a[i].fg.isRecursive ){
2083       iCurrent = pSrc->a[i].iCursor;
2084       break;
2085     }
2086   }
2087 
2088   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2089   ** the Distinct table must be exactly one greater than Queue in order
2090   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2091   iQueue = pParse->nTab++;
2092   if( p->op==TK_UNION ){
2093     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2094     iDistinct = pParse->nTab++;
2095   }else{
2096     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2097   }
2098   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2099 
2100   /* Allocate cursors for Current, Queue, and Distinct. */
2101   regCurrent = ++pParse->nMem;
2102   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2103   if( pOrderBy ){
2104     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2105     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2106                       (char*)pKeyInfo, P4_KEYINFO);
2107     destQueue.pOrderBy = pOrderBy;
2108   }else{
2109     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2110   }
2111   VdbeComment((v, "Queue table"));
2112   if( iDistinct ){
2113     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2114     p->selFlags |= SF_UsesEphemeral;
2115   }
2116 
2117   /* Detach the ORDER BY clause from the compound SELECT */
2118   p->pOrderBy = 0;
2119 
2120   /* Store the results of the setup-query in Queue. */
2121   pSetup->pNext = 0;
2122   rc = sqlite3Select(pParse, pSetup, &destQueue);
2123   pSetup->pNext = p;
2124   if( rc ) goto end_of_recursive_query;
2125 
2126   /* Find the next row in the Queue and output that row */
2127   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2128 
2129   /* Transfer the next row in Queue over to Current */
2130   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2131   if( pOrderBy ){
2132     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2133   }else{
2134     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2135   }
2136   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2137 
2138   /* Output the single row in Current */
2139   addrCont = sqlite3VdbeMakeLabel(v);
2140   codeOffset(v, regOffset, addrCont);
2141   selectInnerLoop(pParse, p, iCurrent,
2142       0, 0, pDest, addrCont, addrBreak);
2143   if( regLimit ){
2144     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2145     VdbeCoverage(v);
2146   }
2147   sqlite3VdbeResolveLabel(v, addrCont);
2148 
2149   /* Execute the recursive SELECT taking the single row in Current as
2150   ** the value for the recursive-table. Store the results in the Queue.
2151   */
2152   if( p->selFlags & SF_Aggregate ){
2153     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2154   }else{
2155     p->pPrior = 0;
2156     sqlite3Select(pParse, p, &destQueue);
2157     assert( p->pPrior==0 );
2158     p->pPrior = pSetup;
2159   }
2160 
2161   /* Keep running the loop until the Queue is empty */
2162   sqlite3VdbeGoto(v, addrTop);
2163   sqlite3VdbeResolveLabel(v, addrBreak);
2164 
2165 end_of_recursive_query:
2166   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2167   p->pOrderBy = pOrderBy;
2168   p->pLimit = pLimit;
2169   return;
2170 }
2171 #endif /* SQLITE_OMIT_CTE */
2172 
2173 /* Forward references */
2174 static int multiSelectOrderBy(
2175   Parse *pParse,        /* Parsing context */
2176   Select *p,            /* The right-most of SELECTs to be coded */
2177   SelectDest *pDest     /* What to do with query results */
2178 );
2179 
2180 /*
2181 ** Handle the special case of a compound-select that originates from a
2182 ** VALUES clause.  By handling this as a special case, we avoid deep
2183 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2184 ** on a VALUES clause.
2185 **
2186 ** Because the Select object originates from a VALUES clause:
2187 **   (1) It has no LIMIT or OFFSET
2188 **   (2) All terms are UNION ALL
2189 **   (3) There is no ORDER BY clause
2190 */
2191 static int multiSelectValues(
2192   Parse *pParse,        /* Parsing context */
2193   Select *p,            /* The right-most of SELECTs to be coded */
2194   SelectDest *pDest     /* What to do with query results */
2195 ){
2196   Select *pPrior;
2197   int nRow = 1;
2198   int rc = 0;
2199   assert( p->selFlags & SF_MultiValue );
2200   do{
2201     assert( p->selFlags & SF_Values );
2202     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2203     assert( p->pLimit==0 );
2204     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2205     if( p->pPrior==0 ) break;
2206     assert( p->pPrior->pNext==p );
2207     p = p->pPrior;
2208     nRow++;
2209   }while(1);
2210   while( p ){
2211     pPrior = p->pPrior;
2212     p->pPrior = 0;
2213     rc = sqlite3Select(pParse, p, pDest);
2214     p->pPrior = pPrior;
2215     if( rc ) break;
2216     p->nSelectRow = nRow;
2217     p = p->pNext;
2218   }
2219   return rc;
2220 }
2221 
2222 /*
2223 ** This routine is called to process a compound query form from
2224 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2225 ** INTERSECT
2226 **
2227 ** "p" points to the right-most of the two queries.  the query on the
2228 ** left is p->pPrior.  The left query could also be a compound query
2229 ** in which case this routine will be called recursively.
2230 **
2231 ** The results of the total query are to be written into a destination
2232 ** of type eDest with parameter iParm.
2233 **
2234 ** Example 1:  Consider a three-way compound SQL statement.
2235 **
2236 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2237 **
2238 ** This statement is parsed up as follows:
2239 **
2240 **     SELECT c FROM t3
2241 **      |
2242 **      `----->  SELECT b FROM t2
2243 **                |
2244 **                `------>  SELECT a FROM t1
2245 **
2246 ** The arrows in the diagram above represent the Select.pPrior pointer.
2247 ** So if this routine is called with p equal to the t3 query, then
2248 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2249 **
2250 ** Notice that because of the way SQLite parses compound SELECTs, the
2251 ** individual selects always group from left to right.
2252 */
2253 static int multiSelect(
2254   Parse *pParse,        /* Parsing context */
2255   Select *p,            /* The right-most of SELECTs to be coded */
2256   SelectDest *pDest     /* What to do with query results */
2257 ){
2258   int rc = SQLITE_OK;   /* Success code from a subroutine */
2259   Select *pPrior;       /* Another SELECT immediately to our left */
2260   Vdbe *v;              /* Generate code to this VDBE */
2261   SelectDest dest;      /* Alternative data destination */
2262   Select *pDelete = 0;  /* Chain of simple selects to delete */
2263   sqlite3 *db;          /* Database connection */
2264 #ifndef SQLITE_OMIT_EXPLAIN
2265   int iSub1 = 0;        /* EQP id of left-hand query */
2266   int iSub2 = 0;        /* EQP id of right-hand query */
2267 #endif
2268 
2269   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2270   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2271   */
2272   assert( p && p->pPrior );  /* Calling function guarantees this much */
2273   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2274   db = pParse->db;
2275   pPrior = p->pPrior;
2276   dest = *pDest;
2277   if( pPrior->pOrderBy || pPrior->pLimit ){
2278     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2279       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2280     rc = 1;
2281     goto multi_select_end;
2282   }
2283 
2284   v = sqlite3GetVdbe(pParse);
2285   assert( v!=0 );  /* The VDBE already created by calling function */
2286 
2287   /* Create the destination temporary table if necessary
2288   */
2289   if( dest.eDest==SRT_EphemTab ){
2290     assert( p->pEList );
2291     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2292     dest.eDest = SRT_Table;
2293   }
2294 
2295   /* Special handling for a compound-select that originates as a VALUES clause.
2296   */
2297   if( p->selFlags & SF_MultiValue ){
2298     rc = multiSelectValues(pParse, p, &dest);
2299     goto multi_select_end;
2300   }
2301 
2302   /* Make sure all SELECTs in the statement have the same number of elements
2303   ** in their result sets.
2304   */
2305   assert( p->pEList && pPrior->pEList );
2306   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2307 
2308 #ifndef SQLITE_OMIT_CTE
2309   if( p->selFlags & SF_Recursive ){
2310     generateWithRecursiveQuery(pParse, p, &dest);
2311   }else
2312 #endif
2313 
2314   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2315   */
2316   if( p->pOrderBy ){
2317     return multiSelectOrderBy(pParse, p, pDest);
2318   }else
2319 
2320   /* Generate code for the left and right SELECT statements.
2321   */
2322   switch( p->op ){
2323     case TK_ALL: {
2324       int addr = 0;
2325       int nLimit;
2326       assert( !pPrior->pLimit );
2327       pPrior->iLimit = p->iLimit;
2328       pPrior->iOffset = p->iOffset;
2329       pPrior->pLimit = p->pLimit;
2330       explainSetInteger(iSub1, pParse->iNextSelectId);
2331       rc = sqlite3Select(pParse, pPrior, &dest);
2332       p->pLimit = 0;
2333       if( rc ){
2334         goto multi_select_end;
2335       }
2336       p->pPrior = 0;
2337       p->iLimit = pPrior->iLimit;
2338       p->iOffset = pPrior->iOffset;
2339       if( p->iLimit ){
2340         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2341         VdbeComment((v, "Jump ahead if LIMIT reached"));
2342         if( p->iOffset ){
2343           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2344                             p->iLimit, p->iOffset+1, p->iOffset);
2345         }
2346       }
2347       explainSetInteger(iSub2, pParse->iNextSelectId);
2348       rc = sqlite3Select(pParse, p, &dest);
2349       testcase( rc!=SQLITE_OK );
2350       pDelete = p->pPrior;
2351       p->pPrior = pPrior;
2352       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2353       if( pPrior->pLimit
2354        && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2355        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2356       ){
2357         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2358       }
2359       if( addr ){
2360         sqlite3VdbeJumpHere(v, addr);
2361       }
2362       break;
2363     }
2364     case TK_EXCEPT:
2365     case TK_UNION: {
2366       int unionTab;    /* Cursor number of the temporary table holding result */
2367       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2368       int priorOp;     /* The SRT_ operation to apply to prior selects */
2369       Expr *pLimit;    /* Saved values of p->nLimit  */
2370       int addr;
2371       SelectDest uniondest;
2372 
2373       testcase( p->op==TK_EXCEPT );
2374       testcase( p->op==TK_UNION );
2375       priorOp = SRT_Union;
2376       if( dest.eDest==priorOp ){
2377         /* We can reuse a temporary table generated by a SELECT to our
2378         ** right.
2379         */
2380         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2381         unionTab = dest.iSDParm;
2382       }else{
2383         /* We will need to create our own temporary table to hold the
2384         ** intermediate results.
2385         */
2386         unionTab = pParse->nTab++;
2387         assert( p->pOrderBy==0 );
2388         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2389         assert( p->addrOpenEphm[0] == -1 );
2390         p->addrOpenEphm[0] = addr;
2391         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2392         assert( p->pEList );
2393       }
2394 
2395       /* Code the SELECT statements to our left
2396       */
2397       assert( !pPrior->pOrderBy );
2398       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2399       explainSetInteger(iSub1, pParse->iNextSelectId);
2400       rc = sqlite3Select(pParse, pPrior, &uniondest);
2401       if( rc ){
2402         goto multi_select_end;
2403       }
2404 
2405       /* Code the current SELECT statement
2406       */
2407       if( p->op==TK_EXCEPT ){
2408         op = SRT_Except;
2409       }else{
2410         assert( p->op==TK_UNION );
2411         op = SRT_Union;
2412       }
2413       p->pPrior = 0;
2414       pLimit = p->pLimit;
2415       p->pLimit = 0;
2416       uniondest.eDest = op;
2417       explainSetInteger(iSub2, pParse->iNextSelectId);
2418       rc = sqlite3Select(pParse, p, &uniondest);
2419       testcase( rc!=SQLITE_OK );
2420       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2421       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2422       sqlite3ExprListDelete(db, p->pOrderBy);
2423       pDelete = p->pPrior;
2424       p->pPrior = pPrior;
2425       p->pOrderBy = 0;
2426       if( p->op==TK_UNION ){
2427         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2428       }
2429       sqlite3ExprDelete(db, p->pLimit);
2430       p->pLimit = pLimit;
2431       p->iLimit = 0;
2432       p->iOffset = 0;
2433 
2434       /* Convert the data in the temporary table into whatever form
2435       ** it is that we currently need.
2436       */
2437       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2438       if( dest.eDest!=priorOp ){
2439         int iCont, iBreak, iStart;
2440         assert( p->pEList );
2441         iBreak = sqlite3VdbeMakeLabel(v);
2442         iCont = sqlite3VdbeMakeLabel(v);
2443         computeLimitRegisters(pParse, p, iBreak);
2444         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2445         iStart = sqlite3VdbeCurrentAddr(v);
2446         selectInnerLoop(pParse, p, unionTab,
2447                         0, 0, &dest, iCont, iBreak);
2448         sqlite3VdbeResolveLabel(v, iCont);
2449         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2450         sqlite3VdbeResolveLabel(v, iBreak);
2451         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2452       }
2453       break;
2454     }
2455     default: assert( p->op==TK_INTERSECT ); {
2456       int tab1, tab2;
2457       int iCont, iBreak, iStart;
2458       Expr *pLimit;
2459       int addr;
2460       SelectDest intersectdest;
2461       int r1;
2462 
2463       /* INTERSECT is different from the others since it requires
2464       ** two temporary tables.  Hence it has its own case.  Begin
2465       ** by allocating the tables we will need.
2466       */
2467       tab1 = pParse->nTab++;
2468       tab2 = pParse->nTab++;
2469       assert( p->pOrderBy==0 );
2470 
2471       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2472       assert( p->addrOpenEphm[0] == -1 );
2473       p->addrOpenEphm[0] = addr;
2474       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2475       assert( p->pEList );
2476 
2477       /* Code the SELECTs to our left into temporary table "tab1".
2478       */
2479       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2480       explainSetInteger(iSub1, pParse->iNextSelectId);
2481       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2482       if( rc ){
2483         goto multi_select_end;
2484       }
2485 
2486       /* Code the current SELECT into temporary table "tab2"
2487       */
2488       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2489       assert( p->addrOpenEphm[1] == -1 );
2490       p->addrOpenEphm[1] = addr;
2491       p->pPrior = 0;
2492       pLimit = p->pLimit;
2493       p->pLimit = 0;
2494       intersectdest.iSDParm = tab2;
2495       explainSetInteger(iSub2, pParse->iNextSelectId);
2496       rc = sqlite3Select(pParse, p, &intersectdest);
2497       testcase( rc!=SQLITE_OK );
2498       pDelete = p->pPrior;
2499       p->pPrior = pPrior;
2500       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2501       sqlite3ExprDelete(db, p->pLimit);
2502       p->pLimit = pLimit;
2503 
2504       /* Generate code to take the intersection of the two temporary
2505       ** tables.
2506       */
2507       assert( p->pEList );
2508       iBreak = sqlite3VdbeMakeLabel(v);
2509       iCont = sqlite3VdbeMakeLabel(v);
2510       computeLimitRegisters(pParse, p, iBreak);
2511       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2512       r1 = sqlite3GetTempReg(pParse);
2513       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2514       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2515       sqlite3ReleaseTempReg(pParse, r1);
2516       selectInnerLoop(pParse, p, tab1,
2517                       0, 0, &dest, iCont, iBreak);
2518       sqlite3VdbeResolveLabel(v, iCont);
2519       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2520       sqlite3VdbeResolveLabel(v, iBreak);
2521       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2522       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2523       break;
2524     }
2525   }
2526 
2527   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2528 
2529   /* Compute collating sequences used by
2530   ** temporary tables needed to implement the compound select.
2531   ** Attach the KeyInfo structure to all temporary tables.
2532   **
2533   ** This section is run by the right-most SELECT statement only.
2534   ** SELECT statements to the left always skip this part.  The right-most
2535   ** SELECT might also skip this part if it has no ORDER BY clause and
2536   ** no temp tables are required.
2537   */
2538   if( p->selFlags & SF_UsesEphemeral ){
2539     int i;                        /* Loop counter */
2540     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2541     Select *pLoop;                /* For looping through SELECT statements */
2542     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2543     int nCol;                     /* Number of columns in result set */
2544 
2545     assert( p->pNext==0 );
2546     nCol = p->pEList->nExpr;
2547     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2548     if( !pKeyInfo ){
2549       rc = SQLITE_NOMEM_BKPT;
2550       goto multi_select_end;
2551     }
2552     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2553       *apColl = multiSelectCollSeq(pParse, p, i);
2554       if( 0==*apColl ){
2555         *apColl = db->pDfltColl;
2556       }
2557     }
2558 
2559     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2560       for(i=0; i<2; i++){
2561         int addr = pLoop->addrOpenEphm[i];
2562         if( addr<0 ){
2563           /* If [0] is unused then [1] is also unused.  So we can
2564           ** always safely abort as soon as the first unused slot is found */
2565           assert( pLoop->addrOpenEphm[1]<0 );
2566           break;
2567         }
2568         sqlite3VdbeChangeP2(v, addr, nCol);
2569         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2570                             P4_KEYINFO);
2571         pLoop->addrOpenEphm[i] = -1;
2572       }
2573     }
2574     sqlite3KeyInfoUnref(pKeyInfo);
2575   }
2576 
2577 multi_select_end:
2578   pDest->iSdst = dest.iSdst;
2579   pDest->nSdst = dest.nSdst;
2580   sqlite3SelectDelete(db, pDelete);
2581   return rc;
2582 }
2583 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2584 
2585 /*
2586 ** Error message for when two or more terms of a compound select have different
2587 ** size result sets.
2588 */
2589 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2590   if( p->selFlags & SF_Values ){
2591     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2592   }else{
2593     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2594       " do not have the same number of result columns", selectOpName(p->op));
2595   }
2596 }
2597 
2598 /*
2599 ** Code an output subroutine for a coroutine implementation of a
2600 ** SELECT statment.
2601 **
2602 ** The data to be output is contained in pIn->iSdst.  There are
2603 ** pIn->nSdst columns to be output.  pDest is where the output should
2604 ** be sent.
2605 **
2606 ** regReturn is the number of the register holding the subroutine
2607 ** return address.
2608 **
2609 ** If regPrev>0 then it is the first register in a vector that
2610 ** records the previous output.  mem[regPrev] is a flag that is false
2611 ** if there has been no previous output.  If regPrev>0 then code is
2612 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2613 ** keys.
2614 **
2615 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2616 ** iBreak.
2617 */
2618 static int generateOutputSubroutine(
2619   Parse *pParse,          /* Parsing context */
2620   Select *p,              /* The SELECT statement */
2621   SelectDest *pIn,        /* Coroutine supplying data */
2622   SelectDest *pDest,      /* Where to send the data */
2623   int regReturn,          /* The return address register */
2624   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2625   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2626   int iBreak              /* Jump here if we hit the LIMIT */
2627 ){
2628   Vdbe *v = pParse->pVdbe;
2629   int iContinue;
2630   int addr;
2631 
2632   addr = sqlite3VdbeCurrentAddr(v);
2633   iContinue = sqlite3VdbeMakeLabel(v);
2634 
2635   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2636   */
2637   if( regPrev ){
2638     int addr1, addr2;
2639     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2640     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2641                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2642     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2643     sqlite3VdbeJumpHere(v, addr1);
2644     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2645     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2646   }
2647   if( pParse->db->mallocFailed ) return 0;
2648 
2649   /* Suppress the first OFFSET entries if there is an OFFSET clause
2650   */
2651   codeOffset(v, p->iOffset, iContinue);
2652 
2653   assert( pDest->eDest!=SRT_Exists );
2654   assert( pDest->eDest!=SRT_Table );
2655   switch( pDest->eDest ){
2656     /* Store the result as data using a unique key.
2657     */
2658     case SRT_EphemTab: {
2659       int r1 = sqlite3GetTempReg(pParse);
2660       int r2 = sqlite3GetTempReg(pParse);
2661       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2662       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2663       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2664       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2665       sqlite3ReleaseTempReg(pParse, r2);
2666       sqlite3ReleaseTempReg(pParse, r1);
2667       break;
2668     }
2669 
2670 #ifndef SQLITE_OMIT_SUBQUERY
2671     /* If we are creating a set for an "expr IN (SELECT ...)".
2672     */
2673     case SRT_Set: {
2674       int r1;
2675       testcase( pIn->nSdst>1 );
2676       r1 = sqlite3GetTempReg(pParse);
2677       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2678           r1, pDest->zAffSdst, pIn->nSdst);
2679       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2680       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2681                            pIn->iSdst, pIn->nSdst);
2682       sqlite3ReleaseTempReg(pParse, r1);
2683       break;
2684     }
2685 
2686     /* If this is a scalar select that is part of an expression, then
2687     ** store the results in the appropriate memory cell and break out
2688     ** of the scan loop.
2689     */
2690     case SRT_Mem: {
2691       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2692       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2693       /* The LIMIT clause will jump out of the loop for us */
2694       break;
2695     }
2696 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2697 
2698     /* The results are stored in a sequence of registers
2699     ** starting at pDest->iSdst.  Then the co-routine yields.
2700     */
2701     case SRT_Coroutine: {
2702       if( pDest->iSdst==0 ){
2703         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2704         pDest->nSdst = pIn->nSdst;
2705       }
2706       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2707       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2708       break;
2709     }
2710 
2711     /* If none of the above, then the result destination must be
2712     ** SRT_Output.  This routine is never called with any other
2713     ** destination other than the ones handled above or SRT_Output.
2714     **
2715     ** For SRT_Output, results are stored in a sequence of registers.
2716     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2717     ** return the next row of result.
2718     */
2719     default: {
2720       assert( pDest->eDest==SRT_Output );
2721       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2722       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2723       break;
2724     }
2725   }
2726 
2727   /* Jump to the end of the loop if the LIMIT is reached.
2728   */
2729   if( p->iLimit ){
2730     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2731   }
2732 
2733   /* Generate the subroutine return
2734   */
2735   sqlite3VdbeResolveLabel(v, iContinue);
2736   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2737 
2738   return addr;
2739 }
2740 
2741 /*
2742 ** Alternative compound select code generator for cases when there
2743 ** is an ORDER BY clause.
2744 **
2745 ** We assume a query of the following form:
2746 **
2747 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2748 **
2749 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2750 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2751 ** co-routines.  Then run the co-routines in parallel and merge the results
2752 ** into the output.  In addition to the two coroutines (called selectA and
2753 ** selectB) there are 7 subroutines:
2754 **
2755 **    outA:    Move the output of the selectA coroutine into the output
2756 **             of the compound query.
2757 **
2758 **    outB:    Move the output of the selectB coroutine into the output
2759 **             of the compound query.  (Only generated for UNION and
2760 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2761 **             appears only in B.)
2762 **
2763 **    AltB:    Called when there is data from both coroutines and A<B.
2764 **
2765 **    AeqB:    Called when there is data from both coroutines and A==B.
2766 **
2767 **    AgtB:    Called when there is data from both coroutines and A>B.
2768 **
2769 **    EofA:    Called when data is exhausted from selectA.
2770 **
2771 **    EofB:    Called when data is exhausted from selectB.
2772 **
2773 ** The implementation of the latter five subroutines depend on which
2774 ** <operator> is used:
2775 **
2776 **
2777 **             UNION ALL         UNION            EXCEPT          INTERSECT
2778 **          -------------  -----------------  --------------  -----------------
2779 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2780 **
2781 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2782 **
2783 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2784 **
2785 **   EofA:   outB, nextB      outB, nextB          halt             halt
2786 **
2787 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2788 **
2789 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2790 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2791 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2792 ** following nextX causes a jump to the end of the select processing.
2793 **
2794 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2795 ** within the output subroutine.  The regPrev register set holds the previously
2796 ** output value.  A comparison is made against this value and the output
2797 ** is skipped if the next results would be the same as the previous.
2798 **
2799 ** The implementation plan is to implement the two coroutines and seven
2800 ** subroutines first, then put the control logic at the bottom.  Like this:
2801 **
2802 **          goto Init
2803 **     coA: coroutine for left query (A)
2804 **     coB: coroutine for right query (B)
2805 **    outA: output one row of A
2806 **    outB: output one row of B (UNION and UNION ALL only)
2807 **    EofA: ...
2808 **    EofB: ...
2809 **    AltB: ...
2810 **    AeqB: ...
2811 **    AgtB: ...
2812 **    Init: initialize coroutine registers
2813 **          yield coA
2814 **          if eof(A) goto EofA
2815 **          yield coB
2816 **          if eof(B) goto EofB
2817 **    Cmpr: Compare A, B
2818 **          Jump AltB, AeqB, AgtB
2819 **     End: ...
2820 **
2821 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2822 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2823 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2824 ** and AgtB jump to either L2 or to one of EofA or EofB.
2825 */
2826 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2827 static int multiSelectOrderBy(
2828   Parse *pParse,        /* Parsing context */
2829   Select *p,            /* The right-most of SELECTs to be coded */
2830   SelectDest *pDest     /* What to do with query results */
2831 ){
2832   int i, j;             /* Loop counters */
2833   Select *pPrior;       /* Another SELECT immediately to our left */
2834   Vdbe *v;              /* Generate code to this VDBE */
2835   SelectDest destA;     /* Destination for coroutine A */
2836   SelectDest destB;     /* Destination for coroutine B */
2837   int regAddrA;         /* Address register for select-A coroutine */
2838   int regAddrB;         /* Address register for select-B coroutine */
2839   int addrSelectA;      /* Address of the select-A coroutine */
2840   int addrSelectB;      /* Address of the select-B coroutine */
2841   int regOutA;          /* Address register for the output-A subroutine */
2842   int regOutB;          /* Address register for the output-B subroutine */
2843   int addrOutA;         /* Address of the output-A subroutine */
2844   int addrOutB = 0;     /* Address of the output-B subroutine */
2845   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2846   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2847   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2848   int addrAltB;         /* Address of the A<B subroutine */
2849   int addrAeqB;         /* Address of the A==B subroutine */
2850   int addrAgtB;         /* Address of the A>B subroutine */
2851   int regLimitA;        /* Limit register for select-A */
2852   int regLimitB;        /* Limit register for select-A */
2853   int regPrev;          /* A range of registers to hold previous output */
2854   int savedLimit;       /* Saved value of p->iLimit */
2855   int savedOffset;      /* Saved value of p->iOffset */
2856   int labelCmpr;        /* Label for the start of the merge algorithm */
2857   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2858   int addr1;            /* Jump instructions that get retargetted */
2859   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2860   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2861   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2862   sqlite3 *db;          /* Database connection */
2863   ExprList *pOrderBy;   /* The ORDER BY clause */
2864   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2865   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2866 #ifndef SQLITE_OMIT_EXPLAIN
2867   int iSub1;            /* EQP id of left-hand query */
2868   int iSub2;            /* EQP id of right-hand query */
2869 #endif
2870 
2871   assert( p->pOrderBy!=0 );
2872   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2873   db = pParse->db;
2874   v = pParse->pVdbe;
2875   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2876   labelEnd = sqlite3VdbeMakeLabel(v);
2877   labelCmpr = sqlite3VdbeMakeLabel(v);
2878 
2879 
2880   /* Patch up the ORDER BY clause
2881   */
2882   op = p->op;
2883   pPrior = p->pPrior;
2884   assert( pPrior->pOrderBy==0 );
2885   pOrderBy = p->pOrderBy;
2886   assert( pOrderBy );
2887   nOrderBy = pOrderBy->nExpr;
2888 
2889   /* For operators other than UNION ALL we have to make sure that
2890   ** the ORDER BY clause covers every term of the result set.  Add
2891   ** terms to the ORDER BY clause as necessary.
2892   */
2893   if( op!=TK_ALL ){
2894     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2895       struct ExprList_item *pItem;
2896       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2897         assert( pItem->u.x.iOrderByCol>0 );
2898         if( pItem->u.x.iOrderByCol==i ) break;
2899       }
2900       if( j==nOrderBy ){
2901         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2902         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2903         pNew->flags |= EP_IntValue;
2904         pNew->u.iValue = i;
2905         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2906         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2907       }
2908     }
2909   }
2910 
2911   /* Compute the comparison permutation and keyinfo that is used with
2912   ** the permutation used to determine if the next
2913   ** row of results comes from selectA or selectB.  Also add explicit
2914   ** collations to the ORDER BY clause terms so that when the subqueries
2915   ** to the right and the left are evaluated, they use the correct
2916   ** collation.
2917   */
2918   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2919   if( aPermute ){
2920     struct ExprList_item *pItem;
2921     aPermute[0] = nOrderBy;
2922     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2923       assert( pItem->u.x.iOrderByCol>0 );
2924       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2925       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2926     }
2927     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2928   }else{
2929     pKeyMerge = 0;
2930   }
2931 
2932   /* Reattach the ORDER BY clause to the query.
2933   */
2934   p->pOrderBy = pOrderBy;
2935   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2936 
2937   /* Allocate a range of temporary registers and the KeyInfo needed
2938   ** for the logic that removes duplicate result rows when the
2939   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2940   */
2941   if( op==TK_ALL ){
2942     regPrev = 0;
2943   }else{
2944     int nExpr = p->pEList->nExpr;
2945     assert( nOrderBy>=nExpr || db->mallocFailed );
2946     regPrev = pParse->nMem+1;
2947     pParse->nMem += nExpr+1;
2948     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2949     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2950     if( pKeyDup ){
2951       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2952       for(i=0; i<nExpr; i++){
2953         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2954         pKeyDup->aSortOrder[i] = 0;
2955       }
2956     }
2957   }
2958 
2959   /* Separate the left and the right query from one another
2960   */
2961   p->pPrior = 0;
2962   pPrior->pNext = 0;
2963   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2964   if( pPrior->pPrior==0 ){
2965     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2966   }
2967 
2968   /* Compute the limit registers */
2969   computeLimitRegisters(pParse, p, labelEnd);
2970   if( p->iLimit && op==TK_ALL ){
2971     regLimitA = ++pParse->nMem;
2972     regLimitB = ++pParse->nMem;
2973     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2974                                   regLimitA);
2975     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2976   }else{
2977     regLimitA = regLimitB = 0;
2978   }
2979   sqlite3ExprDelete(db, p->pLimit);
2980   p->pLimit = 0;
2981 
2982   regAddrA = ++pParse->nMem;
2983   regAddrB = ++pParse->nMem;
2984   regOutA = ++pParse->nMem;
2985   regOutB = ++pParse->nMem;
2986   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2987   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2988 
2989   /* Generate a coroutine to evaluate the SELECT statement to the
2990   ** left of the compound operator - the "A" select.
2991   */
2992   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2993   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2994   VdbeComment((v, "left SELECT"));
2995   pPrior->iLimit = regLimitA;
2996   explainSetInteger(iSub1, pParse->iNextSelectId);
2997   sqlite3Select(pParse, pPrior, &destA);
2998   sqlite3VdbeEndCoroutine(v, regAddrA);
2999   sqlite3VdbeJumpHere(v, addr1);
3000 
3001   /* Generate a coroutine to evaluate the SELECT statement on
3002   ** the right - the "B" select
3003   */
3004   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3005   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3006   VdbeComment((v, "right SELECT"));
3007   savedLimit = p->iLimit;
3008   savedOffset = p->iOffset;
3009   p->iLimit = regLimitB;
3010   p->iOffset = 0;
3011   explainSetInteger(iSub2, pParse->iNextSelectId);
3012   sqlite3Select(pParse, p, &destB);
3013   p->iLimit = savedLimit;
3014   p->iOffset = savedOffset;
3015   sqlite3VdbeEndCoroutine(v, regAddrB);
3016 
3017   /* Generate a subroutine that outputs the current row of the A
3018   ** select as the next output row of the compound select.
3019   */
3020   VdbeNoopComment((v, "Output routine for A"));
3021   addrOutA = generateOutputSubroutine(pParse,
3022                  p, &destA, pDest, regOutA,
3023                  regPrev, pKeyDup, labelEnd);
3024 
3025   /* Generate a subroutine that outputs the current row of the B
3026   ** select as the next output row of the compound select.
3027   */
3028   if( op==TK_ALL || op==TK_UNION ){
3029     VdbeNoopComment((v, "Output routine for B"));
3030     addrOutB = generateOutputSubroutine(pParse,
3031                  p, &destB, pDest, regOutB,
3032                  regPrev, pKeyDup, labelEnd);
3033   }
3034   sqlite3KeyInfoUnref(pKeyDup);
3035 
3036   /* Generate a subroutine to run when the results from select A
3037   ** are exhausted and only data in select B remains.
3038   */
3039   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3040     addrEofA_noB = addrEofA = labelEnd;
3041   }else{
3042     VdbeNoopComment((v, "eof-A subroutine"));
3043     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3044     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3045                                      VdbeCoverage(v);
3046     sqlite3VdbeGoto(v, addrEofA);
3047     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3048   }
3049 
3050   /* Generate a subroutine to run when the results from select B
3051   ** are exhausted and only data in select A remains.
3052   */
3053   if( op==TK_INTERSECT ){
3054     addrEofB = addrEofA;
3055     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3056   }else{
3057     VdbeNoopComment((v, "eof-B subroutine"));
3058     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3059     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3060     sqlite3VdbeGoto(v, addrEofB);
3061   }
3062 
3063   /* Generate code to handle the case of A<B
3064   */
3065   VdbeNoopComment((v, "A-lt-B subroutine"));
3066   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3067   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3068   sqlite3VdbeGoto(v, labelCmpr);
3069 
3070   /* Generate code to handle the case of A==B
3071   */
3072   if( op==TK_ALL ){
3073     addrAeqB = addrAltB;
3074   }else if( op==TK_INTERSECT ){
3075     addrAeqB = addrAltB;
3076     addrAltB++;
3077   }else{
3078     VdbeNoopComment((v, "A-eq-B subroutine"));
3079     addrAeqB =
3080     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3081     sqlite3VdbeGoto(v, labelCmpr);
3082   }
3083 
3084   /* Generate code to handle the case of A>B
3085   */
3086   VdbeNoopComment((v, "A-gt-B subroutine"));
3087   addrAgtB = sqlite3VdbeCurrentAddr(v);
3088   if( op==TK_ALL || op==TK_UNION ){
3089     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3090   }
3091   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3092   sqlite3VdbeGoto(v, labelCmpr);
3093 
3094   /* This code runs once to initialize everything.
3095   */
3096   sqlite3VdbeJumpHere(v, addr1);
3097   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3098   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3099 
3100   /* Implement the main merge loop
3101   */
3102   sqlite3VdbeResolveLabel(v, labelCmpr);
3103   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3104   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3105                          (char*)pKeyMerge, P4_KEYINFO);
3106   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3107   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3108 
3109   /* Jump to the this point in order to terminate the query.
3110   */
3111   sqlite3VdbeResolveLabel(v, labelEnd);
3112 
3113   /* Reassembly the compound query so that it will be freed correctly
3114   ** by the calling function */
3115   if( p->pPrior ){
3116     sqlite3SelectDelete(db, p->pPrior);
3117   }
3118   p->pPrior = pPrior;
3119   pPrior->pNext = p;
3120 
3121   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3122   **** subqueries ****/
3123   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3124   return pParse->nErr!=0;
3125 }
3126 #endif
3127 
3128 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3129 
3130 /* An instance of the SubstContext object describes an substitution edit
3131 ** to be performed on a parse tree.
3132 **
3133 ** All references to columns in table iTable are to be replaced by corresponding
3134 ** expressions in pEList.
3135 */
3136 typedef struct SubstContext {
3137   Parse *pParse;            /* The parsing context */
3138   int iTable;               /* Replace references to this table */
3139   int iNewTable;            /* New table number */
3140   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3141   ExprList *pEList;         /* Replacement expressions */
3142 } SubstContext;
3143 
3144 /* Forward Declarations */
3145 static void substExprList(SubstContext*, ExprList*);
3146 static void substSelect(SubstContext*, Select*, int);
3147 
3148 /*
3149 ** Scan through the expression pExpr.  Replace every reference to
3150 ** a column in table number iTable with a copy of the iColumn-th
3151 ** entry in pEList.  (But leave references to the ROWID column
3152 ** unchanged.)
3153 **
3154 ** This routine is part of the flattening procedure.  A subquery
3155 ** whose result set is defined by pEList appears as entry in the
3156 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3157 ** FORM clause entry is iTable.  This routine makes the necessary
3158 ** changes to pExpr so that it refers directly to the source table
3159 ** of the subquery rather the result set of the subquery.
3160 */
3161 static Expr *substExpr(
3162   SubstContext *pSubst,  /* Description of the substitution */
3163   Expr *pExpr            /* Expr in which substitution occurs */
3164 ){
3165   if( pExpr==0 ) return 0;
3166   if( ExprHasProperty(pExpr, EP_FromJoin)
3167    && pExpr->iRightJoinTable==pSubst->iTable
3168   ){
3169     pExpr->iRightJoinTable = pSubst->iNewTable;
3170   }
3171   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3172     if( pExpr->iColumn<0 ){
3173       pExpr->op = TK_NULL;
3174     }else{
3175       Expr *pNew;
3176       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3177       Expr ifNullRow;
3178       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3179       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3180       if( sqlite3ExprIsVector(pCopy) ){
3181         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3182       }else{
3183         sqlite3 *db = pSubst->pParse->db;
3184         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3185           memset(&ifNullRow, 0, sizeof(ifNullRow));
3186           ifNullRow.op = TK_IF_NULL_ROW;
3187           ifNullRow.pLeft = pCopy;
3188           ifNullRow.iTable = pSubst->iNewTable;
3189           pCopy = &ifNullRow;
3190         }
3191         pNew = sqlite3ExprDup(db, pCopy, 0);
3192         if( pNew && pSubst->isLeftJoin ){
3193           ExprSetProperty(pNew, EP_CanBeNull);
3194         }
3195         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3196           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3197           ExprSetProperty(pNew, EP_FromJoin);
3198         }
3199         sqlite3ExprDelete(db, pExpr);
3200         pExpr = pNew;
3201       }
3202     }
3203   }else{
3204     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3205       pExpr->iTable = pSubst->iNewTable;
3206     }
3207     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3208     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3209     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3210       substSelect(pSubst, pExpr->x.pSelect, 1);
3211     }else{
3212       substExprList(pSubst, pExpr->x.pList);
3213     }
3214   }
3215   return pExpr;
3216 }
3217 static void substExprList(
3218   SubstContext *pSubst, /* Description of the substitution */
3219   ExprList *pList       /* List to scan and in which to make substitutes */
3220 ){
3221   int i;
3222   if( pList==0 ) return;
3223   for(i=0; i<pList->nExpr; i++){
3224     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3225   }
3226 }
3227 static void substSelect(
3228   SubstContext *pSubst, /* Description of the substitution */
3229   Select *p,            /* SELECT statement in which to make substitutions */
3230   int doPrior           /* Do substitutes on p->pPrior too */
3231 ){
3232   SrcList *pSrc;
3233   struct SrcList_item *pItem;
3234   int i;
3235   if( !p ) return;
3236   do{
3237     substExprList(pSubst, p->pEList);
3238     substExprList(pSubst, p->pGroupBy);
3239     substExprList(pSubst, p->pOrderBy);
3240     p->pHaving = substExpr(pSubst, p->pHaving);
3241     p->pWhere = substExpr(pSubst, p->pWhere);
3242     pSrc = p->pSrc;
3243     assert( pSrc!=0 );
3244     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3245       substSelect(pSubst, pItem->pSelect, 1);
3246       if( pItem->fg.isTabFunc ){
3247         substExprList(pSubst, pItem->u1.pFuncArg);
3248       }
3249     }
3250   }while( doPrior && (p = p->pPrior)!=0 );
3251 }
3252 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3253 
3254 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3255 /*
3256 ** This routine attempts to flatten subqueries as a performance optimization.
3257 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3258 **
3259 ** To understand the concept of flattening, consider the following
3260 ** query:
3261 **
3262 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3263 **
3264 ** The default way of implementing this query is to execute the
3265 ** subquery first and store the results in a temporary table, then
3266 ** run the outer query on that temporary table.  This requires two
3267 ** passes over the data.  Furthermore, because the temporary table
3268 ** has no indices, the WHERE clause on the outer query cannot be
3269 ** optimized.
3270 **
3271 ** This routine attempts to rewrite queries such as the above into
3272 ** a single flat select, like this:
3273 **
3274 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3275 **
3276 ** The code generated for this simplification gives the same result
3277 ** but only has to scan the data once.  And because indices might
3278 ** exist on the table t1, a complete scan of the data might be
3279 ** avoided.
3280 **
3281 ** Flattening is subject to the following constraints:
3282 **
3283 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3284 **        The subquery and the outer query cannot both be aggregates.
3285 **
3286 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3287 **        (2) If the subquery is an aggregate then
3288 **        (2a) the outer query must not be a join and
3289 **        (2b) the outer query must not use subqueries
3290 **             other than the one FROM-clause subquery that is a candidate
3291 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3292 **             from 2015-02-09.)
3293 **
3294 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3295 **        (3a) the subquery may not be a join and
3296 **        (3b) the FROM clause of the subquery may not contain a virtual
3297 **             table and
3298 **        (3c) the outer query may not be an aggregate.
3299 **
3300 **   (4)  The subquery can not be DISTINCT.
3301 **
3302 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3303 **        sub-queries that were excluded from this optimization. Restriction
3304 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3305 **
3306 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3307 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3308 **
3309 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3310 **        A FROM clause, consider adding a FROM clause with the special
3311 **        table sqlite_once that consists of a single row containing a
3312 **        single NULL.
3313 **
3314 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3315 **
3316 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3317 **
3318 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3319 **        accidently carried the comment forward until 2014-09-15.  Original
3320 **        constraint: "If the subquery is aggregate then the outer query
3321 **        may not use LIMIT."
3322 **
3323 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3324 **
3325 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3326 **        a separate restriction deriving from ticket #350.
3327 **
3328 **  (13)  The subquery and outer query may not both use LIMIT.
3329 **
3330 **  (14)  The subquery may not use OFFSET.
3331 **
3332 **  (15)  If the outer query is part of a compound select, then the
3333 **        subquery may not use LIMIT.
3334 **        (See ticket #2339 and ticket [02a8e81d44]).
3335 **
3336 **  (16)  If the outer query is aggregate, then the subquery may not
3337 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3338 **        until we introduced the group_concat() function.
3339 **
3340 **  (17)  If the subquery is a compound select, then
3341 **        (17a) all compound operators must be a UNION ALL, and
3342 **        (17b) no terms within the subquery compound may be aggregate
3343 **              or DISTINCT, and
3344 **        (17c) every term within the subquery compound must have a FROM clause
3345 **        (17d) the outer query may not be
3346 **              (17d1) aggregate, or
3347 **              (17d2) DISTINCT, or
3348 **              (17d3) a join.
3349 **
3350 **        The parent and sub-query may contain WHERE clauses. Subject to
3351 **        rules (11), (13) and (14), they may also contain ORDER BY,
3352 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3353 **        operator other than UNION ALL because all the other compound
3354 **        operators have an implied DISTINCT which is disallowed by
3355 **        restriction (4).
3356 **
3357 **        Also, each component of the sub-query must return the same number
3358 **        of result columns. This is actually a requirement for any compound
3359 **        SELECT statement, but all the code here does is make sure that no
3360 **        such (illegal) sub-query is flattened. The caller will detect the
3361 **        syntax error and return a detailed message.
3362 **
3363 **  (18)  If the sub-query is a compound select, then all terms of the
3364 **        ORDER BY clause of the parent must be simple references to
3365 **        columns of the sub-query.
3366 **
3367 **  (19)  If the subquery uses LIMIT then the outer query may not
3368 **        have a WHERE clause.
3369 **
3370 **  (20)  If the sub-query is a compound select, then it must not use
3371 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3372 **        somewhat by saying that the terms of the ORDER BY clause must
3373 **        appear as unmodified result columns in the outer query.  But we
3374 **        have other optimizations in mind to deal with that case.
3375 **
3376 **  (21)  If the subquery uses LIMIT then the outer query may not be
3377 **        DISTINCT.  (See ticket [752e1646fc]).
3378 **
3379 **  (22)  The subquery may not be a recursive CTE.
3380 **
3381 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3382 **        a recursive CTE, then the sub-query may not be a compound query.
3383 **        This restriction is because transforming the
3384 **        parent to a compound query confuses the code that handles
3385 **        recursive queries in multiSelect().
3386 **
3387 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3388 **        The subquery may not be an aggregate that uses the built-in min() or
3389 **        or max() functions.  (Without this restriction, a query like:
3390 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3391 **        return the value X for which Y was maximal.)
3392 **
3393 **
3394 ** In this routine, the "p" parameter is a pointer to the outer query.
3395 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3396 ** uses aggregates.
3397 **
3398 ** If flattening is not attempted, this routine is a no-op and returns 0.
3399 ** If flattening is attempted this routine returns 1.
3400 **
3401 ** All of the expression analysis must occur on both the outer query and
3402 ** the subquery before this routine runs.
3403 */
3404 static int flattenSubquery(
3405   Parse *pParse,       /* Parsing context */
3406   Select *p,           /* The parent or outer SELECT statement */
3407   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3408   int isAgg            /* True if outer SELECT uses aggregate functions */
3409 ){
3410   const char *zSavedAuthContext = pParse->zAuthContext;
3411   Select *pParent;    /* Current UNION ALL term of the other query */
3412   Select *pSub;       /* The inner query or "subquery" */
3413   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3414   SrcList *pSrc;      /* The FROM clause of the outer query */
3415   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3416   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3417   int iNewParent = -1;/* Replacement table for iParent */
3418   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3419   int i;              /* Loop counter */
3420   Expr *pWhere;                    /* The WHERE clause */
3421   struct SrcList_item *pSubitem;   /* The subquery */
3422   sqlite3 *db = pParse->db;
3423 
3424   /* Check to see if flattening is permitted.  Return 0 if not.
3425   */
3426   assert( p!=0 );
3427   assert( p->pPrior==0 );
3428   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3429   pSrc = p->pSrc;
3430   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3431   pSubitem = &pSrc->a[iFrom];
3432   iParent = pSubitem->iCursor;
3433   pSub = pSubitem->pSelect;
3434   assert( pSub!=0 );
3435 
3436   pSubSrc = pSub->pSrc;
3437   assert( pSubSrc );
3438   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3439   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3440   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3441   ** became arbitrary expressions, we were forced to add restrictions (13)
3442   ** and (14). */
3443   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3444   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3445   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3446     return 0;                                            /* Restriction (15) */
3447   }
3448   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3449   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3450   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3451      return 0;         /* Restrictions (8)(9) */
3452   }
3453   if( p->pOrderBy && pSub->pOrderBy ){
3454      return 0;                                           /* Restriction (11) */
3455   }
3456   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3457   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3458   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3459      return 0;         /* Restriction (21) */
3460   }
3461   if( pSub->selFlags & (SF_Recursive) ){
3462     return 0; /* Restrictions (22) */
3463   }
3464 
3465   /*
3466   ** If the subquery is the right operand of a LEFT JOIN, then the
3467   ** subquery may not be a join itself (3a). Example of why this is not
3468   ** allowed:
3469   **
3470   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3471   **
3472   ** If we flatten the above, we would get
3473   **
3474   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3475   **
3476   ** which is not at all the same thing.
3477   **
3478   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3479   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3480   ** aggregates are processed - there is no mechanism to determine if
3481   ** the LEFT JOIN table should be all-NULL.
3482   **
3483   ** See also tickets #306, #350, and #3300.
3484   */
3485   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3486     isLeftJoin = 1;
3487     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3488       /*  (3a)             (3c)     (3b) */
3489       return 0;
3490     }
3491   }
3492 #ifdef SQLITE_EXTRA_IFNULLROW
3493   else if( iFrom>0 && !isAgg ){
3494     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3495     ** every reference to any result column from subquery in a join, even
3496     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3497     ** opcode. */
3498     isLeftJoin = -1;
3499   }
3500 #endif
3501 
3502   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3503   ** use only the UNION ALL operator. And none of the simple select queries
3504   ** that make up the compound SELECT are allowed to be aggregate or distinct
3505   ** queries.
3506   */
3507   if( pSub->pPrior ){
3508     if( pSub->pOrderBy ){
3509       return 0;  /* Restriction (20) */
3510     }
3511     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3512       return 0; /* (17d1), (17d2), or (17d3) */
3513     }
3514     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3515       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3516       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3517       assert( pSub->pSrc!=0 );
3518       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3519       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3520        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3521        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3522       ){
3523         return 0;
3524       }
3525       testcase( pSub1->pSrc->nSrc>1 );
3526     }
3527 
3528     /* Restriction (18). */
3529     if( p->pOrderBy ){
3530       int ii;
3531       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3532         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3533       }
3534     }
3535   }
3536 
3537   /* Ex-restriction (23):
3538   ** The only way that the recursive part of a CTE can contain a compound
3539   ** subquery is for the subquery to be one term of a join.  But if the
3540   ** subquery is a join, then the flattening has already been stopped by
3541   ** restriction (17d3)
3542   */
3543   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3544 
3545   /***** If we reach this point, flattening is permitted. *****/
3546   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3547                    pSub->zSelName, pSub, iFrom));
3548 
3549   /* Authorize the subquery */
3550   pParse->zAuthContext = pSubitem->zName;
3551   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3552   testcase( i==SQLITE_DENY );
3553   pParse->zAuthContext = zSavedAuthContext;
3554 
3555   /* If the sub-query is a compound SELECT statement, then (by restrictions
3556   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3557   ** be of the form:
3558   **
3559   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3560   **
3561   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3562   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3563   ** OFFSET clauses and joins them to the left-hand-side of the original
3564   ** using UNION ALL operators. In this case N is the number of simple
3565   ** select statements in the compound sub-query.
3566   **
3567   ** Example:
3568   **
3569   **     SELECT a+1 FROM (
3570   **        SELECT x FROM tab
3571   **        UNION ALL
3572   **        SELECT y FROM tab
3573   **        UNION ALL
3574   **        SELECT abs(z*2) FROM tab2
3575   **     ) WHERE a!=5 ORDER BY 1
3576   **
3577   ** Transformed into:
3578   **
3579   **     SELECT x+1 FROM tab WHERE x+1!=5
3580   **     UNION ALL
3581   **     SELECT y+1 FROM tab WHERE y+1!=5
3582   **     UNION ALL
3583   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3584   **     ORDER BY 1
3585   **
3586   ** We call this the "compound-subquery flattening".
3587   */
3588   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3589     Select *pNew;
3590     ExprList *pOrderBy = p->pOrderBy;
3591     Expr *pLimit = p->pLimit;
3592     Select *pPrior = p->pPrior;
3593     p->pOrderBy = 0;
3594     p->pSrc = 0;
3595     p->pPrior = 0;
3596     p->pLimit = 0;
3597     pNew = sqlite3SelectDup(db, p, 0);
3598     sqlite3SelectSetName(pNew, pSub->zSelName);
3599     p->pLimit = pLimit;
3600     p->pOrderBy = pOrderBy;
3601     p->pSrc = pSrc;
3602     p->op = TK_ALL;
3603     if( pNew==0 ){
3604       p->pPrior = pPrior;
3605     }else{
3606       pNew->pPrior = pPrior;
3607       if( pPrior ) pPrior->pNext = pNew;
3608       pNew->pNext = p;
3609       p->pPrior = pNew;
3610       SELECTTRACE(2,pParse,p,
3611          ("compound-subquery flattener creates %s.%p as peer\n",
3612          pNew->zSelName, pNew));
3613     }
3614     if( db->mallocFailed ) return 1;
3615   }
3616 
3617   /* Begin flattening the iFrom-th entry of the FROM clause
3618   ** in the outer query.
3619   */
3620   pSub = pSub1 = pSubitem->pSelect;
3621 
3622   /* Delete the transient table structure associated with the
3623   ** subquery
3624   */
3625   sqlite3DbFree(db, pSubitem->zDatabase);
3626   sqlite3DbFree(db, pSubitem->zName);
3627   sqlite3DbFree(db, pSubitem->zAlias);
3628   pSubitem->zDatabase = 0;
3629   pSubitem->zName = 0;
3630   pSubitem->zAlias = 0;
3631   pSubitem->pSelect = 0;
3632 
3633   /* Defer deleting the Table object associated with the
3634   ** subquery until code generation is
3635   ** complete, since there may still exist Expr.pTab entries that
3636   ** refer to the subquery even after flattening.  Ticket #3346.
3637   **
3638   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3639   */
3640   if( ALWAYS(pSubitem->pTab!=0) ){
3641     Table *pTabToDel = pSubitem->pTab;
3642     if( pTabToDel->nTabRef==1 ){
3643       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3644       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3645       pToplevel->pZombieTab = pTabToDel;
3646     }else{
3647       pTabToDel->nTabRef--;
3648     }
3649     pSubitem->pTab = 0;
3650   }
3651 
3652   /* The following loop runs once for each term in a compound-subquery
3653   ** flattening (as described above).  If we are doing a different kind
3654   ** of flattening - a flattening other than a compound-subquery flattening -
3655   ** then this loop only runs once.
3656   **
3657   ** This loop moves all of the FROM elements of the subquery into the
3658   ** the FROM clause of the outer query.  Before doing this, remember
3659   ** the cursor number for the original outer query FROM element in
3660   ** iParent.  The iParent cursor will never be used.  Subsequent code
3661   ** will scan expressions looking for iParent references and replace
3662   ** those references with expressions that resolve to the subquery FROM
3663   ** elements we are now copying in.
3664   */
3665   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3666     int nSubSrc;
3667     u8 jointype = 0;
3668     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3669     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3670     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3671 
3672     if( pSrc ){
3673       assert( pParent==p );  /* First time through the loop */
3674       jointype = pSubitem->fg.jointype;
3675     }else{
3676       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3677       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3678       if( pSrc==0 ){
3679         assert( db->mallocFailed );
3680         break;
3681       }
3682     }
3683 
3684     /* The subquery uses a single slot of the FROM clause of the outer
3685     ** query.  If the subquery has more than one element in its FROM clause,
3686     ** then expand the outer query to make space for it to hold all elements
3687     ** of the subquery.
3688     **
3689     ** Example:
3690     **
3691     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3692     **
3693     ** The outer query has 3 slots in its FROM clause.  One slot of the
3694     ** outer query (the middle slot) is used by the subquery.  The next
3695     ** block of code will expand the outer query FROM clause to 4 slots.
3696     ** The middle slot is expanded to two slots in order to make space
3697     ** for the two elements in the FROM clause of the subquery.
3698     */
3699     if( nSubSrc>1 ){
3700       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3701       if( db->mallocFailed ){
3702         break;
3703       }
3704     }
3705 
3706     /* Transfer the FROM clause terms from the subquery into the
3707     ** outer query.
3708     */
3709     for(i=0; i<nSubSrc; i++){
3710       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3711       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3712       pSrc->a[i+iFrom] = pSubSrc->a[i];
3713       iNewParent = pSubSrc->a[i].iCursor;
3714       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3715     }
3716     pSrc->a[iFrom].fg.jointype = jointype;
3717 
3718     /* Now begin substituting subquery result set expressions for
3719     ** references to the iParent in the outer query.
3720     **
3721     ** Example:
3722     **
3723     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3724     **   \                     \_____________ subquery __________/          /
3725     **    \_____________________ outer query ______________________________/
3726     **
3727     ** We look at every expression in the outer query and every place we see
3728     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3729     */
3730     if( pSub->pOrderBy ){
3731       /* At this point, any non-zero iOrderByCol values indicate that the
3732       ** ORDER BY column expression is identical to the iOrderByCol'th
3733       ** expression returned by SELECT statement pSub. Since these values
3734       ** do not necessarily correspond to columns in SELECT statement pParent,
3735       ** zero them before transfering the ORDER BY clause.
3736       **
3737       ** Not doing this may cause an error if a subsequent call to this
3738       ** function attempts to flatten a compound sub-query into pParent
3739       ** (the only way this can happen is if the compound sub-query is
3740       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3741       ExprList *pOrderBy = pSub->pOrderBy;
3742       for(i=0; i<pOrderBy->nExpr; i++){
3743         pOrderBy->a[i].u.x.iOrderByCol = 0;
3744       }
3745       assert( pParent->pOrderBy==0 );
3746       assert( pSub->pPrior==0 );
3747       pParent->pOrderBy = pOrderBy;
3748       pSub->pOrderBy = 0;
3749     }
3750     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3751     if( isLeftJoin>0 ){
3752       setJoinExpr(pWhere, iNewParent);
3753     }
3754     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3755     if( db->mallocFailed==0 ){
3756       SubstContext x;
3757       x.pParse = pParse;
3758       x.iTable = iParent;
3759       x.iNewTable = iNewParent;
3760       x.isLeftJoin = isLeftJoin;
3761       x.pEList = pSub->pEList;
3762       substSelect(&x, pParent, 0);
3763     }
3764 
3765     /* The flattened query is distinct if either the inner or the
3766     ** outer query is distinct.
3767     */
3768     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3769 
3770     /*
3771     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3772     **
3773     ** One is tempted to try to add a and b to combine the limits.  But this
3774     ** does not work if either limit is negative.
3775     */
3776     if( pSub->pLimit ){
3777       pParent->pLimit = pSub->pLimit;
3778       pSub->pLimit = 0;
3779     }
3780   }
3781 
3782   /* Finially, delete what is left of the subquery and return
3783   ** success.
3784   */
3785   sqlite3SelectDelete(db, pSub1);
3786 
3787 #if SELECTTRACE_ENABLED
3788   if( sqlite3SelectTrace & 0x100 ){
3789     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3790     sqlite3TreeViewSelect(0, p, 0);
3791   }
3792 #endif
3793 
3794   return 1;
3795 }
3796 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3797 
3798 
3799 
3800 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3801 /*
3802 ** Make copies of relevant WHERE clause terms of the outer query into
3803 ** the WHERE clause of subquery.  Example:
3804 **
3805 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3806 **
3807 ** Transformed into:
3808 **
3809 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3810 **     WHERE x=5 AND y=10;
3811 **
3812 ** The hope is that the terms added to the inner query will make it more
3813 ** efficient.
3814 **
3815 ** Do not attempt this optimization if:
3816 **
3817 **   (1) (** This restriction was removed on 2017-09-29.  We used to
3818 **           disallow this optimization for aggregate subqueries, but now
3819 **           it is allowed by putting the extra terms on the HAVING clause.
3820 **           The added HAVING clause is pointless if the subquery lacks
3821 **           a GROUP BY clause.  But such a HAVING clause is also harmless
3822 **           so there does not appear to be any reason to add extra logic
3823 **           to suppress it. **)
3824 **
3825 **   (2) The inner query is the recursive part of a common table expression.
3826 **
3827 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3828 **       close would change the meaning of the LIMIT).
3829 **
3830 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3831 **       enforces this restriction since this routine does not have enough
3832 **       information to know.)
3833 **
3834 **   (5) The WHERE clause expression originates in the ON or USING clause
3835 **       of a LEFT JOIN.
3836 **
3837 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3838 ** terms are duplicated into the subquery.
3839 */
3840 static int pushDownWhereTerms(
3841   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3842   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3843   Expr *pWhere,         /* The WHERE clause of the outer query */
3844   int iCursor           /* Cursor number of the subquery */
3845 ){
3846   Expr *pNew;
3847   int nChng = 0;
3848   if( pWhere==0 ) return 0;
3849   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
3850 
3851 #ifdef SQLITE_DEBUG
3852   /* Only the first term of a compound can have a WITH clause.  But make
3853   ** sure no other terms are marked SF_Recursive in case something changes
3854   ** in the future.
3855   */
3856   {
3857     Select *pX;
3858     for(pX=pSubq; pX; pX=pX->pPrior){
3859       assert( (pX->selFlags & (SF_Recursive))==0 );
3860     }
3861   }
3862 #endif
3863 
3864   if( pSubq->pLimit!=0 ){
3865     return 0; /* restriction (3) */
3866   }
3867   while( pWhere->op==TK_AND ){
3868     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3869     pWhere = pWhere->pLeft;
3870   }
3871   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */
3872   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3873     nChng++;
3874     while( pSubq ){
3875       SubstContext x;
3876       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3877       x.pParse = pParse;
3878       x.iTable = iCursor;
3879       x.iNewTable = iCursor;
3880       x.isLeftJoin = 0;
3881       x.pEList = pSubq->pEList;
3882       pNew = substExpr(&x, pNew);
3883       if( pSubq->selFlags & SF_Aggregate ){
3884         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3885       }else{
3886         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3887       }
3888       pSubq = pSubq->pPrior;
3889     }
3890   }
3891   return nChng;
3892 }
3893 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3894 
3895 /*
3896 ** The pFunc is the only aggregate function in the query.  Check to see
3897 ** if the query is a candidate for the min/max optimization.
3898 **
3899 ** If the query is a candidate for the min/max optimization, then set
3900 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3901 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3902 ** whether pFunc is a min() or max() function.
3903 **
3904 ** If the query is not a candidate for the min/max optimization, return
3905 ** WHERE_ORDERBY_NORMAL (which must be zero).
3906 **
3907 ** This routine must be called after aggregate functions have been
3908 ** located but before their arguments have been subjected to aggregate
3909 ** analysis.
3910 */
3911 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3912   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
3913   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
3914   const char *zFunc;                    /* Name of aggregate function pFunc */
3915   ExprList *pOrderBy;
3916   u8 sortOrder;
3917 
3918   assert( *ppMinMax==0 );
3919   assert( pFunc->op==TK_AGG_FUNCTION );
3920   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3921   zFunc = pFunc->u.zToken;
3922   if( sqlite3StrICmp(zFunc, "min")==0 ){
3923     eRet = WHERE_ORDERBY_MIN;
3924     sortOrder = SQLITE_SO_ASC;
3925   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3926     eRet = WHERE_ORDERBY_MAX;
3927     sortOrder = SQLITE_SO_DESC;
3928   }else{
3929     return eRet;
3930   }
3931   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3932   assert( pOrderBy!=0 || db->mallocFailed );
3933   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3934   return eRet;
3935 }
3936 
3937 /*
3938 ** The select statement passed as the first argument is an aggregate query.
3939 ** The second argument is the associated aggregate-info object. This
3940 ** function tests if the SELECT is of the form:
3941 **
3942 **   SELECT count(*) FROM <tbl>
3943 **
3944 ** where table is a database table, not a sub-select or view. If the query
3945 ** does match this pattern, then a pointer to the Table object representing
3946 ** <tbl> is returned. Otherwise, 0 is returned.
3947 */
3948 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3949   Table *pTab;
3950   Expr *pExpr;
3951 
3952   assert( !p->pGroupBy );
3953 
3954   if( p->pWhere || p->pEList->nExpr!=1
3955    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3956   ){
3957     return 0;
3958   }
3959   pTab = p->pSrc->a[0].pTab;
3960   pExpr = p->pEList->a[0].pExpr;
3961   assert( pTab && !pTab->pSelect && pExpr );
3962 
3963   if( IsVirtual(pTab) ) return 0;
3964   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3965   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3966   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3967   if( pExpr->flags&EP_Distinct ) return 0;
3968 
3969   return pTab;
3970 }
3971 
3972 /*
3973 ** If the source-list item passed as an argument was augmented with an
3974 ** INDEXED BY clause, then try to locate the specified index. If there
3975 ** was such a clause and the named index cannot be found, return
3976 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3977 ** pFrom->pIndex and return SQLITE_OK.
3978 */
3979 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3980   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3981     Table *pTab = pFrom->pTab;
3982     char *zIndexedBy = pFrom->u1.zIndexedBy;
3983     Index *pIdx;
3984     for(pIdx=pTab->pIndex;
3985         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3986         pIdx=pIdx->pNext
3987     );
3988     if( !pIdx ){
3989       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3990       pParse->checkSchema = 1;
3991       return SQLITE_ERROR;
3992     }
3993     pFrom->pIBIndex = pIdx;
3994   }
3995   return SQLITE_OK;
3996 }
3997 /*
3998 ** Detect compound SELECT statements that use an ORDER BY clause with
3999 ** an alternative collating sequence.
4000 **
4001 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4002 **
4003 ** These are rewritten as a subquery:
4004 **
4005 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4006 **     ORDER BY ... COLLATE ...
4007 **
4008 ** This transformation is necessary because the multiSelectOrderBy() routine
4009 ** above that generates the code for a compound SELECT with an ORDER BY clause
4010 ** uses a merge algorithm that requires the same collating sequence on the
4011 ** result columns as on the ORDER BY clause.  See ticket
4012 ** http://www.sqlite.org/src/info/6709574d2a
4013 **
4014 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4015 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4016 ** there are COLLATE terms in the ORDER BY.
4017 */
4018 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4019   int i;
4020   Select *pNew;
4021   Select *pX;
4022   sqlite3 *db;
4023   struct ExprList_item *a;
4024   SrcList *pNewSrc;
4025   Parse *pParse;
4026   Token dummy;
4027 
4028   if( p->pPrior==0 ) return WRC_Continue;
4029   if( p->pOrderBy==0 ) return WRC_Continue;
4030   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4031   if( pX==0 ) return WRC_Continue;
4032   a = p->pOrderBy->a;
4033   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4034     if( a[i].pExpr->flags & EP_Collate ) break;
4035   }
4036   if( i<0 ) return WRC_Continue;
4037 
4038   /* If we reach this point, that means the transformation is required. */
4039 
4040   pParse = pWalker->pParse;
4041   db = pParse->db;
4042   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4043   if( pNew==0 ) return WRC_Abort;
4044   memset(&dummy, 0, sizeof(dummy));
4045   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4046   if( pNewSrc==0 ) return WRC_Abort;
4047   *pNew = *p;
4048   p->pSrc = pNewSrc;
4049   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4050   p->op = TK_SELECT;
4051   p->pWhere = 0;
4052   pNew->pGroupBy = 0;
4053   pNew->pHaving = 0;
4054   pNew->pOrderBy = 0;
4055   p->pPrior = 0;
4056   p->pNext = 0;
4057   p->pWith = 0;
4058   p->selFlags &= ~SF_Compound;
4059   assert( (p->selFlags & SF_Converted)==0 );
4060   p->selFlags |= SF_Converted;
4061   assert( pNew->pPrior!=0 );
4062   pNew->pPrior->pNext = pNew;
4063   pNew->pLimit = 0;
4064   return WRC_Continue;
4065 }
4066 
4067 /*
4068 ** Check to see if the FROM clause term pFrom has table-valued function
4069 ** arguments.  If it does, leave an error message in pParse and return
4070 ** non-zero, since pFrom is not allowed to be a table-valued function.
4071 */
4072 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4073   if( pFrom->fg.isTabFunc ){
4074     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4075     return 1;
4076   }
4077   return 0;
4078 }
4079 
4080 #ifndef SQLITE_OMIT_CTE
4081 /*
4082 ** Argument pWith (which may be NULL) points to a linked list of nested
4083 ** WITH contexts, from inner to outermost. If the table identified by
4084 ** FROM clause element pItem is really a common-table-expression (CTE)
4085 ** then return a pointer to the CTE definition for that table. Otherwise
4086 ** return NULL.
4087 **
4088 ** If a non-NULL value is returned, set *ppContext to point to the With
4089 ** object that the returned CTE belongs to.
4090 */
4091 static struct Cte *searchWith(
4092   With *pWith,                    /* Current innermost WITH clause */
4093   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4094   With **ppContext                /* OUT: WITH clause return value belongs to */
4095 ){
4096   const char *zName;
4097   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4098     With *p;
4099     for(p=pWith; p; p=p->pOuter){
4100       int i;
4101       for(i=0; i<p->nCte; i++){
4102         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4103           *ppContext = p;
4104           return &p->a[i];
4105         }
4106       }
4107     }
4108   }
4109   return 0;
4110 }
4111 
4112 /* The code generator maintains a stack of active WITH clauses
4113 ** with the inner-most WITH clause being at the top of the stack.
4114 **
4115 ** This routine pushes the WITH clause passed as the second argument
4116 ** onto the top of the stack. If argument bFree is true, then this
4117 ** WITH clause will never be popped from the stack. In this case it
4118 ** should be freed along with the Parse object. In other cases, when
4119 ** bFree==0, the With object will be freed along with the SELECT
4120 ** statement with which it is associated.
4121 */
4122 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4123   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4124   if( pWith ){
4125     assert( pParse->pWith!=pWith );
4126     pWith->pOuter = pParse->pWith;
4127     pParse->pWith = pWith;
4128     if( bFree ) pParse->pWithToFree = pWith;
4129   }
4130 }
4131 
4132 /*
4133 ** This function checks if argument pFrom refers to a CTE declared by
4134 ** a WITH clause on the stack currently maintained by the parser. And,
4135 ** if currently processing a CTE expression, if it is a recursive
4136 ** reference to the current CTE.
4137 **
4138 ** If pFrom falls into either of the two categories above, pFrom->pTab
4139 ** and other fields are populated accordingly. The caller should check
4140 ** (pFrom->pTab!=0) to determine whether or not a successful match
4141 ** was found.
4142 **
4143 ** Whether or not a match is found, SQLITE_OK is returned if no error
4144 ** occurs. If an error does occur, an error message is stored in the
4145 ** parser and some error code other than SQLITE_OK returned.
4146 */
4147 static int withExpand(
4148   Walker *pWalker,
4149   struct SrcList_item *pFrom
4150 ){
4151   Parse *pParse = pWalker->pParse;
4152   sqlite3 *db = pParse->db;
4153   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4154   With *pWith;                    /* WITH clause that pCte belongs to */
4155 
4156   assert( pFrom->pTab==0 );
4157 
4158   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4159   if( pCte ){
4160     Table *pTab;
4161     ExprList *pEList;
4162     Select *pSel;
4163     Select *pLeft;                /* Left-most SELECT statement */
4164     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4165     With *pSavedWith;             /* Initial value of pParse->pWith */
4166 
4167     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4168     ** recursive reference to CTE pCte. Leave an error in pParse and return
4169     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4170     ** In this case, proceed.  */
4171     if( pCte->zCteErr ){
4172       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4173       return SQLITE_ERROR;
4174     }
4175     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4176 
4177     assert( pFrom->pTab==0 );
4178     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4179     if( pTab==0 ) return WRC_Abort;
4180     pTab->nTabRef = 1;
4181     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4182     pTab->iPKey = -1;
4183     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4184     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4185     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4186     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4187     assert( pFrom->pSelect );
4188 
4189     /* Check if this is a recursive CTE. */
4190     pSel = pFrom->pSelect;
4191     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4192     if( bMayRecursive ){
4193       int i;
4194       SrcList *pSrc = pFrom->pSelect->pSrc;
4195       for(i=0; i<pSrc->nSrc; i++){
4196         struct SrcList_item *pItem = &pSrc->a[i];
4197         if( pItem->zDatabase==0
4198          && pItem->zName!=0
4199          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4200           ){
4201           pItem->pTab = pTab;
4202           pItem->fg.isRecursive = 1;
4203           pTab->nTabRef++;
4204           pSel->selFlags |= SF_Recursive;
4205         }
4206       }
4207     }
4208 
4209     /* Only one recursive reference is permitted. */
4210     if( pTab->nTabRef>2 ){
4211       sqlite3ErrorMsg(
4212           pParse, "multiple references to recursive table: %s", pCte->zName
4213       );
4214       return SQLITE_ERROR;
4215     }
4216     assert( pTab->nTabRef==1 ||
4217             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4218 
4219     pCte->zCteErr = "circular reference: %s";
4220     pSavedWith = pParse->pWith;
4221     pParse->pWith = pWith;
4222     if( bMayRecursive ){
4223       Select *pPrior = pSel->pPrior;
4224       assert( pPrior->pWith==0 );
4225       pPrior->pWith = pSel->pWith;
4226       sqlite3WalkSelect(pWalker, pPrior);
4227       pPrior->pWith = 0;
4228     }else{
4229       sqlite3WalkSelect(pWalker, pSel);
4230     }
4231     pParse->pWith = pWith;
4232 
4233     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4234     pEList = pLeft->pEList;
4235     if( pCte->pCols ){
4236       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4237         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4238             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4239         );
4240         pParse->pWith = pSavedWith;
4241         return SQLITE_ERROR;
4242       }
4243       pEList = pCte->pCols;
4244     }
4245 
4246     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4247     if( bMayRecursive ){
4248       if( pSel->selFlags & SF_Recursive ){
4249         pCte->zCteErr = "multiple recursive references: %s";
4250       }else{
4251         pCte->zCteErr = "recursive reference in a subquery: %s";
4252       }
4253       sqlite3WalkSelect(pWalker, pSel);
4254     }
4255     pCte->zCteErr = 0;
4256     pParse->pWith = pSavedWith;
4257   }
4258 
4259   return SQLITE_OK;
4260 }
4261 #endif
4262 
4263 #ifndef SQLITE_OMIT_CTE
4264 /*
4265 ** If the SELECT passed as the second argument has an associated WITH
4266 ** clause, pop it from the stack stored as part of the Parse object.
4267 **
4268 ** This function is used as the xSelectCallback2() callback by
4269 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4270 ** names and other FROM clause elements.
4271 */
4272 static void selectPopWith(Walker *pWalker, Select *p){
4273   Parse *pParse = pWalker->pParse;
4274   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4275     With *pWith = findRightmost(p)->pWith;
4276     if( pWith!=0 ){
4277       assert( pParse->pWith==pWith );
4278       pParse->pWith = pWith->pOuter;
4279     }
4280   }
4281 }
4282 #else
4283 #define selectPopWith 0
4284 #endif
4285 
4286 /*
4287 ** This routine is a Walker callback for "expanding" a SELECT statement.
4288 ** "Expanding" means to do the following:
4289 **
4290 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4291 **         element of the FROM clause.
4292 **
4293 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4294 **         defines FROM clause.  When views appear in the FROM clause,
4295 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4296 **         that implements the view.  A copy is made of the view's SELECT
4297 **         statement so that we can freely modify or delete that statement
4298 **         without worrying about messing up the persistent representation
4299 **         of the view.
4300 **
4301 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4302 **         on joins and the ON and USING clause of joins.
4303 **
4304 **    (4)  Scan the list of columns in the result set (pEList) looking
4305 **         for instances of the "*" operator or the TABLE.* operator.
4306 **         If found, expand each "*" to be every column in every table
4307 **         and TABLE.* to be every column in TABLE.
4308 **
4309 */
4310 static int selectExpander(Walker *pWalker, Select *p){
4311   Parse *pParse = pWalker->pParse;
4312   int i, j, k;
4313   SrcList *pTabList;
4314   ExprList *pEList;
4315   struct SrcList_item *pFrom;
4316   sqlite3 *db = pParse->db;
4317   Expr *pE, *pRight, *pExpr;
4318   u16 selFlags = p->selFlags;
4319   u32 elistFlags = 0;
4320 
4321   p->selFlags |= SF_Expanded;
4322   if( db->mallocFailed  ){
4323     return WRC_Abort;
4324   }
4325   assert( p->pSrc!=0 );
4326   if( (selFlags & SF_Expanded)!=0 ){
4327     return WRC_Prune;
4328   }
4329   pTabList = p->pSrc;
4330   pEList = p->pEList;
4331   if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4332     sqlite3WithPush(pParse, p->pWith, 0);
4333   }
4334 
4335   /* Make sure cursor numbers have been assigned to all entries in
4336   ** the FROM clause of the SELECT statement.
4337   */
4338   sqlite3SrcListAssignCursors(pParse, pTabList);
4339 
4340   /* Look up every table named in the FROM clause of the select.  If
4341   ** an entry of the FROM clause is a subquery instead of a table or view,
4342   ** then create a transient table structure to describe the subquery.
4343   */
4344   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4345     Table *pTab;
4346     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4347     if( pFrom->fg.isRecursive ) continue;
4348     assert( pFrom->pTab==0 );
4349 #ifndef SQLITE_OMIT_CTE
4350     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4351     if( pFrom->pTab ) {} else
4352 #endif
4353     if( pFrom->zName==0 ){
4354 #ifndef SQLITE_OMIT_SUBQUERY
4355       Select *pSel = pFrom->pSelect;
4356       /* A sub-query in the FROM clause of a SELECT */
4357       assert( pSel!=0 );
4358       assert( pFrom->pTab==0 );
4359       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4360       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4361       if( pTab==0 ) return WRC_Abort;
4362       pTab->nTabRef = 1;
4363       if( pFrom->zAlias ){
4364         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4365       }else{
4366         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4367       }
4368       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4369       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4370       pTab->iPKey = -1;
4371       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4372       pTab->tabFlags |= TF_Ephemeral;
4373 #endif
4374     }else{
4375       /* An ordinary table or view name in the FROM clause */
4376       assert( pFrom->pTab==0 );
4377       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4378       if( pTab==0 ) return WRC_Abort;
4379       if( pTab->nTabRef>=0xffff ){
4380         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4381            pTab->zName);
4382         pFrom->pTab = 0;
4383         return WRC_Abort;
4384       }
4385       pTab->nTabRef++;
4386       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4387         return WRC_Abort;
4388       }
4389 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4390       if( IsVirtual(pTab) || pTab->pSelect ){
4391         i16 nCol;
4392         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4393         assert( pFrom->pSelect==0 );
4394         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4395         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4396         nCol = pTab->nCol;
4397         pTab->nCol = -1;
4398         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4399         pTab->nCol = nCol;
4400       }
4401 #endif
4402     }
4403 
4404     /* Locate the index named by the INDEXED BY clause, if any. */
4405     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4406       return WRC_Abort;
4407     }
4408   }
4409 
4410   /* Process NATURAL keywords, and ON and USING clauses of joins.
4411   */
4412   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4413     return WRC_Abort;
4414   }
4415 
4416   /* For every "*" that occurs in the column list, insert the names of
4417   ** all columns in all tables.  And for every TABLE.* insert the names
4418   ** of all columns in TABLE.  The parser inserted a special expression
4419   ** with the TK_ASTERISK operator for each "*" that it found in the column
4420   ** list.  The following code just has to locate the TK_ASTERISK
4421   ** expressions and expand each one to the list of all columns in
4422   ** all tables.
4423   **
4424   ** The first loop just checks to see if there are any "*" operators
4425   ** that need expanding.
4426   */
4427   for(k=0; k<pEList->nExpr; k++){
4428     pE = pEList->a[k].pExpr;
4429     if( pE->op==TK_ASTERISK ) break;
4430     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4431     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4432     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4433     elistFlags |= pE->flags;
4434   }
4435   if( k<pEList->nExpr ){
4436     /*
4437     ** If we get here it means the result set contains one or more "*"
4438     ** operators that need to be expanded.  Loop through each expression
4439     ** in the result set and expand them one by one.
4440     */
4441     struct ExprList_item *a = pEList->a;
4442     ExprList *pNew = 0;
4443     int flags = pParse->db->flags;
4444     int longNames = (flags & SQLITE_FullColNames)!=0
4445                       && (flags & SQLITE_ShortColNames)==0;
4446 
4447     for(k=0; k<pEList->nExpr; k++){
4448       pE = a[k].pExpr;
4449       elistFlags |= pE->flags;
4450       pRight = pE->pRight;
4451       assert( pE->op!=TK_DOT || pRight!=0 );
4452       if( pE->op!=TK_ASTERISK
4453        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4454       ){
4455         /* This particular expression does not need to be expanded.
4456         */
4457         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4458         if( pNew ){
4459           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4460           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4461           a[k].zName = 0;
4462           a[k].zSpan = 0;
4463         }
4464         a[k].pExpr = 0;
4465       }else{
4466         /* This expression is a "*" or a "TABLE.*" and needs to be
4467         ** expanded. */
4468         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4469         char *zTName = 0;       /* text of name of TABLE */
4470         if( pE->op==TK_DOT ){
4471           assert( pE->pLeft!=0 );
4472           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4473           zTName = pE->pLeft->u.zToken;
4474         }
4475         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4476           Table *pTab = pFrom->pTab;
4477           Select *pSub = pFrom->pSelect;
4478           char *zTabName = pFrom->zAlias;
4479           const char *zSchemaName = 0;
4480           int iDb;
4481           if( zTabName==0 ){
4482             zTabName = pTab->zName;
4483           }
4484           if( db->mallocFailed ) break;
4485           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4486             pSub = 0;
4487             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4488               continue;
4489             }
4490             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4491             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4492           }
4493           for(j=0; j<pTab->nCol; j++){
4494             char *zName = pTab->aCol[j].zName;
4495             char *zColname;  /* The computed column name */
4496             char *zToFree;   /* Malloced string that needs to be freed */
4497             Token sColname;  /* Computed column name as a token */
4498 
4499             assert( zName );
4500             if( zTName && pSub
4501              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4502             ){
4503               continue;
4504             }
4505 
4506             /* If a column is marked as 'hidden', omit it from the expanded
4507             ** result-set list unless the SELECT has the SF_IncludeHidden
4508             ** bit set.
4509             */
4510             if( (p->selFlags & SF_IncludeHidden)==0
4511              && IsHiddenColumn(&pTab->aCol[j])
4512             ){
4513               continue;
4514             }
4515             tableSeen = 1;
4516 
4517             if( i>0 && zTName==0 ){
4518               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4519                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4520               ){
4521                 /* In a NATURAL join, omit the join columns from the
4522                 ** table to the right of the join */
4523                 continue;
4524               }
4525               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4526                 /* In a join with a USING clause, omit columns in the
4527                 ** using clause from the table on the right. */
4528                 continue;
4529               }
4530             }
4531             pRight = sqlite3Expr(db, TK_ID, zName);
4532             zColname = zName;
4533             zToFree = 0;
4534             if( longNames || pTabList->nSrc>1 ){
4535               Expr *pLeft;
4536               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4537               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4538               if( zSchemaName ){
4539                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4540                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4541               }
4542               if( longNames ){
4543                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4544                 zToFree = zColname;
4545               }
4546             }else{
4547               pExpr = pRight;
4548             }
4549             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4550             sqlite3TokenInit(&sColname, zColname);
4551             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4552             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4553               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4554               if( pSub ){
4555                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4556                 testcase( pX->zSpan==0 );
4557               }else{
4558                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4559                                            zSchemaName, zTabName, zColname);
4560                 testcase( pX->zSpan==0 );
4561               }
4562               pX->bSpanIsTab = 1;
4563             }
4564             sqlite3DbFree(db, zToFree);
4565           }
4566         }
4567         if( !tableSeen ){
4568           if( zTName ){
4569             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4570           }else{
4571             sqlite3ErrorMsg(pParse, "no tables specified");
4572           }
4573         }
4574       }
4575     }
4576     sqlite3ExprListDelete(db, pEList);
4577     p->pEList = pNew;
4578   }
4579   if( p->pEList ){
4580     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4581       sqlite3ErrorMsg(pParse, "too many columns in result set");
4582       return WRC_Abort;
4583     }
4584     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4585       p->selFlags |= SF_ComplexResult;
4586     }
4587   }
4588   return WRC_Continue;
4589 }
4590 
4591 /*
4592 ** No-op routine for the parse-tree walker.
4593 **
4594 ** When this routine is the Walker.xExprCallback then expression trees
4595 ** are walked without any actions being taken at each node.  Presumably,
4596 ** when this routine is used for Walker.xExprCallback then
4597 ** Walker.xSelectCallback is set to do something useful for every
4598 ** subquery in the parser tree.
4599 */
4600 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4601   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4602   return WRC_Continue;
4603 }
4604 
4605 /*
4606 ** No-op routine for the parse-tree walker for SELECT statements.
4607 ** subquery in the parser tree.
4608 */
4609 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4610   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4611   return WRC_Continue;
4612 }
4613 
4614 #if SQLITE_DEBUG
4615 /*
4616 ** Always assert.  This xSelectCallback2 implementation proves that the
4617 ** xSelectCallback2 is never invoked.
4618 */
4619 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4620   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4621   assert( 0 );
4622 }
4623 #endif
4624 /*
4625 ** This routine "expands" a SELECT statement and all of its subqueries.
4626 ** For additional information on what it means to "expand" a SELECT
4627 ** statement, see the comment on the selectExpand worker callback above.
4628 **
4629 ** Expanding a SELECT statement is the first step in processing a
4630 ** SELECT statement.  The SELECT statement must be expanded before
4631 ** name resolution is performed.
4632 **
4633 ** If anything goes wrong, an error message is written into pParse.
4634 ** The calling function can detect the problem by looking at pParse->nErr
4635 ** and/or pParse->db->mallocFailed.
4636 */
4637 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4638   Walker w;
4639   w.xExprCallback = sqlite3ExprWalkNoop;
4640   w.pParse = pParse;
4641   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4642     w.xSelectCallback = convertCompoundSelectToSubquery;
4643     w.xSelectCallback2 = 0;
4644     sqlite3WalkSelect(&w, pSelect);
4645   }
4646   w.xSelectCallback = selectExpander;
4647   w.xSelectCallback2 = selectPopWith;
4648   sqlite3WalkSelect(&w, pSelect);
4649 }
4650 
4651 
4652 #ifndef SQLITE_OMIT_SUBQUERY
4653 /*
4654 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4655 ** interface.
4656 **
4657 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4658 ** information to the Table structure that represents the result set
4659 ** of that subquery.
4660 **
4661 ** The Table structure that represents the result set was constructed
4662 ** by selectExpander() but the type and collation information was omitted
4663 ** at that point because identifiers had not yet been resolved.  This
4664 ** routine is called after identifier resolution.
4665 */
4666 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4667   Parse *pParse;
4668   int i;
4669   SrcList *pTabList;
4670   struct SrcList_item *pFrom;
4671 
4672   assert( p->selFlags & SF_Resolved );
4673   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4674   p->selFlags |= SF_HasTypeInfo;
4675   pParse = pWalker->pParse;
4676   pTabList = p->pSrc;
4677   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4678     Table *pTab = pFrom->pTab;
4679     assert( pTab!=0 );
4680     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4681       /* A sub-query in the FROM clause of a SELECT */
4682       Select *pSel = pFrom->pSelect;
4683       if( pSel ){
4684         while( pSel->pPrior ) pSel = pSel->pPrior;
4685         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4686       }
4687     }
4688   }
4689 }
4690 #endif
4691 
4692 
4693 /*
4694 ** This routine adds datatype and collating sequence information to
4695 ** the Table structures of all FROM-clause subqueries in a
4696 ** SELECT statement.
4697 **
4698 ** Use this routine after name resolution.
4699 */
4700 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4701 #ifndef SQLITE_OMIT_SUBQUERY
4702   Walker w;
4703   w.xSelectCallback = sqlite3SelectWalkNoop;
4704   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4705   w.xExprCallback = sqlite3ExprWalkNoop;
4706   w.pParse = pParse;
4707   sqlite3WalkSelect(&w, pSelect);
4708 #endif
4709 }
4710 
4711 
4712 /*
4713 ** This routine sets up a SELECT statement for processing.  The
4714 ** following is accomplished:
4715 **
4716 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4717 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4718 **     *  ON and USING clauses are shifted into WHERE statements
4719 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4720 **     *  Identifiers in expression are matched to tables.
4721 **
4722 ** This routine acts recursively on all subqueries within the SELECT.
4723 */
4724 void sqlite3SelectPrep(
4725   Parse *pParse,         /* The parser context */
4726   Select *p,             /* The SELECT statement being coded. */
4727   NameContext *pOuterNC  /* Name context for container */
4728 ){
4729   assert( p!=0 || pParse->db->mallocFailed );
4730   if( pParse->db->mallocFailed ) return;
4731   if( p->selFlags & SF_HasTypeInfo ) return;
4732   sqlite3SelectExpand(pParse, p);
4733   if( pParse->nErr || pParse->db->mallocFailed ) return;
4734   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4735   if( pParse->nErr || pParse->db->mallocFailed ) return;
4736   sqlite3SelectAddTypeInfo(pParse, p);
4737 }
4738 
4739 /*
4740 ** Reset the aggregate accumulator.
4741 **
4742 ** The aggregate accumulator is a set of memory cells that hold
4743 ** intermediate results while calculating an aggregate.  This
4744 ** routine generates code that stores NULLs in all of those memory
4745 ** cells.
4746 */
4747 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4748   Vdbe *v = pParse->pVdbe;
4749   int i;
4750   struct AggInfo_func *pFunc;
4751   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4752   if( nReg==0 ) return;
4753 #ifdef SQLITE_DEBUG
4754   /* Verify that all AggInfo registers are within the range specified by
4755   ** AggInfo.mnReg..AggInfo.mxReg */
4756   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4757   for(i=0; i<pAggInfo->nColumn; i++){
4758     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4759          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4760   }
4761   for(i=0; i<pAggInfo->nFunc; i++){
4762     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4763          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4764   }
4765 #endif
4766   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4767   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4768     if( pFunc->iDistinct>=0 ){
4769       Expr *pE = pFunc->pExpr;
4770       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4771       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4772         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4773            "argument");
4774         pFunc->iDistinct = -1;
4775       }else{
4776         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4777         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4778                           (char*)pKeyInfo, P4_KEYINFO);
4779       }
4780     }
4781   }
4782 }
4783 
4784 /*
4785 ** Invoke the OP_AggFinalize opcode for every aggregate function
4786 ** in the AggInfo structure.
4787 */
4788 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4789   Vdbe *v = pParse->pVdbe;
4790   int i;
4791   struct AggInfo_func *pF;
4792   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4793     ExprList *pList = pF->pExpr->x.pList;
4794     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4795     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4796     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4797   }
4798 }
4799 
4800 /*
4801 ** Update the accumulator memory cells for an aggregate based on
4802 ** the current cursor position.
4803 */
4804 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4805   Vdbe *v = pParse->pVdbe;
4806   int i;
4807   int regHit = 0;
4808   int addrHitTest = 0;
4809   struct AggInfo_func *pF;
4810   struct AggInfo_col *pC;
4811 
4812   pAggInfo->directMode = 1;
4813   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4814     int nArg;
4815     int addrNext = 0;
4816     int regAgg;
4817     ExprList *pList = pF->pExpr->x.pList;
4818     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4819     if( pList ){
4820       nArg = pList->nExpr;
4821       regAgg = sqlite3GetTempRange(pParse, nArg);
4822       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4823     }else{
4824       nArg = 0;
4825       regAgg = 0;
4826     }
4827     if( pF->iDistinct>=0 ){
4828       addrNext = sqlite3VdbeMakeLabel(v);
4829       testcase( nArg==0 );  /* Error condition */
4830       testcase( nArg>1 );   /* Also an error */
4831       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4832     }
4833     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4834       CollSeq *pColl = 0;
4835       struct ExprList_item *pItem;
4836       int j;
4837       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4838       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4839         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4840       }
4841       if( !pColl ){
4842         pColl = pParse->db->pDfltColl;
4843       }
4844       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4845       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4846     }
4847     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4848     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4849     sqlite3VdbeChangeP5(v, (u8)nArg);
4850     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4851     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4852     if( addrNext ){
4853       sqlite3VdbeResolveLabel(v, addrNext);
4854       sqlite3ExprCacheClear(pParse);
4855     }
4856   }
4857 
4858   /* Before populating the accumulator registers, clear the column cache.
4859   ** Otherwise, if any of the required column values are already present
4860   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4861   ** to pC->iMem. But by the time the value is used, the original register
4862   ** may have been used, invalidating the underlying buffer holding the
4863   ** text or blob value. See ticket [883034dcb5].
4864   **
4865   ** Another solution would be to change the OP_SCopy used to copy cached
4866   ** values to an OP_Copy.
4867   */
4868   if( regHit ){
4869     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4870   }
4871   sqlite3ExprCacheClear(pParse);
4872   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4873     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4874   }
4875   pAggInfo->directMode = 0;
4876   sqlite3ExprCacheClear(pParse);
4877   if( addrHitTest ){
4878     sqlite3VdbeJumpHere(v, addrHitTest);
4879   }
4880 }
4881 
4882 /*
4883 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4884 ** count(*) query ("SELECT count(*) FROM pTab").
4885 */
4886 #ifndef SQLITE_OMIT_EXPLAIN
4887 static void explainSimpleCount(
4888   Parse *pParse,                  /* Parse context */
4889   Table *pTab,                    /* Table being queried */
4890   Index *pIdx                     /* Index used to optimize scan, or NULL */
4891 ){
4892   if( pParse->explain==2 ){
4893     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4894     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4895         pTab->zName,
4896         bCover ? " USING COVERING INDEX " : "",
4897         bCover ? pIdx->zName : ""
4898     );
4899     sqlite3VdbeAddOp4(
4900         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4901     );
4902   }
4903 }
4904 #else
4905 # define explainSimpleCount(a,b,c)
4906 #endif
4907 
4908 /*
4909 ** Context object for havingToWhereExprCb().
4910 */
4911 struct HavingToWhereCtx {
4912   Expr **ppWhere;
4913   ExprList *pGroupBy;
4914 };
4915 
4916 /*
4917 ** sqlite3WalkExpr() callback used by havingToWhere().
4918 **
4919 ** If the node passed to the callback is a TK_AND node, return
4920 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4921 **
4922 ** Otherwise, return WRC_Prune. In this case, also check if the
4923 ** sub-expression matches the criteria for being moved to the WHERE
4924 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4925 ** within the HAVING expression with a constant "1".
4926 */
4927 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4928   if( pExpr->op!=TK_AND ){
4929     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4930     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4931       sqlite3 *db = pWalker->pParse->db;
4932       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4933       if( pNew ){
4934         Expr *pWhere = *(p->ppWhere);
4935         SWAP(Expr, *pNew, *pExpr);
4936         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4937         *(p->ppWhere) = pNew;
4938       }
4939     }
4940     return WRC_Prune;
4941   }
4942   return WRC_Continue;
4943 }
4944 
4945 /*
4946 ** Transfer eligible terms from the HAVING clause of a query, which is
4947 ** processed after grouping, to the WHERE clause, which is processed before
4948 ** grouping. For example, the query:
4949 **
4950 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4951 **
4952 ** can be rewritten as:
4953 **
4954 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4955 **
4956 ** A term of the HAVING expression is eligible for transfer if it consists
4957 ** entirely of constants and expressions that are also GROUP BY terms that
4958 ** use the "BINARY" collation sequence.
4959 */
4960 static void havingToWhere(
4961   Parse *pParse,
4962   ExprList *pGroupBy,
4963   Expr *pHaving,
4964   Expr **ppWhere
4965 ){
4966   struct HavingToWhereCtx sCtx;
4967   Walker sWalker;
4968 
4969   sCtx.ppWhere = ppWhere;
4970   sCtx.pGroupBy = pGroupBy;
4971 
4972   memset(&sWalker, 0, sizeof(sWalker));
4973   sWalker.pParse = pParse;
4974   sWalker.xExprCallback = havingToWhereExprCb;
4975   sWalker.u.pHavingCtx = &sCtx;
4976   sqlite3WalkExpr(&sWalker, pHaving);
4977 }
4978 
4979 /*
4980 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4981 ** If it is, then return the SrcList_item for the prior view.  If it is not,
4982 ** then return 0.
4983 */
4984 static struct SrcList_item *isSelfJoinView(
4985   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
4986   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
4987 ){
4988   struct SrcList_item *pItem;
4989   for(pItem = pTabList->a; pItem<pThis; pItem++){
4990     if( pItem->pSelect==0 ) continue;
4991     if( pItem->fg.viaCoroutine ) continue;
4992     if( pItem->zName==0 ) continue;
4993     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
4994     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
4995     if( sqlite3ExprCompare(0,
4996           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
4997     ){
4998       /* The view was modified by some other optimization such as
4999       ** pushDownWhereTerms() */
5000       continue;
5001     }
5002     return pItem;
5003   }
5004   return 0;
5005 }
5006 
5007 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5008 /*
5009 ** Attempt to transform a query of the form
5010 **
5011 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5012 **
5013 ** Into this:
5014 **
5015 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5016 **
5017 ** The transformation only works if all of the following are true:
5018 **
5019 **   *  The subquery is a UNION ALL of two or more terms
5020 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5021 **   *  The outer query is a simple count(*)
5022 **
5023 ** Return TRUE if the optimization is undertaken.
5024 */
5025 static int countOfViewOptimization(Parse *pParse, Select *p){
5026   Select *pSub, *pPrior;
5027   Expr *pExpr;
5028   Expr *pCount;
5029   sqlite3 *db;
5030   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5031   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5032   pExpr = p->pEList->a[0].pExpr;
5033   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5034   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5035   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5036   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5037   pSub = p->pSrc->a[0].pSelect;
5038   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5039   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5040   do{
5041     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5042     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5043     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5044     pSub = pSub->pPrior;                              /* Repeat over compound */
5045   }while( pSub );
5046 
5047   /* If we reach this point then it is OK to perform the transformation */
5048 
5049   db = pParse->db;
5050   pCount = pExpr;
5051   pExpr = 0;
5052   pSub = p->pSrc->a[0].pSelect;
5053   p->pSrc->a[0].pSelect = 0;
5054   sqlite3SrcListDelete(db, p->pSrc);
5055   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5056   while( pSub ){
5057     Expr *pTerm;
5058     pPrior = pSub->pPrior;
5059     pSub->pPrior = 0;
5060     pSub->pNext = 0;
5061     pSub->selFlags |= SF_Aggregate;
5062     pSub->selFlags &= ~SF_Compound;
5063     pSub->nSelectRow = 0;
5064     sqlite3ExprListDelete(db, pSub->pEList);
5065     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5066     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5067     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5068     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5069     if( pExpr==0 ){
5070       pExpr = pTerm;
5071     }else{
5072       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5073     }
5074     pSub = pPrior;
5075   }
5076   p->pEList->a[0].pExpr = pExpr;
5077   p->selFlags &= ~SF_Aggregate;
5078 
5079 #if SELECTTRACE_ENABLED
5080   if( sqlite3SelectTrace & 0x400 ){
5081     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5082     sqlite3TreeViewSelect(0, p, 0);
5083   }
5084 #endif
5085   return 1;
5086 }
5087 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5088 
5089 /*
5090 ** Generate code for the SELECT statement given in the p argument.
5091 **
5092 ** The results are returned according to the SelectDest structure.
5093 ** See comments in sqliteInt.h for further information.
5094 **
5095 ** This routine returns the number of errors.  If any errors are
5096 ** encountered, then an appropriate error message is left in
5097 ** pParse->zErrMsg.
5098 **
5099 ** This routine does NOT free the Select structure passed in.  The
5100 ** calling function needs to do that.
5101 */
5102 int sqlite3Select(
5103   Parse *pParse,         /* The parser context */
5104   Select *p,             /* The SELECT statement being coded. */
5105   SelectDest *pDest      /* What to do with the query results */
5106 ){
5107   int i, j;              /* Loop counters */
5108   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5109   Vdbe *v;               /* The virtual machine under construction */
5110   int isAgg;             /* True for select lists like "count(*)" */
5111   ExprList *pEList = 0;  /* List of columns to extract. */
5112   SrcList *pTabList;     /* List of tables to select from */
5113   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5114   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5115   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5116   int rc = 1;            /* Value to return from this function */
5117   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5118   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5119   AggInfo sAggInfo;      /* Information used by aggregate queries */
5120   int iEnd;              /* Address of the end of the query */
5121   sqlite3 *db;           /* The database connection */
5122   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5123   u8 minMaxFlag;                 /* Flag for min/max queries */
5124 
5125 #ifndef SQLITE_OMIT_EXPLAIN
5126   int iRestoreSelectId = pParse->iSelectId;
5127   pParse->iSelectId = pParse->iNextSelectId++;
5128 #endif
5129 
5130   db = pParse->db;
5131   if( p==0 || db->mallocFailed || pParse->nErr ){
5132     return 1;
5133   }
5134   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5135   memset(&sAggInfo, 0, sizeof(sAggInfo));
5136 #if SELECTTRACE_ENABLED
5137   pParse->nSelectIndent++;
5138   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5139   if( sqlite3SelectTrace & 0x100 ){
5140     sqlite3TreeViewSelect(0, p, 0);
5141   }
5142 #endif
5143 
5144   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5145   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5146   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5147   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5148   if( IgnorableOrderby(pDest) ){
5149     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5150            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5151            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5152            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5153     /* If ORDER BY makes no difference in the output then neither does
5154     ** DISTINCT so it can be removed too. */
5155     sqlite3ExprListDelete(db, p->pOrderBy);
5156     p->pOrderBy = 0;
5157     p->selFlags &= ~SF_Distinct;
5158   }
5159   sqlite3SelectPrep(pParse, p, 0);
5160   memset(&sSort, 0, sizeof(sSort));
5161   sSort.pOrderBy = p->pOrderBy;
5162   pTabList = p->pSrc;
5163   if( pParse->nErr || db->mallocFailed ){
5164     goto select_end;
5165   }
5166   assert( p->pEList!=0 );
5167   isAgg = (p->selFlags & SF_Aggregate)!=0;
5168 #if SELECTTRACE_ENABLED
5169   if( sqlite3SelectTrace & 0x100 ){
5170     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5171     sqlite3TreeViewSelect(0, p, 0);
5172   }
5173 #endif
5174 
5175   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5176   ** does not already exist */
5177   v = sqlite3GetVdbe(pParse);
5178   if( v==0 ) goto select_end;
5179   if( pDest->eDest==SRT_Output ){
5180     generateColumnNames(pParse, p);
5181   }
5182 
5183   /* Try to flatten subqueries in the FROM clause up into the main query
5184   */
5185 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5186   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5187     struct SrcList_item *pItem = &pTabList->a[i];
5188     Select *pSub = pItem->pSelect;
5189     Table *pTab = pItem->pTab;
5190     if( pSub==0 ) continue;
5191 
5192     /* Catch mismatch in the declared columns of a view and the number of
5193     ** columns in the SELECT on the RHS */
5194     if( pTab->nCol!=pSub->pEList->nExpr ){
5195       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5196                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5197       goto select_end;
5198     }
5199 
5200     /* Do not try to flatten an aggregate subquery.
5201     **
5202     ** Flattening an aggregate subquery is only possible if the outer query
5203     ** is not a join.  But if the outer query is not a join, then the subquery
5204     ** will be implemented as a co-routine and there is no advantage to
5205     ** flattening in that case.
5206     */
5207     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5208     assert( pSub->pGroupBy==0 );
5209 
5210     /* If the outer query contains a "complex" result set (that is,
5211     ** if the result set of the outer query uses functions or subqueries)
5212     ** and if the subquery contains an ORDER BY clause and if
5213     ** it will be implemented as a co-routine, then do not flatten.  This
5214     ** restriction allows SQL constructs like this:
5215     **
5216     **  SELECT expensive_function(x)
5217     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5218     **
5219     ** The expensive_function() is only computed on the 10 rows that
5220     ** are output, rather than every row of the table.
5221     **
5222     ** The requirement that the outer query have a complex result set
5223     ** means that flattening does occur on simpler SQL constraints without
5224     ** the expensive_function() like:
5225     **
5226     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5227     */
5228     if( pSub->pOrderBy!=0
5229      && i==0
5230      && (p->selFlags & SF_ComplexResult)!=0
5231      && (pTabList->nSrc==1
5232          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5233     ){
5234       continue;
5235     }
5236 
5237     if( flattenSubquery(pParse, p, i, isAgg) ){
5238       /* This subquery can be absorbed into its parent. */
5239       i = -1;
5240     }
5241     pTabList = p->pSrc;
5242     if( db->mallocFailed ) goto select_end;
5243     if( !IgnorableOrderby(pDest) ){
5244       sSort.pOrderBy = p->pOrderBy;
5245     }
5246   }
5247 #endif
5248 
5249 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5250   /* Handle compound SELECT statements using the separate multiSelect()
5251   ** procedure.
5252   */
5253   if( p->pPrior ){
5254     rc = multiSelect(pParse, p, pDest);
5255     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5256 #if SELECTTRACE_ENABLED
5257     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5258     pParse->nSelectIndent--;
5259 #endif
5260     return rc;
5261   }
5262 #endif
5263 
5264   /* For each term in the FROM clause, do two things:
5265   ** (1) Authorized unreferenced tables
5266   ** (2) Generate code for all sub-queries
5267   */
5268   for(i=0; i<pTabList->nSrc; i++){
5269     struct SrcList_item *pItem = &pTabList->a[i];
5270     SelectDest dest;
5271     Select *pSub;
5272 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5273     const char *zSavedAuthContext;
5274 #endif
5275 
5276     /* Issue SQLITE_READ authorizations with a fake column name for any
5277     ** tables that are referenced but from which no values are extracted.
5278     ** Examples of where these kinds of null SQLITE_READ authorizations
5279     ** would occur:
5280     **
5281     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5282     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5283     **
5284     ** The fake column name is an empty string.  It is possible for a table to
5285     ** have a column named by the empty string, in which case there is no way to
5286     ** distinguish between an unreferenced table and an actual reference to the
5287     ** "" column. The original design was for the fake column name to be a NULL,
5288     ** which would be unambiguous.  But legacy authorization callbacks might
5289     ** assume the column name is non-NULL and segfault.  The use of an empty
5290     ** string for the fake column name seems safer.
5291     */
5292     if( pItem->colUsed==0 ){
5293       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5294     }
5295 
5296 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5297     /* Generate code for all sub-queries in the FROM clause
5298     */
5299     pSub = pItem->pSelect;
5300     if( pSub==0 ) continue;
5301 
5302     /* Sometimes the code for a subquery will be generated more than
5303     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5304     ** for example.  In that case, do not regenerate the code to manifest
5305     ** a view or the co-routine to implement a view.  The first instance
5306     ** is sufficient, though the subroutine to manifest the view does need
5307     ** to be invoked again. */
5308     if( pItem->addrFillSub ){
5309       if( pItem->fg.viaCoroutine==0 ){
5310         /* The subroutine that manifests the view might be a one-time routine,
5311         ** or it might need to be rerun on each iteration because it
5312         ** encodes a correlated subquery. */
5313         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5314         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5315       }
5316       continue;
5317     }
5318 
5319     /* Increment Parse.nHeight by the height of the largest expression
5320     ** tree referred to by this, the parent select. The child select
5321     ** may contain expression trees of at most
5322     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5323     ** more conservative than necessary, but much easier than enforcing
5324     ** an exact limit.
5325     */
5326     pParse->nHeight += sqlite3SelectExprHeight(p);
5327 
5328     /* Make copies of constant WHERE-clause terms in the outer query down
5329     ** inside the subquery.  This can help the subquery to run more efficiently.
5330     */
5331     if( (pItem->fg.jointype & JT_OUTER)==0
5332      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5333     ){
5334 #if SELECTTRACE_ENABLED
5335       if( sqlite3SelectTrace & 0x100 ){
5336         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5337         sqlite3TreeViewSelect(0, p, 0);
5338       }
5339 #endif
5340     }
5341 
5342     zSavedAuthContext = pParse->zAuthContext;
5343     pParse->zAuthContext = pItem->zName;
5344 
5345     /* Generate code to implement the subquery
5346     **
5347     ** The subquery is implemented as a co-routine if the subquery is
5348     ** guaranteed to be the outer loop (so that it does not need to be
5349     ** computed more than once)
5350     **
5351     ** TODO: Are there other reasons beside (1) to use a co-routine
5352     ** implementation?
5353     */
5354     if( i==0
5355      && (pTabList->nSrc==1
5356             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5357     ){
5358       /* Implement a co-routine that will return a single row of the result
5359       ** set on each invocation.
5360       */
5361       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5362 
5363       pItem->regReturn = ++pParse->nMem;
5364       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5365       VdbeComment((v, "%s", pItem->pTab->zName));
5366       pItem->addrFillSub = addrTop;
5367       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5368       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5369       sqlite3Select(pParse, pSub, &dest);
5370       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5371       pItem->fg.viaCoroutine = 1;
5372       pItem->regResult = dest.iSdst;
5373       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5374       sqlite3VdbeJumpHere(v, addrTop-1);
5375       sqlite3ClearTempRegCache(pParse);
5376     }else{
5377       /* Generate a subroutine that will fill an ephemeral table with
5378       ** the content of this subquery.  pItem->addrFillSub will point
5379       ** to the address of the generated subroutine.  pItem->regReturn
5380       ** is a register allocated to hold the subroutine return address
5381       */
5382       int topAddr;
5383       int onceAddr = 0;
5384       int retAddr;
5385       struct SrcList_item *pPrior;
5386 
5387       assert( pItem->addrFillSub==0 );
5388       pItem->regReturn = ++pParse->nMem;
5389       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5390       pItem->addrFillSub = topAddr+1;
5391       if( pItem->fg.isCorrelated==0 ){
5392         /* If the subquery is not correlated and if we are not inside of
5393         ** a trigger, then we only need to compute the value of the subquery
5394         ** once. */
5395         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5396         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5397       }else{
5398         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5399       }
5400       pPrior = isSelfJoinView(pTabList, pItem);
5401       if( pPrior ){
5402         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5403         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5404         assert( pPrior->pSelect!=0 );
5405         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5406       }else{
5407         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5408         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5409         sqlite3Select(pParse, pSub, &dest);
5410       }
5411       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5412       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5413       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5414       VdbeComment((v, "end %s", pItem->pTab->zName));
5415       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5416       sqlite3ClearTempRegCache(pParse);
5417     }
5418     if( db->mallocFailed ) goto select_end;
5419     pParse->nHeight -= sqlite3SelectExprHeight(p);
5420     pParse->zAuthContext = zSavedAuthContext;
5421 #endif
5422   }
5423 
5424   /* Various elements of the SELECT copied into local variables for
5425   ** convenience */
5426   pEList = p->pEList;
5427   pWhere = p->pWhere;
5428   pGroupBy = p->pGroupBy;
5429   pHaving = p->pHaving;
5430   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5431 
5432 #if SELECTTRACE_ENABLED
5433   if( sqlite3SelectTrace & 0x400 ){
5434     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5435     sqlite3TreeViewSelect(0, p, 0);
5436   }
5437 #endif
5438 
5439 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5440   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5441    && countOfViewOptimization(pParse, p)
5442   ){
5443     if( db->mallocFailed ) goto select_end;
5444     pEList = p->pEList;
5445     pTabList = p->pSrc;
5446   }
5447 #endif
5448 
5449   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5450   ** if the select-list is the same as the ORDER BY list, then this query
5451   ** can be rewritten as a GROUP BY. In other words, this:
5452   **
5453   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5454   **
5455   ** is transformed to:
5456   **
5457   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5458   **
5459   ** The second form is preferred as a single index (or temp-table) may be
5460   ** used for both the ORDER BY and DISTINCT processing. As originally
5461   ** written the query must use a temp-table for at least one of the ORDER
5462   ** BY and DISTINCT, and an index or separate temp-table for the other.
5463   */
5464   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5465    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5466   ){
5467     p->selFlags &= ~SF_Distinct;
5468     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5469     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5470     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5471     ** original setting of the SF_Distinct flag, not the current setting */
5472     assert( sDistinct.isTnct );
5473 
5474 #if SELECTTRACE_ENABLED
5475     if( sqlite3SelectTrace & 0x400 ){
5476       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5477       sqlite3TreeViewSelect(0, p, 0);
5478     }
5479 #endif
5480   }
5481 
5482   /* If there is an ORDER BY clause, then create an ephemeral index to
5483   ** do the sorting.  But this sorting ephemeral index might end up
5484   ** being unused if the data can be extracted in pre-sorted order.
5485   ** If that is the case, then the OP_OpenEphemeral instruction will be
5486   ** changed to an OP_Noop once we figure out that the sorting index is
5487   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5488   ** that change.
5489   */
5490   if( sSort.pOrderBy ){
5491     KeyInfo *pKeyInfo;
5492     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5493     sSort.iECursor = pParse->nTab++;
5494     sSort.addrSortIndex =
5495       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5496           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5497           (char*)pKeyInfo, P4_KEYINFO
5498       );
5499   }else{
5500     sSort.addrSortIndex = -1;
5501   }
5502 
5503   /* If the output is destined for a temporary table, open that table.
5504   */
5505   if( pDest->eDest==SRT_EphemTab ){
5506     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5507   }
5508 
5509   /* Set the limiter.
5510   */
5511   iEnd = sqlite3VdbeMakeLabel(v);
5512   if( (p->selFlags & SF_FixedLimit)==0 ){
5513     p->nSelectRow = 320;  /* 4 billion rows */
5514   }
5515   computeLimitRegisters(pParse, p, iEnd);
5516   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5517     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5518     sSort.sortFlags |= SORTFLAG_UseSorter;
5519   }
5520 
5521   /* Open an ephemeral index to use for the distinct set.
5522   */
5523   if( p->selFlags & SF_Distinct ){
5524     sDistinct.tabTnct = pParse->nTab++;
5525     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5526                              sDistinct.tabTnct, 0, 0,
5527                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5528                              P4_KEYINFO);
5529     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5530     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5531   }else{
5532     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5533   }
5534 
5535   if( !isAgg && pGroupBy==0 ){
5536     /* No aggregate functions and no GROUP BY clause */
5537     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5538     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5539     wctrlFlags |= p->selFlags & SF_FixedLimit;
5540 
5541     /* Begin the database scan. */
5542     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5543                                p->pEList, wctrlFlags, p->nSelectRow);
5544     if( pWInfo==0 ) goto select_end;
5545     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5546       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5547     }
5548     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5549       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5550     }
5551     if( sSort.pOrderBy ){
5552       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5553       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5554       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5555         sSort.pOrderBy = 0;
5556       }
5557     }
5558 
5559     /* If sorting index that was created by a prior OP_OpenEphemeral
5560     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5561     ** into an OP_Noop.
5562     */
5563     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5564       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5565     }
5566 
5567     /* Use the standard inner loop. */
5568     assert( p->pEList==pEList );
5569     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5570                     sqlite3WhereContinueLabel(pWInfo),
5571                     sqlite3WhereBreakLabel(pWInfo));
5572 
5573     /* End the database scan loop.
5574     */
5575     sqlite3WhereEnd(pWInfo);
5576   }else{
5577     /* This case when there exist aggregate functions or a GROUP BY clause
5578     ** or both */
5579     NameContext sNC;    /* Name context for processing aggregate information */
5580     int iAMem;          /* First Mem address for storing current GROUP BY */
5581     int iBMem;          /* First Mem address for previous GROUP BY */
5582     int iUseFlag;       /* Mem address holding flag indicating that at least
5583                         ** one row of the input to the aggregator has been
5584                         ** processed */
5585     int iAbortFlag;     /* Mem address which causes query abort if positive */
5586     int groupBySort;    /* Rows come from source in GROUP BY order */
5587     int addrEnd;        /* End of processing for this SELECT */
5588     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5589     int sortOut = 0;    /* Output register from the sorter */
5590     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5591 
5592     /* Remove any and all aliases between the result set and the
5593     ** GROUP BY clause.
5594     */
5595     if( pGroupBy ){
5596       int k;                        /* Loop counter */
5597       struct ExprList_item *pItem;  /* For looping over expression in a list */
5598 
5599       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5600         pItem->u.x.iAlias = 0;
5601       }
5602       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5603         pItem->u.x.iAlias = 0;
5604       }
5605       assert( 66==sqlite3LogEst(100) );
5606       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5607     }else{
5608       assert( 0==sqlite3LogEst(1) );
5609       p->nSelectRow = 0;
5610     }
5611 
5612     /* If there is both a GROUP BY and an ORDER BY clause and they are
5613     ** identical, then it may be possible to disable the ORDER BY clause
5614     ** on the grounds that the GROUP BY will cause elements to come out
5615     ** in the correct order. It also may not - the GROUP BY might use a
5616     ** database index that causes rows to be grouped together as required
5617     ** but not actually sorted. Either way, record the fact that the
5618     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5619     ** variable.  */
5620     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5621       orderByGrp = 1;
5622     }
5623 
5624     /* Create a label to jump to when we want to abort the query */
5625     addrEnd = sqlite3VdbeMakeLabel(v);
5626 
5627     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5628     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5629     ** SELECT statement.
5630     */
5631     memset(&sNC, 0, sizeof(sNC));
5632     sNC.pParse = pParse;
5633     sNC.pSrcList = pTabList;
5634     sNC.pAggInfo = &sAggInfo;
5635     sAggInfo.mnReg = pParse->nMem+1;
5636     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5637     sAggInfo.pGroupBy = pGroupBy;
5638     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5639     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5640     if( pHaving ){
5641       if( pGroupBy ){
5642         assert( pWhere==p->pWhere );
5643         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5644         pWhere = p->pWhere;
5645       }
5646       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5647     }
5648     sAggInfo.nAccumulator = sAggInfo.nColumn;
5649     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5650       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5651     }else{
5652       minMaxFlag = WHERE_ORDERBY_NORMAL;
5653     }
5654     for(i=0; i<sAggInfo.nFunc; i++){
5655       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5656       sNC.ncFlags |= NC_InAggFunc;
5657       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5658       sNC.ncFlags &= ~NC_InAggFunc;
5659     }
5660     sAggInfo.mxReg = pParse->nMem;
5661     if( db->mallocFailed ) goto select_end;
5662 #if SELECTTRACE_ENABLED
5663     if( sqlite3SelectTrace & 0x400 ){
5664       int ii;
5665       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5666       sqlite3TreeViewSelect(0, p, 0);
5667       for(ii=0; ii<sAggInfo.nColumn; ii++){
5668         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5669             ii, sAggInfo.aCol[ii].iMem);
5670         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5671       }
5672       for(ii=0; ii<sAggInfo.nFunc; ii++){
5673         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5674             ii, sAggInfo.aFunc[ii].iMem);
5675         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5676       }
5677     }
5678 #endif
5679 
5680 
5681     /* Processing for aggregates with GROUP BY is very different and
5682     ** much more complex than aggregates without a GROUP BY.
5683     */
5684     if( pGroupBy ){
5685       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5686       int addr1;          /* A-vs-B comparision jump */
5687       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5688       int regOutputRow;   /* Return address register for output subroutine */
5689       int addrSetAbort;   /* Set the abort flag and return */
5690       int addrTopOfLoop;  /* Top of the input loop */
5691       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5692       int addrReset;      /* Subroutine for resetting the accumulator */
5693       int regReset;       /* Return address register for reset subroutine */
5694 
5695       /* If there is a GROUP BY clause we might need a sorting index to
5696       ** implement it.  Allocate that sorting index now.  If it turns out
5697       ** that we do not need it after all, the OP_SorterOpen instruction
5698       ** will be converted into a Noop.
5699       */
5700       sAggInfo.sortingIdx = pParse->nTab++;
5701       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5702       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5703           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5704           0, (char*)pKeyInfo, P4_KEYINFO);
5705 
5706       /* Initialize memory locations used by GROUP BY aggregate processing
5707       */
5708       iUseFlag = ++pParse->nMem;
5709       iAbortFlag = ++pParse->nMem;
5710       regOutputRow = ++pParse->nMem;
5711       addrOutputRow = sqlite3VdbeMakeLabel(v);
5712       regReset = ++pParse->nMem;
5713       addrReset = sqlite3VdbeMakeLabel(v);
5714       iAMem = pParse->nMem + 1;
5715       pParse->nMem += pGroupBy->nExpr;
5716       iBMem = pParse->nMem + 1;
5717       pParse->nMem += pGroupBy->nExpr;
5718       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5719       VdbeComment((v, "clear abort flag"));
5720       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5721       VdbeComment((v, "indicate accumulator empty"));
5722       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5723 
5724       /* Begin a loop that will extract all source rows in GROUP BY order.
5725       ** This might involve two separate loops with an OP_Sort in between, or
5726       ** it might be a single loop that uses an index to extract information
5727       ** in the right order to begin with.
5728       */
5729       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5730       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5731           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5732       );
5733       if( pWInfo==0 ) goto select_end;
5734       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5735         /* The optimizer is able to deliver rows in group by order so
5736         ** we do not have to sort.  The OP_OpenEphemeral table will be
5737         ** cancelled later because we still need to use the pKeyInfo
5738         */
5739         groupBySort = 0;
5740       }else{
5741         /* Rows are coming out in undetermined order.  We have to push
5742         ** each row into a sorting index, terminate the first loop,
5743         ** then loop over the sorting index in order to get the output
5744         ** in sorted order
5745         */
5746         int regBase;
5747         int regRecord;
5748         int nCol;
5749         int nGroupBy;
5750 
5751         explainTempTable(pParse,
5752             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5753                     "DISTINCT" : "GROUP BY");
5754 
5755         groupBySort = 1;
5756         nGroupBy = pGroupBy->nExpr;
5757         nCol = nGroupBy;
5758         j = nGroupBy;
5759         for(i=0; i<sAggInfo.nColumn; i++){
5760           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5761             nCol++;
5762             j++;
5763           }
5764         }
5765         regBase = sqlite3GetTempRange(pParse, nCol);
5766         sqlite3ExprCacheClear(pParse);
5767         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5768         j = nGroupBy;
5769         for(i=0; i<sAggInfo.nColumn; i++){
5770           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5771           if( pCol->iSorterColumn>=j ){
5772             int r1 = j + regBase;
5773             sqlite3ExprCodeGetColumnToReg(pParse,
5774                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5775             j++;
5776           }
5777         }
5778         regRecord = sqlite3GetTempReg(pParse);
5779         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5780         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5781         sqlite3ReleaseTempReg(pParse, regRecord);
5782         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5783         sqlite3WhereEnd(pWInfo);
5784         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5785         sortOut = sqlite3GetTempReg(pParse);
5786         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5787         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5788         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5789         sAggInfo.useSortingIdx = 1;
5790         sqlite3ExprCacheClear(pParse);
5791 
5792       }
5793 
5794       /* If the index or temporary table used by the GROUP BY sort
5795       ** will naturally deliver rows in the order required by the ORDER BY
5796       ** clause, cancel the ephemeral table open coded earlier.
5797       **
5798       ** This is an optimization - the correct answer should result regardless.
5799       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5800       ** disable this optimization for testing purposes.  */
5801       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5802        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5803       ){
5804         sSort.pOrderBy = 0;
5805         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5806       }
5807 
5808       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5809       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5810       ** Then compare the current GROUP BY terms against the GROUP BY terms
5811       ** from the previous row currently stored in a0, a1, a2...
5812       */
5813       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5814       sqlite3ExprCacheClear(pParse);
5815       if( groupBySort ){
5816         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5817                           sortOut, sortPTab);
5818       }
5819       for(j=0; j<pGroupBy->nExpr; j++){
5820         if( groupBySort ){
5821           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5822         }else{
5823           sAggInfo.directMode = 1;
5824           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5825         }
5826       }
5827       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5828                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5829       addr1 = sqlite3VdbeCurrentAddr(v);
5830       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5831 
5832       /* Generate code that runs whenever the GROUP BY changes.
5833       ** Changes in the GROUP BY are detected by the previous code
5834       ** block.  If there were no changes, this block is skipped.
5835       **
5836       ** This code copies current group by terms in b0,b1,b2,...
5837       ** over to a0,a1,a2.  It then calls the output subroutine
5838       ** and resets the aggregate accumulator registers in preparation
5839       ** for the next GROUP BY batch.
5840       */
5841       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5842       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5843       VdbeComment((v, "output one row"));
5844       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5845       VdbeComment((v, "check abort flag"));
5846       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5847       VdbeComment((v, "reset accumulator"));
5848 
5849       /* Update the aggregate accumulators based on the content of
5850       ** the current row
5851       */
5852       sqlite3VdbeJumpHere(v, addr1);
5853       updateAccumulator(pParse, &sAggInfo);
5854       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5855       VdbeComment((v, "indicate data in accumulator"));
5856 
5857       /* End of the loop
5858       */
5859       if( groupBySort ){
5860         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5861         VdbeCoverage(v);
5862       }else{
5863         sqlite3WhereEnd(pWInfo);
5864         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5865       }
5866 
5867       /* Output the final row of result
5868       */
5869       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5870       VdbeComment((v, "output final row"));
5871 
5872       /* Jump over the subroutines
5873       */
5874       sqlite3VdbeGoto(v, addrEnd);
5875 
5876       /* Generate a subroutine that outputs a single row of the result
5877       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5878       ** is less than or equal to zero, the subroutine is a no-op.  If
5879       ** the processing calls for the query to abort, this subroutine
5880       ** increments the iAbortFlag memory location before returning in
5881       ** order to signal the caller to abort.
5882       */
5883       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5884       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5885       VdbeComment((v, "set abort flag"));
5886       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5887       sqlite3VdbeResolveLabel(v, addrOutputRow);
5888       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5889       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5890       VdbeCoverage(v);
5891       VdbeComment((v, "Groupby result generator entry point"));
5892       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5893       finalizeAggFunctions(pParse, &sAggInfo);
5894       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5895       selectInnerLoop(pParse, p, -1, &sSort,
5896                       &sDistinct, pDest,
5897                       addrOutputRow+1, addrSetAbort);
5898       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5899       VdbeComment((v, "end groupby result generator"));
5900 
5901       /* Generate a subroutine that will reset the group-by accumulator
5902       */
5903       sqlite3VdbeResolveLabel(v, addrReset);
5904       resetAccumulator(pParse, &sAggInfo);
5905       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5906 
5907     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5908     else {
5909 #ifndef SQLITE_OMIT_BTREECOUNT
5910       Table *pTab;
5911       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5912         /* If isSimpleCount() returns a pointer to a Table structure, then
5913         ** the SQL statement is of the form:
5914         **
5915         **   SELECT count(*) FROM <tbl>
5916         **
5917         ** where the Table structure returned represents table <tbl>.
5918         **
5919         ** This statement is so common that it is optimized specially. The
5920         ** OP_Count instruction is executed either on the intkey table that
5921         ** contains the data for table <tbl> or on one of its indexes. It
5922         ** is better to execute the op on an index, as indexes are almost
5923         ** always spread across less pages than their corresponding tables.
5924         */
5925         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5926         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5927         Index *pIdx;                         /* Iterator variable */
5928         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5929         Index *pBest = 0;                    /* Best index found so far */
5930         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5931 
5932         sqlite3CodeVerifySchema(pParse, iDb);
5933         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5934 
5935         /* Search for the index that has the lowest scan cost.
5936         **
5937         ** (2011-04-15) Do not do a full scan of an unordered index.
5938         **
5939         ** (2013-10-03) Do not count the entries in a partial index.
5940         **
5941         ** In practice the KeyInfo structure will not be used. It is only
5942         ** passed to keep OP_OpenRead happy.
5943         */
5944         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5945         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5946           if( pIdx->bUnordered==0
5947            && pIdx->szIdxRow<pTab->szTabRow
5948            && pIdx->pPartIdxWhere==0
5949            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5950           ){
5951             pBest = pIdx;
5952           }
5953         }
5954         if( pBest ){
5955           iRoot = pBest->tnum;
5956           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5957         }
5958 
5959         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5960         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5961         if( pKeyInfo ){
5962           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5963         }
5964         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5965         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5966         explainSimpleCount(pParse, pTab, pBest);
5967       }else
5968 #endif /* SQLITE_OMIT_BTREECOUNT */
5969       {
5970         /* This case runs if the aggregate has no GROUP BY clause.  The
5971         ** processing is much simpler since there is only a single row
5972         ** of output.
5973         */
5974         assert( p->pGroupBy==0 );
5975         resetAccumulator(pParse, &sAggInfo);
5976 
5977         /* If this query is a candidate for the min/max optimization, then
5978         ** minMaxFlag will have been previously set to either
5979         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
5980         ** be an appropriate ORDER BY expression for the optimization.
5981         */
5982         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
5983         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
5984 
5985         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
5986                                    0, minMaxFlag, 0);
5987         if( pWInfo==0 ){
5988           goto select_end;
5989         }
5990         updateAccumulator(pParse, &sAggInfo);
5991         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5992           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5993           VdbeComment((v, "%s() by index",
5994                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
5995         }
5996         sqlite3WhereEnd(pWInfo);
5997         finalizeAggFunctions(pParse, &sAggInfo);
5998       }
5999 
6000       sSort.pOrderBy = 0;
6001       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6002       selectInnerLoop(pParse, p, -1, 0, 0,
6003                       pDest, addrEnd, addrEnd);
6004     }
6005     sqlite3VdbeResolveLabel(v, addrEnd);
6006 
6007   } /* endif aggregate query */
6008 
6009   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6010     explainTempTable(pParse, "DISTINCT");
6011   }
6012 
6013   /* If there is an ORDER BY clause, then we need to sort the results
6014   ** and send them to the callback one by one.
6015   */
6016   if( sSort.pOrderBy ){
6017     explainTempTable(pParse,
6018                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6019     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6020   }
6021 
6022   /* Jump here to skip this query
6023   */
6024   sqlite3VdbeResolveLabel(v, iEnd);
6025 
6026   /* The SELECT has been coded. If there is an error in the Parse structure,
6027   ** set the return code to 1. Otherwise 0. */
6028   rc = (pParse->nErr>0);
6029 
6030   /* Control jumps to here if an error is encountered above, or upon
6031   ** successful coding of the SELECT.
6032   */
6033 select_end:
6034   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6035   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6036   sqlite3DbFree(db, sAggInfo.aCol);
6037   sqlite3DbFree(db, sAggInfo.aFunc);
6038 #if SELECTTRACE_ENABLED
6039   SELECTTRACE(1,pParse,p,("end processing\n"));
6040   pParse->nSelectIndent--;
6041 #endif
6042   return rc;
6043 }
6044