1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 ** 208 ** These are the valid join types: 209 ** 210 ** 211 ** pA pB pC Return Value 212 ** ------- ----- ----- ------------ 213 ** CROSS - - JT_CROSS 214 ** INNER - - JT_INNER 215 ** LEFT - - JT_LEFT|JT_OUTER 216 ** LEFT OUTER - JT_LEFT|JT_OUTER 217 ** RIGHT - - JT_RIGHT|JT_OUTER 218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** NATURAL INNER - JT_NATURAL|JT_INNER 222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 228 ** 229 ** To preserve historical compatibly, SQLite also accepts a variety 230 ** of other non-standard and in many cases non-sensical join types. 231 ** This routine makes as much sense at it can from the nonsense join 232 ** type and returns a result. Examples of accepted nonsense join types 233 ** include but are not limited to: 234 ** 235 ** INNER CROSS JOIN -> same as JOIN 236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 237 ** OUTER LEFT JOIN -> same as LEFT JOIN 238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 239 ** LEFT RIGHT JOIN -> same as FULL JOIN 240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 241 ** CROSS CROSS CROSS JOIN -> same as JOIN 242 ** 243 ** The only restrictions on the join type name are: 244 ** 245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 246 ** or "FULL". 247 ** 248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 249 ** or "FULL". 250 ** 251 ** * If "OUTER" is present then there must also be one of 252 ** "LEFT", "RIGHT", or "FULL" 253 */ 254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 255 int jointype = 0; 256 Token *apAll[3]; 257 Token *p; 258 /* 0123456789 123456789 123456789 123 */ 259 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 260 static const struct { 261 u8 i; /* Beginning of keyword text in zKeyText[] */ 262 u8 nChar; /* Length of the keyword in characters */ 263 u8 code; /* Join type mask */ 264 } aKeyword[] = { 265 /* (0) natural */ { 0, 7, JT_NATURAL }, 266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 267 /* (2) outer */ { 10, 5, JT_OUTER }, 268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 270 /* (5) inner */ { 23, 5, JT_INNER }, 271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 272 }; 273 int i, j; 274 apAll[0] = pA; 275 apAll[1] = pB; 276 apAll[2] = pC; 277 for(i=0; i<3 && apAll[i]; i++){ 278 p = apAll[i]; 279 for(j=0; j<ArraySize(aKeyword); j++){ 280 if( p->n==aKeyword[j].nChar 281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 282 jointype |= aKeyword[j].code; 283 break; 284 } 285 } 286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 287 if( j>=ArraySize(aKeyword) ){ 288 jointype |= JT_ERROR; 289 break; 290 } 291 } 292 if( 293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 294 (jointype & JT_ERROR)!=0 || 295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 296 ){ 297 const char *zSp1 = " "; 298 const char *zSp2 = " "; 299 if( pB==0 ){ zSp1++; } 300 if( pC==0 ){ zSp2++; } 301 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 303 jointype = JT_INNER; 304 } 305 return jointype; 306 } 307 308 /* 309 ** Return the index of a column in a table. Return -1 if the column 310 ** is not contained in the table. 311 */ 312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 313 int i; 314 u8 h = sqlite3StrIHash(zCol); 315 Column *pCol; 316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 318 } 319 return -1; 320 } 321 322 /* 323 ** Search the first N tables in pSrc, from left to right, looking for a 324 ** table that has a column named zCol. 325 ** 326 ** When found, set *piTab and *piCol to the table index and column index 327 ** of the matching column and return TRUE. 328 ** 329 ** If not found, return FALSE. 330 */ 331 static int tableAndColumnIndex( 332 SrcList *pSrc, /* Array of tables to search */ 333 int N, /* Number of tables in pSrc->a[] to search */ 334 const char *zCol, /* Name of the column we are looking for */ 335 int *piTab, /* Write index of pSrc->a[] here */ 336 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 337 int bIgnoreHidden /* True to ignore hidden columns */ 338 ){ 339 int i; /* For looping over tables in pSrc */ 340 int iCol; /* Index of column matching zCol */ 341 342 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 343 for(i=0; i<N; i++){ 344 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 345 if( iCol>=0 346 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 347 ){ 348 if( piTab ){ 349 *piTab = i; 350 *piCol = iCol; 351 } 352 return 1; 353 } 354 } 355 return 0; 356 } 357 358 /* 359 ** This function is used to add terms implied by JOIN syntax to the 360 ** WHERE clause expression of a SELECT statement. The new term, which 361 ** is ANDed with the existing WHERE clause, is of the form: 362 ** 363 ** (tab1.col1 = tab2.col2) 364 ** 365 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 366 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 367 ** column iColRight of tab2. 368 */ 369 static void addWhereTerm( 370 Parse *pParse, /* Parsing context */ 371 SrcList *pSrc, /* List of tables in FROM clause */ 372 int iLeft, /* Index of first table to join in pSrc */ 373 int iColLeft, /* Index of column in first table */ 374 int iRight, /* Index of second table in pSrc */ 375 int iColRight, /* Index of column in second table */ 376 u32 joinType, /* EP_FromJoin or EP_InnerJoin */ 377 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 378 ){ 379 sqlite3 *db = pParse->db; 380 Expr *pE1; 381 Expr *pE2; 382 Expr *pEq; 383 384 assert( iLeft<iRight ); 385 assert( pSrc->nSrc>iRight ); 386 assert( pSrc->a[iLeft].pTab ); 387 assert( pSrc->a[iRight].pTab ); 388 389 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 390 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 391 392 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 393 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 394 ** in sqlite3DbMallocRawNN() called from 395 ** sqlite3PExpr(). */ 396 if( pEq ){ 397 ExprSetProperty(pEq, joinType); 398 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 399 ExprSetVVAProperty(pEq, EP_NoReduce); 400 pEq->w.iJoin = pE2->iTable; 401 } 402 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 403 } 404 405 /* 406 ** Set the EP_FromJoin property on all terms of the given expression. 407 ** And set the Expr.w.iJoin to iTable for every term in the 408 ** expression. 409 ** 410 ** The EP_FromJoin property is used on terms of an expression to tell 411 ** the OUTER JOIN processing logic that this term is part of the 412 ** join restriction specified in the ON or USING clause and not a part 413 ** of the more general WHERE clause. These terms are moved over to the 414 ** WHERE clause during join processing but we need to remember that they 415 ** originated in the ON or USING clause. 416 ** 417 ** The Expr.w.iJoin tells the WHERE clause processing that the 418 ** expression depends on table w.iJoin even if that table is not 419 ** explicitly mentioned in the expression. That information is needed 420 ** for cases like this: 421 ** 422 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 423 ** 424 ** The where clause needs to defer the handling of the t1.x=5 425 ** term until after the t2 loop of the join. In that way, a 426 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 427 ** defer the handling of t1.x=5, it will be processed immediately 428 ** after the t1 loop and rows with t1.x!=5 will never appear in 429 ** the output, which is incorrect. 430 */ 431 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 432 assert( joinFlag==EP_FromJoin || joinFlag==EP_InnerJoin ); 433 while( p ){ 434 ExprSetProperty(p, joinFlag); 435 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 436 ExprSetVVAProperty(p, EP_NoReduce); 437 p->w.iJoin = iTable; 438 if( p->op==TK_FUNCTION ){ 439 assert( ExprUseXList(p) ); 440 if( p->x.pList ){ 441 int i; 442 for(i=0; i<p->x.pList->nExpr; i++){ 443 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 444 } 445 } 446 } 447 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 448 p = p->pRight; 449 } 450 } 451 452 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 453 ** term that is marked with EP_FromJoin and w.iJoin==iTable into 454 ** an ordinary term that omits the EP_FromJoin mark. 455 ** 456 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 457 */ 458 static void unsetJoinExpr(Expr *p, int iTable){ 459 while( p ){ 460 if( ExprHasProperty(p, EP_FromJoin) 461 && (iTable<0 || p->w.iJoin==iTable) ){ 462 ExprClearProperty(p, EP_FromJoin); 463 ExprSetProperty(p, EP_InnerJoin); 464 } 465 if( p->op==TK_COLUMN && p->iTable==iTable ){ 466 ExprClearProperty(p, EP_CanBeNull); 467 } 468 if( p->op==TK_FUNCTION ){ 469 assert( ExprUseXList(p) ); 470 if( p->x.pList ){ 471 int i; 472 for(i=0; i<p->x.pList->nExpr; i++){ 473 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 474 } 475 } 476 } 477 unsetJoinExpr(p->pLeft, iTable); 478 p = p->pRight; 479 } 480 } 481 482 /* 483 ** This routine processes the join information for a SELECT statement. 484 ** ON and USING clauses are converted into extra terms of the WHERE clause. 485 ** NATURAL joins also create extra WHERE clause terms. 486 ** 487 ** The terms of a FROM clause are contained in the Select.pSrc structure. 488 ** The left most table is the first entry in Select.pSrc. The right-most 489 ** table is the last entry. The join operator is held in the entry to 490 ** the left. Thus entry 0 contains the join operator for the join between 491 ** entries 0 and 1. Any ON or USING clauses associated with the join are 492 ** also attached to the left entry. 493 ** 494 ** This routine returns the number of errors encountered. 495 */ 496 static int sqliteProcessJoin(Parse *pParse, Select *p){ 497 SrcList *pSrc; /* All tables in the FROM clause */ 498 int i, j; /* Loop counters */ 499 SrcItem *pLeft; /* Left table being joined */ 500 SrcItem *pRight; /* Right table being joined */ 501 502 pSrc = p->pSrc; 503 pLeft = &pSrc->a[0]; 504 pRight = &pLeft[1]; 505 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 506 Table *pRightTab = pRight->pTab; 507 u32 joinType; 508 509 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 510 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_FromJoin : EP_InnerJoin; 511 512 /* When the NATURAL keyword is present, add WHERE clause terms for 513 ** every column that the two tables have in common. 514 */ 515 if( pRight->fg.jointype & JT_NATURAL ){ 516 if( pRight->fg.isUsing || pRight->u3.pOn ){ 517 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 518 "an ON or USING clause", 0); 519 return 1; 520 } 521 for(j=0; j<pRightTab->nCol; j++){ 522 char *zName; /* Name of column in the right table */ 523 int iLeft; /* Matching left table */ 524 int iLeftCol; /* Matching column in the left table */ 525 526 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 527 zName = pRightTab->aCol[j].zCnName; 528 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 529 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 530 joinType, &p->pWhere); 531 } 532 } 533 } 534 535 /* Create extra terms on the WHERE clause for each column named 536 ** in the USING clause. Example: If the two tables to be joined are 537 ** A and B and the USING clause names X, Y, and Z, then add this 538 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 539 ** Report an error if any column mentioned in the USING clause is 540 ** not contained in both tables to be joined. 541 */ 542 if( pRight->fg.isUsing ){ 543 IdList *pList = pRight->u3.pUsing; 544 assert( pList!=0 ); 545 for(j=0; j<pList->nId; j++){ 546 char *zName; /* Name of the term in the USING clause */ 547 int iLeft; /* Table on the left with matching column name */ 548 int iLeftCol; /* Column number of matching column on the left */ 549 int iRightCol; /* Column number of matching column on the right */ 550 551 zName = pList->a[j].zName; 552 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 553 if( iRightCol<0 554 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 555 ){ 556 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 557 "not present in both tables", zName); 558 return 1; 559 } 560 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 561 joinType, &p->pWhere); 562 } 563 } 564 565 /* Add the ON clause to the end of the WHERE clause, connected by 566 ** an AND operator. 567 */ 568 else if( pRight->u3.pOn ){ 569 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 570 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 571 pRight->u3.pOn = 0; 572 } 573 } 574 return 0; 575 } 576 577 /* 578 ** An instance of this object holds information (beyond pParse and pSelect) 579 ** needed to load the next result row that is to be added to the sorter. 580 */ 581 typedef struct RowLoadInfo RowLoadInfo; 582 struct RowLoadInfo { 583 int regResult; /* Store results in array of registers here */ 584 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 585 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 586 ExprList *pExtra; /* Extra columns needed by sorter refs */ 587 int regExtraResult; /* Where to load the extra columns */ 588 #endif 589 }; 590 591 /* 592 ** This routine does the work of loading query data into an array of 593 ** registers so that it can be added to the sorter. 594 */ 595 static void innerLoopLoadRow( 596 Parse *pParse, /* Statement under construction */ 597 Select *pSelect, /* The query being coded */ 598 RowLoadInfo *pInfo /* Info needed to complete the row load */ 599 ){ 600 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 601 0, pInfo->ecelFlags); 602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 603 if( pInfo->pExtra ){ 604 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 605 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 606 } 607 #endif 608 } 609 610 /* 611 ** Code the OP_MakeRecord instruction that generates the entry to be 612 ** added into the sorter. 613 ** 614 ** Return the register in which the result is stored. 615 */ 616 static int makeSorterRecord( 617 Parse *pParse, 618 SortCtx *pSort, 619 Select *pSelect, 620 int regBase, 621 int nBase 622 ){ 623 int nOBSat = pSort->nOBSat; 624 Vdbe *v = pParse->pVdbe; 625 int regOut = ++pParse->nMem; 626 if( pSort->pDeferredRowLoad ){ 627 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 628 } 629 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 630 return regOut; 631 } 632 633 /* 634 ** Generate code that will push the record in registers regData 635 ** through regData+nData-1 onto the sorter. 636 */ 637 static void pushOntoSorter( 638 Parse *pParse, /* Parser context */ 639 SortCtx *pSort, /* Information about the ORDER BY clause */ 640 Select *pSelect, /* The whole SELECT statement */ 641 int regData, /* First register holding data to be sorted */ 642 int regOrigData, /* First register holding data before packing */ 643 int nData, /* Number of elements in the regData data array */ 644 int nPrefixReg /* No. of reg prior to regData available for use */ 645 ){ 646 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 647 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 648 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 649 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 650 int regBase; /* Regs for sorter record */ 651 int regRecord = 0; /* Assembled sorter record */ 652 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 653 int op; /* Opcode to add sorter record to sorter */ 654 int iLimit; /* LIMIT counter */ 655 int iSkip = 0; /* End of the sorter insert loop */ 656 657 assert( bSeq==0 || bSeq==1 ); 658 659 /* Three cases: 660 ** (1) The data to be sorted has already been packed into a Record 661 ** by a prior OP_MakeRecord. In this case nData==1 and regData 662 ** will be completely unrelated to regOrigData. 663 ** (2) All output columns are included in the sort record. In that 664 ** case regData==regOrigData. 665 ** (3) Some output columns are omitted from the sort record due to 666 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 667 ** SQLITE_ECEL_OMITREF optimization, or due to the 668 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 669 ** regOrigData is 0 to prevent this routine from trying to copy 670 ** values that might not yet exist. 671 */ 672 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 673 674 if( nPrefixReg ){ 675 assert( nPrefixReg==nExpr+bSeq ); 676 regBase = regData - nPrefixReg; 677 }else{ 678 regBase = pParse->nMem + 1; 679 pParse->nMem += nBase; 680 } 681 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 682 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 683 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 684 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 685 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 686 if( bSeq ){ 687 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 688 } 689 if( nPrefixReg==0 && nData>0 ){ 690 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 691 } 692 if( nOBSat>0 ){ 693 int regPrevKey; /* The first nOBSat columns of the previous row */ 694 int addrFirst; /* Address of the OP_IfNot opcode */ 695 int addrJmp; /* Address of the OP_Jump opcode */ 696 VdbeOp *pOp; /* Opcode that opens the sorter */ 697 int nKey; /* Number of sorting key columns, including OP_Sequence */ 698 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 699 700 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 701 regPrevKey = pParse->nMem+1; 702 pParse->nMem += pSort->nOBSat; 703 nKey = nExpr - pSort->nOBSat + bSeq; 704 if( bSeq ){ 705 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 706 }else{ 707 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 708 } 709 VdbeCoverage(v); 710 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 711 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 712 if( pParse->db->mallocFailed ) return; 713 pOp->p2 = nKey + nData; 714 pKI = pOp->p4.pKeyInfo; 715 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 716 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 717 testcase( pKI->nAllField > pKI->nKeyField+2 ); 718 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 719 pKI->nAllField-pKI->nKeyField-1); 720 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 721 addrJmp = sqlite3VdbeCurrentAddr(v); 722 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 723 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 724 pSort->regReturn = ++pParse->nMem; 725 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 726 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 727 if( iLimit ){ 728 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 729 VdbeCoverage(v); 730 } 731 sqlite3VdbeJumpHere(v, addrFirst); 732 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 733 sqlite3VdbeJumpHere(v, addrJmp); 734 } 735 if( iLimit ){ 736 /* At this point the values for the new sorter entry are stored 737 ** in an array of registers. They need to be composed into a record 738 ** and inserted into the sorter if either (a) there are currently 739 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 740 ** the largest record currently in the sorter. If (b) is true and there 741 ** are already LIMIT+OFFSET items in the sorter, delete the largest 742 ** entry before inserting the new one. This way there are never more 743 ** than LIMIT+OFFSET items in the sorter. 744 ** 745 ** If the new record does not need to be inserted into the sorter, 746 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 747 ** value is not zero, then it is a label of where to jump. Otherwise, 748 ** just bypass the row insert logic. See the header comment on the 749 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 750 */ 751 int iCsr = pSort->iECursor; 752 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 753 VdbeCoverage(v); 754 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 755 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 756 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 757 VdbeCoverage(v); 758 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 759 } 760 if( regRecord==0 ){ 761 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 762 } 763 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 764 op = OP_SorterInsert; 765 }else{ 766 op = OP_IdxInsert; 767 } 768 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 769 regBase+nOBSat, nBase-nOBSat); 770 if( iSkip ){ 771 sqlite3VdbeChangeP2(v, iSkip, 772 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 773 } 774 } 775 776 /* 777 ** Add code to implement the OFFSET 778 */ 779 static void codeOffset( 780 Vdbe *v, /* Generate code into this VM */ 781 int iOffset, /* Register holding the offset counter */ 782 int iContinue /* Jump here to skip the current record */ 783 ){ 784 if( iOffset>0 ){ 785 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 786 VdbeComment((v, "OFFSET")); 787 } 788 } 789 790 /* 791 ** Add code that will check to make sure the array of registers starting at 792 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 793 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 794 ** are available. Which is used depends on the value of parameter eTnctType, 795 ** as follows: 796 ** 797 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 798 ** Build an ephemeral table that contains all entries seen before and 799 ** skip entries which have been seen before. 800 ** 801 ** Parameter iTab is the cursor number of an ephemeral table that must 802 ** be opened before the VM code generated by this routine is executed. 803 ** The ephemeral cursor table is queried for a record identical to the 804 ** record formed by the current array of registers. If one is found, 805 ** jump to VM address addrRepeat. Otherwise, insert a new record into 806 ** the ephemeral cursor and proceed. 807 ** 808 ** The returned value in this case is a copy of parameter iTab. 809 ** 810 ** WHERE_DISTINCT_ORDERED: 811 ** In this case rows are being delivered sorted order. The ephermal 812 ** table is not required. Instead, the current set of values 813 ** is compared against previous row. If they match, the new row 814 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 815 ** the VM program proceeds with processing the new row. 816 ** 817 ** The returned value in this case is the register number of the first 818 ** in an array of registers used to store the previous result row so that 819 ** it can be compared to the next. The caller must ensure that this 820 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 821 ** will take care of this initialization.) 822 ** 823 ** WHERE_DISTINCT_UNIQUE: 824 ** In this case it has already been determined that the rows are distinct. 825 ** No special action is required. The return value is zero. 826 ** 827 ** Parameter pEList is the list of expressions used to generated the 828 ** contents of each row. It is used by this routine to determine (a) 829 ** how many elements there are in the array of registers and (b) the 830 ** collation sequences that should be used for the comparisons if 831 ** eTnctType is WHERE_DISTINCT_ORDERED. 832 */ 833 static int codeDistinct( 834 Parse *pParse, /* Parsing and code generating context */ 835 int eTnctType, /* WHERE_DISTINCT_* value */ 836 int iTab, /* A sorting index used to test for distinctness */ 837 int addrRepeat, /* Jump to here if not distinct */ 838 ExprList *pEList, /* Expression for each element */ 839 int regElem /* First element */ 840 ){ 841 int iRet = 0; 842 int nResultCol = pEList->nExpr; 843 Vdbe *v = pParse->pVdbe; 844 845 switch( eTnctType ){ 846 case WHERE_DISTINCT_ORDERED: { 847 int i; 848 int iJump; /* Jump destination */ 849 int regPrev; /* Previous row content */ 850 851 /* Allocate space for the previous row */ 852 iRet = regPrev = pParse->nMem+1; 853 pParse->nMem += nResultCol; 854 855 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 856 for(i=0; i<nResultCol; i++){ 857 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 858 if( i<nResultCol-1 ){ 859 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 860 VdbeCoverage(v); 861 }else{ 862 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 863 VdbeCoverage(v); 864 } 865 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 866 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 867 } 868 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 869 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 870 break; 871 } 872 873 case WHERE_DISTINCT_UNIQUE: { 874 /* nothing to do */ 875 break; 876 } 877 878 default: { 879 int r1 = sqlite3GetTempReg(pParse); 880 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 881 VdbeCoverage(v); 882 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 883 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 884 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 885 sqlite3ReleaseTempReg(pParse, r1); 886 iRet = iTab; 887 break; 888 } 889 } 890 891 return iRet; 892 } 893 894 /* 895 ** This routine runs after codeDistinct(). It makes necessary 896 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 897 ** routine made use of. This processing must be done separately since 898 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 899 ** laid down. 900 ** 901 ** WHERE_DISTINCT_NOOP: 902 ** WHERE_DISTINCT_UNORDERED: 903 ** 904 ** No adjustments necessary. This function is a no-op. 905 ** 906 ** WHERE_DISTINCT_UNIQUE: 907 ** 908 ** The ephemeral table is not needed. So change the 909 ** OP_OpenEphemeral opcode into an OP_Noop. 910 ** 911 ** WHERE_DISTINCT_ORDERED: 912 ** 913 ** The ephemeral table is not needed. But we do need register 914 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 915 ** into an OP_Null on the iVal register. 916 */ 917 static void fixDistinctOpenEph( 918 Parse *pParse, /* Parsing and code generating context */ 919 int eTnctType, /* WHERE_DISTINCT_* value */ 920 int iVal, /* Value returned by codeDistinct() */ 921 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 922 ){ 923 if( pParse->nErr==0 924 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 925 ){ 926 Vdbe *v = pParse->pVdbe; 927 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 928 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 929 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 930 } 931 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 932 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 933 ** bit on the first register of the previous value. This will cause the 934 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 935 ** the loop even if the first row is all NULLs. */ 936 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 937 pOp->opcode = OP_Null; 938 pOp->p1 = 1; 939 pOp->p2 = iVal; 940 } 941 } 942 } 943 944 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 945 /* 946 ** This function is called as part of inner-loop generation for a SELECT 947 ** statement with an ORDER BY that is not optimized by an index. It 948 ** determines the expressions, if any, that the sorter-reference 949 ** optimization should be used for. The sorter-reference optimization 950 ** is used for SELECT queries like: 951 ** 952 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 953 ** 954 ** If the optimization is used for expression "bigblob", then instead of 955 ** storing values read from that column in the sorter records, the PK of 956 ** the row from table t1 is stored instead. Then, as records are extracted from 957 ** the sorter to return to the user, the required value of bigblob is 958 ** retrieved directly from table t1. If the values are very large, this 959 ** can be more efficient than storing them directly in the sorter records. 960 ** 961 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 962 ** for which the sorter-reference optimization should be enabled. 963 ** Additionally, the pSort->aDefer[] array is populated with entries 964 ** for all cursors required to evaluate all selected expressions. Finally. 965 ** output variable (*ppExtra) is set to an expression list containing 966 ** expressions for all extra PK values that should be stored in the 967 ** sorter records. 968 */ 969 static void selectExprDefer( 970 Parse *pParse, /* Leave any error here */ 971 SortCtx *pSort, /* Sorter context */ 972 ExprList *pEList, /* Expressions destined for sorter */ 973 ExprList **ppExtra /* Expressions to append to sorter record */ 974 ){ 975 int i; 976 int nDefer = 0; 977 ExprList *pExtra = 0; 978 for(i=0; i<pEList->nExpr; i++){ 979 struct ExprList_item *pItem = &pEList->a[i]; 980 if( pItem->u.x.iOrderByCol==0 ){ 981 Expr *pExpr = pItem->pExpr; 982 Table *pTab; 983 if( pExpr->op==TK_COLUMN 984 && pExpr->iColumn>=0 985 && ALWAYS( ExprUseYTab(pExpr) ) 986 && (pTab = pExpr->y.pTab)!=0 987 && IsOrdinaryTable(pTab) 988 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 989 ){ 990 int j; 991 for(j=0; j<nDefer; j++){ 992 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 993 } 994 if( j==nDefer ){ 995 if( nDefer==ArraySize(pSort->aDefer) ){ 996 continue; 997 }else{ 998 int nKey = 1; 999 int k; 1000 Index *pPk = 0; 1001 if( !HasRowid(pTab) ){ 1002 pPk = sqlite3PrimaryKeyIndex(pTab); 1003 nKey = pPk->nKeyCol; 1004 } 1005 for(k=0; k<nKey; k++){ 1006 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1007 if( pNew ){ 1008 pNew->iTable = pExpr->iTable; 1009 assert( ExprUseYTab(pNew) ); 1010 pNew->y.pTab = pExpr->y.pTab; 1011 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1012 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1013 } 1014 } 1015 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1016 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1017 pSort->aDefer[nDefer].nKey = nKey; 1018 nDefer++; 1019 } 1020 } 1021 pItem->bSorterRef = 1; 1022 } 1023 } 1024 } 1025 pSort->nDefer = (u8)nDefer; 1026 *ppExtra = pExtra; 1027 } 1028 #endif 1029 1030 /* 1031 ** This routine generates the code for the inside of the inner loop 1032 ** of a SELECT. 1033 ** 1034 ** If srcTab is negative, then the p->pEList expressions 1035 ** are evaluated in order to get the data for this row. If srcTab is 1036 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1037 ** to get the number of columns and the collation sequence for each column. 1038 */ 1039 static void selectInnerLoop( 1040 Parse *pParse, /* The parser context */ 1041 Select *p, /* The complete select statement being coded */ 1042 int srcTab, /* Pull data from this table if non-negative */ 1043 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1044 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1045 SelectDest *pDest, /* How to dispose of the results */ 1046 int iContinue, /* Jump here to continue with next row */ 1047 int iBreak /* Jump here to break out of the inner loop */ 1048 ){ 1049 Vdbe *v = pParse->pVdbe; 1050 int i; 1051 int hasDistinct; /* True if the DISTINCT keyword is present */ 1052 int eDest = pDest->eDest; /* How to dispose of results */ 1053 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1054 int nResultCol; /* Number of result columns */ 1055 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1056 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1057 1058 /* Usually, regResult is the first cell in an array of memory cells 1059 ** containing the current result row. In this case regOrig is set to the 1060 ** same value. However, if the results are being sent to the sorter, the 1061 ** values for any expressions that are also part of the sort-key are omitted 1062 ** from this array. In this case regOrig is set to zero. */ 1063 int regResult; /* Start of memory holding current results */ 1064 int regOrig; /* Start of memory holding full result (or 0) */ 1065 1066 assert( v ); 1067 assert( p->pEList!=0 ); 1068 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1069 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1070 if( pSort==0 && !hasDistinct ){ 1071 assert( iContinue!=0 ); 1072 codeOffset(v, p->iOffset, iContinue); 1073 } 1074 1075 /* Pull the requested columns. 1076 */ 1077 nResultCol = p->pEList->nExpr; 1078 1079 if( pDest->iSdst==0 ){ 1080 if( pSort ){ 1081 nPrefixReg = pSort->pOrderBy->nExpr; 1082 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1083 pParse->nMem += nPrefixReg; 1084 } 1085 pDest->iSdst = pParse->nMem+1; 1086 pParse->nMem += nResultCol; 1087 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1088 /* This is an error condition that can result, for example, when a SELECT 1089 ** on the right-hand side of an INSERT contains more result columns than 1090 ** there are columns in the table on the left. The error will be caught 1091 ** and reported later. But we need to make sure enough memory is allocated 1092 ** to avoid other spurious errors in the meantime. */ 1093 pParse->nMem += nResultCol; 1094 } 1095 pDest->nSdst = nResultCol; 1096 regOrig = regResult = pDest->iSdst; 1097 if( srcTab>=0 ){ 1098 for(i=0; i<nResultCol; i++){ 1099 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1100 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1101 } 1102 }else if( eDest!=SRT_Exists ){ 1103 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1104 ExprList *pExtra = 0; 1105 #endif 1106 /* If the destination is an EXISTS(...) expression, the actual 1107 ** values returned by the SELECT are not required. 1108 */ 1109 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1110 ExprList *pEList; 1111 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1112 ecelFlags = SQLITE_ECEL_DUP; 1113 }else{ 1114 ecelFlags = 0; 1115 } 1116 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1117 /* For each expression in p->pEList that is a copy of an expression in 1118 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1119 ** iOrderByCol value to one more than the index of the ORDER BY 1120 ** expression within the sort-key that pushOntoSorter() will generate. 1121 ** This allows the p->pEList field to be omitted from the sorted record, 1122 ** saving space and CPU cycles. */ 1123 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1124 1125 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1126 int j; 1127 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1128 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1129 } 1130 } 1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1132 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1133 if( pExtra && pParse->db->mallocFailed==0 ){ 1134 /* If there are any extra PK columns to add to the sorter records, 1135 ** allocate extra memory cells and adjust the OpenEphemeral 1136 ** instruction to account for the larger records. This is only 1137 ** required if there are one or more WITHOUT ROWID tables with 1138 ** composite primary keys in the SortCtx.aDefer[] array. */ 1139 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1140 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1141 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1142 pParse->nMem += pExtra->nExpr; 1143 } 1144 #endif 1145 1146 /* Adjust nResultCol to account for columns that are omitted 1147 ** from the sorter by the optimizations in this branch */ 1148 pEList = p->pEList; 1149 for(i=0; i<pEList->nExpr; i++){ 1150 if( pEList->a[i].u.x.iOrderByCol>0 1151 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1152 || pEList->a[i].bSorterRef 1153 #endif 1154 ){ 1155 nResultCol--; 1156 regOrig = 0; 1157 } 1158 } 1159 1160 testcase( regOrig ); 1161 testcase( eDest==SRT_Set ); 1162 testcase( eDest==SRT_Mem ); 1163 testcase( eDest==SRT_Coroutine ); 1164 testcase( eDest==SRT_Output ); 1165 assert( eDest==SRT_Set || eDest==SRT_Mem 1166 || eDest==SRT_Coroutine || eDest==SRT_Output 1167 || eDest==SRT_Upfrom ); 1168 } 1169 sRowLoadInfo.regResult = regResult; 1170 sRowLoadInfo.ecelFlags = ecelFlags; 1171 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1172 sRowLoadInfo.pExtra = pExtra; 1173 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1174 if( pExtra ) nResultCol += pExtra->nExpr; 1175 #endif 1176 if( p->iLimit 1177 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1178 && nPrefixReg>0 1179 ){ 1180 assert( pSort!=0 ); 1181 assert( hasDistinct==0 ); 1182 pSort->pDeferredRowLoad = &sRowLoadInfo; 1183 regOrig = 0; 1184 }else{ 1185 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1186 } 1187 } 1188 1189 /* If the DISTINCT keyword was present on the SELECT statement 1190 ** and this row has been seen before, then do not make this row 1191 ** part of the result. 1192 */ 1193 if( hasDistinct ){ 1194 int eType = pDistinct->eTnctType; 1195 int iTab = pDistinct->tabTnct; 1196 assert( nResultCol==p->pEList->nExpr ); 1197 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1198 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1199 if( pSort==0 ){ 1200 codeOffset(v, p->iOffset, iContinue); 1201 } 1202 } 1203 1204 switch( eDest ){ 1205 /* In this mode, write each query result to the key of the temporary 1206 ** table iParm. 1207 */ 1208 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1209 case SRT_Union: { 1210 int r1; 1211 r1 = sqlite3GetTempReg(pParse); 1212 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1213 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1214 sqlite3ReleaseTempReg(pParse, r1); 1215 break; 1216 } 1217 1218 /* Construct a record from the query result, but instead of 1219 ** saving that record, use it as a key to delete elements from 1220 ** the temporary table iParm. 1221 */ 1222 case SRT_Except: { 1223 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1224 break; 1225 } 1226 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1227 1228 /* Store the result as data using a unique key. 1229 */ 1230 case SRT_Fifo: 1231 case SRT_DistFifo: 1232 case SRT_Table: 1233 case SRT_EphemTab: { 1234 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1235 testcase( eDest==SRT_Table ); 1236 testcase( eDest==SRT_EphemTab ); 1237 testcase( eDest==SRT_Fifo ); 1238 testcase( eDest==SRT_DistFifo ); 1239 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1240 #ifndef SQLITE_OMIT_CTE 1241 if( eDest==SRT_DistFifo ){ 1242 /* If the destination is DistFifo, then cursor (iParm+1) is open 1243 ** on an ephemeral index. If the current row is already present 1244 ** in the index, do not write it to the output. If not, add the 1245 ** current row to the index and proceed with writing it to the 1246 ** output table as well. */ 1247 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1248 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1249 VdbeCoverage(v); 1250 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1251 assert( pSort==0 ); 1252 } 1253 #endif 1254 if( pSort ){ 1255 assert( regResult==regOrig ); 1256 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1257 }else{ 1258 int r2 = sqlite3GetTempReg(pParse); 1259 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1260 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1261 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1262 sqlite3ReleaseTempReg(pParse, r2); 1263 } 1264 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1265 break; 1266 } 1267 1268 case SRT_Upfrom: { 1269 if( pSort ){ 1270 pushOntoSorter( 1271 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1272 }else{ 1273 int i2 = pDest->iSDParm2; 1274 int r1 = sqlite3GetTempReg(pParse); 1275 1276 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1277 ** might still be trying to return one row, because that is what 1278 ** aggregates do. Don't record that empty row in the output table. */ 1279 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1280 1281 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1282 regResult+(i2<0), nResultCol-(i2<0), r1); 1283 if( i2<0 ){ 1284 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1285 }else{ 1286 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1287 } 1288 } 1289 break; 1290 } 1291 1292 #ifndef SQLITE_OMIT_SUBQUERY 1293 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1294 ** then there should be a single item on the stack. Write this 1295 ** item into the set table with bogus data. 1296 */ 1297 case SRT_Set: { 1298 if( pSort ){ 1299 /* At first glance you would think we could optimize out the 1300 ** ORDER BY in this case since the order of entries in the set 1301 ** does not matter. But there might be a LIMIT clause, in which 1302 ** case the order does matter */ 1303 pushOntoSorter( 1304 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1305 }else{ 1306 int r1 = sqlite3GetTempReg(pParse); 1307 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1308 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1309 r1, pDest->zAffSdst, nResultCol); 1310 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1311 sqlite3ReleaseTempReg(pParse, r1); 1312 } 1313 break; 1314 } 1315 1316 1317 /* If any row exist in the result set, record that fact and abort. 1318 */ 1319 case SRT_Exists: { 1320 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1321 /* The LIMIT clause will terminate the loop for us */ 1322 break; 1323 } 1324 1325 /* If this is a scalar select that is part of an expression, then 1326 ** store the results in the appropriate memory cell or array of 1327 ** memory cells and break out of the scan loop. 1328 */ 1329 case SRT_Mem: { 1330 if( pSort ){ 1331 assert( nResultCol<=pDest->nSdst ); 1332 pushOntoSorter( 1333 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1334 }else{ 1335 assert( nResultCol==pDest->nSdst ); 1336 assert( regResult==iParm ); 1337 /* The LIMIT clause will jump out of the loop for us */ 1338 } 1339 break; 1340 } 1341 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1342 1343 case SRT_Coroutine: /* Send data to a co-routine */ 1344 case SRT_Output: { /* Return the results */ 1345 testcase( eDest==SRT_Coroutine ); 1346 testcase( eDest==SRT_Output ); 1347 if( pSort ){ 1348 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1349 nPrefixReg); 1350 }else if( eDest==SRT_Coroutine ){ 1351 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1352 }else{ 1353 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1354 } 1355 break; 1356 } 1357 1358 #ifndef SQLITE_OMIT_CTE 1359 /* Write the results into a priority queue that is order according to 1360 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1361 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1362 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1363 ** final OP_Sequence column. The last column is the record as a blob. 1364 */ 1365 case SRT_DistQueue: 1366 case SRT_Queue: { 1367 int nKey; 1368 int r1, r2, r3; 1369 int addrTest = 0; 1370 ExprList *pSO; 1371 pSO = pDest->pOrderBy; 1372 assert( pSO ); 1373 nKey = pSO->nExpr; 1374 r1 = sqlite3GetTempReg(pParse); 1375 r2 = sqlite3GetTempRange(pParse, nKey+2); 1376 r3 = r2+nKey+1; 1377 if( eDest==SRT_DistQueue ){ 1378 /* If the destination is DistQueue, then cursor (iParm+1) is open 1379 ** on a second ephemeral index that holds all values every previously 1380 ** added to the queue. */ 1381 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1382 regResult, nResultCol); 1383 VdbeCoverage(v); 1384 } 1385 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1386 if( eDest==SRT_DistQueue ){ 1387 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1388 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1389 } 1390 for(i=0; i<nKey; i++){ 1391 sqlite3VdbeAddOp2(v, OP_SCopy, 1392 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1393 r2+i); 1394 } 1395 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1396 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1397 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1398 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1399 sqlite3ReleaseTempReg(pParse, r1); 1400 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1401 break; 1402 } 1403 #endif /* SQLITE_OMIT_CTE */ 1404 1405 1406 1407 #if !defined(SQLITE_OMIT_TRIGGER) 1408 /* Discard the results. This is used for SELECT statements inside 1409 ** the body of a TRIGGER. The purpose of such selects is to call 1410 ** user-defined functions that have side effects. We do not care 1411 ** about the actual results of the select. 1412 */ 1413 default: { 1414 assert( eDest==SRT_Discard ); 1415 break; 1416 } 1417 #endif 1418 } 1419 1420 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1421 ** there is a sorter, in which case the sorter has already limited 1422 ** the output for us. 1423 */ 1424 if( pSort==0 && p->iLimit ){ 1425 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1426 } 1427 } 1428 1429 /* 1430 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1431 ** X extra columns. 1432 */ 1433 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1434 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1435 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1436 if( p ){ 1437 p->aSortFlags = (u8*)&p->aColl[N+X]; 1438 p->nKeyField = (u16)N; 1439 p->nAllField = (u16)(N+X); 1440 p->enc = ENC(db); 1441 p->db = db; 1442 p->nRef = 1; 1443 memset(&p[1], 0, nExtra); 1444 }else{ 1445 return (KeyInfo*)sqlite3OomFault(db); 1446 } 1447 return p; 1448 } 1449 1450 /* 1451 ** Deallocate a KeyInfo object 1452 */ 1453 void sqlite3KeyInfoUnref(KeyInfo *p){ 1454 if( p ){ 1455 assert( p->nRef>0 ); 1456 p->nRef--; 1457 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1458 } 1459 } 1460 1461 /* 1462 ** Make a new pointer to a KeyInfo object 1463 */ 1464 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1465 if( p ){ 1466 assert( p->nRef>0 ); 1467 p->nRef++; 1468 } 1469 return p; 1470 } 1471 1472 #ifdef SQLITE_DEBUG 1473 /* 1474 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1475 ** can only be changed if this is just a single reference to the object. 1476 ** 1477 ** This routine is used only inside of assert() statements. 1478 */ 1479 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1480 #endif /* SQLITE_DEBUG */ 1481 1482 /* 1483 ** Given an expression list, generate a KeyInfo structure that records 1484 ** the collating sequence for each expression in that expression list. 1485 ** 1486 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1487 ** KeyInfo structure is appropriate for initializing a virtual index to 1488 ** implement that clause. If the ExprList is the result set of a SELECT 1489 ** then the KeyInfo structure is appropriate for initializing a virtual 1490 ** index to implement a DISTINCT test. 1491 ** 1492 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1493 ** function is responsible for seeing that this structure is eventually 1494 ** freed. 1495 */ 1496 KeyInfo *sqlite3KeyInfoFromExprList( 1497 Parse *pParse, /* Parsing context */ 1498 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1499 int iStart, /* Begin with this column of pList */ 1500 int nExtra /* Add this many extra columns to the end */ 1501 ){ 1502 int nExpr; 1503 KeyInfo *pInfo; 1504 struct ExprList_item *pItem; 1505 sqlite3 *db = pParse->db; 1506 int i; 1507 1508 nExpr = pList->nExpr; 1509 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1510 if( pInfo ){ 1511 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1512 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1513 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1514 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1515 } 1516 } 1517 return pInfo; 1518 } 1519 1520 /* 1521 ** Name of the connection operator, used for error messages. 1522 */ 1523 const char *sqlite3SelectOpName(int id){ 1524 char *z; 1525 switch( id ){ 1526 case TK_ALL: z = "UNION ALL"; break; 1527 case TK_INTERSECT: z = "INTERSECT"; break; 1528 case TK_EXCEPT: z = "EXCEPT"; break; 1529 default: z = "UNION"; break; 1530 } 1531 return z; 1532 } 1533 1534 #ifndef SQLITE_OMIT_EXPLAIN 1535 /* 1536 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1537 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1538 ** where the caption is of the form: 1539 ** 1540 ** "USE TEMP B-TREE FOR xxx" 1541 ** 1542 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1543 ** is determined by the zUsage argument. 1544 */ 1545 static void explainTempTable(Parse *pParse, const char *zUsage){ 1546 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1547 } 1548 1549 /* 1550 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1551 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1552 ** in sqlite3Select() to assign values to structure member variables that 1553 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1554 ** code with #ifndef directives. 1555 */ 1556 # define explainSetInteger(a, b) a = b 1557 1558 #else 1559 /* No-op versions of the explainXXX() functions and macros. */ 1560 # define explainTempTable(y,z) 1561 # define explainSetInteger(y,z) 1562 #endif 1563 1564 1565 /* 1566 ** If the inner loop was generated using a non-null pOrderBy argument, 1567 ** then the results were placed in a sorter. After the loop is terminated 1568 ** we need to run the sorter and output the results. The following 1569 ** routine generates the code needed to do that. 1570 */ 1571 static void generateSortTail( 1572 Parse *pParse, /* Parsing context */ 1573 Select *p, /* The SELECT statement */ 1574 SortCtx *pSort, /* Information on the ORDER BY clause */ 1575 int nColumn, /* Number of columns of data */ 1576 SelectDest *pDest /* Write the sorted results here */ 1577 ){ 1578 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1579 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1580 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1581 int addr; /* Top of output loop. Jump for Next. */ 1582 int addrOnce = 0; 1583 int iTab; 1584 ExprList *pOrderBy = pSort->pOrderBy; 1585 int eDest = pDest->eDest; 1586 int iParm = pDest->iSDParm; 1587 int regRow; 1588 int regRowid; 1589 int iCol; 1590 int nKey; /* Number of key columns in sorter record */ 1591 int iSortTab; /* Sorter cursor to read from */ 1592 int i; 1593 int bSeq; /* True if sorter record includes seq. no. */ 1594 int nRefKey = 0; 1595 struct ExprList_item *aOutEx = p->pEList->a; 1596 1597 assert( addrBreak<0 ); 1598 if( pSort->labelBkOut ){ 1599 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1600 sqlite3VdbeGoto(v, addrBreak); 1601 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1602 } 1603 1604 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1605 /* Open any cursors needed for sorter-reference expressions */ 1606 for(i=0; i<pSort->nDefer; i++){ 1607 Table *pTab = pSort->aDefer[i].pTab; 1608 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1609 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1610 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1611 } 1612 #endif 1613 1614 iTab = pSort->iECursor; 1615 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1616 if( eDest==SRT_Mem && p->iOffset ){ 1617 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1618 } 1619 regRowid = 0; 1620 regRow = pDest->iSdst; 1621 }else{ 1622 regRowid = sqlite3GetTempReg(pParse); 1623 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1624 regRow = sqlite3GetTempReg(pParse); 1625 nColumn = 0; 1626 }else{ 1627 regRow = sqlite3GetTempRange(pParse, nColumn); 1628 } 1629 } 1630 nKey = pOrderBy->nExpr - pSort->nOBSat; 1631 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1632 int regSortOut = ++pParse->nMem; 1633 iSortTab = pParse->nTab++; 1634 if( pSort->labelBkOut ){ 1635 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1636 } 1637 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1638 nKey+1+nColumn+nRefKey); 1639 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1640 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1641 VdbeCoverage(v); 1642 codeOffset(v, p->iOffset, addrContinue); 1643 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1644 bSeq = 0; 1645 }else{ 1646 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1647 codeOffset(v, p->iOffset, addrContinue); 1648 iSortTab = iTab; 1649 bSeq = 1; 1650 } 1651 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1653 if( aOutEx[i].bSorterRef ) continue; 1654 #endif 1655 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1656 } 1657 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1658 if( pSort->nDefer ){ 1659 int iKey = iCol+1; 1660 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1661 1662 for(i=0; i<pSort->nDefer; i++){ 1663 int iCsr = pSort->aDefer[i].iCsr; 1664 Table *pTab = pSort->aDefer[i].pTab; 1665 int nKey = pSort->aDefer[i].nKey; 1666 1667 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1668 if( HasRowid(pTab) ){ 1669 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1670 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1671 sqlite3VdbeCurrentAddr(v)+1, regKey); 1672 }else{ 1673 int k; 1674 int iJmp; 1675 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1676 for(k=0; k<nKey; k++){ 1677 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1678 } 1679 iJmp = sqlite3VdbeCurrentAddr(v); 1680 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1681 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1682 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1683 } 1684 } 1685 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1686 } 1687 #endif 1688 for(i=nColumn-1; i>=0; i--){ 1689 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1690 if( aOutEx[i].bSorterRef ){ 1691 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1692 }else 1693 #endif 1694 { 1695 int iRead; 1696 if( aOutEx[i].u.x.iOrderByCol ){ 1697 iRead = aOutEx[i].u.x.iOrderByCol-1; 1698 }else{ 1699 iRead = iCol--; 1700 } 1701 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1702 VdbeComment((v, "%s", aOutEx[i].zEName)); 1703 } 1704 } 1705 switch( eDest ){ 1706 case SRT_Table: 1707 case SRT_EphemTab: { 1708 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1709 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1710 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1711 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1712 break; 1713 } 1714 #ifndef SQLITE_OMIT_SUBQUERY 1715 case SRT_Set: { 1716 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1717 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1718 pDest->zAffSdst, nColumn); 1719 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1720 break; 1721 } 1722 case SRT_Mem: { 1723 /* The LIMIT clause will terminate the loop for us */ 1724 break; 1725 } 1726 #endif 1727 case SRT_Upfrom: { 1728 int i2 = pDest->iSDParm2; 1729 int r1 = sqlite3GetTempReg(pParse); 1730 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1731 if( i2<0 ){ 1732 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1733 }else{ 1734 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1735 } 1736 break; 1737 } 1738 default: { 1739 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1740 testcase( eDest==SRT_Output ); 1741 testcase( eDest==SRT_Coroutine ); 1742 if( eDest==SRT_Output ){ 1743 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1744 }else{ 1745 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1746 } 1747 break; 1748 } 1749 } 1750 if( regRowid ){ 1751 if( eDest==SRT_Set ){ 1752 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1753 }else{ 1754 sqlite3ReleaseTempReg(pParse, regRow); 1755 } 1756 sqlite3ReleaseTempReg(pParse, regRowid); 1757 } 1758 /* The bottom of the loop 1759 */ 1760 sqlite3VdbeResolveLabel(v, addrContinue); 1761 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1762 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1763 }else{ 1764 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1765 } 1766 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1767 sqlite3VdbeResolveLabel(v, addrBreak); 1768 } 1769 1770 /* 1771 ** Return a pointer to a string containing the 'declaration type' of the 1772 ** expression pExpr. The string may be treated as static by the caller. 1773 ** 1774 ** Also try to estimate the size of the returned value and return that 1775 ** result in *pEstWidth. 1776 ** 1777 ** The declaration type is the exact datatype definition extracted from the 1778 ** original CREATE TABLE statement if the expression is a column. The 1779 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1780 ** is considered a column can be complex in the presence of subqueries. The 1781 ** result-set expression in all of the following SELECT statements is 1782 ** considered a column by this function. 1783 ** 1784 ** SELECT col FROM tbl; 1785 ** SELECT (SELECT col FROM tbl; 1786 ** SELECT (SELECT col FROM tbl); 1787 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1788 ** 1789 ** The declaration type for any expression other than a column is NULL. 1790 ** 1791 ** This routine has either 3 or 6 parameters depending on whether or not 1792 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1793 */ 1794 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1795 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1796 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1797 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1798 #endif 1799 static const char *columnTypeImpl( 1800 NameContext *pNC, 1801 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1802 Expr *pExpr 1803 #else 1804 Expr *pExpr, 1805 const char **pzOrigDb, 1806 const char **pzOrigTab, 1807 const char **pzOrigCol 1808 #endif 1809 ){ 1810 char const *zType = 0; 1811 int j; 1812 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1813 char const *zOrigDb = 0; 1814 char const *zOrigTab = 0; 1815 char const *zOrigCol = 0; 1816 #endif 1817 1818 assert( pExpr!=0 ); 1819 assert( pNC->pSrcList!=0 ); 1820 switch( pExpr->op ){ 1821 case TK_COLUMN: { 1822 /* The expression is a column. Locate the table the column is being 1823 ** extracted from in NameContext.pSrcList. This table may be real 1824 ** database table or a subquery. 1825 */ 1826 Table *pTab = 0; /* Table structure column is extracted from */ 1827 Select *pS = 0; /* Select the column is extracted from */ 1828 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1829 while( pNC && !pTab ){ 1830 SrcList *pTabList = pNC->pSrcList; 1831 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1832 if( j<pTabList->nSrc ){ 1833 pTab = pTabList->a[j].pTab; 1834 pS = pTabList->a[j].pSelect; 1835 }else{ 1836 pNC = pNC->pNext; 1837 } 1838 } 1839 1840 if( pTab==0 ){ 1841 /* At one time, code such as "SELECT new.x" within a trigger would 1842 ** cause this condition to run. Since then, we have restructured how 1843 ** trigger code is generated and so this condition is no longer 1844 ** possible. However, it can still be true for statements like 1845 ** the following: 1846 ** 1847 ** CREATE TABLE t1(col INTEGER); 1848 ** SELECT (SELECT t1.col) FROM FROM t1; 1849 ** 1850 ** when columnType() is called on the expression "t1.col" in the 1851 ** sub-select. In this case, set the column type to NULL, even 1852 ** though it should really be "INTEGER". 1853 ** 1854 ** This is not a problem, as the column type of "t1.col" is never 1855 ** used. When columnType() is called on the expression 1856 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1857 ** branch below. */ 1858 break; 1859 } 1860 1861 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1862 if( pS ){ 1863 /* The "table" is actually a sub-select or a view in the FROM clause 1864 ** of the SELECT statement. Return the declaration type and origin 1865 ** data for the result-set column of the sub-select. 1866 */ 1867 if( iCol<pS->pEList->nExpr 1868 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1869 && iCol>=0 1870 #else 1871 && ALWAYS(iCol>=0) 1872 #endif 1873 ){ 1874 /* If iCol is less than zero, then the expression requests the 1875 ** rowid of the sub-select or view. This expression is legal (see 1876 ** test case misc2.2.2) - it always evaluates to NULL. 1877 */ 1878 NameContext sNC; 1879 Expr *p = pS->pEList->a[iCol].pExpr; 1880 sNC.pSrcList = pS->pSrc; 1881 sNC.pNext = pNC; 1882 sNC.pParse = pNC->pParse; 1883 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1884 } 1885 }else{ 1886 /* A real table or a CTE table */ 1887 assert( !pS ); 1888 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1889 if( iCol<0 ) iCol = pTab->iPKey; 1890 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1891 if( iCol<0 ){ 1892 zType = "INTEGER"; 1893 zOrigCol = "rowid"; 1894 }else{ 1895 zOrigCol = pTab->aCol[iCol].zCnName; 1896 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1897 } 1898 zOrigTab = pTab->zName; 1899 if( pNC->pParse && pTab->pSchema ){ 1900 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1901 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1902 } 1903 #else 1904 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1905 if( iCol<0 ){ 1906 zType = "INTEGER"; 1907 }else{ 1908 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1909 } 1910 #endif 1911 } 1912 break; 1913 } 1914 #ifndef SQLITE_OMIT_SUBQUERY 1915 case TK_SELECT: { 1916 /* The expression is a sub-select. Return the declaration type and 1917 ** origin info for the single column in the result set of the SELECT 1918 ** statement. 1919 */ 1920 NameContext sNC; 1921 Select *pS; 1922 Expr *p; 1923 assert( ExprUseXSelect(pExpr) ); 1924 pS = pExpr->x.pSelect; 1925 p = pS->pEList->a[0].pExpr; 1926 sNC.pSrcList = pS->pSrc; 1927 sNC.pNext = pNC; 1928 sNC.pParse = pNC->pParse; 1929 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1930 break; 1931 } 1932 #endif 1933 } 1934 1935 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1936 if( pzOrigDb ){ 1937 assert( pzOrigTab && pzOrigCol ); 1938 *pzOrigDb = zOrigDb; 1939 *pzOrigTab = zOrigTab; 1940 *pzOrigCol = zOrigCol; 1941 } 1942 #endif 1943 return zType; 1944 } 1945 1946 /* 1947 ** Generate code that will tell the VDBE the declaration types of columns 1948 ** in the result set. 1949 */ 1950 static void generateColumnTypes( 1951 Parse *pParse, /* Parser context */ 1952 SrcList *pTabList, /* List of tables */ 1953 ExprList *pEList /* Expressions defining the result set */ 1954 ){ 1955 #ifndef SQLITE_OMIT_DECLTYPE 1956 Vdbe *v = pParse->pVdbe; 1957 int i; 1958 NameContext sNC; 1959 sNC.pSrcList = pTabList; 1960 sNC.pParse = pParse; 1961 sNC.pNext = 0; 1962 for(i=0; i<pEList->nExpr; i++){ 1963 Expr *p = pEList->a[i].pExpr; 1964 const char *zType; 1965 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1966 const char *zOrigDb = 0; 1967 const char *zOrigTab = 0; 1968 const char *zOrigCol = 0; 1969 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1970 1971 /* The vdbe must make its own copy of the column-type and other 1972 ** column specific strings, in case the schema is reset before this 1973 ** virtual machine is deleted. 1974 */ 1975 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1976 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1977 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1978 #else 1979 zType = columnType(&sNC, p, 0, 0, 0); 1980 #endif 1981 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1982 } 1983 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1984 } 1985 1986 1987 /* 1988 ** Compute the column names for a SELECT statement. 1989 ** 1990 ** The only guarantee that SQLite makes about column names is that if the 1991 ** column has an AS clause assigning it a name, that will be the name used. 1992 ** That is the only documented guarantee. However, countless applications 1993 ** developed over the years have made baseless assumptions about column names 1994 ** and will break if those assumptions changes. Hence, use extreme caution 1995 ** when modifying this routine to avoid breaking legacy. 1996 ** 1997 ** See Also: sqlite3ColumnsFromExprList() 1998 ** 1999 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2000 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2001 ** applications should operate this way. Nevertheless, we need to support the 2002 ** other modes for legacy: 2003 ** 2004 ** short=OFF, full=OFF: Column name is the text of the expression has it 2005 ** originally appears in the SELECT statement. In 2006 ** other words, the zSpan of the result expression. 2007 ** 2008 ** short=ON, full=OFF: (This is the default setting). If the result 2009 ** refers directly to a table column, then the 2010 ** result column name is just the table column 2011 ** name: COLUMN. Otherwise use zSpan. 2012 ** 2013 ** full=ON, short=ANY: If the result refers directly to a table column, 2014 ** then the result column name with the table name 2015 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2016 */ 2017 void sqlite3GenerateColumnNames( 2018 Parse *pParse, /* Parser context */ 2019 Select *pSelect /* Generate column names for this SELECT statement */ 2020 ){ 2021 Vdbe *v = pParse->pVdbe; 2022 int i; 2023 Table *pTab; 2024 SrcList *pTabList; 2025 ExprList *pEList; 2026 sqlite3 *db = pParse->db; 2027 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2028 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2029 2030 #ifndef SQLITE_OMIT_EXPLAIN 2031 /* If this is an EXPLAIN, skip this step */ 2032 if( pParse->explain ){ 2033 return; 2034 } 2035 #endif 2036 2037 if( pParse->colNamesSet ) return; 2038 /* Column names are determined by the left-most term of a compound select */ 2039 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2040 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2041 pTabList = pSelect->pSrc; 2042 pEList = pSelect->pEList; 2043 assert( v!=0 ); 2044 assert( pTabList!=0 ); 2045 pParse->colNamesSet = 1; 2046 fullName = (db->flags & SQLITE_FullColNames)!=0; 2047 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2048 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2049 for(i=0; i<pEList->nExpr; i++){ 2050 Expr *p = pEList->a[i].pExpr; 2051 2052 assert( p!=0 ); 2053 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2054 assert( p->op!=TK_COLUMN 2055 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2056 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2057 /* An AS clause always takes first priority */ 2058 char *zName = pEList->a[i].zEName; 2059 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2060 }else if( srcName && p->op==TK_COLUMN ){ 2061 char *zCol; 2062 int iCol = p->iColumn; 2063 pTab = p->y.pTab; 2064 assert( pTab!=0 ); 2065 if( iCol<0 ) iCol = pTab->iPKey; 2066 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2067 if( iCol<0 ){ 2068 zCol = "rowid"; 2069 }else{ 2070 zCol = pTab->aCol[iCol].zCnName; 2071 } 2072 if( fullName ){ 2073 char *zName = 0; 2074 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2075 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2076 }else{ 2077 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2078 } 2079 }else{ 2080 const char *z = pEList->a[i].zEName; 2081 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2082 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2083 } 2084 } 2085 generateColumnTypes(pParse, pTabList, pEList); 2086 } 2087 2088 /* 2089 ** Given an expression list (which is really the list of expressions 2090 ** that form the result set of a SELECT statement) compute appropriate 2091 ** column names for a table that would hold the expression list. 2092 ** 2093 ** All column names will be unique. 2094 ** 2095 ** Only the column names are computed. Column.zType, Column.zColl, 2096 ** and other fields of Column are zeroed. 2097 ** 2098 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2099 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2100 ** 2101 ** The only guarantee that SQLite makes about column names is that if the 2102 ** column has an AS clause assigning it a name, that will be the name used. 2103 ** That is the only documented guarantee. However, countless applications 2104 ** developed over the years have made baseless assumptions about column names 2105 ** and will break if those assumptions changes. Hence, use extreme caution 2106 ** when modifying this routine to avoid breaking legacy. 2107 ** 2108 ** See Also: sqlite3GenerateColumnNames() 2109 */ 2110 int sqlite3ColumnsFromExprList( 2111 Parse *pParse, /* Parsing context */ 2112 ExprList *pEList, /* Expr list from which to derive column names */ 2113 i16 *pnCol, /* Write the number of columns here */ 2114 Column **paCol /* Write the new column list here */ 2115 ){ 2116 sqlite3 *db = pParse->db; /* Database connection */ 2117 int i, j; /* Loop counters */ 2118 u32 cnt; /* Index added to make the name unique */ 2119 Column *aCol, *pCol; /* For looping over result columns */ 2120 int nCol; /* Number of columns in the result set */ 2121 char *zName; /* Column name */ 2122 int nName; /* Size of name in zName[] */ 2123 Hash ht; /* Hash table of column names */ 2124 Table *pTab; 2125 2126 sqlite3HashInit(&ht); 2127 if( pEList ){ 2128 nCol = pEList->nExpr; 2129 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2130 testcase( aCol==0 ); 2131 if( NEVER(nCol>32767) ) nCol = 32767; 2132 }else{ 2133 nCol = 0; 2134 aCol = 0; 2135 } 2136 assert( nCol==(i16)nCol ); 2137 *pnCol = nCol; 2138 *paCol = aCol; 2139 2140 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2141 /* Get an appropriate name for the column 2142 */ 2143 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2144 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2145 }else{ 2146 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2147 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2148 pColExpr = pColExpr->pRight; 2149 assert( pColExpr!=0 ); 2150 } 2151 if( pColExpr->op==TK_COLUMN 2152 && ALWAYS( ExprUseYTab(pColExpr) ) 2153 && (pTab = pColExpr->y.pTab)!=0 2154 ){ 2155 /* For columns use the column name name */ 2156 int iCol = pColExpr->iColumn; 2157 if( iCol<0 ) iCol = pTab->iPKey; 2158 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2159 }else if( pColExpr->op==TK_ID ){ 2160 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2161 zName = pColExpr->u.zToken; 2162 }else{ 2163 /* Use the original text of the column expression as its name */ 2164 zName = pEList->a[i].zEName; 2165 } 2166 } 2167 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2168 zName = sqlite3DbStrDup(db, zName); 2169 }else{ 2170 zName = sqlite3MPrintf(db,"column%d",i+1); 2171 } 2172 2173 /* Make sure the column name is unique. If the name is not unique, 2174 ** append an integer to the name so that it becomes unique. 2175 */ 2176 cnt = 0; 2177 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2178 nName = sqlite3Strlen30(zName); 2179 if( nName>0 ){ 2180 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2181 if( zName[j]==':' ) nName = j; 2182 } 2183 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2184 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2185 } 2186 pCol->zCnName = zName; 2187 pCol->hName = sqlite3StrIHash(zName); 2188 sqlite3ColumnPropertiesFromName(0, pCol); 2189 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2190 sqlite3OomFault(db); 2191 } 2192 } 2193 sqlite3HashClear(&ht); 2194 if( db->mallocFailed ){ 2195 for(j=0; j<i; j++){ 2196 sqlite3DbFree(db, aCol[j].zCnName); 2197 } 2198 sqlite3DbFree(db, aCol); 2199 *paCol = 0; 2200 *pnCol = 0; 2201 return SQLITE_NOMEM_BKPT; 2202 } 2203 return SQLITE_OK; 2204 } 2205 2206 /* 2207 ** Add type and collation information to a column list based on 2208 ** a SELECT statement. 2209 ** 2210 ** The column list presumably came from selectColumnNamesFromExprList(). 2211 ** The column list has only names, not types or collations. This 2212 ** routine goes through and adds the types and collations. 2213 ** 2214 ** This routine requires that all identifiers in the SELECT 2215 ** statement be resolved. 2216 */ 2217 void sqlite3SelectAddColumnTypeAndCollation( 2218 Parse *pParse, /* Parsing contexts */ 2219 Table *pTab, /* Add column type information to this table */ 2220 Select *pSelect, /* SELECT used to determine types and collations */ 2221 char aff /* Default affinity for columns */ 2222 ){ 2223 sqlite3 *db = pParse->db; 2224 NameContext sNC; 2225 Column *pCol; 2226 CollSeq *pColl; 2227 int i; 2228 Expr *p; 2229 struct ExprList_item *a; 2230 2231 assert( pSelect!=0 ); 2232 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2233 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2234 if( db->mallocFailed ) return; 2235 memset(&sNC, 0, sizeof(sNC)); 2236 sNC.pSrcList = pSelect->pSrc; 2237 a = pSelect->pEList->a; 2238 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2239 const char *zType; 2240 i64 n, m; 2241 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2242 p = a[i].pExpr; 2243 zType = columnType(&sNC, p, 0, 0, 0); 2244 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2245 pCol->affinity = sqlite3ExprAffinity(p); 2246 if( zType ){ 2247 m = sqlite3Strlen30(zType); 2248 n = sqlite3Strlen30(pCol->zCnName); 2249 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2250 if( pCol->zCnName ){ 2251 memcpy(&pCol->zCnName[n+1], zType, m+1); 2252 pCol->colFlags |= COLFLAG_HASTYPE; 2253 }else{ 2254 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2255 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2256 } 2257 } 2258 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2259 pColl = sqlite3ExprCollSeq(pParse, p); 2260 if( pColl ){ 2261 assert( pTab->pIndex==0 ); 2262 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2263 } 2264 } 2265 pTab->szTabRow = 1; /* Any non-zero value works */ 2266 } 2267 2268 /* 2269 ** Given a SELECT statement, generate a Table structure that describes 2270 ** the result set of that SELECT. 2271 */ 2272 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2273 Table *pTab; 2274 sqlite3 *db = pParse->db; 2275 u64 savedFlags; 2276 2277 savedFlags = db->flags; 2278 db->flags &= ~(u64)SQLITE_FullColNames; 2279 db->flags |= SQLITE_ShortColNames; 2280 sqlite3SelectPrep(pParse, pSelect, 0); 2281 db->flags = savedFlags; 2282 if( pParse->nErr ) return 0; 2283 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2284 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2285 if( pTab==0 ){ 2286 return 0; 2287 } 2288 pTab->nTabRef = 1; 2289 pTab->zName = 0; 2290 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2291 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2292 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2293 pTab->iPKey = -1; 2294 if( db->mallocFailed ){ 2295 sqlite3DeleteTable(db, pTab); 2296 return 0; 2297 } 2298 return pTab; 2299 } 2300 2301 /* 2302 ** Get a VDBE for the given parser context. Create a new one if necessary. 2303 ** If an error occurs, return NULL and leave a message in pParse. 2304 */ 2305 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2306 if( pParse->pVdbe ){ 2307 return pParse->pVdbe; 2308 } 2309 if( pParse->pToplevel==0 2310 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2311 ){ 2312 pParse->okConstFactor = 1; 2313 } 2314 return sqlite3VdbeCreate(pParse); 2315 } 2316 2317 2318 /* 2319 ** Compute the iLimit and iOffset fields of the SELECT based on the 2320 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2321 ** that appear in the original SQL statement after the LIMIT and OFFSET 2322 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2323 ** are the integer memory register numbers for counters used to compute 2324 ** the limit and offset. If there is no limit and/or offset, then 2325 ** iLimit and iOffset are negative. 2326 ** 2327 ** This routine changes the values of iLimit and iOffset only if 2328 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2329 ** and iOffset should have been preset to appropriate default values (zero) 2330 ** prior to calling this routine. 2331 ** 2332 ** The iOffset register (if it exists) is initialized to the value 2333 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2334 ** iOffset+1 is initialized to LIMIT+OFFSET. 2335 ** 2336 ** Only if pLimit->pLeft!=0 do the limit registers get 2337 ** redefined. The UNION ALL operator uses this property to force 2338 ** the reuse of the same limit and offset registers across multiple 2339 ** SELECT statements. 2340 */ 2341 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2342 Vdbe *v = 0; 2343 int iLimit = 0; 2344 int iOffset; 2345 int n; 2346 Expr *pLimit = p->pLimit; 2347 2348 if( p->iLimit ) return; 2349 2350 /* 2351 ** "LIMIT -1" always shows all rows. There is some 2352 ** controversy about what the correct behavior should be. 2353 ** The current implementation interprets "LIMIT 0" to mean 2354 ** no rows. 2355 */ 2356 if( pLimit ){ 2357 assert( pLimit->op==TK_LIMIT ); 2358 assert( pLimit->pLeft!=0 ); 2359 p->iLimit = iLimit = ++pParse->nMem; 2360 v = sqlite3GetVdbe(pParse); 2361 assert( v!=0 ); 2362 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2363 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2364 VdbeComment((v, "LIMIT counter")); 2365 if( n==0 ){ 2366 sqlite3VdbeGoto(v, iBreak); 2367 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2368 p->nSelectRow = sqlite3LogEst((u64)n); 2369 p->selFlags |= SF_FixedLimit; 2370 } 2371 }else{ 2372 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2373 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2374 VdbeComment((v, "LIMIT counter")); 2375 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2376 } 2377 if( pLimit->pRight ){ 2378 p->iOffset = iOffset = ++pParse->nMem; 2379 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2380 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2381 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2382 VdbeComment((v, "OFFSET counter")); 2383 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2384 VdbeComment((v, "LIMIT+OFFSET")); 2385 } 2386 } 2387 } 2388 2389 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2390 /* 2391 ** Return the appropriate collating sequence for the iCol-th column of 2392 ** the result set for the compound-select statement "p". Return NULL if 2393 ** the column has no default collating sequence. 2394 ** 2395 ** The collating sequence for the compound select is taken from the 2396 ** left-most term of the select that has a collating sequence. 2397 */ 2398 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2399 CollSeq *pRet; 2400 if( p->pPrior ){ 2401 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2402 }else{ 2403 pRet = 0; 2404 } 2405 assert( iCol>=0 ); 2406 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2407 ** have been thrown during name resolution and we would not have gotten 2408 ** this far */ 2409 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2410 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2411 } 2412 return pRet; 2413 } 2414 2415 /* 2416 ** The select statement passed as the second parameter is a compound SELECT 2417 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2418 ** structure suitable for implementing the ORDER BY. 2419 ** 2420 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2421 ** function is responsible for ensuring that this structure is eventually 2422 ** freed. 2423 */ 2424 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2425 ExprList *pOrderBy = p->pOrderBy; 2426 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2427 sqlite3 *db = pParse->db; 2428 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2429 if( pRet ){ 2430 int i; 2431 for(i=0; i<nOrderBy; i++){ 2432 struct ExprList_item *pItem = &pOrderBy->a[i]; 2433 Expr *pTerm = pItem->pExpr; 2434 CollSeq *pColl; 2435 2436 if( pTerm->flags & EP_Collate ){ 2437 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2438 }else{ 2439 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2440 if( pColl==0 ) pColl = db->pDfltColl; 2441 pOrderBy->a[i].pExpr = 2442 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2443 } 2444 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2445 pRet->aColl[i] = pColl; 2446 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2447 } 2448 } 2449 2450 return pRet; 2451 } 2452 2453 #ifndef SQLITE_OMIT_CTE 2454 /* 2455 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2456 ** query of the form: 2457 ** 2458 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2459 ** \___________/ \_______________/ 2460 ** p->pPrior p 2461 ** 2462 ** 2463 ** There is exactly one reference to the recursive-table in the FROM clause 2464 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2465 ** 2466 ** The setup-query runs once to generate an initial set of rows that go 2467 ** into a Queue table. Rows are extracted from the Queue table one by 2468 ** one. Each row extracted from Queue is output to pDest. Then the single 2469 ** extracted row (now in the iCurrent table) becomes the content of the 2470 ** recursive-table for a recursive-query run. The output of the recursive-query 2471 ** is added back into the Queue table. Then another row is extracted from Queue 2472 ** and the iteration continues until the Queue table is empty. 2473 ** 2474 ** If the compound query operator is UNION then no duplicate rows are ever 2475 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2476 ** that have ever been inserted into Queue and causes duplicates to be 2477 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2478 ** 2479 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2480 ** ORDER BY order and the first entry is extracted for each cycle. Without 2481 ** an ORDER BY, the Queue table is just a FIFO. 2482 ** 2483 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2484 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2485 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2486 ** with a positive value, then the first OFFSET outputs are discarded rather 2487 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2488 ** rows have been skipped. 2489 */ 2490 static void generateWithRecursiveQuery( 2491 Parse *pParse, /* Parsing context */ 2492 Select *p, /* The recursive SELECT to be coded */ 2493 SelectDest *pDest /* What to do with query results */ 2494 ){ 2495 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2496 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2497 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2498 Select *pSetup; /* The setup query */ 2499 Select *pFirstRec; /* Left-most recursive term */ 2500 int addrTop; /* Top of the loop */ 2501 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2502 int iCurrent = 0; /* The Current table */ 2503 int regCurrent; /* Register holding Current table */ 2504 int iQueue; /* The Queue table */ 2505 int iDistinct = 0; /* To ensure unique results if UNION */ 2506 int eDest = SRT_Fifo; /* How to write to Queue */ 2507 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2508 int i; /* Loop counter */ 2509 int rc; /* Result code */ 2510 ExprList *pOrderBy; /* The ORDER BY clause */ 2511 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2512 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2513 2514 #ifndef SQLITE_OMIT_WINDOWFUNC 2515 if( p->pWin ){ 2516 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2517 return; 2518 } 2519 #endif 2520 2521 /* Obtain authorization to do a recursive query */ 2522 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2523 2524 /* Process the LIMIT and OFFSET clauses, if they exist */ 2525 addrBreak = sqlite3VdbeMakeLabel(pParse); 2526 p->nSelectRow = 320; /* 4 billion rows */ 2527 computeLimitRegisters(pParse, p, addrBreak); 2528 pLimit = p->pLimit; 2529 regLimit = p->iLimit; 2530 regOffset = p->iOffset; 2531 p->pLimit = 0; 2532 p->iLimit = p->iOffset = 0; 2533 pOrderBy = p->pOrderBy; 2534 2535 /* Locate the cursor number of the Current table */ 2536 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2537 if( pSrc->a[i].fg.isRecursive ){ 2538 iCurrent = pSrc->a[i].iCursor; 2539 break; 2540 } 2541 } 2542 2543 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2544 ** the Distinct table must be exactly one greater than Queue in order 2545 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2546 iQueue = pParse->nTab++; 2547 if( p->op==TK_UNION ){ 2548 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2549 iDistinct = pParse->nTab++; 2550 }else{ 2551 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2552 } 2553 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2554 2555 /* Allocate cursors for Current, Queue, and Distinct. */ 2556 regCurrent = ++pParse->nMem; 2557 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2558 if( pOrderBy ){ 2559 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2560 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2561 (char*)pKeyInfo, P4_KEYINFO); 2562 destQueue.pOrderBy = pOrderBy; 2563 }else{ 2564 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2565 } 2566 VdbeComment((v, "Queue table")); 2567 if( iDistinct ){ 2568 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2569 p->selFlags |= SF_UsesEphemeral; 2570 } 2571 2572 /* Detach the ORDER BY clause from the compound SELECT */ 2573 p->pOrderBy = 0; 2574 2575 /* Figure out how many elements of the compound SELECT are part of the 2576 ** recursive query. Make sure no recursive elements use aggregate 2577 ** functions. Mark the recursive elements as UNION ALL even if they 2578 ** are really UNION because the distinctness will be enforced by the 2579 ** iDistinct table. pFirstRec is left pointing to the left-most 2580 ** recursive term of the CTE. 2581 */ 2582 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2583 if( pFirstRec->selFlags & SF_Aggregate ){ 2584 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2585 goto end_of_recursive_query; 2586 } 2587 pFirstRec->op = TK_ALL; 2588 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2589 } 2590 2591 /* Store the results of the setup-query in Queue. */ 2592 pSetup = pFirstRec->pPrior; 2593 pSetup->pNext = 0; 2594 ExplainQueryPlan((pParse, 1, "SETUP")); 2595 rc = sqlite3Select(pParse, pSetup, &destQueue); 2596 pSetup->pNext = p; 2597 if( rc ) goto end_of_recursive_query; 2598 2599 /* Find the next row in the Queue and output that row */ 2600 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2601 2602 /* Transfer the next row in Queue over to Current */ 2603 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2604 if( pOrderBy ){ 2605 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2606 }else{ 2607 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2608 } 2609 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2610 2611 /* Output the single row in Current */ 2612 addrCont = sqlite3VdbeMakeLabel(pParse); 2613 codeOffset(v, regOffset, addrCont); 2614 selectInnerLoop(pParse, p, iCurrent, 2615 0, 0, pDest, addrCont, addrBreak); 2616 if( regLimit ){ 2617 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2618 VdbeCoverage(v); 2619 } 2620 sqlite3VdbeResolveLabel(v, addrCont); 2621 2622 /* Execute the recursive SELECT taking the single row in Current as 2623 ** the value for the recursive-table. Store the results in the Queue. 2624 */ 2625 pFirstRec->pPrior = 0; 2626 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2627 sqlite3Select(pParse, p, &destQueue); 2628 assert( pFirstRec->pPrior==0 ); 2629 pFirstRec->pPrior = pSetup; 2630 2631 /* Keep running the loop until the Queue is empty */ 2632 sqlite3VdbeGoto(v, addrTop); 2633 sqlite3VdbeResolveLabel(v, addrBreak); 2634 2635 end_of_recursive_query: 2636 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2637 p->pOrderBy = pOrderBy; 2638 p->pLimit = pLimit; 2639 return; 2640 } 2641 #endif /* SQLITE_OMIT_CTE */ 2642 2643 /* Forward references */ 2644 static int multiSelectOrderBy( 2645 Parse *pParse, /* Parsing context */ 2646 Select *p, /* The right-most of SELECTs to be coded */ 2647 SelectDest *pDest /* What to do with query results */ 2648 ); 2649 2650 /* 2651 ** Handle the special case of a compound-select that originates from a 2652 ** VALUES clause. By handling this as a special case, we avoid deep 2653 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2654 ** on a VALUES clause. 2655 ** 2656 ** Because the Select object originates from a VALUES clause: 2657 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2658 ** (2) All terms are UNION ALL 2659 ** (3) There is no ORDER BY clause 2660 ** 2661 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2662 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2663 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2664 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2665 */ 2666 static int multiSelectValues( 2667 Parse *pParse, /* Parsing context */ 2668 Select *p, /* The right-most of SELECTs to be coded */ 2669 SelectDest *pDest /* What to do with query results */ 2670 ){ 2671 int nRow = 1; 2672 int rc = 0; 2673 int bShowAll = p->pLimit==0; 2674 assert( p->selFlags & SF_MultiValue ); 2675 do{ 2676 assert( p->selFlags & SF_Values ); 2677 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2678 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2679 #ifndef SQLITE_OMIT_WINDOWFUNC 2680 if( p->pWin ) return -1; 2681 #endif 2682 if( p->pPrior==0 ) break; 2683 assert( p->pPrior->pNext==p ); 2684 p = p->pPrior; 2685 nRow += bShowAll; 2686 }while(1); 2687 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2688 nRow==1 ? "" : "S")); 2689 while( p ){ 2690 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2691 if( !bShowAll ) break; 2692 p->nSelectRow = nRow; 2693 p = p->pNext; 2694 } 2695 return rc; 2696 } 2697 2698 /* 2699 ** Return true if the SELECT statement which is known to be the recursive 2700 ** part of a recursive CTE still has its anchor terms attached. If the 2701 ** anchor terms have already been removed, then return false. 2702 */ 2703 static int hasAnchor(Select *p){ 2704 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2705 return p!=0; 2706 } 2707 2708 /* 2709 ** This routine is called to process a compound query form from 2710 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2711 ** INTERSECT 2712 ** 2713 ** "p" points to the right-most of the two queries. the query on the 2714 ** left is p->pPrior. The left query could also be a compound query 2715 ** in which case this routine will be called recursively. 2716 ** 2717 ** The results of the total query are to be written into a destination 2718 ** of type eDest with parameter iParm. 2719 ** 2720 ** Example 1: Consider a three-way compound SQL statement. 2721 ** 2722 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2723 ** 2724 ** This statement is parsed up as follows: 2725 ** 2726 ** SELECT c FROM t3 2727 ** | 2728 ** `-----> SELECT b FROM t2 2729 ** | 2730 ** `------> SELECT a FROM t1 2731 ** 2732 ** The arrows in the diagram above represent the Select.pPrior pointer. 2733 ** So if this routine is called with p equal to the t3 query, then 2734 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2735 ** 2736 ** Notice that because of the way SQLite parses compound SELECTs, the 2737 ** individual selects always group from left to right. 2738 */ 2739 static int multiSelect( 2740 Parse *pParse, /* Parsing context */ 2741 Select *p, /* The right-most of SELECTs to be coded */ 2742 SelectDest *pDest /* What to do with query results */ 2743 ){ 2744 int rc = SQLITE_OK; /* Success code from a subroutine */ 2745 Select *pPrior; /* Another SELECT immediately to our left */ 2746 Vdbe *v; /* Generate code to this VDBE */ 2747 SelectDest dest; /* Alternative data destination */ 2748 Select *pDelete = 0; /* Chain of simple selects to delete */ 2749 sqlite3 *db; /* Database connection */ 2750 2751 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2752 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2753 */ 2754 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2755 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2756 assert( p->selFlags & SF_Compound ); 2757 db = pParse->db; 2758 pPrior = p->pPrior; 2759 dest = *pDest; 2760 assert( pPrior->pOrderBy==0 ); 2761 assert( pPrior->pLimit==0 ); 2762 2763 v = sqlite3GetVdbe(pParse); 2764 assert( v!=0 ); /* The VDBE already created by calling function */ 2765 2766 /* Create the destination temporary table if necessary 2767 */ 2768 if( dest.eDest==SRT_EphemTab ){ 2769 assert( p->pEList ); 2770 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2771 dest.eDest = SRT_Table; 2772 } 2773 2774 /* Special handling for a compound-select that originates as a VALUES clause. 2775 */ 2776 if( p->selFlags & SF_MultiValue ){ 2777 rc = multiSelectValues(pParse, p, &dest); 2778 if( rc>=0 ) goto multi_select_end; 2779 rc = SQLITE_OK; 2780 } 2781 2782 /* Make sure all SELECTs in the statement have the same number of elements 2783 ** in their result sets. 2784 */ 2785 assert( p->pEList && pPrior->pEList ); 2786 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2787 2788 #ifndef SQLITE_OMIT_CTE 2789 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2790 generateWithRecursiveQuery(pParse, p, &dest); 2791 }else 2792 #endif 2793 2794 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2795 */ 2796 if( p->pOrderBy ){ 2797 return multiSelectOrderBy(pParse, p, pDest); 2798 }else{ 2799 2800 #ifndef SQLITE_OMIT_EXPLAIN 2801 if( pPrior->pPrior==0 ){ 2802 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2803 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2804 } 2805 #endif 2806 2807 /* Generate code for the left and right SELECT statements. 2808 */ 2809 switch( p->op ){ 2810 case TK_ALL: { 2811 int addr = 0; 2812 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2813 assert( !pPrior->pLimit ); 2814 pPrior->iLimit = p->iLimit; 2815 pPrior->iOffset = p->iOffset; 2816 pPrior->pLimit = p->pLimit; 2817 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2818 rc = sqlite3Select(pParse, pPrior, &dest); 2819 pPrior->pLimit = 0; 2820 if( rc ){ 2821 goto multi_select_end; 2822 } 2823 p->pPrior = 0; 2824 p->iLimit = pPrior->iLimit; 2825 p->iOffset = pPrior->iOffset; 2826 if( p->iLimit ){ 2827 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2828 VdbeComment((v, "Jump ahead if LIMIT reached")); 2829 if( p->iOffset ){ 2830 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2831 p->iLimit, p->iOffset+1, p->iOffset); 2832 } 2833 } 2834 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2835 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2836 rc = sqlite3Select(pParse, p, &dest); 2837 testcase( rc!=SQLITE_OK ); 2838 pDelete = p->pPrior; 2839 p->pPrior = pPrior; 2840 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2841 if( p->pLimit 2842 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2843 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2844 ){ 2845 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2846 } 2847 if( addr ){ 2848 sqlite3VdbeJumpHere(v, addr); 2849 } 2850 break; 2851 } 2852 case TK_EXCEPT: 2853 case TK_UNION: { 2854 int unionTab; /* Cursor number of the temp table holding result */ 2855 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2856 int priorOp; /* The SRT_ operation to apply to prior selects */ 2857 Expr *pLimit; /* Saved values of p->nLimit */ 2858 int addr; 2859 SelectDest uniondest; 2860 2861 testcase( p->op==TK_EXCEPT ); 2862 testcase( p->op==TK_UNION ); 2863 priorOp = SRT_Union; 2864 if( dest.eDest==priorOp ){ 2865 /* We can reuse a temporary table generated by a SELECT to our 2866 ** right. 2867 */ 2868 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2869 unionTab = dest.iSDParm; 2870 }else{ 2871 /* We will need to create our own temporary table to hold the 2872 ** intermediate results. 2873 */ 2874 unionTab = pParse->nTab++; 2875 assert( p->pOrderBy==0 ); 2876 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2877 assert( p->addrOpenEphm[0] == -1 ); 2878 p->addrOpenEphm[0] = addr; 2879 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2880 assert( p->pEList ); 2881 } 2882 2883 2884 /* Code the SELECT statements to our left 2885 */ 2886 assert( !pPrior->pOrderBy ); 2887 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2888 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2889 rc = sqlite3Select(pParse, pPrior, &uniondest); 2890 if( rc ){ 2891 goto multi_select_end; 2892 } 2893 2894 /* Code the current SELECT statement 2895 */ 2896 if( p->op==TK_EXCEPT ){ 2897 op = SRT_Except; 2898 }else{ 2899 assert( p->op==TK_UNION ); 2900 op = SRT_Union; 2901 } 2902 p->pPrior = 0; 2903 pLimit = p->pLimit; 2904 p->pLimit = 0; 2905 uniondest.eDest = op; 2906 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2907 sqlite3SelectOpName(p->op))); 2908 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2909 rc = sqlite3Select(pParse, p, &uniondest); 2910 testcase( rc!=SQLITE_OK ); 2911 assert( p->pOrderBy==0 ); 2912 pDelete = p->pPrior; 2913 p->pPrior = pPrior; 2914 p->pOrderBy = 0; 2915 if( p->op==TK_UNION ){ 2916 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2917 } 2918 sqlite3ExprDelete(db, p->pLimit); 2919 p->pLimit = pLimit; 2920 p->iLimit = 0; 2921 p->iOffset = 0; 2922 2923 /* Convert the data in the temporary table into whatever form 2924 ** it is that we currently need. 2925 */ 2926 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2927 assert( p->pEList || db->mallocFailed ); 2928 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2929 int iCont, iBreak, iStart; 2930 iBreak = sqlite3VdbeMakeLabel(pParse); 2931 iCont = sqlite3VdbeMakeLabel(pParse); 2932 computeLimitRegisters(pParse, p, iBreak); 2933 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2934 iStart = sqlite3VdbeCurrentAddr(v); 2935 selectInnerLoop(pParse, p, unionTab, 2936 0, 0, &dest, iCont, iBreak); 2937 sqlite3VdbeResolveLabel(v, iCont); 2938 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2939 sqlite3VdbeResolveLabel(v, iBreak); 2940 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2941 } 2942 break; 2943 } 2944 default: assert( p->op==TK_INTERSECT ); { 2945 int tab1, tab2; 2946 int iCont, iBreak, iStart; 2947 Expr *pLimit; 2948 int addr; 2949 SelectDest intersectdest; 2950 int r1; 2951 2952 /* INTERSECT is different from the others since it requires 2953 ** two temporary tables. Hence it has its own case. Begin 2954 ** by allocating the tables we will need. 2955 */ 2956 tab1 = pParse->nTab++; 2957 tab2 = pParse->nTab++; 2958 assert( p->pOrderBy==0 ); 2959 2960 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2961 assert( p->addrOpenEphm[0] == -1 ); 2962 p->addrOpenEphm[0] = addr; 2963 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2964 assert( p->pEList ); 2965 2966 /* Code the SELECTs to our left into temporary table "tab1". 2967 */ 2968 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2969 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2970 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2971 if( rc ){ 2972 goto multi_select_end; 2973 } 2974 2975 /* Code the current SELECT into temporary table "tab2" 2976 */ 2977 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2978 assert( p->addrOpenEphm[1] == -1 ); 2979 p->addrOpenEphm[1] = addr; 2980 p->pPrior = 0; 2981 pLimit = p->pLimit; 2982 p->pLimit = 0; 2983 intersectdest.iSDParm = tab2; 2984 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2985 sqlite3SelectOpName(p->op))); 2986 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2987 rc = sqlite3Select(pParse, p, &intersectdest); 2988 testcase( rc!=SQLITE_OK ); 2989 pDelete = p->pPrior; 2990 p->pPrior = pPrior; 2991 if( p->nSelectRow>pPrior->nSelectRow ){ 2992 p->nSelectRow = pPrior->nSelectRow; 2993 } 2994 sqlite3ExprDelete(db, p->pLimit); 2995 p->pLimit = pLimit; 2996 2997 /* Generate code to take the intersection of the two temporary 2998 ** tables. 2999 */ 3000 if( rc ) break; 3001 assert( p->pEList ); 3002 iBreak = sqlite3VdbeMakeLabel(pParse); 3003 iCont = sqlite3VdbeMakeLabel(pParse); 3004 computeLimitRegisters(pParse, p, iBreak); 3005 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3006 r1 = sqlite3GetTempReg(pParse); 3007 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3008 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3009 VdbeCoverage(v); 3010 sqlite3ReleaseTempReg(pParse, r1); 3011 selectInnerLoop(pParse, p, tab1, 3012 0, 0, &dest, iCont, iBreak); 3013 sqlite3VdbeResolveLabel(v, iCont); 3014 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3015 sqlite3VdbeResolveLabel(v, iBreak); 3016 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3017 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3018 break; 3019 } 3020 } 3021 3022 #ifndef SQLITE_OMIT_EXPLAIN 3023 if( p->pNext==0 ){ 3024 ExplainQueryPlanPop(pParse); 3025 } 3026 #endif 3027 } 3028 if( pParse->nErr ) goto multi_select_end; 3029 3030 /* Compute collating sequences used by 3031 ** temporary tables needed to implement the compound select. 3032 ** Attach the KeyInfo structure to all temporary tables. 3033 ** 3034 ** This section is run by the right-most SELECT statement only. 3035 ** SELECT statements to the left always skip this part. The right-most 3036 ** SELECT might also skip this part if it has no ORDER BY clause and 3037 ** no temp tables are required. 3038 */ 3039 if( p->selFlags & SF_UsesEphemeral ){ 3040 int i; /* Loop counter */ 3041 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3042 Select *pLoop; /* For looping through SELECT statements */ 3043 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3044 int nCol; /* Number of columns in result set */ 3045 3046 assert( p->pNext==0 ); 3047 assert( p->pEList!=0 ); 3048 nCol = p->pEList->nExpr; 3049 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3050 if( !pKeyInfo ){ 3051 rc = SQLITE_NOMEM_BKPT; 3052 goto multi_select_end; 3053 } 3054 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3055 *apColl = multiSelectCollSeq(pParse, p, i); 3056 if( 0==*apColl ){ 3057 *apColl = db->pDfltColl; 3058 } 3059 } 3060 3061 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3062 for(i=0; i<2; i++){ 3063 int addr = pLoop->addrOpenEphm[i]; 3064 if( addr<0 ){ 3065 /* If [0] is unused then [1] is also unused. So we can 3066 ** always safely abort as soon as the first unused slot is found */ 3067 assert( pLoop->addrOpenEphm[1]<0 ); 3068 break; 3069 } 3070 sqlite3VdbeChangeP2(v, addr, nCol); 3071 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3072 P4_KEYINFO); 3073 pLoop->addrOpenEphm[i] = -1; 3074 } 3075 } 3076 sqlite3KeyInfoUnref(pKeyInfo); 3077 } 3078 3079 multi_select_end: 3080 pDest->iSdst = dest.iSdst; 3081 pDest->nSdst = dest.nSdst; 3082 if( pDelete ){ 3083 sqlite3ParserAddCleanup(pParse, 3084 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3085 pDelete); 3086 } 3087 return rc; 3088 } 3089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3090 3091 /* 3092 ** Error message for when two or more terms of a compound select have different 3093 ** size result sets. 3094 */ 3095 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3096 if( p->selFlags & SF_Values ){ 3097 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3098 }else{ 3099 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3100 " do not have the same number of result columns", 3101 sqlite3SelectOpName(p->op)); 3102 } 3103 } 3104 3105 /* 3106 ** Code an output subroutine for a coroutine implementation of a 3107 ** SELECT statment. 3108 ** 3109 ** The data to be output is contained in pIn->iSdst. There are 3110 ** pIn->nSdst columns to be output. pDest is where the output should 3111 ** be sent. 3112 ** 3113 ** regReturn is the number of the register holding the subroutine 3114 ** return address. 3115 ** 3116 ** If regPrev>0 then it is the first register in a vector that 3117 ** records the previous output. mem[regPrev] is a flag that is false 3118 ** if there has been no previous output. If regPrev>0 then code is 3119 ** generated to suppress duplicates. pKeyInfo is used for comparing 3120 ** keys. 3121 ** 3122 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3123 ** iBreak. 3124 */ 3125 static int generateOutputSubroutine( 3126 Parse *pParse, /* Parsing context */ 3127 Select *p, /* The SELECT statement */ 3128 SelectDest *pIn, /* Coroutine supplying data */ 3129 SelectDest *pDest, /* Where to send the data */ 3130 int regReturn, /* The return address register */ 3131 int regPrev, /* Previous result register. No uniqueness if 0 */ 3132 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3133 int iBreak /* Jump here if we hit the LIMIT */ 3134 ){ 3135 Vdbe *v = pParse->pVdbe; 3136 int iContinue; 3137 int addr; 3138 3139 addr = sqlite3VdbeCurrentAddr(v); 3140 iContinue = sqlite3VdbeMakeLabel(pParse); 3141 3142 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3143 */ 3144 if( regPrev ){ 3145 int addr1, addr2; 3146 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3147 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3148 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3149 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3150 sqlite3VdbeJumpHere(v, addr1); 3151 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3152 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3153 } 3154 if( pParse->db->mallocFailed ) return 0; 3155 3156 /* Suppress the first OFFSET entries if there is an OFFSET clause 3157 */ 3158 codeOffset(v, p->iOffset, iContinue); 3159 3160 assert( pDest->eDest!=SRT_Exists ); 3161 assert( pDest->eDest!=SRT_Table ); 3162 switch( pDest->eDest ){ 3163 /* Store the result as data using a unique key. 3164 */ 3165 case SRT_EphemTab: { 3166 int r1 = sqlite3GetTempReg(pParse); 3167 int r2 = sqlite3GetTempReg(pParse); 3168 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3169 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3170 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3171 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3172 sqlite3ReleaseTempReg(pParse, r2); 3173 sqlite3ReleaseTempReg(pParse, r1); 3174 break; 3175 } 3176 3177 #ifndef SQLITE_OMIT_SUBQUERY 3178 /* If we are creating a set for an "expr IN (SELECT ...)". 3179 */ 3180 case SRT_Set: { 3181 int r1; 3182 testcase( pIn->nSdst>1 ); 3183 r1 = sqlite3GetTempReg(pParse); 3184 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3185 r1, pDest->zAffSdst, pIn->nSdst); 3186 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3187 pIn->iSdst, pIn->nSdst); 3188 sqlite3ReleaseTempReg(pParse, r1); 3189 break; 3190 } 3191 3192 /* If this is a scalar select that is part of an expression, then 3193 ** store the results in the appropriate memory cell and break out 3194 ** of the scan loop. Note that the select might return multiple columns 3195 ** if it is the RHS of a row-value IN operator. 3196 */ 3197 case SRT_Mem: { 3198 testcase( pIn->nSdst>1 ); 3199 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3200 /* The LIMIT clause will jump out of the loop for us */ 3201 break; 3202 } 3203 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3204 3205 /* The results are stored in a sequence of registers 3206 ** starting at pDest->iSdst. Then the co-routine yields. 3207 */ 3208 case SRT_Coroutine: { 3209 if( pDest->iSdst==0 ){ 3210 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3211 pDest->nSdst = pIn->nSdst; 3212 } 3213 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3214 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3215 break; 3216 } 3217 3218 /* If none of the above, then the result destination must be 3219 ** SRT_Output. This routine is never called with any other 3220 ** destination other than the ones handled above or SRT_Output. 3221 ** 3222 ** For SRT_Output, results are stored in a sequence of registers. 3223 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3224 ** return the next row of result. 3225 */ 3226 default: { 3227 assert( pDest->eDest==SRT_Output ); 3228 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3229 break; 3230 } 3231 } 3232 3233 /* Jump to the end of the loop if the LIMIT is reached. 3234 */ 3235 if( p->iLimit ){ 3236 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3237 } 3238 3239 /* Generate the subroutine return 3240 */ 3241 sqlite3VdbeResolveLabel(v, iContinue); 3242 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3243 3244 return addr; 3245 } 3246 3247 /* 3248 ** Alternative compound select code generator for cases when there 3249 ** is an ORDER BY clause. 3250 ** 3251 ** We assume a query of the following form: 3252 ** 3253 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3254 ** 3255 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3256 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3257 ** co-routines. Then run the co-routines in parallel and merge the results 3258 ** into the output. In addition to the two coroutines (called selectA and 3259 ** selectB) there are 7 subroutines: 3260 ** 3261 ** outA: Move the output of the selectA coroutine into the output 3262 ** of the compound query. 3263 ** 3264 ** outB: Move the output of the selectB coroutine into the output 3265 ** of the compound query. (Only generated for UNION and 3266 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3267 ** appears only in B.) 3268 ** 3269 ** AltB: Called when there is data from both coroutines and A<B. 3270 ** 3271 ** AeqB: Called when there is data from both coroutines and A==B. 3272 ** 3273 ** AgtB: Called when there is data from both coroutines and A>B. 3274 ** 3275 ** EofA: Called when data is exhausted from selectA. 3276 ** 3277 ** EofB: Called when data is exhausted from selectB. 3278 ** 3279 ** The implementation of the latter five subroutines depend on which 3280 ** <operator> is used: 3281 ** 3282 ** 3283 ** UNION ALL UNION EXCEPT INTERSECT 3284 ** ------------- ----------------- -------------- ----------------- 3285 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3286 ** 3287 ** AeqB: outA, nextA nextA nextA outA, nextA 3288 ** 3289 ** AgtB: outB, nextB outB, nextB nextB nextB 3290 ** 3291 ** EofA: outB, nextB outB, nextB halt halt 3292 ** 3293 ** EofB: outA, nextA outA, nextA outA, nextA halt 3294 ** 3295 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3296 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3297 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3298 ** following nextX causes a jump to the end of the select processing. 3299 ** 3300 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3301 ** within the output subroutine. The regPrev register set holds the previously 3302 ** output value. A comparison is made against this value and the output 3303 ** is skipped if the next results would be the same as the previous. 3304 ** 3305 ** The implementation plan is to implement the two coroutines and seven 3306 ** subroutines first, then put the control logic at the bottom. Like this: 3307 ** 3308 ** goto Init 3309 ** coA: coroutine for left query (A) 3310 ** coB: coroutine for right query (B) 3311 ** outA: output one row of A 3312 ** outB: output one row of B (UNION and UNION ALL only) 3313 ** EofA: ... 3314 ** EofB: ... 3315 ** AltB: ... 3316 ** AeqB: ... 3317 ** AgtB: ... 3318 ** Init: initialize coroutine registers 3319 ** yield coA 3320 ** if eof(A) goto EofA 3321 ** yield coB 3322 ** if eof(B) goto EofB 3323 ** Cmpr: Compare A, B 3324 ** Jump AltB, AeqB, AgtB 3325 ** End: ... 3326 ** 3327 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3328 ** actually called using Gosub and they do not Return. EofA and EofB loop 3329 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3330 ** and AgtB jump to either L2 or to one of EofA or EofB. 3331 */ 3332 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3333 static int multiSelectOrderBy( 3334 Parse *pParse, /* Parsing context */ 3335 Select *p, /* The right-most of SELECTs to be coded */ 3336 SelectDest *pDest /* What to do with query results */ 3337 ){ 3338 int i, j; /* Loop counters */ 3339 Select *pPrior; /* Another SELECT immediately to our left */ 3340 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3341 int nSelect; /* Number of SELECT statements in the compound */ 3342 Vdbe *v; /* Generate code to this VDBE */ 3343 SelectDest destA; /* Destination for coroutine A */ 3344 SelectDest destB; /* Destination for coroutine B */ 3345 int regAddrA; /* Address register for select-A coroutine */ 3346 int regAddrB; /* Address register for select-B coroutine */ 3347 int addrSelectA; /* Address of the select-A coroutine */ 3348 int addrSelectB; /* Address of the select-B coroutine */ 3349 int regOutA; /* Address register for the output-A subroutine */ 3350 int regOutB; /* Address register for the output-B subroutine */ 3351 int addrOutA; /* Address of the output-A subroutine */ 3352 int addrOutB = 0; /* Address of the output-B subroutine */ 3353 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3354 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3355 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3356 int addrAltB; /* Address of the A<B subroutine */ 3357 int addrAeqB; /* Address of the A==B subroutine */ 3358 int addrAgtB; /* Address of the A>B subroutine */ 3359 int regLimitA; /* Limit register for select-A */ 3360 int regLimitB; /* Limit register for select-A */ 3361 int regPrev; /* A range of registers to hold previous output */ 3362 int savedLimit; /* Saved value of p->iLimit */ 3363 int savedOffset; /* Saved value of p->iOffset */ 3364 int labelCmpr; /* Label for the start of the merge algorithm */ 3365 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3366 int addr1; /* Jump instructions that get retargetted */ 3367 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3368 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3369 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3370 sqlite3 *db; /* Database connection */ 3371 ExprList *pOrderBy; /* The ORDER BY clause */ 3372 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3373 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3374 3375 assert( p->pOrderBy!=0 ); 3376 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3377 db = pParse->db; 3378 v = pParse->pVdbe; 3379 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3380 labelEnd = sqlite3VdbeMakeLabel(pParse); 3381 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3382 3383 3384 /* Patch up the ORDER BY clause 3385 */ 3386 op = p->op; 3387 assert( p->pPrior->pOrderBy==0 ); 3388 pOrderBy = p->pOrderBy; 3389 assert( pOrderBy ); 3390 nOrderBy = pOrderBy->nExpr; 3391 3392 /* For operators other than UNION ALL we have to make sure that 3393 ** the ORDER BY clause covers every term of the result set. Add 3394 ** terms to the ORDER BY clause as necessary. 3395 */ 3396 if( op!=TK_ALL ){ 3397 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3398 struct ExprList_item *pItem; 3399 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3400 assert( pItem!=0 ); 3401 assert( pItem->u.x.iOrderByCol>0 ); 3402 if( pItem->u.x.iOrderByCol==i ) break; 3403 } 3404 if( j==nOrderBy ){ 3405 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3406 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3407 pNew->flags |= EP_IntValue; 3408 pNew->u.iValue = i; 3409 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3410 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3411 } 3412 } 3413 } 3414 3415 /* Compute the comparison permutation and keyinfo that is used with 3416 ** the permutation used to determine if the next 3417 ** row of results comes from selectA or selectB. Also add explicit 3418 ** collations to the ORDER BY clause terms so that when the subqueries 3419 ** to the right and the left are evaluated, they use the correct 3420 ** collation. 3421 */ 3422 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3423 if( aPermute ){ 3424 struct ExprList_item *pItem; 3425 aPermute[0] = nOrderBy; 3426 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3427 assert( pItem!=0 ); 3428 assert( pItem->u.x.iOrderByCol>0 ); 3429 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3430 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3431 } 3432 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3433 }else{ 3434 pKeyMerge = 0; 3435 } 3436 3437 /* Allocate a range of temporary registers and the KeyInfo needed 3438 ** for the logic that removes duplicate result rows when the 3439 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3440 */ 3441 if( op==TK_ALL ){ 3442 regPrev = 0; 3443 }else{ 3444 int nExpr = p->pEList->nExpr; 3445 assert( nOrderBy>=nExpr || db->mallocFailed ); 3446 regPrev = pParse->nMem+1; 3447 pParse->nMem += nExpr+1; 3448 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3449 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3450 if( pKeyDup ){ 3451 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3452 for(i=0; i<nExpr; i++){ 3453 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3454 pKeyDup->aSortFlags[i] = 0; 3455 } 3456 } 3457 } 3458 3459 /* Separate the left and the right query from one another 3460 */ 3461 nSelect = 1; 3462 if( (op==TK_ALL || op==TK_UNION) 3463 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3464 ){ 3465 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3466 nSelect++; 3467 assert( pSplit->pPrior->pNext==pSplit ); 3468 } 3469 } 3470 if( nSelect<=3 ){ 3471 pSplit = p; 3472 }else{ 3473 pSplit = p; 3474 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3475 } 3476 pPrior = pSplit->pPrior; 3477 assert( pPrior!=0 ); 3478 pSplit->pPrior = 0; 3479 pPrior->pNext = 0; 3480 assert( p->pOrderBy == pOrderBy ); 3481 assert( pOrderBy!=0 || db->mallocFailed ); 3482 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3483 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3484 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3485 3486 /* Compute the limit registers */ 3487 computeLimitRegisters(pParse, p, labelEnd); 3488 if( p->iLimit && op==TK_ALL ){ 3489 regLimitA = ++pParse->nMem; 3490 regLimitB = ++pParse->nMem; 3491 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3492 regLimitA); 3493 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3494 }else{ 3495 regLimitA = regLimitB = 0; 3496 } 3497 sqlite3ExprDelete(db, p->pLimit); 3498 p->pLimit = 0; 3499 3500 regAddrA = ++pParse->nMem; 3501 regAddrB = ++pParse->nMem; 3502 regOutA = ++pParse->nMem; 3503 regOutB = ++pParse->nMem; 3504 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3505 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3506 3507 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3508 3509 /* Generate a coroutine to evaluate the SELECT statement to the 3510 ** left of the compound operator - the "A" select. 3511 */ 3512 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3513 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3514 VdbeComment((v, "left SELECT")); 3515 pPrior->iLimit = regLimitA; 3516 ExplainQueryPlan((pParse, 1, "LEFT")); 3517 sqlite3Select(pParse, pPrior, &destA); 3518 sqlite3VdbeEndCoroutine(v, regAddrA); 3519 sqlite3VdbeJumpHere(v, addr1); 3520 3521 /* Generate a coroutine to evaluate the SELECT statement on 3522 ** the right - the "B" select 3523 */ 3524 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3525 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3526 VdbeComment((v, "right SELECT")); 3527 savedLimit = p->iLimit; 3528 savedOffset = p->iOffset; 3529 p->iLimit = regLimitB; 3530 p->iOffset = 0; 3531 ExplainQueryPlan((pParse, 1, "RIGHT")); 3532 sqlite3Select(pParse, p, &destB); 3533 p->iLimit = savedLimit; 3534 p->iOffset = savedOffset; 3535 sqlite3VdbeEndCoroutine(v, regAddrB); 3536 3537 /* Generate a subroutine that outputs the current row of the A 3538 ** select as the next output row of the compound select. 3539 */ 3540 VdbeNoopComment((v, "Output routine for A")); 3541 addrOutA = generateOutputSubroutine(pParse, 3542 p, &destA, pDest, regOutA, 3543 regPrev, pKeyDup, labelEnd); 3544 3545 /* Generate a subroutine that outputs the current row of the B 3546 ** select as the next output row of the compound select. 3547 */ 3548 if( op==TK_ALL || op==TK_UNION ){ 3549 VdbeNoopComment((v, "Output routine for B")); 3550 addrOutB = generateOutputSubroutine(pParse, 3551 p, &destB, pDest, regOutB, 3552 regPrev, pKeyDup, labelEnd); 3553 } 3554 sqlite3KeyInfoUnref(pKeyDup); 3555 3556 /* Generate a subroutine to run when the results from select A 3557 ** are exhausted and only data in select B remains. 3558 */ 3559 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3560 addrEofA_noB = addrEofA = labelEnd; 3561 }else{ 3562 VdbeNoopComment((v, "eof-A subroutine")); 3563 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3564 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3565 VdbeCoverage(v); 3566 sqlite3VdbeGoto(v, addrEofA); 3567 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3568 } 3569 3570 /* Generate a subroutine to run when the results from select B 3571 ** are exhausted and only data in select A remains. 3572 */ 3573 if( op==TK_INTERSECT ){ 3574 addrEofB = addrEofA; 3575 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3576 }else{ 3577 VdbeNoopComment((v, "eof-B subroutine")); 3578 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3579 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3580 sqlite3VdbeGoto(v, addrEofB); 3581 } 3582 3583 /* Generate code to handle the case of A<B 3584 */ 3585 VdbeNoopComment((v, "A-lt-B subroutine")); 3586 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3587 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3588 sqlite3VdbeGoto(v, labelCmpr); 3589 3590 /* Generate code to handle the case of A==B 3591 */ 3592 if( op==TK_ALL ){ 3593 addrAeqB = addrAltB; 3594 }else if( op==TK_INTERSECT ){ 3595 addrAeqB = addrAltB; 3596 addrAltB++; 3597 }else{ 3598 VdbeNoopComment((v, "A-eq-B subroutine")); 3599 addrAeqB = 3600 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3601 sqlite3VdbeGoto(v, labelCmpr); 3602 } 3603 3604 /* Generate code to handle the case of A>B 3605 */ 3606 VdbeNoopComment((v, "A-gt-B subroutine")); 3607 addrAgtB = sqlite3VdbeCurrentAddr(v); 3608 if( op==TK_ALL || op==TK_UNION ){ 3609 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3610 } 3611 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3612 sqlite3VdbeGoto(v, labelCmpr); 3613 3614 /* This code runs once to initialize everything. 3615 */ 3616 sqlite3VdbeJumpHere(v, addr1); 3617 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3618 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3619 3620 /* Implement the main merge loop 3621 */ 3622 sqlite3VdbeResolveLabel(v, labelCmpr); 3623 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3624 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3625 (char*)pKeyMerge, P4_KEYINFO); 3626 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3627 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3628 3629 /* Jump to the this point in order to terminate the query. 3630 */ 3631 sqlite3VdbeResolveLabel(v, labelEnd); 3632 3633 /* Reassembly the compound query so that it will be freed correctly 3634 ** by the calling function */ 3635 if( pSplit->pPrior ){ 3636 sqlite3SelectDelete(db, pSplit->pPrior); 3637 } 3638 pSplit->pPrior = pPrior; 3639 pPrior->pNext = pSplit; 3640 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3641 pPrior->pOrderBy = 0; 3642 3643 /*** TBD: Insert subroutine calls to close cursors on incomplete 3644 **** subqueries ****/ 3645 ExplainQueryPlanPop(pParse); 3646 return pParse->nErr!=0; 3647 } 3648 #endif 3649 3650 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3651 3652 /* An instance of the SubstContext object describes an substitution edit 3653 ** to be performed on a parse tree. 3654 ** 3655 ** All references to columns in table iTable are to be replaced by corresponding 3656 ** expressions in pEList. 3657 */ 3658 typedef struct SubstContext { 3659 Parse *pParse; /* The parsing context */ 3660 int iTable; /* Replace references to this table */ 3661 int iNewTable; /* New table number */ 3662 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3663 ExprList *pEList; /* Replacement expressions */ 3664 } SubstContext; 3665 3666 /* Forward Declarations */ 3667 static void substExprList(SubstContext*, ExprList*); 3668 static void substSelect(SubstContext*, Select*, int); 3669 3670 /* 3671 ** Scan through the expression pExpr. Replace every reference to 3672 ** a column in table number iTable with a copy of the iColumn-th 3673 ** entry in pEList. (But leave references to the ROWID column 3674 ** unchanged.) 3675 ** 3676 ** This routine is part of the flattening procedure. A subquery 3677 ** whose result set is defined by pEList appears as entry in the 3678 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3679 ** FORM clause entry is iTable. This routine makes the necessary 3680 ** changes to pExpr so that it refers directly to the source table 3681 ** of the subquery rather the result set of the subquery. 3682 */ 3683 static Expr *substExpr( 3684 SubstContext *pSubst, /* Description of the substitution */ 3685 Expr *pExpr /* Expr in which substitution occurs */ 3686 ){ 3687 if( pExpr==0 ) return 0; 3688 if( ExprHasProperty(pExpr, EP_FromJoin) 3689 && pExpr->w.iJoin==pSubst->iTable 3690 ){ 3691 pExpr->w.iJoin = pSubst->iNewTable; 3692 } 3693 if( pExpr->op==TK_COLUMN 3694 && pExpr->iTable==pSubst->iTable 3695 && !ExprHasProperty(pExpr, EP_FixedCol) 3696 ){ 3697 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3698 if( pExpr->iColumn<0 ){ 3699 pExpr->op = TK_NULL; 3700 }else 3701 #endif 3702 { 3703 Expr *pNew; 3704 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3705 Expr ifNullRow; 3706 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3707 assert( pExpr->pRight==0 ); 3708 if( sqlite3ExprIsVector(pCopy) ){ 3709 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3710 }else{ 3711 sqlite3 *db = pSubst->pParse->db; 3712 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3713 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3714 ifNullRow.op = TK_IF_NULL_ROW; 3715 ifNullRow.pLeft = pCopy; 3716 ifNullRow.iTable = pSubst->iNewTable; 3717 ifNullRow.flags = EP_IfNullRow; 3718 pCopy = &ifNullRow; 3719 } 3720 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3721 pNew = sqlite3ExprDup(db, pCopy, 0); 3722 if( db->mallocFailed ){ 3723 sqlite3ExprDelete(db, pNew); 3724 return pExpr; 3725 } 3726 if( pSubst->isLeftJoin ){ 3727 ExprSetProperty(pNew, EP_CanBeNull); 3728 } 3729 if( ExprHasProperty(pExpr,EP_FromJoin|EP_InnerJoin) ){ 3730 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3731 pExpr->flags & (EP_FromJoin|EP_InnerJoin)); 3732 } 3733 sqlite3ExprDelete(db, pExpr); 3734 pExpr = pNew; 3735 3736 /* Ensure that the expression now has an implicit collation sequence, 3737 ** just as it did when it was a column of a view or sub-query. */ 3738 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3739 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3740 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3741 (pColl ? pColl->zName : "BINARY") 3742 ); 3743 } 3744 ExprClearProperty(pExpr, EP_Collate); 3745 } 3746 } 3747 }else{ 3748 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3749 pExpr->iTable = pSubst->iNewTable; 3750 } 3751 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3752 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3753 if( ExprUseXSelect(pExpr) ){ 3754 substSelect(pSubst, pExpr->x.pSelect, 1); 3755 }else{ 3756 substExprList(pSubst, pExpr->x.pList); 3757 } 3758 #ifndef SQLITE_OMIT_WINDOWFUNC 3759 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3760 Window *pWin = pExpr->y.pWin; 3761 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3762 substExprList(pSubst, pWin->pPartition); 3763 substExprList(pSubst, pWin->pOrderBy); 3764 } 3765 #endif 3766 } 3767 return pExpr; 3768 } 3769 static void substExprList( 3770 SubstContext *pSubst, /* Description of the substitution */ 3771 ExprList *pList /* List to scan and in which to make substitutes */ 3772 ){ 3773 int i; 3774 if( pList==0 ) return; 3775 for(i=0; i<pList->nExpr; i++){ 3776 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3777 } 3778 } 3779 static void substSelect( 3780 SubstContext *pSubst, /* Description of the substitution */ 3781 Select *p, /* SELECT statement in which to make substitutions */ 3782 int doPrior /* Do substitutes on p->pPrior too */ 3783 ){ 3784 SrcList *pSrc; 3785 SrcItem *pItem; 3786 int i; 3787 if( !p ) return; 3788 do{ 3789 substExprList(pSubst, p->pEList); 3790 substExprList(pSubst, p->pGroupBy); 3791 substExprList(pSubst, p->pOrderBy); 3792 p->pHaving = substExpr(pSubst, p->pHaving); 3793 p->pWhere = substExpr(pSubst, p->pWhere); 3794 pSrc = p->pSrc; 3795 assert( pSrc!=0 ); 3796 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3797 substSelect(pSubst, pItem->pSelect, 1); 3798 if( pItem->fg.isTabFunc ){ 3799 substExprList(pSubst, pItem->u1.pFuncArg); 3800 } 3801 } 3802 }while( doPrior && (p = p->pPrior)!=0 ); 3803 } 3804 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3805 3806 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3807 /* 3808 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3809 ** clause of that SELECT. 3810 ** 3811 ** This routine scans the entire SELECT statement and recomputes the 3812 ** pSrcItem->colUsed mask. 3813 */ 3814 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3815 SrcItem *pItem; 3816 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3817 pItem = pWalker->u.pSrcItem; 3818 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3819 if( pExpr->iColumn<0 ) return WRC_Continue; 3820 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3821 return WRC_Continue; 3822 } 3823 static void recomputeColumnsUsed( 3824 Select *pSelect, /* The complete SELECT statement */ 3825 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3826 ){ 3827 Walker w; 3828 if( NEVER(pSrcItem->pTab==0) ) return; 3829 memset(&w, 0, sizeof(w)); 3830 w.xExprCallback = recomputeColumnsUsedExpr; 3831 w.xSelectCallback = sqlite3SelectWalkNoop; 3832 w.u.pSrcItem = pSrcItem; 3833 pSrcItem->colUsed = 0; 3834 sqlite3WalkSelect(&w, pSelect); 3835 } 3836 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3837 3838 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3839 /* 3840 ** Assign new cursor numbers to each of the items in pSrc. For each 3841 ** new cursor number assigned, set an entry in the aCsrMap[] array 3842 ** to map the old cursor number to the new: 3843 ** 3844 ** aCsrMap[iOld+1] = iNew; 3845 ** 3846 ** The array is guaranteed by the caller to be large enough for all 3847 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3848 ** 3849 ** If pSrc contains any sub-selects, call this routine recursively 3850 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3851 */ 3852 static void srclistRenumberCursors( 3853 Parse *pParse, /* Parse context */ 3854 int *aCsrMap, /* Array to store cursor mappings in */ 3855 SrcList *pSrc, /* FROM clause to renumber */ 3856 int iExcept /* FROM clause item to skip */ 3857 ){ 3858 int i; 3859 SrcItem *pItem; 3860 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3861 if( i!=iExcept ){ 3862 Select *p; 3863 assert( pItem->iCursor < aCsrMap[0] ); 3864 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3865 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3866 } 3867 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3868 for(p=pItem->pSelect; p; p=p->pPrior){ 3869 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3870 } 3871 } 3872 } 3873 } 3874 3875 /* 3876 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3877 */ 3878 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3879 int *aCsrMap = pWalker->u.aiCol; 3880 int iCsr = *piCursor; 3881 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3882 *piCursor = aCsrMap[iCsr+1]; 3883 } 3884 } 3885 3886 /* 3887 ** Expression walker callback used by renumberCursors() to update 3888 ** Expr objects to match newly assigned cursor numbers. 3889 */ 3890 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3891 int op = pExpr->op; 3892 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3893 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3894 } 3895 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3896 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3897 } 3898 return WRC_Continue; 3899 } 3900 3901 /* 3902 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3903 ** of the SELECT statement passed as the second argument, and to each 3904 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3905 ** Except, do not assign a new cursor number to the iExcept'th element in 3906 ** the FROM clause of (*p). Update all expressions and other references 3907 ** to refer to the new cursor numbers. 3908 ** 3909 ** Argument aCsrMap is an array that may be used for temporary working 3910 ** space. Two guarantees are made by the caller: 3911 ** 3912 ** * the array is larger than the largest cursor number used within the 3913 ** select statement passed as an argument, and 3914 ** 3915 ** * the array entries for all cursor numbers that do *not* appear in 3916 ** FROM clauses of the select statement as described above are 3917 ** initialized to zero. 3918 */ 3919 static void renumberCursors( 3920 Parse *pParse, /* Parse context */ 3921 Select *p, /* Select to renumber cursors within */ 3922 int iExcept, /* FROM clause item to skip */ 3923 int *aCsrMap /* Working space */ 3924 ){ 3925 Walker w; 3926 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3927 memset(&w, 0, sizeof(w)); 3928 w.u.aiCol = aCsrMap; 3929 w.xExprCallback = renumberCursorsCb; 3930 w.xSelectCallback = sqlite3SelectWalkNoop; 3931 sqlite3WalkSelect(&w, p); 3932 } 3933 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3934 3935 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3936 /* 3937 ** This routine attempts to flatten subqueries as a performance optimization. 3938 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3939 ** 3940 ** To understand the concept of flattening, consider the following 3941 ** query: 3942 ** 3943 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3944 ** 3945 ** The default way of implementing this query is to execute the 3946 ** subquery first and store the results in a temporary table, then 3947 ** run the outer query on that temporary table. This requires two 3948 ** passes over the data. Furthermore, because the temporary table 3949 ** has no indices, the WHERE clause on the outer query cannot be 3950 ** optimized. 3951 ** 3952 ** This routine attempts to rewrite queries such as the above into 3953 ** a single flat select, like this: 3954 ** 3955 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3956 ** 3957 ** The code generated for this simplification gives the same result 3958 ** but only has to scan the data once. And because indices might 3959 ** exist on the table t1, a complete scan of the data might be 3960 ** avoided. 3961 ** 3962 ** Flattening is subject to the following constraints: 3963 ** 3964 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3965 ** The subquery and the outer query cannot both be aggregates. 3966 ** 3967 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3968 ** (2) If the subquery is an aggregate then 3969 ** (2a) the outer query must not be a join and 3970 ** (2b) the outer query must not use subqueries 3971 ** other than the one FROM-clause subquery that is a candidate 3972 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3973 ** from 2015-02-09.) 3974 ** 3975 ** (3) If the subquery is the right operand of a LEFT JOIN then 3976 ** (3a) the subquery may not be a join and 3977 ** (3b) the FROM clause of the subquery may not contain a virtual 3978 ** table and 3979 ** (3c) the outer query may not be an aggregate. 3980 ** (3d) the outer query may not be DISTINCT. 3981 ** See also (26) for restrictions on RIGHT JOIN. 3982 ** 3983 ** (4) The subquery can not be DISTINCT. 3984 ** 3985 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3986 ** sub-queries that were excluded from this optimization. Restriction 3987 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3988 ** 3989 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3990 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3991 ** 3992 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3993 ** A FROM clause, consider adding a FROM clause with the special 3994 ** table sqlite_once that consists of a single row containing a 3995 ** single NULL. 3996 ** 3997 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3998 ** 3999 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4000 ** 4001 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4002 ** accidently carried the comment forward until 2014-09-15. Original 4003 ** constraint: "If the subquery is aggregate then the outer query 4004 ** may not use LIMIT." 4005 ** 4006 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4007 ** 4008 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4009 ** a separate restriction deriving from ticket #350. 4010 ** 4011 ** (13) The subquery and outer query may not both use LIMIT. 4012 ** 4013 ** (14) The subquery may not use OFFSET. 4014 ** 4015 ** (15) If the outer query is part of a compound select, then the 4016 ** subquery may not use LIMIT. 4017 ** (See ticket #2339 and ticket [02a8e81d44]). 4018 ** 4019 ** (16) If the outer query is aggregate, then the subquery may not 4020 ** use ORDER BY. (Ticket #2942) This used to not matter 4021 ** until we introduced the group_concat() function. 4022 ** 4023 ** (17) If the subquery is a compound select, then 4024 ** (17a) all compound operators must be a UNION ALL, and 4025 ** (17b) no terms within the subquery compound may be aggregate 4026 ** or DISTINCT, and 4027 ** (17c) every term within the subquery compound must have a FROM clause 4028 ** (17d) the outer query may not be 4029 ** (17d1) aggregate, or 4030 ** (17d2) DISTINCT 4031 ** (17e) the subquery may not contain window functions, and 4032 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4033 ** 4034 ** The parent and sub-query may contain WHERE clauses. Subject to 4035 ** rules (11), (13) and (14), they may also contain ORDER BY, 4036 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4037 ** operator other than UNION ALL because all the other compound 4038 ** operators have an implied DISTINCT which is disallowed by 4039 ** restriction (4). 4040 ** 4041 ** Also, each component of the sub-query must return the same number 4042 ** of result columns. This is actually a requirement for any compound 4043 ** SELECT statement, but all the code here does is make sure that no 4044 ** such (illegal) sub-query is flattened. The caller will detect the 4045 ** syntax error and return a detailed message. 4046 ** 4047 ** (18) If the sub-query is a compound select, then all terms of the 4048 ** ORDER BY clause of the parent must be copies of a term returned 4049 ** by the parent query. 4050 ** 4051 ** (19) If the subquery uses LIMIT then the outer query may not 4052 ** have a WHERE clause. 4053 ** 4054 ** (20) If the sub-query is a compound select, then it must not use 4055 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4056 ** somewhat by saying that the terms of the ORDER BY clause must 4057 ** appear as unmodified result columns in the outer query. But we 4058 ** have other optimizations in mind to deal with that case. 4059 ** 4060 ** (21) If the subquery uses LIMIT then the outer query may not be 4061 ** DISTINCT. (See ticket [752e1646fc]). 4062 ** 4063 ** (22) The subquery may not be a recursive CTE. 4064 ** 4065 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4066 ** a compound query. This restriction is because transforming the 4067 ** parent to a compound query confuses the code that handles 4068 ** recursive queries in multiSelect(). 4069 ** 4070 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4071 ** The subquery may not be an aggregate that uses the built-in min() or 4072 ** or max() functions. (Without this restriction, a query like: 4073 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4074 ** return the value X for which Y was maximal.) 4075 ** 4076 ** (25) If either the subquery or the parent query contains a window 4077 ** function in the select list or ORDER BY clause, flattening 4078 ** is not attempted. 4079 ** 4080 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4081 ** See also (3) for restrictions on LEFT JOIN. 4082 ** 4083 ** 4084 ** In this routine, the "p" parameter is a pointer to the outer query. 4085 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4086 ** uses aggregates. 4087 ** 4088 ** If flattening is not attempted, this routine is a no-op and returns 0. 4089 ** If flattening is attempted this routine returns 1. 4090 ** 4091 ** All of the expression analysis must occur on both the outer query and 4092 ** the subquery before this routine runs. 4093 */ 4094 static int flattenSubquery( 4095 Parse *pParse, /* Parsing context */ 4096 Select *p, /* The parent or outer SELECT statement */ 4097 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4098 int isAgg /* True if outer SELECT uses aggregate functions */ 4099 ){ 4100 const char *zSavedAuthContext = pParse->zAuthContext; 4101 Select *pParent; /* Current UNION ALL term of the other query */ 4102 Select *pSub; /* The inner query or "subquery" */ 4103 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4104 SrcList *pSrc; /* The FROM clause of the outer query */ 4105 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4106 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4107 int iNewParent = -1;/* Replacement table for iParent */ 4108 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4109 int i; /* Loop counter */ 4110 Expr *pWhere; /* The WHERE clause */ 4111 SrcItem *pSubitem; /* The subquery */ 4112 sqlite3 *db = pParse->db; 4113 Walker w; /* Walker to persist agginfo data */ 4114 int *aCsrMap = 0; 4115 4116 /* Check to see if flattening is permitted. Return 0 if not. 4117 */ 4118 assert( p!=0 ); 4119 assert( p->pPrior==0 ); 4120 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4121 pSrc = p->pSrc; 4122 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4123 pSubitem = &pSrc->a[iFrom]; 4124 iParent = pSubitem->iCursor; 4125 pSub = pSubitem->pSelect; 4126 assert( pSub!=0 ); 4127 4128 #ifndef SQLITE_OMIT_WINDOWFUNC 4129 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4130 #endif 4131 4132 pSubSrc = pSub->pSrc; 4133 assert( pSubSrc ); 4134 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4135 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4136 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4137 ** became arbitrary expressions, we were forced to add restrictions (13) 4138 ** and (14). */ 4139 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4140 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4141 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4142 return 0; /* Restriction (15) */ 4143 } 4144 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4145 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4146 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4147 return 0; /* Restrictions (8)(9) */ 4148 } 4149 if( p->pOrderBy && pSub->pOrderBy ){ 4150 return 0; /* Restriction (11) */ 4151 } 4152 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4153 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4154 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4155 return 0; /* Restriction (21) */ 4156 } 4157 if( pSub->selFlags & (SF_Recursive) ){ 4158 return 0; /* Restrictions (22) */ 4159 } 4160 4161 /* 4162 ** If the subquery is the right operand of a LEFT JOIN, then the 4163 ** subquery may not be a join itself (3a). Example of why this is not 4164 ** allowed: 4165 ** 4166 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4167 ** 4168 ** If we flatten the above, we would get 4169 ** 4170 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4171 ** 4172 ** which is not at all the same thing. 4173 ** 4174 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4175 ** query cannot be an aggregate. (3c) This is an artifact of the way 4176 ** aggregates are processed - there is no mechanism to determine if 4177 ** the LEFT JOIN table should be all-NULL. 4178 ** 4179 ** See also tickets #306, #350, and #3300. 4180 */ 4181 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4182 if( pSubSrc->nSrc>1 /* (3a) */ 4183 || isAgg /* (3b) */ 4184 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4185 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4186 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4187 ){ 4188 return 0; 4189 } 4190 isLeftJoin = 1; 4191 } 4192 #ifdef SQLITE_EXTRA_IFNULLROW 4193 else if( iFrom>0 && !isAgg ){ 4194 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4195 ** every reference to any result column from subquery in a join, even 4196 ** though they are not necessary. This will stress-test the OP_IfNullRow 4197 ** opcode. */ 4198 isLeftJoin = -1; 4199 } 4200 #endif 4201 4202 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4203 ** use only the UNION ALL operator. And none of the simple select queries 4204 ** that make up the compound SELECT are allowed to be aggregate or distinct 4205 ** queries. 4206 */ 4207 if( pSub->pPrior ){ 4208 if( pSub->pOrderBy ){ 4209 return 0; /* Restriction (20) */ 4210 } 4211 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4212 return 0; /* (17d1), (17d2), or (17f) */ 4213 } 4214 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4215 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4216 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4217 assert( pSub->pSrc!=0 ); 4218 assert( (pSub->selFlags & SF_Recursive)==0 ); 4219 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4220 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4221 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4222 || pSub1->pSrc->nSrc<1 /* (17c) */ 4223 #ifndef SQLITE_OMIT_WINDOWFUNC 4224 || pSub1->pWin /* (17e) */ 4225 #endif 4226 ){ 4227 return 0; 4228 } 4229 testcase( pSub1->pSrc->nSrc>1 ); 4230 } 4231 4232 /* Restriction (18). */ 4233 if( p->pOrderBy ){ 4234 int ii; 4235 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4236 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4237 } 4238 } 4239 4240 /* Restriction (23) */ 4241 if( (p->selFlags & SF_Recursive) ) return 0; 4242 4243 if( pSrc->nSrc>1 ){ 4244 if( pParse->nSelect>500 ) return 0; 4245 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4246 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4247 } 4248 } 4249 4250 /***** If we reach this point, flattening is permitted. *****/ 4251 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4252 pSub->selId, pSub, iFrom)); 4253 4254 /* Authorize the subquery */ 4255 pParse->zAuthContext = pSubitem->zName; 4256 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4257 testcase( i==SQLITE_DENY ); 4258 pParse->zAuthContext = zSavedAuthContext; 4259 4260 /* Delete the transient structures associated with thesubquery */ 4261 pSub1 = pSubitem->pSelect; 4262 sqlite3DbFree(db, pSubitem->zDatabase); 4263 sqlite3DbFree(db, pSubitem->zName); 4264 sqlite3DbFree(db, pSubitem->zAlias); 4265 pSubitem->zDatabase = 0; 4266 pSubitem->zName = 0; 4267 pSubitem->zAlias = 0; 4268 pSubitem->pSelect = 0; 4269 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4270 4271 /* If the sub-query is a compound SELECT statement, then (by restrictions 4272 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4273 ** be of the form: 4274 ** 4275 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4276 ** 4277 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4278 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4279 ** OFFSET clauses and joins them to the left-hand-side of the original 4280 ** using UNION ALL operators. In this case N is the number of simple 4281 ** select statements in the compound sub-query. 4282 ** 4283 ** Example: 4284 ** 4285 ** SELECT a+1 FROM ( 4286 ** SELECT x FROM tab 4287 ** UNION ALL 4288 ** SELECT y FROM tab 4289 ** UNION ALL 4290 ** SELECT abs(z*2) FROM tab2 4291 ** ) WHERE a!=5 ORDER BY 1 4292 ** 4293 ** Transformed into: 4294 ** 4295 ** SELECT x+1 FROM tab WHERE x+1!=5 4296 ** UNION ALL 4297 ** SELECT y+1 FROM tab WHERE y+1!=5 4298 ** UNION ALL 4299 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4300 ** ORDER BY 1 4301 ** 4302 ** We call this the "compound-subquery flattening". 4303 */ 4304 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4305 Select *pNew; 4306 ExprList *pOrderBy = p->pOrderBy; 4307 Expr *pLimit = p->pLimit; 4308 Select *pPrior = p->pPrior; 4309 Table *pItemTab = pSubitem->pTab; 4310 pSubitem->pTab = 0; 4311 p->pOrderBy = 0; 4312 p->pPrior = 0; 4313 p->pLimit = 0; 4314 pNew = sqlite3SelectDup(db, p, 0); 4315 p->pLimit = pLimit; 4316 p->pOrderBy = pOrderBy; 4317 p->op = TK_ALL; 4318 pSubitem->pTab = pItemTab; 4319 if( pNew==0 ){ 4320 p->pPrior = pPrior; 4321 }else{ 4322 pNew->selId = ++pParse->nSelect; 4323 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4324 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4325 } 4326 pNew->pPrior = pPrior; 4327 if( pPrior ) pPrior->pNext = pNew; 4328 pNew->pNext = p; 4329 p->pPrior = pNew; 4330 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4331 " creates %u as peer\n",pNew->selId)); 4332 } 4333 assert( pSubitem->pSelect==0 ); 4334 } 4335 sqlite3DbFree(db, aCsrMap); 4336 if( db->mallocFailed ){ 4337 pSubitem->pSelect = pSub1; 4338 return 1; 4339 } 4340 4341 /* Defer deleting the Table object associated with the 4342 ** subquery until code generation is 4343 ** complete, since there may still exist Expr.pTab entries that 4344 ** refer to the subquery even after flattening. Ticket #3346. 4345 ** 4346 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4347 */ 4348 if( ALWAYS(pSubitem->pTab!=0) ){ 4349 Table *pTabToDel = pSubitem->pTab; 4350 if( pTabToDel->nTabRef==1 ){ 4351 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4352 sqlite3ParserAddCleanup(pToplevel, 4353 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4354 pTabToDel); 4355 testcase( pToplevel->earlyCleanup ); 4356 }else{ 4357 pTabToDel->nTabRef--; 4358 } 4359 pSubitem->pTab = 0; 4360 } 4361 4362 /* The following loop runs once for each term in a compound-subquery 4363 ** flattening (as described above). If we are doing a different kind 4364 ** of flattening - a flattening other than a compound-subquery flattening - 4365 ** then this loop only runs once. 4366 ** 4367 ** This loop moves all of the FROM elements of the subquery into the 4368 ** the FROM clause of the outer query. Before doing this, remember 4369 ** the cursor number for the original outer query FROM element in 4370 ** iParent. The iParent cursor will never be used. Subsequent code 4371 ** will scan expressions looking for iParent references and replace 4372 ** those references with expressions that resolve to the subquery FROM 4373 ** elements we are now copying in. 4374 */ 4375 pSub = pSub1; 4376 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4377 int nSubSrc; 4378 u8 jointype = 0; 4379 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4380 assert( pSub!=0 ); 4381 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4382 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4383 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4384 4385 if( pParent==p ){ 4386 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4387 } 4388 4389 /* The subquery uses a single slot of the FROM clause of the outer 4390 ** query. If the subquery has more than one element in its FROM clause, 4391 ** then expand the outer query to make space for it to hold all elements 4392 ** of the subquery. 4393 ** 4394 ** Example: 4395 ** 4396 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4397 ** 4398 ** The outer query has 3 slots in its FROM clause. One slot of the 4399 ** outer query (the middle slot) is used by the subquery. The next 4400 ** block of code will expand the outer query FROM clause to 4 slots. 4401 ** The middle slot is expanded to two slots in order to make space 4402 ** for the two elements in the FROM clause of the subquery. 4403 */ 4404 if( nSubSrc>1 ){ 4405 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4406 if( pSrc==0 ) break; 4407 pParent->pSrc = pSrc; 4408 } 4409 4410 /* Transfer the FROM clause terms from the subquery into the 4411 ** outer query. 4412 */ 4413 for(i=0; i<nSubSrc; i++){ 4414 SrcItem *pItem = &pSrc->a[i+iFrom]; 4415 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4416 assert( pItem->fg.isTabFunc==0 ); 4417 *pItem = pSubSrc->a[i]; 4418 pItem->fg.jointype |= ltorj; 4419 iNewParent = pSubSrc->a[i].iCursor; 4420 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4421 } 4422 pSrc->a[iFrom].fg.jointype = jointype | ltorj; 4423 4424 /* Now begin substituting subquery result set expressions for 4425 ** references to the iParent in the outer query. 4426 ** 4427 ** Example: 4428 ** 4429 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4430 ** \ \_____________ subquery __________/ / 4431 ** \_____________________ outer query ______________________________/ 4432 ** 4433 ** We look at every expression in the outer query and every place we see 4434 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4435 */ 4436 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4437 /* At this point, any non-zero iOrderByCol values indicate that the 4438 ** ORDER BY column expression is identical to the iOrderByCol'th 4439 ** expression returned by SELECT statement pSub. Since these values 4440 ** do not necessarily correspond to columns in SELECT statement pParent, 4441 ** zero them before transfering the ORDER BY clause. 4442 ** 4443 ** Not doing this may cause an error if a subsequent call to this 4444 ** function attempts to flatten a compound sub-query into pParent 4445 ** (the only way this can happen is if the compound sub-query is 4446 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4447 ExprList *pOrderBy = pSub->pOrderBy; 4448 for(i=0; i<pOrderBy->nExpr; i++){ 4449 pOrderBy->a[i].u.x.iOrderByCol = 0; 4450 } 4451 assert( pParent->pOrderBy==0 ); 4452 pParent->pOrderBy = pOrderBy; 4453 pSub->pOrderBy = 0; 4454 } 4455 pWhere = pSub->pWhere; 4456 pSub->pWhere = 0; 4457 if( isLeftJoin>0 ){ 4458 sqlite3SetJoinExpr(pWhere, iNewParent, EP_FromJoin); 4459 } 4460 if( pWhere ){ 4461 if( pParent->pWhere ){ 4462 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4463 }else{ 4464 pParent->pWhere = pWhere; 4465 } 4466 } 4467 if( db->mallocFailed==0 ){ 4468 SubstContext x; 4469 x.pParse = pParse; 4470 x.iTable = iParent; 4471 x.iNewTable = iNewParent; 4472 x.isLeftJoin = isLeftJoin; 4473 x.pEList = pSub->pEList; 4474 substSelect(&x, pParent, 0); 4475 } 4476 4477 /* The flattened query is a compound if either the inner or the 4478 ** outer query is a compound. */ 4479 pParent->selFlags |= pSub->selFlags & SF_Compound; 4480 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4481 4482 /* 4483 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4484 ** 4485 ** One is tempted to try to add a and b to combine the limits. But this 4486 ** does not work if either limit is negative. 4487 */ 4488 if( pSub->pLimit ){ 4489 pParent->pLimit = pSub->pLimit; 4490 pSub->pLimit = 0; 4491 } 4492 4493 /* Recompute the SrcList_item.colUsed masks for the flattened 4494 ** tables. */ 4495 for(i=0; i<nSubSrc; i++){ 4496 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4497 } 4498 } 4499 4500 /* Finially, delete what is left of the subquery and return 4501 ** success. 4502 */ 4503 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4504 sqlite3WalkSelect(&w,pSub1); 4505 sqlite3SelectDelete(db, pSub1); 4506 4507 #if TREETRACE_ENABLED 4508 if( sqlite3TreeTrace & 0x100 ){ 4509 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4510 sqlite3TreeViewSelect(0, p, 0); 4511 } 4512 #endif 4513 4514 return 1; 4515 } 4516 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4517 4518 /* 4519 ** A structure to keep track of all of the column values that are fixed to 4520 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4521 */ 4522 typedef struct WhereConst WhereConst; 4523 struct WhereConst { 4524 Parse *pParse; /* Parsing context */ 4525 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4526 int nConst; /* Number for COLUMN=CONSTANT terms */ 4527 int nChng; /* Number of times a constant is propagated */ 4528 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4529 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4530 }; 4531 4532 /* 4533 ** Add a new entry to the pConst object. Except, do not add duplicate 4534 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4535 ** 4536 ** The caller guarantees the pColumn is a column and pValue is a constant. 4537 ** This routine has to do some additional checks before completing the 4538 ** insert. 4539 */ 4540 static void constInsert( 4541 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4542 Expr *pColumn, /* The COLUMN part of the constraint */ 4543 Expr *pValue, /* The VALUE part of the constraint */ 4544 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4545 ){ 4546 int i; 4547 assert( pColumn->op==TK_COLUMN ); 4548 assert( sqlite3ExprIsConstant(pValue) ); 4549 4550 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4551 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4552 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4553 return; 4554 } 4555 4556 /* 2018-10-25 ticket [cf5ed20f] 4557 ** Make sure the same pColumn is not inserted more than once */ 4558 for(i=0; i<pConst->nConst; i++){ 4559 const Expr *pE2 = pConst->apExpr[i*2]; 4560 assert( pE2->op==TK_COLUMN ); 4561 if( pE2->iTable==pColumn->iTable 4562 && pE2->iColumn==pColumn->iColumn 4563 ){ 4564 return; /* Already present. Return without doing anything. */ 4565 } 4566 } 4567 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4568 pConst->bHasAffBlob = 1; 4569 } 4570 4571 pConst->nConst++; 4572 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4573 pConst->nConst*2*sizeof(Expr*)); 4574 if( pConst->apExpr==0 ){ 4575 pConst->nConst = 0; 4576 }else{ 4577 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4578 pConst->apExpr[pConst->nConst*2-1] = pValue; 4579 } 4580 } 4581 4582 /* 4583 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4584 ** is a constant expression and where the term must be true because it 4585 ** is part of the AND-connected terms of the expression. For each term 4586 ** found, add it to the pConst structure. 4587 */ 4588 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4589 Expr *pRight, *pLeft; 4590 if( NEVER(pExpr==0) ) return; 4591 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4592 if( pExpr->op==TK_AND ){ 4593 findConstInWhere(pConst, pExpr->pRight); 4594 findConstInWhere(pConst, pExpr->pLeft); 4595 return; 4596 } 4597 if( pExpr->op!=TK_EQ ) return; 4598 pRight = pExpr->pRight; 4599 pLeft = pExpr->pLeft; 4600 assert( pRight!=0 ); 4601 assert( pLeft!=0 ); 4602 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4603 constInsert(pConst,pRight,pLeft,pExpr); 4604 } 4605 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4606 constInsert(pConst,pLeft,pRight,pExpr); 4607 } 4608 } 4609 4610 /* 4611 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4612 ** 4613 ** Argument pExpr is a candidate expression to be replaced by a value. If 4614 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4615 ** then overwrite it with the corresponding value. Except, do not do so 4616 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4617 ** is SQLITE_AFF_BLOB. 4618 */ 4619 static int propagateConstantExprRewriteOne( 4620 WhereConst *pConst, 4621 Expr *pExpr, 4622 int bIgnoreAffBlob 4623 ){ 4624 int i; 4625 if( pConst->pOomFault[0] ) return WRC_Prune; 4626 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4627 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4628 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4629 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4630 return WRC_Continue; 4631 } 4632 for(i=0; i<pConst->nConst; i++){ 4633 Expr *pColumn = pConst->apExpr[i*2]; 4634 if( pColumn==pExpr ) continue; 4635 if( pColumn->iTable!=pExpr->iTable ) continue; 4636 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4637 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4638 break; 4639 } 4640 /* A match is found. Add the EP_FixedCol property */ 4641 pConst->nChng++; 4642 ExprClearProperty(pExpr, EP_Leaf); 4643 ExprSetProperty(pExpr, EP_FixedCol); 4644 assert( pExpr->pLeft==0 ); 4645 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4646 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4647 break; 4648 } 4649 return WRC_Prune; 4650 } 4651 4652 /* 4653 ** This is a Walker expression callback. pExpr is a node from the WHERE 4654 ** clause of a SELECT statement. This function examines pExpr to see if 4655 ** any substitutions based on the contents of pWalker->u.pConst should 4656 ** be made to pExpr or its immediate children. 4657 ** 4658 ** A substitution is made if: 4659 ** 4660 ** + pExpr is a column with an affinity other than BLOB that matches 4661 ** one of the columns in pWalker->u.pConst, or 4662 ** 4663 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4664 ** uses an affinity other than TEXT and one of its immediate 4665 ** children is a column that matches one of the columns in 4666 ** pWalker->u.pConst. 4667 */ 4668 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4669 WhereConst *pConst = pWalker->u.pConst; 4670 assert( TK_GT==TK_EQ+1 ); 4671 assert( TK_LE==TK_EQ+2 ); 4672 assert( TK_LT==TK_EQ+3 ); 4673 assert( TK_GE==TK_EQ+4 ); 4674 if( pConst->bHasAffBlob ){ 4675 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4676 || pExpr->op==TK_IS 4677 ){ 4678 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4679 if( pConst->pOomFault[0] ) return WRC_Prune; 4680 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4681 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4682 } 4683 } 4684 } 4685 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4686 } 4687 4688 /* 4689 ** The WHERE-clause constant propagation optimization. 4690 ** 4691 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4692 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4693 ** part of a ON clause from a LEFT JOIN, then throughout the query 4694 ** replace all other occurrences of COLUMN with CONSTANT. 4695 ** 4696 ** For example, the query: 4697 ** 4698 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4699 ** 4700 ** Is transformed into 4701 ** 4702 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4703 ** 4704 ** Return true if any transformations where made and false if not. 4705 ** 4706 ** Implementation note: Constant propagation is tricky due to affinity 4707 ** and collating sequence interactions. Consider this example: 4708 ** 4709 ** CREATE TABLE t1(a INT,b TEXT); 4710 ** INSERT INTO t1 VALUES(123,'0123'); 4711 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4712 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4713 ** 4714 ** The two SELECT statements above should return different answers. b=a 4715 ** is alway true because the comparison uses numeric affinity, but b=123 4716 ** is false because it uses text affinity and '0123' is not the same as '123'. 4717 ** To work around this, the expression tree is not actually changed from 4718 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4719 ** and the "123" value is hung off of the pLeft pointer. Code generator 4720 ** routines know to generate the constant "123" instead of looking up the 4721 ** column value. Also, to avoid collation problems, this optimization is 4722 ** only attempted if the "a=123" term uses the default BINARY collation. 4723 ** 4724 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4725 ** 4726 ** CREATE TABLE t1(x); 4727 ** INSERT INTO t1 VALUES(10.0); 4728 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4729 ** 4730 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4731 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4732 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4733 ** resulting in a false positive. To avoid this, constant propagation for 4734 ** columns with BLOB affinity is only allowed if the constant is used with 4735 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4736 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4737 ** for details. 4738 */ 4739 static int propagateConstants( 4740 Parse *pParse, /* The parsing context */ 4741 Select *p /* The query in which to propagate constants */ 4742 ){ 4743 WhereConst x; 4744 Walker w; 4745 int nChng = 0; 4746 x.pParse = pParse; 4747 x.pOomFault = &pParse->db->mallocFailed; 4748 do{ 4749 x.nConst = 0; 4750 x.nChng = 0; 4751 x.apExpr = 0; 4752 x.bHasAffBlob = 0; 4753 findConstInWhere(&x, p->pWhere); 4754 if( x.nConst ){ 4755 memset(&w, 0, sizeof(w)); 4756 w.pParse = pParse; 4757 w.xExprCallback = propagateConstantExprRewrite; 4758 w.xSelectCallback = sqlite3SelectWalkNoop; 4759 w.xSelectCallback2 = 0; 4760 w.walkerDepth = 0; 4761 w.u.pConst = &x; 4762 sqlite3WalkExpr(&w, p->pWhere); 4763 sqlite3DbFree(x.pParse->db, x.apExpr); 4764 nChng += x.nChng; 4765 } 4766 }while( x.nChng ); 4767 return nChng; 4768 } 4769 4770 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4771 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4772 /* 4773 ** This function is called to determine whether or not it is safe to 4774 ** push WHERE clause expression pExpr down to FROM clause sub-query 4775 ** pSubq, which contains at least one window function. Return 1 4776 ** if it is safe and the expression should be pushed down, or 0 4777 ** otherwise. 4778 ** 4779 ** It is only safe to push the expression down if it consists only 4780 ** of constants and copies of expressions that appear in the PARTITION 4781 ** BY clause of all window function used by the sub-query. It is safe 4782 ** to filter out entire partitions, but not rows within partitions, as 4783 ** this may change the results of the window functions. 4784 ** 4785 ** At the time this function is called it is guaranteed that 4786 ** 4787 ** * the sub-query uses only one distinct window frame, and 4788 ** * that the window frame has a PARTITION BY clase. 4789 */ 4790 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4791 assert( pSubq->pWin->pPartition ); 4792 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4793 assert( pSubq->pPrior==0 ); 4794 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4795 } 4796 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4797 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4798 4799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4800 /* 4801 ** Make copies of relevant WHERE clause terms of the outer query into 4802 ** the WHERE clause of subquery. Example: 4803 ** 4804 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4805 ** 4806 ** Transformed into: 4807 ** 4808 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4809 ** WHERE x=5 AND y=10; 4810 ** 4811 ** The hope is that the terms added to the inner query will make it more 4812 ** efficient. 4813 ** 4814 ** Do not attempt this optimization if: 4815 ** 4816 ** (1) (** This restriction was removed on 2017-09-29. We used to 4817 ** disallow this optimization for aggregate subqueries, but now 4818 ** it is allowed by putting the extra terms on the HAVING clause. 4819 ** The added HAVING clause is pointless if the subquery lacks 4820 ** a GROUP BY clause. But such a HAVING clause is also harmless 4821 ** so there does not appear to be any reason to add extra logic 4822 ** to suppress it. **) 4823 ** 4824 ** (2) The inner query is the recursive part of a common table expression. 4825 ** 4826 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4827 ** clause would change the meaning of the LIMIT). 4828 ** 4829 ** (4) The inner query is the right operand of a LEFT JOIN and the 4830 ** expression to be pushed down does not come from the ON clause 4831 ** on that LEFT JOIN. 4832 ** 4833 ** (5) The WHERE clause expression originates in the ON or USING clause 4834 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4835 ** left join. An example: 4836 ** 4837 ** SELECT * 4838 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4839 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4840 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4841 ** 4842 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4843 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4844 ** then the (1,1,NULL) row would be suppressed. 4845 ** 4846 ** (6) Window functions make things tricky as changes to the WHERE clause 4847 ** of the inner query could change the window over which window 4848 ** functions are calculated. Therefore, do not attempt the optimization 4849 ** if: 4850 ** 4851 ** (6a) The inner query uses multiple incompatible window partitions. 4852 ** 4853 ** (6b) The inner query is a compound and uses window-functions. 4854 ** 4855 ** (6c) The WHERE clause does not consist entirely of constants and 4856 ** copies of expressions found in the PARTITION BY clause of 4857 ** all window-functions used by the sub-query. It is safe to 4858 ** filter out entire partitions, as this does not change the 4859 ** window over which any window-function is calculated. 4860 ** 4861 ** (7) The inner query is a Common Table Expression (CTE) that should 4862 ** be materialized. (This restriction is implemented in the calling 4863 ** routine.) 4864 ** 4865 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4866 ** terms are duplicated into the subquery. 4867 */ 4868 static int pushDownWhereTerms( 4869 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4870 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4871 Expr *pWhere, /* The WHERE clause of the outer query */ 4872 int iCursor, /* Cursor number of the subquery */ 4873 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4874 ){ 4875 Expr *pNew; 4876 int nChng = 0; 4877 if( pWhere==0 ) return 0; 4878 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4879 4880 #ifndef SQLITE_OMIT_WINDOWFUNC 4881 if( pSubq->pPrior ){ 4882 Select *pSel; 4883 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4884 if( pSel->pWin ) return 0; /* restriction (6b) */ 4885 } 4886 }else{ 4887 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4888 } 4889 #endif 4890 4891 #ifdef SQLITE_DEBUG 4892 /* Only the first term of a compound can have a WITH clause. But make 4893 ** sure no other terms are marked SF_Recursive in case something changes 4894 ** in the future. 4895 */ 4896 { 4897 Select *pX; 4898 for(pX=pSubq; pX; pX=pX->pPrior){ 4899 assert( (pX->selFlags & (SF_Recursive))==0 ); 4900 } 4901 } 4902 #endif 4903 4904 if( pSubq->pLimit!=0 ){ 4905 return 0; /* restriction (3) */ 4906 } 4907 while( pWhere->op==TK_AND ){ 4908 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4909 iCursor, isLeftJoin); 4910 pWhere = pWhere->pLeft; 4911 } 4912 if( isLeftJoin 4913 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4914 || pWhere->w.iJoin!=iCursor) 4915 ){ 4916 return 0; /* restriction (4) */ 4917 } 4918 if( ExprHasProperty(pWhere,EP_FromJoin) 4919 && pWhere->w.iJoin!=iCursor 4920 ){ 4921 return 0; /* restriction (5) */ 4922 } 4923 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4924 nChng++; 4925 pSubq->selFlags |= SF_PushDown; 4926 while( pSubq ){ 4927 SubstContext x; 4928 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4929 unsetJoinExpr(pNew, -1); 4930 x.pParse = pParse; 4931 x.iTable = iCursor; 4932 x.iNewTable = iCursor; 4933 x.isLeftJoin = 0; 4934 x.pEList = pSubq->pEList; 4935 pNew = substExpr(&x, pNew); 4936 #ifndef SQLITE_OMIT_WINDOWFUNC 4937 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4938 /* Restriction 6c has prevented push-down in this case */ 4939 sqlite3ExprDelete(pParse->db, pNew); 4940 nChng--; 4941 break; 4942 } 4943 #endif 4944 if( pSubq->selFlags & SF_Aggregate ){ 4945 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4946 }else{ 4947 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4948 } 4949 pSubq = pSubq->pPrior; 4950 } 4951 } 4952 return nChng; 4953 } 4954 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4955 4956 /* 4957 ** The pFunc is the only aggregate function in the query. Check to see 4958 ** if the query is a candidate for the min/max optimization. 4959 ** 4960 ** If the query is a candidate for the min/max optimization, then set 4961 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4962 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4963 ** whether pFunc is a min() or max() function. 4964 ** 4965 ** If the query is not a candidate for the min/max optimization, return 4966 ** WHERE_ORDERBY_NORMAL (which must be zero). 4967 ** 4968 ** This routine must be called after aggregate functions have been 4969 ** located but before their arguments have been subjected to aggregate 4970 ** analysis. 4971 */ 4972 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4973 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4974 ExprList *pEList; /* Arguments to agg function */ 4975 const char *zFunc; /* Name of aggregate function pFunc */ 4976 ExprList *pOrderBy; 4977 u8 sortFlags = 0; 4978 4979 assert( *ppMinMax==0 ); 4980 assert( pFunc->op==TK_AGG_FUNCTION ); 4981 assert( !IsWindowFunc(pFunc) ); 4982 assert( ExprUseXList(pFunc) ); 4983 pEList = pFunc->x.pList; 4984 if( pEList==0 4985 || pEList->nExpr!=1 4986 || ExprHasProperty(pFunc, EP_WinFunc) 4987 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4988 ){ 4989 return eRet; 4990 } 4991 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 4992 zFunc = pFunc->u.zToken; 4993 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4994 eRet = WHERE_ORDERBY_MIN; 4995 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4996 sortFlags = KEYINFO_ORDER_BIGNULL; 4997 } 4998 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4999 eRet = WHERE_ORDERBY_MAX; 5000 sortFlags = KEYINFO_ORDER_DESC; 5001 }else{ 5002 return eRet; 5003 } 5004 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5005 assert( pOrderBy!=0 || db->mallocFailed ); 5006 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 5007 return eRet; 5008 } 5009 5010 /* 5011 ** The select statement passed as the first argument is an aggregate query. 5012 ** The second argument is the associated aggregate-info object. This 5013 ** function tests if the SELECT is of the form: 5014 ** 5015 ** SELECT count(*) FROM <tbl> 5016 ** 5017 ** where table is a database table, not a sub-select or view. If the query 5018 ** does match this pattern, then a pointer to the Table object representing 5019 ** <tbl> is returned. Otherwise, NULL is returned. 5020 ** 5021 ** This routine checks to see if it is safe to use the count optimization. 5022 ** A correct answer is still obtained (though perhaps more slowly) if 5023 ** this routine returns NULL when it could have returned a table pointer. 5024 ** But returning the pointer when NULL should have been returned can 5025 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5026 */ 5027 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5028 Table *pTab; 5029 Expr *pExpr; 5030 5031 assert( !p->pGroupBy ); 5032 5033 if( p->pWhere 5034 || p->pEList->nExpr!=1 5035 || p->pSrc->nSrc!=1 5036 || p->pSrc->a[0].pSelect 5037 || pAggInfo->nFunc!=1 5038 ){ 5039 return 0; 5040 } 5041 pTab = p->pSrc->a[0].pTab; 5042 assert( pTab!=0 ); 5043 assert( !IsView(pTab) ); 5044 if( !IsOrdinaryTable(pTab) ) return 0; 5045 pExpr = p->pEList->a[0].pExpr; 5046 assert( pExpr!=0 ); 5047 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5048 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5049 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5050 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5051 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5052 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5053 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5054 5055 return pTab; 5056 } 5057 5058 /* 5059 ** If the source-list item passed as an argument was augmented with an 5060 ** INDEXED BY clause, then try to locate the specified index. If there 5061 ** was such a clause and the named index cannot be found, return 5062 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5063 ** pFrom->pIndex and return SQLITE_OK. 5064 */ 5065 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5066 Table *pTab = pFrom->pTab; 5067 char *zIndexedBy = pFrom->u1.zIndexedBy; 5068 Index *pIdx; 5069 assert( pTab!=0 ); 5070 assert( pFrom->fg.isIndexedBy!=0 ); 5071 5072 for(pIdx=pTab->pIndex; 5073 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5074 pIdx=pIdx->pNext 5075 ); 5076 if( !pIdx ){ 5077 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5078 pParse->checkSchema = 1; 5079 return SQLITE_ERROR; 5080 } 5081 assert( pFrom->fg.isCte==0 ); 5082 pFrom->u2.pIBIndex = pIdx; 5083 return SQLITE_OK; 5084 } 5085 5086 /* 5087 ** Detect compound SELECT statements that use an ORDER BY clause with 5088 ** an alternative collating sequence. 5089 ** 5090 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5091 ** 5092 ** These are rewritten as a subquery: 5093 ** 5094 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5095 ** ORDER BY ... COLLATE ... 5096 ** 5097 ** This transformation is necessary because the multiSelectOrderBy() routine 5098 ** above that generates the code for a compound SELECT with an ORDER BY clause 5099 ** uses a merge algorithm that requires the same collating sequence on the 5100 ** result columns as on the ORDER BY clause. See ticket 5101 ** http://www.sqlite.org/src/info/6709574d2a 5102 ** 5103 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5104 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5105 ** there are COLLATE terms in the ORDER BY. 5106 */ 5107 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5108 int i; 5109 Select *pNew; 5110 Select *pX; 5111 sqlite3 *db; 5112 struct ExprList_item *a; 5113 SrcList *pNewSrc; 5114 Parse *pParse; 5115 Token dummy; 5116 5117 if( p->pPrior==0 ) return WRC_Continue; 5118 if( p->pOrderBy==0 ) return WRC_Continue; 5119 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5120 if( pX==0 ) return WRC_Continue; 5121 a = p->pOrderBy->a; 5122 #ifndef SQLITE_OMIT_WINDOWFUNC 5123 /* If iOrderByCol is already non-zero, then it has already been matched 5124 ** to a result column of the SELECT statement. This occurs when the 5125 ** SELECT is rewritten for window-functions processing and then passed 5126 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5127 ** by this function is not required in this case. */ 5128 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5129 #endif 5130 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5131 if( a[i].pExpr->flags & EP_Collate ) break; 5132 } 5133 if( i<0 ) return WRC_Continue; 5134 5135 /* If we reach this point, that means the transformation is required. */ 5136 5137 pParse = pWalker->pParse; 5138 db = pParse->db; 5139 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5140 if( pNew==0 ) return WRC_Abort; 5141 memset(&dummy, 0, sizeof(dummy)); 5142 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5143 if( pNewSrc==0 ) return WRC_Abort; 5144 *pNew = *p; 5145 p->pSrc = pNewSrc; 5146 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5147 p->op = TK_SELECT; 5148 p->pWhere = 0; 5149 pNew->pGroupBy = 0; 5150 pNew->pHaving = 0; 5151 pNew->pOrderBy = 0; 5152 p->pPrior = 0; 5153 p->pNext = 0; 5154 p->pWith = 0; 5155 #ifndef SQLITE_OMIT_WINDOWFUNC 5156 p->pWinDefn = 0; 5157 #endif 5158 p->selFlags &= ~SF_Compound; 5159 assert( (p->selFlags & SF_Converted)==0 ); 5160 p->selFlags |= SF_Converted; 5161 assert( pNew->pPrior!=0 ); 5162 pNew->pPrior->pNext = pNew; 5163 pNew->pLimit = 0; 5164 return WRC_Continue; 5165 } 5166 5167 /* 5168 ** Check to see if the FROM clause term pFrom has table-valued function 5169 ** arguments. If it does, leave an error message in pParse and return 5170 ** non-zero, since pFrom is not allowed to be a table-valued function. 5171 */ 5172 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5173 if( pFrom->fg.isTabFunc ){ 5174 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5175 return 1; 5176 } 5177 return 0; 5178 } 5179 5180 #ifndef SQLITE_OMIT_CTE 5181 /* 5182 ** Argument pWith (which may be NULL) points to a linked list of nested 5183 ** WITH contexts, from inner to outermost. If the table identified by 5184 ** FROM clause element pItem is really a common-table-expression (CTE) 5185 ** then return a pointer to the CTE definition for that table. Otherwise 5186 ** return NULL. 5187 ** 5188 ** If a non-NULL value is returned, set *ppContext to point to the With 5189 ** object that the returned CTE belongs to. 5190 */ 5191 static struct Cte *searchWith( 5192 With *pWith, /* Current innermost WITH clause */ 5193 SrcItem *pItem, /* FROM clause element to resolve */ 5194 With **ppContext /* OUT: WITH clause return value belongs to */ 5195 ){ 5196 const char *zName = pItem->zName; 5197 With *p; 5198 assert( pItem->zDatabase==0 ); 5199 assert( zName!=0 ); 5200 for(p=pWith; p; p=p->pOuter){ 5201 int i; 5202 for(i=0; i<p->nCte; i++){ 5203 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5204 *ppContext = p; 5205 return &p->a[i]; 5206 } 5207 } 5208 if( p->bView ) break; 5209 } 5210 return 0; 5211 } 5212 5213 /* The code generator maintains a stack of active WITH clauses 5214 ** with the inner-most WITH clause being at the top of the stack. 5215 ** 5216 ** This routine pushes the WITH clause passed as the second argument 5217 ** onto the top of the stack. If argument bFree is true, then this 5218 ** WITH clause will never be popped from the stack but should instead 5219 ** be freed along with the Parse object. In other cases, when 5220 ** bFree==0, the With object will be freed along with the SELECT 5221 ** statement with which it is associated. 5222 ** 5223 ** This routine returns a copy of pWith. Or, if bFree is true and 5224 ** the pWith object is destroyed immediately due to an OOM condition, 5225 ** then this routine return NULL. 5226 ** 5227 ** If bFree is true, do not continue to use the pWith pointer after 5228 ** calling this routine, Instead, use only the return value. 5229 */ 5230 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5231 if( pWith ){ 5232 if( bFree ){ 5233 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5234 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5235 pWith); 5236 if( pWith==0 ) return 0; 5237 } 5238 if( pParse->nErr==0 ){ 5239 assert( pParse->pWith!=pWith ); 5240 pWith->pOuter = pParse->pWith; 5241 pParse->pWith = pWith; 5242 } 5243 } 5244 return pWith; 5245 } 5246 5247 /* 5248 ** This function checks if argument pFrom refers to a CTE declared by 5249 ** a WITH clause on the stack currently maintained by the parser (on the 5250 ** pParse->pWith linked list). And if currently processing a CTE 5251 ** CTE expression, through routine checks to see if the reference is 5252 ** a recursive reference to the CTE. 5253 ** 5254 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5255 ** and other fields are populated accordingly. 5256 ** 5257 ** Return 0 if no match is found. 5258 ** Return 1 if a match is found. 5259 ** Return 2 if an error condition is detected. 5260 */ 5261 static int resolveFromTermToCte( 5262 Parse *pParse, /* The parsing context */ 5263 Walker *pWalker, /* Current tree walker */ 5264 SrcItem *pFrom /* The FROM clause term to check */ 5265 ){ 5266 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5267 With *pWith; /* The matching WITH */ 5268 5269 assert( pFrom->pTab==0 ); 5270 if( pParse->pWith==0 ){ 5271 /* There are no WITH clauses in the stack. No match is possible */ 5272 return 0; 5273 } 5274 if( pParse->nErr ){ 5275 /* Prior errors might have left pParse->pWith in a goofy state, so 5276 ** go no further. */ 5277 return 0; 5278 } 5279 if( pFrom->zDatabase!=0 ){ 5280 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5281 ** it cannot possibly be a CTE reference. */ 5282 return 0; 5283 } 5284 if( pFrom->fg.notCte ){ 5285 /* The FROM term is specifically excluded from matching a CTE. 5286 ** (1) It is part of a trigger that used to have zDatabase but had 5287 ** zDatabase removed by sqlite3FixTriggerStep(). 5288 ** (2) This is the first term in the FROM clause of an UPDATE. 5289 */ 5290 return 0; 5291 } 5292 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5293 if( pCte ){ 5294 sqlite3 *db = pParse->db; 5295 Table *pTab; 5296 ExprList *pEList; 5297 Select *pSel; 5298 Select *pLeft; /* Left-most SELECT statement */ 5299 Select *pRecTerm; /* Left-most recursive term */ 5300 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5301 With *pSavedWith; /* Initial value of pParse->pWith */ 5302 int iRecTab = -1; /* Cursor for recursive table */ 5303 CteUse *pCteUse; 5304 5305 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5306 ** recursive reference to CTE pCte. Leave an error in pParse and return 5307 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5308 ** In this case, proceed. */ 5309 if( pCte->zCteErr ){ 5310 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5311 return 2; 5312 } 5313 if( cannotBeFunction(pParse, pFrom) ) return 2; 5314 5315 assert( pFrom->pTab==0 ); 5316 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5317 if( pTab==0 ) return 2; 5318 pCteUse = pCte->pUse; 5319 if( pCteUse==0 ){ 5320 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5321 if( pCteUse==0 5322 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5323 ){ 5324 sqlite3DbFree(db, pTab); 5325 return 2; 5326 } 5327 pCteUse->eM10d = pCte->eM10d; 5328 } 5329 pFrom->pTab = pTab; 5330 pTab->nTabRef = 1; 5331 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5332 pTab->iPKey = -1; 5333 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5334 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5335 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5336 if( db->mallocFailed ) return 2; 5337 pFrom->pSelect->selFlags |= SF_CopyCte; 5338 assert( pFrom->pSelect ); 5339 if( pFrom->fg.isIndexedBy ){ 5340 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5341 return 2; 5342 } 5343 pFrom->fg.isCte = 1; 5344 pFrom->u2.pCteUse = pCteUse; 5345 pCteUse->nUse++; 5346 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5347 pCteUse->eM10d = M10d_Yes; 5348 } 5349 5350 /* Check if this is a recursive CTE. */ 5351 pRecTerm = pSel = pFrom->pSelect; 5352 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5353 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5354 int i; 5355 SrcList *pSrc = pRecTerm->pSrc; 5356 assert( pRecTerm->pPrior!=0 ); 5357 for(i=0; i<pSrc->nSrc; i++){ 5358 SrcItem *pItem = &pSrc->a[i]; 5359 if( pItem->zDatabase==0 5360 && pItem->zName!=0 5361 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5362 ){ 5363 pItem->pTab = pTab; 5364 pTab->nTabRef++; 5365 pItem->fg.isRecursive = 1; 5366 if( pRecTerm->selFlags & SF_Recursive ){ 5367 sqlite3ErrorMsg(pParse, 5368 "multiple references to recursive table: %s", pCte->zName 5369 ); 5370 return 2; 5371 } 5372 pRecTerm->selFlags |= SF_Recursive; 5373 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5374 pItem->iCursor = iRecTab; 5375 } 5376 } 5377 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5378 pRecTerm = pRecTerm->pPrior; 5379 } 5380 5381 pCte->zCteErr = "circular reference: %s"; 5382 pSavedWith = pParse->pWith; 5383 pParse->pWith = pWith; 5384 if( pSel->selFlags & SF_Recursive ){ 5385 int rc; 5386 assert( pRecTerm!=0 ); 5387 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5388 assert( pRecTerm->pNext!=0 ); 5389 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5390 assert( pRecTerm->pWith==0 ); 5391 pRecTerm->pWith = pSel->pWith; 5392 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5393 pRecTerm->pWith = 0; 5394 if( rc ){ 5395 pParse->pWith = pSavedWith; 5396 return 2; 5397 } 5398 }else{ 5399 if( sqlite3WalkSelect(pWalker, pSel) ){ 5400 pParse->pWith = pSavedWith; 5401 return 2; 5402 } 5403 } 5404 pParse->pWith = pWith; 5405 5406 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5407 pEList = pLeft->pEList; 5408 if( pCte->pCols ){ 5409 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5410 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5411 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5412 ); 5413 pParse->pWith = pSavedWith; 5414 return 2; 5415 } 5416 pEList = pCte->pCols; 5417 } 5418 5419 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5420 if( bMayRecursive ){ 5421 if( pSel->selFlags & SF_Recursive ){ 5422 pCte->zCteErr = "multiple recursive references: %s"; 5423 }else{ 5424 pCte->zCteErr = "recursive reference in a subquery: %s"; 5425 } 5426 sqlite3WalkSelect(pWalker, pSel); 5427 } 5428 pCte->zCteErr = 0; 5429 pParse->pWith = pSavedWith; 5430 return 1; /* Success */ 5431 } 5432 return 0; /* No match */ 5433 } 5434 #endif 5435 5436 #ifndef SQLITE_OMIT_CTE 5437 /* 5438 ** If the SELECT passed as the second argument has an associated WITH 5439 ** clause, pop it from the stack stored as part of the Parse object. 5440 ** 5441 ** This function is used as the xSelectCallback2() callback by 5442 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5443 ** names and other FROM clause elements. 5444 */ 5445 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5446 Parse *pParse = pWalker->pParse; 5447 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5448 With *pWith = findRightmost(p)->pWith; 5449 if( pWith!=0 ){ 5450 assert( pParse->pWith==pWith || pParse->nErr ); 5451 pParse->pWith = pWith->pOuter; 5452 } 5453 } 5454 } 5455 #endif 5456 5457 /* 5458 ** The SrcList_item structure passed as the second argument represents a 5459 ** sub-query in the FROM clause of a SELECT statement. This function 5460 ** allocates and populates the SrcList_item.pTab object. If successful, 5461 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5462 ** SQLITE_NOMEM. 5463 */ 5464 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5465 Select *pSel = pFrom->pSelect; 5466 Table *pTab; 5467 5468 assert( pSel ); 5469 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5470 if( pTab==0 ) return SQLITE_NOMEM; 5471 pTab->nTabRef = 1; 5472 if( pFrom->zAlias ){ 5473 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5474 }else{ 5475 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5476 } 5477 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5478 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5479 pTab->iPKey = -1; 5480 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5481 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5482 /* The usual case - do not allow ROWID on a subquery */ 5483 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5484 #else 5485 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5486 #endif 5487 5488 5489 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5490 } 5491 5492 /* 5493 ** This routine is a Walker callback for "expanding" a SELECT statement. 5494 ** "Expanding" means to do the following: 5495 ** 5496 ** (1) Make sure VDBE cursor numbers have been assigned to every 5497 ** element of the FROM clause. 5498 ** 5499 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5500 ** defines FROM clause. When views appear in the FROM clause, 5501 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5502 ** that implements the view. A copy is made of the view's SELECT 5503 ** statement so that we can freely modify or delete that statement 5504 ** without worrying about messing up the persistent representation 5505 ** of the view. 5506 ** 5507 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5508 ** on joins and the ON and USING clause of joins. 5509 ** 5510 ** (4) Scan the list of columns in the result set (pEList) looking 5511 ** for instances of the "*" operator or the TABLE.* operator. 5512 ** If found, expand each "*" to be every column in every table 5513 ** and TABLE.* to be every column in TABLE. 5514 ** 5515 */ 5516 static int selectExpander(Walker *pWalker, Select *p){ 5517 Parse *pParse = pWalker->pParse; 5518 int i, j, k, rc; 5519 SrcList *pTabList; 5520 ExprList *pEList; 5521 SrcItem *pFrom; 5522 sqlite3 *db = pParse->db; 5523 Expr *pE, *pRight, *pExpr; 5524 u16 selFlags = p->selFlags; 5525 u32 elistFlags = 0; 5526 5527 p->selFlags |= SF_Expanded; 5528 if( db->mallocFailed ){ 5529 return WRC_Abort; 5530 } 5531 assert( p->pSrc!=0 ); 5532 if( (selFlags & SF_Expanded)!=0 ){ 5533 return WRC_Prune; 5534 } 5535 if( pWalker->eCode ){ 5536 /* Renumber selId because it has been copied from a view */ 5537 p->selId = ++pParse->nSelect; 5538 } 5539 pTabList = p->pSrc; 5540 pEList = p->pEList; 5541 if( pParse->pWith && (p->selFlags & SF_View) ){ 5542 if( p->pWith==0 ){ 5543 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5544 if( p->pWith==0 ){ 5545 return WRC_Abort; 5546 } 5547 } 5548 p->pWith->bView = 1; 5549 } 5550 sqlite3WithPush(pParse, p->pWith, 0); 5551 5552 /* Make sure cursor numbers have been assigned to all entries in 5553 ** the FROM clause of the SELECT statement. 5554 */ 5555 sqlite3SrcListAssignCursors(pParse, pTabList); 5556 5557 /* Look up every table named in the FROM clause of the select. If 5558 ** an entry of the FROM clause is a subquery instead of a table or view, 5559 ** then create a transient table structure to describe the subquery. 5560 */ 5561 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5562 Table *pTab; 5563 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5564 if( pFrom->pTab ) continue; 5565 assert( pFrom->fg.isRecursive==0 ); 5566 if( pFrom->zName==0 ){ 5567 #ifndef SQLITE_OMIT_SUBQUERY 5568 Select *pSel = pFrom->pSelect; 5569 /* A sub-query in the FROM clause of a SELECT */ 5570 assert( pSel!=0 ); 5571 assert( pFrom->pTab==0 ); 5572 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5573 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5574 #endif 5575 #ifndef SQLITE_OMIT_CTE 5576 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5577 if( rc>1 ) return WRC_Abort; 5578 pTab = pFrom->pTab; 5579 assert( pTab!=0 ); 5580 #endif 5581 }else{ 5582 /* An ordinary table or view name in the FROM clause */ 5583 assert( pFrom->pTab==0 ); 5584 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5585 if( pTab==0 ) return WRC_Abort; 5586 if( pTab->nTabRef>=0xffff ){ 5587 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5588 pTab->zName); 5589 pFrom->pTab = 0; 5590 return WRC_Abort; 5591 } 5592 pTab->nTabRef++; 5593 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5594 return WRC_Abort; 5595 } 5596 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5597 if( !IsOrdinaryTable(pTab) ){ 5598 i16 nCol; 5599 u8 eCodeOrig = pWalker->eCode; 5600 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5601 assert( pFrom->pSelect==0 ); 5602 if( IsView(pTab) ){ 5603 if( (db->flags & SQLITE_EnableView)==0 5604 && pTab->pSchema!=db->aDb[1].pSchema 5605 ){ 5606 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5607 pTab->zName); 5608 } 5609 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5610 } 5611 #ifndef SQLITE_OMIT_VIRTUALTABLE 5612 else if( ALWAYS(IsVirtual(pTab)) 5613 && pFrom->fg.fromDDL 5614 && ALWAYS(pTab->u.vtab.p!=0) 5615 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5616 ){ 5617 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5618 pTab->zName); 5619 } 5620 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5621 #endif 5622 nCol = pTab->nCol; 5623 pTab->nCol = -1; 5624 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5625 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5626 pWalker->eCode = eCodeOrig; 5627 pTab->nCol = nCol; 5628 } 5629 #endif 5630 } 5631 5632 /* Locate the index named by the INDEXED BY clause, if any. */ 5633 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5634 return WRC_Abort; 5635 } 5636 } 5637 5638 /* Process NATURAL keywords, and ON and USING clauses of joins. 5639 */ 5640 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5641 if( pParse->nErr || sqliteProcessJoin(pParse, p) ){ 5642 return WRC_Abort; 5643 } 5644 5645 /* For every "*" that occurs in the column list, insert the names of 5646 ** all columns in all tables. And for every TABLE.* insert the names 5647 ** of all columns in TABLE. The parser inserted a special expression 5648 ** with the TK_ASTERISK operator for each "*" that it found in the column 5649 ** list. The following code just has to locate the TK_ASTERISK 5650 ** expressions and expand each one to the list of all columns in 5651 ** all tables. 5652 ** 5653 ** The first loop just checks to see if there are any "*" operators 5654 ** that need expanding. 5655 */ 5656 for(k=0; k<pEList->nExpr; k++){ 5657 pE = pEList->a[k].pExpr; 5658 if( pE->op==TK_ASTERISK ) break; 5659 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5660 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5661 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5662 elistFlags |= pE->flags; 5663 } 5664 if( k<pEList->nExpr ){ 5665 /* 5666 ** If we get here it means the result set contains one or more "*" 5667 ** operators that need to be expanded. Loop through each expression 5668 ** in the result set and expand them one by one. 5669 */ 5670 struct ExprList_item *a = pEList->a; 5671 ExprList *pNew = 0; 5672 int flags = pParse->db->flags; 5673 int longNames = (flags & SQLITE_FullColNames)!=0 5674 && (flags & SQLITE_ShortColNames)==0; 5675 5676 for(k=0; k<pEList->nExpr; k++){ 5677 pE = a[k].pExpr; 5678 elistFlags |= pE->flags; 5679 pRight = pE->pRight; 5680 assert( pE->op!=TK_DOT || pRight!=0 ); 5681 if( pE->op!=TK_ASTERISK 5682 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5683 ){ 5684 /* This particular expression does not need to be expanded. 5685 */ 5686 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5687 if( pNew ){ 5688 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5689 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5690 a[k].zEName = 0; 5691 } 5692 a[k].pExpr = 0; 5693 }else{ 5694 /* This expression is a "*" or a "TABLE.*" and needs to be 5695 ** expanded. */ 5696 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5697 char *zTName = 0; /* text of name of TABLE */ 5698 if( pE->op==TK_DOT ){ 5699 assert( pE->pLeft!=0 ); 5700 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5701 zTName = pE->pLeft->u.zToken; 5702 } 5703 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5704 Table *pTab = pFrom->pTab; 5705 Select *pSub = pFrom->pSelect; 5706 char *zTabName = pFrom->zAlias; 5707 const char *zSchemaName = 0; 5708 int iDb; 5709 if( zTabName==0 ){ 5710 zTabName = pTab->zName; 5711 } 5712 if( db->mallocFailed ) break; 5713 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5714 pSub = 0; 5715 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5716 continue; 5717 } 5718 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5719 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5720 } 5721 for(j=0; j<pTab->nCol; j++){ 5722 char *zName = pTab->aCol[j].zCnName; 5723 char *zColname; /* The computed column name */ 5724 char *zToFree; /* Malloced string that needs to be freed */ 5725 Token sColname; /* Computed column name as a token */ 5726 5727 assert( zName ); 5728 if( zTName && pSub 5729 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5730 ){ 5731 continue; 5732 } 5733 5734 /* If a column is marked as 'hidden', omit it from the expanded 5735 ** result-set list unless the SELECT has the SF_IncludeHidden 5736 ** bit set. 5737 */ 5738 if( (p->selFlags & SF_IncludeHidden)==0 5739 && IsHiddenColumn(&pTab->aCol[j]) 5740 ){ 5741 continue; 5742 } 5743 tableSeen = 1; 5744 5745 if( i>0 && zTName==0 ){ 5746 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5747 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5748 ){ 5749 /* In a NATURAL join, omit the join columns from the 5750 ** table to the right of the join */ 5751 continue; 5752 } 5753 if( pFrom->fg.isUsing 5754 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5755 ){ 5756 /* In a join with a USING clause, omit columns in the 5757 ** using clause from the table on the right. */ 5758 continue; 5759 } 5760 } 5761 pRight = sqlite3Expr(db, TK_ID, zName); 5762 zColname = zName; 5763 zToFree = 0; 5764 if( longNames || pTabList->nSrc>1 ){ 5765 Expr *pLeft; 5766 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5767 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5768 if( zSchemaName ){ 5769 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5770 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5771 } 5772 if( longNames ){ 5773 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5774 zToFree = zColname; 5775 } 5776 }else{ 5777 pExpr = pRight; 5778 } 5779 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5780 sqlite3TokenInit(&sColname, zColname); 5781 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5782 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5783 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5784 sqlite3DbFree(db, pX->zEName); 5785 if( pSub ){ 5786 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5787 testcase( pX->zEName==0 ); 5788 }else{ 5789 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5790 zSchemaName, zTabName, zColname); 5791 testcase( pX->zEName==0 ); 5792 } 5793 pX->eEName = ENAME_TAB; 5794 } 5795 sqlite3DbFree(db, zToFree); 5796 } 5797 } 5798 if( !tableSeen ){ 5799 if( zTName ){ 5800 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5801 }else{ 5802 sqlite3ErrorMsg(pParse, "no tables specified"); 5803 } 5804 } 5805 } 5806 } 5807 sqlite3ExprListDelete(db, pEList); 5808 p->pEList = pNew; 5809 } 5810 if( p->pEList ){ 5811 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5812 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5813 return WRC_Abort; 5814 } 5815 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5816 p->selFlags |= SF_ComplexResult; 5817 } 5818 } 5819 return WRC_Continue; 5820 } 5821 5822 #if SQLITE_DEBUG 5823 /* 5824 ** Always assert. This xSelectCallback2 implementation proves that the 5825 ** xSelectCallback2 is never invoked. 5826 */ 5827 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5828 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5829 assert( 0 ); 5830 } 5831 #endif 5832 /* 5833 ** This routine "expands" a SELECT statement and all of its subqueries. 5834 ** For additional information on what it means to "expand" a SELECT 5835 ** statement, see the comment on the selectExpand worker callback above. 5836 ** 5837 ** Expanding a SELECT statement is the first step in processing a 5838 ** SELECT statement. The SELECT statement must be expanded before 5839 ** name resolution is performed. 5840 ** 5841 ** If anything goes wrong, an error message is written into pParse. 5842 ** The calling function can detect the problem by looking at pParse->nErr 5843 ** and/or pParse->db->mallocFailed. 5844 */ 5845 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5846 Walker w; 5847 w.xExprCallback = sqlite3ExprWalkNoop; 5848 w.pParse = pParse; 5849 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5850 w.xSelectCallback = convertCompoundSelectToSubquery; 5851 w.xSelectCallback2 = 0; 5852 sqlite3WalkSelect(&w, pSelect); 5853 } 5854 w.xSelectCallback = selectExpander; 5855 w.xSelectCallback2 = sqlite3SelectPopWith; 5856 w.eCode = 0; 5857 sqlite3WalkSelect(&w, pSelect); 5858 } 5859 5860 5861 #ifndef SQLITE_OMIT_SUBQUERY 5862 /* 5863 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5864 ** interface. 5865 ** 5866 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5867 ** information to the Table structure that represents the result set 5868 ** of that subquery. 5869 ** 5870 ** The Table structure that represents the result set was constructed 5871 ** by selectExpander() but the type and collation information was omitted 5872 ** at that point because identifiers had not yet been resolved. This 5873 ** routine is called after identifier resolution. 5874 */ 5875 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5876 Parse *pParse; 5877 int i; 5878 SrcList *pTabList; 5879 SrcItem *pFrom; 5880 5881 assert( p->selFlags & SF_Resolved ); 5882 if( p->selFlags & SF_HasTypeInfo ) return; 5883 p->selFlags |= SF_HasTypeInfo; 5884 pParse = pWalker->pParse; 5885 pTabList = p->pSrc; 5886 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5887 Table *pTab = pFrom->pTab; 5888 assert( pTab!=0 ); 5889 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5890 /* A sub-query in the FROM clause of a SELECT */ 5891 Select *pSel = pFrom->pSelect; 5892 if( pSel ){ 5893 while( pSel->pPrior ) pSel = pSel->pPrior; 5894 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5895 SQLITE_AFF_NONE); 5896 } 5897 } 5898 } 5899 } 5900 #endif 5901 5902 5903 /* 5904 ** This routine adds datatype and collating sequence information to 5905 ** the Table structures of all FROM-clause subqueries in a 5906 ** SELECT statement. 5907 ** 5908 ** Use this routine after name resolution. 5909 */ 5910 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5911 #ifndef SQLITE_OMIT_SUBQUERY 5912 Walker w; 5913 w.xSelectCallback = sqlite3SelectWalkNoop; 5914 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5915 w.xExprCallback = sqlite3ExprWalkNoop; 5916 w.pParse = pParse; 5917 sqlite3WalkSelect(&w, pSelect); 5918 #endif 5919 } 5920 5921 5922 /* 5923 ** This routine sets up a SELECT statement for processing. The 5924 ** following is accomplished: 5925 ** 5926 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5927 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5928 ** * ON and USING clauses are shifted into WHERE statements 5929 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5930 ** * Identifiers in expression are matched to tables. 5931 ** 5932 ** This routine acts recursively on all subqueries within the SELECT. 5933 */ 5934 void sqlite3SelectPrep( 5935 Parse *pParse, /* The parser context */ 5936 Select *p, /* The SELECT statement being coded. */ 5937 NameContext *pOuterNC /* Name context for container */ 5938 ){ 5939 assert( p!=0 || pParse->db->mallocFailed ); 5940 assert( pParse->db->pParse==pParse ); 5941 if( pParse->db->mallocFailed ) return; 5942 if( p->selFlags & SF_HasTypeInfo ) return; 5943 sqlite3SelectExpand(pParse, p); 5944 if( pParse->nErr ) return; 5945 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5946 if( pParse->nErr ) return; 5947 sqlite3SelectAddTypeInfo(pParse, p); 5948 } 5949 5950 /* 5951 ** Reset the aggregate accumulator. 5952 ** 5953 ** The aggregate accumulator is a set of memory cells that hold 5954 ** intermediate results while calculating an aggregate. This 5955 ** routine generates code that stores NULLs in all of those memory 5956 ** cells. 5957 */ 5958 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5959 Vdbe *v = pParse->pVdbe; 5960 int i; 5961 struct AggInfo_func *pFunc; 5962 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5963 assert( pParse->db->pParse==pParse ); 5964 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 5965 if( nReg==0 ) return; 5966 if( pParse->nErr ) return; 5967 #ifdef SQLITE_DEBUG 5968 /* Verify that all AggInfo registers are within the range specified by 5969 ** AggInfo.mnReg..AggInfo.mxReg */ 5970 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5971 for(i=0; i<pAggInfo->nColumn; i++){ 5972 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5973 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5974 } 5975 for(i=0; i<pAggInfo->nFunc; i++){ 5976 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5977 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5978 } 5979 #endif 5980 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5981 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5982 if( pFunc->iDistinct>=0 ){ 5983 Expr *pE = pFunc->pFExpr; 5984 assert( ExprUseXList(pE) ); 5985 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5986 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5987 "argument"); 5988 pFunc->iDistinct = -1; 5989 }else{ 5990 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5991 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5992 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5993 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5994 pFunc->pFunc->zName)); 5995 } 5996 } 5997 } 5998 } 5999 6000 /* 6001 ** Invoke the OP_AggFinalize opcode for every aggregate function 6002 ** in the AggInfo structure. 6003 */ 6004 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6005 Vdbe *v = pParse->pVdbe; 6006 int i; 6007 struct AggInfo_func *pF; 6008 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6009 ExprList *pList; 6010 assert( ExprUseXList(pF->pFExpr) ); 6011 pList = pF->pFExpr->x.pList; 6012 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6013 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6014 } 6015 } 6016 6017 6018 /* 6019 ** Update the accumulator memory cells for an aggregate based on 6020 ** the current cursor position. 6021 ** 6022 ** If regAcc is non-zero and there are no min() or max() aggregates 6023 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6024 ** registers if register regAcc contains 0. The caller will take care 6025 ** of setting and clearing regAcc. 6026 */ 6027 static void updateAccumulator( 6028 Parse *pParse, 6029 int regAcc, 6030 AggInfo *pAggInfo, 6031 int eDistinctType 6032 ){ 6033 Vdbe *v = pParse->pVdbe; 6034 int i; 6035 int regHit = 0; 6036 int addrHitTest = 0; 6037 struct AggInfo_func *pF; 6038 struct AggInfo_col *pC; 6039 6040 pAggInfo->directMode = 1; 6041 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6042 int nArg; 6043 int addrNext = 0; 6044 int regAgg; 6045 ExprList *pList; 6046 assert( ExprUseXList(pF->pFExpr) ); 6047 assert( !IsWindowFunc(pF->pFExpr) ); 6048 pList = pF->pFExpr->x.pList; 6049 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6050 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6051 if( pAggInfo->nAccumulator 6052 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6053 && regAcc 6054 ){ 6055 /* If regAcc==0, there there exists some min() or max() function 6056 ** without a FILTER clause that will ensure the magnet registers 6057 ** are populated. */ 6058 if( regHit==0 ) regHit = ++pParse->nMem; 6059 /* If this is the first row of the group (regAcc contains 0), clear the 6060 ** "magnet" register regHit so that the accumulator registers 6061 ** are populated if the FILTER clause jumps over the the 6062 ** invocation of min() or max() altogether. Or, if this is not 6063 ** the first row (regAcc contains 1), set the magnet register so that 6064 ** the accumulators are not populated unless the min()/max() is invoked 6065 ** and indicates that they should be. */ 6066 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6067 } 6068 addrNext = sqlite3VdbeMakeLabel(pParse); 6069 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6070 } 6071 if( pList ){ 6072 nArg = pList->nExpr; 6073 regAgg = sqlite3GetTempRange(pParse, nArg); 6074 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6075 }else{ 6076 nArg = 0; 6077 regAgg = 0; 6078 } 6079 if( pF->iDistinct>=0 && pList ){ 6080 if( addrNext==0 ){ 6081 addrNext = sqlite3VdbeMakeLabel(pParse); 6082 } 6083 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6084 pF->iDistinct, addrNext, pList, regAgg); 6085 } 6086 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6087 CollSeq *pColl = 0; 6088 struct ExprList_item *pItem; 6089 int j; 6090 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6091 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6092 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6093 } 6094 if( !pColl ){ 6095 pColl = pParse->db->pDfltColl; 6096 } 6097 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6098 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6099 } 6100 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6101 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6102 sqlite3VdbeChangeP5(v, (u8)nArg); 6103 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6104 if( addrNext ){ 6105 sqlite3VdbeResolveLabel(v, addrNext); 6106 } 6107 } 6108 if( regHit==0 && pAggInfo->nAccumulator ){ 6109 regHit = regAcc; 6110 } 6111 if( regHit ){ 6112 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6113 } 6114 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6115 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6116 } 6117 6118 pAggInfo->directMode = 0; 6119 if( addrHitTest ){ 6120 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6121 } 6122 } 6123 6124 /* 6125 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6126 ** count(*) query ("SELECT count(*) FROM pTab"). 6127 */ 6128 #ifndef SQLITE_OMIT_EXPLAIN 6129 static void explainSimpleCount( 6130 Parse *pParse, /* Parse context */ 6131 Table *pTab, /* Table being queried */ 6132 Index *pIdx /* Index used to optimize scan, or NULL */ 6133 ){ 6134 if( pParse->explain==2 ){ 6135 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6136 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6137 pTab->zName, 6138 bCover ? " USING COVERING INDEX " : "", 6139 bCover ? pIdx->zName : "" 6140 ); 6141 } 6142 } 6143 #else 6144 # define explainSimpleCount(a,b,c) 6145 #endif 6146 6147 /* 6148 ** sqlite3WalkExpr() callback used by havingToWhere(). 6149 ** 6150 ** If the node passed to the callback is a TK_AND node, return 6151 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6152 ** 6153 ** Otherwise, return WRC_Prune. In this case, also check if the 6154 ** sub-expression matches the criteria for being moved to the WHERE 6155 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6156 ** within the HAVING expression with a constant "1". 6157 */ 6158 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6159 if( pExpr->op!=TK_AND ){ 6160 Select *pS = pWalker->u.pSelect; 6161 /* This routine is called before the HAVING clause of the current 6162 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6163 ** here, it indicates that the expression is a correlated reference to a 6164 ** column from an outer aggregate query, or an aggregate function that 6165 ** belongs to an outer query. Do not move the expression to the WHERE 6166 ** clause in this obscure case, as doing so may corrupt the outer Select 6167 ** statements AggInfo structure. */ 6168 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6169 && ExprAlwaysFalse(pExpr)==0 6170 && pExpr->pAggInfo==0 6171 ){ 6172 sqlite3 *db = pWalker->pParse->db; 6173 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6174 if( pNew ){ 6175 Expr *pWhere = pS->pWhere; 6176 SWAP(Expr, *pNew, *pExpr); 6177 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6178 pS->pWhere = pNew; 6179 pWalker->eCode = 1; 6180 } 6181 } 6182 return WRC_Prune; 6183 } 6184 return WRC_Continue; 6185 } 6186 6187 /* 6188 ** Transfer eligible terms from the HAVING clause of a query, which is 6189 ** processed after grouping, to the WHERE clause, which is processed before 6190 ** grouping. For example, the query: 6191 ** 6192 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6193 ** 6194 ** can be rewritten as: 6195 ** 6196 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6197 ** 6198 ** A term of the HAVING expression is eligible for transfer if it consists 6199 ** entirely of constants and expressions that are also GROUP BY terms that 6200 ** use the "BINARY" collation sequence. 6201 */ 6202 static void havingToWhere(Parse *pParse, Select *p){ 6203 Walker sWalker; 6204 memset(&sWalker, 0, sizeof(sWalker)); 6205 sWalker.pParse = pParse; 6206 sWalker.xExprCallback = havingToWhereExprCb; 6207 sWalker.u.pSelect = p; 6208 sqlite3WalkExpr(&sWalker, p->pHaving); 6209 #if TREETRACE_ENABLED 6210 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6211 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6212 sqlite3TreeViewSelect(0, p, 0); 6213 } 6214 #endif 6215 } 6216 6217 /* 6218 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6219 ** If it is, then return the SrcList_item for the prior view. If it is not, 6220 ** then return 0. 6221 */ 6222 static SrcItem *isSelfJoinView( 6223 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6224 SrcItem *pThis /* Search for prior reference to this subquery */ 6225 ){ 6226 SrcItem *pItem; 6227 assert( pThis->pSelect!=0 ); 6228 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6229 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6230 Select *pS1; 6231 if( pItem->pSelect==0 ) continue; 6232 if( pItem->fg.viaCoroutine ) continue; 6233 if( pItem->zName==0 ) continue; 6234 assert( pItem->pTab!=0 ); 6235 assert( pThis->pTab!=0 ); 6236 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6237 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6238 pS1 = pItem->pSelect; 6239 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6240 /* The query flattener left two different CTE tables with identical 6241 ** names in the same FROM clause. */ 6242 continue; 6243 } 6244 if( pItem->pSelect->selFlags & SF_PushDown ){ 6245 /* The view was modified by some other optimization such as 6246 ** pushDownWhereTerms() */ 6247 continue; 6248 } 6249 return pItem; 6250 } 6251 return 0; 6252 } 6253 6254 /* 6255 ** Deallocate a single AggInfo object 6256 */ 6257 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6258 sqlite3DbFree(db, p->aCol); 6259 sqlite3DbFree(db, p->aFunc); 6260 sqlite3DbFreeNN(db, p); 6261 } 6262 6263 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6264 /* 6265 ** Attempt to transform a query of the form 6266 ** 6267 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6268 ** 6269 ** Into this: 6270 ** 6271 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6272 ** 6273 ** The transformation only works if all of the following are true: 6274 ** 6275 ** * The subquery is a UNION ALL of two or more terms 6276 ** * The subquery does not have a LIMIT clause 6277 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6278 ** * The outer query is a simple count(*) with no WHERE clause or other 6279 ** extraneous syntax. 6280 ** 6281 ** Return TRUE if the optimization is undertaken. 6282 */ 6283 static int countOfViewOptimization(Parse *pParse, Select *p){ 6284 Select *pSub, *pPrior; 6285 Expr *pExpr; 6286 Expr *pCount; 6287 sqlite3 *db; 6288 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6289 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6290 if( p->pWhere ) return 0; 6291 if( p->pGroupBy ) return 0; 6292 pExpr = p->pEList->a[0].pExpr; 6293 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6294 assert( ExprUseUToken(pExpr) ); 6295 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6296 assert( ExprUseXList(pExpr) ); 6297 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6298 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6299 pSub = p->pSrc->a[0].pSelect; 6300 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6301 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6302 do{ 6303 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6304 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6305 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6306 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6307 pSub = pSub->pPrior; /* Repeat over compound */ 6308 }while( pSub ); 6309 6310 /* If we reach this point then it is OK to perform the transformation */ 6311 6312 db = pParse->db; 6313 pCount = pExpr; 6314 pExpr = 0; 6315 pSub = p->pSrc->a[0].pSelect; 6316 p->pSrc->a[0].pSelect = 0; 6317 sqlite3SrcListDelete(db, p->pSrc); 6318 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6319 while( pSub ){ 6320 Expr *pTerm; 6321 pPrior = pSub->pPrior; 6322 pSub->pPrior = 0; 6323 pSub->pNext = 0; 6324 pSub->selFlags |= SF_Aggregate; 6325 pSub->selFlags &= ~SF_Compound; 6326 pSub->nSelectRow = 0; 6327 sqlite3ExprListDelete(db, pSub->pEList); 6328 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6329 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6330 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6331 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6332 if( pExpr==0 ){ 6333 pExpr = pTerm; 6334 }else{ 6335 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6336 } 6337 pSub = pPrior; 6338 } 6339 p->pEList->a[0].pExpr = pExpr; 6340 p->selFlags &= ~SF_Aggregate; 6341 6342 #if TREETRACE_ENABLED 6343 if( sqlite3TreeTrace & 0x400 ){ 6344 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6345 sqlite3TreeViewSelect(0, p, 0); 6346 } 6347 #endif 6348 return 1; 6349 } 6350 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6351 6352 /* 6353 ** Generate code for the SELECT statement given in the p argument. 6354 ** 6355 ** The results are returned according to the SelectDest structure. 6356 ** See comments in sqliteInt.h for further information. 6357 ** 6358 ** This routine returns the number of errors. If any errors are 6359 ** encountered, then an appropriate error message is left in 6360 ** pParse->zErrMsg. 6361 ** 6362 ** This routine does NOT free the Select structure passed in. The 6363 ** calling function needs to do that. 6364 */ 6365 int sqlite3Select( 6366 Parse *pParse, /* The parser context */ 6367 Select *p, /* The SELECT statement being coded. */ 6368 SelectDest *pDest /* What to do with the query results */ 6369 ){ 6370 int i, j; /* Loop counters */ 6371 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6372 Vdbe *v; /* The virtual machine under construction */ 6373 int isAgg; /* True for select lists like "count(*)" */ 6374 ExprList *pEList = 0; /* List of columns to extract. */ 6375 SrcList *pTabList; /* List of tables to select from */ 6376 Expr *pWhere; /* The WHERE clause. May be NULL */ 6377 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6378 Expr *pHaving; /* The HAVING clause. May be NULL */ 6379 AggInfo *pAggInfo = 0; /* Aggregate information */ 6380 int rc = 1; /* Value to return from this function */ 6381 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6382 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6383 int iEnd; /* Address of the end of the query */ 6384 sqlite3 *db; /* The database connection */ 6385 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6386 u8 minMaxFlag; /* Flag for min/max queries */ 6387 6388 db = pParse->db; 6389 assert( pParse==db->pParse ); 6390 v = sqlite3GetVdbe(pParse); 6391 if( p==0 || pParse->nErr ){ 6392 return 1; 6393 } 6394 assert( db->mallocFailed==0 ); 6395 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6396 #if TREETRACE_ENABLED 6397 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6398 if( sqlite3TreeTrace & 0x10100 ){ 6399 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6400 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6401 __FILE__, __LINE__); 6402 } 6403 sqlite3ShowSelect(p); 6404 } 6405 #endif 6406 6407 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6408 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6409 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6410 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6411 if( IgnorableDistinct(pDest) ){ 6412 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6413 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6414 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6415 /* All of these destinations are also able to ignore the ORDER BY clause */ 6416 if( p->pOrderBy ){ 6417 #if TREETRACE_ENABLED 6418 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6419 if( sqlite3TreeTrace & 0x100 ){ 6420 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6421 } 6422 #endif 6423 sqlite3ParserAddCleanup(pParse, 6424 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6425 p->pOrderBy); 6426 testcase( pParse->earlyCleanup ); 6427 p->pOrderBy = 0; 6428 } 6429 p->selFlags &= ~SF_Distinct; 6430 p->selFlags |= SF_NoopOrderBy; 6431 } 6432 sqlite3SelectPrep(pParse, p, 0); 6433 if( pParse->nErr ){ 6434 goto select_end; 6435 } 6436 assert( db->mallocFailed==0 ); 6437 assert( p->pEList!=0 ); 6438 #if TREETRACE_ENABLED 6439 if( sqlite3TreeTrace & 0x104 ){ 6440 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6441 sqlite3TreeViewSelect(0, p, 0); 6442 } 6443 #endif 6444 6445 /* If the SF_UFSrcCheck flag is set, then this function is being called 6446 ** as part of populating the temp table for an UPDATE...FROM statement. 6447 ** In this case, it is an error if the target object (pSrc->a[0]) name 6448 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6449 ** 6450 ** Postgres disallows this case too. The reason is that some other 6451 ** systems handle this case differently, and not all the same way, 6452 ** which is just confusing. To avoid this, we follow PG's lead and 6453 ** disallow it altogether. */ 6454 if( p->selFlags & SF_UFSrcCheck ){ 6455 SrcItem *p0 = &p->pSrc->a[0]; 6456 for(i=1; i<p->pSrc->nSrc; i++){ 6457 SrcItem *p1 = &p->pSrc->a[i]; 6458 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6459 sqlite3ErrorMsg(pParse, 6460 "target object/alias may not appear in FROM clause: %s", 6461 p0->zAlias ? p0->zAlias : p0->pTab->zName 6462 ); 6463 goto select_end; 6464 } 6465 } 6466 6467 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6468 ** and leaving this flag set can cause errors if a compound sub-query 6469 ** in p->pSrc is flattened into this query and this function called 6470 ** again as part of compound SELECT processing. */ 6471 p->selFlags &= ~SF_UFSrcCheck; 6472 } 6473 6474 if( pDest->eDest==SRT_Output ){ 6475 sqlite3GenerateColumnNames(pParse, p); 6476 } 6477 6478 #ifndef SQLITE_OMIT_WINDOWFUNC 6479 if( sqlite3WindowRewrite(pParse, p) ){ 6480 assert( pParse->nErr ); 6481 goto select_end; 6482 } 6483 #if TREETRACE_ENABLED 6484 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6485 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6486 sqlite3TreeViewSelect(0, p, 0); 6487 } 6488 #endif 6489 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6490 pTabList = p->pSrc; 6491 isAgg = (p->selFlags & SF_Aggregate)!=0; 6492 memset(&sSort, 0, sizeof(sSort)); 6493 sSort.pOrderBy = p->pOrderBy; 6494 6495 /* Try to do various optimizations (flattening subqueries, and strength 6496 ** reduction of join operators) in the FROM clause up into the main query 6497 */ 6498 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6499 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6500 SrcItem *pItem = &pTabList->a[i]; 6501 Select *pSub = pItem->pSelect; 6502 Table *pTab = pItem->pTab; 6503 6504 /* The expander should have already created transient Table objects 6505 ** even for FROM clause elements such as subqueries that do not correspond 6506 ** to a real table */ 6507 assert( pTab!=0 ); 6508 6509 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6510 ** of the LEFT JOIN used in the WHERE clause. 6511 */ 6512 if( (pItem->fg.jointype & JT_LEFT)!=0 6513 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6514 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6515 ){ 6516 SELECTTRACE(0x100,pParse,p, 6517 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6518 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6519 unsetJoinExpr(p->pWhere, pItem->iCursor); 6520 } 6521 6522 /* No futher action if this term of the FROM clause is no a subquery */ 6523 if( pSub==0 ) continue; 6524 6525 /* Catch mismatch in the declared columns of a view and the number of 6526 ** columns in the SELECT on the RHS */ 6527 if( pTab->nCol!=pSub->pEList->nExpr ){ 6528 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6529 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6530 goto select_end; 6531 } 6532 6533 /* Do not try to flatten an aggregate subquery. 6534 ** 6535 ** Flattening an aggregate subquery is only possible if the outer query 6536 ** is not a join. But if the outer query is not a join, then the subquery 6537 ** will be implemented as a co-routine and there is no advantage to 6538 ** flattening in that case. 6539 */ 6540 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6541 assert( pSub->pGroupBy==0 ); 6542 6543 /* If a FROM-clause subquery has an ORDER BY clause that is not 6544 ** really doing anything, then delete it now so that it does not 6545 ** interfere with query flattening. See the discussion at 6546 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6547 ** 6548 ** Beware of these cases where the ORDER BY clause may not be safely 6549 ** omitted: 6550 ** 6551 ** (1) There is also a LIMIT clause 6552 ** (2) The subquery was added to help with window-function 6553 ** processing 6554 ** (3) The subquery is in the FROM clause of an UPDATE 6555 ** (4) The outer query uses an aggregate function other than 6556 ** the built-in count(), min(), or max(). 6557 ** (5) The ORDER BY isn't going to accomplish anything because 6558 ** one of: 6559 ** (a) The outer query has a different ORDER BY clause 6560 ** (b) The subquery is part of a join 6561 ** See forum post 062d576715d277c8 6562 */ 6563 if( pSub->pOrderBy!=0 6564 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6565 && pSub->pLimit==0 /* Condition (1) */ 6566 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6567 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6568 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6569 ){ 6570 SELECTTRACE(0x100,pParse,p, 6571 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6572 sqlite3ExprListDelete(db, pSub->pOrderBy); 6573 pSub->pOrderBy = 0; 6574 } 6575 6576 /* If the outer query contains a "complex" result set (that is, 6577 ** if the result set of the outer query uses functions or subqueries) 6578 ** and if the subquery contains an ORDER BY clause and if 6579 ** it will be implemented as a co-routine, then do not flatten. This 6580 ** restriction allows SQL constructs like this: 6581 ** 6582 ** SELECT expensive_function(x) 6583 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6584 ** 6585 ** The expensive_function() is only computed on the 10 rows that 6586 ** are output, rather than every row of the table. 6587 ** 6588 ** The requirement that the outer query have a complex result set 6589 ** means that flattening does occur on simpler SQL constraints without 6590 ** the expensive_function() like: 6591 ** 6592 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6593 */ 6594 if( pSub->pOrderBy!=0 6595 && i==0 6596 && (p->selFlags & SF_ComplexResult)!=0 6597 && (pTabList->nSrc==1 6598 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6599 ){ 6600 continue; 6601 } 6602 6603 if( flattenSubquery(pParse, p, i, isAgg) ){ 6604 if( pParse->nErr ) goto select_end; 6605 /* This subquery can be absorbed into its parent. */ 6606 i = -1; 6607 } 6608 pTabList = p->pSrc; 6609 if( db->mallocFailed ) goto select_end; 6610 if( !IgnorableOrderby(pDest) ){ 6611 sSort.pOrderBy = p->pOrderBy; 6612 } 6613 } 6614 #endif 6615 6616 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6617 /* Handle compound SELECT statements using the separate multiSelect() 6618 ** procedure. 6619 */ 6620 if( p->pPrior ){ 6621 rc = multiSelect(pParse, p, pDest); 6622 #if TREETRACE_ENABLED 6623 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6624 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6625 sqlite3TreeViewSelect(0, p, 0); 6626 } 6627 #endif 6628 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6629 return rc; 6630 } 6631 #endif 6632 6633 /* Do the WHERE-clause constant propagation optimization if this is 6634 ** a join. No need to speed time on this operation for non-join queries 6635 ** as the equivalent optimization will be handled by query planner in 6636 ** sqlite3WhereBegin(). 6637 */ 6638 if( p->pWhere!=0 6639 && p->pWhere->op==TK_AND 6640 && OptimizationEnabled(db, SQLITE_PropagateConst) 6641 && propagateConstants(pParse, p) 6642 ){ 6643 #if TREETRACE_ENABLED 6644 if( sqlite3TreeTrace & 0x100 ){ 6645 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6646 sqlite3TreeViewSelect(0, p, 0); 6647 } 6648 #endif 6649 }else{ 6650 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6651 } 6652 6653 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6654 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6655 && countOfViewOptimization(pParse, p) 6656 ){ 6657 if( db->mallocFailed ) goto select_end; 6658 pEList = p->pEList; 6659 pTabList = p->pSrc; 6660 } 6661 #endif 6662 6663 /* For each term in the FROM clause, do two things: 6664 ** (1) Authorized unreferenced tables 6665 ** (2) Generate code for all sub-queries 6666 */ 6667 for(i=0; i<pTabList->nSrc; i++){ 6668 SrcItem *pItem = &pTabList->a[i]; 6669 SrcItem *pPrior; 6670 SelectDest dest; 6671 Select *pSub; 6672 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6673 const char *zSavedAuthContext; 6674 #endif 6675 6676 /* Issue SQLITE_READ authorizations with a fake column name for any 6677 ** tables that are referenced but from which no values are extracted. 6678 ** Examples of where these kinds of null SQLITE_READ authorizations 6679 ** would occur: 6680 ** 6681 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6682 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6683 ** 6684 ** The fake column name is an empty string. It is possible for a table to 6685 ** have a column named by the empty string, in which case there is no way to 6686 ** distinguish between an unreferenced table and an actual reference to the 6687 ** "" column. The original design was for the fake column name to be a NULL, 6688 ** which would be unambiguous. But legacy authorization callbacks might 6689 ** assume the column name is non-NULL and segfault. The use of an empty 6690 ** string for the fake column name seems safer. 6691 */ 6692 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6693 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6694 } 6695 6696 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6697 /* Generate code for all sub-queries in the FROM clause 6698 */ 6699 pSub = pItem->pSelect; 6700 if( pSub==0 ) continue; 6701 6702 /* The code for a subquery should only be generated once. */ 6703 assert( pItem->addrFillSub==0 ); 6704 6705 /* Increment Parse.nHeight by the height of the largest expression 6706 ** tree referred to by this, the parent select. The child select 6707 ** may contain expression trees of at most 6708 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6709 ** more conservative than necessary, but much easier than enforcing 6710 ** an exact limit. 6711 */ 6712 pParse->nHeight += sqlite3SelectExprHeight(p); 6713 6714 /* Make copies of constant WHERE-clause terms in the outer query down 6715 ** inside the subquery. This can help the subquery to run more efficiently. 6716 */ 6717 if( OptimizationEnabled(db, SQLITE_PushDown) 6718 && (pItem->fg.isCte==0 6719 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6720 && (pItem->fg.jointype & JT_RIGHT)==0 6721 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6722 (pItem->fg.jointype & JT_OUTER)!=0) 6723 ){ 6724 #if TREETRACE_ENABLED 6725 if( sqlite3TreeTrace & 0x100 ){ 6726 SELECTTRACE(0x100,pParse,p, 6727 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6728 sqlite3TreeViewSelect(0, p, 0); 6729 } 6730 #endif 6731 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6732 }else{ 6733 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6734 } 6735 6736 zSavedAuthContext = pParse->zAuthContext; 6737 pParse->zAuthContext = pItem->zName; 6738 6739 /* Generate code to implement the subquery 6740 ** 6741 ** The subquery is implemented as a co-routine all of the following are 6742 ** true: 6743 ** 6744 ** (1) the subquery is guaranteed to be the outer loop (so that 6745 ** it does not need to be computed more than once), and 6746 ** (2) the subquery is not a CTE that should be materialized 6747 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 6748 */ 6749 if( i==0 6750 && (pTabList->nSrc==1 6751 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 6752 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6753 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 6754 ){ 6755 /* Implement a co-routine that will return a single row of the result 6756 ** set on each invocation. 6757 */ 6758 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6759 6760 pItem->regReturn = ++pParse->nMem; 6761 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6762 VdbeComment((v, "%!S", pItem)); 6763 pItem->addrFillSub = addrTop; 6764 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6765 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6766 sqlite3Select(pParse, pSub, &dest); 6767 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6768 pItem->fg.viaCoroutine = 1; 6769 pItem->regResult = dest.iSdst; 6770 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6771 sqlite3VdbeJumpHere(v, addrTop-1); 6772 sqlite3ClearTempRegCache(pParse); 6773 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6774 /* This is a CTE for which materialization code has already been 6775 ** generated. Invoke the subroutine to compute the materialization, 6776 ** the make the pItem->iCursor be a copy of the ephemerial table that 6777 ** holds the result of the materialization. */ 6778 CteUse *pCteUse = pItem->u2.pCteUse; 6779 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6780 if( pItem->iCursor!=pCteUse->iCur ){ 6781 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6782 VdbeComment((v, "%!S", pItem)); 6783 } 6784 pSub->nSelectRow = pCteUse->nRowEst; 6785 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6786 /* This view has already been materialized by a prior entry in 6787 ** this same FROM clause. Reuse it. */ 6788 if( pPrior->addrFillSub ){ 6789 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6790 } 6791 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6792 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6793 }else{ 6794 /* Materialize the view. If the view is not correlated, generate a 6795 ** subroutine to do the materialization so that subsequent uses of 6796 ** the same view can reuse the materialization. */ 6797 int topAddr; 6798 int onceAddr = 0; 6799 int retAddr; 6800 6801 pItem->regReturn = ++pParse->nMem; 6802 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6803 pItem->addrFillSub = topAddr+1; 6804 if( pItem->fg.isCorrelated==0 ){ 6805 /* If the subquery is not correlated and if we are not inside of 6806 ** a trigger, then we only need to compute the value of the subquery 6807 ** once. */ 6808 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6809 VdbeComment((v, "materialize %!S", pItem)); 6810 }else{ 6811 VdbeNoopComment((v, "materialize %!S", pItem)); 6812 } 6813 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6814 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6815 sqlite3Select(pParse, pSub, &dest); 6816 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6817 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6818 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6819 VdbeComment((v, "end %!S", pItem)); 6820 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6821 sqlite3ClearTempRegCache(pParse); 6822 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6823 CteUse *pCteUse = pItem->u2.pCteUse; 6824 pCteUse->addrM9e = pItem->addrFillSub; 6825 pCteUse->regRtn = pItem->regReturn; 6826 pCteUse->iCur = pItem->iCursor; 6827 pCteUse->nRowEst = pSub->nSelectRow; 6828 } 6829 } 6830 if( db->mallocFailed ) goto select_end; 6831 pParse->nHeight -= sqlite3SelectExprHeight(p); 6832 pParse->zAuthContext = zSavedAuthContext; 6833 #endif 6834 } 6835 6836 /* Various elements of the SELECT copied into local variables for 6837 ** convenience */ 6838 pEList = p->pEList; 6839 pWhere = p->pWhere; 6840 pGroupBy = p->pGroupBy; 6841 pHaving = p->pHaving; 6842 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6843 6844 #if TREETRACE_ENABLED 6845 if( sqlite3TreeTrace & 0x400 ){ 6846 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6847 sqlite3TreeViewSelect(0, p, 0); 6848 } 6849 #endif 6850 6851 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6852 ** if the select-list is the same as the ORDER BY list, then this query 6853 ** can be rewritten as a GROUP BY. In other words, this: 6854 ** 6855 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6856 ** 6857 ** is transformed to: 6858 ** 6859 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6860 ** 6861 ** The second form is preferred as a single index (or temp-table) may be 6862 ** used for both the ORDER BY and DISTINCT processing. As originally 6863 ** written the query must use a temp-table for at least one of the ORDER 6864 ** BY and DISTINCT, and an index or separate temp-table for the other. 6865 */ 6866 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6867 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6868 #ifndef SQLITE_OMIT_WINDOWFUNC 6869 && p->pWin==0 6870 #endif 6871 ){ 6872 p->selFlags &= ~SF_Distinct; 6873 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6874 p->selFlags |= SF_Aggregate; 6875 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6876 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6877 ** original setting of the SF_Distinct flag, not the current setting */ 6878 assert( sDistinct.isTnct ); 6879 sDistinct.isTnct = 2; 6880 6881 #if TREETRACE_ENABLED 6882 if( sqlite3TreeTrace & 0x400 ){ 6883 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6884 sqlite3TreeViewSelect(0, p, 0); 6885 } 6886 #endif 6887 } 6888 6889 /* If there is an ORDER BY clause, then create an ephemeral index to 6890 ** do the sorting. But this sorting ephemeral index might end up 6891 ** being unused if the data can be extracted in pre-sorted order. 6892 ** If that is the case, then the OP_OpenEphemeral instruction will be 6893 ** changed to an OP_Noop once we figure out that the sorting index is 6894 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6895 ** that change. 6896 */ 6897 if( sSort.pOrderBy ){ 6898 KeyInfo *pKeyInfo; 6899 pKeyInfo = sqlite3KeyInfoFromExprList( 6900 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6901 sSort.iECursor = pParse->nTab++; 6902 sSort.addrSortIndex = 6903 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6904 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6905 (char*)pKeyInfo, P4_KEYINFO 6906 ); 6907 }else{ 6908 sSort.addrSortIndex = -1; 6909 } 6910 6911 /* If the output is destined for a temporary table, open that table. 6912 */ 6913 if( pDest->eDest==SRT_EphemTab ){ 6914 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6915 } 6916 6917 /* Set the limiter. 6918 */ 6919 iEnd = sqlite3VdbeMakeLabel(pParse); 6920 if( (p->selFlags & SF_FixedLimit)==0 ){ 6921 p->nSelectRow = 320; /* 4 billion rows */ 6922 } 6923 computeLimitRegisters(pParse, p, iEnd); 6924 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6925 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6926 sSort.sortFlags |= SORTFLAG_UseSorter; 6927 } 6928 6929 /* Open an ephemeral index to use for the distinct set. 6930 */ 6931 if( p->selFlags & SF_Distinct ){ 6932 sDistinct.tabTnct = pParse->nTab++; 6933 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6934 sDistinct.tabTnct, 0, 0, 6935 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6936 P4_KEYINFO); 6937 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6938 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6939 }else{ 6940 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6941 } 6942 6943 if( !isAgg && pGroupBy==0 ){ 6944 /* No aggregate functions and no GROUP BY clause */ 6945 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6946 | (p->selFlags & SF_FixedLimit); 6947 #ifndef SQLITE_OMIT_WINDOWFUNC 6948 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6949 if( pWin ){ 6950 sqlite3WindowCodeInit(pParse, p); 6951 } 6952 #endif 6953 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6954 6955 6956 /* Begin the database scan. */ 6957 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6958 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6959 p->pEList, p, wctrlFlags, p->nSelectRow); 6960 if( pWInfo==0 ) goto select_end; 6961 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6962 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6963 } 6964 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6965 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6966 } 6967 if( sSort.pOrderBy ){ 6968 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6969 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6970 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6971 sSort.pOrderBy = 0; 6972 } 6973 } 6974 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6975 6976 /* If sorting index that was created by a prior OP_OpenEphemeral 6977 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6978 ** into an OP_Noop. 6979 */ 6980 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6981 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6982 } 6983 6984 assert( p->pEList==pEList ); 6985 #ifndef SQLITE_OMIT_WINDOWFUNC 6986 if( pWin ){ 6987 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6988 int iCont = sqlite3VdbeMakeLabel(pParse); 6989 int iBreak = sqlite3VdbeMakeLabel(pParse); 6990 int regGosub = ++pParse->nMem; 6991 6992 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6993 6994 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6995 sqlite3VdbeResolveLabel(v, addrGosub); 6996 VdbeNoopComment((v, "inner-loop subroutine")); 6997 sSort.labelOBLopt = 0; 6998 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6999 sqlite3VdbeResolveLabel(v, iCont); 7000 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7001 VdbeComment((v, "end inner-loop subroutine")); 7002 sqlite3VdbeResolveLabel(v, iBreak); 7003 }else 7004 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7005 { 7006 /* Use the standard inner loop. */ 7007 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7008 sqlite3WhereContinueLabel(pWInfo), 7009 sqlite3WhereBreakLabel(pWInfo)); 7010 7011 /* End the database scan loop. 7012 */ 7013 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7014 sqlite3WhereEnd(pWInfo); 7015 } 7016 }else{ 7017 /* This case when there exist aggregate functions or a GROUP BY clause 7018 ** or both */ 7019 NameContext sNC; /* Name context for processing aggregate information */ 7020 int iAMem; /* First Mem address for storing current GROUP BY */ 7021 int iBMem; /* First Mem address for previous GROUP BY */ 7022 int iUseFlag; /* Mem address holding flag indicating that at least 7023 ** one row of the input to the aggregator has been 7024 ** processed */ 7025 int iAbortFlag; /* Mem address which causes query abort if positive */ 7026 int groupBySort; /* Rows come from source in GROUP BY order */ 7027 int addrEnd; /* End of processing for this SELECT */ 7028 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7029 int sortOut = 0; /* Output register from the sorter */ 7030 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7031 7032 /* Remove any and all aliases between the result set and the 7033 ** GROUP BY clause. 7034 */ 7035 if( pGroupBy ){ 7036 int k; /* Loop counter */ 7037 struct ExprList_item *pItem; /* For looping over expression in a list */ 7038 7039 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7040 pItem->u.x.iAlias = 0; 7041 } 7042 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7043 pItem->u.x.iAlias = 0; 7044 } 7045 assert( 66==sqlite3LogEst(100) ); 7046 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7047 7048 /* If there is both a GROUP BY and an ORDER BY clause and they are 7049 ** identical, then it may be possible to disable the ORDER BY clause 7050 ** on the grounds that the GROUP BY will cause elements to come out 7051 ** in the correct order. It also may not - the GROUP BY might use a 7052 ** database index that causes rows to be grouped together as required 7053 ** but not actually sorted. Either way, record the fact that the 7054 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7055 ** variable. */ 7056 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7057 int ii; 7058 /* The GROUP BY processing doesn't care whether rows are delivered in 7059 ** ASC or DESC order - only that each group is returned contiguously. 7060 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7061 ** ORDER BY to maximize the chances of rows being delivered in an 7062 ** order that makes the ORDER BY redundant. */ 7063 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7064 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 7065 pGroupBy->a[ii].sortFlags = sortFlags; 7066 } 7067 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7068 orderByGrp = 1; 7069 } 7070 } 7071 }else{ 7072 assert( 0==sqlite3LogEst(1) ); 7073 p->nSelectRow = 0; 7074 } 7075 7076 /* Create a label to jump to when we want to abort the query */ 7077 addrEnd = sqlite3VdbeMakeLabel(pParse); 7078 7079 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7080 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7081 ** SELECT statement. 7082 */ 7083 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7084 if( pAggInfo ){ 7085 sqlite3ParserAddCleanup(pParse, 7086 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7087 testcase( pParse->earlyCleanup ); 7088 } 7089 if( db->mallocFailed ){ 7090 goto select_end; 7091 } 7092 pAggInfo->selId = p->selId; 7093 memset(&sNC, 0, sizeof(sNC)); 7094 sNC.pParse = pParse; 7095 sNC.pSrcList = pTabList; 7096 sNC.uNC.pAggInfo = pAggInfo; 7097 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7098 pAggInfo->mnReg = pParse->nMem+1; 7099 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7100 pAggInfo->pGroupBy = pGroupBy; 7101 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7102 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7103 if( pHaving ){ 7104 if( pGroupBy ){ 7105 assert( pWhere==p->pWhere ); 7106 assert( pHaving==p->pHaving ); 7107 assert( pGroupBy==p->pGroupBy ); 7108 havingToWhere(pParse, p); 7109 pWhere = p->pWhere; 7110 } 7111 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7112 } 7113 pAggInfo->nAccumulator = pAggInfo->nColumn; 7114 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7115 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7116 }else{ 7117 minMaxFlag = WHERE_ORDERBY_NORMAL; 7118 } 7119 for(i=0; i<pAggInfo->nFunc; i++){ 7120 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7121 assert( ExprUseXList(pExpr) ); 7122 sNC.ncFlags |= NC_InAggFunc; 7123 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7124 #ifndef SQLITE_OMIT_WINDOWFUNC 7125 assert( !IsWindowFunc(pExpr) ); 7126 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7127 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7128 } 7129 #endif 7130 sNC.ncFlags &= ~NC_InAggFunc; 7131 } 7132 pAggInfo->mxReg = pParse->nMem; 7133 if( db->mallocFailed ) goto select_end; 7134 #if TREETRACE_ENABLED 7135 if( sqlite3TreeTrace & 0x400 ){ 7136 int ii; 7137 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7138 sqlite3TreeViewSelect(0, p, 0); 7139 if( minMaxFlag ){ 7140 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7141 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7142 } 7143 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7144 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7145 ii, pAggInfo->aCol[ii].iMem); 7146 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7147 } 7148 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7149 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7150 ii, pAggInfo->aFunc[ii].iMem); 7151 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7152 } 7153 } 7154 #endif 7155 7156 7157 /* Processing for aggregates with GROUP BY is very different and 7158 ** much more complex than aggregates without a GROUP BY. 7159 */ 7160 if( pGroupBy ){ 7161 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7162 int addr1; /* A-vs-B comparision jump */ 7163 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7164 int regOutputRow; /* Return address register for output subroutine */ 7165 int addrSetAbort; /* Set the abort flag and return */ 7166 int addrTopOfLoop; /* Top of the input loop */ 7167 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7168 int addrReset; /* Subroutine for resetting the accumulator */ 7169 int regReset; /* Return address register for reset subroutine */ 7170 ExprList *pDistinct = 0; 7171 u16 distFlag = 0; 7172 int eDist = WHERE_DISTINCT_NOOP; 7173 7174 if( pAggInfo->nFunc==1 7175 && pAggInfo->aFunc[0].iDistinct>=0 7176 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7177 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7178 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7179 ){ 7180 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7181 pExpr = sqlite3ExprDup(db, pExpr, 0); 7182 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7183 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7184 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7185 } 7186 7187 /* If there is a GROUP BY clause we might need a sorting index to 7188 ** implement it. Allocate that sorting index now. If it turns out 7189 ** that we do not need it after all, the OP_SorterOpen instruction 7190 ** will be converted into a Noop. 7191 */ 7192 pAggInfo->sortingIdx = pParse->nTab++; 7193 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7194 0, pAggInfo->nColumn); 7195 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7196 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7197 0, (char*)pKeyInfo, P4_KEYINFO); 7198 7199 /* Initialize memory locations used by GROUP BY aggregate processing 7200 */ 7201 iUseFlag = ++pParse->nMem; 7202 iAbortFlag = ++pParse->nMem; 7203 regOutputRow = ++pParse->nMem; 7204 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7205 regReset = ++pParse->nMem; 7206 addrReset = sqlite3VdbeMakeLabel(pParse); 7207 iAMem = pParse->nMem + 1; 7208 pParse->nMem += pGroupBy->nExpr; 7209 iBMem = pParse->nMem + 1; 7210 pParse->nMem += pGroupBy->nExpr; 7211 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7212 VdbeComment((v, "clear abort flag")); 7213 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7214 7215 /* Begin a loop that will extract all source rows in GROUP BY order. 7216 ** This might involve two separate loops with an OP_Sort in between, or 7217 ** it might be a single loop that uses an index to extract information 7218 ** in the right order to begin with. 7219 */ 7220 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7221 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7222 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7223 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7224 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7225 ); 7226 if( pWInfo==0 ){ 7227 sqlite3ExprListDelete(db, pDistinct); 7228 goto select_end; 7229 } 7230 eDist = sqlite3WhereIsDistinct(pWInfo); 7231 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7232 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7233 /* The optimizer is able to deliver rows in group by order so 7234 ** we do not have to sort. The OP_OpenEphemeral table will be 7235 ** cancelled later because we still need to use the pKeyInfo 7236 */ 7237 groupBySort = 0; 7238 }else{ 7239 /* Rows are coming out in undetermined order. We have to push 7240 ** each row into a sorting index, terminate the first loop, 7241 ** then loop over the sorting index in order to get the output 7242 ** in sorted order 7243 */ 7244 int regBase; 7245 int regRecord; 7246 int nCol; 7247 int nGroupBy; 7248 7249 explainTempTable(pParse, 7250 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7251 "DISTINCT" : "GROUP BY"); 7252 7253 groupBySort = 1; 7254 nGroupBy = pGroupBy->nExpr; 7255 nCol = nGroupBy; 7256 j = nGroupBy; 7257 for(i=0; i<pAggInfo->nColumn; i++){ 7258 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7259 nCol++; 7260 j++; 7261 } 7262 } 7263 regBase = sqlite3GetTempRange(pParse, nCol); 7264 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7265 j = nGroupBy; 7266 for(i=0; i<pAggInfo->nColumn; i++){ 7267 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7268 if( pCol->iSorterColumn>=j ){ 7269 int r1 = j + regBase; 7270 sqlite3ExprCodeGetColumnOfTable(v, 7271 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7272 j++; 7273 } 7274 } 7275 regRecord = sqlite3GetTempReg(pParse); 7276 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7277 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7278 sqlite3ReleaseTempReg(pParse, regRecord); 7279 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7280 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7281 sqlite3WhereEnd(pWInfo); 7282 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7283 sortOut = sqlite3GetTempReg(pParse); 7284 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7285 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7286 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7287 pAggInfo->useSortingIdx = 1; 7288 } 7289 7290 /* If the index or temporary table used by the GROUP BY sort 7291 ** will naturally deliver rows in the order required by the ORDER BY 7292 ** clause, cancel the ephemeral table open coded earlier. 7293 ** 7294 ** This is an optimization - the correct answer should result regardless. 7295 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7296 ** disable this optimization for testing purposes. */ 7297 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7298 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7299 ){ 7300 sSort.pOrderBy = 0; 7301 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7302 } 7303 7304 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7305 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7306 ** Then compare the current GROUP BY terms against the GROUP BY terms 7307 ** from the previous row currently stored in a0, a1, a2... 7308 */ 7309 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7310 if( groupBySort ){ 7311 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7312 sortOut, sortPTab); 7313 } 7314 for(j=0; j<pGroupBy->nExpr; j++){ 7315 if( groupBySort ){ 7316 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7317 }else{ 7318 pAggInfo->directMode = 1; 7319 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7320 } 7321 } 7322 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7323 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7324 addr1 = sqlite3VdbeCurrentAddr(v); 7325 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7326 7327 /* Generate code that runs whenever the GROUP BY changes. 7328 ** Changes in the GROUP BY are detected by the previous code 7329 ** block. If there were no changes, this block is skipped. 7330 ** 7331 ** This code copies current group by terms in b0,b1,b2,... 7332 ** over to a0,a1,a2. It then calls the output subroutine 7333 ** and resets the aggregate accumulator registers in preparation 7334 ** for the next GROUP BY batch. 7335 */ 7336 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7337 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7338 VdbeComment((v, "output one row")); 7339 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7340 VdbeComment((v, "check abort flag")); 7341 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7342 VdbeComment((v, "reset accumulator")); 7343 7344 /* Update the aggregate accumulators based on the content of 7345 ** the current row 7346 */ 7347 sqlite3VdbeJumpHere(v, addr1); 7348 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7349 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7350 VdbeComment((v, "indicate data in accumulator")); 7351 7352 /* End of the loop 7353 */ 7354 if( groupBySort ){ 7355 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7356 VdbeCoverage(v); 7357 }else{ 7358 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7359 sqlite3WhereEnd(pWInfo); 7360 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7361 } 7362 sqlite3ExprListDelete(db, pDistinct); 7363 7364 /* Output the final row of result 7365 */ 7366 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7367 VdbeComment((v, "output final row")); 7368 7369 /* Jump over the subroutines 7370 */ 7371 sqlite3VdbeGoto(v, addrEnd); 7372 7373 /* Generate a subroutine that outputs a single row of the result 7374 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7375 ** is less than or equal to zero, the subroutine is a no-op. If 7376 ** the processing calls for the query to abort, this subroutine 7377 ** increments the iAbortFlag memory location before returning in 7378 ** order to signal the caller to abort. 7379 */ 7380 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7381 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7382 VdbeComment((v, "set abort flag")); 7383 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7384 sqlite3VdbeResolveLabel(v, addrOutputRow); 7385 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7386 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7387 VdbeCoverage(v); 7388 VdbeComment((v, "Groupby result generator entry point")); 7389 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7390 finalizeAggFunctions(pParse, pAggInfo); 7391 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7392 selectInnerLoop(pParse, p, -1, &sSort, 7393 &sDistinct, pDest, 7394 addrOutputRow+1, addrSetAbort); 7395 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7396 VdbeComment((v, "end groupby result generator")); 7397 7398 /* Generate a subroutine that will reset the group-by accumulator 7399 */ 7400 sqlite3VdbeResolveLabel(v, addrReset); 7401 resetAccumulator(pParse, pAggInfo); 7402 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7403 VdbeComment((v, "indicate accumulator empty")); 7404 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7405 7406 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7407 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7408 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7409 } 7410 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7411 else { 7412 Table *pTab; 7413 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7414 /* If isSimpleCount() returns a pointer to a Table structure, then 7415 ** the SQL statement is of the form: 7416 ** 7417 ** SELECT count(*) FROM <tbl> 7418 ** 7419 ** where the Table structure returned represents table <tbl>. 7420 ** 7421 ** This statement is so common that it is optimized specially. The 7422 ** OP_Count instruction is executed either on the intkey table that 7423 ** contains the data for table <tbl> or on one of its indexes. It 7424 ** is better to execute the op on an index, as indexes are almost 7425 ** always spread across less pages than their corresponding tables. 7426 */ 7427 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7428 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7429 Index *pIdx; /* Iterator variable */ 7430 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7431 Index *pBest = 0; /* Best index found so far */ 7432 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7433 7434 sqlite3CodeVerifySchema(pParse, iDb); 7435 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7436 7437 /* Search for the index that has the lowest scan cost. 7438 ** 7439 ** (2011-04-15) Do not do a full scan of an unordered index. 7440 ** 7441 ** (2013-10-03) Do not count the entries in a partial index. 7442 ** 7443 ** In practice the KeyInfo structure will not be used. It is only 7444 ** passed to keep OP_OpenRead happy. 7445 */ 7446 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7447 if( !p->pSrc->a[0].fg.notIndexed ){ 7448 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7449 if( pIdx->bUnordered==0 7450 && pIdx->szIdxRow<pTab->szTabRow 7451 && pIdx->pPartIdxWhere==0 7452 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7453 ){ 7454 pBest = pIdx; 7455 } 7456 } 7457 } 7458 if( pBest ){ 7459 iRoot = pBest->tnum; 7460 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7461 } 7462 7463 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7464 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7465 if( pKeyInfo ){ 7466 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7467 } 7468 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7469 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7470 explainSimpleCount(pParse, pTab, pBest); 7471 }else{ 7472 int regAcc = 0; /* "populate accumulators" flag */ 7473 ExprList *pDistinct = 0; 7474 u16 distFlag = 0; 7475 int eDist; 7476 7477 /* If there are accumulator registers but no min() or max() functions 7478 ** without FILTER clauses, allocate register regAcc. Register regAcc 7479 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7480 ** The code generated by updateAccumulator() uses this to ensure 7481 ** that the accumulator registers are (a) updated only once if 7482 ** there are no min() or max functions or (b) always updated for the 7483 ** first row visited by the aggregate, so that they are updated at 7484 ** least once even if the FILTER clause means the min() or max() 7485 ** function visits zero rows. */ 7486 if( pAggInfo->nAccumulator ){ 7487 for(i=0; i<pAggInfo->nFunc; i++){ 7488 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7489 continue; 7490 } 7491 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7492 break; 7493 } 7494 } 7495 if( i==pAggInfo->nFunc ){ 7496 regAcc = ++pParse->nMem; 7497 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7498 } 7499 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7500 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7501 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7502 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7503 } 7504 7505 /* This case runs if the aggregate has no GROUP BY clause. The 7506 ** processing is much simpler since there is only a single row 7507 ** of output. 7508 */ 7509 assert( p->pGroupBy==0 ); 7510 resetAccumulator(pParse, pAggInfo); 7511 7512 /* If this query is a candidate for the min/max optimization, then 7513 ** minMaxFlag will have been previously set to either 7514 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7515 ** be an appropriate ORDER BY expression for the optimization. 7516 */ 7517 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7518 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7519 7520 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7521 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7522 pDistinct, 0, minMaxFlag|distFlag, 0); 7523 if( pWInfo==0 ){ 7524 goto select_end; 7525 } 7526 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7527 eDist = sqlite3WhereIsDistinct(pWInfo); 7528 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7529 if( eDist!=WHERE_DISTINCT_NOOP ){ 7530 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7531 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7532 } 7533 7534 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7535 if( minMaxFlag ){ 7536 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7537 } 7538 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7539 sqlite3WhereEnd(pWInfo); 7540 finalizeAggFunctions(pParse, pAggInfo); 7541 } 7542 7543 sSort.pOrderBy = 0; 7544 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7545 selectInnerLoop(pParse, p, -1, 0, 0, 7546 pDest, addrEnd, addrEnd); 7547 } 7548 sqlite3VdbeResolveLabel(v, addrEnd); 7549 7550 } /* endif aggregate query */ 7551 7552 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7553 explainTempTable(pParse, "DISTINCT"); 7554 } 7555 7556 /* If there is an ORDER BY clause, then we need to sort the results 7557 ** and send them to the callback one by one. 7558 */ 7559 if( sSort.pOrderBy ){ 7560 explainTempTable(pParse, 7561 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7562 assert( p->pEList==pEList ); 7563 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7564 } 7565 7566 /* Jump here to skip this query 7567 */ 7568 sqlite3VdbeResolveLabel(v, iEnd); 7569 7570 /* The SELECT has been coded. If there is an error in the Parse structure, 7571 ** set the return code to 1. Otherwise 0. */ 7572 rc = (pParse->nErr>0); 7573 7574 /* Control jumps to here if an error is encountered above, or upon 7575 ** successful coding of the SELECT. 7576 */ 7577 select_end: 7578 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7579 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7580 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7581 #ifdef SQLITE_DEBUG 7582 if( pAggInfo && !db->mallocFailed ){ 7583 for(i=0; i<pAggInfo->nColumn; i++){ 7584 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7585 assert( pExpr!=0 ); 7586 assert( pExpr->pAggInfo==pAggInfo ); 7587 assert( pExpr->iAgg==i ); 7588 } 7589 for(i=0; i<pAggInfo->nFunc; i++){ 7590 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7591 assert( pExpr!=0 ); 7592 assert( pExpr->pAggInfo==pAggInfo ); 7593 assert( pExpr->iAgg==i ); 7594 } 7595 } 7596 #endif 7597 7598 #if TREETRACE_ENABLED 7599 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7600 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7601 sqlite3TreeViewSelect(0, p, 0); 7602 } 7603 #endif 7604 ExplainQueryPlanPop(pParse); 7605 return rc; 7606 } 7607