xref: /sqlite-3.40.0/src/select.c (revision c5e56b34)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFreeNN(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( pParse->db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   pNew->op = TK_SELECT;
125   pNew->selFlags = selFlags;
126   pNew->iLimit = 0;
127   pNew->iOffset = 0;
128 #if SELECTTRACE_ENABLED
129   pNew->zSelName[0] = 0;
130 #endif
131   pNew->addrOpenEphm[0] = -1;
132   pNew->addrOpenEphm[1] = -1;
133   pNew->nSelectRow = 0;
134   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
135   pNew->pSrc = pSrc;
136   pNew->pWhere = pWhere;
137   pNew->pGroupBy = pGroupBy;
138   pNew->pHaving = pHaving;
139   pNew->pOrderBy = pOrderBy;
140   pNew->pPrior = 0;
141   pNew->pNext = 0;
142   pNew->pLimit = pLimit;
143   pNew->pOffset = pOffset;
144   pNew->pWith = 0;
145   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
146   if( pParse->db->mallocFailed ) {
147     clearSelect(pParse->db, pNew, pNew!=&standin);
148     pNew = 0;
149   }else{
150     assert( pNew->pSrc!=0 || pParse->nErr>0 );
151   }
152   assert( pNew!=&standin );
153   return pNew;
154 }
155 
156 #if SELECTTRACE_ENABLED
157 /*
158 ** Set the name of a Select object
159 */
160 void sqlite3SelectSetName(Select *p, const char *zName){
161   if( p && zName ){
162     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
163   }
164 }
165 #endif
166 
167 
168 /*
169 ** Delete the given Select structure and all of its substructures.
170 */
171 void sqlite3SelectDelete(sqlite3 *db, Select *p){
172   if( p ) clearSelect(db, p, 1);
173 }
174 
175 /*
176 ** Return a pointer to the right-most SELECT statement in a compound.
177 */
178 static Select *findRightmost(Select *p){
179   while( p->pNext ) p = p->pNext;
180   return p;
181 }
182 
183 /*
184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
185 ** type of join.  Return an integer constant that expresses that type
186 ** in terms of the following bit values:
187 **
188 **     JT_INNER
189 **     JT_CROSS
190 **     JT_OUTER
191 **     JT_NATURAL
192 **     JT_LEFT
193 **     JT_RIGHT
194 **
195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
196 **
197 ** If an illegal or unsupported join type is seen, then still return
198 ** a join type, but put an error in the pParse structure.
199 */
200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
201   int jointype = 0;
202   Token *apAll[3];
203   Token *p;
204                              /*   0123456789 123456789 123456789 123 */
205   static const char zKeyText[] = "naturaleftouterightfullinnercross";
206   static const struct {
207     u8 i;        /* Beginning of keyword text in zKeyText[] */
208     u8 nChar;    /* Length of the keyword in characters */
209     u8 code;     /* Join type mask */
210   } aKeyword[] = {
211     /* natural */ { 0,  7, JT_NATURAL                },
212     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
213     /* outer   */ { 10, 5, JT_OUTER                  },
214     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
215     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
216     /* inner   */ { 23, 5, JT_INNER                  },
217     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
218   };
219   int i, j;
220   apAll[0] = pA;
221   apAll[1] = pB;
222   apAll[2] = pC;
223   for(i=0; i<3 && apAll[i]; i++){
224     p = apAll[i];
225     for(j=0; j<ArraySize(aKeyword); j++){
226       if( p->n==aKeyword[j].nChar
227           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
228         jointype |= aKeyword[j].code;
229         break;
230       }
231     }
232     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
233     if( j>=ArraySize(aKeyword) ){
234       jointype |= JT_ERROR;
235       break;
236     }
237   }
238   if(
239      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
240      (jointype & JT_ERROR)!=0
241   ){
242     const char *zSp = " ";
243     assert( pB!=0 );
244     if( pC==0 ){ zSp++; }
245     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
246        "%T %T%s%T", pA, pB, zSp, pC);
247     jointype = JT_INNER;
248   }else if( (jointype & JT_OUTER)!=0
249          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
250     sqlite3ErrorMsg(pParse,
251       "RIGHT and FULL OUTER JOINs are not currently supported");
252     jointype = JT_INNER;
253   }
254   return jointype;
255 }
256 
257 /*
258 ** Return the index of a column in a table.  Return -1 if the column
259 ** is not contained in the table.
260 */
261 static int columnIndex(Table *pTab, const char *zCol){
262   int i;
263   for(i=0; i<pTab->nCol; i++){
264     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
265   }
266   return -1;
267 }
268 
269 /*
270 ** Search the first N tables in pSrc, from left to right, looking for a
271 ** table that has a column named zCol.
272 **
273 ** When found, set *piTab and *piCol to the table index and column index
274 ** of the matching column and return TRUE.
275 **
276 ** If not found, return FALSE.
277 */
278 static int tableAndColumnIndex(
279   SrcList *pSrc,       /* Array of tables to search */
280   int N,               /* Number of tables in pSrc->a[] to search */
281   const char *zCol,    /* Name of the column we are looking for */
282   int *piTab,          /* Write index of pSrc->a[] here */
283   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
284 ){
285   int i;               /* For looping over tables in pSrc */
286   int iCol;            /* Index of column matching zCol */
287 
288   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
289   for(i=0; i<N; i++){
290     iCol = columnIndex(pSrc->a[i].pTab, zCol);
291     if( iCol>=0 ){
292       if( piTab ){
293         *piTab = i;
294         *piCol = iCol;
295       }
296       return 1;
297     }
298   }
299   return 0;
300 }
301 
302 /*
303 ** This function is used to add terms implied by JOIN syntax to the
304 ** WHERE clause expression of a SELECT statement. The new term, which
305 ** is ANDed with the existing WHERE clause, is of the form:
306 **
307 **    (tab1.col1 = tab2.col2)
308 **
309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
311 ** column iColRight of tab2.
312 */
313 static void addWhereTerm(
314   Parse *pParse,                  /* Parsing context */
315   SrcList *pSrc,                  /* List of tables in FROM clause */
316   int iLeft,                      /* Index of first table to join in pSrc */
317   int iColLeft,                   /* Index of column in first table */
318   int iRight,                     /* Index of second table in pSrc */
319   int iColRight,                  /* Index of column in second table */
320   int isOuterJoin,                /* True if this is an OUTER join */
321   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
322 ){
323   sqlite3 *db = pParse->db;
324   Expr *pE1;
325   Expr *pE2;
326   Expr *pEq;
327 
328   assert( iLeft<iRight );
329   assert( pSrc->nSrc>iRight );
330   assert( pSrc->a[iLeft].pTab );
331   assert( pSrc->a[iRight].pTab );
332 
333   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
334   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
335 
336   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
337   if( pEq && isOuterJoin ){
338     ExprSetProperty(pEq, EP_FromJoin);
339     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(pEq, EP_NoReduce);
341     pEq->iRightJoinTable = (i16)pE2->iTable;
342   }
343   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 }
345 
346 /*
347 ** Set the EP_FromJoin property on all terms of the given expression.
348 ** And set the Expr.iRightJoinTable to iTable for every term in the
349 ** expression.
350 **
351 ** The EP_FromJoin property is used on terms of an expression to tell
352 ** the LEFT OUTER JOIN processing logic that this term is part of the
353 ** join restriction specified in the ON or USING clause and not a part
354 ** of the more general WHERE clause.  These terms are moved over to the
355 ** WHERE clause during join processing but we need to remember that they
356 ** originated in the ON or USING clause.
357 **
358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
359 ** expression depends on table iRightJoinTable even if that table is not
360 ** explicitly mentioned in the expression.  That information is needed
361 ** for cases like this:
362 **
363 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
364 **
365 ** The where clause needs to defer the handling of the t1.x=5
366 ** term until after the t2 loop of the join.  In that way, a
367 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
368 ** defer the handling of t1.x=5, it will be processed immediately
369 ** after the t1 loop and rows with t1.x!=5 will never appear in
370 ** the output, which is incorrect.
371 */
372 static void setJoinExpr(Expr *p, int iTable){
373   while( p ){
374     ExprSetProperty(p, EP_FromJoin);
375     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(p, EP_NoReduce);
377     p->iRightJoinTable = (i16)iTable;
378     if( p->op==TK_FUNCTION && p->x.pList ){
379       int i;
380       for(i=0; i<p->x.pList->nExpr; i++){
381         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
382       }
383     }
384     setJoinExpr(p->pLeft, iTable);
385     p = p->pRight;
386   }
387 }
388 
389 /*
390 ** This routine processes the join information for a SELECT statement.
391 ** ON and USING clauses are converted into extra terms of the WHERE clause.
392 ** NATURAL joins also create extra WHERE clause terms.
393 **
394 ** The terms of a FROM clause are contained in the Select.pSrc structure.
395 ** The left most table is the first entry in Select.pSrc.  The right-most
396 ** table is the last entry.  The join operator is held in the entry to
397 ** the left.  Thus entry 0 contains the join operator for the join between
398 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
399 ** also attached to the left entry.
400 **
401 ** This routine returns the number of errors encountered.
402 */
403 static int sqliteProcessJoin(Parse *pParse, Select *p){
404   SrcList *pSrc;                  /* All tables in the FROM clause */
405   int i, j;                       /* Loop counters */
406   struct SrcList_item *pLeft;     /* Left table being joined */
407   struct SrcList_item *pRight;    /* Right table being joined */
408 
409   pSrc = p->pSrc;
410   pLeft = &pSrc->a[0];
411   pRight = &pLeft[1];
412   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
413     Table *pLeftTab = pLeft->pTab;
414     Table *pRightTab = pRight->pTab;
415     int isOuter;
416 
417     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
418     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
419 
420     /* When the NATURAL keyword is present, add WHERE clause terms for
421     ** every column that the two tables have in common.
422     */
423     if( pRight->fg.jointype & JT_NATURAL ){
424       if( pRight->pOn || pRight->pUsing ){
425         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
426            "an ON or USING clause", 0);
427         return 1;
428       }
429       for(j=0; j<pRightTab->nCol; j++){
430         char *zName;   /* Name of column in the right table */
431         int iLeft;     /* Matching left table */
432         int iLeftCol;  /* Matching column in the left table */
433 
434         zName = pRightTab->aCol[j].zName;
435         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
436           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
437                        isOuter, &p->pWhere);
438         }
439       }
440     }
441 
442     /* Disallow both ON and USING clauses in the same join
443     */
444     if( pRight->pOn && pRight->pUsing ){
445       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
446         "clauses in the same join");
447       return 1;
448     }
449 
450     /* Add the ON clause to the end of the WHERE clause, connected by
451     ** an AND operator.
452     */
453     if( pRight->pOn ){
454       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
455       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
456       pRight->pOn = 0;
457     }
458 
459     /* Create extra terms on the WHERE clause for each column named
460     ** in the USING clause.  Example: If the two tables to be joined are
461     ** A and B and the USING clause names X, Y, and Z, then add this
462     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
463     ** Report an error if any column mentioned in the USING clause is
464     ** not contained in both tables to be joined.
465     */
466     if( pRight->pUsing ){
467       IdList *pList = pRight->pUsing;
468       for(j=0; j<pList->nId; j++){
469         char *zName;     /* Name of the term in the USING clause */
470         int iLeft;       /* Table on the left with matching column name */
471         int iLeftCol;    /* Column number of matching column on the left */
472         int iRightCol;   /* Column number of matching column on the right */
473 
474         zName = pList->a[j].zName;
475         iRightCol = columnIndex(pRightTab, zName);
476         if( iRightCol<0
477          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
478         ){
479           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
480             "not present in both tables", zName);
481           return 1;
482         }
483         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
484                      isOuter, &p->pWhere);
485       }
486     }
487   }
488   return 0;
489 }
490 
491 /* Forward reference */
492 static KeyInfo *keyInfoFromExprList(
493   Parse *pParse,       /* Parsing context */
494   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
495   int iStart,          /* Begin with this column of pList */
496   int nExtra           /* Add this many extra columns to the end */
497 );
498 
499 /*
500 ** Generate code that will push the record in registers regData
501 ** through regData+nData-1 onto the sorter.
502 */
503 static void pushOntoSorter(
504   Parse *pParse,         /* Parser context */
505   SortCtx *pSort,        /* Information about the ORDER BY clause */
506   Select *pSelect,       /* The whole SELECT statement */
507   int regData,           /* First register holding data to be sorted */
508   int regOrigData,       /* First register holding data before packing */
509   int nData,             /* Number of elements in the data array */
510   int nPrefixReg         /* No. of reg prior to regData available for use */
511 ){
512   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
513   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
514   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
515   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
516   int regBase;                                     /* Regs for sorter record */
517   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
518   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
519   int op;                            /* Opcode to add sorter record to sorter */
520   int iLimit;                        /* LIMIT counter */
521 
522   assert( bSeq==0 || bSeq==1 );
523   assert( nData==1 || regData==regOrigData || regOrigData==0 );
524   if( nPrefixReg ){
525     assert( nPrefixReg==nExpr+bSeq );
526     regBase = regData - nExpr - bSeq;
527   }else{
528     regBase = pParse->nMem + 1;
529     pParse->nMem += nBase;
530   }
531   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
532   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
533   pSort->labelDone = sqlite3VdbeMakeLabel(v);
534   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
535                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
536   if( bSeq ){
537     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
538   }
539   if( nPrefixReg==0 && nData>0 ){
540     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
541   }
542   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
543   if( nOBSat>0 ){
544     int regPrevKey;   /* The first nOBSat columns of the previous row */
545     int addrFirst;    /* Address of the OP_IfNot opcode */
546     int addrJmp;      /* Address of the OP_Jump opcode */
547     VdbeOp *pOp;      /* Opcode that opens the sorter */
548     int nKey;         /* Number of sorting key columns, including OP_Sequence */
549     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
550 
551     regPrevKey = pParse->nMem+1;
552     pParse->nMem += pSort->nOBSat;
553     nKey = nExpr - pSort->nOBSat + bSeq;
554     if( bSeq ){
555       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
556     }else{
557       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
558     }
559     VdbeCoverage(v);
560     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
561     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
562     if( pParse->db->mallocFailed ) return;
563     pOp->p2 = nKey + nData;
564     pKI = pOp->p4.pKeyInfo;
565     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
566     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
567     testcase( pKI->nXField>2 );
568     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
569                                            pKI->nXField-1);
570     addrJmp = sqlite3VdbeCurrentAddr(v);
571     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
572     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
573     pSort->regReturn = ++pParse->nMem;
574     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
575     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
576     if( iLimit ){
577       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
578       VdbeCoverage(v);
579     }
580     sqlite3VdbeJumpHere(v, addrFirst);
581     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
582     sqlite3VdbeJumpHere(v, addrJmp);
583   }
584   if( pSort->sortFlags & SORTFLAG_UseSorter ){
585     op = OP_SorterInsert;
586   }else{
587     op = OP_IdxInsert;
588   }
589   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
590                        regBase+nOBSat, nBase-nOBSat);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
659   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
660   sqlite3ReleaseTempReg(pParse, r1);
661 }
662 
663 /*
664 ** This routine generates the code for the inside of the inner loop
665 ** of a SELECT.
666 **
667 ** If srcTab is negative, then the pEList expressions
668 ** are evaluated in order to get the data for this row.  If srcTab is
669 ** zero or more, then data is pulled from srcTab and pEList is used only
670 ** to get the number of columns and the collation sequence for each column.
671 */
672 static void selectInnerLoop(
673   Parse *pParse,          /* The parser context */
674   Select *p,              /* The complete select statement being coded */
675   ExprList *pEList,       /* List of values being extracted */
676   int srcTab,             /* Pull data from this table */
677   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
678   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
679   SelectDest *pDest,      /* How to dispose of the results */
680   int iContinue,          /* Jump here to continue with next row */
681   int iBreak              /* Jump here to break out of the inner loop */
682 ){
683   Vdbe *v = pParse->pVdbe;
684   int i;
685   int hasDistinct;            /* True if the DISTINCT keyword is present */
686   int eDest = pDest->eDest;   /* How to dispose of results */
687   int iParm = pDest->iSDParm; /* First argument to disposal method */
688   int nResultCol;             /* Number of result columns */
689   int nPrefixReg = 0;         /* Number of extra registers before regResult */
690 
691   /* Usually, regResult is the first cell in an array of memory cells
692   ** containing the current result row. In this case regOrig is set to the
693   ** same value. However, if the results are being sent to the sorter, the
694   ** values for any expressions that are also part of the sort-key are omitted
695   ** from this array. In this case regOrig is set to zero.  */
696   int regResult;              /* Start of memory holding current results */
697   int regOrig;                /* Start of memory holding full result (or 0) */
698 
699   assert( v );
700   assert( pEList!=0 );
701   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
702   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
703   if( pSort==0 && !hasDistinct ){
704     assert( iContinue!=0 );
705     codeOffset(v, p->iOffset, iContinue);
706   }
707 
708   /* Pull the requested columns.
709   */
710   nResultCol = pEList->nExpr;
711 
712   if( pDest->iSdst==0 ){
713     if( pSort ){
714       nPrefixReg = pSort->pOrderBy->nExpr;
715       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
716       pParse->nMem += nPrefixReg;
717     }
718     pDest->iSdst = pParse->nMem+1;
719     pParse->nMem += nResultCol;
720   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
721     /* This is an error condition that can result, for example, when a SELECT
722     ** on the right-hand side of an INSERT contains more result columns than
723     ** there are columns in the table on the left.  The error will be caught
724     ** and reported later.  But we need to make sure enough memory is allocated
725     ** to avoid other spurious errors in the meantime. */
726     pParse->nMem += nResultCol;
727   }
728   pDest->nSdst = nResultCol;
729   regOrig = regResult = pDest->iSdst;
730   if( srcTab>=0 ){
731     for(i=0; i<nResultCol; i++){
732       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
733       VdbeComment((v, "%s", pEList->a[i].zName));
734     }
735   }else if( eDest!=SRT_Exists ){
736     /* If the destination is an EXISTS(...) expression, the actual
737     ** values returned by the SELECT are not required.
738     */
739     u8 ecelFlags;
740     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
741       ecelFlags = SQLITE_ECEL_DUP;
742     }else{
743       ecelFlags = 0;
744     }
745     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
746       /* For each expression in pEList that is a copy of an expression in
747       ** the ORDER BY clause (pSort->pOrderBy), set the associated
748       ** iOrderByCol value to one more than the index of the ORDER BY
749       ** expression within the sort-key that pushOntoSorter() will generate.
750       ** This allows the pEList field to be omitted from the sorted record,
751       ** saving space and CPU cycles.  */
752       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
753       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
754         int j;
755         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
756           pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
757         }
758       }
759       regOrig = 0;
760       assert( eDest==SRT_Set || eDest==SRT_Mem
761            || eDest==SRT_Coroutine || eDest==SRT_Output );
762     }
763     nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags);
764   }
765 
766   /* If the DISTINCT keyword was present on the SELECT statement
767   ** and this row has been seen before, then do not make this row
768   ** part of the result.
769   */
770   if( hasDistinct ){
771     switch( pDistinct->eTnctType ){
772       case WHERE_DISTINCT_ORDERED: {
773         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
774         int iJump;              /* Jump destination */
775         int regPrev;            /* Previous row content */
776 
777         /* Allocate space for the previous row */
778         regPrev = pParse->nMem+1;
779         pParse->nMem += nResultCol;
780 
781         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
782         ** sets the MEM_Cleared bit on the first register of the
783         ** previous value.  This will cause the OP_Ne below to always
784         ** fail on the first iteration of the loop even if the first
785         ** row is all NULLs.
786         */
787         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
788         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
789         pOp->opcode = OP_Null;
790         pOp->p1 = 1;
791         pOp->p2 = regPrev;
792 
793         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
794         for(i=0; i<nResultCol; i++){
795           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
796           if( i<nResultCol-1 ){
797             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
798             VdbeCoverage(v);
799           }else{
800             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
801             VdbeCoverage(v);
802            }
803           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
804           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
805         }
806         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
807         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
808         break;
809       }
810 
811       case WHERE_DISTINCT_UNIQUE: {
812         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
813         break;
814       }
815 
816       default: {
817         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
818         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
819                      regResult);
820         break;
821       }
822     }
823     if( pSort==0 ){
824       codeOffset(v, p->iOffset, iContinue);
825     }
826   }
827 
828   switch( eDest ){
829     /* In this mode, write each query result to the key of the temporary
830     ** table iParm.
831     */
832 #ifndef SQLITE_OMIT_COMPOUND_SELECT
833     case SRT_Union: {
834       int r1;
835       r1 = sqlite3GetTempReg(pParse);
836       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
837       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
838       sqlite3ReleaseTempReg(pParse, r1);
839       break;
840     }
841 
842     /* Construct a record from the query result, but instead of
843     ** saving that record, use it as a key to delete elements from
844     ** the temporary table iParm.
845     */
846     case SRT_Except: {
847       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
848       break;
849     }
850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
851 
852     /* Store the result as data using a unique key.
853     */
854     case SRT_Fifo:
855     case SRT_DistFifo:
856     case SRT_Table:
857     case SRT_EphemTab: {
858       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
859       testcase( eDest==SRT_Table );
860       testcase( eDest==SRT_EphemTab );
861       testcase( eDest==SRT_Fifo );
862       testcase( eDest==SRT_DistFifo );
863       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
864 #ifndef SQLITE_OMIT_CTE
865       if( eDest==SRT_DistFifo ){
866         /* If the destination is DistFifo, then cursor (iParm+1) is open
867         ** on an ephemeral index. If the current row is already present
868         ** in the index, do not write it to the output. If not, add the
869         ** current row to the index and proceed with writing it to the
870         ** output table as well.  */
871         int addr = sqlite3VdbeCurrentAddr(v) + 4;
872         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
873         VdbeCoverage(v);
874         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
875         assert( pSort==0 );
876       }
877 #endif
878       if( pSort ){
879         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
880       }else{
881         int r2 = sqlite3GetTempReg(pParse);
882         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
883         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
884         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
885         sqlite3ReleaseTempReg(pParse, r2);
886       }
887       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
888       break;
889     }
890 
891 #ifndef SQLITE_OMIT_SUBQUERY
892     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
893     ** then there should be a single item on the stack.  Write this
894     ** item into the set table with bogus data.
895     */
896     case SRT_Set: {
897       if( pSort ){
898         /* At first glance you would think we could optimize out the
899         ** ORDER BY in this case since the order of entries in the set
900         ** does not matter.  But there might be a LIMIT clause, in which
901         ** case the order does matter */
902         pushOntoSorter(
903             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
904       }else{
905         int r1 = sqlite3GetTempReg(pParse);
906         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
907         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
908             r1, pDest->zAffSdst, nResultCol);
909         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
910         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
911         sqlite3ReleaseTempReg(pParse, r1);
912       }
913       break;
914     }
915 
916     /* If any row exist in the result set, record that fact and abort.
917     */
918     case SRT_Exists: {
919       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
920       /* The LIMIT clause will terminate the loop for us */
921       break;
922     }
923 
924     /* If this is a scalar select that is part of an expression, then
925     ** store the results in the appropriate memory cell or array of
926     ** memory cells and break out of the scan loop.
927     */
928     case SRT_Mem: {
929       if( pSort ){
930         assert( nResultCol<=pDest->nSdst );
931         pushOntoSorter(
932             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
933       }else{
934         assert( nResultCol==pDest->nSdst );
935         assert( regResult==iParm );
936         /* The LIMIT clause will jump out of the loop for us */
937       }
938       break;
939     }
940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
941 
942     case SRT_Coroutine:       /* Send data to a co-routine */
943     case SRT_Output: {        /* Return the results */
944       testcase( eDest==SRT_Coroutine );
945       testcase( eDest==SRT_Output );
946       if( pSort ){
947         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
948                        nPrefixReg);
949       }else if( eDest==SRT_Coroutine ){
950         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
951       }else{
952         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
953         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
954       }
955       break;
956     }
957 
958 #ifndef SQLITE_OMIT_CTE
959     /* Write the results into a priority queue that is order according to
960     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
961     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
962     ** pSO->nExpr columns, then make sure all keys are unique by adding a
963     ** final OP_Sequence column.  The last column is the record as a blob.
964     */
965     case SRT_DistQueue:
966     case SRT_Queue: {
967       int nKey;
968       int r1, r2, r3;
969       int addrTest = 0;
970       ExprList *pSO;
971       pSO = pDest->pOrderBy;
972       assert( pSO );
973       nKey = pSO->nExpr;
974       r1 = sqlite3GetTempReg(pParse);
975       r2 = sqlite3GetTempRange(pParse, nKey+2);
976       r3 = r2+nKey+1;
977       if( eDest==SRT_DistQueue ){
978         /* If the destination is DistQueue, then cursor (iParm+1) is open
979         ** on a second ephemeral index that holds all values every previously
980         ** added to the queue. */
981         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
982                                         regResult, nResultCol);
983         VdbeCoverage(v);
984       }
985       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
986       if( eDest==SRT_DistQueue ){
987         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
988         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
989       }
990       for(i=0; i<nKey; i++){
991         sqlite3VdbeAddOp2(v, OP_SCopy,
992                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
993                           r2+i);
994       }
995       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
996       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
997       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
998       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
999       sqlite3ReleaseTempReg(pParse, r1);
1000       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1001       break;
1002     }
1003 #endif /* SQLITE_OMIT_CTE */
1004 
1005 
1006 
1007 #if !defined(SQLITE_OMIT_TRIGGER)
1008     /* Discard the results.  This is used for SELECT statements inside
1009     ** the body of a TRIGGER.  The purpose of such selects is to call
1010     ** user-defined functions that have side effects.  We do not care
1011     ** about the actual results of the select.
1012     */
1013     default: {
1014       assert( eDest==SRT_Discard );
1015       break;
1016     }
1017 #endif
1018   }
1019 
1020   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1021   ** there is a sorter, in which case the sorter has already limited
1022   ** the output for us.
1023   */
1024   if( pSort==0 && p->iLimit ){
1025     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026   }
1027 }
1028 
1029 /*
1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1031 ** X extra columns.
1032 */
1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1034   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1035   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1036   if( p ){
1037     p->aSortOrder = (u8*)&p->aColl[N+X];
1038     p->nField = (u16)N;
1039     p->nXField = (u16)X;
1040     p->enc = ENC(db);
1041     p->db = db;
1042     p->nRef = 1;
1043     memset(&p[1], 0, nExtra);
1044   }else{
1045     sqlite3OomFault(db);
1046   }
1047   return p;
1048 }
1049 
1050 /*
1051 ** Deallocate a KeyInfo object
1052 */
1053 void sqlite3KeyInfoUnref(KeyInfo *p){
1054   if( p ){
1055     assert( p->nRef>0 );
1056     p->nRef--;
1057     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1058   }
1059 }
1060 
1061 /*
1062 ** Make a new pointer to a KeyInfo object
1063 */
1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1065   if( p ){
1066     assert( p->nRef>0 );
1067     p->nRef++;
1068   }
1069   return p;
1070 }
1071 
1072 #ifdef SQLITE_DEBUG
1073 /*
1074 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1075 ** can only be changed if this is just a single reference to the object.
1076 **
1077 ** This routine is used only inside of assert() statements.
1078 */
1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1080 #endif /* SQLITE_DEBUG */
1081 
1082 /*
1083 ** Given an expression list, generate a KeyInfo structure that records
1084 ** the collating sequence for each expression in that expression list.
1085 **
1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1087 ** KeyInfo structure is appropriate for initializing a virtual index to
1088 ** implement that clause.  If the ExprList is the result set of a SELECT
1089 ** then the KeyInfo structure is appropriate for initializing a virtual
1090 ** index to implement a DISTINCT test.
1091 **
1092 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1093 ** function is responsible for seeing that this structure is eventually
1094 ** freed.
1095 */
1096 static KeyInfo *keyInfoFromExprList(
1097   Parse *pParse,       /* Parsing context */
1098   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1099   int iStart,          /* Begin with this column of pList */
1100   int nExtra           /* Add this many extra columns to the end */
1101 ){
1102   int nExpr;
1103   KeyInfo *pInfo;
1104   struct ExprList_item *pItem;
1105   sqlite3 *db = pParse->db;
1106   int i;
1107 
1108   nExpr = pList->nExpr;
1109   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1110   if( pInfo ){
1111     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1112     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1113       CollSeq *pColl;
1114       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1115       if( !pColl ) pColl = db->pDfltColl;
1116       pInfo->aColl[i-iStart] = pColl;
1117       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1118     }
1119   }
1120   return pInfo;
1121 }
1122 
1123 /*
1124 ** Name of the connection operator, used for error messages.
1125 */
1126 static const char *selectOpName(int id){
1127   char *z;
1128   switch( id ){
1129     case TK_ALL:       z = "UNION ALL";   break;
1130     case TK_INTERSECT: z = "INTERSECT";   break;
1131     case TK_EXCEPT:    z = "EXCEPT";      break;
1132     default:           z = "UNION";       break;
1133   }
1134   return z;
1135 }
1136 
1137 #ifndef SQLITE_OMIT_EXPLAIN
1138 /*
1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1141 ** where the caption is of the form:
1142 **
1143 **   "USE TEMP B-TREE FOR xxx"
1144 **
1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1146 ** is determined by the zUsage argument.
1147 */
1148 static void explainTempTable(Parse *pParse, const char *zUsage){
1149   if( pParse->explain==2 ){
1150     Vdbe *v = pParse->pVdbe;
1151     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1152     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1153   }
1154 }
1155 
1156 /*
1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1159 ** in sqlite3Select() to assign values to structure member variables that
1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1161 ** code with #ifndef directives.
1162 */
1163 # define explainSetInteger(a, b) a = b
1164 
1165 #else
1166 /* No-op versions of the explainXXX() functions and macros. */
1167 # define explainTempTable(y,z)
1168 # define explainSetInteger(y,z)
1169 #endif
1170 
1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1172 /*
1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1175 ** where the caption is of one of the two forms:
1176 **
1177 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1178 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1179 **
1180 ** where iSub1 and iSub2 are the integers passed as the corresponding
1181 ** function parameters, and op is the text representation of the parameter
1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1184 ** false, or the second form if it is true.
1185 */
1186 static void explainComposite(
1187   Parse *pParse,                  /* Parse context */
1188   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1189   int iSub1,                      /* Subquery id 1 */
1190   int iSub2,                      /* Subquery id 2 */
1191   int bUseTmp                     /* True if a temp table was used */
1192 ){
1193   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1194   if( pParse->explain==2 ){
1195     Vdbe *v = pParse->pVdbe;
1196     char *zMsg = sqlite3MPrintf(
1197         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1198         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1199     );
1200     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1201   }
1202 }
1203 #else
1204 /* No-op versions of the explainXXX() functions and macros. */
1205 # define explainComposite(v,w,x,y,z)
1206 #endif
1207 
1208 /*
1209 ** If the inner loop was generated using a non-null pOrderBy argument,
1210 ** then the results were placed in a sorter.  After the loop is terminated
1211 ** we need to run the sorter and output the results.  The following
1212 ** routine generates the code needed to do that.
1213 */
1214 static void generateSortTail(
1215   Parse *pParse,    /* Parsing context */
1216   Select *p,        /* The SELECT statement */
1217   SortCtx *pSort,   /* Information on the ORDER BY clause */
1218   int nColumn,      /* Number of columns of data */
1219   SelectDest *pDest /* Write the sorted results here */
1220 ){
1221   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1222   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1223   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1224   int addr;
1225   int addrOnce = 0;
1226   int iTab;
1227   ExprList *pOrderBy = pSort->pOrderBy;
1228   int eDest = pDest->eDest;
1229   int iParm = pDest->iSDParm;
1230   int regRow;
1231   int regRowid;
1232   int iCol;
1233   int nKey;
1234   int iSortTab;                   /* Sorter cursor to read from */
1235   int nSortData;                  /* Trailing values to read from sorter */
1236   int i;
1237   int bSeq;                       /* True if sorter record includes seq. no. */
1238   struct ExprList_item *aOutEx = p->pEList->a;
1239 
1240   assert( addrBreak<0 );
1241   if( pSort->labelBkOut ){
1242     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1243     sqlite3VdbeGoto(v, addrBreak);
1244     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1245   }
1246   iTab = pSort->iECursor;
1247   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1248     regRowid = 0;
1249     regRow = pDest->iSdst;
1250     nSortData = nColumn;
1251   }else{
1252     regRowid = sqlite3GetTempReg(pParse);
1253     regRow = sqlite3GetTempRange(pParse, nColumn);
1254     nSortData = nColumn;
1255   }
1256   nKey = pOrderBy->nExpr - pSort->nOBSat;
1257   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1258     int regSortOut = ++pParse->nMem;
1259     iSortTab = pParse->nTab++;
1260     if( pSort->labelBkOut ){
1261       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1262     }
1263     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1264     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1265     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1266     VdbeCoverage(v);
1267     codeOffset(v, p->iOffset, addrContinue);
1268     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1269     bSeq = 0;
1270   }else{
1271     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1272     codeOffset(v, p->iOffset, addrContinue);
1273     iSortTab = iTab;
1274     bSeq = 1;
1275   }
1276   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1277     int iRead;
1278     if( aOutEx[i].u.x.iOrderByCol ){
1279       iRead = aOutEx[i].u.x.iOrderByCol-1;
1280     }else{
1281       iRead = iCol++;
1282     }
1283     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1284     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1285   }
1286   switch( eDest ){
1287     case SRT_Table:
1288     case SRT_EphemTab: {
1289       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1290       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1291       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1292       break;
1293     }
1294 #ifndef SQLITE_OMIT_SUBQUERY
1295     case SRT_Set: {
1296       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1297       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1298                         pDest->zAffSdst, nColumn);
1299       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1300       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1301       break;
1302     }
1303     case SRT_Mem: {
1304       /* The LIMIT clause will terminate the loop for us */
1305       break;
1306     }
1307 #endif
1308     default: {
1309       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1310       testcase( eDest==SRT_Output );
1311       testcase( eDest==SRT_Coroutine );
1312       if( eDest==SRT_Output ){
1313         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1314         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1315       }else{
1316         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1317       }
1318       break;
1319     }
1320   }
1321   if( regRowid ){
1322     if( eDest==SRT_Set ){
1323       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1324     }else{
1325       sqlite3ReleaseTempReg(pParse, regRow);
1326     }
1327     sqlite3ReleaseTempReg(pParse, regRowid);
1328   }
1329   /* The bottom of the loop
1330   */
1331   sqlite3VdbeResolveLabel(v, addrContinue);
1332   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1333     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1334   }else{
1335     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1336   }
1337   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1338   sqlite3VdbeResolveLabel(v, addrBreak);
1339 }
1340 
1341 /*
1342 ** Return a pointer to a string containing the 'declaration type' of the
1343 ** expression pExpr. The string may be treated as static by the caller.
1344 **
1345 ** Also try to estimate the size of the returned value and return that
1346 ** result in *pEstWidth.
1347 **
1348 ** The declaration type is the exact datatype definition extracted from the
1349 ** original CREATE TABLE statement if the expression is a column. The
1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1351 ** is considered a column can be complex in the presence of subqueries. The
1352 ** result-set expression in all of the following SELECT statements is
1353 ** considered a column by this function.
1354 **
1355 **   SELECT col FROM tbl;
1356 **   SELECT (SELECT col FROM tbl;
1357 **   SELECT (SELECT col FROM tbl);
1358 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1359 **
1360 ** The declaration type for any expression other than a column is NULL.
1361 **
1362 ** This routine has either 3 or 6 parameters depending on whether or not
1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1364 */
1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1369 #endif
1370 static const char *columnTypeImpl(
1371   NameContext *pNC,
1372   Expr *pExpr,
1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1374   const char **pzOrigDb,
1375   const char **pzOrigTab,
1376   const char **pzOrigCol,
1377 #endif
1378   u8 *pEstWidth
1379 ){
1380   char const *zType = 0;
1381   int j;
1382   u8 estWidth = 1;
1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1384   char const *zOrigDb = 0;
1385   char const *zOrigTab = 0;
1386   char const *zOrigCol = 0;
1387 #endif
1388 
1389   assert( pExpr!=0 );
1390   assert( pNC->pSrcList!=0 );
1391   switch( pExpr->op ){
1392     case TK_AGG_COLUMN:
1393     case TK_COLUMN: {
1394       /* The expression is a column. Locate the table the column is being
1395       ** extracted from in NameContext.pSrcList. This table may be real
1396       ** database table or a subquery.
1397       */
1398       Table *pTab = 0;            /* Table structure column is extracted from */
1399       Select *pS = 0;             /* Select the column is extracted from */
1400       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1401       testcase( pExpr->op==TK_AGG_COLUMN );
1402       testcase( pExpr->op==TK_COLUMN );
1403       while( pNC && !pTab ){
1404         SrcList *pTabList = pNC->pSrcList;
1405         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1406         if( j<pTabList->nSrc ){
1407           pTab = pTabList->a[j].pTab;
1408           pS = pTabList->a[j].pSelect;
1409         }else{
1410           pNC = pNC->pNext;
1411         }
1412       }
1413 
1414       if( pTab==0 ){
1415         /* At one time, code such as "SELECT new.x" within a trigger would
1416         ** cause this condition to run.  Since then, we have restructured how
1417         ** trigger code is generated and so this condition is no longer
1418         ** possible. However, it can still be true for statements like
1419         ** the following:
1420         **
1421         **   CREATE TABLE t1(col INTEGER);
1422         **   SELECT (SELECT t1.col) FROM FROM t1;
1423         **
1424         ** when columnType() is called on the expression "t1.col" in the
1425         ** sub-select. In this case, set the column type to NULL, even
1426         ** though it should really be "INTEGER".
1427         **
1428         ** This is not a problem, as the column type of "t1.col" is never
1429         ** used. When columnType() is called on the expression
1430         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1431         ** branch below.  */
1432         break;
1433       }
1434 
1435       assert( pTab && pExpr->pTab==pTab );
1436       if( pS ){
1437         /* The "table" is actually a sub-select or a view in the FROM clause
1438         ** of the SELECT statement. Return the declaration type and origin
1439         ** data for the result-set column of the sub-select.
1440         */
1441         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1442           /* If iCol is less than zero, then the expression requests the
1443           ** rowid of the sub-select or view. This expression is legal (see
1444           ** test case misc2.2.2) - it always evaluates to NULL.
1445           **
1446           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1447           ** caught already by name resolution.
1448           */
1449           NameContext sNC;
1450           Expr *p = pS->pEList->a[iCol].pExpr;
1451           sNC.pSrcList = pS->pSrc;
1452           sNC.pNext = pNC;
1453           sNC.pParse = pNC->pParse;
1454           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1455         }
1456       }else if( pTab->pSchema ){
1457         /* A real table */
1458         assert( !pS );
1459         if( iCol<0 ) iCol = pTab->iPKey;
1460         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1462         if( iCol<0 ){
1463           zType = "INTEGER";
1464           zOrigCol = "rowid";
1465         }else{
1466           zOrigCol = pTab->aCol[iCol].zName;
1467           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1468           estWidth = pTab->aCol[iCol].szEst;
1469         }
1470         zOrigTab = pTab->zName;
1471         if( pNC->pParse ){
1472           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1473           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1474         }
1475 #else
1476         if( iCol<0 ){
1477           zType = "INTEGER";
1478         }else{
1479           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1480           estWidth = pTab->aCol[iCol].szEst;
1481         }
1482 #endif
1483       }
1484       break;
1485     }
1486 #ifndef SQLITE_OMIT_SUBQUERY
1487     case TK_SELECT: {
1488       /* The expression is a sub-select. Return the declaration type and
1489       ** origin info for the single column in the result set of the SELECT
1490       ** statement.
1491       */
1492       NameContext sNC;
1493       Select *pS = pExpr->x.pSelect;
1494       Expr *p = pS->pEList->a[0].pExpr;
1495       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1496       sNC.pSrcList = pS->pSrc;
1497       sNC.pNext = pNC;
1498       sNC.pParse = pNC->pParse;
1499       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1500       break;
1501     }
1502 #endif
1503   }
1504 
1505 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1506   if( pzOrigDb ){
1507     assert( pzOrigTab && pzOrigCol );
1508     *pzOrigDb = zOrigDb;
1509     *pzOrigTab = zOrigTab;
1510     *pzOrigCol = zOrigCol;
1511   }
1512 #endif
1513   if( pEstWidth ) *pEstWidth = estWidth;
1514   return zType;
1515 }
1516 
1517 /*
1518 ** Generate code that will tell the VDBE the declaration types of columns
1519 ** in the result set.
1520 */
1521 static void generateColumnTypes(
1522   Parse *pParse,      /* Parser context */
1523   SrcList *pTabList,  /* List of tables */
1524   ExprList *pEList    /* Expressions defining the result set */
1525 ){
1526 #ifndef SQLITE_OMIT_DECLTYPE
1527   Vdbe *v = pParse->pVdbe;
1528   int i;
1529   NameContext sNC;
1530   sNC.pSrcList = pTabList;
1531   sNC.pParse = pParse;
1532   sNC.pNext = 0;
1533   for(i=0; i<pEList->nExpr; i++){
1534     Expr *p = pEList->a[i].pExpr;
1535     const char *zType;
1536 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1537     const char *zOrigDb = 0;
1538     const char *zOrigTab = 0;
1539     const char *zOrigCol = 0;
1540     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1541 
1542     /* The vdbe must make its own copy of the column-type and other
1543     ** column specific strings, in case the schema is reset before this
1544     ** virtual machine is deleted.
1545     */
1546     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1547     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1548     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1549 #else
1550     zType = columnType(&sNC, p, 0, 0, 0, 0);
1551 #endif
1552     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1553   }
1554 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1555 }
1556 
1557 /*
1558 ** Return the Table objecct in the SrcList that has cursor iCursor.
1559 ** Or return NULL if no such Table object exists in the SrcList.
1560 */
1561 static Table *tableWithCursor(SrcList *pList, int iCursor){
1562   int j;
1563   for(j=0; j<pList->nSrc; j++){
1564     if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab;
1565   }
1566   return 0;
1567 }
1568 
1569 
1570 /*
1571 ** Generate code that will tell the VDBE the names of columns
1572 ** in the result set.  This information is used to provide the
1573 ** azCol[] values in the callback.
1574 */
1575 static void generateColumnNames(
1576   Parse *pParse,      /* Parser context */
1577   SrcList *pTabList,  /* List of tables */
1578   ExprList *pEList    /* Expressions defining the result set */
1579 ){
1580   Vdbe *v = pParse->pVdbe;
1581   int i;
1582   Table *pTab;
1583   sqlite3 *db = pParse->db;
1584   int fullNames, shortNames;
1585 
1586 #ifndef SQLITE_OMIT_EXPLAIN
1587   /* If this is an EXPLAIN, skip this step */
1588   if( pParse->explain ){
1589     return;
1590   }
1591 #endif
1592 
1593   if( pParse->colNamesSet || db->mallocFailed ) return;
1594   assert( v!=0 );
1595   assert( pTabList!=0 );
1596   pParse->colNamesSet = 1;
1597   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1598   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1599   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1600   for(i=0; i<pEList->nExpr; i++){
1601     Expr *p;
1602     p = pEList->a[i].pExpr;
1603     if( NEVER(p==0) ) continue;
1604     if( pEList->a[i].zName ){
1605       char *zName = pEList->a[i].zName;
1606       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1607     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
1608            && (pTab = tableWithCursor(pTabList, p->iTable))!=0
1609     ){
1610       char *zCol;
1611       int iCol = p->iColumn;
1612       if( iCol<0 ) iCol = pTab->iPKey;
1613       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1614       if( iCol<0 ){
1615         zCol = "rowid";
1616       }else{
1617         zCol = pTab->aCol[iCol].zName;
1618       }
1619       if( !shortNames && !fullNames ){
1620         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1621             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1622       }else if( fullNames ){
1623         char *zName = 0;
1624         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1625         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1626       }else{
1627         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1628       }
1629     }else{
1630       const char *z = pEList->a[i].zSpan;
1631       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1632       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1633     }
1634   }
1635   generateColumnTypes(pParse, pTabList, pEList);
1636 }
1637 
1638 /*
1639 ** Given an expression list (which is really the list of expressions
1640 ** that form the result set of a SELECT statement) compute appropriate
1641 ** column names for a table that would hold the expression list.
1642 **
1643 ** All column names will be unique.
1644 **
1645 ** Only the column names are computed.  Column.zType, Column.zColl,
1646 ** and other fields of Column are zeroed.
1647 **
1648 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1649 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1650 */
1651 int sqlite3ColumnsFromExprList(
1652   Parse *pParse,          /* Parsing context */
1653   ExprList *pEList,       /* Expr list from which to derive column names */
1654   i16 *pnCol,             /* Write the number of columns here */
1655   Column **paCol          /* Write the new column list here */
1656 ){
1657   sqlite3 *db = pParse->db;   /* Database connection */
1658   int i, j;                   /* Loop counters */
1659   u32 cnt;                    /* Index added to make the name unique */
1660   Column *aCol, *pCol;        /* For looping over result columns */
1661   int nCol;                   /* Number of columns in the result set */
1662   Expr *p;                    /* Expression for a single result column */
1663   char *zName;                /* Column name */
1664   int nName;                  /* Size of name in zName[] */
1665   Hash ht;                    /* Hash table of column names */
1666 
1667   sqlite3HashInit(&ht);
1668   if( pEList ){
1669     nCol = pEList->nExpr;
1670     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1671     testcase( aCol==0 );
1672   }else{
1673     nCol = 0;
1674     aCol = 0;
1675   }
1676   assert( nCol==(i16)nCol );
1677   *pnCol = nCol;
1678   *paCol = aCol;
1679 
1680   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1681     /* Get an appropriate name for the column
1682     */
1683     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1684     if( (zName = pEList->a[i].zName)!=0 ){
1685       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1686     }else{
1687       Expr *pColExpr = p;  /* The expression that is the result column name */
1688       Table *pTab;         /* Table associated with this expression */
1689       while( pColExpr->op==TK_DOT ){
1690         pColExpr = pColExpr->pRight;
1691         assert( pColExpr!=0 );
1692       }
1693       if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
1694         /* For columns use the column name name */
1695         int iCol = pColExpr->iColumn;
1696         pTab = pColExpr->pTab;
1697         if( iCol<0 ) iCol = pTab->iPKey;
1698         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1699       }else if( pColExpr->op==TK_ID ){
1700         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1701         zName = pColExpr->u.zToken;
1702       }else{
1703         /* Use the original text of the column expression as its name */
1704         zName = pEList->a[i].zSpan;
1705       }
1706     }
1707     zName = sqlite3MPrintf(db, "%s", zName);
1708 
1709     /* Make sure the column name is unique.  If the name is not unique,
1710     ** append an integer to the name so that it becomes unique.
1711     */
1712     cnt = 0;
1713     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1714       nName = sqlite3Strlen30(zName);
1715       if( nName>0 ){
1716         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1717         if( zName[j]==':' ) nName = j;
1718       }
1719       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1720       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1721     }
1722     pCol->zName = zName;
1723     sqlite3ColumnPropertiesFromName(0, pCol);
1724     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1725       sqlite3OomFault(db);
1726     }
1727   }
1728   sqlite3HashClear(&ht);
1729   if( db->mallocFailed ){
1730     for(j=0; j<i; j++){
1731       sqlite3DbFree(db, aCol[j].zName);
1732     }
1733     sqlite3DbFree(db, aCol);
1734     *paCol = 0;
1735     *pnCol = 0;
1736     return SQLITE_NOMEM_BKPT;
1737   }
1738   return SQLITE_OK;
1739 }
1740 
1741 /*
1742 ** Add type and collation information to a column list based on
1743 ** a SELECT statement.
1744 **
1745 ** The column list presumably came from selectColumnNamesFromExprList().
1746 ** The column list has only names, not types or collations.  This
1747 ** routine goes through and adds the types and collations.
1748 **
1749 ** This routine requires that all identifiers in the SELECT
1750 ** statement be resolved.
1751 */
1752 void sqlite3SelectAddColumnTypeAndCollation(
1753   Parse *pParse,        /* Parsing contexts */
1754   Table *pTab,          /* Add column type information to this table */
1755   Select *pSelect       /* SELECT used to determine types and collations */
1756 ){
1757   sqlite3 *db = pParse->db;
1758   NameContext sNC;
1759   Column *pCol;
1760   CollSeq *pColl;
1761   int i;
1762   Expr *p;
1763   struct ExprList_item *a;
1764   u64 szAll = 0;
1765 
1766   assert( pSelect!=0 );
1767   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1768   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1769   if( db->mallocFailed ) return;
1770   memset(&sNC, 0, sizeof(sNC));
1771   sNC.pSrcList = pSelect->pSrc;
1772   a = pSelect->pEList->a;
1773   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1774     const char *zType;
1775     int n, m;
1776     p = a[i].pExpr;
1777     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1778     szAll += pCol->szEst;
1779     pCol->affinity = sqlite3ExprAffinity(p);
1780     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1781       n = sqlite3Strlen30(pCol->zName);
1782       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1783       if( pCol->zName ){
1784         memcpy(&pCol->zName[n+1], zType, m+1);
1785         pCol->colFlags |= COLFLAG_HASTYPE;
1786       }
1787     }
1788     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1789     pColl = sqlite3ExprCollSeq(pParse, p);
1790     if( pColl && pCol->zColl==0 ){
1791       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1792     }
1793   }
1794   pTab->szTabRow = sqlite3LogEst(szAll*4);
1795 }
1796 
1797 /*
1798 ** Given a SELECT statement, generate a Table structure that describes
1799 ** the result set of that SELECT.
1800 */
1801 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1802   Table *pTab;
1803   sqlite3 *db = pParse->db;
1804   int savedFlags;
1805 
1806   savedFlags = db->flags;
1807   db->flags &= ~SQLITE_FullColNames;
1808   db->flags |= SQLITE_ShortColNames;
1809   sqlite3SelectPrep(pParse, pSelect, 0);
1810   if( pParse->nErr ) return 0;
1811   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1812   db->flags = savedFlags;
1813   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1814   if( pTab==0 ){
1815     return 0;
1816   }
1817   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1818   ** is disabled */
1819   assert( db->lookaside.bDisable );
1820   pTab->nTabRef = 1;
1821   pTab->zName = 0;
1822   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1823   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1824   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1825   pTab->iPKey = -1;
1826   if( db->mallocFailed ){
1827     sqlite3DeleteTable(db, pTab);
1828     return 0;
1829   }
1830   return pTab;
1831 }
1832 
1833 /*
1834 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1835 ** If an error occurs, return NULL and leave a message in pParse.
1836 */
1837 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1838   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1839   if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
1840   if( pParse->pToplevel==0
1841    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1842   ){
1843     pParse->okConstFactor = 1;
1844   }
1845   return v;
1846 }
1847 Vdbe *sqlite3GetVdbe(Parse *pParse){
1848   Vdbe *v = pParse->pVdbe;
1849   return v ? v : allocVdbe(pParse);
1850 }
1851 
1852 
1853 /*
1854 ** Compute the iLimit and iOffset fields of the SELECT based on the
1855 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1856 ** that appear in the original SQL statement after the LIMIT and OFFSET
1857 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1858 ** are the integer memory register numbers for counters used to compute
1859 ** the limit and offset.  If there is no limit and/or offset, then
1860 ** iLimit and iOffset are negative.
1861 **
1862 ** This routine changes the values of iLimit and iOffset only if
1863 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1864 ** iOffset should have been preset to appropriate default values (zero)
1865 ** prior to calling this routine.
1866 **
1867 ** The iOffset register (if it exists) is initialized to the value
1868 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1869 ** iOffset+1 is initialized to LIMIT+OFFSET.
1870 **
1871 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1872 ** redefined.  The UNION ALL operator uses this property to force
1873 ** the reuse of the same limit and offset registers across multiple
1874 ** SELECT statements.
1875 */
1876 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1877   Vdbe *v = 0;
1878   int iLimit = 0;
1879   int iOffset;
1880   int n;
1881   if( p->iLimit ) return;
1882 
1883   /*
1884   ** "LIMIT -1" always shows all rows.  There is some
1885   ** controversy about what the correct behavior should be.
1886   ** The current implementation interprets "LIMIT 0" to mean
1887   ** no rows.
1888   */
1889   sqlite3ExprCacheClear(pParse);
1890   assert( p->pOffset==0 || p->pLimit!=0 );
1891   if( p->pLimit ){
1892     p->iLimit = iLimit = ++pParse->nMem;
1893     v = sqlite3GetVdbe(pParse);
1894     assert( v!=0 );
1895     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1896       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1897       VdbeComment((v, "LIMIT counter"));
1898       if( n==0 ){
1899         sqlite3VdbeGoto(v, iBreak);
1900       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1901         p->nSelectRow = sqlite3LogEst((u64)n);
1902         p->selFlags |= SF_FixedLimit;
1903       }
1904     }else{
1905       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1906       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1907       VdbeComment((v, "LIMIT counter"));
1908       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1909     }
1910     if( p->pOffset ){
1911       p->iOffset = iOffset = ++pParse->nMem;
1912       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1913       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1914       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1915       VdbeComment((v, "OFFSET counter"));
1916       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1917       VdbeComment((v, "LIMIT+OFFSET"));
1918     }
1919   }
1920 }
1921 
1922 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1923 /*
1924 ** Return the appropriate collating sequence for the iCol-th column of
1925 ** the result set for the compound-select statement "p".  Return NULL if
1926 ** the column has no default collating sequence.
1927 **
1928 ** The collating sequence for the compound select is taken from the
1929 ** left-most term of the select that has a collating sequence.
1930 */
1931 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1932   CollSeq *pRet;
1933   if( p->pPrior ){
1934     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1935   }else{
1936     pRet = 0;
1937   }
1938   assert( iCol>=0 );
1939   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1940   ** have been thrown during name resolution and we would not have gotten
1941   ** this far */
1942   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1943     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1944   }
1945   return pRet;
1946 }
1947 
1948 /*
1949 ** The select statement passed as the second parameter is a compound SELECT
1950 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1951 ** structure suitable for implementing the ORDER BY.
1952 **
1953 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1954 ** function is responsible for ensuring that this structure is eventually
1955 ** freed.
1956 */
1957 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1958   ExprList *pOrderBy = p->pOrderBy;
1959   int nOrderBy = p->pOrderBy->nExpr;
1960   sqlite3 *db = pParse->db;
1961   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1962   if( pRet ){
1963     int i;
1964     for(i=0; i<nOrderBy; i++){
1965       struct ExprList_item *pItem = &pOrderBy->a[i];
1966       Expr *pTerm = pItem->pExpr;
1967       CollSeq *pColl;
1968 
1969       if( pTerm->flags & EP_Collate ){
1970         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1971       }else{
1972         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1973         if( pColl==0 ) pColl = db->pDfltColl;
1974         pOrderBy->a[i].pExpr =
1975           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1976       }
1977       assert( sqlite3KeyInfoIsWriteable(pRet) );
1978       pRet->aColl[i] = pColl;
1979       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1980     }
1981   }
1982 
1983   return pRet;
1984 }
1985 
1986 #ifndef SQLITE_OMIT_CTE
1987 /*
1988 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1989 ** query of the form:
1990 **
1991 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1992 **                         \___________/             \_______________/
1993 **                           p->pPrior                      p
1994 **
1995 **
1996 ** There is exactly one reference to the recursive-table in the FROM clause
1997 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1998 **
1999 ** The setup-query runs once to generate an initial set of rows that go
2000 ** into a Queue table.  Rows are extracted from the Queue table one by
2001 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2002 ** extracted row (now in the iCurrent table) becomes the content of the
2003 ** recursive-table for a recursive-query run.  The output of the recursive-query
2004 ** is added back into the Queue table.  Then another row is extracted from Queue
2005 ** and the iteration continues until the Queue table is empty.
2006 **
2007 ** If the compound query operator is UNION then no duplicate rows are ever
2008 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2009 ** that have ever been inserted into Queue and causes duplicates to be
2010 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2011 **
2012 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2013 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2014 ** an ORDER BY, the Queue table is just a FIFO.
2015 **
2016 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2017 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2018 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2019 ** with a positive value, then the first OFFSET outputs are discarded rather
2020 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2021 ** rows have been skipped.
2022 */
2023 static void generateWithRecursiveQuery(
2024   Parse *pParse,        /* Parsing context */
2025   Select *p,            /* The recursive SELECT to be coded */
2026   SelectDest *pDest     /* What to do with query results */
2027 ){
2028   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2029   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2030   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2031   Select *pSetup = p->pPrior;   /* The setup query */
2032   int addrTop;                  /* Top of the loop */
2033   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2034   int iCurrent = 0;             /* The Current table */
2035   int regCurrent;               /* Register holding Current table */
2036   int iQueue;                   /* The Queue table */
2037   int iDistinct = 0;            /* To ensure unique results if UNION */
2038   int eDest = SRT_Fifo;         /* How to write to Queue */
2039   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2040   int i;                        /* Loop counter */
2041   int rc;                       /* Result code */
2042   ExprList *pOrderBy;           /* The ORDER BY clause */
2043   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2044   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2045 
2046   /* Obtain authorization to do a recursive query */
2047   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2048 
2049   /* Process the LIMIT and OFFSET clauses, if they exist */
2050   addrBreak = sqlite3VdbeMakeLabel(v);
2051   p->nSelectRow = 320;  /* 4 billion rows */
2052   computeLimitRegisters(pParse, p, addrBreak);
2053   pLimit = p->pLimit;
2054   pOffset = p->pOffset;
2055   regLimit = p->iLimit;
2056   regOffset = p->iOffset;
2057   p->pLimit = p->pOffset = 0;
2058   p->iLimit = p->iOffset = 0;
2059   pOrderBy = p->pOrderBy;
2060 
2061   /* Locate the cursor number of the Current table */
2062   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2063     if( pSrc->a[i].fg.isRecursive ){
2064       iCurrent = pSrc->a[i].iCursor;
2065       break;
2066     }
2067   }
2068 
2069   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2070   ** the Distinct table must be exactly one greater than Queue in order
2071   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2072   iQueue = pParse->nTab++;
2073   if( p->op==TK_UNION ){
2074     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2075     iDistinct = pParse->nTab++;
2076   }else{
2077     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2078   }
2079   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2080 
2081   /* Allocate cursors for Current, Queue, and Distinct. */
2082   regCurrent = ++pParse->nMem;
2083   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2084   if( pOrderBy ){
2085     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2086     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2087                       (char*)pKeyInfo, P4_KEYINFO);
2088     destQueue.pOrderBy = pOrderBy;
2089   }else{
2090     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2091   }
2092   VdbeComment((v, "Queue table"));
2093   if( iDistinct ){
2094     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2095     p->selFlags |= SF_UsesEphemeral;
2096   }
2097 
2098   /* Detach the ORDER BY clause from the compound SELECT */
2099   p->pOrderBy = 0;
2100 
2101   /* Store the results of the setup-query in Queue. */
2102   pSetup->pNext = 0;
2103   rc = sqlite3Select(pParse, pSetup, &destQueue);
2104   pSetup->pNext = p;
2105   if( rc ) goto end_of_recursive_query;
2106 
2107   /* Find the next row in the Queue and output that row */
2108   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2109 
2110   /* Transfer the next row in Queue over to Current */
2111   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2112   if( pOrderBy ){
2113     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2114   }else{
2115     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2116   }
2117   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2118 
2119   /* Output the single row in Current */
2120   addrCont = sqlite3VdbeMakeLabel(v);
2121   codeOffset(v, regOffset, addrCont);
2122   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2123       0, 0, pDest, addrCont, addrBreak);
2124   if( regLimit ){
2125     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2126     VdbeCoverage(v);
2127   }
2128   sqlite3VdbeResolveLabel(v, addrCont);
2129 
2130   /* Execute the recursive SELECT taking the single row in Current as
2131   ** the value for the recursive-table. Store the results in the Queue.
2132   */
2133   if( p->selFlags & SF_Aggregate ){
2134     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2135   }else{
2136     p->pPrior = 0;
2137     sqlite3Select(pParse, p, &destQueue);
2138     assert( p->pPrior==0 );
2139     p->pPrior = pSetup;
2140   }
2141 
2142   /* Keep running the loop until the Queue is empty */
2143   sqlite3VdbeGoto(v, addrTop);
2144   sqlite3VdbeResolveLabel(v, addrBreak);
2145 
2146 end_of_recursive_query:
2147   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2148   p->pOrderBy = pOrderBy;
2149   p->pLimit = pLimit;
2150   p->pOffset = pOffset;
2151   return;
2152 }
2153 #endif /* SQLITE_OMIT_CTE */
2154 
2155 /* Forward references */
2156 static int multiSelectOrderBy(
2157   Parse *pParse,        /* Parsing context */
2158   Select *p,            /* The right-most of SELECTs to be coded */
2159   SelectDest *pDest     /* What to do with query results */
2160 );
2161 
2162 /*
2163 ** Handle the special case of a compound-select that originates from a
2164 ** VALUES clause.  By handling this as a special case, we avoid deep
2165 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2166 ** on a VALUES clause.
2167 **
2168 ** Because the Select object originates from a VALUES clause:
2169 **   (1) It has no LIMIT or OFFSET
2170 **   (2) All terms are UNION ALL
2171 **   (3) There is no ORDER BY clause
2172 */
2173 static int multiSelectValues(
2174   Parse *pParse,        /* Parsing context */
2175   Select *p,            /* The right-most of SELECTs to be coded */
2176   SelectDest *pDest     /* What to do with query results */
2177 ){
2178   Select *pPrior;
2179   int nRow = 1;
2180   int rc = 0;
2181   assert( p->selFlags & SF_MultiValue );
2182   do{
2183     assert( p->selFlags & SF_Values );
2184     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2185     assert( p->pLimit==0 );
2186     assert( p->pOffset==0 );
2187     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2188     if( p->pPrior==0 ) break;
2189     assert( p->pPrior->pNext==p );
2190     p = p->pPrior;
2191     nRow++;
2192   }while(1);
2193   while( p ){
2194     pPrior = p->pPrior;
2195     p->pPrior = 0;
2196     rc = sqlite3Select(pParse, p, pDest);
2197     p->pPrior = pPrior;
2198     if( rc ) break;
2199     p->nSelectRow = nRow;
2200     p = p->pNext;
2201   }
2202   return rc;
2203 }
2204 
2205 /*
2206 ** This routine is called to process a compound query form from
2207 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2208 ** INTERSECT
2209 **
2210 ** "p" points to the right-most of the two queries.  the query on the
2211 ** left is p->pPrior.  The left query could also be a compound query
2212 ** in which case this routine will be called recursively.
2213 **
2214 ** The results of the total query are to be written into a destination
2215 ** of type eDest with parameter iParm.
2216 **
2217 ** Example 1:  Consider a three-way compound SQL statement.
2218 **
2219 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2220 **
2221 ** This statement is parsed up as follows:
2222 **
2223 **     SELECT c FROM t3
2224 **      |
2225 **      `----->  SELECT b FROM t2
2226 **                |
2227 **                `------>  SELECT a FROM t1
2228 **
2229 ** The arrows in the diagram above represent the Select.pPrior pointer.
2230 ** So if this routine is called with p equal to the t3 query, then
2231 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2232 **
2233 ** Notice that because of the way SQLite parses compound SELECTs, the
2234 ** individual selects always group from left to right.
2235 */
2236 static int multiSelect(
2237   Parse *pParse,        /* Parsing context */
2238   Select *p,            /* The right-most of SELECTs to be coded */
2239   SelectDest *pDest     /* What to do with query results */
2240 ){
2241   int rc = SQLITE_OK;   /* Success code from a subroutine */
2242   Select *pPrior;       /* Another SELECT immediately to our left */
2243   Vdbe *v;              /* Generate code to this VDBE */
2244   SelectDest dest;      /* Alternative data destination */
2245   Select *pDelete = 0;  /* Chain of simple selects to delete */
2246   sqlite3 *db;          /* Database connection */
2247 #ifndef SQLITE_OMIT_EXPLAIN
2248   int iSub1 = 0;        /* EQP id of left-hand query */
2249   int iSub2 = 0;        /* EQP id of right-hand query */
2250 #endif
2251 
2252   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2253   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2254   */
2255   assert( p && p->pPrior );  /* Calling function guarantees this much */
2256   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2257   db = pParse->db;
2258   pPrior = p->pPrior;
2259   dest = *pDest;
2260   if( pPrior->pOrderBy ){
2261     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2262       selectOpName(p->op));
2263     rc = 1;
2264     goto multi_select_end;
2265   }
2266   if( pPrior->pLimit ){
2267     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2268       selectOpName(p->op));
2269     rc = 1;
2270     goto multi_select_end;
2271   }
2272 
2273   v = sqlite3GetVdbe(pParse);
2274   assert( v!=0 );  /* The VDBE already created by calling function */
2275 
2276   /* Create the destination temporary table if necessary
2277   */
2278   if( dest.eDest==SRT_EphemTab ){
2279     assert( p->pEList );
2280     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2281     dest.eDest = SRT_Table;
2282   }
2283 
2284   /* Special handling for a compound-select that originates as a VALUES clause.
2285   */
2286   if( p->selFlags & SF_MultiValue ){
2287     rc = multiSelectValues(pParse, p, &dest);
2288     goto multi_select_end;
2289   }
2290 
2291   /* Make sure all SELECTs in the statement have the same number of elements
2292   ** in their result sets.
2293   */
2294   assert( p->pEList && pPrior->pEList );
2295   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2296 
2297 #ifndef SQLITE_OMIT_CTE
2298   if( p->selFlags & SF_Recursive ){
2299     generateWithRecursiveQuery(pParse, p, &dest);
2300   }else
2301 #endif
2302 
2303   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2304   */
2305   if( p->pOrderBy ){
2306     return multiSelectOrderBy(pParse, p, pDest);
2307   }else
2308 
2309   /* Generate code for the left and right SELECT statements.
2310   */
2311   switch( p->op ){
2312     case TK_ALL: {
2313       int addr = 0;
2314       int nLimit;
2315       assert( !pPrior->pLimit );
2316       pPrior->iLimit = p->iLimit;
2317       pPrior->iOffset = p->iOffset;
2318       pPrior->pLimit = p->pLimit;
2319       pPrior->pOffset = p->pOffset;
2320       explainSetInteger(iSub1, pParse->iNextSelectId);
2321       rc = sqlite3Select(pParse, pPrior, &dest);
2322       p->pLimit = 0;
2323       p->pOffset = 0;
2324       if( rc ){
2325         goto multi_select_end;
2326       }
2327       p->pPrior = 0;
2328       p->iLimit = pPrior->iLimit;
2329       p->iOffset = pPrior->iOffset;
2330       if( p->iLimit ){
2331         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2332         VdbeComment((v, "Jump ahead if LIMIT reached"));
2333         if( p->iOffset ){
2334           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2335                             p->iLimit, p->iOffset+1, p->iOffset);
2336         }
2337       }
2338       explainSetInteger(iSub2, pParse->iNextSelectId);
2339       rc = sqlite3Select(pParse, p, &dest);
2340       testcase( rc!=SQLITE_OK );
2341       pDelete = p->pPrior;
2342       p->pPrior = pPrior;
2343       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2344       if( pPrior->pLimit
2345        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2346        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2347       ){
2348         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2349       }
2350       if( addr ){
2351         sqlite3VdbeJumpHere(v, addr);
2352       }
2353       break;
2354     }
2355     case TK_EXCEPT:
2356     case TK_UNION: {
2357       int unionTab;    /* Cursor number of the temporary table holding result */
2358       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2359       int priorOp;     /* The SRT_ operation to apply to prior selects */
2360       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2361       int addr;
2362       SelectDest uniondest;
2363 
2364       testcase( p->op==TK_EXCEPT );
2365       testcase( p->op==TK_UNION );
2366       priorOp = SRT_Union;
2367       if( dest.eDest==priorOp ){
2368         /* We can reuse a temporary table generated by a SELECT to our
2369         ** right.
2370         */
2371         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2372         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2373         unionTab = dest.iSDParm;
2374       }else{
2375         /* We will need to create our own temporary table to hold the
2376         ** intermediate results.
2377         */
2378         unionTab = pParse->nTab++;
2379         assert( p->pOrderBy==0 );
2380         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2381         assert( p->addrOpenEphm[0] == -1 );
2382         p->addrOpenEphm[0] = addr;
2383         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2384         assert( p->pEList );
2385       }
2386 
2387       /* Code the SELECT statements to our left
2388       */
2389       assert( !pPrior->pOrderBy );
2390       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2391       explainSetInteger(iSub1, pParse->iNextSelectId);
2392       rc = sqlite3Select(pParse, pPrior, &uniondest);
2393       if( rc ){
2394         goto multi_select_end;
2395       }
2396 
2397       /* Code the current SELECT statement
2398       */
2399       if( p->op==TK_EXCEPT ){
2400         op = SRT_Except;
2401       }else{
2402         assert( p->op==TK_UNION );
2403         op = SRT_Union;
2404       }
2405       p->pPrior = 0;
2406       pLimit = p->pLimit;
2407       p->pLimit = 0;
2408       pOffset = p->pOffset;
2409       p->pOffset = 0;
2410       uniondest.eDest = op;
2411       explainSetInteger(iSub2, pParse->iNextSelectId);
2412       rc = sqlite3Select(pParse, p, &uniondest);
2413       testcase( rc!=SQLITE_OK );
2414       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2415       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2416       sqlite3ExprListDelete(db, p->pOrderBy);
2417       pDelete = p->pPrior;
2418       p->pPrior = pPrior;
2419       p->pOrderBy = 0;
2420       if( p->op==TK_UNION ){
2421         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2422       }
2423       sqlite3ExprDelete(db, p->pLimit);
2424       p->pLimit = pLimit;
2425       p->pOffset = pOffset;
2426       p->iLimit = 0;
2427       p->iOffset = 0;
2428 
2429       /* Convert the data in the temporary table into whatever form
2430       ** it is that we currently need.
2431       */
2432       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2433       if( dest.eDest!=priorOp ){
2434         int iCont, iBreak, iStart;
2435         assert( p->pEList );
2436         if( dest.eDest==SRT_Output ){
2437           Select *pFirst = p;
2438           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2439           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2440         }
2441         iBreak = sqlite3VdbeMakeLabel(v);
2442         iCont = sqlite3VdbeMakeLabel(v);
2443         computeLimitRegisters(pParse, p, iBreak);
2444         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2445         iStart = sqlite3VdbeCurrentAddr(v);
2446         selectInnerLoop(pParse, p, p->pEList, unionTab,
2447                         0, 0, &dest, iCont, iBreak);
2448         sqlite3VdbeResolveLabel(v, iCont);
2449         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2450         sqlite3VdbeResolveLabel(v, iBreak);
2451         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2452       }
2453       break;
2454     }
2455     default: assert( p->op==TK_INTERSECT ); {
2456       int tab1, tab2;
2457       int iCont, iBreak, iStart;
2458       Expr *pLimit, *pOffset;
2459       int addr;
2460       SelectDest intersectdest;
2461       int r1;
2462 
2463       /* INTERSECT is different from the others since it requires
2464       ** two temporary tables.  Hence it has its own case.  Begin
2465       ** by allocating the tables we will need.
2466       */
2467       tab1 = pParse->nTab++;
2468       tab2 = pParse->nTab++;
2469       assert( p->pOrderBy==0 );
2470 
2471       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2472       assert( p->addrOpenEphm[0] == -1 );
2473       p->addrOpenEphm[0] = addr;
2474       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2475       assert( p->pEList );
2476 
2477       /* Code the SELECTs to our left into temporary table "tab1".
2478       */
2479       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2480       explainSetInteger(iSub1, pParse->iNextSelectId);
2481       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2482       if( rc ){
2483         goto multi_select_end;
2484       }
2485 
2486       /* Code the current SELECT into temporary table "tab2"
2487       */
2488       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2489       assert( p->addrOpenEphm[1] == -1 );
2490       p->addrOpenEphm[1] = addr;
2491       p->pPrior = 0;
2492       pLimit = p->pLimit;
2493       p->pLimit = 0;
2494       pOffset = p->pOffset;
2495       p->pOffset = 0;
2496       intersectdest.iSDParm = tab2;
2497       explainSetInteger(iSub2, pParse->iNextSelectId);
2498       rc = sqlite3Select(pParse, p, &intersectdest);
2499       testcase( rc!=SQLITE_OK );
2500       pDelete = p->pPrior;
2501       p->pPrior = pPrior;
2502       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2503       sqlite3ExprDelete(db, p->pLimit);
2504       p->pLimit = pLimit;
2505       p->pOffset = pOffset;
2506 
2507       /* Generate code to take the intersection of the two temporary
2508       ** tables.
2509       */
2510       assert( p->pEList );
2511       if( dest.eDest==SRT_Output ){
2512         Select *pFirst = p;
2513         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2514         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2515       }
2516       iBreak = sqlite3VdbeMakeLabel(v);
2517       iCont = sqlite3VdbeMakeLabel(v);
2518       computeLimitRegisters(pParse, p, iBreak);
2519       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2520       r1 = sqlite3GetTempReg(pParse);
2521       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2522       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2523       sqlite3ReleaseTempReg(pParse, r1);
2524       selectInnerLoop(pParse, p, p->pEList, tab1,
2525                       0, 0, &dest, iCont, iBreak);
2526       sqlite3VdbeResolveLabel(v, iCont);
2527       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2528       sqlite3VdbeResolveLabel(v, iBreak);
2529       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2530       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2531       break;
2532     }
2533   }
2534 
2535   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2536 
2537   /* Compute collating sequences used by
2538   ** temporary tables needed to implement the compound select.
2539   ** Attach the KeyInfo structure to all temporary tables.
2540   **
2541   ** This section is run by the right-most SELECT statement only.
2542   ** SELECT statements to the left always skip this part.  The right-most
2543   ** SELECT might also skip this part if it has no ORDER BY clause and
2544   ** no temp tables are required.
2545   */
2546   if( p->selFlags & SF_UsesEphemeral ){
2547     int i;                        /* Loop counter */
2548     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2549     Select *pLoop;                /* For looping through SELECT statements */
2550     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2551     int nCol;                     /* Number of columns in result set */
2552 
2553     assert( p->pNext==0 );
2554     nCol = p->pEList->nExpr;
2555     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2556     if( !pKeyInfo ){
2557       rc = SQLITE_NOMEM_BKPT;
2558       goto multi_select_end;
2559     }
2560     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2561       *apColl = multiSelectCollSeq(pParse, p, i);
2562       if( 0==*apColl ){
2563         *apColl = db->pDfltColl;
2564       }
2565     }
2566 
2567     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2568       for(i=0; i<2; i++){
2569         int addr = pLoop->addrOpenEphm[i];
2570         if( addr<0 ){
2571           /* If [0] is unused then [1] is also unused.  So we can
2572           ** always safely abort as soon as the first unused slot is found */
2573           assert( pLoop->addrOpenEphm[1]<0 );
2574           break;
2575         }
2576         sqlite3VdbeChangeP2(v, addr, nCol);
2577         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2578                             P4_KEYINFO);
2579         pLoop->addrOpenEphm[i] = -1;
2580       }
2581     }
2582     sqlite3KeyInfoUnref(pKeyInfo);
2583   }
2584 
2585 multi_select_end:
2586   pDest->iSdst = dest.iSdst;
2587   pDest->nSdst = dest.nSdst;
2588   sqlite3SelectDelete(db, pDelete);
2589   return rc;
2590 }
2591 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2592 
2593 /*
2594 ** Error message for when two or more terms of a compound select have different
2595 ** size result sets.
2596 */
2597 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2598   if( p->selFlags & SF_Values ){
2599     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2600   }else{
2601     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2602       " do not have the same number of result columns", selectOpName(p->op));
2603   }
2604 }
2605 
2606 /*
2607 ** Code an output subroutine for a coroutine implementation of a
2608 ** SELECT statment.
2609 **
2610 ** The data to be output is contained in pIn->iSdst.  There are
2611 ** pIn->nSdst columns to be output.  pDest is where the output should
2612 ** be sent.
2613 **
2614 ** regReturn is the number of the register holding the subroutine
2615 ** return address.
2616 **
2617 ** If regPrev>0 then it is the first register in a vector that
2618 ** records the previous output.  mem[regPrev] is a flag that is false
2619 ** if there has been no previous output.  If regPrev>0 then code is
2620 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2621 ** keys.
2622 **
2623 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2624 ** iBreak.
2625 */
2626 static int generateOutputSubroutine(
2627   Parse *pParse,          /* Parsing context */
2628   Select *p,              /* The SELECT statement */
2629   SelectDest *pIn,        /* Coroutine supplying data */
2630   SelectDest *pDest,      /* Where to send the data */
2631   int regReturn,          /* The return address register */
2632   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2633   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2634   int iBreak              /* Jump here if we hit the LIMIT */
2635 ){
2636   Vdbe *v = pParse->pVdbe;
2637   int iContinue;
2638   int addr;
2639 
2640   addr = sqlite3VdbeCurrentAddr(v);
2641   iContinue = sqlite3VdbeMakeLabel(v);
2642 
2643   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2644   */
2645   if( regPrev ){
2646     int addr1, addr2;
2647     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2648     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2649                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2650     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2651     sqlite3VdbeJumpHere(v, addr1);
2652     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2653     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2654   }
2655   if( pParse->db->mallocFailed ) return 0;
2656 
2657   /* Suppress the first OFFSET entries if there is an OFFSET clause
2658   */
2659   codeOffset(v, p->iOffset, iContinue);
2660 
2661   assert( pDest->eDest!=SRT_Exists );
2662   assert( pDest->eDest!=SRT_Table );
2663   switch( pDest->eDest ){
2664     /* Store the result as data using a unique key.
2665     */
2666     case SRT_EphemTab: {
2667       int r1 = sqlite3GetTempReg(pParse);
2668       int r2 = sqlite3GetTempReg(pParse);
2669       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2670       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2671       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2672       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2673       sqlite3ReleaseTempReg(pParse, r2);
2674       sqlite3ReleaseTempReg(pParse, r1);
2675       break;
2676     }
2677 
2678 #ifndef SQLITE_OMIT_SUBQUERY
2679     /* If we are creating a set for an "expr IN (SELECT ...)".
2680     */
2681     case SRT_Set: {
2682       int r1;
2683       testcase( pIn->nSdst>1 );
2684       r1 = sqlite3GetTempReg(pParse);
2685       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2686           r1, pDest->zAffSdst, pIn->nSdst);
2687       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2688       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2689                            pIn->iSdst, pIn->nSdst);
2690       sqlite3ReleaseTempReg(pParse, r1);
2691       break;
2692     }
2693 
2694     /* If this is a scalar select that is part of an expression, then
2695     ** store the results in the appropriate memory cell and break out
2696     ** of the scan loop.
2697     */
2698     case SRT_Mem: {
2699       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2700       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2701       /* The LIMIT clause will jump out of the loop for us */
2702       break;
2703     }
2704 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2705 
2706     /* The results are stored in a sequence of registers
2707     ** starting at pDest->iSdst.  Then the co-routine yields.
2708     */
2709     case SRT_Coroutine: {
2710       if( pDest->iSdst==0 ){
2711         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2712         pDest->nSdst = pIn->nSdst;
2713       }
2714       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2715       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2716       break;
2717     }
2718 
2719     /* If none of the above, then the result destination must be
2720     ** SRT_Output.  This routine is never called with any other
2721     ** destination other than the ones handled above or SRT_Output.
2722     **
2723     ** For SRT_Output, results are stored in a sequence of registers.
2724     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2725     ** return the next row of result.
2726     */
2727     default: {
2728       assert( pDest->eDest==SRT_Output );
2729       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2730       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2731       break;
2732     }
2733   }
2734 
2735   /* Jump to the end of the loop if the LIMIT is reached.
2736   */
2737   if( p->iLimit ){
2738     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2739   }
2740 
2741   /* Generate the subroutine return
2742   */
2743   sqlite3VdbeResolveLabel(v, iContinue);
2744   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2745 
2746   return addr;
2747 }
2748 
2749 /*
2750 ** Alternative compound select code generator for cases when there
2751 ** is an ORDER BY clause.
2752 **
2753 ** We assume a query of the following form:
2754 **
2755 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2756 **
2757 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2758 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2759 ** co-routines.  Then run the co-routines in parallel and merge the results
2760 ** into the output.  In addition to the two coroutines (called selectA and
2761 ** selectB) there are 7 subroutines:
2762 **
2763 **    outA:    Move the output of the selectA coroutine into the output
2764 **             of the compound query.
2765 **
2766 **    outB:    Move the output of the selectB coroutine into the output
2767 **             of the compound query.  (Only generated for UNION and
2768 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2769 **             appears only in B.)
2770 **
2771 **    AltB:    Called when there is data from both coroutines and A<B.
2772 **
2773 **    AeqB:    Called when there is data from both coroutines and A==B.
2774 **
2775 **    AgtB:    Called when there is data from both coroutines and A>B.
2776 **
2777 **    EofA:    Called when data is exhausted from selectA.
2778 **
2779 **    EofB:    Called when data is exhausted from selectB.
2780 **
2781 ** The implementation of the latter five subroutines depend on which
2782 ** <operator> is used:
2783 **
2784 **
2785 **             UNION ALL         UNION            EXCEPT          INTERSECT
2786 **          -------------  -----------------  --------------  -----------------
2787 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2788 **
2789 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2790 **
2791 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2792 **
2793 **   EofA:   outB, nextB      outB, nextB          halt             halt
2794 **
2795 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2796 **
2797 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2798 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2799 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2800 ** following nextX causes a jump to the end of the select processing.
2801 **
2802 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2803 ** within the output subroutine.  The regPrev register set holds the previously
2804 ** output value.  A comparison is made against this value and the output
2805 ** is skipped if the next results would be the same as the previous.
2806 **
2807 ** The implementation plan is to implement the two coroutines and seven
2808 ** subroutines first, then put the control logic at the bottom.  Like this:
2809 **
2810 **          goto Init
2811 **     coA: coroutine for left query (A)
2812 **     coB: coroutine for right query (B)
2813 **    outA: output one row of A
2814 **    outB: output one row of B (UNION and UNION ALL only)
2815 **    EofA: ...
2816 **    EofB: ...
2817 **    AltB: ...
2818 **    AeqB: ...
2819 **    AgtB: ...
2820 **    Init: initialize coroutine registers
2821 **          yield coA
2822 **          if eof(A) goto EofA
2823 **          yield coB
2824 **          if eof(B) goto EofB
2825 **    Cmpr: Compare A, B
2826 **          Jump AltB, AeqB, AgtB
2827 **     End: ...
2828 **
2829 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2830 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2831 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2832 ** and AgtB jump to either L2 or to one of EofA or EofB.
2833 */
2834 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2835 static int multiSelectOrderBy(
2836   Parse *pParse,        /* Parsing context */
2837   Select *p,            /* The right-most of SELECTs to be coded */
2838   SelectDest *pDest     /* What to do with query results */
2839 ){
2840   int i, j;             /* Loop counters */
2841   Select *pPrior;       /* Another SELECT immediately to our left */
2842   Vdbe *v;              /* Generate code to this VDBE */
2843   SelectDest destA;     /* Destination for coroutine A */
2844   SelectDest destB;     /* Destination for coroutine B */
2845   int regAddrA;         /* Address register for select-A coroutine */
2846   int regAddrB;         /* Address register for select-B coroutine */
2847   int addrSelectA;      /* Address of the select-A coroutine */
2848   int addrSelectB;      /* Address of the select-B coroutine */
2849   int regOutA;          /* Address register for the output-A subroutine */
2850   int regOutB;          /* Address register for the output-B subroutine */
2851   int addrOutA;         /* Address of the output-A subroutine */
2852   int addrOutB = 0;     /* Address of the output-B subroutine */
2853   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2854   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2855   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2856   int addrAltB;         /* Address of the A<B subroutine */
2857   int addrAeqB;         /* Address of the A==B subroutine */
2858   int addrAgtB;         /* Address of the A>B subroutine */
2859   int regLimitA;        /* Limit register for select-A */
2860   int regLimitB;        /* Limit register for select-A */
2861   int regPrev;          /* A range of registers to hold previous output */
2862   int savedLimit;       /* Saved value of p->iLimit */
2863   int savedOffset;      /* Saved value of p->iOffset */
2864   int labelCmpr;        /* Label for the start of the merge algorithm */
2865   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2866   int addr1;            /* Jump instructions that get retargetted */
2867   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2868   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2869   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2870   sqlite3 *db;          /* Database connection */
2871   ExprList *pOrderBy;   /* The ORDER BY clause */
2872   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2873   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2874 #ifndef SQLITE_OMIT_EXPLAIN
2875   int iSub1;            /* EQP id of left-hand query */
2876   int iSub2;            /* EQP id of right-hand query */
2877 #endif
2878 
2879   assert( p->pOrderBy!=0 );
2880   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2881   db = pParse->db;
2882   v = pParse->pVdbe;
2883   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2884   labelEnd = sqlite3VdbeMakeLabel(v);
2885   labelCmpr = sqlite3VdbeMakeLabel(v);
2886 
2887 
2888   /* Patch up the ORDER BY clause
2889   */
2890   op = p->op;
2891   pPrior = p->pPrior;
2892   assert( pPrior->pOrderBy==0 );
2893   pOrderBy = p->pOrderBy;
2894   assert( pOrderBy );
2895   nOrderBy = pOrderBy->nExpr;
2896 
2897   /* For operators other than UNION ALL we have to make sure that
2898   ** the ORDER BY clause covers every term of the result set.  Add
2899   ** terms to the ORDER BY clause as necessary.
2900   */
2901   if( op!=TK_ALL ){
2902     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2903       struct ExprList_item *pItem;
2904       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2905         assert( pItem->u.x.iOrderByCol>0 );
2906         if( pItem->u.x.iOrderByCol==i ) break;
2907       }
2908       if( j==nOrderBy ){
2909         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2910         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2911         pNew->flags |= EP_IntValue;
2912         pNew->u.iValue = i;
2913         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2914         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2915       }
2916     }
2917   }
2918 
2919   /* Compute the comparison permutation and keyinfo that is used with
2920   ** the permutation used to determine if the next
2921   ** row of results comes from selectA or selectB.  Also add explicit
2922   ** collations to the ORDER BY clause terms so that when the subqueries
2923   ** to the right and the left are evaluated, they use the correct
2924   ** collation.
2925   */
2926   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2927   if( aPermute ){
2928     struct ExprList_item *pItem;
2929     aPermute[0] = nOrderBy;
2930     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2931       assert( pItem->u.x.iOrderByCol>0 );
2932       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2933       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2934     }
2935     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2936   }else{
2937     pKeyMerge = 0;
2938   }
2939 
2940   /* Reattach the ORDER BY clause to the query.
2941   */
2942   p->pOrderBy = pOrderBy;
2943   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2944 
2945   /* Allocate a range of temporary registers and the KeyInfo needed
2946   ** for the logic that removes duplicate result rows when the
2947   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2948   */
2949   if( op==TK_ALL ){
2950     regPrev = 0;
2951   }else{
2952     int nExpr = p->pEList->nExpr;
2953     assert( nOrderBy>=nExpr || db->mallocFailed );
2954     regPrev = pParse->nMem+1;
2955     pParse->nMem += nExpr+1;
2956     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2957     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2958     if( pKeyDup ){
2959       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2960       for(i=0; i<nExpr; i++){
2961         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2962         pKeyDup->aSortOrder[i] = 0;
2963       }
2964     }
2965   }
2966 
2967   /* Separate the left and the right query from one another
2968   */
2969   p->pPrior = 0;
2970   pPrior->pNext = 0;
2971   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2972   if( pPrior->pPrior==0 ){
2973     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2974   }
2975 
2976   /* Compute the limit registers */
2977   computeLimitRegisters(pParse, p, labelEnd);
2978   if( p->iLimit && op==TK_ALL ){
2979     regLimitA = ++pParse->nMem;
2980     regLimitB = ++pParse->nMem;
2981     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2982                                   regLimitA);
2983     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2984   }else{
2985     regLimitA = regLimitB = 0;
2986   }
2987   sqlite3ExprDelete(db, p->pLimit);
2988   p->pLimit = 0;
2989   sqlite3ExprDelete(db, p->pOffset);
2990   p->pOffset = 0;
2991 
2992   regAddrA = ++pParse->nMem;
2993   regAddrB = ++pParse->nMem;
2994   regOutA = ++pParse->nMem;
2995   regOutB = ++pParse->nMem;
2996   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2997   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2998 
2999   /* Generate a coroutine to evaluate the SELECT statement to the
3000   ** left of the compound operator - the "A" select.
3001   */
3002   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3003   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3004   VdbeComment((v, "left SELECT"));
3005   pPrior->iLimit = regLimitA;
3006   explainSetInteger(iSub1, pParse->iNextSelectId);
3007   sqlite3Select(pParse, pPrior, &destA);
3008   sqlite3VdbeEndCoroutine(v, regAddrA);
3009   sqlite3VdbeJumpHere(v, addr1);
3010 
3011   /* Generate a coroutine to evaluate the SELECT statement on
3012   ** the right - the "B" select
3013   */
3014   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3015   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3016   VdbeComment((v, "right SELECT"));
3017   savedLimit = p->iLimit;
3018   savedOffset = p->iOffset;
3019   p->iLimit = regLimitB;
3020   p->iOffset = 0;
3021   explainSetInteger(iSub2, pParse->iNextSelectId);
3022   sqlite3Select(pParse, p, &destB);
3023   p->iLimit = savedLimit;
3024   p->iOffset = savedOffset;
3025   sqlite3VdbeEndCoroutine(v, regAddrB);
3026 
3027   /* Generate a subroutine that outputs the current row of the A
3028   ** select as the next output row of the compound select.
3029   */
3030   VdbeNoopComment((v, "Output routine for A"));
3031   addrOutA = generateOutputSubroutine(pParse,
3032                  p, &destA, pDest, regOutA,
3033                  regPrev, pKeyDup, labelEnd);
3034 
3035   /* Generate a subroutine that outputs the current row of the B
3036   ** select as the next output row of the compound select.
3037   */
3038   if( op==TK_ALL || op==TK_UNION ){
3039     VdbeNoopComment((v, "Output routine for B"));
3040     addrOutB = generateOutputSubroutine(pParse,
3041                  p, &destB, pDest, regOutB,
3042                  regPrev, pKeyDup, labelEnd);
3043   }
3044   sqlite3KeyInfoUnref(pKeyDup);
3045 
3046   /* Generate a subroutine to run when the results from select A
3047   ** are exhausted and only data in select B remains.
3048   */
3049   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3050     addrEofA_noB = addrEofA = labelEnd;
3051   }else{
3052     VdbeNoopComment((v, "eof-A subroutine"));
3053     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3054     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3055                                      VdbeCoverage(v);
3056     sqlite3VdbeGoto(v, addrEofA);
3057     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3058   }
3059 
3060   /* Generate a subroutine to run when the results from select B
3061   ** are exhausted and only data in select A remains.
3062   */
3063   if( op==TK_INTERSECT ){
3064     addrEofB = addrEofA;
3065     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3066   }else{
3067     VdbeNoopComment((v, "eof-B subroutine"));
3068     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3069     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3070     sqlite3VdbeGoto(v, addrEofB);
3071   }
3072 
3073   /* Generate code to handle the case of A<B
3074   */
3075   VdbeNoopComment((v, "A-lt-B subroutine"));
3076   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3077   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3078   sqlite3VdbeGoto(v, labelCmpr);
3079 
3080   /* Generate code to handle the case of A==B
3081   */
3082   if( op==TK_ALL ){
3083     addrAeqB = addrAltB;
3084   }else if( op==TK_INTERSECT ){
3085     addrAeqB = addrAltB;
3086     addrAltB++;
3087   }else{
3088     VdbeNoopComment((v, "A-eq-B subroutine"));
3089     addrAeqB =
3090     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3091     sqlite3VdbeGoto(v, labelCmpr);
3092   }
3093 
3094   /* Generate code to handle the case of A>B
3095   */
3096   VdbeNoopComment((v, "A-gt-B subroutine"));
3097   addrAgtB = sqlite3VdbeCurrentAddr(v);
3098   if( op==TK_ALL || op==TK_UNION ){
3099     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3100   }
3101   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3102   sqlite3VdbeGoto(v, labelCmpr);
3103 
3104   /* This code runs once to initialize everything.
3105   */
3106   sqlite3VdbeJumpHere(v, addr1);
3107   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3108   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3109 
3110   /* Implement the main merge loop
3111   */
3112   sqlite3VdbeResolveLabel(v, labelCmpr);
3113   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3114   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3115                          (char*)pKeyMerge, P4_KEYINFO);
3116   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3117   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3118 
3119   /* Jump to the this point in order to terminate the query.
3120   */
3121   sqlite3VdbeResolveLabel(v, labelEnd);
3122 
3123   /* Set the number of output columns
3124   */
3125   if( pDest->eDest==SRT_Output ){
3126     Select *pFirst = pPrior;
3127     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3128     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3129   }
3130 
3131   /* Reassembly the compound query so that it will be freed correctly
3132   ** by the calling function */
3133   if( p->pPrior ){
3134     sqlite3SelectDelete(db, p->pPrior);
3135   }
3136   p->pPrior = pPrior;
3137   pPrior->pNext = p;
3138 
3139   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3140   **** subqueries ****/
3141   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3142   return pParse->nErr!=0;
3143 }
3144 #endif
3145 
3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3147 
3148 /* An instance of the SubstContext object describes an substitution edit
3149 ** to be performed on a parse tree.
3150 **
3151 ** All references to columns in table iTable are to be replaced by corresponding
3152 ** expressions in pEList.
3153 */
3154 typedef struct SubstContext {
3155   Parse *pParse;            /* The parsing context */
3156   int iTable;               /* Replace references to this table */
3157   int iNewTable;            /* New table number */
3158   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3159   ExprList *pEList;         /* Replacement expressions */
3160 } SubstContext;
3161 
3162 /* Forward Declarations */
3163 static void substExprList(SubstContext*, ExprList*);
3164 static void substSelect(SubstContext*, Select*, int);
3165 
3166 /*
3167 ** Scan through the expression pExpr.  Replace every reference to
3168 ** a column in table number iTable with a copy of the iColumn-th
3169 ** entry in pEList.  (But leave references to the ROWID column
3170 ** unchanged.)
3171 **
3172 ** This routine is part of the flattening procedure.  A subquery
3173 ** whose result set is defined by pEList appears as entry in the
3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3175 ** FORM clause entry is iTable.  This routine makes the necessary
3176 ** changes to pExpr so that it refers directly to the source table
3177 ** of the subquery rather the result set of the subquery.
3178 */
3179 static Expr *substExpr(
3180   SubstContext *pSubst,  /* Description of the substitution */
3181   Expr *pExpr            /* Expr in which substitution occurs */
3182 ){
3183   if( pExpr==0 ) return 0;
3184   if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
3185     pExpr->iRightJoinTable = pSubst->iNewTable;
3186   }
3187   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3188     if( pExpr->iColumn<0 ){
3189       pExpr->op = TK_NULL;
3190     }else{
3191       Expr *pNew;
3192       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3193       Expr ifNullRow;
3194       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3195       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3196       if( sqlite3ExprIsVector(pCopy) ){
3197         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3198       }else{
3199         sqlite3 *db = pSubst->pParse->db;
3200         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3201           memset(&ifNullRow, 0, sizeof(ifNullRow));
3202           ifNullRow.op = TK_IF_NULL_ROW;
3203           ifNullRow.pLeft = pCopy;
3204           ifNullRow.iTable = pSubst->iNewTable;
3205           pCopy = &ifNullRow;
3206         }
3207         pNew = sqlite3ExprDup(db, pCopy, 0);
3208         if( pNew && (pExpr->flags & EP_FromJoin) ){
3209           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3210           pNew->flags |= EP_FromJoin;
3211         }
3212         sqlite3ExprDelete(db, pExpr);
3213         pExpr = pNew;
3214       }
3215     }
3216   }else{
3217     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3218       pExpr->iTable = pSubst->iNewTable;
3219     }
3220     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3221     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3222     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3223       substSelect(pSubst, pExpr->x.pSelect, 1);
3224     }else{
3225       substExprList(pSubst, pExpr->x.pList);
3226     }
3227   }
3228   return pExpr;
3229 }
3230 static void substExprList(
3231   SubstContext *pSubst, /* Description of the substitution */
3232   ExprList *pList       /* List to scan and in which to make substitutes */
3233 ){
3234   int i;
3235   if( pList==0 ) return;
3236   for(i=0; i<pList->nExpr; i++){
3237     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3238   }
3239 }
3240 static void substSelect(
3241   SubstContext *pSubst, /* Description of the substitution */
3242   Select *p,            /* SELECT statement in which to make substitutions */
3243   int doPrior           /* Do substitutes on p->pPrior too */
3244 ){
3245   SrcList *pSrc;
3246   struct SrcList_item *pItem;
3247   int i;
3248   if( !p ) return;
3249   do{
3250     substExprList(pSubst, p->pEList);
3251     substExprList(pSubst, p->pGroupBy);
3252     substExprList(pSubst, p->pOrderBy);
3253     p->pHaving = substExpr(pSubst, p->pHaving);
3254     p->pWhere = substExpr(pSubst, p->pWhere);
3255     pSrc = p->pSrc;
3256     assert( pSrc!=0 );
3257     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3258       substSelect(pSubst, pItem->pSelect, 1);
3259       if( pItem->fg.isTabFunc ){
3260         substExprList(pSubst, pItem->u1.pFuncArg);
3261       }
3262     }
3263   }while( doPrior && (p = p->pPrior)!=0 );
3264 }
3265 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3266 
3267 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3268 /*
3269 ** This routine attempts to flatten subqueries as a performance optimization.
3270 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3271 **
3272 ** To understand the concept of flattening, consider the following
3273 ** query:
3274 **
3275 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3276 **
3277 ** The default way of implementing this query is to execute the
3278 ** subquery first and store the results in a temporary table, then
3279 ** run the outer query on that temporary table.  This requires two
3280 ** passes over the data.  Furthermore, because the temporary table
3281 ** has no indices, the WHERE clause on the outer query cannot be
3282 ** optimized.
3283 **
3284 ** This routine attempts to rewrite queries such as the above into
3285 ** a single flat select, like this:
3286 **
3287 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3288 **
3289 ** The code generated for this simplification gives the same result
3290 ** but only has to scan the data once.  And because indices might
3291 ** exist on the table t1, a complete scan of the data might be
3292 ** avoided.
3293 **
3294 ** Flattening is only attempted if all of the following are true:
3295 **
3296 **   (1)  The subquery and the outer query do not both use aggregates.
3297 **
3298 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3299 **        and (2b) the outer query does not use subqueries other than the one
3300 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3301 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3302 **
3303 **   (3)  The subquery is not the right operand of a LEFT JOIN
3304 **        or the subquery is not itself a join and the outer query is not
3305 **        an aggregate.
3306 **
3307 **   (4)  The subquery is not DISTINCT.
3308 **
3309 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3310 **        sub-queries that were excluded from this optimization. Restriction
3311 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3312 **
3313 **   (6)  The subquery does not use aggregates or the outer query is not
3314 **        DISTINCT.
3315 **
3316 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3317 **        A FROM clause, consider adding a FROM clause with the special
3318 **        table sqlite_once that consists of a single row containing a
3319 **        single NULL.
3320 **
3321 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3322 **
3323 **   (9)  The subquery does not use LIMIT or the outer query does not use
3324 **        aggregates.
3325 **
3326 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3327 **        accidently carried the comment forward until 2014-09-15.  Original
3328 **        text: "The subquery does not use aggregates or the outer query
3329 **        does not use LIMIT."
3330 **
3331 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3332 **
3333 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3334 **        a separate restriction deriving from ticket #350.
3335 **
3336 **  (13)  The subquery and outer query do not both use LIMIT.
3337 **
3338 **  (14)  The subquery does not use OFFSET.
3339 **
3340 **  (15)  The outer query is not part of a compound select or the
3341 **        subquery does not have a LIMIT clause.
3342 **        (See ticket #2339 and ticket [02a8e81d44]).
3343 **
3344 **  (16)  The outer query is not an aggregate or the subquery does
3345 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3346 **        until we introduced the group_concat() function.
3347 **
3348 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3349 **        compound clause made up entirely of non-aggregate queries, and
3350 **        the parent query:
3351 **
3352 **          * is not itself part of a compound select,
3353 **          * is not an aggregate or DISTINCT query, and
3354 **          * is not a join
3355 **
3356 **        The parent and sub-query may contain WHERE clauses. Subject to
3357 **        rules (11), (13) and (14), they may also contain ORDER BY,
3358 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3359 **        operator other than UNION ALL because all the other compound
3360 **        operators have an implied DISTINCT which is disallowed by
3361 **        restriction (4).
3362 **
3363 **        Also, each component of the sub-query must return the same number
3364 **        of result columns. This is actually a requirement for any compound
3365 **        SELECT statement, but all the code here does is make sure that no
3366 **        such (illegal) sub-query is flattened. The caller will detect the
3367 **        syntax error and return a detailed message.
3368 **
3369 **  (18)  If the sub-query is a compound select, then all terms of the
3370 **        ORDER by clause of the parent must be simple references to
3371 **        columns of the sub-query.
3372 **
3373 **  (19)  The subquery does not use LIMIT or the outer query does not
3374 **        have a WHERE clause.
3375 **
3376 **  (20)  If the sub-query is a compound select, then it must not use
3377 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3378 **        somewhat by saying that the terms of the ORDER BY clause must
3379 **        appear as unmodified result columns in the outer query.  But we
3380 **        have other optimizations in mind to deal with that case.
3381 **
3382 **  (21)  The subquery does not use LIMIT or the outer query is not
3383 **        DISTINCT.  (See ticket [752e1646fc]).
3384 **
3385 **  (22)  The subquery is not a recursive CTE.
3386 **
3387 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3388 **        compound query. This restriction is because transforming the
3389 **        parent to a compound query confuses the code that handles
3390 **        recursive queries in multiSelect().
3391 **
3392 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3393 **        or max() functions.  (Without this restriction, a query like:
3394 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3395 **        return the value X for which Y was maximal.)
3396 **
3397 **
3398 ** In this routine, the "p" parameter is a pointer to the outer query.
3399 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3400 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3401 **
3402 ** If flattening is not attempted, this routine is a no-op and returns 0.
3403 ** If flattening is attempted this routine returns 1.
3404 **
3405 ** All of the expression analysis must occur on both the outer query and
3406 ** the subquery before this routine runs.
3407 */
3408 static int flattenSubquery(
3409   Parse *pParse,       /* Parsing context */
3410   Select *p,           /* The parent or outer SELECT statement */
3411   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3412   int isAgg,           /* True if outer SELECT uses aggregate functions */
3413   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3414 ){
3415   const char *zSavedAuthContext = pParse->zAuthContext;
3416   Select *pParent;    /* Current UNION ALL term of the other query */
3417   Select *pSub;       /* The inner query or "subquery" */
3418   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3419   SrcList *pSrc;      /* The FROM clause of the outer query */
3420   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3421   ExprList *pList;    /* The result set of the outer query */
3422   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3423   int iNewParent = -1;/* Replacement table for iParent */
3424   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3425   int i;              /* Loop counter */
3426   Expr *pWhere;                    /* The WHERE clause */
3427   struct SrcList_item *pSubitem;   /* The subquery */
3428   sqlite3 *db = pParse->db;
3429 
3430   /* Check to see if flattening is permitted.  Return 0 if not.
3431   */
3432   assert( p!=0 );
3433   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3434   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3435   pSrc = p->pSrc;
3436   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3437   pSubitem = &pSrc->a[iFrom];
3438   iParent = pSubitem->iCursor;
3439   pSub = pSubitem->pSelect;
3440   assert( pSub!=0 );
3441   if( subqueryIsAgg ){
3442     if( isAgg ) return 0;                                /* Restriction (1)   */
3443     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3444     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3445      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3446      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3447     ){
3448       return 0;                                          /* Restriction (2b)  */
3449     }
3450   }
3451 
3452   pSubSrc = pSub->pSrc;
3453   assert( pSubSrc );
3454   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3455   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3456   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3457   ** became arbitrary expressions, we were forced to add restrictions (13)
3458   ** and (14). */
3459   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3460   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3461   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3462     return 0;                                            /* Restriction (15) */
3463   }
3464   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3465   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3466   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3467      return 0;         /* Restrictions (8)(9) */
3468   }
3469   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3470      return 0;         /* Restriction (6)  */
3471   }
3472   if( p->pOrderBy && pSub->pOrderBy ){
3473      return 0;                                           /* Restriction (11) */
3474   }
3475   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3476   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3477   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3478      return 0;         /* Restriction (21) */
3479   }
3480   testcase( pSub->selFlags & SF_Recursive );
3481   testcase( pSub->selFlags & SF_MinMaxAgg );
3482   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3483     return 0; /* Restrictions (22) and (24) */
3484   }
3485   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3486     return 0; /* Restriction (23) */
3487   }
3488 
3489   /*
3490   ** If the subquery is the right operand of a LEFT JOIN, then the
3491   ** subquery may not be a join itself.  Example of why this is not allowed:
3492   **
3493   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3494   **
3495   ** If we flatten the above, we would get
3496   **
3497   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3498   **
3499   ** which is not at all the same thing.
3500   **
3501   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3502   ** query cannot be an aggregate.  This is an artifact of the way aggregates
3503   ** are processed - there is not mechanism to determine if the LEFT JOIN
3504   ** table should be all-NULL.
3505   **
3506   ** See also tickets #306, #350, and #3300.
3507   */
3508   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3509     isLeftJoin = 1;
3510     if( pSubSrc->nSrc>1 || isAgg ){
3511       return 0; /* Restriction (3) */
3512     }
3513   }
3514 #ifdef SQLITE_EXTRA_IFNULLROW
3515   else if( iFrom>0 && !isAgg ){
3516     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3517     ** every reference to any result column from subquery in a join, even though
3518     ** they are not necessary.  This will stress-test the OP_IfNullRow opcode. */
3519     isLeftJoin = -1;
3520   }
3521 #endif
3522 
3523   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3524   ** use only the UNION ALL operator. And none of the simple select queries
3525   ** that make up the compound SELECT are allowed to be aggregate or distinct
3526   ** queries.
3527   */
3528   if( pSub->pPrior ){
3529     if( pSub->pOrderBy ){
3530       return 0;  /* Restriction 20 */
3531     }
3532     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3533       return 0;
3534     }
3535     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3536       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3537       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3538       assert( pSub->pSrc!=0 );
3539       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3540       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3541        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3542        || pSub1->pSrc->nSrc<1
3543       ){
3544         return 0;
3545       }
3546       testcase( pSub1->pSrc->nSrc>1 );
3547     }
3548 
3549     /* Restriction 18. */
3550     if( p->pOrderBy ){
3551       int ii;
3552       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3553         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3554       }
3555     }
3556   }
3557 
3558   /***** If we reach this point, flattening is permitted. *****/
3559   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3560                    pSub->zSelName, pSub, iFrom));
3561 
3562   /* Authorize the subquery */
3563   pParse->zAuthContext = pSubitem->zName;
3564   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3565   testcase( i==SQLITE_DENY );
3566   pParse->zAuthContext = zSavedAuthContext;
3567 
3568   /* If the sub-query is a compound SELECT statement, then (by restrictions
3569   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3570   ** be of the form:
3571   **
3572   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3573   **
3574   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3575   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3576   ** OFFSET clauses and joins them to the left-hand-side of the original
3577   ** using UNION ALL operators. In this case N is the number of simple
3578   ** select statements in the compound sub-query.
3579   **
3580   ** Example:
3581   **
3582   **     SELECT a+1 FROM (
3583   **        SELECT x FROM tab
3584   **        UNION ALL
3585   **        SELECT y FROM tab
3586   **        UNION ALL
3587   **        SELECT abs(z*2) FROM tab2
3588   **     ) WHERE a!=5 ORDER BY 1
3589   **
3590   ** Transformed into:
3591   **
3592   **     SELECT x+1 FROM tab WHERE x+1!=5
3593   **     UNION ALL
3594   **     SELECT y+1 FROM tab WHERE y+1!=5
3595   **     UNION ALL
3596   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3597   **     ORDER BY 1
3598   **
3599   ** We call this the "compound-subquery flattening".
3600   */
3601   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3602     Select *pNew;
3603     ExprList *pOrderBy = p->pOrderBy;
3604     Expr *pLimit = p->pLimit;
3605     Expr *pOffset = p->pOffset;
3606     Select *pPrior = p->pPrior;
3607     p->pOrderBy = 0;
3608     p->pSrc = 0;
3609     p->pPrior = 0;
3610     p->pLimit = 0;
3611     p->pOffset = 0;
3612     pNew = sqlite3SelectDup(db, p, 0);
3613     sqlite3SelectSetName(pNew, pSub->zSelName);
3614     p->pOffset = pOffset;
3615     p->pLimit = pLimit;
3616     p->pOrderBy = pOrderBy;
3617     p->pSrc = pSrc;
3618     p->op = TK_ALL;
3619     if( pNew==0 ){
3620       p->pPrior = pPrior;
3621     }else{
3622       pNew->pPrior = pPrior;
3623       if( pPrior ) pPrior->pNext = pNew;
3624       pNew->pNext = p;
3625       p->pPrior = pNew;
3626       SELECTTRACE(2,pParse,p,
3627          ("compound-subquery flattener creates %s.%p as peer\n",
3628          pNew->zSelName, pNew));
3629     }
3630     if( db->mallocFailed ) return 1;
3631   }
3632 
3633   /* Begin flattening the iFrom-th entry of the FROM clause
3634   ** in the outer query.
3635   */
3636   pSub = pSub1 = pSubitem->pSelect;
3637 
3638   /* Delete the transient table structure associated with the
3639   ** subquery
3640   */
3641   sqlite3DbFree(db, pSubitem->zDatabase);
3642   sqlite3DbFree(db, pSubitem->zName);
3643   sqlite3DbFree(db, pSubitem->zAlias);
3644   pSubitem->zDatabase = 0;
3645   pSubitem->zName = 0;
3646   pSubitem->zAlias = 0;
3647   pSubitem->pSelect = 0;
3648 
3649   /* Defer deleting the Table object associated with the
3650   ** subquery until code generation is
3651   ** complete, since there may still exist Expr.pTab entries that
3652   ** refer to the subquery even after flattening.  Ticket #3346.
3653   **
3654   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3655   */
3656   if( ALWAYS(pSubitem->pTab!=0) ){
3657     Table *pTabToDel = pSubitem->pTab;
3658     if( pTabToDel->nTabRef==1 ){
3659       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3660       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3661       pToplevel->pZombieTab = pTabToDel;
3662     }else{
3663       pTabToDel->nTabRef--;
3664     }
3665     pSubitem->pTab = 0;
3666   }
3667 
3668   /* The following loop runs once for each term in a compound-subquery
3669   ** flattening (as described above).  If we are doing a different kind
3670   ** of flattening - a flattening other than a compound-subquery flattening -
3671   ** then this loop only runs once.
3672   **
3673   ** This loop moves all of the FROM elements of the subquery into the
3674   ** the FROM clause of the outer query.  Before doing this, remember
3675   ** the cursor number for the original outer query FROM element in
3676   ** iParent.  The iParent cursor will never be used.  Subsequent code
3677   ** will scan expressions looking for iParent references and replace
3678   ** those references with expressions that resolve to the subquery FROM
3679   ** elements we are now copying in.
3680   */
3681   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3682     int nSubSrc;
3683     u8 jointype = 0;
3684     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3685     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3686     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3687 
3688     if( pSrc ){
3689       assert( pParent==p );  /* First time through the loop */
3690       jointype = pSubitem->fg.jointype;
3691     }else{
3692       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3693       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3694       if( pSrc==0 ){
3695         assert( db->mallocFailed );
3696         break;
3697       }
3698     }
3699 
3700     /* The subquery uses a single slot of the FROM clause of the outer
3701     ** query.  If the subquery has more than one element in its FROM clause,
3702     ** then expand the outer query to make space for it to hold all elements
3703     ** of the subquery.
3704     **
3705     ** Example:
3706     **
3707     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3708     **
3709     ** The outer query has 3 slots in its FROM clause.  One slot of the
3710     ** outer query (the middle slot) is used by the subquery.  The next
3711     ** block of code will expand the outer query FROM clause to 4 slots.
3712     ** The middle slot is expanded to two slots in order to make space
3713     ** for the two elements in the FROM clause of the subquery.
3714     */
3715     if( nSubSrc>1 ){
3716       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3717       if( db->mallocFailed ){
3718         break;
3719       }
3720     }
3721 
3722     /* Transfer the FROM clause terms from the subquery into the
3723     ** outer query.
3724     */
3725     for(i=0; i<nSubSrc; i++){
3726       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3727       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3728       pSrc->a[i+iFrom] = pSubSrc->a[i];
3729       iNewParent = pSubSrc->a[i].iCursor;
3730       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3731     }
3732     pSrc->a[iFrom].fg.jointype = jointype;
3733 
3734     /* Now begin substituting subquery result set expressions for
3735     ** references to the iParent in the outer query.
3736     **
3737     ** Example:
3738     **
3739     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3740     **   \                     \_____________ subquery __________/          /
3741     **    \_____________________ outer query ______________________________/
3742     **
3743     ** We look at every expression in the outer query and every place we see
3744     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3745     */
3746     pList = pParent->pEList;
3747     for(i=0; i<pList->nExpr; i++){
3748       if( pList->a[i].zName==0 ){
3749         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3750         sqlite3Dequote(zName);
3751         pList->a[i].zName = zName;
3752       }
3753     }
3754     if( pSub->pOrderBy ){
3755       /* At this point, any non-zero iOrderByCol values indicate that the
3756       ** ORDER BY column expression is identical to the iOrderByCol'th
3757       ** expression returned by SELECT statement pSub. Since these values
3758       ** do not necessarily correspond to columns in SELECT statement pParent,
3759       ** zero them before transfering the ORDER BY clause.
3760       **
3761       ** Not doing this may cause an error if a subsequent call to this
3762       ** function attempts to flatten a compound sub-query into pParent
3763       ** (the only way this can happen is if the compound sub-query is
3764       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3765       ExprList *pOrderBy = pSub->pOrderBy;
3766       for(i=0; i<pOrderBy->nExpr; i++){
3767         pOrderBy->a[i].u.x.iOrderByCol = 0;
3768       }
3769       assert( pParent->pOrderBy==0 );
3770       assert( pSub->pPrior==0 );
3771       pParent->pOrderBy = pOrderBy;
3772       pSub->pOrderBy = 0;
3773     }
3774     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3775     if( isLeftJoin>0 ){
3776       setJoinExpr(pWhere, iNewParent);
3777     }
3778     if( subqueryIsAgg ){
3779       assert( pParent->pHaving==0 );
3780       pParent->pHaving = pParent->pWhere;
3781       pParent->pWhere = pWhere;
3782       pParent->pHaving = sqlite3ExprAnd(db,
3783           sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3784       );
3785       assert( pParent->pGroupBy==0 );
3786       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3787     }else{
3788       pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3789     }
3790     if( db->mallocFailed==0 ){
3791       SubstContext x;
3792       x.pParse = pParse;
3793       x.iTable = iParent;
3794       x.iNewTable = iNewParent;
3795       x.isLeftJoin = isLeftJoin;
3796       x.pEList = pSub->pEList;
3797       substSelect(&x, pParent, 0);
3798     }
3799 
3800     /* The flattened query is distinct if either the inner or the
3801     ** outer query is distinct.
3802     */
3803     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3804 
3805     /*
3806     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3807     **
3808     ** One is tempted to try to add a and b to combine the limits.  But this
3809     ** does not work if either limit is negative.
3810     */
3811     if( pSub->pLimit ){
3812       pParent->pLimit = pSub->pLimit;
3813       pSub->pLimit = 0;
3814     }
3815   }
3816 
3817   /* Finially, delete what is left of the subquery and return
3818   ** success.
3819   */
3820   sqlite3SelectDelete(db, pSub1);
3821 
3822 #if SELECTTRACE_ENABLED
3823   if( sqlite3SelectTrace & 0x100 ){
3824     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3825     sqlite3TreeViewSelect(0, p, 0);
3826   }
3827 #endif
3828 
3829   return 1;
3830 }
3831 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3832 
3833 
3834 
3835 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3836 /*
3837 ** Make copies of relevant WHERE clause terms of the outer query into
3838 ** the WHERE clause of subquery.  Example:
3839 **
3840 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3841 **
3842 ** Transformed into:
3843 **
3844 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3845 **     WHERE x=5 AND y=10;
3846 **
3847 ** The hope is that the terms added to the inner query will make it more
3848 ** efficient.
3849 **
3850 ** Do not attempt this optimization if:
3851 **
3852 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3853 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3854 **       inner query.  But they probably won't help there so do not bother.)
3855 **
3856 **   (2) The inner query is the recursive part of a common table expression.
3857 **
3858 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3859 **       close would change the meaning of the LIMIT).
3860 **
3861 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3862 **       enforces this restriction since this routine does not have enough
3863 **       information to know.)
3864 **
3865 **   (5) The WHERE clause expression originates in the ON or USING clause
3866 **       of a LEFT JOIN.
3867 **
3868 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3869 ** terms are duplicated into the subquery.
3870 */
3871 static int pushDownWhereTerms(
3872   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3873   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3874   Expr *pWhere,         /* The WHERE clause of the outer query */
3875   int iCursor           /* Cursor number of the subquery */
3876 ){
3877   Expr *pNew;
3878   int nChng = 0;
3879   Select *pX;           /* For looping over compound SELECTs in pSubq */
3880   if( pWhere==0 ) return 0;
3881   for(pX=pSubq; pX; pX=pX->pPrior){
3882     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3883       testcase( pX->selFlags & SF_Aggregate );
3884       testcase( pX->selFlags & SF_Recursive );
3885       testcase( pX!=pSubq );
3886       return 0; /* restrictions (1) and (2) */
3887     }
3888   }
3889   if( pSubq->pLimit!=0 ){
3890     return 0; /* restriction (3) */
3891   }
3892   while( pWhere->op==TK_AND ){
3893     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3894     pWhere = pWhere->pLeft;
3895   }
3896   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3897   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3898     nChng++;
3899     while( pSubq ){
3900       SubstContext x;
3901       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3902       x.pParse = pParse;
3903       x.iTable = iCursor;
3904       x.iNewTable = iCursor;
3905       x.isLeftJoin = 0;
3906       x.pEList = pSubq->pEList;
3907       pNew = substExpr(&x, pNew);
3908       pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3909       pSubq = pSubq->pPrior;
3910     }
3911   }
3912   return nChng;
3913 }
3914 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3915 
3916 /*
3917 ** Based on the contents of the AggInfo structure indicated by the first
3918 ** argument, this function checks if the following are true:
3919 **
3920 **    * the query contains just a single aggregate function,
3921 **    * the aggregate function is either min() or max(), and
3922 **    * the argument to the aggregate function is a column value.
3923 **
3924 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3925 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3926 ** list of arguments passed to the aggregate before returning.
3927 **
3928 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3929 ** WHERE_ORDERBY_NORMAL is returned.
3930 */
3931 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3932   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3933 
3934   *ppMinMax = 0;
3935   if( pAggInfo->nFunc==1 ){
3936     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3937     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3938 
3939     assert( pExpr->op==TK_AGG_FUNCTION );
3940     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3941       const char *zFunc = pExpr->u.zToken;
3942       if( sqlite3StrICmp(zFunc, "min")==0 ){
3943         eRet = WHERE_ORDERBY_MIN;
3944         *ppMinMax = pEList;
3945       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3946         eRet = WHERE_ORDERBY_MAX;
3947         *ppMinMax = pEList;
3948       }
3949     }
3950   }
3951 
3952   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3953   return eRet;
3954 }
3955 
3956 /*
3957 ** The select statement passed as the first argument is an aggregate query.
3958 ** The second argument is the associated aggregate-info object. This
3959 ** function tests if the SELECT is of the form:
3960 **
3961 **   SELECT count(*) FROM <tbl>
3962 **
3963 ** where table is a database table, not a sub-select or view. If the query
3964 ** does match this pattern, then a pointer to the Table object representing
3965 ** <tbl> is returned. Otherwise, 0 is returned.
3966 */
3967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3968   Table *pTab;
3969   Expr *pExpr;
3970 
3971   assert( !p->pGroupBy );
3972 
3973   if( p->pWhere || p->pEList->nExpr!=1
3974    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3975   ){
3976     return 0;
3977   }
3978   pTab = p->pSrc->a[0].pTab;
3979   pExpr = p->pEList->a[0].pExpr;
3980   assert( pTab && !pTab->pSelect && pExpr );
3981 
3982   if( IsVirtual(pTab) ) return 0;
3983   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3984   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3985   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3986   if( pExpr->flags&EP_Distinct ) return 0;
3987 
3988   return pTab;
3989 }
3990 
3991 /*
3992 ** If the source-list item passed as an argument was augmented with an
3993 ** INDEXED BY clause, then try to locate the specified index. If there
3994 ** was such a clause and the named index cannot be found, return
3995 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3996 ** pFrom->pIndex and return SQLITE_OK.
3997 */
3998 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3999   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4000     Table *pTab = pFrom->pTab;
4001     char *zIndexedBy = pFrom->u1.zIndexedBy;
4002     Index *pIdx;
4003     for(pIdx=pTab->pIndex;
4004         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4005         pIdx=pIdx->pNext
4006     );
4007     if( !pIdx ){
4008       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4009       pParse->checkSchema = 1;
4010       return SQLITE_ERROR;
4011     }
4012     pFrom->pIBIndex = pIdx;
4013   }
4014   return SQLITE_OK;
4015 }
4016 /*
4017 ** Detect compound SELECT statements that use an ORDER BY clause with
4018 ** an alternative collating sequence.
4019 **
4020 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4021 **
4022 ** These are rewritten as a subquery:
4023 **
4024 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4025 **     ORDER BY ... COLLATE ...
4026 **
4027 ** This transformation is necessary because the multiSelectOrderBy() routine
4028 ** above that generates the code for a compound SELECT with an ORDER BY clause
4029 ** uses a merge algorithm that requires the same collating sequence on the
4030 ** result columns as on the ORDER BY clause.  See ticket
4031 ** http://www.sqlite.org/src/info/6709574d2a
4032 **
4033 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4034 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4035 ** there are COLLATE terms in the ORDER BY.
4036 */
4037 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4038   int i;
4039   Select *pNew;
4040   Select *pX;
4041   sqlite3 *db;
4042   struct ExprList_item *a;
4043   SrcList *pNewSrc;
4044   Parse *pParse;
4045   Token dummy;
4046 
4047   if( p->pPrior==0 ) return WRC_Continue;
4048   if( p->pOrderBy==0 ) return WRC_Continue;
4049   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4050   if( pX==0 ) return WRC_Continue;
4051   a = p->pOrderBy->a;
4052   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4053     if( a[i].pExpr->flags & EP_Collate ) break;
4054   }
4055   if( i<0 ) return WRC_Continue;
4056 
4057   /* If we reach this point, that means the transformation is required. */
4058 
4059   pParse = pWalker->pParse;
4060   db = pParse->db;
4061   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4062   if( pNew==0 ) return WRC_Abort;
4063   memset(&dummy, 0, sizeof(dummy));
4064   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4065   if( pNewSrc==0 ) return WRC_Abort;
4066   *pNew = *p;
4067   p->pSrc = pNewSrc;
4068   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4069   p->op = TK_SELECT;
4070   p->pWhere = 0;
4071   pNew->pGroupBy = 0;
4072   pNew->pHaving = 0;
4073   pNew->pOrderBy = 0;
4074   p->pPrior = 0;
4075   p->pNext = 0;
4076   p->pWith = 0;
4077   p->selFlags &= ~SF_Compound;
4078   assert( (p->selFlags & SF_Converted)==0 );
4079   p->selFlags |= SF_Converted;
4080   assert( pNew->pPrior!=0 );
4081   pNew->pPrior->pNext = pNew;
4082   pNew->pLimit = 0;
4083   pNew->pOffset = 0;
4084   return WRC_Continue;
4085 }
4086 
4087 /*
4088 ** Check to see if the FROM clause term pFrom has table-valued function
4089 ** arguments.  If it does, leave an error message in pParse and return
4090 ** non-zero, since pFrom is not allowed to be a table-valued function.
4091 */
4092 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4093   if( pFrom->fg.isTabFunc ){
4094     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4095     return 1;
4096   }
4097   return 0;
4098 }
4099 
4100 #ifndef SQLITE_OMIT_CTE
4101 /*
4102 ** Argument pWith (which may be NULL) points to a linked list of nested
4103 ** WITH contexts, from inner to outermost. If the table identified by
4104 ** FROM clause element pItem is really a common-table-expression (CTE)
4105 ** then return a pointer to the CTE definition for that table. Otherwise
4106 ** return NULL.
4107 **
4108 ** If a non-NULL value is returned, set *ppContext to point to the With
4109 ** object that the returned CTE belongs to.
4110 */
4111 static struct Cte *searchWith(
4112   With *pWith,                    /* Current innermost WITH clause */
4113   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4114   With **ppContext                /* OUT: WITH clause return value belongs to */
4115 ){
4116   const char *zName;
4117   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4118     With *p;
4119     for(p=pWith; p; p=p->pOuter){
4120       int i;
4121       for(i=0; i<p->nCte; i++){
4122         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4123           *ppContext = p;
4124           return &p->a[i];
4125         }
4126       }
4127     }
4128   }
4129   return 0;
4130 }
4131 
4132 /* The code generator maintains a stack of active WITH clauses
4133 ** with the inner-most WITH clause being at the top of the stack.
4134 **
4135 ** This routine pushes the WITH clause passed as the second argument
4136 ** onto the top of the stack. If argument bFree is true, then this
4137 ** WITH clause will never be popped from the stack. In this case it
4138 ** should be freed along with the Parse object. In other cases, when
4139 ** bFree==0, the With object will be freed along with the SELECT
4140 ** statement with which it is associated.
4141 */
4142 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4143   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4144   if( pWith ){
4145     assert( pParse->pWith!=pWith );
4146     pWith->pOuter = pParse->pWith;
4147     pParse->pWith = pWith;
4148     if( bFree ) pParse->pWithToFree = pWith;
4149   }
4150 }
4151 
4152 /*
4153 ** This function checks if argument pFrom refers to a CTE declared by
4154 ** a WITH clause on the stack currently maintained by the parser. And,
4155 ** if currently processing a CTE expression, if it is a recursive
4156 ** reference to the current CTE.
4157 **
4158 ** If pFrom falls into either of the two categories above, pFrom->pTab
4159 ** and other fields are populated accordingly. The caller should check
4160 ** (pFrom->pTab!=0) to determine whether or not a successful match
4161 ** was found.
4162 **
4163 ** Whether or not a match is found, SQLITE_OK is returned if no error
4164 ** occurs. If an error does occur, an error message is stored in the
4165 ** parser and some error code other than SQLITE_OK returned.
4166 */
4167 static int withExpand(
4168   Walker *pWalker,
4169   struct SrcList_item *pFrom
4170 ){
4171   Parse *pParse = pWalker->pParse;
4172   sqlite3 *db = pParse->db;
4173   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4174   With *pWith;                    /* WITH clause that pCte belongs to */
4175 
4176   assert( pFrom->pTab==0 );
4177 
4178   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4179   if( pCte ){
4180     Table *pTab;
4181     ExprList *pEList;
4182     Select *pSel;
4183     Select *pLeft;                /* Left-most SELECT statement */
4184     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4185     With *pSavedWith;             /* Initial value of pParse->pWith */
4186 
4187     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4188     ** recursive reference to CTE pCte. Leave an error in pParse and return
4189     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4190     ** In this case, proceed.  */
4191     if( pCte->zCteErr ){
4192       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4193       return SQLITE_ERROR;
4194     }
4195     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4196 
4197     assert( pFrom->pTab==0 );
4198     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4199     if( pTab==0 ) return WRC_Abort;
4200     pTab->nTabRef = 1;
4201     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4202     pTab->iPKey = -1;
4203     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4204     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4205     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4206     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4207     assert( pFrom->pSelect );
4208 
4209     /* Check if this is a recursive CTE. */
4210     pSel = pFrom->pSelect;
4211     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4212     if( bMayRecursive ){
4213       int i;
4214       SrcList *pSrc = pFrom->pSelect->pSrc;
4215       for(i=0; i<pSrc->nSrc; i++){
4216         struct SrcList_item *pItem = &pSrc->a[i];
4217         if( pItem->zDatabase==0
4218          && pItem->zName!=0
4219          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4220           ){
4221           pItem->pTab = pTab;
4222           pItem->fg.isRecursive = 1;
4223           pTab->nTabRef++;
4224           pSel->selFlags |= SF_Recursive;
4225         }
4226       }
4227     }
4228 
4229     /* Only one recursive reference is permitted. */
4230     if( pTab->nTabRef>2 ){
4231       sqlite3ErrorMsg(
4232           pParse, "multiple references to recursive table: %s", pCte->zName
4233       );
4234       return SQLITE_ERROR;
4235     }
4236     assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4237 
4238     pCte->zCteErr = "circular reference: %s";
4239     pSavedWith = pParse->pWith;
4240     pParse->pWith = pWith;
4241     if( bMayRecursive ){
4242       Select *pPrior = pSel->pPrior;
4243       assert( pPrior->pWith==0 );
4244       pPrior->pWith = pSel->pWith;
4245       sqlite3WalkSelect(pWalker, pPrior);
4246       pPrior->pWith = 0;
4247     }else{
4248       sqlite3WalkSelect(pWalker, pSel);
4249     }
4250     pParse->pWith = pWith;
4251 
4252     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4253     pEList = pLeft->pEList;
4254     if( pCte->pCols ){
4255       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4256         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4257             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4258         );
4259         pParse->pWith = pSavedWith;
4260         return SQLITE_ERROR;
4261       }
4262       pEList = pCte->pCols;
4263     }
4264 
4265     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4266     if( bMayRecursive ){
4267       if( pSel->selFlags & SF_Recursive ){
4268         pCte->zCteErr = "multiple recursive references: %s";
4269       }else{
4270         pCte->zCteErr = "recursive reference in a subquery: %s";
4271       }
4272       sqlite3WalkSelect(pWalker, pSel);
4273     }
4274     pCte->zCteErr = 0;
4275     pParse->pWith = pSavedWith;
4276   }
4277 
4278   return SQLITE_OK;
4279 }
4280 #endif
4281 
4282 #ifndef SQLITE_OMIT_CTE
4283 /*
4284 ** If the SELECT passed as the second argument has an associated WITH
4285 ** clause, pop it from the stack stored as part of the Parse object.
4286 **
4287 ** This function is used as the xSelectCallback2() callback by
4288 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4289 ** names and other FROM clause elements.
4290 */
4291 static void selectPopWith(Walker *pWalker, Select *p){
4292   Parse *pParse = pWalker->pParse;
4293   if( pParse->pWith && p->pPrior==0 ){
4294     With *pWith = findRightmost(p)->pWith;
4295     if( pWith!=0 ){
4296       assert( pParse->pWith==pWith );
4297       pParse->pWith = pWith->pOuter;
4298     }
4299   }
4300 }
4301 #else
4302 #define selectPopWith 0
4303 #endif
4304 
4305 /*
4306 ** This routine is a Walker callback for "expanding" a SELECT statement.
4307 ** "Expanding" means to do the following:
4308 **
4309 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4310 **         element of the FROM clause.
4311 **
4312 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4313 **         defines FROM clause.  When views appear in the FROM clause,
4314 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4315 **         that implements the view.  A copy is made of the view's SELECT
4316 **         statement so that we can freely modify or delete that statement
4317 **         without worrying about messing up the persistent representation
4318 **         of the view.
4319 **
4320 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4321 **         on joins and the ON and USING clause of joins.
4322 **
4323 **    (4)  Scan the list of columns in the result set (pEList) looking
4324 **         for instances of the "*" operator or the TABLE.* operator.
4325 **         If found, expand each "*" to be every column in every table
4326 **         and TABLE.* to be every column in TABLE.
4327 **
4328 */
4329 static int selectExpander(Walker *pWalker, Select *p){
4330   Parse *pParse = pWalker->pParse;
4331   int i, j, k;
4332   SrcList *pTabList;
4333   ExprList *pEList;
4334   struct SrcList_item *pFrom;
4335   sqlite3 *db = pParse->db;
4336   Expr *pE, *pRight, *pExpr;
4337   u16 selFlags = p->selFlags;
4338 
4339   p->selFlags |= SF_Expanded;
4340   if( db->mallocFailed  ){
4341     return WRC_Abort;
4342   }
4343   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4344     return WRC_Prune;
4345   }
4346   pTabList = p->pSrc;
4347   pEList = p->pEList;
4348   if( p->pWith ){
4349     sqlite3WithPush(pParse, p->pWith, 0);
4350   }
4351 
4352   /* Make sure cursor numbers have been assigned to all entries in
4353   ** the FROM clause of the SELECT statement.
4354   */
4355   sqlite3SrcListAssignCursors(pParse, pTabList);
4356 
4357   /* Look up every table named in the FROM clause of the select.  If
4358   ** an entry of the FROM clause is a subquery instead of a table or view,
4359   ** then create a transient table structure to describe the subquery.
4360   */
4361   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4362     Table *pTab;
4363     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4364     if( pFrom->fg.isRecursive ) continue;
4365     assert( pFrom->pTab==0 );
4366 #ifndef SQLITE_OMIT_CTE
4367     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4368     if( pFrom->pTab ) {} else
4369 #endif
4370     if( pFrom->zName==0 ){
4371 #ifndef SQLITE_OMIT_SUBQUERY
4372       Select *pSel = pFrom->pSelect;
4373       /* A sub-query in the FROM clause of a SELECT */
4374       assert( pSel!=0 );
4375       assert( pFrom->pTab==0 );
4376       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4377       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4378       if( pTab==0 ) return WRC_Abort;
4379       pTab->nTabRef = 1;
4380       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4381       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4382       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4383       pTab->iPKey = -1;
4384       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4385       pTab->tabFlags |= TF_Ephemeral;
4386 #endif
4387     }else{
4388       /* An ordinary table or view name in the FROM clause */
4389       assert( pFrom->pTab==0 );
4390       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4391       if( pTab==0 ) return WRC_Abort;
4392       if( pTab->nTabRef>=0xffff ){
4393         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4394            pTab->zName);
4395         pFrom->pTab = 0;
4396         return WRC_Abort;
4397       }
4398       pTab->nTabRef++;
4399       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4400         return WRC_Abort;
4401       }
4402 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4403       if( IsVirtual(pTab) || pTab->pSelect ){
4404         i16 nCol;
4405         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4406         assert( pFrom->pSelect==0 );
4407         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4408         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4409         nCol = pTab->nCol;
4410         pTab->nCol = -1;
4411         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4412         pTab->nCol = nCol;
4413       }
4414 #endif
4415     }
4416 
4417     /* Locate the index named by the INDEXED BY clause, if any. */
4418     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4419       return WRC_Abort;
4420     }
4421   }
4422 
4423   /* Process NATURAL keywords, and ON and USING clauses of joins.
4424   */
4425   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4426     return WRC_Abort;
4427   }
4428 
4429   /* For every "*" that occurs in the column list, insert the names of
4430   ** all columns in all tables.  And for every TABLE.* insert the names
4431   ** of all columns in TABLE.  The parser inserted a special expression
4432   ** with the TK_ASTERISK operator for each "*" that it found in the column
4433   ** list.  The following code just has to locate the TK_ASTERISK
4434   ** expressions and expand each one to the list of all columns in
4435   ** all tables.
4436   **
4437   ** The first loop just checks to see if there are any "*" operators
4438   ** that need expanding.
4439   */
4440   for(k=0; k<pEList->nExpr; k++){
4441     pE = pEList->a[k].pExpr;
4442     if( pE->op==TK_ASTERISK ) break;
4443     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4444     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4445     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4446   }
4447   if( k<pEList->nExpr ){
4448     /*
4449     ** If we get here it means the result set contains one or more "*"
4450     ** operators that need to be expanded.  Loop through each expression
4451     ** in the result set and expand them one by one.
4452     */
4453     struct ExprList_item *a = pEList->a;
4454     ExprList *pNew = 0;
4455     int flags = pParse->db->flags;
4456     int longNames = (flags & SQLITE_FullColNames)!=0
4457                       && (flags & SQLITE_ShortColNames)==0;
4458 
4459     for(k=0; k<pEList->nExpr; k++){
4460       pE = a[k].pExpr;
4461       pRight = pE->pRight;
4462       assert( pE->op!=TK_DOT || pRight!=0 );
4463       if( pE->op!=TK_ASTERISK
4464        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4465       ){
4466         /* This particular expression does not need to be expanded.
4467         */
4468         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4469         if( pNew ){
4470           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4471           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4472           a[k].zName = 0;
4473           a[k].zSpan = 0;
4474         }
4475         a[k].pExpr = 0;
4476       }else{
4477         /* This expression is a "*" or a "TABLE.*" and needs to be
4478         ** expanded. */
4479         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4480         char *zTName = 0;       /* text of name of TABLE */
4481         if( pE->op==TK_DOT ){
4482           assert( pE->pLeft!=0 );
4483           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4484           zTName = pE->pLeft->u.zToken;
4485         }
4486         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4487           Table *pTab = pFrom->pTab;
4488           Select *pSub = pFrom->pSelect;
4489           char *zTabName = pFrom->zAlias;
4490           const char *zSchemaName = 0;
4491           int iDb;
4492           if( zTabName==0 ){
4493             zTabName = pTab->zName;
4494           }
4495           if( db->mallocFailed ) break;
4496           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4497             pSub = 0;
4498             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4499               continue;
4500             }
4501             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4502             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4503           }
4504           for(j=0; j<pTab->nCol; j++){
4505             char *zName = pTab->aCol[j].zName;
4506             char *zColname;  /* The computed column name */
4507             char *zToFree;   /* Malloced string that needs to be freed */
4508             Token sColname;  /* Computed column name as a token */
4509 
4510             assert( zName );
4511             if( zTName && pSub
4512              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4513             ){
4514               continue;
4515             }
4516 
4517             /* If a column is marked as 'hidden', omit it from the expanded
4518             ** result-set list unless the SELECT has the SF_IncludeHidden
4519             ** bit set.
4520             */
4521             if( (p->selFlags & SF_IncludeHidden)==0
4522              && IsHiddenColumn(&pTab->aCol[j])
4523             ){
4524               continue;
4525             }
4526             tableSeen = 1;
4527 
4528             if( i>0 && zTName==0 ){
4529               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4530                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4531               ){
4532                 /* In a NATURAL join, omit the join columns from the
4533                 ** table to the right of the join */
4534                 continue;
4535               }
4536               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4537                 /* In a join with a USING clause, omit columns in the
4538                 ** using clause from the table on the right. */
4539                 continue;
4540               }
4541             }
4542             pRight = sqlite3Expr(db, TK_ID, zName);
4543             zColname = zName;
4544             zToFree = 0;
4545             if( longNames || pTabList->nSrc>1 ){
4546               Expr *pLeft;
4547               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4548               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4549               if( zSchemaName ){
4550                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4551                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4552               }
4553               if( longNames ){
4554                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4555                 zToFree = zColname;
4556               }
4557             }else{
4558               pExpr = pRight;
4559             }
4560             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4561             sqlite3TokenInit(&sColname, zColname);
4562             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4563             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4564               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4565               if( pSub ){
4566                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4567                 testcase( pX->zSpan==0 );
4568               }else{
4569                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4570                                            zSchemaName, zTabName, zColname);
4571                 testcase( pX->zSpan==0 );
4572               }
4573               pX->bSpanIsTab = 1;
4574             }
4575             sqlite3DbFree(db, zToFree);
4576           }
4577         }
4578         if( !tableSeen ){
4579           if( zTName ){
4580             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4581           }else{
4582             sqlite3ErrorMsg(pParse, "no tables specified");
4583           }
4584         }
4585       }
4586     }
4587     sqlite3ExprListDelete(db, pEList);
4588     p->pEList = pNew;
4589   }
4590 #if SQLITE_MAX_COLUMN
4591   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4592     sqlite3ErrorMsg(pParse, "too many columns in result set");
4593     return WRC_Abort;
4594   }
4595 #endif
4596   return WRC_Continue;
4597 }
4598 
4599 /*
4600 ** No-op routine for the parse-tree walker.
4601 **
4602 ** When this routine is the Walker.xExprCallback then expression trees
4603 ** are walked without any actions being taken at each node.  Presumably,
4604 ** when this routine is used for Walker.xExprCallback then
4605 ** Walker.xSelectCallback is set to do something useful for every
4606 ** subquery in the parser tree.
4607 */
4608 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4609   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4610   return WRC_Continue;
4611 }
4612 
4613 /*
4614 ** No-op routine for the parse-tree walker for SELECT statements.
4615 ** subquery in the parser tree.
4616 */
4617 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4618   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4619   return WRC_Continue;
4620 }
4621 
4622 #if SQLITE_DEBUG
4623 /*
4624 ** Always assert.  This xSelectCallback2 implementation proves that the
4625 ** xSelectCallback2 is never invoked.
4626 */
4627 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4628   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4629   assert( 0 );
4630 }
4631 #endif
4632 /*
4633 ** This routine "expands" a SELECT statement and all of its subqueries.
4634 ** For additional information on what it means to "expand" a SELECT
4635 ** statement, see the comment on the selectExpand worker callback above.
4636 **
4637 ** Expanding a SELECT statement is the first step in processing a
4638 ** SELECT statement.  The SELECT statement must be expanded before
4639 ** name resolution is performed.
4640 **
4641 ** If anything goes wrong, an error message is written into pParse.
4642 ** The calling function can detect the problem by looking at pParse->nErr
4643 ** and/or pParse->db->mallocFailed.
4644 */
4645 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4646   Walker w;
4647   w.xExprCallback = sqlite3ExprWalkNoop;
4648   w.pParse = pParse;
4649   if( pParse->hasCompound ){
4650     w.xSelectCallback = convertCompoundSelectToSubquery;
4651     w.xSelectCallback2 = 0;
4652     sqlite3WalkSelect(&w, pSelect);
4653   }
4654   w.xSelectCallback = selectExpander;
4655   w.xSelectCallback2 = selectPopWith;
4656   sqlite3WalkSelect(&w, pSelect);
4657 }
4658 
4659 
4660 #ifndef SQLITE_OMIT_SUBQUERY
4661 /*
4662 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4663 ** interface.
4664 **
4665 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4666 ** information to the Table structure that represents the result set
4667 ** of that subquery.
4668 **
4669 ** The Table structure that represents the result set was constructed
4670 ** by selectExpander() but the type and collation information was omitted
4671 ** at that point because identifiers had not yet been resolved.  This
4672 ** routine is called after identifier resolution.
4673 */
4674 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4675   Parse *pParse;
4676   int i;
4677   SrcList *pTabList;
4678   struct SrcList_item *pFrom;
4679 
4680   assert( p->selFlags & SF_Resolved );
4681   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4682   p->selFlags |= SF_HasTypeInfo;
4683   pParse = pWalker->pParse;
4684   pTabList = p->pSrc;
4685   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4686     Table *pTab = pFrom->pTab;
4687     assert( pTab!=0 );
4688     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4689       /* A sub-query in the FROM clause of a SELECT */
4690       Select *pSel = pFrom->pSelect;
4691       if( pSel ){
4692         while( pSel->pPrior ) pSel = pSel->pPrior;
4693         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4694       }
4695     }
4696   }
4697 }
4698 #endif
4699 
4700 
4701 /*
4702 ** This routine adds datatype and collating sequence information to
4703 ** the Table structures of all FROM-clause subqueries in a
4704 ** SELECT statement.
4705 **
4706 ** Use this routine after name resolution.
4707 */
4708 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4709 #ifndef SQLITE_OMIT_SUBQUERY
4710   Walker w;
4711   w.xSelectCallback = sqlite3SelectWalkNoop;
4712   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4713   w.xExprCallback = sqlite3ExprWalkNoop;
4714   w.pParse = pParse;
4715   sqlite3WalkSelect(&w, pSelect);
4716 #endif
4717 }
4718 
4719 
4720 /*
4721 ** This routine sets up a SELECT statement for processing.  The
4722 ** following is accomplished:
4723 **
4724 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4725 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4726 **     *  ON and USING clauses are shifted into WHERE statements
4727 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4728 **     *  Identifiers in expression are matched to tables.
4729 **
4730 ** This routine acts recursively on all subqueries within the SELECT.
4731 */
4732 void sqlite3SelectPrep(
4733   Parse *pParse,         /* The parser context */
4734   Select *p,             /* The SELECT statement being coded. */
4735   NameContext *pOuterNC  /* Name context for container */
4736 ){
4737   sqlite3 *db;
4738   if( NEVER(p==0) ) return;
4739   db = pParse->db;
4740   if( db->mallocFailed ) return;
4741   if( p->selFlags & SF_HasTypeInfo ) return;
4742   sqlite3SelectExpand(pParse, p);
4743   if( pParse->nErr || db->mallocFailed ) return;
4744   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4745   if( pParse->nErr || db->mallocFailed ) return;
4746   sqlite3SelectAddTypeInfo(pParse, p);
4747 }
4748 
4749 /*
4750 ** Reset the aggregate accumulator.
4751 **
4752 ** The aggregate accumulator is a set of memory cells that hold
4753 ** intermediate results while calculating an aggregate.  This
4754 ** routine generates code that stores NULLs in all of those memory
4755 ** cells.
4756 */
4757 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4758   Vdbe *v = pParse->pVdbe;
4759   int i;
4760   struct AggInfo_func *pFunc;
4761   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4762   if( nReg==0 ) return;
4763 #ifdef SQLITE_DEBUG
4764   /* Verify that all AggInfo registers are within the range specified by
4765   ** AggInfo.mnReg..AggInfo.mxReg */
4766   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4767   for(i=0; i<pAggInfo->nColumn; i++){
4768     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4769          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4770   }
4771   for(i=0; i<pAggInfo->nFunc; i++){
4772     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4773          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4774   }
4775 #endif
4776   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4777   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4778     if( pFunc->iDistinct>=0 ){
4779       Expr *pE = pFunc->pExpr;
4780       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4781       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4782         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4783            "argument");
4784         pFunc->iDistinct = -1;
4785       }else{
4786         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4787         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4788                           (char*)pKeyInfo, P4_KEYINFO);
4789       }
4790     }
4791   }
4792 }
4793 
4794 /*
4795 ** Invoke the OP_AggFinalize opcode for every aggregate function
4796 ** in the AggInfo structure.
4797 */
4798 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4799   Vdbe *v = pParse->pVdbe;
4800   int i;
4801   struct AggInfo_func *pF;
4802   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4803     ExprList *pList = pF->pExpr->x.pList;
4804     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4805     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4806     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4807   }
4808 }
4809 
4810 /*
4811 ** Update the accumulator memory cells for an aggregate based on
4812 ** the current cursor position.
4813 */
4814 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4815   Vdbe *v = pParse->pVdbe;
4816   int i;
4817   int regHit = 0;
4818   int addrHitTest = 0;
4819   struct AggInfo_func *pF;
4820   struct AggInfo_col *pC;
4821 
4822   pAggInfo->directMode = 1;
4823   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4824     int nArg;
4825     int addrNext = 0;
4826     int regAgg;
4827     ExprList *pList = pF->pExpr->x.pList;
4828     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4829     if( pList ){
4830       nArg = pList->nExpr;
4831       regAgg = sqlite3GetTempRange(pParse, nArg);
4832       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4833     }else{
4834       nArg = 0;
4835       regAgg = 0;
4836     }
4837     if( pF->iDistinct>=0 ){
4838       addrNext = sqlite3VdbeMakeLabel(v);
4839       testcase( nArg==0 );  /* Error condition */
4840       testcase( nArg>1 );   /* Also an error */
4841       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4842     }
4843     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4844       CollSeq *pColl = 0;
4845       struct ExprList_item *pItem;
4846       int j;
4847       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4848       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4849         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4850       }
4851       if( !pColl ){
4852         pColl = pParse->db->pDfltColl;
4853       }
4854       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4855       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4856     }
4857     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4858     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4859     sqlite3VdbeChangeP5(v, (u8)nArg);
4860     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4861     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4862     if( addrNext ){
4863       sqlite3VdbeResolveLabel(v, addrNext);
4864       sqlite3ExprCacheClear(pParse);
4865     }
4866   }
4867 
4868   /* Before populating the accumulator registers, clear the column cache.
4869   ** Otherwise, if any of the required column values are already present
4870   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4871   ** to pC->iMem. But by the time the value is used, the original register
4872   ** may have been used, invalidating the underlying buffer holding the
4873   ** text or blob value. See ticket [883034dcb5].
4874   **
4875   ** Another solution would be to change the OP_SCopy used to copy cached
4876   ** values to an OP_Copy.
4877   */
4878   if( regHit ){
4879     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4880   }
4881   sqlite3ExprCacheClear(pParse);
4882   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4883     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4884   }
4885   pAggInfo->directMode = 0;
4886   sqlite3ExprCacheClear(pParse);
4887   if( addrHitTest ){
4888     sqlite3VdbeJumpHere(v, addrHitTest);
4889   }
4890 }
4891 
4892 /*
4893 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4894 ** count(*) query ("SELECT count(*) FROM pTab").
4895 */
4896 #ifndef SQLITE_OMIT_EXPLAIN
4897 static void explainSimpleCount(
4898   Parse *pParse,                  /* Parse context */
4899   Table *pTab,                    /* Table being queried */
4900   Index *pIdx                     /* Index used to optimize scan, or NULL */
4901 ){
4902   if( pParse->explain==2 ){
4903     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4904     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4905         pTab->zName,
4906         bCover ? " USING COVERING INDEX " : "",
4907         bCover ? pIdx->zName : ""
4908     );
4909     sqlite3VdbeAddOp4(
4910         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4911     );
4912   }
4913 }
4914 #else
4915 # define explainSimpleCount(a,b,c)
4916 #endif
4917 
4918 /*
4919 ** Context object for havingToWhereExprCb().
4920 */
4921 struct HavingToWhereCtx {
4922   Expr **ppWhere;
4923   ExprList *pGroupBy;
4924 };
4925 
4926 /*
4927 ** sqlite3WalkExpr() callback used by havingToWhere().
4928 **
4929 ** If the node passed to the callback is a TK_AND node, return
4930 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4931 **
4932 ** Otherwise, return WRC_Prune. In this case, also check if the
4933 ** sub-expression matches the criteria for being moved to the WHERE
4934 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4935 ** within the HAVING expression with a constant "1".
4936 */
4937 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4938   if( pExpr->op!=TK_AND ){
4939     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4940     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4941       sqlite3 *db = pWalker->pParse->db;
4942       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4943       if( pNew ){
4944         Expr *pWhere = *(p->ppWhere);
4945         SWAP(Expr, *pNew, *pExpr);
4946         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4947         *(p->ppWhere) = pNew;
4948       }
4949     }
4950     return WRC_Prune;
4951   }
4952   return WRC_Continue;
4953 }
4954 
4955 /*
4956 ** Transfer eligible terms from the HAVING clause of a query, which is
4957 ** processed after grouping, to the WHERE clause, which is processed before
4958 ** grouping. For example, the query:
4959 **
4960 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4961 **
4962 ** can be rewritten as:
4963 **
4964 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4965 **
4966 ** A term of the HAVING expression is eligible for transfer if it consists
4967 ** entirely of constants and expressions that are also GROUP BY terms that
4968 ** use the "BINARY" collation sequence.
4969 */
4970 static void havingToWhere(
4971   Parse *pParse,
4972   ExprList *pGroupBy,
4973   Expr *pHaving,
4974   Expr **ppWhere
4975 ){
4976   struct HavingToWhereCtx sCtx;
4977   Walker sWalker;
4978 
4979   sCtx.ppWhere = ppWhere;
4980   sCtx.pGroupBy = pGroupBy;
4981 
4982   memset(&sWalker, 0, sizeof(sWalker));
4983   sWalker.pParse = pParse;
4984   sWalker.xExprCallback = havingToWhereExprCb;
4985   sWalker.u.pHavingCtx = &sCtx;
4986   sqlite3WalkExpr(&sWalker, pHaving);
4987 }
4988 
4989 /*
4990 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4991 ** If it is, then return the SrcList_item for the prior view.  If it is not,
4992 ** then return 0.
4993 */
4994 static struct SrcList_item *isSelfJoinView(
4995   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
4996   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
4997 ){
4998   struct SrcList_item *pItem;
4999   for(pItem = pTabList->a; pItem<pThis; pItem++){
5000     if( pItem->pSelect==0 ) continue;
5001     if( pItem->fg.viaCoroutine ) continue;
5002     if( pItem->zName==0 ) continue;
5003     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5004     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5005     if( sqlite3ExprCompare(pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) ){
5006       /* The view was modified by some other optimization such as
5007       ** pushDownWhereTerms() */
5008       continue;
5009     }
5010     return pItem;
5011   }
5012   return 0;
5013 }
5014 
5015 /*
5016 ** Generate code for the SELECT statement given in the p argument.
5017 **
5018 ** The results are returned according to the SelectDest structure.
5019 ** See comments in sqliteInt.h for further information.
5020 **
5021 ** This routine returns the number of errors.  If any errors are
5022 ** encountered, then an appropriate error message is left in
5023 ** pParse->zErrMsg.
5024 **
5025 ** This routine does NOT free the Select structure passed in.  The
5026 ** calling function needs to do that.
5027 */
5028 int sqlite3Select(
5029   Parse *pParse,         /* The parser context */
5030   Select *p,             /* The SELECT statement being coded. */
5031   SelectDest *pDest      /* What to do with the query results */
5032 ){
5033   int i, j;              /* Loop counters */
5034   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5035   Vdbe *v;               /* The virtual machine under construction */
5036   int isAgg;             /* True for select lists like "count(*)" */
5037   ExprList *pEList = 0;  /* List of columns to extract. */
5038   SrcList *pTabList;     /* List of tables to select from */
5039   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5040   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5041   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5042   int rc = 1;            /* Value to return from this function */
5043   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5044   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5045   AggInfo sAggInfo;      /* Information used by aggregate queries */
5046   int iEnd;              /* Address of the end of the query */
5047   sqlite3 *db;           /* The database connection */
5048 
5049 #ifndef SQLITE_OMIT_EXPLAIN
5050   int iRestoreSelectId = pParse->iSelectId;
5051   pParse->iSelectId = pParse->iNextSelectId++;
5052 #endif
5053 
5054   db = pParse->db;
5055   if( p==0 || db->mallocFailed || pParse->nErr ){
5056     return 1;
5057   }
5058   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5059   memset(&sAggInfo, 0, sizeof(sAggInfo));
5060 #if SELECTTRACE_ENABLED
5061   pParse->nSelectIndent++;
5062   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5063   if( sqlite3SelectTrace & 0x100 ){
5064     sqlite3TreeViewSelect(0, p, 0);
5065   }
5066 #endif
5067 
5068   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5069   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5070   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5071   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5072   if( IgnorableOrderby(pDest) ){
5073     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5074            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5075            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5076            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5077     /* If ORDER BY makes no difference in the output then neither does
5078     ** DISTINCT so it can be removed too. */
5079     sqlite3ExprListDelete(db, p->pOrderBy);
5080     p->pOrderBy = 0;
5081     p->selFlags &= ~SF_Distinct;
5082   }
5083   sqlite3SelectPrep(pParse, p, 0);
5084   memset(&sSort, 0, sizeof(sSort));
5085   sSort.pOrderBy = p->pOrderBy;
5086   pTabList = p->pSrc;
5087   if( pParse->nErr || db->mallocFailed ){
5088     goto select_end;
5089   }
5090   assert( p->pEList!=0 );
5091   isAgg = (p->selFlags & SF_Aggregate)!=0;
5092 #if SELECTTRACE_ENABLED
5093   if( sqlite3SelectTrace & 0x100 ){
5094     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5095     sqlite3TreeViewSelect(0, p, 0);
5096   }
5097 #endif
5098 
5099   /* Try to flatten subqueries in the FROM clause up into the main query
5100   */
5101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5102   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5103     struct SrcList_item *pItem = &pTabList->a[i];
5104     Select *pSub = pItem->pSelect;
5105     int isAggSub;
5106     Table *pTab = pItem->pTab;
5107     if( pSub==0 ) continue;
5108 
5109     /* Catch mismatch in the declared columns of a view and the number of
5110     ** columns in the SELECT on the RHS */
5111     if( pTab->nCol!=pSub->pEList->nExpr ){
5112       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5113                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5114       goto select_end;
5115     }
5116 
5117     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
5118     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
5119       /* This subquery can be absorbed into its parent. */
5120       if( isAggSub ){
5121         isAgg = 1;
5122         p->selFlags |= SF_Aggregate;
5123       }
5124       i = -1;
5125     }
5126     pTabList = p->pSrc;
5127     if( db->mallocFailed ) goto select_end;
5128     if( !IgnorableOrderby(pDest) ){
5129       sSort.pOrderBy = p->pOrderBy;
5130     }
5131   }
5132 #endif
5133 
5134   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5135   ** does not already exist */
5136   v = sqlite3GetVdbe(pParse);
5137   if( v==0 ) goto select_end;
5138 
5139 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5140   /* Handle compound SELECT statements using the separate multiSelect()
5141   ** procedure.
5142   */
5143   if( p->pPrior ){
5144     rc = multiSelect(pParse, p, pDest);
5145     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5146 #if SELECTTRACE_ENABLED
5147     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5148     pParse->nSelectIndent--;
5149 #endif
5150     return rc;
5151   }
5152 #endif
5153 
5154   /* For each term in the FROM clause, do two things:
5155   ** (1) Authorized unreferenced tables
5156   ** (2) Generate code for all sub-queries
5157   */
5158   for(i=0; i<pTabList->nSrc; i++){
5159     struct SrcList_item *pItem = &pTabList->a[i];
5160     SelectDest dest;
5161     Select *pSub;
5162 
5163     /* Issue SQLITE_READ authorizations with a fake column name for any tables that
5164     ** are referenced but from which no values are extracted. Examples of where these
5165     ** kinds of null SQLITE_READ authorizations would occur:
5166     **
5167     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5168     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5169     **
5170     ** The fake column name is an empty string.  It is possible for a table to
5171     ** have a column named by the empty string, in which case there is no way to
5172     ** distinguish between an unreferenced table and an actual reference to the
5173     ** "" column.  The original design was for the fake column name to be a NULL,
5174     ** which would be unambiguous.  But legacy authorization callbacks might
5175     ** assume the column name is non-NULL and segfault.  The use of an empty string
5176     ** for the fake column name seems safer.
5177     */
5178     if( pItem->colUsed==0 ){
5179       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5180     }
5181 
5182 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5183     /* Generate code for all sub-queries in the FROM clause
5184     */
5185     pSub = pItem->pSelect;
5186     if( pSub==0 ) continue;
5187 
5188     /* Sometimes the code for a subquery will be generated more than
5189     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5190     ** for example.  In that case, do not regenerate the code to manifest
5191     ** a view or the co-routine to implement a view.  The first instance
5192     ** is sufficient, though the subroutine to manifest the view does need
5193     ** to be invoked again. */
5194     if( pItem->addrFillSub ){
5195       if( pItem->fg.viaCoroutine==0 ){
5196         /* The subroutine that manifests the view might be a one-time routine,
5197         ** or it might need to be rerun on each iteration because it
5198         ** encodes a correlated subquery. */
5199         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5200         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5201       }
5202       continue;
5203     }
5204 
5205     /* Increment Parse.nHeight by the height of the largest expression
5206     ** tree referred to by this, the parent select. The child select
5207     ** may contain expression trees of at most
5208     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5209     ** more conservative than necessary, but much easier than enforcing
5210     ** an exact limit.
5211     */
5212     pParse->nHeight += sqlite3SelectExprHeight(p);
5213 
5214     /* Make copies of constant WHERE-clause terms in the outer query down
5215     ** inside the subquery.  This can help the subquery to run more efficiently.
5216     */
5217     if( (pItem->fg.jointype & JT_OUTER)==0
5218      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5219     ){
5220 #if SELECTTRACE_ENABLED
5221       if( sqlite3SelectTrace & 0x100 ){
5222         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5223         sqlite3TreeViewSelect(0, p, 0);
5224       }
5225 #endif
5226     }
5227 
5228     /* Generate code to implement the subquery
5229     **
5230     ** The subquery is implemented as a co-routine if all of these are true:
5231     **   (1)  The subquery is guaranteed to be the outer loop (so that it
5232     **        does not need to be computed more than once)
5233     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
5234     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
5235     **        the use of co-routines.)
5236     **   (3)  Co-routines are not disabled using sqlite3_test_control()
5237     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
5238     **
5239     ** TODO: Are there other reasons beside (1) to use a co-routine
5240     ** implementation?
5241     */
5242     if( i==0
5243      && (pTabList->nSrc==1
5244             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5245      && (p->selFlags & SF_All)==0                                   /* (2) */
5246      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5247     ){
5248       /* Implement a co-routine that will return a single row of the result
5249       ** set on each invocation.
5250       */
5251       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5252       pItem->regReturn = ++pParse->nMem;
5253       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5254       VdbeComment((v, "%s", pItem->pTab->zName));
5255       pItem->addrFillSub = addrTop;
5256       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5257       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5258       sqlite3Select(pParse, pSub, &dest);
5259       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5260       pItem->fg.viaCoroutine = 1;
5261       pItem->regResult = dest.iSdst;
5262       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5263       sqlite3VdbeJumpHere(v, addrTop-1);
5264       sqlite3ClearTempRegCache(pParse);
5265     }else{
5266       /* Generate a subroutine that will fill an ephemeral table with
5267       ** the content of this subquery.  pItem->addrFillSub will point
5268       ** to the address of the generated subroutine.  pItem->regReturn
5269       ** is a register allocated to hold the subroutine return address
5270       */
5271       int topAddr;
5272       int onceAddr = 0;
5273       int retAddr;
5274       struct SrcList_item *pPrior;
5275 
5276       assert( pItem->addrFillSub==0 );
5277       pItem->regReturn = ++pParse->nMem;
5278       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5279       pItem->addrFillSub = topAddr+1;
5280       if( pItem->fg.isCorrelated==0 ){
5281         /* If the subquery is not correlated and if we are not inside of
5282         ** a trigger, then we only need to compute the value of the subquery
5283         ** once. */
5284         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5285         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5286       }else{
5287         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5288       }
5289       pPrior = isSelfJoinView(pTabList, pItem);
5290       if( pPrior ){
5291         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5292         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5293       }else{
5294         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5295         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5296         sqlite3Select(pParse, pSub, &dest);
5297       }
5298       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5299       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5300       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5301       VdbeComment((v, "end %s", pItem->pTab->zName));
5302       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5303       sqlite3ClearTempRegCache(pParse);
5304     }
5305     if( db->mallocFailed ) goto select_end;
5306     pParse->nHeight -= sqlite3SelectExprHeight(p);
5307 #endif
5308   }
5309 
5310   /* Various elements of the SELECT copied into local variables for
5311   ** convenience */
5312   pEList = p->pEList;
5313   pWhere = p->pWhere;
5314   pGroupBy = p->pGroupBy;
5315   pHaving = p->pHaving;
5316   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5317 
5318 #if SELECTTRACE_ENABLED
5319   if( sqlite3SelectTrace & 0x400 ){
5320     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5321     sqlite3TreeViewSelect(0, p, 0);
5322   }
5323 #endif
5324 
5325   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5326   ** if the select-list is the same as the ORDER BY list, then this query
5327   ** can be rewritten as a GROUP BY. In other words, this:
5328   **
5329   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5330   **
5331   ** is transformed to:
5332   **
5333   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5334   **
5335   ** The second form is preferred as a single index (or temp-table) may be
5336   ** used for both the ORDER BY and DISTINCT processing. As originally
5337   ** written the query must use a temp-table for at least one of the ORDER
5338   ** BY and DISTINCT, and an index or separate temp-table for the other.
5339   */
5340   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5341    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5342   ){
5343     p->selFlags &= ~SF_Distinct;
5344     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5345     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5346     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5347     ** original setting of the SF_Distinct flag, not the current setting */
5348     assert( sDistinct.isTnct );
5349 
5350 #if SELECTTRACE_ENABLED
5351     if( sqlite3SelectTrace & 0x400 ){
5352       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5353       sqlite3TreeViewSelect(0, p, 0);
5354     }
5355 #endif
5356   }
5357 
5358   /* If there is an ORDER BY clause, then create an ephemeral index to
5359   ** do the sorting.  But this sorting ephemeral index might end up
5360   ** being unused if the data can be extracted in pre-sorted order.
5361   ** If that is the case, then the OP_OpenEphemeral instruction will be
5362   ** changed to an OP_Noop once we figure out that the sorting index is
5363   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5364   ** that change.
5365   */
5366   if( sSort.pOrderBy ){
5367     KeyInfo *pKeyInfo;
5368     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5369     sSort.iECursor = pParse->nTab++;
5370     sSort.addrSortIndex =
5371       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5372           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5373           (char*)pKeyInfo, P4_KEYINFO
5374       );
5375   }else{
5376     sSort.addrSortIndex = -1;
5377   }
5378 
5379   /* If the output is destined for a temporary table, open that table.
5380   */
5381   if( pDest->eDest==SRT_EphemTab ){
5382     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5383   }
5384 
5385   /* Set the limiter.
5386   */
5387   iEnd = sqlite3VdbeMakeLabel(v);
5388   if( (p->selFlags & SF_FixedLimit)==0 ){
5389     p->nSelectRow = 320;  /* 4 billion rows */
5390   }
5391   computeLimitRegisters(pParse, p, iEnd);
5392   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5393     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5394     sSort.sortFlags |= SORTFLAG_UseSorter;
5395   }
5396 
5397   /* Open an ephemeral index to use for the distinct set.
5398   */
5399   if( p->selFlags & SF_Distinct ){
5400     sDistinct.tabTnct = pParse->nTab++;
5401     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5402                              sDistinct.tabTnct, 0, 0,
5403                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5404                              P4_KEYINFO);
5405     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5406     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5407   }else{
5408     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5409   }
5410 
5411   if( !isAgg && pGroupBy==0 ){
5412     /* No aggregate functions and no GROUP BY clause */
5413     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5414     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5415     wctrlFlags |= p->selFlags & SF_FixedLimit;
5416 
5417     /* Begin the database scan. */
5418     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5419                                p->pEList, wctrlFlags, p->nSelectRow);
5420     if( pWInfo==0 ) goto select_end;
5421     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5422       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5423     }
5424     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5425       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5426     }
5427     if( sSort.pOrderBy ){
5428       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5429       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5430       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5431         sSort.pOrderBy = 0;
5432       }
5433     }
5434 
5435     /* If sorting index that was created by a prior OP_OpenEphemeral
5436     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5437     ** into an OP_Noop.
5438     */
5439     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5440       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5441     }
5442 
5443     /* Use the standard inner loop. */
5444     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5445                     sqlite3WhereContinueLabel(pWInfo),
5446                     sqlite3WhereBreakLabel(pWInfo));
5447 
5448     /* End the database scan loop.
5449     */
5450     sqlite3WhereEnd(pWInfo);
5451   }else{
5452     /* This case when there exist aggregate functions or a GROUP BY clause
5453     ** or both */
5454     NameContext sNC;    /* Name context for processing aggregate information */
5455     int iAMem;          /* First Mem address for storing current GROUP BY */
5456     int iBMem;          /* First Mem address for previous GROUP BY */
5457     int iUseFlag;       /* Mem address holding flag indicating that at least
5458                         ** one row of the input to the aggregator has been
5459                         ** processed */
5460     int iAbortFlag;     /* Mem address which causes query abort if positive */
5461     int groupBySort;    /* Rows come from source in GROUP BY order */
5462     int addrEnd;        /* End of processing for this SELECT */
5463     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5464     int sortOut = 0;    /* Output register from the sorter */
5465     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5466 
5467     /* Remove any and all aliases between the result set and the
5468     ** GROUP BY clause.
5469     */
5470     if( pGroupBy ){
5471       int k;                        /* Loop counter */
5472       struct ExprList_item *pItem;  /* For looping over expression in a list */
5473 
5474       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5475         pItem->u.x.iAlias = 0;
5476       }
5477       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5478         pItem->u.x.iAlias = 0;
5479       }
5480       assert( 66==sqlite3LogEst(100) );
5481       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5482     }else{
5483       assert( 0==sqlite3LogEst(1) );
5484       p->nSelectRow = 0;
5485     }
5486 
5487     /* If there is both a GROUP BY and an ORDER BY clause and they are
5488     ** identical, then it may be possible to disable the ORDER BY clause
5489     ** on the grounds that the GROUP BY will cause elements to come out
5490     ** in the correct order. It also may not - the GROUP BY might use a
5491     ** database index that causes rows to be grouped together as required
5492     ** but not actually sorted. Either way, record the fact that the
5493     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5494     ** variable.  */
5495     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5496       orderByGrp = 1;
5497     }
5498 
5499     /* Create a label to jump to when we want to abort the query */
5500     addrEnd = sqlite3VdbeMakeLabel(v);
5501 
5502     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5503     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5504     ** SELECT statement.
5505     */
5506     memset(&sNC, 0, sizeof(sNC));
5507     sNC.pParse = pParse;
5508     sNC.pSrcList = pTabList;
5509     sNC.pAggInfo = &sAggInfo;
5510     sAggInfo.mnReg = pParse->nMem+1;
5511     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5512     sAggInfo.pGroupBy = pGroupBy;
5513     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5514     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5515     if( pHaving ){
5516       if( pGroupBy ){
5517         assert( pWhere==p->pWhere );
5518         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5519         pWhere = p->pWhere;
5520       }
5521       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5522     }
5523     sAggInfo.nAccumulator = sAggInfo.nColumn;
5524     for(i=0; i<sAggInfo.nFunc; i++){
5525       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5526       sNC.ncFlags |= NC_InAggFunc;
5527       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5528       sNC.ncFlags &= ~NC_InAggFunc;
5529     }
5530     sAggInfo.mxReg = pParse->nMem;
5531     if( db->mallocFailed ) goto select_end;
5532 
5533     /* Processing for aggregates with GROUP BY is very different and
5534     ** much more complex than aggregates without a GROUP BY.
5535     */
5536     if( pGroupBy ){
5537       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5538       int addr1;          /* A-vs-B comparision jump */
5539       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5540       int regOutputRow;   /* Return address register for output subroutine */
5541       int addrSetAbort;   /* Set the abort flag and return */
5542       int addrTopOfLoop;  /* Top of the input loop */
5543       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5544       int addrReset;      /* Subroutine for resetting the accumulator */
5545       int regReset;       /* Return address register for reset subroutine */
5546 
5547       /* If there is a GROUP BY clause we might need a sorting index to
5548       ** implement it.  Allocate that sorting index now.  If it turns out
5549       ** that we do not need it after all, the OP_SorterOpen instruction
5550       ** will be converted into a Noop.
5551       */
5552       sAggInfo.sortingIdx = pParse->nTab++;
5553       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5554       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5555           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5556           0, (char*)pKeyInfo, P4_KEYINFO);
5557 
5558       /* Initialize memory locations used by GROUP BY aggregate processing
5559       */
5560       iUseFlag = ++pParse->nMem;
5561       iAbortFlag = ++pParse->nMem;
5562       regOutputRow = ++pParse->nMem;
5563       addrOutputRow = sqlite3VdbeMakeLabel(v);
5564       regReset = ++pParse->nMem;
5565       addrReset = sqlite3VdbeMakeLabel(v);
5566       iAMem = pParse->nMem + 1;
5567       pParse->nMem += pGroupBy->nExpr;
5568       iBMem = pParse->nMem + 1;
5569       pParse->nMem += pGroupBy->nExpr;
5570       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5571       VdbeComment((v, "clear abort flag"));
5572       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5573       VdbeComment((v, "indicate accumulator empty"));
5574       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5575 
5576       /* Begin a loop that will extract all source rows in GROUP BY order.
5577       ** This might involve two separate loops with an OP_Sort in between, or
5578       ** it might be a single loop that uses an index to extract information
5579       ** in the right order to begin with.
5580       */
5581       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5582       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5583           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5584       );
5585       if( pWInfo==0 ) goto select_end;
5586       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5587         /* The optimizer is able to deliver rows in group by order so
5588         ** we do not have to sort.  The OP_OpenEphemeral table will be
5589         ** cancelled later because we still need to use the pKeyInfo
5590         */
5591         groupBySort = 0;
5592       }else{
5593         /* Rows are coming out in undetermined order.  We have to push
5594         ** each row into a sorting index, terminate the first loop,
5595         ** then loop over the sorting index in order to get the output
5596         ** in sorted order
5597         */
5598         int regBase;
5599         int regRecord;
5600         int nCol;
5601         int nGroupBy;
5602 
5603         explainTempTable(pParse,
5604             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5605                     "DISTINCT" : "GROUP BY");
5606 
5607         groupBySort = 1;
5608         nGroupBy = pGroupBy->nExpr;
5609         nCol = nGroupBy;
5610         j = nGroupBy;
5611         for(i=0; i<sAggInfo.nColumn; i++){
5612           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5613             nCol++;
5614             j++;
5615           }
5616         }
5617         regBase = sqlite3GetTempRange(pParse, nCol);
5618         sqlite3ExprCacheClear(pParse);
5619         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5620         j = nGroupBy;
5621         for(i=0; i<sAggInfo.nColumn; i++){
5622           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5623           if( pCol->iSorterColumn>=j ){
5624             int r1 = j + regBase;
5625             sqlite3ExprCodeGetColumnToReg(pParse,
5626                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5627             j++;
5628           }
5629         }
5630         regRecord = sqlite3GetTempReg(pParse);
5631         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5632         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5633         sqlite3ReleaseTempReg(pParse, regRecord);
5634         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5635         sqlite3WhereEnd(pWInfo);
5636         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5637         sortOut = sqlite3GetTempReg(pParse);
5638         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5639         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5640         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5641         sAggInfo.useSortingIdx = 1;
5642         sqlite3ExprCacheClear(pParse);
5643 
5644       }
5645 
5646       /* If the index or temporary table used by the GROUP BY sort
5647       ** will naturally deliver rows in the order required by the ORDER BY
5648       ** clause, cancel the ephemeral table open coded earlier.
5649       **
5650       ** This is an optimization - the correct answer should result regardless.
5651       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5652       ** disable this optimization for testing purposes.  */
5653       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5654        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5655       ){
5656         sSort.pOrderBy = 0;
5657         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5658       }
5659 
5660       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5661       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5662       ** Then compare the current GROUP BY terms against the GROUP BY terms
5663       ** from the previous row currently stored in a0, a1, a2...
5664       */
5665       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5666       sqlite3ExprCacheClear(pParse);
5667       if( groupBySort ){
5668         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5669                           sortOut, sortPTab);
5670       }
5671       for(j=0; j<pGroupBy->nExpr; j++){
5672         if( groupBySort ){
5673           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5674         }else{
5675           sAggInfo.directMode = 1;
5676           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5677         }
5678       }
5679       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5680                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5681       addr1 = sqlite3VdbeCurrentAddr(v);
5682       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5683 
5684       /* Generate code that runs whenever the GROUP BY changes.
5685       ** Changes in the GROUP BY are detected by the previous code
5686       ** block.  If there were no changes, this block is skipped.
5687       **
5688       ** This code copies current group by terms in b0,b1,b2,...
5689       ** over to a0,a1,a2.  It then calls the output subroutine
5690       ** and resets the aggregate accumulator registers in preparation
5691       ** for the next GROUP BY batch.
5692       */
5693       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5694       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5695       VdbeComment((v, "output one row"));
5696       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5697       VdbeComment((v, "check abort flag"));
5698       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5699       VdbeComment((v, "reset accumulator"));
5700 
5701       /* Update the aggregate accumulators based on the content of
5702       ** the current row
5703       */
5704       sqlite3VdbeJumpHere(v, addr1);
5705       updateAccumulator(pParse, &sAggInfo);
5706       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5707       VdbeComment((v, "indicate data in accumulator"));
5708 
5709       /* End of the loop
5710       */
5711       if( groupBySort ){
5712         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5713         VdbeCoverage(v);
5714       }else{
5715         sqlite3WhereEnd(pWInfo);
5716         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5717       }
5718 
5719       /* Output the final row of result
5720       */
5721       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5722       VdbeComment((v, "output final row"));
5723 
5724       /* Jump over the subroutines
5725       */
5726       sqlite3VdbeGoto(v, addrEnd);
5727 
5728       /* Generate a subroutine that outputs a single row of the result
5729       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5730       ** is less than or equal to zero, the subroutine is a no-op.  If
5731       ** the processing calls for the query to abort, this subroutine
5732       ** increments the iAbortFlag memory location before returning in
5733       ** order to signal the caller to abort.
5734       */
5735       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5736       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5737       VdbeComment((v, "set abort flag"));
5738       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5739       sqlite3VdbeResolveLabel(v, addrOutputRow);
5740       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5741       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5742       VdbeCoverage(v);
5743       VdbeComment((v, "Groupby result generator entry point"));
5744       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5745       finalizeAggFunctions(pParse, &sAggInfo);
5746       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5747       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5748                       &sDistinct, pDest,
5749                       addrOutputRow+1, addrSetAbort);
5750       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5751       VdbeComment((v, "end groupby result generator"));
5752 
5753       /* Generate a subroutine that will reset the group-by accumulator
5754       */
5755       sqlite3VdbeResolveLabel(v, addrReset);
5756       resetAccumulator(pParse, &sAggInfo);
5757       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5758 
5759     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5760     else {
5761       ExprList *pDel = 0;
5762 #ifndef SQLITE_OMIT_BTREECOUNT
5763       Table *pTab;
5764       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5765         /* If isSimpleCount() returns a pointer to a Table structure, then
5766         ** the SQL statement is of the form:
5767         **
5768         **   SELECT count(*) FROM <tbl>
5769         **
5770         ** where the Table structure returned represents table <tbl>.
5771         **
5772         ** This statement is so common that it is optimized specially. The
5773         ** OP_Count instruction is executed either on the intkey table that
5774         ** contains the data for table <tbl> or on one of its indexes. It
5775         ** is better to execute the op on an index, as indexes are almost
5776         ** always spread across less pages than their corresponding tables.
5777         */
5778         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5779         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5780         Index *pIdx;                         /* Iterator variable */
5781         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5782         Index *pBest = 0;                    /* Best index found so far */
5783         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5784 
5785         sqlite3CodeVerifySchema(pParse, iDb);
5786         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5787 
5788         /* Search for the index that has the lowest scan cost.
5789         **
5790         ** (2011-04-15) Do not do a full scan of an unordered index.
5791         **
5792         ** (2013-10-03) Do not count the entries in a partial index.
5793         **
5794         ** In practice the KeyInfo structure will not be used. It is only
5795         ** passed to keep OP_OpenRead happy.
5796         */
5797         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5798         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5799           if( pIdx->bUnordered==0
5800            && pIdx->szIdxRow<pTab->szTabRow
5801            && pIdx->pPartIdxWhere==0
5802            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5803           ){
5804             pBest = pIdx;
5805           }
5806         }
5807         if( pBest ){
5808           iRoot = pBest->tnum;
5809           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5810         }
5811 
5812         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5813         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5814         if( pKeyInfo ){
5815           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5816         }
5817         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5818         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5819         explainSimpleCount(pParse, pTab, pBest);
5820       }else
5821 #endif /* SQLITE_OMIT_BTREECOUNT */
5822       {
5823         /* Check if the query is of one of the following forms:
5824         **
5825         **   SELECT min(x) FROM ...
5826         **   SELECT max(x) FROM ...
5827         **
5828         ** If it is, then ask the code in where.c to attempt to sort results
5829         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5830         ** If where.c is able to produce results sorted in this order, then
5831         ** add vdbe code to break out of the processing loop after the
5832         ** first iteration (since the first iteration of the loop is
5833         ** guaranteed to operate on the row with the minimum or maximum
5834         ** value of x, the only row required).
5835         **
5836         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5837         ** modify behavior as follows:
5838         **
5839         **   + If the query is a "SELECT min(x)", then the loop coded by
5840         **     where.c should not iterate over any values with a NULL value
5841         **     for x.
5842         **
5843         **   + The optimizer code in where.c (the thing that decides which
5844         **     index or indices to use) should place a different priority on
5845         **     satisfying the 'ORDER BY' clause than it does in other cases.
5846         **     Refer to code and comments in where.c for details.
5847         */
5848         ExprList *pMinMax = 0;
5849         u8 flag = WHERE_ORDERBY_NORMAL;
5850 
5851         assert( p->pGroupBy==0 );
5852         assert( flag==0 );
5853         if( p->pHaving==0 ){
5854           flag = minMaxQuery(&sAggInfo, &pMinMax);
5855         }
5856         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5857 
5858         if( flag ){
5859           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5860           pDel = pMinMax;
5861           assert( db->mallocFailed || pMinMax!=0 );
5862           if( !db->mallocFailed ){
5863             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5864             pMinMax->a[0].pExpr->op = TK_COLUMN;
5865           }
5866         }
5867 
5868         /* This case runs if the aggregate has no GROUP BY clause.  The
5869         ** processing is much simpler since there is only a single row
5870         ** of output.
5871         */
5872         resetAccumulator(pParse, &sAggInfo);
5873         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
5874         if( pWInfo==0 ){
5875           sqlite3ExprListDelete(db, pDel);
5876           goto select_end;
5877         }
5878         updateAccumulator(pParse, &sAggInfo);
5879         assert( pMinMax==0 || pMinMax->nExpr==1 );
5880         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5881           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5882           VdbeComment((v, "%s() by index",
5883                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5884         }
5885         sqlite3WhereEnd(pWInfo);
5886         finalizeAggFunctions(pParse, &sAggInfo);
5887       }
5888 
5889       sSort.pOrderBy = 0;
5890       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5891       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5892                       pDest, addrEnd, addrEnd);
5893       sqlite3ExprListDelete(db, pDel);
5894     }
5895     sqlite3VdbeResolveLabel(v, addrEnd);
5896 
5897   } /* endif aggregate query */
5898 
5899   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5900     explainTempTable(pParse, "DISTINCT");
5901   }
5902 
5903   /* If there is an ORDER BY clause, then we need to sort the results
5904   ** and send them to the callback one by one.
5905   */
5906   if( sSort.pOrderBy ){
5907     explainTempTable(pParse,
5908                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5909     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5910   }
5911 
5912   /* Jump here to skip this query
5913   */
5914   sqlite3VdbeResolveLabel(v, iEnd);
5915 
5916   /* The SELECT has been coded. If there is an error in the Parse structure,
5917   ** set the return code to 1. Otherwise 0. */
5918   rc = (pParse->nErr>0);
5919 
5920   /* Control jumps to here if an error is encountered above, or upon
5921   ** successful coding of the SELECT.
5922   */
5923 select_end:
5924   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5925 
5926   /* Identify column names if results of the SELECT are to be output.
5927   */
5928   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5929     generateColumnNames(pParse, pTabList, pEList);
5930   }
5931 
5932   sqlite3DbFree(db, sAggInfo.aCol);
5933   sqlite3DbFree(db, sAggInfo.aFunc);
5934 #if SELECTTRACE_ENABLED
5935   SELECTTRACE(1,pParse,p,("end processing\n"));
5936   pParse->nSelectIndent--;
5937 #endif
5938   return rc;
5939 }
5940