1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 #ifndef SQLITE_OMIT_WINDOWFUNC 89 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 90 sqlite3WindowListDelete(db, p->pWinDefn); 91 } 92 #endif 93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 94 if( bFree ) sqlite3DbFreeNN(db, p); 95 p = pPrior; 96 bFree = 1; 97 } 98 } 99 100 /* 101 ** Initialize a SelectDest structure. 102 */ 103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 104 pDest->eDest = (u8)eDest; 105 pDest->iSDParm = iParm; 106 pDest->iSDParm2 = 0; 107 pDest->zAffSdst = 0; 108 pDest->iSdst = 0; 109 pDest->nSdst = 0; 110 } 111 112 113 /* 114 ** Allocate a new Select structure and return a pointer to that 115 ** structure. 116 */ 117 Select *sqlite3SelectNew( 118 Parse *pParse, /* Parsing context */ 119 ExprList *pEList, /* which columns to include in the result */ 120 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 121 Expr *pWhere, /* the WHERE clause */ 122 ExprList *pGroupBy, /* the GROUP BY clause */ 123 Expr *pHaving, /* the HAVING clause */ 124 ExprList *pOrderBy, /* the ORDER BY clause */ 125 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 126 Expr *pLimit /* LIMIT value. NULL means not used */ 127 ){ 128 Select *pNew, *pAllocated; 129 Select standin; 130 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 131 if( pNew==0 ){ 132 assert( pParse->db->mallocFailed ); 133 pNew = &standin; 134 } 135 if( pEList==0 ){ 136 pEList = sqlite3ExprListAppend(pParse, 0, 137 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 138 } 139 pNew->pEList = pEList; 140 pNew->op = TK_SELECT; 141 pNew->selFlags = selFlags; 142 pNew->iLimit = 0; 143 pNew->iOffset = 0; 144 pNew->selId = ++pParse->nSelect; 145 pNew->addrOpenEphm[0] = -1; 146 pNew->addrOpenEphm[1] = -1; 147 pNew->nSelectRow = 0; 148 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 149 pNew->pSrc = pSrc; 150 pNew->pWhere = pWhere; 151 pNew->pGroupBy = pGroupBy; 152 pNew->pHaving = pHaving; 153 pNew->pOrderBy = pOrderBy; 154 pNew->pPrior = 0; 155 pNew->pNext = 0; 156 pNew->pLimit = pLimit; 157 pNew->pWith = 0; 158 #ifndef SQLITE_OMIT_WINDOWFUNC 159 pNew->pWin = 0; 160 pNew->pWinDefn = 0; 161 #endif 162 if( pParse->db->mallocFailed ) { 163 clearSelect(pParse->db, pNew, pNew!=&standin); 164 pAllocated = 0; 165 }else{ 166 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 167 } 168 return pAllocated; 169 } 170 171 172 /* 173 ** Delete the given Select structure and all of its substructures. 174 */ 175 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 176 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 177 } 178 179 /* 180 ** Return a pointer to the right-most SELECT statement in a compound. 181 */ 182 static Select *findRightmost(Select *p){ 183 while( p->pNext ) p = p->pNext; 184 return p; 185 } 186 187 /* 188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 189 ** type of join. Return an integer constant that expresses that type 190 ** in terms of the following bit values: 191 ** 192 ** JT_INNER 193 ** JT_CROSS 194 ** JT_OUTER 195 ** JT_NATURAL 196 ** JT_LEFT 197 ** JT_RIGHT 198 ** 199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 200 ** 201 ** If an illegal or unsupported join type is seen, then still return 202 ** a join type, but put an error in the pParse structure. 203 */ 204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 205 int jointype = 0; 206 Token *apAll[3]; 207 Token *p; 208 /* 0123456789 123456789 123456789 123 */ 209 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 210 static const struct { 211 u8 i; /* Beginning of keyword text in zKeyText[] */ 212 u8 nChar; /* Length of the keyword in characters */ 213 u8 code; /* Join type mask */ 214 } aKeyword[] = { 215 /* natural */ { 0, 7, JT_NATURAL }, 216 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 217 /* outer */ { 10, 5, JT_OUTER }, 218 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 219 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 220 /* inner */ { 23, 5, JT_INNER }, 221 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 222 }; 223 int i, j; 224 apAll[0] = pA; 225 apAll[1] = pB; 226 apAll[2] = pC; 227 for(i=0; i<3 && apAll[i]; i++){ 228 p = apAll[i]; 229 for(j=0; j<ArraySize(aKeyword); j++){ 230 if( p->n==aKeyword[j].nChar 231 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 232 jointype |= aKeyword[j].code; 233 break; 234 } 235 } 236 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 237 if( j>=ArraySize(aKeyword) ){ 238 jointype |= JT_ERROR; 239 break; 240 } 241 } 242 if( 243 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 244 (jointype & JT_ERROR)!=0 245 ){ 246 const char *zSp = " "; 247 assert( pB!=0 ); 248 if( pC==0 ){ zSp++; } 249 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 250 "%T %T%s%T", pA, pB, zSp, pC); 251 jointype = JT_INNER; 252 }else if( (jointype & JT_OUTER)!=0 253 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 254 sqlite3ErrorMsg(pParse, 255 "RIGHT and FULL OUTER JOINs are not currently supported"); 256 jointype = JT_INNER; 257 } 258 return jointype; 259 } 260 261 /* 262 ** Return the index of a column in a table. Return -1 if the column 263 ** is not contained in the table. 264 */ 265 static int columnIndex(Table *pTab, const char *zCol){ 266 int i; 267 u8 h = sqlite3StrIHash(zCol); 268 Column *pCol; 269 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 270 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 271 } 272 return -1; 273 } 274 275 /* 276 ** Search the first N tables in pSrc, from left to right, looking for a 277 ** table that has a column named zCol. 278 ** 279 ** When found, set *piTab and *piCol to the table index and column index 280 ** of the matching column and return TRUE. 281 ** 282 ** If not found, return FALSE. 283 */ 284 static int tableAndColumnIndex( 285 SrcList *pSrc, /* Array of tables to search */ 286 int N, /* Number of tables in pSrc->a[] to search */ 287 const char *zCol, /* Name of the column we are looking for */ 288 int *piTab, /* Write index of pSrc->a[] here */ 289 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 290 int bIgnoreHidden /* True to ignore hidden columns */ 291 ){ 292 int i; /* For looping over tables in pSrc */ 293 int iCol; /* Index of column matching zCol */ 294 295 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 296 for(i=0; i<N; i++){ 297 iCol = columnIndex(pSrc->a[i].pTab, zCol); 298 if( iCol>=0 299 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 300 ){ 301 if( piTab ){ 302 *piTab = i; 303 *piCol = iCol; 304 } 305 return 1; 306 } 307 } 308 return 0; 309 } 310 311 /* 312 ** This function is used to add terms implied by JOIN syntax to the 313 ** WHERE clause expression of a SELECT statement. The new term, which 314 ** is ANDed with the existing WHERE clause, is of the form: 315 ** 316 ** (tab1.col1 = tab2.col2) 317 ** 318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 320 ** column iColRight of tab2. 321 */ 322 static void addWhereTerm( 323 Parse *pParse, /* Parsing context */ 324 SrcList *pSrc, /* List of tables in FROM clause */ 325 int iLeft, /* Index of first table to join in pSrc */ 326 int iColLeft, /* Index of column in first table */ 327 int iRight, /* Index of second table in pSrc */ 328 int iColRight, /* Index of column in second table */ 329 int isOuterJoin, /* True if this is an OUTER join */ 330 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 331 ){ 332 sqlite3 *db = pParse->db; 333 Expr *pE1; 334 Expr *pE2; 335 Expr *pEq; 336 337 assert( iLeft<iRight ); 338 assert( pSrc->nSrc>iRight ); 339 assert( pSrc->a[iLeft].pTab ); 340 assert( pSrc->a[iRight].pTab ); 341 342 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 343 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 344 345 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 346 if( pEq && isOuterJoin ){ 347 ExprSetProperty(pEq, EP_FromJoin); 348 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 349 ExprSetVVAProperty(pEq, EP_NoReduce); 350 pEq->iRightJoinTable = (i16)pE2->iTable; 351 } 352 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 353 } 354 355 /* 356 ** Set the EP_FromJoin property on all terms of the given expression. 357 ** And set the Expr.iRightJoinTable to iTable for every term in the 358 ** expression. 359 ** 360 ** The EP_FromJoin property is used on terms of an expression to tell 361 ** the LEFT OUTER JOIN processing logic that this term is part of the 362 ** join restriction specified in the ON or USING clause and not a part 363 ** of the more general WHERE clause. These terms are moved over to the 364 ** WHERE clause during join processing but we need to remember that they 365 ** originated in the ON or USING clause. 366 ** 367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 368 ** expression depends on table iRightJoinTable even if that table is not 369 ** explicitly mentioned in the expression. That information is needed 370 ** for cases like this: 371 ** 372 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 373 ** 374 ** The where clause needs to defer the handling of the t1.x=5 375 ** term until after the t2 loop of the join. In that way, a 376 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 377 ** defer the handling of t1.x=5, it will be processed immediately 378 ** after the t1 loop and rows with t1.x!=5 will never appear in 379 ** the output, which is incorrect. 380 */ 381 void sqlite3SetJoinExpr(Expr *p, int iTable){ 382 while( p ){ 383 ExprSetProperty(p, EP_FromJoin); 384 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 385 ExprSetVVAProperty(p, EP_NoReduce); 386 p->iRightJoinTable = (i16)iTable; 387 if( p->op==TK_FUNCTION && p->x.pList ){ 388 int i; 389 for(i=0; i<p->x.pList->nExpr; i++){ 390 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 391 } 392 } 393 sqlite3SetJoinExpr(p->pLeft, iTable); 394 p = p->pRight; 395 } 396 } 397 398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 400 ** an ordinary term that omits the EP_FromJoin mark. 401 ** 402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 403 */ 404 static void unsetJoinExpr(Expr *p, int iTable){ 405 while( p ){ 406 if( ExprHasProperty(p, EP_FromJoin) 407 && (iTable<0 || p->iRightJoinTable==iTable) ){ 408 ExprClearProperty(p, EP_FromJoin); 409 } 410 if( p->op==TK_FUNCTION && p->x.pList ){ 411 int i; 412 for(i=0; i<p->x.pList->nExpr; i++){ 413 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 414 } 415 } 416 unsetJoinExpr(p->pLeft, iTable); 417 p = p->pRight; 418 } 419 } 420 421 /* 422 ** This routine processes the join information for a SELECT statement. 423 ** ON and USING clauses are converted into extra terms of the WHERE clause. 424 ** NATURAL joins also create extra WHERE clause terms. 425 ** 426 ** The terms of a FROM clause are contained in the Select.pSrc structure. 427 ** The left most table is the first entry in Select.pSrc. The right-most 428 ** table is the last entry. The join operator is held in the entry to 429 ** the left. Thus entry 0 contains the join operator for the join between 430 ** entries 0 and 1. Any ON or USING clauses associated with the join are 431 ** also attached to the left entry. 432 ** 433 ** This routine returns the number of errors encountered. 434 */ 435 static int sqliteProcessJoin(Parse *pParse, Select *p){ 436 SrcList *pSrc; /* All tables in the FROM clause */ 437 int i, j; /* Loop counters */ 438 struct SrcList_item *pLeft; /* Left table being joined */ 439 struct SrcList_item *pRight; /* Right table being joined */ 440 441 pSrc = p->pSrc; 442 pLeft = &pSrc->a[0]; 443 pRight = &pLeft[1]; 444 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 445 Table *pRightTab = pRight->pTab; 446 int isOuter; 447 448 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 449 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 450 451 /* When the NATURAL keyword is present, add WHERE clause terms for 452 ** every column that the two tables have in common. 453 */ 454 if( pRight->fg.jointype & JT_NATURAL ){ 455 if( pRight->pOn || pRight->pUsing ){ 456 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 457 "an ON or USING clause", 0); 458 return 1; 459 } 460 for(j=0; j<pRightTab->nCol; j++){ 461 char *zName; /* Name of column in the right table */ 462 int iLeft; /* Matching left table */ 463 int iLeftCol; /* Matching column in the left table */ 464 465 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 466 zName = pRightTab->aCol[j].zName; 467 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 474 /* Disallow both ON and USING clauses in the same join 475 */ 476 if( pRight->pOn && pRight->pUsing ){ 477 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 478 "clauses in the same join"); 479 return 1; 480 } 481 482 /* Add the ON clause to the end of the WHERE clause, connected by 483 ** an AND operator. 484 */ 485 if( pRight->pOn ){ 486 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 487 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 488 pRight->pOn = 0; 489 } 490 491 /* Create extra terms on the WHERE clause for each column named 492 ** in the USING clause. Example: If the two tables to be joined are 493 ** A and B and the USING clause names X, Y, and Z, then add this 494 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 495 ** Report an error if any column mentioned in the USING clause is 496 ** not contained in both tables to be joined. 497 */ 498 if( pRight->pUsing ){ 499 IdList *pList = pRight->pUsing; 500 for(j=0; j<pList->nId; j++){ 501 char *zName; /* Name of the term in the USING clause */ 502 int iLeft; /* Table on the left with matching column name */ 503 int iLeftCol; /* Column number of matching column on the left */ 504 int iRightCol; /* Column number of matching column on the right */ 505 506 zName = pList->a[j].zName; 507 iRightCol = columnIndex(pRightTab, zName); 508 if( iRightCol<0 509 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 510 ){ 511 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 512 "not present in both tables", zName); 513 return 1; 514 } 515 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 516 isOuter, &p->pWhere); 517 } 518 } 519 } 520 return 0; 521 } 522 523 /* 524 ** An instance of this object holds information (beyond pParse and pSelect) 525 ** needed to load the next result row that is to be added to the sorter. 526 */ 527 typedef struct RowLoadInfo RowLoadInfo; 528 struct RowLoadInfo { 529 int regResult; /* Store results in array of registers here */ 530 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 532 ExprList *pExtra; /* Extra columns needed by sorter refs */ 533 int regExtraResult; /* Where to load the extra columns */ 534 #endif 535 }; 536 537 /* 538 ** This routine does the work of loading query data into an array of 539 ** registers so that it can be added to the sorter. 540 */ 541 static void innerLoopLoadRow( 542 Parse *pParse, /* Statement under construction */ 543 Select *pSelect, /* The query being coded */ 544 RowLoadInfo *pInfo /* Info needed to complete the row load */ 545 ){ 546 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 547 0, pInfo->ecelFlags); 548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 549 if( pInfo->pExtra ){ 550 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 551 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 552 } 553 #endif 554 } 555 556 /* 557 ** Code the OP_MakeRecord instruction that generates the entry to be 558 ** added into the sorter. 559 ** 560 ** Return the register in which the result is stored. 561 */ 562 static int makeSorterRecord( 563 Parse *pParse, 564 SortCtx *pSort, 565 Select *pSelect, 566 int regBase, 567 int nBase 568 ){ 569 int nOBSat = pSort->nOBSat; 570 Vdbe *v = pParse->pVdbe; 571 int regOut = ++pParse->nMem; 572 if( pSort->pDeferredRowLoad ){ 573 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 574 } 575 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 576 return regOut; 577 } 578 579 /* 580 ** Generate code that will push the record in registers regData 581 ** through regData+nData-1 onto the sorter. 582 */ 583 static void pushOntoSorter( 584 Parse *pParse, /* Parser context */ 585 SortCtx *pSort, /* Information about the ORDER BY clause */ 586 Select *pSelect, /* The whole SELECT statement */ 587 int regData, /* First register holding data to be sorted */ 588 int regOrigData, /* First register holding data before packing */ 589 int nData, /* Number of elements in the regData data array */ 590 int nPrefixReg /* No. of reg prior to regData available for use */ 591 ){ 592 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 593 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 594 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 595 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 596 int regBase; /* Regs for sorter record */ 597 int regRecord = 0; /* Assembled sorter record */ 598 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 599 int op; /* Opcode to add sorter record to sorter */ 600 int iLimit; /* LIMIT counter */ 601 int iSkip = 0; /* End of the sorter insert loop */ 602 603 assert( bSeq==0 || bSeq==1 ); 604 605 /* Three cases: 606 ** (1) The data to be sorted has already been packed into a Record 607 ** by a prior OP_MakeRecord. In this case nData==1 and regData 608 ** will be completely unrelated to regOrigData. 609 ** (2) All output columns are included in the sort record. In that 610 ** case regData==regOrigData. 611 ** (3) Some output columns are omitted from the sort record due to 612 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 613 ** SQLITE_ECEL_OMITREF optimization, or due to the 614 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 615 ** regOrigData is 0 to prevent this routine from trying to copy 616 ** values that might not yet exist. 617 */ 618 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 619 620 if( nPrefixReg ){ 621 assert( nPrefixReg==nExpr+bSeq ); 622 regBase = regData - nPrefixReg; 623 }else{ 624 regBase = pParse->nMem + 1; 625 pParse->nMem += nBase; 626 } 627 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 628 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 629 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 630 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 631 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 632 if( bSeq ){ 633 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 634 } 635 if( nPrefixReg==0 && nData>0 ){ 636 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 637 } 638 if( nOBSat>0 ){ 639 int regPrevKey; /* The first nOBSat columns of the previous row */ 640 int addrFirst; /* Address of the OP_IfNot opcode */ 641 int addrJmp; /* Address of the OP_Jump opcode */ 642 VdbeOp *pOp; /* Opcode that opens the sorter */ 643 int nKey; /* Number of sorting key columns, including OP_Sequence */ 644 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 645 646 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 647 regPrevKey = pParse->nMem+1; 648 pParse->nMem += pSort->nOBSat; 649 nKey = nExpr - pSort->nOBSat + bSeq; 650 if( bSeq ){ 651 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 652 }else{ 653 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 654 } 655 VdbeCoverage(v); 656 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 657 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 658 if( pParse->db->mallocFailed ) return; 659 pOp->p2 = nKey + nData; 660 pKI = pOp->p4.pKeyInfo; 661 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 662 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 663 testcase( pKI->nAllField > pKI->nKeyField+2 ); 664 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 665 pKI->nAllField-pKI->nKeyField-1); 666 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 667 addrJmp = sqlite3VdbeCurrentAddr(v); 668 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 669 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 670 pSort->regReturn = ++pParse->nMem; 671 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 672 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 673 if( iLimit ){ 674 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 675 VdbeCoverage(v); 676 } 677 sqlite3VdbeJumpHere(v, addrFirst); 678 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 679 sqlite3VdbeJumpHere(v, addrJmp); 680 } 681 if( iLimit ){ 682 /* At this point the values for the new sorter entry are stored 683 ** in an array of registers. They need to be composed into a record 684 ** and inserted into the sorter if either (a) there are currently 685 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 686 ** the largest record currently in the sorter. If (b) is true and there 687 ** are already LIMIT+OFFSET items in the sorter, delete the largest 688 ** entry before inserting the new one. This way there are never more 689 ** than LIMIT+OFFSET items in the sorter. 690 ** 691 ** If the new record does not need to be inserted into the sorter, 692 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 693 ** value is not zero, then it is a label of where to jump. Otherwise, 694 ** just bypass the row insert logic. See the header comment on the 695 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 696 */ 697 int iCsr = pSort->iECursor; 698 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 699 VdbeCoverage(v); 700 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 701 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 702 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 705 } 706 if( regRecord==0 ){ 707 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 708 } 709 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 710 op = OP_SorterInsert; 711 }else{ 712 op = OP_IdxInsert; 713 } 714 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 715 regBase+nOBSat, nBase-nOBSat); 716 if( iSkip ){ 717 sqlite3VdbeChangeP2(v, iSkip, 718 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 719 } 720 } 721 722 /* 723 ** Add code to implement the OFFSET 724 */ 725 static void codeOffset( 726 Vdbe *v, /* Generate code into this VM */ 727 int iOffset, /* Register holding the offset counter */ 728 int iContinue /* Jump here to skip the current record */ 729 ){ 730 if( iOffset>0 ){ 731 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 732 VdbeComment((v, "OFFSET")); 733 } 734 } 735 736 /* 737 ** Add code that will check to make sure the N registers starting at iMem 738 ** form a distinct entry. iTab is a sorting index that holds previously 739 ** seen combinations of the N values. A new entry is made in iTab 740 ** if the current N values are new. 741 ** 742 ** A jump to addrRepeat is made and the N+1 values are popped from the 743 ** stack if the top N elements are not distinct. 744 */ 745 static void codeDistinct( 746 Parse *pParse, /* Parsing and code generating context */ 747 int iTab, /* A sorting index used to test for distinctness */ 748 int addrRepeat, /* Jump to here if not distinct */ 749 int N, /* Number of elements */ 750 int iMem /* First element */ 751 ){ 752 Vdbe *v; 753 int r1; 754 755 v = pParse->pVdbe; 756 r1 = sqlite3GetTempReg(pParse); 757 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 758 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 759 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 760 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 761 sqlite3ReleaseTempReg(pParse, r1); 762 } 763 764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 765 /* 766 ** This function is called as part of inner-loop generation for a SELECT 767 ** statement with an ORDER BY that is not optimized by an index. It 768 ** determines the expressions, if any, that the sorter-reference 769 ** optimization should be used for. The sorter-reference optimization 770 ** is used for SELECT queries like: 771 ** 772 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 773 ** 774 ** If the optimization is used for expression "bigblob", then instead of 775 ** storing values read from that column in the sorter records, the PK of 776 ** the row from table t1 is stored instead. Then, as records are extracted from 777 ** the sorter to return to the user, the required value of bigblob is 778 ** retrieved directly from table t1. If the values are very large, this 779 ** can be more efficient than storing them directly in the sorter records. 780 ** 781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 782 ** for which the sorter-reference optimization should be enabled. 783 ** Additionally, the pSort->aDefer[] array is populated with entries 784 ** for all cursors required to evaluate all selected expressions. Finally. 785 ** output variable (*ppExtra) is set to an expression list containing 786 ** expressions for all extra PK values that should be stored in the 787 ** sorter records. 788 */ 789 static void selectExprDefer( 790 Parse *pParse, /* Leave any error here */ 791 SortCtx *pSort, /* Sorter context */ 792 ExprList *pEList, /* Expressions destined for sorter */ 793 ExprList **ppExtra /* Expressions to append to sorter record */ 794 ){ 795 int i; 796 int nDefer = 0; 797 ExprList *pExtra = 0; 798 for(i=0; i<pEList->nExpr; i++){ 799 struct ExprList_item *pItem = &pEList->a[i]; 800 if( pItem->u.x.iOrderByCol==0 ){ 801 Expr *pExpr = pItem->pExpr; 802 Table *pTab = pExpr->y.pTab; 803 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 804 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 805 ){ 806 int j; 807 for(j=0; j<nDefer; j++){ 808 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 809 } 810 if( j==nDefer ){ 811 if( nDefer==ArraySize(pSort->aDefer) ){ 812 continue; 813 }else{ 814 int nKey = 1; 815 int k; 816 Index *pPk = 0; 817 if( !HasRowid(pTab) ){ 818 pPk = sqlite3PrimaryKeyIndex(pTab); 819 nKey = pPk->nKeyCol; 820 } 821 for(k=0; k<nKey; k++){ 822 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 823 if( pNew ){ 824 pNew->iTable = pExpr->iTable; 825 pNew->y.pTab = pExpr->y.pTab; 826 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 827 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 828 } 829 } 830 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 831 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 832 pSort->aDefer[nDefer].nKey = nKey; 833 nDefer++; 834 } 835 } 836 pItem->bSorterRef = 1; 837 } 838 } 839 } 840 pSort->nDefer = (u8)nDefer; 841 *ppExtra = pExtra; 842 } 843 #endif 844 845 /* 846 ** This routine generates the code for the inside of the inner loop 847 ** of a SELECT. 848 ** 849 ** If srcTab is negative, then the p->pEList expressions 850 ** are evaluated in order to get the data for this row. If srcTab is 851 ** zero or more, then data is pulled from srcTab and p->pEList is used only 852 ** to get the number of columns and the collation sequence for each column. 853 */ 854 static void selectInnerLoop( 855 Parse *pParse, /* The parser context */ 856 Select *p, /* The complete select statement being coded */ 857 int srcTab, /* Pull data from this table if non-negative */ 858 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 859 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 860 SelectDest *pDest, /* How to dispose of the results */ 861 int iContinue, /* Jump here to continue with next row */ 862 int iBreak /* Jump here to break out of the inner loop */ 863 ){ 864 Vdbe *v = pParse->pVdbe; 865 int i; 866 int hasDistinct; /* True if the DISTINCT keyword is present */ 867 int eDest = pDest->eDest; /* How to dispose of results */ 868 int iParm = pDest->iSDParm; /* First argument to disposal method */ 869 int nResultCol; /* Number of result columns */ 870 int nPrefixReg = 0; /* Number of extra registers before regResult */ 871 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 872 873 /* Usually, regResult is the first cell in an array of memory cells 874 ** containing the current result row. In this case regOrig is set to the 875 ** same value. However, if the results are being sent to the sorter, the 876 ** values for any expressions that are also part of the sort-key are omitted 877 ** from this array. In this case regOrig is set to zero. */ 878 int regResult; /* Start of memory holding current results */ 879 int regOrig; /* Start of memory holding full result (or 0) */ 880 881 assert( v ); 882 assert( p->pEList!=0 ); 883 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 884 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 885 if( pSort==0 && !hasDistinct ){ 886 assert( iContinue!=0 ); 887 codeOffset(v, p->iOffset, iContinue); 888 } 889 890 /* Pull the requested columns. 891 */ 892 nResultCol = p->pEList->nExpr; 893 894 if( pDest->iSdst==0 ){ 895 if( pSort ){ 896 nPrefixReg = pSort->pOrderBy->nExpr; 897 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 898 pParse->nMem += nPrefixReg; 899 } 900 pDest->iSdst = pParse->nMem+1; 901 pParse->nMem += nResultCol; 902 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 903 /* This is an error condition that can result, for example, when a SELECT 904 ** on the right-hand side of an INSERT contains more result columns than 905 ** there are columns in the table on the left. The error will be caught 906 ** and reported later. But we need to make sure enough memory is allocated 907 ** to avoid other spurious errors in the meantime. */ 908 pParse->nMem += nResultCol; 909 } 910 pDest->nSdst = nResultCol; 911 regOrig = regResult = pDest->iSdst; 912 if( srcTab>=0 ){ 913 for(i=0; i<nResultCol; i++){ 914 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 915 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 916 } 917 }else if( eDest!=SRT_Exists ){ 918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 919 ExprList *pExtra = 0; 920 #endif 921 /* If the destination is an EXISTS(...) expression, the actual 922 ** values returned by the SELECT are not required. 923 */ 924 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 925 ExprList *pEList; 926 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 927 ecelFlags = SQLITE_ECEL_DUP; 928 }else{ 929 ecelFlags = 0; 930 } 931 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 932 /* For each expression in p->pEList that is a copy of an expression in 933 ** the ORDER BY clause (pSort->pOrderBy), set the associated 934 ** iOrderByCol value to one more than the index of the ORDER BY 935 ** expression within the sort-key that pushOntoSorter() will generate. 936 ** This allows the p->pEList field to be omitted from the sorted record, 937 ** saving space and CPU cycles. */ 938 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 939 940 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 941 int j; 942 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 943 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 944 } 945 } 946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 947 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 948 if( pExtra && pParse->db->mallocFailed==0 ){ 949 /* If there are any extra PK columns to add to the sorter records, 950 ** allocate extra memory cells and adjust the OpenEphemeral 951 ** instruction to account for the larger records. This is only 952 ** required if there are one or more WITHOUT ROWID tables with 953 ** composite primary keys in the SortCtx.aDefer[] array. */ 954 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 955 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 956 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 957 pParse->nMem += pExtra->nExpr; 958 } 959 #endif 960 961 /* Adjust nResultCol to account for columns that are omitted 962 ** from the sorter by the optimizations in this branch */ 963 pEList = p->pEList; 964 for(i=0; i<pEList->nExpr; i++){ 965 if( pEList->a[i].u.x.iOrderByCol>0 966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 967 || pEList->a[i].bSorterRef 968 #endif 969 ){ 970 nResultCol--; 971 regOrig = 0; 972 } 973 } 974 975 testcase( regOrig ); 976 testcase( eDest==SRT_Set ); 977 testcase( eDest==SRT_Mem ); 978 testcase( eDest==SRT_Coroutine ); 979 testcase( eDest==SRT_Output ); 980 assert( eDest==SRT_Set || eDest==SRT_Mem 981 || eDest==SRT_Coroutine || eDest==SRT_Output 982 || eDest==SRT_Upfrom ); 983 } 984 sRowLoadInfo.regResult = regResult; 985 sRowLoadInfo.ecelFlags = ecelFlags; 986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 987 sRowLoadInfo.pExtra = pExtra; 988 sRowLoadInfo.regExtraResult = regResult + nResultCol; 989 if( pExtra ) nResultCol += pExtra->nExpr; 990 #endif 991 if( p->iLimit 992 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 993 && nPrefixReg>0 994 ){ 995 assert( pSort!=0 ); 996 assert( hasDistinct==0 ); 997 pSort->pDeferredRowLoad = &sRowLoadInfo; 998 regOrig = 0; 999 }else{ 1000 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1001 } 1002 } 1003 1004 /* If the DISTINCT keyword was present on the SELECT statement 1005 ** and this row has been seen before, then do not make this row 1006 ** part of the result. 1007 */ 1008 if( hasDistinct ){ 1009 switch( pDistinct->eTnctType ){ 1010 case WHERE_DISTINCT_ORDERED: { 1011 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1012 int iJump; /* Jump destination */ 1013 int regPrev; /* Previous row content */ 1014 1015 /* Allocate space for the previous row */ 1016 regPrev = pParse->nMem+1; 1017 pParse->nMem += nResultCol; 1018 1019 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1020 ** sets the MEM_Cleared bit on the first register of the 1021 ** previous value. This will cause the OP_Ne below to always 1022 ** fail on the first iteration of the loop even if the first 1023 ** row is all NULLs. 1024 */ 1025 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1026 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1027 pOp->opcode = OP_Null; 1028 pOp->p1 = 1; 1029 pOp->p2 = regPrev; 1030 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1031 1032 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1033 for(i=0; i<nResultCol; i++){ 1034 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1035 if( i<nResultCol-1 ){ 1036 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1037 VdbeCoverage(v); 1038 }else{ 1039 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1040 VdbeCoverage(v); 1041 } 1042 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1043 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1044 } 1045 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1046 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1047 break; 1048 } 1049 1050 case WHERE_DISTINCT_UNIQUE: { 1051 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1052 break; 1053 } 1054 1055 default: { 1056 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1057 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1058 regResult); 1059 break; 1060 } 1061 } 1062 if( pSort==0 ){ 1063 codeOffset(v, p->iOffset, iContinue); 1064 } 1065 } 1066 1067 switch( eDest ){ 1068 /* In this mode, write each query result to the key of the temporary 1069 ** table iParm. 1070 */ 1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1072 case SRT_Union: { 1073 int r1; 1074 r1 = sqlite3GetTempReg(pParse); 1075 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1076 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1077 sqlite3ReleaseTempReg(pParse, r1); 1078 break; 1079 } 1080 1081 /* Construct a record from the query result, but instead of 1082 ** saving that record, use it as a key to delete elements from 1083 ** the temporary table iParm. 1084 */ 1085 case SRT_Except: { 1086 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1087 break; 1088 } 1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1090 1091 /* Store the result as data using a unique key. 1092 */ 1093 case SRT_Fifo: 1094 case SRT_DistFifo: 1095 case SRT_Table: 1096 case SRT_EphemTab: { 1097 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1098 testcase( eDest==SRT_Table ); 1099 testcase( eDest==SRT_EphemTab ); 1100 testcase( eDest==SRT_Fifo ); 1101 testcase( eDest==SRT_DistFifo ); 1102 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1103 #ifndef SQLITE_OMIT_CTE 1104 if( eDest==SRT_DistFifo ){ 1105 /* If the destination is DistFifo, then cursor (iParm+1) is open 1106 ** on an ephemeral index. If the current row is already present 1107 ** in the index, do not write it to the output. If not, add the 1108 ** current row to the index and proceed with writing it to the 1109 ** output table as well. */ 1110 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1111 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1112 VdbeCoverage(v); 1113 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1114 assert( pSort==0 ); 1115 } 1116 #endif 1117 if( pSort ){ 1118 assert( regResult==regOrig ); 1119 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1120 }else{ 1121 int r2 = sqlite3GetTempReg(pParse); 1122 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1123 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1124 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1125 sqlite3ReleaseTempReg(pParse, r2); 1126 } 1127 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1128 break; 1129 } 1130 1131 case SRT_Upfrom: { 1132 if( pSort ){ 1133 pushOntoSorter( 1134 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1135 }else{ 1136 int i2 = pDest->iSDParm2; 1137 int r1 = sqlite3GetTempReg(pParse); 1138 1139 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1140 ** might still be trying to return one row, because that is what 1141 ** aggregates do. Don't record that empty row in the output table. */ 1142 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1143 1144 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1145 regResult+(i2<0), nResultCol-(i2<0), r1); 1146 if( i2<0 ){ 1147 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1148 }else{ 1149 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1150 } 1151 } 1152 break; 1153 } 1154 1155 #ifndef SQLITE_OMIT_SUBQUERY 1156 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1157 ** then there should be a single item on the stack. Write this 1158 ** item into the set table with bogus data. 1159 */ 1160 case SRT_Set: { 1161 if( pSort ){ 1162 /* At first glance you would think we could optimize out the 1163 ** ORDER BY in this case since the order of entries in the set 1164 ** does not matter. But there might be a LIMIT clause, in which 1165 ** case the order does matter */ 1166 pushOntoSorter( 1167 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1168 }else{ 1169 int r1 = sqlite3GetTempReg(pParse); 1170 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1171 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1172 r1, pDest->zAffSdst, nResultCol); 1173 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1174 sqlite3ReleaseTempReg(pParse, r1); 1175 } 1176 break; 1177 } 1178 1179 1180 /* If any row exist in the result set, record that fact and abort. 1181 */ 1182 case SRT_Exists: { 1183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1184 /* The LIMIT clause will terminate the loop for us */ 1185 break; 1186 } 1187 1188 /* If this is a scalar select that is part of an expression, then 1189 ** store the results in the appropriate memory cell or array of 1190 ** memory cells and break out of the scan loop. 1191 */ 1192 case SRT_Mem: { 1193 if( pSort ){ 1194 assert( nResultCol<=pDest->nSdst ); 1195 pushOntoSorter( 1196 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1197 }else{ 1198 assert( nResultCol==pDest->nSdst ); 1199 assert( regResult==iParm ); 1200 /* The LIMIT clause will jump out of the loop for us */ 1201 } 1202 break; 1203 } 1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1205 1206 case SRT_Coroutine: /* Send data to a co-routine */ 1207 case SRT_Output: { /* Return the results */ 1208 testcase( eDest==SRT_Coroutine ); 1209 testcase( eDest==SRT_Output ); 1210 if( pSort ){ 1211 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1212 nPrefixReg); 1213 }else if( eDest==SRT_Coroutine ){ 1214 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1215 }else{ 1216 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1217 } 1218 break; 1219 } 1220 1221 #ifndef SQLITE_OMIT_CTE 1222 /* Write the results into a priority queue that is order according to 1223 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1224 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1225 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1226 ** final OP_Sequence column. The last column is the record as a blob. 1227 */ 1228 case SRT_DistQueue: 1229 case SRT_Queue: { 1230 int nKey; 1231 int r1, r2, r3; 1232 int addrTest = 0; 1233 ExprList *pSO; 1234 pSO = pDest->pOrderBy; 1235 assert( pSO ); 1236 nKey = pSO->nExpr; 1237 r1 = sqlite3GetTempReg(pParse); 1238 r2 = sqlite3GetTempRange(pParse, nKey+2); 1239 r3 = r2+nKey+1; 1240 if( eDest==SRT_DistQueue ){ 1241 /* If the destination is DistQueue, then cursor (iParm+1) is open 1242 ** on a second ephemeral index that holds all values every previously 1243 ** added to the queue. */ 1244 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1245 regResult, nResultCol); 1246 VdbeCoverage(v); 1247 } 1248 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1249 if( eDest==SRT_DistQueue ){ 1250 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1251 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1252 } 1253 for(i=0; i<nKey; i++){ 1254 sqlite3VdbeAddOp2(v, OP_SCopy, 1255 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1256 r2+i); 1257 } 1258 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1259 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1260 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1261 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1262 sqlite3ReleaseTempReg(pParse, r1); 1263 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1264 break; 1265 } 1266 #endif /* SQLITE_OMIT_CTE */ 1267 1268 1269 1270 #if !defined(SQLITE_OMIT_TRIGGER) 1271 /* Discard the results. This is used for SELECT statements inside 1272 ** the body of a TRIGGER. The purpose of such selects is to call 1273 ** user-defined functions that have side effects. We do not care 1274 ** about the actual results of the select. 1275 */ 1276 default: { 1277 assert( eDest==SRT_Discard ); 1278 break; 1279 } 1280 #endif 1281 } 1282 1283 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1284 ** there is a sorter, in which case the sorter has already limited 1285 ** the output for us. 1286 */ 1287 if( pSort==0 && p->iLimit ){ 1288 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1289 } 1290 } 1291 1292 /* 1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1294 ** X extra columns. 1295 */ 1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1297 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1298 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1299 if( p ){ 1300 p->aSortFlags = (u8*)&p->aColl[N+X]; 1301 p->nKeyField = (u16)N; 1302 p->nAllField = (u16)(N+X); 1303 p->enc = ENC(db); 1304 p->db = db; 1305 p->nRef = 1; 1306 memset(&p[1], 0, nExtra); 1307 }else{ 1308 sqlite3OomFault(db); 1309 } 1310 return p; 1311 } 1312 1313 /* 1314 ** Deallocate a KeyInfo object 1315 */ 1316 void sqlite3KeyInfoUnref(KeyInfo *p){ 1317 if( p ){ 1318 assert( p->nRef>0 ); 1319 p->nRef--; 1320 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1321 } 1322 } 1323 1324 /* 1325 ** Make a new pointer to a KeyInfo object 1326 */ 1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1328 if( p ){ 1329 assert( p->nRef>0 ); 1330 p->nRef++; 1331 } 1332 return p; 1333 } 1334 1335 #ifdef SQLITE_DEBUG 1336 /* 1337 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1338 ** can only be changed if this is just a single reference to the object. 1339 ** 1340 ** This routine is used only inside of assert() statements. 1341 */ 1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1343 #endif /* SQLITE_DEBUG */ 1344 1345 /* 1346 ** Given an expression list, generate a KeyInfo structure that records 1347 ** the collating sequence for each expression in that expression list. 1348 ** 1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1350 ** KeyInfo structure is appropriate for initializing a virtual index to 1351 ** implement that clause. If the ExprList is the result set of a SELECT 1352 ** then the KeyInfo structure is appropriate for initializing a virtual 1353 ** index to implement a DISTINCT test. 1354 ** 1355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1356 ** function is responsible for seeing that this structure is eventually 1357 ** freed. 1358 */ 1359 KeyInfo *sqlite3KeyInfoFromExprList( 1360 Parse *pParse, /* Parsing context */ 1361 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1362 int iStart, /* Begin with this column of pList */ 1363 int nExtra /* Add this many extra columns to the end */ 1364 ){ 1365 int nExpr; 1366 KeyInfo *pInfo; 1367 struct ExprList_item *pItem; 1368 sqlite3 *db = pParse->db; 1369 int i; 1370 1371 nExpr = pList->nExpr; 1372 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1373 if( pInfo ){ 1374 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1375 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1376 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1377 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1378 } 1379 } 1380 return pInfo; 1381 } 1382 1383 /* 1384 ** Name of the connection operator, used for error messages. 1385 */ 1386 static const char *selectOpName(int id){ 1387 char *z; 1388 switch( id ){ 1389 case TK_ALL: z = "UNION ALL"; break; 1390 case TK_INTERSECT: z = "INTERSECT"; break; 1391 case TK_EXCEPT: z = "EXCEPT"; break; 1392 default: z = "UNION"; break; 1393 } 1394 return z; 1395 } 1396 1397 #ifndef SQLITE_OMIT_EXPLAIN 1398 /* 1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1401 ** where the caption is of the form: 1402 ** 1403 ** "USE TEMP B-TREE FOR xxx" 1404 ** 1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1406 ** is determined by the zUsage argument. 1407 */ 1408 static void explainTempTable(Parse *pParse, const char *zUsage){ 1409 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1410 } 1411 1412 /* 1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1415 ** in sqlite3Select() to assign values to structure member variables that 1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1417 ** code with #ifndef directives. 1418 */ 1419 # define explainSetInteger(a, b) a = b 1420 1421 #else 1422 /* No-op versions of the explainXXX() functions and macros. */ 1423 # define explainTempTable(y,z) 1424 # define explainSetInteger(y,z) 1425 #endif 1426 1427 1428 /* 1429 ** If the inner loop was generated using a non-null pOrderBy argument, 1430 ** then the results were placed in a sorter. After the loop is terminated 1431 ** we need to run the sorter and output the results. The following 1432 ** routine generates the code needed to do that. 1433 */ 1434 static void generateSortTail( 1435 Parse *pParse, /* Parsing context */ 1436 Select *p, /* The SELECT statement */ 1437 SortCtx *pSort, /* Information on the ORDER BY clause */ 1438 int nColumn, /* Number of columns of data */ 1439 SelectDest *pDest /* Write the sorted results here */ 1440 ){ 1441 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1442 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1443 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1444 int addr; /* Top of output loop. Jump for Next. */ 1445 int addrOnce = 0; 1446 int iTab; 1447 ExprList *pOrderBy = pSort->pOrderBy; 1448 int eDest = pDest->eDest; 1449 int iParm = pDest->iSDParm; 1450 int regRow; 1451 int regRowid; 1452 int iCol; 1453 int nKey; /* Number of key columns in sorter record */ 1454 int iSortTab; /* Sorter cursor to read from */ 1455 int i; 1456 int bSeq; /* True if sorter record includes seq. no. */ 1457 int nRefKey = 0; 1458 struct ExprList_item *aOutEx = p->pEList->a; 1459 1460 assert( addrBreak<0 ); 1461 if( pSort->labelBkOut ){ 1462 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1463 sqlite3VdbeGoto(v, addrBreak); 1464 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1465 } 1466 1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1468 /* Open any cursors needed for sorter-reference expressions */ 1469 for(i=0; i<pSort->nDefer; i++){ 1470 Table *pTab = pSort->aDefer[i].pTab; 1471 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1472 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1473 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1474 } 1475 #endif 1476 1477 iTab = pSort->iECursor; 1478 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1479 regRowid = 0; 1480 regRow = pDest->iSdst; 1481 }else{ 1482 regRowid = sqlite3GetTempReg(pParse); 1483 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1484 regRow = sqlite3GetTempReg(pParse); 1485 nColumn = 0; 1486 }else{ 1487 regRow = sqlite3GetTempRange(pParse, nColumn); 1488 } 1489 } 1490 nKey = pOrderBy->nExpr - pSort->nOBSat; 1491 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1492 int regSortOut = ++pParse->nMem; 1493 iSortTab = pParse->nTab++; 1494 if( pSort->labelBkOut ){ 1495 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1496 } 1497 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1498 nKey+1+nColumn+nRefKey); 1499 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1500 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1501 VdbeCoverage(v); 1502 codeOffset(v, p->iOffset, addrContinue); 1503 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1504 bSeq = 0; 1505 }else{ 1506 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1507 codeOffset(v, p->iOffset, addrContinue); 1508 iSortTab = iTab; 1509 bSeq = 1; 1510 } 1511 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1513 if( aOutEx[i].bSorterRef ) continue; 1514 #endif 1515 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1516 } 1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1518 if( pSort->nDefer ){ 1519 int iKey = iCol+1; 1520 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1521 1522 for(i=0; i<pSort->nDefer; i++){ 1523 int iCsr = pSort->aDefer[i].iCsr; 1524 Table *pTab = pSort->aDefer[i].pTab; 1525 int nKey = pSort->aDefer[i].nKey; 1526 1527 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1528 if( HasRowid(pTab) ){ 1529 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1530 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1531 sqlite3VdbeCurrentAddr(v)+1, regKey); 1532 }else{ 1533 int k; 1534 int iJmp; 1535 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1536 for(k=0; k<nKey; k++){ 1537 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1538 } 1539 iJmp = sqlite3VdbeCurrentAddr(v); 1540 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1541 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1542 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1543 } 1544 } 1545 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1546 } 1547 #endif 1548 for(i=nColumn-1; i>=0; i--){ 1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1550 if( aOutEx[i].bSorterRef ){ 1551 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1552 }else 1553 #endif 1554 { 1555 int iRead; 1556 if( aOutEx[i].u.x.iOrderByCol ){ 1557 iRead = aOutEx[i].u.x.iOrderByCol-1; 1558 }else{ 1559 iRead = iCol--; 1560 } 1561 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1562 VdbeComment((v, "%s", aOutEx[i].zEName)); 1563 } 1564 } 1565 switch( eDest ){ 1566 case SRT_Table: 1567 case SRT_EphemTab: { 1568 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1569 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1570 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1571 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1572 break; 1573 } 1574 #ifndef SQLITE_OMIT_SUBQUERY 1575 case SRT_Set: { 1576 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1577 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1578 pDest->zAffSdst, nColumn); 1579 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1580 break; 1581 } 1582 case SRT_Mem: { 1583 /* The LIMIT clause will terminate the loop for us */ 1584 break; 1585 } 1586 #endif 1587 case SRT_Upfrom: { 1588 int i2 = pDest->iSDParm2; 1589 int r1 = sqlite3GetTempReg(pParse); 1590 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1591 if( i2<0 ){ 1592 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1593 }else{ 1594 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1595 } 1596 break; 1597 } 1598 default: { 1599 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1600 testcase( eDest==SRT_Output ); 1601 testcase( eDest==SRT_Coroutine ); 1602 if( eDest==SRT_Output ){ 1603 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1604 }else{ 1605 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1606 } 1607 break; 1608 } 1609 } 1610 if( regRowid ){ 1611 if( eDest==SRT_Set ){ 1612 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1613 }else{ 1614 sqlite3ReleaseTempReg(pParse, regRow); 1615 } 1616 sqlite3ReleaseTempReg(pParse, regRowid); 1617 } 1618 /* The bottom of the loop 1619 */ 1620 sqlite3VdbeResolveLabel(v, addrContinue); 1621 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1622 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1623 }else{ 1624 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1625 } 1626 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1627 sqlite3VdbeResolveLabel(v, addrBreak); 1628 } 1629 1630 /* 1631 ** Return a pointer to a string containing the 'declaration type' of the 1632 ** expression pExpr. The string may be treated as static by the caller. 1633 ** 1634 ** Also try to estimate the size of the returned value and return that 1635 ** result in *pEstWidth. 1636 ** 1637 ** The declaration type is the exact datatype definition extracted from the 1638 ** original CREATE TABLE statement if the expression is a column. The 1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1640 ** is considered a column can be complex in the presence of subqueries. The 1641 ** result-set expression in all of the following SELECT statements is 1642 ** considered a column by this function. 1643 ** 1644 ** SELECT col FROM tbl; 1645 ** SELECT (SELECT col FROM tbl; 1646 ** SELECT (SELECT col FROM tbl); 1647 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1648 ** 1649 ** The declaration type for any expression other than a column is NULL. 1650 ** 1651 ** This routine has either 3 or 6 parameters depending on whether or not 1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1653 */ 1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1658 #endif 1659 static const char *columnTypeImpl( 1660 NameContext *pNC, 1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1662 Expr *pExpr 1663 #else 1664 Expr *pExpr, 1665 const char **pzOrigDb, 1666 const char **pzOrigTab, 1667 const char **pzOrigCol 1668 #endif 1669 ){ 1670 char const *zType = 0; 1671 int j; 1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1673 char const *zOrigDb = 0; 1674 char const *zOrigTab = 0; 1675 char const *zOrigCol = 0; 1676 #endif 1677 1678 assert( pExpr!=0 ); 1679 assert( pNC->pSrcList!=0 ); 1680 switch( pExpr->op ){ 1681 case TK_COLUMN: { 1682 /* The expression is a column. Locate the table the column is being 1683 ** extracted from in NameContext.pSrcList. This table may be real 1684 ** database table or a subquery. 1685 */ 1686 Table *pTab = 0; /* Table structure column is extracted from */ 1687 Select *pS = 0; /* Select the column is extracted from */ 1688 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1689 while( pNC && !pTab ){ 1690 SrcList *pTabList = pNC->pSrcList; 1691 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1692 if( j<pTabList->nSrc ){ 1693 pTab = pTabList->a[j].pTab; 1694 pS = pTabList->a[j].pSelect; 1695 }else{ 1696 pNC = pNC->pNext; 1697 } 1698 } 1699 1700 if( pTab==0 ){ 1701 /* At one time, code such as "SELECT new.x" within a trigger would 1702 ** cause this condition to run. Since then, we have restructured how 1703 ** trigger code is generated and so this condition is no longer 1704 ** possible. However, it can still be true for statements like 1705 ** the following: 1706 ** 1707 ** CREATE TABLE t1(col INTEGER); 1708 ** SELECT (SELECT t1.col) FROM FROM t1; 1709 ** 1710 ** when columnType() is called on the expression "t1.col" in the 1711 ** sub-select. In this case, set the column type to NULL, even 1712 ** though it should really be "INTEGER". 1713 ** 1714 ** This is not a problem, as the column type of "t1.col" is never 1715 ** used. When columnType() is called on the expression 1716 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1717 ** branch below. */ 1718 break; 1719 } 1720 1721 assert( pTab && pExpr->y.pTab==pTab ); 1722 if( pS ){ 1723 /* The "table" is actually a sub-select or a view in the FROM clause 1724 ** of the SELECT statement. Return the declaration type and origin 1725 ** data for the result-set column of the sub-select. 1726 */ 1727 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1728 /* If iCol is less than zero, then the expression requests the 1729 ** rowid of the sub-select or view. This expression is legal (see 1730 ** test case misc2.2.2) - it always evaluates to NULL. 1731 */ 1732 NameContext sNC; 1733 Expr *p = pS->pEList->a[iCol].pExpr; 1734 sNC.pSrcList = pS->pSrc; 1735 sNC.pNext = pNC; 1736 sNC.pParse = pNC->pParse; 1737 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1738 } 1739 }else{ 1740 /* A real table or a CTE table */ 1741 assert( !pS ); 1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1743 if( iCol<0 ) iCol = pTab->iPKey; 1744 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1745 if( iCol<0 ){ 1746 zType = "INTEGER"; 1747 zOrigCol = "rowid"; 1748 }else{ 1749 zOrigCol = pTab->aCol[iCol].zName; 1750 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1751 } 1752 zOrigTab = pTab->zName; 1753 if( pNC->pParse && pTab->pSchema ){ 1754 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1755 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1756 } 1757 #else 1758 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1759 if( iCol<0 ){ 1760 zType = "INTEGER"; 1761 }else{ 1762 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1763 } 1764 #endif 1765 } 1766 break; 1767 } 1768 #ifndef SQLITE_OMIT_SUBQUERY 1769 case TK_SELECT: { 1770 /* The expression is a sub-select. Return the declaration type and 1771 ** origin info for the single column in the result set of the SELECT 1772 ** statement. 1773 */ 1774 NameContext sNC; 1775 Select *pS = pExpr->x.pSelect; 1776 Expr *p = pS->pEList->a[0].pExpr; 1777 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1778 sNC.pSrcList = pS->pSrc; 1779 sNC.pNext = pNC; 1780 sNC.pParse = pNC->pParse; 1781 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1782 break; 1783 } 1784 #endif 1785 } 1786 1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1788 if( pzOrigDb ){ 1789 assert( pzOrigTab && pzOrigCol ); 1790 *pzOrigDb = zOrigDb; 1791 *pzOrigTab = zOrigTab; 1792 *pzOrigCol = zOrigCol; 1793 } 1794 #endif 1795 return zType; 1796 } 1797 1798 /* 1799 ** Generate code that will tell the VDBE the declaration types of columns 1800 ** in the result set. 1801 */ 1802 static void generateColumnTypes( 1803 Parse *pParse, /* Parser context */ 1804 SrcList *pTabList, /* List of tables */ 1805 ExprList *pEList /* Expressions defining the result set */ 1806 ){ 1807 #ifndef SQLITE_OMIT_DECLTYPE 1808 Vdbe *v = pParse->pVdbe; 1809 int i; 1810 NameContext sNC; 1811 sNC.pSrcList = pTabList; 1812 sNC.pParse = pParse; 1813 sNC.pNext = 0; 1814 for(i=0; i<pEList->nExpr; i++){ 1815 Expr *p = pEList->a[i].pExpr; 1816 const char *zType; 1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1818 const char *zOrigDb = 0; 1819 const char *zOrigTab = 0; 1820 const char *zOrigCol = 0; 1821 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1822 1823 /* The vdbe must make its own copy of the column-type and other 1824 ** column specific strings, in case the schema is reset before this 1825 ** virtual machine is deleted. 1826 */ 1827 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1828 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1829 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1830 #else 1831 zType = columnType(&sNC, p, 0, 0, 0); 1832 #endif 1833 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1834 } 1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1836 } 1837 1838 1839 /* 1840 ** Compute the column names for a SELECT statement. 1841 ** 1842 ** The only guarantee that SQLite makes about column names is that if the 1843 ** column has an AS clause assigning it a name, that will be the name used. 1844 ** That is the only documented guarantee. However, countless applications 1845 ** developed over the years have made baseless assumptions about column names 1846 ** and will break if those assumptions changes. Hence, use extreme caution 1847 ** when modifying this routine to avoid breaking legacy. 1848 ** 1849 ** See Also: sqlite3ColumnsFromExprList() 1850 ** 1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1852 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1853 ** applications should operate this way. Nevertheless, we need to support the 1854 ** other modes for legacy: 1855 ** 1856 ** short=OFF, full=OFF: Column name is the text of the expression has it 1857 ** originally appears in the SELECT statement. In 1858 ** other words, the zSpan of the result expression. 1859 ** 1860 ** short=ON, full=OFF: (This is the default setting). If the result 1861 ** refers directly to a table column, then the 1862 ** result column name is just the table column 1863 ** name: COLUMN. Otherwise use zSpan. 1864 ** 1865 ** full=ON, short=ANY: If the result refers directly to a table column, 1866 ** then the result column name with the table name 1867 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1868 */ 1869 static void generateColumnNames( 1870 Parse *pParse, /* Parser context */ 1871 Select *pSelect /* Generate column names for this SELECT statement */ 1872 ){ 1873 Vdbe *v = pParse->pVdbe; 1874 int i; 1875 Table *pTab; 1876 SrcList *pTabList; 1877 ExprList *pEList; 1878 sqlite3 *db = pParse->db; 1879 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1880 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1881 1882 #ifndef SQLITE_OMIT_EXPLAIN 1883 /* If this is an EXPLAIN, skip this step */ 1884 if( pParse->explain ){ 1885 return; 1886 } 1887 #endif 1888 1889 if( pParse->colNamesSet ) return; 1890 /* Column names are determined by the left-most term of a compound select */ 1891 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1892 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1893 pTabList = pSelect->pSrc; 1894 pEList = pSelect->pEList; 1895 assert( v!=0 ); 1896 assert( pTabList!=0 ); 1897 pParse->colNamesSet = 1; 1898 fullName = (db->flags & SQLITE_FullColNames)!=0; 1899 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1900 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1901 for(i=0; i<pEList->nExpr; i++){ 1902 Expr *p = pEList->a[i].pExpr; 1903 1904 assert( p!=0 ); 1905 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1906 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1907 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1908 /* An AS clause always takes first priority */ 1909 char *zName = pEList->a[i].zEName; 1910 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1911 }else if( srcName && p->op==TK_COLUMN ){ 1912 char *zCol; 1913 int iCol = p->iColumn; 1914 pTab = p->y.pTab; 1915 assert( pTab!=0 ); 1916 if( iCol<0 ) iCol = pTab->iPKey; 1917 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1918 if( iCol<0 ){ 1919 zCol = "rowid"; 1920 }else{ 1921 zCol = pTab->aCol[iCol].zName; 1922 } 1923 if( fullName ){ 1924 char *zName = 0; 1925 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1926 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1927 }else{ 1928 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1929 } 1930 }else{ 1931 const char *z = pEList->a[i].zEName; 1932 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1933 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1934 } 1935 } 1936 generateColumnTypes(pParse, pTabList, pEList); 1937 } 1938 1939 /* 1940 ** Given an expression list (which is really the list of expressions 1941 ** that form the result set of a SELECT statement) compute appropriate 1942 ** column names for a table that would hold the expression list. 1943 ** 1944 ** All column names will be unique. 1945 ** 1946 ** Only the column names are computed. Column.zType, Column.zColl, 1947 ** and other fields of Column are zeroed. 1948 ** 1949 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1951 ** 1952 ** The only guarantee that SQLite makes about column names is that if the 1953 ** column has an AS clause assigning it a name, that will be the name used. 1954 ** That is the only documented guarantee. However, countless applications 1955 ** developed over the years have made baseless assumptions about column names 1956 ** and will break if those assumptions changes. Hence, use extreme caution 1957 ** when modifying this routine to avoid breaking legacy. 1958 ** 1959 ** See Also: generateColumnNames() 1960 */ 1961 int sqlite3ColumnsFromExprList( 1962 Parse *pParse, /* Parsing context */ 1963 ExprList *pEList, /* Expr list from which to derive column names */ 1964 i16 *pnCol, /* Write the number of columns here */ 1965 Column **paCol /* Write the new column list here */ 1966 ){ 1967 sqlite3 *db = pParse->db; /* Database connection */ 1968 int i, j; /* Loop counters */ 1969 u32 cnt; /* Index added to make the name unique */ 1970 Column *aCol, *pCol; /* For looping over result columns */ 1971 int nCol; /* Number of columns in the result set */ 1972 char *zName; /* Column name */ 1973 int nName; /* Size of name in zName[] */ 1974 Hash ht; /* Hash table of column names */ 1975 1976 sqlite3HashInit(&ht); 1977 if( pEList ){ 1978 nCol = pEList->nExpr; 1979 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1980 testcase( aCol==0 ); 1981 if( nCol>32767 ) nCol = 32767; 1982 }else{ 1983 nCol = 0; 1984 aCol = 0; 1985 } 1986 assert( nCol==(i16)nCol ); 1987 *pnCol = nCol; 1988 *paCol = aCol; 1989 1990 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1991 /* Get an appropriate name for the column 1992 */ 1993 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1994 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1995 }else{ 1996 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1997 while( pColExpr->op==TK_DOT ){ 1998 pColExpr = pColExpr->pRight; 1999 assert( pColExpr!=0 ); 2000 } 2001 if( pColExpr->op==TK_COLUMN ){ 2002 /* For columns use the column name name */ 2003 int iCol = pColExpr->iColumn; 2004 Table *pTab = pColExpr->y.pTab; 2005 assert( pTab!=0 ); 2006 if( iCol<0 ) iCol = pTab->iPKey; 2007 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2008 }else if( pColExpr->op==TK_ID ){ 2009 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2010 zName = pColExpr->u.zToken; 2011 }else{ 2012 /* Use the original text of the column expression as its name */ 2013 zName = pEList->a[i].zEName; 2014 } 2015 } 2016 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2017 zName = sqlite3DbStrDup(db, zName); 2018 }else{ 2019 zName = sqlite3MPrintf(db,"column%d",i+1); 2020 } 2021 2022 /* Make sure the column name is unique. If the name is not unique, 2023 ** append an integer to the name so that it becomes unique. 2024 */ 2025 cnt = 0; 2026 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2027 nName = sqlite3Strlen30(zName); 2028 if( nName>0 ){ 2029 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2030 if( zName[j]==':' ) nName = j; 2031 } 2032 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2033 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2034 } 2035 pCol->zName = zName; 2036 pCol->hName = sqlite3StrIHash(zName); 2037 sqlite3ColumnPropertiesFromName(0, pCol); 2038 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2039 sqlite3OomFault(db); 2040 } 2041 } 2042 sqlite3HashClear(&ht); 2043 if( db->mallocFailed ){ 2044 for(j=0; j<i; j++){ 2045 sqlite3DbFree(db, aCol[j].zName); 2046 } 2047 sqlite3DbFree(db, aCol); 2048 *paCol = 0; 2049 *pnCol = 0; 2050 return SQLITE_NOMEM_BKPT; 2051 } 2052 return SQLITE_OK; 2053 } 2054 2055 /* 2056 ** Add type and collation information to a column list based on 2057 ** a SELECT statement. 2058 ** 2059 ** The column list presumably came from selectColumnNamesFromExprList(). 2060 ** The column list has only names, not types or collations. This 2061 ** routine goes through and adds the types and collations. 2062 ** 2063 ** This routine requires that all identifiers in the SELECT 2064 ** statement be resolved. 2065 */ 2066 void sqlite3SelectAddColumnTypeAndCollation( 2067 Parse *pParse, /* Parsing contexts */ 2068 Table *pTab, /* Add column type information to this table */ 2069 Select *pSelect, /* SELECT used to determine types and collations */ 2070 char aff /* Default affinity for columns */ 2071 ){ 2072 sqlite3 *db = pParse->db; 2073 NameContext sNC; 2074 Column *pCol; 2075 CollSeq *pColl; 2076 int i; 2077 Expr *p; 2078 struct ExprList_item *a; 2079 2080 assert( pSelect!=0 ); 2081 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2082 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2083 if( db->mallocFailed ) return; 2084 memset(&sNC, 0, sizeof(sNC)); 2085 sNC.pSrcList = pSelect->pSrc; 2086 a = pSelect->pEList->a; 2087 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2088 const char *zType; 2089 int n, m; 2090 p = a[i].pExpr; 2091 zType = columnType(&sNC, p, 0, 0, 0); 2092 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2093 pCol->affinity = sqlite3ExprAffinity(p); 2094 if( zType ){ 2095 m = sqlite3Strlen30(zType); 2096 n = sqlite3Strlen30(pCol->zName); 2097 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2098 if( pCol->zName ){ 2099 memcpy(&pCol->zName[n+1], zType, m+1); 2100 pCol->colFlags |= COLFLAG_HASTYPE; 2101 } 2102 } 2103 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2104 pColl = sqlite3ExprCollSeq(pParse, p); 2105 if( pColl && pCol->zColl==0 ){ 2106 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2107 } 2108 } 2109 pTab->szTabRow = 1; /* Any non-zero value works */ 2110 } 2111 2112 /* 2113 ** Given a SELECT statement, generate a Table structure that describes 2114 ** the result set of that SELECT. 2115 */ 2116 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2117 Table *pTab; 2118 sqlite3 *db = pParse->db; 2119 u64 savedFlags; 2120 2121 savedFlags = db->flags; 2122 db->flags &= ~(u64)SQLITE_FullColNames; 2123 db->flags |= SQLITE_ShortColNames; 2124 sqlite3SelectPrep(pParse, pSelect, 0); 2125 db->flags = savedFlags; 2126 if( pParse->nErr ) return 0; 2127 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2128 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2129 if( pTab==0 ){ 2130 return 0; 2131 } 2132 pTab->nTabRef = 1; 2133 pTab->zName = 0; 2134 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2135 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2136 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2137 pTab->iPKey = -1; 2138 if( db->mallocFailed ){ 2139 sqlite3DeleteTable(db, pTab); 2140 return 0; 2141 } 2142 return pTab; 2143 } 2144 2145 /* 2146 ** Get a VDBE for the given parser context. Create a new one if necessary. 2147 ** If an error occurs, return NULL and leave a message in pParse. 2148 */ 2149 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2150 if( pParse->pVdbe ){ 2151 return pParse->pVdbe; 2152 } 2153 if( pParse->pToplevel==0 2154 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2155 ){ 2156 pParse->okConstFactor = 1; 2157 } 2158 return sqlite3VdbeCreate(pParse); 2159 } 2160 2161 2162 /* 2163 ** Compute the iLimit and iOffset fields of the SELECT based on the 2164 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2165 ** that appear in the original SQL statement after the LIMIT and OFFSET 2166 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2167 ** are the integer memory register numbers for counters used to compute 2168 ** the limit and offset. If there is no limit and/or offset, then 2169 ** iLimit and iOffset are negative. 2170 ** 2171 ** This routine changes the values of iLimit and iOffset only if 2172 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2173 ** and iOffset should have been preset to appropriate default values (zero) 2174 ** prior to calling this routine. 2175 ** 2176 ** The iOffset register (if it exists) is initialized to the value 2177 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2178 ** iOffset+1 is initialized to LIMIT+OFFSET. 2179 ** 2180 ** Only if pLimit->pLeft!=0 do the limit registers get 2181 ** redefined. The UNION ALL operator uses this property to force 2182 ** the reuse of the same limit and offset registers across multiple 2183 ** SELECT statements. 2184 */ 2185 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2186 Vdbe *v = 0; 2187 int iLimit = 0; 2188 int iOffset; 2189 int n; 2190 Expr *pLimit = p->pLimit; 2191 2192 if( p->iLimit ) return; 2193 2194 /* 2195 ** "LIMIT -1" always shows all rows. There is some 2196 ** controversy about what the correct behavior should be. 2197 ** The current implementation interprets "LIMIT 0" to mean 2198 ** no rows. 2199 */ 2200 if( pLimit ){ 2201 assert( pLimit->op==TK_LIMIT ); 2202 assert( pLimit->pLeft!=0 ); 2203 p->iLimit = iLimit = ++pParse->nMem; 2204 v = sqlite3GetVdbe(pParse); 2205 assert( v!=0 ); 2206 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2207 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2208 VdbeComment((v, "LIMIT counter")); 2209 if( n==0 ){ 2210 sqlite3VdbeGoto(v, iBreak); 2211 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2212 p->nSelectRow = sqlite3LogEst((u64)n); 2213 p->selFlags |= SF_FixedLimit; 2214 } 2215 }else{ 2216 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2217 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2218 VdbeComment((v, "LIMIT counter")); 2219 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2220 } 2221 if( pLimit->pRight ){ 2222 p->iOffset = iOffset = ++pParse->nMem; 2223 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2224 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2225 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2226 VdbeComment((v, "OFFSET counter")); 2227 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2228 VdbeComment((v, "LIMIT+OFFSET")); 2229 } 2230 } 2231 } 2232 2233 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2234 /* 2235 ** Return the appropriate collating sequence for the iCol-th column of 2236 ** the result set for the compound-select statement "p". Return NULL if 2237 ** the column has no default collating sequence. 2238 ** 2239 ** The collating sequence for the compound select is taken from the 2240 ** left-most term of the select that has a collating sequence. 2241 */ 2242 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2243 CollSeq *pRet; 2244 if( p->pPrior ){ 2245 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2246 }else{ 2247 pRet = 0; 2248 } 2249 assert( iCol>=0 ); 2250 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2251 ** have been thrown during name resolution and we would not have gotten 2252 ** this far */ 2253 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2254 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2255 } 2256 return pRet; 2257 } 2258 2259 /* 2260 ** The select statement passed as the second parameter is a compound SELECT 2261 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2262 ** structure suitable for implementing the ORDER BY. 2263 ** 2264 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2265 ** function is responsible for ensuring that this structure is eventually 2266 ** freed. 2267 */ 2268 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2269 ExprList *pOrderBy = p->pOrderBy; 2270 int nOrderBy = p->pOrderBy->nExpr; 2271 sqlite3 *db = pParse->db; 2272 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2273 if( pRet ){ 2274 int i; 2275 for(i=0; i<nOrderBy; i++){ 2276 struct ExprList_item *pItem = &pOrderBy->a[i]; 2277 Expr *pTerm = pItem->pExpr; 2278 CollSeq *pColl; 2279 2280 if( pTerm->flags & EP_Collate ){ 2281 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2282 }else{ 2283 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2284 if( pColl==0 ) pColl = db->pDfltColl; 2285 pOrderBy->a[i].pExpr = 2286 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2287 } 2288 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2289 pRet->aColl[i] = pColl; 2290 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2291 } 2292 } 2293 2294 return pRet; 2295 } 2296 2297 #ifndef SQLITE_OMIT_CTE 2298 /* 2299 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2300 ** query of the form: 2301 ** 2302 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2303 ** \___________/ \_______________/ 2304 ** p->pPrior p 2305 ** 2306 ** 2307 ** There is exactly one reference to the recursive-table in the FROM clause 2308 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2309 ** 2310 ** The setup-query runs once to generate an initial set of rows that go 2311 ** into a Queue table. Rows are extracted from the Queue table one by 2312 ** one. Each row extracted from Queue is output to pDest. Then the single 2313 ** extracted row (now in the iCurrent table) becomes the content of the 2314 ** recursive-table for a recursive-query run. The output of the recursive-query 2315 ** is added back into the Queue table. Then another row is extracted from Queue 2316 ** and the iteration continues until the Queue table is empty. 2317 ** 2318 ** If the compound query operator is UNION then no duplicate rows are ever 2319 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2320 ** that have ever been inserted into Queue and causes duplicates to be 2321 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2322 ** 2323 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2324 ** ORDER BY order and the first entry is extracted for each cycle. Without 2325 ** an ORDER BY, the Queue table is just a FIFO. 2326 ** 2327 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2328 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2329 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2330 ** with a positive value, then the first OFFSET outputs are discarded rather 2331 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2332 ** rows have been skipped. 2333 */ 2334 static void generateWithRecursiveQuery( 2335 Parse *pParse, /* Parsing context */ 2336 Select *p, /* The recursive SELECT to be coded */ 2337 SelectDest *pDest /* What to do with query results */ 2338 ){ 2339 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2340 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2341 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2342 Select *pSetup = p->pPrior; /* The setup query */ 2343 int addrTop; /* Top of the loop */ 2344 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2345 int iCurrent = 0; /* The Current table */ 2346 int regCurrent; /* Register holding Current table */ 2347 int iQueue; /* The Queue table */ 2348 int iDistinct = 0; /* To ensure unique results if UNION */ 2349 int eDest = SRT_Fifo; /* How to write to Queue */ 2350 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2351 int i; /* Loop counter */ 2352 int rc; /* Result code */ 2353 ExprList *pOrderBy; /* The ORDER BY clause */ 2354 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2355 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2356 2357 #ifndef SQLITE_OMIT_WINDOWFUNC 2358 if( p->pWin ){ 2359 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2360 return; 2361 } 2362 #endif 2363 2364 /* Obtain authorization to do a recursive query */ 2365 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2366 2367 /* Process the LIMIT and OFFSET clauses, if they exist */ 2368 addrBreak = sqlite3VdbeMakeLabel(pParse); 2369 p->nSelectRow = 320; /* 4 billion rows */ 2370 computeLimitRegisters(pParse, p, addrBreak); 2371 pLimit = p->pLimit; 2372 regLimit = p->iLimit; 2373 regOffset = p->iOffset; 2374 p->pLimit = 0; 2375 p->iLimit = p->iOffset = 0; 2376 pOrderBy = p->pOrderBy; 2377 2378 /* Locate the cursor number of the Current table */ 2379 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2380 if( pSrc->a[i].fg.isRecursive ){ 2381 iCurrent = pSrc->a[i].iCursor; 2382 break; 2383 } 2384 } 2385 2386 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2387 ** the Distinct table must be exactly one greater than Queue in order 2388 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2389 iQueue = pParse->nTab++; 2390 if( p->op==TK_UNION ){ 2391 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2392 iDistinct = pParse->nTab++; 2393 }else{ 2394 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2395 } 2396 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2397 2398 /* Allocate cursors for Current, Queue, and Distinct. */ 2399 regCurrent = ++pParse->nMem; 2400 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2401 if( pOrderBy ){ 2402 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2403 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2404 (char*)pKeyInfo, P4_KEYINFO); 2405 destQueue.pOrderBy = pOrderBy; 2406 }else{ 2407 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2408 } 2409 VdbeComment((v, "Queue table")); 2410 if( iDistinct ){ 2411 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2412 p->selFlags |= SF_UsesEphemeral; 2413 } 2414 2415 /* Detach the ORDER BY clause from the compound SELECT */ 2416 p->pOrderBy = 0; 2417 2418 /* Store the results of the setup-query in Queue. */ 2419 pSetup->pNext = 0; 2420 ExplainQueryPlan((pParse, 1, "SETUP")); 2421 rc = sqlite3Select(pParse, pSetup, &destQueue); 2422 pSetup->pNext = p; 2423 if( rc ) goto end_of_recursive_query; 2424 2425 /* Find the next row in the Queue and output that row */ 2426 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2427 2428 /* Transfer the next row in Queue over to Current */ 2429 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2430 if( pOrderBy ){ 2431 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2432 }else{ 2433 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2434 } 2435 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2436 2437 /* Output the single row in Current */ 2438 addrCont = sqlite3VdbeMakeLabel(pParse); 2439 codeOffset(v, regOffset, addrCont); 2440 selectInnerLoop(pParse, p, iCurrent, 2441 0, 0, pDest, addrCont, addrBreak); 2442 if( regLimit ){ 2443 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2444 VdbeCoverage(v); 2445 } 2446 sqlite3VdbeResolveLabel(v, addrCont); 2447 2448 /* Execute the recursive SELECT taking the single row in Current as 2449 ** the value for the recursive-table. Store the results in the Queue. 2450 */ 2451 if( p->selFlags & SF_Aggregate ){ 2452 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2453 }else{ 2454 p->pPrior = 0; 2455 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2456 sqlite3Select(pParse, p, &destQueue); 2457 assert( p->pPrior==0 ); 2458 p->pPrior = pSetup; 2459 } 2460 2461 /* Keep running the loop until the Queue is empty */ 2462 sqlite3VdbeGoto(v, addrTop); 2463 sqlite3VdbeResolveLabel(v, addrBreak); 2464 2465 end_of_recursive_query: 2466 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2467 p->pOrderBy = pOrderBy; 2468 p->pLimit = pLimit; 2469 return; 2470 } 2471 #endif /* SQLITE_OMIT_CTE */ 2472 2473 /* Forward references */ 2474 static int multiSelectOrderBy( 2475 Parse *pParse, /* Parsing context */ 2476 Select *p, /* The right-most of SELECTs to be coded */ 2477 SelectDest *pDest /* What to do with query results */ 2478 ); 2479 2480 /* 2481 ** Handle the special case of a compound-select that originates from a 2482 ** VALUES clause. By handling this as a special case, we avoid deep 2483 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2484 ** on a VALUES clause. 2485 ** 2486 ** Because the Select object originates from a VALUES clause: 2487 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2488 ** (2) All terms are UNION ALL 2489 ** (3) There is no ORDER BY clause 2490 ** 2491 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2492 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2493 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2494 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2495 */ 2496 static int multiSelectValues( 2497 Parse *pParse, /* Parsing context */ 2498 Select *p, /* The right-most of SELECTs to be coded */ 2499 SelectDest *pDest /* What to do with query results */ 2500 ){ 2501 int nRow = 1; 2502 int rc = 0; 2503 int bShowAll = p->pLimit==0; 2504 assert( p->selFlags & SF_MultiValue ); 2505 do{ 2506 assert( p->selFlags & SF_Values ); 2507 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2508 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2509 #ifndef SQLITE_OMIT_WINDOWFUNC 2510 if( p->pWin ) return -1; 2511 #endif 2512 if( p->pPrior==0 ) break; 2513 assert( p->pPrior->pNext==p ); 2514 p = p->pPrior; 2515 nRow += bShowAll; 2516 }while(1); 2517 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2518 nRow==1 ? "" : "S")); 2519 while( p ){ 2520 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2521 if( !bShowAll ) break; 2522 p->nSelectRow = nRow; 2523 p = p->pNext; 2524 } 2525 return rc; 2526 } 2527 2528 /* 2529 ** This routine is called to process a compound query form from 2530 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2531 ** INTERSECT 2532 ** 2533 ** "p" points to the right-most of the two queries. the query on the 2534 ** left is p->pPrior. The left query could also be a compound query 2535 ** in which case this routine will be called recursively. 2536 ** 2537 ** The results of the total query are to be written into a destination 2538 ** of type eDest with parameter iParm. 2539 ** 2540 ** Example 1: Consider a three-way compound SQL statement. 2541 ** 2542 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2543 ** 2544 ** This statement is parsed up as follows: 2545 ** 2546 ** SELECT c FROM t3 2547 ** | 2548 ** `-----> SELECT b FROM t2 2549 ** | 2550 ** `------> SELECT a FROM t1 2551 ** 2552 ** The arrows in the diagram above represent the Select.pPrior pointer. 2553 ** So if this routine is called with p equal to the t3 query, then 2554 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2555 ** 2556 ** Notice that because of the way SQLite parses compound SELECTs, the 2557 ** individual selects always group from left to right. 2558 */ 2559 static int multiSelect( 2560 Parse *pParse, /* Parsing context */ 2561 Select *p, /* The right-most of SELECTs to be coded */ 2562 SelectDest *pDest /* What to do with query results */ 2563 ){ 2564 int rc = SQLITE_OK; /* Success code from a subroutine */ 2565 Select *pPrior; /* Another SELECT immediately to our left */ 2566 Vdbe *v; /* Generate code to this VDBE */ 2567 SelectDest dest; /* Alternative data destination */ 2568 Select *pDelete = 0; /* Chain of simple selects to delete */ 2569 sqlite3 *db; /* Database connection */ 2570 2571 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2572 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2573 */ 2574 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2575 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2576 assert( p->selFlags & SF_Compound ); 2577 db = pParse->db; 2578 pPrior = p->pPrior; 2579 dest = *pDest; 2580 if( pPrior->pOrderBy || pPrior->pLimit ){ 2581 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2582 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2583 rc = 1; 2584 goto multi_select_end; 2585 } 2586 2587 v = sqlite3GetVdbe(pParse); 2588 assert( v!=0 ); /* The VDBE already created by calling function */ 2589 2590 /* Create the destination temporary table if necessary 2591 */ 2592 if( dest.eDest==SRT_EphemTab ){ 2593 assert( p->pEList ); 2594 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2595 dest.eDest = SRT_Table; 2596 } 2597 2598 /* Special handling for a compound-select that originates as a VALUES clause. 2599 */ 2600 if( p->selFlags & SF_MultiValue ){ 2601 rc = multiSelectValues(pParse, p, &dest); 2602 if( rc>=0 ) goto multi_select_end; 2603 rc = SQLITE_OK; 2604 } 2605 2606 /* Make sure all SELECTs in the statement have the same number of elements 2607 ** in their result sets. 2608 */ 2609 assert( p->pEList && pPrior->pEList ); 2610 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2611 2612 #ifndef SQLITE_OMIT_CTE 2613 if( p->selFlags & SF_Recursive ){ 2614 generateWithRecursiveQuery(pParse, p, &dest); 2615 }else 2616 #endif 2617 2618 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2619 */ 2620 if( p->pOrderBy ){ 2621 return multiSelectOrderBy(pParse, p, pDest); 2622 }else{ 2623 2624 #ifndef SQLITE_OMIT_EXPLAIN 2625 if( pPrior->pPrior==0 ){ 2626 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2627 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2628 } 2629 #endif 2630 2631 /* Generate code for the left and right SELECT statements. 2632 */ 2633 switch( p->op ){ 2634 case TK_ALL: { 2635 int addr = 0; 2636 int nLimit; 2637 assert( !pPrior->pLimit ); 2638 pPrior->iLimit = p->iLimit; 2639 pPrior->iOffset = p->iOffset; 2640 pPrior->pLimit = p->pLimit; 2641 rc = sqlite3Select(pParse, pPrior, &dest); 2642 p->pLimit = 0; 2643 if( rc ){ 2644 goto multi_select_end; 2645 } 2646 p->pPrior = 0; 2647 p->iLimit = pPrior->iLimit; 2648 p->iOffset = pPrior->iOffset; 2649 if( p->iLimit ){ 2650 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2651 VdbeComment((v, "Jump ahead if LIMIT reached")); 2652 if( p->iOffset ){ 2653 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2654 p->iLimit, p->iOffset+1, p->iOffset); 2655 } 2656 } 2657 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2658 rc = sqlite3Select(pParse, p, &dest); 2659 testcase( rc!=SQLITE_OK ); 2660 pDelete = p->pPrior; 2661 p->pPrior = pPrior; 2662 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2663 if( pPrior->pLimit 2664 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2665 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2666 ){ 2667 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2668 } 2669 if( addr ){ 2670 sqlite3VdbeJumpHere(v, addr); 2671 } 2672 break; 2673 } 2674 case TK_EXCEPT: 2675 case TK_UNION: { 2676 int unionTab; /* Cursor number of the temp table holding result */ 2677 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2678 int priorOp; /* The SRT_ operation to apply to prior selects */ 2679 Expr *pLimit; /* Saved values of p->nLimit */ 2680 int addr; 2681 SelectDest uniondest; 2682 2683 testcase( p->op==TK_EXCEPT ); 2684 testcase( p->op==TK_UNION ); 2685 priorOp = SRT_Union; 2686 if( dest.eDest==priorOp ){ 2687 /* We can reuse a temporary table generated by a SELECT to our 2688 ** right. 2689 */ 2690 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2691 unionTab = dest.iSDParm; 2692 }else{ 2693 /* We will need to create our own temporary table to hold the 2694 ** intermediate results. 2695 */ 2696 unionTab = pParse->nTab++; 2697 assert( p->pOrderBy==0 ); 2698 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2699 assert( p->addrOpenEphm[0] == -1 ); 2700 p->addrOpenEphm[0] = addr; 2701 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2702 assert( p->pEList ); 2703 } 2704 2705 /* Code the SELECT statements to our left 2706 */ 2707 assert( !pPrior->pOrderBy ); 2708 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2709 rc = sqlite3Select(pParse, pPrior, &uniondest); 2710 if( rc ){ 2711 goto multi_select_end; 2712 } 2713 2714 /* Code the current SELECT statement 2715 */ 2716 if( p->op==TK_EXCEPT ){ 2717 op = SRT_Except; 2718 }else{ 2719 assert( p->op==TK_UNION ); 2720 op = SRT_Union; 2721 } 2722 p->pPrior = 0; 2723 pLimit = p->pLimit; 2724 p->pLimit = 0; 2725 uniondest.eDest = op; 2726 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2727 selectOpName(p->op))); 2728 rc = sqlite3Select(pParse, p, &uniondest); 2729 testcase( rc!=SQLITE_OK ); 2730 assert( p->pOrderBy==0 ); 2731 pDelete = p->pPrior; 2732 p->pPrior = pPrior; 2733 p->pOrderBy = 0; 2734 if( p->op==TK_UNION ){ 2735 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2736 } 2737 sqlite3ExprDelete(db, p->pLimit); 2738 p->pLimit = pLimit; 2739 p->iLimit = 0; 2740 p->iOffset = 0; 2741 2742 /* Convert the data in the temporary table into whatever form 2743 ** it is that we currently need. 2744 */ 2745 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2746 assert( p->pEList || db->mallocFailed ); 2747 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2748 int iCont, iBreak, iStart; 2749 iBreak = sqlite3VdbeMakeLabel(pParse); 2750 iCont = sqlite3VdbeMakeLabel(pParse); 2751 computeLimitRegisters(pParse, p, iBreak); 2752 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2753 iStart = sqlite3VdbeCurrentAddr(v); 2754 selectInnerLoop(pParse, p, unionTab, 2755 0, 0, &dest, iCont, iBreak); 2756 sqlite3VdbeResolveLabel(v, iCont); 2757 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2758 sqlite3VdbeResolveLabel(v, iBreak); 2759 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2760 } 2761 break; 2762 } 2763 default: assert( p->op==TK_INTERSECT ); { 2764 int tab1, tab2; 2765 int iCont, iBreak, iStart; 2766 Expr *pLimit; 2767 int addr; 2768 SelectDest intersectdest; 2769 int r1; 2770 2771 /* INTERSECT is different from the others since it requires 2772 ** two temporary tables. Hence it has its own case. Begin 2773 ** by allocating the tables we will need. 2774 */ 2775 tab1 = pParse->nTab++; 2776 tab2 = pParse->nTab++; 2777 assert( p->pOrderBy==0 ); 2778 2779 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2780 assert( p->addrOpenEphm[0] == -1 ); 2781 p->addrOpenEphm[0] = addr; 2782 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2783 assert( p->pEList ); 2784 2785 /* Code the SELECTs to our left into temporary table "tab1". 2786 */ 2787 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2788 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2789 if( rc ){ 2790 goto multi_select_end; 2791 } 2792 2793 /* Code the current SELECT into temporary table "tab2" 2794 */ 2795 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2796 assert( p->addrOpenEphm[1] == -1 ); 2797 p->addrOpenEphm[1] = addr; 2798 p->pPrior = 0; 2799 pLimit = p->pLimit; 2800 p->pLimit = 0; 2801 intersectdest.iSDParm = tab2; 2802 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2803 selectOpName(p->op))); 2804 rc = sqlite3Select(pParse, p, &intersectdest); 2805 testcase( rc!=SQLITE_OK ); 2806 pDelete = p->pPrior; 2807 p->pPrior = pPrior; 2808 if( p->nSelectRow>pPrior->nSelectRow ){ 2809 p->nSelectRow = pPrior->nSelectRow; 2810 } 2811 sqlite3ExprDelete(db, p->pLimit); 2812 p->pLimit = pLimit; 2813 2814 /* Generate code to take the intersection of the two temporary 2815 ** tables. 2816 */ 2817 if( rc ) break; 2818 assert( p->pEList ); 2819 iBreak = sqlite3VdbeMakeLabel(pParse); 2820 iCont = sqlite3VdbeMakeLabel(pParse); 2821 computeLimitRegisters(pParse, p, iBreak); 2822 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2823 r1 = sqlite3GetTempReg(pParse); 2824 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2825 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2826 VdbeCoverage(v); 2827 sqlite3ReleaseTempReg(pParse, r1); 2828 selectInnerLoop(pParse, p, tab1, 2829 0, 0, &dest, iCont, iBreak); 2830 sqlite3VdbeResolveLabel(v, iCont); 2831 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2832 sqlite3VdbeResolveLabel(v, iBreak); 2833 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2834 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2835 break; 2836 } 2837 } 2838 2839 #ifndef SQLITE_OMIT_EXPLAIN 2840 if( p->pNext==0 ){ 2841 ExplainQueryPlanPop(pParse); 2842 } 2843 #endif 2844 } 2845 if( pParse->nErr ) goto multi_select_end; 2846 2847 /* Compute collating sequences used by 2848 ** temporary tables needed to implement the compound select. 2849 ** Attach the KeyInfo structure to all temporary tables. 2850 ** 2851 ** This section is run by the right-most SELECT statement only. 2852 ** SELECT statements to the left always skip this part. The right-most 2853 ** SELECT might also skip this part if it has no ORDER BY clause and 2854 ** no temp tables are required. 2855 */ 2856 if( p->selFlags & SF_UsesEphemeral ){ 2857 int i; /* Loop counter */ 2858 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2859 Select *pLoop; /* For looping through SELECT statements */ 2860 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2861 int nCol; /* Number of columns in result set */ 2862 2863 assert( p->pNext==0 ); 2864 nCol = p->pEList->nExpr; 2865 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2866 if( !pKeyInfo ){ 2867 rc = SQLITE_NOMEM_BKPT; 2868 goto multi_select_end; 2869 } 2870 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2871 *apColl = multiSelectCollSeq(pParse, p, i); 2872 if( 0==*apColl ){ 2873 *apColl = db->pDfltColl; 2874 } 2875 } 2876 2877 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2878 for(i=0; i<2; i++){ 2879 int addr = pLoop->addrOpenEphm[i]; 2880 if( addr<0 ){ 2881 /* If [0] is unused then [1] is also unused. So we can 2882 ** always safely abort as soon as the first unused slot is found */ 2883 assert( pLoop->addrOpenEphm[1]<0 ); 2884 break; 2885 } 2886 sqlite3VdbeChangeP2(v, addr, nCol); 2887 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2888 P4_KEYINFO); 2889 pLoop->addrOpenEphm[i] = -1; 2890 } 2891 } 2892 sqlite3KeyInfoUnref(pKeyInfo); 2893 } 2894 2895 multi_select_end: 2896 pDest->iSdst = dest.iSdst; 2897 pDest->nSdst = dest.nSdst; 2898 sqlite3SelectDelete(db, pDelete); 2899 return rc; 2900 } 2901 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2902 2903 /* 2904 ** Error message for when two or more terms of a compound select have different 2905 ** size result sets. 2906 */ 2907 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2908 if( p->selFlags & SF_Values ){ 2909 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2910 }else{ 2911 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2912 " do not have the same number of result columns", selectOpName(p->op)); 2913 } 2914 } 2915 2916 /* 2917 ** Code an output subroutine for a coroutine implementation of a 2918 ** SELECT statment. 2919 ** 2920 ** The data to be output is contained in pIn->iSdst. There are 2921 ** pIn->nSdst columns to be output. pDest is where the output should 2922 ** be sent. 2923 ** 2924 ** regReturn is the number of the register holding the subroutine 2925 ** return address. 2926 ** 2927 ** If regPrev>0 then it is the first register in a vector that 2928 ** records the previous output. mem[regPrev] is a flag that is false 2929 ** if there has been no previous output. If regPrev>0 then code is 2930 ** generated to suppress duplicates. pKeyInfo is used for comparing 2931 ** keys. 2932 ** 2933 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2934 ** iBreak. 2935 */ 2936 static int generateOutputSubroutine( 2937 Parse *pParse, /* Parsing context */ 2938 Select *p, /* The SELECT statement */ 2939 SelectDest *pIn, /* Coroutine supplying data */ 2940 SelectDest *pDest, /* Where to send the data */ 2941 int regReturn, /* The return address register */ 2942 int regPrev, /* Previous result register. No uniqueness if 0 */ 2943 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2944 int iBreak /* Jump here if we hit the LIMIT */ 2945 ){ 2946 Vdbe *v = pParse->pVdbe; 2947 int iContinue; 2948 int addr; 2949 2950 addr = sqlite3VdbeCurrentAddr(v); 2951 iContinue = sqlite3VdbeMakeLabel(pParse); 2952 2953 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2954 */ 2955 if( regPrev ){ 2956 int addr1, addr2; 2957 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2958 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2959 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2960 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2961 sqlite3VdbeJumpHere(v, addr1); 2962 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2963 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2964 } 2965 if( pParse->db->mallocFailed ) return 0; 2966 2967 /* Suppress the first OFFSET entries if there is an OFFSET clause 2968 */ 2969 codeOffset(v, p->iOffset, iContinue); 2970 2971 assert( pDest->eDest!=SRT_Exists ); 2972 assert( pDest->eDest!=SRT_Table ); 2973 switch( pDest->eDest ){ 2974 /* Store the result as data using a unique key. 2975 */ 2976 case SRT_EphemTab: { 2977 int r1 = sqlite3GetTempReg(pParse); 2978 int r2 = sqlite3GetTempReg(pParse); 2979 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2980 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2981 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2982 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2983 sqlite3ReleaseTempReg(pParse, r2); 2984 sqlite3ReleaseTempReg(pParse, r1); 2985 break; 2986 } 2987 2988 #ifndef SQLITE_OMIT_SUBQUERY 2989 /* If we are creating a set for an "expr IN (SELECT ...)". 2990 */ 2991 case SRT_Set: { 2992 int r1; 2993 testcase( pIn->nSdst>1 ); 2994 r1 = sqlite3GetTempReg(pParse); 2995 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2996 r1, pDest->zAffSdst, pIn->nSdst); 2997 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2998 pIn->iSdst, pIn->nSdst); 2999 sqlite3ReleaseTempReg(pParse, r1); 3000 break; 3001 } 3002 3003 /* If this is a scalar select that is part of an expression, then 3004 ** store the results in the appropriate memory cell and break out 3005 ** of the scan loop. Note that the select might return multiple columns 3006 ** if it is the RHS of a row-value IN operator. 3007 */ 3008 case SRT_Mem: { 3009 if( pParse->nErr==0 ){ 3010 testcase( pIn->nSdst>1 ); 3011 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3012 } 3013 /* The LIMIT clause will jump out of the loop for us */ 3014 break; 3015 } 3016 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3017 3018 /* The results are stored in a sequence of registers 3019 ** starting at pDest->iSdst. Then the co-routine yields. 3020 */ 3021 case SRT_Coroutine: { 3022 if( pDest->iSdst==0 ){ 3023 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3024 pDest->nSdst = pIn->nSdst; 3025 } 3026 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3027 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3028 break; 3029 } 3030 3031 /* If none of the above, then the result destination must be 3032 ** SRT_Output. This routine is never called with any other 3033 ** destination other than the ones handled above or SRT_Output. 3034 ** 3035 ** For SRT_Output, results are stored in a sequence of registers. 3036 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3037 ** return the next row of result. 3038 */ 3039 default: { 3040 assert( pDest->eDest==SRT_Output ); 3041 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3042 break; 3043 } 3044 } 3045 3046 /* Jump to the end of the loop if the LIMIT is reached. 3047 */ 3048 if( p->iLimit ){ 3049 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3050 } 3051 3052 /* Generate the subroutine return 3053 */ 3054 sqlite3VdbeResolveLabel(v, iContinue); 3055 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3056 3057 return addr; 3058 } 3059 3060 /* 3061 ** Alternative compound select code generator for cases when there 3062 ** is an ORDER BY clause. 3063 ** 3064 ** We assume a query of the following form: 3065 ** 3066 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3067 ** 3068 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3069 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3070 ** co-routines. Then run the co-routines in parallel and merge the results 3071 ** into the output. In addition to the two coroutines (called selectA and 3072 ** selectB) there are 7 subroutines: 3073 ** 3074 ** outA: Move the output of the selectA coroutine into the output 3075 ** of the compound query. 3076 ** 3077 ** outB: Move the output of the selectB coroutine into the output 3078 ** of the compound query. (Only generated for UNION and 3079 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3080 ** appears only in B.) 3081 ** 3082 ** AltB: Called when there is data from both coroutines and A<B. 3083 ** 3084 ** AeqB: Called when there is data from both coroutines and A==B. 3085 ** 3086 ** AgtB: Called when there is data from both coroutines and A>B. 3087 ** 3088 ** EofA: Called when data is exhausted from selectA. 3089 ** 3090 ** EofB: Called when data is exhausted from selectB. 3091 ** 3092 ** The implementation of the latter five subroutines depend on which 3093 ** <operator> is used: 3094 ** 3095 ** 3096 ** UNION ALL UNION EXCEPT INTERSECT 3097 ** ------------- ----------------- -------------- ----------------- 3098 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3099 ** 3100 ** AeqB: outA, nextA nextA nextA outA, nextA 3101 ** 3102 ** AgtB: outB, nextB outB, nextB nextB nextB 3103 ** 3104 ** EofA: outB, nextB outB, nextB halt halt 3105 ** 3106 ** EofB: outA, nextA outA, nextA outA, nextA halt 3107 ** 3108 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3109 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3110 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3111 ** following nextX causes a jump to the end of the select processing. 3112 ** 3113 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3114 ** within the output subroutine. The regPrev register set holds the previously 3115 ** output value. A comparison is made against this value and the output 3116 ** is skipped if the next results would be the same as the previous. 3117 ** 3118 ** The implementation plan is to implement the two coroutines and seven 3119 ** subroutines first, then put the control logic at the bottom. Like this: 3120 ** 3121 ** goto Init 3122 ** coA: coroutine for left query (A) 3123 ** coB: coroutine for right query (B) 3124 ** outA: output one row of A 3125 ** outB: output one row of B (UNION and UNION ALL only) 3126 ** EofA: ... 3127 ** EofB: ... 3128 ** AltB: ... 3129 ** AeqB: ... 3130 ** AgtB: ... 3131 ** Init: initialize coroutine registers 3132 ** yield coA 3133 ** if eof(A) goto EofA 3134 ** yield coB 3135 ** if eof(B) goto EofB 3136 ** Cmpr: Compare A, B 3137 ** Jump AltB, AeqB, AgtB 3138 ** End: ... 3139 ** 3140 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3141 ** actually called using Gosub and they do not Return. EofA and EofB loop 3142 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3143 ** and AgtB jump to either L2 or to one of EofA or EofB. 3144 */ 3145 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3146 static int multiSelectOrderBy( 3147 Parse *pParse, /* Parsing context */ 3148 Select *p, /* The right-most of SELECTs to be coded */ 3149 SelectDest *pDest /* What to do with query results */ 3150 ){ 3151 int i, j; /* Loop counters */ 3152 Select *pPrior; /* Another SELECT immediately to our left */ 3153 Vdbe *v; /* Generate code to this VDBE */ 3154 SelectDest destA; /* Destination for coroutine A */ 3155 SelectDest destB; /* Destination for coroutine B */ 3156 int regAddrA; /* Address register for select-A coroutine */ 3157 int regAddrB; /* Address register for select-B coroutine */ 3158 int addrSelectA; /* Address of the select-A coroutine */ 3159 int addrSelectB; /* Address of the select-B coroutine */ 3160 int regOutA; /* Address register for the output-A subroutine */ 3161 int regOutB; /* Address register for the output-B subroutine */ 3162 int addrOutA; /* Address of the output-A subroutine */ 3163 int addrOutB = 0; /* Address of the output-B subroutine */ 3164 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3165 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3166 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3167 int addrAltB; /* Address of the A<B subroutine */ 3168 int addrAeqB; /* Address of the A==B subroutine */ 3169 int addrAgtB; /* Address of the A>B subroutine */ 3170 int regLimitA; /* Limit register for select-A */ 3171 int regLimitB; /* Limit register for select-A */ 3172 int regPrev; /* A range of registers to hold previous output */ 3173 int savedLimit; /* Saved value of p->iLimit */ 3174 int savedOffset; /* Saved value of p->iOffset */ 3175 int labelCmpr; /* Label for the start of the merge algorithm */ 3176 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3177 int addr1; /* Jump instructions that get retargetted */ 3178 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3179 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3180 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3181 sqlite3 *db; /* Database connection */ 3182 ExprList *pOrderBy; /* The ORDER BY clause */ 3183 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3184 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3185 3186 assert( p->pOrderBy!=0 ); 3187 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3188 db = pParse->db; 3189 v = pParse->pVdbe; 3190 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3191 labelEnd = sqlite3VdbeMakeLabel(pParse); 3192 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3193 3194 3195 /* Patch up the ORDER BY clause 3196 */ 3197 op = p->op; 3198 pPrior = p->pPrior; 3199 assert( pPrior->pOrderBy==0 ); 3200 pOrderBy = p->pOrderBy; 3201 assert( pOrderBy ); 3202 nOrderBy = pOrderBy->nExpr; 3203 3204 /* For operators other than UNION ALL we have to make sure that 3205 ** the ORDER BY clause covers every term of the result set. Add 3206 ** terms to the ORDER BY clause as necessary. 3207 */ 3208 if( op!=TK_ALL ){ 3209 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3210 struct ExprList_item *pItem; 3211 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3212 assert( pItem->u.x.iOrderByCol>0 ); 3213 if( pItem->u.x.iOrderByCol==i ) break; 3214 } 3215 if( j==nOrderBy ){ 3216 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3217 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3218 pNew->flags |= EP_IntValue; 3219 pNew->u.iValue = i; 3220 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3221 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3222 } 3223 } 3224 } 3225 3226 /* Compute the comparison permutation and keyinfo that is used with 3227 ** the permutation used to determine if the next 3228 ** row of results comes from selectA or selectB. Also add explicit 3229 ** collations to the ORDER BY clause terms so that when the subqueries 3230 ** to the right and the left are evaluated, they use the correct 3231 ** collation. 3232 */ 3233 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3234 if( aPermute ){ 3235 struct ExprList_item *pItem; 3236 aPermute[0] = nOrderBy; 3237 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3238 assert( pItem->u.x.iOrderByCol>0 ); 3239 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3240 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3241 } 3242 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3243 }else{ 3244 pKeyMerge = 0; 3245 } 3246 3247 /* Reattach the ORDER BY clause to the query. 3248 */ 3249 p->pOrderBy = pOrderBy; 3250 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3251 3252 /* Allocate a range of temporary registers and the KeyInfo needed 3253 ** for the logic that removes duplicate result rows when the 3254 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3255 */ 3256 if( op==TK_ALL ){ 3257 regPrev = 0; 3258 }else{ 3259 int nExpr = p->pEList->nExpr; 3260 assert( nOrderBy>=nExpr || db->mallocFailed ); 3261 regPrev = pParse->nMem+1; 3262 pParse->nMem += nExpr+1; 3263 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3264 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3265 if( pKeyDup ){ 3266 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3267 for(i=0; i<nExpr; i++){ 3268 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3269 pKeyDup->aSortFlags[i] = 0; 3270 } 3271 } 3272 } 3273 3274 /* Separate the left and the right query from one another 3275 */ 3276 p->pPrior = 0; 3277 pPrior->pNext = 0; 3278 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3279 if( pPrior->pPrior==0 ){ 3280 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3281 } 3282 3283 /* Compute the limit registers */ 3284 computeLimitRegisters(pParse, p, labelEnd); 3285 if( p->iLimit && op==TK_ALL ){ 3286 regLimitA = ++pParse->nMem; 3287 regLimitB = ++pParse->nMem; 3288 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3289 regLimitA); 3290 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3291 }else{ 3292 regLimitA = regLimitB = 0; 3293 } 3294 sqlite3ExprDelete(db, p->pLimit); 3295 p->pLimit = 0; 3296 3297 regAddrA = ++pParse->nMem; 3298 regAddrB = ++pParse->nMem; 3299 regOutA = ++pParse->nMem; 3300 regOutB = ++pParse->nMem; 3301 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3302 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3303 3304 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3305 3306 /* Generate a coroutine to evaluate the SELECT statement to the 3307 ** left of the compound operator - the "A" select. 3308 */ 3309 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3310 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3311 VdbeComment((v, "left SELECT")); 3312 pPrior->iLimit = regLimitA; 3313 ExplainQueryPlan((pParse, 1, "LEFT")); 3314 sqlite3Select(pParse, pPrior, &destA); 3315 sqlite3VdbeEndCoroutine(v, regAddrA); 3316 sqlite3VdbeJumpHere(v, addr1); 3317 3318 /* Generate a coroutine to evaluate the SELECT statement on 3319 ** the right - the "B" select 3320 */ 3321 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3322 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3323 VdbeComment((v, "right SELECT")); 3324 savedLimit = p->iLimit; 3325 savedOffset = p->iOffset; 3326 p->iLimit = regLimitB; 3327 p->iOffset = 0; 3328 ExplainQueryPlan((pParse, 1, "RIGHT")); 3329 sqlite3Select(pParse, p, &destB); 3330 p->iLimit = savedLimit; 3331 p->iOffset = savedOffset; 3332 sqlite3VdbeEndCoroutine(v, regAddrB); 3333 3334 /* Generate a subroutine that outputs the current row of the A 3335 ** select as the next output row of the compound select. 3336 */ 3337 VdbeNoopComment((v, "Output routine for A")); 3338 addrOutA = generateOutputSubroutine(pParse, 3339 p, &destA, pDest, regOutA, 3340 regPrev, pKeyDup, labelEnd); 3341 3342 /* Generate a subroutine that outputs the current row of the B 3343 ** select as the next output row of the compound select. 3344 */ 3345 if( op==TK_ALL || op==TK_UNION ){ 3346 VdbeNoopComment((v, "Output routine for B")); 3347 addrOutB = generateOutputSubroutine(pParse, 3348 p, &destB, pDest, regOutB, 3349 regPrev, pKeyDup, labelEnd); 3350 } 3351 sqlite3KeyInfoUnref(pKeyDup); 3352 3353 /* Generate a subroutine to run when the results from select A 3354 ** are exhausted and only data in select B remains. 3355 */ 3356 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3357 addrEofA_noB = addrEofA = labelEnd; 3358 }else{ 3359 VdbeNoopComment((v, "eof-A subroutine")); 3360 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3361 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3362 VdbeCoverage(v); 3363 sqlite3VdbeGoto(v, addrEofA); 3364 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3365 } 3366 3367 /* Generate a subroutine to run when the results from select B 3368 ** are exhausted and only data in select A remains. 3369 */ 3370 if( op==TK_INTERSECT ){ 3371 addrEofB = addrEofA; 3372 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3373 }else{ 3374 VdbeNoopComment((v, "eof-B subroutine")); 3375 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3377 sqlite3VdbeGoto(v, addrEofB); 3378 } 3379 3380 /* Generate code to handle the case of A<B 3381 */ 3382 VdbeNoopComment((v, "A-lt-B subroutine")); 3383 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3384 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3385 sqlite3VdbeGoto(v, labelCmpr); 3386 3387 /* Generate code to handle the case of A==B 3388 */ 3389 if( op==TK_ALL ){ 3390 addrAeqB = addrAltB; 3391 }else if( op==TK_INTERSECT ){ 3392 addrAeqB = addrAltB; 3393 addrAltB++; 3394 }else{ 3395 VdbeNoopComment((v, "A-eq-B subroutine")); 3396 addrAeqB = 3397 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3398 sqlite3VdbeGoto(v, labelCmpr); 3399 } 3400 3401 /* Generate code to handle the case of A>B 3402 */ 3403 VdbeNoopComment((v, "A-gt-B subroutine")); 3404 addrAgtB = sqlite3VdbeCurrentAddr(v); 3405 if( op==TK_ALL || op==TK_UNION ){ 3406 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3407 } 3408 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3409 sqlite3VdbeGoto(v, labelCmpr); 3410 3411 /* This code runs once to initialize everything. 3412 */ 3413 sqlite3VdbeJumpHere(v, addr1); 3414 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3415 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3416 3417 /* Implement the main merge loop 3418 */ 3419 sqlite3VdbeResolveLabel(v, labelCmpr); 3420 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3421 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3422 (char*)pKeyMerge, P4_KEYINFO); 3423 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3424 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3425 3426 /* Jump to the this point in order to terminate the query. 3427 */ 3428 sqlite3VdbeResolveLabel(v, labelEnd); 3429 3430 /* Reassembly the compound query so that it will be freed correctly 3431 ** by the calling function */ 3432 if( p->pPrior ){ 3433 sqlite3SelectDelete(db, p->pPrior); 3434 } 3435 p->pPrior = pPrior; 3436 pPrior->pNext = p; 3437 3438 /*** TBD: Insert subroutine calls to close cursors on incomplete 3439 **** subqueries ****/ 3440 ExplainQueryPlanPop(pParse); 3441 return pParse->nErr!=0; 3442 } 3443 #endif 3444 3445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3446 3447 /* An instance of the SubstContext object describes an substitution edit 3448 ** to be performed on a parse tree. 3449 ** 3450 ** All references to columns in table iTable are to be replaced by corresponding 3451 ** expressions in pEList. 3452 */ 3453 typedef struct SubstContext { 3454 Parse *pParse; /* The parsing context */ 3455 int iTable; /* Replace references to this table */ 3456 int iNewTable; /* New table number */ 3457 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3458 ExprList *pEList; /* Replacement expressions */ 3459 } SubstContext; 3460 3461 /* Forward Declarations */ 3462 static void substExprList(SubstContext*, ExprList*); 3463 static void substSelect(SubstContext*, Select*, int); 3464 3465 /* 3466 ** Scan through the expression pExpr. Replace every reference to 3467 ** a column in table number iTable with a copy of the iColumn-th 3468 ** entry in pEList. (But leave references to the ROWID column 3469 ** unchanged.) 3470 ** 3471 ** This routine is part of the flattening procedure. A subquery 3472 ** whose result set is defined by pEList appears as entry in the 3473 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3474 ** FORM clause entry is iTable. This routine makes the necessary 3475 ** changes to pExpr so that it refers directly to the source table 3476 ** of the subquery rather the result set of the subquery. 3477 */ 3478 static Expr *substExpr( 3479 SubstContext *pSubst, /* Description of the substitution */ 3480 Expr *pExpr /* Expr in which substitution occurs */ 3481 ){ 3482 if( pExpr==0 ) return 0; 3483 if( ExprHasProperty(pExpr, EP_FromJoin) 3484 && pExpr->iRightJoinTable==pSubst->iTable 3485 ){ 3486 pExpr->iRightJoinTable = pSubst->iNewTable; 3487 } 3488 if( pExpr->op==TK_COLUMN 3489 && pExpr->iTable==pSubst->iTable 3490 && !ExprHasProperty(pExpr, EP_FixedCol) 3491 ){ 3492 if( pExpr->iColumn<0 ){ 3493 pExpr->op = TK_NULL; 3494 }else{ 3495 Expr *pNew; 3496 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3497 Expr ifNullRow; 3498 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3499 assert( pExpr->pRight==0 ); 3500 if( sqlite3ExprIsVector(pCopy) ){ 3501 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3502 }else{ 3503 sqlite3 *db = pSubst->pParse->db; 3504 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3505 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3506 ifNullRow.op = TK_IF_NULL_ROW; 3507 ifNullRow.pLeft = pCopy; 3508 ifNullRow.iTable = pSubst->iNewTable; 3509 ifNullRow.flags = EP_Skip; 3510 pCopy = &ifNullRow; 3511 } 3512 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3513 pNew = sqlite3ExprDup(db, pCopy, 0); 3514 if( pNew && pSubst->isLeftJoin ){ 3515 ExprSetProperty(pNew, EP_CanBeNull); 3516 } 3517 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3518 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3519 ExprSetProperty(pNew, EP_FromJoin); 3520 } 3521 sqlite3ExprDelete(db, pExpr); 3522 pExpr = pNew; 3523 3524 /* Ensure that the expression now has an implicit collation sequence, 3525 ** just as it did when it was a column of a view or sub-query. */ 3526 if( pExpr ){ 3527 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3528 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3529 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3530 (pColl ? pColl->zName : "BINARY") 3531 ); 3532 } 3533 ExprClearProperty(pExpr, EP_Collate); 3534 } 3535 } 3536 } 3537 }else{ 3538 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3539 pExpr->iTable = pSubst->iNewTable; 3540 } 3541 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3542 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3543 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3544 substSelect(pSubst, pExpr->x.pSelect, 1); 3545 }else{ 3546 substExprList(pSubst, pExpr->x.pList); 3547 } 3548 #ifndef SQLITE_OMIT_WINDOWFUNC 3549 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3550 Window *pWin = pExpr->y.pWin; 3551 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3552 substExprList(pSubst, pWin->pPartition); 3553 substExprList(pSubst, pWin->pOrderBy); 3554 } 3555 #endif 3556 } 3557 return pExpr; 3558 } 3559 static void substExprList( 3560 SubstContext *pSubst, /* Description of the substitution */ 3561 ExprList *pList /* List to scan and in which to make substitutes */ 3562 ){ 3563 int i; 3564 if( pList==0 ) return; 3565 for(i=0; i<pList->nExpr; i++){ 3566 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3567 } 3568 } 3569 static void substSelect( 3570 SubstContext *pSubst, /* Description of the substitution */ 3571 Select *p, /* SELECT statement in which to make substitutions */ 3572 int doPrior /* Do substitutes on p->pPrior too */ 3573 ){ 3574 SrcList *pSrc; 3575 struct SrcList_item *pItem; 3576 int i; 3577 if( !p ) return; 3578 do{ 3579 substExprList(pSubst, p->pEList); 3580 substExprList(pSubst, p->pGroupBy); 3581 substExprList(pSubst, p->pOrderBy); 3582 p->pHaving = substExpr(pSubst, p->pHaving); 3583 p->pWhere = substExpr(pSubst, p->pWhere); 3584 pSrc = p->pSrc; 3585 assert( pSrc!=0 ); 3586 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3587 substSelect(pSubst, pItem->pSelect, 1); 3588 if( pItem->fg.isTabFunc ){ 3589 substExprList(pSubst, pItem->u1.pFuncArg); 3590 } 3591 } 3592 }while( doPrior && (p = p->pPrior)!=0 ); 3593 } 3594 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3595 3596 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3597 /* 3598 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3599 ** clause of that SELECT. 3600 ** 3601 ** This routine scans the entire SELECT statement and recomputes the 3602 ** pSrcItem->colUsed mask. 3603 */ 3604 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3605 struct SrcList_item *pItem; 3606 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3607 pItem = pWalker->u.pSrcItem; 3608 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3609 if( pExpr->iColumn<0 ) return WRC_Continue; 3610 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3611 return WRC_Continue; 3612 } 3613 static void recomputeColumnsUsed( 3614 Select *pSelect, /* The complete SELECT statement */ 3615 struct SrcList_item *pSrcItem /* Which FROM clause item to recompute */ 3616 ){ 3617 Walker w; 3618 if( NEVER(pSrcItem->pTab==0) ) return; 3619 memset(&w, 0, sizeof(w)); 3620 w.xExprCallback = recomputeColumnsUsedExpr; 3621 w.xSelectCallback = sqlite3SelectWalkNoop; 3622 w.u.pSrcItem = pSrcItem; 3623 pSrcItem->colUsed = 0; 3624 sqlite3WalkSelect(&w, pSelect); 3625 } 3626 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3627 3628 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3629 /* 3630 ** This routine attempts to flatten subqueries as a performance optimization. 3631 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3632 ** 3633 ** To understand the concept of flattening, consider the following 3634 ** query: 3635 ** 3636 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3637 ** 3638 ** The default way of implementing this query is to execute the 3639 ** subquery first and store the results in a temporary table, then 3640 ** run the outer query on that temporary table. This requires two 3641 ** passes over the data. Furthermore, because the temporary table 3642 ** has no indices, the WHERE clause on the outer query cannot be 3643 ** optimized. 3644 ** 3645 ** This routine attempts to rewrite queries such as the above into 3646 ** a single flat select, like this: 3647 ** 3648 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3649 ** 3650 ** The code generated for this simplification gives the same result 3651 ** but only has to scan the data once. And because indices might 3652 ** exist on the table t1, a complete scan of the data might be 3653 ** avoided. 3654 ** 3655 ** Flattening is subject to the following constraints: 3656 ** 3657 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3658 ** The subquery and the outer query cannot both be aggregates. 3659 ** 3660 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3661 ** (2) If the subquery is an aggregate then 3662 ** (2a) the outer query must not be a join and 3663 ** (2b) the outer query must not use subqueries 3664 ** other than the one FROM-clause subquery that is a candidate 3665 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3666 ** from 2015-02-09.) 3667 ** 3668 ** (3) If the subquery is the right operand of a LEFT JOIN then 3669 ** (3a) the subquery may not be a join and 3670 ** (3b) the FROM clause of the subquery may not contain a virtual 3671 ** table and 3672 ** (3c) the outer query may not be an aggregate. 3673 ** (3d) the outer query may not be DISTINCT. 3674 ** 3675 ** (4) The subquery can not be DISTINCT. 3676 ** 3677 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3678 ** sub-queries that were excluded from this optimization. Restriction 3679 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3680 ** 3681 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3682 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3683 ** 3684 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3685 ** A FROM clause, consider adding a FROM clause with the special 3686 ** table sqlite_once that consists of a single row containing a 3687 ** single NULL. 3688 ** 3689 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3690 ** 3691 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3692 ** 3693 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3694 ** accidently carried the comment forward until 2014-09-15. Original 3695 ** constraint: "If the subquery is aggregate then the outer query 3696 ** may not use LIMIT." 3697 ** 3698 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3699 ** 3700 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3701 ** a separate restriction deriving from ticket #350. 3702 ** 3703 ** (13) The subquery and outer query may not both use LIMIT. 3704 ** 3705 ** (14) The subquery may not use OFFSET. 3706 ** 3707 ** (15) If the outer query is part of a compound select, then the 3708 ** subquery may not use LIMIT. 3709 ** (See ticket #2339 and ticket [02a8e81d44]). 3710 ** 3711 ** (16) If the outer query is aggregate, then the subquery may not 3712 ** use ORDER BY. (Ticket #2942) This used to not matter 3713 ** until we introduced the group_concat() function. 3714 ** 3715 ** (17) If the subquery is a compound select, then 3716 ** (17a) all compound operators must be a UNION ALL, and 3717 ** (17b) no terms within the subquery compound may be aggregate 3718 ** or DISTINCT, and 3719 ** (17c) every term within the subquery compound must have a FROM clause 3720 ** (17d) the outer query may not be 3721 ** (17d1) aggregate, or 3722 ** (17d2) DISTINCT, or 3723 ** (17d3) a join. 3724 ** (17e) the subquery may not contain window functions 3725 ** 3726 ** The parent and sub-query may contain WHERE clauses. Subject to 3727 ** rules (11), (13) and (14), they may also contain ORDER BY, 3728 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3729 ** operator other than UNION ALL because all the other compound 3730 ** operators have an implied DISTINCT which is disallowed by 3731 ** restriction (4). 3732 ** 3733 ** Also, each component of the sub-query must return the same number 3734 ** of result columns. This is actually a requirement for any compound 3735 ** SELECT statement, but all the code here does is make sure that no 3736 ** such (illegal) sub-query is flattened. The caller will detect the 3737 ** syntax error and return a detailed message. 3738 ** 3739 ** (18) If the sub-query is a compound select, then all terms of the 3740 ** ORDER BY clause of the parent must be simple references to 3741 ** columns of the sub-query. 3742 ** 3743 ** (19) If the subquery uses LIMIT then the outer query may not 3744 ** have a WHERE clause. 3745 ** 3746 ** (20) If the sub-query is a compound select, then it must not use 3747 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3748 ** somewhat by saying that the terms of the ORDER BY clause must 3749 ** appear as unmodified result columns in the outer query. But we 3750 ** have other optimizations in mind to deal with that case. 3751 ** 3752 ** (21) If the subquery uses LIMIT then the outer query may not be 3753 ** DISTINCT. (See ticket [752e1646fc]). 3754 ** 3755 ** (22) The subquery may not be a recursive CTE. 3756 ** 3757 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3758 ** a recursive CTE, then the sub-query may not be a compound query. 3759 ** This restriction is because transforming the 3760 ** parent to a compound query confuses the code that handles 3761 ** recursive queries in multiSelect(). 3762 ** 3763 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3764 ** The subquery may not be an aggregate that uses the built-in min() or 3765 ** or max() functions. (Without this restriction, a query like: 3766 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3767 ** return the value X for which Y was maximal.) 3768 ** 3769 ** (25) If either the subquery or the parent query contains a window 3770 ** function in the select list or ORDER BY clause, flattening 3771 ** is not attempted. 3772 ** 3773 ** 3774 ** In this routine, the "p" parameter is a pointer to the outer query. 3775 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3776 ** uses aggregates. 3777 ** 3778 ** If flattening is not attempted, this routine is a no-op and returns 0. 3779 ** If flattening is attempted this routine returns 1. 3780 ** 3781 ** All of the expression analysis must occur on both the outer query and 3782 ** the subquery before this routine runs. 3783 */ 3784 static int flattenSubquery( 3785 Parse *pParse, /* Parsing context */ 3786 Select *p, /* The parent or outer SELECT statement */ 3787 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3788 int isAgg /* True if outer SELECT uses aggregate functions */ 3789 ){ 3790 const char *zSavedAuthContext = pParse->zAuthContext; 3791 Select *pParent; /* Current UNION ALL term of the other query */ 3792 Select *pSub; /* The inner query or "subquery" */ 3793 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3794 SrcList *pSrc; /* The FROM clause of the outer query */ 3795 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3796 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3797 int iNewParent = -1;/* Replacement table for iParent */ 3798 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3799 int i; /* Loop counter */ 3800 Expr *pWhere; /* The WHERE clause */ 3801 struct SrcList_item *pSubitem; /* The subquery */ 3802 sqlite3 *db = pParse->db; 3803 Walker w; /* Walker to persist agginfo data */ 3804 3805 /* Check to see if flattening is permitted. Return 0 if not. 3806 */ 3807 assert( p!=0 ); 3808 assert( p->pPrior==0 ); 3809 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3810 pSrc = p->pSrc; 3811 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3812 pSubitem = &pSrc->a[iFrom]; 3813 iParent = pSubitem->iCursor; 3814 pSub = pSubitem->pSelect; 3815 assert( pSub!=0 ); 3816 3817 #ifndef SQLITE_OMIT_WINDOWFUNC 3818 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3819 #endif 3820 3821 pSubSrc = pSub->pSrc; 3822 assert( pSubSrc ); 3823 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3824 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3825 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3826 ** became arbitrary expressions, we were forced to add restrictions (13) 3827 ** and (14). */ 3828 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3829 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3830 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3831 return 0; /* Restriction (15) */ 3832 } 3833 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3834 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3835 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3836 return 0; /* Restrictions (8)(9) */ 3837 } 3838 if( p->pOrderBy && pSub->pOrderBy ){ 3839 return 0; /* Restriction (11) */ 3840 } 3841 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3842 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3843 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3844 return 0; /* Restriction (21) */ 3845 } 3846 if( pSub->selFlags & (SF_Recursive) ){ 3847 return 0; /* Restrictions (22) */ 3848 } 3849 3850 /* 3851 ** If the subquery is the right operand of a LEFT JOIN, then the 3852 ** subquery may not be a join itself (3a). Example of why this is not 3853 ** allowed: 3854 ** 3855 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3856 ** 3857 ** If we flatten the above, we would get 3858 ** 3859 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3860 ** 3861 ** which is not at all the same thing. 3862 ** 3863 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3864 ** query cannot be an aggregate. (3c) This is an artifact of the way 3865 ** aggregates are processed - there is no mechanism to determine if 3866 ** the LEFT JOIN table should be all-NULL. 3867 ** 3868 ** See also tickets #306, #350, and #3300. 3869 */ 3870 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3871 isLeftJoin = 1; 3872 if( pSubSrc->nSrc>1 /* (3a) */ 3873 || isAgg /* (3b) */ 3874 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3875 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3876 ){ 3877 return 0; 3878 } 3879 } 3880 #ifdef SQLITE_EXTRA_IFNULLROW 3881 else if( iFrom>0 && !isAgg ){ 3882 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3883 ** every reference to any result column from subquery in a join, even 3884 ** though they are not necessary. This will stress-test the OP_IfNullRow 3885 ** opcode. */ 3886 isLeftJoin = -1; 3887 } 3888 #endif 3889 3890 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3891 ** use only the UNION ALL operator. And none of the simple select queries 3892 ** that make up the compound SELECT are allowed to be aggregate or distinct 3893 ** queries. 3894 */ 3895 if( pSub->pPrior ){ 3896 if( pSub->pOrderBy ){ 3897 return 0; /* Restriction (20) */ 3898 } 3899 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3900 return 0; /* (17d1), (17d2), or (17d3) */ 3901 } 3902 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3903 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3904 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3905 assert( pSub->pSrc!=0 ); 3906 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3907 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3908 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3909 || pSub1->pSrc->nSrc<1 /* (17c) */ 3910 #ifndef SQLITE_OMIT_WINDOWFUNC 3911 || pSub1->pWin /* (17e) */ 3912 #endif 3913 ){ 3914 return 0; 3915 } 3916 testcase( pSub1->pSrc->nSrc>1 ); 3917 } 3918 3919 /* Restriction (18). */ 3920 if( p->pOrderBy ){ 3921 int ii; 3922 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3923 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3924 } 3925 } 3926 } 3927 3928 /* Ex-restriction (23): 3929 ** The only way that the recursive part of a CTE can contain a compound 3930 ** subquery is for the subquery to be one term of a join. But if the 3931 ** subquery is a join, then the flattening has already been stopped by 3932 ** restriction (17d3) 3933 */ 3934 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3935 3936 /***** If we reach this point, flattening is permitted. *****/ 3937 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3938 pSub->selId, pSub, iFrom)); 3939 3940 /* Authorize the subquery */ 3941 pParse->zAuthContext = pSubitem->zName; 3942 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3943 testcase( i==SQLITE_DENY ); 3944 pParse->zAuthContext = zSavedAuthContext; 3945 3946 /* If the sub-query is a compound SELECT statement, then (by restrictions 3947 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3948 ** be of the form: 3949 ** 3950 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3951 ** 3952 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3953 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3954 ** OFFSET clauses and joins them to the left-hand-side of the original 3955 ** using UNION ALL operators. In this case N is the number of simple 3956 ** select statements in the compound sub-query. 3957 ** 3958 ** Example: 3959 ** 3960 ** SELECT a+1 FROM ( 3961 ** SELECT x FROM tab 3962 ** UNION ALL 3963 ** SELECT y FROM tab 3964 ** UNION ALL 3965 ** SELECT abs(z*2) FROM tab2 3966 ** ) WHERE a!=5 ORDER BY 1 3967 ** 3968 ** Transformed into: 3969 ** 3970 ** SELECT x+1 FROM tab WHERE x+1!=5 3971 ** UNION ALL 3972 ** SELECT y+1 FROM tab WHERE y+1!=5 3973 ** UNION ALL 3974 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3975 ** ORDER BY 1 3976 ** 3977 ** We call this the "compound-subquery flattening". 3978 */ 3979 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3980 Select *pNew; 3981 ExprList *pOrderBy = p->pOrderBy; 3982 Expr *pLimit = p->pLimit; 3983 Select *pPrior = p->pPrior; 3984 p->pOrderBy = 0; 3985 p->pSrc = 0; 3986 p->pPrior = 0; 3987 p->pLimit = 0; 3988 pNew = sqlite3SelectDup(db, p, 0); 3989 p->pLimit = pLimit; 3990 p->pOrderBy = pOrderBy; 3991 p->pSrc = pSrc; 3992 p->op = TK_ALL; 3993 if( pNew==0 ){ 3994 p->pPrior = pPrior; 3995 }else{ 3996 pNew->pPrior = pPrior; 3997 if( pPrior ) pPrior->pNext = pNew; 3998 pNew->pNext = p; 3999 p->pPrior = pNew; 4000 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4001 " creates %u as peer\n",pNew->selId)); 4002 } 4003 if( db->mallocFailed ) return 1; 4004 } 4005 4006 /* Begin flattening the iFrom-th entry of the FROM clause 4007 ** in the outer query. 4008 */ 4009 pSub = pSub1 = pSubitem->pSelect; 4010 4011 /* Delete the transient table structure associated with the 4012 ** subquery 4013 */ 4014 sqlite3DbFree(db, pSubitem->zDatabase); 4015 sqlite3DbFree(db, pSubitem->zName); 4016 sqlite3DbFree(db, pSubitem->zAlias); 4017 pSubitem->zDatabase = 0; 4018 pSubitem->zName = 0; 4019 pSubitem->zAlias = 0; 4020 pSubitem->pSelect = 0; 4021 4022 /* Defer deleting the Table object associated with the 4023 ** subquery until code generation is 4024 ** complete, since there may still exist Expr.pTab entries that 4025 ** refer to the subquery even after flattening. Ticket #3346. 4026 ** 4027 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4028 */ 4029 if( ALWAYS(pSubitem->pTab!=0) ){ 4030 Table *pTabToDel = pSubitem->pTab; 4031 if( pTabToDel->nTabRef==1 ){ 4032 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4033 pTabToDel->pNextZombie = pToplevel->pZombieTab; 4034 pToplevel->pZombieTab = pTabToDel; 4035 }else{ 4036 pTabToDel->nTabRef--; 4037 } 4038 pSubitem->pTab = 0; 4039 } 4040 4041 /* The following loop runs once for each term in a compound-subquery 4042 ** flattening (as described above). If we are doing a different kind 4043 ** of flattening - a flattening other than a compound-subquery flattening - 4044 ** then this loop only runs once. 4045 ** 4046 ** This loop moves all of the FROM elements of the subquery into the 4047 ** the FROM clause of the outer query. Before doing this, remember 4048 ** the cursor number for the original outer query FROM element in 4049 ** iParent. The iParent cursor will never be used. Subsequent code 4050 ** will scan expressions looking for iParent references and replace 4051 ** those references with expressions that resolve to the subquery FROM 4052 ** elements we are now copying in. 4053 */ 4054 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4055 int nSubSrc; 4056 u8 jointype = 0; 4057 assert( pSub!=0 ); 4058 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4059 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4060 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4061 4062 if( pSrc ){ 4063 assert( pParent==p ); /* First time through the loop */ 4064 jointype = pSubitem->fg.jointype; 4065 }else{ 4066 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4067 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4068 if( pSrc==0 ) break; 4069 pParent->pSrc = pSrc; 4070 } 4071 4072 /* The subquery uses a single slot of the FROM clause of the outer 4073 ** query. If the subquery has more than one element in its FROM clause, 4074 ** then expand the outer query to make space for it to hold all elements 4075 ** of the subquery. 4076 ** 4077 ** Example: 4078 ** 4079 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4080 ** 4081 ** The outer query has 3 slots in its FROM clause. One slot of the 4082 ** outer query (the middle slot) is used by the subquery. The next 4083 ** block of code will expand the outer query FROM clause to 4 slots. 4084 ** The middle slot is expanded to two slots in order to make space 4085 ** for the two elements in the FROM clause of the subquery. 4086 */ 4087 if( nSubSrc>1 ){ 4088 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4089 if( pSrc==0 ) break; 4090 pParent->pSrc = pSrc; 4091 } 4092 4093 /* Transfer the FROM clause terms from the subquery into the 4094 ** outer query. 4095 */ 4096 for(i=0; i<nSubSrc; i++){ 4097 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4098 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4099 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4100 iNewParent = pSubSrc->a[i].iCursor; 4101 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4102 } 4103 pSrc->a[iFrom].fg.jointype = jointype; 4104 4105 /* Now begin substituting subquery result set expressions for 4106 ** references to the iParent in the outer query. 4107 ** 4108 ** Example: 4109 ** 4110 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4111 ** \ \_____________ subquery __________/ / 4112 ** \_____________________ outer query ______________________________/ 4113 ** 4114 ** We look at every expression in the outer query and every place we see 4115 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4116 */ 4117 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4118 /* At this point, any non-zero iOrderByCol values indicate that the 4119 ** ORDER BY column expression is identical to the iOrderByCol'th 4120 ** expression returned by SELECT statement pSub. Since these values 4121 ** do not necessarily correspond to columns in SELECT statement pParent, 4122 ** zero them before transfering the ORDER BY clause. 4123 ** 4124 ** Not doing this may cause an error if a subsequent call to this 4125 ** function attempts to flatten a compound sub-query into pParent 4126 ** (the only way this can happen is if the compound sub-query is 4127 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4128 ExprList *pOrderBy = pSub->pOrderBy; 4129 for(i=0; i<pOrderBy->nExpr; i++){ 4130 pOrderBy->a[i].u.x.iOrderByCol = 0; 4131 } 4132 assert( pParent->pOrderBy==0 ); 4133 pParent->pOrderBy = pOrderBy; 4134 pSub->pOrderBy = 0; 4135 } 4136 pWhere = pSub->pWhere; 4137 pSub->pWhere = 0; 4138 if( isLeftJoin>0 ){ 4139 sqlite3SetJoinExpr(pWhere, iNewParent); 4140 } 4141 if( pWhere ){ 4142 if( pParent->pWhere ){ 4143 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4144 }else{ 4145 pParent->pWhere = pWhere; 4146 } 4147 } 4148 if( db->mallocFailed==0 ){ 4149 SubstContext x; 4150 x.pParse = pParse; 4151 x.iTable = iParent; 4152 x.iNewTable = iNewParent; 4153 x.isLeftJoin = isLeftJoin; 4154 x.pEList = pSub->pEList; 4155 substSelect(&x, pParent, 0); 4156 } 4157 4158 /* The flattened query is a compound if either the inner or the 4159 ** outer query is a compound. */ 4160 pParent->selFlags |= pSub->selFlags & SF_Compound; 4161 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4162 4163 /* 4164 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4165 ** 4166 ** One is tempted to try to add a and b to combine the limits. But this 4167 ** does not work if either limit is negative. 4168 */ 4169 if( pSub->pLimit ){ 4170 pParent->pLimit = pSub->pLimit; 4171 pSub->pLimit = 0; 4172 } 4173 4174 /* Recompute the SrcList_item.colUsed masks for the flattened 4175 ** tables. */ 4176 for(i=0; i<nSubSrc; i++){ 4177 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4178 } 4179 } 4180 4181 /* Finially, delete what is left of the subquery and return 4182 ** success. 4183 */ 4184 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4185 sqlite3WalkSelect(&w,pSub1); 4186 sqlite3SelectDelete(db, pSub1); 4187 4188 #if SELECTTRACE_ENABLED 4189 if( sqlite3_unsupported_selecttrace & 0x100 ){ 4190 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4191 sqlite3TreeViewSelect(0, p, 0); 4192 } 4193 #endif 4194 4195 return 1; 4196 } 4197 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4198 4199 /* 4200 ** A structure to keep track of all of the column values that are fixed to 4201 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4202 */ 4203 typedef struct WhereConst WhereConst; 4204 struct WhereConst { 4205 Parse *pParse; /* Parsing context */ 4206 int nConst; /* Number for COLUMN=CONSTANT terms */ 4207 int nChng; /* Number of times a constant is propagated */ 4208 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4209 }; 4210 4211 /* 4212 ** Add a new entry to the pConst object. Except, do not add duplicate 4213 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4214 ** 4215 ** The caller guarantees the pColumn is a column and pValue is a constant. 4216 ** This routine has to do some additional checks before completing the 4217 ** insert. 4218 */ 4219 static void constInsert( 4220 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4221 Expr *pColumn, /* The COLUMN part of the constraint */ 4222 Expr *pValue, /* The VALUE part of the constraint */ 4223 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4224 ){ 4225 int i; 4226 assert( pColumn->op==TK_COLUMN ); 4227 assert( sqlite3ExprIsConstant(pValue) ); 4228 4229 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4230 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4231 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4232 return; 4233 } 4234 4235 /* 2018-10-25 ticket [cf5ed20f] 4236 ** Make sure the same pColumn is not inserted more than once */ 4237 for(i=0; i<pConst->nConst; i++){ 4238 const Expr *pE2 = pConst->apExpr[i*2]; 4239 assert( pE2->op==TK_COLUMN ); 4240 if( pE2->iTable==pColumn->iTable 4241 && pE2->iColumn==pColumn->iColumn 4242 ){ 4243 return; /* Already present. Return without doing anything. */ 4244 } 4245 } 4246 4247 pConst->nConst++; 4248 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4249 pConst->nConst*2*sizeof(Expr*)); 4250 if( pConst->apExpr==0 ){ 4251 pConst->nConst = 0; 4252 }else{ 4253 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4254 pConst->apExpr[pConst->nConst*2-1] = pValue; 4255 } 4256 } 4257 4258 /* 4259 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4260 ** is a constant expression and where the term must be true because it 4261 ** is part of the AND-connected terms of the expression. For each term 4262 ** found, add it to the pConst structure. 4263 */ 4264 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4265 Expr *pRight, *pLeft; 4266 if( pExpr==0 ) return; 4267 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4268 if( pExpr->op==TK_AND ){ 4269 findConstInWhere(pConst, pExpr->pRight); 4270 findConstInWhere(pConst, pExpr->pLeft); 4271 return; 4272 } 4273 if( pExpr->op!=TK_EQ ) return; 4274 pRight = pExpr->pRight; 4275 pLeft = pExpr->pLeft; 4276 assert( pRight!=0 ); 4277 assert( pLeft!=0 ); 4278 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4279 constInsert(pConst,pRight,pLeft,pExpr); 4280 } 4281 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4282 constInsert(pConst,pLeft,pRight,pExpr); 4283 } 4284 } 4285 4286 /* 4287 ** This is a Walker expression callback. pExpr is a candidate expression 4288 ** to be replaced by a value. If pExpr is equivalent to one of the 4289 ** columns named in pWalker->u.pConst, then overwrite it with its 4290 ** corresponding value. 4291 */ 4292 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4293 int i; 4294 WhereConst *pConst; 4295 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4296 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4297 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4298 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4299 return WRC_Continue; 4300 } 4301 pConst = pWalker->u.pConst; 4302 for(i=0; i<pConst->nConst; i++){ 4303 Expr *pColumn = pConst->apExpr[i*2]; 4304 if( pColumn==pExpr ) continue; 4305 if( pColumn->iTable!=pExpr->iTable ) continue; 4306 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4307 /* A match is found. Add the EP_FixedCol property */ 4308 pConst->nChng++; 4309 ExprClearProperty(pExpr, EP_Leaf); 4310 ExprSetProperty(pExpr, EP_FixedCol); 4311 assert( pExpr->pLeft==0 ); 4312 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4313 break; 4314 } 4315 return WRC_Prune; 4316 } 4317 4318 /* 4319 ** The WHERE-clause constant propagation optimization. 4320 ** 4321 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4322 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4323 ** part of a ON clause from a LEFT JOIN, then throughout the query 4324 ** replace all other occurrences of COLUMN with CONSTANT. 4325 ** 4326 ** For example, the query: 4327 ** 4328 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4329 ** 4330 ** Is transformed into 4331 ** 4332 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4333 ** 4334 ** Return true if any transformations where made and false if not. 4335 ** 4336 ** Implementation note: Constant propagation is tricky due to affinity 4337 ** and collating sequence interactions. Consider this example: 4338 ** 4339 ** CREATE TABLE t1(a INT,b TEXT); 4340 ** INSERT INTO t1 VALUES(123,'0123'); 4341 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4342 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4343 ** 4344 ** The two SELECT statements above should return different answers. b=a 4345 ** is alway true because the comparison uses numeric affinity, but b=123 4346 ** is false because it uses text affinity and '0123' is not the same as '123'. 4347 ** To work around this, the expression tree is not actually changed from 4348 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4349 ** and the "123" value is hung off of the pLeft pointer. Code generator 4350 ** routines know to generate the constant "123" instead of looking up the 4351 ** column value. Also, to avoid collation problems, this optimization is 4352 ** only attempted if the "a=123" term uses the default BINARY collation. 4353 */ 4354 static int propagateConstants( 4355 Parse *pParse, /* The parsing context */ 4356 Select *p /* The query in which to propagate constants */ 4357 ){ 4358 WhereConst x; 4359 Walker w; 4360 int nChng = 0; 4361 x.pParse = pParse; 4362 do{ 4363 x.nConst = 0; 4364 x.nChng = 0; 4365 x.apExpr = 0; 4366 findConstInWhere(&x, p->pWhere); 4367 if( x.nConst ){ 4368 memset(&w, 0, sizeof(w)); 4369 w.pParse = pParse; 4370 w.xExprCallback = propagateConstantExprRewrite; 4371 w.xSelectCallback = sqlite3SelectWalkNoop; 4372 w.xSelectCallback2 = 0; 4373 w.walkerDepth = 0; 4374 w.u.pConst = &x; 4375 sqlite3WalkExpr(&w, p->pWhere); 4376 sqlite3DbFree(x.pParse->db, x.apExpr); 4377 nChng += x.nChng; 4378 } 4379 }while( x.nChng ); 4380 return nChng; 4381 } 4382 4383 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4384 /* 4385 ** Make copies of relevant WHERE clause terms of the outer query into 4386 ** the WHERE clause of subquery. Example: 4387 ** 4388 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4389 ** 4390 ** Transformed into: 4391 ** 4392 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4393 ** WHERE x=5 AND y=10; 4394 ** 4395 ** The hope is that the terms added to the inner query will make it more 4396 ** efficient. 4397 ** 4398 ** Do not attempt this optimization if: 4399 ** 4400 ** (1) (** This restriction was removed on 2017-09-29. We used to 4401 ** disallow this optimization for aggregate subqueries, but now 4402 ** it is allowed by putting the extra terms on the HAVING clause. 4403 ** The added HAVING clause is pointless if the subquery lacks 4404 ** a GROUP BY clause. But such a HAVING clause is also harmless 4405 ** so there does not appear to be any reason to add extra logic 4406 ** to suppress it. **) 4407 ** 4408 ** (2) The inner query is the recursive part of a common table expression. 4409 ** 4410 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4411 ** clause would change the meaning of the LIMIT). 4412 ** 4413 ** (4) The inner query is the right operand of a LEFT JOIN and the 4414 ** expression to be pushed down does not come from the ON clause 4415 ** on that LEFT JOIN. 4416 ** 4417 ** (5) The WHERE clause expression originates in the ON or USING clause 4418 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4419 ** left join. An example: 4420 ** 4421 ** SELECT * 4422 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4423 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4424 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4425 ** 4426 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4427 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4428 ** then the (1,1,NULL) row would be suppressed. 4429 ** 4430 ** (6) The inner query features one or more window-functions (since 4431 ** changes to the WHERE clause of the inner query could change the 4432 ** window over which window functions are calculated). 4433 ** 4434 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4435 ** terms are duplicated into the subquery. 4436 */ 4437 static int pushDownWhereTerms( 4438 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4439 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4440 Expr *pWhere, /* The WHERE clause of the outer query */ 4441 int iCursor, /* Cursor number of the subquery */ 4442 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4443 ){ 4444 Expr *pNew; 4445 int nChng = 0; 4446 Select *pSel; 4447 if( pWhere==0 ) return 0; 4448 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4449 4450 #ifndef SQLITE_OMIT_WINDOWFUNC 4451 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4452 if( pSel->pWin ) return 0; /* restriction (6) */ 4453 } 4454 #endif 4455 4456 #ifdef SQLITE_DEBUG 4457 /* Only the first term of a compound can have a WITH clause. But make 4458 ** sure no other terms are marked SF_Recursive in case something changes 4459 ** in the future. 4460 */ 4461 { 4462 Select *pX; 4463 for(pX=pSubq; pX; pX=pX->pPrior){ 4464 assert( (pX->selFlags & (SF_Recursive))==0 ); 4465 } 4466 } 4467 #endif 4468 4469 if( pSubq->pLimit!=0 ){ 4470 return 0; /* restriction (3) */ 4471 } 4472 while( pWhere->op==TK_AND ){ 4473 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4474 iCursor, isLeftJoin); 4475 pWhere = pWhere->pLeft; 4476 } 4477 if( isLeftJoin 4478 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4479 || pWhere->iRightJoinTable!=iCursor) 4480 ){ 4481 return 0; /* restriction (4) */ 4482 } 4483 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4484 return 0; /* restriction (5) */ 4485 } 4486 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4487 nChng++; 4488 while( pSubq ){ 4489 SubstContext x; 4490 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4491 unsetJoinExpr(pNew, -1); 4492 x.pParse = pParse; 4493 x.iTable = iCursor; 4494 x.iNewTable = iCursor; 4495 x.isLeftJoin = 0; 4496 x.pEList = pSubq->pEList; 4497 pNew = substExpr(&x, pNew); 4498 if( pSubq->selFlags & SF_Aggregate ){ 4499 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4500 }else{ 4501 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4502 } 4503 pSubq = pSubq->pPrior; 4504 } 4505 } 4506 return nChng; 4507 } 4508 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4509 4510 /* 4511 ** The pFunc is the only aggregate function in the query. Check to see 4512 ** if the query is a candidate for the min/max optimization. 4513 ** 4514 ** If the query is a candidate for the min/max optimization, then set 4515 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4516 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4517 ** whether pFunc is a min() or max() function. 4518 ** 4519 ** If the query is not a candidate for the min/max optimization, return 4520 ** WHERE_ORDERBY_NORMAL (which must be zero). 4521 ** 4522 ** This routine must be called after aggregate functions have been 4523 ** located but before their arguments have been subjected to aggregate 4524 ** analysis. 4525 */ 4526 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4527 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4528 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4529 const char *zFunc; /* Name of aggregate function pFunc */ 4530 ExprList *pOrderBy; 4531 u8 sortFlags = 0; 4532 4533 assert( *ppMinMax==0 ); 4534 assert( pFunc->op==TK_AGG_FUNCTION ); 4535 assert( !IsWindowFunc(pFunc) ); 4536 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4537 return eRet; 4538 } 4539 zFunc = pFunc->u.zToken; 4540 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4541 eRet = WHERE_ORDERBY_MIN; 4542 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4543 sortFlags = KEYINFO_ORDER_BIGNULL; 4544 } 4545 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4546 eRet = WHERE_ORDERBY_MAX; 4547 sortFlags = KEYINFO_ORDER_DESC; 4548 }else{ 4549 return eRet; 4550 } 4551 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4552 assert( pOrderBy!=0 || db->mallocFailed ); 4553 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4554 return eRet; 4555 } 4556 4557 /* 4558 ** The select statement passed as the first argument is an aggregate query. 4559 ** The second argument is the associated aggregate-info object. This 4560 ** function tests if the SELECT is of the form: 4561 ** 4562 ** SELECT count(*) FROM <tbl> 4563 ** 4564 ** where table is a database table, not a sub-select or view. If the query 4565 ** does match this pattern, then a pointer to the Table object representing 4566 ** <tbl> is returned. Otherwise, 0 is returned. 4567 */ 4568 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4569 Table *pTab; 4570 Expr *pExpr; 4571 4572 assert( !p->pGroupBy ); 4573 4574 if( p->pWhere || p->pEList->nExpr!=1 4575 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4576 ){ 4577 return 0; 4578 } 4579 pTab = p->pSrc->a[0].pTab; 4580 pExpr = p->pEList->a[0].pExpr; 4581 assert( pTab && !pTab->pSelect && pExpr ); 4582 4583 if( IsVirtual(pTab) ) return 0; 4584 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4585 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4586 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4587 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4588 4589 return pTab; 4590 } 4591 4592 /* 4593 ** If the source-list item passed as an argument was augmented with an 4594 ** INDEXED BY clause, then try to locate the specified index. If there 4595 ** was such a clause and the named index cannot be found, return 4596 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4597 ** pFrom->pIndex and return SQLITE_OK. 4598 */ 4599 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4600 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4601 Table *pTab = pFrom->pTab; 4602 char *zIndexedBy = pFrom->u1.zIndexedBy; 4603 Index *pIdx; 4604 for(pIdx=pTab->pIndex; 4605 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4606 pIdx=pIdx->pNext 4607 ); 4608 if( !pIdx ){ 4609 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4610 pParse->checkSchema = 1; 4611 return SQLITE_ERROR; 4612 } 4613 pFrom->pIBIndex = pIdx; 4614 } 4615 return SQLITE_OK; 4616 } 4617 /* 4618 ** Detect compound SELECT statements that use an ORDER BY clause with 4619 ** an alternative collating sequence. 4620 ** 4621 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4622 ** 4623 ** These are rewritten as a subquery: 4624 ** 4625 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4626 ** ORDER BY ... COLLATE ... 4627 ** 4628 ** This transformation is necessary because the multiSelectOrderBy() routine 4629 ** above that generates the code for a compound SELECT with an ORDER BY clause 4630 ** uses a merge algorithm that requires the same collating sequence on the 4631 ** result columns as on the ORDER BY clause. See ticket 4632 ** http://www.sqlite.org/src/info/6709574d2a 4633 ** 4634 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4635 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4636 ** there are COLLATE terms in the ORDER BY. 4637 */ 4638 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4639 int i; 4640 Select *pNew; 4641 Select *pX; 4642 sqlite3 *db; 4643 struct ExprList_item *a; 4644 SrcList *pNewSrc; 4645 Parse *pParse; 4646 Token dummy; 4647 4648 if( p->pPrior==0 ) return WRC_Continue; 4649 if( p->pOrderBy==0 ) return WRC_Continue; 4650 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4651 if( pX==0 ) return WRC_Continue; 4652 a = p->pOrderBy->a; 4653 #ifndef SQLITE_OMIT_WINDOWFUNC 4654 /* If iOrderByCol is already non-zero, then it has already been matched 4655 ** to a result column of the SELECT statement. This occurs when the 4656 ** SELECT is rewritten for window-functions processing and then passed 4657 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4658 ** by this function is not required in this case. */ 4659 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4660 #endif 4661 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4662 if( a[i].pExpr->flags & EP_Collate ) break; 4663 } 4664 if( i<0 ) return WRC_Continue; 4665 4666 /* If we reach this point, that means the transformation is required. */ 4667 4668 pParse = pWalker->pParse; 4669 db = pParse->db; 4670 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4671 if( pNew==0 ) return WRC_Abort; 4672 memset(&dummy, 0, sizeof(dummy)); 4673 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4674 if( pNewSrc==0 ) return WRC_Abort; 4675 *pNew = *p; 4676 p->pSrc = pNewSrc; 4677 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4678 p->op = TK_SELECT; 4679 p->pWhere = 0; 4680 pNew->pGroupBy = 0; 4681 pNew->pHaving = 0; 4682 pNew->pOrderBy = 0; 4683 p->pPrior = 0; 4684 p->pNext = 0; 4685 p->pWith = 0; 4686 #ifndef SQLITE_OMIT_WINDOWFUNC 4687 p->pWinDefn = 0; 4688 #endif 4689 p->selFlags &= ~SF_Compound; 4690 assert( (p->selFlags & SF_Converted)==0 ); 4691 p->selFlags |= SF_Converted; 4692 assert( pNew->pPrior!=0 ); 4693 pNew->pPrior->pNext = pNew; 4694 pNew->pLimit = 0; 4695 return WRC_Continue; 4696 } 4697 4698 /* 4699 ** Check to see if the FROM clause term pFrom has table-valued function 4700 ** arguments. If it does, leave an error message in pParse and return 4701 ** non-zero, since pFrom is not allowed to be a table-valued function. 4702 */ 4703 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4704 if( pFrom->fg.isTabFunc ){ 4705 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4706 return 1; 4707 } 4708 return 0; 4709 } 4710 4711 #ifndef SQLITE_OMIT_CTE 4712 /* 4713 ** Argument pWith (which may be NULL) points to a linked list of nested 4714 ** WITH contexts, from inner to outermost. If the table identified by 4715 ** FROM clause element pItem is really a common-table-expression (CTE) 4716 ** then return a pointer to the CTE definition for that table. Otherwise 4717 ** return NULL. 4718 ** 4719 ** If a non-NULL value is returned, set *ppContext to point to the With 4720 ** object that the returned CTE belongs to. 4721 */ 4722 static struct Cte *searchWith( 4723 With *pWith, /* Current innermost WITH clause */ 4724 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4725 With **ppContext /* OUT: WITH clause return value belongs to */ 4726 ){ 4727 const char *zName; 4728 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4729 With *p; 4730 for(p=pWith; p; p=p->pOuter){ 4731 int i; 4732 for(i=0; i<p->nCte; i++){ 4733 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4734 *ppContext = p; 4735 return &p->a[i]; 4736 } 4737 } 4738 } 4739 } 4740 return 0; 4741 } 4742 4743 /* The code generator maintains a stack of active WITH clauses 4744 ** with the inner-most WITH clause being at the top of the stack. 4745 ** 4746 ** This routine pushes the WITH clause passed as the second argument 4747 ** onto the top of the stack. If argument bFree is true, then this 4748 ** WITH clause will never be popped from the stack. In this case it 4749 ** should be freed along with the Parse object. In other cases, when 4750 ** bFree==0, the With object will be freed along with the SELECT 4751 ** statement with which it is associated. 4752 */ 4753 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4754 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4755 if( pWith ){ 4756 assert( pParse->pWith!=pWith ); 4757 pWith->pOuter = pParse->pWith; 4758 pParse->pWith = pWith; 4759 if( bFree ) pParse->pWithToFree = pWith; 4760 } 4761 } 4762 4763 /* 4764 ** This function checks if argument pFrom refers to a CTE declared by 4765 ** a WITH clause on the stack currently maintained by the parser. And, 4766 ** if currently processing a CTE expression, if it is a recursive 4767 ** reference to the current CTE. 4768 ** 4769 ** If pFrom falls into either of the two categories above, pFrom->pTab 4770 ** and other fields are populated accordingly. The caller should check 4771 ** (pFrom->pTab!=0) to determine whether or not a successful match 4772 ** was found. 4773 ** 4774 ** Whether or not a match is found, SQLITE_OK is returned if no error 4775 ** occurs. If an error does occur, an error message is stored in the 4776 ** parser and some error code other than SQLITE_OK returned. 4777 */ 4778 static int withExpand( 4779 Walker *pWalker, 4780 struct SrcList_item *pFrom 4781 ){ 4782 Parse *pParse = pWalker->pParse; 4783 sqlite3 *db = pParse->db; 4784 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4785 With *pWith; /* WITH clause that pCte belongs to */ 4786 4787 assert( pFrom->pTab==0 ); 4788 if( pParse->nErr ){ 4789 return SQLITE_ERROR; 4790 } 4791 4792 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4793 if( pCte ){ 4794 Table *pTab; 4795 ExprList *pEList; 4796 Select *pSel; 4797 Select *pLeft; /* Left-most SELECT statement */ 4798 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4799 With *pSavedWith; /* Initial value of pParse->pWith */ 4800 4801 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4802 ** recursive reference to CTE pCte. Leave an error in pParse and return 4803 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4804 ** In this case, proceed. */ 4805 if( pCte->zCteErr ){ 4806 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4807 return SQLITE_ERROR; 4808 } 4809 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4810 4811 assert( pFrom->pTab==0 ); 4812 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4813 if( pTab==0 ) return WRC_Abort; 4814 pTab->nTabRef = 1; 4815 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4816 pTab->iPKey = -1; 4817 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4818 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4819 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4820 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4821 assert( pFrom->pSelect ); 4822 4823 /* Check if this is a recursive CTE. */ 4824 pSel = pFrom->pSelect; 4825 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4826 if( bMayRecursive ){ 4827 int i; 4828 SrcList *pSrc = pFrom->pSelect->pSrc; 4829 for(i=0; i<pSrc->nSrc; i++){ 4830 struct SrcList_item *pItem = &pSrc->a[i]; 4831 if( pItem->zDatabase==0 4832 && pItem->zName!=0 4833 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4834 ){ 4835 pItem->pTab = pTab; 4836 pItem->fg.isRecursive = 1; 4837 pTab->nTabRef++; 4838 pSel->selFlags |= SF_Recursive; 4839 } 4840 } 4841 } 4842 4843 /* Only one recursive reference is permitted. */ 4844 if( pTab->nTabRef>2 ){ 4845 sqlite3ErrorMsg( 4846 pParse, "multiple references to recursive table: %s", pCte->zName 4847 ); 4848 return SQLITE_ERROR; 4849 } 4850 assert( pTab->nTabRef==1 || 4851 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4852 4853 pCte->zCteErr = "circular reference: %s"; 4854 pSavedWith = pParse->pWith; 4855 pParse->pWith = pWith; 4856 if( bMayRecursive ){ 4857 Select *pPrior = pSel->pPrior; 4858 assert( pPrior->pWith==0 ); 4859 pPrior->pWith = pSel->pWith; 4860 sqlite3WalkSelect(pWalker, pPrior); 4861 pPrior->pWith = 0; 4862 }else{ 4863 sqlite3WalkSelect(pWalker, pSel); 4864 } 4865 pParse->pWith = pWith; 4866 4867 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4868 pEList = pLeft->pEList; 4869 if( pCte->pCols ){ 4870 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4871 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4872 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4873 ); 4874 pParse->pWith = pSavedWith; 4875 return SQLITE_ERROR; 4876 } 4877 pEList = pCte->pCols; 4878 } 4879 4880 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4881 if( bMayRecursive ){ 4882 if( pSel->selFlags & SF_Recursive ){ 4883 pCte->zCteErr = "multiple recursive references: %s"; 4884 }else{ 4885 pCte->zCteErr = "recursive reference in a subquery: %s"; 4886 } 4887 sqlite3WalkSelect(pWalker, pSel); 4888 } 4889 pCte->zCteErr = 0; 4890 pParse->pWith = pSavedWith; 4891 } 4892 4893 return SQLITE_OK; 4894 } 4895 #endif 4896 4897 #ifndef SQLITE_OMIT_CTE 4898 /* 4899 ** If the SELECT passed as the second argument has an associated WITH 4900 ** clause, pop it from the stack stored as part of the Parse object. 4901 ** 4902 ** This function is used as the xSelectCallback2() callback by 4903 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4904 ** names and other FROM clause elements. 4905 */ 4906 static void selectPopWith(Walker *pWalker, Select *p){ 4907 Parse *pParse = pWalker->pParse; 4908 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4909 With *pWith = findRightmost(p)->pWith; 4910 if( pWith!=0 ){ 4911 assert( pParse->pWith==pWith || pParse->nErr ); 4912 pParse->pWith = pWith->pOuter; 4913 } 4914 } 4915 } 4916 #else 4917 #define selectPopWith 0 4918 #endif 4919 4920 /* 4921 ** The SrcList_item structure passed as the second argument represents a 4922 ** sub-query in the FROM clause of a SELECT statement. This function 4923 ** allocates and populates the SrcList_item.pTab object. If successful, 4924 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4925 ** SQLITE_NOMEM. 4926 */ 4927 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4928 Select *pSel = pFrom->pSelect; 4929 Table *pTab; 4930 4931 assert( pSel ); 4932 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4933 if( pTab==0 ) return SQLITE_NOMEM; 4934 pTab->nTabRef = 1; 4935 if( pFrom->zAlias ){ 4936 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4937 }else{ 4938 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4939 } 4940 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4941 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4942 pTab->iPKey = -1; 4943 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4944 pTab->tabFlags |= TF_Ephemeral; 4945 4946 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4947 } 4948 4949 /* 4950 ** This routine is a Walker callback for "expanding" a SELECT statement. 4951 ** "Expanding" means to do the following: 4952 ** 4953 ** (1) Make sure VDBE cursor numbers have been assigned to every 4954 ** element of the FROM clause. 4955 ** 4956 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4957 ** defines FROM clause. When views appear in the FROM clause, 4958 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4959 ** that implements the view. A copy is made of the view's SELECT 4960 ** statement so that we can freely modify or delete that statement 4961 ** without worrying about messing up the persistent representation 4962 ** of the view. 4963 ** 4964 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4965 ** on joins and the ON and USING clause of joins. 4966 ** 4967 ** (4) Scan the list of columns in the result set (pEList) looking 4968 ** for instances of the "*" operator or the TABLE.* operator. 4969 ** If found, expand each "*" to be every column in every table 4970 ** and TABLE.* to be every column in TABLE. 4971 ** 4972 */ 4973 static int selectExpander(Walker *pWalker, Select *p){ 4974 Parse *pParse = pWalker->pParse; 4975 int i, j, k; 4976 SrcList *pTabList; 4977 ExprList *pEList; 4978 struct SrcList_item *pFrom; 4979 sqlite3 *db = pParse->db; 4980 Expr *pE, *pRight, *pExpr; 4981 u16 selFlags = p->selFlags; 4982 u32 elistFlags = 0; 4983 4984 p->selFlags |= SF_Expanded; 4985 if( db->mallocFailed ){ 4986 return WRC_Abort; 4987 } 4988 assert( p->pSrc!=0 ); 4989 if( (selFlags & SF_Expanded)!=0 ){ 4990 return WRC_Prune; 4991 } 4992 if( pWalker->eCode ){ 4993 /* Renumber selId because it has been copied from a view */ 4994 p->selId = ++pParse->nSelect; 4995 } 4996 pTabList = p->pSrc; 4997 pEList = p->pEList; 4998 sqlite3WithPush(pParse, p->pWith, 0); 4999 5000 /* Make sure cursor numbers have been assigned to all entries in 5001 ** the FROM clause of the SELECT statement. 5002 */ 5003 sqlite3SrcListAssignCursors(pParse, pTabList); 5004 5005 /* Look up every table named in the FROM clause of the select. If 5006 ** an entry of the FROM clause is a subquery instead of a table or view, 5007 ** then create a transient table structure to describe the subquery. 5008 */ 5009 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5010 Table *pTab; 5011 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5012 if( pFrom->pTab ) continue; 5013 assert( pFrom->fg.isRecursive==0 ); 5014 #ifndef SQLITE_OMIT_CTE 5015 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 5016 if( pFrom->pTab ) {} else 5017 #endif 5018 if( pFrom->zName==0 ){ 5019 #ifndef SQLITE_OMIT_SUBQUERY 5020 Select *pSel = pFrom->pSelect; 5021 /* A sub-query in the FROM clause of a SELECT */ 5022 assert( pSel!=0 ); 5023 assert( pFrom->pTab==0 ); 5024 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5025 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5026 #endif 5027 }else{ 5028 /* An ordinary table or view name in the FROM clause */ 5029 assert( pFrom->pTab==0 ); 5030 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5031 if( pTab==0 ) return WRC_Abort; 5032 if( pTab->nTabRef>=0xffff ){ 5033 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5034 pTab->zName); 5035 pFrom->pTab = 0; 5036 return WRC_Abort; 5037 } 5038 pTab->nTabRef++; 5039 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5040 return WRC_Abort; 5041 } 5042 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5043 if( IsVirtual(pTab) || pTab->pSelect ){ 5044 i16 nCol; 5045 u8 eCodeOrig = pWalker->eCode; 5046 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5047 assert( pFrom->pSelect==0 ); 5048 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 5049 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5050 pTab->zName); 5051 } 5052 #ifndef SQLITE_OMIT_VIRTUALTABLE 5053 if( IsVirtual(pTab) 5054 && pFrom->fg.fromDDL 5055 && ALWAYS(pTab->pVTable!=0) 5056 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5057 ){ 5058 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5059 pTab->zName); 5060 } 5061 #endif 5062 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5063 nCol = pTab->nCol; 5064 pTab->nCol = -1; 5065 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5066 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5067 pWalker->eCode = eCodeOrig; 5068 pTab->nCol = nCol; 5069 } 5070 #endif 5071 } 5072 5073 /* Locate the index named by the INDEXED BY clause, if any. */ 5074 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5075 return WRC_Abort; 5076 } 5077 } 5078 5079 /* Process NATURAL keywords, and ON and USING clauses of joins. 5080 */ 5081 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5082 return WRC_Abort; 5083 } 5084 5085 /* For every "*" that occurs in the column list, insert the names of 5086 ** all columns in all tables. And for every TABLE.* insert the names 5087 ** of all columns in TABLE. The parser inserted a special expression 5088 ** with the TK_ASTERISK operator for each "*" that it found in the column 5089 ** list. The following code just has to locate the TK_ASTERISK 5090 ** expressions and expand each one to the list of all columns in 5091 ** all tables. 5092 ** 5093 ** The first loop just checks to see if there are any "*" operators 5094 ** that need expanding. 5095 */ 5096 for(k=0; k<pEList->nExpr; k++){ 5097 pE = pEList->a[k].pExpr; 5098 if( pE->op==TK_ASTERISK ) break; 5099 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5100 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5101 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5102 elistFlags |= pE->flags; 5103 } 5104 if( k<pEList->nExpr ){ 5105 /* 5106 ** If we get here it means the result set contains one or more "*" 5107 ** operators that need to be expanded. Loop through each expression 5108 ** in the result set and expand them one by one. 5109 */ 5110 struct ExprList_item *a = pEList->a; 5111 ExprList *pNew = 0; 5112 int flags = pParse->db->flags; 5113 int longNames = (flags & SQLITE_FullColNames)!=0 5114 && (flags & SQLITE_ShortColNames)==0; 5115 5116 for(k=0; k<pEList->nExpr; k++){ 5117 pE = a[k].pExpr; 5118 elistFlags |= pE->flags; 5119 pRight = pE->pRight; 5120 assert( pE->op!=TK_DOT || pRight!=0 ); 5121 if( pE->op!=TK_ASTERISK 5122 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5123 ){ 5124 /* This particular expression does not need to be expanded. 5125 */ 5126 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5127 if( pNew ){ 5128 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5129 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5130 a[k].zEName = 0; 5131 } 5132 a[k].pExpr = 0; 5133 }else{ 5134 /* This expression is a "*" or a "TABLE.*" and needs to be 5135 ** expanded. */ 5136 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5137 char *zTName = 0; /* text of name of TABLE */ 5138 if( pE->op==TK_DOT ){ 5139 assert( pE->pLeft!=0 ); 5140 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5141 zTName = pE->pLeft->u.zToken; 5142 } 5143 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5144 Table *pTab = pFrom->pTab; 5145 Select *pSub = pFrom->pSelect; 5146 char *zTabName = pFrom->zAlias; 5147 const char *zSchemaName = 0; 5148 int iDb; 5149 if( zTabName==0 ){ 5150 zTabName = pTab->zName; 5151 } 5152 if( db->mallocFailed ) break; 5153 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5154 pSub = 0; 5155 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5156 continue; 5157 } 5158 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5159 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5160 } 5161 for(j=0; j<pTab->nCol; j++){ 5162 char *zName = pTab->aCol[j].zName; 5163 char *zColname; /* The computed column name */ 5164 char *zToFree; /* Malloced string that needs to be freed */ 5165 Token sColname; /* Computed column name as a token */ 5166 5167 assert( zName ); 5168 if( zTName && pSub 5169 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5170 ){ 5171 continue; 5172 } 5173 5174 /* If a column is marked as 'hidden', omit it from the expanded 5175 ** result-set list unless the SELECT has the SF_IncludeHidden 5176 ** bit set. 5177 */ 5178 if( (p->selFlags & SF_IncludeHidden)==0 5179 && IsHiddenColumn(&pTab->aCol[j]) 5180 ){ 5181 continue; 5182 } 5183 tableSeen = 1; 5184 5185 if( i>0 && zTName==0 ){ 5186 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5187 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5188 ){ 5189 /* In a NATURAL join, omit the join columns from the 5190 ** table to the right of the join */ 5191 continue; 5192 } 5193 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5194 /* In a join with a USING clause, omit columns in the 5195 ** using clause from the table on the right. */ 5196 continue; 5197 } 5198 } 5199 pRight = sqlite3Expr(db, TK_ID, zName); 5200 zColname = zName; 5201 zToFree = 0; 5202 if( longNames || pTabList->nSrc>1 ){ 5203 Expr *pLeft; 5204 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5205 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5206 if( zSchemaName ){ 5207 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5208 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5209 } 5210 if( longNames ){ 5211 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5212 zToFree = zColname; 5213 } 5214 }else{ 5215 pExpr = pRight; 5216 } 5217 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5218 sqlite3TokenInit(&sColname, zColname); 5219 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5220 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5221 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5222 sqlite3DbFree(db, pX->zEName); 5223 if( pSub ){ 5224 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5225 testcase( pX->zEName==0 ); 5226 }else{ 5227 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5228 zSchemaName, zTabName, zColname); 5229 testcase( pX->zEName==0 ); 5230 } 5231 pX->eEName = ENAME_TAB; 5232 } 5233 sqlite3DbFree(db, zToFree); 5234 } 5235 } 5236 if( !tableSeen ){ 5237 if( zTName ){ 5238 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5239 }else{ 5240 sqlite3ErrorMsg(pParse, "no tables specified"); 5241 } 5242 } 5243 } 5244 } 5245 sqlite3ExprListDelete(db, pEList); 5246 p->pEList = pNew; 5247 } 5248 if( p->pEList ){ 5249 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5250 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5251 return WRC_Abort; 5252 } 5253 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5254 p->selFlags |= SF_ComplexResult; 5255 } 5256 } 5257 return WRC_Continue; 5258 } 5259 5260 #if SQLITE_DEBUG 5261 /* 5262 ** Always assert. This xSelectCallback2 implementation proves that the 5263 ** xSelectCallback2 is never invoked. 5264 */ 5265 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5266 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5267 assert( 0 ); 5268 } 5269 #endif 5270 /* 5271 ** This routine "expands" a SELECT statement and all of its subqueries. 5272 ** For additional information on what it means to "expand" a SELECT 5273 ** statement, see the comment on the selectExpand worker callback above. 5274 ** 5275 ** Expanding a SELECT statement is the first step in processing a 5276 ** SELECT statement. The SELECT statement must be expanded before 5277 ** name resolution is performed. 5278 ** 5279 ** If anything goes wrong, an error message is written into pParse. 5280 ** The calling function can detect the problem by looking at pParse->nErr 5281 ** and/or pParse->db->mallocFailed. 5282 */ 5283 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5284 Walker w; 5285 w.xExprCallback = sqlite3ExprWalkNoop; 5286 w.pParse = pParse; 5287 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5288 w.xSelectCallback = convertCompoundSelectToSubquery; 5289 w.xSelectCallback2 = 0; 5290 sqlite3WalkSelect(&w, pSelect); 5291 } 5292 w.xSelectCallback = selectExpander; 5293 w.xSelectCallback2 = selectPopWith; 5294 w.eCode = 0; 5295 sqlite3WalkSelect(&w, pSelect); 5296 } 5297 5298 5299 #ifndef SQLITE_OMIT_SUBQUERY 5300 /* 5301 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5302 ** interface. 5303 ** 5304 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5305 ** information to the Table structure that represents the result set 5306 ** of that subquery. 5307 ** 5308 ** The Table structure that represents the result set was constructed 5309 ** by selectExpander() but the type and collation information was omitted 5310 ** at that point because identifiers had not yet been resolved. This 5311 ** routine is called after identifier resolution. 5312 */ 5313 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5314 Parse *pParse; 5315 int i; 5316 SrcList *pTabList; 5317 struct SrcList_item *pFrom; 5318 5319 assert( p->selFlags & SF_Resolved ); 5320 if( p->selFlags & SF_HasTypeInfo ) return; 5321 p->selFlags |= SF_HasTypeInfo; 5322 pParse = pWalker->pParse; 5323 pTabList = p->pSrc; 5324 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5325 Table *pTab = pFrom->pTab; 5326 assert( pTab!=0 ); 5327 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5328 /* A sub-query in the FROM clause of a SELECT */ 5329 Select *pSel = pFrom->pSelect; 5330 if( pSel ){ 5331 while( pSel->pPrior ) pSel = pSel->pPrior; 5332 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5333 SQLITE_AFF_NONE); 5334 } 5335 } 5336 } 5337 } 5338 #endif 5339 5340 5341 /* 5342 ** This routine adds datatype and collating sequence information to 5343 ** the Table structures of all FROM-clause subqueries in a 5344 ** SELECT statement. 5345 ** 5346 ** Use this routine after name resolution. 5347 */ 5348 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5349 #ifndef SQLITE_OMIT_SUBQUERY 5350 Walker w; 5351 w.xSelectCallback = sqlite3SelectWalkNoop; 5352 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5353 w.xExprCallback = sqlite3ExprWalkNoop; 5354 w.pParse = pParse; 5355 sqlite3WalkSelect(&w, pSelect); 5356 #endif 5357 } 5358 5359 5360 /* 5361 ** This routine sets up a SELECT statement for processing. The 5362 ** following is accomplished: 5363 ** 5364 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5365 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5366 ** * ON and USING clauses are shifted into WHERE statements 5367 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5368 ** * Identifiers in expression are matched to tables. 5369 ** 5370 ** This routine acts recursively on all subqueries within the SELECT. 5371 */ 5372 void sqlite3SelectPrep( 5373 Parse *pParse, /* The parser context */ 5374 Select *p, /* The SELECT statement being coded. */ 5375 NameContext *pOuterNC /* Name context for container */ 5376 ){ 5377 assert( p!=0 || pParse->db->mallocFailed ); 5378 if( pParse->db->mallocFailed ) return; 5379 if( p->selFlags & SF_HasTypeInfo ) return; 5380 sqlite3SelectExpand(pParse, p); 5381 if( pParse->nErr || pParse->db->mallocFailed ) return; 5382 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5383 if( pParse->nErr || pParse->db->mallocFailed ) return; 5384 sqlite3SelectAddTypeInfo(pParse, p); 5385 } 5386 5387 /* 5388 ** Reset the aggregate accumulator. 5389 ** 5390 ** The aggregate accumulator is a set of memory cells that hold 5391 ** intermediate results while calculating an aggregate. This 5392 ** routine generates code that stores NULLs in all of those memory 5393 ** cells. 5394 */ 5395 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5396 Vdbe *v = pParse->pVdbe; 5397 int i; 5398 struct AggInfo_func *pFunc; 5399 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5400 if( nReg==0 ) return; 5401 if( pParse->nErr || pParse->db->mallocFailed ) return; 5402 #ifdef SQLITE_DEBUG 5403 /* Verify that all AggInfo registers are within the range specified by 5404 ** AggInfo.mnReg..AggInfo.mxReg */ 5405 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5406 for(i=0; i<pAggInfo->nColumn; i++){ 5407 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5408 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5409 } 5410 for(i=0; i<pAggInfo->nFunc; i++){ 5411 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5412 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5413 } 5414 #endif 5415 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5416 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5417 if( pFunc->iDistinct>=0 ){ 5418 Expr *pE = pFunc->pFExpr; 5419 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5420 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5421 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5422 "argument"); 5423 pFunc->iDistinct = -1; 5424 }else{ 5425 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5426 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5427 (char*)pKeyInfo, P4_KEYINFO); 5428 } 5429 } 5430 } 5431 } 5432 5433 /* 5434 ** Invoke the OP_AggFinalize opcode for every aggregate function 5435 ** in the AggInfo structure. 5436 */ 5437 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5438 Vdbe *v = pParse->pVdbe; 5439 int i; 5440 struct AggInfo_func *pF; 5441 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5442 ExprList *pList = pF->pFExpr->x.pList; 5443 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5444 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5445 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5446 } 5447 } 5448 5449 5450 /* 5451 ** Update the accumulator memory cells for an aggregate based on 5452 ** the current cursor position. 5453 ** 5454 ** If regAcc is non-zero and there are no min() or max() aggregates 5455 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5456 ** registers if register regAcc contains 0. The caller will take care 5457 ** of setting and clearing regAcc. 5458 */ 5459 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5460 Vdbe *v = pParse->pVdbe; 5461 int i; 5462 int regHit = 0; 5463 int addrHitTest = 0; 5464 struct AggInfo_func *pF; 5465 struct AggInfo_col *pC; 5466 5467 pAggInfo->directMode = 1; 5468 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5469 int nArg; 5470 int addrNext = 0; 5471 int regAgg; 5472 ExprList *pList = pF->pFExpr->x.pList; 5473 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5474 assert( !IsWindowFunc(pF->pFExpr) ); 5475 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5476 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5477 if( pAggInfo->nAccumulator 5478 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5479 && regAcc 5480 ){ 5481 /* If regAcc==0, there there exists some min() or max() function 5482 ** without a FILTER clause that will ensure the magnet registers 5483 ** are populated. */ 5484 if( regHit==0 ) regHit = ++pParse->nMem; 5485 /* If this is the first row of the group (regAcc contains 0), clear the 5486 ** "magnet" register regHit so that the accumulator registers 5487 ** are populated if the FILTER clause jumps over the the 5488 ** invocation of min() or max() altogether. Or, if this is not 5489 ** the first row (regAcc contains 1), set the magnet register so that 5490 ** the accumulators are not populated unless the min()/max() is invoked 5491 ** and indicates that they should be. */ 5492 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5493 } 5494 addrNext = sqlite3VdbeMakeLabel(pParse); 5495 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5496 } 5497 if( pList ){ 5498 nArg = pList->nExpr; 5499 regAgg = sqlite3GetTempRange(pParse, nArg); 5500 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5501 }else{ 5502 nArg = 0; 5503 regAgg = 0; 5504 } 5505 if( pF->iDistinct>=0 ){ 5506 if( addrNext==0 ){ 5507 addrNext = sqlite3VdbeMakeLabel(pParse); 5508 } 5509 testcase( nArg==0 ); /* Error condition */ 5510 testcase( nArg>1 ); /* Also an error */ 5511 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5512 } 5513 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5514 CollSeq *pColl = 0; 5515 struct ExprList_item *pItem; 5516 int j; 5517 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5518 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5519 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5520 } 5521 if( !pColl ){ 5522 pColl = pParse->db->pDfltColl; 5523 } 5524 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5525 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5526 } 5527 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5528 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5529 sqlite3VdbeChangeP5(v, (u8)nArg); 5530 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5531 if( addrNext ){ 5532 sqlite3VdbeResolveLabel(v, addrNext); 5533 } 5534 } 5535 if( regHit==0 && pAggInfo->nAccumulator ){ 5536 regHit = regAcc; 5537 } 5538 if( regHit ){ 5539 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5540 } 5541 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5542 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5543 } 5544 5545 pAggInfo->directMode = 0; 5546 if( addrHitTest ){ 5547 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5548 } 5549 } 5550 5551 /* 5552 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5553 ** count(*) query ("SELECT count(*) FROM pTab"). 5554 */ 5555 #ifndef SQLITE_OMIT_EXPLAIN 5556 static void explainSimpleCount( 5557 Parse *pParse, /* Parse context */ 5558 Table *pTab, /* Table being queried */ 5559 Index *pIdx /* Index used to optimize scan, or NULL */ 5560 ){ 5561 if( pParse->explain==2 ){ 5562 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5563 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5564 pTab->zName, 5565 bCover ? " USING COVERING INDEX " : "", 5566 bCover ? pIdx->zName : "" 5567 ); 5568 } 5569 } 5570 #else 5571 # define explainSimpleCount(a,b,c) 5572 #endif 5573 5574 /* 5575 ** sqlite3WalkExpr() callback used by havingToWhere(). 5576 ** 5577 ** If the node passed to the callback is a TK_AND node, return 5578 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5579 ** 5580 ** Otherwise, return WRC_Prune. In this case, also check if the 5581 ** sub-expression matches the criteria for being moved to the WHERE 5582 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5583 ** within the HAVING expression with a constant "1". 5584 */ 5585 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5586 if( pExpr->op!=TK_AND ){ 5587 Select *pS = pWalker->u.pSelect; 5588 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5589 sqlite3 *db = pWalker->pParse->db; 5590 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5591 if( pNew ){ 5592 Expr *pWhere = pS->pWhere; 5593 SWAP(Expr, *pNew, *pExpr); 5594 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5595 pS->pWhere = pNew; 5596 pWalker->eCode = 1; 5597 } 5598 } 5599 return WRC_Prune; 5600 } 5601 return WRC_Continue; 5602 } 5603 5604 /* 5605 ** Transfer eligible terms from the HAVING clause of a query, which is 5606 ** processed after grouping, to the WHERE clause, which is processed before 5607 ** grouping. For example, the query: 5608 ** 5609 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5610 ** 5611 ** can be rewritten as: 5612 ** 5613 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5614 ** 5615 ** A term of the HAVING expression is eligible for transfer if it consists 5616 ** entirely of constants and expressions that are also GROUP BY terms that 5617 ** use the "BINARY" collation sequence. 5618 */ 5619 static void havingToWhere(Parse *pParse, Select *p){ 5620 Walker sWalker; 5621 memset(&sWalker, 0, sizeof(sWalker)); 5622 sWalker.pParse = pParse; 5623 sWalker.xExprCallback = havingToWhereExprCb; 5624 sWalker.u.pSelect = p; 5625 sqlite3WalkExpr(&sWalker, p->pHaving); 5626 #if SELECTTRACE_ENABLED 5627 if( sWalker.eCode && (sqlite3_unsupported_selecttrace & 0x100)!=0 ){ 5628 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5629 sqlite3TreeViewSelect(0, p, 0); 5630 } 5631 #endif 5632 } 5633 5634 /* 5635 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5636 ** If it is, then return the SrcList_item for the prior view. If it is not, 5637 ** then return 0. 5638 */ 5639 static struct SrcList_item *isSelfJoinView( 5640 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5641 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5642 ){ 5643 struct SrcList_item *pItem; 5644 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5645 Select *pS1; 5646 if( pItem->pSelect==0 ) continue; 5647 if( pItem->fg.viaCoroutine ) continue; 5648 if( pItem->zName==0 ) continue; 5649 assert( pItem->pTab!=0 ); 5650 assert( pThis->pTab!=0 ); 5651 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5652 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5653 pS1 = pItem->pSelect; 5654 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5655 /* The query flattener left two different CTE tables with identical 5656 ** names in the same FROM clause. */ 5657 continue; 5658 } 5659 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5660 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5661 ){ 5662 /* The view was modified by some other optimization such as 5663 ** pushDownWhereTerms() */ 5664 continue; 5665 } 5666 return pItem; 5667 } 5668 return 0; 5669 } 5670 5671 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5672 /* 5673 ** Attempt to transform a query of the form 5674 ** 5675 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5676 ** 5677 ** Into this: 5678 ** 5679 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5680 ** 5681 ** The transformation only works if all of the following are true: 5682 ** 5683 ** * The subquery is a UNION ALL of two or more terms 5684 ** * The subquery does not have a LIMIT clause 5685 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5686 ** * The outer query is a simple count(*) with no WHERE clause or other 5687 ** extraneous syntax. 5688 ** 5689 ** Return TRUE if the optimization is undertaken. 5690 */ 5691 static int countOfViewOptimization(Parse *pParse, Select *p){ 5692 Select *pSub, *pPrior; 5693 Expr *pExpr; 5694 Expr *pCount; 5695 sqlite3 *db; 5696 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5697 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5698 if( p->pWhere ) return 0; 5699 if( p->pGroupBy ) return 0; 5700 pExpr = p->pEList->a[0].pExpr; 5701 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5702 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5703 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5704 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5705 pSub = p->pSrc->a[0].pSelect; 5706 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5707 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5708 do{ 5709 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5710 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5711 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5712 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5713 pSub = pSub->pPrior; /* Repeat over compound */ 5714 }while( pSub ); 5715 5716 /* If we reach this point then it is OK to perform the transformation */ 5717 5718 db = pParse->db; 5719 pCount = pExpr; 5720 pExpr = 0; 5721 pSub = p->pSrc->a[0].pSelect; 5722 p->pSrc->a[0].pSelect = 0; 5723 sqlite3SrcListDelete(db, p->pSrc); 5724 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5725 while( pSub ){ 5726 Expr *pTerm; 5727 pPrior = pSub->pPrior; 5728 pSub->pPrior = 0; 5729 pSub->pNext = 0; 5730 pSub->selFlags |= SF_Aggregate; 5731 pSub->selFlags &= ~SF_Compound; 5732 pSub->nSelectRow = 0; 5733 sqlite3ExprListDelete(db, pSub->pEList); 5734 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5735 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5736 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5737 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5738 if( pExpr==0 ){ 5739 pExpr = pTerm; 5740 }else{ 5741 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5742 } 5743 pSub = pPrior; 5744 } 5745 p->pEList->a[0].pExpr = pExpr; 5746 p->selFlags &= ~SF_Aggregate; 5747 5748 #if SELECTTRACE_ENABLED 5749 if( sqlite3_unsupported_selecttrace & 0x400 ){ 5750 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5751 sqlite3TreeViewSelect(0, p, 0); 5752 } 5753 #endif 5754 return 1; 5755 } 5756 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5757 5758 /* 5759 ** Generate code for the SELECT statement given in the p argument. 5760 ** 5761 ** The results are returned according to the SelectDest structure. 5762 ** See comments in sqliteInt.h for further information. 5763 ** 5764 ** This routine returns the number of errors. If any errors are 5765 ** encountered, then an appropriate error message is left in 5766 ** pParse->zErrMsg. 5767 ** 5768 ** This routine does NOT free the Select structure passed in. The 5769 ** calling function needs to do that. 5770 */ 5771 int sqlite3Select( 5772 Parse *pParse, /* The parser context */ 5773 Select *p, /* The SELECT statement being coded. */ 5774 SelectDest *pDest /* What to do with the query results */ 5775 ){ 5776 int i, j; /* Loop counters */ 5777 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5778 Vdbe *v; /* The virtual machine under construction */ 5779 int isAgg; /* True for select lists like "count(*)" */ 5780 ExprList *pEList = 0; /* List of columns to extract. */ 5781 SrcList *pTabList; /* List of tables to select from */ 5782 Expr *pWhere; /* The WHERE clause. May be NULL */ 5783 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5784 Expr *pHaving; /* The HAVING clause. May be NULL */ 5785 AggInfo *pAggInfo = 0; /* Aggregate information */ 5786 int rc = 1; /* Value to return from this function */ 5787 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5788 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5789 int iEnd; /* Address of the end of the query */ 5790 sqlite3 *db; /* The database connection */ 5791 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5792 u8 minMaxFlag; /* Flag for min/max queries */ 5793 5794 db = pParse->db; 5795 v = sqlite3GetVdbe(pParse); 5796 if( p==0 || db->mallocFailed || pParse->nErr ){ 5797 return 1; 5798 } 5799 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5800 #if SELECTTRACE_ENABLED 5801 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5802 if( sqlite3_unsupported_selecttrace & 0x100 ){ 5803 sqlite3TreeViewSelect(0, p, 0); 5804 } 5805 #endif 5806 5807 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5808 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5809 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5810 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5811 if( IgnorableOrderby(pDest) ){ 5812 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5813 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5814 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5815 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5816 /* If ORDER BY makes no difference in the output then neither does 5817 ** DISTINCT so it can be removed too. */ 5818 sqlite3ExprListDelete(db, p->pOrderBy); 5819 p->pOrderBy = 0; 5820 p->selFlags &= ~SF_Distinct; 5821 p->selFlags |= SF_NoopOrderBy; 5822 } 5823 sqlite3SelectPrep(pParse, p, 0); 5824 if( pParse->nErr || db->mallocFailed ){ 5825 goto select_end; 5826 } 5827 assert( p->pEList!=0 ); 5828 #if SELECTTRACE_ENABLED 5829 if( sqlite3_unsupported_selecttrace & 0x104 ){ 5830 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5831 sqlite3TreeViewSelect(0, p, 0); 5832 } 5833 #endif 5834 5835 /* If the SF_UpdateFrom flag is set, then this function is being called 5836 ** as part of populating the temp table for an UPDATE...FROM statement. 5837 ** In this case, it is an error if the target object (pSrc->a[0]) name 5838 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 5839 if( p->selFlags & SF_UpdateFrom ){ 5840 struct SrcList_item *p0 = &p->pSrc->a[0]; 5841 for(i=1; i<p->pSrc->nSrc; i++){ 5842 struct SrcList_item *p1 = &p->pSrc->a[i]; 5843 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 5844 sqlite3ErrorMsg(pParse, 5845 "target object/alias may not appear in FROM clause: %s", 5846 p0->zAlias ? p0->zAlias : p0->pTab->zName 5847 ); 5848 goto select_end; 5849 } 5850 } 5851 } 5852 5853 if( pDest->eDest==SRT_Output ){ 5854 generateColumnNames(pParse, p); 5855 } 5856 5857 #ifndef SQLITE_OMIT_WINDOWFUNC 5858 rc = sqlite3WindowRewrite(pParse, p); 5859 if( rc ){ 5860 assert( db->mallocFailed || pParse->nErr>0 ); 5861 goto select_end; 5862 } 5863 #if SELECTTRACE_ENABLED 5864 if( p->pWin && (sqlite3_unsupported_selecttrace & 0x108)!=0 ){ 5865 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5866 sqlite3TreeViewSelect(0, p, 0); 5867 } 5868 #endif 5869 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5870 pTabList = p->pSrc; 5871 isAgg = (p->selFlags & SF_Aggregate)!=0; 5872 memset(&sSort, 0, sizeof(sSort)); 5873 sSort.pOrderBy = p->pOrderBy; 5874 5875 /* Try to do various optimizations (flattening subqueries, and strength 5876 ** reduction of join operators) in the FROM clause up into the main query 5877 */ 5878 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5879 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5880 struct SrcList_item *pItem = &pTabList->a[i]; 5881 Select *pSub = pItem->pSelect; 5882 Table *pTab = pItem->pTab; 5883 5884 /* The expander should have already created transient Table objects 5885 ** even for FROM clause elements such as subqueries that do not correspond 5886 ** to a real table */ 5887 assert( pTab!=0 ); 5888 5889 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5890 ** of the LEFT JOIN used in the WHERE clause. 5891 */ 5892 if( (pItem->fg.jointype & JT_LEFT)!=0 5893 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5894 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5895 ){ 5896 SELECTTRACE(0x100,pParse,p, 5897 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5898 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5899 unsetJoinExpr(p->pWhere, pItem->iCursor); 5900 } 5901 5902 /* No futher action if this term of the FROM clause is no a subquery */ 5903 if( pSub==0 ) continue; 5904 5905 /* Catch mismatch in the declared columns of a view and the number of 5906 ** columns in the SELECT on the RHS */ 5907 if( pTab->nCol!=pSub->pEList->nExpr ){ 5908 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5909 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5910 goto select_end; 5911 } 5912 5913 /* Do not try to flatten an aggregate subquery. 5914 ** 5915 ** Flattening an aggregate subquery is only possible if the outer query 5916 ** is not a join. But if the outer query is not a join, then the subquery 5917 ** will be implemented as a co-routine and there is no advantage to 5918 ** flattening in that case. 5919 */ 5920 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5921 assert( pSub->pGroupBy==0 ); 5922 5923 /* If the outer query contains a "complex" result set (that is, 5924 ** if the result set of the outer query uses functions or subqueries) 5925 ** and if the subquery contains an ORDER BY clause and if 5926 ** it will be implemented as a co-routine, then do not flatten. This 5927 ** restriction allows SQL constructs like this: 5928 ** 5929 ** SELECT expensive_function(x) 5930 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5931 ** 5932 ** The expensive_function() is only computed on the 10 rows that 5933 ** are output, rather than every row of the table. 5934 ** 5935 ** The requirement that the outer query have a complex result set 5936 ** means that flattening does occur on simpler SQL constraints without 5937 ** the expensive_function() like: 5938 ** 5939 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5940 */ 5941 if( pSub->pOrderBy!=0 5942 && i==0 5943 && (p->selFlags & SF_ComplexResult)!=0 5944 && (pTabList->nSrc==1 5945 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5946 ){ 5947 continue; 5948 } 5949 5950 if( flattenSubquery(pParse, p, i, isAgg) ){ 5951 if( pParse->nErr ) goto select_end; 5952 /* This subquery can be absorbed into its parent. */ 5953 i = -1; 5954 } 5955 pTabList = p->pSrc; 5956 if( db->mallocFailed ) goto select_end; 5957 if( !IgnorableOrderby(pDest) ){ 5958 sSort.pOrderBy = p->pOrderBy; 5959 } 5960 } 5961 #endif 5962 5963 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5964 /* Handle compound SELECT statements using the separate multiSelect() 5965 ** procedure. 5966 */ 5967 if( p->pPrior ){ 5968 rc = multiSelect(pParse, p, pDest); 5969 #if SELECTTRACE_ENABLED 5970 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5971 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5972 sqlite3TreeViewSelect(0, p, 0); 5973 } 5974 #endif 5975 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5976 return rc; 5977 } 5978 #endif 5979 5980 /* Do the WHERE-clause constant propagation optimization if this is 5981 ** a join. No need to speed time on this operation for non-join queries 5982 ** as the equivalent optimization will be handled by query planner in 5983 ** sqlite3WhereBegin(). 5984 */ 5985 if( pTabList->nSrc>1 5986 && OptimizationEnabled(db, SQLITE_PropagateConst) 5987 && propagateConstants(pParse, p) 5988 ){ 5989 #if SELECTTRACE_ENABLED 5990 if( sqlite3_unsupported_selecttrace & 0x100 ){ 5991 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5992 sqlite3TreeViewSelect(0, p, 0); 5993 } 5994 #endif 5995 }else{ 5996 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5997 } 5998 5999 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6000 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6001 && countOfViewOptimization(pParse, p) 6002 ){ 6003 if( db->mallocFailed ) goto select_end; 6004 pEList = p->pEList; 6005 pTabList = p->pSrc; 6006 } 6007 #endif 6008 6009 /* For each term in the FROM clause, do two things: 6010 ** (1) Authorized unreferenced tables 6011 ** (2) Generate code for all sub-queries 6012 */ 6013 for(i=0; i<pTabList->nSrc; i++){ 6014 struct SrcList_item *pItem = &pTabList->a[i]; 6015 SelectDest dest; 6016 Select *pSub; 6017 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6018 const char *zSavedAuthContext; 6019 #endif 6020 6021 /* Issue SQLITE_READ authorizations with a fake column name for any 6022 ** tables that are referenced but from which no values are extracted. 6023 ** Examples of where these kinds of null SQLITE_READ authorizations 6024 ** would occur: 6025 ** 6026 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6027 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6028 ** 6029 ** The fake column name is an empty string. It is possible for a table to 6030 ** have a column named by the empty string, in which case there is no way to 6031 ** distinguish between an unreferenced table and an actual reference to the 6032 ** "" column. The original design was for the fake column name to be a NULL, 6033 ** which would be unambiguous. But legacy authorization callbacks might 6034 ** assume the column name is non-NULL and segfault. The use of an empty 6035 ** string for the fake column name seems safer. 6036 */ 6037 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6038 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6039 } 6040 6041 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6042 /* Generate code for all sub-queries in the FROM clause 6043 */ 6044 pSub = pItem->pSelect; 6045 if( pSub==0 ) continue; 6046 6047 /* The code for a subquery should only be generated once, though it is 6048 ** technically harmless for it to be generated multiple times. The 6049 ** following assert() will detect if something changes to cause 6050 ** the same subquery to be coded multiple times, as a signal to the 6051 ** developers to try to optimize the situation. 6052 ** 6053 ** Update 2019-07-24: 6054 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6055 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6056 ** coded twice. So this assert() now becomes a testcase(). It should 6057 ** be very rare, though. 6058 */ 6059 testcase( pItem->addrFillSub!=0 ); 6060 6061 /* Increment Parse.nHeight by the height of the largest expression 6062 ** tree referred to by this, the parent select. The child select 6063 ** may contain expression trees of at most 6064 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6065 ** more conservative than necessary, but much easier than enforcing 6066 ** an exact limit. 6067 */ 6068 pParse->nHeight += sqlite3SelectExprHeight(p); 6069 6070 /* Make copies of constant WHERE-clause terms in the outer query down 6071 ** inside the subquery. This can help the subquery to run more efficiently. 6072 */ 6073 if( OptimizationEnabled(db, SQLITE_PushDown) 6074 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6075 (pItem->fg.jointype & JT_OUTER)!=0) 6076 ){ 6077 #if SELECTTRACE_ENABLED 6078 if( sqlite3_unsupported_selecttrace & 0x100 ){ 6079 SELECTTRACE(0x100,pParse,p, 6080 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6081 sqlite3TreeViewSelect(0, p, 0); 6082 } 6083 #endif 6084 }else{ 6085 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6086 } 6087 6088 zSavedAuthContext = pParse->zAuthContext; 6089 pParse->zAuthContext = pItem->zName; 6090 6091 /* Generate code to implement the subquery 6092 ** 6093 ** The subquery is implemented as a co-routine if the subquery is 6094 ** guaranteed to be the outer loop (so that it does not need to be 6095 ** computed more than once) 6096 ** 6097 ** TODO: Are there other reasons beside (1) to use a co-routine 6098 ** implementation? 6099 */ 6100 if( i==0 6101 && (pTabList->nSrc==1 6102 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6103 ){ 6104 /* Implement a co-routine that will return a single row of the result 6105 ** set on each invocation. 6106 */ 6107 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6108 6109 pItem->regReturn = ++pParse->nMem; 6110 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6111 VdbeComment((v, "%s", pItem->pTab->zName)); 6112 pItem->addrFillSub = addrTop; 6113 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6114 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6115 sqlite3Select(pParse, pSub, &dest); 6116 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6117 pItem->fg.viaCoroutine = 1; 6118 pItem->regResult = dest.iSdst; 6119 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6120 sqlite3VdbeJumpHere(v, addrTop-1); 6121 sqlite3ClearTempRegCache(pParse); 6122 }else{ 6123 /* Generate a subroutine that will fill an ephemeral table with 6124 ** the content of this subquery. pItem->addrFillSub will point 6125 ** to the address of the generated subroutine. pItem->regReturn 6126 ** is a register allocated to hold the subroutine return address 6127 */ 6128 int topAddr; 6129 int onceAddr = 0; 6130 int retAddr; 6131 struct SrcList_item *pPrior; 6132 6133 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6134 pItem->regReturn = ++pParse->nMem; 6135 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6136 pItem->addrFillSub = topAddr+1; 6137 if( pItem->fg.isCorrelated==0 ){ 6138 /* If the subquery is not correlated and if we are not inside of 6139 ** a trigger, then we only need to compute the value of the subquery 6140 ** once. */ 6141 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6142 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6143 }else{ 6144 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6145 } 6146 pPrior = isSelfJoinView(pTabList, pItem); 6147 if( pPrior ){ 6148 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6149 assert( pPrior->pSelect!=0 ); 6150 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6151 }else{ 6152 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6153 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6154 sqlite3Select(pParse, pSub, &dest); 6155 } 6156 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6157 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6158 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6159 VdbeComment((v, "end %s", pItem->pTab->zName)); 6160 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6161 sqlite3ClearTempRegCache(pParse); 6162 } 6163 if( db->mallocFailed ) goto select_end; 6164 pParse->nHeight -= sqlite3SelectExprHeight(p); 6165 pParse->zAuthContext = zSavedAuthContext; 6166 #endif 6167 } 6168 6169 /* Various elements of the SELECT copied into local variables for 6170 ** convenience */ 6171 pEList = p->pEList; 6172 pWhere = p->pWhere; 6173 pGroupBy = p->pGroupBy; 6174 pHaving = p->pHaving; 6175 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6176 6177 #if SELECTTRACE_ENABLED 6178 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6179 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6180 sqlite3TreeViewSelect(0, p, 0); 6181 } 6182 #endif 6183 6184 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6185 ** if the select-list is the same as the ORDER BY list, then this query 6186 ** can be rewritten as a GROUP BY. In other words, this: 6187 ** 6188 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6189 ** 6190 ** is transformed to: 6191 ** 6192 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6193 ** 6194 ** The second form is preferred as a single index (or temp-table) may be 6195 ** used for both the ORDER BY and DISTINCT processing. As originally 6196 ** written the query must use a temp-table for at least one of the ORDER 6197 ** BY and DISTINCT, and an index or separate temp-table for the other. 6198 */ 6199 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6200 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6201 #ifndef SQLITE_OMIT_WINDOWFUNC 6202 && p->pWin==0 6203 #endif 6204 ){ 6205 p->selFlags &= ~SF_Distinct; 6206 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6207 p->selFlags |= SF_Aggregate; 6208 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6209 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6210 ** original setting of the SF_Distinct flag, not the current setting */ 6211 assert( sDistinct.isTnct ); 6212 6213 #if SELECTTRACE_ENABLED 6214 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6215 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6216 sqlite3TreeViewSelect(0, p, 0); 6217 } 6218 #endif 6219 } 6220 6221 /* If there is an ORDER BY clause, then create an ephemeral index to 6222 ** do the sorting. But this sorting ephemeral index might end up 6223 ** being unused if the data can be extracted in pre-sorted order. 6224 ** If that is the case, then the OP_OpenEphemeral instruction will be 6225 ** changed to an OP_Noop once we figure out that the sorting index is 6226 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6227 ** that change. 6228 */ 6229 if( sSort.pOrderBy ){ 6230 KeyInfo *pKeyInfo; 6231 pKeyInfo = sqlite3KeyInfoFromExprList( 6232 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6233 sSort.iECursor = pParse->nTab++; 6234 sSort.addrSortIndex = 6235 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6236 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6237 (char*)pKeyInfo, P4_KEYINFO 6238 ); 6239 }else{ 6240 sSort.addrSortIndex = -1; 6241 } 6242 6243 /* If the output is destined for a temporary table, open that table. 6244 */ 6245 if( pDest->eDest==SRT_EphemTab ){ 6246 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6247 } 6248 6249 /* Set the limiter. 6250 */ 6251 iEnd = sqlite3VdbeMakeLabel(pParse); 6252 if( (p->selFlags & SF_FixedLimit)==0 ){ 6253 p->nSelectRow = 320; /* 4 billion rows */ 6254 } 6255 computeLimitRegisters(pParse, p, iEnd); 6256 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6257 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6258 sSort.sortFlags |= SORTFLAG_UseSorter; 6259 } 6260 6261 /* Open an ephemeral index to use for the distinct set. 6262 */ 6263 if( p->selFlags & SF_Distinct ){ 6264 sDistinct.tabTnct = pParse->nTab++; 6265 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6266 sDistinct.tabTnct, 0, 0, 6267 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6268 P4_KEYINFO); 6269 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6270 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6271 }else{ 6272 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6273 } 6274 6275 if( !isAgg && pGroupBy==0 ){ 6276 /* No aggregate functions and no GROUP BY clause */ 6277 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6278 | (p->selFlags & SF_FixedLimit); 6279 #ifndef SQLITE_OMIT_WINDOWFUNC 6280 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6281 if( pWin ){ 6282 sqlite3WindowCodeInit(pParse, p); 6283 } 6284 #endif 6285 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6286 6287 6288 /* Begin the database scan. */ 6289 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6290 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6291 p->pEList, wctrlFlags, p->nSelectRow); 6292 if( pWInfo==0 ) goto select_end; 6293 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6294 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6295 } 6296 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6297 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6298 } 6299 if( sSort.pOrderBy ){ 6300 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6301 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6302 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6303 sSort.pOrderBy = 0; 6304 } 6305 } 6306 6307 /* If sorting index that was created by a prior OP_OpenEphemeral 6308 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6309 ** into an OP_Noop. 6310 */ 6311 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6312 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6313 } 6314 6315 assert( p->pEList==pEList ); 6316 #ifndef SQLITE_OMIT_WINDOWFUNC 6317 if( pWin ){ 6318 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6319 int iCont = sqlite3VdbeMakeLabel(pParse); 6320 int iBreak = sqlite3VdbeMakeLabel(pParse); 6321 int regGosub = ++pParse->nMem; 6322 6323 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6324 6325 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6326 sqlite3VdbeResolveLabel(v, addrGosub); 6327 VdbeNoopComment((v, "inner-loop subroutine")); 6328 sSort.labelOBLopt = 0; 6329 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6330 sqlite3VdbeResolveLabel(v, iCont); 6331 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6332 VdbeComment((v, "end inner-loop subroutine")); 6333 sqlite3VdbeResolveLabel(v, iBreak); 6334 }else 6335 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6336 { 6337 /* Use the standard inner loop. */ 6338 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6339 sqlite3WhereContinueLabel(pWInfo), 6340 sqlite3WhereBreakLabel(pWInfo)); 6341 6342 /* End the database scan loop. 6343 */ 6344 sqlite3WhereEnd(pWInfo); 6345 } 6346 }else{ 6347 /* This case when there exist aggregate functions or a GROUP BY clause 6348 ** or both */ 6349 NameContext sNC; /* Name context for processing aggregate information */ 6350 int iAMem; /* First Mem address for storing current GROUP BY */ 6351 int iBMem; /* First Mem address for previous GROUP BY */ 6352 int iUseFlag; /* Mem address holding flag indicating that at least 6353 ** one row of the input to the aggregator has been 6354 ** processed */ 6355 int iAbortFlag; /* Mem address which causes query abort if positive */ 6356 int groupBySort; /* Rows come from source in GROUP BY order */ 6357 int addrEnd; /* End of processing for this SELECT */ 6358 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6359 int sortOut = 0; /* Output register from the sorter */ 6360 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6361 6362 /* Remove any and all aliases between the result set and the 6363 ** GROUP BY clause. 6364 */ 6365 if( pGroupBy ){ 6366 int k; /* Loop counter */ 6367 struct ExprList_item *pItem; /* For looping over expression in a list */ 6368 6369 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6370 pItem->u.x.iAlias = 0; 6371 } 6372 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6373 pItem->u.x.iAlias = 0; 6374 } 6375 assert( 66==sqlite3LogEst(100) ); 6376 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6377 6378 /* If there is both a GROUP BY and an ORDER BY clause and they are 6379 ** identical, then it may be possible to disable the ORDER BY clause 6380 ** on the grounds that the GROUP BY will cause elements to come out 6381 ** in the correct order. It also may not - the GROUP BY might use a 6382 ** database index that causes rows to be grouped together as required 6383 ** but not actually sorted. Either way, record the fact that the 6384 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6385 ** variable. */ 6386 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6387 int ii; 6388 /* The GROUP BY processing doesn't care whether rows are delivered in 6389 ** ASC or DESC order - only that each group is returned contiguously. 6390 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6391 ** ORDER BY to maximize the chances of rows being delivered in an 6392 ** order that makes the ORDER BY redundant. */ 6393 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6394 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6395 pGroupBy->a[ii].sortFlags = sortFlags; 6396 } 6397 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6398 orderByGrp = 1; 6399 } 6400 } 6401 }else{ 6402 assert( 0==sqlite3LogEst(1) ); 6403 p->nSelectRow = 0; 6404 } 6405 6406 /* Create a label to jump to when we want to abort the query */ 6407 addrEnd = sqlite3VdbeMakeLabel(pParse); 6408 6409 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6410 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6411 ** SELECT statement. 6412 */ 6413 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6414 if( pAggInfo==0 ){ 6415 goto select_end; 6416 } 6417 pAggInfo->pNext = pParse->pAggList; 6418 pParse->pAggList = pAggInfo; 6419 pAggInfo->selId = p->selId; 6420 memset(&sNC, 0, sizeof(sNC)); 6421 sNC.pParse = pParse; 6422 sNC.pSrcList = pTabList; 6423 sNC.uNC.pAggInfo = pAggInfo; 6424 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6425 pAggInfo->mnReg = pParse->nMem+1; 6426 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6427 pAggInfo->pGroupBy = pGroupBy; 6428 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6429 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6430 if( pHaving ){ 6431 if( pGroupBy ){ 6432 assert( pWhere==p->pWhere ); 6433 assert( pHaving==p->pHaving ); 6434 assert( pGroupBy==p->pGroupBy ); 6435 havingToWhere(pParse, p); 6436 pWhere = p->pWhere; 6437 } 6438 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6439 } 6440 pAggInfo->nAccumulator = pAggInfo->nColumn; 6441 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6442 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6443 }else{ 6444 minMaxFlag = WHERE_ORDERBY_NORMAL; 6445 } 6446 for(i=0; i<pAggInfo->nFunc; i++){ 6447 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6448 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6449 sNC.ncFlags |= NC_InAggFunc; 6450 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6451 #ifndef SQLITE_OMIT_WINDOWFUNC 6452 assert( !IsWindowFunc(pExpr) ); 6453 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6454 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6455 } 6456 #endif 6457 sNC.ncFlags &= ~NC_InAggFunc; 6458 } 6459 pAggInfo->mxReg = pParse->nMem; 6460 if( db->mallocFailed ) goto select_end; 6461 #if SELECTTRACE_ENABLED 6462 if( sqlite3_unsupported_selecttrace & 0x400 ){ 6463 int ii; 6464 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6465 sqlite3TreeViewSelect(0, p, 0); 6466 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6467 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6468 ii, pAggInfo->aCol[ii].iMem); 6469 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6470 } 6471 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6472 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6473 ii, pAggInfo->aFunc[ii].iMem); 6474 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6475 } 6476 } 6477 #endif 6478 6479 6480 /* Processing for aggregates with GROUP BY is very different and 6481 ** much more complex than aggregates without a GROUP BY. 6482 */ 6483 if( pGroupBy ){ 6484 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6485 int addr1; /* A-vs-B comparision jump */ 6486 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6487 int regOutputRow; /* Return address register for output subroutine */ 6488 int addrSetAbort; /* Set the abort flag and return */ 6489 int addrTopOfLoop; /* Top of the input loop */ 6490 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6491 int addrReset; /* Subroutine for resetting the accumulator */ 6492 int regReset; /* Return address register for reset subroutine */ 6493 6494 /* If there is a GROUP BY clause we might need a sorting index to 6495 ** implement it. Allocate that sorting index now. If it turns out 6496 ** that we do not need it after all, the OP_SorterOpen instruction 6497 ** will be converted into a Noop. 6498 */ 6499 pAggInfo->sortingIdx = pParse->nTab++; 6500 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6501 0, pAggInfo->nColumn); 6502 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6503 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6504 0, (char*)pKeyInfo, P4_KEYINFO); 6505 6506 /* Initialize memory locations used by GROUP BY aggregate processing 6507 */ 6508 iUseFlag = ++pParse->nMem; 6509 iAbortFlag = ++pParse->nMem; 6510 regOutputRow = ++pParse->nMem; 6511 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6512 regReset = ++pParse->nMem; 6513 addrReset = sqlite3VdbeMakeLabel(pParse); 6514 iAMem = pParse->nMem + 1; 6515 pParse->nMem += pGroupBy->nExpr; 6516 iBMem = pParse->nMem + 1; 6517 pParse->nMem += pGroupBy->nExpr; 6518 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6519 VdbeComment((v, "clear abort flag")); 6520 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6521 6522 /* Begin a loop that will extract all source rows in GROUP BY order. 6523 ** This might involve two separate loops with an OP_Sort in between, or 6524 ** it might be a single loop that uses an index to extract information 6525 ** in the right order to begin with. 6526 */ 6527 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6528 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6529 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6530 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6531 ); 6532 if( pWInfo==0 ) goto select_end; 6533 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6534 /* The optimizer is able to deliver rows in group by order so 6535 ** we do not have to sort. The OP_OpenEphemeral table will be 6536 ** cancelled later because we still need to use the pKeyInfo 6537 */ 6538 groupBySort = 0; 6539 }else{ 6540 /* Rows are coming out in undetermined order. We have to push 6541 ** each row into a sorting index, terminate the first loop, 6542 ** then loop over the sorting index in order to get the output 6543 ** in sorted order 6544 */ 6545 int regBase; 6546 int regRecord; 6547 int nCol; 6548 int nGroupBy; 6549 6550 explainTempTable(pParse, 6551 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6552 "DISTINCT" : "GROUP BY"); 6553 6554 groupBySort = 1; 6555 nGroupBy = pGroupBy->nExpr; 6556 nCol = nGroupBy; 6557 j = nGroupBy; 6558 for(i=0; i<pAggInfo->nColumn; i++){ 6559 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6560 nCol++; 6561 j++; 6562 } 6563 } 6564 regBase = sqlite3GetTempRange(pParse, nCol); 6565 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6566 j = nGroupBy; 6567 for(i=0; i<pAggInfo->nColumn; i++){ 6568 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6569 if( pCol->iSorterColumn>=j ){ 6570 int r1 = j + regBase; 6571 sqlite3ExprCodeGetColumnOfTable(v, 6572 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6573 j++; 6574 } 6575 } 6576 regRecord = sqlite3GetTempReg(pParse); 6577 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6578 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6579 sqlite3ReleaseTempReg(pParse, regRecord); 6580 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6581 sqlite3WhereEnd(pWInfo); 6582 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6583 sortOut = sqlite3GetTempReg(pParse); 6584 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6585 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6586 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6587 pAggInfo->useSortingIdx = 1; 6588 } 6589 6590 /* If the index or temporary table used by the GROUP BY sort 6591 ** will naturally deliver rows in the order required by the ORDER BY 6592 ** clause, cancel the ephemeral table open coded earlier. 6593 ** 6594 ** This is an optimization - the correct answer should result regardless. 6595 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6596 ** disable this optimization for testing purposes. */ 6597 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6598 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6599 ){ 6600 sSort.pOrderBy = 0; 6601 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6602 } 6603 6604 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6605 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6606 ** Then compare the current GROUP BY terms against the GROUP BY terms 6607 ** from the previous row currently stored in a0, a1, a2... 6608 */ 6609 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6610 if( groupBySort ){ 6611 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6612 sortOut, sortPTab); 6613 } 6614 for(j=0; j<pGroupBy->nExpr; j++){ 6615 if( groupBySort ){ 6616 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6617 }else{ 6618 pAggInfo->directMode = 1; 6619 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6620 } 6621 } 6622 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6623 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6624 addr1 = sqlite3VdbeCurrentAddr(v); 6625 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6626 6627 /* Generate code that runs whenever the GROUP BY changes. 6628 ** Changes in the GROUP BY are detected by the previous code 6629 ** block. If there were no changes, this block is skipped. 6630 ** 6631 ** This code copies current group by terms in b0,b1,b2,... 6632 ** over to a0,a1,a2. It then calls the output subroutine 6633 ** and resets the aggregate accumulator registers in preparation 6634 ** for the next GROUP BY batch. 6635 */ 6636 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6637 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6638 VdbeComment((v, "output one row")); 6639 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6640 VdbeComment((v, "check abort flag")); 6641 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6642 VdbeComment((v, "reset accumulator")); 6643 6644 /* Update the aggregate accumulators based on the content of 6645 ** the current row 6646 */ 6647 sqlite3VdbeJumpHere(v, addr1); 6648 updateAccumulator(pParse, iUseFlag, pAggInfo); 6649 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6650 VdbeComment((v, "indicate data in accumulator")); 6651 6652 /* End of the loop 6653 */ 6654 if( groupBySort ){ 6655 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop); 6656 VdbeCoverage(v); 6657 }else{ 6658 sqlite3WhereEnd(pWInfo); 6659 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6660 } 6661 6662 /* Output the final row of result 6663 */ 6664 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6665 VdbeComment((v, "output final row")); 6666 6667 /* Jump over the subroutines 6668 */ 6669 sqlite3VdbeGoto(v, addrEnd); 6670 6671 /* Generate a subroutine that outputs a single row of the result 6672 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6673 ** is less than or equal to zero, the subroutine is a no-op. If 6674 ** the processing calls for the query to abort, this subroutine 6675 ** increments the iAbortFlag memory location before returning in 6676 ** order to signal the caller to abort. 6677 */ 6678 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6679 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6680 VdbeComment((v, "set abort flag")); 6681 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6682 sqlite3VdbeResolveLabel(v, addrOutputRow); 6683 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6684 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6685 VdbeCoverage(v); 6686 VdbeComment((v, "Groupby result generator entry point")); 6687 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6688 finalizeAggFunctions(pParse, pAggInfo); 6689 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6690 selectInnerLoop(pParse, p, -1, &sSort, 6691 &sDistinct, pDest, 6692 addrOutputRow+1, addrSetAbort); 6693 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6694 VdbeComment((v, "end groupby result generator")); 6695 6696 /* Generate a subroutine that will reset the group-by accumulator 6697 */ 6698 sqlite3VdbeResolveLabel(v, addrReset); 6699 resetAccumulator(pParse, pAggInfo); 6700 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6701 VdbeComment((v, "indicate accumulator empty")); 6702 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6703 6704 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6705 else { 6706 Table *pTab; 6707 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 6708 /* If isSimpleCount() returns a pointer to a Table structure, then 6709 ** the SQL statement is of the form: 6710 ** 6711 ** SELECT count(*) FROM <tbl> 6712 ** 6713 ** where the Table structure returned represents table <tbl>. 6714 ** 6715 ** This statement is so common that it is optimized specially. The 6716 ** OP_Count instruction is executed either on the intkey table that 6717 ** contains the data for table <tbl> or on one of its indexes. It 6718 ** is better to execute the op on an index, as indexes are almost 6719 ** always spread across less pages than their corresponding tables. 6720 */ 6721 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6722 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6723 Index *pIdx; /* Iterator variable */ 6724 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6725 Index *pBest = 0; /* Best index found so far */ 6726 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6727 6728 sqlite3CodeVerifySchema(pParse, iDb); 6729 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6730 6731 /* Search for the index that has the lowest scan cost. 6732 ** 6733 ** (2011-04-15) Do not do a full scan of an unordered index. 6734 ** 6735 ** (2013-10-03) Do not count the entries in a partial index. 6736 ** 6737 ** In practice the KeyInfo structure will not be used. It is only 6738 ** passed to keep OP_OpenRead happy. 6739 */ 6740 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6741 if( !p->pSrc->a[0].fg.notIndexed ){ 6742 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6743 if( pIdx->bUnordered==0 6744 && pIdx->szIdxRow<pTab->szTabRow 6745 && pIdx->pPartIdxWhere==0 6746 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6747 ){ 6748 pBest = pIdx; 6749 } 6750 } 6751 } 6752 if( pBest ){ 6753 iRoot = pBest->tnum; 6754 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6755 } 6756 6757 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6758 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 6759 if( pKeyInfo ){ 6760 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6761 } 6762 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 6763 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6764 explainSimpleCount(pParse, pTab, pBest); 6765 }else{ 6766 int regAcc = 0; /* "populate accumulators" flag */ 6767 int addrSkip; 6768 6769 /* If there are accumulator registers but no min() or max() functions 6770 ** without FILTER clauses, allocate register regAcc. Register regAcc 6771 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6772 ** The code generated by updateAccumulator() uses this to ensure 6773 ** that the accumulator registers are (a) updated only once if 6774 ** there are no min() or max functions or (b) always updated for the 6775 ** first row visited by the aggregate, so that they are updated at 6776 ** least once even if the FILTER clause means the min() or max() 6777 ** function visits zero rows. */ 6778 if( pAggInfo->nAccumulator ){ 6779 for(i=0; i<pAggInfo->nFunc; i++){ 6780 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 6781 continue; 6782 } 6783 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 6784 break; 6785 } 6786 } 6787 if( i==pAggInfo->nFunc ){ 6788 regAcc = ++pParse->nMem; 6789 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6790 } 6791 } 6792 6793 /* This case runs if the aggregate has no GROUP BY clause. The 6794 ** processing is much simpler since there is only a single row 6795 ** of output. 6796 */ 6797 assert( p->pGroupBy==0 ); 6798 resetAccumulator(pParse, pAggInfo); 6799 6800 /* If this query is a candidate for the min/max optimization, then 6801 ** minMaxFlag will have been previously set to either 6802 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6803 ** be an appropriate ORDER BY expression for the optimization. 6804 */ 6805 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6806 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6807 6808 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6809 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6810 0, minMaxFlag, 0); 6811 if( pWInfo==0 ){ 6812 goto select_end; 6813 } 6814 updateAccumulator(pParse, regAcc, pAggInfo); 6815 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6816 addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6817 if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){ 6818 sqlite3VdbeGoto(v, addrSkip); 6819 } 6820 sqlite3WhereEnd(pWInfo); 6821 finalizeAggFunctions(pParse, pAggInfo); 6822 } 6823 6824 sSort.pOrderBy = 0; 6825 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6826 selectInnerLoop(pParse, p, -1, 0, 0, 6827 pDest, addrEnd, addrEnd); 6828 } 6829 sqlite3VdbeResolveLabel(v, addrEnd); 6830 6831 } /* endif aggregate query */ 6832 6833 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6834 explainTempTable(pParse, "DISTINCT"); 6835 } 6836 6837 /* If there is an ORDER BY clause, then we need to sort the results 6838 ** and send them to the callback one by one. 6839 */ 6840 if( sSort.pOrderBy ){ 6841 explainTempTable(pParse, 6842 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6843 assert( p->pEList==pEList ); 6844 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6845 } 6846 6847 /* Jump here to skip this query 6848 */ 6849 sqlite3VdbeResolveLabel(v, iEnd); 6850 6851 /* The SELECT has been coded. If there is an error in the Parse structure, 6852 ** set the return code to 1. Otherwise 0. */ 6853 rc = (pParse->nErr>0); 6854 6855 /* Control jumps to here if an error is encountered above, or upon 6856 ** successful coding of the SELECT. 6857 */ 6858 select_end: 6859 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6860 #ifdef SQLITE_DEBUG 6861 if( pAggInfo && !db->mallocFailed ){ 6862 for(i=0; i<pAggInfo->nColumn; i++){ 6863 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 6864 assert( pExpr!=0 || db->mallocFailed ); 6865 if( pExpr==0 ) continue; 6866 assert( pExpr->pAggInfo==pAggInfo ); 6867 assert( pExpr->iAgg==i ); 6868 } 6869 for(i=0; i<pAggInfo->nFunc; i++){ 6870 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6871 assert( pExpr!=0 || db->mallocFailed ); 6872 if( pExpr==0 ) continue; 6873 assert( pExpr->pAggInfo==pAggInfo ); 6874 assert( pExpr->iAgg==i ); 6875 } 6876 } 6877 #endif 6878 6879 #if SELECTTRACE_ENABLED 6880 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6881 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6882 sqlite3TreeViewSelect(0, p, 0); 6883 } 6884 #endif 6885 ExplainQueryPlanPop(pParse); 6886 return rc; 6887 } 6888