1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 78 if( bFree ) sqlite3DbFreeNN(db, p); 79 p = pPrior; 80 bFree = 1; 81 } 82 } 83 84 /* 85 ** Initialize a SelectDest structure. 86 */ 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 88 pDest->eDest = (u8)eDest; 89 pDest->iSDParm = iParm; 90 pDest->zAffSdst = 0; 91 pDest->iSdst = 0; 92 pDest->nSdst = 0; 93 } 94 95 96 /* 97 ** Allocate a new Select structure and return a pointer to that 98 ** structure. 99 */ 100 Select *sqlite3SelectNew( 101 Parse *pParse, /* Parsing context */ 102 ExprList *pEList, /* which columns to include in the result */ 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 104 Expr *pWhere, /* the WHERE clause */ 105 ExprList *pGroupBy, /* the GROUP BY clause */ 106 Expr *pHaving, /* the HAVING clause */ 107 ExprList *pOrderBy, /* the ORDER BY clause */ 108 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 109 Expr *pLimit /* LIMIT value. NULL means not used */ 110 ){ 111 Select *pNew; 112 Select standin; 113 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 114 if( pNew==0 ){ 115 assert( pParse->db->mallocFailed ); 116 pNew = &standin; 117 } 118 if( pEList==0 ){ 119 pEList = sqlite3ExprListAppend(pParse, 0, 120 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 121 } 122 pNew->pEList = pEList; 123 pNew->op = TK_SELECT; 124 pNew->selFlags = selFlags; 125 pNew->iLimit = 0; 126 pNew->iOffset = 0; 127 #if SELECTTRACE_ENABLED 128 pNew->zSelName[0] = 0; 129 #endif 130 pNew->addrOpenEphm[0] = -1; 131 pNew->addrOpenEphm[1] = -1; 132 pNew->nSelectRow = 0; 133 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 134 pNew->pSrc = pSrc; 135 pNew->pWhere = pWhere; 136 pNew->pGroupBy = pGroupBy; 137 pNew->pHaving = pHaving; 138 pNew->pOrderBy = pOrderBy; 139 pNew->pPrior = 0; 140 pNew->pNext = 0; 141 pNew->pLimit = pLimit; 142 pNew->pWith = 0; 143 if( pParse->db->mallocFailed ) { 144 clearSelect(pParse->db, pNew, pNew!=&standin); 145 pNew = 0; 146 }else{ 147 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 148 } 149 assert( pNew!=&standin ); 150 return pNew; 151 } 152 153 #if SELECTTRACE_ENABLED 154 /* 155 ** Set the name of a Select object 156 */ 157 void sqlite3SelectSetName(Select *p, const char *zName){ 158 if( p && zName ){ 159 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 160 } 161 } 162 #endif 163 164 165 /* 166 ** Delete the given Select structure and all of its substructures. 167 */ 168 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 169 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 170 } 171 172 /* 173 ** Return a pointer to the right-most SELECT statement in a compound. 174 */ 175 static Select *findRightmost(Select *p){ 176 while( p->pNext ) p = p->pNext; 177 return p; 178 } 179 180 /* 181 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 182 ** type of join. Return an integer constant that expresses that type 183 ** in terms of the following bit values: 184 ** 185 ** JT_INNER 186 ** JT_CROSS 187 ** JT_OUTER 188 ** JT_NATURAL 189 ** JT_LEFT 190 ** JT_RIGHT 191 ** 192 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 193 ** 194 ** If an illegal or unsupported join type is seen, then still return 195 ** a join type, but put an error in the pParse structure. 196 */ 197 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 198 int jointype = 0; 199 Token *apAll[3]; 200 Token *p; 201 /* 0123456789 123456789 123456789 123 */ 202 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 203 static const struct { 204 u8 i; /* Beginning of keyword text in zKeyText[] */ 205 u8 nChar; /* Length of the keyword in characters */ 206 u8 code; /* Join type mask */ 207 } aKeyword[] = { 208 /* natural */ { 0, 7, JT_NATURAL }, 209 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 210 /* outer */ { 10, 5, JT_OUTER }, 211 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 212 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 213 /* inner */ { 23, 5, JT_INNER }, 214 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 215 }; 216 int i, j; 217 apAll[0] = pA; 218 apAll[1] = pB; 219 apAll[2] = pC; 220 for(i=0; i<3 && apAll[i]; i++){ 221 p = apAll[i]; 222 for(j=0; j<ArraySize(aKeyword); j++){ 223 if( p->n==aKeyword[j].nChar 224 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 225 jointype |= aKeyword[j].code; 226 break; 227 } 228 } 229 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 230 if( j>=ArraySize(aKeyword) ){ 231 jointype |= JT_ERROR; 232 break; 233 } 234 } 235 if( 236 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 237 (jointype & JT_ERROR)!=0 238 ){ 239 const char *zSp = " "; 240 assert( pB!=0 ); 241 if( pC==0 ){ zSp++; } 242 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 243 "%T %T%s%T", pA, pB, zSp, pC); 244 jointype = JT_INNER; 245 }else if( (jointype & JT_OUTER)!=0 246 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 247 sqlite3ErrorMsg(pParse, 248 "RIGHT and FULL OUTER JOINs are not currently supported"); 249 jointype = JT_INNER; 250 } 251 return jointype; 252 } 253 254 /* 255 ** Return the index of a column in a table. Return -1 if the column 256 ** is not contained in the table. 257 */ 258 static int columnIndex(Table *pTab, const char *zCol){ 259 int i; 260 for(i=0; i<pTab->nCol; i++){ 261 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 262 } 263 return -1; 264 } 265 266 /* 267 ** Search the first N tables in pSrc, from left to right, looking for a 268 ** table that has a column named zCol. 269 ** 270 ** When found, set *piTab and *piCol to the table index and column index 271 ** of the matching column and return TRUE. 272 ** 273 ** If not found, return FALSE. 274 */ 275 static int tableAndColumnIndex( 276 SrcList *pSrc, /* Array of tables to search */ 277 int N, /* Number of tables in pSrc->a[] to search */ 278 const char *zCol, /* Name of the column we are looking for */ 279 int *piTab, /* Write index of pSrc->a[] here */ 280 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 281 ){ 282 int i; /* For looping over tables in pSrc */ 283 int iCol; /* Index of column matching zCol */ 284 285 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 286 for(i=0; i<N; i++){ 287 iCol = columnIndex(pSrc->a[i].pTab, zCol); 288 if( iCol>=0 ){ 289 if( piTab ){ 290 *piTab = i; 291 *piCol = iCol; 292 } 293 return 1; 294 } 295 } 296 return 0; 297 } 298 299 /* 300 ** This function is used to add terms implied by JOIN syntax to the 301 ** WHERE clause expression of a SELECT statement. The new term, which 302 ** is ANDed with the existing WHERE clause, is of the form: 303 ** 304 ** (tab1.col1 = tab2.col2) 305 ** 306 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 307 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 308 ** column iColRight of tab2. 309 */ 310 static void addWhereTerm( 311 Parse *pParse, /* Parsing context */ 312 SrcList *pSrc, /* List of tables in FROM clause */ 313 int iLeft, /* Index of first table to join in pSrc */ 314 int iColLeft, /* Index of column in first table */ 315 int iRight, /* Index of second table in pSrc */ 316 int iColRight, /* Index of column in second table */ 317 int isOuterJoin, /* True if this is an OUTER join */ 318 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 319 ){ 320 sqlite3 *db = pParse->db; 321 Expr *pE1; 322 Expr *pE2; 323 Expr *pEq; 324 325 assert( iLeft<iRight ); 326 assert( pSrc->nSrc>iRight ); 327 assert( pSrc->a[iLeft].pTab ); 328 assert( pSrc->a[iRight].pTab ); 329 330 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 331 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 332 333 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 334 if( pEq && isOuterJoin ){ 335 ExprSetProperty(pEq, EP_FromJoin); 336 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 337 ExprSetVVAProperty(pEq, EP_NoReduce); 338 pEq->iRightJoinTable = (i16)pE2->iTable; 339 } 340 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 341 } 342 343 /* 344 ** Set the EP_FromJoin property on all terms of the given expression. 345 ** And set the Expr.iRightJoinTable to iTable for every term in the 346 ** expression. 347 ** 348 ** The EP_FromJoin property is used on terms of an expression to tell 349 ** the LEFT OUTER JOIN processing logic that this term is part of the 350 ** join restriction specified in the ON or USING clause and not a part 351 ** of the more general WHERE clause. These terms are moved over to the 352 ** WHERE clause during join processing but we need to remember that they 353 ** originated in the ON or USING clause. 354 ** 355 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 356 ** expression depends on table iRightJoinTable even if that table is not 357 ** explicitly mentioned in the expression. That information is needed 358 ** for cases like this: 359 ** 360 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 361 ** 362 ** The where clause needs to defer the handling of the t1.x=5 363 ** term until after the t2 loop of the join. In that way, a 364 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 365 ** defer the handling of t1.x=5, it will be processed immediately 366 ** after the t1 loop and rows with t1.x!=5 will never appear in 367 ** the output, which is incorrect. 368 */ 369 static void setJoinExpr(Expr *p, int iTable){ 370 while( p ){ 371 ExprSetProperty(p, EP_FromJoin); 372 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 373 ExprSetVVAProperty(p, EP_NoReduce); 374 p->iRightJoinTable = (i16)iTable; 375 if( p->op==TK_FUNCTION && p->x.pList ){ 376 int i; 377 for(i=0; i<p->x.pList->nExpr; i++){ 378 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 379 } 380 } 381 setJoinExpr(p->pLeft, iTable); 382 p = p->pRight; 383 } 384 } 385 386 /* 387 ** This routine processes the join information for a SELECT statement. 388 ** ON and USING clauses are converted into extra terms of the WHERE clause. 389 ** NATURAL joins also create extra WHERE clause terms. 390 ** 391 ** The terms of a FROM clause are contained in the Select.pSrc structure. 392 ** The left most table is the first entry in Select.pSrc. The right-most 393 ** table is the last entry. The join operator is held in the entry to 394 ** the left. Thus entry 0 contains the join operator for the join between 395 ** entries 0 and 1. Any ON or USING clauses associated with the join are 396 ** also attached to the left entry. 397 ** 398 ** This routine returns the number of errors encountered. 399 */ 400 static int sqliteProcessJoin(Parse *pParse, Select *p){ 401 SrcList *pSrc; /* All tables in the FROM clause */ 402 int i, j; /* Loop counters */ 403 struct SrcList_item *pLeft; /* Left table being joined */ 404 struct SrcList_item *pRight; /* Right table being joined */ 405 406 pSrc = p->pSrc; 407 pLeft = &pSrc->a[0]; 408 pRight = &pLeft[1]; 409 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 410 Table *pRightTab = pRight->pTab; 411 int isOuter; 412 413 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 414 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 415 416 /* When the NATURAL keyword is present, add WHERE clause terms for 417 ** every column that the two tables have in common. 418 */ 419 if( pRight->fg.jointype & JT_NATURAL ){ 420 if( pRight->pOn || pRight->pUsing ){ 421 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 422 "an ON or USING clause", 0); 423 return 1; 424 } 425 for(j=0; j<pRightTab->nCol; j++){ 426 char *zName; /* Name of column in the right table */ 427 int iLeft; /* Matching left table */ 428 int iLeftCol; /* Matching column in the left table */ 429 430 zName = pRightTab->aCol[j].zName; 431 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 432 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 433 isOuter, &p->pWhere); 434 } 435 } 436 } 437 438 /* Disallow both ON and USING clauses in the same join 439 */ 440 if( pRight->pOn && pRight->pUsing ){ 441 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 442 "clauses in the same join"); 443 return 1; 444 } 445 446 /* Add the ON clause to the end of the WHERE clause, connected by 447 ** an AND operator. 448 */ 449 if( pRight->pOn ){ 450 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 451 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 452 pRight->pOn = 0; 453 } 454 455 /* Create extra terms on the WHERE clause for each column named 456 ** in the USING clause. Example: If the two tables to be joined are 457 ** A and B and the USING clause names X, Y, and Z, then add this 458 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 459 ** Report an error if any column mentioned in the USING clause is 460 ** not contained in both tables to be joined. 461 */ 462 if( pRight->pUsing ){ 463 IdList *pList = pRight->pUsing; 464 for(j=0; j<pList->nId; j++){ 465 char *zName; /* Name of the term in the USING clause */ 466 int iLeft; /* Table on the left with matching column name */ 467 int iLeftCol; /* Column number of matching column on the left */ 468 int iRightCol; /* Column number of matching column on the right */ 469 470 zName = pList->a[j].zName; 471 iRightCol = columnIndex(pRightTab, zName); 472 if( iRightCol<0 473 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 474 ){ 475 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 476 "not present in both tables", zName); 477 return 1; 478 } 479 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 480 isOuter, &p->pWhere); 481 } 482 } 483 } 484 return 0; 485 } 486 487 /* Forward reference */ 488 static KeyInfo *keyInfoFromExprList( 489 Parse *pParse, /* Parsing context */ 490 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 491 int iStart, /* Begin with this column of pList */ 492 int nExtra /* Add this many extra columns to the end */ 493 ); 494 495 /* 496 ** Generate code that will push the record in registers regData 497 ** through regData+nData-1 onto the sorter. 498 */ 499 static void pushOntoSorter( 500 Parse *pParse, /* Parser context */ 501 SortCtx *pSort, /* Information about the ORDER BY clause */ 502 Select *pSelect, /* The whole SELECT statement */ 503 int regData, /* First register holding data to be sorted */ 504 int regOrigData, /* First register holding data before packing */ 505 int nData, /* Number of elements in the data array */ 506 int nPrefixReg /* No. of reg prior to regData available for use */ 507 ){ 508 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 509 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 510 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 511 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 512 int regBase; /* Regs for sorter record */ 513 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 514 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 515 int op; /* Opcode to add sorter record to sorter */ 516 int iLimit; /* LIMIT counter */ 517 518 assert( bSeq==0 || bSeq==1 ); 519 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 520 if( nPrefixReg ){ 521 assert( nPrefixReg==nExpr+bSeq ); 522 regBase = regData - nExpr - bSeq; 523 }else{ 524 regBase = pParse->nMem + 1; 525 pParse->nMem += nBase; 526 } 527 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 528 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 529 pSort->labelDone = sqlite3VdbeMakeLabel(v); 530 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 531 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 532 if( bSeq ){ 533 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 534 } 535 if( nPrefixReg==0 && nData>0 ){ 536 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 537 } 538 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 539 if( nOBSat>0 ){ 540 int regPrevKey; /* The first nOBSat columns of the previous row */ 541 int addrFirst; /* Address of the OP_IfNot opcode */ 542 int addrJmp; /* Address of the OP_Jump opcode */ 543 VdbeOp *pOp; /* Opcode that opens the sorter */ 544 int nKey; /* Number of sorting key columns, including OP_Sequence */ 545 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 546 547 regPrevKey = pParse->nMem+1; 548 pParse->nMem += pSort->nOBSat; 549 nKey = nExpr - pSort->nOBSat + bSeq; 550 if( bSeq ){ 551 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 552 }else{ 553 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 554 } 555 VdbeCoverage(v); 556 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 557 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 558 if( pParse->db->mallocFailed ) return; 559 pOp->p2 = nKey + nData; 560 pKI = pOp->p4.pKeyInfo; 561 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 562 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 563 testcase( pKI->nAllField > pKI->nKeyField+2 ); 564 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 565 pKI->nAllField-pKI->nKeyField-1); 566 addrJmp = sqlite3VdbeCurrentAddr(v); 567 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 568 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 569 pSort->regReturn = ++pParse->nMem; 570 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 571 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 572 if( iLimit ){ 573 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 574 VdbeCoverage(v); 575 } 576 sqlite3VdbeJumpHere(v, addrFirst); 577 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 578 sqlite3VdbeJumpHere(v, addrJmp); 579 } 580 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 581 op = OP_SorterInsert; 582 }else{ 583 op = OP_IdxInsert; 584 } 585 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 586 regBase+nOBSat, nBase-nOBSat); 587 if( iLimit ){ 588 int addr; 589 int r1 = 0; 590 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 591 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 592 ** fills up, delete the least entry in the sorter after each insert. 593 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 594 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 595 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 596 if( pSort->bOrderedInnerLoop ){ 597 r1 = ++pParse->nMem; 598 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 599 VdbeComment((v, "seq")); 600 } 601 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 602 if( pSort->bOrderedInnerLoop ){ 603 /* If the inner loop is driven by an index such that values from 604 ** the same iteration of the inner loop are in sorted order, then 605 ** immediately jump to the next iteration of an inner loop if the 606 ** entry from the current iteration does not fit into the top 607 ** LIMIT+OFFSET entries of the sorter. */ 608 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 609 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 610 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 611 VdbeCoverage(v); 612 } 613 sqlite3VdbeJumpHere(v, addr); 614 } 615 } 616 617 /* 618 ** Add code to implement the OFFSET 619 */ 620 static void codeOffset( 621 Vdbe *v, /* Generate code into this VM */ 622 int iOffset, /* Register holding the offset counter */ 623 int iContinue /* Jump here to skip the current record */ 624 ){ 625 if( iOffset>0 ){ 626 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 627 VdbeComment((v, "OFFSET")); 628 } 629 } 630 631 /* 632 ** Add code that will check to make sure the N registers starting at iMem 633 ** form a distinct entry. iTab is a sorting index that holds previously 634 ** seen combinations of the N values. A new entry is made in iTab 635 ** if the current N values are new. 636 ** 637 ** A jump to addrRepeat is made and the N+1 values are popped from the 638 ** stack if the top N elements are not distinct. 639 */ 640 static void codeDistinct( 641 Parse *pParse, /* Parsing and code generating context */ 642 int iTab, /* A sorting index used to test for distinctness */ 643 int addrRepeat, /* Jump to here if not distinct */ 644 int N, /* Number of elements */ 645 int iMem /* First element */ 646 ){ 647 Vdbe *v; 648 int r1; 649 650 v = pParse->pVdbe; 651 r1 = sqlite3GetTempReg(pParse); 652 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 653 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 654 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 655 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 656 sqlite3ReleaseTempReg(pParse, r1); 657 } 658 659 /* 660 ** This routine generates the code for the inside of the inner loop 661 ** of a SELECT. 662 ** 663 ** If srcTab is negative, then the p->pEList expressions 664 ** are evaluated in order to get the data for this row. If srcTab is 665 ** zero or more, then data is pulled from srcTab and p->pEList is used only 666 ** to get the number of columns and the collation sequence for each column. 667 */ 668 static void selectInnerLoop( 669 Parse *pParse, /* The parser context */ 670 Select *p, /* The complete select statement being coded */ 671 int srcTab, /* Pull data from this table if non-negative */ 672 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 673 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 674 SelectDest *pDest, /* How to dispose of the results */ 675 int iContinue, /* Jump here to continue with next row */ 676 int iBreak /* Jump here to break out of the inner loop */ 677 ){ 678 Vdbe *v = pParse->pVdbe; 679 int i; 680 int hasDistinct; /* True if the DISTINCT keyword is present */ 681 int eDest = pDest->eDest; /* How to dispose of results */ 682 int iParm = pDest->iSDParm; /* First argument to disposal method */ 683 int nResultCol; /* Number of result columns */ 684 int nPrefixReg = 0; /* Number of extra registers before regResult */ 685 686 /* Usually, regResult is the first cell in an array of memory cells 687 ** containing the current result row. In this case regOrig is set to the 688 ** same value. However, if the results are being sent to the sorter, the 689 ** values for any expressions that are also part of the sort-key are omitted 690 ** from this array. In this case regOrig is set to zero. */ 691 int regResult; /* Start of memory holding current results */ 692 int regOrig; /* Start of memory holding full result (or 0) */ 693 694 assert( v ); 695 assert( p->pEList!=0 ); 696 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 697 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 698 if( pSort==0 && !hasDistinct ){ 699 assert( iContinue!=0 ); 700 codeOffset(v, p->iOffset, iContinue); 701 } 702 703 /* Pull the requested columns. 704 */ 705 nResultCol = p->pEList->nExpr; 706 707 if( pDest->iSdst==0 ){ 708 if( pSort ){ 709 nPrefixReg = pSort->pOrderBy->nExpr; 710 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 711 pParse->nMem += nPrefixReg; 712 } 713 pDest->iSdst = pParse->nMem+1; 714 pParse->nMem += nResultCol; 715 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 716 /* This is an error condition that can result, for example, when a SELECT 717 ** on the right-hand side of an INSERT contains more result columns than 718 ** there are columns in the table on the left. The error will be caught 719 ** and reported later. But we need to make sure enough memory is allocated 720 ** to avoid other spurious errors in the meantime. */ 721 pParse->nMem += nResultCol; 722 } 723 pDest->nSdst = nResultCol; 724 regOrig = regResult = pDest->iSdst; 725 if( srcTab>=0 ){ 726 for(i=0; i<nResultCol; i++){ 727 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 728 VdbeComment((v, "%s", p->pEList->a[i].zName)); 729 } 730 }else if( eDest!=SRT_Exists ){ 731 /* If the destination is an EXISTS(...) expression, the actual 732 ** values returned by the SELECT are not required. 733 */ 734 u8 ecelFlags; 735 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 736 ecelFlags = SQLITE_ECEL_DUP; 737 }else{ 738 ecelFlags = 0; 739 } 740 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 741 /* For each expression in p->pEList that is a copy of an expression in 742 ** the ORDER BY clause (pSort->pOrderBy), set the associated 743 ** iOrderByCol value to one more than the index of the ORDER BY 744 ** expression within the sort-key that pushOntoSorter() will generate. 745 ** This allows the p->pEList field to be omitted from the sorted record, 746 ** saving space and CPU cycles. */ 747 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 748 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 749 int j; 750 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 751 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 752 } 753 } 754 regOrig = 0; 755 assert( eDest==SRT_Set || eDest==SRT_Mem 756 || eDest==SRT_Coroutine || eDest==SRT_Output ); 757 } 758 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult, 759 0,ecelFlags); 760 } 761 762 /* If the DISTINCT keyword was present on the SELECT statement 763 ** and this row has been seen before, then do not make this row 764 ** part of the result. 765 */ 766 if( hasDistinct ){ 767 switch( pDistinct->eTnctType ){ 768 case WHERE_DISTINCT_ORDERED: { 769 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 770 int iJump; /* Jump destination */ 771 int regPrev; /* Previous row content */ 772 773 /* Allocate space for the previous row */ 774 regPrev = pParse->nMem+1; 775 pParse->nMem += nResultCol; 776 777 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 778 ** sets the MEM_Cleared bit on the first register of the 779 ** previous value. This will cause the OP_Ne below to always 780 ** fail on the first iteration of the loop even if the first 781 ** row is all NULLs. 782 */ 783 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 784 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 785 pOp->opcode = OP_Null; 786 pOp->p1 = 1; 787 pOp->p2 = regPrev; 788 789 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 790 for(i=0; i<nResultCol; i++){ 791 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 792 if( i<nResultCol-1 ){ 793 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 794 VdbeCoverage(v); 795 }else{ 796 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 797 VdbeCoverage(v); 798 } 799 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 800 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 801 } 802 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 803 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 804 break; 805 } 806 807 case WHERE_DISTINCT_UNIQUE: { 808 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 809 break; 810 } 811 812 default: { 813 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 814 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 815 regResult); 816 break; 817 } 818 } 819 if( pSort==0 ){ 820 codeOffset(v, p->iOffset, iContinue); 821 } 822 } 823 824 switch( eDest ){ 825 /* In this mode, write each query result to the key of the temporary 826 ** table iParm. 827 */ 828 #ifndef SQLITE_OMIT_COMPOUND_SELECT 829 case SRT_Union: { 830 int r1; 831 r1 = sqlite3GetTempReg(pParse); 832 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 833 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 834 sqlite3ReleaseTempReg(pParse, r1); 835 break; 836 } 837 838 /* Construct a record from the query result, but instead of 839 ** saving that record, use it as a key to delete elements from 840 ** the temporary table iParm. 841 */ 842 case SRT_Except: { 843 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 844 break; 845 } 846 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 847 848 /* Store the result as data using a unique key. 849 */ 850 case SRT_Fifo: 851 case SRT_DistFifo: 852 case SRT_Table: 853 case SRT_EphemTab: { 854 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 855 testcase( eDest==SRT_Table ); 856 testcase( eDest==SRT_EphemTab ); 857 testcase( eDest==SRT_Fifo ); 858 testcase( eDest==SRT_DistFifo ); 859 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 860 #ifndef SQLITE_OMIT_CTE 861 if( eDest==SRT_DistFifo ){ 862 /* If the destination is DistFifo, then cursor (iParm+1) is open 863 ** on an ephemeral index. If the current row is already present 864 ** in the index, do not write it to the output. If not, add the 865 ** current row to the index and proceed with writing it to the 866 ** output table as well. */ 867 int addr = sqlite3VdbeCurrentAddr(v) + 4; 868 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 869 VdbeCoverage(v); 870 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 871 assert( pSort==0 ); 872 } 873 #endif 874 if( pSort ){ 875 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 876 }else{ 877 int r2 = sqlite3GetTempReg(pParse); 878 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 879 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 880 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 881 sqlite3ReleaseTempReg(pParse, r2); 882 } 883 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 884 break; 885 } 886 887 #ifndef SQLITE_OMIT_SUBQUERY 888 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 889 ** then there should be a single item on the stack. Write this 890 ** item into the set table with bogus data. 891 */ 892 case SRT_Set: { 893 if( pSort ){ 894 /* At first glance you would think we could optimize out the 895 ** ORDER BY in this case since the order of entries in the set 896 ** does not matter. But there might be a LIMIT clause, in which 897 ** case the order does matter */ 898 pushOntoSorter( 899 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 900 }else{ 901 int r1 = sqlite3GetTempReg(pParse); 902 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 903 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 904 r1, pDest->zAffSdst, nResultCol); 905 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 906 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 907 sqlite3ReleaseTempReg(pParse, r1); 908 } 909 break; 910 } 911 912 /* If any row exist in the result set, record that fact and abort. 913 */ 914 case SRT_Exists: { 915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 916 /* The LIMIT clause will terminate the loop for us */ 917 break; 918 } 919 920 /* If this is a scalar select that is part of an expression, then 921 ** store the results in the appropriate memory cell or array of 922 ** memory cells and break out of the scan loop. 923 */ 924 case SRT_Mem: { 925 if( pSort ){ 926 assert( nResultCol<=pDest->nSdst ); 927 pushOntoSorter( 928 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 929 }else{ 930 assert( nResultCol==pDest->nSdst ); 931 assert( regResult==iParm ); 932 /* The LIMIT clause will jump out of the loop for us */ 933 } 934 break; 935 } 936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 937 938 case SRT_Coroutine: /* Send data to a co-routine */ 939 case SRT_Output: { /* Return the results */ 940 testcase( eDest==SRT_Coroutine ); 941 testcase( eDest==SRT_Output ); 942 if( pSort ){ 943 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 944 nPrefixReg); 945 }else if( eDest==SRT_Coroutine ){ 946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 947 }else{ 948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 950 } 951 break; 952 } 953 954 #ifndef SQLITE_OMIT_CTE 955 /* Write the results into a priority queue that is order according to 956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 958 ** pSO->nExpr columns, then make sure all keys are unique by adding a 959 ** final OP_Sequence column. The last column is the record as a blob. 960 */ 961 case SRT_DistQueue: 962 case SRT_Queue: { 963 int nKey; 964 int r1, r2, r3; 965 int addrTest = 0; 966 ExprList *pSO; 967 pSO = pDest->pOrderBy; 968 assert( pSO ); 969 nKey = pSO->nExpr; 970 r1 = sqlite3GetTempReg(pParse); 971 r2 = sqlite3GetTempRange(pParse, nKey+2); 972 r3 = r2+nKey+1; 973 if( eDest==SRT_DistQueue ){ 974 /* If the destination is DistQueue, then cursor (iParm+1) is open 975 ** on a second ephemeral index that holds all values every previously 976 ** added to the queue. */ 977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 978 regResult, nResultCol); 979 VdbeCoverage(v); 980 } 981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 982 if( eDest==SRT_DistQueue ){ 983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 985 } 986 for(i=0; i<nKey; i++){ 987 sqlite3VdbeAddOp2(v, OP_SCopy, 988 regResult + pSO->a[i].u.x.iOrderByCol - 1, 989 r2+i); 990 } 991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 993 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 995 sqlite3ReleaseTempReg(pParse, r1); 996 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 997 break; 998 } 999 #endif /* SQLITE_OMIT_CTE */ 1000 1001 1002 1003 #if !defined(SQLITE_OMIT_TRIGGER) 1004 /* Discard the results. This is used for SELECT statements inside 1005 ** the body of a TRIGGER. The purpose of such selects is to call 1006 ** user-defined functions that have side effects. We do not care 1007 ** about the actual results of the select. 1008 */ 1009 default: { 1010 assert( eDest==SRT_Discard ); 1011 break; 1012 } 1013 #endif 1014 } 1015 1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1017 ** there is a sorter, in which case the sorter has already limited 1018 ** the output for us. 1019 */ 1020 if( pSort==0 && p->iLimit ){ 1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1022 } 1023 } 1024 1025 /* 1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1027 ** X extra columns. 1028 */ 1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1031 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1032 if( p ){ 1033 p->aSortOrder = (u8*)&p->aColl[N+X]; 1034 p->nKeyField = (u16)N; 1035 p->nAllField = (u16)(N+X); 1036 p->enc = ENC(db); 1037 p->db = db; 1038 p->nRef = 1; 1039 memset(&p[1], 0, nExtra); 1040 }else{ 1041 sqlite3OomFault(db); 1042 } 1043 return p; 1044 } 1045 1046 /* 1047 ** Deallocate a KeyInfo object 1048 */ 1049 void sqlite3KeyInfoUnref(KeyInfo *p){ 1050 if( p ){ 1051 assert( p->nRef>0 ); 1052 p->nRef--; 1053 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1054 } 1055 } 1056 1057 /* 1058 ** Make a new pointer to a KeyInfo object 1059 */ 1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1061 if( p ){ 1062 assert( p->nRef>0 ); 1063 p->nRef++; 1064 } 1065 return p; 1066 } 1067 1068 #ifdef SQLITE_DEBUG 1069 /* 1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1071 ** can only be changed if this is just a single reference to the object. 1072 ** 1073 ** This routine is used only inside of assert() statements. 1074 */ 1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1076 #endif /* SQLITE_DEBUG */ 1077 1078 /* 1079 ** Given an expression list, generate a KeyInfo structure that records 1080 ** the collating sequence for each expression in that expression list. 1081 ** 1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1083 ** KeyInfo structure is appropriate for initializing a virtual index to 1084 ** implement that clause. If the ExprList is the result set of a SELECT 1085 ** then the KeyInfo structure is appropriate for initializing a virtual 1086 ** index to implement a DISTINCT test. 1087 ** 1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1089 ** function is responsible for seeing that this structure is eventually 1090 ** freed. 1091 */ 1092 static KeyInfo *keyInfoFromExprList( 1093 Parse *pParse, /* Parsing context */ 1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1095 int iStart, /* Begin with this column of pList */ 1096 int nExtra /* Add this many extra columns to the end */ 1097 ){ 1098 int nExpr; 1099 KeyInfo *pInfo; 1100 struct ExprList_item *pItem; 1101 sqlite3 *db = pParse->db; 1102 int i; 1103 1104 nExpr = pList->nExpr; 1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1106 if( pInfo ){ 1107 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1109 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1110 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1111 } 1112 } 1113 return pInfo; 1114 } 1115 1116 /* 1117 ** Name of the connection operator, used for error messages. 1118 */ 1119 static const char *selectOpName(int id){ 1120 char *z; 1121 switch( id ){ 1122 case TK_ALL: z = "UNION ALL"; break; 1123 case TK_INTERSECT: z = "INTERSECT"; break; 1124 case TK_EXCEPT: z = "EXCEPT"; break; 1125 default: z = "UNION"; break; 1126 } 1127 return z; 1128 } 1129 1130 #ifndef SQLITE_OMIT_EXPLAIN 1131 /* 1132 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1133 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1134 ** where the caption is of the form: 1135 ** 1136 ** "USE TEMP B-TREE FOR xxx" 1137 ** 1138 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1139 ** is determined by the zUsage argument. 1140 */ 1141 static void explainTempTable(Parse *pParse, const char *zUsage){ 1142 if( pParse->explain==2 ){ 1143 Vdbe *v = pParse->pVdbe; 1144 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1145 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1146 } 1147 } 1148 1149 /* 1150 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1151 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1152 ** in sqlite3Select() to assign values to structure member variables that 1153 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1154 ** code with #ifndef directives. 1155 */ 1156 # define explainSetInteger(a, b) a = b 1157 1158 #else 1159 /* No-op versions of the explainXXX() functions and macros. */ 1160 # define explainTempTable(y,z) 1161 # define explainSetInteger(y,z) 1162 #endif 1163 1164 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1165 /* 1166 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1167 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1168 ** where the caption is of one of the two forms: 1169 ** 1170 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1171 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1172 ** 1173 ** where iSub1 and iSub2 are the integers passed as the corresponding 1174 ** function parameters, and op is the text representation of the parameter 1175 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1176 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1177 ** false, or the second form if it is true. 1178 */ 1179 static void explainComposite( 1180 Parse *pParse, /* Parse context */ 1181 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1182 int iSub1, /* Subquery id 1 */ 1183 int iSub2, /* Subquery id 2 */ 1184 int bUseTmp /* True if a temp table was used */ 1185 ){ 1186 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1187 if( pParse->explain==2 ){ 1188 Vdbe *v = pParse->pVdbe; 1189 char *zMsg = sqlite3MPrintf( 1190 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1191 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1192 ); 1193 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1194 } 1195 } 1196 #else 1197 /* No-op versions of the explainXXX() functions and macros. */ 1198 # define explainComposite(v,w,x,y,z) 1199 #endif 1200 1201 /* 1202 ** If the inner loop was generated using a non-null pOrderBy argument, 1203 ** then the results were placed in a sorter. After the loop is terminated 1204 ** we need to run the sorter and output the results. The following 1205 ** routine generates the code needed to do that. 1206 */ 1207 static void generateSortTail( 1208 Parse *pParse, /* Parsing context */ 1209 Select *p, /* The SELECT statement */ 1210 SortCtx *pSort, /* Information on the ORDER BY clause */ 1211 int nColumn, /* Number of columns of data */ 1212 SelectDest *pDest /* Write the sorted results here */ 1213 ){ 1214 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1215 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1216 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1217 int addr; 1218 int addrOnce = 0; 1219 int iTab; 1220 ExprList *pOrderBy = pSort->pOrderBy; 1221 int eDest = pDest->eDest; 1222 int iParm = pDest->iSDParm; 1223 int regRow; 1224 int regRowid; 1225 int iCol; 1226 int nKey; 1227 int iSortTab; /* Sorter cursor to read from */ 1228 int nSortData; /* Trailing values to read from sorter */ 1229 int i; 1230 int bSeq; /* True if sorter record includes seq. no. */ 1231 struct ExprList_item *aOutEx = p->pEList->a; 1232 1233 assert( addrBreak<0 ); 1234 if( pSort->labelBkOut ){ 1235 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1236 sqlite3VdbeGoto(v, addrBreak); 1237 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1238 } 1239 iTab = pSort->iECursor; 1240 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1241 regRowid = 0; 1242 regRow = pDest->iSdst; 1243 nSortData = nColumn; 1244 }else{ 1245 regRowid = sqlite3GetTempReg(pParse); 1246 regRow = sqlite3GetTempRange(pParse, nColumn); 1247 nSortData = nColumn; 1248 } 1249 nKey = pOrderBy->nExpr - pSort->nOBSat; 1250 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1251 int regSortOut = ++pParse->nMem; 1252 iSortTab = pParse->nTab++; 1253 if( pSort->labelBkOut ){ 1254 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1255 } 1256 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1257 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1258 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1259 VdbeCoverage(v); 1260 codeOffset(v, p->iOffset, addrContinue); 1261 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1262 bSeq = 0; 1263 }else{ 1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1265 codeOffset(v, p->iOffset, addrContinue); 1266 iSortTab = iTab; 1267 bSeq = 1; 1268 } 1269 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1270 int iRead; 1271 if( aOutEx[i].u.x.iOrderByCol ){ 1272 iRead = aOutEx[i].u.x.iOrderByCol-1; 1273 }else{ 1274 iRead = iCol++; 1275 } 1276 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1277 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1278 } 1279 switch( eDest ){ 1280 case SRT_Table: 1281 case SRT_EphemTab: { 1282 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1283 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1284 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1285 break; 1286 } 1287 #ifndef SQLITE_OMIT_SUBQUERY 1288 case SRT_Set: { 1289 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1290 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1291 pDest->zAffSdst, nColumn); 1292 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1293 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1294 break; 1295 } 1296 case SRT_Mem: { 1297 /* The LIMIT clause will terminate the loop for us */ 1298 break; 1299 } 1300 #endif 1301 default: { 1302 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1303 testcase( eDest==SRT_Output ); 1304 testcase( eDest==SRT_Coroutine ); 1305 if( eDest==SRT_Output ){ 1306 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1307 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1308 }else{ 1309 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1310 } 1311 break; 1312 } 1313 } 1314 if( regRowid ){ 1315 if( eDest==SRT_Set ){ 1316 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1317 }else{ 1318 sqlite3ReleaseTempReg(pParse, regRow); 1319 } 1320 sqlite3ReleaseTempReg(pParse, regRowid); 1321 } 1322 /* The bottom of the loop 1323 */ 1324 sqlite3VdbeResolveLabel(v, addrContinue); 1325 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1326 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1327 }else{ 1328 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1329 } 1330 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1331 sqlite3VdbeResolveLabel(v, addrBreak); 1332 } 1333 1334 /* 1335 ** Return a pointer to a string containing the 'declaration type' of the 1336 ** expression pExpr. The string may be treated as static by the caller. 1337 ** 1338 ** Also try to estimate the size of the returned value and return that 1339 ** result in *pEstWidth. 1340 ** 1341 ** The declaration type is the exact datatype definition extracted from the 1342 ** original CREATE TABLE statement if the expression is a column. The 1343 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1344 ** is considered a column can be complex in the presence of subqueries. The 1345 ** result-set expression in all of the following SELECT statements is 1346 ** considered a column by this function. 1347 ** 1348 ** SELECT col FROM tbl; 1349 ** SELECT (SELECT col FROM tbl; 1350 ** SELECT (SELECT col FROM tbl); 1351 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1352 ** 1353 ** The declaration type for any expression other than a column is NULL. 1354 ** 1355 ** This routine has either 3 or 6 parameters depending on whether or not 1356 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1357 */ 1358 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1359 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1360 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1361 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1362 #endif 1363 static const char *columnTypeImpl( 1364 NameContext *pNC, 1365 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1366 Expr *pExpr 1367 #else 1368 Expr *pExpr, 1369 const char **pzOrigDb, 1370 const char **pzOrigTab, 1371 const char **pzOrigCol 1372 #endif 1373 ){ 1374 char const *zType = 0; 1375 int j; 1376 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1377 char const *zOrigDb = 0; 1378 char const *zOrigTab = 0; 1379 char const *zOrigCol = 0; 1380 #endif 1381 1382 assert( pExpr!=0 ); 1383 assert( pNC->pSrcList!=0 ); 1384 switch( pExpr->op ){ 1385 case TK_AGG_COLUMN: 1386 case TK_COLUMN: { 1387 /* The expression is a column. Locate the table the column is being 1388 ** extracted from in NameContext.pSrcList. This table may be real 1389 ** database table or a subquery. 1390 */ 1391 Table *pTab = 0; /* Table structure column is extracted from */ 1392 Select *pS = 0; /* Select the column is extracted from */ 1393 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1394 testcase( pExpr->op==TK_AGG_COLUMN ); 1395 testcase( pExpr->op==TK_COLUMN ); 1396 while( pNC && !pTab ){ 1397 SrcList *pTabList = pNC->pSrcList; 1398 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1399 if( j<pTabList->nSrc ){ 1400 pTab = pTabList->a[j].pTab; 1401 pS = pTabList->a[j].pSelect; 1402 }else{ 1403 pNC = pNC->pNext; 1404 } 1405 } 1406 1407 if( pTab==0 ){ 1408 /* At one time, code such as "SELECT new.x" within a trigger would 1409 ** cause this condition to run. Since then, we have restructured how 1410 ** trigger code is generated and so this condition is no longer 1411 ** possible. However, it can still be true for statements like 1412 ** the following: 1413 ** 1414 ** CREATE TABLE t1(col INTEGER); 1415 ** SELECT (SELECT t1.col) FROM FROM t1; 1416 ** 1417 ** when columnType() is called on the expression "t1.col" in the 1418 ** sub-select. In this case, set the column type to NULL, even 1419 ** though it should really be "INTEGER". 1420 ** 1421 ** This is not a problem, as the column type of "t1.col" is never 1422 ** used. When columnType() is called on the expression 1423 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1424 ** branch below. */ 1425 break; 1426 } 1427 1428 assert( pTab && pExpr->pTab==pTab ); 1429 if( pS ){ 1430 /* The "table" is actually a sub-select or a view in the FROM clause 1431 ** of the SELECT statement. Return the declaration type and origin 1432 ** data for the result-set column of the sub-select. 1433 */ 1434 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1435 /* If iCol is less than zero, then the expression requests the 1436 ** rowid of the sub-select or view. This expression is legal (see 1437 ** test case misc2.2.2) - it always evaluates to NULL. 1438 */ 1439 NameContext sNC; 1440 Expr *p = pS->pEList->a[iCol].pExpr; 1441 sNC.pSrcList = pS->pSrc; 1442 sNC.pNext = pNC; 1443 sNC.pParse = pNC->pParse; 1444 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1445 } 1446 }else{ 1447 /* A real table or a CTE table */ 1448 assert( !pS ); 1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1450 if( iCol<0 ) iCol = pTab->iPKey; 1451 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1452 if( iCol<0 ){ 1453 zType = "INTEGER"; 1454 zOrigCol = "rowid"; 1455 }else{ 1456 zOrigCol = pTab->aCol[iCol].zName; 1457 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1458 } 1459 zOrigTab = pTab->zName; 1460 if( pNC->pParse && pTab->pSchema ){ 1461 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1462 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1463 } 1464 #else 1465 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1466 if( iCol<0 ){ 1467 zType = "INTEGER"; 1468 }else{ 1469 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1470 } 1471 #endif 1472 } 1473 break; 1474 } 1475 #ifndef SQLITE_OMIT_SUBQUERY 1476 case TK_SELECT: { 1477 /* The expression is a sub-select. Return the declaration type and 1478 ** origin info for the single column in the result set of the SELECT 1479 ** statement. 1480 */ 1481 NameContext sNC; 1482 Select *pS = pExpr->x.pSelect; 1483 Expr *p = pS->pEList->a[0].pExpr; 1484 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1485 sNC.pSrcList = pS->pSrc; 1486 sNC.pNext = pNC; 1487 sNC.pParse = pNC->pParse; 1488 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1489 break; 1490 } 1491 #endif 1492 } 1493 1494 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1495 if( pzOrigDb ){ 1496 assert( pzOrigTab && pzOrigCol ); 1497 *pzOrigDb = zOrigDb; 1498 *pzOrigTab = zOrigTab; 1499 *pzOrigCol = zOrigCol; 1500 } 1501 #endif 1502 return zType; 1503 } 1504 1505 /* 1506 ** Generate code that will tell the VDBE the declaration types of columns 1507 ** in the result set. 1508 */ 1509 static void generateColumnTypes( 1510 Parse *pParse, /* Parser context */ 1511 SrcList *pTabList, /* List of tables */ 1512 ExprList *pEList /* Expressions defining the result set */ 1513 ){ 1514 #ifndef SQLITE_OMIT_DECLTYPE 1515 Vdbe *v = pParse->pVdbe; 1516 int i; 1517 NameContext sNC; 1518 sNC.pSrcList = pTabList; 1519 sNC.pParse = pParse; 1520 sNC.pNext = 0; 1521 for(i=0; i<pEList->nExpr; i++){ 1522 Expr *p = pEList->a[i].pExpr; 1523 const char *zType; 1524 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1525 const char *zOrigDb = 0; 1526 const char *zOrigTab = 0; 1527 const char *zOrigCol = 0; 1528 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1529 1530 /* The vdbe must make its own copy of the column-type and other 1531 ** column specific strings, in case the schema is reset before this 1532 ** virtual machine is deleted. 1533 */ 1534 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1535 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1536 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1537 #else 1538 zType = columnType(&sNC, p, 0, 0, 0); 1539 #endif 1540 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1541 } 1542 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1543 } 1544 1545 1546 /* 1547 ** Compute the column names for a SELECT statement. 1548 ** 1549 ** The only guarantee that SQLite makes about column names is that if the 1550 ** column has an AS clause assigning it a name, that will be the name used. 1551 ** That is the only documented guarantee. However, countless applications 1552 ** developed over the years have made baseless assumptions about column names 1553 ** and will break if those assumptions changes. Hence, use extreme caution 1554 ** when modifying this routine to avoid breaking legacy. 1555 ** 1556 ** See Also: sqlite3ColumnsFromExprList() 1557 ** 1558 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1559 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1560 ** applications should operate this way. Nevertheless, we need to support the 1561 ** other modes for legacy: 1562 ** 1563 ** short=OFF, full=OFF: Column name is the text of the expression has it 1564 ** originally appears in the SELECT statement. In 1565 ** other words, the zSpan of the result expression. 1566 ** 1567 ** short=ON, full=OFF: (This is the default setting). If the result 1568 ** refers directly to a table column, then the 1569 ** result column name is just the table column 1570 ** name: COLUMN. Otherwise use zSpan. 1571 ** 1572 ** full=ON, short=ANY: If the result refers directly to a table column, 1573 ** then the result column name with the table name 1574 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1575 */ 1576 static void generateColumnNames( 1577 Parse *pParse, /* Parser context */ 1578 Select *pSelect /* Generate column names for this SELECT statement */ 1579 ){ 1580 Vdbe *v = pParse->pVdbe; 1581 int i; 1582 Table *pTab; 1583 SrcList *pTabList; 1584 ExprList *pEList; 1585 sqlite3 *db = pParse->db; 1586 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1587 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1588 1589 #ifndef SQLITE_OMIT_EXPLAIN 1590 /* If this is an EXPLAIN, skip this step */ 1591 if( pParse->explain ){ 1592 return; 1593 } 1594 #endif 1595 1596 if( pParse->colNamesSet || db->mallocFailed ) return; 1597 /* Column names are determined by the left-most term of a compound select */ 1598 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1599 pTabList = pSelect->pSrc; 1600 pEList = pSelect->pEList; 1601 assert( v!=0 ); 1602 assert( pTabList!=0 ); 1603 pParse->colNamesSet = 1; 1604 fullName = (db->flags & SQLITE_FullColNames)!=0; 1605 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1606 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1607 for(i=0; i<pEList->nExpr; i++){ 1608 Expr *p = pEList->a[i].pExpr; 1609 1610 assert( p!=0 ); 1611 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1612 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1613 if( pEList->a[i].zName ){ 1614 /* An AS clause always takes first priority */ 1615 char *zName = pEList->a[i].zName; 1616 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1617 }else if( srcName && p->op==TK_COLUMN ){ 1618 char *zCol; 1619 int iCol = p->iColumn; 1620 pTab = p->pTab; 1621 assert( pTab!=0 ); 1622 if( iCol<0 ) iCol = pTab->iPKey; 1623 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1624 if( iCol<0 ){ 1625 zCol = "rowid"; 1626 }else{ 1627 zCol = pTab->aCol[iCol].zName; 1628 } 1629 if( fullName ){ 1630 char *zName = 0; 1631 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1632 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1633 }else{ 1634 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1635 } 1636 }else{ 1637 const char *z = pEList->a[i].zSpan; 1638 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1639 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1640 } 1641 } 1642 generateColumnTypes(pParse, pTabList, pEList); 1643 } 1644 1645 /* 1646 ** Given an expression list (which is really the list of expressions 1647 ** that form the result set of a SELECT statement) compute appropriate 1648 ** column names for a table that would hold the expression list. 1649 ** 1650 ** All column names will be unique. 1651 ** 1652 ** Only the column names are computed. Column.zType, Column.zColl, 1653 ** and other fields of Column are zeroed. 1654 ** 1655 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1656 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1657 ** 1658 ** The only guarantee that SQLite makes about column names is that if the 1659 ** column has an AS clause assigning it a name, that will be the name used. 1660 ** That is the only documented guarantee. However, countless applications 1661 ** developed over the years have made baseless assumptions about column names 1662 ** and will break if those assumptions changes. Hence, use extreme caution 1663 ** when modifying this routine to avoid breaking legacy. 1664 ** 1665 ** See Also: generateColumnNames() 1666 */ 1667 int sqlite3ColumnsFromExprList( 1668 Parse *pParse, /* Parsing context */ 1669 ExprList *pEList, /* Expr list from which to derive column names */ 1670 i16 *pnCol, /* Write the number of columns here */ 1671 Column **paCol /* Write the new column list here */ 1672 ){ 1673 sqlite3 *db = pParse->db; /* Database connection */ 1674 int i, j; /* Loop counters */ 1675 u32 cnt; /* Index added to make the name unique */ 1676 Column *aCol, *pCol; /* For looping over result columns */ 1677 int nCol; /* Number of columns in the result set */ 1678 char *zName; /* Column name */ 1679 int nName; /* Size of name in zName[] */ 1680 Hash ht; /* Hash table of column names */ 1681 1682 sqlite3HashInit(&ht); 1683 if( pEList ){ 1684 nCol = pEList->nExpr; 1685 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1686 testcase( aCol==0 ); 1687 if( nCol>32767 ) nCol = 32767; 1688 }else{ 1689 nCol = 0; 1690 aCol = 0; 1691 } 1692 assert( nCol==(i16)nCol ); 1693 *pnCol = nCol; 1694 *paCol = aCol; 1695 1696 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1697 /* Get an appropriate name for the column 1698 */ 1699 if( (zName = pEList->a[i].zName)!=0 ){ 1700 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1701 }else{ 1702 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1703 while( pColExpr->op==TK_DOT ){ 1704 pColExpr = pColExpr->pRight; 1705 assert( pColExpr!=0 ); 1706 } 1707 if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN) 1708 && pColExpr->pTab!=0 1709 ){ 1710 /* For columns use the column name name */ 1711 int iCol = pColExpr->iColumn; 1712 Table *pTab = pColExpr->pTab; 1713 if( iCol<0 ) iCol = pTab->iPKey; 1714 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1715 }else if( pColExpr->op==TK_ID ){ 1716 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1717 zName = pColExpr->u.zToken; 1718 }else{ 1719 /* Use the original text of the column expression as its name */ 1720 zName = pEList->a[i].zSpan; 1721 } 1722 } 1723 if( zName ){ 1724 zName = sqlite3DbStrDup(db, zName); 1725 }else{ 1726 zName = sqlite3MPrintf(db,"column%d",i+1); 1727 } 1728 1729 /* Make sure the column name is unique. If the name is not unique, 1730 ** append an integer to the name so that it becomes unique. 1731 */ 1732 cnt = 0; 1733 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1734 nName = sqlite3Strlen30(zName); 1735 if( nName>0 ){ 1736 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1737 if( zName[j]==':' ) nName = j; 1738 } 1739 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1740 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1741 } 1742 pCol->zName = zName; 1743 sqlite3ColumnPropertiesFromName(0, pCol); 1744 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1745 sqlite3OomFault(db); 1746 } 1747 } 1748 sqlite3HashClear(&ht); 1749 if( db->mallocFailed ){ 1750 for(j=0; j<i; j++){ 1751 sqlite3DbFree(db, aCol[j].zName); 1752 } 1753 sqlite3DbFree(db, aCol); 1754 *paCol = 0; 1755 *pnCol = 0; 1756 return SQLITE_NOMEM_BKPT; 1757 } 1758 return SQLITE_OK; 1759 } 1760 1761 /* 1762 ** Add type and collation information to a column list based on 1763 ** a SELECT statement. 1764 ** 1765 ** The column list presumably came from selectColumnNamesFromExprList(). 1766 ** The column list has only names, not types or collations. This 1767 ** routine goes through and adds the types and collations. 1768 ** 1769 ** This routine requires that all identifiers in the SELECT 1770 ** statement be resolved. 1771 */ 1772 void sqlite3SelectAddColumnTypeAndCollation( 1773 Parse *pParse, /* Parsing contexts */ 1774 Table *pTab, /* Add column type information to this table */ 1775 Select *pSelect /* SELECT used to determine types and collations */ 1776 ){ 1777 sqlite3 *db = pParse->db; 1778 NameContext sNC; 1779 Column *pCol; 1780 CollSeq *pColl; 1781 int i; 1782 Expr *p; 1783 struct ExprList_item *a; 1784 1785 assert( pSelect!=0 ); 1786 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1787 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1788 if( db->mallocFailed ) return; 1789 memset(&sNC, 0, sizeof(sNC)); 1790 sNC.pSrcList = pSelect->pSrc; 1791 a = pSelect->pEList->a; 1792 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1793 const char *zType; 1794 int n, m; 1795 p = a[i].pExpr; 1796 zType = columnType(&sNC, p, 0, 0, 0); 1797 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 1798 pCol->affinity = sqlite3ExprAffinity(p); 1799 if( zType ){ 1800 m = sqlite3Strlen30(zType); 1801 n = sqlite3Strlen30(pCol->zName); 1802 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1803 if( pCol->zName ){ 1804 memcpy(&pCol->zName[n+1], zType, m+1); 1805 pCol->colFlags |= COLFLAG_HASTYPE; 1806 } 1807 } 1808 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1809 pColl = sqlite3ExprCollSeq(pParse, p); 1810 if( pColl && pCol->zColl==0 ){ 1811 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1812 } 1813 } 1814 pTab->szTabRow = 1; /* Any non-zero value works */ 1815 } 1816 1817 /* 1818 ** Given a SELECT statement, generate a Table structure that describes 1819 ** the result set of that SELECT. 1820 */ 1821 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1822 Table *pTab; 1823 sqlite3 *db = pParse->db; 1824 int savedFlags; 1825 1826 savedFlags = db->flags; 1827 db->flags &= ~SQLITE_FullColNames; 1828 db->flags |= SQLITE_ShortColNames; 1829 sqlite3SelectPrep(pParse, pSelect, 0); 1830 if( pParse->nErr ) return 0; 1831 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1832 db->flags = savedFlags; 1833 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1834 if( pTab==0 ){ 1835 return 0; 1836 } 1837 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1838 ** is disabled */ 1839 assert( db->lookaside.bDisable ); 1840 pTab->nTabRef = 1; 1841 pTab->zName = 0; 1842 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1843 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1844 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1845 pTab->iPKey = -1; 1846 if( db->mallocFailed ){ 1847 sqlite3DeleteTable(db, pTab); 1848 return 0; 1849 } 1850 return pTab; 1851 } 1852 1853 /* 1854 ** Get a VDBE for the given parser context. Create a new one if necessary. 1855 ** If an error occurs, return NULL and leave a message in pParse. 1856 */ 1857 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1858 if( pParse->pVdbe ){ 1859 return pParse->pVdbe; 1860 } 1861 if( pParse->pToplevel==0 1862 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1863 ){ 1864 pParse->okConstFactor = 1; 1865 } 1866 return sqlite3VdbeCreate(pParse); 1867 } 1868 1869 1870 /* 1871 ** Compute the iLimit and iOffset fields of the SELECT based on the 1872 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 1873 ** that appear in the original SQL statement after the LIMIT and OFFSET 1874 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1875 ** are the integer memory register numbers for counters used to compute 1876 ** the limit and offset. If there is no limit and/or offset, then 1877 ** iLimit and iOffset are negative. 1878 ** 1879 ** This routine changes the values of iLimit and iOffset only if 1880 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 1881 ** and iOffset should have been preset to appropriate default values (zero) 1882 ** prior to calling this routine. 1883 ** 1884 ** The iOffset register (if it exists) is initialized to the value 1885 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1886 ** iOffset+1 is initialized to LIMIT+OFFSET. 1887 ** 1888 ** Only if pLimit->pLeft!=0 do the limit registers get 1889 ** redefined. The UNION ALL operator uses this property to force 1890 ** the reuse of the same limit and offset registers across multiple 1891 ** SELECT statements. 1892 */ 1893 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1894 Vdbe *v = 0; 1895 int iLimit = 0; 1896 int iOffset; 1897 int n; 1898 Expr *pLimit = p->pLimit; 1899 1900 if( p->iLimit ) return; 1901 1902 /* 1903 ** "LIMIT -1" always shows all rows. There is some 1904 ** controversy about what the correct behavior should be. 1905 ** The current implementation interprets "LIMIT 0" to mean 1906 ** no rows. 1907 */ 1908 sqlite3ExprCacheClear(pParse); 1909 if( pLimit ){ 1910 assert( pLimit->op==TK_LIMIT ); 1911 assert( pLimit->pLeft!=0 ); 1912 p->iLimit = iLimit = ++pParse->nMem; 1913 v = sqlite3GetVdbe(pParse); 1914 assert( v!=0 ); 1915 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 1916 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1917 VdbeComment((v, "LIMIT counter")); 1918 if( n==0 ){ 1919 sqlite3VdbeGoto(v, iBreak); 1920 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1921 p->nSelectRow = sqlite3LogEst((u64)n); 1922 p->selFlags |= SF_FixedLimit; 1923 } 1924 }else{ 1925 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 1926 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1927 VdbeComment((v, "LIMIT counter")); 1928 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1929 } 1930 if( pLimit->pRight ){ 1931 p->iOffset = iOffset = ++pParse->nMem; 1932 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1933 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 1934 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1935 VdbeComment((v, "OFFSET counter")); 1936 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1937 VdbeComment((v, "LIMIT+OFFSET")); 1938 } 1939 } 1940 } 1941 1942 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1943 /* 1944 ** Return the appropriate collating sequence for the iCol-th column of 1945 ** the result set for the compound-select statement "p". Return NULL if 1946 ** the column has no default collating sequence. 1947 ** 1948 ** The collating sequence for the compound select is taken from the 1949 ** left-most term of the select that has a collating sequence. 1950 */ 1951 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1952 CollSeq *pRet; 1953 if( p->pPrior ){ 1954 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1955 }else{ 1956 pRet = 0; 1957 } 1958 assert( iCol>=0 ); 1959 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1960 ** have been thrown during name resolution and we would not have gotten 1961 ** this far */ 1962 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1963 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1964 } 1965 return pRet; 1966 } 1967 1968 /* 1969 ** The select statement passed as the second parameter is a compound SELECT 1970 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1971 ** structure suitable for implementing the ORDER BY. 1972 ** 1973 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1974 ** function is responsible for ensuring that this structure is eventually 1975 ** freed. 1976 */ 1977 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1978 ExprList *pOrderBy = p->pOrderBy; 1979 int nOrderBy = p->pOrderBy->nExpr; 1980 sqlite3 *db = pParse->db; 1981 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1982 if( pRet ){ 1983 int i; 1984 for(i=0; i<nOrderBy; i++){ 1985 struct ExprList_item *pItem = &pOrderBy->a[i]; 1986 Expr *pTerm = pItem->pExpr; 1987 CollSeq *pColl; 1988 1989 if( pTerm->flags & EP_Collate ){ 1990 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1991 }else{ 1992 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1993 if( pColl==0 ) pColl = db->pDfltColl; 1994 pOrderBy->a[i].pExpr = 1995 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1996 } 1997 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1998 pRet->aColl[i] = pColl; 1999 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2000 } 2001 } 2002 2003 return pRet; 2004 } 2005 2006 #ifndef SQLITE_OMIT_CTE 2007 /* 2008 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2009 ** query of the form: 2010 ** 2011 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2012 ** \___________/ \_______________/ 2013 ** p->pPrior p 2014 ** 2015 ** 2016 ** There is exactly one reference to the recursive-table in the FROM clause 2017 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2018 ** 2019 ** The setup-query runs once to generate an initial set of rows that go 2020 ** into a Queue table. Rows are extracted from the Queue table one by 2021 ** one. Each row extracted from Queue is output to pDest. Then the single 2022 ** extracted row (now in the iCurrent table) becomes the content of the 2023 ** recursive-table for a recursive-query run. The output of the recursive-query 2024 ** is added back into the Queue table. Then another row is extracted from Queue 2025 ** and the iteration continues until the Queue table is empty. 2026 ** 2027 ** If the compound query operator is UNION then no duplicate rows are ever 2028 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2029 ** that have ever been inserted into Queue and causes duplicates to be 2030 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2031 ** 2032 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2033 ** ORDER BY order and the first entry is extracted for each cycle. Without 2034 ** an ORDER BY, the Queue table is just a FIFO. 2035 ** 2036 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2037 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2038 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2039 ** with a positive value, then the first OFFSET outputs are discarded rather 2040 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2041 ** rows have been skipped. 2042 */ 2043 static void generateWithRecursiveQuery( 2044 Parse *pParse, /* Parsing context */ 2045 Select *p, /* The recursive SELECT to be coded */ 2046 SelectDest *pDest /* What to do with query results */ 2047 ){ 2048 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2049 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2050 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2051 Select *pSetup = p->pPrior; /* The setup query */ 2052 int addrTop; /* Top of the loop */ 2053 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2054 int iCurrent = 0; /* The Current table */ 2055 int regCurrent; /* Register holding Current table */ 2056 int iQueue; /* The Queue table */ 2057 int iDistinct = 0; /* To ensure unique results if UNION */ 2058 int eDest = SRT_Fifo; /* How to write to Queue */ 2059 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2060 int i; /* Loop counter */ 2061 int rc; /* Result code */ 2062 ExprList *pOrderBy; /* The ORDER BY clause */ 2063 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2064 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2065 2066 /* Obtain authorization to do a recursive query */ 2067 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2068 2069 /* Process the LIMIT and OFFSET clauses, if they exist */ 2070 addrBreak = sqlite3VdbeMakeLabel(v); 2071 p->nSelectRow = 320; /* 4 billion rows */ 2072 computeLimitRegisters(pParse, p, addrBreak); 2073 pLimit = p->pLimit; 2074 regLimit = p->iLimit; 2075 regOffset = p->iOffset; 2076 p->pLimit = 0; 2077 p->iLimit = p->iOffset = 0; 2078 pOrderBy = p->pOrderBy; 2079 2080 /* Locate the cursor number of the Current table */ 2081 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2082 if( pSrc->a[i].fg.isRecursive ){ 2083 iCurrent = pSrc->a[i].iCursor; 2084 break; 2085 } 2086 } 2087 2088 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2089 ** the Distinct table must be exactly one greater than Queue in order 2090 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2091 iQueue = pParse->nTab++; 2092 if( p->op==TK_UNION ){ 2093 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2094 iDistinct = pParse->nTab++; 2095 }else{ 2096 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2097 } 2098 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2099 2100 /* Allocate cursors for Current, Queue, and Distinct. */ 2101 regCurrent = ++pParse->nMem; 2102 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2103 if( pOrderBy ){ 2104 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2105 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2106 (char*)pKeyInfo, P4_KEYINFO); 2107 destQueue.pOrderBy = pOrderBy; 2108 }else{ 2109 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2110 } 2111 VdbeComment((v, "Queue table")); 2112 if( iDistinct ){ 2113 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2114 p->selFlags |= SF_UsesEphemeral; 2115 } 2116 2117 /* Detach the ORDER BY clause from the compound SELECT */ 2118 p->pOrderBy = 0; 2119 2120 /* Store the results of the setup-query in Queue. */ 2121 pSetup->pNext = 0; 2122 rc = sqlite3Select(pParse, pSetup, &destQueue); 2123 pSetup->pNext = p; 2124 if( rc ) goto end_of_recursive_query; 2125 2126 /* Find the next row in the Queue and output that row */ 2127 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2128 2129 /* Transfer the next row in Queue over to Current */ 2130 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2131 if( pOrderBy ){ 2132 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2133 }else{ 2134 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2135 } 2136 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2137 2138 /* Output the single row in Current */ 2139 addrCont = sqlite3VdbeMakeLabel(v); 2140 codeOffset(v, regOffset, addrCont); 2141 selectInnerLoop(pParse, p, iCurrent, 2142 0, 0, pDest, addrCont, addrBreak); 2143 if( regLimit ){ 2144 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2145 VdbeCoverage(v); 2146 } 2147 sqlite3VdbeResolveLabel(v, addrCont); 2148 2149 /* Execute the recursive SELECT taking the single row in Current as 2150 ** the value for the recursive-table. Store the results in the Queue. 2151 */ 2152 if( p->selFlags & SF_Aggregate ){ 2153 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2154 }else{ 2155 p->pPrior = 0; 2156 sqlite3Select(pParse, p, &destQueue); 2157 assert( p->pPrior==0 ); 2158 p->pPrior = pSetup; 2159 } 2160 2161 /* Keep running the loop until the Queue is empty */ 2162 sqlite3VdbeGoto(v, addrTop); 2163 sqlite3VdbeResolveLabel(v, addrBreak); 2164 2165 end_of_recursive_query: 2166 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2167 p->pOrderBy = pOrderBy; 2168 p->pLimit = pLimit; 2169 return; 2170 } 2171 #endif /* SQLITE_OMIT_CTE */ 2172 2173 /* Forward references */ 2174 static int multiSelectOrderBy( 2175 Parse *pParse, /* Parsing context */ 2176 Select *p, /* The right-most of SELECTs to be coded */ 2177 SelectDest *pDest /* What to do with query results */ 2178 ); 2179 2180 /* 2181 ** Handle the special case of a compound-select that originates from a 2182 ** VALUES clause. By handling this as a special case, we avoid deep 2183 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2184 ** on a VALUES clause. 2185 ** 2186 ** Because the Select object originates from a VALUES clause: 2187 ** (1) It has no LIMIT or OFFSET 2188 ** (2) All terms are UNION ALL 2189 ** (3) There is no ORDER BY clause 2190 */ 2191 static int multiSelectValues( 2192 Parse *pParse, /* Parsing context */ 2193 Select *p, /* The right-most of SELECTs to be coded */ 2194 SelectDest *pDest /* What to do with query results */ 2195 ){ 2196 Select *pPrior; 2197 int nRow = 1; 2198 int rc = 0; 2199 assert( p->selFlags & SF_MultiValue ); 2200 do{ 2201 assert( p->selFlags & SF_Values ); 2202 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2203 assert( p->pLimit==0 ); 2204 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2205 if( p->pPrior==0 ) break; 2206 assert( p->pPrior->pNext==p ); 2207 p = p->pPrior; 2208 nRow++; 2209 }while(1); 2210 while( p ){ 2211 pPrior = p->pPrior; 2212 p->pPrior = 0; 2213 rc = sqlite3Select(pParse, p, pDest); 2214 p->pPrior = pPrior; 2215 if( rc ) break; 2216 p->nSelectRow = nRow; 2217 p = p->pNext; 2218 } 2219 return rc; 2220 } 2221 2222 /* 2223 ** This routine is called to process a compound query form from 2224 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2225 ** INTERSECT 2226 ** 2227 ** "p" points to the right-most of the two queries. the query on the 2228 ** left is p->pPrior. The left query could also be a compound query 2229 ** in which case this routine will be called recursively. 2230 ** 2231 ** The results of the total query are to be written into a destination 2232 ** of type eDest with parameter iParm. 2233 ** 2234 ** Example 1: Consider a three-way compound SQL statement. 2235 ** 2236 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2237 ** 2238 ** This statement is parsed up as follows: 2239 ** 2240 ** SELECT c FROM t3 2241 ** | 2242 ** `-----> SELECT b FROM t2 2243 ** | 2244 ** `------> SELECT a FROM t1 2245 ** 2246 ** The arrows in the diagram above represent the Select.pPrior pointer. 2247 ** So if this routine is called with p equal to the t3 query, then 2248 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2249 ** 2250 ** Notice that because of the way SQLite parses compound SELECTs, the 2251 ** individual selects always group from left to right. 2252 */ 2253 static int multiSelect( 2254 Parse *pParse, /* Parsing context */ 2255 Select *p, /* The right-most of SELECTs to be coded */ 2256 SelectDest *pDest /* What to do with query results */ 2257 ){ 2258 int rc = SQLITE_OK; /* Success code from a subroutine */ 2259 Select *pPrior; /* Another SELECT immediately to our left */ 2260 Vdbe *v; /* Generate code to this VDBE */ 2261 SelectDest dest; /* Alternative data destination */ 2262 Select *pDelete = 0; /* Chain of simple selects to delete */ 2263 sqlite3 *db; /* Database connection */ 2264 #ifndef SQLITE_OMIT_EXPLAIN 2265 int iSub1 = 0; /* EQP id of left-hand query */ 2266 int iSub2 = 0; /* EQP id of right-hand query */ 2267 #endif 2268 2269 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2270 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2271 */ 2272 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2273 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2274 db = pParse->db; 2275 pPrior = p->pPrior; 2276 dest = *pDest; 2277 if( pPrior->pOrderBy || pPrior->pLimit ){ 2278 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2279 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2280 rc = 1; 2281 goto multi_select_end; 2282 } 2283 2284 v = sqlite3GetVdbe(pParse); 2285 assert( v!=0 ); /* The VDBE already created by calling function */ 2286 2287 /* Create the destination temporary table if necessary 2288 */ 2289 if( dest.eDest==SRT_EphemTab ){ 2290 assert( p->pEList ); 2291 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2292 dest.eDest = SRT_Table; 2293 } 2294 2295 /* Special handling for a compound-select that originates as a VALUES clause. 2296 */ 2297 if( p->selFlags & SF_MultiValue ){ 2298 rc = multiSelectValues(pParse, p, &dest); 2299 goto multi_select_end; 2300 } 2301 2302 /* Make sure all SELECTs in the statement have the same number of elements 2303 ** in their result sets. 2304 */ 2305 assert( p->pEList && pPrior->pEList ); 2306 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2307 2308 #ifndef SQLITE_OMIT_CTE 2309 if( p->selFlags & SF_Recursive ){ 2310 generateWithRecursiveQuery(pParse, p, &dest); 2311 }else 2312 #endif 2313 2314 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2315 */ 2316 if( p->pOrderBy ){ 2317 return multiSelectOrderBy(pParse, p, pDest); 2318 }else 2319 2320 /* Generate code for the left and right SELECT statements. 2321 */ 2322 switch( p->op ){ 2323 case TK_ALL: { 2324 int addr = 0; 2325 int nLimit; 2326 assert( !pPrior->pLimit ); 2327 pPrior->iLimit = p->iLimit; 2328 pPrior->iOffset = p->iOffset; 2329 pPrior->pLimit = p->pLimit; 2330 explainSetInteger(iSub1, pParse->iNextSelectId); 2331 rc = sqlite3Select(pParse, pPrior, &dest); 2332 p->pLimit = 0; 2333 if( rc ){ 2334 goto multi_select_end; 2335 } 2336 p->pPrior = 0; 2337 p->iLimit = pPrior->iLimit; 2338 p->iOffset = pPrior->iOffset; 2339 if( p->iLimit ){ 2340 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2341 VdbeComment((v, "Jump ahead if LIMIT reached")); 2342 if( p->iOffset ){ 2343 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2344 p->iLimit, p->iOffset+1, p->iOffset); 2345 } 2346 } 2347 explainSetInteger(iSub2, pParse->iNextSelectId); 2348 rc = sqlite3Select(pParse, p, &dest); 2349 testcase( rc!=SQLITE_OK ); 2350 pDelete = p->pPrior; 2351 p->pPrior = pPrior; 2352 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2353 if( pPrior->pLimit 2354 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2355 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2356 ){ 2357 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2358 } 2359 if( addr ){ 2360 sqlite3VdbeJumpHere(v, addr); 2361 } 2362 break; 2363 } 2364 case TK_EXCEPT: 2365 case TK_UNION: { 2366 int unionTab; /* Cursor number of the temporary table holding result */ 2367 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2368 int priorOp; /* The SRT_ operation to apply to prior selects */ 2369 Expr *pLimit; /* Saved values of p->nLimit */ 2370 int addr; 2371 SelectDest uniondest; 2372 2373 testcase( p->op==TK_EXCEPT ); 2374 testcase( p->op==TK_UNION ); 2375 priorOp = SRT_Union; 2376 if( dest.eDest==priorOp ){ 2377 /* We can reuse a temporary table generated by a SELECT to our 2378 ** right. 2379 */ 2380 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2381 unionTab = dest.iSDParm; 2382 }else{ 2383 /* We will need to create our own temporary table to hold the 2384 ** intermediate results. 2385 */ 2386 unionTab = pParse->nTab++; 2387 assert( p->pOrderBy==0 ); 2388 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2389 assert( p->addrOpenEphm[0] == -1 ); 2390 p->addrOpenEphm[0] = addr; 2391 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2392 assert( p->pEList ); 2393 } 2394 2395 /* Code the SELECT statements to our left 2396 */ 2397 assert( !pPrior->pOrderBy ); 2398 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2399 explainSetInteger(iSub1, pParse->iNextSelectId); 2400 rc = sqlite3Select(pParse, pPrior, &uniondest); 2401 if( rc ){ 2402 goto multi_select_end; 2403 } 2404 2405 /* Code the current SELECT statement 2406 */ 2407 if( p->op==TK_EXCEPT ){ 2408 op = SRT_Except; 2409 }else{ 2410 assert( p->op==TK_UNION ); 2411 op = SRT_Union; 2412 } 2413 p->pPrior = 0; 2414 pLimit = p->pLimit; 2415 p->pLimit = 0; 2416 uniondest.eDest = op; 2417 explainSetInteger(iSub2, pParse->iNextSelectId); 2418 rc = sqlite3Select(pParse, p, &uniondest); 2419 testcase( rc!=SQLITE_OK ); 2420 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2421 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2422 sqlite3ExprListDelete(db, p->pOrderBy); 2423 pDelete = p->pPrior; 2424 p->pPrior = pPrior; 2425 p->pOrderBy = 0; 2426 if( p->op==TK_UNION ){ 2427 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2428 } 2429 sqlite3ExprDelete(db, p->pLimit); 2430 p->pLimit = pLimit; 2431 p->iLimit = 0; 2432 p->iOffset = 0; 2433 2434 /* Convert the data in the temporary table into whatever form 2435 ** it is that we currently need. 2436 */ 2437 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2438 if( dest.eDest!=priorOp ){ 2439 int iCont, iBreak, iStart; 2440 assert( p->pEList ); 2441 iBreak = sqlite3VdbeMakeLabel(v); 2442 iCont = sqlite3VdbeMakeLabel(v); 2443 computeLimitRegisters(pParse, p, iBreak); 2444 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2445 iStart = sqlite3VdbeCurrentAddr(v); 2446 selectInnerLoop(pParse, p, unionTab, 2447 0, 0, &dest, iCont, iBreak); 2448 sqlite3VdbeResolveLabel(v, iCont); 2449 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2450 sqlite3VdbeResolveLabel(v, iBreak); 2451 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2452 } 2453 break; 2454 } 2455 default: assert( p->op==TK_INTERSECT ); { 2456 int tab1, tab2; 2457 int iCont, iBreak, iStart; 2458 Expr *pLimit; 2459 int addr; 2460 SelectDest intersectdest; 2461 int r1; 2462 2463 /* INTERSECT is different from the others since it requires 2464 ** two temporary tables. Hence it has its own case. Begin 2465 ** by allocating the tables we will need. 2466 */ 2467 tab1 = pParse->nTab++; 2468 tab2 = pParse->nTab++; 2469 assert( p->pOrderBy==0 ); 2470 2471 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2472 assert( p->addrOpenEphm[0] == -1 ); 2473 p->addrOpenEphm[0] = addr; 2474 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2475 assert( p->pEList ); 2476 2477 /* Code the SELECTs to our left into temporary table "tab1". 2478 */ 2479 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2480 explainSetInteger(iSub1, pParse->iNextSelectId); 2481 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2482 if( rc ){ 2483 goto multi_select_end; 2484 } 2485 2486 /* Code the current SELECT into temporary table "tab2" 2487 */ 2488 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2489 assert( p->addrOpenEphm[1] == -1 ); 2490 p->addrOpenEphm[1] = addr; 2491 p->pPrior = 0; 2492 pLimit = p->pLimit; 2493 p->pLimit = 0; 2494 intersectdest.iSDParm = tab2; 2495 explainSetInteger(iSub2, pParse->iNextSelectId); 2496 rc = sqlite3Select(pParse, p, &intersectdest); 2497 testcase( rc!=SQLITE_OK ); 2498 pDelete = p->pPrior; 2499 p->pPrior = pPrior; 2500 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2501 sqlite3ExprDelete(db, p->pLimit); 2502 p->pLimit = pLimit; 2503 2504 /* Generate code to take the intersection of the two temporary 2505 ** tables. 2506 */ 2507 assert( p->pEList ); 2508 iBreak = sqlite3VdbeMakeLabel(v); 2509 iCont = sqlite3VdbeMakeLabel(v); 2510 computeLimitRegisters(pParse, p, iBreak); 2511 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2512 r1 = sqlite3GetTempReg(pParse); 2513 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2514 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2515 sqlite3ReleaseTempReg(pParse, r1); 2516 selectInnerLoop(pParse, p, tab1, 2517 0, 0, &dest, iCont, iBreak); 2518 sqlite3VdbeResolveLabel(v, iCont); 2519 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2520 sqlite3VdbeResolveLabel(v, iBreak); 2521 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2522 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2523 break; 2524 } 2525 } 2526 2527 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2528 2529 /* Compute collating sequences used by 2530 ** temporary tables needed to implement the compound select. 2531 ** Attach the KeyInfo structure to all temporary tables. 2532 ** 2533 ** This section is run by the right-most SELECT statement only. 2534 ** SELECT statements to the left always skip this part. The right-most 2535 ** SELECT might also skip this part if it has no ORDER BY clause and 2536 ** no temp tables are required. 2537 */ 2538 if( p->selFlags & SF_UsesEphemeral ){ 2539 int i; /* Loop counter */ 2540 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2541 Select *pLoop; /* For looping through SELECT statements */ 2542 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2543 int nCol; /* Number of columns in result set */ 2544 2545 assert( p->pNext==0 ); 2546 nCol = p->pEList->nExpr; 2547 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2548 if( !pKeyInfo ){ 2549 rc = SQLITE_NOMEM_BKPT; 2550 goto multi_select_end; 2551 } 2552 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2553 *apColl = multiSelectCollSeq(pParse, p, i); 2554 if( 0==*apColl ){ 2555 *apColl = db->pDfltColl; 2556 } 2557 } 2558 2559 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2560 for(i=0; i<2; i++){ 2561 int addr = pLoop->addrOpenEphm[i]; 2562 if( addr<0 ){ 2563 /* If [0] is unused then [1] is also unused. So we can 2564 ** always safely abort as soon as the first unused slot is found */ 2565 assert( pLoop->addrOpenEphm[1]<0 ); 2566 break; 2567 } 2568 sqlite3VdbeChangeP2(v, addr, nCol); 2569 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2570 P4_KEYINFO); 2571 pLoop->addrOpenEphm[i] = -1; 2572 } 2573 } 2574 sqlite3KeyInfoUnref(pKeyInfo); 2575 } 2576 2577 multi_select_end: 2578 pDest->iSdst = dest.iSdst; 2579 pDest->nSdst = dest.nSdst; 2580 sqlite3SelectDelete(db, pDelete); 2581 return rc; 2582 } 2583 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2584 2585 /* 2586 ** Error message for when two or more terms of a compound select have different 2587 ** size result sets. 2588 */ 2589 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2590 if( p->selFlags & SF_Values ){ 2591 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2592 }else{ 2593 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2594 " do not have the same number of result columns", selectOpName(p->op)); 2595 } 2596 } 2597 2598 /* 2599 ** Code an output subroutine for a coroutine implementation of a 2600 ** SELECT statment. 2601 ** 2602 ** The data to be output is contained in pIn->iSdst. There are 2603 ** pIn->nSdst columns to be output. pDest is where the output should 2604 ** be sent. 2605 ** 2606 ** regReturn is the number of the register holding the subroutine 2607 ** return address. 2608 ** 2609 ** If regPrev>0 then it is the first register in a vector that 2610 ** records the previous output. mem[regPrev] is a flag that is false 2611 ** if there has been no previous output. If regPrev>0 then code is 2612 ** generated to suppress duplicates. pKeyInfo is used for comparing 2613 ** keys. 2614 ** 2615 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2616 ** iBreak. 2617 */ 2618 static int generateOutputSubroutine( 2619 Parse *pParse, /* Parsing context */ 2620 Select *p, /* The SELECT statement */ 2621 SelectDest *pIn, /* Coroutine supplying data */ 2622 SelectDest *pDest, /* Where to send the data */ 2623 int regReturn, /* The return address register */ 2624 int regPrev, /* Previous result register. No uniqueness if 0 */ 2625 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2626 int iBreak /* Jump here if we hit the LIMIT */ 2627 ){ 2628 Vdbe *v = pParse->pVdbe; 2629 int iContinue; 2630 int addr; 2631 2632 addr = sqlite3VdbeCurrentAddr(v); 2633 iContinue = sqlite3VdbeMakeLabel(v); 2634 2635 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2636 */ 2637 if( regPrev ){ 2638 int addr1, addr2; 2639 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2640 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2641 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2642 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2643 sqlite3VdbeJumpHere(v, addr1); 2644 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2645 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2646 } 2647 if( pParse->db->mallocFailed ) return 0; 2648 2649 /* Suppress the first OFFSET entries if there is an OFFSET clause 2650 */ 2651 codeOffset(v, p->iOffset, iContinue); 2652 2653 assert( pDest->eDest!=SRT_Exists ); 2654 assert( pDest->eDest!=SRT_Table ); 2655 switch( pDest->eDest ){ 2656 /* Store the result as data using a unique key. 2657 */ 2658 case SRT_EphemTab: { 2659 int r1 = sqlite3GetTempReg(pParse); 2660 int r2 = sqlite3GetTempReg(pParse); 2661 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2662 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2663 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2664 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2665 sqlite3ReleaseTempReg(pParse, r2); 2666 sqlite3ReleaseTempReg(pParse, r1); 2667 break; 2668 } 2669 2670 #ifndef SQLITE_OMIT_SUBQUERY 2671 /* If we are creating a set for an "expr IN (SELECT ...)". 2672 */ 2673 case SRT_Set: { 2674 int r1; 2675 testcase( pIn->nSdst>1 ); 2676 r1 = sqlite3GetTempReg(pParse); 2677 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2678 r1, pDest->zAffSdst, pIn->nSdst); 2679 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2680 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2681 pIn->iSdst, pIn->nSdst); 2682 sqlite3ReleaseTempReg(pParse, r1); 2683 break; 2684 } 2685 2686 /* If this is a scalar select that is part of an expression, then 2687 ** store the results in the appropriate memory cell and break out 2688 ** of the scan loop. 2689 */ 2690 case SRT_Mem: { 2691 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2692 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2693 /* The LIMIT clause will jump out of the loop for us */ 2694 break; 2695 } 2696 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2697 2698 /* The results are stored in a sequence of registers 2699 ** starting at pDest->iSdst. Then the co-routine yields. 2700 */ 2701 case SRT_Coroutine: { 2702 if( pDest->iSdst==0 ){ 2703 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2704 pDest->nSdst = pIn->nSdst; 2705 } 2706 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2707 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2708 break; 2709 } 2710 2711 /* If none of the above, then the result destination must be 2712 ** SRT_Output. This routine is never called with any other 2713 ** destination other than the ones handled above or SRT_Output. 2714 ** 2715 ** For SRT_Output, results are stored in a sequence of registers. 2716 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2717 ** return the next row of result. 2718 */ 2719 default: { 2720 assert( pDest->eDest==SRT_Output ); 2721 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2722 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2723 break; 2724 } 2725 } 2726 2727 /* Jump to the end of the loop if the LIMIT is reached. 2728 */ 2729 if( p->iLimit ){ 2730 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2731 } 2732 2733 /* Generate the subroutine return 2734 */ 2735 sqlite3VdbeResolveLabel(v, iContinue); 2736 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2737 2738 return addr; 2739 } 2740 2741 /* 2742 ** Alternative compound select code generator for cases when there 2743 ** is an ORDER BY clause. 2744 ** 2745 ** We assume a query of the following form: 2746 ** 2747 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2748 ** 2749 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2750 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2751 ** co-routines. Then run the co-routines in parallel and merge the results 2752 ** into the output. In addition to the two coroutines (called selectA and 2753 ** selectB) there are 7 subroutines: 2754 ** 2755 ** outA: Move the output of the selectA coroutine into the output 2756 ** of the compound query. 2757 ** 2758 ** outB: Move the output of the selectB coroutine into the output 2759 ** of the compound query. (Only generated for UNION and 2760 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2761 ** appears only in B.) 2762 ** 2763 ** AltB: Called when there is data from both coroutines and A<B. 2764 ** 2765 ** AeqB: Called when there is data from both coroutines and A==B. 2766 ** 2767 ** AgtB: Called when there is data from both coroutines and A>B. 2768 ** 2769 ** EofA: Called when data is exhausted from selectA. 2770 ** 2771 ** EofB: Called when data is exhausted from selectB. 2772 ** 2773 ** The implementation of the latter five subroutines depend on which 2774 ** <operator> is used: 2775 ** 2776 ** 2777 ** UNION ALL UNION EXCEPT INTERSECT 2778 ** ------------- ----------------- -------------- ----------------- 2779 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2780 ** 2781 ** AeqB: outA, nextA nextA nextA outA, nextA 2782 ** 2783 ** AgtB: outB, nextB outB, nextB nextB nextB 2784 ** 2785 ** EofA: outB, nextB outB, nextB halt halt 2786 ** 2787 ** EofB: outA, nextA outA, nextA outA, nextA halt 2788 ** 2789 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2790 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2791 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2792 ** following nextX causes a jump to the end of the select processing. 2793 ** 2794 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2795 ** within the output subroutine. The regPrev register set holds the previously 2796 ** output value. A comparison is made against this value and the output 2797 ** is skipped if the next results would be the same as the previous. 2798 ** 2799 ** The implementation plan is to implement the two coroutines and seven 2800 ** subroutines first, then put the control logic at the bottom. Like this: 2801 ** 2802 ** goto Init 2803 ** coA: coroutine for left query (A) 2804 ** coB: coroutine for right query (B) 2805 ** outA: output one row of A 2806 ** outB: output one row of B (UNION and UNION ALL only) 2807 ** EofA: ... 2808 ** EofB: ... 2809 ** AltB: ... 2810 ** AeqB: ... 2811 ** AgtB: ... 2812 ** Init: initialize coroutine registers 2813 ** yield coA 2814 ** if eof(A) goto EofA 2815 ** yield coB 2816 ** if eof(B) goto EofB 2817 ** Cmpr: Compare A, B 2818 ** Jump AltB, AeqB, AgtB 2819 ** End: ... 2820 ** 2821 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2822 ** actually called using Gosub and they do not Return. EofA and EofB loop 2823 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2824 ** and AgtB jump to either L2 or to one of EofA or EofB. 2825 */ 2826 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2827 static int multiSelectOrderBy( 2828 Parse *pParse, /* Parsing context */ 2829 Select *p, /* The right-most of SELECTs to be coded */ 2830 SelectDest *pDest /* What to do with query results */ 2831 ){ 2832 int i, j; /* Loop counters */ 2833 Select *pPrior; /* Another SELECT immediately to our left */ 2834 Vdbe *v; /* Generate code to this VDBE */ 2835 SelectDest destA; /* Destination for coroutine A */ 2836 SelectDest destB; /* Destination for coroutine B */ 2837 int regAddrA; /* Address register for select-A coroutine */ 2838 int regAddrB; /* Address register for select-B coroutine */ 2839 int addrSelectA; /* Address of the select-A coroutine */ 2840 int addrSelectB; /* Address of the select-B coroutine */ 2841 int regOutA; /* Address register for the output-A subroutine */ 2842 int regOutB; /* Address register for the output-B subroutine */ 2843 int addrOutA; /* Address of the output-A subroutine */ 2844 int addrOutB = 0; /* Address of the output-B subroutine */ 2845 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2846 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2847 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2848 int addrAltB; /* Address of the A<B subroutine */ 2849 int addrAeqB; /* Address of the A==B subroutine */ 2850 int addrAgtB; /* Address of the A>B subroutine */ 2851 int regLimitA; /* Limit register for select-A */ 2852 int regLimitB; /* Limit register for select-A */ 2853 int regPrev; /* A range of registers to hold previous output */ 2854 int savedLimit; /* Saved value of p->iLimit */ 2855 int savedOffset; /* Saved value of p->iOffset */ 2856 int labelCmpr; /* Label for the start of the merge algorithm */ 2857 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2858 int addr1; /* Jump instructions that get retargetted */ 2859 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2860 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2861 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2862 sqlite3 *db; /* Database connection */ 2863 ExprList *pOrderBy; /* The ORDER BY clause */ 2864 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2865 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2866 #ifndef SQLITE_OMIT_EXPLAIN 2867 int iSub1; /* EQP id of left-hand query */ 2868 int iSub2; /* EQP id of right-hand query */ 2869 #endif 2870 2871 assert( p->pOrderBy!=0 ); 2872 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2873 db = pParse->db; 2874 v = pParse->pVdbe; 2875 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2876 labelEnd = sqlite3VdbeMakeLabel(v); 2877 labelCmpr = sqlite3VdbeMakeLabel(v); 2878 2879 2880 /* Patch up the ORDER BY clause 2881 */ 2882 op = p->op; 2883 pPrior = p->pPrior; 2884 assert( pPrior->pOrderBy==0 ); 2885 pOrderBy = p->pOrderBy; 2886 assert( pOrderBy ); 2887 nOrderBy = pOrderBy->nExpr; 2888 2889 /* For operators other than UNION ALL we have to make sure that 2890 ** the ORDER BY clause covers every term of the result set. Add 2891 ** terms to the ORDER BY clause as necessary. 2892 */ 2893 if( op!=TK_ALL ){ 2894 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2895 struct ExprList_item *pItem; 2896 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2897 assert( pItem->u.x.iOrderByCol>0 ); 2898 if( pItem->u.x.iOrderByCol==i ) break; 2899 } 2900 if( j==nOrderBy ){ 2901 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2902 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2903 pNew->flags |= EP_IntValue; 2904 pNew->u.iValue = i; 2905 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2906 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2907 } 2908 } 2909 } 2910 2911 /* Compute the comparison permutation and keyinfo that is used with 2912 ** the permutation used to determine if the next 2913 ** row of results comes from selectA or selectB. Also add explicit 2914 ** collations to the ORDER BY clause terms so that when the subqueries 2915 ** to the right and the left are evaluated, they use the correct 2916 ** collation. 2917 */ 2918 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2919 if( aPermute ){ 2920 struct ExprList_item *pItem; 2921 aPermute[0] = nOrderBy; 2922 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2923 assert( pItem->u.x.iOrderByCol>0 ); 2924 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2925 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2926 } 2927 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2928 }else{ 2929 pKeyMerge = 0; 2930 } 2931 2932 /* Reattach the ORDER BY clause to the query. 2933 */ 2934 p->pOrderBy = pOrderBy; 2935 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2936 2937 /* Allocate a range of temporary registers and the KeyInfo needed 2938 ** for the logic that removes duplicate result rows when the 2939 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2940 */ 2941 if( op==TK_ALL ){ 2942 regPrev = 0; 2943 }else{ 2944 int nExpr = p->pEList->nExpr; 2945 assert( nOrderBy>=nExpr || db->mallocFailed ); 2946 regPrev = pParse->nMem+1; 2947 pParse->nMem += nExpr+1; 2948 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2949 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2950 if( pKeyDup ){ 2951 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2952 for(i=0; i<nExpr; i++){ 2953 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2954 pKeyDup->aSortOrder[i] = 0; 2955 } 2956 } 2957 } 2958 2959 /* Separate the left and the right query from one another 2960 */ 2961 p->pPrior = 0; 2962 pPrior->pNext = 0; 2963 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2964 if( pPrior->pPrior==0 ){ 2965 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2966 } 2967 2968 /* Compute the limit registers */ 2969 computeLimitRegisters(pParse, p, labelEnd); 2970 if( p->iLimit && op==TK_ALL ){ 2971 regLimitA = ++pParse->nMem; 2972 regLimitB = ++pParse->nMem; 2973 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2974 regLimitA); 2975 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2976 }else{ 2977 regLimitA = regLimitB = 0; 2978 } 2979 sqlite3ExprDelete(db, p->pLimit); 2980 p->pLimit = 0; 2981 2982 regAddrA = ++pParse->nMem; 2983 regAddrB = ++pParse->nMem; 2984 regOutA = ++pParse->nMem; 2985 regOutB = ++pParse->nMem; 2986 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2987 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2988 2989 /* Generate a coroutine to evaluate the SELECT statement to the 2990 ** left of the compound operator - the "A" select. 2991 */ 2992 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2993 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2994 VdbeComment((v, "left SELECT")); 2995 pPrior->iLimit = regLimitA; 2996 explainSetInteger(iSub1, pParse->iNextSelectId); 2997 sqlite3Select(pParse, pPrior, &destA); 2998 sqlite3VdbeEndCoroutine(v, regAddrA); 2999 sqlite3VdbeJumpHere(v, addr1); 3000 3001 /* Generate a coroutine to evaluate the SELECT statement on 3002 ** the right - the "B" select 3003 */ 3004 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3005 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3006 VdbeComment((v, "right SELECT")); 3007 savedLimit = p->iLimit; 3008 savedOffset = p->iOffset; 3009 p->iLimit = regLimitB; 3010 p->iOffset = 0; 3011 explainSetInteger(iSub2, pParse->iNextSelectId); 3012 sqlite3Select(pParse, p, &destB); 3013 p->iLimit = savedLimit; 3014 p->iOffset = savedOffset; 3015 sqlite3VdbeEndCoroutine(v, regAddrB); 3016 3017 /* Generate a subroutine that outputs the current row of the A 3018 ** select as the next output row of the compound select. 3019 */ 3020 VdbeNoopComment((v, "Output routine for A")); 3021 addrOutA = generateOutputSubroutine(pParse, 3022 p, &destA, pDest, regOutA, 3023 regPrev, pKeyDup, labelEnd); 3024 3025 /* Generate a subroutine that outputs the current row of the B 3026 ** select as the next output row of the compound select. 3027 */ 3028 if( op==TK_ALL || op==TK_UNION ){ 3029 VdbeNoopComment((v, "Output routine for B")); 3030 addrOutB = generateOutputSubroutine(pParse, 3031 p, &destB, pDest, regOutB, 3032 regPrev, pKeyDup, labelEnd); 3033 } 3034 sqlite3KeyInfoUnref(pKeyDup); 3035 3036 /* Generate a subroutine to run when the results from select A 3037 ** are exhausted and only data in select B remains. 3038 */ 3039 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3040 addrEofA_noB = addrEofA = labelEnd; 3041 }else{ 3042 VdbeNoopComment((v, "eof-A subroutine")); 3043 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3044 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3045 VdbeCoverage(v); 3046 sqlite3VdbeGoto(v, addrEofA); 3047 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3048 } 3049 3050 /* Generate a subroutine to run when the results from select B 3051 ** are exhausted and only data in select A remains. 3052 */ 3053 if( op==TK_INTERSECT ){ 3054 addrEofB = addrEofA; 3055 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3056 }else{ 3057 VdbeNoopComment((v, "eof-B subroutine")); 3058 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3059 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3060 sqlite3VdbeGoto(v, addrEofB); 3061 } 3062 3063 /* Generate code to handle the case of A<B 3064 */ 3065 VdbeNoopComment((v, "A-lt-B subroutine")); 3066 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3067 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3068 sqlite3VdbeGoto(v, labelCmpr); 3069 3070 /* Generate code to handle the case of A==B 3071 */ 3072 if( op==TK_ALL ){ 3073 addrAeqB = addrAltB; 3074 }else if( op==TK_INTERSECT ){ 3075 addrAeqB = addrAltB; 3076 addrAltB++; 3077 }else{ 3078 VdbeNoopComment((v, "A-eq-B subroutine")); 3079 addrAeqB = 3080 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3081 sqlite3VdbeGoto(v, labelCmpr); 3082 } 3083 3084 /* Generate code to handle the case of A>B 3085 */ 3086 VdbeNoopComment((v, "A-gt-B subroutine")); 3087 addrAgtB = sqlite3VdbeCurrentAddr(v); 3088 if( op==TK_ALL || op==TK_UNION ){ 3089 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3090 } 3091 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3092 sqlite3VdbeGoto(v, labelCmpr); 3093 3094 /* This code runs once to initialize everything. 3095 */ 3096 sqlite3VdbeJumpHere(v, addr1); 3097 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3098 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3099 3100 /* Implement the main merge loop 3101 */ 3102 sqlite3VdbeResolveLabel(v, labelCmpr); 3103 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3104 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3105 (char*)pKeyMerge, P4_KEYINFO); 3106 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3107 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3108 3109 /* Jump to the this point in order to terminate the query. 3110 */ 3111 sqlite3VdbeResolveLabel(v, labelEnd); 3112 3113 /* Reassembly the compound query so that it will be freed correctly 3114 ** by the calling function */ 3115 if( p->pPrior ){ 3116 sqlite3SelectDelete(db, p->pPrior); 3117 } 3118 p->pPrior = pPrior; 3119 pPrior->pNext = p; 3120 3121 /*** TBD: Insert subroutine calls to close cursors on incomplete 3122 **** subqueries ****/ 3123 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3124 return pParse->nErr!=0; 3125 } 3126 #endif 3127 3128 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3129 3130 /* An instance of the SubstContext object describes an substitution edit 3131 ** to be performed on a parse tree. 3132 ** 3133 ** All references to columns in table iTable are to be replaced by corresponding 3134 ** expressions in pEList. 3135 */ 3136 typedef struct SubstContext { 3137 Parse *pParse; /* The parsing context */ 3138 int iTable; /* Replace references to this table */ 3139 int iNewTable; /* New table number */ 3140 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3141 ExprList *pEList; /* Replacement expressions */ 3142 } SubstContext; 3143 3144 /* Forward Declarations */ 3145 static void substExprList(SubstContext*, ExprList*); 3146 static void substSelect(SubstContext*, Select*, int); 3147 3148 /* 3149 ** Scan through the expression pExpr. Replace every reference to 3150 ** a column in table number iTable with a copy of the iColumn-th 3151 ** entry in pEList. (But leave references to the ROWID column 3152 ** unchanged.) 3153 ** 3154 ** This routine is part of the flattening procedure. A subquery 3155 ** whose result set is defined by pEList appears as entry in the 3156 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3157 ** FORM clause entry is iTable. This routine makes the necessary 3158 ** changes to pExpr so that it refers directly to the source table 3159 ** of the subquery rather the result set of the subquery. 3160 */ 3161 static Expr *substExpr( 3162 SubstContext *pSubst, /* Description of the substitution */ 3163 Expr *pExpr /* Expr in which substitution occurs */ 3164 ){ 3165 if( pExpr==0 ) return 0; 3166 if( ExprHasProperty(pExpr, EP_FromJoin) 3167 && pExpr->iRightJoinTable==pSubst->iTable 3168 ){ 3169 pExpr->iRightJoinTable = pSubst->iNewTable; 3170 } 3171 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3172 if( pExpr->iColumn<0 ){ 3173 pExpr->op = TK_NULL; 3174 }else{ 3175 Expr *pNew; 3176 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3177 Expr ifNullRow; 3178 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3179 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3180 if( sqlite3ExprIsVector(pCopy) ){ 3181 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3182 }else{ 3183 sqlite3 *db = pSubst->pParse->db; 3184 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3185 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3186 ifNullRow.op = TK_IF_NULL_ROW; 3187 ifNullRow.pLeft = pCopy; 3188 ifNullRow.iTable = pSubst->iNewTable; 3189 pCopy = &ifNullRow; 3190 } 3191 pNew = sqlite3ExprDup(db, pCopy, 0); 3192 if( pNew && pSubst->isLeftJoin ){ 3193 ExprSetProperty(pNew, EP_CanBeNull); 3194 } 3195 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3196 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3197 ExprSetProperty(pNew, EP_FromJoin); 3198 } 3199 sqlite3ExprDelete(db, pExpr); 3200 pExpr = pNew; 3201 } 3202 } 3203 }else{ 3204 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3205 pExpr->iTable = pSubst->iNewTable; 3206 } 3207 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3208 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3209 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3210 substSelect(pSubst, pExpr->x.pSelect, 1); 3211 }else{ 3212 substExprList(pSubst, pExpr->x.pList); 3213 } 3214 } 3215 return pExpr; 3216 } 3217 static void substExprList( 3218 SubstContext *pSubst, /* Description of the substitution */ 3219 ExprList *pList /* List to scan and in which to make substitutes */ 3220 ){ 3221 int i; 3222 if( pList==0 ) return; 3223 for(i=0; i<pList->nExpr; i++){ 3224 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3225 } 3226 } 3227 static void substSelect( 3228 SubstContext *pSubst, /* Description of the substitution */ 3229 Select *p, /* SELECT statement in which to make substitutions */ 3230 int doPrior /* Do substitutes on p->pPrior too */ 3231 ){ 3232 SrcList *pSrc; 3233 struct SrcList_item *pItem; 3234 int i; 3235 if( !p ) return; 3236 do{ 3237 substExprList(pSubst, p->pEList); 3238 substExprList(pSubst, p->pGroupBy); 3239 substExprList(pSubst, p->pOrderBy); 3240 p->pHaving = substExpr(pSubst, p->pHaving); 3241 p->pWhere = substExpr(pSubst, p->pWhere); 3242 pSrc = p->pSrc; 3243 assert( pSrc!=0 ); 3244 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3245 substSelect(pSubst, pItem->pSelect, 1); 3246 if( pItem->fg.isTabFunc ){ 3247 substExprList(pSubst, pItem->u1.pFuncArg); 3248 } 3249 } 3250 }while( doPrior && (p = p->pPrior)!=0 ); 3251 } 3252 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3253 3254 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3255 /* 3256 ** This routine attempts to flatten subqueries as a performance optimization. 3257 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3258 ** 3259 ** To understand the concept of flattening, consider the following 3260 ** query: 3261 ** 3262 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3263 ** 3264 ** The default way of implementing this query is to execute the 3265 ** subquery first and store the results in a temporary table, then 3266 ** run the outer query on that temporary table. This requires two 3267 ** passes over the data. Furthermore, because the temporary table 3268 ** has no indices, the WHERE clause on the outer query cannot be 3269 ** optimized. 3270 ** 3271 ** This routine attempts to rewrite queries such as the above into 3272 ** a single flat select, like this: 3273 ** 3274 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3275 ** 3276 ** The code generated for this simplification gives the same result 3277 ** but only has to scan the data once. And because indices might 3278 ** exist on the table t1, a complete scan of the data might be 3279 ** avoided. 3280 ** 3281 ** Flattening is subject to the following constraints: 3282 ** 3283 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3284 ** The subquery and the outer query cannot both be aggregates. 3285 ** 3286 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3287 ** (2) If the subquery is an aggregate then 3288 ** (2a) the outer query must not be a join and 3289 ** (2b) the outer query must not use subqueries 3290 ** other than the one FROM-clause subquery that is a candidate 3291 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3292 ** from 2015-02-09.) 3293 ** 3294 ** (3) If the subquery is the right operand of a LEFT JOIN then 3295 ** (3a) the subquery may not be a join and 3296 ** (3b) the FROM clause of the subquery may not contain a virtual 3297 ** table and 3298 ** (3c) the outer query may not be an aggregate. 3299 ** 3300 ** (4) The subquery can not be DISTINCT. 3301 ** 3302 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3303 ** sub-queries that were excluded from this optimization. Restriction 3304 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3305 ** 3306 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3307 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3308 ** 3309 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3310 ** A FROM clause, consider adding a FROM clause with the special 3311 ** table sqlite_once that consists of a single row containing a 3312 ** single NULL. 3313 ** 3314 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3315 ** 3316 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3317 ** 3318 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3319 ** accidently carried the comment forward until 2014-09-15. Original 3320 ** constraint: "If the subquery is aggregate then the outer query 3321 ** may not use LIMIT." 3322 ** 3323 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3324 ** 3325 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3326 ** a separate restriction deriving from ticket #350. 3327 ** 3328 ** (13) The subquery and outer query may not both use LIMIT. 3329 ** 3330 ** (14) The subquery may not use OFFSET. 3331 ** 3332 ** (15) If the outer query is part of a compound select, then the 3333 ** subquery may not use LIMIT. 3334 ** (See ticket #2339 and ticket [02a8e81d44]). 3335 ** 3336 ** (16) If the outer query is aggregate, then the subquery may not 3337 ** use ORDER BY. (Ticket #2942) This used to not matter 3338 ** until we introduced the group_concat() function. 3339 ** 3340 ** (17) If the subquery is a compound select, then 3341 ** (17a) all compound operators must be a UNION ALL, and 3342 ** (17b) no terms within the subquery compound may be aggregate 3343 ** or DISTINCT, and 3344 ** (17c) every term within the subquery compound must have a FROM clause 3345 ** (17d) the outer query may not be 3346 ** (17d1) aggregate, or 3347 ** (17d2) DISTINCT, or 3348 ** (17d3) a join. 3349 ** 3350 ** The parent and sub-query may contain WHERE clauses. Subject to 3351 ** rules (11), (13) and (14), they may also contain ORDER BY, 3352 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3353 ** operator other than UNION ALL because all the other compound 3354 ** operators have an implied DISTINCT which is disallowed by 3355 ** restriction (4). 3356 ** 3357 ** Also, each component of the sub-query must return the same number 3358 ** of result columns. This is actually a requirement for any compound 3359 ** SELECT statement, but all the code here does is make sure that no 3360 ** such (illegal) sub-query is flattened. The caller will detect the 3361 ** syntax error and return a detailed message. 3362 ** 3363 ** (18) If the sub-query is a compound select, then all terms of the 3364 ** ORDER BY clause of the parent must be simple references to 3365 ** columns of the sub-query. 3366 ** 3367 ** (19) If the subquery uses LIMIT then the outer query may not 3368 ** have a WHERE clause. 3369 ** 3370 ** (20) If the sub-query is a compound select, then it must not use 3371 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3372 ** somewhat by saying that the terms of the ORDER BY clause must 3373 ** appear as unmodified result columns in the outer query. But we 3374 ** have other optimizations in mind to deal with that case. 3375 ** 3376 ** (21) If the subquery uses LIMIT then the outer query may not be 3377 ** DISTINCT. (See ticket [752e1646fc]). 3378 ** 3379 ** (22) The subquery may not be a recursive CTE. 3380 ** 3381 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3382 ** a recursive CTE, then the sub-query may not be a compound query. 3383 ** This restriction is because transforming the 3384 ** parent to a compound query confuses the code that handles 3385 ** recursive queries in multiSelect(). 3386 ** 3387 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3388 ** The subquery may not be an aggregate that uses the built-in min() or 3389 ** or max() functions. (Without this restriction, a query like: 3390 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3391 ** return the value X for which Y was maximal.) 3392 ** 3393 ** 3394 ** In this routine, the "p" parameter is a pointer to the outer query. 3395 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3396 ** uses aggregates. 3397 ** 3398 ** If flattening is not attempted, this routine is a no-op and returns 0. 3399 ** If flattening is attempted this routine returns 1. 3400 ** 3401 ** All of the expression analysis must occur on both the outer query and 3402 ** the subquery before this routine runs. 3403 */ 3404 static int flattenSubquery( 3405 Parse *pParse, /* Parsing context */ 3406 Select *p, /* The parent or outer SELECT statement */ 3407 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3408 int isAgg /* True if outer SELECT uses aggregate functions */ 3409 ){ 3410 const char *zSavedAuthContext = pParse->zAuthContext; 3411 Select *pParent; /* Current UNION ALL term of the other query */ 3412 Select *pSub; /* The inner query or "subquery" */ 3413 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3414 SrcList *pSrc; /* The FROM clause of the outer query */ 3415 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3416 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3417 int iNewParent = -1;/* Replacement table for iParent */ 3418 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3419 int i; /* Loop counter */ 3420 Expr *pWhere; /* The WHERE clause */ 3421 struct SrcList_item *pSubitem; /* The subquery */ 3422 sqlite3 *db = pParse->db; 3423 3424 /* Check to see if flattening is permitted. Return 0 if not. 3425 */ 3426 assert( p!=0 ); 3427 assert( p->pPrior==0 ); 3428 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3429 pSrc = p->pSrc; 3430 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3431 pSubitem = &pSrc->a[iFrom]; 3432 iParent = pSubitem->iCursor; 3433 pSub = pSubitem->pSelect; 3434 assert( pSub!=0 ); 3435 3436 pSubSrc = pSub->pSrc; 3437 assert( pSubSrc ); 3438 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3439 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3440 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3441 ** became arbitrary expressions, we were forced to add restrictions (13) 3442 ** and (14). */ 3443 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3444 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3445 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3446 return 0; /* Restriction (15) */ 3447 } 3448 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3449 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3450 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3451 return 0; /* Restrictions (8)(9) */ 3452 } 3453 if( p->pOrderBy && pSub->pOrderBy ){ 3454 return 0; /* Restriction (11) */ 3455 } 3456 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3457 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3458 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3459 return 0; /* Restriction (21) */ 3460 } 3461 if( pSub->selFlags & (SF_Recursive) ){ 3462 return 0; /* Restrictions (22) */ 3463 } 3464 3465 /* 3466 ** If the subquery is the right operand of a LEFT JOIN, then the 3467 ** subquery may not be a join itself (3a). Example of why this is not 3468 ** allowed: 3469 ** 3470 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3471 ** 3472 ** If we flatten the above, we would get 3473 ** 3474 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3475 ** 3476 ** which is not at all the same thing. 3477 ** 3478 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3479 ** query cannot be an aggregate. (3c) This is an artifact of the way 3480 ** aggregates are processed - there is no mechanism to determine if 3481 ** the LEFT JOIN table should be all-NULL. 3482 ** 3483 ** See also tickets #306, #350, and #3300. 3484 */ 3485 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3486 isLeftJoin = 1; 3487 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3488 /* (3a) (3c) (3b) */ 3489 return 0; 3490 } 3491 } 3492 #ifdef SQLITE_EXTRA_IFNULLROW 3493 else if( iFrom>0 && !isAgg ){ 3494 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3495 ** every reference to any result column from subquery in a join, even 3496 ** though they are not necessary. This will stress-test the OP_IfNullRow 3497 ** opcode. */ 3498 isLeftJoin = -1; 3499 } 3500 #endif 3501 3502 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3503 ** use only the UNION ALL operator. And none of the simple select queries 3504 ** that make up the compound SELECT are allowed to be aggregate or distinct 3505 ** queries. 3506 */ 3507 if( pSub->pPrior ){ 3508 if( pSub->pOrderBy ){ 3509 return 0; /* Restriction (20) */ 3510 } 3511 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3512 return 0; /* (17d1), (17d2), or (17d3) */ 3513 } 3514 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3515 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3516 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3517 assert( pSub->pSrc!=0 ); 3518 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3519 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3520 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3521 || pSub1->pSrc->nSrc<1 /* (17c) */ 3522 ){ 3523 return 0; 3524 } 3525 testcase( pSub1->pSrc->nSrc>1 ); 3526 } 3527 3528 /* Restriction (18). */ 3529 if( p->pOrderBy ){ 3530 int ii; 3531 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3532 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3533 } 3534 } 3535 } 3536 3537 /* Ex-restriction (23): 3538 ** The only way that the recursive part of a CTE can contain a compound 3539 ** subquery is for the subquery to be one term of a join. But if the 3540 ** subquery is a join, then the flattening has already been stopped by 3541 ** restriction (17d3) 3542 */ 3543 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3544 3545 /***** If we reach this point, flattening is permitted. *****/ 3546 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3547 pSub->zSelName, pSub, iFrom)); 3548 3549 /* Authorize the subquery */ 3550 pParse->zAuthContext = pSubitem->zName; 3551 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3552 testcase( i==SQLITE_DENY ); 3553 pParse->zAuthContext = zSavedAuthContext; 3554 3555 /* If the sub-query is a compound SELECT statement, then (by restrictions 3556 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3557 ** be of the form: 3558 ** 3559 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3560 ** 3561 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3562 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3563 ** OFFSET clauses and joins them to the left-hand-side of the original 3564 ** using UNION ALL operators. In this case N is the number of simple 3565 ** select statements in the compound sub-query. 3566 ** 3567 ** Example: 3568 ** 3569 ** SELECT a+1 FROM ( 3570 ** SELECT x FROM tab 3571 ** UNION ALL 3572 ** SELECT y FROM tab 3573 ** UNION ALL 3574 ** SELECT abs(z*2) FROM tab2 3575 ** ) WHERE a!=5 ORDER BY 1 3576 ** 3577 ** Transformed into: 3578 ** 3579 ** SELECT x+1 FROM tab WHERE x+1!=5 3580 ** UNION ALL 3581 ** SELECT y+1 FROM tab WHERE y+1!=5 3582 ** UNION ALL 3583 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3584 ** ORDER BY 1 3585 ** 3586 ** We call this the "compound-subquery flattening". 3587 */ 3588 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3589 Select *pNew; 3590 ExprList *pOrderBy = p->pOrderBy; 3591 Expr *pLimit = p->pLimit; 3592 Select *pPrior = p->pPrior; 3593 p->pOrderBy = 0; 3594 p->pSrc = 0; 3595 p->pPrior = 0; 3596 p->pLimit = 0; 3597 pNew = sqlite3SelectDup(db, p, 0); 3598 sqlite3SelectSetName(pNew, pSub->zSelName); 3599 p->pLimit = pLimit; 3600 p->pOrderBy = pOrderBy; 3601 p->pSrc = pSrc; 3602 p->op = TK_ALL; 3603 if( pNew==0 ){ 3604 p->pPrior = pPrior; 3605 }else{ 3606 pNew->pPrior = pPrior; 3607 if( pPrior ) pPrior->pNext = pNew; 3608 pNew->pNext = p; 3609 p->pPrior = pNew; 3610 SELECTTRACE(2,pParse,p, 3611 ("compound-subquery flattener creates %s.%p as peer\n", 3612 pNew->zSelName, pNew)); 3613 } 3614 if( db->mallocFailed ) return 1; 3615 } 3616 3617 /* Begin flattening the iFrom-th entry of the FROM clause 3618 ** in the outer query. 3619 */ 3620 pSub = pSub1 = pSubitem->pSelect; 3621 3622 /* Delete the transient table structure associated with the 3623 ** subquery 3624 */ 3625 sqlite3DbFree(db, pSubitem->zDatabase); 3626 sqlite3DbFree(db, pSubitem->zName); 3627 sqlite3DbFree(db, pSubitem->zAlias); 3628 pSubitem->zDatabase = 0; 3629 pSubitem->zName = 0; 3630 pSubitem->zAlias = 0; 3631 pSubitem->pSelect = 0; 3632 3633 /* Defer deleting the Table object associated with the 3634 ** subquery until code generation is 3635 ** complete, since there may still exist Expr.pTab entries that 3636 ** refer to the subquery even after flattening. Ticket #3346. 3637 ** 3638 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3639 */ 3640 if( ALWAYS(pSubitem->pTab!=0) ){ 3641 Table *pTabToDel = pSubitem->pTab; 3642 if( pTabToDel->nTabRef==1 ){ 3643 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3644 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3645 pToplevel->pZombieTab = pTabToDel; 3646 }else{ 3647 pTabToDel->nTabRef--; 3648 } 3649 pSubitem->pTab = 0; 3650 } 3651 3652 /* The following loop runs once for each term in a compound-subquery 3653 ** flattening (as described above). If we are doing a different kind 3654 ** of flattening - a flattening other than a compound-subquery flattening - 3655 ** then this loop only runs once. 3656 ** 3657 ** This loop moves all of the FROM elements of the subquery into the 3658 ** the FROM clause of the outer query. Before doing this, remember 3659 ** the cursor number for the original outer query FROM element in 3660 ** iParent. The iParent cursor will never be used. Subsequent code 3661 ** will scan expressions looking for iParent references and replace 3662 ** those references with expressions that resolve to the subquery FROM 3663 ** elements we are now copying in. 3664 */ 3665 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3666 int nSubSrc; 3667 u8 jointype = 0; 3668 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3669 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3670 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3671 3672 if( pSrc ){ 3673 assert( pParent==p ); /* First time through the loop */ 3674 jointype = pSubitem->fg.jointype; 3675 }else{ 3676 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3677 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3678 if( pSrc==0 ){ 3679 assert( db->mallocFailed ); 3680 break; 3681 } 3682 } 3683 3684 /* The subquery uses a single slot of the FROM clause of the outer 3685 ** query. If the subquery has more than one element in its FROM clause, 3686 ** then expand the outer query to make space for it to hold all elements 3687 ** of the subquery. 3688 ** 3689 ** Example: 3690 ** 3691 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3692 ** 3693 ** The outer query has 3 slots in its FROM clause. One slot of the 3694 ** outer query (the middle slot) is used by the subquery. The next 3695 ** block of code will expand the outer query FROM clause to 4 slots. 3696 ** The middle slot is expanded to two slots in order to make space 3697 ** for the two elements in the FROM clause of the subquery. 3698 */ 3699 if( nSubSrc>1 ){ 3700 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3701 if( db->mallocFailed ){ 3702 break; 3703 } 3704 } 3705 3706 /* Transfer the FROM clause terms from the subquery into the 3707 ** outer query. 3708 */ 3709 for(i=0; i<nSubSrc; i++){ 3710 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3711 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3712 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3713 iNewParent = pSubSrc->a[i].iCursor; 3714 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3715 } 3716 pSrc->a[iFrom].fg.jointype = jointype; 3717 3718 /* Now begin substituting subquery result set expressions for 3719 ** references to the iParent in the outer query. 3720 ** 3721 ** Example: 3722 ** 3723 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3724 ** \ \_____________ subquery __________/ / 3725 ** \_____________________ outer query ______________________________/ 3726 ** 3727 ** We look at every expression in the outer query and every place we see 3728 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3729 */ 3730 if( pSub->pOrderBy ){ 3731 /* At this point, any non-zero iOrderByCol values indicate that the 3732 ** ORDER BY column expression is identical to the iOrderByCol'th 3733 ** expression returned by SELECT statement pSub. Since these values 3734 ** do not necessarily correspond to columns in SELECT statement pParent, 3735 ** zero them before transfering the ORDER BY clause. 3736 ** 3737 ** Not doing this may cause an error if a subsequent call to this 3738 ** function attempts to flatten a compound sub-query into pParent 3739 ** (the only way this can happen is if the compound sub-query is 3740 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3741 ExprList *pOrderBy = pSub->pOrderBy; 3742 for(i=0; i<pOrderBy->nExpr; i++){ 3743 pOrderBy->a[i].u.x.iOrderByCol = 0; 3744 } 3745 assert( pParent->pOrderBy==0 ); 3746 assert( pSub->pPrior==0 ); 3747 pParent->pOrderBy = pOrderBy; 3748 pSub->pOrderBy = 0; 3749 } 3750 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3751 if( isLeftJoin>0 ){ 3752 setJoinExpr(pWhere, iNewParent); 3753 } 3754 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3755 if( db->mallocFailed==0 ){ 3756 SubstContext x; 3757 x.pParse = pParse; 3758 x.iTable = iParent; 3759 x.iNewTable = iNewParent; 3760 x.isLeftJoin = isLeftJoin; 3761 x.pEList = pSub->pEList; 3762 substSelect(&x, pParent, 0); 3763 } 3764 3765 /* The flattened query is distinct if either the inner or the 3766 ** outer query is distinct. 3767 */ 3768 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3769 3770 /* 3771 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3772 ** 3773 ** One is tempted to try to add a and b to combine the limits. But this 3774 ** does not work if either limit is negative. 3775 */ 3776 if( pSub->pLimit ){ 3777 pParent->pLimit = pSub->pLimit; 3778 pSub->pLimit = 0; 3779 } 3780 } 3781 3782 /* Finially, delete what is left of the subquery and return 3783 ** success. 3784 */ 3785 sqlite3SelectDelete(db, pSub1); 3786 3787 #if SELECTTRACE_ENABLED 3788 if( sqlite3SelectTrace & 0x100 ){ 3789 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3790 sqlite3TreeViewSelect(0, p, 0); 3791 } 3792 #endif 3793 3794 return 1; 3795 } 3796 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3797 3798 3799 3800 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3801 /* 3802 ** Make copies of relevant WHERE clause terms of the outer query into 3803 ** the WHERE clause of subquery. Example: 3804 ** 3805 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3806 ** 3807 ** Transformed into: 3808 ** 3809 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3810 ** WHERE x=5 AND y=10; 3811 ** 3812 ** The hope is that the terms added to the inner query will make it more 3813 ** efficient. 3814 ** 3815 ** Do not attempt this optimization if: 3816 ** 3817 ** (1) (** This restriction was removed on 2017-09-29. We used to 3818 ** disallow this optimization for aggregate subqueries, but now 3819 ** it is allowed by putting the extra terms on the HAVING clause. 3820 ** The added HAVING clause is pointless if the subquery lacks 3821 ** a GROUP BY clause. But such a HAVING clause is also harmless 3822 ** so there does not appear to be any reason to add extra logic 3823 ** to suppress it. **) 3824 ** 3825 ** (2) The inner query is the recursive part of a common table expression. 3826 ** 3827 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3828 ** close would change the meaning of the LIMIT). 3829 ** 3830 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3831 ** enforces this restriction since this routine does not have enough 3832 ** information to know.) 3833 ** 3834 ** (5) The WHERE clause expression originates in the ON or USING clause 3835 ** of a LEFT JOIN. 3836 ** 3837 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3838 ** terms are duplicated into the subquery. 3839 */ 3840 static int pushDownWhereTerms( 3841 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3842 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3843 Expr *pWhere, /* The WHERE clause of the outer query */ 3844 int iCursor /* Cursor number of the subquery */ 3845 ){ 3846 Expr *pNew; 3847 int nChng = 0; 3848 if( pWhere==0 ) return 0; 3849 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 3850 3851 #ifdef SQLITE_DEBUG 3852 /* Only the first term of a compound can have a WITH clause. But make 3853 ** sure no other terms are marked SF_Recursive in case something changes 3854 ** in the future. 3855 */ 3856 { 3857 Select *pX; 3858 for(pX=pSubq; pX; pX=pX->pPrior){ 3859 assert( (pX->selFlags & (SF_Recursive))==0 ); 3860 } 3861 } 3862 #endif 3863 3864 if( pSubq->pLimit!=0 ){ 3865 return 0; /* restriction (3) */ 3866 } 3867 while( pWhere->op==TK_AND ){ 3868 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3869 pWhere = pWhere->pLeft; 3870 } 3871 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */ 3872 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3873 nChng++; 3874 while( pSubq ){ 3875 SubstContext x; 3876 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3877 x.pParse = pParse; 3878 x.iTable = iCursor; 3879 x.iNewTable = iCursor; 3880 x.isLeftJoin = 0; 3881 x.pEList = pSubq->pEList; 3882 pNew = substExpr(&x, pNew); 3883 if( pSubq->selFlags & SF_Aggregate ){ 3884 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 3885 }else{ 3886 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3887 } 3888 pSubq = pSubq->pPrior; 3889 } 3890 } 3891 return nChng; 3892 } 3893 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3894 3895 /* 3896 ** The pFunc is the only aggregate function in the query. Check to see 3897 ** if the query is a candidate for the min/max optimization. 3898 ** 3899 ** If the query is a candidate for the min/max optimization, then set 3900 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 3901 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 3902 ** whether pFunc is a min() or max() function. 3903 ** 3904 ** If the query is not a candidate for the min/max optimization, return 3905 ** WHERE_ORDERBY_NORMAL (which must be zero). 3906 ** 3907 ** This routine must be called after aggregate functions have been 3908 ** located but before their arguments have been subjected to aggregate 3909 ** analysis. 3910 */ 3911 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 3912 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3913 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 3914 const char *zFunc; /* Name of aggregate function pFunc */ 3915 ExprList *pOrderBy; 3916 u8 sortOrder; 3917 3918 assert( *ppMinMax==0 ); 3919 assert( pFunc->op==TK_AGG_FUNCTION ); 3920 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 3921 zFunc = pFunc->u.zToken; 3922 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3923 eRet = WHERE_ORDERBY_MIN; 3924 sortOrder = SQLITE_SO_ASC; 3925 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3926 eRet = WHERE_ORDERBY_MAX; 3927 sortOrder = SQLITE_SO_DESC; 3928 }else{ 3929 return eRet; 3930 } 3931 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 3932 assert( pOrderBy!=0 || db->mallocFailed ); 3933 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 3934 return eRet; 3935 } 3936 3937 /* 3938 ** The select statement passed as the first argument is an aggregate query. 3939 ** The second argument is the associated aggregate-info object. This 3940 ** function tests if the SELECT is of the form: 3941 ** 3942 ** SELECT count(*) FROM <tbl> 3943 ** 3944 ** where table is a database table, not a sub-select or view. If the query 3945 ** does match this pattern, then a pointer to the Table object representing 3946 ** <tbl> is returned. Otherwise, 0 is returned. 3947 */ 3948 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3949 Table *pTab; 3950 Expr *pExpr; 3951 3952 assert( !p->pGroupBy ); 3953 3954 if( p->pWhere || p->pEList->nExpr!=1 3955 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3956 ){ 3957 return 0; 3958 } 3959 pTab = p->pSrc->a[0].pTab; 3960 pExpr = p->pEList->a[0].pExpr; 3961 assert( pTab && !pTab->pSelect && pExpr ); 3962 3963 if( IsVirtual(pTab) ) return 0; 3964 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3965 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3966 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3967 if( pExpr->flags&EP_Distinct ) return 0; 3968 3969 return pTab; 3970 } 3971 3972 /* 3973 ** If the source-list item passed as an argument was augmented with an 3974 ** INDEXED BY clause, then try to locate the specified index. If there 3975 ** was such a clause and the named index cannot be found, return 3976 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3977 ** pFrom->pIndex and return SQLITE_OK. 3978 */ 3979 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3980 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3981 Table *pTab = pFrom->pTab; 3982 char *zIndexedBy = pFrom->u1.zIndexedBy; 3983 Index *pIdx; 3984 for(pIdx=pTab->pIndex; 3985 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3986 pIdx=pIdx->pNext 3987 ); 3988 if( !pIdx ){ 3989 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3990 pParse->checkSchema = 1; 3991 return SQLITE_ERROR; 3992 } 3993 pFrom->pIBIndex = pIdx; 3994 } 3995 return SQLITE_OK; 3996 } 3997 /* 3998 ** Detect compound SELECT statements that use an ORDER BY clause with 3999 ** an alternative collating sequence. 4000 ** 4001 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4002 ** 4003 ** These are rewritten as a subquery: 4004 ** 4005 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4006 ** ORDER BY ... COLLATE ... 4007 ** 4008 ** This transformation is necessary because the multiSelectOrderBy() routine 4009 ** above that generates the code for a compound SELECT with an ORDER BY clause 4010 ** uses a merge algorithm that requires the same collating sequence on the 4011 ** result columns as on the ORDER BY clause. See ticket 4012 ** http://www.sqlite.org/src/info/6709574d2a 4013 ** 4014 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4015 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4016 ** there are COLLATE terms in the ORDER BY. 4017 */ 4018 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4019 int i; 4020 Select *pNew; 4021 Select *pX; 4022 sqlite3 *db; 4023 struct ExprList_item *a; 4024 SrcList *pNewSrc; 4025 Parse *pParse; 4026 Token dummy; 4027 4028 if( p->pPrior==0 ) return WRC_Continue; 4029 if( p->pOrderBy==0 ) return WRC_Continue; 4030 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4031 if( pX==0 ) return WRC_Continue; 4032 a = p->pOrderBy->a; 4033 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4034 if( a[i].pExpr->flags & EP_Collate ) break; 4035 } 4036 if( i<0 ) return WRC_Continue; 4037 4038 /* If we reach this point, that means the transformation is required. */ 4039 4040 pParse = pWalker->pParse; 4041 db = pParse->db; 4042 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4043 if( pNew==0 ) return WRC_Abort; 4044 memset(&dummy, 0, sizeof(dummy)); 4045 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4046 if( pNewSrc==0 ) return WRC_Abort; 4047 *pNew = *p; 4048 p->pSrc = pNewSrc; 4049 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4050 p->op = TK_SELECT; 4051 p->pWhere = 0; 4052 pNew->pGroupBy = 0; 4053 pNew->pHaving = 0; 4054 pNew->pOrderBy = 0; 4055 p->pPrior = 0; 4056 p->pNext = 0; 4057 p->pWith = 0; 4058 p->selFlags &= ~SF_Compound; 4059 assert( (p->selFlags & SF_Converted)==0 ); 4060 p->selFlags |= SF_Converted; 4061 assert( pNew->pPrior!=0 ); 4062 pNew->pPrior->pNext = pNew; 4063 pNew->pLimit = 0; 4064 return WRC_Continue; 4065 } 4066 4067 /* 4068 ** Check to see if the FROM clause term pFrom has table-valued function 4069 ** arguments. If it does, leave an error message in pParse and return 4070 ** non-zero, since pFrom is not allowed to be a table-valued function. 4071 */ 4072 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4073 if( pFrom->fg.isTabFunc ){ 4074 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4075 return 1; 4076 } 4077 return 0; 4078 } 4079 4080 #ifndef SQLITE_OMIT_CTE 4081 /* 4082 ** Argument pWith (which may be NULL) points to a linked list of nested 4083 ** WITH contexts, from inner to outermost. If the table identified by 4084 ** FROM clause element pItem is really a common-table-expression (CTE) 4085 ** then return a pointer to the CTE definition for that table. Otherwise 4086 ** return NULL. 4087 ** 4088 ** If a non-NULL value is returned, set *ppContext to point to the With 4089 ** object that the returned CTE belongs to. 4090 */ 4091 static struct Cte *searchWith( 4092 With *pWith, /* Current innermost WITH clause */ 4093 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4094 With **ppContext /* OUT: WITH clause return value belongs to */ 4095 ){ 4096 const char *zName; 4097 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4098 With *p; 4099 for(p=pWith; p; p=p->pOuter){ 4100 int i; 4101 for(i=0; i<p->nCte; i++){ 4102 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4103 *ppContext = p; 4104 return &p->a[i]; 4105 } 4106 } 4107 } 4108 } 4109 return 0; 4110 } 4111 4112 /* The code generator maintains a stack of active WITH clauses 4113 ** with the inner-most WITH clause being at the top of the stack. 4114 ** 4115 ** This routine pushes the WITH clause passed as the second argument 4116 ** onto the top of the stack. If argument bFree is true, then this 4117 ** WITH clause will never be popped from the stack. In this case it 4118 ** should be freed along with the Parse object. In other cases, when 4119 ** bFree==0, the With object will be freed along with the SELECT 4120 ** statement with which it is associated. 4121 */ 4122 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4123 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4124 if( pWith ){ 4125 assert( pParse->pWith!=pWith ); 4126 pWith->pOuter = pParse->pWith; 4127 pParse->pWith = pWith; 4128 if( bFree ) pParse->pWithToFree = pWith; 4129 } 4130 } 4131 4132 /* 4133 ** This function checks if argument pFrom refers to a CTE declared by 4134 ** a WITH clause on the stack currently maintained by the parser. And, 4135 ** if currently processing a CTE expression, if it is a recursive 4136 ** reference to the current CTE. 4137 ** 4138 ** If pFrom falls into either of the two categories above, pFrom->pTab 4139 ** and other fields are populated accordingly. The caller should check 4140 ** (pFrom->pTab!=0) to determine whether or not a successful match 4141 ** was found. 4142 ** 4143 ** Whether or not a match is found, SQLITE_OK is returned if no error 4144 ** occurs. If an error does occur, an error message is stored in the 4145 ** parser and some error code other than SQLITE_OK returned. 4146 */ 4147 static int withExpand( 4148 Walker *pWalker, 4149 struct SrcList_item *pFrom 4150 ){ 4151 Parse *pParse = pWalker->pParse; 4152 sqlite3 *db = pParse->db; 4153 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4154 With *pWith; /* WITH clause that pCte belongs to */ 4155 4156 assert( pFrom->pTab==0 ); 4157 4158 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4159 if( pCte ){ 4160 Table *pTab; 4161 ExprList *pEList; 4162 Select *pSel; 4163 Select *pLeft; /* Left-most SELECT statement */ 4164 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4165 With *pSavedWith; /* Initial value of pParse->pWith */ 4166 4167 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4168 ** recursive reference to CTE pCte. Leave an error in pParse and return 4169 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4170 ** In this case, proceed. */ 4171 if( pCte->zCteErr ){ 4172 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4173 return SQLITE_ERROR; 4174 } 4175 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4176 4177 assert( pFrom->pTab==0 ); 4178 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4179 if( pTab==0 ) return WRC_Abort; 4180 pTab->nTabRef = 1; 4181 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4182 pTab->iPKey = -1; 4183 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4184 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4185 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4186 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4187 assert( pFrom->pSelect ); 4188 4189 /* Check if this is a recursive CTE. */ 4190 pSel = pFrom->pSelect; 4191 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4192 if( bMayRecursive ){ 4193 int i; 4194 SrcList *pSrc = pFrom->pSelect->pSrc; 4195 for(i=0; i<pSrc->nSrc; i++){ 4196 struct SrcList_item *pItem = &pSrc->a[i]; 4197 if( pItem->zDatabase==0 4198 && pItem->zName!=0 4199 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4200 ){ 4201 pItem->pTab = pTab; 4202 pItem->fg.isRecursive = 1; 4203 pTab->nTabRef++; 4204 pSel->selFlags |= SF_Recursive; 4205 } 4206 } 4207 } 4208 4209 /* Only one recursive reference is permitted. */ 4210 if( pTab->nTabRef>2 ){ 4211 sqlite3ErrorMsg( 4212 pParse, "multiple references to recursive table: %s", pCte->zName 4213 ); 4214 return SQLITE_ERROR; 4215 } 4216 assert( pTab->nTabRef==1 || 4217 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4218 4219 pCte->zCteErr = "circular reference: %s"; 4220 pSavedWith = pParse->pWith; 4221 pParse->pWith = pWith; 4222 if( bMayRecursive ){ 4223 Select *pPrior = pSel->pPrior; 4224 assert( pPrior->pWith==0 ); 4225 pPrior->pWith = pSel->pWith; 4226 sqlite3WalkSelect(pWalker, pPrior); 4227 pPrior->pWith = 0; 4228 }else{ 4229 sqlite3WalkSelect(pWalker, pSel); 4230 } 4231 pParse->pWith = pWith; 4232 4233 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4234 pEList = pLeft->pEList; 4235 if( pCte->pCols ){ 4236 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4237 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4238 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4239 ); 4240 pParse->pWith = pSavedWith; 4241 return SQLITE_ERROR; 4242 } 4243 pEList = pCte->pCols; 4244 } 4245 4246 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4247 if( bMayRecursive ){ 4248 if( pSel->selFlags & SF_Recursive ){ 4249 pCte->zCteErr = "multiple recursive references: %s"; 4250 }else{ 4251 pCte->zCteErr = "recursive reference in a subquery: %s"; 4252 } 4253 sqlite3WalkSelect(pWalker, pSel); 4254 } 4255 pCte->zCteErr = 0; 4256 pParse->pWith = pSavedWith; 4257 } 4258 4259 return SQLITE_OK; 4260 } 4261 #endif 4262 4263 #ifndef SQLITE_OMIT_CTE 4264 /* 4265 ** If the SELECT passed as the second argument has an associated WITH 4266 ** clause, pop it from the stack stored as part of the Parse object. 4267 ** 4268 ** This function is used as the xSelectCallback2() callback by 4269 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4270 ** names and other FROM clause elements. 4271 */ 4272 static void selectPopWith(Walker *pWalker, Select *p){ 4273 Parse *pParse = pWalker->pParse; 4274 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4275 With *pWith = findRightmost(p)->pWith; 4276 if( pWith!=0 ){ 4277 assert( pParse->pWith==pWith ); 4278 pParse->pWith = pWith->pOuter; 4279 } 4280 } 4281 } 4282 #else 4283 #define selectPopWith 0 4284 #endif 4285 4286 /* 4287 ** This routine is a Walker callback for "expanding" a SELECT statement. 4288 ** "Expanding" means to do the following: 4289 ** 4290 ** (1) Make sure VDBE cursor numbers have been assigned to every 4291 ** element of the FROM clause. 4292 ** 4293 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4294 ** defines FROM clause. When views appear in the FROM clause, 4295 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4296 ** that implements the view. A copy is made of the view's SELECT 4297 ** statement so that we can freely modify or delete that statement 4298 ** without worrying about messing up the persistent representation 4299 ** of the view. 4300 ** 4301 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4302 ** on joins and the ON and USING clause of joins. 4303 ** 4304 ** (4) Scan the list of columns in the result set (pEList) looking 4305 ** for instances of the "*" operator or the TABLE.* operator. 4306 ** If found, expand each "*" to be every column in every table 4307 ** and TABLE.* to be every column in TABLE. 4308 ** 4309 */ 4310 static int selectExpander(Walker *pWalker, Select *p){ 4311 Parse *pParse = pWalker->pParse; 4312 int i, j, k; 4313 SrcList *pTabList; 4314 ExprList *pEList; 4315 struct SrcList_item *pFrom; 4316 sqlite3 *db = pParse->db; 4317 Expr *pE, *pRight, *pExpr; 4318 u16 selFlags = p->selFlags; 4319 u32 elistFlags = 0; 4320 4321 p->selFlags |= SF_Expanded; 4322 if( db->mallocFailed ){ 4323 return WRC_Abort; 4324 } 4325 assert( p->pSrc!=0 ); 4326 if( (selFlags & SF_Expanded)!=0 ){ 4327 return WRC_Prune; 4328 } 4329 pTabList = p->pSrc; 4330 pEList = p->pEList; 4331 if( OK_IF_ALWAYS_TRUE(p->pWith) ){ 4332 sqlite3WithPush(pParse, p->pWith, 0); 4333 } 4334 4335 /* Make sure cursor numbers have been assigned to all entries in 4336 ** the FROM clause of the SELECT statement. 4337 */ 4338 sqlite3SrcListAssignCursors(pParse, pTabList); 4339 4340 /* Look up every table named in the FROM clause of the select. If 4341 ** an entry of the FROM clause is a subquery instead of a table or view, 4342 ** then create a transient table structure to describe the subquery. 4343 */ 4344 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4345 Table *pTab; 4346 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4347 if( pFrom->fg.isRecursive ) continue; 4348 assert( pFrom->pTab==0 ); 4349 #ifndef SQLITE_OMIT_CTE 4350 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4351 if( pFrom->pTab ) {} else 4352 #endif 4353 if( pFrom->zName==0 ){ 4354 #ifndef SQLITE_OMIT_SUBQUERY 4355 Select *pSel = pFrom->pSelect; 4356 /* A sub-query in the FROM clause of a SELECT */ 4357 assert( pSel!=0 ); 4358 assert( pFrom->pTab==0 ); 4359 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4360 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4361 if( pTab==0 ) return WRC_Abort; 4362 pTab->nTabRef = 1; 4363 if( pFrom->zAlias ){ 4364 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4365 }else{ 4366 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4367 } 4368 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4369 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4370 pTab->iPKey = -1; 4371 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4372 pTab->tabFlags |= TF_Ephemeral; 4373 #endif 4374 }else{ 4375 /* An ordinary table or view name in the FROM clause */ 4376 assert( pFrom->pTab==0 ); 4377 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4378 if( pTab==0 ) return WRC_Abort; 4379 if( pTab->nTabRef>=0xffff ){ 4380 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4381 pTab->zName); 4382 pFrom->pTab = 0; 4383 return WRC_Abort; 4384 } 4385 pTab->nTabRef++; 4386 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4387 return WRC_Abort; 4388 } 4389 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4390 if( IsVirtual(pTab) || pTab->pSelect ){ 4391 i16 nCol; 4392 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4393 assert( pFrom->pSelect==0 ); 4394 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4395 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4396 nCol = pTab->nCol; 4397 pTab->nCol = -1; 4398 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4399 pTab->nCol = nCol; 4400 } 4401 #endif 4402 } 4403 4404 /* Locate the index named by the INDEXED BY clause, if any. */ 4405 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4406 return WRC_Abort; 4407 } 4408 } 4409 4410 /* Process NATURAL keywords, and ON and USING clauses of joins. 4411 */ 4412 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4413 return WRC_Abort; 4414 } 4415 4416 /* For every "*" that occurs in the column list, insert the names of 4417 ** all columns in all tables. And for every TABLE.* insert the names 4418 ** of all columns in TABLE. The parser inserted a special expression 4419 ** with the TK_ASTERISK operator for each "*" that it found in the column 4420 ** list. The following code just has to locate the TK_ASTERISK 4421 ** expressions and expand each one to the list of all columns in 4422 ** all tables. 4423 ** 4424 ** The first loop just checks to see if there are any "*" operators 4425 ** that need expanding. 4426 */ 4427 for(k=0; k<pEList->nExpr; k++){ 4428 pE = pEList->a[k].pExpr; 4429 if( pE->op==TK_ASTERISK ) break; 4430 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4431 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4432 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4433 elistFlags |= pE->flags; 4434 } 4435 if( k<pEList->nExpr ){ 4436 /* 4437 ** If we get here it means the result set contains one or more "*" 4438 ** operators that need to be expanded. Loop through each expression 4439 ** in the result set and expand them one by one. 4440 */ 4441 struct ExprList_item *a = pEList->a; 4442 ExprList *pNew = 0; 4443 int flags = pParse->db->flags; 4444 int longNames = (flags & SQLITE_FullColNames)!=0 4445 && (flags & SQLITE_ShortColNames)==0; 4446 4447 for(k=0; k<pEList->nExpr; k++){ 4448 pE = a[k].pExpr; 4449 elistFlags |= pE->flags; 4450 pRight = pE->pRight; 4451 assert( pE->op!=TK_DOT || pRight!=0 ); 4452 if( pE->op!=TK_ASTERISK 4453 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4454 ){ 4455 /* This particular expression does not need to be expanded. 4456 */ 4457 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4458 if( pNew ){ 4459 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4460 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4461 a[k].zName = 0; 4462 a[k].zSpan = 0; 4463 } 4464 a[k].pExpr = 0; 4465 }else{ 4466 /* This expression is a "*" or a "TABLE.*" and needs to be 4467 ** expanded. */ 4468 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4469 char *zTName = 0; /* text of name of TABLE */ 4470 if( pE->op==TK_DOT ){ 4471 assert( pE->pLeft!=0 ); 4472 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4473 zTName = pE->pLeft->u.zToken; 4474 } 4475 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4476 Table *pTab = pFrom->pTab; 4477 Select *pSub = pFrom->pSelect; 4478 char *zTabName = pFrom->zAlias; 4479 const char *zSchemaName = 0; 4480 int iDb; 4481 if( zTabName==0 ){ 4482 zTabName = pTab->zName; 4483 } 4484 if( db->mallocFailed ) break; 4485 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4486 pSub = 0; 4487 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4488 continue; 4489 } 4490 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4491 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4492 } 4493 for(j=0; j<pTab->nCol; j++){ 4494 char *zName = pTab->aCol[j].zName; 4495 char *zColname; /* The computed column name */ 4496 char *zToFree; /* Malloced string that needs to be freed */ 4497 Token sColname; /* Computed column name as a token */ 4498 4499 assert( zName ); 4500 if( zTName && pSub 4501 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4502 ){ 4503 continue; 4504 } 4505 4506 /* If a column is marked as 'hidden', omit it from the expanded 4507 ** result-set list unless the SELECT has the SF_IncludeHidden 4508 ** bit set. 4509 */ 4510 if( (p->selFlags & SF_IncludeHidden)==0 4511 && IsHiddenColumn(&pTab->aCol[j]) 4512 ){ 4513 continue; 4514 } 4515 tableSeen = 1; 4516 4517 if( i>0 && zTName==0 ){ 4518 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4519 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4520 ){ 4521 /* In a NATURAL join, omit the join columns from the 4522 ** table to the right of the join */ 4523 continue; 4524 } 4525 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4526 /* In a join with a USING clause, omit columns in the 4527 ** using clause from the table on the right. */ 4528 continue; 4529 } 4530 } 4531 pRight = sqlite3Expr(db, TK_ID, zName); 4532 zColname = zName; 4533 zToFree = 0; 4534 if( longNames || pTabList->nSrc>1 ){ 4535 Expr *pLeft; 4536 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4537 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4538 if( zSchemaName ){ 4539 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4540 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4541 } 4542 if( longNames ){ 4543 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4544 zToFree = zColname; 4545 } 4546 }else{ 4547 pExpr = pRight; 4548 } 4549 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4550 sqlite3TokenInit(&sColname, zColname); 4551 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4552 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4553 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4554 if( pSub ){ 4555 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4556 testcase( pX->zSpan==0 ); 4557 }else{ 4558 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4559 zSchemaName, zTabName, zColname); 4560 testcase( pX->zSpan==0 ); 4561 } 4562 pX->bSpanIsTab = 1; 4563 } 4564 sqlite3DbFree(db, zToFree); 4565 } 4566 } 4567 if( !tableSeen ){ 4568 if( zTName ){ 4569 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4570 }else{ 4571 sqlite3ErrorMsg(pParse, "no tables specified"); 4572 } 4573 } 4574 } 4575 } 4576 sqlite3ExprListDelete(db, pEList); 4577 p->pEList = pNew; 4578 } 4579 if( p->pEList ){ 4580 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4581 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4582 return WRC_Abort; 4583 } 4584 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4585 p->selFlags |= SF_ComplexResult; 4586 } 4587 } 4588 return WRC_Continue; 4589 } 4590 4591 /* 4592 ** No-op routine for the parse-tree walker. 4593 ** 4594 ** When this routine is the Walker.xExprCallback then expression trees 4595 ** are walked without any actions being taken at each node. Presumably, 4596 ** when this routine is used for Walker.xExprCallback then 4597 ** Walker.xSelectCallback is set to do something useful for every 4598 ** subquery in the parser tree. 4599 */ 4600 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4601 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4602 return WRC_Continue; 4603 } 4604 4605 /* 4606 ** No-op routine for the parse-tree walker for SELECT statements. 4607 ** subquery in the parser tree. 4608 */ 4609 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4610 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4611 return WRC_Continue; 4612 } 4613 4614 #if SQLITE_DEBUG 4615 /* 4616 ** Always assert. This xSelectCallback2 implementation proves that the 4617 ** xSelectCallback2 is never invoked. 4618 */ 4619 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4620 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4621 assert( 0 ); 4622 } 4623 #endif 4624 /* 4625 ** This routine "expands" a SELECT statement and all of its subqueries. 4626 ** For additional information on what it means to "expand" a SELECT 4627 ** statement, see the comment on the selectExpand worker callback above. 4628 ** 4629 ** Expanding a SELECT statement is the first step in processing a 4630 ** SELECT statement. The SELECT statement must be expanded before 4631 ** name resolution is performed. 4632 ** 4633 ** If anything goes wrong, an error message is written into pParse. 4634 ** The calling function can detect the problem by looking at pParse->nErr 4635 ** and/or pParse->db->mallocFailed. 4636 */ 4637 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4638 Walker w; 4639 w.xExprCallback = sqlite3ExprWalkNoop; 4640 w.pParse = pParse; 4641 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4642 w.xSelectCallback = convertCompoundSelectToSubquery; 4643 w.xSelectCallback2 = 0; 4644 sqlite3WalkSelect(&w, pSelect); 4645 } 4646 w.xSelectCallback = selectExpander; 4647 w.xSelectCallback2 = selectPopWith; 4648 sqlite3WalkSelect(&w, pSelect); 4649 } 4650 4651 4652 #ifndef SQLITE_OMIT_SUBQUERY 4653 /* 4654 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4655 ** interface. 4656 ** 4657 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4658 ** information to the Table structure that represents the result set 4659 ** of that subquery. 4660 ** 4661 ** The Table structure that represents the result set was constructed 4662 ** by selectExpander() but the type and collation information was omitted 4663 ** at that point because identifiers had not yet been resolved. This 4664 ** routine is called after identifier resolution. 4665 */ 4666 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4667 Parse *pParse; 4668 int i; 4669 SrcList *pTabList; 4670 struct SrcList_item *pFrom; 4671 4672 assert( p->selFlags & SF_Resolved ); 4673 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4674 p->selFlags |= SF_HasTypeInfo; 4675 pParse = pWalker->pParse; 4676 pTabList = p->pSrc; 4677 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4678 Table *pTab = pFrom->pTab; 4679 assert( pTab!=0 ); 4680 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4681 /* A sub-query in the FROM clause of a SELECT */ 4682 Select *pSel = pFrom->pSelect; 4683 if( pSel ){ 4684 while( pSel->pPrior ) pSel = pSel->pPrior; 4685 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4686 } 4687 } 4688 } 4689 } 4690 #endif 4691 4692 4693 /* 4694 ** This routine adds datatype and collating sequence information to 4695 ** the Table structures of all FROM-clause subqueries in a 4696 ** SELECT statement. 4697 ** 4698 ** Use this routine after name resolution. 4699 */ 4700 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4701 #ifndef SQLITE_OMIT_SUBQUERY 4702 Walker w; 4703 w.xSelectCallback = sqlite3SelectWalkNoop; 4704 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4705 w.xExprCallback = sqlite3ExprWalkNoop; 4706 w.pParse = pParse; 4707 sqlite3WalkSelect(&w, pSelect); 4708 #endif 4709 } 4710 4711 4712 /* 4713 ** This routine sets up a SELECT statement for processing. The 4714 ** following is accomplished: 4715 ** 4716 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4717 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4718 ** * ON and USING clauses are shifted into WHERE statements 4719 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4720 ** * Identifiers in expression are matched to tables. 4721 ** 4722 ** This routine acts recursively on all subqueries within the SELECT. 4723 */ 4724 void sqlite3SelectPrep( 4725 Parse *pParse, /* The parser context */ 4726 Select *p, /* The SELECT statement being coded. */ 4727 NameContext *pOuterNC /* Name context for container */ 4728 ){ 4729 assert( p!=0 || pParse->db->mallocFailed ); 4730 if( pParse->db->mallocFailed ) return; 4731 if( p->selFlags & SF_HasTypeInfo ) return; 4732 sqlite3SelectExpand(pParse, p); 4733 if( pParse->nErr || pParse->db->mallocFailed ) return; 4734 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4735 if( pParse->nErr || pParse->db->mallocFailed ) return; 4736 sqlite3SelectAddTypeInfo(pParse, p); 4737 } 4738 4739 /* 4740 ** Reset the aggregate accumulator. 4741 ** 4742 ** The aggregate accumulator is a set of memory cells that hold 4743 ** intermediate results while calculating an aggregate. This 4744 ** routine generates code that stores NULLs in all of those memory 4745 ** cells. 4746 */ 4747 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4748 Vdbe *v = pParse->pVdbe; 4749 int i; 4750 struct AggInfo_func *pFunc; 4751 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4752 if( nReg==0 ) return; 4753 #ifdef SQLITE_DEBUG 4754 /* Verify that all AggInfo registers are within the range specified by 4755 ** AggInfo.mnReg..AggInfo.mxReg */ 4756 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4757 for(i=0; i<pAggInfo->nColumn; i++){ 4758 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4759 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4760 } 4761 for(i=0; i<pAggInfo->nFunc; i++){ 4762 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4763 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4764 } 4765 #endif 4766 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4767 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4768 if( pFunc->iDistinct>=0 ){ 4769 Expr *pE = pFunc->pExpr; 4770 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4771 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4772 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4773 "argument"); 4774 pFunc->iDistinct = -1; 4775 }else{ 4776 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4777 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4778 (char*)pKeyInfo, P4_KEYINFO); 4779 } 4780 } 4781 } 4782 } 4783 4784 /* 4785 ** Invoke the OP_AggFinalize opcode for every aggregate function 4786 ** in the AggInfo structure. 4787 */ 4788 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4789 Vdbe *v = pParse->pVdbe; 4790 int i; 4791 struct AggInfo_func *pF; 4792 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4793 ExprList *pList = pF->pExpr->x.pList; 4794 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4795 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4796 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4797 } 4798 } 4799 4800 /* 4801 ** Update the accumulator memory cells for an aggregate based on 4802 ** the current cursor position. 4803 */ 4804 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4805 Vdbe *v = pParse->pVdbe; 4806 int i; 4807 int regHit = 0; 4808 int addrHitTest = 0; 4809 struct AggInfo_func *pF; 4810 struct AggInfo_col *pC; 4811 4812 pAggInfo->directMode = 1; 4813 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4814 int nArg; 4815 int addrNext = 0; 4816 int regAgg; 4817 ExprList *pList = pF->pExpr->x.pList; 4818 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4819 if( pList ){ 4820 nArg = pList->nExpr; 4821 regAgg = sqlite3GetTempRange(pParse, nArg); 4822 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4823 }else{ 4824 nArg = 0; 4825 regAgg = 0; 4826 } 4827 if( pF->iDistinct>=0 ){ 4828 addrNext = sqlite3VdbeMakeLabel(v); 4829 testcase( nArg==0 ); /* Error condition */ 4830 testcase( nArg>1 ); /* Also an error */ 4831 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4832 } 4833 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4834 CollSeq *pColl = 0; 4835 struct ExprList_item *pItem; 4836 int j; 4837 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4838 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4839 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4840 } 4841 if( !pColl ){ 4842 pColl = pParse->db->pDfltColl; 4843 } 4844 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4845 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4846 } 4847 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4848 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4849 sqlite3VdbeChangeP5(v, (u8)nArg); 4850 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4851 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4852 if( addrNext ){ 4853 sqlite3VdbeResolveLabel(v, addrNext); 4854 sqlite3ExprCacheClear(pParse); 4855 } 4856 } 4857 4858 /* Before populating the accumulator registers, clear the column cache. 4859 ** Otherwise, if any of the required column values are already present 4860 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4861 ** to pC->iMem. But by the time the value is used, the original register 4862 ** may have been used, invalidating the underlying buffer holding the 4863 ** text or blob value. See ticket [883034dcb5]. 4864 ** 4865 ** Another solution would be to change the OP_SCopy used to copy cached 4866 ** values to an OP_Copy. 4867 */ 4868 if( regHit ){ 4869 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4870 } 4871 sqlite3ExprCacheClear(pParse); 4872 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4873 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4874 } 4875 pAggInfo->directMode = 0; 4876 sqlite3ExprCacheClear(pParse); 4877 if( addrHitTest ){ 4878 sqlite3VdbeJumpHere(v, addrHitTest); 4879 } 4880 } 4881 4882 /* 4883 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4884 ** count(*) query ("SELECT count(*) FROM pTab"). 4885 */ 4886 #ifndef SQLITE_OMIT_EXPLAIN 4887 static void explainSimpleCount( 4888 Parse *pParse, /* Parse context */ 4889 Table *pTab, /* Table being queried */ 4890 Index *pIdx /* Index used to optimize scan, or NULL */ 4891 ){ 4892 if( pParse->explain==2 ){ 4893 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4894 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4895 pTab->zName, 4896 bCover ? " USING COVERING INDEX " : "", 4897 bCover ? pIdx->zName : "" 4898 ); 4899 sqlite3VdbeAddOp4( 4900 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4901 ); 4902 } 4903 } 4904 #else 4905 # define explainSimpleCount(a,b,c) 4906 #endif 4907 4908 /* 4909 ** Context object for havingToWhereExprCb(). 4910 */ 4911 struct HavingToWhereCtx { 4912 Expr **ppWhere; 4913 ExprList *pGroupBy; 4914 }; 4915 4916 /* 4917 ** sqlite3WalkExpr() callback used by havingToWhere(). 4918 ** 4919 ** If the node passed to the callback is a TK_AND node, return 4920 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4921 ** 4922 ** Otherwise, return WRC_Prune. In this case, also check if the 4923 ** sub-expression matches the criteria for being moved to the WHERE 4924 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4925 ** within the HAVING expression with a constant "1". 4926 */ 4927 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4928 if( pExpr->op!=TK_AND ){ 4929 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4930 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4931 sqlite3 *db = pWalker->pParse->db; 4932 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4933 if( pNew ){ 4934 Expr *pWhere = *(p->ppWhere); 4935 SWAP(Expr, *pNew, *pExpr); 4936 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4937 *(p->ppWhere) = pNew; 4938 } 4939 } 4940 return WRC_Prune; 4941 } 4942 return WRC_Continue; 4943 } 4944 4945 /* 4946 ** Transfer eligible terms from the HAVING clause of a query, which is 4947 ** processed after grouping, to the WHERE clause, which is processed before 4948 ** grouping. For example, the query: 4949 ** 4950 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4951 ** 4952 ** can be rewritten as: 4953 ** 4954 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4955 ** 4956 ** A term of the HAVING expression is eligible for transfer if it consists 4957 ** entirely of constants and expressions that are also GROUP BY terms that 4958 ** use the "BINARY" collation sequence. 4959 */ 4960 static void havingToWhere( 4961 Parse *pParse, 4962 ExprList *pGroupBy, 4963 Expr *pHaving, 4964 Expr **ppWhere 4965 ){ 4966 struct HavingToWhereCtx sCtx; 4967 Walker sWalker; 4968 4969 sCtx.ppWhere = ppWhere; 4970 sCtx.pGroupBy = pGroupBy; 4971 4972 memset(&sWalker, 0, sizeof(sWalker)); 4973 sWalker.pParse = pParse; 4974 sWalker.xExprCallback = havingToWhereExprCb; 4975 sWalker.u.pHavingCtx = &sCtx; 4976 sqlite3WalkExpr(&sWalker, pHaving); 4977 } 4978 4979 /* 4980 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 4981 ** If it is, then return the SrcList_item for the prior view. If it is not, 4982 ** then return 0. 4983 */ 4984 static struct SrcList_item *isSelfJoinView( 4985 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 4986 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 4987 ){ 4988 struct SrcList_item *pItem; 4989 for(pItem = pTabList->a; pItem<pThis; pItem++){ 4990 if( pItem->pSelect==0 ) continue; 4991 if( pItem->fg.viaCoroutine ) continue; 4992 if( pItem->zName==0 ) continue; 4993 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 4994 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 4995 if( sqlite3ExprCompare(0, 4996 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 4997 ){ 4998 /* The view was modified by some other optimization such as 4999 ** pushDownWhereTerms() */ 5000 continue; 5001 } 5002 return pItem; 5003 } 5004 return 0; 5005 } 5006 5007 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5008 /* 5009 ** Attempt to transform a query of the form 5010 ** 5011 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5012 ** 5013 ** Into this: 5014 ** 5015 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5016 ** 5017 ** The transformation only works if all of the following are true: 5018 ** 5019 ** * The subquery is a UNION ALL of two or more terms 5020 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5021 ** * The outer query is a simple count(*) 5022 ** 5023 ** Return TRUE if the optimization is undertaken. 5024 */ 5025 static int countOfViewOptimization(Parse *pParse, Select *p){ 5026 Select *pSub, *pPrior; 5027 Expr *pExpr; 5028 Expr *pCount; 5029 sqlite3 *db; 5030 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5031 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5032 pExpr = p->pEList->a[0].pExpr; 5033 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5034 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5035 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5036 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5037 pSub = p->pSrc->a[0].pSelect; 5038 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5039 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5040 do{ 5041 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5042 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5043 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5044 pSub = pSub->pPrior; /* Repeat over compound */ 5045 }while( pSub ); 5046 5047 /* If we reach this point then it is OK to perform the transformation */ 5048 5049 db = pParse->db; 5050 pCount = pExpr; 5051 pExpr = 0; 5052 pSub = p->pSrc->a[0].pSelect; 5053 p->pSrc->a[0].pSelect = 0; 5054 sqlite3SrcListDelete(db, p->pSrc); 5055 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5056 while( pSub ){ 5057 Expr *pTerm; 5058 pPrior = pSub->pPrior; 5059 pSub->pPrior = 0; 5060 pSub->pNext = 0; 5061 pSub->selFlags |= SF_Aggregate; 5062 pSub->selFlags &= ~SF_Compound; 5063 pSub->nSelectRow = 0; 5064 sqlite3ExprListDelete(db, pSub->pEList); 5065 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5066 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5067 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5068 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5069 if( pExpr==0 ){ 5070 pExpr = pTerm; 5071 }else{ 5072 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5073 } 5074 pSub = pPrior; 5075 } 5076 p->pEList->a[0].pExpr = pExpr; 5077 p->selFlags &= ~SF_Aggregate; 5078 5079 #if SELECTTRACE_ENABLED 5080 if( sqlite3SelectTrace & 0x400 ){ 5081 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5082 sqlite3TreeViewSelect(0, p, 0); 5083 } 5084 #endif 5085 return 1; 5086 } 5087 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5088 5089 /* 5090 ** Generate code for the SELECT statement given in the p argument. 5091 ** 5092 ** The results are returned according to the SelectDest structure. 5093 ** See comments in sqliteInt.h for further information. 5094 ** 5095 ** This routine returns the number of errors. If any errors are 5096 ** encountered, then an appropriate error message is left in 5097 ** pParse->zErrMsg. 5098 ** 5099 ** This routine does NOT free the Select structure passed in. The 5100 ** calling function needs to do that. 5101 */ 5102 int sqlite3Select( 5103 Parse *pParse, /* The parser context */ 5104 Select *p, /* The SELECT statement being coded. */ 5105 SelectDest *pDest /* What to do with the query results */ 5106 ){ 5107 int i, j; /* Loop counters */ 5108 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5109 Vdbe *v; /* The virtual machine under construction */ 5110 int isAgg; /* True for select lists like "count(*)" */ 5111 ExprList *pEList = 0; /* List of columns to extract. */ 5112 SrcList *pTabList; /* List of tables to select from */ 5113 Expr *pWhere; /* The WHERE clause. May be NULL */ 5114 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5115 Expr *pHaving; /* The HAVING clause. May be NULL */ 5116 int rc = 1; /* Value to return from this function */ 5117 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5118 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5119 AggInfo sAggInfo; /* Information used by aggregate queries */ 5120 int iEnd; /* Address of the end of the query */ 5121 sqlite3 *db; /* The database connection */ 5122 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5123 u8 minMaxFlag; /* Flag for min/max queries */ 5124 5125 #ifndef SQLITE_OMIT_EXPLAIN 5126 int iRestoreSelectId = pParse->iSelectId; 5127 pParse->iSelectId = pParse->iNextSelectId++; 5128 #endif 5129 5130 db = pParse->db; 5131 if( p==0 || db->mallocFailed || pParse->nErr ){ 5132 return 1; 5133 } 5134 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5135 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5136 #if SELECTTRACE_ENABLED 5137 pParse->nSelectIndent++; 5138 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5139 if( sqlite3SelectTrace & 0x100 ){ 5140 sqlite3TreeViewSelect(0, p, 0); 5141 } 5142 #endif 5143 5144 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5145 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5146 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5147 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5148 if( IgnorableOrderby(pDest) ){ 5149 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5150 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5151 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5152 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5153 /* If ORDER BY makes no difference in the output then neither does 5154 ** DISTINCT so it can be removed too. */ 5155 sqlite3ExprListDelete(db, p->pOrderBy); 5156 p->pOrderBy = 0; 5157 p->selFlags &= ~SF_Distinct; 5158 } 5159 sqlite3SelectPrep(pParse, p, 0); 5160 memset(&sSort, 0, sizeof(sSort)); 5161 sSort.pOrderBy = p->pOrderBy; 5162 pTabList = p->pSrc; 5163 if( pParse->nErr || db->mallocFailed ){ 5164 goto select_end; 5165 } 5166 assert( p->pEList!=0 ); 5167 isAgg = (p->selFlags & SF_Aggregate)!=0; 5168 #if SELECTTRACE_ENABLED 5169 if( sqlite3SelectTrace & 0x100 ){ 5170 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5171 sqlite3TreeViewSelect(0, p, 0); 5172 } 5173 #endif 5174 5175 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5176 ** does not already exist */ 5177 v = sqlite3GetVdbe(pParse); 5178 if( v==0 ) goto select_end; 5179 if( pDest->eDest==SRT_Output ){ 5180 generateColumnNames(pParse, p); 5181 } 5182 5183 /* Try to flatten subqueries in the FROM clause up into the main query 5184 */ 5185 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5186 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5187 struct SrcList_item *pItem = &pTabList->a[i]; 5188 Select *pSub = pItem->pSelect; 5189 Table *pTab = pItem->pTab; 5190 if( pSub==0 ) continue; 5191 5192 /* Catch mismatch in the declared columns of a view and the number of 5193 ** columns in the SELECT on the RHS */ 5194 if( pTab->nCol!=pSub->pEList->nExpr ){ 5195 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5196 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5197 goto select_end; 5198 } 5199 5200 /* Do not try to flatten an aggregate subquery. 5201 ** 5202 ** Flattening an aggregate subquery is only possible if the outer query 5203 ** is not a join. But if the outer query is not a join, then the subquery 5204 ** will be implemented as a co-routine and there is no advantage to 5205 ** flattening in that case. 5206 */ 5207 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5208 assert( pSub->pGroupBy==0 ); 5209 5210 /* If the outer query contains a "complex" result set (that is, 5211 ** if the result set of the outer query uses functions or subqueries) 5212 ** and if the subquery contains an ORDER BY clause and if 5213 ** it will be implemented as a co-routine, then do not flatten. This 5214 ** restriction allows SQL constructs like this: 5215 ** 5216 ** SELECT expensive_function(x) 5217 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5218 ** 5219 ** The expensive_function() is only computed on the 10 rows that 5220 ** are output, rather than every row of the table. 5221 ** 5222 ** The requirement that the outer query have a complex result set 5223 ** means that flattening does occur on simpler SQL constraints without 5224 ** the expensive_function() like: 5225 ** 5226 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5227 */ 5228 if( pSub->pOrderBy!=0 5229 && i==0 5230 && (p->selFlags & SF_ComplexResult)!=0 5231 && (pTabList->nSrc==1 5232 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5233 ){ 5234 continue; 5235 } 5236 5237 if( flattenSubquery(pParse, p, i, isAgg) ){ 5238 /* This subquery can be absorbed into its parent. */ 5239 i = -1; 5240 } 5241 pTabList = p->pSrc; 5242 if( db->mallocFailed ) goto select_end; 5243 if( !IgnorableOrderby(pDest) ){ 5244 sSort.pOrderBy = p->pOrderBy; 5245 } 5246 } 5247 #endif 5248 5249 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5250 /* Handle compound SELECT statements using the separate multiSelect() 5251 ** procedure. 5252 */ 5253 if( p->pPrior ){ 5254 rc = multiSelect(pParse, p, pDest); 5255 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5256 #if SELECTTRACE_ENABLED 5257 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5258 pParse->nSelectIndent--; 5259 #endif 5260 return rc; 5261 } 5262 #endif 5263 5264 /* For each term in the FROM clause, do two things: 5265 ** (1) Authorized unreferenced tables 5266 ** (2) Generate code for all sub-queries 5267 */ 5268 for(i=0; i<pTabList->nSrc; i++){ 5269 struct SrcList_item *pItem = &pTabList->a[i]; 5270 SelectDest dest; 5271 Select *pSub; 5272 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5273 const char *zSavedAuthContext; 5274 #endif 5275 5276 /* Issue SQLITE_READ authorizations with a fake column name for any 5277 ** tables that are referenced but from which no values are extracted. 5278 ** Examples of where these kinds of null SQLITE_READ authorizations 5279 ** would occur: 5280 ** 5281 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5282 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5283 ** 5284 ** The fake column name is an empty string. It is possible for a table to 5285 ** have a column named by the empty string, in which case there is no way to 5286 ** distinguish between an unreferenced table and an actual reference to the 5287 ** "" column. The original design was for the fake column name to be a NULL, 5288 ** which would be unambiguous. But legacy authorization callbacks might 5289 ** assume the column name is non-NULL and segfault. The use of an empty 5290 ** string for the fake column name seems safer. 5291 */ 5292 if( pItem->colUsed==0 ){ 5293 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5294 } 5295 5296 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5297 /* Generate code for all sub-queries in the FROM clause 5298 */ 5299 pSub = pItem->pSelect; 5300 if( pSub==0 ) continue; 5301 5302 /* Sometimes the code for a subquery will be generated more than 5303 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5304 ** for example. In that case, do not regenerate the code to manifest 5305 ** a view or the co-routine to implement a view. The first instance 5306 ** is sufficient, though the subroutine to manifest the view does need 5307 ** to be invoked again. */ 5308 if( pItem->addrFillSub ){ 5309 if( pItem->fg.viaCoroutine==0 ){ 5310 /* The subroutine that manifests the view might be a one-time routine, 5311 ** or it might need to be rerun on each iteration because it 5312 ** encodes a correlated subquery. */ 5313 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5314 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5315 } 5316 continue; 5317 } 5318 5319 /* Increment Parse.nHeight by the height of the largest expression 5320 ** tree referred to by this, the parent select. The child select 5321 ** may contain expression trees of at most 5322 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5323 ** more conservative than necessary, but much easier than enforcing 5324 ** an exact limit. 5325 */ 5326 pParse->nHeight += sqlite3SelectExprHeight(p); 5327 5328 /* Make copies of constant WHERE-clause terms in the outer query down 5329 ** inside the subquery. This can help the subquery to run more efficiently. 5330 */ 5331 if( (pItem->fg.jointype & JT_OUTER)==0 5332 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5333 ){ 5334 #if SELECTTRACE_ENABLED 5335 if( sqlite3SelectTrace & 0x100 ){ 5336 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5337 sqlite3TreeViewSelect(0, p, 0); 5338 } 5339 #endif 5340 } 5341 5342 zSavedAuthContext = pParse->zAuthContext; 5343 pParse->zAuthContext = pItem->zName; 5344 5345 /* Generate code to implement the subquery 5346 ** 5347 ** The subquery is implemented as a co-routine if the subquery is 5348 ** guaranteed to be the outer loop (so that it does not need to be 5349 ** computed more than once) 5350 ** 5351 ** TODO: Are there other reasons beside (1) to use a co-routine 5352 ** implementation? 5353 */ 5354 if( i==0 5355 && (pTabList->nSrc==1 5356 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5357 ){ 5358 /* Implement a co-routine that will return a single row of the result 5359 ** set on each invocation. 5360 */ 5361 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5362 5363 pItem->regReturn = ++pParse->nMem; 5364 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5365 VdbeComment((v, "%s", pItem->pTab->zName)); 5366 pItem->addrFillSub = addrTop; 5367 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5368 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5369 sqlite3Select(pParse, pSub, &dest); 5370 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5371 pItem->fg.viaCoroutine = 1; 5372 pItem->regResult = dest.iSdst; 5373 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5374 sqlite3VdbeJumpHere(v, addrTop-1); 5375 sqlite3ClearTempRegCache(pParse); 5376 }else{ 5377 /* Generate a subroutine that will fill an ephemeral table with 5378 ** the content of this subquery. pItem->addrFillSub will point 5379 ** to the address of the generated subroutine. pItem->regReturn 5380 ** is a register allocated to hold the subroutine return address 5381 */ 5382 int topAddr; 5383 int onceAddr = 0; 5384 int retAddr; 5385 struct SrcList_item *pPrior; 5386 5387 assert( pItem->addrFillSub==0 ); 5388 pItem->regReturn = ++pParse->nMem; 5389 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5390 pItem->addrFillSub = topAddr+1; 5391 if( pItem->fg.isCorrelated==0 ){ 5392 /* If the subquery is not correlated and if we are not inside of 5393 ** a trigger, then we only need to compute the value of the subquery 5394 ** once. */ 5395 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5396 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5397 }else{ 5398 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5399 } 5400 pPrior = isSelfJoinView(pTabList, pItem); 5401 if( pPrior ){ 5402 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5403 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5404 assert( pPrior->pSelect!=0 ); 5405 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5406 }else{ 5407 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5408 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5409 sqlite3Select(pParse, pSub, &dest); 5410 } 5411 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5412 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5413 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5414 VdbeComment((v, "end %s", pItem->pTab->zName)); 5415 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5416 sqlite3ClearTempRegCache(pParse); 5417 } 5418 if( db->mallocFailed ) goto select_end; 5419 pParse->nHeight -= sqlite3SelectExprHeight(p); 5420 pParse->zAuthContext = zSavedAuthContext; 5421 #endif 5422 } 5423 5424 /* Various elements of the SELECT copied into local variables for 5425 ** convenience */ 5426 pEList = p->pEList; 5427 pWhere = p->pWhere; 5428 pGroupBy = p->pGroupBy; 5429 pHaving = p->pHaving; 5430 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5431 5432 #if SELECTTRACE_ENABLED 5433 if( sqlite3SelectTrace & 0x400 ){ 5434 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5435 sqlite3TreeViewSelect(0, p, 0); 5436 } 5437 #endif 5438 5439 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5440 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5441 && countOfViewOptimization(pParse, p) 5442 ){ 5443 if( db->mallocFailed ) goto select_end; 5444 pEList = p->pEList; 5445 pTabList = p->pSrc; 5446 } 5447 #endif 5448 5449 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5450 ** if the select-list is the same as the ORDER BY list, then this query 5451 ** can be rewritten as a GROUP BY. In other words, this: 5452 ** 5453 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5454 ** 5455 ** is transformed to: 5456 ** 5457 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5458 ** 5459 ** The second form is preferred as a single index (or temp-table) may be 5460 ** used for both the ORDER BY and DISTINCT processing. As originally 5461 ** written the query must use a temp-table for at least one of the ORDER 5462 ** BY and DISTINCT, and an index or separate temp-table for the other. 5463 */ 5464 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5465 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5466 ){ 5467 p->selFlags &= ~SF_Distinct; 5468 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5469 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5470 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5471 ** original setting of the SF_Distinct flag, not the current setting */ 5472 assert( sDistinct.isTnct ); 5473 5474 #if SELECTTRACE_ENABLED 5475 if( sqlite3SelectTrace & 0x400 ){ 5476 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5477 sqlite3TreeViewSelect(0, p, 0); 5478 } 5479 #endif 5480 } 5481 5482 /* If there is an ORDER BY clause, then create an ephemeral index to 5483 ** do the sorting. But this sorting ephemeral index might end up 5484 ** being unused if the data can be extracted in pre-sorted order. 5485 ** If that is the case, then the OP_OpenEphemeral instruction will be 5486 ** changed to an OP_Noop once we figure out that the sorting index is 5487 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5488 ** that change. 5489 */ 5490 if( sSort.pOrderBy ){ 5491 KeyInfo *pKeyInfo; 5492 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5493 sSort.iECursor = pParse->nTab++; 5494 sSort.addrSortIndex = 5495 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5496 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5497 (char*)pKeyInfo, P4_KEYINFO 5498 ); 5499 }else{ 5500 sSort.addrSortIndex = -1; 5501 } 5502 5503 /* If the output is destined for a temporary table, open that table. 5504 */ 5505 if( pDest->eDest==SRT_EphemTab ){ 5506 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5507 } 5508 5509 /* Set the limiter. 5510 */ 5511 iEnd = sqlite3VdbeMakeLabel(v); 5512 if( (p->selFlags & SF_FixedLimit)==0 ){ 5513 p->nSelectRow = 320; /* 4 billion rows */ 5514 } 5515 computeLimitRegisters(pParse, p, iEnd); 5516 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5517 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5518 sSort.sortFlags |= SORTFLAG_UseSorter; 5519 } 5520 5521 /* Open an ephemeral index to use for the distinct set. 5522 */ 5523 if( p->selFlags & SF_Distinct ){ 5524 sDistinct.tabTnct = pParse->nTab++; 5525 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5526 sDistinct.tabTnct, 0, 0, 5527 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5528 P4_KEYINFO); 5529 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5530 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5531 }else{ 5532 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5533 } 5534 5535 if( !isAgg && pGroupBy==0 ){ 5536 /* No aggregate functions and no GROUP BY clause */ 5537 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5538 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5539 wctrlFlags |= p->selFlags & SF_FixedLimit; 5540 5541 /* Begin the database scan. */ 5542 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5543 p->pEList, wctrlFlags, p->nSelectRow); 5544 if( pWInfo==0 ) goto select_end; 5545 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5546 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5547 } 5548 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5549 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5550 } 5551 if( sSort.pOrderBy ){ 5552 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5553 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5554 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5555 sSort.pOrderBy = 0; 5556 } 5557 } 5558 5559 /* If sorting index that was created by a prior OP_OpenEphemeral 5560 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5561 ** into an OP_Noop. 5562 */ 5563 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5564 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5565 } 5566 5567 /* Use the standard inner loop. */ 5568 assert( p->pEList==pEList ); 5569 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5570 sqlite3WhereContinueLabel(pWInfo), 5571 sqlite3WhereBreakLabel(pWInfo)); 5572 5573 /* End the database scan loop. 5574 */ 5575 sqlite3WhereEnd(pWInfo); 5576 }else{ 5577 /* This case when there exist aggregate functions or a GROUP BY clause 5578 ** or both */ 5579 NameContext sNC; /* Name context for processing aggregate information */ 5580 int iAMem; /* First Mem address for storing current GROUP BY */ 5581 int iBMem; /* First Mem address for previous GROUP BY */ 5582 int iUseFlag; /* Mem address holding flag indicating that at least 5583 ** one row of the input to the aggregator has been 5584 ** processed */ 5585 int iAbortFlag; /* Mem address which causes query abort if positive */ 5586 int groupBySort; /* Rows come from source in GROUP BY order */ 5587 int addrEnd; /* End of processing for this SELECT */ 5588 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5589 int sortOut = 0; /* Output register from the sorter */ 5590 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5591 5592 /* Remove any and all aliases between the result set and the 5593 ** GROUP BY clause. 5594 */ 5595 if( pGroupBy ){ 5596 int k; /* Loop counter */ 5597 struct ExprList_item *pItem; /* For looping over expression in a list */ 5598 5599 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5600 pItem->u.x.iAlias = 0; 5601 } 5602 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5603 pItem->u.x.iAlias = 0; 5604 } 5605 assert( 66==sqlite3LogEst(100) ); 5606 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5607 }else{ 5608 assert( 0==sqlite3LogEst(1) ); 5609 p->nSelectRow = 0; 5610 } 5611 5612 /* If there is both a GROUP BY and an ORDER BY clause and they are 5613 ** identical, then it may be possible to disable the ORDER BY clause 5614 ** on the grounds that the GROUP BY will cause elements to come out 5615 ** in the correct order. It also may not - the GROUP BY might use a 5616 ** database index that causes rows to be grouped together as required 5617 ** but not actually sorted. Either way, record the fact that the 5618 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5619 ** variable. */ 5620 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5621 orderByGrp = 1; 5622 } 5623 5624 /* Create a label to jump to when we want to abort the query */ 5625 addrEnd = sqlite3VdbeMakeLabel(v); 5626 5627 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5628 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5629 ** SELECT statement. 5630 */ 5631 memset(&sNC, 0, sizeof(sNC)); 5632 sNC.pParse = pParse; 5633 sNC.pSrcList = pTabList; 5634 sNC.pAggInfo = &sAggInfo; 5635 sAggInfo.mnReg = pParse->nMem+1; 5636 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5637 sAggInfo.pGroupBy = pGroupBy; 5638 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5639 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5640 if( pHaving ){ 5641 if( pGroupBy ){ 5642 assert( pWhere==p->pWhere ); 5643 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5644 pWhere = p->pWhere; 5645 } 5646 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5647 } 5648 sAggInfo.nAccumulator = sAggInfo.nColumn; 5649 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5650 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5651 }else{ 5652 minMaxFlag = WHERE_ORDERBY_NORMAL; 5653 } 5654 for(i=0; i<sAggInfo.nFunc; i++){ 5655 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5656 sNC.ncFlags |= NC_InAggFunc; 5657 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5658 sNC.ncFlags &= ~NC_InAggFunc; 5659 } 5660 sAggInfo.mxReg = pParse->nMem; 5661 if( db->mallocFailed ) goto select_end; 5662 #if SELECTTRACE_ENABLED 5663 if( sqlite3SelectTrace & 0x400 ){ 5664 int ii; 5665 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5666 sqlite3TreeViewSelect(0, p, 0); 5667 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5668 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5669 ii, sAggInfo.aCol[ii].iMem); 5670 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5671 } 5672 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5673 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5674 ii, sAggInfo.aFunc[ii].iMem); 5675 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5676 } 5677 } 5678 #endif 5679 5680 5681 /* Processing for aggregates with GROUP BY is very different and 5682 ** much more complex than aggregates without a GROUP BY. 5683 */ 5684 if( pGroupBy ){ 5685 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5686 int addr1; /* A-vs-B comparision jump */ 5687 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5688 int regOutputRow; /* Return address register for output subroutine */ 5689 int addrSetAbort; /* Set the abort flag and return */ 5690 int addrTopOfLoop; /* Top of the input loop */ 5691 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5692 int addrReset; /* Subroutine for resetting the accumulator */ 5693 int regReset; /* Return address register for reset subroutine */ 5694 5695 /* If there is a GROUP BY clause we might need a sorting index to 5696 ** implement it. Allocate that sorting index now. If it turns out 5697 ** that we do not need it after all, the OP_SorterOpen instruction 5698 ** will be converted into a Noop. 5699 */ 5700 sAggInfo.sortingIdx = pParse->nTab++; 5701 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5702 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5703 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5704 0, (char*)pKeyInfo, P4_KEYINFO); 5705 5706 /* Initialize memory locations used by GROUP BY aggregate processing 5707 */ 5708 iUseFlag = ++pParse->nMem; 5709 iAbortFlag = ++pParse->nMem; 5710 regOutputRow = ++pParse->nMem; 5711 addrOutputRow = sqlite3VdbeMakeLabel(v); 5712 regReset = ++pParse->nMem; 5713 addrReset = sqlite3VdbeMakeLabel(v); 5714 iAMem = pParse->nMem + 1; 5715 pParse->nMem += pGroupBy->nExpr; 5716 iBMem = pParse->nMem + 1; 5717 pParse->nMem += pGroupBy->nExpr; 5718 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5719 VdbeComment((v, "clear abort flag")); 5720 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5721 VdbeComment((v, "indicate accumulator empty")); 5722 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5723 5724 /* Begin a loop that will extract all source rows in GROUP BY order. 5725 ** This might involve two separate loops with an OP_Sort in between, or 5726 ** it might be a single loop that uses an index to extract information 5727 ** in the right order to begin with. 5728 */ 5729 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5730 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5731 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5732 ); 5733 if( pWInfo==0 ) goto select_end; 5734 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5735 /* The optimizer is able to deliver rows in group by order so 5736 ** we do not have to sort. The OP_OpenEphemeral table will be 5737 ** cancelled later because we still need to use the pKeyInfo 5738 */ 5739 groupBySort = 0; 5740 }else{ 5741 /* Rows are coming out in undetermined order. We have to push 5742 ** each row into a sorting index, terminate the first loop, 5743 ** then loop over the sorting index in order to get the output 5744 ** in sorted order 5745 */ 5746 int regBase; 5747 int regRecord; 5748 int nCol; 5749 int nGroupBy; 5750 5751 explainTempTable(pParse, 5752 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5753 "DISTINCT" : "GROUP BY"); 5754 5755 groupBySort = 1; 5756 nGroupBy = pGroupBy->nExpr; 5757 nCol = nGroupBy; 5758 j = nGroupBy; 5759 for(i=0; i<sAggInfo.nColumn; i++){ 5760 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5761 nCol++; 5762 j++; 5763 } 5764 } 5765 regBase = sqlite3GetTempRange(pParse, nCol); 5766 sqlite3ExprCacheClear(pParse); 5767 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5768 j = nGroupBy; 5769 for(i=0; i<sAggInfo.nColumn; i++){ 5770 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5771 if( pCol->iSorterColumn>=j ){ 5772 int r1 = j + regBase; 5773 sqlite3ExprCodeGetColumnToReg(pParse, 5774 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5775 j++; 5776 } 5777 } 5778 regRecord = sqlite3GetTempReg(pParse); 5779 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5780 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5781 sqlite3ReleaseTempReg(pParse, regRecord); 5782 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5783 sqlite3WhereEnd(pWInfo); 5784 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5785 sortOut = sqlite3GetTempReg(pParse); 5786 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5787 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5788 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5789 sAggInfo.useSortingIdx = 1; 5790 sqlite3ExprCacheClear(pParse); 5791 5792 } 5793 5794 /* If the index or temporary table used by the GROUP BY sort 5795 ** will naturally deliver rows in the order required by the ORDER BY 5796 ** clause, cancel the ephemeral table open coded earlier. 5797 ** 5798 ** This is an optimization - the correct answer should result regardless. 5799 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5800 ** disable this optimization for testing purposes. */ 5801 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5802 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5803 ){ 5804 sSort.pOrderBy = 0; 5805 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5806 } 5807 5808 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5809 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5810 ** Then compare the current GROUP BY terms against the GROUP BY terms 5811 ** from the previous row currently stored in a0, a1, a2... 5812 */ 5813 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5814 sqlite3ExprCacheClear(pParse); 5815 if( groupBySort ){ 5816 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5817 sortOut, sortPTab); 5818 } 5819 for(j=0; j<pGroupBy->nExpr; j++){ 5820 if( groupBySort ){ 5821 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5822 }else{ 5823 sAggInfo.directMode = 1; 5824 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5825 } 5826 } 5827 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5828 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5829 addr1 = sqlite3VdbeCurrentAddr(v); 5830 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5831 5832 /* Generate code that runs whenever the GROUP BY changes. 5833 ** Changes in the GROUP BY are detected by the previous code 5834 ** block. If there were no changes, this block is skipped. 5835 ** 5836 ** This code copies current group by terms in b0,b1,b2,... 5837 ** over to a0,a1,a2. It then calls the output subroutine 5838 ** and resets the aggregate accumulator registers in preparation 5839 ** for the next GROUP BY batch. 5840 */ 5841 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5842 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5843 VdbeComment((v, "output one row")); 5844 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5845 VdbeComment((v, "check abort flag")); 5846 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5847 VdbeComment((v, "reset accumulator")); 5848 5849 /* Update the aggregate accumulators based on the content of 5850 ** the current row 5851 */ 5852 sqlite3VdbeJumpHere(v, addr1); 5853 updateAccumulator(pParse, &sAggInfo); 5854 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5855 VdbeComment((v, "indicate data in accumulator")); 5856 5857 /* End of the loop 5858 */ 5859 if( groupBySort ){ 5860 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5861 VdbeCoverage(v); 5862 }else{ 5863 sqlite3WhereEnd(pWInfo); 5864 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5865 } 5866 5867 /* Output the final row of result 5868 */ 5869 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5870 VdbeComment((v, "output final row")); 5871 5872 /* Jump over the subroutines 5873 */ 5874 sqlite3VdbeGoto(v, addrEnd); 5875 5876 /* Generate a subroutine that outputs a single row of the result 5877 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5878 ** is less than or equal to zero, the subroutine is a no-op. If 5879 ** the processing calls for the query to abort, this subroutine 5880 ** increments the iAbortFlag memory location before returning in 5881 ** order to signal the caller to abort. 5882 */ 5883 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5884 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5885 VdbeComment((v, "set abort flag")); 5886 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5887 sqlite3VdbeResolveLabel(v, addrOutputRow); 5888 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5889 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5890 VdbeCoverage(v); 5891 VdbeComment((v, "Groupby result generator entry point")); 5892 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5893 finalizeAggFunctions(pParse, &sAggInfo); 5894 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5895 selectInnerLoop(pParse, p, -1, &sSort, 5896 &sDistinct, pDest, 5897 addrOutputRow+1, addrSetAbort); 5898 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5899 VdbeComment((v, "end groupby result generator")); 5900 5901 /* Generate a subroutine that will reset the group-by accumulator 5902 */ 5903 sqlite3VdbeResolveLabel(v, addrReset); 5904 resetAccumulator(pParse, &sAggInfo); 5905 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5906 5907 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5908 else { 5909 #ifndef SQLITE_OMIT_BTREECOUNT 5910 Table *pTab; 5911 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5912 /* If isSimpleCount() returns a pointer to a Table structure, then 5913 ** the SQL statement is of the form: 5914 ** 5915 ** SELECT count(*) FROM <tbl> 5916 ** 5917 ** where the Table structure returned represents table <tbl>. 5918 ** 5919 ** This statement is so common that it is optimized specially. The 5920 ** OP_Count instruction is executed either on the intkey table that 5921 ** contains the data for table <tbl> or on one of its indexes. It 5922 ** is better to execute the op on an index, as indexes are almost 5923 ** always spread across less pages than their corresponding tables. 5924 */ 5925 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5926 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5927 Index *pIdx; /* Iterator variable */ 5928 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5929 Index *pBest = 0; /* Best index found so far */ 5930 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5931 5932 sqlite3CodeVerifySchema(pParse, iDb); 5933 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5934 5935 /* Search for the index that has the lowest scan cost. 5936 ** 5937 ** (2011-04-15) Do not do a full scan of an unordered index. 5938 ** 5939 ** (2013-10-03) Do not count the entries in a partial index. 5940 ** 5941 ** In practice the KeyInfo structure will not be used. It is only 5942 ** passed to keep OP_OpenRead happy. 5943 */ 5944 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5945 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5946 if( pIdx->bUnordered==0 5947 && pIdx->szIdxRow<pTab->szTabRow 5948 && pIdx->pPartIdxWhere==0 5949 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5950 ){ 5951 pBest = pIdx; 5952 } 5953 } 5954 if( pBest ){ 5955 iRoot = pBest->tnum; 5956 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5957 } 5958 5959 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5960 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5961 if( pKeyInfo ){ 5962 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5963 } 5964 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5965 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5966 explainSimpleCount(pParse, pTab, pBest); 5967 }else 5968 #endif /* SQLITE_OMIT_BTREECOUNT */ 5969 { 5970 /* This case runs if the aggregate has no GROUP BY clause. The 5971 ** processing is much simpler since there is only a single row 5972 ** of output. 5973 */ 5974 assert( p->pGroupBy==0 ); 5975 resetAccumulator(pParse, &sAggInfo); 5976 5977 /* If this query is a candidate for the min/max optimization, then 5978 ** minMaxFlag will have been previously set to either 5979 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 5980 ** be an appropriate ORDER BY expression for the optimization. 5981 */ 5982 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 5983 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 5984 5985 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 5986 0, minMaxFlag, 0); 5987 if( pWInfo==0 ){ 5988 goto select_end; 5989 } 5990 updateAccumulator(pParse, &sAggInfo); 5991 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5992 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5993 VdbeComment((v, "%s() by index", 5994 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 5995 } 5996 sqlite3WhereEnd(pWInfo); 5997 finalizeAggFunctions(pParse, &sAggInfo); 5998 } 5999 6000 sSort.pOrderBy = 0; 6001 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6002 selectInnerLoop(pParse, p, -1, 0, 0, 6003 pDest, addrEnd, addrEnd); 6004 } 6005 sqlite3VdbeResolveLabel(v, addrEnd); 6006 6007 } /* endif aggregate query */ 6008 6009 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6010 explainTempTable(pParse, "DISTINCT"); 6011 } 6012 6013 /* If there is an ORDER BY clause, then we need to sort the results 6014 ** and send them to the callback one by one. 6015 */ 6016 if( sSort.pOrderBy ){ 6017 explainTempTable(pParse, 6018 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6019 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6020 } 6021 6022 /* Jump here to skip this query 6023 */ 6024 sqlite3VdbeResolveLabel(v, iEnd); 6025 6026 /* The SELECT has been coded. If there is an error in the Parse structure, 6027 ** set the return code to 1. Otherwise 0. */ 6028 rc = (pParse->nErr>0); 6029 6030 /* Control jumps to here if an error is encountered above, or upon 6031 ** successful coding of the SELECT. 6032 */ 6033 select_end: 6034 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6035 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6036 sqlite3DbFree(db, sAggInfo.aCol); 6037 sqlite3DbFree(db, sAggInfo.aFunc); 6038 #if SELECTTRACE_ENABLED 6039 SELECTTRACE(1,pParse,p,("end processing\n")); 6040 pParse->nSelectIndent--; 6041 #endif 6042 return rc; 6043 } 6044