1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFreeNN(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( pParse->db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 ); 146 if( pParse->db->mallocFailed ) { 147 clearSelect(pParse->db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 if( p ) clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 && nData>0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nXField>2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nXField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 590 regBase+nOBSat, nBase-nOBSat); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 659 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 660 sqlite3ReleaseTempReg(pParse, r1); 661 } 662 663 /* 664 ** This routine generates the code for the inside of the inner loop 665 ** of a SELECT. 666 ** 667 ** If srcTab is negative, then the pEList expressions 668 ** are evaluated in order to get the data for this row. If srcTab is 669 ** zero or more, then data is pulled from srcTab and pEList is used only 670 ** to get the number of columns and the collation sequence for each column. 671 */ 672 static void selectInnerLoop( 673 Parse *pParse, /* The parser context */ 674 Select *p, /* The complete select statement being coded */ 675 ExprList *pEList, /* List of values being extracted */ 676 int srcTab, /* Pull data from this table */ 677 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 678 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 679 SelectDest *pDest, /* How to dispose of the results */ 680 int iContinue, /* Jump here to continue with next row */ 681 int iBreak /* Jump here to break out of the inner loop */ 682 ){ 683 Vdbe *v = pParse->pVdbe; 684 int i; 685 int hasDistinct; /* True if the DISTINCT keyword is present */ 686 int eDest = pDest->eDest; /* How to dispose of results */ 687 int iParm = pDest->iSDParm; /* First argument to disposal method */ 688 int nResultCol; /* Number of result columns */ 689 int nPrefixReg = 0; /* Number of extra registers before regResult */ 690 691 /* Usually, regResult is the first cell in an array of memory cells 692 ** containing the current result row. In this case regOrig is set to the 693 ** same value. However, if the results are being sent to the sorter, the 694 ** values for any expressions that are also part of the sort-key are omitted 695 ** from this array. In this case regOrig is set to zero. */ 696 int regResult; /* Start of memory holding current results */ 697 int regOrig; /* Start of memory holding full result (or 0) */ 698 699 assert( v ); 700 assert( pEList!=0 ); 701 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 702 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 703 if( pSort==0 && !hasDistinct ){ 704 assert( iContinue!=0 ); 705 codeOffset(v, p->iOffset, iContinue); 706 } 707 708 /* Pull the requested columns. 709 */ 710 nResultCol = pEList->nExpr; 711 712 if( pDest->iSdst==0 ){ 713 if( pSort ){ 714 nPrefixReg = pSort->pOrderBy->nExpr; 715 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 716 pParse->nMem += nPrefixReg; 717 } 718 pDest->iSdst = pParse->nMem+1; 719 pParse->nMem += nResultCol; 720 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 721 /* This is an error condition that can result, for example, when a SELECT 722 ** on the right-hand side of an INSERT contains more result columns than 723 ** there are columns in the table on the left. The error will be caught 724 ** and reported later. But we need to make sure enough memory is allocated 725 ** to avoid other spurious errors in the meantime. */ 726 pParse->nMem += nResultCol; 727 } 728 pDest->nSdst = nResultCol; 729 regOrig = regResult = pDest->iSdst; 730 if( srcTab>=0 ){ 731 for(i=0; i<nResultCol; i++){ 732 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 733 VdbeComment((v, "%s", pEList->a[i].zName)); 734 } 735 }else if( eDest!=SRT_Exists ){ 736 /* If the destination is an EXISTS(...) expression, the actual 737 ** values returned by the SELECT are not required. 738 */ 739 u8 ecelFlags; 740 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 741 ecelFlags = SQLITE_ECEL_DUP; 742 }else{ 743 ecelFlags = 0; 744 } 745 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 746 /* For each expression in pEList that is a copy of an expression in 747 ** the ORDER BY clause (pSort->pOrderBy), set the associated 748 ** iOrderByCol value to one more than the index of the ORDER BY 749 ** expression within the sort-key that pushOntoSorter() will generate. 750 ** This allows the pEList field to be omitted from the sorted record, 751 ** saving space and CPU cycles. */ 752 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 753 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 754 int j; 755 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 756 pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 757 } 758 } 759 regOrig = 0; 760 assert( eDest==SRT_Set || eDest==SRT_Mem 761 || eDest==SRT_Coroutine || eDest==SRT_Output ); 762 } 763 nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags); 764 } 765 766 /* If the DISTINCT keyword was present on the SELECT statement 767 ** and this row has been seen before, then do not make this row 768 ** part of the result. 769 */ 770 if( hasDistinct ){ 771 switch( pDistinct->eTnctType ){ 772 case WHERE_DISTINCT_ORDERED: { 773 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 774 int iJump; /* Jump destination */ 775 int regPrev; /* Previous row content */ 776 777 /* Allocate space for the previous row */ 778 regPrev = pParse->nMem+1; 779 pParse->nMem += nResultCol; 780 781 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 782 ** sets the MEM_Cleared bit on the first register of the 783 ** previous value. This will cause the OP_Ne below to always 784 ** fail on the first iteration of the loop even if the first 785 ** row is all NULLs. 786 */ 787 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 788 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 789 pOp->opcode = OP_Null; 790 pOp->p1 = 1; 791 pOp->p2 = regPrev; 792 793 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 794 for(i=0; i<nResultCol; i++){ 795 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 796 if( i<nResultCol-1 ){ 797 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 798 VdbeCoverage(v); 799 }else{ 800 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 801 VdbeCoverage(v); 802 } 803 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 804 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 805 } 806 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 807 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 808 break; 809 } 810 811 case WHERE_DISTINCT_UNIQUE: { 812 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 813 break; 814 } 815 816 default: { 817 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 818 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 819 regResult); 820 break; 821 } 822 } 823 if( pSort==0 ){ 824 codeOffset(v, p->iOffset, iContinue); 825 } 826 } 827 828 switch( eDest ){ 829 /* In this mode, write each query result to the key of the temporary 830 ** table iParm. 831 */ 832 #ifndef SQLITE_OMIT_COMPOUND_SELECT 833 case SRT_Union: { 834 int r1; 835 r1 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 837 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 838 sqlite3ReleaseTempReg(pParse, r1); 839 break; 840 } 841 842 /* Construct a record from the query result, but instead of 843 ** saving that record, use it as a key to delete elements from 844 ** the temporary table iParm. 845 */ 846 case SRT_Except: { 847 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 848 break; 849 } 850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 851 852 /* Store the result as data using a unique key. 853 */ 854 case SRT_Fifo: 855 case SRT_DistFifo: 856 case SRT_Table: 857 case SRT_EphemTab: { 858 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 859 testcase( eDest==SRT_Table ); 860 testcase( eDest==SRT_EphemTab ); 861 testcase( eDest==SRT_Fifo ); 862 testcase( eDest==SRT_DistFifo ); 863 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 864 #ifndef SQLITE_OMIT_CTE 865 if( eDest==SRT_DistFifo ){ 866 /* If the destination is DistFifo, then cursor (iParm+1) is open 867 ** on an ephemeral index. If the current row is already present 868 ** in the index, do not write it to the output. If not, add the 869 ** current row to the index and proceed with writing it to the 870 ** output table as well. */ 871 int addr = sqlite3VdbeCurrentAddr(v) + 4; 872 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 873 VdbeCoverage(v); 874 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 875 assert( pSort==0 ); 876 } 877 #endif 878 if( pSort ){ 879 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 880 }else{ 881 int r2 = sqlite3GetTempReg(pParse); 882 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 883 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 884 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 885 sqlite3ReleaseTempReg(pParse, r2); 886 } 887 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 888 break; 889 } 890 891 #ifndef SQLITE_OMIT_SUBQUERY 892 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 893 ** then there should be a single item on the stack. Write this 894 ** item into the set table with bogus data. 895 */ 896 case SRT_Set: { 897 if( pSort ){ 898 /* At first glance you would think we could optimize out the 899 ** ORDER BY in this case since the order of entries in the set 900 ** does not matter. But there might be a LIMIT clause, in which 901 ** case the order does matter */ 902 pushOntoSorter( 903 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 904 }else{ 905 int r1 = sqlite3GetTempReg(pParse); 906 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 907 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 908 r1, pDest->zAffSdst, nResultCol); 909 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 910 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 911 sqlite3ReleaseTempReg(pParse, r1); 912 } 913 break; 914 } 915 916 /* If any row exist in the result set, record that fact and abort. 917 */ 918 case SRT_Exists: { 919 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 920 /* The LIMIT clause will terminate the loop for us */ 921 break; 922 } 923 924 /* If this is a scalar select that is part of an expression, then 925 ** store the results in the appropriate memory cell or array of 926 ** memory cells and break out of the scan loop. 927 */ 928 case SRT_Mem: { 929 if( pSort ){ 930 assert( nResultCol<=pDest->nSdst ); 931 pushOntoSorter( 932 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 933 }else{ 934 assert( nResultCol==pDest->nSdst ); 935 assert( regResult==iParm ); 936 /* The LIMIT clause will jump out of the loop for us */ 937 } 938 break; 939 } 940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 941 942 case SRT_Coroutine: /* Send data to a co-routine */ 943 case SRT_Output: { /* Return the results */ 944 testcase( eDest==SRT_Coroutine ); 945 testcase( eDest==SRT_Output ); 946 if( pSort ){ 947 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 948 nPrefixReg); 949 }else if( eDest==SRT_Coroutine ){ 950 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 951 }else{ 952 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 953 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 954 } 955 break; 956 } 957 958 #ifndef SQLITE_OMIT_CTE 959 /* Write the results into a priority queue that is order according to 960 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 961 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 962 ** pSO->nExpr columns, then make sure all keys are unique by adding a 963 ** final OP_Sequence column. The last column is the record as a blob. 964 */ 965 case SRT_DistQueue: 966 case SRT_Queue: { 967 int nKey; 968 int r1, r2, r3; 969 int addrTest = 0; 970 ExprList *pSO; 971 pSO = pDest->pOrderBy; 972 assert( pSO ); 973 nKey = pSO->nExpr; 974 r1 = sqlite3GetTempReg(pParse); 975 r2 = sqlite3GetTempRange(pParse, nKey+2); 976 r3 = r2+nKey+1; 977 if( eDest==SRT_DistQueue ){ 978 /* If the destination is DistQueue, then cursor (iParm+1) is open 979 ** on a second ephemeral index that holds all values every previously 980 ** added to the queue. */ 981 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 982 regResult, nResultCol); 983 VdbeCoverage(v); 984 } 985 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 986 if( eDest==SRT_DistQueue ){ 987 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 988 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 989 } 990 for(i=0; i<nKey; i++){ 991 sqlite3VdbeAddOp2(v, OP_SCopy, 992 regResult + pSO->a[i].u.x.iOrderByCol - 1, 993 r2+i); 994 } 995 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 996 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 997 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 998 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 999 sqlite3ReleaseTempReg(pParse, r1); 1000 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1001 break; 1002 } 1003 #endif /* SQLITE_OMIT_CTE */ 1004 1005 1006 1007 #if !defined(SQLITE_OMIT_TRIGGER) 1008 /* Discard the results. This is used for SELECT statements inside 1009 ** the body of a TRIGGER. The purpose of such selects is to call 1010 ** user-defined functions that have side effects. We do not care 1011 ** about the actual results of the select. 1012 */ 1013 default: { 1014 assert( eDest==SRT_Discard ); 1015 break; 1016 } 1017 #endif 1018 } 1019 1020 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1021 ** there is a sorter, in which case the sorter has already limited 1022 ** the output for us. 1023 */ 1024 if( pSort==0 && p->iLimit ){ 1025 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1026 } 1027 } 1028 1029 /* 1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1031 ** X extra columns. 1032 */ 1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1034 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1035 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1036 if( p ){ 1037 p->aSortOrder = (u8*)&p->aColl[N+X]; 1038 p->nField = (u16)N; 1039 p->nXField = (u16)X; 1040 p->enc = ENC(db); 1041 p->db = db; 1042 p->nRef = 1; 1043 memset(&p[1], 0, nExtra); 1044 }else{ 1045 sqlite3OomFault(db); 1046 } 1047 return p; 1048 } 1049 1050 /* 1051 ** Deallocate a KeyInfo object 1052 */ 1053 void sqlite3KeyInfoUnref(KeyInfo *p){ 1054 if( p ){ 1055 assert( p->nRef>0 ); 1056 p->nRef--; 1057 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1058 } 1059 } 1060 1061 /* 1062 ** Make a new pointer to a KeyInfo object 1063 */ 1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1065 if( p ){ 1066 assert( p->nRef>0 ); 1067 p->nRef++; 1068 } 1069 return p; 1070 } 1071 1072 #ifdef SQLITE_DEBUG 1073 /* 1074 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1075 ** can only be changed if this is just a single reference to the object. 1076 ** 1077 ** This routine is used only inside of assert() statements. 1078 */ 1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1080 #endif /* SQLITE_DEBUG */ 1081 1082 /* 1083 ** Given an expression list, generate a KeyInfo structure that records 1084 ** the collating sequence for each expression in that expression list. 1085 ** 1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1087 ** KeyInfo structure is appropriate for initializing a virtual index to 1088 ** implement that clause. If the ExprList is the result set of a SELECT 1089 ** then the KeyInfo structure is appropriate for initializing a virtual 1090 ** index to implement a DISTINCT test. 1091 ** 1092 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1093 ** function is responsible for seeing that this structure is eventually 1094 ** freed. 1095 */ 1096 static KeyInfo *keyInfoFromExprList( 1097 Parse *pParse, /* Parsing context */ 1098 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1099 int iStart, /* Begin with this column of pList */ 1100 int nExtra /* Add this many extra columns to the end */ 1101 ){ 1102 int nExpr; 1103 KeyInfo *pInfo; 1104 struct ExprList_item *pItem; 1105 sqlite3 *db = pParse->db; 1106 int i; 1107 1108 nExpr = pList->nExpr; 1109 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1110 if( pInfo ){ 1111 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1112 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1113 CollSeq *pColl; 1114 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1115 if( !pColl ) pColl = db->pDfltColl; 1116 pInfo->aColl[i-iStart] = pColl; 1117 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1118 } 1119 } 1120 return pInfo; 1121 } 1122 1123 /* 1124 ** Name of the connection operator, used for error messages. 1125 */ 1126 static const char *selectOpName(int id){ 1127 char *z; 1128 switch( id ){ 1129 case TK_ALL: z = "UNION ALL"; break; 1130 case TK_INTERSECT: z = "INTERSECT"; break; 1131 case TK_EXCEPT: z = "EXCEPT"; break; 1132 default: z = "UNION"; break; 1133 } 1134 return z; 1135 } 1136 1137 #ifndef SQLITE_OMIT_EXPLAIN 1138 /* 1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1141 ** where the caption is of the form: 1142 ** 1143 ** "USE TEMP B-TREE FOR xxx" 1144 ** 1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1146 ** is determined by the zUsage argument. 1147 */ 1148 static void explainTempTable(Parse *pParse, const char *zUsage){ 1149 if( pParse->explain==2 ){ 1150 Vdbe *v = pParse->pVdbe; 1151 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1152 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1153 } 1154 } 1155 1156 /* 1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1159 ** in sqlite3Select() to assign values to structure member variables that 1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1161 ** code with #ifndef directives. 1162 */ 1163 # define explainSetInteger(a, b) a = b 1164 1165 #else 1166 /* No-op versions of the explainXXX() functions and macros. */ 1167 # define explainTempTable(y,z) 1168 # define explainSetInteger(y,z) 1169 #endif 1170 1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1172 /* 1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1175 ** where the caption is of one of the two forms: 1176 ** 1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1178 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1179 ** 1180 ** where iSub1 and iSub2 are the integers passed as the corresponding 1181 ** function parameters, and op is the text representation of the parameter 1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1184 ** false, or the second form if it is true. 1185 */ 1186 static void explainComposite( 1187 Parse *pParse, /* Parse context */ 1188 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1189 int iSub1, /* Subquery id 1 */ 1190 int iSub2, /* Subquery id 2 */ 1191 int bUseTmp /* True if a temp table was used */ 1192 ){ 1193 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1194 if( pParse->explain==2 ){ 1195 Vdbe *v = pParse->pVdbe; 1196 char *zMsg = sqlite3MPrintf( 1197 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1198 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1199 ); 1200 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1201 } 1202 } 1203 #else 1204 /* No-op versions of the explainXXX() functions and macros. */ 1205 # define explainComposite(v,w,x,y,z) 1206 #endif 1207 1208 /* 1209 ** If the inner loop was generated using a non-null pOrderBy argument, 1210 ** then the results were placed in a sorter. After the loop is terminated 1211 ** we need to run the sorter and output the results. The following 1212 ** routine generates the code needed to do that. 1213 */ 1214 static void generateSortTail( 1215 Parse *pParse, /* Parsing context */ 1216 Select *p, /* The SELECT statement */ 1217 SortCtx *pSort, /* Information on the ORDER BY clause */ 1218 int nColumn, /* Number of columns of data */ 1219 SelectDest *pDest /* Write the sorted results here */ 1220 ){ 1221 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1222 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1223 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1224 int addr; 1225 int addrOnce = 0; 1226 int iTab; 1227 ExprList *pOrderBy = pSort->pOrderBy; 1228 int eDest = pDest->eDest; 1229 int iParm = pDest->iSDParm; 1230 int regRow; 1231 int regRowid; 1232 int iCol; 1233 int nKey; 1234 int iSortTab; /* Sorter cursor to read from */ 1235 int nSortData; /* Trailing values to read from sorter */ 1236 int i; 1237 int bSeq; /* True if sorter record includes seq. no. */ 1238 struct ExprList_item *aOutEx = p->pEList->a; 1239 1240 assert( addrBreak<0 ); 1241 if( pSort->labelBkOut ){ 1242 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1243 sqlite3VdbeGoto(v, addrBreak); 1244 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1245 } 1246 iTab = pSort->iECursor; 1247 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1248 regRowid = 0; 1249 regRow = pDest->iSdst; 1250 nSortData = nColumn; 1251 }else{ 1252 regRowid = sqlite3GetTempReg(pParse); 1253 regRow = sqlite3GetTempRange(pParse, nColumn); 1254 nSortData = nColumn; 1255 } 1256 nKey = pOrderBy->nExpr - pSort->nOBSat; 1257 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1258 int regSortOut = ++pParse->nMem; 1259 iSortTab = pParse->nTab++; 1260 if( pSort->labelBkOut ){ 1261 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1262 } 1263 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1264 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1265 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1266 VdbeCoverage(v); 1267 codeOffset(v, p->iOffset, addrContinue); 1268 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1269 bSeq = 0; 1270 }else{ 1271 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1272 codeOffset(v, p->iOffset, addrContinue); 1273 iSortTab = iTab; 1274 bSeq = 1; 1275 } 1276 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1277 int iRead; 1278 if( aOutEx[i].u.x.iOrderByCol ){ 1279 iRead = aOutEx[i].u.x.iOrderByCol-1; 1280 }else{ 1281 iRead = iCol++; 1282 } 1283 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1284 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1285 } 1286 switch( eDest ){ 1287 case SRT_Table: 1288 case SRT_EphemTab: { 1289 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1290 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1291 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1292 break; 1293 } 1294 #ifndef SQLITE_OMIT_SUBQUERY 1295 case SRT_Set: { 1296 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1297 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1298 pDest->zAffSdst, nColumn); 1299 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1300 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1301 break; 1302 } 1303 case SRT_Mem: { 1304 /* The LIMIT clause will terminate the loop for us */ 1305 break; 1306 } 1307 #endif 1308 default: { 1309 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1310 testcase( eDest==SRT_Output ); 1311 testcase( eDest==SRT_Coroutine ); 1312 if( eDest==SRT_Output ){ 1313 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1314 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1315 }else{ 1316 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1317 } 1318 break; 1319 } 1320 } 1321 if( regRowid ){ 1322 if( eDest==SRT_Set ){ 1323 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1324 }else{ 1325 sqlite3ReleaseTempReg(pParse, regRow); 1326 } 1327 sqlite3ReleaseTempReg(pParse, regRowid); 1328 } 1329 /* The bottom of the loop 1330 */ 1331 sqlite3VdbeResolveLabel(v, addrContinue); 1332 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1333 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1334 }else{ 1335 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1336 } 1337 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1338 sqlite3VdbeResolveLabel(v, addrBreak); 1339 } 1340 1341 /* 1342 ** Return a pointer to a string containing the 'declaration type' of the 1343 ** expression pExpr. The string may be treated as static by the caller. 1344 ** 1345 ** Also try to estimate the size of the returned value and return that 1346 ** result in *pEstWidth. 1347 ** 1348 ** The declaration type is the exact datatype definition extracted from the 1349 ** original CREATE TABLE statement if the expression is a column. The 1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1351 ** is considered a column can be complex in the presence of subqueries. The 1352 ** result-set expression in all of the following SELECT statements is 1353 ** considered a column by this function. 1354 ** 1355 ** SELECT col FROM tbl; 1356 ** SELECT (SELECT col FROM tbl; 1357 ** SELECT (SELECT col FROM tbl); 1358 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1359 ** 1360 ** The declaration type for any expression other than a column is NULL. 1361 ** 1362 ** This routine has either 3 or 6 parameters depending on whether or not 1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1364 */ 1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1369 #endif 1370 static const char *columnTypeImpl( 1371 NameContext *pNC, 1372 Expr *pExpr, 1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1374 const char **pzOrigDb, 1375 const char **pzOrigTab, 1376 const char **pzOrigCol, 1377 #endif 1378 u8 *pEstWidth 1379 ){ 1380 char const *zType = 0; 1381 int j; 1382 u8 estWidth = 1; 1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1384 char const *zOrigDb = 0; 1385 char const *zOrigTab = 0; 1386 char const *zOrigCol = 0; 1387 #endif 1388 1389 assert( pExpr!=0 ); 1390 assert( pNC->pSrcList!=0 ); 1391 switch( pExpr->op ){ 1392 case TK_AGG_COLUMN: 1393 case TK_COLUMN: { 1394 /* The expression is a column. Locate the table the column is being 1395 ** extracted from in NameContext.pSrcList. This table may be real 1396 ** database table or a subquery. 1397 */ 1398 Table *pTab = 0; /* Table structure column is extracted from */ 1399 Select *pS = 0; /* Select the column is extracted from */ 1400 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1401 testcase( pExpr->op==TK_AGG_COLUMN ); 1402 testcase( pExpr->op==TK_COLUMN ); 1403 while( pNC && !pTab ){ 1404 SrcList *pTabList = pNC->pSrcList; 1405 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1406 if( j<pTabList->nSrc ){ 1407 pTab = pTabList->a[j].pTab; 1408 pS = pTabList->a[j].pSelect; 1409 }else{ 1410 pNC = pNC->pNext; 1411 } 1412 } 1413 1414 if( pTab==0 ){ 1415 /* At one time, code such as "SELECT new.x" within a trigger would 1416 ** cause this condition to run. Since then, we have restructured how 1417 ** trigger code is generated and so this condition is no longer 1418 ** possible. However, it can still be true for statements like 1419 ** the following: 1420 ** 1421 ** CREATE TABLE t1(col INTEGER); 1422 ** SELECT (SELECT t1.col) FROM FROM t1; 1423 ** 1424 ** when columnType() is called on the expression "t1.col" in the 1425 ** sub-select. In this case, set the column type to NULL, even 1426 ** though it should really be "INTEGER". 1427 ** 1428 ** This is not a problem, as the column type of "t1.col" is never 1429 ** used. When columnType() is called on the expression 1430 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1431 ** branch below. */ 1432 break; 1433 } 1434 1435 assert( pTab && pExpr->pTab==pTab ); 1436 if( pS ){ 1437 /* The "table" is actually a sub-select or a view in the FROM clause 1438 ** of the SELECT statement. Return the declaration type and origin 1439 ** data for the result-set column of the sub-select. 1440 */ 1441 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1442 /* If iCol is less than zero, then the expression requests the 1443 ** rowid of the sub-select or view. This expression is legal (see 1444 ** test case misc2.2.2) - it always evaluates to NULL. 1445 ** 1446 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1447 ** caught already by name resolution. 1448 */ 1449 NameContext sNC; 1450 Expr *p = pS->pEList->a[iCol].pExpr; 1451 sNC.pSrcList = pS->pSrc; 1452 sNC.pNext = pNC; 1453 sNC.pParse = pNC->pParse; 1454 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1455 } 1456 }else if( pTab->pSchema ){ 1457 /* A real table */ 1458 assert( !pS ); 1459 if( iCol<0 ) iCol = pTab->iPKey; 1460 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1462 if( iCol<0 ){ 1463 zType = "INTEGER"; 1464 zOrigCol = "rowid"; 1465 }else{ 1466 zOrigCol = pTab->aCol[iCol].zName; 1467 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1468 estWidth = pTab->aCol[iCol].szEst; 1469 } 1470 zOrigTab = pTab->zName; 1471 if( pNC->pParse ){ 1472 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1473 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1474 } 1475 #else 1476 if( iCol<0 ){ 1477 zType = "INTEGER"; 1478 }else{ 1479 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1480 estWidth = pTab->aCol[iCol].szEst; 1481 } 1482 #endif 1483 } 1484 break; 1485 } 1486 #ifndef SQLITE_OMIT_SUBQUERY 1487 case TK_SELECT: { 1488 /* The expression is a sub-select. Return the declaration type and 1489 ** origin info for the single column in the result set of the SELECT 1490 ** statement. 1491 */ 1492 NameContext sNC; 1493 Select *pS = pExpr->x.pSelect; 1494 Expr *p = pS->pEList->a[0].pExpr; 1495 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1496 sNC.pSrcList = pS->pSrc; 1497 sNC.pNext = pNC; 1498 sNC.pParse = pNC->pParse; 1499 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1500 break; 1501 } 1502 #endif 1503 } 1504 1505 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1506 if( pzOrigDb ){ 1507 assert( pzOrigTab && pzOrigCol ); 1508 *pzOrigDb = zOrigDb; 1509 *pzOrigTab = zOrigTab; 1510 *pzOrigCol = zOrigCol; 1511 } 1512 #endif 1513 if( pEstWidth ) *pEstWidth = estWidth; 1514 return zType; 1515 } 1516 1517 /* 1518 ** Generate code that will tell the VDBE the declaration types of columns 1519 ** in the result set. 1520 */ 1521 static void generateColumnTypes( 1522 Parse *pParse, /* Parser context */ 1523 SrcList *pTabList, /* List of tables */ 1524 ExprList *pEList /* Expressions defining the result set */ 1525 ){ 1526 #ifndef SQLITE_OMIT_DECLTYPE 1527 Vdbe *v = pParse->pVdbe; 1528 int i; 1529 NameContext sNC; 1530 sNC.pSrcList = pTabList; 1531 sNC.pParse = pParse; 1532 sNC.pNext = 0; 1533 for(i=0; i<pEList->nExpr; i++){ 1534 Expr *p = pEList->a[i].pExpr; 1535 const char *zType; 1536 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1537 const char *zOrigDb = 0; 1538 const char *zOrigTab = 0; 1539 const char *zOrigCol = 0; 1540 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1541 1542 /* The vdbe must make its own copy of the column-type and other 1543 ** column specific strings, in case the schema is reset before this 1544 ** virtual machine is deleted. 1545 */ 1546 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1547 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1548 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1549 #else 1550 zType = columnType(&sNC, p, 0, 0, 0, 0); 1551 #endif 1552 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1553 } 1554 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1555 } 1556 1557 /* 1558 ** Return the Table objecct in the SrcList that has cursor iCursor. 1559 ** Or return NULL if no such Table object exists in the SrcList. 1560 */ 1561 static Table *tableWithCursor(SrcList *pList, int iCursor){ 1562 int j; 1563 for(j=0; j<pList->nSrc; j++){ 1564 if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab; 1565 } 1566 return 0; 1567 } 1568 1569 1570 /* 1571 ** Generate code that will tell the VDBE the names of columns 1572 ** in the result set. This information is used to provide the 1573 ** azCol[] values in the callback. 1574 */ 1575 static void generateColumnNames( 1576 Parse *pParse, /* Parser context */ 1577 SrcList *pTabList, /* List of tables */ 1578 ExprList *pEList /* Expressions defining the result set */ 1579 ){ 1580 Vdbe *v = pParse->pVdbe; 1581 int i; 1582 Table *pTab; 1583 sqlite3 *db = pParse->db; 1584 int fullNames, shortNames; 1585 1586 #ifndef SQLITE_OMIT_EXPLAIN 1587 /* If this is an EXPLAIN, skip this step */ 1588 if( pParse->explain ){ 1589 return; 1590 } 1591 #endif 1592 1593 if( pParse->colNamesSet || db->mallocFailed ) return; 1594 assert( v!=0 ); 1595 assert( pTabList!=0 ); 1596 pParse->colNamesSet = 1; 1597 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1598 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1599 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1600 for(i=0; i<pEList->nExpr; i++){ 1601 Expr *p; 1602 p = pEList->a[i].pExpr; 1603 if( NEVER(p==0) ) continue; 1604 if( pEList->a[i].zName ){ 1605 char *zName = pEList->a[i].zName; 1606 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1607 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 1608 && (pTab = tableWithCursor(pTabList, p->iTable))!=0 1609 ){ 1610 char *zCol; 1611 int iCol = p->iColumn; 1612 if( iCol<0 ) iCol = pTab->iPKey; 1613 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1614 if( iCol<0 ){ 1615 zCol = "rowid"; 1616 }else{ 1617 zCol = pTab->aCol[iCol].zName; 1618 } 1619 if( !shortNames && !fullNames ){ 1620 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1621 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1622 }else if( fullNames ){ 1623 char *zName = 0; 1624 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1625 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1626 }else{ 1627 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1628 } 1629 }else{ 1630 const char *z = pEList->a[i].zSpan; 1631 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1632 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1633 } 1634 } 1635 generateColumnTypes(pParse, pTabList, pEList); 1636 } 1637 1638 /* 1639 ** Given an expression list (which is really the list of expressions 1640 ** that form the result set of a SELECT statement) compute appropriate 1641 ** column names for a table that would hold the expression list. 1642 ** 1643 ** All column names will be unique. 1644 ** 1645 ** Only the column names are computed. Column.zType, Column.zColl, 1646 ** and other fields of Column are zeroed. 1647 ** 1648 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1649 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1650 */ 1651 int sqlite3ColumnsFromExprList( 1652 Parse *pParse, /* Parsing context */ 1653 ExprList *pEList, /* Expr list from which to derive column names */ 1654 i16 *pnCol, /* Write the number of columns here */ 1655 Column **paCol /* Write the new column list here */ 1656 ){ 1657 sqlite3 *db = pParse->db; /* Database connection */ 1658 int i, j; /* Loop counters */ 1659 u32 cnt; /* Index added to make the name unique */ 1660 Column *aCol, *pCol; /* For looping over result columns */ 1661 int nCol; /* Number of columns in the result set */ 1662 Expr *p; /* Expression for a single result column */ 1663 char *zName; /* Column name */ 1664 int nName; /* Size of name in zName[] */ 1665 Hash ht; /* Hash table of column names */ 1666 1667 sqlite3HashInit(&ht); 1668 if( pEList ){ 1669 nCol = pEList->nExpr; 1670 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1671 testcase( aCol==0 ); 1672 }else{ 1673 nCol = 0; 1674 aCol = 0; 1675 } 1676 assert( nCol==(i16)nCol ); 1677 *pnCol = nCol; 1678 *paCol = aCol; 1679 1680 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1681 /* Get an appropriate name for the column 1682 */ 1683 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1684 if( (zName = pEList->a[i].zName)!=0 ){ 1685 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1686 }else{ 1687 Expr *pColExpr = p; /* The expression that is the result column name */ 1688 Table *pTab; /* Table associated with this expression */ 1689 while( pColExpr->op==TK_DOT ){ 1690 pColExpr = pColExpr->pRight; 1691 assert( pColExpr!=0 ); 1692 } 1693 if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){ 1694 /* For columns use the column name name */ 1695 int iCol = pColExpr->iColumn; 1696 pTab = pColExpr->pTab; 1697 if( iCol<0 ) iCol = pTab->iPKey; 1698 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1699 }else if( pColExpr->op==TK_ID ){ 1700 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1701 zName = pColExpr->u.zToken; 1702 }else{ 1703 /* Use the original text of the column expression as its name */ 1704 zName = pEList->a[i].zSpan; 1705 } 1706 } 1707 zName = sqlite3MPrintf(db, "%s", zName); 1708 1709 /* Make sure the column name is unique. If the name is not unique, 1710 ** append an integer to the name so that it becomes unique. 1711 */ 1712 cnt = 0; 1713 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1714 nName = sqlite3Strlen30(zName); 1715 if( nName>0 ){ 1716 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1717 if( zName[j]==':' ) nName = j; 1718 } 1719 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1720 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1721 } 1722 pCol->zName = zName; 1723 sqlite3ColumnPropertiesFromName(0, pCol); 1724 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1725 sqlite3OomFault(db); 1726 } 1727 } 1728 sqlite3HashClear(&ht); 1729 if( db->mallocFailed ){ 1730 for(j=0; j<i; j++){ 1731 sqlite3DbFree(db, aCol[j].zName); 1732 } 1733 sqlite3DbFree(db, aCol); 1734 *paCol = 0; 1735 *pnCol = 0; 1736 return SQLITE_NOMEM_BKPT; 1737 } 1738 return SQLITE_OK; 1739 } 1740 1741 /* 1742 ** Add type and collation information to a column list based on 1743 ** a SELECT statement. 1744 ** 1745 ** The column list presumably came from selectColumnNamesFromExprList(). 1746 ** The column list has only names, not types or collations. This 1747 ** routine goes through and adds the types and collations. 1748 ** 1749 ** This routine requires that all identifiers in the SELECT 1750 ** statement be resolved. 1751 */ 1752 void sqlite3SelectAddColumnTypeAndCollation( 1753 Parse *pParse, /* Parsing contexts */ 1754 Table *pTab, /* Add column type information to this table */ 1755 Select *pSelect /* SELECT used to determine types and collations */ 1756 ){ 1757 sqlite3 *db = pParse->db; 1758 NameContext sNC; 1759 Column *pCol; 1760 CollSeq *pColl; 1761 int i; 1762 Expr *p; 1763 struct ExprList_item *a; 1764 u64 szAll = 0; 1765 1766 assert( pSelect!=0 ); 1767 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1768 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1769 if( db->mallocFailed ) return; 1770 memset(&sNC, 0, sizeof(sNC)); 1771 sNC.pSrcList = pSelect->pSrc; 1772 a = pSelect->pEList->a; 1773 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1774 const char *zType; 1775 int n, m; 1776 p = a[i].pExpr; 1777 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1778 szAll += pCol->szEst; 1779 pCol->affinity = sqlite3ExprAffinity(p); 1780 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1781 n = sqlite3Strlen30(pCol->zName); 1782 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1783 if( pCol->zName ){ 1784 memcpy(&pCol->zName[n+1], zType, m+1); 1785 pCol->colFlags |= COLFLAG_HASTYPE; 1786 } 1787 } 1788 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1789 pColl = sqlite3ExprCollSeq(pParse, p); 1790 if( pColl && pCol->zColl==0 ){ 1791 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1792 } 1793 } 1794 pTab->szTabRow = sqlite3LogEst(szAll*4); 1795 } 1796 1797 /* 1798 ** Given a SELECT statement, generate a Table structure that describes 1799 ** the result set of that SELECT. 1800 */ 1801 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1802 Table *pTab; 1803 sqlite3 *db = pParse->db; 1804 int savedFlags; 1805 1806 savedFlags = db->flags; 1807 db->flags &= ~SQLITE_FullColNames; 1808 db->flags |= SQLITE_ShortColNames; 1809 sqlite3SelectPrep(pParse, pSelect, 0); 1810 if( pParse->nErr ) return 0; 1811 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1812 db->flags = savedFlags; 1813 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1814 if( pTab==0 ){ 1815 return 0; 1816 } 1817 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1818 ** is disabled */ 1819 assert( db->lookaside.bDisable ); 1820 pTab->nTabRef = 1; 1821 pTab->zName = 0; 1822 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1823 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1824 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1825 pTab->iPKey = -1; 1826 if( db->mallocFailed ){ 1827 sqlite3DeleteTable(db, pTab); 1828 return 0; 1829 } 1830 return pTab; 1831 } 1832 1833 /* 1834 ** Get a VDBE for the given parser context. Create a new one if necessary. 1835 ** If an error occurs, return NULL and leave a message in pParse. 1836 */ 1837 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1838 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1839 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1); 1840 if( pParse->pToplevel==0 1841 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1842 ){ 1843 pParse->okConstFactor = 1; 1844 } 1845 return v; 1846 } 1847 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1848 Vdbe *v = pParse->pVdbe; 1849 return v ? v : allocVdbe(pParse); 1850 } 1851 1852 1853 /* 1854 ** Compute the iLimit and iOffset fields of the SELECT based on the 1855 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1856 ** that appear in the original SQL statement after the LIMIT and OFFSET 1857 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1858 ** are the integer memory register numbers for counters used to compute 1859 ** the limit and offset. If there is no limit and/or offset, then 1860 ** iLimit and iOffset are negative. 1861 ** 1862 ** This routine changes the values of iLimit and iOffset only if 1863 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1864 ** iOffset should have been preset to appropriate default values (zero) 1865 ** prior to calling this routine. 1866 ** 1867 ** The iOffset register (if it exists) is initialized to the value 1868 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1869 ** iOffset+1 is initialized to LIMIT+OFFSET. 1870 ** 1871 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1872 ** redefined. The UNION ALL operator uses this property to force 1873 ** the reuse of the same limit and offset registers across multiple 1874 ** SELECT statements. 1875 */ 1876 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1877 Vdbe *v = 0; 1878 int iLimit = 0; 1879 int iOffset; 1880 int n; 1881 if( p->iLimit ) return; 1882 1883 /* 1884 ** "LIMIT -1" always shows all rows. There is some 1885 ** controversy about what the correct behavior should be. 1886 ** The current implementation interprets "LIMIT 0" to mean 1887 ** no rows. 1888 */ 1889 sqlite3ExprCacheClear(pParse); 1890 assert( p->pOffset==0 || p->pLimit!=0 ); 1891 if( p->pLimit ){ 1892 p->iLimit = iLimit = ++pParse->nMem; 1893 v = sqlite3GetVdbe(pParse); 1894 assert( v!=0 ); 1895 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1896 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1897 VdbeComment((v, "LIMIT counter")); 1898 if( n==0 ){ 1899 sqlite3VdbeGoto(v, iBreak); 1900 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1901 p->nSelectRow = sqlite3LogEst((u64)n); 1902 p->selFlags |= SF_FixedLimit; 1903 } 1904 }else{ 1905 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1906 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1907 VdbeComment((v, "LIMIT counter")); 1908 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1909 } 1910 if( p->pOffset ){ 1911 p->iOffset = iOffset = ++pParse->nMem; 1912 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1913 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1914 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1915 VdbeComment((v, "OFFSET counter")); 1916 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1917 VdbeComment((v, "LIMIT+OFFSET")); 1918 } 1919 } 1920 } 1921 1922 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1923 /* 1924 ** Return the appropriate collating sequence for the iCol-th column of 1925 ** the result set for the compound-select statement "p". Return NULL if 1926 ** the column has no default collating sequence. 1927 ** 1928 ** The collating sequence for the compound select is taken from the 1929 ** left-most term of the select that has a collating sequence. 1930 */ 1931 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1932 CollSeq *pRet; 1933 if( p->pPrior ){ 1934 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1935 }else{ 1936 pRet = 0; 1937 } 1938 assert( iCol>=0 ); 1939 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1940 ** have been thrown during name resolution and we would not have gotten 1941 ** this far */ 1942 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1943 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1944 } 1945 return pRet; 1946 } 1947 1948 /* 1949 ** The select statement passed as the second parameter is a compound SELECT 1950 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1951 ** structure suitable for implementing the ORDER BY. 1952 ** 1953 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1954 ** function is responsible for ensuring that this structure is eventually 1955 ** freed. 1956 */ 1957 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1958 ExprList *pOrderBy = p->pOrderBy; 1959 int nOrderBy = p->pOrderBy->nExpr; 1960 sqlite3 *db = pParse->db; 1961 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1962 if( pRet ){ 1963 int i; 1964 for(i=0; i<nOrderBy; i++){ 1965 struct ExprList_item *pItem = &pOrderBy->a[i]; 1966 Expr *pTerm = pItem->pExpr; 1967 CollSeq *pColl; 1968 1969 if( pTerm->flags & EP_Collate ){ 1970 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1971 }else{ 1972 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1973 if( pColl==0 ) pColl = db->pDfltColl; 1974 pOrderBy->a[i].pExpr = 1975 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1976 } 1977 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1978 pRet->aColl[i] = pColl; 1979 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1980 } 1981 } 1982 1983 return pRet; 1984 } 1985 1986 #ifndef SQLITE_OMIT_CTE 1987 /* 1988 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1989 ** query of the form: 1990 ** 1991 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1992 ** \___________/ \_______________/ 1993 ** p->pPrior p 1994 ** 1995 ** 1996 ** There is exactly one reference to the recursive-table in the FROM clause 1997 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1998 ** 1999 ** The setup-query runs once to generate an initial set of rows that go 2000 ** into a Queue table. Rows are extracted from the Queue table one by 2001 ** one. Each row extracted from Queue is output to pDest. Then the single 2002 ** extracted row (now in the iCurrent table) becomes the content of the 2003 ** recursive-table for a recursive-query run. The output of the recursive-query 2004 ** is added back into the Queue table. Then another row is extracted from Queue 2005 ** and the iteration continues until the Queue table is empty. 2006 ** 2007 ** If the compound query operator is UNION then no duplicate rows are ever 2008 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2009 ** that have ever been inserted into Queue and causes duplicates to be 2010 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2011 ** 2012 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2013 ** ORDER BY order and the first entry is extracted for each cycle. Without 2014 ** an ORDER BY, the Queue table is just a FIFO. 2015 ** 2016 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2017 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2018 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2019 ** with a positive value, then the first OFFSET outputs are discarded rather 2020 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2021 ** rows have been skipped. 2022 */ 2023 static void generateWithRecursiveQuery( 2024 Parse *pParse, /* Parsing context */ 2025 Select *p, /* The recursive SELECT to be coded */ 2026 SelectDest *pDest /* What to do with query results */ 2027 ){ 2028 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2029 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2030 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2031 Select *pSetup = p->pPrior; /* The setup query */ 2032 int addrTop; /* Top of the loop */ 2033 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2034 int iCurrent = 0; /* The Current table */ 2035 int regCurrent; /* Register holding Current table */ 2036 int iQueue; /* The Queue table */ 2037 int iDistinct = 0; /* To ensure unique results if UNION */ 2038 int eDest = SRT_Fifo; /* How to write to Queue */ 2039 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2040 int i; /* Loop counter */ 2041 int rc; /* Result code */ 2042 ExprList *pOrderBy; /* The ORDER BY clause */ 2043 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2044 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2045 2046 /* Obtain authorization to do a recursive query */ 2047 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2048 2049 /* Process the LIMIT and OFFSET clauses, if they exist */ 2050 addrBreak = sqlite3VdbeMakeLabel(v); 2051 p->nSelectRow = 320; /* 4 billion rows */ 2052 computeLimitRegisters(pParse, p, addrBreak); 2053 pLimit = p->pLimit; 2054 pOffset = p->pOffset; 2055 regLimit = p->iLimit; 2056 regOffset = p->iOffset; 2057 p->pLimit = p->pOffset = 0; 2058 p->iLimit = p->iOffset = 0; 2059 pOrderBy = p->pOrderBy; 2060 2061 /* Locate the cursor number of the Current table */ 2062 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2063 if( pSrc->a[i].fg.isRecursive ){ 2064 iCurrent = pSrc->a[i].iCursor; 2065 break; 2066 } 2067 } 2068 2069 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2070 ** the Distinct table must be exactly one greater than Queue in order 2071 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2072 iQueue = pParse->nTab++; 2073 if( p->op==TK_UNION ){ 2074 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2075 iDistinct = pParse->nTab++; 2076 }else{ 2077 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2078 } 2079 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2080 2081 /* Allocate cursors for Current, Queue, and Distinct. */ 2082 regCurrent = ++pParse->nMem; 2083 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2084 if( pOrderBy ){ 2085 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2086 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2087 (char*)pKeyInfo, P4_KEYINFO); 2088 destQueue.pOrderBy = pOrderBy; 2089 }else{ 2090 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2091 } 2092 VdbeComment((v, "Queue table")); 2093 if( iDistinct ){ 2094 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2095 p->selFlags |= SF_UsesEphemeral; 2096 } 2097 2098 /* Detach the ORDER BY clause from the compound SELECT */ 2099 p->pOrderBy = 0; 2100 2101 /* Store the results of the setup-query in Queue. */ 2102 pSetup->pNext = 0; 2103 rc = sqlite3Select(pParse, pSetup, &destQueue); 2104 pSetup->pNext = p; 2105 if( rc ) goto end_of_recursive_query; 2106 2107 /* Find the next row in the Queue and output that row */ 2108 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2109 2110 /* Transfer the next row in Queue over to Current */ 2111 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2112 if( pOrderBy ){ 2113 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2114 }else{ 2115 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2116 } 2117 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2118 2119 /* Output the single row in Current */ 2120 addrCont = sqlite3VdbeMakeLabel(v); 2121 codeOffset(v, regOffset, addrCont); 2122 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2123 0, 0, pDest, addrCont, addrBreak); 2124 if( regLimit ){ 2125 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2126 VdbeCoverage(v); 2127 } 2128 sqlite3VdbeResolveLabel(v, addrCont); 2129 2130 /* Execute the recursive SELECT taking the single row in Current as 2131 ** the value for the recursive-table. Store the results in the Queue. 2132 */ 2133 if( p->selFlags & SF_Aggregate ){ 2134 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2135 }else{ 2136 p->pPrior = 0; 2137 sqlite3Select(pParse, p, &destQueue); 2138 assert( p->pPrior==0 ); 2139 p->pPrior = pSetup; 2140 } 2141 2142 /* Keep running the loop until the Queue is empty */ 2143 sqlite3VdbeGoto(v, addrTop); 2144 sqlite3VdbeResolveLabel(v, addrBreak); 2145 2146 end_of_recursive_query: 2147 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2148 p->pOrderBy = pOrderBy; 2149 p->pLimit = pLimit; 2150 p->pOffset = pOffset; 2151 return; 2152 } 2153 #endif /* SQLITE_OMIT_CTE */ 2154 2155 /* Forward references */ 2156 static int multiSelectOrderBy( 2157 Parse *pParse, /* Parsing context */ 2158 Select *p, /* The right-most of SELECTs to be coded */ 2159 SelectDest *pDest /* What to do with query results */ 2160 ); 2161 2162 /* 2163 ** Handle the special case of a compound-select that originates from a 2164 ** VALUES clause. By handling this as a special case, we avoid deep 2165 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2166 ** on a VALUES clause. 2167 ** 2168 ** Because the Select object originates from a VALUES clause: 2169 ** (1) It has no LIMIT or OFFSET 2170 ** (2) All terms are UNION ALL 2171 ** (3) There is no ORDER BY clause 2172 */ 2173 static int multiSelectValues( 2174 Parse *pParse, /* Parsing context */ 2175 Select *p, /* The right-most of SELECTs to be coded */ 2176 SelectDest *pDest /* What to do with query results */ 2177 ){ 2178 Select *pPrior; 2179 int nRow = 1; 2180 int rc = 0; 2181 assert( p->selFlags & SF_MultiValue ); 2182 do{ 2183 assert( p->selFlags & SF_Values ); 2184 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2185 assert( p->pLimit==0 ); 2186 assert( p->pOffset==0 ); 2187 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2188 if( p->pPrior==0 ) break; 2189 assert( p->pPrior->pNext==p ); 2190 p = p->pPrior; 2191 nRow++; 2192 }while(1); 2193 while( p ){ 2194 pPrior = p->pPrior; 2195 p->pPrior = 0; 2196 rc = sqlite3Select(pParse, p, pDest); 2197 p->pPrior = pPrior; 2198 if( rc ) break; 2199 p->nSelectRow = nRow; 2200 p = p->pNext; 2201 } 2202 return rc; 2203 } 2204 2205 /* 2206 ** This routine is called to process a compound query form from 2207 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2208 ** INTERSECT 2209 ** 2210 ** "p" points to the right-most of the two queries. the query on the 2211 ** left is p->pPrior. The left query could also be a compound query 2212 ** in which case this routine will be called recursively. 2213 ** 2214 ** The results of the total query are to be written into a destination 2215 ** of type eDest with parameter iParm. 2216 ** 2217 ** Example 1: Consider a three-way compound SQL statement. 2218 ** 2219 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2220 ** 2221 ** This statement is parsed up as follows: 2222 ** 2223 ** SELECT c FROM t3 2224 ** | 2225 ** `-----> SELECT b FROM t2 2226 ** | 2227 ** `------> SELECT a FROM t1 2228 ** 2229 ** The arrows in the diagram above represent the Select.pPrior pointer. 2230 ** So if this routine is called with p equal to the t3 query, then 2231 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2232 ** 2233 ** Notice that because of the way SQLite parses compound SELECTs, the 2234 ** individual selects always group from left to right. 2235 */ 2236 static int multiSelect( 2237 Parse *pParse, /* Parsing context */ 2238 Select *p, /* The right-most of SELECTs to be coded */ 2239 SelectDest *pDest /* What to do with query results */ 2240 ){ 2241 int rc = SQLITE_OK; /* Success code from a subroutine */ 2242 Select *pPrior; /* Another SELECT immediately to our left */ 2243 Vdbe *v; /* Generate code to this VDBE */ 2244 SelectDest dest; /* Alternative data destination */ 2245 Select *pDelete = 0; /* Chain of simple selects to delete */ 2246 sqlite3 *db; /* Database connection */ 2247 #ifndef SQLITE_OMIT_EXPLAIN 2248 int iSub1 = 0; /* EQP id of left-hand query */ 2249 int iSub2 = 0; /* EQP id of right-hand query */ 2250 #endif 2251 2252 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2253 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2254 */ 2255 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2256 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2257 db = pParse->db; 2258 pPrior = p->pPrior; 2259 dest = *pDest; 2260 if( pPrior->pOrderBy ){ 2261 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2262 selectOpName(p->op)); 2263 rc = 1; 2264 goto multi_select_end; 2265 } 2266 if( pPrior->pLimit ){ 2267 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2268 selectOpName(p->op)); 2269 rc = 1; 2270 goto multi_select_end; 2271 } 2272 2273 v = sqlite3GetVdbe(pParse); 2274 assert( v!=0 ); /* The VDBE already created by calling function */ 2275 2276 /* Create the destination temporary table if necessary 2277 */ 2278 if( dest.eDest==SRT_EphemTab ){ 2279 assert( p->pEList ); 2280 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2281 dest.eDest = SRT_Table; 2282 } 2283 2284 /* Special handling for a compound-select that originates as a VALUES clause. 2285 */ 2286 if( p->selFlags & SF_MultiValue ){ 2287 rc = multiSelectValues(pParse, p, &dest); 2288 goto multi_select_end; 2289 } 2290 2291 /* Make sure all SELECTs in the statement have the same number of elements 2292 ** in their result sets. 2293 */ 2294 assert( p->pEList && pPrior->pEList ); 2295 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2296 2297 #ifndef SQLITE_OMIT_CTE 2298 if( p->selFlags & SF_Recursive ){ 2299 generateWithRecursiveQuery(pParse, p, &dest); 2300 }else 2301 #endif 2302 2303 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2304 */ 2305 if( p->pOrderBy ){ 2306 return multiSelectOrderBy(pParse, p, pDest); 2307 }else 2308 2309 /* Generate code for the left and right SELECT statements. 2310 */ 2311 switch( p->op ){ 2312 case TK_ALL: { 2313 int addr = 0; 2314 int nLimit; 2315 assert( !pPrior->pLimit ); 2316 pPrior->iLimit = p->iLimit; 2317 pPrior->iOffset = p->iOffset; 2318 pPrior->pLimit = p->pLimit; 2319 pPrior->pOffset = p->pOffset; 2320 explainSetInteger(iSub1, pParse->iNextSelectId); 2321 rc = sqlite3Select(pParse, pPrior, &dest); 2322 p->pLimit = 0; 2323 p->pOffset = 0; 2324 if( rc ){ 2325 goto multi_select_end; 2326 } 2327 p->pPrior = 0; 2328 p->iLimit = pPrior->iLimit; 2329 p->iOffset = pPrior->iOffset; 2330 if( p->iLimit ){ 2331 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2332 VdbeComment((v, "Jump ahead if LIMIT reached")); 2333 if( p->iOffset ){ 2334 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2335 p->iLimit, p->iOffset+1, p->iOffset); 2336 } 2337 } 2338 explainSetInteger(iSub2, pParse->iNextSelectId); 2339 rc = sqlite3Select(pParse, p, &dest); 2340 testcase( rc!=SQLITE_OK ); 2341 pDelete = p->pPrior; 2342 p->pPrior = pPrior; 2343 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2344 if( pPrior->pLimit 2345 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2346 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2347 ){ 2348 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2349 } 2350 if( addr ){ 2351 sqlite3VdbeJumpHere(v, addr); 2352 } 2353 break; 2354 } 2355 case TK_EXCEPT: 2356 case TK_UNION: { 2357 int unionTab; /* Cursor number of the temporary table holding result */ 2358 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2359 int priorOp; /* The SRT_ operation to apply to prior selects */ 2360 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2361 int addr; 2362 SelectDest uniondest; 2363 2364 testcase( p->op==TK_EXCEPT ); 2365 testcase( p->op==TK_UNION ); 2366 priorOp = SRT_Union; 2367 if( dest.eDest==priorOp ){ 2368 /* We can reuse a temporary table generated by a SELECT to our 2369 ** right. 2370 */ 2371 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2372 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2373 unionTab = dest.iSDParm; 2374 }else{ 2375 /* We will need to create our own temporary table to hold the 2376 ** intermediate results. 2377 */ 2378 unionTab = pParse->nTab++; 2379 assert( p->pOrderBy==0 ); 2380 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2381 assert( p->addrOpenEphm[0] == -1 ); 2382 p->addrOpenEphm[0] = addr; 2383 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2384 assert( p->pEList ); 2385 } 2386 2387 /* Code the SELECT statements to our left 2388 */ 2389 assert( !pPrior->pOrderBy ); 2390 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2391 explainSetInteger(iSub1, pParse->iNextSelectId); 2392 rc = sqlite3Select(pParse, pPrior, &uniondest); 2393 if( rc ){ 2394 goto multi_select_end; 2395 } 2396 2397 /* Code the current SELECT statement 2398 */ 2399 if( p->op==TK_EXCEPT ){ 2400 op = SRT_Except; 2401 }else{ 2402 assert( p->op==TK_UNION ); 2403 op = SRT_Union; 2404 } 2405 p->pPrior = 0; 2406 pLimit = p->pLimit; 2407 p->pLimit = 0; 2408 pOffset = p->pOffset; 2409 p->pOffset = 0; 2410 uniondest.eDest = op; 2411 explainSetInteger(iSub2, pParse->iNextSelectId); 2412 rc = sqlite3Select(pParse, p, &uniondest); 2413 testcase( rc!=SQLITE_OK ); 2414 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2415 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2416 sqlite3ExprListDelete(db, p->pOrderBy); 2417 pDelete = p->pPrior; 2418 p->pPrior = pPrior; 2419 p->pOrderBy = 0; 2420 if( p->op==TK_UNION ){ 2421 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2422 } 2423 sqlite3ExprDelete(db, p->pLimit); 2424 p->pLimit = pLimit; 2425 p->pOffset = pOffset; 2426 p->iLimit = 0; 2427 p->iOffset = 0; 2428 2429 /* Convert the data in the temporary table into whatever form 2430 ** it is that we currently need. 2431 */ 2432 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2433 if( dest.eDest!=priorOp ){ 2434 int iCont, iBreak, iStart; 2435 assert( p->pEList ); 2436 if( dest.eDest==SRT_Output ){ 2437 Select *pFirst = p; 2438 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2439 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2440 } 2441 iBreak = sqlite3VdbeMakeLabel(v); 2442 iCont = sqlite3VdbeMakeLabel(v); 2443 computeLimitRegisters(pParse, p, iBreak); 2444 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2445 iStart = sqlite3VdbeCurrentAddr(v); 2446 selectInnerLoop(pParse, p, p->pEList, unionTab, 2447 0, 0, &dest, iCont, iBreak); 2448 sqlite3VdbeResolveLabel(v, iCont); 2449 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2450 sqlite3VdbeResolveLabel(v, iBreak); 2451 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2452 } 2453 break; 2454 } 2455 default: assert( p->op==TK_INTERSECT ); { 2456 int tab1, tab2; 2457 int iCont, iBreak, iStart; 2458 Expr *pLimit, *pOffset; 2459 int addr; 2460 SelectDest intersectdest; 2461 int r1; 2462 2463 /* INTERSECT is different from the others since it requires 2464 ** two temporary tables. Hence it has its own case. Begin 2465 ** by allocating the tables we will need. 2466 */ 2467 tab1 = pParse->nTab++; 2468 tab2 = pParse->nTab++; 2469 assert( p->pOrderBy==0 ); 2470 2471 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2472 assert( p->addrOpenEphm[0] == -1 ); 2473 p->addrOpenEphm[0] = addr; 2474 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2475 assert( p->pEList ); 2476 2477 /* Code the SELECTs to our left into temporary table "tab1". 2478 */ 2479 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2480 explainSetInteger(iSub1, pParse->iNextSelectId); 2481 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2482 if( rc ){ 2483 goto multi_select_end; 2484 } 2485 2486 /* Code the current SELECT into temporary table "tab2" 2487 */ 2488 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2489 assert( p->addrOpenEphm[1] == -1 ); 2490 p->addrOpenEphm[1] = addr; 2491 p->pPrior = 0; 2492 pLimit = p->pLimit; 2493 p->pLimit = 0; 2494 pOffset = p->pOffset; 2495 p->pOffset = 0; 2496 intersectdest.iSDParm = tab2; 2497 explainSetInteger(iSub2, pParse->iNextSelectId); 2498 rc = sqlite3Select(pParse, p, &intersectdest); 2499 testcase( rc!=SQLITE_OK ); 2500 pDelete = p->pPrior; 2501 p->pPrior = pPrior; 2502 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2503 sqlite3ExprDelete(db, p->pLimit); 2504 p->pLimit = pLimit; 2505 p->pOffset = pOffset; 2506 2507 /* Generate code to take the intersection of the two temporary 2508 ** tables. 2509 */ 2510 assert( p->pEList ); 2511 if( dest.eDest==SRT_Output ){ 2512 Select *pFirst = p; 2513 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2514 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2515 } 2516 iBreak = sqlite3VdbeMakeLabel(v); 2517 iCont = sqlite3VdbeMakeLabel(v); 2518 computeLimitRegisters(pParse, p, iBreak); 2519 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2520 r1 = sqlite3GetTempReg(pParse); 2521 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2522 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2523 sqlite3ReleaseTempReg(pParse, r1); 2524 selectInnerLoop(pParse, p, p->pEList, tab1, 2525 0, 0, &dest, iCont, iBreak); 2526 sqlite3VdbeResolveLabel(v, iCont); 2527 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2528 sqlite3VdbeResolveLabel(v, iBreak); 2529 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2530 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2531 break; 2532 } 2533 } 2534 2535 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2536 2537 /* Compute collating sequences used by 2538 ** temporary tables needed to implement the compound select. 2539 ** Attach the KeyInfo structure to all temporary tables. 2540 ** 2541 ** This section is run by the right-most SELECT statement only. 2542 ** SELECT statements to the left always skip this part. The right-most 2543 ** SELECT might also skip this part if it has no ORDER BY clause and 2544 ** no temp tables are required. 2545 */ 2546 if( p->selFlags & SF_UsesEphemeral ){ 2547 int i; /* Loop counter */ 2548 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2549 Select *pLoop; /* For looping through SELECT statements */ 2550 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2551 int nCol; /* Number of columns in result set */ 2552 2553 assert( p->pNext==0 ); 2554 nCol = p->pEList->nExpr; 2555 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2556 if( !pKeyInfo ){ 2557 rc = SQLITE_NOMEM_BKPT; 2558 goto multi_select_end; 2559 } 2560 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2561 *apColl = multiSelectCollSeq(pParse, p, i); 2562 if( 0==*apColl ){ 2563 *apColl = db->pDfltColl; 2564 } 2565 } 2566 2567 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2568 for(i=0; i<2; i++){ 2569 int addr = pLoop->addrOpenEphm[i]; 2570 if( addr<0 ){ 2571 /* If [0] is unused then [1] is also unused. So we can 2572 ** always safely abort as soon as the first unused slot is found */ 2573 assert( pLoop->addrOpenEphm[1]<0 ); 2574 break; 2575 } 2576 sqlite3VdbeChangeP2(v, addr, nCol); 2577 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2578 P4_KEYINFO); 2579 pLoop->addrOpenEphm[i] = -1; 2580 } 2581 } 2582 sqlite3KeyInfoUnref(pKeyInfo); 2583 } 2584 2585 multi_select_end: 2586 pDest->iSdst = dest.iSdst; 2587 pDest->nSdst = dest.nSdst; 2588 sqlite3SelectDelete(db, pDelete); 2589 return rc; 2590 } 2591 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2592 2593 /* 2594 ** Error message for when two or more terms of a compound select have different 2595 ** size result sets. 2596 */ 2597 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2598 if( p->selFlags & SF_Values ){ 2599 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2600 }else{ 2601 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2602 " do not have the same number of result columns", selectOpName(p->op)); 2603 } 2604 } 2605 2606 /* 2607 ** Code an output subroutine for a coroutine implementation of a 2608 ** SELECT statment. 2609 ** 2610 ** The data to be output is contained in pIn->iSdst. There are 2611 ** pIn->nSdst columns to be output. pDest is where the output should 2612 ** be sent. 2613 ** 2614 ** regReturn is the number of the register holding the subroutine 2615 ** return address. 2616 ** 2617 ** If regPrev>0 then it is the first register in a vector that 2618 ** records the previous output. mem[regPrev] is a flag that is false 2619 ** if there has been no previous output. If regPrev>0 then code is 2620 ** generated to suppress duplicates. pKeyInfo is used for comparing 2621 ** keys. 2622 ** 2623 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2624 ** iBreak. 2625 */ 2626 static int generateOutputSubroutine( 2627 Parse *pParse, /* Parsing context */ 2628 Select *p, /* The SELECT statement */ 2629 SelectDest *pIn, /* Coroutine supplying data */ 2630 SelectDest *pDest, /* Where to send the data */ 2631 int regReturn, /* The return address register */ 2632 int regPrev, /* Previous result register. No uniqueness if 0 */ 2633 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2634 int iBreak /* Jump here if we hit the LIMIT */ 2635 ){ 2636 Vdbe *v = pParse->pVdbe; 2637 int iContinue; 2638 int addr; 2639 2640 addr = sqlite3VdbeCurrentAddr(v); 2641 iContinue = sqlite3VdbeMakeLabel(v); 2642 2643 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2644 */ 2645 if( regPrev ){ 2646 int addr1, addr2; 2647 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2648 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2649 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2650 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2651 sqlite3VdbeJumpHere(v, addr1); 2652 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2653 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2654 } 2655 if( pParse->db->mallocFailed ) return 0; 2656 2657 /* Suppress the first OFFSET entries if there is an OFFSET clause 2658 */ 2659 codeOffset(v, p->iOffset, iContinue); 2660 2661 assert( pDest->eDest!=SRT_Exists ); 2662 assert( pDest->eDest!=SRT_Table ); 2663 switch( pDest->eDest ){ 2664 /* Store the result as data using a unique key. 2665 */ 2666 case SRT_EphemTab: { 2667 int r1 = sqlite3GetTempReg(pParse); 2668 int r2 = sqlite3GetTempReg(pParse); 2669 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2670 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2671 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2672 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2673 sqlite3ReleaseTempReg(pParse, r2); 2674 sqlite3ReleaseTempReg(pParse, r1); 2675 break; 2676 } 2677 2678 #ifndef SQLITE_OMIT_SUBQUERY 2679 /* If we are creating a set for an "expr IN (SELECT ...)". 2680 */ 2681 case SRT_Set: { 2682 int r1; 2683 testcase( pIn->nSdst>1 ); 2684 r1 = sqlite3GetTempReg(pParse); 2685 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2686 r1, pDest->zAffSdst, pIn->nSdst); 2687 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2688 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2689 pIn->iSdst, pIn->nSdst); 2690 sqlite3ReleaseTempReg(pParse, r1); 2691 break; 2692 } 2693 2694 /* If this is a scalar select that is part of an expression, then 2695 ** store the results in the appropriate memory cell and break out 2696 ** of the scan loop. 2697 */ 2698 case SRT_Mem: { 2699 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2700 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2701 /* The LIMIT clause will jump out of the loop for us */ 2702 break; 2703 } 2704 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2705 2706 /* The results are stored in a sequence of registers 2707 ** starting at pDest->iSdst. Then the co-routine yields. 2708 */ 2709 case SRT_Coroutine: { 2710 if( pDest->iSdst==0 ){ 2711 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2712 pDest->nSdst = pIn->nSdst; 2713 } 2714 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2715 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2716 break; 2717 } 2718 2719 /* If none of the above, then the result destination must be 2720 ** SRT_Output. This routine is never called with any other 2721 ** destination other than the ones handled above or SRT_Output. 2722 ** 2723 ** For SRT_Output, results are stored in a sequence of registers. 2724 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2725 ** return the next row of result. 2726 */ 2727 default: { 2728 assert( pDest->eDest==SRT_Output ); 2729 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2730 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2731 break; 2732 } 2733 } 2734 2735 /* Jump to the end of the loop if the LIMIT is reached. 2736 */ 2737 if( p->iLimit ){ 2738 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2739 } 2740 2741 /* Generate the subroutine return 2742 */ 2743 sqlite3VdbeResolveLabel(v, iContinue); 2744 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2745 2746 return addr; 2747 } 2748 2749 /* 2750 ** Alternative compound select code generator for cases when there 2751 ** is an ORDER BY clause. 2752 ** 2753 ** We assume a query of the following form: 2754 ** 2755 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2756 ** 2757 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2758 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2759 ** co-routines. Then run the co-routines in parallel and merge the results 2760 ** into the output. In addition to the two coroutines (called selectA and 2761 ** selectB) there are 7 subroutines: 2762 ** 2763 ** outA: Move the output of the selectA coroutine into the output 2764 ** of the compound query. 2765 ** 2766 ** outB: Move the output of the selectB coroutine into the output 2767 ** of the compound query. (Only generated for UNION and 2768 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2769 ** appears only in B.) 2770 ** 2771 ** AltB: Called when there is data from both coroutines and A<B. 2772 ** 2773 ** AeqB: Called when there is data from both coroutines and A==B. 2774 ** 2775 ** AgtB: Called when there is data from both coroutines and A>B. 2776 ** 2777 ** EofA: Called when data is exhausted from selectA. 2778 ** 2779 ** EofB: Called when data is exhausted from selectB. 2780 ** 2781 ** The implementation of the latter five subroutines depend on which 2782 ** <operator> is used: 2783 ** 2784 ** 2785 ** UNION ALL UNION EXCEPT INTERSECT 2786 ** ------------- ----------------- -------------- ----------------- 2787 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2788 ** 2789 ** AeqB: outA, nextA nextA nextA outA, nextA 2790 ** 2791 ** AgtB: outB, nextB outB, nextB nextB nextB 2792 ** 2793 ** EofA: outB, nextB outB, nextB halt halt 2794 ** 2795 ** EofB: outA, nextA outA, nextA outA, nextA halt 2796 ** 2797 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2798 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2799 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2800 ** following nextX causes a jump to the end of the select processing. 2801 ** 2802 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2803 ** within the output subroutine. The regPrev register set holds the previously 2804 ** output value. A comparison is made against this value and the output 2805 ** is skipped if the next results would be the same as the previous. 2806 ** 2807 ** The implementation plan is to implement the two coroutines and seven 2808 ** subroutines first, then put the control logic at the bottom. Like this: 2809 ** 2810 ** goto Init 2811 ** coA: coroutine for left query (A) 2812 ** coB: coroutine for right query (B) 2813 ** outA: output one row of A 2814 ** outB: output one row of B (UNION and UNION ALL only) 2815 ** EofA: ... 2816 ** EofB: ... 2817 ** AltB: ... 2818 ** AeqB: ... 2819 ** AgtB: ... 2820 ** Init: initialize coroutine registers 2821 ** yield coA 2822 ** if eof(A) goto EofA 2823 ** yield coB 2824 ** if eof(B) goto EofB 2825 ** Cmpr: Compare A, B 2826 ** Jump AltB, AeqB, AgtB 2827 ** End: ... 2828 ** 2829 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2830 ** actually called using Gosub and they do not Return. EofA and EofB loop 2831 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2832 ** and AgtB jump to either L2 or to one of EofA or EofB. 2833 */ 2834 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2835 static int multiSelectOrderBy( 2836 Parse *pParse, /* Parsing context */ 2837 Select *p, /* The right-most of SELECTs to be coded */ 2838 SelectDest *pDest /* What to do with query results */ 2839 ){ 2840 int i, j; /* Loop counters */ 2841 Select *pPrior; /* Another SELECT immediately to our left */ 2842 Vdbe *v; /* Generate code to this VDBE */ 2843 SelectDest destA; /* Destination for coroutine A */ 2844 SelectDest destB; /* Destination for coroutine B */ 2845 int regAddrA; /* Address register for select-A coroutine */ 2846 int regAddrB; /* Address register for select-B coroutine */ 2847 int addrSelectA; /* Address of the select-A coroutine */ 2848 int addrSelectB; /* Address of the select-B coroutine */ 2849 int regOutA; /* Address register for the output-A subroutine */ 2850 int regOutB; /* Address register for the output-B subroutine */ 2851 int addrOutA; /* Address of the output-A subroutine */ 2852 int addrOutB = 0; /* Address of the output-B subroutine */ 2853 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2854 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2855 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2856 int addrAltB; /* Address of the A<B subroutine */ 2857 int addrAeqB; /* Address of the A==B subroutine */ 2858 int addrAgtB; /* Address of the A>B subroutine */ 2859 int regLimitA; /* Limit register for select-A */ 2860 int regLimitB; /* Limit register for select-A */ 2861 int regPrev; /* A range of registers to hold previous output */ 2862 int savedLimit; /* Saved value of p->iLimit */ 2863 int savedOffset; /* Saved value of p->iOffset */ 2864 int labelCmpr; /* Label for the start of the merge algorithm */ 2865 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2866 int addr1; /* Jump instructions that get retargetted */ 2867 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2868 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2869 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2870 sqlite3 *db; /* Database connection */ 2871 ExprList *pOrderBy; /* The ORDER BY clause */ 2872 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2873 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2874 #ifndef SQLITE_OMIT_EXPLAIN 2875 int iSub1; /* EQP id of left-hand query */ 2876 int iSub2; /* EQP id of right-hand query */ 2877 #endif 2878 2879 assert( p->pOrderBy!=0 ); 2880 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2881 db = pParse->db; 2882 v = pParse->pVdbe; 2883 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2884 labelEnd = sqlite3VdbeMakeLabel(v); 2885 labelCmpr = sqlite3VdbeMakeLabel(v); 2886 2887 2888 /* Patch up the ORDER BY clause 2889 */ 2890 op = p->op; 2891 pPrior = p->pPrior; 2892 assert( pPrior->pOrderBy==0 ); 2893 pOrderBy = p->pOrderBy; 2894 assert( pOrderBy ); 2895 nOrderBy = pOrderBy->nExpr; 2896 2897 /* For operators other than UNION ALL we have to make sure that 2898 ** the ORDER BY clause covers every term of the result set. Add 2899 ** terms to the ORDER BY clause as necessary. 2900 */ 2901 if( op!=TK_ALL ){ 2902 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2903 struct ExprList_item *pItem; 2904 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2905 assert( pItem->u.x.iOrderByCol>0 ); 2906 if( pItem->u.x.iOrderByCol==i ) break; 2907 } 2908 if( j==nOrderBy ){ 2909 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2910 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2911 pNew->flags |= EP_IntValue; 2912 pNew->u.iValue = i; 2913 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2914 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2915 } 2916 } 2917 } 2918 2919 /* Compute the comparison permutation and keyinfo that is used with 2920 ** the permutation used to determine if the next 2921 ** row of results comes from selectA or selectB. Also add explicit 2922 ** collations to the ORDER BY clause terms so that when the subqueries 2923 ** to the right and the left are evaluated, they use the correct 2924 ** collation. 2925 */ 2926 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2927 if( aPermute ){ 2928 struct ExprList_item *pItem; 2929 aPermute[0] = nOrderBy; 2930 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2931 assert( pItem->u.x.iOrderByCol>0 ); 2932 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2933 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2934 } 2935 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2936 }else{ 2937 pKeyMerge = 0; 2938 } 2939 2940 /* Reattach the ORDER BY clause to the query. 2941 */ 2942 p->pOrderBy = pOrderBy; 2943 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2944 2945 /* Allocate a range of temporary registers and the KeyInfo needed 2946 ** for the logic that removes duplicate result rows when the 2947 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2948 */ 2949 if( op==TK_ALL ){ 2950 regPrev = 0; 2951 }else{ 2952 int nExpr = p->pEList->nExpr; 2953 assert( nOrderBy>=nExpr || db->mallocFailed ); 2954 regPrev = pParse->nMem+1; 2955 pParse->nMem += nExpr+1; 2956 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2957 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2958 if( pKeyDup ){ 2959 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2960 for(i=0; i<nExpr; i++){ 2961 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2962 pKeyDup->aSortOrder[i] = 0; 2963 } 2964 } 2965 } 2966 2967 /* Separate the left and the right query from one another 2968 */ 2969 p->pPrior = 0; 2970 pPrior->pNext = 0; 2971 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2972 if( pPrior->pPrior==0 ){ 2973 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2974 } 2975 2976 /* Compute the limit registers */ 2977 computeLimitRegisters(pParse, p, labelEnd); 2978 if( p->iLimit && op==TK_ALL ){ 2979 regLimitA = ++pParse->nMem; 2980 regLimitB = ++pParse->nMem; 2981 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2982 regLimitA); 2983 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2984 }else{ 2985 regLimitA = regLimitB = 0; 2986 } 2987 sqlite3ExprDelete(db, p->pLimit); 2988 p->pLimit = 0; 2989 sqlite3ExprDelete(db, p->pOffset); 2990 p->pOffset = 0; 2991 2992 regAddrA = ++pParse->nMem; 2993 regAddrB = ++pParse->nMem; 2994 regOutA = ++pParse->nMem; 2995 regOutB = ++pParse->nMem; 2996 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2997 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2998 2999 /* Generate a coroutine to evaluate the SELECT statement to the 3000 ** left of the compound operator - the "A" select. 3001 */ 3002 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3003 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3004 VdbeComment((v, "left SELECT")); 3005 pPrior->iLimit = regLimitA; 3006 explainSetInteger(iSub1, pParse->iNextSelectId); 3007 sqlite3Select(pParse, pPrior, &destA); 3008 sqlite3VdbeEndCoroutine(v, regAddrA); 3009 sqlite3VdbeJumpHere(v, addr1); 3010 3011 /* Generate a coroutine to evaluate the SELECT statement on 3012 ** the right - the "B" select 3013 */ 3014 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3015 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3016 VdbeComment((v, "right SELECT")); 3017 savedLimit = p->iLimit; 3018 savedOffset = p->iOffset; 3019 p->iLimit = regLimitB; 3020 p->iOffset = 0; 3021 explainSetInteger(iSub2, pParse->iNextSelectId); 3022 sqlite3Select(pParse, p, &destB); 3023 p->iLimit = savedLimit; 3024 p->iOffset = savedOffset; 3025 sqlite3VdbeEndCoroutine(v, regAddrB); 3026 3027 /* Generate a subroutine that outputs the current row of the A 3028 ** select as the next output row of the compound select. 3029 */ 3030 VdbeNoopComment((v, "Output routine for A")); 3031 addrOutA = generateOutputSubroutine(pParse, 3032 p, &destA, pDest, regOutA, 3033 regPrev, pKeyDup, labelEnd); 3034 3035 /* Generate a subroutine that outputs the current row of the B 3036 ** select as the next output row of the compound select. 3037 */ 3038 if( op==TK_ALL || op==TK_UNION ){ 3039 VdbeNoopComment((v, "Output routine for B")); 3040 addrOutB = generateOutputSubroutine(pParse, 3041 p, &destB, pDest, regOutB, 3042 regPrev, pKeyDup, labelEnd); 3043 } 3044 sqlite3KeyInfoUnref(pKeyDup); 3045 3046 /* Generate a subroutine to run when the results from select A 3047 ** are exhausted and only data in select B remains. 3048 */ 3049 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3050 addrEofA_noB = addrEofA = labelEnd; 3051 }else{ 3052 VdbeNoopComment((v, "eof-A subroutine")); 3053 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3054 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3055 VdbeCoverage(v); 3056 sqlite3VdbeGoto(v, addrEofA); 3057 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3058 } 3059 3060 /* Generate a subroutine to run when the results from select B 3061 ** are exhausted and only data in select A remains. 3062 */ 3063 if( op==TK_INTERSECT ){ 3064 addrEofB = addrEofA; 3065 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3066 }else{ 3067 VdbeNoopComment((v, "eof-B subroutine")); 3068 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3069 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3070 sqlite3VdbeGoto(v, addrEofB); 3071 } 3072 3073 /* Generate code to handle the case of A<B 3074 */ 3075 VdbeNoopComment((v, "A-lt-B subroutine")); 3076 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3077 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3078 sqlite3VdbeGoto(v, labelCmpr); 3079 3080 /* Generate code to handle the case of A==B 3081 */ 3082 if( op==TK_ALL ){ 3083 addrAeqB = addrAltB; 3084 }else if( op==TK_INTERSECT ){ 3085 addrAeqB = addrAltB; 3086 addrAltB++; 3087 }else{ 3088 VdbeNoopComment((v, "A-eq-B subroutine")); 3089 addrAeqB = 3090 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3091 sqlite3VdbeGoto(v, labelCmpr); 3092 } 3093 3094 /* Generate code to handle the case of A>B 3095 */ 3096 VdbeNoopComment((v, "A-gt-B subroutine")); 3097 addrAgtB = sqlite3VdbeCurrentAddr(v); 3098 if( op==TK_ALL || op==TK_UNION ){ 3099 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3100 } 3101 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3102 sqlite3VdbeGoto(v, labelCmpr); 3103 3104 /* This code runs once to initialize everything. 3105 */ 3106 sqlite3VdbeJumpHere(v, addr1); 3107 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3108 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3109 3110 /* Implement the main merge loop 3111 */ 3112 sqlite3VdbeResolveLabel(v, labelCmpr); 3113 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3114 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3115 (char*)pKeyMerge, P4_KEYINFO); 3116 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3117 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3118 3119 /* Jump to the this point in order to terminate the query. 3120 */ 3121 sqlite3VdbeResolveLabel(v, labelEnd); 3122 3123 /* Set the number of output columns 3124 */ 3125 if( pDest->eDest==SRT_Output ){ 3126 Select *pFirst = pPrior; 3127 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3128 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3129 } 3130 3131 /* Reassembly the compound query so that it will be freed correctly 3132 ** by the calling function */ 3133 if( p->pPrior ){ 3134 sqlite3SelectDelete(db, p->pPrior); 3135 } 3136 p->pPrior = pPrior; 3137 pPrior->pNext = p; 3138 3139 /*** TBD: Insert subroutine calls to close cursors on incomplete 3140 **** subqueries ****/ 3141 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3142 return pParse->nErr!=0; 3143 } 3144 #endif 3145 3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3147 3148 /* An instance of the SubstContext object describes an substitution edit 3149 ** to be performed on a parse tree. 3150 ** 3151 ** All references to columns in table iTable are to be replaced by corresponding 3152 ** expressions in pEList. 3153 */ 3154 typedef struct SubstContext { 3155 Parse *pParse; /* The parsing context */ 3156 int iTable; /* Replace references to this table */ 3157 int iNewTable; /* New table number */ 3158 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3159 ExprList *pEList; /* Replacement expressions */ 3160 } SubstContext; 3161 3162 /* Forward Declarations */ 3163 static void substExprList(SubstContext*, ExprList*); 3164 static void substSelect(SubstContext*, Select*, int); 3165 3166 /* 3167 ** Scan through the expression pExpr. Replace every reference to 3168 ** a column in table number iTable with a copy of the iColumn-th 3169 ** entry in pEList. (But leave references to the ROWID column 3170 ** unchanged.) 3171 ** 3172 ** This routine is part of the flattening procedure. A subquery 3173 ** whose result set is defined by pEList appears as entry in the 3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3175 ** FORM clause entry is iTable. This routine makes the necessary 3176 ** changes to pExpr so that it refers directly to the source table 3177 ** of the subquery rather the result set of the subquery. 3178 */ 3179 static Expr *substExpr( 3180 SubstContext *pSubst, /* Description of the substitution */ 3181 Expr *pExpr /* Expr in which substitution occurs */ 3182 ){ 3183 if( pExpr==0 ) return 0; 3184 if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){ 3185 pExpr->iRightJoinTable = pSubst->iNewTable; 3186 } 3187 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3188 if( pExpr->iColumn<0 ){ 3189 pExpr->op = TK_NULL; 3190 }else{ 3191 Expr *pNew; 3192 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3193 Expr ifNullRow; 3194 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3195 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3196 if( sqlite3ExprIsVector(pCopy) ){ 3197 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3198 }else{ 3199 sqlite3 *db = pSubst->pParse->db; 3200 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3201 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3202 ifNullRow.op = TK_IF_NULL_ROW; 3203 ifNullRow.pLeft = pCopy; 3204 ifNullRow.iTable = pSubst->iNewTable; 3205 pCopy = &ifNullRow; 3206 } 3207 pNew = sqlite3ExprDup(db, pCopy, 0); 3208 if( pNew && (pExpr->flags & EP_FromJoin) ){ 3209 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3210 pNew->flags |= EP_FromJoin; 3211 } 3212 sqlite3ExprDelete(db, pExpr); 3213 pExpr = pNew; 3214 } 3215 } 3216 }else{ 3217 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3218 pExpr->iTable = pSubst->iNewTable; 3219 } 3220 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3221 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3222 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3223 substSelect(pSubst, pExpr->x.pSelect, 1); 3224 }else{ 3225 substExprList(pSubst, pExpr->x.pList); 3226 } 3227 } 3228 return pExpr; 3229 } 3230 static void substExprList( 3231 SubstContext *pSubst, /* Description of the substitution */ 3232 ExprList *pList /* List to scan and in which to make substitutes */ 3233 ){ 3234 int i; 3235 if( pList==0 ) return; 3236 for(i=0; i<pList->nExpr; i++){ 3237 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3238 } 3239 } 3240 static void substSelect( 3241 SubstContext *pSubst, /* Description of the substitution */ 3242 Select *p, /* SELECT statement in which to make substitutions */ 3243 int doPrior /* Do substitutes on p->pPrior too */ 3244 ){ 3245 SrcList *pSrc; 3246 struct SrcList_item *pItem; 3247 int i; 3248 if( !p ) return; 3249 do{ 3250 substExprList(pSubst, p->pEList); 3251 substExprList(pSubst, p->pGroupBy); 3252 substExprList(pSubst, p->pOrderBy); 3253 p->pHaving = substExpr(pSubst, p->pHaving); 3254 p->pWhere = substExpr(pSubst, p->pWhere); 3255 pSrc = p->pSrc; 3256 assert( pSrc!=0 ); 3257 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3258 substSelect(pSubst, pItem->pSelect, 1); 3259 if( pItem->fg.isTabFunc ){ 3260 substExprList(pSubst, pItem->u1.pFuncArg); 3261 } 3262 } 3263 }while( doPrior && (p = p->pPrior)!=0 ); 3264 } 3265 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3266 3267 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3268 /* 3269 ** This routine attempts to flatten subqueries as a performance optimization. 3270 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3271 ** 3272 ** To understand the concept of flattening, consider the following 3273 ** query: 3274 ** 3275 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3276 ** 3277 ** The default way of implementing this query is to execute the 3278 ** subquery first and store the results in a temporary table, then 3279 ** run the outer query on that temporary table. This requires two 3280 ** passes over the data. Furthermore, because the temporary table 3281 ** has no indices, the WHERE clause on the outer query cannot be 3282 ** optimized. 3283 ** 3284 ** This routine attempts to rewrite queries such as the above into 3285 ** a single flat select, like this: 3286 ** 3287 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3288 ** 3289 ** The code generated for this simplification gives the same result 3290 ** but only has to scan the data once. And because indices might 3291 ** exist on the table t1, a complete scan of the data might be 3292 ** avoided. 3293 ** 3294 ** Flattening is only attempted if all of the following are true: 3295 ** 3296 ** (1) The subquery and the outer query do not both use aggregates. 3297 ** 3298 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3299 ** and (2b) the outer query does not use subqueries other than the one 3300 ** FROM-clause subquery that is a candidate for flattening. (2b is 3301 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3302 ** 3303 ** (3) The subquery is not the right operand of a LEFT JOIN 3304 ** or the subquery is not itself a join and the outer query is not 3305 ** an aggregate. 3306 ** 3307 ** (4) The subquery is not DISTINCT. 3308 ** 3309 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3310 ** sub-queries that were excluded from this optimization. Restriction 3311 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3312 ** 3313 ** (6) The subquery does not use aggregates or the outer query is not 3314 ** DISTINCT. 3315 ** 3316 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3317 ** A FROM clause, consider adding a FROM clause with the special 3318 ** table sqlite_once that consists of a single row containing a 3319 ** single NULL. 3320 ** 3321 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3322 ** 3323 ** (9) The subquery does not use LIMIT or the outer query does not use 3324 ** aggregates. 3325 ** 3326 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3327 ** accidently carried the comment forward until 2014-09-15. Original 3328 ** text: "The subquery does not use aggregates or the outer query 3329 ** does not use LIMIT." 3330 ** 3331 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3332 ** 3333 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3334 ** a separate restriction deriving from ticket #350. 3335 ** 3336 ** (13) The subquery and outer query do not both use LIMIT. 3337 ** 3338 ** (14) The subquery does not use OFFSET. 3339 ** 3340 ** (15) The outer query is not part of a compound select or the 3341 ** subquery does not have a LIMIT clause. 3342 ** (See ticket #2339 and ticket [02a8e81d44]). 3343 ** 3344 ** (16) The outer query is not an aggregate or the subquery does 3345 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3346 ** until we introduced the group_concat() function. 3347 ** 3348 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3349 ** compound clause made up entirely of non-aggregate queries, and 3350 ** the parent query: 3351 ** 3352 ** * is not itself part of a compound select, 3353 ** * is not an aggregate or DISTINCT query, and 3354 ** * is not a join 3355 ** 3356 ** The parent and sub-query may contain WHERE clauses. Subject to 3357 ** rules (11), (13) and (14), they may also contain ORDER BY, 3358 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3359 ** operator other than UNION ALL because all the other compound 3360 ** operators have an implied DISTINCT which is disallowed by 3361 ** restriction (4). 3362 ** 3363 ** Also, each component of the sub-query must return the same number 3364 ** of result columns. This is actually a requirement for any compound 3365 ** SELECT statement, but all the code here does is make sure that no 3366 ** such (illegal) sub-query is flattened. The caller will detect the 3367 ** syntax error and return a detailed message. 3368 ** 3369 ** (18) If the sub-query is a compound select, then all terms of the 3370 ** ORDER by clause of the parent must be simple references to 3371 ** columns of the sub-query. 3372 ** 3373 ** (19) The subquery does not use LIMIT or the outer query does not 3374 ** have a WHERE clause. 3375 ** 3376 ** (20) If the sub-query is a compound select, then it must not use 3377 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3378 ** somewhat by saying that the terms of the ORDER BY clause must 3379 ** appear as unmodified result columns in the outer query. But we 3380 ** have other optimizations in mind to deal with that case. 3381 ** 3382 ** (21) The subquery does not use LIMIT or the outer query is not 3383 ** DISTINCT. (See ticket [752e1646fc]). 3384 ** 3385 ** (22) The subquery is not a recursive CTE. 3386 ** 3387 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3388 ** compound query. This restriction is because transforming the 3389 ** parent to a compound query confuses the code that handles 3390 ** recursive queries in multiSelect(). 3391 ** 3392 ** (24) The subquery is not an aggregate that uses the built-in min() or 3393 ** or max() functions. (Without this restriction, a query like: 3394 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3395 ** return the value X for which Y was maximal.) 3396 ** 3397 ** 3398 ** In this routine, the "p" parameter is a pointer to the outer query. 3399 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3400 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3401 ** 3402 ** If flattening is not attempted, this routine is a no-op and returns 0. 3403 ** If flattening is attempted this routine returns 1. 3404 ** 3405 ** All of the expression analysis must occur on both the outer query and 3406 ** the subquery before this routine runs. 3407 */ 3408 static int flattenSubquery( 3409 Parse *pParse, /* Parsing context */ 3410 Select *p, /* The parent or outer SELECT statement */ 3411 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3412 int isAgg, /* True if outer SELECT uses aggregate functions */ 3413 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3414 ){ 3415 const char *zSavedAuthContext = pParse->zAuthContext; 3416 Select *pParent; /* Current UNION ALL term of the other query */ 3417 Select *pSub; /* The inner query or "subquery" */ 3418 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3419 SrcList *pSrc; /* The FROM clause of the outer query */ 3420 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3421 ExprList *pList; /* The result set of the outer query */ 3422 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3423 int iNewParent = -1;/* Replacement table for iParent */ 3424 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3425 int i; /* Loop counter */ 3426 Expr *pWhere; /* The WHERE clause */ 3427 struct SrcList_item *pSubitem; /* The subquery */ 3428 sqlite3 *db = pParse->db; 3429 3430 /* Check to see if flattening is permitted. Return 0 if not. 3431 */ 3432 assert( p!=0 ); 3433 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3434 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3435 pSrc = p->pSrc; 3436 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3437 pSubitem = &pSrc->a[iFrom]; 3438 iParent = pSubitem->iCursor; 3439 pSub = pSubitem->pSelect; 3440 assert( pSub!=0 ); 3441 if( subqueryIsAgg ){ 3442 if( isAgg ) return 0; /* Restriction (1) */ 3443 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3444 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3445 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3446 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3447 ){ 3448 return 0; /* Restriction (2b) */ 3449 } 3450 } 3451 3452 pSubSrc = pSub->pSrc; 3453 assert( pSubSrc ); 3454 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3455 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3456 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3457 ** became arbitrary expressions, we were forced to add restrictions (13) 3458 ** and (14). */ 3459 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3460 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3461 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3462 return 0; /* Restriction (15) */ 3463 } 3464 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3465 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3466 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3467 return 0; /* Restrictions (8)(9) */ 3468 } 3469 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3470 return 0; /* Restriction (6) */ 3471 } 3472 if( p->pOrderBy && pSub->pOrderBy ){ 3473 return 0; /* Restriction (11) */ 3474 } 3475 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3476 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3477 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3478 return 0; /* Restriction (21) */ 3479 } 3480 testcase( pSub->selFlags & SF_Recursive ); 3481 testcase( pSub->selFlags & SF_MinMaxAgg ); 3482 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3483 return 0; /* Restrictions (22) and (24) */ 3484 } 3485 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3486 return 0; /* Restriction (23) */ 3487 } 3488 3489 /* 3490 ** If the subquery is the right operand of a LEFT JOIN, then the 3491 ** subquery may not be a join itself. Example of why this is not allowed: 3492 ** 3493 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3494 ** 3495 ** If we flatten the above, we would get 3496 ** 3497 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3498 ** 3499 ** which is not at all the same thing. 3500 ** 3501 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3502 ** query cannot be an aggregate. This is an artifact of the way aggregates 3503 ** are processed - there is not mechanism to determine if the LEFT JOIN 3504 ** table should be all-NULL. 3505 ** 3506 ** See also tickets #306, #350, and #3300. 3507 */ 3508 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3509 isLeftJoin = 1; 3510 if( pSubSrc->nSrc>1 || isAgg ){ 3511 return 0; /* Restriction (3) */ 3512 } 3513 } 3514 #ifdef SQLITE_EXTRA_IFNULLROW 3515 else if( iFrom>0 && !isAgg ){ 3516 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3517 ** every reference to any result column from subquery in a join, even though 3518 ** they are not necessary. This will stress-test the OP_IfNullRow opcode. */ 3519 isLeftJoin = -1; 3520 } 3521 #endif 3522 3523 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3524 ** use only the UNION ALL operator. And none of the simple select queries 3525 ** that make up the compound SELECT are allowed to be aggregate or distinct 3526 ** queries. 3527 */ 3528 if( pSub->pPrior ){ 3529 if( pSub->pOrderBy ){ 3530 return 0; /* Restriction 20 */ 3531 } 3532 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3533 return 0; 3534 } 3535 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3536 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3537 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3538 assert( pSub->pSrc!=0 ); 3539 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3540 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3541 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3542 || pSub1->pSrc->nSrc<1 3543 ){ 3544 return 0; 3545 } 3546 testcase( pSub1->pSrc->nSrc>1 ); 3547 } 3548 3549 /* Restriction 18. */ 3550 if( p->pOrderBy ){ 3551 int ii; 3552 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3553 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3554 } 3555 } 3556 } 3557 3558 /***** If we reach this point, flattening is permitted. *****/ 3559 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3560 pSub->zSelName, pSub, iFrom)); 3561 3562 /* Authorize the subquery */ 3563 pParse->zAuthContext = pSubitem->zName; 3564 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3565 testcase( i==SQLITE_DENY ); 3566 pParse->zAuthContext = zSavedAuthContext; 3567 3568 /* If the sub-query is a compound SELECT statement, then (by restrictions 3569 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3570 ** be of the form: 3571 ** 3572 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3573 ** 3574 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3575 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3576 ** OFFSET clauses and joins them to the left-hand-side of the original 3577 ** using UNION ALL operators. In this case N is the number of simple 3578 ** select statements in the compound sub-query. 3579 ** 3580 ** Example: 3581 ** 3582 ** SELECT a+1 FROM ( 3583 ** SELECT x FROM tab 3584 ** UNION ALL 3585 ** SELECT y FROM tab 3586 ** UNION ALL 3587 ** SELECT abs(z*2) FROM tab2 3588 ** ) WHERE a!=5 ORDER BY 1 3589 ** 3590 ** Transformed into: 3591 ** 3592 ** SELECT x+1 FROM tab WHERE x+1!=5 3593 ** UNION ALL 3594 ** SELECT y+1 FROM tab WHERE y+1!=5 3595 ** UNION ALL 3596 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3597 ** ORDER BY 1 3598 ** 3599 ** We call this the "compound-subquery flattening". 3600 */ 3601 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3602 Select *pNew; 3603 ExprList *pOrderBy = p->pOrderBy; 3604 Expr *pLimit = p->pLimit; 3605 Expr *pOffset = p->pOffset; 3606 Select *pPrior = p->pPrior; 3607 p->pOrderBy = 0; 3608 p->pSrc = 0; 3609 p->pPrior = 0; 3610 p->pLimit = 0; 3611 p->pOffset = 0; 3612 pNew = sqlite3SelectDup(db, p, 0); 3613 sqlite3SelectSetName(pNew, pSub->zSelName); 3614 p->pOffset = pOffset; 3615 p->pLimit = pLimit; 3616 p->pOrderBy = pOrderBy; 3617 p->pSrc = pSrc; 3618 p->op = TK_ALL; 3619 if( pNew==0 ){ 3620 p->pPrior = pPrior; 3621 }else{ 3622 pNew->pPrior = pPrior; 3623 if( pPrior ) pPrior->pNext = pNew; 3624 pNew->pNext = p; 3625 p->pPrior = pNew; 3626 SELECTTRACE(2,pParse,p, 3627 ("compound-subquery flattener creates %s.%p as peer\n", 3628 pNew->zSelName, pNew)); 3629 } 3630 if( db->mallocFailed ) return 1; 3631 } 3632 3633 /* Begin flattening the iFrom-th entry of the FROM clause 3634 ** in the outer query. 3635 */ 3636 pSub = pSub1 = pSubitem->pSelect; 3637 3638 /* Delete the transient table structure associated with the 3639 ** subquery 3640 */ 3641 sqlite3DbFree(db, pSubitem->zDatabase); 3642 sqlite3DbFree(db, pSubitem->zName); 3643 sqlite3DbFree(db, pSubitem->zAlias); 3644 pSubitem->zDatabase = 0; 3645 pSubitem->zName = 0; 3646 pSubitem->zAlias = 0; 3647 pSubitem->pSelect = 0; 3648 3649 /* Defer deleting the Table object associated with the 3650 ** subquery until code generation is 3651 ** complete, since there may still exist Expr.pTab entries that 3652 ** refer to the subquery even after flattening. Ticket #3346. 3653 ** 3654 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3655 */ 3656 if( ALWAYS(pSubitem->pTab!=0) ){ 3657 Table *pTabToDel = pSubitem->pTab; 3658 if( pTabToDel->nTabRef==1 ){ 3659 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3660 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3661 pToplevel->pZombieTab = pTabToDel; 3662 }else{ 3663 pTabToDel->nTabRef--; 3664 } 3665 pSubitem->pTab = 0; 3666 } 3667 3668 /* The following loop runs once for each term in a compound-subquery 3669 ** flattening (as described above). If we are doing a different kind 3670 ** of flattening - a flattening other than a compound-subquery flattening - 3671 ** then this loop only runs once. 3672 ** 3673 ** This loop moves all of the FROM elements of the subquery into the 3674 ** the FROM clause of the outer query. Before doing this, remember 3675 ** the cursor number for the original outer query FROM element in 3676 ** iParent. The iParent cursor will never be used. Subsequent code 3677 ** will scan expressions looking for iParent references and replace 3678 ** those references with expressions that resolve to the subquery FROM 3679 ** elements we are now copying in. 3680 */ 3681 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3682 int nSubSrc; 3683 u8 jointype = 0; 3684 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3685 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3686 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3687 3688 if( pSrc ){ 3689 assert( pParent==p ); /* First time through the loop */ 3690 jointype = pSubitem->fg.jointype; 3691 }else{ 3692 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3693 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3694 if( pSrc==0 ){ 3695 assert( db->mallocFailed ); 3696 break; 3697 } 3698 } 3699 3700 /* The subquery uses a single slot of the FROM clause of the outer 3701 ** query. If the subquery has more than one element in its FROM clause, 3702 ** then expand the outer query to make space for it to hold all elements 3703 ** of the subquery. 3704 ** 3705 ** Example: 3706 ** 3707 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3708 ** 3709 ** The outer query has 3 slots in its FROM clause. One slot of the 3710 ** outer query (the middle slot) is used by the subquery. The next 3711 ** block of code will expand the outer query FROM clause to 4 slots. 3712 ** The middle slot is expanded to two slots in order to make space 3713 ** for the two elements in the FROM clause of the subquery. 3714 */ 3715 if( nSubSrc>1 ){ 3716 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3717 if( db->mallocFailed ){ 3718 break; 3719 } 3720 } 3721 3722 /* Transfer the FROM clause terms from the subquery into the 3723 ** outer query. 3724 */ 3725 for(i=0; i<nSubSrc; i++){ 3726 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3727 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3728 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3729 iNewParent = pSubSrc->a[i].iCursor; 3730 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3731 } 3732 pSrc->a[iFrom].fg.jointype = jointype; 3733 3734 /* Now begin substituting subquery result set expressions for 3735 ** references to the iParent in the outer query. 3736 ** 3737 ** Example: 3738 ** 3739 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3740 ** \ \_____________ subquery __________/ / 3741 ** \_____________________ outer query ______________________________/ 3742 ** 3743 ** We look at every expression in the outer query and every place we see 3744 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3745 */ 3746 pList = pParent->pEList; 3747 for(i=0; i<pList->nExpr; i++){ 3748 if( pList->a[i].zName==0 ){ 3749 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3750 sqlite3Dequote(zName); 3751 pList->a[i].zName = zName; 3752 } 3753 } 3754 if( pSub->pOrderBy ){ 3755 /* At this point, any non-zero iOrderByCol values indicate that the 3756 ** ORDER BY column expression is identical to the iOrderByCol'th 3757 ** expression returned by SELECT statement pSub. Since these values 3758 ** do not necessarily correspond to columns in SELECT statement pParent, 3759 ** zero them before transfering the ORDER BY clause. 3760 ** 3761 ** Not doing this may cause an error if a subsequent call to this 3762 ** function attempts to flatten a compound sub-query into pParent 3763 ** (the only way this can happen is if the compound sub-query is 3764 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3765 ExprList *pOrderBy = pSub->pOrderBy; 3766 for(i=0; i<pOrderBy->nExpr; i++){ 3767 pOrderBy->a[i].u.x.iOrderByCol = 0; 3768 } 3769 assert( pParent->pOrderBy==0 ); 3770 assert( pSub->pPrior==0 ); 3771 pParent->pOrderBy = pOrderBy; 3772 pSub->pOrderBy = 0; 3773 } 3774 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3775 if( isLeftJoin>0 ){ 3776 setJoinExpr(pWhere, iNewParent); 3777 } 3778 if( subqueryIsAgg ){ 3779 assert( pParent->pHaving==0 ); 3780 pParent->pHaving = pParent->pWhere; 3781 pParent->pWhere = pWhere; 3782 pParent->pHaving = sqlite3ExprAnd(db, 3783 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3784 ); 3785 assert( pParent->pGroupBy==0 ); 3786 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3787 }else{ 3788 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3789 } 3790 if( db->mallocFailed==0 ){ 3791 SubstContext x; 3792 x.pParse = pParse; 3793 x.iTable = iParent; 3794 x.iNewTable = iNewParent; 3795 x.isLeftJoin = isLeftJoin; 3796 x.pEList = pSub->pEList; 3797 substSelect(&x, pParent, 0); 3798 } 3799 3800 /* The flattened query is distinct if either the inner or the 3801 ** outer query is distinct. 3802 */ 3803 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3804 3805 /* 3806 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3807 ** 3808 ** One is tempted to try to add a and b to combine the limits. But this 3809 ** does not work if either limit is negative. 3810 */ 3811 if( pSub->pLimit ){ 3812 pParent->pLimit = pSub->pLimit; 3813 pSub->pLimit = 0; 3814 } 3815 } 3816 3817 /* Finially, delete what is left of the subquery and return 3818 ** success. 3819 */ 3820 sqlite3SelectDelete(db, pSub1); 3821 3822 #if SELECTTRACE_ENABLED 3823 if( sqlite3SelectTrace & 0x100 ){ 3824 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3825 sqlite3TreeViewSelect(0, p, 0); 3826 } 3827 #endif 3828 3829 return 1; 3830 } 3831 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3832 3833 3834 3835 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3836 /* 3837 ** Make copies of relevant WHERE clause terms of the outer query into 3838 ** the WHERE clause of subquery. Example: 3839 ** 3840 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3841 ** 3842 ** Transformed into: 3843 ** 3844 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3845 ** WHERE x=5 AND y=10; 3846 ** 3847 ** The hope is that the terms added to the inner query will make it more 3848 ** efficient. 3849 ** 3850 ** Do not attempt this optimization if: 3851 ** 3852 ** (1) The inner query is an aggregate. (In that case, we'd really want 3853 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3854 ** inner query. But they probably won't help there so do not bother.) 3855 ** 3856 ** (2) The inner query is the recursive part of a common table expression. 3857 ** 3858 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3859 ** close would change the meaning of the LIMIT). 3860 ** 3861 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3862 ** enforces this restriction since this routine does not have enough 3863 ** information to know.) 3864 ** 3865 ** (5) The WHERE clause expression originates in the ON or USING clause 3866 ** of a LEFT JOIN. 3867 ** 3868 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3869 ** terms are duplicated into the subquery. 3870 */ 3871 static int pushDownWhereTerms( 3872 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3873 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3874 Expr *pWhere, /* The WHERE clause of the outer query */ 3875 int iCursor /* Cursor number of the subquery */ 3876 ){ 3877 Expr *pNew; 3878 int nChng = 0; 3879 Select *pX; /* For looping over compound SELECTs in pSubq */ 3880 if( pWhere==0 ) return 0; 3881 for(pX=pSubq; pX; pX=pX->pPrior){ 3882 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3883 testcase( pX->selFlags & SF_Aggregate ); 3884 testcase( pX->selFlags & SF_Recursive ); 3885 testcase( pX!=pSubq ); 3886 return 0; /* restrictions (1) and (2) */ 3887 } 3888 } 3889 if( pSubq->pLimit!=0 ){ 3890 return 0; /* restriction (3) */ 3891 } 3892 while( pWhere->op==TK_AND ){ 3893 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3894 pWhere = pWhere->pLeft; 3895 } 3896 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3897 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3898 nChng++; 3899 while( pSubq ){ 3900 SubstContext x; 3901 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3902 x.pParse = pParse; 3903 x.iTable = iCursor; 3904 x.iNewTable = iCursor; 3905 x.isLeftJoin = 0; 3906 x.pEList = pSubq->pEList; 3907 pNew = substExpr(&x, pNew); 3908 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3909 pSubq = pSubq->pPrior; 3910 } 3911 } 3912 return nChng; 3913 } 3914 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3915 3916 /* 3917 ** Based on the contents of the AggInfo structure indicated by the first 3918 ** argument, this function checks if the following are true: 3919 ** 3920 ** * the query contains just a single aggregate function, 3921 ** * the aggregate function is either min() or max(), and 3922 ** * the argument to the aggregate function is a column value. 3923 ** 3924 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3925 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3926 ** list of arguments passed to the aggregate before returning. 3927 ** 3928 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3929 ** WHERE_ORDERBY_NORMAL is returned. 3930 */ 3931 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3932 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3933 3934 *ppMinMax = 0; 3935 if( pAggInfo->nFunc==1 ){ 3936 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3937 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3938 3939 assert( pExpr->op==TK_AGG_FUNCTION ); 3940 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3941 const char *zFunc = pExpr->u.zToken; 3942 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3943 eRet = WHERE_ORDERBY_MIN; 3944 *ppMinMax = pEList; 3945 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3946 eRet = WHERE_ORDERBY_MAX; 3947 *ppMinMax = pEList; 3948 } 3949 } 3950 } 3951 3952 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3953 return eRet; 3954 } 3955 3956 /* 3957 ** The select statement passed as the first argument is an aggregate query. 3958 ** The second argument is the associated aggregate-info object. This 3959 ** function tests if the SELECT is of the form: 3960 ** 3961 ** SELECT count(*) FROM <tbl> 3962 ** 3963 ** where table is a database table, not a sub-select or view. If the query 3964 ** does match this pattern, then a pointer to the Table object representing 3965 ** <tbl> is returned. Otherwise, 0 is returned. 3966 */ 3967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3968 Table *pTab; 3969 Expr *pExpr; 3970 3971 assert( !p->pGroupBy ); 3972 3973 if( p->pWhere || p->pEList->nExpr!=1 3974 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3975 ){ 3976 return 0; 3977 } 3978 pTab = p->pSrc->a[0].pTab; 3979 pExpr = p->pEList->a[0].pExpr; 3980 assert( pTab && !pTab->pSelect && pExpr ); 3981 3982 if( IsVirtual(pTab) ) return 0; 3983 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3984 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3985 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3986 if( pExpr->flags&EP_Distinct ) return 0; 3987 3988 return pTab; 3989 } 3990 3991 /* 3992 ** If the source-list item passed as an argument was augmented with an 3993 ** INDEXED BY clause, then try to locate the specified index. If there 3994 ** was such a clause and the named index cannot be found, return 3995 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3996 ** pFrom->pIndex and return SQLITE_OK. 3997 */ 3998 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3999 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4000 Table *pTab = pFrom->pTab; 4001 char *zIndexedBy = pFrom->u1.zIndexedBy; 4002 Index *pIdx; 4003 for(pIdx=pTab->pIndex; 4004 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4005 pIdx=pIdx->pNext 4006 ); 4007 if( !pIdx ){ 4008 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4009 pParse->checkSchema = 1; 4010 return SQLITE_ERROR; 4011 } 4012 pFrom->pIBIndex = pIdx; 4013 } 4014 return SQLITE_OK; 4015 } 4016 /* 4017 ** Detect compound SELECT statements that use an ORDER BY clause with 4018 ** an alternative collating sequence. 4019 ** 4020 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4021 ** 4022 ** These are rewritten as a subquery: 4023 ** 4024 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4025 ** ORDER BY ... COLLATE ... 4026 ** 4027 ** This transformation is necessary because the multiSelectOrderBy() routine 4028 ** above that generates the code for a compound SELECT with an ORDER BY clause 4029 ** uses a merge algorithm that requires the same collating sequence on the 4030 ** result columns as on the ORDER BY clause. See ticket 4031 ** http://www.sqlite.org/src/info/6709574d2a 4032 ** 4033 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4034 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4035 ** there are COLLATE terms in the ORDER BY. 4036 */ 4037 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4038 int i; 4039 Select *pNew; 4040 Select *pX; 4041 sqlite3 *db; 4042 struct ExprList_item *a; 4043 SrcList *pNewSrc; 4044 Parse *pParse; 4045 Token dummy; 4046 4047 if( p->pPrior==0 ) return WRC_Continue; 4048 if( p->pOrderBy==0 ) return WRC_Continue; 4049 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4050 if( pX==0 ) return WRC_Continue; 4051 a = p->pOrderBy->a; 4052 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4053 if( a[i].pExpr->flags & EP_Collate ) break; 4054 } 4055 if( i<0 ) return WRC_Continue; 4056 4057 /* If we reach this point, that means the transformation is required. */ 4058 4059 pParse = pWalker->pParse; 4060 db = pParse->db; 4061 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4062 if( pNew==0 ) return WRC_Abort; 4063 memset(&dummy, 0, sizeof(dummy)); 4064 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4065 if( pNewSrc==0 ) return WRC_Abort; 4066 *pNew = *p; 4067 p->pSrc = pNewSrc; 4068 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4069 p->op = TK_SELECT; 4070 p->pWhere = 0; 4071 pNew->pGroupBy = 0; 4072 pNew->pHaving = 0; 4073 pNew->pOrderBy = 0; 4074 p->pPrior = 0; 4075 p->pNext = 0; 4076 p->pWith = 0; 4077 p->selFlags &= ~SF_Compound; 4078 assert( (p->selFlags & SF_Converted)==0 ); 4079 p->selFlags |= SF_Converted; 4080 assert( pNew->pPrior!=0 ); 4081 pNew->pPrior->pNext = pNew; 4082 pNew->pLimit = 0; 4083 pNew->pOffset = 0; 4084 return WRC_Continue; 4085 } 4086 4087 /* 4088 ** Check to see if the FROM clause term pFrom has table-valued function 4089 ** arguments. If it does, leave an error message in pParse and return 4090 ** non-zero, since pFrom is not allowed to be a table-valued function. 4091 */ 4092 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4093 if( pFrom->fg.isTabFunc ){ 4094 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4095 return 1; 4096 } 4097 return 0; 4098 } 4099 4100 #ifndef SQLITE_OMIT_CTE 4101 /* 4102 ** Argument pWith (which may be NULL) points to a linked list of nested 4103 ** WITH contexts, from inner to outermost. If the table identified by 4104 ** FROM clause element pItem is really a common-table-expression (CTE) 4105 ** then return a pointer to the CTE definition for that table. Otherwise 4106 ** return NULL. 4107 ** 4108 ** If a non-NULL value is returned, set *ppContext to point to the With 4109 ** object that the returned CTE belongs to. 4110 */ 4111 static struct Cte *searchWith( 4112 With *pWith, /* Current innermost WITH clause */ 4113 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4114 With **ppContext /* OUT: WITH clause return value belongs to */ 4115 ){ 4116 const char *zName; 4117 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4118 With *p; 4119 for(p=pWith; p; p=p->pOuter){ 4120 int i; 4121 for(i=0; i<p->nCte; i++){ 4122 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4123 *ppContext = p; 4124 return &p->a[i]; 4125 } 4126 } 4127 } 4128 } 4129 return 0; 4130 } 4131 4132 /* The code generator maintains a stack of active WITH clauses 4133 ** with the inner-most WITH clause being at the top of the stack. 4134 ** 4135 ** This routine pushes the WITH clause passed as the second argument 4136 ** onto the top of the stack. If argument bFree is true, then this 4137 ** WITH clause will never be popped from the stack. In this case it 4138 ** should be freed along with the Parse object. In other cases, when 4139 ** bFree==0, the With object will be freed along with the SELECT 4140 ** statement with which it is associated. 4141 */ 4142 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4143 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4144 if( pWith ){ 4145 assert( pParse->pWith!=pWith ); 4146 pWith->pOuter = pParse->pWith; 4147 pParse->pWith = pWith; 4148 if( bFree ) pParse->pWithToFree = pWith; 4149 } 4150 } 4151 4152 /* 4153 ** This function checks if argument pFrom refers to a CTE declared by 4154 ** a WITH clause on the stack currently maintained by the parser. And, 4155 ** if currently processing a CTE expression, if it is a recursive 4156 ** reference to the current CTE. 4157 ** 4158 ** If pFrom falls into either of the two categories above, pFrom->pTab 4159 ** and other fields are populated accordingly. The caller should check 4160 ** (pFrom->pTab!=0) to determine whether or not a successful match 4161 ** was found. 4162 ** 4163 ** Whether or not a match is found, SQLITE_OK is returned if no error 4164 ** occurs. If an error does occur, an error message is stored in the 4165 ** parser and some error code other than SQLITE_OK returned. 4166 */ 4167 static int withExpand( 4168 Walker *pWalker, 4169 struct SrcList_item *pFrom 4170 ){ 4171 Parse *pParse = pWalker->pParse; 4172 sqlite3 *db = pParse->db; 4173 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4174 With *pWith; /* WITH clause that pCte belongs to */ 4175 4176 assert( pFrom->pTab==0 ); 4177 4178 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4179 if( pCte ){ 4180 Table *pTab; 4181 ExprList *pEList; 4182 Select *pSel; 4183 Select *pLeft; /* Left-most SELECT statement */ 4184 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4185 With *pSavedWith; /* Initial value of pParse->pWith */ 4186 4187 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4188 ** recursive reference to CTE pCte. Leave an error in pParse and return 4189 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4190 ** In this case, proceed. */ 4191 if( pCte->zCteErr ){ 4192 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4193 return SQLITE_ERROR; 4194 } 4195 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4196 4197 assert( pFrom->pTab==0 ); 4198 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4199 if( pTab==0 ) return WRC_Abort; 4200 pTab->nTabRef = 1; 4201 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4202 pTab->iPKey = -1; 4203 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4204 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4205 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4206 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4207 assert( pFrom->pSelect ); 4208 4209 /* Check if this is a recursive CTE. */ 4210 pSel = pFrom->pSelect; 4211 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4212 if( bMayRecursive ){ 4213 int i; 4214 SrcList *pSrc = pFrom->pSelect->pSrc; 4215 for(i=0; i<pSrc->nSrc; i++){ 4216 struct SrcList_item *pItem = &pSrc->a[i]; 4217 if( pItem->zDatabase==0 4218 && pItem->zName!=0 4219 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4220 ){ 4221 pItem->pTab = pTab; 4222 pItem->fg.isRecursive = 1; 4223 pTab->nTabRef++; 4224 pSel->selFlags |= SF_Recursive; 4225 } 4226 } 4227 } 4228 4229 /* Only one recursive reference is permitted. */ 4230 if( pTab->nTabRef>2 ){ 4231 sqlite3ErrorMsg( 4232 pParse, "multiple references to recursive table: %s", pCte->zName 4233 ); 4234 return SQLITE_ERROR; 4235 } 4236 assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4237 4238 pCte->zCteErr = "circular reference: %s"; 4239 pSavedWith = pParse->pWith; 4240 pParse->pWith = pWith; 4241 if( bMayRecursive ){ 4242 Select *pPrior = pSel->pPrior; 4243 assert( pPrior->pWith==0 ); 4244 pPrior->pWith = pSel->pWith; 4245 sqlite3WalkSelect(pWalker, pPrior); 4246 pPrior->pWith = 0; 4247 }else{ 4248 sqlite3WalkSelect(pWalker, pSel); 4249 } 4250 pParse->pWith = pWith; 4251 4252 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4253 pEList = pLeft->pEList; 4254 if( pCte->pCols ){ 4255 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4256 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4257 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4258 ); 4259 pParse->pWith = pSavedWith; 4260 return SQLITE_ERROR; 4261 } 4262 pEList = pCte->pCols; 4263 } 4264 4265 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4266 if( bMayRecursive ){ 4267 if( pSel->selFlags & SF_Recursive ){ 4268 pCte->zCteErr = "multiple recursive references: %s"; 4269 }else{ 4270 pCte->zCteErr = "recursive reference in a subquery: %s"; 4271 } 4272 sqlite3WalkSelect(pWalker, pSel); 4273 } 4274 pCte->zCteErr = 0; 4275 pParse->pWith = pSavedWith; 4276 } 4277 4278 return SQLITE_OK; 4279 } 4280 #endif 4281 4282 #ifndef SQLITE_OMIT_CTE 4283 /* 4284 ** If the SELECT passed as the second argument has an associated WITH 4285 ** clause, pop it from the stack stored as part of the Parse object. 4286 ** 4287 ** This function is used as the xSelectCallback2() callback by 4288 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4289 ** names and other FROM clause elements. 4290 */ 4291 static void selectPopWith(Walker *pWalker, Select *p){ 4292 Parse *pParse = pWalker->pParse; 4293 if( pParse->pWith && p->pPrior==0 ){ 4294 With *pWith = findRightmost(p)->pWith; 4295 if( pWith!=0 ){ 4296 assert( pParse->pWith==pWith ); 4297 pParse->pWith = pWith->pOuter; 4298 } 4299 } 4300 } 4301 #else 4302 #define selectPopWith 0 4303 #endif 4304 4305 /* 4306 ** This routine is a Walker callback for "expanding" a SELECT statement. 4307 ** "Expanding" means to do the following: 4308 ** 4309 ** (1) Make sure VDBE cursor numbers have been assigned to every 4310 ** element of the FROM clause. 4311 ** 4312 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4313 ** defines FROM clause. When views appear in the FROM clause, 4314 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4315 ** that implements the view. A copy is made of the view's SELECT 4316 ** statement so that we can freely modify or delete that statement 4317 ** without worrying about messing up the persistent representation 4318 ** of the view. 4319 ** 4320 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4321 ** on joins and the ON and USING clause of joins. 4322 ** 4323 ** (4) Scan the list of columns in the result set (pEList) looking 4324 ** for instances of the "*" operator or the TABLE.* operator. 4325 ** If found, expand each "*" to be every column in every table 4326 ** and TABLE.* to be every column in TABLE. 4327 ** 4328 */ 4329 static int selectExpander(Walker *pWalker, Select *p){ 4330 Parse *pParse = pWalker->pParse; 4331 int i, j, k; 4332 SrcList *pTabList; 4333 ExprList *pEList; 4334 struct SrcList_item *pFrom; 4335 sqlite3 *db = pParse->db; 4336 Expr *pE, *pRight, *pExpr; 4337 u16 selFlags = p->selFlags; 4338 4339 p->selFlags |= SF_Expanded; 4340 if( db->mallocFailed ){ 4341 return WRC_Abort; 4342 } 4343 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4344 return WRC_Prune; 4345 } 4346 pTabList = p->pSrc; 4347 pEList = p->pEList; 4348 if( p->pWith ){ 4349 sqlite3WithPush(pParse, p->pWith, 0); 4350 } 4351 4352 /* Make sure cursor numbers have been assigned to all entries in 4353 ** the FROM clause of the SELECT statement. 4354 */ 4355 sqlite3SrcListAssignCursors(pParse, pTabList); 4356 4357 /* Look up every table named in the FROM clause of the select. If 4358 ** an entry of the FROM clause is a subquery instead of a table or view, 4359 ** then create a transient table structure to describe the subquery. 4360 */ 4361 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4362 Table *pTab; 4363 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4364 if( pFrom->fg.isRecursive ) continue; 4365 assert( pFrom->pTab==0 ); 4366 #ifndef SQLITE_OMIT_CTE 4367 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4368 if( pFrom->pTab ) {} else 4369 #endif 4370 if( pFrom->zName==0 ){ 4371 #ifndef SQLITE_OMIT_SUBQUERY 4372 Select *pSel = pFrom->pSelect; 4373 /* A sub-query in the FROM clause of a SELECT */ 4374 assert( pSel!=0 ); 4375 assert( pFrom->pTab==0 ); 4376 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4377 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4378 if( pTab==0 ) return WRC_Abort; 4379 pTab->nTabRef = 1; 4380 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4381 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4382 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4383 pTab->iPKey = -1; 4384 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4385 pTab->tabFlags |= TF_Ephemeral; 4386 #endif 4387 }else{ 4388 /* An ordinary table or view name in the FROM clause */ 4389 assert( pFrom->pTab==0 ); 4390 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4391 if( pTab==0 ) return WRC_Abort; 4392 if( pTab->nTabRef>=0xffff ){ 4393 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4394 pTab->zName); 4395 pFrom->pTab = 0; 4396 return WRC_Abort; 4397 } 4398 pTab->nTabRef++; 4399 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4400 return WRC_Abort; 4401 } 4402 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4403 if( IsVirtual(pTab) || pTab->pSelect ){ 4404 i16 nCol; 4405 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4406 assert( pFrom->pSelect==0 ); 4407 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4408 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4409 nCol = pTab->nCol; 4410 pTab->nCol = -1; 4411 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4412 pTab->nCol = nCol; 4413 } 4414 #endif 4415 } 4416 4417 /* Locate the index named by the INDEXED BY clause, if any. */ 4418 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4419 return WRC_Abort; 4420 } 4421 } 4422 4423 /* Process NATURAL keywords, and ON and USING clauses of joins. 4424 */ 4425 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4426 return WRC_Abort; 4427 } 4428 4429 /* For every "*" that occurs in the column list, insert the names of 4430 ** all columns in all tables. And for every TABLE.* insert the names 4431 ** of all columns in TABLE. The parser inserted a special expression 4432 ** with the TK_ASTERISK operator for each "*" that it found in the column 4433 ** list. The following code just has to locate the TK_ASTERISK 4434 ** expressions and expand each one to the list of all columns in 4435 ** all tables. 4436 ** 4437 ** The first loop just checks to see if there are any "*" operators 4438 ** that need expanding. 4439 */ 4440 for(k=0; k<pEList->nExpr; k++){ 4441 pE = pEList->a[k].pExpr; 4442 if( pE->op==TK_ASTERISK ) break; 4443 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4444 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4445 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4446 } 4447 if( k<pEList->nExpr ){ 4448 /* 4449 ** If we get here it means the result set contains one or more "*" 4450 ** operators that need to be expanded. Loop through each expression 4451 ** in the result set and expand them one by one. 4452 */ 4453 struct ExprList_item *a = pEList->a; 4454 ExprList *pNew = 0; 4455 int flags = pParse->db->flags; 4456 int longNames = (flags & SQLITE_FullColNames)!=0 4457 && (flags & SQLITE_ShortColNames)==0; 4458 4459 for(k=0; k<pEList->nExpr; k++){ 4460 pE = a[k].pExpr; 4461 pRight = pE->pRight; 4462 assert( pE->op!=TK_DOT || pRight!=0 ); 4463 if( pE->op!=TK_ASTERISK 4464 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4465 ){ 4466 /* This particular expression does not need to be expanded. 4467 */ 4468 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4469 if( pNew ){ 4470 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4471 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4472 a[k].zName = 0; 4473 a[k].zSpan = 0; 4474 } 4475 a[k].pExpr = 0; 4476 }else{ 4477 /* This expression is a "*" or a "TABLE.*" and needs to be 4478 ** expanded. */ 4479 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4480 char *zTName = 0; /* text of name of TABLE */ 4481 if( pE->op==TK_DOT ){ 4482 assert( pE->pLeft!=0 ); 4483 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4484 zTName = pE->pLeft->u.zToken; 4485 } 4486 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4487 Table *pTab = pFrom->pTab; 4488 Select *pSub = pFrom->pSelect; 4489 char *zTabName = pFrom->zAlias; 4490 const char *zSchemaName = 0; 4491 int iDb; 4492 if( zTabName==0 ){ 4493 zTabName = pTab->zName; 4494 } 4495 if( db->mallocFailed ) break; 4496 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4497 pSub = 0; 4498 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4499 continue; 4500 } 4501 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4502 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4503 } 4504 for(j=0; j<pTab->nCol; j++){ 4505 char *zName = pTab->aCol[j].zName; 4506 char *zColname; /* The computed column name */ 4507 char *zToFree; /* Malloced string that needs to be freed */ 4508 Token sColname; /* Computed column name as a token */ 4509 4510 assert( zName ); 4511 if( zTName && pSub 4512 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4513 ){ 4514 continue; 4515 } 4516 4517 /* If a column is marked as 'hidden', omit it from the expanded 4518 ** result-set list unless the SELECT has the SF_IncludeHidden 4519 ** bit set. 4520 */ 4521 if( (p->selFlags & SF_IncludeHidden)==0 4522 && IsHiddenColumn(&pTab->aCol[j]) 4523 ){ 4524 continue; 4525 } 4526 tableSeen = 1; 4527 4528 if( i>0 && zTName==0 ){ 4529 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4530 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4531 ){ 4532 /* In a NATURAL join, omit the join columns from the 4533 ** table to the right of the join */ 4534 continue; 4535 } 4536 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4537 /* In a join with a USING clause, omit columns in the 4538 ** using clause from the table on the right. */ 4539 continue; 4540 } 4541 } 4542 pRight = sqlite3Expr(db, TK_ID, zName); 4543 zColname = zName; 4544 zToFree = 0; 4545 if( longNames || pTabList->nSrc>1 ){ 4546 Expr *pLeft; 4547 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4548 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4549 if( zSchemaName ){ 4550 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4551 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4552 } 4553 if( longNames ){ 4554 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4555 zToFree = zColname; 4556 } 4557 }else{ 4558 pExpr = pRight; 4559 } 4560 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4561 sqlite3TokenInit(&sColname, zColname); 4562 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4563 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4564 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4565 if( pSub ){ 4566 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4567 testcase( pX->zSpan==0 ); 4568 }else{ 4569 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4570 zSchemaName, zTabName, zColname); 4571 testcase( pX->zSpan==0 ); 4572 } 4573 pX->bSpanIsTab = 1; 4574 } 4575 sqlite3DbFree(db, zToFree); 4576 } 4577 } 4578 if( !tableSeen ){ 4579 if( zTName ){ 4580 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4581 }else{ 4582 sqlite3ErrorMsg(pParse, "no tables specified"); 4583 } 4584 } 4585 } 4586 } 4587 sqlite3ExprListDelete(db, pEList); 4588 p->pEList = pNew; 4589 } 4590 #if SQLITE_MAX_COLUMN 4591 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4592 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4593 return WRC_Abort; 4594 } 4595 #endif 4596 return WRC_Continue; 4597 } 4598 4599 /* 4600 ** No-op routine for the parse-tree walker. 4601 ** 4602 ** When this routine is the Walker.xExprCallback then expression trees 4603 ** are walked without any actions being taken at each node. Presumably, 4604 ** when this routine is used for Walker.xExprCallback then 4605 ** Walker.xSelectCallback is set to do something useful for every 4606 ** subquery in the parser tree. 4607 */ 4608 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4609 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4610 return WRC_Continue; 4611 } 4612 4613 /* 4614 ** No-op routine for the parse-tree walker for SELECT statements. 4615 ** subquery in the parser tree. 4616 */ 4617 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4618 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4619 return WRC_Continue; 4620 } 4621 4622 #if SQLITE_DEBUG 4623 /* 4624 ** Always assert. This xSelectCallback2 implementation proves that the 4625 ** xSelectCallback2 is never invoked. 4626 */ 4627 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4628 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4629 assert( 0 ); 4630 } 4631 #endif 4632 /* 4633 ** This routine "expands" a SELECT statement and all of its subqueries. 4634 ** For additional information on what it means to "expand" a SELECT 4635 ** statement, see the comment on the selectExpand worker callback above. 4636 ** 4637 ** Expanding a SELECT statement is the first step in processing a 4638 ** SELECT statement. The SELECT statement must be expanded before 4639 ** name resolution is performed. 4640 ** 4641 ** If anything goes wrong, an error message is written into pParse. 4642 ** The calling function can detect the problem by looking at pParse->nErr 4643 ** and/or pParse->db->mallocFailed. 4644 */ 4645 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4646 Walker w; 4647 w.xExprCallback = sqlite3ExprWalkNoop; 4648 w.pParse = pParse; 4649 if( pParse->hasCompound ){ 4650 w.xSelectCallback = convertCompoundSelectToSubquery; 4651 w.xSelectCallback2 = 0; 4652 sqlite3WalkSelect(&w, pSelect); 4653 } 4654 w.xSelectCallback = selectExpander; 4655 w.xSelectCallback2 = selectPopWith; 4656 sqlite3WalkSelect(&w, pSelect); 4657 } 4658 4659 4660 #ifndef SQLITE_OMIT_SUBQUERY 4661 /* 4662 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4663 ** interface. 4664 ** 4665 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4666 ** information to the Table structure that represents the result set 4667 ** of that subquery. 4668 ** 4669 ** The Table structure that represents the result set was constructed 4670 ** by selectExpander() but the type and collation information was omitted 4671 ** at that point because identifiers had not yet been resolved. This 4672 ** routine is called after identifier resolution. 4673 */ 4674 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4675 Parse *pParse; 4676 int i; 4677 SrcList *pTabList; 4678 struct SrcList_item *pFrom; 4679 4680 assert( p->selFlags & SF_Resolved ); 4681 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4682 p->selFlags |= SF_HasTypeInfo; 4683 pParse = pWalker->pParse; 4684 pTabList = p->pSrc; 4685 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4686 Table *pTab = pFrom->pTab; 4687 assert( pTab!=0 ); 4688 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4689 /* A sub-query in the FROM clause of a SELECT */ 4690 Select *pSel = pFrom->pSelect; 4691 if( pSel ){ 4692 while( pSel->pPrior ) pSel = pSel->pPrior; 4693 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4694 } 4695 } 4696 } 4697 } 4698 #endif 4699 4700 4701 /* 4702 ** This routine adds datatype and collating sequence information to 4703 ** the Table structures of all FROM-clause subqueries in a 4704 ** SELECT statement. 4705 ** 4706 ** Use this routine after name resolution. 4707 */ 4708 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4709 #ifndef SQLITE_OMIT_SUBQUERY 4710 Walker w; 4711 w.xSelectCallback = sqlite3SelectWalkNoop; 4712 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4713 w.xExprCallback = sqlite3ExprWalkNoop; 4714 w.pParse = pParse; 4715 sqlite3WalkSelect(&w, pSelect); 4716 #endif 4717 } 4718 4719 4720 /* 4721 ** This routine sets up a SELECT statement for processing. The 4722 ** following is accomplished: 4723 ** 4724 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4725 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4726 ** * ON and USING clauses are shifted into WHERE statements 4727 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4728 ** * Identifiers in expression are matched to tables. 4729 ** 4730 ** This routine acts recursively on all subqueries within the SELECT. 4731 */ 4732 void sqlite3SelectPrep( 4733 Parse *pParse, /* The parser context */ 4734 Select *p, /* The SELECT statement being coded. */ 4735 NameContext *pOuterNC /* Name context for container */ 4736 ){ 4737 sqlite3 *db; 4738 if( NEVER(p==0) ) return; 4739 db = pParse->db; 4740 if( db->mallocFailed ) return; 4741 if( p->selFlags & SF_HasTypeInfo ) return; 4742 sqlite3SelectExpand(pParse, p); 4743 if( pParse->nErr || db->mallocFailed ) return; 4744 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4745 if( pParse->nErr || db->mallocFailed ) return; 4746 sqlite3SelectAddTypeInfo(pParse, p); 4747 } 4748 4749 /* 4750 ** Reset the aggregate accumulator. 4751 ** 4752 ** The aggregate accumulator is a set of memory cells that hold 4753 ** intermediate results while calculating an aggregate. This 4754 ** routine generates code that stores NULLs in all of those memory 4755 ** cells. 4756 */ 4757 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4758 Vdbe *v = pParse->pVdbe; 4759 int i; 4760 struct AggInfo_func *pFunc; 4761 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4762 if( nReg==0 ) return; 4763 #ifdef SQLITE_DEBUG 4764 /* Verify that all AggInfo registers are within the range specified by 4765 ** AggInfo.mnReg..AggInfo.mxReg */ 4766 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4767 for(i=0; i<pAggInfo->nColumn; i++){ 4768 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4769 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4770 } 4771 for(i=0; i<pAggInfo->nFunc; i++){ 4772 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4773 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4774 } 4775 #endif 4776 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4777 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4778 if( pFunc->iDistinct>=0 ){ 4779 Expr *pE = pFunc->pExpr; 4780 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4781 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4782 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4783 "argument"); 4784 pFunc->iDistinct = -1; 4785 }else{ 4786 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4787 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4788 (char*)pKeyInfo, P4_KEYINFO); 4789 } 4790 } 4791 } 4792 } 4793 4794 /* 4795 ** Invoke the OP_AggFinalize opcode for every aggregate function 4796 ** in the AggInfo structure. 4797 */ 4798 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4799 Vdbe *v = pParse->pVdbe; 4800 int i; 4801 struct AggInfo_func *pF; 4802 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4803 ExprList *pList = pF->pExpr->x.pList; 4804 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4805 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4806 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4807 } 4808 } 4809 4810 /* 4811 ** Update the accumulator memory cells for an aggregate based on 4812 ** the current cursor position. 4813 */ 4814 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4815 Vdbe *v = pParse->pVdbe; 4816 int i; 4817 int regHit = 0; 4818 int addrHitTest = 0; 4819 struct AggInfo_func *pF; 4820 struct AggInfo_col *pC; 4821 4822 pAggInfo->directMode = 1; 4823 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4824 int nArg; 4825 int addrNext = 0; 4826 int regAgg; 4827 ExprList *pList = pF->pExpr->x.pList; 4828 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4829 if( pList ){ 4830 nArg = pList->nExpr; 4831 regAgg = sqlite3GetTempRange(pParse, nArg); 4832 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4833 }else{ 4834 nArg = 0; 4835 regAgg = 0; 4836 } 4837 if( pF->iDistinct>=0 ){ 4838 addrNext = sqlite3VdbeMakeLabel(v); 4839 testcase( nArg==0 ); /* Error condition */ 4840 testcase( nArg>1 ); /* Also an error */ 4841 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4842 } 4843 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4844 CollSeq *pColl = 0; 4845 struct ExprList_item *pItem; 4846 int j; 4847 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4848 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4849 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4850 } 4851 if( !pColl ){ 4852 pColl = pParse->db->pDfltColl; 4853 } 4854 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4855 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4856 } 4857 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4858 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4859 sqlite3VdbeChangeP5(v, (u8)nArg); 4860 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4861 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4862 if( addrNext ){ 4863 sqlite3VdbeResolveLabel(v, addrNext); 4864 sqlite3ExprCacheClear(pParse); 4865 } 4866 } 4867 4868 /* Before populating the accumulator registers, clear the column cache. 4869 ** Otherwise, if any of the required column values are already present 4870 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4871 ** to pC->iMem. But by the time the value is used, the original register 4872 ** may have been used, invalidating the underlying buffer holding the 4873 ** text or blob value. See ticket [883034dcb5]. 4874 ** 4875 ** Another solution would be to change the OP_SCopy used to copy cached 4876 ** values to an OP_Copy. 4877 */ 4878 if( regHit ){ 4879 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4880 } 4881 sqlite3ExprCacheClear(pParse); 4882 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4883 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4884 } 4885 pAggInfo->directMode = 0; 4886 sqlite3ExprCacheClear(pParse); 4887 if( addrHitTest ){ 4888 sqlite3VdbeJumpHere(v, addrHitTest); 4889 } 4890 } 4891 4892 /* 4893 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4894 ** count(*) query ("SELECT count(*) FROM pTab"). 4895 */ 4896 #ifndef SQLITE_OMIT_EXPLAIN 4897 static void explainSimpleCount( 4898 Parse *pParse, /* Parse context */ 4899 Table *pTab, /* Table being queried */ 4900 Index *pIdx /* Index used to optimize scan, or NULL */ 4901 ){ 4902 if( pParse->explain==2 ){ 4903 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4904 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4905 pTab->zName, 4906 bCover ? " USING COVERING INDEX " : "", 4907 bCover ? pIdx->zName : "" 4908 ); 4909 sqlite3VdbeAddOp4( 4910 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4911 ); 4912 } 4913 } 4914 #else 4915 # define explainSimpleCount(a,b,c) 4916 #endif 4917 4918 /* 4919 ** Context object for havingToWhereExprCb(). 4920 */ 4921 struct HavingToWhereCtx { 4922 Expr **ppWhere; 4923 ExprList *pGroupBy; 4924 }; 4925 4926 /* 4927 ** sqlite3WalkExpr() callback used by havingToWhere(). 4928 ** 4929 ** If the node passed to the callback is a TK_AND node, return 4930 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4931 ** 4932 ** Otherwise, return WRC_Prune. In this case, also check if the 4933 ** sub-expression matches the criteria for being moved to the WHERE 4934 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4935 ** within the HAVING expression with a constant "1". 4936 */ 4937 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4938 if( pExpr->op!=TK_AND ){ 4939 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4940 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4941 sqlite3 *db = pWalker->pParse->db; 4942 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4943 if( pNew ){ 4944 Expr *pWhere = *(p->ppWhere); 4945 SWAP(Expr, *pNew, *pExpr); 4946 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4947 *(p->ppWhere) = pNew; 4948 } 4949 } 4950 return WRC_Prune; 4951 } 4952 return WRC_Continue; 4953 } 4954 4955 /* 4956 ** Transfer eligible terms from the HAVING clause of a query, which is 4957 ** processed after grouping, to the WHERE clause, which is processed before 4958 ** grouping. For example, the query: 4959 ** 4960 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4961 ** 4962 ** can be rewritten as: 4963 ** 4964 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4965 ** 4966 ** A term of the HAVING expression is eligible for transfer if it consists 4967 ** entirely of constants and expressions that are also GROUP BY terms that 4968 ** use the "BINARY" collation sequence. 4969 */ 4970 static void havingToWhere( 4971 Parse *pParse, 4972 ExprList *pGroupBy, 4973 Expr *pHaving, 4974 Expr **ppWhere 4975 ){ 4976 struct HavingToWhereCtx sCtx; 4977 Walker sWalker; 4978 4979 sCtx.ppWhere = ppWhere; 4980 sCtx.pGroupBy = pGroupBy; 4981 4982 memset(&sWalker, 0, sizeof(sWalker)); 4983 sWalker.pParse = pParse; 4984 sWalker.xExprCallback = havingToWhereExprCb; 4985 sWalker.u.pHavingCtx = &sCtx; 4986 sqlite3WalkExpr(&sWalker, pHaving); 4987 } 4988 4989 /* 4990 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 4991 ** If it is, then return the SrcList_item for the prior view. If it is not, 4992 ** then return 0. 4993 */ 4994 static struct SrcList_item *isSelfJoinView( 4995 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 4996 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 4997 ){ 4998 struct SrcList_item *pItem; 4999 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5000 if( pItem->pSelect==0 ) continue; 5001 if( pItem->fg.viaCoroutine ) continue; 5002 if( pItem->zName==0 ) continue; 5003 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5004 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5005 if( sqlite3ExprCompare(pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) ){ 5006 /* The view was modified by some other optimization such as 5007 ** pushDownWhereTerms() */ 5008 continue; 5009 } 5010 return pItem; 5011 } 5012 return 0; 5013 } 5014 5015 /* 5016 ** Generate code for the SELECT statement given in the p argument. 5017 ** 5018 ** The results are returned according to the SelectDest structure. 5019 ** See comments in sqliteInt.h for further information. 5020 ** 5021 ** This routine returns the number of errors. If any errors are 5022 ** encountered, then an appropriate error message is left in 5023 ** pParse->zErrMsg. 5024 ** 5025 ** This routine does NOT free the Select structure passed in. The 5026 ** calling function needs to do that. 5027 */ 5028 int sqlite3Select( 5029 Parse *pParse, /* The parser context */ 5030 Select *p, /* The SELECT statement being coded. */ 5031 SelectDest *pDest /* What to do with the query results */ 5032 ){ 5033 int i, j; /* Loop counters */ 5034 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5035 Vdbe *v; /* The virtual machine under construction */ 5036 int isAgg; /* True for select lists like "count(*)" */ 5037 ExprList *pEList = 0; /* List of columns to extract. */ 5038 SrcList *pTabList; /* List of tables to select from */ 5039 Expr *pWhere; /* The WHERE clause. May be NULL */ 5040 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5041 Expr *pHaving; /* The HAVING clause. May be NULL */ 5042 int rc = 1; /* Value to return from this function */ 5043 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5044 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5045 AggInfo sAggInfo; /* Information used by aggregate queries */ 5046 int iEnd; /* Address of the end of the query */ 5047 sqlite3 *db; /* The database connection */ 5048 5049 #ifndef SQLITE_OMIT_EXPLAIN 5050 int iRestoreSelectId = pParse->iSelectId; 5051 pParse->iSelectId = pParse->iNextSelectId++; 5052 #endif 5053 5054 db = pParse->db; 5055 if( p==0 || db->mallocFailed || pParse->nErr ){ 5056 return 1; 5057 } 5058 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5059 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5060 #if SELECTTRACE_ENABLED 5061 pParse->nSelectIndent++; 5062 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5063 if( sqlite3SelectTrace & 0x100 ){ 5064 sqlite3TreeViewSelect(0, p, 0); 5065 } 5066 #endif 5067 5068 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5069 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5070 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5071 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5072 if( IgnorableOrderby(pDest) ){ 5073 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5074 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5075 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5076 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5077 /* If ORDER BY makes no difference in the output then neither does 5078 ** DISTINCT so it can be removed too. */ 5079 sqlite3ExprListDelete(db, p->pOrderBy); 5080 p->pOrderBy = 0; 5081 p->selFlags &= ~SF_Distinct; 5082 } 5083 sqlite3SelectPrep(pParse, p, 0); 5084 memset(&sSort, 0, sizeof(sSort)); 5085 sSort.pOrderBy = p->pOrderBy; 5086 pTabList = p->pSrc; 5087 if( pParse->nErr || db->mallocFailed ){ 5088 goto select_end; 5089 } 5090 assert( p->pEList!=0 ); 5091 isAgg = (p->selFlags & SF_Aggregate)!=0; 5092 #if SELECTTRACE_ENABLED 5093 if( sqlite3SelectTrace & 0x100 ){ 5094 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5095 sqlite3TreeViewSelect(0, p, 0); 5096 } 5097 #endif 5098 5099 /* Try to flatten subqueries in the FROM clause up into the main query 5100 */ 5101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5102 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5103 struct SrcList_item *pItem = &pTabList->a[i]; 5104 Select *pSub = pItem->pSelect; 5105 int isAggSub; 5106 Table *pTab = pItem->pTab; 5107 if( pSub==0 ) continue; 5108 5109 /* Catch mismatch in the declared columns of a view and the number of 5110 ** columns in the SELECT on the RHS */ 5111 if( pTab->nCol!=pSub->pEList->nExpr ){ 5112 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5113 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5114 goto select_end; 5115 } 5116 5117 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 5118 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 5119 /* This subquery can be absorbed into its parent. */ 5120 if( isAggSub ){ 5121 isAgg = 1; 5122 p->selFlags |= SF_Aggregate; 5123 } 5124 i = -1; 5125 } 5126 pTabList = p->pSrc; 5127 if( db->mallocFailed ) goto select_end; 5128 if( !IgnorableOrderby(pDest) ){ 5129 sSort.pOrderBy = p->pOrderBy; 5130 } 5131 } 5132 #endif 5133 5134 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5135 ** does not already exist */ 5136 v = sqlite3GetVdbe(pParse); 5137 if( v==0 ) goto select_end; 5138 5139 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5140 /* Handle compound SELECT statements using the separate multiSelect() 5141 ** procedure. 5142 */ 5143 if( p->pPrior ){ 5144 rc = multiSelect(pParse, p, pDest); 5145 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5146 #if SELECTTRACE_ENABLED 5147 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5148 pParse->nSelectIndent--; 5149 #endif 5150 return rc; 5151 } 5152 #endif 5153 5154 /* For each term in the FROM clause, do two things: 5155 ** (1) Authorized unreferenced tables 5156 ** (2) Generate code for all sub-queries 5157 */ 5158 for(i=0; i<pTabList->nSrc; i++){ 5159 struct SrcList_item *pItem = &pTabList->a[i]; 5160 SelectDest dest; 5161 Select *pSub; 5162 5163 /* Issue SQLITE_READ authorizations with a fake column name for any tables that 5164 ** are referenced but from which no values are extracted. Examples of where these 5165 ** kinds of null SQLITE_READ authorizations would occur: 5166 ** 5167 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5168 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5169 ** 5170 ** The fake column name is an empty string. It is possible for a table to 5171 ** have a column named by the empty string, in which case there is no way to 5172 ** distinguish between an unreferenced table and an actual reference to the 5173 ** "" column. The original design was for the fake column name to be a NULL, 5174 ** which would be unambiguous. But legacy authorization callbacks might 5175 ** assume the column name is non-NULL and segfault. The use of an empty string 5176 ** for the fake column name seems safer. 5177 */ 5178 if( pItem->colUsed==0 ){ 5179 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5180 } 5181 5182 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5183 /* Generate code for all sub-queries in the FROM clause 5184 */ 5185 pSub = pItem->pSelect; 5186 if( pSub==0 ) continue; 5187 5188 /* Sometimes the code for a subquery will be generated more than 5189 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5190 ** for example. In that case, do not regenerate the code to manifest 5191 ** a view or the co-routine to implement a view. The first instance 5192 ** is sufficient, though the subroutine to manifest the view does need 5193 ** to be invoked again. */ 5194 if( pItem->addrFillSub ){ 5195 if( pItem->fg.viaCoroutine==0 ){ 5196 /* The subroutine that manifests the view might be a one-time routine, 5197 ** or it might need to be rerun on each iteration because it 5198 ** encodes a correlated subquery. */ 5199 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5200 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5201 } 5202 continue; 5203 } 5204 5205 /* Increment Parse.nHeight by the height of the largest expression 5206 ** tree referred to by this, the parent select. The child select 5207 ** may contain expression trees of at most 5208 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5209 ** more conservative than necessary, but much easier than enforcing 5210 ** an exact limit. 5211 */ 5212 pParse->nHeight += sqlite3SelectExprHeight(p); 5213 5214 /* Make copies of constant WHERE-clause terms in the outer query down 5215 ** inside the subquery. This can help the subquery to run more efficiently. 5216 */ 5217 if( (pItem->fg.jointype & JT_OUTER)==0 5218 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5219 ){ 5220 #if SELECTTRACE_ENABLED 5221 if( sqlite3SelectTrace & 0x100 ){ 5222 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5223 sqlite3TreeViewSelect(0, p, 0); 5224 } 5225 #endif 5226 } 5227 5228 /* Generate code to implement the subquery 5229 ** 5230 ** The subquery is implemented as a co-routine if all of these are true: 5231 ** (1) The subquery is guaranteed to be the outer loop (so that it 5232 ** does not need to be computed more than once) 5233 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5234 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5235 ** the use of co-routines.) 5236 ** (3) Co-routines are not disabled using sqlite3_test_control() 5237 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5238 ** 5239 ** TODO: Are there other reasons beside (1) to use a co-routine 5240 ** implementation? 5241 */ 5242 if( i==0 5243 && (pTabList->nSrc==1 5244 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5245 && (p->selFlags & SF_All)==0 /* (2) */ 5246 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5247 ){ 5248 /* Implement a co-routine that will return a single row of the result 5249 ** set on each invocation. 5250 */ 5251 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5252 pItem->regReturn = ++pParse->nMem; 5253 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5254 VdbeComment((v, "%s", pItem->pTab->zName)); 5255 pItem->addrFillSub = addrTop; 5256 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5257 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5258 sqlite3Select(pParse, pSub, &dest); 5259 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5260 pItem->fg.viaCoroutine = 1; 5261 pItem->regResult = dest.iSdst; 5262 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5263 sqlite3VdbeJumpHere(v, addrTop-1); 5264 sqlite3ClearTempRegCache(pParse); 5265 }else{ 5266 /* Generate a subroutine that will fill an ephemeral table with 5267 ** the content of this subquery. pItem->addrFillSub will point 5268 ** to the address of the generated subroutine. pItem->regReturn 5269 ** is a register allocated to hold the subroutine return address 5270 */ 5271 int topAddr; 5272 int onceAddr = 0; 5273 int retAddr; 5274 struct SrcList_item *pPrior; 5275 5276 assert( pItem->addrFillSub==0 ); 5277 pItem->regReturn = ++pParse->nMem; 5278 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5279 pItem->addrFillSub = topAddr+1; 5280 if( pItem->fg.isCorrelated==0 ){ 5281 /* If the subquery is not correlated and if we are not inside of 5282 ** a trigger, then we only need to compute the value of the subquery 5283 ** once. */ 5284 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5285 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5286 }else{ 5287 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5288 } 5289 pPrior = isSelfJoinView(pTabList, pItem); 5290 if( pPrior ){ 5291 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5292 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5293 }else{ 5294 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5295 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5296 sqlite3Select(pParse, pSub, &dest); 5297 } 5298 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5299 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5300 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5301 VdbeComment((v, "end %s", pItem->pTab->zName)); 5302 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5303 sqlite3ClearTempRegCache(pParse); 5304 } 5305 if( db->mallocFailed ) goto select_end; 5306 pParse->nHeight -= sqlite3SelectExprHeight(p); 5307 #endif 5308 } 5309 5310 /* Various elements of the SELECT copied into local variables for 5311 ** convenience */ 5312 pEList = p->pEList; 5313 pWhere = p->pWhere; 5314 pGroupBy = p->pGroupBy; 5315 pHaving = p->pHaving; 5316 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5317 5318 #if SELECTTRACE_ENABLED 5319 if( sqlite3SelectTrace & 0x400 ){ 5320 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5321 sqlite3TreeViewSelect(0, p, 0); 5322 } 5323 #endif 5324 5325 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5326 ** if the select-list is the same as the ORDER BY list, then this query 5327 ** can be rewritten as a GROUP BY. In other words, this: 5328 ** 5329 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5330 ** 5331 ** is transformed to: 5332 ** 5333 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5334 ** 5335 ** The second form is preferred as a single index (or temp-table) may be 5336 ** used for both the ORDER BY and DISTINCT processing. As originally 5337 ** written the query must use a temp-table for at least one of the ORDER 5338 ** BY and DISTINCT, and an index or separate temp-table for the other. 5339 */ 5340 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5341 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5342 ){ 5343 p->selFlags &= ~SF_Distinct; 5344 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5345 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5346 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5347 ** original setting of the SF_Distinct flag, not the current setting */ 5348 assert( sDistinct.isTnct ); 5349 5350 #if SELECTTRACE_ENABLED 5351 if( sqlite3SelectTrace & 0x400 ){ 5352 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5353 sqlite3TreeViewSelect(0, p, 0); 5354 } 5355 #endif 5356 } 5357 5358 /* If there is an ORDER BY clause, then create an ephemeral index to 5359 ** do the sorting. But this sorting ephemeral index might end up 5360 ** being unused if the data can be extracted in pre-sorted order. 5361 ** If that is the case, then the OP_OpenEphemeral instruction will be 5362 ** changed to an OP_Noop once we figure out that the sorting index is 5363 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5364 ** that change. 5365 */ 5366 if( sSort.pOrderBy ){ 5367 KeyInfo *pKeyInfo; 5368 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5369 sSort.iECursor = pParse->nTab++; 5370 sSort.addrSortIndex = 5371 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5372 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5373 (char*)pKeyInfo, P4_KEYINFO 5374 ); 5375 }else{ 5376 sSort.addrSortIndex = -1; 5377 } 5378 5379 /* If the output is destined for a temporary table, open that table. 5380 */ 5381 if( pDest->eDest==SRT_EphemTab ){ 5382 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5383 } 5384 5385 /* Set the limiter. 5386 */ 5387 iEnd = sqlite3VdbeMakeLabel(v); 5388 if( (p->selFlags & SF_FixedLimit)==0 ){ 5389 p->nSelectRow = 320; /* 4 billion rows */ 5390 } 5391 computeLimitRegisters(pParse, p, iEnd); 5392 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5393 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5394 sSort.sortFlags |= SORTFLAG_UseSorter; 5395 } 5396 5397 /* Open an ephemeral index to use for the distinct set. 5398 */ 5399 if( p->selFlags & SF_Distinct ){ 5400 sDistinct.tabTnct = pParse->nTab++; 5401 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5402 sDistinct.tabTnct, 0, 0, 5403 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5404 P4_KEYINFO); 5405 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5406 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5407 }else{ 5408 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5409 } 5410 5411 if( !isAgg && pGroupBy==0 ){ 5412 /* No aggregate functions and no GROUP BY clause */ 5413 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5414 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5415 wctrlFlags |= p->selFlags & SF_FixedLimit; 5416 5417 /* Begin the database scan. */ 5418 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5419 p->pEList, wctrlFlags, p->nSelectRow); 5420 if( pWInfo==0 ) goto select_end; 5421 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5422 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5423 } 5424 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5425 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5426 } 5427 if( sSort.pOrderBy ){ 5428 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5429 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5430 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5431 sSort.pOrderBy = 0; 5432 } 5433 } 5434 5435 /* If sorting index that was created by a prior OP_OpenEphemeral 5436 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5437 ** into an OP_Noop. 5438 */ 5439 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5440 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5441 } 5442 5443 /* Use the standard inner loop. */ 5444 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5445 sqlite3WhereContinueLabel(pWInfo), 5446 sqlite3WhereBreakLabel(pWInfo)); 5447 5448 /* End the database scan loop. 5449 */ 5450 sqlite3WhereEnd(pWInfo); 5451 }else{ 5452 /* This case when there exist aggregate functions or a GROUP BY clause 5453 ** or both */ 5454 NameContext sNC; /* Name context for processing aggregate information */ 5455 int iAMem; /* First Mem address for storing current GROUP BY */ 5456 int iBMem; /* First Mem address for previous GROUP BY */ 5457 int iUseFlag; /* Mem address holding flag indicating that at least 5458 ** one row of the input to the aggregator has been 5459 ** processed */ 5460 int iAbortFlag; /* Mem address which causes query abort if positive */ 5461 int groupBySort; /* Rows come from source in GROUP BY order */ 5462 int addrEnd; /* End of processing for this SELECT */ 5463 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5464 int sortOut = 0; /* Output register from the sorter */ 5465 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5466 5467 /* Remove any and all aliases between the result set and the 5468 ** GROUP BY clause. 5469 */ 5470 if( pGroupBy ){ 5471 int k; /* Loop counter */ 5472 struct ExprList_item *pItem; /* For looping over expression in a list */ 5473 5474 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5475 pItem->u.x.iAlias = 0; 5476 } 5477 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5478 pItem->u.x.iAlias = 0; 5479 } 5480 assert( 66==sqlite3LogEst(100) ); 5481 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5482 }else{ 5483 assert( 0==sqlite3LogEst(1) ); 5484 p->nSelectRow = 0; 5485 } 5486 5487 /* If there is both a GROUP BY and an ORDER BY clause and they are 5488 ** identical, then it may be possible to disable the ORDER BY clause 5489 ** on the grounds that the GROUP BY will cause elements to come out 5490 ** in the correct order. It also may not - the GROUP BY might use a 5491 ** database index that causes rows to be grouped together as required 5492 ** but not actually sorted. Either way, record the fact that the 5493 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5494 ** variable. */ 5495 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5496 orderByGrp = 1; 5497 } 5498 5499 /* Create a label to jump to when we want to abort the query */ 5500 addrEnd = sqlite3VdbeMakeLabel(v); 5501 5502 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5503 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5504 ** SELECT statement. 5505 */ 5506 memset(&sNC, 0, sizeof(sNC)); 5507 sNC.pParse = pParse; 5508 sNC.pSrcList = pTabList; 5509 sNC.pAggInfo = &sAggInfo; 5510 sAggInfo.mnReg = pParse->nMem+1; 5511 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5512 sAggInfo.pGroupBy = pGroupBy; 5513 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5514 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5515 if( pHaving ){ 5516 if( pGroupBy ){ 5517 assert( pWhere==p->pWhere ); 5518 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5519 pWhere = p->pWhere; 5520 } 5521 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5522 } 5523 sAggInfo.nAccumulator = sAggInfo.nColumn; 5524 for(i=0; i<sAggInfo.nFunc; i++){ 5525 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5526 sNC.ncFlags |= NC_InAggFunc; 5527 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5528 sNC.ncFlags &= ~NC_InAggFunc; 5529 } 5530 sAggInfo.mxReg = pParse->nMem; 5531 if( db->mallocFailed ) goto select_end; 5532 5533 /* Processing for aggregates with GROUP BY is very different and 5534 ** much more complex than aggregates without a GROUP BY. 5535 */ 5536 if( pGroupBy ){ 5537 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5538 int addr1; /* A-vs-B comparision jump */ 5539 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5540 int regOutputRow; /* Return address register for output subroutine */ 5541 int addrSetAbort; /* Set the abort flag and return */ 5542 int addrTopOfLoop; /* Top of the input loop */ 5543 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5544 int addrReset; /* Subroutine for resetting the accumulator */ 5545 int regReset; /* Return address register for reset subroutine */ 5546 5547 /* If there is a GROUP BY clause we might need a sorting index to 5548 ** implement it. Allocate that sorting index now. If it turns out 5549 ** that we do not need it after all, the OP_SorterOpen instruction 5550 ** will be converted into a Noop. 5551 */ 5552 sAggInfo.sortingIdx = pParse->nTab++; 5553 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5554 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5555 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5556 0, (char*)pKeyInfo, P4_KEYINFO); 5557 5558 /* Initialize memory locations used by GROUP BY aggregate processing 5559 */ 5560 iUseFlag = ++pParse->nMem; 5561 iAbortFlag = ++pParse->nMem; 5562 regOutputRow = ++pParse->nMem; 5563 addrOutputRow = sqlite3VdbeMakeLabel(v); 5564 regReset = ++pParse->nMem; 5565 addrReset = sqlite3VdbeMakeLabel(v); 5566 iAMem = pParse->nMem + 1; 5567 pParse->nMem += pGroupBy->nExpr; 5568 iBMem = pParse->nMem + 1; 5569 pParse->nMem += pGroupBy->nExpr; 5570 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5571 VdbeComment((v, "clear abort flag")); 5572 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5573 VdbeComment((v, "indicate accumulator empty")); 5574 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5575 5576 /* Begin a loop that will extract all source rows in GROUP BY order. 5577 ** This might involve two separate loops with an OP_Sort in between, or 5578 ** it might be a single loop that uses an index to extract information 5579 ** in the right order to begin with. 5580 */ 5581 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5582 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5583 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5584 ); 5585 if( pWInfo==0 ) goto select_end; 5586 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5587 /* The optimizer is able to deliver rows in group by order so 5588 ** we do not have to sort. The OP_OpenEphemeral table will be 5589 ** cancelled later because we still need to use the pKeyInfo 5590 */ 5591 groupBySort = 0; 5592 }else{ 5593 /* Rows are coming out in undetermined order. We have to push 5594 ** each row into a sorting index, terminate the first loop, 5595 ** then loop over the sorting index in order to get the output 5596 ** in sorted order 5597 */ 5598 int regBase; 5599 int regRecord; 5600 int nCol; 5601 int nGroupBy; 5602 5603 explainTempTable(pParse, 5604 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5605 "DISTINCT" : "GROUP BY"); 5606 5607 groupBySort = 1; 5608 nGroupBy = pGroupBy->nExpr; 5609 nCol = nGroupBy; 5610 j = nGroupBy; 5611 for(i=0; i<sAggInfo.nColumn; i++){ 5612 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5613 nCol++; 5614 j++; 5615 } 5616 } 5617 regBase = sqlite3GetTempRange(pParse, nCol); 5618 sqlite3ExprCacheClear(pParse); 5619 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5620 j = nGroupBy; 5621 for(i=0; i<sAggInfo.nColumn; i++){ 5622 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5623 if( pCol->iSorterColumn>=j ){ 5624 int r1 = j + regBase; 5625 sqlite3ExprCodeGetColumnToReg(pParse, 5626 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5627 j++; 5628 } 5629 } 5630 regRecord = sqlite3GetTempReg(pParse); 5631 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5632 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5633 sqlite3ReleaseTempReg(pParse, regRecord); 5634 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5635 sqlite3WhereEnd(pWInfo); 5636 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5637 sortOut = sqlite3GetTempReg(pParse); 5638 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5639 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5640 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5641 sAggInfo.useSortingIdx = 1; 5642 sqlite3ExprCacheClear(pParse); 5643 5644 } 5645 5646 /* If the index or temporary table used by the GROUP BY sort 5647 ** will naturally deliver rows in the order required by the ORDER BY 5648 ** clause, cancel the ephemeral table open coded earlier. 5649 ** 5650 ** This is an optimization - the correct answer should result regardless. 5651 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5652 ** disable this optimization for testing purposes. */ 5653 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5654 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5655 ){ 5656 sSort.pOrderBy = 0; 5657 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5658 } 5659 5660 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5661 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5662 ** Then compare the current GROUP BY terms against the GROUP BY terms 5663 ** from the previous row currently stored in a0, a1, a2... 5664 */ 5665 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5666 sqlite3ExprCacheClear(pParse); 5667 if( groupBySort ){ 5668 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5669 sortOut, sortPTab); 5670 } 5671 for(j=0; j<pGroupBy->nExpr; j++){ 5672 if( groupBySort ){ 5673 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5674 }else{ 5675 sAggInfo.directMode = 1; 5676 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5677 } 5678 } 5679 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5680 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5681 addr1 = sqlite3VdbeCurrentAddr(v); 5682 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5683 5684 /* Generate code that runs whenever the GROUP BY changes. 5685 ** Changes in the GROUP BY are detected by the previous code 5686 ** block. If there were no changes, this block is skipped. 5687 ** 5688 ** This code copies current group by terms in b0,b1,b2,... 5689 ** over to a0,a1,a2. It then calls the output subroutine 5690 ** and resets the aggregate accumulator registers in preparation 5691 ** for the next GROUP BY batch. 5692 */ 5693 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5694 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5695 VdbeComment((v, "output one row")); 5696 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5697 VdbeComment((v, "check abort flag")); 5698 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5699 VdbeComment((v, "reset accumulator")); 5700 5701 /* Update the aggregate accumulators based on the content of 5702 ** the current row 5703 */ 5704 sqlite3VdbeJumpHere(v, addr1); 5705 updateAccumulator(pParse, &sAggInfo); 5706 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5707 VdbeComment((v, "indicate data in accumulator")); 5708 5709 /* End of the loop 5710 */ 5711 if( groupBySort ){ 5712 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5713 VdbeCoverage(v); 5714 }else{ 5715 sqlite3WhereEnd(pWInfo); 5716 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5717 } 5718 5719 /* Output the final row of result 5720 */ 5721 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5722 VdbeComment((v, "output final row")); 5723 5724 /* Jump over the subroutines 5725 */ 5726 sqlite3VdbeGoto(v, addrEnd); 5727 5728 /* Generate a subroutine that outputs a single row of the result 5729 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5730 ** is less than or equal to zero, the subroutine is a no-op. If 5731 ** the processing calls for the query to abort, this subroutine 5732 ** increments the iAbortFlag memory location before returning in 5733 ** order to signal the caller to abort. 5734 */ 5735 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5736 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5737 VdbeComment((v, "set abort flag")); 5738 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5739 sqlite3VdbeResolveLabel(v, addrOutputRow); 5740 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5741 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5742 VdbeCoverage(v); 5743 VdbeComment((v, "Groupby result generator entry point")); 5744 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5745 finalizeAggFunctions(pParse, &sAggInfo); 5746 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5747 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5748 &sDistinct, pDest, 5749 addrOutputRow+1, addrSetAbort); 5750 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5751 VdbeComment((v, "end groupby result generator")); 5752 5753 /* Generate a subroutine that will reset the group-by accumulator 5754 */ 5755 sqlite3VdbeResolveLabel(v, addrReset); 5756 resetAccumulator(pParse, &sAggInfo); 5757 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5758 5759 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5760 else { 5761 ExprList *pDel = 0; 5762 #ifndef SQLITE_OMIT_BTREECOUNT 5763 Table *pTab; 5764 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5765 /* If isSimpleCount() returns a pointer to a Table structure, then 5766 ** the SQL statement is of the form: 5767 ** 5768 ** SELECT count(*) FROM <tbl> 5769 ** 5770 ** where the Table structure returned represents table <tbl>. 5771 ** 5772 ** This statement is so common that it is optimized specially. The 5773 ** OP_Count instruction is executed either on the intkey table that 5774 ** contains the data for table <tbl> or on one of its indexes. It 5775 ** is better to execute the op on an index, as indexes are almost 5776 ** always spread across less pages than their corresponding tables. 5777 */ 5778 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5779 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5780 Index *pIdx; /* Iterator variable */ 5781 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5782 Index *pBest = 0; /* Best index found so far */ 5783 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5784 5785 sqlite3CodeVerifySchema(pParse, iDb); 5786 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5787 5788 /* Search for the index that has the lowest scan cost. 5789 ** 5790 ** (2011-04-15) Do not do a full scan of an unordered index. 5791 ** 5792 ** (2013-10-03) Do not count the entries in a partial index. 5793 ** 5794 ** In practice the KeyInfo structure will not be used. It is only 5795 ** passed to keep OP_OpenRead happy. 5796 */ 5797 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5798 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5799 if( pIdx->bUnordered==0 5800 && pIdx->szIdxRow<pTab->szTabRow 5801 && pIdx->pPartIdxWhere==0 5802 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5803 ){ 5804 pBest = pIdx; 5805 } 5806 } 5807 if( pBest ){ 5808 iRoot = pBest->tnum; 5809 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5810 } 5811 5812 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5813 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5814 if( pKeyInfo ){ 5815 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5816 } 5817 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5818 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5819 explainSimpleCount(pParse, pTab, pBest); 5820 }else 5821 #endif /* SQLITE_OMIT_BTREECOUNT */ 5822 { 5823 /* Check if the query is of one of the following forms: 5824 ** 5825 ** SELECT min(x) FROM ... 5826 ** SELECT max(x) FROM ... 5827 ** 5828 ** If it is, then ask the code in where.c to attempt to sort results 5829 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5830 ** If where.c is able to produce results sorted in this order, then 5831 ** add vdbe code to break out of the processing loop after the 5832 ** first iteration (since the first iteration of the loop is 5833 ** guaranteed to operate on the row with the minimum or maximum 5834 ** value of x, the only row required). 5835 ** 5836 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5837 ** modify behavior as follows: 5838 ** 5839 ** + If the query is a "SELECT min(x)", then the loop coded by 5840 ** where.c should not iterate over any values with a NULL value 5841 ** for x. 5842 ** 5843 ** + The optimizer code in where.c (the thing that decides which 5844 ** index or indices to use) should place a different priority on 5845 ** satisfying the 'ORDER BY' clause than it does in other cases. 5846 ** Refer to code and comments in where.c for details. 5847 */ 5848 ExprList *pMinMax = 0; 5849 u8 flag = WHERE_ORDERBY_NORMAL; 5850 5851 assert( p->pGroupBy==0 ); 5852 assert( flag==0 ); 5853 if( p->pHaving==0 ){ 5854 flag = minMaxQuery(&sAggInfo, &pMinMax); 5855 } 5856 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5857 5858 if( flag ){ 5859 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5860 pDel = pMinMax; 5861 assert( db->mallocFailed || pMinMax!=0 ); 5862 if( !db->mallocFailed ){ 5863 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5864 pMinMax->a[0].pExpr->op = TK_COLUMN; 5865 } 5866 } 5867 5868 /* This case runs if the aggregate has no GROUP BY clause. The 5869 ** processing is much simpler since there is only a single row 5870 ** of output. 5871 */ 5872 resetAccumulator(pParse, &sAggInfo); 5873 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0); 5874 if( pWInfo==0 ){ 5875 sqlite3ExprListDelete(db, pDel); 5876 goto select_end; 5877 } 5878 updateAccumulator(pParse, &sAggInfo); 5879 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5880 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5881 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5882 VdbeComment((v, "%s() by index", 5883 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5884 } 5885 sqlite3WhereEnd(pWInfo); 5886 finalizeAggFunctions(pParse, &sAggInfo); 5887 } 5888 5889 sSort.pOrderBy = 0; 5890 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5891 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5892 pDest, addrEnd, addrEnd); 5893 sqlite3ExprListDelete(db, pDel); 5894 } 5895 sqlite3VdbeResolveLabel(v, addrEnd); 5896 5897 } /* endif aggregate query */ 5898 5899 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5900 explainTempTable(pParse, "DISTINCT"); 5901 } 5902 5903 /* If there is an ORDER BY clause, then we need to sort the results 5904 ** and send them to the callback one by one. 5905 */ 5906 if( sSort.pOrderBy ){ 5907 explainTempTable(pParse, 5908 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5909 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5910 } 5911 5912 /* Jump here to skip this query 5913 */ 5914 sqlite3VdbeResolveLabel(v, iEnd); 5915 5916 /* The SELECT has been coded. If there is an error in the Parse structure, 5917 ** set the return code to 1. Otherwise 0. */ 5918 rc = (pParse->nErr>0); 5919 5920 /* Control jumps to here if an error is encountered above, or upon 5921 ** successful coding of the SELECT. 5922 */ 5923 select_end: 5924 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5925 5926 /* Identify column names if results of the SELECT are to be output. 5927 */ 5928 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5929 generateColumnNames(pParse, pTabList, pEList); 5930 } 5931 5932 sqlite3DbFree(db, sAggInfo.aCol); 5933 sqlite3DbFree(db, sAggInfo.aFunc); 5934 #if SELECTTRACE_ENABLED 5935 SELECTTRACE(1,pParse,p,("end processing\n")); 5936 pParse->nSelectIndent--; 5937 #endif 5938 return rc; 5939 } 5940