xref: /sqlite-3.40.0/src/select.c (revision c583719b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 **
208 ** These are the valid join types:
209 **
210 **
211 **      pA       pB       pC               Return Value
212 **     -------  -----    -----             ------------
213 **     CROSS      -        -                 JT_CROSS
214 **     INNER      -        -                 JT_INNER
215 **     LEFT       -        -                 JT_LEFT|JT_OUTER
216 **     LEFT     OUTER      -                 JT_LEFT|JT_OUTER
217 **     RIGHT      -        -                 JT_RIGHT|JT_OUTER
218 **     RIGHT    OUTER      -                 JT_RIGHT|JT_OUTER
219 **     FULL       -        -                 JT_LEFT|JT_RIGHT|JT_OUTER
220 **     FULL     OUTER      -                 JT_LEFT|JT_RIGHT|JT_OUTER
221 **     NATURAL  INNER      -                 JT_NATURAL|JT_INNER
222 **     NATURAL  LEFT       -                 JT_NATURAL|JT_LEFT|JT_OUTER
223 **     NATURAL  LEFT     OUTER               JT_NATURAL|JT_LEFT|JT_OUTER
224 **     NATURAL  RIGHT      -                 JT_NATURAL|JT_RIGHT|JT_OUTER
225 **     NATURAL  RIGHT    OUTER               JT_NATURAL|JT_RIGHT|JT_OUTER
226 **     NATURAL  FULL       -                 JT_NATURAL|JT_LEFT|JT_RIGHT
227 **     NATURAL  FULL     OUTER               JT_NATRUAL|JT_LEFT|JT_RIGHT
228 **
229 ** To preserve historical compatibly, SQLite also accepts a variety
230 ** of other non-standard and in many cases non-sensical join types.
231 ** This routine makes as much sense at it can from the nonsense join
232 ** type and returns a result.  Examples of accepted nonsense join types
233 ** include but are not limited to:
234 **
235 **          INNER CROSS JOIN        ->   same as JOIN
236 **          NATURAL CROSS JOIN      ->   same as NATURAL JOIN
237 **          OUTER LEFT JOIN         ->   same as LEFT JOIN
238 **          LEFT NATURAL JOIN       ->   same as NATURAL LEFT JOIN
239 **          LEFT RIGHT JOIN         ->   same as FULL JOIN
240 **          RIGHT OUTER FULL JOIN   ->   same as FULL JOIN
241 **          CROSS CROSS CROSS JOIN  ->   same as JOIN
242 **
243 ** The only restrictions on the join type name are:
244 **
245 **    *   "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
246 **        or "FULL".
247 **
248 **    *   "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
249 **        or "FULL".
250 **
251 **    *   If "OUTER" is present then there must also be one of
252 **        "LEFT", "RIGHT", or "FULL"
253 */
254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
255   int jointype = 0;
256   Token *apAll[3];
257   Token *p;
258                              /*   0123456789 123456789 123456789 123 */
259   static const char zKeyText[] = "naturaleftouterightfullinnercross";
260   static const struct {
261     u8 i;        /* Beginning of keyword text in zKeyText[] */
262     u8 nChar;    /* Length of the keyword in characters */
263     u8 code;     /* Join type mask */
264   } aKeyword[] = {
265     /* (0) natural */ { 0,  7, JT_NATURAL                },
266     /* (1) left    */ { 6,  4, JT_LEFT|JT_OUTER          },
267     /* (2) outer   */ { 10, 5, JT_OUTER                  },
268     /* (3) right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
269     /* (4) full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
270     /* (5) inner   */ { 23, 5, JT_INNER                  },
271     /* (6) cross   */ { 28, 5, JT_INNER|JT_CROSS         },
272   };
273   int i, j;
274   apAll[0] = pA;
275   apAll[1] = pB;
276   apAll[2] = pC;
277   for(i=0; i<3 && apAll[i]; i++){
278     p = apAll[i];
279     for(j=0; j<ArraySize(aKeyword); j++){
280       if( p->n==aKeyword[j].nChar
281           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
282         jointype |= aKeyword[j].code;
283         break;
284       }
285     }
286     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
287     if( j>=ArraySize(aKeyword) ){
288       jointype |= JT_ERROR;
289       break;
290     }
291   }
292   if(
293      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
294      (jointype & JT_ERROR)!=0 ||
295      (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
296   ){
297     const char *zSp1 = " ";
298     const char *zSp2 = " ";
299     if( pB==0 ){ zSp1++; }
300     if( pC==0 ){ zSp2++; }
301     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
302        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
303     jointype = JT_INNER;
304   }
305   return jointype;
306 }
307 
308 /*
309 ** Return the index of a column in a table.  Return -1 if the column
310 ** is not contained in the table.
311 */
312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
313   int i;
314   u8 h = sqlite3StrIHash(zCol);
315   Column *pCol;
316   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
317     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
318   }
319   return -1;
320 }
321 
322 /*
323 ** Search the first N tables in pSrc, from left to right, looking for a
324 ** table that has a column named zCol.
325 **
326 ** When found, set *piTab and *piCol to the table index and column index
327 ** of the matching column and return TRUE.
328 **
329 ** If not found, return FALSE.
330 */
331 static int tableAndColumnIndex(
332   SrcList *pSrc,       /* Array of tables to search */
333   int N,               /* Number of tables in pSrc->a[] to search */
334   const char *zCol,    /* Name of the column we are looking for */
335   int *piTab,          /* Write index of pSrc->a[] here */
336   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
337   int bIgnoreHidden    /* True to ignore hidden columns */
338 ){
339   int i;               /* For looping over tables in pSrc */
340   int iCol;            /* Index of column matching zCol */
341 
342   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
343   for(i=0; i<N; i++){
344     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
345     if( iCol>=0
346      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
347     ){
348       if( piTab ){
349         *piTab = i;
350         *piCol = iCol;
351       }
352       return 1;
353     }
354   }
355   return 0;
356 }
357 
358 /*
359 ** This function is used to add terms implied by JOIN syntax to the
360 ** WHERE clause expression of a SELECT statement. The new term, which
361 ** is ANDed with the existing WHERE clause, is of the form:
362 **
363 **    (tab1.col1 = tab2.col2)
364 **
365 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
366 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
367 ** column iColRight of tab2.
368 */
369 static void addWhereTerm(
370   Parse *pParse,                  /* Parsing context */
371   SrcList *pSrc,                  /* List of tables in FROM clause */
372   int iLeft,                      /* Index of first table to join in pSrc */
373   int iColLeft,                   /* Index of column in first table */
374   int iRight,                     /* Index of second table in pSrc */
375   int iColRight,                  /* Index of column in second table */
376   u32 joinType,                   /* EP_FromJoin or EP_InnerJoin */
377   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
378 ){
379   sqlite3 *db = pParse->db;
380   Expr *pE1;
381   Expr *pE2;
382   Expr *pEq;
383 
384   assert( iLeft<iRight );
385   assert( pSrc->nSrc>iRight );
386   assert( pSrc->a[iLeft].pTab );
387   assert( pSrc->a[iRight].pTab );
388 
389   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
390   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
391 
392   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
393   assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
394                                ** in sqlite3DbMallocRawNN() called from
395                                ** sqlite3PExpr(). */
396   if( pEq ){
397     ExprSetProperty(pEq, joinType);
398     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
399     ExprSetVVAProperty(pEq, EP_NoReduce);
400     pEq->w.iJoin = pE2->iTable;
401   }
402   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
403 }
404 
405 /*
406 ** Set the EP_FromJoin property on all terms of the given expression.
407 ** And set the Expr.w.iJoin to iTable for every term in the
408 ** expression.
409 **
410 ** The EP_FromJoin property is used on terms of an expression to tell
411 ** the OUTER JOIN processing logic that this term is part of the
412 ** join restriction specified in the ON or USING clause and not a part
413 ** of the more general WHERE clause.  These terms are moved over to the
414 ** WHERE clause during join processing but we need to remember that they
415 ** originated in the ON or USING clause.
416 **
417 ** The Expr.w.iJoin tells the WHERE clause processing that the
418 ** expression depends on table w.iJoin even if that table is not
419 ** explicitly mentioned in the expression.  That information is needed
420 ** for cases like this:
421 **
422 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
423 **
424 ** The where clause needs to defer the handling of the t1.x=5
425 ** term until after the t2 loop of the join.  In that way, a
426 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
427 ** defer the handling of t1.x=5, it will be processed immediately
428 ** after the t1 loop and rows with t1.x!=5 will never appear in
429 ** the output, which is incorrect.
430 */
431 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
432   assert( joinFlag==EP_FromJoin || joinFlag==EP_InnerJoin );
433   while( p ){
434     ExprSetProperty(p, joinFlag);
435     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
436     ExprSetVVAProperty(p, EP_NoReduce);
437     p->w.iJoin = iTable;
438     if( p->op==TK_FUNCTION ){
439       assert( ExprUseXList(p) );
440       if( p->x.pList ){
441         int i;
442         for(i=0; i<p->x.pList->nExpr; i++){
443           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
444         }
445       }
446     }
447     sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
448     p = p->pRight;
449   }
450 }
451 
452 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
453 ** term that is marked with EP_FromJoin and w.iJoin==iTable into
454 ** an ordinary term that omits the EP_FromJoin mark.
455 **
456 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
457 */
458 static void unsetJoinExpr(Expr *p, int iTable){
459   while( p ){
460     if( ExprHasProperty(p, EP_FromJoin)
461      && (iTable<0 || p->w.iJoin==iTable) ){
462       ExprClearProperty(p, EP_FromJoin);
463       ExprSetProperty(p, EP_InnerJoin);
464     }
465     if( p->op==TK_COLUMN && p->iTable==iTable ){
466       ExprClearProperty(p, EP_CanBeNull);
467     }
468     if( p->op==TK_FUNCTION ){
469       assert( ExprUseXList(p) );
470       if( p->x.pList ){
471         int i;
472         for(i=0; i<p->x.pList->nExpr; i++){
473           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
474         }
475       }
476     }
477     unsetJoinExpr(p->pLeft, iTable);
478     p = p->pRight;
479   }
480 }
481 
482 /*
483 ** This routine processes the join information for a SELECT statement.
484 ** ON and USING clauses are converted into extra terms of the WHERE clause.
485 ** NATURAL joins also create extra WHERE clause terms.
486 **
487 ** The terms of a FROM clause are contained in the Select.pSrc structure.
488 ** The left most table is the first entry in Select.pSrc.  The right-most
489 ** table is the last entry.  The join operator is held in the entry to
490 ** the left.  Thus entry 0 contains the join operator for the join between
491 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
492 ** also attached to the left entry.
493 **
494 ** This routine returns the number of errors encountered.
495 */
496 static int sqliteProcessJoin(Parse *pParse, Select *p){
497   SrcList *pSrc;                  /* All tables in the FROM clause */
498   int i, j;                       /* Loop counters */
499   SrcItem *pLeft;                 /* Left table being joined */
500   SrcItem *pRight;                /* Right table being joined */
501 
502   pSrc = p->pSrc;
503   pLeft = &pSrc->a[0];
504   pRight = &pLeft[1];
505   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
506     Table *pRightTab = pRight->pTab;
507     u32 joinType;
508 
509     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
510     joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_FromJoin : EP_InnerJoin;
511 
512     /* When the NATURAL keyword is present, add WHERE clause terms for
513     ** every column that the two tables have in common.
514     */
515     if( pRight->fg.jointype & JT_NATURAL ){
516       if( pRight->fg.isUsing || pRight->u3.pOn ){
517         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
518            "an ON or USING clause", 0);
519         return 1;
520       }
521       for(j=0; j<pRightTab->nCol; j++){
522         char *zName;   /* Name of column in the right table */
523         int iLeft;     /* Matching left table */
524         int iLeftCol;  /* Matching column in the left table */
525 
526         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
527         zName = pRightTab->aCol[j].zCnName;
528         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
529           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
530                 joinType, &p->pWhere);
531         }
532       }
533     }
534 
535     /* Create extra terms on the WHERE clause for each column named
536     ** in the USING clause.  Example: If the two tables to be joined are
537     ** A and B and the USING clause names X, Y, and Z, then add this
538     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
539     ** Report an error if any column mentioned in the USING clause is
540     ** not contained in both tables to be joined.
541     */
542     if( pRight->fg.isUsing ){
543       IdList *pList = pRight->u3.pUsing;
544       assert( pList!=0 );
545       for(j=0; j<pList->nId; j++){
546         char *zName;     /* Name of the term in the USING clause */
547         int iLeft;       /* Table on the left with matching column name */
548         int iLeftCol;    /* Column number of matching column on the left */
549         int iRightCol;   /* Column number of matching column on the right */
550 
551         zName = pList->a[j].zName;
552         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
553         if( iRightCol<0
554          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
555         ){
556           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
557             "not present in both tables", zName);
558           return 1;
559         }
560         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
561                      joinType, &p->pWhere);
562       }
563     }
564 
565     /* Add the ON clause to the end of the WHERE clause, connected by
566     ** an AND operator.
567     */
568     else if( pRight->u3.pOn ){
569       sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
570       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
571       pRight->u3.pOn = 0;
572     }
573   }
574   return 0;
575 }
576 
577 /*
578 ** An instance of this object holds information (beyond pParse and pSelect)
579 ** needed to load the next result row that is to be added to the sorter.
580 */
581 typedef struct RowLoadInfo RowLoadInfo;
582 struct RowLoadInfo {
583   int regResult;               /* Store results in array of registers here */
584   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
585 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
586   ExprList *pExtra;            /* Extra columns needed by sorter refs */
587   int regExtraResult;          /* Where to load the extra columns */
588 #endif
589 };
590 
591 /*
592 ** This routine does the work of loading query data into an array of
593 ** registers so that it can be added to the sorter.
594 */
595 static void innerLoopLoadRow(
596   Parse *pParse,             /* Statement under construction */
597   Select *pSelect,           /* The query being coded */
598   RowLoadInfo *pInfo         /* Info needed to complete the row load */
599 ){
600   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
601                           0, pInfo->ecelFlags);
602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
603   if( pInfo->pExtra ){
604     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
605     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
606   }
607 #endif
608 }
609 
610 /*
611 ** Code the OP_MakeRecord instruction that generates the entry to be
612 ** added into the sorter.
613 **
614 ** Return the register in which the result is stored.
615 */
616 static int makeSorterRecord(
617   Parse *pParse,
618   SortCtx *pSort,
619   Select *pSelect,
620   int regBase,
621   int nBase
622 ){
623   int nOBSat = pSort->nOBSat;
624   Vdbe *v = pParse->pVdbe;
625   int regOut = ++pParse->nMem;
626   if( pSort->pDeferredRowLoad ){
627     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
628   }
629   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
630   return regOut;
631 }
632 
633 /*
634 ** Generate code that will push the record in registers regData
635 ** through regData+nData-1 onto the sorter.
636 */
637 static void pushOntoSorter(
638   Parse *pParse,         /* Parser context */
639   SortCtx *pSort,        /* Information about the ORDER BY clause */
640   Select *pSelect,       /* The whole SELECT statement */
641   int regData,           /* First register holding data to be sorted */
642   int regOrigData,       /* First register holding data before packing */
643   int nData,             /* Number of elements in the regData data array */
644   int nPrefixReg         /* No. of reg prior to regData available for use */
645 ){
646   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
647   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
648   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
649   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
650   int regBase;                                     /* Regs for sorter record */
651   int regRecord = 0;                               /* Assembled sorter record */
652   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
653   int op;                            /* Opcode to add sorter record to sorter */
654   int iLimit;                        /* LIMIT counter */
655   int iSkip = 0;                     /* End of the sorter insert loop */
656 
657   assert( bSeq==0 || bSeq==1 );
658 
659   /* Three cases:
660   **   (1) The data to be sorted has already been packed into a Record
661   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
662   **       will be completely unrelated to regOrigData.
663   **   (2) All output columns are included in the sort record.  In that
664   **       case regData==regOrigData.
665   **   (3) Some output columns are omitted from the sort record due to
666   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
667   **       SQLITE_ECEL_OMITREF optimization, or due to the
668   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
669   **       regOrigData is 0 to prevent this routine from trying to copy
670   **       values that might not yet exist.
671   */
672   assert( nData==1 || regData==regOrigData || regOrigData==0 );
673 
674   if( nPrefixReg ){
675     assert( nPrefixReg==nExpr+bSeq );
676     regBase = regData - nPrefixReg;
677   }else{
678     regBase = pParse->nMem + 1;
679     pParse->nMem += nBase;
680   }
681   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
682   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
683   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
684   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
685                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
686   if( bSeq ){
687     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
688   }
689   if( nPrefixReg==0 && nData>0 ){
690     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
691   }
692   if( nOBSat>0 ){
693     int regPrevKey;   /* The first nOBSat columns of the previous row */
694     int addrFirst;    /* Address of the OP_IfNot opcode */
695     int addrJmp;      /* Address of the OP_Jump opcode */
696     VdbeOp *pOp;      /* Opcode that opens the sorter */
697     int nKey;         /* Number of sorting key columns, including OP_Sequence */
698     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
699 
700     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
701     regPrevKey = pParse->nMem+1;
702     pParse->nMem += pSort->nOBSat;
703     nKey = nExpr - pSort->nOBSat + bSeq;
704     if( bSeq ){
705       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
706     }else{
707       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
708     }
709     VdbeCoverage(v);
710     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
711     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
712     if( pParse->db->mallocFailed ) return;
713     pOp->p2 = nKey + nData;
714     pKI = pOp->p4.pKeyInfo;
715     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
716     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
717     testcase( pKI->nAllField > pKI->nKeyField+2 );
718     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
719                                            pKI->nAllField-pKI->nKeyField-1);
720     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
721     addrJmp = sqlite3VdbeCurrentAddr(v);
722     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
723     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
724     pSort->regReturn = ++pParse->nMem;
725     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
726     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
727     if( iLimit ){
728       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
729       VdbeCoverage(v);
730     }
731     sqlite3VdbeJumpHere(v, addrFirst);
732     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
733     sqlite3VdbeJumpHere(v, addrJmp);
734   }
735   if( iLimit ){
736     /* At this point the values for the new sorter entry are stored
737     ** in an array of registers. They need to be composed into a record
738     ** and inserted into the sorter if either (a) there are currently
739     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
740     ** the largest record currently in the sorter. If (b) is true and there
741     ** are already LIMIT+OFFSET items in the sorter, delete the largest
742     ** entry before inserting the new one. This way there are never more
743     ** than LIMIT+OFFSET items in the sorter.
744     **
745     ** If the new record does not need to be inserted into the sorter,
746     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
747     ** value is not zero, then it is a label of where to jump.  Otherwise,
748     ** just bypass the row insert logic.  See the header comment on the
749     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
750     */
751     int iCsr = pSort->iECursor;
752     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
753     VdbeCoverage(v);
754     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
755     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
756                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
757     VdbeCoverage(v);
758     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
759   }
760   if( regRecord==0 ){
761     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
762   }
763   if( pSort->sortFlags & SORTFLAG_UseSorter ){
764     op = OP_SorterInsert;
765   }else{
766     op = OP_IdxInsert;
767   }
768   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
769                        regBase+nOBSat, nBase-nOBSat);
770   if( iSkip ){
771     sqlite3VdbeChangeP2(v, iSkip,
772          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
773   }
774 }
775 
776 /*
777 ** Add code to implement the OFFSET
778 */
779 static void codeOffset(
780   Vdbe *v,          /* Generate code into this VM */
781   int iOffset,      /* Register holding the offset counter */
782   int iContinue     /* Jump here to skip the current record */
783 ){
784   if( iOffset>0 ){
785     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
786     VdbeComment((v, "OFFSET"));
787   }
788 }
789 
790 /*
791 ** Add code that will check to make sure the array of registers starting at
792 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
793 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
794 ** are available. Which is used depends on the value of parameter eTnctType,
795 ** as follows:
796 **
797 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
798 **     Build an ephemeral table that contains all entries seen before and
799 **     skip entries which have been seen before.
800 **
801 **     Parameter iTab is the cursor number of an ephemeral table that must
802 **     be opened before the VM code generated by this routine is executed.
803 **     The ephemeral cursor table is queried for a record identical to the
804 **     record formed by the current array of registers. If one is found,
805 **     jump to VM address addrRepeat. Otherwise, insert a new record into
806 **     the ephemeral cursor and proceed.
807 **
808 **     The returned value in this case is a copy of parameter iTab.
809 **
810 **   WHERE_DISTINCT_ORDERED:
811 **     In this case rows are being delivered sorted order. The ephermal
812 **     table is not required. Instead, the current set of values
813 **     is compared against previous row. If they match, the new row
814 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
815 **     the VM program proceeds with processing the new row.
816 **
817 **     The returned value in this case is the register number of the first
818 **     in an array of registers used to store the previous result row so that
819 **     it can be compared to the next. The caller must ensure that this
820 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
821 **     will take care of this initialization.)
822 **
823 **   WHERE_DISTINCT_UNIQUE:
824 **     In this case it has already been determined that the rows are distinct.
825 **     No special action is required. The return value is zero.
826 **
827 ** Parameter pEList is the list of expressions used to generated the
828 ** contents of each row. It is used by this routine to determine (a)
829 ** how many elements there are in the array of registers and (b) the
830 ** collation sequences that should be used for the comparisons if
831 ** eTnctType is WHERE_DISTINCT_ORDERED.
832 */
833 static int codeDistinct(
834   Parse *pParse,     /* Parsing and code generating context */
835   int eTnctType,     /* WHERE_DISTINCT_* value */
836   int iTab,          /* A sorting index used to test for distinctness */
837   int addrRepeat,    /* Jump to here if not distinct */
838   ExprList *pEList,  /* Expression for each element */
839   int regElem        /* First element */
840 ){
841   int iRet = 0;
842   int nResultCol = pEList->nExpr;
843   Vdbe *v = pParse->pVdbe;
844 
845   switch( eTnctType ){
846     case WHERE_DISTINCT_ORDERED: {
847       int i;
848       int iJump;              /* Jump destination */
849       int regPrev;            /* Previous row content */
850 
851       /* Allocate space for the previous row */
852       iRet = regPrev = pParse->nMem+1;
853       pParse->nMem += nResultCol;
854 
855       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
856       for(i=0; i<nResultCol; i++){
857         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
858         if( i<nResultCol-1 ){
859           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
860           VdbeCoverage(v);
861         }else{
862           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
863           VdbeCoverage(v);
864          }
865         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
866         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
867       }
868       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
869       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
870       break;
871     }
872 
873     case WHERE_DISTINCT_UNIQUE: {
874       /* nothing to do */
875       break;
876     }
877 
878     default: {
879       int r1 = sqlite3GetTempReg(pParse);
880       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
881       VdbeCoverage(v);
882       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
883       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
884       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
885       sqlite3ReleaseTempReg(pParse, r1);
886       iRet = iTab;
887       break;
888     }
889   }
890 
891   return iRet;
892 }
893 
894 /*
895 ** This routine runs after codeDistinct().  It makes necessary
896 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
897 ** routine made use of.  This processing must be done separately since
898 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
899 ** laid down.
900 **
901 ** WHERE_DISTINCT_NOOP:
902 ** WHERE_DISTINCT_UNORDERED:
903 **
904 **     No adjustments necessary.  This function is a no-op.
905 **
906 ** WHERE_DISTINCT_UNIQUE:
907 **
908 **     The ephemeral table is not needed.  So change the
909 **     OP_OpenEphemeral opcode into an OP_Noop.
910 **
911 ** WHERE_DISTINCT_ORDERED:
912 **
913 **     The ephemeral table is not needed.  But we do need register
914 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
915 **     into an OP_Null on the iVal register.
916 */
917 static void fixDistinctOpenEph(
918   Parse *pParse,     /* Parsing and code generating context */
919   int eTnctType,     /* WHERE_DISTINCT_* value */
920   int iVal,          /* Value returned by codeDistinct() */
921   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
922 ){
923   if( pParse->nErr==0
924    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
925   ){
926     Vdbe *v = pParse->pVdbe;
927     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
928     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
929       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
930     }
931     if( eTnctType==WHERE_DISTINCT_ORDERED ){
932       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
933       ** bit on the first register of the previous value.  This will cause the
934       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
935       ** the loop even if the first row is all NULLs.  */
936       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
937       pOp->opcode = OP_Null;
938       pOp->p1 = 1;
939       pOp->p2 = iVal;
940     }
941   }
942 }
943 
944 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
945 /*
946 ** This function is called as part of inner-loop generation for a SELECT
947 ** statement with an ORDER BY that is not optimized by an index. It
948 ** determines the expressions, if any, that the sorter-reference
949 ** optimization should be used for. The sorter-reference optimization
950 ** is used for SELECT queries like:
951 **
952 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
953 **
954 ** If the optimization is used for expression "bigblob", then instead of
955 ** storing values read from that column in the sorter records, the PK of
956 ** the row from table t1 is stored instead. Then, as records are extracted from
957 ** the sorter to return to the user, the required value of bigblob is
958 ** retrieved directly from table t1. If the values are very large, this
959 ** can be more efficient than storing them directly in the sorter records.
960 **
961 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
962 ** for which the sorter-reference optimization should be enabled.
963 ** Additionally, the pSort->aDefer[] array is populated with entries
964 ** for all cursors required to evaluate all selected expressions. Finally.
965 ** output variable (*ppExtra) is set to an expression list containing
966 ** expressions for all extra PK values that should be stored in the
967 ** sorter records.
968 */
969 static void selectExprDefer(
970   Parse *pParse,                  /* Leave any error here */
971   SortCtx *pSort,                 /* Sorter context */
972   ExprList *pEList,               /* Expressions destined for sorter */
973   ExprList **ppExtra              /* Expressions to append to sorter record */
974 ){
975   int i;
976   int nDefer = 0;
977   ExprList *pExtra = 0;
978   for(i=0; i<pEList->nExpr; i++){
979     struct ExprList_item *pItem = &pEList->a[i];
980     if( pItem->u.x.iOrderByCol==0 ){
981       Expr *pExpr = pItem->pExpr;
982       Table *pTab;
983       if( pExpr->op==TK_COLUMN
984        && pExpr->iColumn>=0
985        && ALWAYS( ExprUseYTab(pExpr) )
986        && (pTab = pExpr->y.pTab)!=0
987        && IsOrdinaryTable(pTab)
988        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
989       ){
990         int j;
991         for(j=0; j<nDefer; j++){
992           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
993         }
994         if( j==nDefer ){
995           if( nDefer==ArraySize(pSort->aDefer) ){
996             continue;
997           }else{
998             int nKey = 1;
999             int k;
1000             Index *pPk = 0;
1001             if( !HasRowid(pTab) ){
1002               pPk = sqlite3PrimaryKeyIndex(pTab);
1003               nKey = pPk->nKeyCol;
1004             }
1005             for(k=0; k<nKey; k++){
1006               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1007               if( pNew ){
1008                 pNew->iTable = pExpr->iTable;
1009                 assert( ExprUseYTab(pNew) );
1010                 pNew->y.pTab = pExpr->y.pTab;
1011                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1012                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1013               }
1014             }
1015             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1016             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1017             pSort->aDefer[nDefer].nKey = nKey;
1018             nDefer++;
1019           }
1020         }
1021         pItem->bSorterRef = 1;
1022       }
1023     }
1024   }
1025   pSort->nDefer = (u8)nDefer;
1026   *ppExtra = pExtra;
1027 }
1028 #endif
1029 
1030 /*
1031 ** This routine generates the code for the inside of the inner loop
1032 ** of a SELECT.
1033 **
1034 ** If srcTab is negative, then the p->pEList expressions
1035 ** are evaluated in order to get the data for this row.  If srcTab is
1036 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1037 ** to get the number of columns and the collation sequence for each column.
1038 */
1039 static void selectInnerLoop(
1040   Parse *pParse,          /* The parser context */
1041   Select *p,              /* The complete select statement being coded */
1042   int srcTab,             /* Pull data from this table if non-negative */
1043   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1044   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1045   SelectDest *pDest,      /* How to dispose of the results */
1046   int iContinue,          /* Jump here to continue with next row */
1047   int iBreak              /* Jump here to break out of the inner loop */
1048 ){
1049   Vdbe *v = pParse->pVdbe;
1050   int i;
1051   int hasDistinct;            /* True if the DISTINCT keyword is present */
1052   int eDest = pDest->eDest;   /* How to dispose of results */
1053   int iParm = pDest->iSDParm; /* First argument to disposal method */
1054   int nResultCol;             /* Number of result columns */
1055   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1056   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1057 
1058   /* Usually, regResult is the first cell in an array of memory cells
1059   ** containing the current result row. In this case regOrig is set to the
1060   ** same value. However, if the results are being sent to the sorter, the
1061   ** values for any expressions that are also part of the sort-key are omitted
1062   ** from this array. In this case regOrig is set to zero.  */
1063   int regResult;              /* Start of memory holding current results */
1064   int regOrig;                /* Start of memory holding full result (or 0) */
1065 
1066   assert( v );
1067   assert( p->pEList!=0 );
1068   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1069   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1070   if( pSort==0 && !hasDistinct ){
1071     assert( iContinue!=0 );
1072     codeOffset(v, p->iOffset, iContinue);
1073   }
1074 
1075   /* Pull the requested columns.
1076   */
1077   nResultCol = p->pEList->nExpr;
1078 
1079   if( pDest->iSdst==0 ){
1080     if( pSort ){
1081       nPrefixReg = pSort->pOrderBy->nExpr;
1082       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1083       pParse->nMem += nPrefixReg;
1084     }
1085     pDest->iSdst = pParse->nMem+1;
1086     pParse->nMem += nResultCol;
1087   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1088     /* This is an error condition that can result, for example, when a SELECT
1089     ** on the right-hand side of an INSERT contains more result columns than
1090     ** there are columns in the table on the left.  The error will be caught
1091     ** and reported later.  But we need to make sure enough memory is allocated
1092     ** to avoid other spurious errors in the meantime. */
1093     pParse->nMem += nResultCol;
1094   }
1095   pDest->nSdst = nResultCol;
1096   regOrig = regResult = pDest->iSdst;
1097   if( srcTab>=0 ){
1098     for(i=0; i<nResultCol; i++){
1099       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1100       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1101     }
1102   }else if( eDest!=SRT_Exists ){
1103 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1104     ExprList *pExtra = 0;
1105 #endif
1106     /* If the destination is an EXISTS(...) expression, the actual
1107     ** values returned by the SELECT are not required.
1108     */
1109     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1110     ExprList *pEList;
1111     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1112       ecelFlags = SQLITE_ECEL_DUP;
1113     }else{
1114       ecelFlags = 0;
1115     }
1116     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1117       /* For each expression in p->pEList that is a copy of an expression in
1118       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1119       ** iOrderByCol value to one more than the index of the ORDER BY
1120       ** expression within the sort-key that pushOntoSorter() will generate.
1121       ** This allows the p->pEList field to be omitted from the sorted record,
1122       ** saving space and CPU cycles.  */
1123       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1124 
1125       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1126         int j;
1127         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1128           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1129         }
1130       }
1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1132       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1133       if( pExtra && pParse->db->mallocFailed==0 ){
1134         /* If there are any extra PK columns to add to the sorter records,
1135         ** allocate extra memory cells and adjust the OpenEphemeral
1136         ** instruction to account for the larger records. This is only
1137         ** required if there are one or more WITHOUT ROWID tables with
1138         ** composite primary keys in the SortCtx.aDefer[] array.  */
1139         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1140         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1141         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1142         pParse->nMem += pExtra->nExpr;
1143       }
1144 #endif
1145 
1146       /* Adjust nResultCol to account for columns that are omitted
1147       ** from the sorter by the optimizations in this branch */
1148       pEList = p->pEList;
1149       for(i=0; i<pEList->nExpr; i++){
1150         if( pEList->a[i].u.x.iOrderByCol>0
1151 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1152          || pEList->a[i].bSorterRef
1153 #endif
1154         ){
1155           nResultCol--;
1156           regOrig = 0;
1157         }
1158       }
1159 
1160       testcase( regOrig );
1161       testcase( eDest==SRT_Set );
1162       testcase( eDest==SRT_Mem );
1163       testcase( eDest==SRT_Coroutine );
1164       testcase( eDest==SRT_Output );
1165       assert( eDest==SRT_Set || eDest==SRT_Mem
1166            || eDest==SRT_Coroutine || eDest==SRT_Output
1167            || eDest==SRT_Upfrom );
1168     }
1169     sRowLoadInfo.regResult = regResult;
1170     sRowLoadInfo.ecelFlags = ecelFlags;
1171 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1172     sRowLoadInfo.pExtra = pExtra;
1173     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1174     if( pExtra ) nResultCol += pExtra->nExpr;
1175 #endif
1176     if( p->iLimit
1177      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1178      && nPrefixReg>0
1179     ){
1180       assert( pSort!=0 );
1181       assert( hasDistinct==0 );
1182       pSort->pDeferredRowLoad = &sRowLoadInfo;
1183       regOrig = 0;
1184     }else{
1185       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1186     }
1187   }
1188 
1189   /* If the DISTINCT keyword was present on the SELECT statement
1190   ** and this row has been seen before, then do not make this row
1191   ** part of the result.
1192   */
1193   if( hasDistinct ){
1194     int eType = pDistinct->eTnctType;
1195     int iTab = pDistinct->tabTnct;
1196     assert( nResultCol==p->pEList->nExpr );
1197     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1198     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1199     if( pSort==0 ){
1200       codeOffset(v, p->iOffset, iContinue);
1201     }
1202   }
1203 
1204   switch( eDest ){
1205     /* In this mode, write each query result to the key of the temporary
1206     ** table iParm.
1207     */
1208 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1209     case SRT_Union: {
1210       int r1;
1211       r1 = sqlite3GetTempReg(pParse);
1212       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1213       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1214       sqlite3ReleaseTempReg(pParse, r1);
1215       break;
1216     }
1217 
1218     /* Construct a record from the query result, but instead of
1219     ** saving that record, use it as a key to delete elements from
1220     ** the temporary table iParm.
1221     */
1222     case SRT_Except: {
1223       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1224       break;
1225     }
1226 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1227 
1228     /* Store the result as data using a unique key.
1229     */
1230     case SRT_Fifo:
1231     case SRT_DistFifo:
1232     case SRT_Table:
1233     case SRT_EphemTab: {
1234       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1235       testcase( eDest==SRT_Table );
1236       testcase( eDest==SRT_EphemTab );
1237       testcase( eDest==SRT_Fifo );
1238       testcase( eDest==SRT_DistFifo );
1239       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1240 #ifndef SQLITE_OMIT_CTE
1241       if( eDest==SRT_DistFifo ){
1242         /* If the destination is DistFifo, then cursor (iParm+1) is open
1243         ** on an ephemeral index. If the current row is already present
1244         ** in the index, do not write it to the output. If not, add the
1245         ** current row to the index and proceed with writing it to the
1246         ** output table as well.  */
1247         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1248         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1249         VdbeCoverage(v);
1250         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1251         assert( pSort==0 );
1252       }
1253 #endif
1254       if( pSort ){
1255         assert( regResult==regOrig );
1256         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1257       }else{
1258         int r2 = sqlite3GetTempReg(pParse);
1259         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1260         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1261         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1262         sqlite3ReleaseTempReg(pParse, r2);
1263       }
1264       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1265       break;
1266     }
1267 
1268     case SRT_Upfrom: {
1269       if( pSort ){
1270         pushOntoSorter(
1271             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1272       }else{
1273         int i2 = pDest->iSDParm2;
1274         int r1 = sqlite3GetTempReg(pParse);
1275 
1276         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1277         ** might still be trying to return one row, because that is what
1278         ** aggregates do.  Don't record that empty row in the output table. */
1279         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1280 
1281         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1282                           regResult+(i2<0), nResultCol-(i2<0), r1);
1283         if( i2<0 ){
1284           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1285         }else{
1286           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1287         }
1288       }
1289       break;
1290     }
1291 
1292 #ifndef SQLITE_OMIT_SUBQUERY
1293     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1294     ** then there should be a single item on the stack.  Write this
1295     ** item into the set table with bogus data.
1296     */
1297     case SRT_Set: {
1298       if( pSort ){
1299         /* At first glance you would think we could optimize out the
1300         ** ORDER BY in this case since the order of entries in the set
1301         ** does not matter.  But there might be a LIMIT clause, in which
1302         ** case the order does matter */
1303         pushOntoSorter(
1304             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1305       }else{
1306         int r1 = sqlite3GetTempReg(pParse);
1307         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1308         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1309             r1, pDest->zAffSdst, nResultCol);
1310         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1311         sqlite3ReleaseTempReg(pParse, r1);
1312       }
1313       break;
1314     }
1315 
1316 
1317     /* If any row exist in the result set, record that fact and abort.
1318     */
1319     case SRT_Exists: {
1320       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1321       /* The LIMIT clause will terminate the loop for us */
1322       break;
1323     }
1324 
1325     /* If this is a scalar select that is part of an expression, then
1326     ** store the results in the appropriate memory cell or array of
1327     ** memory cells and break out of the scan loop.
1328     */
1329     case SRT_Mem: {
1330       if( pSort ){
1331         assert( nResultCol<=pDest->nSdst );
1332         pushOntoSorter(
1333             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1334       }else{
1335         assert( nResultCol==pDest->nSdst );
1336         assert( regResult==iParm );
1337         /* The LIMIT clause will jump out of the loop for us */
1338       }
1339       break;
1340     }
1341 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1342 
1343     case SRT_Coroutine:       /* Send data to a co-routine */
1344     case SRT_Output: {        /* Return the results */
1345       testcase( eDest==SRT_Coroutine );
1346       testcase( eDest==SRT_Output );
1347       if( pSort ){
1348         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1349                        nPrefixReg);
1350       }else if( eDest==SRT_Coroutine ){
1351         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1352       }else{
1353         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1354       }
1355       break;
1356     }
1357 
1358 #ifndef SQLITE_OMIT_CTE
1359     /* Write the results into a priority queue that is order according to
1360     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1361     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1362     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1363     ** final OP_Sequence column.  The last column is the record as a blob.
1364     */
1365     case SRT_DistQueue:
1366     case SRT_Queue: {
1367       int nKey;
1368       int r1, r2, r3;
1369       int addrTest = 0;
1370       ExprList *pSO;
1371       pSO = pDest->pOrderBy;
1372       assert( pSO );
1373       nKey = pSO->nExpr;
1374       r1 = sqlite3GetTempReg(pParse);
1375       r2 = sqlite3GetTempRange(pParse, nKey+2);
1376       r3 = r2+nKey+1;
1377       if( eDest==SRT_DistQueue ){
1378         /* If the destination is DistQueue, then cursor (iParm+1) is open
1379         ** on a second ephemeral index that holds all values every previously
1380         ** added to the queue. */
1381         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1382                                         regResult, nResultCol);
1383         VdbeCoverage(v);
1384       }
1385       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1386       if( eDest==SRT_DistQueue ){
1387         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1388         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1389       }
1390       for(i=0; i<nKey; i++){
1391         sqlite3VdbeAddOp2(v, OP_SCopy,
1392                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1393                           r2+i);
1394       }
1395       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1396       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1397       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1398       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1399       sqlite3ReleaseTempReg(pParse, r1);
1400       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1401       break;
1402     }
1403 #endif /* SQLITE_OMIT_CTE */
1404 
1405 
1406 
1407 #if !defined(SQLITE_OMIT_TRIGGER)
1408     /* Discard the results.  This is used for SELECT statements inside
1409     ** the body of a TRIGGER.  The purpose of such selects is to call
1410     ** user-defined functions that have side effects.  We do not care
1411     ** about the actual results of the select.
1412     */
1413     default: {
1414       assert( eDest==SRT_Discard );
1415       break;
1416     }
1417 #endif
1418   }
1419 
1420   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1421   ** there is a sorter, in which case the sorter has already limited
1422   ** the output for us.
1423   */
1424   if( pSort==0 && p->iLimit ){
1425     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1426   }
1427 }
1428 
1429 /*
1430 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1431 ** X extra columns.
1432 */
1433 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1434   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1435   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1436   if( p ){
1437     p->aSortFlags = (u8*)&p->aColl[N+X];
1438     p->nKeyField = (u16)N;
1439     p->nAllField = (u16)(N+X);
1440     p->enc = ENC(db);
1441     p->db = db;
1442     p->nRef = 1;
1443     memset(&p[1], 0, nExtra);
1444   }else{
1445     return (KeyInfo*)sqlite3OomFault(db);
1446   }
1447   return p;
1448 }
1449 
1450 /*
1451 ** Deallocate a KeyInfo object
1452 */
1453 void sqlite3KeyInfoUnref(KeyInfo *p){
1454   if( p ){
1455     assert( p->nRef>0 );
1456     p->nRef--;
1457     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1458   }
1459 }
1460 
1461 /*
1462 ** Make a new pointer to a KeyInfo object
1463 */
1464 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1465   if( p ){
1466     assert( p->nRef>0 );
1467     p->nRef++;
1468   }
1469   return p;
1470 }
1471 
1472 #ifdef SQLITE_DEBUG
1473 /*
1474 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1475 ** can only be changed if this is just a single reference to the object.
1476 **
1477 ** This routine is used only inside of assert() statements.
1478 */
1479 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1480 #endif /* SQLITE_DEBUG */
1481 
1482 /*
1483 ** Given an expression list, generate a KeyInfo structure that records
1484 ** the collating sequence for each expression in that expression list.
1485 **
1486 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1487 ** KeyInfo structure is appropriate for initializing a virtual index to
1488 ** implement that clause.  If the ExprList is the result set of a SELECT
1489 ** then the KeyInfo structure is appropriate for initializing a virtual
1490 ** index to implement a DISTINCT test.
1491 **
1492 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1493 ** function is responsible for seeing that this structure is eventually
1494 ** freed.
1495 */
1496 KeyInfo *sqlite3KeyInfoFromExprList(
1497   Parse *pParse,       /* Parsing context */
1498   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1499   int iStart,          /* Begin with this column of pList */
1500   int nExtra           /* Add this many extra columns to the end */
1501 ){
1502   int nExpr;
1503   KeyInfo *pInfo;
1504   struct ExprList_item *pItem;
1505   sqlite3 *db = pParse->db;
1506   int i;
1507 
1508   nExpr = pList->nExpr;
1509   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1510   if( pInfo ){
1511     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1512     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1513       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1514       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1515     }
1516   }
1517   return pInfo;
1518 }
1519 
1520 /*
1521 ** Name of the connection operator, used for error messages.
1522 */
1523 const char *sqlite3SelectOpName(int id){
1524   char *z;
1525   switch( id ){
1526     case TK_ALL:       z = "UNION ALL";   break;
1527     case TK_INTERSECT: z = "INTERSECT";   break;
1528     case TK_EXCEPT:    z = "EXCEPT";      break;
1529     default:           z = "UNION";       break;
1530   }
1531   return z;
1532 }
1533 
1534 #ifndef SQLITE_OMIT_EXPLAIN
1535 /*
1536 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1537 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1538 ** where the caption is of the form:
1539 **
1540 **   "USE TEMP B-TREE FOR xxx"
1541 **
1542 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1543 ** is determined by the zUsage argument.
1544 */
1545 static void explainTempTable(Parse *pParse, const char *zUsage){
1546   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1547 }
1548 
1549 /*
1550 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1551 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1552 ** in sqlite3Select() to assign values to structure member variables that
1553 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1554 ** code with #ifndef directives.
1555 */
1556 # define explainSetInteger(a, b) a = b
1557 
1558 #else
1559 /* No-op versions of the explainXXX() functions and macros. */
1560 # define explainTempTable(y,z)
1561 # define explainSetInteger(y,z)
1562 #endif
1563 
1564 
1565 /*
1566 ** If the inner loop was generated using a non-null pOrderBy argument,
1567 ** then the results were placed in a sorter.  After the loop is terminated
1568 ** we need to run the sorter and output the results.  The following
1569 ** routine generates the code needed to do that.
1570 */
1571 static void generateSortTail(
1572   Parse *pParse,    /* Parsing context */
1573   Select *p,        /* The SELECT statement */
1574   SortCtx *pSort,   /* Information on the ORDER BY clause */
1575   int nColumn,      /* Number of columns of data */
1576   SelectDest *pDest /* Write the sorted results here */
1577 ){
1578   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1579   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1580   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1581   int addr;                       /* Top of output loop. Jump for Next. */
1582   int addrOnce = 0;
1583   int iTab;
1584   ExprList *pOrderBy = pSort->pOrderBy;
1585   int eDest = pDest->eDest;
1586   int iParm = pDest->iSDParm;
1587   int regRow;
1588   int regRowid;
1589   int iCol;
1590   int nKey;                       /* Number of key columns in sorter record */
1591   int iSortTab;                   /* Sorter cursor to read from */
1592   int i;
1593   int bSeq;                       /* True if sorter record includes seq. no. */
1594   int nRefKey = 0;
1595   struct ExprList_item *aOutEx = p->pEList->a;
1596 
1597   assert( addrBreak<0 );
1598   if( pSort->labelBkOut ){
1599     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1600     sqlite3VdbeGoto(v, addrBreak);
1601     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1602   }
1603 
1604 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1605   /* Open any cursors needed for sorter-reference expressions */
1606   for(i=0; i<pSort->nDefer; i++){
1607     Table *pTab = pSort->aDefer[i].pTab;
1608     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1609     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1610     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1611   }
1612 #endif
1613 
1614   iTab = pSort->iECursor;
1615   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1616     if( eDest==SRT_Mem && p->iOffset ){
1617       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1618     }
1619     regRowid = 0;
1620     regRow = pDest->iSdst;
1621   }else{
1622     regRowid = sqlite3GetTempReg(pParse);
1623     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1624       regRow = sqlite3GetTempReg(pParse);
1625       nColumn = 0;
1626     }else{
1627       regRow = sqlite3GetTempRange(pParse, nColumn);
1628     }
1629   }
1630   nKey = pOrderBy->nExpr - pSort->nOBSat;
1631   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1632     int regSortOut = ++pParse->nMem;
1633     iSortTab = pParse->nTab++;
1634     if( pSort->labelBkOut ){
1635       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1636     }
1637     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1638         nKey+1+nColumn+nRefKey);
1639     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1640     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1641     VdbeCoverage(v);
1642     codeOffset(v, p->iOffset, addrContinue);
1643     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1644     bSeq = 0;
1645   }else{
1646     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1647     codeOffset(v, p->iOffset, addrContinue);
1648     iSortTab = iTab;
1649     bSeq = 1;
1650   }
1651   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1653     if( aOutEx[i].bSorterRef ) continue;
1654 #endif
1655     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1656   }
1657 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1658   if( pSort->nDefer ){
1659     int iKey = iCol+1;
1660     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1661 
1662     for(i=0; i<pSort->nDefer; i++){
1663       int iCsr = pSort->aDefer[i].iCsr;
1664       Table *pTab = pSort->aDefer[i].pTab;
1665       int nKey = pSort->aDefer[i].nKey;
1666 
1667       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1668       if( HasRowid(pTab) ){
1669         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1670         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1671             sqlite3VdbeCurrentAddr(v)+1, regKey);
1672       }else{
1673         int k;
1674         int iJmp;
1675         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1676         for(k=0; k<nKey; k++){
1677           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1678         }
1679         iJmp = sqlite3VdbeCurrentAddr(v);
1680         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1681         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1682         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1683       }
1684     }
1685     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1686   }
1687 #endif
1688   for(i=nColumn-1; i>=0; i--){
1689 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1690     if( aOutEx[i].bSorterRef ){
1691       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1692     }else
1693 #endif
1694     {
1695       int iRead;
1696       if( aOutEx[i].u.x.iOrderByCol ){
1697         iRead = aOutEx[i].u.x.iOrderByCol-1;
1698       }else{
1699         iRead = iCol--;
1700       }
1701       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1702       VdbeComment((v, "%s", aOutEx[i].zEName));
1703     }
1704   }
1705   switch( eDest ){
1706     case SRT_Table:
1707     case SRT_EphemTab: {
1708       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1709       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1710       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1711       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1712       break;
1713     }
1714 #ifndef SQLITE_OMIT_SUBQUERY
1715     case SRT_Set: {
1716       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1717       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1718                         pDest->zAffSdst, nColumn);
1719       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1720       break;
1721     }
1722     case SRT_Mem: {
1723       /* The LIMIT clause will terminate the loop for us */
1724       break;
1725     }
1726 #endif
1727     case SRT_Upfrom: {
1728       int i2 = pDest->iSDParm2;
1729       int r1 = sqlite3GetTempReg(pParse);
1730       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1731       if( i2<0 ){
1732         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1733       }else{
1734         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1735       }
1736       break;
1737     }
1738     default: {
1739       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1740       testcase( eDest==SRT_Output );
1741       testcase( eDest==SRT_Coroutine );
1742       if( eDest==SRT_Output ){
1743         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1744       }else{
1745         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1746       }
1747       break;
1748     }
1749   }
1750   if( regRowid ){
1751     if( eDest==SRT_Set ){
1752       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1753     }else{
1754       sqlite3ReleaseTempReg(pParse, regRow);
1755     }
1756     sqlite3ReleaseTempReg(pParse, regRowid);
1757   }
1758   /* The bottom of the loop
1759   */
1760   sqlite3VdbeResolveLabel(v, addrContinue);
1761   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1762     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1763   }else{
1764     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1765   }
1766   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1767   sqlite3VdbeResolveLabel(v, addrBreak);
1768 }
1769 
1770 /*
1771 ** Return a pointer to a string containing the 'declaration type' of the
1772 ** expression pExpr. The string may be treated as static by the caller.
1773 **
1774 ** Also try to estimate the size of the returned value and return that
1775 ** result in *pEstWidth.
1776 **
1777 ** The declaration type is the exact datatype definition extracted from the
1778 ** original CREATE TABLE statement if the expression is a column. The
1779 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1780 ** is considered a column can be complex in the presence of subqueries. The
1781 ** result-set expression in all of the following SELECT statements is
1782 ** considered a column by this function.
1783 **
1784 **   SELECT col FROM tbl;
1785 **   SELECT (SELECT col FROM tbl;
1786 **   SELECT (SELECT col FROM tbl);
1787 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1788 **
1789 ** The declaration type for any expression other than a column is NULL.
1790 **
1791 ** This routine has either 3 or 6 parameters depending on whether or not
1792 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1793 */
1794 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1795 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1796 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1797 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1798 #endif
1799 static const char *columnTypeImpl(
1800   NameContext *pNC,
1801 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1802   Expr *pExpr
1803 #else
1804   Expr *pExpr,
1805   const char **pzOrigDb,
1806   const char **pzOrigTab,
1807   const char **pzOrigCol
1808 #endif
1809 ){
1810   char const *zType = 0;
1811   int j;
1812 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1813   char const *zOrigDb = 0;
1814   char const *zOrigTab = 0;
1815   char const *zOrigCol = 0;
1816 #endif
1817 
1818   assert( pExpr!=0 );
1819   assert( pNC->pSrcList!=0 );
1820   switch( pExpr->op ){
1821     case TK_COLUMN: {
1822       /* The expression is a column. Locate the table the column is being
1823       ** extracted from in NameContext.pSrcList. This table may be real
1824       ** database table or a subquery.
1825       */
1826       Table *pTab = 0;            /* Table structure column is extracted from */
1827       Select *pS = 0;             /* Select the column is extracted from */
1828       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1829       while( pNC && !pTab ){
1830         SrcList *pTabList = pNC->pSrcList;
1831         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1832         if( j<pTabList->nSrc ){
1833           pTab = pTabList->a[j].pTab;
1834           pS = pTabList->a[j].pSelect;
1835         }else{
1836           pNC = pNC->pNext;
1837         }
1838       }
1839 
1840       if( pTab==0 ){
1841         /* At one time, code such as "SELECT new.x" within a trigger would
1842         ** cause this condition to run.  Since then, we have restructured how
1843         ** trigger code is generated and so this condition is no longer
1844         ** possible. However, it can still be true for statements like
1845         ** the following:
1846         **
1847         **   CREATE TABLE t1(col INTEGER);
1848         **   SELECT (SELECT t1.col) FROM FROM t1;
1849         **
1850         ** when columnType() is called on the expression "t1.col" in the
1851         ** sub-select. In this case, set the column type to NULL, even
1852         ** though it should really be "INTEGER".
1853         **
1854         ** This is not a problem, as the column type of "t1.col" is never
1855         ** used. When columnType() is called on the expression
1856         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1857         ** branch below.  */
1858         break;
1859       }
1860 
1861       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1862       if( pS ){
1863         /* The "table" is actually a sub-select or a view in the FROM clause
1864         ** of the SELECT statement. Return the declaration type and origin
1865         ** data for the result-set column of the sub-select.
1866         */
1867         if( iCol<pS->pEList->nExpr
1868 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1869          && iCol>=0
1870 #else
1871          && ALWAYS(iCol>=0)
1872 #endif
1873         ){
1874           /* If iCol is less than zero, then the expression requests the
1875           ** rowid of the sub-select or view. This expression is legal (see
1876           ** test case misc2.2.2) - it always evaluates to NULL.
1877           */
1878           NameContext sNC;
1879           Expr *p = pS->pEList->a[iCol].pExpr;
1880           sNC.pSrcList = pS->pSrc;
1881           sNC.pNext = pNC;
1882           sNC.pParse = pNC->pParse;
1883           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1884         }
1885       }else{
1886         /* A real table or a CTE table */
1887         assert( !pS );
1888 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1889         if( iCol<0 ) iCol = pTab->iPKey;
1890         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1891         if( iCol<0 ){
1892           zType = "INTEGER";
1893           zOrigCol = "rowid";
1894         }else{
1895           zOrigCol = pTab->aCol[iCol].zCnName;
1896           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1897         }
1898         zOrigTab = pTab->zName;
1899         if( pNC->pParse && pTab->pSchema ){
1900           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1901           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1902         }
1903 #else
1904         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1905         if( iCol<0 ){
1906           zType = "INTEGER";
1907         }else{
1908           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1909         }
1910 #endif
1911       }
1912       break;
1913     }
1914 #ifndef SQLITE_OMIT_SUBQUERY
1915     case TK_SELECT: {
1916       /* The expression is a sub-select. Return the declaration type and
1917       ** origin info for the single column in the result set of the SELECT
1918       ** statement.
1919       */
1920       NameContext sNC;
1921       Select *pS;
1922       Expr *p;
1923       assert( ExprUseXSelect(pExpr) );
1924       pS = pExpr->x.pSelect;
1925       p = pS->pEList->a[0].pExpr;
1926       sNC.pSrcList = pS->pSrc;
1927       sNC.pNext = pNC;
1928       sNC.pParse = pNC->pParse;
1929       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1930       break;
1931     }
1932 #endif
1933   }
1934 
1935 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1936   if( pzOrigDb ){
1937     assert( pzOrigTab && pzOrigCol );
1938     *pzOrigDb = zOrigDb;
1939     *pzOrigTab = zOrigTab;
1940     *pzOrigCol = zOrigCol;
1941   }
1942 #endif
1943   return zType;
1944 }
1945 
1946 /*
1947 ** Generate code that will tell the VDBE the declaration types of columns
1948 ** in the result set.
1949 */
1950 static void generateColumnTypes(
1951   Parse *pParse,      /* Parser context */
1952   SrcList *pTabList,  /* List of tables */
1953   ExprList *pEList    /* Expressions defining the result set */
1954 ){
1955 #ifndef SQLITE_OMIT_DECLTYPE
1956   Vdbe *v = pParse->pVdbe;
1957   int i;
1958   NameContext sNC;
1959   sNC.pSrcList = pTabList;
1960   sNC.pParse = pParse;
1961   sNC.pNext = 0;
1962   for(i=0; i<pEList->nExpr; i++){
1963     Expr *p = pEList->a[i].pExpr;
1964     const char *zType;
1965 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1966     const char *zOrigDb = 0;
1967     const char *zOrigTab = 0;
1968     const char *zOrigCol = 0;
1969     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1970 
1971     /* The vdbe must make its own copy of the column-type and other
1972     ** column specific strings, in case the schema is reset before this
1973     ** virtual machine is deleted.
1974     */
1975     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1976     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1977     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1978 #else
1979     zType = columnType(&sNC, p, 0, 0, 0);
1980 #endif
1981     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1982   }
1983 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1984 }
1985 
1986 
1987 /*
1988 ** Compute the column names for a SELECT statement.
1989 **
1990 ** The only guarantee that SQLite makes about column names is that if the
1991 ** column has an AS clause assigning it a name, that will be the name used.
1992 ** That is the only documented guarantee.  However, countless applications
1993 ** developed over the years have made baseless assumptions about column names
1994 ** and will break if those assumptions changes.  Hence, use extreme caution
1995 ** when modifying this routine to avoid breaking legacy.
1996 **
1997 ** See Also: sqlite3ColumnsFromExprList()
1998 **
1999 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2000 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
2001 ** applications should operate this way.  Nevertheless, we need to support the
2002 ** other modes for legacy:
2003 **
2004 **    short=OFF, full=OFF:      Column name is the text of the expression has it
2005 **                              originally appears in the SELECT statement.  In
2006 **                              other words, the zSpan of the result expression.
2007 **
2008 **    short=ON, full=OFF:       (This is the default setting).  If the result
2009 **                              refers directly to a table column, then the
2010 **                              result column name is just the table column
2011 **                              name: COLUMN.  Otherwise use zSpan.
2012 **
2013 **    full=ON, short=ANY:       If the result refers directly to a table column,
2014 **                              then the result column name with the table name
2015 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
2016 */
2017 void sqlite3GenerateColumnNames(
2018   Parse *pParse,      /* Parser context */
2019   Select *pSelect     /* Generate column names for this SELECT statement */
2020 ){
2021   Vdbe *v = pParse->pVdbe;
2022   int i;
2023   Table *pTab;
2024   SrcList *pTabList;
2025   ExprList *pEList;
2026   sqlite3 *db = pParse->db;
2027   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
2028   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2029 
2030 #ifndef SQLITE_OMIT_EXPLAIN
2031   /* If this is an EXPLAIN, skip this step */
2032   if( pParse->explain ){
2033     return;
2034   }
2035 #endif
2036 
2037   if( pParse->colNamesSet ) return;
2038   /* Column names are determined by the left-most term of a compound select */
2039   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2040   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2041   pTabList = pSelect->pSrc;
2042   pEList = pSelect->pEList;
2043   assert( v!=0 );
2044   assert( pTabList!=0 );
2045   pParse->colNamesSet = 1;
2046   fullName = (db->flags & SQLITE_FullColNames)!=0;
2047   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2048   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2049   for(i=0; i<pEList->nExpr; i++){
2050     Expr *p = pEList->a[i].pExpr;
2051 
2052     assert( p!=0 );
2053     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2054     assert( p->op!=TK_COLUMN
2055         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2056     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2057       /* An AS clause always takes first priority */
2058       char *zName = pEList->a[i].zEName;
2059       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2060     }else if( srcName && p->op==TK_COLUMN ){
2061       char *zCol;
2062       int iCol = p->iColumn;
2063       pTab = p->y.pTab;
2064       assert( pTab!=0 );
2065       if( iCol<0 ) iCol = pTab->iPKey;
2066       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2067       if( iCol<0 ){
2068         zCol = "rowid";
2069       }else{
2070         zCol = pTab->aCol[iCol].zCnName;
2071       }
2072       if( fullName ){
2073         char *zName = 0;
2074         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2075         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2076       }else{
2077         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2078       }
2079     }else{
2080       const char *z = pEList->a[i].zEName;
2081       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2082       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2083     }
2084   }
2085   generateColumnTypes(pParse, pTabList, pEList);
2086 }
2087 
2088 /*
2089 ** Given an expression list (which is really the list of expressions
2090 ** that form the result set of a SELECT statement) compute appropriate
2091 ** column names for a table that would hold the expression list.
2092 **
2093 ** All column names will be unique.
2094 **
2095 ** Only the column names are computed.  Column.zType, Column.zColl,
2096 ** and other fields of Column are zeroed.
2097 **
2098 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2099 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2100 **
2101 ** The only guarantee that SQLite makes about column names is that if the
2102 ** column has an AS clause assigning it a name, that will be the name used.
2103 ** That is the only documented guarantee.  However, countless applications
2104 ** developed over the years have made baseless assumptions about column names
2105 ** and will break if those assumptions changes.  Hence, use extreme caution
2106 ** when modifying this routine to avoid breaking legacy.
2107 **
2108 ** See Also: sqlite3GenerateColumnNames()
2109 */
2110 int sqlite3ColumnsFromExprList(
2111   Parse *pParse,          /* Parsing context */
2112   ExprList *pEList,       /* Expr list from which to derive column names */
2113   i16 *pnCol,             /* Write the number of columns here */
2114   Column **paCol          /* Write the new column list here */
2115 ){
2116   sqlite3 *db = pParse->db;   /* Database connection */
2117   int i, j;                   /* Loop counters */
2118   u32 cnt;                    /* Index added to make the name unique */
2119   Column *aCol, *pCol;        /* For looping over result columns */
2120   int nCol;                   /* Number of columns in the result set */
2121   char *zName;                /* Column name */
2122   int nName;                  /* Size of name in zName[] */
2123   Hash ht;                    /* Hash table of column names */
2124   Table *pTab;
2125 
2126   sqlite3HashInit(&ht);
2127   if( pEList ){
2128     nCol = pEList->nExpr;
2129     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2130     testcase( aCol==0 );
2131     if( NEVER(nCol>32767) ) nCol = 32767;
2132   }else{
2133     nCol = 0;
2134     aCol = 0;
2135   }
2136   assert( nCol==(i16)nCol );
2137   *pnCol = nCol;
2138   *paCol = aCol;
2139 
2140   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2141     /* Get an appropriate name for the column
2142     */
2143     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2144       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2145     }else{
2146       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2147       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2148         pColExpr = pColExpr->pRight;
2149         assert( pColExpr!=0 );
2150       }
2151       if( pColExpr->op==TK_COLUMN
2152        && ALWAYS( ExprUseYTab(pColExpr) )
2153        && (pTab = pColExpr->y.pTab)!=0
2154       ){
2155         /* For columns use the column name name */
2156         int iCol = pColExpr->iColumn;
2157         if( iCol<0 ) iCol = pTab->iPKey;
2158         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2159       }else if( pColExpr->op==TK_ID ){
2160         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2161         zName = pColExpr->u.zToken;
2162       }else{
2163         /* Use the original text of the column expression as its name */
2164         zName = pEList->a[i].zEName;
2165       }
2166     }
2167     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2168       zName = sqlite3DbStrDup(db, zName);
2169     }else{
2170       zName = sqlite3MPrintf(db,"column%d",i+1);
2171     }
2172 
2173     /* Make sure the column name is unique.  If the name is not unique,
2174     ** append an integer to the name so that it becomes unique.
2175     */
2176     cnt = 0;
2177     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2178       nName = sqlite3Strlen30(zName);
2179       if( nName>0 ){
2180         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2181         if( zName[j]==':' ) nName = j;
2182       }
2183       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2184       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2185     }
2186     pCol->zCnName = zName;
2187     pCol->hName = sqlite3StrIHash(zName);
2188     sqlite3ColumnPropertiesFromName(0, pCol);
2189     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2190       sqlite3OomFault(db);
2191     }
2192   }
2193   sqlite3HashClear(&ht);
2194   if( db->mallocFailed ){
2195     for(j=0; j<i; j++){
2196       sqlite3DbFree(db, aCol[j].zCnName);
2197     }
2198     sqlite3DbFree(db, aCol);
2199     *paCol = 0;
2200     *pnCol = 0;
2201     return SQLITE_NOMEM_BKPT;
2202   }
2203   return SQLITE_OK;
2204 }
2205 
2206 /*
2207 ** Add type and collation information to a column list based on
2208 ** a SELECT statement.
2209 **
2210 ** The column list presumably came from selectColumnNamesFromExprList().
2211 ** The column list has only names, not types or collations.  This
2212 ** routine goes through and adds the types and collations.
2213 **
2214 ** This routine requires that all identifiers in the SELECT
2215 ** statement be resolved.
2216 */
2217 void sqlite3SelectAddColumnTypeAndCollation(
2218   Parse *pParse,        /* Parsing contexts */
2219   Table *pTab,          /* Add column type information to this table */
2220   Select *pSelect,      /* SELECT used to determine types and collations */
2221   char aff              /* Default affinity for columns */
2222 ){
2223   sqlite3 *db = pParse->db;
2224   NameContext sNC;
2225   Column *pCol;
2226   CollSeq *pColl;
2227   int i;
2228   Expr *p;
2229   struct ExprList_item *a;
2230 
2231   assert( pSelect!=0 );
2232   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2233   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2234   if( db->mallocFailed ) return;
2235   memset(&sNC, 0, sizeof(sNC));
2236   sNC.pSrcList = pSelect->pSrc;
2237   a = pSelect->pEList->a;
2238   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2239     const char *zType;
2240     i64 n, m;
2241     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2242     p = a[i].pExpr;
2243     zType = columnType(&sNC, p, 0, 0, 0);
2244     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2245     pCol->affinity = sqlite3ExprAffinity(p);
2246     if( zType ){
2247       m = sqlite3Strlen30(zType);
2248       n = sqlite3Strlen30(pCol->zCnName);
2249       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2250       if( pCol->zCnName ){
2251         memcpy(&pCol->zCnName[n+1], zType, m+1);
2252         pCol->colFlags |= COLFLAG_HASTYPE;
2253       }else{
2254         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2255         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2256       }
2257     }
2258     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2259     pColl = sqlite3ExprCollSeq(pParse, p);
2260     if( pColl ){
2261       assert( pTab->pIndex==0 );
2262       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2263     }
2264   }
2265   pTab->szTabRow = 1; /* Any non-zero value works */
2266 }
2267 
2268 /*
2269 ** Given a SELECT statement, generate a Table structure that describes
2270 ** the result set of that SELECT.
2271 */
2272 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2273   Table *pTab;
2274   sqlite3 *db = pParse->db;
2275   u64 savedFlags;
2276 
2277   savedFlags = db->flags;
2278   db->flags &= ~(u64)SQLITE_FullColNames;
2279   db->flags |= SQLITE_ShortColNames;
2280   sqlite3SelectPrep(pParse, pSelect, 0);
2281   db->flags = savedFlags;
2282   if( pParse->nErr ) return 0;
2283   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2284   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2285   if( pTab==0 ){
2286     return 0;
2287   }
2288   pTab->nTabRef = 1;
2289   pTab->zName = 0;
2290   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2291   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2292   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2293   pTab->iPKey = -1;
2294   if( db->mallocFailed ){
2295     sqlite3DeleteTable(db, pTab);
2296     return 0;
2297   }
2298   return pTab;
2299 }
2300 
2301 /*
2302 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2303 ** If an error occurs, return NULL and leave a message in pParse.
2304 */
2305 Vdbe *sqlite3GetVdbe(Parse *pParse){
2306   if( pParse->pVdbe ){
2307     return pParse->pVdbe;
2308   }
2309   if( pParse->pToplevel==0
2310    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2311   ){
2312     pParse->okConstFactor = 1;
2313   }
2314   return sqlite3VdbeCreate(pParse);
2315 }
2316 
2317 
2318 /*
2319 ** Compute the iLimit and iOffset fields of the SELECT based on the
2320 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2321 ** that appear in the original SQL statement after the LIMIT and OFFSET
2322 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2323 ** are the integer memory register numbers for counters used to compute
2324 ** the limit and offset.  If there is no limit and/or offset, then
2325 ** iLimit and iOffset are negative.
2326 **
2327 ** This routine changes the values of iLimit and iOffset only if
2328 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2329 ** and iOffset should have been preset to appropriate default values (zero)
2330 ** prior to calling this routine.
2331 **
2332 ** The iOffset register (if it exists) is initialized to the value
2333 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2334 ** iOffset+1 is initialized to LIMIT+OFFSET.
2335 **
2336 ** Only if pLimit->pLeft!=0 do the limit registers get
2337 ** redefined.  The UNION ALL operator uses this property to force
2338 ** the reuse of the same limit and offset registers across multiple
2339 ** SELECT statements.
2340 */
2341 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2342   Vdbe *v = 0;
2343   int iLimit = 0;
2344   int iOffset;
2345   int n;
2346   Expr *pLimit = p->pLimit;
2347 
2348   if( p->iLimit ) return;
2349 
2350   /*
2351   ** "LIMIT -1" always shows all rows.  There is some
2352   ** controversy about what the correct behavior should be.
2353   ** The current implementation interprets "LIMIT 0" to mean
2354   ** no rows.
2355   */
2356   if( pLimit ){
2357     assert( pLimit->op==TK_LIMIT );
2358     assert( pLimit->pLeft!=0 );
2359     p->iLimit = iLimit = ++pParse->nMem;
2360     v = sqlite3GetVdbe(pParse);
2361     assert( v!=0 );
2362     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2363       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2364       VdbeComment((v, "LIMIT counter"));
2365       if( n==0 ){
2366         sqlite3VdbeGoto(v, iBreak);
2367       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2368         p->nSelectRow = sqlite3LogEst((u64)n);
2369         p->selFlags |= SF_FixedLimit;
2370       }
2371     }else{
2372       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2373       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2374       VdbeComment((v, "LIMIT counter"));
2375       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2376     }
2377     if( pLimit->pRight ){
2378       p->iOffset = iOffset = ++pParse->nMem;
2379       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2380       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2381       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2382       VdbeComment((v, "OFFSET counter"));
2383       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2384       VdbeComment((v, "LIMIT+OFFSET"));
2385     }
2386   }
2387 }
2388 
2389 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2390 /*
2391 ** Return the appropriate collating sequence for the iCol-th column of
2392 ** the result set for the compound-select statement "p".  Return NULL if
2393 ** the column has no default collating sequence.
2394 **
2395 ** The collating sequence for the compound select is taken from the
2396 ** left-most term of the select that has a collating sequence.
2397 */
2398 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2399   CollSeq *pRet;
2400   if( p->pPrior ){
2401     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2402   }else{
2403     pRet = 0;
2404   }
2405   assert( iCol>=0 );
2406   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2407   ** have been thrown during name resolution and we would not have gotten
2408   ** this far */
2409   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2410     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2411   }
2412   return pRet;
2413 }
2414 
2415 /*
2416 ** The select statement passed as the second parameter is a compound SELECT
2417 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2418 ** structure suitable for implementing the ORDER BY.
2419 **
2420 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2421 ** function is responsible for ensuring that this structure is eventually
2422 ** freed.
2423 */
2424 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2425   ExprList *pOrderBy = p->pOrderBy;
2426   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2427   sqlite3 *db = pParse->db;
2428   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2429   if( pRet ){
2430     int i;
2431     for(i=0; i<nOrderBy; i++){
2432       struct ExprList_item *pItem = &pOrderBy->a[i];
2433       Expr *pTerm = pItem->pExpr;
2434       CollSeq *pColl;
2435 
2436       if( pTerm->flags & EP_Collate ){
2437         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2438       }else{
2439         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2440         if( pColl==0 ) pColl = db->pDfltColl;
2441         pOrderBy->a[i].pExpr =
2442           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2443       }
2444       assert( sqlite3KeyInfoIsWriteable(pRet) );
2445       pRet->aColl[i] = pColl;
2446       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2447     }
2448   }
2449 
2450   return pRet;
2451 }
2452 
2453 #ifndef SQLITE_OMIT_CTE
2454 /*
2455 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2456 ** query of the form:
2457 **
2458 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2459 **                         \___________/             \_______________/
2460 **                           p->pPrior                      p
2461 **
2462 **
2463 ** There is exactly one reference to the recursive-table in the FROM clause
2464 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2465 **
2466 ** The setup-query runs once to generate an initial set of rows that go
2467 ** into a Queue table.  Rows are extracted from the Queue table one by
2468 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2469 ** extracted row (now in the iCurrent table) becomes the content of the
2470 ** recursive-table for a recursive-query run.  The output of the recursive-query
2471 ** is added back into the Queue table.  Then another row is extracted from Queue
2472 ** and the iteration continues until the Queue table is empty.
2473 **
2474 ** If the compound query operator is UNION then no duplicate rows are ever
2475 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2476 ** that have ever been inserted into Queue and causes duplicates to be
2477 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2478 **
2479 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2480 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2481 ** an ORDER BY, the Queue table is just a FIFO.
2482 **
2483 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2484 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2485 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2486 ** with a positive value, then the first OFFSET outputs are discarded rather
2487 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2488 ** rows have been skipped.
2489 */
2490 static void generateWithRecursiveQuery(
2491   Parse *pParse,        /* Parsing context */
2492   Select *p,            /* The recursive SELECT to be coded */
2493   SelectDest *pDest     /* What to do with query results */
2494 ){
2495   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2496   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2497   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2498   Select *pSetup;               /* The setup query */
2499   Select *pFirstRec;            /* Left-most recursive term */
2500   int addrTop;                  /* Top of the loop */
2501   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2502   int iCurrent = 0;             /* The Current table */
2503   int regCurrent;               /* Register holding Current table */
2504   int iQueue;                   /* The Queue table */
2505   int iDistinct = 0;            /* To ensure unique results if UNION */
2506   int eDest = SRT_Fifo;         /* How to write to Queue */
2507   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2508   int i;                        /* Loop counter */
2509   int rc;                       /* Result code */
2510   ExprList *pOrderBy;           /* The ORDER BY clause */
2511   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2512   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2513 
2514 #ifndef SQLITE_OMIT_WINDOWFUNC
2515   if( p->pWin ){
2516     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2517     return;
2518   }
2519 #endif
2520 
2521   /* Obtain authorization to do a recursive query */
2522   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2523 
2524   /* Process the LIMIT and OFFSET clauses, if they exist */
2525   addrBreak = sqlite3VdbeMakeLabel(pParse);
2526   p->nSelectRow = 320;  /* 4 billion rows */
2527   computeLimitRegisters(pParse, p, addrBreak);
2528   pLimit = p->pLimit;
2529   regLimit = p->iLimit;
2530   regOffset = p->iOffset;
2531   p->pLimit = 0;
2532   p->iLimit = p->iOffset = 0;
2533   pOrderBy = p->pOrderBy;
2534 
2535   /* Locate the cursor number of the Current table */
2536   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2537     if( pSrc->a[i].fg.isRecursive ){
2538       iCurrent = pSrc->a[i].iCursor;
2539       break;
2540     }
2541   }
2542 
2543   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2544   ** the Distinct table must be exactly one greater than Queue in order
2545   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2546   iQueue = pParse->nTab++;
2547   if( p->op==TK_UNION ){
2548     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2549     iDistinct = pParse->nTab++;
2550   }else{
2551     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2552   }
2553   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2554 
2555   /* Allocate cursors for Current, Queue, and Distinct. */
2556   regCurrent = ++pParse->nMem;
2557   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2558   if( pOrderBy ){
2559     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2560     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2561                       (char*)pKeyInfo, P4_KEYINFO);
2562     destQueue.pOrderBy = pOrderBy;
2563   }else{
2564     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2565   }
2566   VdbeComment((v, "Queue table"));
2567   if( iDistinct ){
2568     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2569     p->selFlags |= SF_UsesEphemeral;
2570   }
2571 
2572   /* Detach the ORDER BY clause from the compound SELECT */
2573   p->pOrderBy = 0;
2574 
2575   /* Figure out how many elements of the compound SELECT are part of the
2576   ** recursive query.  Make sure no recursive elements use aggregate
2577   ** functions.  Mark the recursive elements as UNION ALL even if they
2578   ** are really UNION because the distinctness will be enforced by the
2579   ** iDistinct table.  pFirstRec is left pointing to the left-most
2580   ** recursive term of the CTE.
2581   */
2582   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2583     if( pFirstRec->selFlags & SF_Aggregate ){
2584       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2585       goto end_of_recursive_query;
2586     }
2587     pFirstRec->op = TK_ALL;
2588     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2589   }
2590 
2591   /* Store the results of the setup-query in Queue. */
2592   pSetup = pFirstRec->pPrior;
2593   pSetup->pNext = 0;
2594   ExplainQueryPlan((pParse, 1, "SETUP"));
2595   rc = sqlite3Select(pParse, pSetup, &destQueue);
2596   pSetup->pNext = p;
2597   if( rc ) goto end_of_recursive_query;
2598 
2599   /* Find the next row in the Queue and output that row */
2600   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2601 
2602   /* Transfer the next row in Queue over to Current */
2603   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2604   if( pOrderBy ){
2605     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2606   }else{
2607     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2608   }
2609   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2610 
2611   /* Output the single row in Current */
2612   addrCont = sqlite3VdbeMakeLabel(pParse);
2613   codeOffset(v, regOffset, addrCont);
2614   selectInnerLoop(pParse, p, iCurrent,
2615       0, 0, pDest, addrCont, addrBreak);
2616   if( regLimit ){
2617     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2618     VdbeCoverage(v);
2619   }
2620   sqlite3VdbeResolveLabel(v, addrCont);
2621 
2622   /* Execute the recursive SELECT taking the single row in Current as
2623   ** the value for the recursive-table. Store the results in the Queue.
2624   */
2625   pFirstRec->pPrior = 0;
2626   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2627   sqlite3Select(pParse, p, &destQueue);
2628   assert( pFirstRec->pPrior==0 );
2629   pFirstRec->pPrior = pSetup;
2630 
2631   /* Keep running the loop until the Queue is empty */
2632   sqlite3VdbeGoto(v, addrTop);
2633   sqlite3VdbeResolveLabel(v, addrBreak);
2634 
2635 end_of_recursive_query:
2636   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2637   p->pOrderBy = pOrderBy;
2638   p->pLimit = pLimit;
2639   return;
2640 }
2641 #endif /* SQLITE_OMIT_CTE */
2642 
2643 /* Forward references */
2644 static int multiSelectOrderBy(
2645   Parse *pParse,        /* Parsing context */
2646   Select *p,            /* The right-most of SELECTs to be coded */
2647   SelectDest *pDest     /* What to do with query results */
2648 );
2649 
2650 /*
2651 ** Handle the special case of a compound-select that originates from a
2652 ** VALUES clause.  By handling this as a special case, we avoid deep
2653 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2654 ** on a VALUES clause.
2655 **
2656 ** Because the Select object originates from a VALUES clause:
2657 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2658 **   (2) All terms are UNION ALL
2659 **   (3) There is no ORDER BY clause
2660 **
2661 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2662 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2663 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2664 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2665 */
2666 static int multiSelectValues(
2667   Parse *pParse,        /* Parsing context */
2668   Select *p,            /* The right-most of SELECTs to be coded */
2669   SelectDest *pDest     /* What to do with query results */
2670 ){
2671   int nRow = 1;
2672   int rc = 0;
2673   int bShowAll = p->pLimit==0;
2674   assert( p->selFlags & SF_MultiValue );
2675   do{
2676     assert( p->selFlags & SF_Values );
2677     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2678     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2679 #ifndef SQLITE_OMIT_WINDOWFUNC
2680     if( p->pWin ) return -1;
2681 #endif
2682     if( p->pPrior==0 ) break;
2683     assert( p->pPrior->pNext==p );
2684     p = p->pPrior;
2685     nRow += bShowAll;
2686   }while(1);
2687   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2688                     nRow==1 ? "" : "S"));
2689   while( p ){
2690     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2691     if( !bShowAll ) break;
2692     p->nSelectRow = nRow;
2693     p = p->pNext;
2694   }
2695   return rc;
2696 }
2697 
2698 /*
2699 ** Return true if the SELECT statement which is known to be the recursive
2700 ** part of a recursive CTE still has its anchor terms attached.  If the
2701 ** anchor terms have already been removed, then return false.
2702 */
2703 static int hasAnchor(Select *p){
2704   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2705   return p!=0;
2706 }
2707 
2708 /*
2709 ** This routine is called to process a compound query form from
2710 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2711 ** INTERSECT
2712 **
2713 ** "p" points to the right-most of the two queries.  the query on the
2714 ** left is p->pPrior.  The left query could also be a compound query
2715 ** in which case this routine will be called recursively.
2716 **
2717 ** The results of the total query are to be written into a destination
2718 ** of type eDest with parameter iParm.
2719 **
2720 ** Example 1:  Consider a three-way compound SQL statement.
2721 **
2722 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2723 **
2724 ** This statement is parsed up as follows:
2725 **
2726 **     SELECT c FROM t3
2727 **      |
2728 **      `----->  SELECT b FROM t2
2729 **                |
2730 **                `------>  SELECT a FROM t1
2731 **
2732 ** The arrows in the diagram above represent the Select.pPrior pointer.
2733 ** So if this routine is called with p equal to the t3 query, then
2734 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2735 **
2736 ** Notice that because of the way SQLite parses compound SELECTs, the
2737 ** individual selects always group from left to right.
2738 */
2739 static int multiSelect(
2740   Parse *pParse,        /* Parsing context */
2741   Select *p,            /* The right-most of SELECTs to be coded */
2742   SelectDest *pDest     /* What to do with query results */
2743 ){
2744   int rc = SQLITE_OK;   /* Success code from a subroutine */
2745   Select *pPrior;       /* Another SELECT immediately to our left */
2746   Vdbe *v;              /* Generate code to this VDBE */
2747   SelectDest dest;      /* Alternative data destination */
2748   Select *pDelete = 0;  /* Chain of simple selects to delete */
2749   sqlite3 *db;          /* Database connection */
2750 
2751   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2752   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2753   */
2754   assert( p && p->pPrior );  /* Calling function guarantees this much */
2755   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2756   assert( p->selFlags & SF_Compound );
2757   db = pParse->db;
2758   pPrior = p->pPrior;
2759   dest = *pDest;
2760   assert( pPrior->pOrderBy==0 );
2761   assert( pPrior->pLimit==0 );
2762 
2763   v = sqlite3GetVdbe(pParse);
2764   assert( v!=0 );  /* The VDBE already created by calling function */
2765 
2766   /* Create the destination temporary table if necessary
2767   */
2768   if( dest.eDest==SRT_EphemTab ){
2769     assert( p->pEList );
2770     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2771     dest.eDest = SRT_Table;
2772   }
2773 
2774   /* Special handling for a compound-select that originates as a VALUES clause.
2775   */
2776   if( p->selFlags & SF_MultiValue ){
2777     rc = multiSelectValues(pParse, p, &dest);
2778     if( rc>=0 ) goto multi_select_end;
2779     rc = SQLITE_OK;
2780   }
2781 
2782   /* Make sure all SELECTs in the statement have the same number of elements
2783   ** in their result sets.
2784   */
2785   assert( p->pEList && pPrior->pEList );
2786   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2787 
2788 #ifndef SQLITE_OMIT_CTE
2789   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2790     generateWithRecursiveQuery(pParse, p, &dest);
2791   }else
2792 #endif
2793 
2794   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2795   */
2796   if( p->pOrderBy ){
2797     return multiSelectOrderBy(pParse, p, pDest);
2798   }else{
2799 
2800 #ifndef SQLITE_OMIT_EXPLAIN
2801     if( pPrior->pPrior==0 ){
2802       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2803       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2804     }
2805 #endif
2806 
2807     /* Generate code for the left and right SELECT statements.
2808     */
2809     switch( p->op ){
2810       case TK_ALL: {
2811         int addr = 0;
2812         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2813         assert( !pPrior->pLimit );
2814         pPrior->iLimit = p->iLimit;
2815         pPrior->iOffset = p->iOffset;
2816         pPrior->pLimit = p->pLimit;
2817         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2818         rc = sqlite3Select(pParse, pPrior, &dest);
2819         pPrior->pLimit = 0;
2820         if( rc ){
2821           goto multi_select_end;
2822         }
2823         p->pPrior = 0;
2824         p->iLimit = pPrior->iLimit;
2825         p->iOffset = pPrior->iOffset;
2826         if( p->iLimit ){
2827           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2828           VdbeComment((v, "Jump ahead if LIMIT reached"));
2829           if( p->iOffset ){
2830             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2831                               p->iLimit, p->iOffset+1, p->iOffset);
2832           }
2833         }
2834         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2835         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2836         rc = sqlite3Select(pParse, p, &dest);
2837         testcase( rc!=SQLITE_OK );
2838         pDelete = p->pPrior;
2839         p->pPrior = pPrior;
2840         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2841         if( p->pLimit
2842          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2843          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2844         ){
2845           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2846         }
2847         if( addr ){
2848           sqlite3VdbeJumpHere(v, addr);
2849         }
2850         break;
2851       }
2852       case TK_EXCEPT:
2853       case TK_UNION: {
2854         int unionTab;    /* Cursor number of the temp table holding result */
2855         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2856         int priorOp;     /* The SRT_ operation to apply to prior selects */
2857         Expr *pLimit;    /* Saved values of p->nLimit  */
2858         int addr;
2859         SelectDest uniondest;
2860 
2861         testcase( p->op==TK_EXCEPT );
2862         testcase( p->op==TK_UNION );
2863         priorOp = SRT_Union;
2864         if( dest.eDest==priorOp ){
2865           /* We can reuse a temporary table generated by a SELECT to our
2866           ** right.
2867           */
2868           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2869           unionTab = dest.iSDParm;
2870         }else{
2871           /* We will need to create our own temporary table to hold the
2872           ** intermediate results.
2873           */
2874           unionTab = pParse->nTab++;
2875           assert( p->pOrderBy==0 );
2876           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2877           assert( p->addrOpenEphm[0] == -1 );
2878           p->addrOpenEphm[0] = addr;
2879           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2880           assert( p->pEList );
2881         }
2882 
2883 
2884         /* Code the SELECT statements to our left
2885         */
2886         assert( !pPrior->pOrderBy );
2887         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2888         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2889         rc = sqlite3Select(pParse, pPrior, &uniondest);
2890         if( rc ){
2891           goto multi_select_end;
2892         }
2893 
2894         /* Code the current SELECT statement
2895         */
2896         if( p->op==TK_EXCEPT ){
2897           op = SRT_Except;
2898         }else{
2899           assert( p->op==TK_UNION );
2900           op = SRT_Union;
2901         }
2902         p->pPrior = 0;
2903         pLimit = p->pLimit;
2904         p->pLimit = 0;
2905         uniondest.eDest = op;
2906         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2907                           sqlite3SelectOpName(p->op)));
2908         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2909         rc = sqlite3Select(pParse, p, &uniondest);
2910         testcase( rc!=SQLITE_OK );
2911         assert( p->pOrderBy==0 );
2912         pDelete = p->pPrior;
2913         p->pPrior = pPrior;
2914         p->pOrderBy = 0;
2915         if( p->op==TK_UNION ){
2916           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2917         }
2918         sqlite3ExprDelete(db, p->pLimit);
2919         p->pLimit = pLimit;
2920         p->iLimit = 0;
2921         p->iOffset = 0;
2922 
2923         /* Convert the data in the temporary table into whatever form
2924         ** it is that we currently need.
2925         */
2926         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2927         assert( p->pEList || db->mallocFailed );
2928         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2929           int iCont, iBreak, iStart;
2930           iBreak = sqlite3VdbeMakeLabel(pParse);
2931           iCont = sqlite3VdbeMakeLabel(pParse);
2932           computeLimitRegisters(pParse, p, iBreak);
2933           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2934           iStart = sqlite3VdbeCurrentAddr(v);
2935           selectInnerLoop(pParse, p, unionTab,
2936                           0, 0, &dest, iCont, iBreak);
2937           sqlite3VdbeResolveLabel(v, iCont);
2938           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2939           sqlite3VdbeResolveLabel(v, iBreak);
2940           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2941         }
2942         break;
2943       }
2944       default: assert( p->op==TK_INTERSECT ); {
2945         int tab1, tab2;
2946         int iCont, iBreak, iStart;
2947         Expr *pLimit;
2948         int addr;
2949         SelectDest intersectdest;
2950         int r1;
2951 
2952         /* INTERSECT is different from the others since it requires
2953         ** two temporary tables.  Hence it has its own case.  Begin
2954         ** by allocating the tables we will need.
2955         */
2956         tab1 = pParse->nTab++;
2957         tab2 = pParse->nTab++;
2958         assert( p->pOrderBy==0 );
2959 
2960         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2961         assert( p->addrOpenEphm[0] == -1 );
2962         p->addrOpenEphm[0] = addr;
2963         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2964         assert( p->pEList );
2965 
2966         /* Code the SELECTs to our left into temporary table "tab1".
2967         */
2968         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2969         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2970         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2971         if( rc ){
2972           goto multi_select_end;
2973         }
2974 
2975         /* Code the current SELECT into temporary table "tab2"
2976         */
2977         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2978         assert( p->addrOpenEphm[1] == -1 );
2979         p->addrOpenEphm[1] = addr;
2980         p->pPrior = 0;
2981         pLimit = p->pLimit;
2982         p->pLimit = 0;
2983         intersectdest.iSDParm = tab2;
2984         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2985                           sqlite3SelectOpName(p->op)));
2986         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2987         rc = sqlite3Select(pParse, p, &intersectdest);
2988         testcase( rc!=SQLITE_OK );
2989         pDelete = p->pPrior;
2990         p->pPrior = pPrior;
2991         if( p->nSelectRow>pPrior->nSelectRow ){
2992           p->nSelectRow = pPrior->nSelectRow;
2993         }
2994         sqlite3ExprDelete(db, p->pLimit);
2995         p->pLimit = pLimit;
2996 
2997         /* Generate code to take the intersection of the two temporary
2998         ** tables.
2999         */
3000         if( rc ) break;
3001         assert( p->pEList );
3002         iBreak = sqlite3VdbeMakeLabel(pParse);
3003         iCont = sqlite3VdbeMakeLabel(pParse);
3004         computeLimitRegisters(pParse, p, iBreak);
3005         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3006         r1 = sqlite3GetTempReg(pParse);
3007         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3008         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3009         VdbeCoverage(v);
3010         sqlite3ReleaseTempReg(pParse, r1);
3011         selectInnerLoop(pParse, p, tab1,
3012                         0, 0, &dest, iCont, iBreak);
3013         sqlite3VdbeResolveLabel(v, iCont);
3014         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3015         sqlite3VdbeResolveLabel(v, iBreak);
3016         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3017         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3018         break;
3019       }
3020     }
3021 
3022   #ifndef SQLITE_OMIT_EXPLAIN
3023     if( p->pNext==0 ){
3024       ExplainQueryPlanPop(pParse);
3025     }
3026   #endif
3027   }
3028   if( pParse->nErr ) goto multi_select_end;
3029 
3030   /* Compute collating sequences used by
3031   ** temporary tables needed to implement the compound select.
3032   ** Attach the KeyInfo structure to all temporary tables.
3033   **
3034   ** This section is run by the right-most SELECT statement only.
3035   ** SELECT statements to the left always skip this part.  The right-most
3036   ** SELECT might also skip this part if it has no ORDER BY clause and
3037   ** no temp tables are required.
3038   */
3039   if( p->selFlags & SF_UsesEphemeral ){
3040     int i;                        /* Loop counter */
3041     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3042     Select *pLoop;                /* For looping through SELECT statements */
3043     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3044     int nCol;                     /* Number of columns in result set */
3045 
3046     assert( p->pNext==0 );
3047     assert( p->pEList!=0 );
3048     nCol = p->pEList->nExpr;
3049     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3050     if( !pKeyInfo ){
3051       rc = SQLITE_NOMEM_BKPT;
3052       goto multi_select_end;
3053     }
3054     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3055       *apColl = multiSelectCollSeq(pParse, p, i);
3056       if( 0==*apColl ){
3057         *apColl = db->pDfltColl;
3058       }
3059     }
3060 
3061     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3062       for(i=0; i<2; i++){
3063         int addr = pLoop->addrOpenEphm[i];
3064         if( addr<0 ){
3065           /* If [0] is unused then [1] is also unused.  So we can
3066           ** always safely abort as soon as the first unused slot is found */
3067           assert( pLoop->addrOpenEphm[1]<0 );
3068           break;
3069         }
3070         sqlite3VdbeChangeP2(v, addr, nCol);
3071         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3072                             P4_KEYINFO);
3073         pLoop->addrOpenEphm[i] = -1;
3074       }
3075     }
3076     sqlite3KeyInfoUnref(pKeyInfo);
3077   }
3078 
3079 multi_select_end:
3080   pDest->iSdst = dest.iSdst;
3081   pDest->nSdst = dest.nSdst;
3082   if( pDelete ){
3083     sqlite3ParserAddCleanup(pParse,
3084         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3085         pDelete);
3086   }
3087   return rc;
3088 }
3089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3090 
3091 /*
3092 ** Error message for when two or more terms of a compound select have different
3093 ** size result sets.
3094 */
3095 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3096   if( p->selFlags & SF_Values ){
3097     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3098   }else{
3099     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3100       " do not have the same number of result columns",
3101       sqlite3SelectOpName(p->op));
3102   }
3103 }
3104 
3105 /*
3106 ** Code an output subroutine for a coroutine implementation of a
3107 ** SELECT statment.
3108 **
3109 ** The data to be output is contained in pIn->iSdst.  There are
3110 ** pIn->nSdst columns to be output.  pDest is where the output should
3111 ** be sent.
3112 **
3113 ** regReturn is the number of the register holding the subroutine
3114 ** return address.
3115 **
3116 ** If regPrev>0 then it is the first register in a vector that
3117 ** records the previous output.  mem[regPrev] is a flag that is false
3118 ** if there has been no previous output.  If regPrev>0 then code is
3119 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3120 ** keys.
3121 **
3122 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3123 ** iBreak.
3124 */
3125 static int generateOutputSubroutine(
3126   Parse *pParse,          /* Parsing context */
3127   Select *p,              /* The SELECT statement */
3128   SelectDest *pIn,        /* Coroutine supplying data */
3129   SelectDest *pDest,      /* Where to send the data */
3130   int regReturn,          /* The return address register */
3131   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3132   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3133   int iBreak              /* Jump here if we hit the LIMIT */
3134 ){
3135   Vdbe *v = pParse->pVdbe;
3136   int iContinue;
3137   int addr;
3138 
3139   addr = sqlite3VdbeCurrentAddr(v);
3140   iContinue = sqlite3VdbeMakeLabel(pParse);
3141 
3142   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3143   */
3144   if( regPrev ){
3145     int addr1, addr2;
3146     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3147     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3148                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3149     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3150     sqlite3VdbeJumpHere(v, addr1);
3151     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3152     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3153   }
3154   if( pParse->db->mallocFailed ) return 0;
3155 
3156   /* Suppress the first OFFSET entries if there is an OFFSET clause
3157   */
3158   codeOffset(v, p->iOffset, iContinue);
3159 
3160   assert( pDest->eDest!=SRT_Exists );
3161   assert( pDest->eDest!=SRT_Table );
3162   switch( pDest->eDest ){
3163     /* Store the result as data using a unique key.
3164     */
3165     case SRT_EphemTab: {
3166       int r1 = sqlite3GetTempReg(pParse);
3167       int r2 = sqlite3GetTempReg(pParse);
3168       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3169       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3170       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3171       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3172       sqlite3ReleaseTempReg(pParse, r2);
3173       sqlite3ReleaseTempReg(pParse, r1);
3174       break;
3175     }
3176 
3177 #ifndef SQLITE_OMIT_SUBQUERY
3178     /* If we are creating a set for an "expr IN (SELECT ...)".
3179     */
3180     case SRT_Set: {
3181       int r1;
3182       testcase( pIn->nSdst>1 );
3183       r1 = sqlite3GetTempReg(pParse);
3184       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3185           r1, pDest->zAffSdst, pIn->nSdst);
3186       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3187                            pIn->iSdst, pIn->nSdst);
3188       sqlite3ReleaseTempReg(pParse, r1);
3189       break;
3190     }
3191 
3192     /* If this is a scalar select that is part of an expression, then
3193     ** store the results in the appropriate memory cell and break out
3194     ** of the scan loop.  Note that the select might return multiple columns
3195     ** if it is the RHS of a row-value IN operator.
3196     */
3197     case SRT_Mem: {
3198       testcase( pIn->nSdst>1 );
3199       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3200       /* The LIMIT clause will jump out of the loop for us */
3201       break;
3202     }
3203 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3204 
3205     /* The results are stored in a sequence of registers
3206     ** starting at pDest->iSdst.  Then the co-routine yields.
3207     */
3208     case SRT_Coroutine: {
3209       if( pDest->iSdst==0 ){
3210         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3211         pDest->nSdst = pIn->nSdst;
3212       }
3213       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3214       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3215       break;
3216     }
3217 
3218     /* If none of the above, then the result destination must be
3219     ** SRT_Output.  This routine is never called with any other
3220     ** destination other than the ones handled above or SRT_Output.
3221     **
3222     ** For SRT_Output, results are stored in a sequence of registers.
3223     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3224     ** return the next row of result.
3225     */
3226     default: {
3227       assert( pDest->eDest==SRT_Output );
3228       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3229       break;
3230     }
3231   }
3232 
3233   /* Jump to the end of the loop if the LIMIT is reached.
3234   */
3235   if( p->iLimit ){
3236     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3237   }
3238 
3239   /* Generate the subroutine return
3240   */
3241   sqlite3VdbeResolveLabel(v, iContinue);
3242   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3243 
3244   return addr;
3245 }
3246 
3247 /*
3248 ** Alternative compound select code generator for cases when there
3249 ** is an ORDER BY clause.
3250 **
3251 ** We assume a query of the following form:
3252 **
3253 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3254 **
3255 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3256 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3257 ** co-routines.  Then run the co-routines in parallel and merge the results
3258 ** into the output.  In addition to the two coroutines (called selectA and
3259 ** selectB) there are 7 subroutines:
3260 **
3261 **    outA:    Move the output of the selectA coroutine into the output
3262 **             of the compound query.
3263 **
3264 **    outB:    Move the output of the selectB coroutine into the output
3265 **             of the compound query.  (Only generated for UNION and
3266 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3267 **             appears only in B.)
3268 **
3269 **    AltB:    Called when there is data from both coroutines and A<B.
3270 **
3271 **    AeqB:    Called when there is data from both coroutines and A==B.
3272 **
3273 **    AgtB:    Called when there is data from both coroutines and A>B.
3274 **
3275 **    EofA:    Called when data is exhausted from selectA.
3276 **
3277 **    EofB:    Called when data is exhausted from selectB.
3278 **
3279 ** The implementation of the latter five subroutines depend on which
3280 ** <operator> is used:
3281 **
3282 **
3283 **             UNION ALL         UNION            EXCEPT          INTERSECT
3284 **          -------------  -----------------  --------------  -----------------
3285 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3286 **
3287 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3288 **
3289 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3290 **
3291 **   EofA:   outB, nextB      outB, nextB          halt             halt
3292 **
3293 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3294 **
3295 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3296 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3297 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3298 ** following nextX causes a jump to the end of the select processing.
3299 **
3300 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3301 ** within the output subroutine.  The regPrev register set holds the previously
3302 ** output value.  A comparison is made against this value and the output
3303 ** is skipped if the next results would be the same as the previous.
3304 **
3305 ** The implementation plan is to implement the two coroutines and seven
3306 ** subroutines first, then put the control logic at the bottom.  Like this:
3307 **
3308 **          goto Init
3309 **     coA: coroutine for left query (A)
3310 **     coB: coroutine for right query (B)
3311 **    outA: output one row of A
3312 **    outB: output one row of B (UNION and UNION ALL only)
3313 **    EofA: ...
3314 **    EofB: ...
3315 **    AltB: ...
3316 **    AeqB: ...
3317 **    AgtB: ...
3318 **    Init: initialize coroutine registers
3319 **          yield coA
3320 **          if eof(A) goto EofA
3321 **          yield coB
3322 **          if eof(B) goto EofB
3323 **    Cmpr: Compare A, B
3324 **          Jump AltB, AeqB, AgtB
3325 **     End: ...
3326 **
3327 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3328 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3329 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3330 ** and AgtB jump to either L2 or to one of EofA or EofB.
3331 */
3332 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3333 static int multiSelectOrderBy(
3334   Parse *pParse,        /* Parsing context */
3335   Select *p,            /* The right-most of SELECTs to be coded */
3336   SelectDest *pDest     /* What to do with query results */
3337 ){
3338   int i, j;             /* Loop counters */
3339   Select *pPrior;       /* Another SELECT immediately to our left */
3340   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3341   int nSelect;          /* Number of SELECT statements in the compound */
3342   Vdbe *v;              /* Generate code to this VDBE */
3343   SelectDest destA;     /* Destination for coroutine A */
3344   SelectDest destB;     /* Destination for coroutine B */
3345   int regAddrA;         /* Address register for select-A coroutine */
3346   int regAddrB;         /* Address register for select-B coroutine */
3347   int addrSelectA;      /* Address of the select-A coroutine */
3348   int addrSelectB;      /* Address of the select-B coroutine */
3349   int regOutA;          /* Address register for the output-A subroutine */
3350   int regOutB;          /* Address register for the output-B subroutine */
3351   int addrOutA;         /* Address of the output-A subroutine */
3352   int addrOutB = 0;     /* Address of the output-B subroutine */
3353   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3354   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3355   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3356   int addrAltB;         /* Address of the A<B subroutine */
3357   int addrAeqB;         /* Address of the A==B subroutine */
3358   int addrAgtB;         /* Address of the A>B subroutine */
3359   int regLimitA;        /* Limit register for select-A */
3360   int regLimitB;        /* Limit register for select-A */
3361   int regPrev;          /* A range of registers to hold previous output */
3362   int savedLimit;       /* Saved value of p->iLimit */
3363   int savedOffset;      /* Saved value of p->iOffset */
3364   int labelCmpr;        /* Label for the start of the merge algorithm */
3365   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3366   int addr1;            /* Jump instructions that get retargetted */
3367   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3368   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3369   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3370   sqlite3 *db;          /* Database connection */
3371   ExprList *pOrderBy;   /* The ORDER BY clause */
3372   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3373   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3374 
3375   assert( p->pOrderBy!=0 );
3376   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3377   db = pParse->db;
3378   v = pParse->pVdbe;
3379   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3380   labelEnd = sqlite3VdbeMakeLabel(pParse);
3381   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3382 
3383 
3384   /* Patch up the ORDER BY clause
3385   */
3386   op = p->op;
3387   assert( p->pPrior->pOrderBy==0 );
3388   pOrderBy = p->pOrderBy;
3389   assert( pOrderBy );
3390   nOrderBy = pOrderBy->nExpr;
3391 
3392   /* For operators other than UNION ALL we have to make sure that
3393   ** the ORDER BY clause covers every term of the result set.  Add
3394   ** terms to the ORDER BY clause as necessary.
3395   */
3396   if( op!=TK_ALL ){
3397     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3398       struct ExprList_item *pItem;
3399       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3400         assert( pItem!=0 );
3401         assert( pItem->u.x.iOrderByCol>0 );
3402         if( pItem->u.x.iOrderByCol==i ) break;
3403       }
3404       if( j==nOrderBy ){
3405         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3406         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3407         pNew->flags |= EP_IntValue;
3408         pNew->u.iValue = i;
3409         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3410         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3411       }
3412     }
3413   }
3414 
3415   /* Compute the comparison permutation and keyinfo that is used with
3416   ** the permutation used to determine if the next
3417   ** row of results comes from selectA or selectB.  Also add explicit
3418   ** collations to the ORDER BY clause terms so that when the subqueries
3419   ** to the right and the left are evaluated, they use the correct
3420   ** collation.
3421   */
3422   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3423   if( aPermute ){
3424     struct ExprList_item *pItem;
3425     aPermute[0] = nOrderBy;
3426     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3427       assert( pItem!=0 );
3428       assert( pItem->u.x.iOrderByCol>0 );
3429       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3430       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3431     }
3432     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3433   }else{
3434     pKeyMerge = 0;
3435   }
3436 
3437   /* Allocate a range of temporary registers and the KeyInfo needed
3438   ** for the logic that removes duplicate result rows when the
3439   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3440   */
3441   if( op==TK_ALL ){
3442     regPrev = 0;
3443   }else{
3444     int nExpr = p->pEList->nExpr;
3445     assert( nOrderBy>=nExpr || db->mallocFailed );
3446     regPrev = pParse->nMem+1;
3447     pParse->nMem += nExpr+1;
3448     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3449     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3450     if( pKeyDup ){
3451       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3452       for(i=0; i<nExpr; i++){
3453         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3454         pKeyDup->aSortFlags[i] = 0;
3455       }
3456     }
3457   }
3458 
3459   /* Separate the left and the right query from one another
3460   */
3461   nSelect = 1;
3462   if( (op==TK_ALL || op==TK_UNION)
3463    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3464   ){
3465     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3466       nSelect++;
3467       assert( pSplit->pPrior->pNext==pSplit );
3468     }
3469   }
3470   if( nSelect<=3 ){
3471     pSplit = p;
3472   }else{
3473     pSplit = p;
3474     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3475   }
3476   pPrior = pSplit->pPrior;
3477   assert( pPrior!=0 );
3478   pSplit->pPrior = 0;
3479   pPrior->pNext = 0;
3480   assert( p->pOrderBy == pOrderBy );
3481   assert( pOrderBy!=0 || db->mallocFailed );
3482   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3483   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3484   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3485 
3486   /* Compute the limit registers */
3487   computeLimitRegisters(pParse, p, labelEnd);
3488   if( p->iLimit && op==TK_ALL ){
3489     regLimitA = ++pParse->nMem;
3490     regLimitB = ++pParse->nMem;
3491     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3492                                   regLimitA);
3493     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3494   }else{
3495     regLimitA = regLimitB = 0;
3496   }
3497   sqlite3ExprDelete(db, p->pLimit);
3498   p->pLimit = 0;
3499 
3500   regAddrA = ++pParse->nMem;
3501   regAddrB = ++pParse->nMem;
3502   regOutA = ++pParse->nMem;
3503   regOutB = ++pParse->nMem;
3504   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3505   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3506 
3507   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3508 
3509   /* Generate a coroutine to evaluate the SELECT statement to the
3510   ** left of the compound operator - the "A" select.
3511   */
3512   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3513   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3514   VdbeComment((v, "left SELECT"));
3515   pPrior->iLimit = regLimitA;
3516   ExplainQueryPlan((pParse, 1, "LEFT"));
3517   sqlite3Select(pParse, pPrior, &destA);
3518   sqlite3VdbeEndCoroutine(v, regAddrA);
3519   sqlite3VdbeJumpHere(v, addr1);
3520 
3521   /* Generate a coroutine to evaluate the SELECT statement on
3522   ** the right - the "B" select
3523   */
3524   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3525   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3526   VdbeComment((v, "right SELECT"));
3527   savedLimit = p->iLimit;
3528   savedOffset = p->iOffset;
3529   p->iLimit = regLimitB;
3530   p->iOffset = 0;
3531   ExplainQueryPlan((pParse, 1, "RIGHT"));
3532   sqlite3Select(pParse, p, &destB);
3533   p->iLimit = savedLimit;
3534   p->iOffset = savedOffset;
3535   sqlite3VdbeEndCoroutine(v, regAddrB);
3536 
3537   /* Generate a subroutine that outputs the current row of the A
3538   ** select as the next output row of the compound select.
3539   */
3540   VdbeNoopComment((v, "Output routine for A"));
3541   addrOutA = generateOutputSubroutine(pParse,
3542                  p, &destA, pDest, regOutA,
3543                  regPrev, pKeyDup, labelEnd);
3544 
3545   /* Generate a subroutine that outputs the current row of the B
3546   ** select as the next output row of the compound select.
3547   */
3548   if( op==TK_ALL || op==TK_UNION ){
3549     VdbeNoopComment((v, "Output routine for B"));
3550     addrOutB = generateOutputSubroutine(pParse,
3551                  p, &destB, pDest, regOutB,
3552                  regPrev, pKeyDup, labelEnd);
3553   }
3554   sqlite3KeyInfoUnref(pKeyDup);
3555 
3556   /* Generate a subroutine to run when the results from select A
3557   ** are exhausted and only data in select B remains.
3558   */
3559   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3560     addrEofA_noB = addrEofA = labelEnd;
3561   }else{
3562     VdbeNoopComment((v, "eof-A subroutine"));
3563     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3564     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3565                                      VdbeCoverage(v);
3566     sqlite3VdbeGoto(v, addrEofA);
3567     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3568   }
3569 
3570   /* Generate a subroutine to run when the results from select B
3571   ** are exhausted and only data in select A remains.
3572   */
3573   if( op==TK_INTERSECT ){
3574     addrEofB = addrEofA;
3575     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3576   }else{
3577     VdbeNoopComment((v, "eof-B subroutine"));
3578     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3579     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3580     sqlite3VdbeGoto(v, addrEofB);
3581   }
3582 
3583   /* Generate code to handle the case of A<B
3584   */
3585   VdbeNoopComment((v, "A-lt-B subroutine"));
3586   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3587   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3588   sqlite3VdbeGoto(v, labelCmpr);
3589 
3590   /* Generate code to handle the case of A==B
3591   */
3592   if( op==TK_ALL ){
3593     addrAeqB = addrAltB;
3594   }else if( op==TK_INTERSECT ){
3595     addrAeqB = addrAltB;
3596     addrAltB++;
3597   }else{
3598     VdbeNoopComment((v, "A-eq-B subroutine"));
3599     addrAeqB =
3600     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3601     sqlite3VdbeGoto(v, labelCmpr);
3602   }
3603 
3604   /* Generate code to handle the case of A>B
3605   */
3606   VdbeNoopComment((v, "A-gt-B subroutine"));
3607   addrAgtB = sqlite3VdbeCurrentAddr(v);
3608   if( op==TK_ALL || op==TK_UNION ){
3609     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3610   }
3611   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3612   sqlite3VdbeGoto(v, labelCmpr);
3613 
3614   /* This code runs once to initialize everything.
3615   */
3616   sqlite3VdbeJumpHere(v, addr1);
3617   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3618   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3619 
3620   /* Implement the main merge loop
3621   */
3622   sqlite3VdbeResolveLabel(v, labelCmpr);
3623   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3624   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3625                          (char*)pKeyMerge, P4_KEYINFO);
3626   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3627   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3628 
3629   /* Jump to the this point in order to terminate the query.
3630   */
3631   sqlite3VdbeResolveLabel(v, labelEnd);
3632 
3633   /* Reassembly the compound query so that it will be freed correctly
3634   ** by the calling function */
3635   if( pSplit->pPrior ){
3636     sqlite3SelectDelete(db, pSplit->pPrior);
3637   }
3638   pSplit->pPrior = pPrior;
3639   pPrior->pNext = pSplit;
3640   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3641   pPrior->pOrderBy = 0;
3642 
3643   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3644   **** subqueries ****/
3645   ExplainQueryPlanPop(pParse);
3646   return pParse->nErr!=0;
3647 }
3648 #endif
3649 
3650 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3651 
3652 /* An instance of the SubstContext object describes an substitution edit
3653 ** to be performed on a parse tree.
3654 **
3655 ** All references to columns in table iTable are to be replaced by corresponding
3656 ** expressions in pEList.
3657 */
3658 typedef struct SubstContext {
3659   Parse *pParse;            /* The parsing context */
3660   int iTable;               /* Replace references to this table */
3661   int iNewTable;            /* New table number */
3662   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3663   ExprList *pEList;         /* Replacement expressions */
3664 } SubstContext;
3665 
3666 /* Forward Declarations */
3667 static void substExprList(SubstContext*, ExprList*);
3668 static void substSelect(SubstContext*, Select*, int);
3669 
3670 /*
3671 ** Scan through the expression pExpr.  Replace every reference to
3672 ** a column in table number iTable with a copy of the iColumn-th
3673 ** entry in pEList.  (But leave references to the ROWID column
3674 ** unchanged.)
3675 **
3676 ** This routine is part of the flattening procedure.  A subquery
3677 ** whose result set is defined by pEList appears as entry in the
3678 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3679 ** FORM clause entry is iTable.  This routine makes the necessary
3680 ** changes to pExpr so that it refers directly to the source table
3681 ** of the subquery rather the result set of the subquery.
3682 */
3683 static Expr *substExpr(
3684   SubstContext *pSubst,  /* Description of the substitution */
3685   Expr *pExpr            /* Expr in which substitution occurs */
3686 ){
3687   if( pExpr==0 ) return 0;
3688   if( ExprHasProperty(pExpr, EP_FromJoin)
3689    && pExpr->w.iJoin==pSubst->iTable
3690   ){
3691     pExpr->w.iJoin = pSubst->iNewTable;
3692   }
3693   if( pExpr->op==TK_COLUMN
3694    && pExpr->iTable==pSubst->iTable
3695    && !ExprHasProperty(pExpr, EP_FixedCol)
3696   ){
3697 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3698     if( pExpr->iColumn<0 ){
3699       pExpr->op = TK_NULL;
3700     }else
3701 #endif
3702     {
3703       Expr *pNew;
3704       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3705       Expr ifNullRow;
3706       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3707       assert( pExpr->pRight==0 );
3708       if( sqlite3ExprIsVector(pCopy) ){
3709         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3710       }else{
3711         sqlite3 *db = pSubst->pParse->db;
3712         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3713           memset(&ifNullRow, 0, sizeof(ifNullRow));
3714           ifNullRow.op = TK_IF_NULL_ROW;
3715           ifNullRow.pLeft = pCopy;
3716           ifNullRow.iTable = pSubst->iNewTable;
3717           ifNullRow.flags = EP_IfNullRow;
3718           pCopy = &ifNullRow;
3719         }
3720         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3721         pNew = sqlite3ExprDup(db, pCopy, 0);
3722         if( db->mallocFailed ){
3723           sqlite3ExprDelete(db, pNew);
3724           return pExpr;
3725         }
3726         if( pSubst->isLeftJoin ){
3727           ExprSetProperty(pNew, EP_CanBeNull);
3728         }
3729         if( ExprHasProperty(pExpr,EP_FromJoin|EP_InnerJoin) ){
3730           sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3731                              pExpr->flags & (EP_FromJoin|EP_InnerJoin));
3732         }
3733         sqlite3ExprDelete(db, pExpr);
3734         pExpr = pNew;
3735 
3736         /* Ensure that the expression now has an implicit collation sequence,
3737         ** just as it did when it was a column of a view or sub-query. */
3738         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3739           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3740           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3741               (pColl ? pColl->zName : "BINARY")
3742           );
3743         }
3744         ExprClearProperty(pExpr, EP_Collate);
3745       }
3746     }
3747   }else{
3748     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3749       pExpr->iTable = pSubst->iNewTable;
3750     }
3751     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3752     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3753     if( ExprUseXSelect(pExpr) ){
3754       substSelect(pSubst, pExpr->x.pSelect, 1);
3755     }else{
3756       substExprList(pSubst, pExpr->x.pList);
3757     }
3758 #ifndef SQLITE_OMIT_WINDOWFUNC
3759     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3760       Window *pWin = pExpr->y.pWin;
3761       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3762       substExprList(pSubst, pWin->pPartition);
3763       substExprList(pSubst, pWin->pOrderBy);
3764     }
3765 #endif
3766   }
3767   return pExpr;
3768 }
3769 static void substExprList(
3770   SubstContext *pSubst, /* Description of the substitution */
3771   ExprList *pList       /* List to scan and in which to make substitutes */
3772 ){
3773   int i;
3774   if( pList==0 ) return;
3775   for(i=0; i<pList->nExpr; i++){
3776     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3777   }
3778 }
3779 static void substSelect(
3780   SubstContext *pSubst, /* Description of the substitution */
3781   Select *p,            /* SELECT statement in which to make substitutions */
3782   int doPrior           /* Do substitutes on p->pPrior too */
3783 ){
3784   SrcList *pSrc;
3785   SrcItem *pItem;
3786   int i;
3787   if( !p ) return;
3788   do{
3789     substExprList(pSubst, p->pEList);
3790     substExprList(pSubst, p->pGroupBy);
3791     substExprList(pSubst, p->pOrderBy);
3792     p->pHaving = substExpr(pSubst, p->pHaving);
3793     p->pWhere = substExpr(pSubst, p->pWhere);
3794     pSrc = p->pSrc;
3795     assert( pSrc!=0 );
3796     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3797       substSelect(pSubst, pItem->pSelect, 1);
3798       if( pItem->fg.isTabFunc ){
3799         substExprList(pSubst, pItem->u1.pFuncArg);
3800       }
3801     }
3802   }while( doPrior && (p = p->pPrior)!=0 );
3803 }
3804 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3805 
3806 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3807 /*
3808 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3809 ** clause of that SELECT.
3810 **
3811 ** This routine scans the entire SELECT statement and recomputes the
3812 ** pSrcItem->colUsed mask.
3813 */
3814 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3815   SrcItem *pItem;
3816   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3817   pItem = pWalker->u.pSrcItem;
3818   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3819   if( pExpr->iColumn<0 ) return WRC_Continue;
3820   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3821   return WRC_Continue;
3822 }
3823 static void recomputeColumnsUsed(
3824   Select *pSelect,                 /* The complete SELECT statement */
3825   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3826 ){
3827   Walker w;
3828   if( NEVER(pSrcItem->pTab==0) ) return;
3829   memset(&w, 0, sizeof(w));
3830   w.xExprCallback = recomputeColumnsUsedExpr;
3831   w.xSelectCallback = sqlite3SelectWalkNoop;
3832   w.u.pSrcItem = pSrcItem;
3833   pSrcItem->colUsed = 0;
3834   sqlite3WalkSelect(&w, pSelect);
3835 }
3836 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3837 
3838 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3839 /*
3840 ** Assign new cursor numbers to each of the items in pSrc. For each
3841 ** new cursor number assigned, set an entry in the aCsrMap[] array
3842 ** to map the old cursor number to the new:
3843 **
3844 **     aCsrMap[iOld+1] = iNew;
3845 **
3846 ** The array is guaranteed by the caller to be large enough for all
3847 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3848 **
3849 ** If pSrc contains any sub-selects, call this routine recursively
3850 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3851 */
3852 static void srclistRenumberCursors(
3853   Parse *pParse,                  /* Parse context */
3854   int *aCsrMap,                   /* Array to store cursor mappings in */
3855   SrcList *pSrc,                  /* FROM clause to renumber */
3856   int iExcept                     /* FROM clause item to skip */
3857 ){
3858   int i;
3859   SrcItem *pItem;
3860   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3861     if( i!=iExcept ){
3862       Select *p;
3863       assert( pItem->iCursor < aCsrMap[0] );
3864       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3865         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3866       }
3867       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3868       for(p=pItem->pSelect; p; p=p->pPrior){
3869         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3870       }
3871     }
3872   }
3873 }
3874 
3875 /*
3876 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3877 */
3878 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3879   int *aCsrMap = pWalker->u.aiCol;
3880   int iCsr = *piCursor;
3881   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3882     *piCursor = aCsrMap[iCsr+1];
3883   }
3884 }
3885 
3886 /*
3887 ** Expression walker callback used by renumberCursors() to update
3888 ** Expr objects to match newly assigned cursor numbers.
3889 */
3890 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3891   int op = pExpr->op;
3892   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3893     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3894   }
3895   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3896     renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
3897   }
3898   return WRC_Continue;
3899 }
3900 
3901 /*
3902 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3903 ** of the SELECT statement passed as the second argument, and to each
3904 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3905 ** Except, do not assign a new cursor number to the iExcept'th element in
3906 ** the FROM clause of (*p). Update all expressions and other references
3907 ** to refer to the new cursor numbers.
3908 **
3909 ** Argument aCsrMap is an array that may be used for temporary working
3910 ** space. Two guarantees are made by the caller:
3911 **
3912 **   * the array is larger than the largest cursor number used within the
3913 **     select statement passed as an argument, and
3914 **
3915 **   * the array entries for all cursor numbers that do *not* appear in
3916 **     FROM clauses of the select statement as described above are
3917 **     initialized to zero.
3918 */
3919 static void renumberCursors(
3920   Parse *pParse,                  /* Parse context */
3921   Select *p,                      /* Select to renumber cursors within */
3922   int iExcept,                    /* FROM clause item to skip */
3923   int *aCsrMap                    /* Working space */
3924 ){
3925   Walker w;
3926   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3927   memset(&w, 0, sizeof(w));
3928   w.u.aiCol = aCsrMap;
3929   w.xExprCallback = renumberCursorsCb;
3930   w.xSelectCallback = sqlite3SelectWalkNoop;
3931   sqlite3WalkSelect(&w, p);
3932 }
3933 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3934 
3935 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3936 /*
3937 ** This routine attempts to flatten subqueries as a performance optimization.
3938 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3939 **
3940 ** To understand the concept of flattening, consider the following
3941 ** query:
3942 **
3943 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3944 **
3945 ** The default way of implementing this query is to execute the
3946 ** subquery first and store the results in a temporary table, then
3947 ** run the outer query on that temporary table.  This requires two
3948 ** passes over the data.  Furthermore, because the temporary table
3949 ** has no indices, the WHERE clause on the outer query cannot be
3950 ** optimized.
3951 **
3952 ** This routine attempts to rewrite queries such as the above into
3953 ** a single flat select, like this:
3954 **
3955 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3956 **
3957 ** The code generated for this simplification gives the same result
3958 ** but only has to scan the data once.  And because indices might
3959 ** exist on the table t1, a complete scan of the data might be
3960 ** avoided.
3961 **
3962 ** Flattening is subject to the following constraints:
3963 **
3964 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3965 **        The subquery and the outer query cannot both be aggregates.
3966 **
3967 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3968 **        (2) If the subquery is an aggregate then
3969 **        (2a) the outer query must not be a join and
3970 **        (2b) the outer query must not use subqueries
3971 **             other than the one FROM-clause subquery that is a candidate
3972 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3973 **             from 2015-02-09.)
3974 **
3975 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3976 **        (3a) the subquery may not be a join and
3977 **        (3b) the FROM clause of the subquery may not contain a virtual
3978 **             table and
3979 **        (3c) the outer query may not be an aggregate.
3980 **        (3d) the outer query may not be DISTINCT.
3981 **        See also (26) for restrictions on RIGHT JOIN.
3982 **
3983 **   (4)  The subquery can not be DISTINCT.
3984 **
3985 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3986 **        sub-queries that were excluded from this optimization. Restriction
3987 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3988 **
3989 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3990 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3991 **
3992 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3993 **        A FROM clause, consider adding a FROM clause with the special
3994 **        table sqlite_once that consists of a single row containing a
3995 **        single NULL.
3996 **
3997 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3998 **
3999 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
4000 **
4001 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
4002 **        accidently carried the comment forward until 2014-09-15.  Original
4003 **        constraint: "If the subquery is aggregate then the outer query
4004 **        may not use LIMIT."
4005 **
4006 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
4007 **
4008 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
4009 **        a separate restriction deriving from ticket #350.
4010 **
4011 **  (13)  The subquery and outer query may not both use LIMIT.
4012 **
4013 **  (14)  The subquery may not use OFFSET.
4014 **
4015 **  (15)  If the outer query is part of a compound select, then the
4016 **        subquery may not use LIMIT.
4017 **        (See ticket #2339 and ticket [02a8e81d44]).
4018 **
4019 **  (16)  If the outer query is aggregate, then the subquery may not
4020 **        use ORDER BY.  (Ticket #2942)  This used to not matter
4021 **        until we introduced the group_concat() function.
4022 **
4023 **  (17)  If the subquery is a compound select, then
4024 **        (17a) all compound operators must be a UNION ALL, and
4025 **        (17b) no terms within the subquery compound may be aggregate
4026 **              or DISTINCT, and
4027 **        (17c) every term within the subquery compound must have a FROM clause
4028 **        (17d) the outer query may not be
4029 **              (17d1) aggregate, or
4030 **              (17d2) DISTINCT
4031 **        (17e) the subquery may not contain window functions, and
4032 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
4033 **
4034 **        The parent and sub-query may contain WHERE clauses. Subject to
4035 **        rules (11), (13) and (14), they may also contain ORDER BY,
4036 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
4037 **        operator other than UNION ALL because all the other compound
4038 **        operators have an implied DISTINCT which is disallowed by
4039 **        restriction (4).
4040 **
4041 **        Also, each component of the sub-query must return the same number
4042 **        of result columns. This is actually a requirement for any compound
4043 **        SELECT statement, but all the code here does is make sure that no
4044 **        such (illegal) sub-query is flattened. The caller will detect the
4045 **        syntax error and return a detailed message.
4046 **
4047 **  (18)  If the sub-query is a compound select, then all terms of the
4048 **        ORDER BY clause of the parent must be copies of a term returned
4049 **        by the parent query.
4050 **
4051 **  (19)  If the subquery uses LIMIT then the outer query may not
4052 **        have a WHERE clause.
4053 **
4054 **  (20)  If the sub-query is a compound select, then it must not use
4055 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4056 **        somewhat by saying that the terms of the ORDER BY clause must
4057 **        appear as unmodified result columns in the outer query.  But we
4058 **        have other optimizations in mind to deal with that case.
4059 **
4060 **  (21)  If the subquery uses LIMIT then the outer query may not be
4061 **        DISTINCT.  (See ticket [752e1646fc]).
4062 **
4063 **  (22)  The subquery may not be a recursive CTE.
4064 **
4065 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4066 **        a compound query.  This restriction is because transforming the
4067 **        parent to a compound query confuses the code that handles
4068 **        recursive queries in multiSelect().
4069 **
4070 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4071 **        The subquery may not be an aggregate that uses the built-in min() or
4072 **        or max() functions.  (Without this restriction, a query like:
4073 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4074 **        return the value X for which Y was maximal.)
4075 **
4076 **  (25)  If either the subquery or the parent query contains a window
4077 **        function in the select list or ORDER BY clause, flattening
4078 **        is not attempted.
4079 **
4080 **  (26)  The subquery may not be the right operand of a RIGHT JOIN.
4081 **        See also (3) for restrictions on LEFT JOIN.
4082 **
4083 **
4084 ** In this routine, the "p" parameter is a pointer to the outer query.
4085 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4086 ** uses aggregates.
4087 **
4088 ** If flattening is not attempted, this routine is a no-op and returns 0.
4089 ** If flattening is attempted this routine returns 1.
4090 **
4091 ** All of the expression analysis must occur on both the outer query and
4092 ** the subquery before this routine runs.
4093 */
4094 static int flattenSubquery(
4095   Parse *pParse,       /* Parsing context */
4096   Select *p,           /* The parent or outer SELECT statement */
4097   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4098   int isAgg            /* True if outer SELECT uses aggregate functions */
4099 ){
4100   const char *zSavedAuthContext = pParse->zAuthContext;
4101   Select *pParent;    /* Current UNION ALL term of the other query */
4102   Select *pSub;       /* The inner query or "subquery" */
4103   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4104   SrcList *pSrc;      /* The FROM clause of the outer query */
4105   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4106   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4107   int iNewParent = -1;/* Replacement table for iParent */
4108   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4109   int i;              /* Loop counter */
4110   Expr *pWhere;                    /* The WHERE clause */
4111   SrcItem *pSubitem;               /* The subquery */
4112   sqlite3 *db = pParse->db;
4113   Walker w;                        /* Walker to persist agginfo data */
4114   int *aCsrMap = 0;
4115 
4116   /* Check to see if flattening is permitted.  Return 0 if not.
4117   */
4118   assert( p!=0 );
4119   assert( p->pPrior==0 );
4120   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4121   pSrc = p->pSrc;
4122   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4123   pSubitem = &pSrc->a[iFrom];
4124   iParent = pSubitem->iCursor;
4125   pSub = pSubitem->pSelect;
4126   assert( pSub!=0 );
4127 
4128 #ifndef SQLITE_OMIT_WINDOWFUNC
4129   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4130 #endif
4131 
4132   pSubSrc = pSub->pSrc;
4133   assert( pSubSrc );
4134   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4135   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4136   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4137   ** became arbitrary expressions, we were forced to add restrictions (13)
4138   ** and (14). */
4139   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4140   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4141   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4142     return 0;                                            /* Restriction (15) */
4143   }
4144   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4145   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4146   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4147      return 0;         /* Restrictions (8)(9) */
4148   }
4149   if( p->pOrderBy && pSub->pOrderBy ){
4150      return 0;                                           /* Restriction (11) */
4151   }
4152   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4153   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4154   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4155      return 0;         /* Restriction (21) */
4156   }
4157   if( pSub->selFlags & (SF_Recursive) ){
4158     return 0; /* Restrictions (22) */
4159   }
4160 
4161   /*
4162   ** If the subquery is the right operand of a LEFT JOIN, then the
4163   ** subquery may not be a join itself (3a). Example of why this is not
4164   ** allowed:
4165   **
4166   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4167   **
4168   ** If we flatten the above, we would get
4169   **
4170   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4171   **
4172   ** which is not at all the same thing.
4173   **
4174   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4175   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4176   ** aggregates are processed - there is no mechanism to determine if
4177   ** the LEFT JOIN table should be all-NULL.
4178   **
4179   ** See also tickets #306, #350, and #3300.
4180   */
4181   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4182     if( pSubSrc->nSrc>1                        /* (3a) */
4183      || isAgg                                  /* (3b) */
4184      || IsVirtual(pSubSrc->a[0].pTab)          /* (3c) */
4185      || (p->selFlags & SF_Distinct)!=0         /* (3d) */
4186      || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
4187     ){
4188       return 0;
4189     }
4190     isLeftJoin = 1;
4191   }
4192 #ifdef SQLITE_EXTRA_IFNULLROW
4193   else if( iFrom>0 && !isAgg ){
4194     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4195     ** every reference to any result column from subquery in a join, even
4196     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4197     ** opcode. */
4198     isLeftJoin = -1;
4199   }
4200 #endif
4201 
4202   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4203   ** use only the UNION ALL operator. And none of the simple select queries
4204   ** that make up the compound SELECT are allowed to be aggregate or distinct
4205   ** queries.
4206   */
4207   if( pSub->pPrior ){
4208     if( pSub->pOrderBy ){
4209       return 0;  /* Restriction (20) */
4210     }
4211     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4212       return 0; /* (17d1), (17d2), or (17f) */
4213     }
4214     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4215       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4216       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4217       assert( pSub->pSrc!=0 );
4218       assert( (pSub->selFlags & SF_Recursive)==0 );
4219       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4220       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4221        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4222        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4223 #ifndef SQLITE_OMIT_WINDOWFUNC
4224        || pSub1->pWin                                          /* (17e) */
4225 #endif
4226       ){
4227         return 0;
4228       }
4229       testcase( pSub1->pSrc->nSrc>1 );
4230     }
4231 
4232     /* Restriction (18). */
4233     if( p->pOrderBy ){
4234       int ii;
4235       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4236         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4237       }
4238     }
4239 
4240     /* Restriction (23) */
4241     if( (p->selFlags & SF_Recursive) ) return 0;
4242 
4243     if( pSrc->nSrc>1 ){
4244       if( pParse->nSelect>500 ) return 0;
4245       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4246       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4247     }
4248   }
4249 
4250   /***** If we reach this point, flattening is permitted. *****/
4251   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4252                    pSub->selId, pSub, iFrom));
4253 
4254   /* Authorize the subquery */
4255   pParse->zAuthContext = pSubitem->zName;
4256   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4257   testcase( i==SQLITE_DENY );
4258   pParse->zAuthContext = zSavedAuthContext;
4259 
4260   /* Delete the transient structures associated with thesubquery */
4261   pSub1 = pSubitem->pSelect;
4262   sqlite3DbFree(db, pSubitem->zDatabase);
4263   sqlite3DbFree(db, pSubitem->zName);
4264   sqlite3DbFree(db, pSubitem->zAlias);
4265   pSubitem->zDatabase = 0;
4266   pSubitem->zName = 0;
4267   pSubitem->zAlias = 0;
4268   pSubitem->pSelect = 0;
4269   assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4270 
4271   /* If the sub-query is a compound SELECT statement, then (by restrictions
4272   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4273   ** be of the form:
4274   **
4275   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4276   **
4277   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4278   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4279   ** OFFSET clauses and joins them to the left-hand-side of the original
4280   ** using UNION ALL operators. In this case N is the number of simple
4281   ** select statements in the compound sub-query.
4282   **
4283   ** Example:
4284   **
4285   **     SELECT a+1 FROM (
4286   **        SELECT x FROM tab
4287   **        UNION ALL
4288   **        SELECT y FROM tab
4289   **        UNION ALL
4290   **        SELECT abs(z*2) FROM tab2
4291   **     ) WHERE a!=5 ORDER BY 1
4292   **
4293   ** Transformed into:
4294   **
4295   **     SELECT x+1 FROM tab WHERE x+1!=5
4296   **     UNION ALL
4297   **     SELECT y+1 FROM tab WHERE y+1!=5
4298   **     UNION ALL
4299   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4300   **     ORDER BY 1
4301   **
4302   ** We call this the "compound-subquery flattening".
4303   */
4304   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4305     Select *pNew;
4306     ExprList *pOrderBy = p->pOrderBy;
4307     Expr *pLimit = p->pLimit;
4308     Select *pPrior = p->pPrior;
4309     Table *pItemTab = pSubitem->pTab;
4310     pSubitem->pTab = 0;
4311     p->pOrderBy = 0;
4312     p->pPrior = 0;
4313     p->pLimit = 0;
4314     pNew = sqlite3SelectDup(db, p, 0);
4315     p->pLimit = pLimit;
4316     p->pOrderBy = pOrderBy;
4317     p->op = TK_ALL;
4318     pSubitem->pTab = pItemTab;
4319     if( pNew==0 ){
4320       p->pPrior = pPrior;
4321     }else{
4322       pNew->selId = ++pParse->nSelect;
4323       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4324         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4325       }
4326       pNew->pPrior = pPrior;
4327       if( pPrior ) pPrior->pNext = pNew;
4328       pNew->pNext = p;
4329       p->pPrior = pNew;
4330       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4331                               " creates %u as peer\n",pNew->selId));
4332     }
4333     assert( pSubitem->pSelect==0 );
4334   }
4335   sqlite3DbFree(db, aCsrMap);
4336   if( db->mallocFailed ){
4337     pSubitem->pSelect = pSub1;
4338     return 1;
4339   }
4340 
4341   /* Defer deleting the Table object associated with the
4342   ** subquery until code generation is
4343   ** complete, since there may still exist Expr.pTab entries that
4344   ** refer to the subquery even after flattening.  Ticket #3346.
4345   **
4346   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4347   */
4348   if( ALWAYS(pSubitem->pTab!=0) ){
4349     Table *pTabToDel = pSubitem->pTab;
4350     if( pTabToDel->nTabRef==1 ){
4351       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4352       sqlite3ParserAddCleanup(pToplevel,
4353          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4354          pTabToDel);
4355       testcase( pToplevel->earlyCleanup );
4356     }else{
4357       pTabToDel->nTabRef--;
4358     }
4359     pSubitem->pTab = 0;
4360   }
4361 
4362   /* The following loop runs once for each term in a compound-subquery
4363   ** flattening (as described above).  If we are doing a different kind
4364   ** of flattening - a flattening other than a compound-subquery flattening -
4365   ** then this loop only runs once.
4366   **
4367   ** This loop moves all of the FROM elements of the subquery into the
4368   ** the FROM clause of the outer query.  Before doing this, remember
4369   ** the cursor number for the original outer query FROM element in
4370   ** iParent.  The iParent cursor will never be used.  Subsequent code
4371   ** will scan expressions looking for iParent references and replace
4372   ** those references with expressions that resolve to the subquery FROM
4373   ** elements we are now copying in.
4374   */
4375   pSub = pSub1;
4376   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4377     int nSubSrc;
4378     u8 jointype = 0;
4379     u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4380     assert( pSub!=0 );
4381     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4382     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4383     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4384 
4385     if( pParent==p ){
4386       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4387     }
4388 
4389     /* The subquery uses a single slot of the FROM clause of the outer
4390     ** query.  If the subquery has more than one element in its FROM clause,
4391     ** then expand the outer query to make space for it to hold all elements
4392     ** of the subquery.
4393     **
4394     ** Example:
4395     **
4396     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4397     **
4398     ** The outer query has 3 slots in its FROM clause.  One slot of the
4399     ** outer query (the middle slot) is used by the subquery.  The next
4400     ** block of code will expand the outer query FROM clause to 4 slots.
4401     ** The middle slot is expanded to two slots in order to make space
4402     ** for the two elements in the FROM clause of the subquery.
4403     */
4404     if( nSubSrc>1 ){
4405       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4406       if( pSrc==0 ) break;
4407       pParent->pSrc = pSrc;
4408     }
4409 
4410     /* Transfer the FROM clause terms from the subquery into the
4411     ** outer query.
4412     */
4413     for(i=0; i<nSubSrc; i++){
4414       SrcItem *pItem = &pSrc->a[i+iFrom];
4415       if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4416       assert( pItem->fg.isTabFunc==0 );
4417       *pItem = pSubSrc->a[i];
4418       pItem->fg.jointype |= ltorj;
4419       iNewParent = pSubSrc->a[i].iCursor;
4420       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4421     }
4422     pSrc->a[iFrom].fg.jointype = jointype | ltorj;
4423 
4424     /* Now begin substituting subquery result set expressions for
4425     ** references to the iParent in the outer query.
4426     **
4427     ** Example:
4428     **
4429     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4430     **   \                     \_____________ subquery __________/          /
4431     **    \_____________________ outer query ______________________________/
4432     **
4433     ** We look at every expression in the outer query and every place we see
4434     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4435     */
4436     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4437       /* At this point, any non-zero iOrderByCol values indicate that the
4438       ** ORDER BY column expression is identical to the iOrderByCol'th
4439       ** expression returned by SELECT statement pSub. Since these values
4440       ** do not necessarily correspond to columns in SELECT statement pParent,
4441       ** zero them before transfering the ORDER BY clause.
4442       **
4443       ** Not doing this may cause an error if a subsequent call to this
4444       ** function attempts to flatten a compound sub-query into pParent
4445       ** (the only way this can happen is if the compound sub-query is
4446       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4447       ExprList *pOrderBy = pSub->pOrderBy;
4448       for(i=0; i<pOrderBy->nExpr; i++){
4449         pOrderBy->a[i].u.x.iOrderByCol = 0;
4450       }
4451       assert( pParent->pOrderBy==0 );
4452       pParent->pOrderBy = pOrderBy;
4453       pSub->pOrderBy = 0;
4454     }
4455     pWhere = pSub->pWhere;
4456     pSub->pWhere = 0;
4457     if( isLeftJoin>0 ){
4458       sqlite3SetJoinExpr(pWhere, iNewParent, EP_FromJoin);
4459     }
4460     if( pWhere ){
4461       if( pParent->pWhere ){
4462         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4463       }else{
4464         pParent->pWhere = pWhere;
4465       }
4466     }
4467     if( db->mallocFailed==0 ){
4468       SubstContext x;
4469       x.pParse = pParse;
4470       x.iTable = iParent;
4471       x.iNewTable = iNewParent;
4472       x.isLeftJoin = isLeftJoin;
4473       x.pEList = pSub->pEList;
4474       substSelect(&x, pParent, 0);
4475     }
4476 
4477     /* The flattened query is a compound if either the inner or the
4478     ** outer query is a compound. */
4479     pParent->selFlags |= pSub->selFlags & SF_Compound;
4480     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4481 
4482     /*
4483     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4484     **
4485     ** One is tempted to try to add a and b to combine the limits.  But this
4486     ** does not work if either limit is negative.
4487     */
4488     if( pSub->pLimit ){
4489       pParent->pLimit = pSub->pLimit;
4490       pSub->pLimit = 0;
4491     }
4492 
4493     /* Recompute the SrcList_item.colUsed masks for the flattened
4494     ** tables. */
4495     for(i=0; i<nSubSrc; i++){
4496       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4497     }
4498   }
4499 
4500   /* Finially, delete what is left of the subquery and return
4501   ** success.
4502   */
4503   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4504   sqlite3WalkSelect(&w,pSub1);
4505   sqlite3SelectDelete(db, pSub1);
4506 
4507 #if TREETRACE_ENABLED
4508   if( sqlite3TreeTrace & 0x100 ){
4509     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4510     sqlite3TreeViewSelect(0, p, 0);
4511   }
4512 #endif
4513 
4514   return 1;
4515 }
4516 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4517 
4518 /*
4519 ** A structure to keep track of all of the column values that are fixed to
4520 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4521 */
4522 typedef struct WhereConst WhereConst;
4523 struct WhereConst {
4524   Parse *pParse;   /* Parsing context */
4525   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4526   int nConst;      /* Number for COLUMN=CONSTANT terms */
4527   int nChng;       /* Number of times a constant is propagated */
4528   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4529   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4530 };
4531 
4532 /*
4533 ** Add a new entry to the pConst object.  Except, do not add duplicate
4534 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4535 **
4536 ** The caller guarantees the pColumn is a column and pValue is a constant.
4537 ** This routine has to do some additional checks before completing the
4538 ** insert.
4539 */
4540 static void constInsert(
4541   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4542   Expr *pColumn,       /* The COLUMN part of the constraint */
4543   Expr *pValue,        /* The VALUE part of the constraint */
4544   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4545 ){
4546   int i;
4547   assert( pColumn->op==TK_COLUMN );
4548   assert( sqlite3ExprIsConstant(pValue) );
4549 
4550   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4551   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4552   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4553     return;
4554   }
4555 
4556   /* 2018-10-25 ticket [cf5ed20f]
4557   ** Make sure the same pColumn is not inserted more than once */
4558   for(i=0; i<pConst->nConst; i++){
4559     const Expr *pE2 = pConst->apExpr[i*2];
4560     assert( pE2->op==TK_COLUMN );
4561     if( pE2->iTable==pColumn->iTable
4562      && pE2->iColumn==pColumn->iColumn
4563     ){
4564       return;  /* Already present.  Return without doing anything. */
4565     }
4566   }
4567   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4568     pConst->bHasAffBlob = 1;
4569   }
4570 
4571   pConst->nConst++;
4572   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4573                          pConst->nConst*2*sizeof(Expr*));
4574   if( pConst->apExpr==0 ){
4575     pConst->nConst = 0;
4576   }else{
4577     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4578     pConst->apExpr[pConst->nConst*2-1] = pValue;
4579   }
4580 }
4581 
4582 /*
4583 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4584 ** is a constant expression and where the term must be true because it
4585 ** is part of the AND-connected terms of the expression.  For each term
4586 ** found, add it to the pConst structure.
4587 */
4588 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4589   Expr *pRight, *pLeft;
4590   if( NEVER(pExpr==0) ) return;
4591   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4592   if( pExpr->op==TK_AND ){
4593     findConstInWhere(pConst, pExpr->pRight);
4594     findConstInWhere(pConst, pExpr->pLeft);
4595     return;
4596   }
4597   if( pExpr->op!=TK_EQ ) return;
4598   pRight = pExpr->pRight;
4599   pLeft = pExpr->pLeft;
4600   assert( pRight!=0 );
4601   assert( pLeft!=0 );
4602   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4603     constInsert(pConst,pRight,pLeft,pExpr);
4604   }
4605   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4606     constInsert(pConst,pLeft,pRight,pExpr);
4607   }
4608 }
4609 
4610 /*
4611 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4612 **
4613 ** Argument pExpr is a candidate expression to be replaced by a value. If
4614 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4615 ** then overwrite it with the corresponding value. Except, do not do so
4616 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4617 ** is SQLITE_AFF_BLOB.
4618 */
4619 static int propagateConstantExprRewriteOne(
4620   WhereConst *pConst,
4621   Expr *pExpr,
4622   int bIgnoreAffBlob
4623 ){
4624   int i;
4625   if( pConst->pOomFault[0] ) return WRC_Prune;
4626   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4627   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4628     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4629     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4630     return WRC_Continue;
4631   }
4632   for(i=0; i<pConst->nConst; i++){
4633     Expr *pColumn = pConst->apExpr[i*2];
4634     if( pColumn==pExpr ) continue;
4635     if( pColumn->iTable!=pExpr->iTable ) continue;
4636     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4637     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4638       break;
4639     }
4640     /* A match is found.  Add the EP_FixedCol property */
4641     pConst->nChng++;
4642     ExprClearProperty(pExpr, EP_Leaf);
4643     ExprSetProperty(pExpr, EP_FixedCol);
4644     assert( pExpr->pLeft==0 );
4645     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4646     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4647     break;
4648   }
4649   return WRC_Prune;
4650 }
4651 
4652 /*
4653 ** This is a Walker expression callback. pExpr is a node from the WHERE
4654 ** clause of a SELECT statement. This function examines pExpr to see if
4655 ** any substitutions based on the contents of pWalker->u.pConst should
4656 ** be made to pExpr or its immediate children.
4657 **
4658 ** A substitution is made if:
4659 **
4660 **   + pExpr is a column with an affinity other than BLOB that matches
4661 **     one of the columns in pWalker->u.pConst, or
4662 **
4663 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4664 **     uses an affinity other than TEXT and one of its immediate
4665 **     children is a column that matches one of the columns in
4666 **     pWalker->u.pConst.
4667 */
4668 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4669   WhereConst *pConst = pWalker->u.pConst;
4670   assert( TK_GT==TK_EQ+1 );
4671   assert( TK_LE==TK_EQ+2 );
4672   assert( TK_LT==TK_EQ+3 );
4673   assert( TK_GE==TK_EQ+4 );
4674   if( pConst->bHasAffBlob ){
4675     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4676      || pExpr->op==TK_IS
4677     ){
4678       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4679       if( pConst->pOomFault[0] ) return WRC_Prune;
4680       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4681         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4682       }
4683     }
4684   }
4685   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4686 }
4687 
4688 /*
4689 ** The WHERE-clause constant propagation optimization.
4690 **
4691 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4692 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4693 ** part of a ON clause from a LEFT JOIN, then throughout the query
4694 ** replace all other occurrences of COLUMN with CONSTANT.
4695 **
4696 ** For example, the query:
4697 **
4698 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4699 **
4700 ** Is transformed into
4701 **
4702 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4703 **
4704 ** Return true if any transformations where made and false if not.
4705 **
4706 ** Implementation note:  Constant propagation is tricky due to affinity
4707 ** and collating sequence interactions.  Consider this example:
4708 **
4709 **    CREATE TABLE t1(a INT,b TEXT);
4710 **    INSERT INTO t1 VALUES(123,'0123');
4711 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4712 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4713 **
4714 ** The two SELECT statements above should return different answers.  b=a
4715 ** is alway true because the comparison uses numeric affinity, but b=123
4716 ** is false because it uses text affinity and '0123' is not the same as '123'.
4717 ** To work around this, the expression tree is not actually changed from
4718 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4719 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4720 ** routines know to generate the constant "123" instead of looking up the
4721 ** column value.  Also, to avoid collation problems, this optimization is
4722 ** only attempted if the "a=123" term uses the default BINARY collation.
4723 **
4724 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4725 **
4726 **    CREATE TABLE t1(x);
4727 **    INSERT INTO t1 VALUES(10.0);
4728 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4729 **
4730 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4731 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4732 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4733 ** resulting in a false positive.  To avoid this, constant propagation for
4734 ** columns with BLOB affinity is only allowed if the constant is used with
4735 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4736 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4737 ** for details.
4738 */
4739 static int propagateConstants(
4740   Parse *pParse,   /* The parsing context */
4741   Select *p        /* The query in which to propagate constants */
4742 ){
4743   WhereConst x;
4744   Walker w;
4745   int nChng = 0;
4746   x.pParse = pParse;
4747   x.pOomFault = &pParse->db->mallocFailed;
4748   do{
4749     x.nConst = 0;
4750     x.nChng = 0;
4751     x.apExpr = 0;
4752     x.bHasAffBlob = 0;
4753     findConstInWhere(&x, p->pWhere);
4754     if( x.nConst ){
4755       memset(&w, 0, sizeof(w));
4756       w.pParse = pParse;
4757       w.xExprCallback = propagateConstantExprRewrite;
4758       w.xSelectCallback = sqlite3SelectWalkNoop;
4759       w.xSelectCallback2 = 0;
4760       w.walkerDepth = 0;
4761       w.u.pConst = &x;
4762       sqlite3WalkExpr(&w, p->pWhere);
4763       sqlite3DbFree(x.pParse->db, x.apExpr);
4764       nChng += x.nChng;
4765     }
4766   }while( x.nChng );
4767   return nChng;
4768 }
4769 
4770 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4771 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4772 /*
4773 ** This function is called to determine whether or not it is safe to
4774 ** push WHERE clause expression pExpr down to FROM clause sub-query
4775 ** pSubq, which contains at least one window function. Return 1
4776 ** if it is safe and the expression should be pushed down, or 0
4777 ** otherwise.
4778 **
4779 ** It is only safe to push the expression down if it consists only
4780 ** of constants and copies of expressions that appear in the PARTITION
4781 ** BY clause of all window function used by the sub-query. It is safe
4782 ** to filter out entire partitions, but not rows within partitions, as
4783 ** this may change the results of the window functions.
4784 **
4785 ** At the time this function is called it is guaranteed that
4786 **
4787 **   * the sub-query uses only one distinct window frame, and
4788 **   * that the window frame has a PARTITION BY clase.
4789 */
4790 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4791   assert( pSubq->pWin->pPartition );
4792   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4793   assert( pSubq->pPrior==0 );
4794   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4795 }
4796 # endif /* SQLITE_OMIT_WINDOWFUNC */
4797 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4798 
4799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4800 /*
4801 ** Make copies of relevant WHERE clause terms of the outer query into
4802 ** the WHERE clause of subquery.  Example:
4803 **
4804 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4805 **
4806 ** Transformed into:
4807 **
4808 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4809 **     WHERE x=5 AND y=10;
4810 **
4811 ** The hope is that the terms added to the inner query will make it more
4812 ** efficient.
4813 **
4814 ** Do not attempt this optimization if:
4815 **
4816 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4817 **           disallow this optimization for aggregate subqueries, but now
4818 **           it is allowed by putting the extra terms on the HAVING clause.
4819 **           The added HAVING clause is pointless if the subquery lacks
4820 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4821 **           so there does not appear to be any reason to add extra logic
4822 **           to suppress it. **)
4823 **
4824 **   (2) The inner query is the recursive part of a common table expression.
4825 **
4826 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4827 **       clause would change the meaning of the LIMIT).
4828 **
4829 **   (4) The inner query is the right operand of a LEFT JOIN and the
4830 **       expression to be pushed down does not come from the ON clause
4831 **       on that LEFT JOIN.
4832 **
4833 **   (5) The WHERE clause expression originates in the ON or USING clause
4834 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4835 **       left join.  An example:
4836 **
4837 **           SELECT *
4838 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4839 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4840 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4841 **
4842 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4843 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4844 **       then the (1,1,NULL) row would be suppressed.
4845 **
4846 **   (6) Window functions make things tricky as changes to the WHERE clause
4847 **       of the inner query could change the window over which window
4848 **       functions are calculated. Therefore, do not attempt the optimization
4849 **       if:
4850 **
4851 **     (6a) The inner query uses multiple incompatible window partitions.
4852 **
4853 **     (6b) The inner query is a compound and uses window-functions.
4854 **
4855 **     (6c) The WHERE clause does not consist entirely of constants and
4856 **          copies of expressions found in the PARTITION BY clause of
4857 **          all window-functions used by the sub-query. It is safe to
4858 **          filter out entire partitions, as this does not change the
4859 **          window over which any window-function is calculated.
4860 **
4861 **   (7) The inner query is a Common Table Expression (CTE) that should
4862 **       be materialized.  (This restriction is implemented in the calling
4863 **       routine.)
4864 **
4865 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4866 ** terms are duplicated into the subquery.
4867 */
4868 static int pushDownWhereTerms(
4869   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4870   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4871   Expr *pWhere,         /* The WHERE clause of the outer query */
4872   int iCursor,          /* Cursor number of the subquery */
4873   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4874 ){
4875   Expr *pNew;
4876   int nChng = 0;
4877   if( pWhere==0 ) return 0;
4878   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4879 
4880 #ifndef SQLITE_OMIT_WINDOWFUNC
4881   if( pSubq->pPrior ){
4882     Select *pSel;
4883     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4884       if( pSel->pWin ) return 0;    /* restriction (6b) */
4885     }
4886   }else{
4887     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4888   }
4889 #endif
4890 
4891 #ifdef SQLITE_DEBUG
4892   /* Only the first term of a compound can have a WITH clause.  But make
4893   ** sure no other terms are marked SF_Recursive in case something changes
4894   ** in the future.
4895   */
4896   {
4897     Select *pX;
4898     for(pX=pSubq; pX; pX=pX->pPrior){
4899       assert( (pX->selFlags & (SF_Recursive))==0 );
4900     }
4901   }
4902 #endif
4903 
4904   if( pSubq->pLimit!=0 ){
4905     return 0; /* restriction (3) */
4906   }
4907   while( pWhere->op==TK_AND ){
4908     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4909                                 iCursor, isLeftJoin);
4910     pWhere = pWhere->pLeft;
4911   }
4912   if( isLeftJoin
4913    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4914          || pWhere->w.iJoin!=iCursor)
4915   ){
4916     return 0; /* restriction (4) */
4917   }
4918   if( ExprHasProperty(pWhere,EP_FromJoin)
4919    && pWhere->w.iJoin!=iCursor
4920   ){
4921     return 0; /* restriction (5) */
4922   }
4923   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4924     nChng++;
4925     pSubq->selFlags |= SF_PushDown;
4926     while( pSubq ){
4927       SubstContext x;
4928       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4929       unsetJoinExpr(pNew, -1);
4930       x.pParse = pParse;
4931       x.iTable = iCursor;
4932       x.iNewTable = iCursor;
4933       x.isLeftJoin = 0;
4934       x.pEList = pSubq->pEList;
4935       pNew = substExpr(&x, pNew);
4936 #ifndef SQLITE_OMIT_WINDOWFUNC
4937       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4938         /* Restriction 6c has prevented push-down in this case */
4939         sqlite3ExprDelete(pParse->db, pNew);
4940         nChng--;
4941         break;
4942       }
4943 #endif
4944       if( pSubq->selFlags & SF_Aggregate ){
4945         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4946       }else{
4947         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4948       }
4949       pSubq = pSubq->pPrior;
4950     }
4951   }
4952   return nChng;
4953 }
4954 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4955 
4956 /*
4957 ** The pFunc is the only aggregate function in the query.  Check to see
4958 ** if the query is a candidate for the min/max optimization.
4959 **
4960 ** If the query is a candidate for the min/max optimization, then set
4961 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4962 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4963 ** whether pFunc is a min() or max() function.
4964 **
4965 ** If the query is not a candidate for the min/max optimization, return
4966 ** WHERE_ORDERBY_NORMAL (which must be zero).
4967 **
4968 ** This routine must be called after aggregate functions have been
4969 ** located but before their arguments have been subjected to aggregate
4970 ** analysis.
4971 */
4972 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4973   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4974   ExprList *pEList;                     /* Arguments to agg function */
4975   const char *zFunc;                    /* Name of aggregate function pFunc */
4976   ExprList *pOrderBy;
4977   u8 sortFlags = 0;
4978 
4979   assert( *ppMinMax==0 );
4980   assert( pFunc->op==TK_AGG_FUNCTION );
4981   assert( !IsWindowFunc(pFunc) );
4982   assert( ExprUseXList(pFunc) );
4983   pEList = pFunc->x.pList;
4984   if( pEList==0
4985    || pEList->nExpr!=1
4986    || ExprHasProperty(pFunc, EP_WinFunc)
4987    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4988   ){
4989     return eRet;
4990   }
4991   assert( !ExprHasProperty(pFunc, EP_IntValue) );
4992   zFunc = pFunc->u.zToken;
4993   if( sqlite3StrICmp(zFunc, "min")==0 ){
4994     eRet = WHERE_ORDERBY_MIN;
4995     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4996       sortFlags = KEYINFO_ORDER_BIGNULL;
4997     }
4998   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4999     eRet = WHERE_ORDERBY_MAX;
5000     sortFlags = KEYINFO_ORDER_DESC;
5001   }else{
5002     return eRet;
5003   }
5004   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5005   assert( pOrderBy!=0 || db->mallocFailed );
5006   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
5007   return eRet;
5008 }
5009 
5010 /*
5011 ** The select statement passed as the first argument is an aggregate query.
5012 ** The second argument is the associated aggregate-info object. This
5013 ** function tests if the SELECT is of the form:
5014 **
5015 **   SELECT count(*) FROM <tbl>
5016 **
5017 ** where table is a database table, not a sub-select or view. If the query
5018 ** does match this pattern, then a pointer to the Table object representing
5019 ** <tbl> is returned. Otherwise, NULL is returned.
5020 **
5021 ** This routine checks to see if it is safe to use the count optimization.
5022 ** A correct answer is still obtained (though perhaps more slowly) if
5023 ** this routine returns NULL when it could have returned a table pointer.
5024 ** But returning the pointer when NULL should have been returned can
5025 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
5026 */
5027 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5028   Table *pTab;
5029   Expr *pExpr;
5030 
5031   assert( !p->pGroupBy );
5032 
5033   if( p->pWhere
5034    || p->pEList->nExpr!=1
5035    || p->pSrc->nSrc!=1
5036    || p->pSrc->a[0].pSelect
5037    || pAggInfo->nFunc!=1
5038   ){
5039     return 0;
5040   }
5041   pTab = p->pSrc->a[0].pTab;
5042   assert( pTab!=0 );
5043   assert( !IsView(pTab) );
5044   if( !IsOrdinaryTable(pTab) ) return 0;
5045   pExpr = p->pEList->a[0].pExpr;
5046   assert( pExpr!=0 );
5047   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5048   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5049   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5050   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5051   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5052   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5053   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5054 
5055   return pTab;
5056 }
5057 
5058 /*
5059 ** If the source-list item passed as an argument was augmented with an
5060 ** INDEXED BY clause, then try to locate the specified index. If there
5061 ** was such a clause and the named index cannot be found, return
5062 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5063 ** pFrom->pIndex and return SQLITE_OK.
5064 */
5065 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5066   Table *pTab = pFrom->pTab;
5067   char *zIndexedBy = pFrom->u1.zIndexedBy;
5068   Index *pIdx;
5069   assert( pTab!=0 );
5070   assert( pFrom->fg.isIndexedBy!=0 );
5071 
5072   for(pIdx=pTab->pIndex;
5073       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5074       pIdx=pIdx->pNext
5075   );
5076   if( !pIdx ){
5077     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5078     pParse->checkSchema = 1;
5079     return SQLITE_ERROR;
5080   }
5081   assert( pFrom->fg.isCte==0 );
5082   pFrom->u2.pIBIndex = pIdx;
5083   return SQLITE_OK;
5084 }
5085 
5086 /*
5087 ** Detect compound SELECT statements that use an ORDER BY clause with
5088 ** an alternative collating sequence.
5089 **
5090 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5091 **
5092 ** These are rewritten as a subquery:
5093 **
5094 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5095 **     ORDER BY ... COLLATE ...
5096 **
5097 ** This transformation is necessary because the multiSelectOrderBy() routine
5098 ** above that generates the code for a compound SELECT with an ORDER BY clause
5099 ** uses a merge algorithm that requires the same collating sequence on the
5100 ** result columns as on the ORDER BY clause.  See ticket
5101 ** http://www.sqlite.org/src/info/6709574d2a
5102 **
5103 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5104 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5105 ** there are COLLATE terms in the ORDER BY.
5106 */
5107 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5108   int i;
5109   Select *pNew;
5110   Select *pX;
5111   sqlite3 *db;
5112   struct ExprList_item *a;
5113   SrcList *pNewSrc;
5114   Parse *pParse;
5115   Token dummy;
5116 
5117   if( p->pPrior==0 ) return WRC_Continue;
5118   if( p->pOrderBy==0 ) return WRC_Continue;
5119   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5120   if( pX==0 ) return WRC_Continue;
5121   a = p->pOrderBy->a;
5122 #ifndef SQLITE_OMIT_WINDOWFUNC
5123   /* If iOrderByCol is already non-zero, then it has already been matched
5124   ** to a result column of the SELECT statement. This occurs when the
5125   ** SELECT is rewritten for window-functions processing and then passed
5126   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5127   ** by this function is not required in this case. */
5128   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5129 #endif
5130   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5131     if( a[i].pExpr->flags & EP_Collate ) break;
5132   }
5133   if( i<0 ) return WRC_Continue;
5134 
5135   /* If we reach this point, that means the transformation is required. */
5136 
5137   pParse = pWalker->pParse;
5138   db = pParse->db;
5139   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5140   if( pNew==0 ) return WRC_Abort;
5141   memset(&dummy, 0, sizeof(dummy));
5142   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5143   if( pNewSrc==0 ) return WRC_Abort;
5144   *pNew = *p;
5145   p->pSrc = pNewSrc;
5146   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5147   p->op = TK_SELECT;
5148   p->pWhere = 0;
5149   pNew->pGroupBy = 0;
5150   pNew->pHaving = 0;
5151   pNew->pOrderBy = 0;
5152   p->pPrior = 0;
5153   p->pNext = 0;
5154   p->pWith = 0;
5155 #ifndef SQLITE_OMIT_WINDOWFUNC
5156   p->pWinDefn = 0;
5157 #endif
5158   p->selFlags &= ~SF_Compound;
5159   assert( (p->selFlags & SF_Converted)==0 );
5160   p->selFlags |= SF_Converted;
5161   assert( pNew->pPrior!=0 );
5162   pNew->pPrior->pNext = pNew;
5163   pNew->pLimit = 0;
5164   return WRC_Continue;
5165 }
5166 
5167 /*
5168 ** Check to see if the FROM clause term pFrom has table-valued function
5169 ** arguments.  If it does, leave an error message in pParse and return
5170 ** non-zero, since pFrom is not allowed to be a table-valued function.
5171 */
5172 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5173   if( pFrom->fg.isTabFunc ){
5174     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5175     return 1;
5176   }
5177   return 0;
5178 }
5179 
5180 #ifndef SQLITE_OMIT_CTE
5181 /*
5182 ** Argument pWith (which may be NULL) points to a linked list of nested
5183 ** WITH contexts, from inner to outermost. If the table identified by
5184 ** FROM clause element pItem is really a common-table-expression (CTE)
5185 ** then return a pointer to the CTE definition for that table. Otherwise
5186 ** return NULL.
5187 **
5188 ** If a non-NULL value is returned, set *ppContext to point to the With
5189 ** object that the returned CTE belongs to.
5190 */
5191 static struct Cte *searchWith(
5192   With *pWith,                    /* Current innermost WITH clause */
5193   SrcItem *pItem,                 /* FROM clause element to resolve */
5194   With **ppContext                /* OUT: WITH clause return value belongs to */
5195 ){
5196   const char *zName = pItem->zName;
5197   With *p;
5198   assert( pItem->zDatabase==0 );
5199   assert( zName!=0 );
5200   for(p=pWith; p; p=p->pOuter){
5201     int i;
5202     for(i=0; i<p->nCte; i++){
5203       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5204         *ppContext = p;
5205         return &p->a[i];
5206       }
5207     }
5208     if( p->bView ) break;
5209   }
5210   return 0;
5211 }
5212 
5213 /* The code generator maintains a stack of active WITH clauses
5214 ** with the inner-most WITH clause being at the top of the stack.
5215 **
5216 ** This routine pushes the WITH clause passed as the second argument
5217 ** onto the top of the stack. If argument bFree is true, then this
5218 ** WITH clause will never be popped from the stack but should instead
5219 ** be freed along with the Parse object. In other cases, when
5220 ** bFree==0, the With object will be freed along with the SELECT
5221 ** statement with which it is associated.
5222 **
5223 ** This routine returns a copy of pWith.  Or, if bFree is true and
5224 ** the pWith object is destroyed immediately due to an OOM condition,
5225 ** then this routine return NULL.
5226 **
5227 ** If bFree is true, do not continue to use the pWith pointer after
5228 ** calling this routine,  Instead, use only the return value.
5229 */
5230 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5231   if( pWith ){
5232     if( bFree ){
5233       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5234                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5235                       pWith);
5236       if( pWith==0 ) return 0;
5237     }
5238     if( pParse->nErr==0 ){
5239       assert( pParse->pWith!=pWith );
5240       pWith->pOuter = pParse->pWith;
5241       pParse->pWith = pWith;
5242     }
5243   }
5244   return pWith;
5245 }
5246 
5247 /*
5248 ** This function checks if argument pFrom refers to a CTE declared by
5249 ** a WITH clause on the stack currently maintained by the parser (on the
5250 ** pParse->pWith linked list).  And if currently processing a CTE
5251 ** CTE expression, through routine checks to see if the reference is
5252 ** a recursive reference to the CTE.
5253 **
5254 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5255 ** and other fields are populated accordingly.
5256 **
5257 ** Return 0 if no match is found.
5258 ** Return 1 if a match is found.
5259 ** Return 2 if an error condition is detected.
5260 */
5261 static int resolveFromTermToCte(
5262   Parse *pParse,                  /* The parsing context */
5263   Walker *pWalker,                /* Current tree walker */
5264   SrcItem *pFrom                  /* The FROM clause term to check */
5265 ){
5266   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5267   With *pWith;             /* The matching WITH */
5268 
5269   assert( pFrom->pTab==0 );
5270   if( pParse->pWith==0 ){
5271     /* There are no WITH clauses in the stack.  No match is possible */
5272     return 0;
5273   }
5274   if( pParse->nErr ){
5275     /* Prior errors might have left pParse->pWith in a goofy state, so
5276     ** go no further. */
5277     return 0;
5278   }
5279   if( pFrom->zDatabase!=0 ){
5280     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5281     ** it cannot possibly be a CTE reference. */
5282     return 0;
5283   }
5284   if( pFrom->fg.notCte ){
5285     /* The FROM term is specifically excluded from matching a CTE.
5286     **   (1)  It is part of a trigger that used to have zDatabase but had
5287     **        zDatabase removed by sqlite3FixTriggerStep().
5288     **   (2)  This is the first term in the FROM clause of an UPDATE.
5289     */
5290     return 0;
5291   }
5292   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5293   if( pCte ){
5294     sqlite3 *db = pParse->db;
5295     Table *pTab;
5296     ExprList *pEList;
5297     Select *pSel;
5298     Select *pLeft;                /* Left-most SELECT statement */
5299     Select *pRecTerm;             /* Left-most recursive term */
5300     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5301     With *pSavedWith;             /* Initial value of pParse->pWith */
5302     int iRecTab = -1;             /* Cursor for recursive table */
5303     CteUse *pCteUse;
5304 
5305     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5306     ** recursive reference to CTE pCte. Leave an error in pParse and return
5307     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5308     ** In this case, proceed.  */
5309     if( pCte->zCteErr ){
5310       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5311       return 2;
5312     }
5313     if( cannotBeFunction(pParse, pFrom) ) return 2;
5314 
5315     assert( pFrom->pTab==0 );
5316     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5317     if( pTab==0 ) return 2;
5318     pCteUse = pCte->pUse;
5319     if( pCteUse==0 ){
5320       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5321       if( pCteUse==0
5322        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5323       ){
5324         sqlite3DbFree(db, pTab);
5325         return 2;
5326       }
5327       pCteUse->eM10d = pCte->eM10d;
5328     }
5329     pFrom->pTab = pTab;
5330     pTab->nTabRef = 1;
5331     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5332     pTab->iPKey = -1;
5333     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5334     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5335     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5336     if( db->mallocFailed ) return 2;
5337     pFrom->pSelect->selFlags |= SF_CopyCte;
5338     assert( pFrom->pSelect );
5339     if( pFrom->fg.isIndexedBy ){
5340       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5341       return 2;
5342     }
5343     pFrom->fg.isCte = 1;
5344     pFrom->u2.pCteUse = pCteUse;
5345     pCteUse->nUse++;
5346     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5347       pCteUse->eM10d = M10d_Yes;
5348     }
5349 
5350     /* Check if this is a recursive CTE. */
5351     pRecTerm = pSel = pFrom->pSelect;
5352     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5353     while( bMayRecursive && pRecTerm->op==pSel->op ){
5354       int i;
5355       SrcList *pSrc = pRecTerm->pSrc;
5356       assert( pRecTerm->pPrior!=0 );
5357       for(i=0; i<pSrc->nSrc; i++){
5358         SrcItem *pItem = &pSrc->a[i];
5359         if( pItem->zDatabase==0
5360          && pItem->zName!=0
5361          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5362         ){
5363           pItem->pTab = pTab;
5364           pTab->nTabRef++;
5365           pItem->fg.isRecursive = 1;
5366           if( pRecTerm->selFlags & SF_Recursive ){
5367             sqlite3ErrorMsg(pParse,
5368                "multiple references to recursive table: %s", pCte->zName
5369             );
5370             return 2;
5371           }
5372           pRecTerm->selFlags |= SF_Recursive;
5373           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5374           pItem->iCursor = iRecTab;
5375         }
5376       }
5377       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5378       pRecTerm = pRecTerm->pPrior;
5379     }
5380 
5381     pCte->zCteErr = "circular reference: %s";
5382     pSavedWith = pParse->pWith;
5383     pParse->pWith = pWith;
5384     if( pSel->selFlags & SF_Recursive ){
5385       int rc;
5386       assert( pRecTerm!=0 );
5387       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5388       assert( pRecTerm->pNext!=0 );
5389       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5390       assert( pRecTerm->pWith==0 );
5391       pRecTerm->pWith = pSel->pWith;
5392       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5393       pRecTerm->pWith = 0;
5394       if( rc ){
5395         pParse->pWith = pSavedWith;
5396         return 2;
5397       }
5398     }else{
5399       if( sqlite3WalkSelect(pWalker, pSel) ){
5400         pParse->pWith = pSavedWith;
5401         return 2;
5402       }
5403     }
5404     pParse->pWith = pWith;
5405 
5406     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5407     pEList = pLeft->pEList;
5408     if( pCte->pCols ){
5409       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5410         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5411             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5412         );
5413         pParse->pWith = pSavedWith;
5414         return 2;
5415       }
5416       pEList = pCte->pCols;
5417     }
5418 
5419     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5420     if( bMayRecursive ){
5421       if( pSel->selFlags & SF_Recursive ){
5422         pCte->zCteErr = "multiple recursive references: %s";
5423       }else{
5424         pCte->zCteErr = "recursive reference in a subquery: %s";
5425       }
5426       sqlite3WalkSelect(pWalker, pSel);
5427     }
5428     pCte->zCteErr = 0;
5429     pParse->pWith = pSavedWith;
5430     return 1;  /* Success */
5431   }
5432   return 0;  /* No match */
5433 }
5434 #endif
5435 
5436 #ifndef SQLITE_OMIT_CTE
5437 /*
5438 ** If the SELECT passed as the second argument has an associated WITH
5439 ** clause, pop it from the stack stored as part of the Parse object.
5440 **
5441 ** This function is used as the xSelectCallback2() callback by
5442 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5443 ** names and other FROM clause elements.
5444 */
5445 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5446   Parse *pParse = pWalker->pParse;
5447   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5448     With *pWith = findRightmost(p)->pWith;
5449     if( pWith!=0 ){
5450       assert( pParse->pWith==pWith || pParse->nErr );
5451       pParse->pWith = pWith->pOuter;
5452     }
5453   }
5454 }
5455 #endif
5456 
5457 /*
5458 ** The SrcList_item structure passed as the second argument represents a
5459 ** sub-query in the FROM clause of a SELECT statement. This function
5460 ** allocates and populates the SrcList_item.pTab object. If successful,
5461 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5462 ** SQLITE_NOMEM.
5463 */
5464 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5465   Select *pSel = pFrom->pSelect;
5466   Table *pTab;
5467 
5468   assert( pSel );
5469   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5470   if( pTab==0 ) return SQLITE_NOMEM;
5471   pTab->nTabRef = 1;
5472   if( pFrom->zAlias ){
5473     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5474   }else{
5475     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5476   }
5477   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5478   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5479   pTab->iPKey = -1;
5480   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5481 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5482   /* The usual case - do not allow ROWID on a subquery */
5483   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5484 #else
5485   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5486 #endif
5487 
5488 
5489   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5490 }
5491 
5492 /*
5493 ** This routine is a Walker callback for "expanding" a SELECT statement.
5494 ** "Expanding" means to do the following:
5495 **
5496 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5497 **         element of the FROM clause.
5498 **
5499 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5500 **         defines FROM clause.  When views appear in the FROM clause,
5501 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5502 **         that implements the view.  A copy is made of the view's SELECT
5503 **         statement so that we can freely modify or delete that statement
5504 **         without worrying about messing up the persistent representation
5505 **         of the view.
5506 **
5507 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5508 **         on joins and the ON and USING clause of joins.
5509 **
5510 **    (4)  Scan the list of columns in the result set (pEList) looking
5511 **         for instances of the "*" operator or the TABLE.* operator.
5512 **         If found, expand each "*" to be every column in every table
5513 **         and TABLE.* to be every column in TABLE.
5514 **
5515 */
5516 static int selectExpander(Walker *pWalker, Select *p){
5517   Parse *pParse = pWalker->pParse;
5518   int i, j, k, rc;
5519   SrcList *pTabList;
5520   ExprList *pEList;
5521   SrcItem *pFrom;
5522   sqlite3 *db = pParse->db;
5523   Expr *pE, *pRight, *pExpr;
5524   u16 selFlags = p->selFlags;
5525   u32 elistFlags = 0;
5526 
5527   p->selFlags |= SF_Expanded;
5528   if( db->mallocFailed  ){
5529     return WRC_Abort;
5530   }
5531   assert( p->pSrc!=0 );
5532   if( (selFlags & SF_Expanded)!=0 ){
5533     return WRC_Prune;
5534   }
5535   if( pWalker->eCode ){
5536     /* Renumber selId because it has been copied from a view */
5537     p->selId = ++pParse->nSelect;
5538   }
5539   pTabList = p->pSrc;
5540   pEList = p->pEList;
5541   if( pParse->pWith && (p->selFlags & SF_View) ){
5542     if( p->pWith==0 ){
5543       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5544       if( p->pWith==0 ){
5545         return WRC_Abort;
5546       }
5547     }
5548     p->pWith->bView = 1;
5549   }
5550   sqlite3WithPush(pParse, p->pWith, 0);
5551 
5552   /* Make sure cursor numbers have been assigned to all entries in
5553   ** the FROM clause of the SELECT statement.
5554   */
5555   sqlite3SrcListAssignCursors(pParse, pTabList);
5556 
5557   /* Look up every table named in the FROM clause of the select.  If
5558   ** an entry of the FROM clause is a subquery instead of a table or view,
5559   ** then create a transient table structure to describe the subquery.
5560   */
5561   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5562     Table *pTab;
5563     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5564     if( pFrom->pTab ) continue;
5565     assert( pFrom->fg.isRecursive==0 );
5566     if( pFrom->zName==0 ){
5567 #ifndef SQLITE_OMIT_SUBQUERY
5568       Select *pSel = pFrom->pSelect;
5569       /* A sub-query in the FROM clause of a SELECT */
5570       assert( pSel!=0 );
5571       assert( pFrom->pTab==0 );
5572       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5573       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5574 #endif
5575 #ifndef SQLITE_OMIT_CTE
5576     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5577       if( rc>1 ) return WRC_Abort;
5578       pTab = pFrom->pTab;
5579       assert( pTab!=0 );
5580 #endif
5581     }else{
5582       /* An ordinary table or view name in the FROM clause */
5583       assert( pFrom->pTab==0 );
5584       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5585       if( pTab==0 ) return WRC_Abort;
5586       if( pTab->nTabRef>=0xffff ){
5587         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5588            pTab->zName);
5589         pFrom->pTab = 0;
5590         return WRC_Abort;
5591       }
5592       pTab->nTabRef++;
5593       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5594         return WRC_Abort;
5595       }
5596 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5597       if( !IsOrdinaryTable(pTab) ){
5598         i16 nCol;
5599         u8 eCodeOrig = pWalker->eCode;
5600         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5601         assert( pFrom->pSelect==0 );
5602         if( IsView(pTab) ){
5603           if( (db->flags & SQLITE_EnableView)==0
5604            && pTab->pSchema!=db->aDb[1].pSchema
5605           ){
5606             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5607               pTab->zName);
5608           }
5609           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5610         }
5611 #ifndef SQLITE_OMIT_VIRTUALTABLE
5612         else if( ALWAYS(IsVirtual(pTab))
5613          && pFrom->fg.fromDDL
5614          && ALWAYS(pTab->u.vtab.p!=0)
5615          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5616         ){
5617           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5618                                   pTab->zName);
5619         }
5620         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5621 #endif
5622         nCol = pTab->nCol;
5623         pTab->nCol = -1;
5624         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5625         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5626         pWalker->eCode = eCodeOrig;
5627         pTab->nCol = nCol;
5628       }
5629 #endif
5630     }
5631 
5632     /* Locate the index named by the INDEXED BY clause, if any. */
5633     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5634       return WRC_Abort;
5635     }
5636   }
5637 
5638   /* Process NATURAL keywords, and ON and USING clauses of joins.
5639   */
5640   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5641   if( pParse->nErr || sqliteProcessJoin(pParse, p) ){
5642     return WRC_Abort;
5643   }
5644 
5645   /* For every "*" that occurs in the column list, insert the names of
5646   ** all columns in all tables.  And for every TABLE.* insert the names
5647   ** of all columns in TABLE.  The parser inserted a special expression
5648   ** with the TK_ASTERISK operator for each "*" that it found in the column
5649   ** list.  The following code just has to locate the TK_ASTERISK
5650   ** expressions and expand each one to the list of all columns in
5651   ** all tables.
5652   **
5653   ** The first loop just checks to see if there are any "*" operators
5654   ** that need expanding.
5655   */
5656   for(k=0; k<pEList->nExpr; k++){
5657     pE = pEList->a[k].pExpr;
5658     if( pE->op==TK_ASTERISK ) break;
5659     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5660     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5661     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5662     elistFlags |= pE->flags;
5663   }
5664   if( k<pEList->nExpr ){
5665     /*
5666     ** If we get here it means the result set contains one or more "*"
5667     ** operators that need to be expanded.  Loop through each expression
5668     ** in the result set and expand them one by one.
5669     */
5670     struct ExprList_item *a = pEList->a;
5671     ExprList *pNew = 0;
5672     int flags = pParse->db->flags;
5673     int longNames = (flags & SQLITE_FullColNames)!=0
5674                       && (flags & SQLITE_ShortColNames)==0;
5675 
5676     for(k=0; k<pEList->nExpr; k++){
5677       pE = a[k].pExpr;
5678       elistFlags |= pE->flags;
5679       pRight = pE->pRight;
5680       assert( pE->op!=TK_DOT || pRight!=0 );
5681       if( pE->op!=TK_ASTERISK
5682        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5683       ){
5684         /* This particular expression does not need to be expanded.
5685         */
5686         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5687         if( pNew ){
5688           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5689           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5690           a[k].zEName = 0;
5691         }
5692         a[k].pExpr = 0;
5693       }else{
5694         /* This expression is a "*" or a "TABLE.*" and needs to be
5695         ** expanded. */
5696         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5697         char *zTName = 0;       /* text of name of TABLE */
5698         if( pE->op==TK_DOT ){
5699           assert( pE->pLeft!=0 );
5700           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5701           zTName = pE->pLeft->u.zToken;
5702         }
5703         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5704           Table *pTab = pFrom->pTab;
5705           Select *pSub = pFrom->pSelect;
5706           char *zTabName = pFrom->zAlias;
5707           const char *zSchemaName = 0;
5708           int iDb;
5709           if( zTabName==0 ){
5710             zTabName = pTab->zName;
5711           }
5712           if( db->mallocFailed ) break;
5713           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5714             pSub = 0;
5715             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5716               continue;
5717             }
5718             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5719             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5720           }
5721           for(j=0; j<pTab->nCol; j++){
5722             char *zName = pTab->aCol[j].zCnName;
5723             char *zColname;  /* The computed column name */
5724             char *zToFree;   /* Malloced string that needs to be freed */
5725             Token sColname;  /* Computed column name as a token */
5726 
5727             assert( zName );
5728             if( zTName && pSub
5729              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5730             ){
5731               continue;
5732             }
5733 
5734             /* If a column is marked as 'hidden', omit it from the expanded
5735             ** result-set list unless the SELECT has the SF_IncludeHidden
5736             ** bit set.
5737             */
5738             if( (p->selFlags & SF_IncludeHidden)==0
5739              && IsHiddenColumn(&pTab->aCol[j])
5740             ){
5741               continue;
5742             }
5743             tableSeen = 1;
5744 
5745             if( i>0 && zTName==0 ){
5746               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5747                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5748               ){
5749                 /* In a NATURAL join, omit the join columns from the
5750                 ** table to the right of the join */
5751                 continue;
5752               }
5753               if( pFrom->fg.isUsing
5754                && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5755               ){
5756                 /* In a join with a USING clause, omit columns in the
5757                 ** using clause from the table on the right. */
5758                 continue;
5759               }
5760             }
5761             pRight = sqlite3Expr(db, TK_ID, zName);
5762             zColname = zName;
5763             zToFree = 0;
5764             if( longNames || pTabList->nSrc>1 ){
5765               Expr *pLeft;
5766               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5767               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5768               if( zSchemaName ){
5769                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5770                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5771               }
5772               if( longNames ){
5773                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5774                 zToFree = zColname;
5775               }
5776             }else{
5777               pExpr = pRight;
5778             }
5779             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5780             sqlite3TokenInit(&sColname, zColname);
5781             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5782             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5783               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5784               sqlite3DbFree(db, pX->zEName);
5785               if( pSub ){
5786                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5787                 testcase( pX->zEName==0 );
5788               }else{
5789                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5790                                            zSchemaName, zTabName, zColname);
5791                 testcase( pX->zEName==0 );
5792               }
5793               pX->eEName = ENAME_TAB;
5794             }
5795             sqlite3DbFree(db, zToFree);
5796           }
5797         }
5798         if( !tableSeen ){
5799           if( zTName ){
5800             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5801           }else{
5802             sqlite3ErrorMsg(pParse, "no tables specified");
5803           }
5804         }
5805       }
5806     }
5807     sqlite3ExprListDelete(db, pEList);
5808     p->pEList = pNew;
5809   }
5810   if( p->pEList ){
5811     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5812       sqlite3ErrorMsg(pParse, "too many columns in result set");
5813       return WRC_Abort;
5814     }
5815     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5816       p->selFlags |= SF_ComplexResult;
5817     }
5818   }
5819   return WRC_Continue;
5820 }
5821 
5822 #if SQLITE_DEBUG
5823 /*
5824 ** Always assert.  This xSelectCallback2 implementation proves that the
5825 ** xSelectCallback2 is never invoked.
5826 */
5827 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5828   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5829   assert( 0 );
5830 }
5831 #endif
5832 /*
5833 ** This routine "expands" a SELECT statement and all of its subqueries.
5834 ** For additional information on what it means to "expand" a SELECT
5835 ** statement, see the comment on the selectExpand worker callback above.
5836 **
5837 ** Expanding a SELECT statement is the first step in processing a
5838 ** SELECT statement.  The SELECT statement must be expanded before
5839 ** name resolution is performed.
5840 **
5841 ** If anything goes wrong, an error message is written into pParse.
5842 ** The calling function can detect the problem by looking at pParse->nErr
5843 ** and/or pParse->db->mallocFailed.
5844 */
5845 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5846   Walker w;
5847   w.xExprCallback = sqlite3ExprWalkNoop;
5848   w.pParse = pParse;
5849   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5850     w.xSelectCallback = convertCompoundSelectToSubquery;
5851     w.xSelectCallback2 = 0;
5852     sqlite3WalkSelect(&w, pSelect);
5853   }
5854   w.xSelectCallback = selectExpander;
5855   w.xSelectCallback2 = sqlite3SelectPopWith;
5856   w.eCode = 0;
5857   sqlite3WalkSelect(&w, pSelect);
5858 }
5859 
5860 
5861 #ifndef SQLITE_OMIT_SUBQUERY
5862 /*
5863 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5864 ** interface.
5865 **
5866 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5867 ** information to the Table structure that represents the result set
5868 ** of that subquery.
5869 **
5870 ** The Table structure that represents the result set was constructed
5871 ** by selectExpander() but the type and collation information was omitted
5872 ** at that point because identifiers had not yet been resolved.  This
5873 ** routine is called after identifier resolution.
5874 */
5875 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5876   Parse *pParse;
5877   int i;
5878   SrcList *pTabList;
5879   SrcItem *pFrom;
5880 
5881   assert( p->selFlags & SF_Resolved );
5882   if( p->selFlags & SF_HasTypeInfo ) return;
5883   p->selFlags |= SF_HasTypeInfo;
5884   pParse = pWalker->pParse;
5885   pTabList = p->pSrc;
5886   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5887     Table *pTab = pFrom->pTab;
5888     assert( pTab!=0 );
5889     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5890       /* A sub-query in the FROM clause of a SELECT */
5891       Select *pSel = pFrom->pSelect;
5892       if( pSel ){
5893         while( pSel->pPrior ) pSel = pSel->pPrior;
5894         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5895                                                SQLITE_AFF_NONE);
5896       }
5897     }
5898   }
5899 }
5900 #endif
5901 
5902 
5903 /*
5904 ** This routine adds datatype and collating sequence information to
5905 ** the Table structures of all FROM-clause subqueries in a
5906 ** SELECT statement.
5907 **
5908 ** Use this routine after name resolution.
5909 */
5910 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5911 #ifndef SQLITE_OMIT_SUBQUERY
5912   Walker w;
5913   w.xSelectCallback = sqlite3SelectWalkNoop;
5914   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5915   w.xExprCallback = sqlite3ExprWalkNoop;
5916   w.pParse = pParse;
5917   sqlite3WalkSelect(&w, pSelect);
5918 #endif
5919 }
5920 
5921 
5922 /*
5923 ** This routine sets up a SELECT statement for processing.  The
5924 ** following is accomplished:
5925 **
5926 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5927 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5928 **     *  ON and USING clauses are shifted into WHERE statements
5929 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5930 **     *  Identifiers in expression are matched to tables.
5931 **
5932 ** This routine acts recursively on all subqueries within the SELECT.
5933 */
5934 void sqlite3SelectPrep(
5935   Parse *pParse,         /* The parser context */
5936   Select *p,             /* The SELECT statement being coded. */
5937   NameContext *pOuterNC  /* Name context for container */
5938 ){
5939   assert( p!=0 || pParse->db->mallocFailed );
5940   assert( pParse->db->pParse==pParse );
5941   if( pParse->db->mallocFailed ) return;
5942   if( p->selFlags & SF_HasTypeInfo ) return;
5943   sqlite3SelectExpand(pParse, p);
5944   if( pParse->nErr ) return;
5945   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5946   if( pParse->nErr ) return;
5947   sqlite3SelectAddTypeInfo(pParse, p);
5948 }
5949 
5950 /*
5951 ** Reset the aggregate accumulator.
5952 **
5953 ** The aggregate accumulator is a set of memory cells that hold
5954 ** intermediate results while calculating an aggregate.  This
5955 ** routine generates code that stores NULLs in all of those memory
5956 ** cells.
5957 */
5958 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5959   Vdbe *v = pParse->pVdbe;
5960   int i;
5961   struct AggInfo_func *pFunc;
5962   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5963   assert( pParse->db->pParse==pParse );
5964   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
5965   if( nReg==0 ) return;
5966   if( pParse->nErr ) return;
5967 #ifdef SQLITE_DEBUG
5968   /* Verify that all AggInfo registers are within the range specified by
5969   ** AggInfo.mnReg..AggInfo.mxReg */
5970   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5971   for(i=0; i<pAggInfo->nColumn; i++){
5972     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5973          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5974   }
5975   for(i=0; i<pAggInfo->nFunc; i++){
5976     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5977          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5978   }
5979 #endif
5980   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5981   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5982     if( pFunc->iDistinct>=0 ){
5983       Expr *pE = pFunc->pFExpr;
5984       assert( ExprUseXList(pE) );
5985       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5986         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5987            "argument");
5988         pFunc->iDistinct = -1;
5989       }else{
5990         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5991         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5992             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5993         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5994                           pFunc->pFunc->zName));
5995       }
5996     }
5997   }
5998 }
5999 
6000 /*
6001 ** Invoke the OP_AggFinalize opcode for every aggregate function
6002 ** in the AggInfo structure.
6003 */
6004 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6005   Vdbe *v = pParse->pVdbe;
6006   int i;
6007   struct AggInfo_func *pF;
6008   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6009     ExprList *pList;
6010     assert( ExprUseXList(pF->pFExpr) );
6011     pList = pF->pFExpr->x.pList;
6012     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6013     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6014   }
6015 }
6016 
6017 
6018 /*
6019 ** Update the accumulator memory cells for an aggregate based on
6020 ** the current cursor position.
6021 **
6022 ** If regAcc is non-zero and there are no min() or max() aggregates
6023 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6024 ** registers if register regAcc contains 0. The caller will take care
6025 ** of setting and clearing regAcc.
6026 */
6027 static void updateAccumulator(
6028   Parse *pParse,
6029   int regAcc,
6030   AggInfo *pAggInfo,
6031   int eDistinctType
6032 ){
6033   Vdbe *v = pParse->pVdbe;
6034   int i;
6035   int regHit = 0;
6036   int addrHitTest = 0;
6037   struct AggInfo_func *pF;
6038   struct AggInfo_col *pC;
6039 
6040   pAggInfo->directMode = 1;
6041   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6042     int nArg;
6043     int addrNext = 0;
6044     int regAgg;
6045     ExprList *pList;
6046     assert( ExprUseXList(pF->pFExpr) );
6047     assert( !IsWindowFunc(pF->pFExpr) );
6048     pList = pF->pFExpr->x.pList;
6049     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6050       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6051       if( pAggInfo->nAccumulator
6052        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6053        && regAcc
6054       ){
6055         /* If regAcc==0, there there exists some min() or max() function
6056         ** without a FILTER clause that will ensure the magnet registers
6057         ** are populated. */
6058         if( regHit==0 ) regHit = ++pParse->nMem;
6059         /* If this is the first row of the group (regAcc contains 0), clear the
6060         ** "magnet" register regHit so that the accumulator registers
6061         ** are populated if the FILTER clause jumps over the the
6062         ** invocation of min() or max() altogether. Or, if this is not
6063         ** the first row (regAcc contains 1), set the magnet register so that
6064         ** the accumulators are not populated unless the min()/max() is invoked
6065         ** and indicates that they should be.  */
6066         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6067       }
6068       addrNext = sqlite3VdbeMakeLabel(pParse);
6069       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6070     }
6071     if( pList ){
6072       nArg = pList->nExpr;
6073       regAgg = sqlite3GetTempRange(pParse, nArg);
6074       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6075     }else{
6076       nArg = 0;
6077       regAgg = 0;
6078     }
6079     if( pF->iDistinct>=0 && pList ){
6080       if( addrNext==0 ){
6081         addrNext = sqlite3VdbeMakeLabel(pParse);
6082       }
6083       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6084           pF->iDistinct, addrNext, pList, regAgg);
6085     }
6086     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6087       CollSeq *pColl = 0;
6088       struct ExprList_item *pItem;
6089       int j;
6090       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6091       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6092         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6093       }
6094       if( !pColl ){
6095         pColl = pParse->db->pDfltColl;
6096       }
6097       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6098       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6099     }
6100     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6101     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6102     sqlite3VdbeChangeP5(v, (u8)nArg);
6103     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6104     if( addrNext ){
6105       sqlite3VdbeResolveLabel(v, addrNext);
6106     }
6107   }
6108   if( regHit==0 && pAggInfo->nAccumulator ){
6109     regHit = regAcc;
6110   }
6111   if( regHit ){
6112     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6113   }
6114   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6115     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6116   }
6117 
6118   pAggInfo->directMode = 0;
6119   if( addrHitTest ){
6120     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6121   }
6122 }
6123 
6124 /*
6125 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6126 ** count(*) query ("SELECT count(*) FROM pTab").
6127 */
6128 #ifndef SQLITE_OMIT_EXPLAIN
6129 static void explainSimpleCount(
6130   Parse *pParse,                  /* Parse context */
6131   Table *pTab,                    /* Table being queried */
6132   Index *pIdx                     /* Index used to optimize scan, or NULL */
6133 ){
6134   if( pParse->explain==2 ){
6135     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6136     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6137         pTab->zName,
6138         bCover ? " USING COVERING INDEX " : "",
6139         bCover ? pIdx->zName : ""
6140     );
6141   }
6142 }
6143 #else
6144 # define explainSimpleCount(a,b,c)
6145 #endif
6146 
6147 /*
6148 ** sqlite3WalkExpr() callback used by havingToWhere().
6149 **
6150 ** If the node passed to the callback is a TK_AND node, return
6151 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6152 **
6153 ** Otherwise, return WRC_Prune. In this case, also check if the
6154 ** sub-expression matches the criteria for being moved to the WHERE
6155 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6156 ** within the HAVING expression with a constant "1".
6157 */
6158 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6159   if( pExpr->op!=TK_AND ){
6160     Select *pS = pWalker->u.pSelect;
6161     /* This routine is called before the HAVING clause of the current
6162     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6163     ** here, it indicates that the expression is a correlated reference to a
6164     ** column from an outer aggregate query, or an aggregate function that
6165     ** belongs to an outer query. Do not move the expression to the WHERE
6166     ** clause in this obscure case, as doing so may corrupt the outer Select
6167     ** statements AggInfo structure.  */
6168     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6169      && ExprAlwaysFalse(pExpr)==0
6170      && pExpr->pAggInfo==0
6171     ){
6172       sqlite3 *db = pWalker->pParse->db;
6173       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6174       if( pNew ){
6175         Expr *pWhere = pS->pWhere;
6176         SWAP(Expr, *pNew, *pExpr);
6177         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6178         pS->pWhere = pNew;
6179         pWalker->eCode = 1;
6180       }
6181     }
6182     return WRC_Prune;
6183   }
6184   return WRC_Continue;
6185 }
6186 
6187 /*
6188 ** Transfer eligible terms from the HAVING clause of a query, which is
6189 ** processed after grouping, to the WHERE clause, which is processed before
6190 ** grouping. For example, the query:
6191 **
6192 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6193 **
6194 ** can be rewritten as:
6195 **
6196 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6197 **
6198 ** A term of the HAVING expression is eligible for transfer if it consists
6199 ** entirely of constants and expressions that are also GROUP BY terms that
6200 ** use the "BINARY" collation sequence.
6201 */
6202 static void havingToWhere(Parse *pParse, Select *p){
6203   Walker sWalker;
6204   memset(&sWalker, 0, sizeof(sWalker));
6205   sWalker.pParse = pParse;
6206   sWalker.xExprCallback = havingToWhereExprCb;
6207   sWalker.u.pSelect = p;
6208   sqlite3WalkExpr(&sWalker, p->pHaving);
6209 #if TREETRACE_ENABLED
6210   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6211     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6212     sqlite3TreeViewSelect(0, p, 0);
6213   }
6214 #endif
6215 }
6216 
6217 /*
6218 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6219 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6220 ** then return 0.
6221 */
6222 static SrcItem *isSelfJoinView(
6223   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6224   SrcItem *pThis               /* Search for prior reference to this subquery */
6225 ){
6226   SrcItem *pItem;
6227   assert( pThis->pSelect!=0 );
6228   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6229   for(pItem = pTabList->a; pItem<pThis; pItem++){
6230     Select *pS1;
6231     if( pItem->pSelect==0 ) continue;
6232     if( pItem->fg.viaCoroutine ) continue;
6233     if( pItem->zName==0 ) continue;
6234     assert( pItem->pTab!=0 );
6235     assert( pThis->pTab!=0 );
6236     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6237     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6238     pS1 = pItem->pSelect;
6239     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6240       /* The query flattener left two different CTE tables with identical
6241       ** names in the same FROM clause. */
6242       continue;
6243     }
6244     if( pItem->pSelect->selFlags & SF_PushDown ){
6245       /* The view was modified by some other optimization such as
6246       ** pushDownWhereTerms() */
6247       continue;
6248     }
6249     return pItem;
6250   }
6251   return 0;
6252 }
6253 
6254 /*
6255 ** Deallocate a single AggInfo object
6256 */
6257 static void agginfoFree(sqlite3 *db, AggInfo *p){
6258   sqlite3DbFree(db, p->aCol);
6259   sqlite3DbFree(db, p->aFunc);
6260   sqlite3DbFreeNN(db, p);
6261 }
6262 
6263 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6264 /*
6265 ** Attempt to transform a query of the form
6266 **
6267 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6268 **
6269 ** Into this:
6270 **
6271 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6272 **
6273 ** The transformation only works if all of the following are true:
6274 **
6275 **   *  The subquery is a UNION ALL of two or more terms
6276 **   *  The subquery does not have a LIMIT clause
6277 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6278 **   *  The outer query is a simple count(*) with no WHERE clause or other
6279 **      extraneous syntax.
6280 **
6281 ** Return TRUE if the optimization is undertaken.
6282 */
6283 static int countOfViewOptimization(Parse *pParse, Select *p){
6284   Select *pSub, *pPrior;
6285   Expr *pExpr;
6286   Expr *pCount;
6287   sqlite3 *db;
6288   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6289   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6290   if( p->pWhere ) return 0;
6291   if( p->pGroupBy ) return 0;
6292   pExpr = p->pEList->a[0].pExpr;
6293   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6294   assert( ExprUseUToken(pExpr) );
6295   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6296   assert( ExprUseXList(pExpr) );
6297   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6298   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6299   pSub = p->pSrc->a[0].pSelect;
6300   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6301   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6302   do{
6303     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6304     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6305     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6306     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6307     pSub = pSub->pPrior;                              /* Repeat over compound */
6308   }while( pSub );
6309 
6310   /* If we reach this point then it is OK to perform the transformation */
6311 
6312   db = pParse->db;
6313   pCount = pExpr;
6314   pExpr = 0;
6315   pSub = p->pSrc->a[0].pSelect;
6316   p->pSrc->a[0].pSelect = 0;
6317   sqlite3SrcListDelete(db, p->pSrc);
6318   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6319   while( pSub ){
6320     Expr *pTerm;
6321     pPrior = pSub->pPrior;
6322     pSub->pPrior = 0;
6323     pSub->pNext = 0;
6324     pSub->selFlags |= SF_Aggregate;
6325     pSub->selFlags &= ~SF_Compound;
6326     pSub->nSelectRow = 0;
6327     sqlite3ExprListDelete(db, pSub->pEList);
6328     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6329     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6330     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6331     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6332     if( pExpr==0 ){
6333       pExpr = pTerm;
6334     }else{
6335       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6336     }
6337     pSub = pPrior;
6338   }
6339   p->pEList->a[0].pExpr = pExpr;
6340   p->selFlags &= ~SF_Aggregate;
6341 
6342 #if TREETRACE_ENABLED
6343   if( sqlite3TreeTrace & 0x400 ){
6344     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6345     sqlite3TreeViewSelect(0, p, 0);
6346   }
6347 #endif
6348   return 1;
6349 }
6350 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6351 
6352 /*
6353 ** Generate code for the SELECT statement given in the p argument.
6354 **
6355 ** The results are returned according to the SelectDest structure.
6356 ** See comments in sqliteInt.h for further information.
6357 **
6358 ** This routine returns the number of errors.  If any errors are
6359 ** encountered, then an appropriate error message is left in
6360 ** pParse->zErrMsg.
6361 **
6362 ** This routine does NOT free the Select structure passed in.  The
6363 ** calling function needs to do that.
6364 */
6365 int sqlite3Select(
6366   Parse *pParse,         /* The parser context */
6367   Select *p,             /* The SELECT statement being coded. */
6368   SelectDest *pDest      /* What to do with the query results */
6369 ){
6370   int i, j;              /* Loop counters */
6371   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6372   Vdbe *v;               /* The virtual machine under construction */
6373   int isAgg;             /* True for select lists like "count(*)" */
6374   ExprList *pEList = 0;  /* List of columns to extract. */
6375   SrcList *pTabList;     /* List of tables to select from */
6376   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6377   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6378   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6379   AggInfo *pAggInfo = 0; /* Aggregate information */
6380   int rc = 1;            /* Value to return from this function */
6381   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6382   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6383   int iEnd;              /* Address of the end of the query */
6384   sqlite3 *db;           /* The database connection */
6385   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6386   u8 minMaxFlag;                 /* Flag for min/max queries */
6387 
6388   db = pParse->db;
6389   assert( pParse==db->pParse );
6390   v = sqlite3GetVdbe(pParse);
6391   if( p==0 || pParse->nErr ){
6392     return 1;
6393   }
6394   assert( db->mallocFailed==0 );
6395   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6396 #if TREETRACE_ENABLED
6397   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6398   if( sqlite3TreeTrace & 0x10100 ){
6399     if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6400       sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6401                            __FILE__, __LINE__);
6402     }
6403     sqlite3ShowSelect(p);
6404   }
6405 #endif
6406 
6407   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6408   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6409   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6410   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6411   if( IgnorableDistinct(pDest) ){
6412     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6413            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6414            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6415     /* All of these destinations are also able to ignore the ORDER BY clause */
6416     if( p->pOrderBy ){
6417 #if TREETRACE_ENABLED
6418       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6419       if( sqlite3TreeTrace & 0x100 ){
6420         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6421       }
6422 #endif
6423       sqlite3ParserAddCleanup(pParse,
6424         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6425         p->pOrderBy);
6426       testcase( pParse->earlyCleanup );
6427       p->pOrderBy = 0;
6428     }
6429     p->selFlags &= ~SF_Distinct;
6430     p->selFlags |= SF_NoopOrderBy;
6431   }
6432   sqlite3SelectPrep(pParse, p, 0);
6433   if( pParse->nErr ){
6434     goto select_end;
6435   }
6436   assert( db->mallocFailed==0 );
6437   assert( p->pEList!=0 );
6438 #if TREETRACE_ENABLED
6439   if( sqlite3TreeTrace & 0x104 ){
6440     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6441     sqlite3TreeViewSelect(0, p, 0);
6442   }
6443 #endif
6444 
6445   /* If the SF_UFSrcCheck flag is set, then this function is being called
6446   ** as part of populating the temp table for an UPDATE...FROM statement.
6447   ** In this case, it is an error if the target object (pSrc->a[0]) name
6448   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6449   **
6450   ** Postgres disallows this case too. The reason is that some other
6451   ** systems handle this case differently, and not all the same way,
6452   ** which is just confusing. To avoid this, we follow PG's lead and
6453   ** disallow it altogether.  */
6454   if( p->selFlags & SF_UFSrcCheck ){
6455     SrcItem *p0 = &p->pSrc->a[0];
6456     for(i=1; i<p->pSrc->nSrc; i++){
6457       SrcItem *p1 = &p->pSrc->a[i];
6458       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6459         sqlite3ErrorMsg(pParse,
6460             "target object/alias may not appear in FROM clause: %s",
6461             p0->zAlias ? p0->zAlias : p0->pTab->zName
6462         );
6463         goto select_end;
6464       }
6465     }
6466 
6467     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6468     ** and leaving this flag set can cause errors if a compound sub-query
6469     ** in p->pSrc is flattened into this query and this function called
6470     ** again as part of compound SELECT processing.  */
6471     p->selFlags &= ~SF_UFSrcCheck;
6472   }
6473 
6474   if( pDest->eDest==SRT_Output ){
6475     sqlite3GenerateColumnNames(pParse, p);
6476   }
6477 
6478 #ifndef SQLITE_OMIT_WINDOWFUNC
6479   if( sqlite3WindowRewrite(pParse, p) ){
6480     assert( pParse->nErr );
6481     goto select_end;
6482   }
6483 #if TREETRACE_ENABLED
6484   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6485     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6486     sqlite3TreeViewSelect(0, p, 0);
6487   }
6488 #endif
6489 #endif /* SQLITE_OMIT_WINDOWFUNC */
6490   pTabList = p->pSrc;
6491   isAgg = (p->selFlags & SF_Aggregate)!=0;
6492   memset(&sSort, 0, sizeof(sSort));
6493   sSort.pOrderBy = p->pOrderBy;
6494 
6495   /* Try to do various optimizations (flattening subqueries, and strength
6496   ** reduction of join operators) in the FROM clause up into the main query
6497   */
6498 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6499   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6500     SrcItem *pItem = &pTabList->a[i];
6501     Select *pSub = pItem->pSelect;
6502     Table *pTab = pItem->pTab;
6503 
6504     /* The expander should have already created transient Table objects
6505     ** even for FROM clause elements such as subqueries that do not correspond
6506     ** to a real table */
6507     assert( pTab!=0 );
6508 
6509     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6510     ** of the LEFT JOIN used in the WHERE clause.
6511     */
6512     if( (pItem->fg.jointype & JT_LEFT)!=0
6513      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6514      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6515     ){
6516       SELECTTRACE(0x100,pParse,p,
6517                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6518       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6519       unsetJoinExpr(p->pWhere, pItem->iCursor);
6520     }
6521 
6522     /* No futher action if this term of the FROM clause is no a subquery */
6523     if( pSub==0 ) continue;
6524 
6525     /* Catch mismatch in the declared columns of a view and the number of
6526     ** columns in the SELECT on the RHS */
6527     if( pTab->nCol!=pSub->pEList->nExpr ){
6528       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6529                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6530       goto select_end;
6531     }
6532 
6533     /* Do not try to flatten an aggregate subquery.
6534     **
6535     ** Flattening an aggregate subquery is only possible if the outer query
6536     ** is not a join.  But if the outer query is not a join, then the subquery
6537     ** will be implemented as a co-routine and there is no advantage to
6538     ** flattening in that case.
6539     */
6540     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6541     assert( pSub->pGroupBy==0 );
6542 
6543     /* If a FROM-clause subquery has an ORDER BY clause that is not
6544     ** really doing anything, then delete it now so that it does not
6545     ** interfere with query flattening.  See the discussion at
6546     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6547     **
6548     ** Beware of these cases where the ORDER BY clause may not be safely
6549     ** omitted:
6550     **
6551     **    (1)   There is also a LIMIT clause
6552     **    (2)   The subquery was added to help with window-function
6553     **          processing
6554     **    (3)   The subquery is in the FROM clause of an UPDATE
6555     **    (4)   The outer query uses an aggregate function other than
6556     **          the built-in count(), min(), or max().
6557     **    (5)   The ORDER BY isn't going to accomplish anything because
6558     **          one of:
6559     **            (a)  The outer query has a different ORDER BY clause
6560     **            (b)  The subquery is part of a join
6561     **          See forum post 062d576715d277c8
6562     */
6563     if( pSub->pOrderBy!=0
6564      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6565      && pSub->pLimit==0                           /* Condition (1) */
6566      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6567      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6568      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6569     ){
6570       SELECTTRACE(0x100,pParse,p,
6571                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6572       sqlite3ExprListDelete(db, pSub->pOrderBy);
6573       pSub->pOrderBy = 0;
6574     }
6575 
6576     /* If the outer query contains a "complex" result set (that is,
6577     ** if the result set of the outer query uses functions or subqueries)
6578     ** and if the subquery contains an ORDER BY clause and if
6579     ** it will be implemented as a co-routine, then do not flatten.  This
6580     ** restriction allows SQL constructs like this:
6581     **
6582     **  SELECT expensive_function(x)
6583     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6584     **
6585     ** The expensive_function() is only computed on the 10 rows that
6586     ** are output, rather than every row of the table.
6587     **
6588     ** The requirement that the outer query have a complex result set
6589     ** means that flattening does occur on simpler SQL constraints without
6590     ** the expensive_function() like:
6591     **
6592     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6593     */
6594     if( pSub->pOrderBy!=0
6595      && i==0
6596      && (p->selFlags & SF_ComplexResult)!=0
6597      && (pTabList->nSrc==1
6598          || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6599     ){
6600       continue;
6601     }
6602 
6603     if( flattenSubquery(pParse, p, i, isAgg) ){
6604       if( pParse->nErr ) goto select_end;
6605       /* This subquery can be absorbed into its parent. */
6606       i = -1;
6607     }
6608     pTabList = p->pSrc;
6609     if( db->mallocFailed ) goto select_end;
6610     if( !IgnorableOrderby(pDest) ){
6611       sSort.pOrderBy = p->pOrderBy;
6612     }
6613   }
6614 #endif
6615 
6616 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6617   /* Handle compound SELECT statements using the separate multiSelect()
6618   ** procedure.
6619   */
6620   if( p->pPrior ){
6621     rc = multiSelect(pParse, p, pDest);
6622 #if TREETRACE_ENABLED
6623     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6624     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6625       sqlite3TreeViewSelect(0, p, 0);
6626     }
6627 #endif
6628     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6629     return rc;
6630   }
6631 #endif
6632 
6633   /* Do the WHERE-clause constant propagation optimization if this is
6634   ** a join.  No need to speed time on this operation for non-join queries
6635   ** as the equivalent optimization will be handled by query planner in
6636   ** sqlite3WhereBegin().
6637   */
6638   if( p->pWhere!=0
6639    && p->pWhere->op==TK_AND
6640    && OptimizationEnabled(db, SQLITE_PropagateConst)
6641    && propagateConstants(pParse, p)
6642   ){
6643 #if TREETRACE_ENABLED
6644     if( sqlite3TreeTrace & 0x100 ){
6645       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6646       sqlite3TreeViewSelect(0, p, 0);
6647     }
6648 #endif
6649   }else{
6650     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6651   }
6652 
6653 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6654   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6655    && countOfViewOptimization(pParse, p)
6656   ){
6657     if( db->mallocFailed ) goto select_end;
6658     pEList = p->pEList;
6659     pTabList = p->pSrc;
6660   }
6661 #endif
6662 
6663   /* For each term in the FROM clause, do two things:
6664   ** (1) Authorized unreferenced tables
6665   ** (2) Generate code for all sub-queries
6666   */
6667   for(i=0; i<pTabList->nSrc; i++){
6668     SrcItem *pItem = &pTabList->a[i];
6669     SrcItem *pPrior;
6670     SelectDest dest;
6671     Select *pSub;
6672 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6673     const char *zSavedAuthContext;
6674 #endif
6675 
6676     /* Issue SQLITE_READ authorizations with a fake column name for any
6677     ** tables that are referenced but from which no values are extracted.
6678     ** Examples of where these kinds of null SQLITE_READ authorizations
6679     ** would occur:
6680     **
6681     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6682     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6683     **
6684     ** The fake column name is an empty string.  It is possible for a table to
6685     ** have a column named by the empty string, in which case there is no way to
6686     ** distinguish between an unreferenced table and an actual reference to the
6687     ** "" column. The original design was for the fake column name to be a NULL,
6688     ** which would be unambiguous.  But legacy authorization callbacks might
6689     ** assume the column name is non-NULL and segfault.  The use of an empty
6690     ** string for the fake column name seems safer.
6691     */
6692     if( pItem->colUsed==0 && pItem->zName!=0 ){
6693       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6694     }
6695 
6696 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6697     /* Generate code for all sub-queries in the FROM clause
6698     */
6699     pSub = pItem->pSelect;
6700     if( pSub==0 ) continue;
6701 
6702     /* The code for a subquery should only be generated once. */
6703     assert( pItem->addrFillSub==0 );
6704 
6705     /* Increment Parse.nHeight by the height of the largest expression
6706     ** tree referred to by this, the parent select. The child select
6707     ** may contain expression trees of at most
6708     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6709     ** more conservative than necessary, but much easier than enforcing
6710     ** an exact limit.
6711     */
6712     pParse->nHeight += sqlite3SelectExprHeight(p);
6713 
6714     /* Make copies of constant WHERE-clause terms in the outer query down
6715     ** inside the subquery.  This can help the subquery to run more efficiently.
6716     */
6717     if( OptimizationEnabled(db, SQLITE_PushDown)
6718      && (pItem->fg.isCte==0
6719          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6720      && (pItem->fg.jointype & JT_RIGHT)==0
6721      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6722                            (pItem->fg.jointype & JT_OUTER)!=0)
6723     ){
6724 #if TREETRACE_ENABLED
6725       if( sqlite3TreeTrace & 0x100 ){
6726         SELECTTRACE(0x100,pParse,p,
6727             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6728         sqlite3TreeViewSelect(0, p, 0);
6729       }
6730 #endif
6731       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6732     }else{
6733       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6734     }
6735 
6736     zSavedAuthContext = pParse->zAuthContext;
6737     pParse->zAuthContext = pItem->zName;
6738 
6739     /* Generate code to implement the subquery
6740     **
6741     ** The subquery is implemented as a co-routine all of the following are
6742     ** true:
6743     **
6744     **    (1)  the subquery is guaranteed to be the outer loop (so that
6745     **         it does not need to be computed more than once), and
6746     **    (2)  the subquery is not a CTE that should be materialized
6747     **    (3)  the subquery is not part of a left operand for a RIGHT JOIN
6748     */
6749     if( i==0
6750      && (pTabList->nSrc==1
6751             || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)  /* (1) */
6752      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)   /* (2) */
6753      && (pTabList->a[0].fg.jointype & JT_LTORJ)==0                   /* (3) */
6754     ){
6755       /* Implement a co-routine that will return a single row of the result
6756       ** set on each invocation.
6757       */
6758       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6759 
6760       pItem->regReturn = ++pParse->nMem;
6761       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6762       VdbeComment((v, "%!S", pItem));
6763       pItem->addrFillSub = addrTop;
6764       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6765       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6766       sqlite3Select(pParse, pSub, &dest);
6767       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6768       pItem->fg.viaCoroutine = 1;
6769       pItem->regResult = dest.iSdst;
6770       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6771       sqlite3VdbeJumpHere(v, addrTop-1);
6772       sqlite3ClearTempRegCache(pParse);
6773     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6774       /* This is a CTE for which materialization code has already been
6775       ** generated.  Invoke the subroutine to compute the materialization,
6776       ** the make the pItem->iCursor be a copy of the ephemerial table that
6777       ** holds the result of the materialization. */
6778       CteUse *pCteUse = pItem->u2.pCteUse;
6779       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6780       if( pItem->iCursor!=pCteUse->iCur ){
6781         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6782         VdbeComment((v, "%!S", pItem));
6783       }
6784       pSub->nSelectRow = pCteUse->nRowEst;
6785     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6786       /* This view has already been materialized by a prior entry in
6787       ** this same FROM clause.  Reuse it. */
6788       if( pPrior->addrFillSub ){
6789         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6790       }
6791       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6792       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6793     }else{
6794       /* Materialize the view.  If the view is not correlated, generate a
6795       ** subroutine to do the materialization so that subsequent uses of
6796       ** the same view can reuse the materialization. */
6797       int topAddr;
6798       int onceAddr = 0;
6799       int retAddr;
6800 
6801       pItem->regReturn = ++pParse->nMem;
6802       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6803       pItem->addrFillSub = topAddr+1;
6804       if( pItem->fg.isCorrelated==0 ){
6805         /* If the subquery is not correlated and if we are not inside of
6806         ** a trigger, then we only need to compute the value of the subquery
6807         ** once. */
6808         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6809         VdbeComment((v, "materialize %!S", pItem));
6810       }else{
6811         VdbeNoopComment((v, "materialize %!S", pItem));
6812       }
6813       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6814       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6815       sqlite3Select(pParse, pSub, &dest);
6816       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6817       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6818       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6819       VdbeComment((v, "end %!S", pItem));
6820       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6821       sqlite3ClearTempRegCache(pParse);
6822       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6823         CteUse *pCteUse = pItem->u2.pCteUse;
6824         pCteUse->addrM9e = pItem->addrFillSub;
6825         pCteUse->regRtn = pItem->regReturn;
6826         pCteUse->iCur = pItem->iCursor;
6827         pCteUse->nRowEst = pSub->nSelectRow;
6828       }
6829     }
6830     if( db->mallocFailed ) goto select_end;
6831     pParse->nHeight -= sqlite3SelectExprHeight(p);
6832     pParse->zAuthContext = zSavedAuthContext;
6833 #endif
6834   }
6835 
6836   /* Various elements of the SELECT copied into local variables for
6837   ** convenience */
6838   pEList = p->pEList;
6839   pWhere = p->pWhere;
6840   pGroupBy = p->pGroupBy;
6841   pHaving = p->pHaving;
6842   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6843 
6844 #if TREETRACE_ENABLED
6845   if( sqlite3TreeTrace & 0x400 ){
6846     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6847     sqlite3TreeViewSelect(0, p, 0);
6848   }
6849 #endif
6850 
6851   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6852   ** if the select-list is the same as the ORDER BY list, then this query
6853   ** can be rewritten as a GROUP BY. In other words, this:
6854   **
6855   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6856   **
6857   ** is transformed to:
6858   **
6859   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6860   **
6861   ** The second form is preferred as a single index (or temp-table) may be
6862   ** used for both the ORDER BY and DISTINCT processing. As originally
6863   ** written the query must use a temp-table for at least one of the ORDER
6864   ** BY and DISTINCT, and an index or separate temp-table for the other.
6865   */
6866   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6867    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6868 #ifndef SQLITE_OMIT_WINDOWFUNC
6869    && p->pWin==0
6870 #endif
6871   ){
6872     p->selFlags &= ~SF_Distinct;
6873     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6874     p->selFlags |= SF_Aggregate;
6875     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6876     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6877     ** original setting of the SF_Distinct flag, not the current setting */
6878     assert( sDistinct.isTnct );
6879     sDistinct.isTnct = 2;
6880 
6881 #if TREETRACE_ENABLED
6882     if( sqlite3TreeTrace & 0x400 ){
6883       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6884       sqlite3TreeViewSelect(0, p, 0);
6885     }
6886 #endif
6887   }
6888 
6889   /* If there is an ORDER BY clause, then create an ephemeral index to
6890   ** do the sorting.  But this sorting ephemeral index might end up
6891   ** being unused if the data can be extracted in pre-sorted order.
6892   ** If that is the case, then the OP_OpenEphemeral instruction will be
6893   ** changed to an OP_Noop once we figure out that the sorting index is
6894   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6895   ** that change.
6896   */
6897   if( sSort.pOrderBy ){
6898     KeyInfo *pKeyInfo;
6899     pKeyInfo = sqlite3KeyInfoFromExprList(
6900         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6901     sSort.iECursor = pParse->nTab++;
6902     sSort.addrSortIndex =
6903       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6904           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6905           (char*)pKeyInfo, P4_KEYINFO
6906       );
6907   }else{
6908     sSort.addrSortIndex = -1;
6909   }
6910 
6911   /* If the output is destined for a temporary table, open that table.
6912   */
6913   if( pDest->eDest==SRT_EphemTab ){
6914     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6915   }
6916 
6917   /* Set the limiter.
6918   */
6919   iEnd = sqlite3VdbeMakeLabel(pParse);
6920   if( (p->selFlags & SF_FixedLimit)==0 ){
6921     p->nSelectRow = 320;  /* 4 billion rows */
6922   }
6923   computeLimitRegisters(pParse, p, iEnd);
6924   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6925     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6926     sSort.sortFlags |= SORTFLAG_UseSorter;
6927   }
6928 
6929   /* Open an ephemeral index to use for the distinct set.
6930   */
6931   if( p->selFlags & SF_Distinct ){
6932     sDistinct.tabTnct = pParse->nTab++;
6933     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6934                        sDistinct.tabTnct, 0, 0,
6935                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6936                        P4_KEYINFO);
6937     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6938     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6939   }else{
6940     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6941   }
6942 
6943   if( !isAgg && pGroupBy==0 ){
6944     /* No aggregate functions and no GROUP BY clause */
6945     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6946                    | (p->selFlags & SF_FixedLimit);
6947 #ifndef SQLITE_OMIT_WINDOWFUNC
6948     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6949     if( pWin ){
6950       sqlite3WindowCodeInit(pParse, p);
6951     }
6952 #endif
6953     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6954 
6955 
6956     /* Begin the database scan. */
6957     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6958     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6959                                p->pEList, p, wctrlFlags, p->nSelectRow);
6960     if( pWInfo==0 ) goto select_end;
6961     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6962       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6963     }
6964     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6965       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6966     }
6967     if( sSort.pOrderBy ){
6968       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6969       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6970       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6971         sSort.pOrderBy = 0;
6972       }
6973     }
6974     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6975 
6976     /* If sorting index that was created by a prior OP_OpenEphemeral
6977     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6978     ** into an OP_Noop.
6979     */
6980     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6981       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6982     }
6983 
6984     assert( p->pEList==pEList );
6985 #ifndef SQLITE_OMIT_WINDOWFUNC
6986     if( pWin ){
6987       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6988       int iCont = sqlite3VdbeMakeLabel(pParse);
6989       int iBreak = sqlite3VdbeMakeLabel(pParse);
6990       int regGosub = ++pParse->nMem;
6991 
6992       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6993 
6994       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6995       sqlite3VdbeResolveLabel(v, addrGosub);
6996       VdbeNoopComment((v, "inner-loop subroutine"));
6997       sSort.labelOBLopt = 0;
6998       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6999       sqlite3VdbeResolveLabel(v, iCont);
7000       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7001       VdbeComment((v, "end inner-loop subroutine"));
7002       sqlite3VdbeResolveLabel(v, iBreak);
7003     }else
7004 #endif /* SQLITE_OMIT_WINDOWFUNC */
7005     {
7006       /* Use the standard inner loop. */
7007       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7008           sqlite3WhereContinueLabel(pWInfo),
7009           sqlite3WhereBreakLabel(pWInfo));
7010 
7011       /* End the database scan loop.
7012       */
7013       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7014       sqlite3WhereEnd(pWInfo);
7015     }
7016   }else{
7017     /* This case when there exist aggregate functions or a GROUP BY clause
7018     ** or both */
7019     NameContext sNC;    /* Name context for processing aggregate information */
7020     int iAMem;          /* First Mem address for storing current GROUP BY */
7021     int iBMem;          /* First Mem address for previous GROUP BY */
7022     int iUseFlag;       /* Mem address holding flag indicating that at least
7023                         ** one row of the input to the aggregator has been
7024                         ** processed */
7025     int iAbortFlag;     /* Mem address which causes query abort if positive */
7026     int groupBySort;    /* Rows come from source in GROUP BY order */
7027     int addrEnd;        /* End of processing for this SELECT */
7028     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
7029     int sortOut = 0;    /* Output register from the sorter */
7030     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7031 
7032     /* Remove any and all aliases between the result set and the
7033     ** GROUP BY clause.
7034     */
7035     if( pGroupBy ){
7036       int k;                        /* Loop counter */
7037       struct ExprList_item *pItem;  /* For looping over expression in a list */
7038 
7039       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7040         pItem->u.x.iAlias = 0;
7041       }
7042       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7043         pItem->u.x.iAlias = 0;
7044       }
7045       assert( 66==sqlite3LogEst(100) );
7046       if( p->nSelectRow>66 ) p->nSelectRow = 66;
7047 
7048       /* If there is both a GROUP BY and an ORDER BY clause and they are
7049       ** identical, then it may be possible to disable the ORDER BY clause
7050       ** on the grounds that the GROUP BY will cause elements to come out
7051       ** in the correct order. It also may not - the GROUP BY might use a
7052       ** database index that causes rows to be grouped together as required
7053       ** but not actually sorted. Either way, record the fact that the
7054       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7055       ** variable.  */
7056       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7057         int ii;
7058         /* The GROUP BY processing doesn't care whether rows are delivered in
7059         ** ASC or DESC order - only that each group is returned contiguously.
7060         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7061         ** ORDER BY to maximize the chances of rows being delivered in an
7062         ** order that makes the ORDER BY redundant.  */
7063         for(ii=0; ii<pGroupBy->nExpr; ii++){
7064           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
7065           pGroupBy->a[ii].sortFlags = sortFlags;
7066         }
7067         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7068           orderByGrp = 1;
7069         }
7070       }
7071     }else{
7072       assert( 0==sqlite3LogEst(1) );
7073       p->nSelectRow = 0;
7074     }
7075 
7076     /* Create a label to jump to when we want to abort the query */
7077     addrEnd = sqlite3VdbeMakeLabel(pParse);
7078 
7079     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7080     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7081     ** SELECT statement.
7082     */
7083     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7084     if( pAggInfo ){
7085       sqlite3ParserAddCleanup(pParse,
7086           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7087       testcase( pParse->earlyCleanup );
7088     }
7089     if( db->mallocFailed ){
7090       goto select_end;
7091     }
7092     pAggInfo->selId = p->selId;
7093     memset(&sNC, 0, sizeof(sNC));
7094     sNC.pParse = pParse;
7095     sNC.pSrcList = pTabList;
7096     sNC.uNC.pAggInfo = pAggInfo;
7097     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7098     pAggInfo->mnReg = pParse->nMem+1;
7099     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7100     pAggInfo->pGroupBy = pGroupBy;
7101     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7102     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7103     if( pHaving ){
7104       if( pGroupBy ){
7105         assert( pWhere==p->pWhere );
7106         assert( pHaving==p->pHaving );
7107         assert( pGroupBy==p->pGroupBy );
7108         havingToWhere(pParse, p);
7109         pWhere = p->pWhere;
7110       }
7111       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7112     }
7113     pAggInfo->nAccumulator = pAggInfo->nColumn;
7114     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7115       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7116     }else{
7117       minMaxFlag = WHERE_ORDERBY_NORMAL;
7118     }
7119     for(i=0; i<pAggInfo->nFunc; i++){
7120       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7121       assert( ExprUseXList(pExpr) );
7122       sNC.ncFlags |= NC_InAggFunc;
7123       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7124 #ifndef SQLITE_OMIT_WINDOWFUNC
7125       assert( !IsWindowFunc(pExpr) );
7126       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7127         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7128       }
7129 #endif
7130       sNC.ncFlags &= ~NC_InAggFunc;
7131     }
7132     pAggInfo->mxReg = pParse->nMem;
7133     if( db->mallocFailed ) goto select_end;
7134 #if TREETRACE_ENABLED
7135     if( sqlite3TreeTrace & 0x400 ){
7136       int ii;
7137       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7138       sqlite3TreeViewSelect(0, p, 0);
7139       if( minMaxFlag ){
7140         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7141         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7142       }
7143       for(ii=0; ii<pAggInfo->nColumn; ii++){
7144         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7145             ii, pAggInfo->aCol[ii].iMem);
7146         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7147       }
7148       for(ii=0; ii<pAggInfo->nFunc; ii++){
7149         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7150             ii, pAggInfo->aFunc[ii].iMem);
7151         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7152       }
7153     }
7154 #endif
7155 
7156 
7157     /* Processing for aggregates with GROUP BY is very different and
7158     ** much more complex than aggregates without a GROUP BY.
7159     */
7160     if( pGroupBy ){
7161       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7162       int addr1;          /* A-vs-B comparision jump */
7163       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7164       int regOutputRow;   /* Return address register for output subroutine */
7165       int addrSetAbort;   /* Set the abort flag and return */
7166       int addrTopOfLoop;  /* Top of the input loop */
7167       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7168       int addrReset;      /* Subroutine for resetting the accumulator */
7169       int regReset;       /* Return address register for reset subroutine */
7170       ExprList *pDistinct = 0;
7171       u16 distFlag = 0;
7172       int eDist = WHERE_DISTINCT_NOOP;
7173 
7174       if( pAggInfo->nFunc==1
7175        && pAggInfo->aFunc[0].iDistinct>=0
7176        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7177        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7178        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7179       ){
7180         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7181         pExpr = sqlite3ExprDup(db, pExpr, 0);
7182         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7183         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7184         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7185       }
7186 
7187       /* If there is a GROUP BY clause we might need a sorting index to
7188       ** implement it.  Allocate that sorting index now.  If it turns out
7189       ** that we do not need it after all, the OP_SorterOpen instruction
7190       ** will be converted into a Noop.
7191       */
7192       pAggInfo->sortingIdx = pParse->nTab++;
7193       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7194                                             0, pAggInfo->nColumn);
7195       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7196           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7197           0, (char*)pKeyInfo, P4_KEYINFO);
7198 
7199       /* Initialize memory locations used by GROUP BY aggregate processing
7200       */
7201       iUseFlag = ++pParse->nMem;
7202       iAbortFlag = ++pParse->nMem;
7203       regOutputRow = ++pParse->nMem;
7204       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7205       regReset = ++pParse->nMem;
7206       addrReset = sqlite3VdbeMakeLabel(pParse);
7207       iAMem = pParse->nMem + 1;
7208       pParse->nMem += pGroupBy->nExpr;
7209       iBMem = pParse->nMem + 1;
7210       pParse->nMem += pGroupBy->nExpr;
7211       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7212       VdbeComment((v, "clear abort flag"));
7213       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7214 
7215       /* Begin a loop that will extract all source rows in GROUP BY order.
7216       ** This might involve two separate loops with an OP_Sort in between, or
7217       ** it might be a single loop that uses an index to extract information
7218       ** in the right order to begin with.
7219       */
7220       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7221       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7222       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7223           0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7224           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7225       );
7226       if( pWInfo==0 ){
7227         sqlite3ExprListDelete(db, pDistinct);
7228         goto select_end;
7229       }
7230       eDist = sqlite3WhereIsDistinct(pWInfo);
7231       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7232       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7233         /* The optimizer is able to deliver rows in group by order so
7234         ** we do not have to sort.  The OP_OpenEphemeral table will be
7235         ** cancelled later because we still need to use the pKeyInfo
7236         */
7237         groupBySort = 0;
7238       }else{
7239         /* Rows are coming out in undetermined order.  We have to push
7240         ** each row into a sorting index, terminate the first loop,
7241         ** then loop over the sorting index in order to get the output
7242         ** in sorted order
7243         */
7244         int regBase;
7245         int regRecord;
7246         int nCol;
7247         int nGroupBy;
7248 
7249         explainTempTable(pParse,
7250             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7251                     "DISTINCT" : "GROUP BY");
7252 
7253         groupBySort = 1;
7254         nGroupBy = pGroupBy->nExpr;
7255         nCol = nGroupBy;
7256         j = nGroupBy;
7257         for(i=0; i<pAggInfo->nColumn; i++){
7258           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7259             nCol++;
7260             j++;
7261           }
7262         }
7263         regBase = sqlite3GetTempRange(pParse, nCol);
7264         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7265         j = nGroupBy;
7266         for(i=0; i<pAggInfo->nColumn; i++){
7267           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7268           if( pCol->iSorterColumn>=j ){
7269             int r1 = j + regBase;
7270             sqlite3ExprCodeGetColumnOfTable(v,
7271                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7272             j++;
7273           }
7274         }
7275         regRecord = sqlite3GetTempReg(pParse);
7276         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7277         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7278         sqlite3ReleaseTempReg(pParse, regRecord);
7279         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7280         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7281         sqlite3WhereEnd(pWInfo);
7282         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7283         sortOut = sqlite3GetTempReg(pParse);
7284         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7285         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7286         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7287         pAggInfo->useSortingIdx = 1;
7288       }
7289 
7290       /* If the index or temporary table used by the GROUP BY sort
7291       ** will naturally deliver rows in the order required by the ORDER BY
7292       ** clause, cancel the ephemeral table open coded earlier.
7293       **
7294       ** This is an optimization - the correct answer should result regardless.
7295       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7296       ** disable this optimization for testing purposes.  */
7297       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7298        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7299       ){
7300         sSort.pOrderBy = 0;
7301         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7302       }
7303 
7304       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7305       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7306       ** Then compare the current GROUP BY terms against the GROUP BY terms
7307       ** from the previous row currently stored in a0, a1, a2...
7308       */
7309       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7310       if( groupBySort ){
7311         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7312                           sortOut, sortPTab);
7313       }
7314       for(j=0; j<pGroupBy->nExpr; j++){
7315         if( groupBySort ){
7316           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7317         }else{
7318           pAggInfo->directMode = 1;
7319           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7320         }
7321       }
7322       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7323                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7324       addr1 = sqlite3VdbeCurrentAddr(v);
7325       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7326 
7327       /* Generate code that runs whenever the GROUP BY changes.
7328       ** Changes in the GROUP BY are detected by the previous code
7329       ** block.  If there were no changes, this block is skipped.
7330       **
7331       ** This code copies current group by terms in b0,b1,b2,...
7332       ** over to a0,a1,a2.  It then calls the output subroutine
7333       ** and resets the aggregate accumulator registers in preparation
7334       ** for the next GROUP BY batch.
7335       */
7336       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7337       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7338       VdbeComment((v, "output one row"));
7339       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7340       VdbeComment((v, "check abort flag"));
7341       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7342       VdbeComment((v, "reset accumulator"));
7343 
7344       /* Update the aggregate accumulators based on the content of
7345       ** the current row
7346       */
7347       sqlite3VdbeJumpHere(v, addr1);
7348       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7349       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7350       VdbeComment((v, "indicate data in accumulator"));
7351 
7352       /* End of the loop
7353       */
7354       if( groupBySort ){
7355         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7356         VdbeCoverage(v);
7357       }else{
7358         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7359         sqlite3WhereEnd(pWInfo);
7360         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7361       }
7362       sqlite3ExprListDelete(db, pDistinct);
7363 
7364       /* Output the final row of result
7365       */
7366       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7367       VdbeComment((v, "output final row"));
7368 
7369       /* Jump over the subroutines
7370       */
7371       sqlite3VdbeGoto(v, addrEnd);
7372 
7373       /* Generate a subroutine that outputs a single row of the result
7374       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7375       ** is less than or equal to zero, the subroutine is a no-op.  If
7376       ** the processing calls for the query to abort, this subroutine
7377       ** increments the iAbortFlag memory location before returning in
7378       ** order to signal the caller to abort.
7379       */
7380       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7381       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7382       VdbeComment((v, "set abort flag"));
7383       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7384       sqlite3VdbeResolveLabel(v, addrOutputRow);
7385       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7386       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7387       VdbeCoverage(v);
7388       VdbeComment((v, "Groupby result generator entry point"));
7389       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7390       finalizeAggFunctions(pParse, pAggInfo);
7391       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7392       selectInnerLoop(pParse, p, -1, &sSort,
7393                       &sDistinct, pDest,
7394                       addrOutputRow+1, addrSetAbort);
7395       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7396       VdbeComment((v, "end groupby result generator"));
7397 
7398       /* Generate a subroutine that will reset the group-by accumulator
7399       */
7400       sqlite3VdbeResolveLabel(v, addrReset);
7401       resetAccumulator(pParse, pAggInfo);
7402       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7403       VdbeComment((v, "indicate accumulator empty"));
7404       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7405 
7406       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7407         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7408         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7409       }
7410     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7411     else {
7412       Table *pTab;
7413       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7414         /* If isSimpleCount() returns a pointer to a Table structure, then
7415         ** the SQL statement is of the form:
7416         **
7417         **   SELECT count(*) FROM <tbl>
7418         **
7419         ** where the Table structure returned represents table <tbl>.
7420         **
7421         ** This statement is so common that it is optimized specially. The
7422         ** OP_Count instruction is executed either on the intkey table that
7423         ** contains the data for table <tbl> or on one of its indexes. It
7424         ** is better to execute the op on an index, as indexes are almost
7425         ** always spread across less pages than their corresponding tables.
7426         */
7427         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7428         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7429         Index *pIdx;                         /* Iterator variable */
7430         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7431         Index *pBest = 0;                    /* Best index found so far */
7432         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7433 
7434         sqlite3CodeVerifySchema(pParse, iDb);
7435         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7436 
7437         /* Search for the index that has the lowest scan cost.
7438         **
7439         ** (2011-04-15) Do not do a full scan of an unordered index.
7440         **
7441         ** (2013-10-03) Do not count the entries in a partial index.
7442         **
7443         ** In practice the KeyInfo structure will not be used. It is only
7444         ** passed to keep OP_OpenRead happy.
7445         */
7446         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7447         if( !p->pSrc->a[0].fg.notIndexed ){
7448           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7449             if( pIdx->bUnordered==0
7450              && pIdx->szIdxRow<pTab->szTabRow
7451              && pIdx->pPartIdxWhere==0
7452              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7453             ){
7454               pBest = pIdx;
7455             }
7456           }
7457         }
7458         if( pBest ){
7459           iRoot = pBest->tnum;
7460           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7461         }
7462 
7463         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7464         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7465         if( pKeyInfo ){
7466           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7467         }
7468         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7469         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7470         explainSimpleCount(pParse, pTab, pBest);
7471       }else{
7472         int regAcc = 0;           /* "populate accumulators" flag */
7473         ExprList *pDistinct = 0;
7474         u16 distFlag = 0;
7475         int eDist;
7476 
7477         /* If there are accumulator registers but no min() or max() functions
7478         ** without FILTER clauses, allocate register regAcc. Register regAcc
7479         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7480         ** The code generated by updateAccumulator() uses this to ensure
7481         ** that the accumulator registers are (a) updated only once if
7482         ** there are no min() or max functions or (b) always updated for the
7483         ** first row visited by the aggregate, so that they are updated at
7484         ** least once even if the FILTER clause means the min() or max()
7485         ** function visits zero rows.  */
7486         if( pAggInfo->nAccumulator ){
7487           for(i=0; i<pAggInfo->nFunc; i++){
7488             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7489               continue;
7490             }
7491             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7492               break;
7493             }
7494           }
7495           if( i==pAggInfo->nFunc ){
7496             regAcc = ++pParse->nMem;
7497             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7498           }
7499         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7500           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7501           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7502           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7503         }
7504 
7505         /* This case runs if the aggregate has no GROUP BY clause.  The
7506         ** processing is much simpler since there is only a single row
7507         ** of output.
7508         */
7509         assert( p->pGroupBy==0 );
7510         resetAccumulator(pParse, pAggInfo);
7511 
7512         /* If this query is a candidate for the min/max optimization, then
7513         ** minMaxFlag will have been previously set to either
7514         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7515         ** be an appropriate ORDER BY expression for the optimization.
7516         */
7517         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7518         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7519 
7520         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7521         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7522                                    pDistinct, 0, minMaxFlag|distFlag, 0);
7523         if( pWInfo==0 ){
7524           goto select_end;
7525         }
7526         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7527         eDist = sqlite3WhereIsDistinct(pWInfo);
7528         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7529         if( eDist!=WHERE_DISTINCT_NOOP ){
7530           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7531           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7532         }
7533 
7534         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7535         if( minMaxFlag ){
7536           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7537         }
7538         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7539         sqlite3WhereEnd(pWInfo);
7540         finalizeAggFunctions(pParse, pAggInfo);
7541       }
7542 
7543       sSort.pOrderBy = 0;
7544       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7545       selectInnerLoop(pParse, p, -1, 0, 0,
7546                       pDest, addrEnd, addrEnd);
7547     }
7548     sqlite3VdbeResolveLabel(v, addrEnd);
7549 
7550   } /* endif aggregate query */
7551 
7552   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7553     explainTempTable(pParse, "DISTINCT");
7554   }
7555 
7556   /* If there is an ORDER BY clause, then we need to sort the results
7557   ** and send them to the callback one by one.
7558   */
7559   if( sSort.pOrderBy ){
7560     explainTempTable(pParse,
7561                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7562     assert( p->pEList==pEList );
7563     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7564   }
7565 
7566   /* Jump here to skip this query
7567   */
7568   sqlite3VdbeResolveLabel(v, iEnd);
7569 
7570   /* The SELECT has been coded. If there is an error in the Parse structure,
7571   ** set the return code to 1. Otherwise 0. */
7572   rc = (pParse->nErr>0);
7573 
7574   /* Control jumps to here if an error is encountered above, or upon
7575   ** successful coding of the SELECT.
7576   */
7577 select_end:
7578   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7579   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7580   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7581 #ifdef SQLITE_DEBUG
7582   if( pAggInfo && !db->mallocFailed ){
7583     for(i=0; i<pAggInfo->nColumn; i++){
7584       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7585       assert( pExpr!=0 );
7586       assert( pExpr->pAggInfo==pAggInfo );
7587       assert( pExpr->iAgg==i );
7588     }
7589     for(i=0; i<pAggInfo->nFunc; i++){
7590       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7591       assert( pExpr!=0 );
7592       assert( pExpr->pAggInfo==pAggInfo );
7593       assert( pExpr->iAgg==i );
7594     }
7595   }
7596 #endif
7597 
7598 #if TREETRACE_ENABLED
7599   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7600   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7601     sqlite3TreeViewSelect(0, p, 0);
7602   }
7603 #endif
7604   ExplainQueryPlanPop(pParse);
7605   return rc;
7606 }
7607