1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.504 2009/02/25 08:56:47 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 pNew->addrOpenEphm[0] = -1; 87 pNew->addrOpenEphm[1] = -1; 88 pNew->addrOpenEphm[2] = -1; 89 if( db->mallocFailed ) { 90 clearSelect(db, pNew); 91 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 92 pNew = 0; 93 } 94 return pNew; 95 } 96 97 /* 98 ** Delete the given Select structure and all of its substructures. 99 */ 100 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 101 if( p ){ 102 clearSelect(db, p); 103 sqlite3DbFree(db, p); 104 } 105 } 106 107 /* 108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 109 ** type of join. Return an integer constant that expresses that type 110 ** in terms of the following bit values: 111 ** 112 ** JT_INNER 113 ** JT_CROSS 114 ** JT_OUTER 115 ** JT_NATURAL 116 ** JT_LEFT 117 ** JT_RIGHT 118 ** 119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 120 ** 121 ** If an illegal or unsupported join type is seen, then still return 122 ** a join type, but put an error in the pParse structure. 123 */ 124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 125 int jointype = 0; 126 Token *apAll[3]; 127 Token *p; 128 static const struct { 129 const char zKeyword[8]; 130 u8 nChar; 131 u8 code; 132 } keywords[] = { 133 { "natural", 7, JT_NATURAL }, 134 { "left", 4, JT_LEFT|JT_OUTER }, 135 { "right", 5, JT_RIGHT|JT_OUTER }, 136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 137 { "outer", 5, JT_OUTER }, 138 { "inner", 5, JT_INNER }, 139 { "cross", 5, JT_INNER|JT_CROSS }, 140 }; 141 int i, j; 142 apAll[0] = pA; 143 apAll[1] = pB; 144 apAll[2] = pC; 145 for(i=0; i<3 && apAll[i]; i++){ 146 p = apAll[i]; 147 for(j=0; j<ArraySize(keywords); j++){ 148 if( p->n==keywords[j].nChar 149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 150 jointype |= keywords[j].code; 151 break; 152 } 153 } 154 if( j>=ArraySize(keywords) ){ 155 jointype |= JT_ERROR; 156 break; 157 } 158 } 159 if( 160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 161 (jointype & JT_ERROR)!=0 162 ){ 163 const char *zSp = " "; 164 assert( pB!=0 ); 165 if( pC==0 ){ zSp++; } 166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 167 "%T %T%s%T", pA, pB, zSp, pC); 168 jointype = JT_INNER; 169 }else if( jointype & JT_RIGHT ){ 170 sqlite3ErrorMsg(pParse, 171 "RIGHT and FULL OUTER JOINs are not currently supported"); 172 jointype = JT_INNER; 173 } 174 return jointype; 175 } 176 177 /* 178 ** Return the index of a column in a table. Return -1 if the column 179 ** is not contained in the table. 180 */ 181 static int columnIndex(Table *pTab, const char *zCol){ 182 int i; 183 for(i=0; i<pTab->nCol; i++){ 184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 185 } 186 return -1; 187 } 188 189 /* 190 ** Set the value of a token to a '\000'-terminated string. 191 */ 192 static void setToken(Token *p, const char *z){ 193 p->z = (u8*)z; 194 p->n = z ? sqlite3Strlen30(z) : 0; 195 p->dyn = 0; 196 } 197 198 /* 199 ** Set the token to the double-quoted and escaped version of the string pointed 200 ** to by z. For example; 201 ** 202 ** {a"bc} -> {"a""bc"} 203 */ 204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 205 206 /* Check if the string appears to be quoted using "..." or `...` 207 ** or [...] or '...' or if the string contains any " characters. 208 ** If it does, then record a version of the string with the special 209 ** characters escaped. 210 */ 211 const char *z2 = z; 212 if( *z2!='[' && *z2!='`' && *z2!='\'' ){ 213 while( *z2 ){ 214 if( *z2=='"' ) break; 215 z2++; 216 } 217 } 218 219 if( *z2 ){ 220 /* String contains " characters - copy and quote the string. */ 221 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 222 if( p->z ){ 223 p->n = sqlite3Strlen30((char *)p->z); 224 p->dyn = 1; 225 } 226 }else{ 227 /* String contains no " characters - copy the pointer. */ 228 p->z = (u8*)z; 229 p->n = (int)(z2 - z); 230 p->dyn = 0; 231 } 232 } 233 234 /* 235 ** Create an expression node for an identifier with the name of zName 236 */ 237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 238 Token dummy; 239 setToken(&dummy, zName); 240 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 241 } 242 243 /* 244 ** Add a term to the WHERE expression in *ppExpr that requires the 245 ** zCol column to be equal in the two tables pTab1 and pTab2. 246 */ 247 static void addWhereTerm( 248 Parse *pParse, /* Parsing context */ 249 const char *zCol, /* Name of the column */ 250 const Table *pTab1, /* First table */ 251 const char *zAlias1, /* Alias for first table. May be NULL */ 252 const Table *pTab2, /* Second table */ 253 const char *zAlias2, /* Alias for second table. May be NULL */ 254 int iRightJoinTable, /* VDBE cursor for the right table */ 255 Expr **ppExpr, /* Add the equality term to this expression */ 256 int isOuterJoin /* True if dealing with an OUTER join */ 257 ){ 258 Expr *pE1a, *pE1b, *pE1c; 259 Expr *pE2a, *pE2b, *pE2c; 260 Expr *pE; 261 262 pE1a = sqlite3CreateIdExpr(pParse, zCol); 263 pE2a = sqlite3CreateIdExpr(pParse, zCol); 264 if( zAlias1==0 ){ 265 zAlias1 = pTab1->zName; 266 } 267 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 268 if( zAlias2==0 ){ 269 zAlias2 = pTab2->zName; 270 } 271 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 272 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 273 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 274 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 275 if( pE && isOuterJoin ){ 276 ExprSetProperty(pE, EP_FromJoin); 277 pE->iRightJoinTable = iRightJoinTable; 278 } 279 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 280 } 281 282 /* 283 ** Set the EP_FromJoin property on all terms of the given expression. 284 ** And set the Expr.iRightJoinTable to iTable for every term in the 285 ** expression. 286 ** 287 ** The EP_FromJoin property is used on terms of an expression to tell 288 ** the LEFT OUTER JOIN processing logic that this term is part of the 289 ** join restriction specified in the ON or USING clause and not a part 290 ** of the more general WHERE clause. These terms are moved over to the 291 ** WHERE clause during join processing but we need to remember that they 292 ** originated in the ON or USING clause. 293 ** 294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 295 ** expression depends on table iRightJoinTable even if that table is not 296 ** explicitly mentioned in the expression. That information is needed 297 ** for cases like this: 298 ** 299 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 300 ** 301 ** The where clause needs to defer the handling of the t1.x=5 302 ** term until after the t2 loop of the join. In that way, a 303 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 304 ** defer the handling of t1.x=5, it will be processed immediately 305 ** after the t1 loop and rows with t1.x!=5 will never appear in 306 ** the output, which is incorrect. 307 */ 308 static void setJoinExpr(Expr *p, int iTable){ 309 while( p ){ 310 ExprSetProperty(p, EP_FromJoin); 311 p->iRightJoinTable = iTable; 312 setJoinExpr(p->pLeft, iTable); 313 p = p->pRight; 314 } 315 } 316 317 /* 318 ** This routine processes the join information for a SELECT statement. 319 ** ON and USING clauses are converted into extra terms of the WHERE clause. 320 ** NATURAL joins also create extra WHERE clause terms. 321 ** 322 ** The terms of a FROM clause are contained in the Select.pSrc structure. 323 ** The left most table is the first entry in Select.pSrc. The right-most 324 ** table is the last entry. The join operator is held in the entry to 325 ** the left. Thus entry 0 contains the join operator for the join between 326 ** entries 0 and 1. Any ON or USING clauses associated with the join are 327 ** also attached to the left entry. 328 ** 329 ** This routine returns the number of errors encountered. 330 */ 331 static int sqliteProcessJoin(Parse *pParse, Select *p){ 332 SrcList *pSrc; /* All tables in the FROM clause */ 333 int i, j; /* Loop counters */ 334 struct SrcList_item *pLeft; /* Left table being joined */ 335 struct SrcList_item *pRight; /* Right table being joined */ 336 337 pSrc = p->pSrc; 338 pLeft = &pSrc->a[0]; 339 pRight = &pLeft[1]; 340 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 341 Table *pLeftTab = pLeft->pTab; 342 Table *pRightTab = pRight->pTab; 343 int isOuter; 344 345 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 346 isOuter = (pRight->jointype & JT_OUTER)!=0; 347 348 /* When the NATURAL keyword is present, add WHERE clause terms for 349 ** every column that the two tables have in common. 350 */ 351 if( pRight->jointype & JT_NATURAL ){ 352 if( pRight->pOn || pRight->pUsing ){ 353 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 354 "an ON or USING clause", 0); 355 return 1; 356 } 357 for(j=0; j<pLeftTab->nCol; j++){ 358 char *zName = pLeftTab->aCol[j].zName; 359 if( columnIndex(pRightTab, zName)>=0 ){ 360 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 361 pRightTab, pRight->zAlias, 362 pRight->iCursor, &p->pWhere, isOuter); 363 364 } 365 } 366 } 367 368 /* Disallow both ON and USING clauses in the same join 369 */ 370 if( pRight->pOn && pRight->pUsing ){ 371 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 372 "clauses in the same join"); 373 return 1; 374 } 375 376 /* Add the ON clause to the end of the WHERE clause, connected by 377 ** an AND operator. 378 */ 379 if( pRight->pOn ){ 380 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 381 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 382 pRight->pOn = 0; 383 } 384 385 /* Create extra terms on the WHERE clause for each column named 386 ** in the USING clause. Example: If the two tables to be joined are 387 ** A and B and the USING clause names X, Y, and Z, then add this 388 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 389 ** Report an error if any column mentioned in the USING clause is 390 ** not contained in both tables to be joined. 391 */ 392 if( pRight->pUsing ){ 393 IdList *pList = pRight->pUsing; 394 for(j=0; j<pList->nId; j++){ 395 char *zName = pList->a[j].zName; 396 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 397 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 398 "not present in both tables", zName); 399 return 1; 400 } 401 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 402 pRightTab, pRight->zAlias, 403 pRight->iCursor, &p->pWhere, isOuter); 404 } 405 } 406 } 407 return 0; 408 } 409 410 /* 411 ** Insert code into "v" that will push the record on the top of the 412 ** stack into the sorter. 413 */ 414 static void pushOntoSorter( 415 Parse *pParse, /* Parser context */ 416 ExprList *pOrderBy, /* The ORDER BY clause */ 417 Select *pSelect, /* The whole SELECT statement */ 418 int regData /* Register holding data to be sorted */ 419 ){ 420 Vdbe *v = pParse->pVdbe; 421 int nExpr = pOrderBy->nExpr; 422 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 423 int regRecord = sqlite3GetTempReg(pParse); 424 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 425 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 426 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 427 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 428 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 429 sqlite3ReleaseTempReg(pParse, regRecord); 430 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 431 if( pSelect->iLimit ){ 432 int addr1, addr2; 433 int iLimit; 434 if( pSelect->iOffset ){ 435 iLimit = pSelect->iOffset+1; 436 }else{ 437 iLimit = pSelect->iLimit; 438 } 439 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 440 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 441 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 442 sqlite3VdbeJumpHere(v, addr1); 443 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 444 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 445 sqlite3VdbeJumpHere(v, addr2); 446 pSelect->iLimit = 0; 447 } 448 } 449 450 /* 451 ** Add code to implement the OFFSET 452 */ 453 static void codeOffset( 454 Vdbe *v, /* Generate code into this VM */ 455 Select *p, /* The SELECT statement being coded */ 456 int iContinue /* Jump here to skip the current record */ 457 ){ 458 if( p->iOffset && iContinue!=0 ){ 459 int addr; 460 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 461 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 462 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 463 VdbeComment((v, "skip OFFSET records")); 464 sqlite3VdbeJumpHere(v, addr); 465 } 466 } 467 468 /* 469 ** Add code that will check to make sure the N registers starting at iMem 470 ** form a distinct entry. iTab is a sorting index that holds previously 471 ** seen combinations of the N values. A new entry is made in iTab 472 ** if the current N values are new. 473 ** 474 ** A jump to addrRepeat is made and the N+1 values are popped from the 475 ** stack if the top N elements are not distinct. 476 */ 477 static void codeDistinct( 478 Parse *pParse, /* Parsing and code generating context */ 479 int iTab, /* A sorting index used to test for distinctness */ 480 int addrRepeat, /* Jump to here if not distinct */ 481 int N, /* Number of elements */ 482 int iMem /* First element */ 483 ){ 484 Vdbe *v; 485 int r1; 486 487 v = pParse->pVdbe; 488 r1 = sqlite3GetTempReg(pParse); 489 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 490 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 491 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 492 sqlite3ReleaseTempReg(pParse, r1); 493 } 494 495 /* 496 ** Generate an error message when a SELECT is used within a subexpression 497 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 498 ** column. We do this in a subroutine because the error occurs in multiple 499 ** places. 500 */ 501 static int checkForMultiColumnSelectError( 502 Parse *pParse, /* Parse context. */ 503 SelectDest *pDest, /* Destination of SELECT results */ 504 int nExpr /* Number of result columns returned by SELECT */ 505 ){ 506 int eDest = pDest->eDest; 507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 508 sqlite3ErrorMsg(pParse, "only a single result allowed for " 509 "a SELECT that is part of an expression"); 510 return 1; 511 }else{ 512 return 0; 513 } 514 } 515 516 /* 517 ** This routine generates the code for the inside of the inner loop 518 ** of a SELECT. 519 ** 520 ** If srcTab and nColumn are both zero, then the pEList expressions 521 ** are evaluated in order to get the data for this row. If nColumn>0 522 ** then data is pulled from srcTab and pEList is used only to get the 523 ** datatypes for each column. 524 */ 525 static void selectInnerLoop( 526 Parse *pParse, /* The parser context */ 527 Select *p, /* The complete select statement being coded */ 528 ExprList *pEList, /* List of values being extracted */ 529 int srcTab, /* Pull data from this table */ 530 int nColumn, /* Number of columns in the source table */ 531 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 532 int distinct, /* If >=0, make sure results are distinct */ 533 SelectDest *pDest, /* How to dispose of the results */ 534 int iContinue, /* Jump here to continue with next row */ 535 int iBreak /* Jump here to break out of the inner loop */ 536 ){ 537 Vdbe *v = pParse->pVdbe; 538 int i; 539 int hasDistinct; /* True if the DISTINCT keyword is present */ 540 int regResult; /* Start of memory holding result set */ 541 int eDest = pDest->eDest; /* How to dispose of results */ 542 int iParm = pDest->iParm; /* First argument to disposal method */ 543 int nResultCol; /* Number of result columns */ 544 545 assert( v ); 546 if( NEVER(v==0) ) return; 547 assert( pEList!=0 ); 548 hasDistinct = distinct>=0; 549 if( pOrderBy==0 && !hasDistinct ){ 550 codeOffset(v, p, iContinue); 551 } 552 553 /* Pull the requested columns. 554 */ 555 if( nColumn>0 ){ 556 nResultCol = nColumn; 557 }else{ 558 nResultCol = pEList->nExpr; 559 } 560 if( pDest->iMem==0 ){ 561 pDest->iMem = pParse->nMem+1; 562 pDest->nMem = nResultCol; 563 pParse->nMem += nResultCol; 564 }else{ 565 assert( pDest->nMem==nResultCol ); 566 } 567 regResult = pDest->iMem; 568 if( nColumn>0 ){ 569 for(i=0; i<nColumn; i++){ 570 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 571 } 572 }else if( eDest!=SRT_Exists ){ 573 /* If the destination is an EXISTS(...) expression, the actual 574 ** values returned by the SELECT are not required. 575 */ 576 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 577 } 578 nColumn = nResultCol; 579 580 /* If the DISTINCT keyword was present on the SELECT statement 581 ** and this row has been seen before, then do not make this row 582 ** part of the result. 583 */ 584 if( hasDistinct ){ 585 assert( pEList!=0 ); 586 assert( pEList->nExpr==nColumn ); 587 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 588 if( pOrderBy==0 ){ 589 codeOffset(v, p, iContinue); 590 } 591 } 592 593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 594 return; 595 } 596 597 switch( eDest ){ 598 /* In this mode, write each query result to the key of the temporary 599 ** table iParm. 600 */ 601 #ifndef SQLITE_OMIT_COMPOUND_SELECT 602 case SRT_Union: { 603 int r1; 604 r1 = sqlite3GetTempReg(pParse); 605 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 606 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 607 sqlite3ReleaseTempReg(pParse, r1); 608 break; 609 } 610 611 /* Construct a record from the query result, but instead of 612 ** saving that record, use it as a key to delete elements from 613 ** the temporary table iParm. 614 */ 615 case SRT_Except: { 616 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 617 break; 618 } 619 #endif 620 621 /* Store the result as data using a unique key. 622 */ 623 case SRT_Table: 624 case SRT_EphemTab: { 625 int r1 = sqlite3GetTempReg(pParse); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Output: { 694 if( pOrderBy ){ 695 int r1 = sqlite3GetTempReg(pParse); 696 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 697 pushOntoSorter(pParse, pOrderBy, p, r1); 698 sqlite3ReleaseTempReg(pParse, r1); 699 }else if( eDest==SRT_Coroutine ){ 700 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 701 }else{ 702 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 703 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 704 } 705 break; 706 } 707 708 #if !defined(SQLITE_OMIT_TRIGGER) 709 /* Discard the results. This is used for SELECT statements inside 710 ** the body of a TRIGGER. The purpose of such selects is to call 711 ** user-defined functions that have side effects. We do not care 712 ** about the actual results of the select. 713 */ 714 default: { 715 assert( eDest==SRT_Discard ); 716 break; 717 } 718 #endif 719 } 720 721 /* Jump to the end of the loop if the LIMIT is reached. 722 */ 723 if( p->iLimit ){ 724 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 725 ** pushOntoSorter() would have cleared p->iLimit */ 726 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 727 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 728 } 729 } 730 731 /* 732 ** Given an expression list, generate a KeyInfo structure that records 733 ** the collating sequence for each expression in that expression list. 734 ** 735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 736 ** KeyInfo structure is appropriate for initializing a virtual index to 737 ** implement that clause. If the ExprList is the result set of a SELECT 738 ** then the KeyInfo structure is appropriate for initializing a virtual 739 ** index to implement a DISTINCT test. 740 ** 741 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 742 ** function is responsible for seeing that this structure is eventually 743 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 745 */ 746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 747 sqlite3 *db = pParse->db; 748 int nExpr; 749 KeyInfo *pInfo; 750 struct ExprList_item *pItem; 751 int i; 752 753 nExpr = pList->nExpr; 754 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 755 if( pInfo ){ 756 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 757 pInfo->nField = (u16)nExpr; 758 pInfo->enc = ENC(db); 759 pInfo->db = db; 760 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 761 CollSeq *pColl; 762 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 763 if( !pColl ){ 764 pColl = db->pDfltColl; 765 } 766 pInfo->aColl[i] = pColl; 767 pInfo->aSortOrder[i] = pItem->sortOrder; 768 } 769 } 770 return pInfo; 771 } 772 773 774 /* 775 ** If the inner loop was generated using a non-null pOrderBy argument, 776 ** then the results were placed in a sorter. After the loop is terminated 777 ** we need to run the sorter and output the results. The following 778 ** routine generates the code needed to do that. 779 */ 780 static void generateSortTail( 781 Parse *pParse, /* Parsing context */ 782 Select *p, /* The SELECT statement */ 783 Vdbe *v, /* Generate code into this VDBE */ 784 int nColumn, /* Number of columns of data */ 785 SelectDest *pDest /* Write the sorted results here */ 786 ){ 787 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 788 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 789 int addr; 790 int iTab; 791 int pseudoTab = 0; 792 ExprList *pOrderBy = p->pOrderBy; 793 794 int eDest = pDest->eDest; 795 int iParm = pDest->iParm; 796 797 int regRow; 798 int regRowid; 799 800 iTab = pOrderBy->iECursor; 801 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 802 pseudoTab = pParse->nTab++; 803 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn); 804 } 805 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 806 codeOffset(v, p, addrContinue); 807 regRow = sqlite3GetTempReg(pParse); 808 regRowid = sqlite3GetTempReg(pParse); 809 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 810 switch( eDest ){ 811 case SRT_Table: 812 case SRT_EphemTab: { 813 testcase( eDest==SRT_Table ); 814 testcase( eDest==SRT_EphemTab ); 815 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 816 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 817 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 818 break; 819 } 820 #ifndef SQLITE_OMIT_SUBQUERY 821 case SRT_Set: { 822 assert( nColumn==1 ); 823 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 824 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 826 break; 827 } 828 case SRT_Mem: { 829 assert( nColumn==1 ); 830 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 831 /* The LIMIT clause will terminate the loop for us */ 832 break; 833 } 834 #endif 835 case SRT_Output: 836 case SRT_Coroutine: { 837 int i; 838 testcase( eDest==SRT_Output ); 839 testcase( eDest==SRT_Coroutine ); 840 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 841 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 842 for(i=0; i<nColumn; i++){ 843 assert( regRow!=pDest->iMem+i ); 844 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 845 } 846 if( eDest==SRT_Output ){ 847 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 848 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 849 }else{ 850 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 851 } 852 break; 853 } 854 default: { 855 /* Do nothing */ 856 break; 857 } 858 } 859 sqlite3ReleaseTempReg(pParse, regRow); 860 sqlite3ReleaseTempReg(pParse, regRowid); 861 862 /* LIMIT has been implemented by the pushOntoSorter() routine. 863 */ 864 assert( p->iLimit==0 ); 865 866 /* The bottom of the loop 867 */ 868 sqlite3VdbeResolveLabel(v, addrContinue); 869 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 870 sqlite3VdbeResolveLabel(v, addrBreak); 871 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 872 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 873 } 874 } 875 876 /* 877 ** Return a pointer to a string containing the 'declaration type' of the 878 ** expression pExpr. The string may be treated as static by the caller. 879 ** 880 ** The declaration type is the exact datatype definition extracted from the 881 ** original CREATE TABLE statement if the expression is a column. The 882 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 883 ** is considered a column can be complex in the presence of subqueries. The 884 ** result-set expression in all of the following SELECT statements is 885 ** considered a column by this function. 886 ** 887 ** SELECT col FROM tbl; 888 ** SELECT (SELECT col FROM tbl; 889 ** SELECT (SELECT col FROM tbl); 890 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 891 ** 892 ** The declaration type for any expression other than a column is NULL. 893 */ 894 static const char *columnType( 895 NameContext *pNC, 896 Expr *pExpr, 897 const char **pzOriginDb, 898 const char **pzOriginTab, 899 const char **pzOriginCol 900 ){ 901 char const *zType = 0; 902 char const *zOriginDb = 0; 903 char const *zOriginTab = 0; 904 char const *zOriginCol = 0; 905 int j; 906 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 907 908 switch( pExpr->op ){ 909 case TK_AGG_COLUMN: 910 case TK_COLUMN: { 911 /* The expression is a column. Locate the table the column is being 912 ** extracted from in NameContext.pSrcList. This table may be real 913 ** database table or a subquery. 914 */ 915 Table *pTab = 0; /* Table structure column is extracted from */ 916 Select *pS = 0; /* Select the column is extracted from */ 917 int iCol = pExpr->iColumn; /* Index of column in pTab */ 918 while( pNC && !pTab ){ 919 SrcList *pTabList = pNC->pSrcList; 920 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 921 if( j<pTabList->nSrc ){ 922 pTab = pTabList->a[j].pTab; 923 pS = pTabList->a[j].pSelect; 924 }else{ 925 pNC = pNC->pNext; 926 } 927 } 928 929 if( pTab==0 ){ 930 /* FIX ME: 931 ** This can occurs if you have something like "SELECT new.x;" inside 932 ** a trigger. In other words, if you reference the special "new" 933 ** table in the result set of a select. We do not have a good way 934 ** to find the actual table type, so call it "TEXT". This is really 935 ** something of a bug, but I do not know how to fix it. 936 ** 937 ** This code does not produce the correct answer - it just prevents 938 ** a segfault. See ticket #1229. 939 */ 940 zType = "TEXT"; 941 break; 942 } 943 944 assert( pTab ); 945 if( pS ){ 946 /* The "table" is actually a sub-select or a view in the FROM clause 947 ** of the SELECT statement. Return the declaration type and origin 948 ** data for the result-set column of the sub-select. 949 */ 950 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 951 /* If iCol is less than zero, then the expression requests the 952 ** rowid of the sub-select or view. This expression is legal (see 953 ** test case misc2.2.2) - it always evaluates to NULL. 954 */ 955 NameContext sNC; 956 Expr *p = pS->pEList->a[iCol].pExpr; 957 sNC.pSrcList = pS->pSrc; 958 sNC.pNext = 0; 959 sNC.pParse = pNC->pParse; 960 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 961 } 962 }else if( ALWAYS(pTab->pSchema) ){ 963 /* A real table */ 964 assert( !pS ); 965 if( iCol<0 ) iCol = pTab->iPKey; 966 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 967 if( iCol<0 ){ 968 zType = "INTEGER"; 969 zOriginCol = "rowid"; 970 }else{ 971 zType = pTab->aCol[iCol].zType; 972 zOriginCol = pTab->aCol[iCol].zName; 973 } 974 zOriginTab = pTab->zName; 975 if( pNC->pParse ){ 976 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 977 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 978 } 979 } 980 break; 981 } 982 #ifndef SQLITE_OMIT_SUBQUERY 983 case TK_SELECT: { 984 /* The expression is a sub-select. Return the declaration type and 985 ** origin info for the single column in the result set of the SELECT 986 ** statement. 987 */ 988 NameContext sNC; 989 Select *pS = pExpr->x.pSelect; 990 Expr *p = pS->pEList->a[0].pExpr; 991 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 992 sNC.pSrcList = pS->pSrc; 993 sNC.pNext = pNC; 994 sNC.pParse = pNC->pParse; 995 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 996 break; 997 } 998 #endif 999 } 1000 1001 if( pzOriginDb ){ 1002 assert( pzOriginTab && pzOriginCol ); 1003 *pzOriginDb = zOriginDb; 1004 *pzOriginTab = zOriginTab; 1005 *pzOriginCol = zOriginCol; 1006 } 1007 return zType; 1008 } 1009 1010 /* 1011 ** Generate code that will tell the VDBE the declaration types of columns 1012 ** in the result set. 1013 */ 1014 static void generateColumnTypes( 1015 Parse *pParse, /* Parser context */ 1016 SrcList *pTabList, /* List of tables */ 1017 ExprList *pEList /* Expressions defining the result set */ 1018 ){ 1019 #ifndef SQLITE_OMIT_DECLTYPE 1020 Vdbe *v = pParse->pVdbe; 1021 int i; 1022 NameContext sNC; 1023 sNC.pSrcList = pTabList; 1024 sNC.pParse = pParse; 1025 for(i=0; i<pEList->nExpr; i++){ 1026 Expr *p = pEList->a[i].pExpr; 1027 const char *zType; 1028 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1029 const char *zOrigDb = 0; 1030 const char *zOrigTab = 0; 1031 const char *zOrigCol = 0; 1032 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1033 1034 /* The vdbe must make its own copy of the column-type and other 1035 ** column specific strings, in case the schema is reset before this 1036 ** virtual machine is deleted. 1037 */ 1038 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1039 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1040 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1041 #else 1042 zType = columnType(&sNC, p, 0, 0, 0); 1043 #endif 1044 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1045 } 1046 #endif /* SQLITE_OMIT_DECLTYPE */ 1047 } 1048 1049 /* 1050 ** Generate code that will tell the VDBE the names of columns 1051 ** in the result set. This information is used to provide the 1052 ** azCol[] values in the callback. 1053 */ 1054 static void generateColumnNames( 1055 Parse *pParse, /* Parser context */ 1056 SrcList *pTabList, /* List of tables */ 1057 ExprList *pEList /* Expressions defining the result set */ 1058 ){ 1059 Vdbe *v = pParse->pVdbe; 1060 int i, j; 1061 sqlite3 *db = pParse->db; 1062 int fullNames, shortNames; 1063 1064 #ifndef SQLITE_OMIT_EXPLAIN 1065 /* If this is an EXPLAIN, skip this step */ 1066 if( pParse->explain ){ 1067 return; 1068 } 1069 #endif 1070 1071 assert( v!=0 ); 1072 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1073 pParse->colNamesSet = 1; 1074 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1075 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1076 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1077 for(i=0; i<pEList->nExpr; i++){ 1078 Expr *p; 1079 p = pEList->a[i].pExpr; 1080 if( p==0 ) continue; 1081 if( pEList->a[i].zName ){ 1082 char *zName = pEList->a[i].zName; 1083 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1084 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1085 Table *pTab; 1086 char *zCol; 1087 int iCol = p->iColumn; 1088 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1089 if( pTabList->a[j].iCursor==p->iTable ) break; 1090 } 1091 assert( j<pTabList->nSrc ); 1092 pTab = pTabList->a[j].pTab; 1093 if( iCol<0 ) iCol = pTab->iPKey; 1094 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1095 if( iCol<0 ){ 1096 zCol = "rowid"; 1097 }else{ 1098 zCol = pTab->aCol[iCol].zName; 1099 } 1100 if( !shortNames && !fullNames ){ 1101 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1102 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1103 }else if( fullNames ){ 1104 char *zName = 0; 1105 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1106 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1107 }else{ 1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1109 } 1110 }else{ 1111 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1112 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1113 } 1114 } 1115 generateColumnTypes(pParse, pTabList, pEList); 1116 } 1117 1118 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1119 /* 1120 ** Name of the connection operator, used for error messages. 1121 */ 1122 static const char *selectOpName(int id){ 1123 char *z; 1124 switch( id ){ 1125 case TK_ALL: z = "UNION ALL"; break; 1126 case TK_INTERSECT: z = "INTERSECT"; break; 1127 case TK_EXCEPT: z = "EXCEPT"; break; 1128 default: z = "UNION"; break; 1129 } 1130 return z; 1131 } 1132 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1133 1134 /* 1135 ** Given a an expression list (which is really the list of expressions 1136 ** that form the result set of a SELECT statement) compute appropriate 1137 ** column names for a table that would hold the expression list. 1138 ** 1139 ** All column names will be unique. 1140 ** 1141 ** Only the column names are computed. Column.zType, Column.zColl, 1142 ** and other fields of Column are zeroed. 1143 ** 1144 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1146 */ 1147 static int selectColumnsFromExprList( 1148 Parse *pParse, /* Parsing context */ 1149 ExprList *pEList, /* Expr list from which to derive column names */ 1150 int *pnCol, /* Write the number of columns here */ 1151 Column **paCol /* Write the new column list here */ 1152 ){ 1153 sqlite3 *db = pParse->db; /* Database connection */ 1154 int i, j; /* Loop counters */ 1155 int cnt; /* Index added to make the name unique */ 1156 Column *aCol, *pCol; /* For looping over result columns */ 1157 int nCol; /* Number of columns in the result set */ 1158 Expr *p; /* Expression for a single result column */ 1159 char *zName; /* Column name */ 1160 int nName; /* Size of name in zName[] */ 1161 1162 *pnCol = nCol = pEList->nExpr; 1163 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1164 if( aCol==0 ) return SQLITE_NOMEM; 1165 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1166 /* Get an appropriate name for the column 1167 */ 1168 p = pEList->a[i].pExpr; 1169 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1170 if( (zName = pEList->a[i].zName)!=0 ){ 1171 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1172 zName = sqlite3DbStrDup(db, zName); 1173 }else{ 1174 Expr *pColExpr = p; /* The expression that is the result column name */ 1175 Table *pTab; /* Table associated with this expression */ 1176 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1177 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){ 1178 /* For columns use the column name name */ 1179 int iCol = pColExpr->iColumn; 1180 if( iCol<0 ) iCol = pTab->iPKey; 1181 zName = sqlite3MPrintf(db, "%s", 1182 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1183 }else{ 1184 /* Use the original text of the column expression as its name */ 1185 Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token); 1186 zName = sqlite3MPrintf(db, "%T", pToken); 1187 } 1188 } 1189 if( db->mallocFailed ){ 1190 sqlite3DbFree(db, zName); 1191 break; 1192 } 1193 sqlite3Dequote(zName); 1194 1195 /* Make sure the column name is unique. If the name is not unique, 1196 ** append a integer to the name so that it becomes unique. 1197 */ 1198 nName = sqlite3Strlen30(zName); 1199 for(j=cnt=0; j<i; j++){ 1200 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1201 char *zNewName; 1202 zName[nName] = 0; 1203 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1204 sqlite3DbFree(db, zName); 1205 zName = zNewName; 1206 j = -1; 1207 if( zName==0 ) break; 1208 } 1209 } 1210 pCol->zName = zName; 1211 } 1212 if( db->mallocFailed ){ 1213 for(j=0; j<i; j++){ 1214 sqlite3DbFree(db, aCol[j].zName); 1215 } 1216 sqlite3DbFree(db, aCol); 1217 *paCol = 0; 1218 *pnCol = 0; 1219 return SQLITE_NOMEM; 1220 } 1221 return SQLITE_OK; 1222 } 1223 1224 /* 1225 ** Add type and collation information to a column list based on 1226 ** a SELECT statement. 1227 ** 1228 ** The column list presumably came from selectColumnNamesFromExprList(). 1229 ** The column list has only names, not types or collations. This 1230 ** routine goes through and adds the types and collations. 1231 ** 1232 ** This routine requires that all indentifiers in the SELECT 1233 ** statement be resolved. 1234 */ 1235 static void selectAddColumnTypeAndCollation( 1236 Parse *pParse, /* Parsing contexts */ 1237 int nCol, /* Number of columns */ 1238 Column *aCol, /* List of columns */ 1239 Select *pSelect /* SELECT used to determine types and collations */ 1240 ){ 1241 sqlite3 *db = pParse->db; 1242 NameContext sNC; 1243 Column *pCol; 1244 CollSeq *pColl; 1245 int i; 1246 Expr *p; 1247 struct ExprList_item *a; 1248 1249 assert( pSelect!=0 ); 1250 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1251 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1252 if( db->mallocFailed ) return; 1253 memset(&sNC, 0, sizeof(sNC)); 1254 sNC.pSrcList = pSelect->pSrc; 1255 a = pSelect->pEList->a; 1256 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1257 p = a[i].pExpr; 1258 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1259 pCol->affinity = sqlite3ExprAffinity(p); 1260 pColl = sqlite3ExprCollSeq(pParse, p); 1261 if( pColl ){ 1262 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1263 } 1264 } 1265 } 1266 1267 /* 1268 ** Given a SELECT statement, generate a Table structure that describes 1269 ** the result set of that SELECT. 1270 */ 1271 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1272 Table *pTab; 1273 sqlite3 *db = pParse->db; 1274 int savedFlags; 1275 1276 savedFlags = db->flags; 1277 db->flags &= ~SQLITE_FullColNames; 1278 db->flags |= SQLITE_ShortColNames; 1279 sqlite3SelectPrep(pParse, pSelect, 0); 1280 if( pParse->nErr ) return 0; 1281 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1282 db->flags = savedFlags; 1283 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1284 if( pTab==0 ){ 1285 return 0; 1286 } 1287 pTab->db = db; 1288 pTab->nRef = 1; 1289 pTab->zName = 0; 1290 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1291 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1292 pTab->iPKey = -1; 1293 if( db->mallocFailed ){ 1294 sqlite3DeleteTable(pTab); 1295 return 0; 1296 } 1297 return pTab; 1298 } 1299 1300 /* 1301 ** Get a VDBE for the given parser context. Create a new one if necessary. 1302 ** If an error occurs, return NULL and leave a message in pParse. 1303 */ 1304 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1305 Vdbe *v = pParse->pVdbe; 1306 if( v==0 ){ 1307 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1308 #ifndef SQLITE_OMIT_TRACE 1309 if( v ){ 1310 sqlite3VdbeAddOp0(v, OP_Trace); 1311 } 1312 #endif 1313 } 1314 return v; 1315 } 1316 1317 1318 /* 1319 ** Compute the iLimit and iOffset fields of the SELECT based on the 1320 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1321 ** that appear in the original SQL statement after the LIMIT and OFFSET 1322 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1323 ** are the integer memory register numbers for counters used to compute 1324 ** the limit and offset. If there is no limit and/or offset, then 1325 ** iLimit and iOffset are negative. 1326 ** 1327 ** This routine changes the values of iLimit and iOffset only if 1328 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1329 ** iOffset should have been preset to appropriate default values 1330 ** (usually but not always -1) prior to calling this routine. 1331 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1332 ** redefined. The UNION ALL operator uses this property to force 1333 ** the reuse of the same limit and offset registers across multiple 1334 ** SELECT statements. 1335 */ 1336 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1337 Vdbe *v = 0; 1338 int iLimit = 0; 1339 int iOffset; 1340 int addr1; 1341 if( p->iLimit ) return; 1342 1343 /* 1344 ** "LIMIT -1" always shows all rows. There is some 1345 ** contraversy about what the correct behavior should be. 1346 ** The current implementation interprets "LIMIT 0" to mean 1347 ** no rows. 1348 */ 1349 if( p->pLimit ){ 1350 p->iLimit = iLimit = ++pParse->nMem; 1351 v = sqlite3GetVdbe(pParse); 1352 if( v==0 ) return; 1353 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1354 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1355 VdbeComment((v, "LIMIT counter")); 1356 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1357 } 1358 if( p->pOffset ){ 1359 p->iOffset = iOffset = ++pParse->nMem; 1360 if( p->pLimit ){ 1361 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1362 } 1363 v = sqlite3GetVdbe(pParse); 1364 if( v==0 ) return; 1365 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1366 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1367 VdbeComment((v, "OFFSET counter")); 1368 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1369 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1370 sqlite3VdbeJumpHere(v, addr1); 1371 if( p->pLimit ){ 1372 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1373 VdbeComment((v, "LIMIT+OFFSET")); 1374 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1375 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1376 sqlite3VdbeJumpHere(v, addr1); 1377 } 1378 } 1379 } 1380 1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1382 /* 1383 ** Return the appropriate collating sequence for the iCol-th column of 1384 ** the result set for the compound-select statement "p". Return NULL if 1385 ** the column has no default collating sequence. 1386 ** 1387 ** The collating sequence for the compound select is taken from the 1388 ** left-most term of the select that has a collating sequence. 1389 */ 1390 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1391 CollSeq *pRet; 1392 if( p->pPrior ){ 1393 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1394 }else{ 1395 pRet = 0; 1396 } 1397 if( pRet==0 ){ 1398 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1399 } 1400 return pRet; 1401 } 1402 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1403 1404 /* Forward reference */ 1405 static int multiSelectOrderBy( 1406 Parse *pParse, /* Parsing context */ 1407 Select *p, /* The right-most of SELECTs to be coded */ 1408 SelectDest *pDest /* What to do with query results */ 1409 ); 1410 1411 1412 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1413 /* 1414 ** This routine is called to process a compound query form from 1415 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1416 ** INTERSECT 1417 ** 1418 ** "p" points to the right-most of the two queries. the query on the 1419 ** left is p->pPrior. The left query could also be a compound query 1420 ** in which case this routine will be called recursively. 1421 ** 1422 ** The results of the total query are to be written into a destination 1423 ** of type eDest with parameter iParm. 1424 ** 1425 ** Example 1: Consider a three-way compound SQL statement. 1426 ** 1427 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1428 ** 1429 ** This statement is parsed up as follows: 1430 ** 1431 ** SELECT c FROM t3 1432 ** | 1433 ** `-----> SELECT b FROM t2 1434 ** | 1435 ** `------> SELECT a FROM t1 1436 ** 1437 ** The arrows in the diagram above represent the Select.pPrior pointer. 1438 ** So if this routine is called with p equal to the t3 query, then 1439 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1440 ** 1441 ** Notice that because of the way SQLite parses compound SELECTs, the 1442 ** individual selects always group from left to right. 1443 */ 1444 static int multiSelect( 1445 Parse *pParse, /* Parsing context */ 1446 Select *p, /* The right-most of SELECTs to be coded */ 1447 SelectDest *pDest /* What to do with query results */ 1448 ){ 1449 int rc = SQLITE_OK; /* Success code from a subroutine */ 1450 Select *pPrior; /* Another SELECT immediately to our left */ 1451 Vdbe *v; /* Generate code to this VDBE */ 1452 SelectDest dest; /* Alternative data destination */ 1453 Select *pDelete = 0; /* Chain of simple selects to delete */ 1454 sqlite3 *db; /* Database connection */ 1455 1456 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1457 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1458 */ 1459 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1460 db = pParse->db; 1461 pPrior = p->pPrior; 1462 assert( pPrior->pRightmost!=pPrior ); 1463 assert( pPrior->pRightmost==p->pRightmost ); 1464 dest = *pDest; 1465 if( pPrior->pOrderBy ){ 1466 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1467 selectOpName(p->op)); 1468 rc = 1; 1469 goto multi_select_end; 1470 } 1471 if( pPrior->pLimit ){ 1472 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1473 selectOpName(p->op)); 1474 rc = 1; 1475 goto multi_select_end; 1476 } 1477 1478 v = sqlite3GetVdbe(pParse); 1479 assert( v!=0 ); /* The VDBE already created by calling function */ 1480 1481 /* Create the destination temporary table if necessary 1482 */ 1483 if( dest.eDest==SRT_EphemTab ){ 1484 assert( p->pEList ); 1485 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1486 dest.eDest = SRT_Table; 1487 } 1488 1489 /* Make sure all SELECTs in the statement have the same number of elements 1490 ** in their result sets. 1491 */ 1492 assert( p->pEList && pPrior->pEList ); 1493 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1494 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1495 " do not have the same number of result columns", selectOpName(p->op)); 1496 rc = 1; 1497 goto multi_select_end; 1498 } 1499 1500 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1501 */ 1502 if( p->pOrderBy ){ 1503 return multiSelectOrderBy(pParse, p, pDest); 1504 } 1505 1506 /* Generate code for the left and right SELECT statements. 1507 */ 1508 switch( p->op ){ 1509 case TK_ALL: { 1510 int addr = 0; 1511 assert( !pPrior->pLimit ); 1512 pPrior->pLimit = p->pLimit; 1513 pPrior->pOffset = p->pOffset; 1514 rc = sqlite3Select(pParse, pPrior, &dest); 1515 p->pLimit = 0; 1516 p->pOffset = 0; 1517 if( rc ){ 1518 goto multi_select_end; 1519 } 1520 p->pPrior = 0; 1521 p->iLimit = pPrior->iLimit; 1522 p->iOffset = pPrior->iOffset; 1523 if( p->iLimit ){ 1524 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1525 VdbeComment((v, "Jump ahead if LIMIT reached")); 1526 } 1527 rc = sqlite3Select(pParse, p, &dest); 1528 pDelete = p->pPrior; 1529 p->pPrior = pPrior; 1530 if( rc ){ 1531 goto multi_select_end; 1532 } 1533 if( addr ){ 1534 sqlite3VdbeJumpHere(v, addr); 1535 } 1536 break; 1537 } 1538 case TK_EXCEPT: 1539 case TK_UNION: { 1540 int unionTab; /* Cursor number of the temporary table holding result */ 1541 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1542 int priorOp; /* The SRT_ operation to apply to prior selects */ 1543 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1544 int addr; 1545 SelectDest uniondest; 1546 1547 priorOp = SRT_Union; 1548 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1549 /* We can reuse a temporary table generated by a SELECT to our 1550 ** right. 1551 */ 1552 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1553 ** of a 3-way or more compound */ 1554 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1555 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1556 unionTab = dest.iParm; 1557 }else{ 1558 /* We will need to create our own temporary table to hold the 1559 ** intermediate results. 1560 */ 1561 unionTab = pParse->nTab++; 1562 assert( p->pOrderBy==0 ); 1563 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1564 assert( p->addrOpenEphm[0] == -1 ); 1565 p->addrOpenEphm[0] = addr; 1566 p->pRightmost->selFlags |= SF_UsesEphemeral; 1567 assert( p->pEList ); 1568 } 1569 1570 /* Code the SELECT statements to our left 1571 */ 1572 assert( !pPrior->pOrderBy ); 1573 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1574 rc = sqlite3Select(pParse, pPrior, &uniondest); 1575 if( rc ){ 1576 goto multi_select_end; 1577 } 1578 1579 /* Code the current SELECT statement 1580 */ 1581 if( p->op==TK_EXCEPT ){ 1582 op = SRT_Except; 1583 }else{ 1584 assert( p->op==TK_UNION ); 1585 op = SRT_Union; 1586 } 1587 p->pPrior = 0; 1588 pLimit = p->pLimit; 1589 p->pLimit = 0; 1590 pOffset = p->pOffset; 1591 p->pOffset = 0; 1592 uniondest.eDest = op; 1593 rc = sqlite3Select(pParse, p, &uniondest); 1594 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1595 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1596 sqlite3ExprListDelete(db, p->pOrderBy); 1597 pDelete = p->pPrior; 1598 p->pPrior = pPrior; 1599 p->pOrderBy = 0; 1600 sqlite3ExprDelete(db, p->pLimit); 1601 p->pLimit = pLimit; 1602 p->pOffset = pOffset; 1603 p->iLimit = 0; 1604 p->iOffset = 0; 1605 if( rc ){ 1606 goto multi_select_end; 1607 } 1608 1609 1610 /* Convert the data in the temporary table into whatever form 1611 ** it is that we currently need. 1612 */ 1613 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 1614 int iCont, iBreak, iStart; 1615 assert( p->pEList ); 1616 if( dest.eDest==SRT_Output ){ 1617 Select *pFirst = p; 1618 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1619 generateColumnNames(pParse, 0, pFirst->pEList); 1620 } 1621 iBreak = sqlite3VdbeMakeLabel(v); 1622 iCont = sqlite3VdbeMakeLabel(v); 1623 computeLimitRegisters(pParse, p, iBreak); 1624 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1625 iStart = sqlite3VdbeCurrentAddr(v); 1626 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1627 0, -1, &dest, iCont, iBreak); 1628 sqlite3VdbeResolveLabel(v, iCont); 1629 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1630 sqlite3VdbeResolveLabel(v, iBreak); 1631 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1632 } 1633 break; 1634 } 1635 case TK_INTERSECT: { 1636 int tab1, tab2; 1637 int iCont, iBreak, iStart; 1638 Expr *pLimit, *pOffset; 1639 int addr; 1640 SelectDest intersectdest; 1641 int r1; 1642 1643 /* INTERSECT is different from the others since it requires 1644 ** two temporary tables. Hence it has its own case. Begin 1645 ** by allocating the tables we will need. 1646 */ 1647 tab1 = pParse->nTab++; 1648 tab2 = pParse->nTab++; 1649 assert( p->pOrderBy==0 ); 1650 1651 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1652 assert( p->addrOpenEphm[0] == -1 ); 1653 p->addrOpenEphm[0] = addr; 1654 p->pRightmost->selFlags |= SF_UsesEphemeral; 1655 assert( p->pEList ); 1656 1657 /* Code the SELECTs to our left into temporary table "tab1". 1658 */ 1659 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1660 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1661 if( rc ){ 1662 goto multi_select_end; 1663 } 1664 1665 /* Code the current SELECT into temporary table "tab2" 1666 */ 1667 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1668 assert( p->addrOpenEphm[1] == -1 ); 1669 p->addrOpenEphm[1] = addr; 1670 p->pPrior = 0; 1671 pLimit = p->pLimit; 1672 p->pLimit = 0; 1673 pOffset = p->pOffset; 1674 p->pOffset = 0; 1675 intersectdest.iParm = tab2; 1676 rc = sqlite3Select(pParse, p, &intersectdest); 1677 pDelete = p->pPrior; 1678 p->pPrior = pPrior; 1679 sqlite3ExprDelete(db, p->pLimit); 1680 p->pLimit = pLimit; 1681 p->pOffset = pOffset; 1682 if( rc ){ 1683 goto multi_select_end; 1684 } 1685 1686 /* Generate code to take the intersection of the two temporary 1687 ** tables. 1688 */ 1689 assert( p->pEList ); 1690 if( dest.eDest==SRT_Output ){ 1691 Select *pFirst = p; 1692 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1693 generateColumnNames(pParse, 0, pFirst->pEList); 1694 } 1695 iBreak = sqlite3VdbeMakeLabel(v); 1696 iCont = sqlite3VdbeMakeLabel(v); 1697 computeLimitRegisters(pParse, p, iBreak); 1698 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1699 r1 = sqlite3GetTempReg(pParse); 1700 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1701 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1702 sqlite3ReleaseTempReg(pParse, r1); 1703 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1704 0, -1, &dest, iCont, iBreak); 1705 sqlite3VdbeResolveLabel(v, iCont); 1706 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1707 sqlite3VdbeResolveLabel(v, iBreak); 1708 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1709 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1710 break; 1711 } 1712 } 1713 1714 /* Compute collating sequences used by 1715 ** temporary tables needed to implement the compound select. 1716 ** Attach the KeyInfo structure to all temporary tables. 1717 ** 1718 ** This section is run by the right-most SELECT statement only. 1719 ** SELECT statements to the left always skip this part. The right-most 1720 ** SELECT might also skip this part if it has no ORDER BY clause and 1721 ** no temp tables are required. 1722 */ 1723 if( p->selFlags & SF_UsesEphemeral ){ 1724 int i; /* Loop counter */ 1725 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1726 Select *pLoop; /* For looping through SELECT statements */ 1727 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1728 int nCol; /* Number of columns in result set */ 1729 1730 assert( p->pRightmost==p ); 1731 nCol = p->pEList->nExpr; 1732 pKeyInfo = sqlite3DbMallocZero(db, 1733 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1734 if( !pKeyInfo ){ 1735 rc = SQLITE_NOMEM; 1736 goto multi_select_end; 1737 } 1738 1739 pKeyInfo->enc = ENC(db); 1740 pKeyInfo->nField = (u16)nCol; 1741 1742 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1743 *apColl = multiSelectCollSeq(pParse, p, i); 1744 if( 0==*apColl ){ 1745 *apColl = db->pDfltColl; 1746 } 1747 } 1748 1749 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1750 for(i=0; i<2; i++){ 1751 int addr = pLoop->addrOpenEphm[i]; 1752 if( addr<0 ){ 1753 /* If [0] is unused then [1] is also unused. So we can 1754 ** always safely abort as soon as the first unused slot is found */ 1755 assert( pLoop->addrOpenEphm[1]<0 ); 1756 break; 1757 } 1758 sqlite3VdbeChangeP2(v, addr, nCol); 1759 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1760 pLoop->addrOpenEphm[i] = -1; 1761 } 1762 } 1763 sqlite3DbFree(db, pKeyInfo); 1764 } 1765 1766 multi_select_end: 1767 pDest->iMem = dest.iMem; 1768 pDest->nMem = dest.nMem; 1769 sqlite3SelectDelete(db, pDelete); 1770 return rc; 1771 } 1772 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1773 1774 /* 1775 ** Code an output subroutine for a coroutine implementation of a 1776 ** SELECT statment. 1777 ** 1778 ** The data to be output is contained in pIn->iMem. There are 1779 ** pIn->nMem columns to be output. pDest is where the output should 1780 ** be sent. 1781 ** 1782 ** regReturn is the number of the register holding the subroutine 1783 ** return address. 1784 ** 1785 ** If regPrev>0 then it is a the first register in a vector that 1786 ** records the previous output. mem[regPrev] is a flag that is false 1787 ** if there has been no previous output. If regPrev>0 then code is 1788 ** generated to suppress duplicates. pKeyInfo is used for comparing 1789 ** keys. 1790 ** 1791 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1792 ** iBreak. 1793 */ 1794 static int generateOutputSubroutine( 1795 Parse *pParse, /* Parsing context */ 1796 Select *p, /* The SELECT statement */ 1797 SelectDest *pIn, /* Coroutine supplying data */ 1798 SelectDest *pDest, /* Where to send the data */ 1799 int regReturn, /* The return address register */ 1800 int regPrev, /* Previous result register. No uniqueness if 0 */ 1801 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1802 int p4type, /* The p4 type for pKeyInfo */ 1803 int iBreak /* Jump here if we hit the LIMIT */ 1804 ){ 1805 Vdbe *v = pParse->pVdbe; 1806 int iContinue; 1807 int addr; 1808 1809 addr = sqlite3VdbeCurrentAddr(v); 1810 iContinue = sqlite3VdbeMakeLabel(v); 1811 1812 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1813 */ 1814 if( regPrev ){ 1815 int j1, j2; 1816 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1817 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1818 (char*)pKeyInfo, p4type); 1819 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1820 sqlite3VdbeJumpHere(v, j1); 1821 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1822 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1823 } 1824 if( pParse->db->mallocFailed ) return 0; 1825 1826 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1827 */ 1828 codeOffset(v, p, iContinue); 1829 1830 switch( pDest->eDest ){ 1831 /* Store the result as data using a unique key. 1832 */ 1833 case SRT_Table: 1834 case SRT_EphemTab: { 1835 int r1 = sqlite3GetTempReg(pParse); 1836 int r2 = sqlite3GetTempReg(pParse); 1837 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1838 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1839 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1840 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1841 sqlite3ReleaseTempReg(pParse, r2); 1842 sqlite3ReleaseTempReg(pParse, r1); 1843 break; 1844 } 1845 1846 #ifndef SQLITE_OMIT_SUBQUERY 1847 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1848 ** then there should be a single item on the stack. Write this 1849 ** item into the set table with bogus data. 1850 */ 1851 case SRT_Set: { 1852 int r1; 1853 assert( pIn->nMem==1 ); 1854 p->affinity = 1855 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1856 r1 = sqlite3GetTempReg(pParse); 1857 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1858 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1859 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1860 sqlite3ReleaseTempReg(pParse, r1); 1861 break; 1862 } 1863 1864 #if 0 /* Never occurs on an ORDER BY query */ 1865 /* If any row exist in the result set, record that fact and abort. 1866 */ 1867 case SRT_Exists: { 1868 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1869 /* The LIMIT clause will terminate the loop for us */ 1870 break; 1871 } 1872 #endif 1873 1874 /* If this is a scalar select that is part of an expression, then 1875 ** store the results in the appropriate memory cell and break out 1876 ** of the scan loop. 1877 */ 1878 case SRT_Mem: { 1879 assert( pIn->nMem==1 ); 1880 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1881 /* The LIMIT clause will jump out of the loop for us */ 1882 break; 1883 } 1884 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1885 1886 /* The results are stored in a sequence of registers 1887 ** starting at pDest->iMem. Then the co-routine yields. 1888 */ 1889 case SRT_Coroutine: { 1890 if( pDest->iMem==0 ){ 1891 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1892 pDest->nMem = pIn->nMem; 1893 } 1894 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1895 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1896 break; 1897 } 1898 1899 /* Results are stored in a sequence of registers. Then the 1900 ** OP_ResultRow opcode is used to cause sqlite3_step() to return 1901 ** the next row of result. 1902 */ 1903 case SRT_Output: { 1904 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1905 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1906 break; 1907 } 1908 1909 #if !defined(SQLITE_OMIT_TRIGGER) 1910 /* Discard the results. This is used for SELECT statements inside 1911 ** the body of a TRIGGER. The purpose of such selects is to call 1912 ** user-defined functions that have side effects. We do not care 1913 ** about the actual results of the select. 1914 */ 1915 default: { 1916 break; 1917 } 1918 #endif 1919 } 1920 1921 /* Jump to the end of the loop if the LIMIT is reached. 1922 */ 1923 if( p->iLimit ){ 1924 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1925 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1926 } 1927 1928 /* Generate the subroutine return 1929 */ 1930 sqlite3VdbeResolveLabel(v, iContinue); 1931 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1932 1933 return addr; 1934 } 1935 1936 /* 1937 ** Alternative compound select code generator for cases when there 1938 ** is an ORDER BY clause. 1939 ** 1940 ** We assume a query of the following form: 1941 ** 1942 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1943 ** 1944 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1945 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1946 ** co-routines. Then run the co-routines in parallel and merge the results 1947 ** into the output. In addition to the two coroutines (called selectA and 1948 ** selectB) there are 7 subroutines: 1949 ** 1950 ** outA: Move the output of the selectA coroutine into the output 1951 ** of the compound query. 1952 ** 1953 ** outB: Move the output of the selectB coroutine into the output 1954 ** of the compound query. (Only generated for UNION and 1955 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1956 ** appears only in B.) 1957 ** 1958 ** AltB: Called when there is data from both coroutines and A<B. 1959 ** 1960 ** AeqB: Called when there is data from both coroutines and A==B. 1961 ** 1962 ** AgtB: Called when there is data from both coroutines and A>B. 1963 ** 1964 ** EofA: Called when data is exhausted from selectA. 1965 ** 1966 ** EofB: Called when data is exhausted from selectB. 1967 ** 1968 ** The implementation of the latter five subroutines depend on which 1969 ** <operator> is used: 1970 ** 1971 ** 1972 ** UNION ALL UNION EXCEPT INTERSECT 1973 ** ------------- ----------------- -------------- ----------------- 1974 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1975 ** 1976 ** AeqB: outA, nextA nextA nextA outA, nextA 1977 ** 1978 ** AgtB: outB, nextB outB, nextB nextB nextB 1979 ** 1980 ** EofA: outB, nextB outB, nextB halt halt 1981 ** 1982 ** EofB: outA, nextA outA, nextA outA, nextA halt 1983 ** 1984 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1985 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1986 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1987 ** following nextX causes a jump to the end of the select processing. 1988 ** 1989 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1990 ** within the output subroutine. The regPrev register set holds the previously 1991 ** output value. A comparison is made against this value and the output 1992 ** is skipped if the next results would be the same as the previous. 1993 ** 1994 ** The implementation plan is to implement the two coroutines and seven 1995 ** subroutines first, then put the control logic at the bottom. Like this: 1996 ** 1997 ** goto Init 1998 ** coA: coroutine for left query (A) 1999 ** coB: coroutine for right query (B) 2000 ** outA: output one row of A 2001 ** outB: output one row of B (UNION and UNION ALL only) 2002 ** EofA: ... 2003 ** EofB: ... 2004 ** AltB: ... 2005 ** AeqB: ... 2006 ** AgtB: ... 2007 ** Init: initialize coroutine registers 2008 ** yield coA 2009 ** if eof(A) goto EofA 2010 ** yield coB 2011 ** if eof(B) goto EofB 2012 ** Cmpr: Compare A, B 2013 ** Jump AltB, AeqB, AgtB 2014 ** End: ... 2015 ** 2016 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2017 ** actually called using Gosub and they do not Return. EofA and EofB loop 2018 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2019 ** and AgtB jump to either L2 or to one of EofA or EofB. 2020 */ 2021 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2022 static int multiSelectOrderBy( 2023 Parse *pParse, /* Parsing context */ 2024 Select *p, /* The right-most of SELECTs to be coded */ 2025 SelectDest *pDest /* What to do with query results */ 2026 ){ 2027 int i, j; /* Loop counters */ 2028 Select *pPrior; /* Another SELECT immediately to our left */ 2029 Vdbe *v; /* Generate code to this VDBE */ 2030 SelectDest destA; /* Destination for coroutine A */ 2031 SelectDest destB; /* Destination for coroutine B */ 2032 int regAddrA; /* Address register for select-A coroutine */ 2033 int regEofA; /* Flag to indicate when select-A is complete */ 2034 int regAddrB; /* Address register for select-B coroutine */ 2035 int regEofB; /* Flag to indicate when select-B is complete */ 2036 int addrSelectA; /* Address of the select-A coroutine */ 2037 int addrSelectB; /* Address of the select-B coroutine */ 2038 int regOutA; /* Address register for the output-A subroutine */ 2039 int regOutB; /* Address register for the output-B subroutine */ 2040 int addrOutA; /* Address of the output-A subroutine */ 2041 int addrOutB = 0; /* Address of the output-B subroutine */ 2042 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2043 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2044 int addrAltB; /* Address of the A<B subroutine */ 2045 int addrAeqB; /* Address of the A==B subroutine */ 2046 int addrAgtB; /* Address of the A>B subroutine */ 2047 int regLimitA; /* Limit register for select-A */ 2048 int regLimitB; /* Limit register for select-A */ 2049 int regPrev; /* A range of registers to hold previous output */ 2050 int savedLimit; /* Saved value of p->iLimit */ 2051 int savedOffset; /* Saved value of p->iOffset */ 2052 int labelCmpr; /* Label for the start of the merge algorithm */ 2053 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2054 int j1; /* Jump instructions that get retargetted */ 2055 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2056 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2057 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2058 sqlite3 *db; /* Database connection */ 2059 ExprList *pOrderBy; /* The ORDER BY clause */ 2060 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2061 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2062 2063 assert( p->pOrderBy!=0 ); 2064 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2065 db = pParse->db; 2066 v = pParse->pVdbe; 2067 if( v==0 ) return SQLITE_NOMEM; 2068 labelEnd = sqlite3VdbeMakeLabel(v); 2069 labelCmpr = sqlite3VdbeMakeLabel(v); 2070 2071 2072 /* Patch up the ORDER BY clause 2073 */ 2074 op = p->op; 2075 pPrior = p->pPrior; 2076 assert( pPrior->pOrderBy==0 ); 2077 pOrderBy = p->pOrderBy; 2078 assert( pOrderBy ); 2079 nOrderBy = pOrderBy->nExpr; 2080 2081 /* For operators other than UNION ALL we have to make sure that 2082 ** the ORDER BY clause covers every term of the result set. Add 2083 ** terms to the ORDER BY clause as necessary. 2084 */ 2085 if( op!=TK_ALL ){ 2086 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2087 struct ExprList_item *pItem; 2088 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2089 assert( pItem->iCol>0 ); 2090 if( pItem->iCol==i ) break; 2091 } 2092 if( j==nOrderBy ){ 2093 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2094 if( pNew==0 ) return SQLITE_NOMEM; 2095 pNew->flags |= EP_IntValue; 2096 pNew->iTable = i; 2097 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2098 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2099 } 2100 } 2101 } 2102 2103 /* Compute the comparison permutation and keyinfo that is used with 2104 ** the permutation in order to comparisons to determine if the next 2105 ** row of results comes from selectA or selectB. Also add explicit 2106 ** collations to the ORDER BY clause terms so that when the subqueries 2107 ** to the right and the left are evaluated, they use the correct 2108 ** collation. 2109 */ 2110 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2111 if( aPermute ){ 2112 struct ExprList_item *pItem; 2113 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2114 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2115 aPermute[i] = pItem->iCol - 1; 2116 } 2117 pKeyMerge = 2118 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2119 if( pKeyMerge ){ 2120 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2121 pKeyMerge->nField = (u16)nOrderBy; 2122 pKeyMerge->enc = ENC(db); 2123 for(i=0; i<nOrderBy; i++){ 2124 CollSeq *pColl; 2125 Expr *pTerm = pOrderBy->a[i].pExpr; 2126 if( pTerm->flags & EP_ExpCollate ){ 2127 pColl = pTerm->pColl; 2128 }else{ 2129 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2130 pTerm->flags |= EP_ExpCollate; 2131 pTerm->pColl = pColl; 2132 } 2133 pKeyMerge->aColl[i] = pColl; 2134 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2135 } 2136 } 2137 }else{ 2138 pKeyMerge = 0; 2139 } 2140 2141 /* Reattach the ORDER BY clause to the query. 2142 */ 2143 p->pOrderBy = pOrderBy; 2144 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2145 2146 /* Allocate a range of temporary registers and the KeyInfo needed 2147 ** for the logic that removes duplicate result rows when the 2148 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2149 */ 2150 if( op==TK_ALL ){ 2151 regPrev = 0; 2152 }else{ 2153 int nExpr = p->pEList->nExpr; 2154 assert( nOrderBy>=nExpr || db->mallocFailed ); 2155 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2156 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2157 pKeyDup = sqlite3DbMallocZero(db, 2158 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2159 if( pKeyDup ){ 2160 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2161 pKeyDup->nField = (u16)nExpr; 2162 pKeyDup->enc = ENC(db); 2163 for(i=0; i<nExpr; i++){ 2164 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2165 pKeyDup->aSortOrder[i] = 0; 2166 } 2167 } 2168 } 2169 2170 /* Separate the left and the right query from one another 2171 */ 2172 p->pPrior = 0; 2173 pPrior->pRightmost = 0; 2174 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2175 if( pPrior->pPrior==0 ){ 2176 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2177 } 2178 2179 /* Compute the limit registers */ 2180 computeLimitRegisters(pParse, p, labelEnd); 2181 if( p->iLimit && op==TK_ALL ){ 2182 regLimitA = ++pParse->nMem; 2183 regLimitB = ++pParse->nMem; 2184 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2185 regLimitA); 2186 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2187 }else{ 2188 regLimitA = regLimitB = 0; 2189 } 2190 sqlite3ExprDelete(db, p->pLimit); 2191 p->pLimit = 0; 2192 sqlite3ExprDelete(db, p->pOffset); 2193 p->pOffset = 0; 2194 2195 regAddrA = ++pParse->nMem; 2196 regEofA = ++pParse->nMem; 2197 regAddrB = ++pParse->nMem; 2198 regEofB = ++pParse->nMem; 2199 regOutA = ++pParse->nMem; 2200 regOutB = ++pParse->nMem; 2201 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2202 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2203 2204 /* Jump past the various subroutines and coroutines to the main 2205 ** merge loop 2206 */ 2207 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2208 addrSelectA = sqlite3VdbeCurrentAddr(v); 2209 2210 2211 /* Generate a coroutine to evaluate the SELECT statement to the 2212 ** left of the compound operator - the "A" select. 2213 */ 2214 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2215 pPrior->iLimit = regLimitA; 2216 sqlite3Select(pParse, pPrior, &destA); 2217 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2218 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2219 VdbeNoopComment((v, "End coroutine for left SELECT")); 2220 2221 /* Generate a coroutine to evaluate the SELECT statement on 2222 ** the right - the "B" select 2223 */ 2224 addrSelectB = sqlite3VdbeCurrentAddr(v); 2225 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2226 savedLimit = p->iLimit; 2227 savedOffset = p->iOffset; 2228 p->iLimit = regLimitB; 2229 p->iOffset = 0; 2230 sqlite3Select(pParse, p, &destB); 2231 p->iLimit = savedLimit; 2232 p->iOffset = savedOffset; 2233 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2234 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2235 VdbeNoopComment((v, "End coroutine for right SELECT")); 2236 2237 /* Generate a subroutine that outputs the current row of the A 2238 ** select as the next output row of the compound select. 2239 */ 2240 VdbeNoopComment((v, "Output routine for A")); 2241 addrOutA = generateOutputSubroutine(pParse, 2242 p, &destA, pDest, regOutA, 2243 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2244 2245 /* Generate a subroutine that outputs the current row of the B 2246 ** select as the next output row of the compound select. 2247 */ 2248 if( op==TK_ALL || op==TK_UNION ){ 2249 VdbeNoopComment((v, "Output routine for B")); 2250 addrOutB = generateOutputSubroutine(pParse, 2251 p, &destB, pDest, regOutB, 2252 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2253 } 2254 2255 /* Generate a subroutine to run when the results from select A 2256 ** are exhausted and only data in select B remains. 2257 */ 2258 VdbeNoopComment((v, "eof-A subroutine")); 2259 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2260 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2261 }else{ 2262 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2263 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2264 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2265 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2266 } 2267 2268 /* Generate a subroutine to run when the results from select B 2269 ** are exhausted and only data in select A remains. 2270 */ 2271 if( op==TK_INTERSECT ){ 2272 addrEofB = addrEofA; 2273 }else{ 2274 VdbeNoopComment((v, "eof-B subroutine")); 2275 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2276 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2277 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2278 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2279 } 2280 2281 /* Generate code to handle the case of A<B 2282 */ 2283 VdbeNoopComment((v, "A-lt-B subroutine")); 2284 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2285 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2286 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2287 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2288 2289 /* Generate code to handle the case of A==B 2290 */ 2291 if( op==TK_ALL ){ 2292 addrAeqB = addrAltB; 2293 }else if( op==TK_INTERSECT ){ 2294 addrAeqB = addrAltB; 2295 addrAltB++; 2296 }else{ 2297 VdbeNoopComment((v, "A-eq-B subroutine")); 2298 addrAeqB = 2299 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2300 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2301 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2302 } 2303 2304 /* Generate code to handle the case of A>B 2305 */ 2306 VdbeNoopComment((v, "A-gt-B subroutine")); 2307 addrAgtB = sqlite3VdbeCurrentAddr(v); 2308 if( op==TK_ALL || op==TK_UNION ){ 2309 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2310 } 2311 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2312 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2313 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2314 2315 /* This code runs once to initialize everything. 2316 */ 2317 sqlite3VdbeJumpHere(v, j1); 2318 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2319 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2320 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2321 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2322 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2323 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2324 2325 /* Implement the main merge loop 2326 */ 2327 sqlite3VdbeResolveLabel(v, labelCmpr); 2328 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2329 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2330 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2331 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2332 2333 /* Release temporary registers 2334 */ 2335 if( regPrev ){ 2336 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2337 } 2338 2339 /* Jump to the this point in order to terminate the query. 2340 */ 2341 sqlite3VdbeResolveLabel(v, labelEnd); 2342 2343 /* Set the number of output columns 2344 */ 2345 if( pDest->eDest==SRT_Output ){ 2346 Select *pFirst = pPrior; 2347 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2348 generateColumnNames(pParse, 0, pFirst->pEList); 2349 } 2350 2351 /* Reassembly the compound query so that it will be freed correctly 2352 ** by the calling function */ 2353 if( p->pPrior ){ 2354 sqlite3SelectDelete(db, p->pPrior); 2355 } 2356 p->pPrior = pPrior; 2357 2358 /*** TBD: Insert subroutine calls to close cursors on incomplete 2359 **** subqueries ****/ 2360 return SQLITE_OK; 2361 } 2362 #endif 2363 2364 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2365 /* Forward Declarations */ 2366 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2367 static void substSelect(sqlite3*, Select *, int, ExprList *); 2368 2369 /* 2370 ** Scan through the expression pExpr. Replace every reference to 2371 ** a column in table number iTable with a copy of the iColumn-th 2372 ** entry in pEList. (But leave references to the ROWID column 2373 ** unchanged.) 2374 ** 2375 ** This routine is part of the flattening procedure. A subquery 2376 ** whose result set is defined by pEList appears as entry in the 2377 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2378 ** FORM clause entry is iTable. This routine make the necessary 2379 ** changes to pExpr so that it refers directly to the source table 2380 ** of the subquery rather the result set of the subquery. 2381 */ 2382 static void substExpr( 2383 sqlite3 *db, /* Report malloc errors to this connection */ 2384 Expr *pExpr, /* Expr in which substitution occurs */ 2385 int iTable, /* Table to be substituted */ 2386 ExprList *pEList /* Substitute expressions */ 2387 ){ 2388 if( pExpr==0 ) return; 2389 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2390 if( pExpr->iColumn<0 ){ 2391 pExpr->op = TK_NULL; 2392 }else{ 2393 Expr *pNew; 2394 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2395 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2396 pNew = pEList->a[pExpr->iColumn].pExpr; 2397 assert( pNew!=0 ); 2398 pExpr->op = pNew->op; 2399 assert( pExpr->pLeft==0 ); 2400 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0); 2401 assert( pExpr->pRight==0 ); 2402 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0); 2403 pExpr->iTable = pNew->iTable; 2404 pExpr->pTab = pNew->pTab; 2405 pExpr->iColumn = pNew->iColumn; 2406 pExpr->iAgg = pNew->iAgg; 2407 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2408 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2409 assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 ); 2410 if( ExprHasProperty(pNew, EP_xIsSelect) ){ 2411 pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0); 2412 }else{ 2413 pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0); 2414 } 2415 pExpr->flags = pNew->flags; 2416 pExpr->pAggInfo = pNew->pAggInfo; 2417 pNew->pAggInfo = 0; 2418 } 2419 }else{ 2420 substExpr(db, pExpr->pLeft, iTable, pEList); 2421 substExpr(db, pExpr->pRight, iTable, pEList); 2422 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2423 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2424 }else{ 2425 substExprList(db, pExpr->x.pList, iTable, pEList); 2426 } 2427 } 2428 } 2429 static void substExprList( 2430 sqlite3 *db, /* Report malloc errors here */ 2431 ExprList *pList, /* List to scan and in which to make substitutes */ 2432 int iTable, /* Table to be substituted */ 2433 ExprList *pEList /* Substitute values */ 2434 ){ 2435 int i; 2436 if( pList==0 ) return; 2437 for(i=0; i<pList->nExpr; i++){ 2438 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2439 } 2440 } 2441 static void substSelect( 2442 sqlite3 *db, /* Report malloc errors here */ 2443 Select *p, /* SELECT statement in which to make substitutions */ 2444 int iTable, /* Table to be replaced */ 2445 ExprList *pEList /* Substitute values */ 2446 ){ 2447 SrcList *pSrc; 2448 struct SrcList_item *pItem; 2449 int i; 2450 if( !p ) return; 2451 substExprList(db, p->pEList, iTable, pEList); 2452 substExprList(db, p->pGroupBy, iTable, pEList); 2453 substExprList(db, p->pOrderBy, iTable, pEList); 2454 substExpr(db, p->pHaving, iTable, pEList); 2455 substExpr(db, p->pWhere, iTable, pEList); 2456 substSelect(db, p->pPrior, iTable, pEList); 2457 pSrc = p->pSrc; 2458 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2459 if( ALWAYS(pSrc) ){ 2460 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2461 substSelect(db, pItem->pSelect, iTable, pEList); 2462 } 2463 } 2464 } 2465 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2466 2467 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2468 /* 2469 ** This routine attempts to flatten subqueries in order to speed 2470 ** execution. It returns 1 if it makes changes and 0 if no flattening 2471 ** occurs. 2472 ** 2473 ** To understand the concept of flattening, consider the following 2474 ** query: 2475 ** 2476 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2477 ** 2478 ** The default way of implementing this query is to execute the 2479 ** subquery first and store the results in a temporary table, then 2480 ** run the outer query on that temporary table. This requires two 2481 ** passes over the data. Furthermore, because the temporary table 2482 ** has no indices, the WHERE clause on the outer query cannot be 2483 ** optimized. 2484 ** 2485 ** This routine attempts to rewrite queries such as the above into 2486 ** a single flat select, like this: 2487 ** 2488 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2489 ** 2490 ** The code generated for this simpification gives the same result 2491 ** but only has to scan the data once. And because indices might 2492 ** exist on the table t1, a complete scan of the data might be 2493 ** avoided. 2494 ** 2495 ** Flattening is only attempted if all of the following are true: 2496 ** 2497 ** (1) The subquery and the outer query do not both use aggregates. 2498 ** 2499 ** (2) The subquery is not an aggregate or the outer query is not a join. 2500 ** 2501 ** (3) The subquery is not the right operand of a left outer join 2502 ** (Originally ticket #306. Strenghtened by ticket #3300) 2503 ** 2504 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2505 ** 2506 ** (5) The subquery is not DISTINCT or the outer query does not use 2507 ** aggregates. 2508 ** 2509 ** (6) The subquery does not use aggregates or the outer query is not 2510 ** DISTINCT. 2511 ** 2512 ** (7) The subquery has a FROM clause. 2513 ** 2514 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2515 ** 2516 ** (9) The subquery does not use LIMIT or the outer query does not use 2517 ** aggregates. 2518 ** 2519 ** (10) The subquery does not use aggregates or the outer query does not 2520 ** use LIMIT. 2521 ** 2522 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2523 ** 2524 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2525 ** a separate restriction deriving from ticket #350. 2526 ** 2527 ** (13) The subquery and outer query do not both use LIMIT 2528 ** 2529 ** (14) The subquery does not use OFFSET 2530 ** 2531 ** (15) The outer query is not part of a compound select or the 2532 ** subquery does not have both an ORDER BY and a LIMIT clause. 2533 ** (See ticket #2339) 2534 ** 2535 ** (16) The outer query is not an aggregate or the subquery does 2536 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2537 ** until we introduced the group_concat() function. 2538 ** 2539 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2540 ** compound clause made up entirely of non-aggregate queries, and 2541 ** the parent query: 2542 ** 2543 ** * is not itself part of a compound select, 2544 ** * is not an aggregate or DISTINCT query, and 2545 ** * has no other tables or sub-selects in the FROM clause. 2546 ** 2547 ** The parent and sub-query may contain WHERE clauses. Subject to 2548 ** rules (11), (13) and (14), they may also contain ORDER BY, 2549 ** LIMIT and OFFSET clauses. 2550 ** 2551 ** (18) If the sub-query is a compound select, then all terms of the 2552 ** ORDER by clause of the parent must be simple references to 2553 ** columns of the sub-query. 2554 ** 2555 ** (19) The subquery does not use LIMIT or the outer query does not 2556 ** have a WHERE clause. 2557 ** 2558 ** In this routine, the "p" parameter is a pointer to the outer query. 2559 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2560 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2561 ** 2562 ** If flattening is not attempted, this routine is a no-op and returns 0. 2563 ** If flattening is attempted this routine returns 1. 2564 ** 2565 ** All of the expression analysis must occur on both the outer query and 2566 ** the subquery before this routine runs. 2567 */ 2568 static int flattenSubquery( 2569 Parse *pParse, /* Parsing context */ 2570 Select *p, /* The parent or outer SELECT statement */ 2571 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2572 int isAgg, /* True if outer SELECT uses aggregate functions */ 2573 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2574 ){ 2575 const char *zSavedAuthContext = pParse->zAuthContext; 2576 Select *pParent; 2577 Select *pSub; /* The inner query or "subquery" */ 2578 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2579 SrcList *pSrc; /* The FROM clause of the outer query */ 2580 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2581 ExprList *pList; /* The result set of the outer query */ 2582 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2583 int i; /* Loop counter */ 2584 Expr *pWhere; /* The WHERE clause */ 2585 struct SrcList_item *pSubitem; /* The subquery */ 2586 sqlite3 *db = pParse->db; 2587 2588 /* Check to see if flattening is permitted. Return 0 if not. 2589 */ 2590 assert( p!=0 ); 2591 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2592 pSrc = p->pSrc; 2593 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2594 pSubitem = &pSrc->a[iFrom]; 2595 iParent = pSubitem->iCursor; 2596 pSub = pSubitem->pSelect; 2597 assert( pSub!=0 ); 2598 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2599 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2600 pSubSrc = pSub->pSrc; 2601 assert( pSubSrc ); 2602 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2603 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2604 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2605 ** became arbitrary expressions, we were forced to add restrictions (13) 2606 ** and (14). */ 2607 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2608 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2609 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2610 return 0; /* Restriction (15) */ 2611 } 2612 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2613 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2614 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2615 return 0; 2616 } 2617 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2618 return 0; /* Restriction (6) */ 2619 } 2620 if( p->pOrderBy && pSub->pOrderBy ){ 2621 return 0; /* Restriction (11) */ 2622 } 2623 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2624 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2625 2626 /* OBSOLETE COMMENT 1: 2627 ** Restriction 3: If the subquery is a join, make sure the subquery is 2628 ** not used as the right operand of an outer join. Examples of why this 2629 ** is not allowed: 2630 ** 2631 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2632 ** 2633 ** If we flatten the above, we would get 2634 ** 2635 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2636 ** 2637 ** which is not at all the same thing. 2638 ** 2639 ** OBSOLETE COMMENT 2: 2640 ** Restriction 12: If the subquery is the right operand of a left outer 2641 ** join, make sure the subquery has no WHERE clause. 2642 ** An examples of why this is not allowed: 2643 ** 2644 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2645 ** 2646 ** If we flatten the above, we would get 2647 ** 2648 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2649 ** 2650 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2651 ** effectively converts the OUTER JOIN into an INNER JOIN. 2652 ** 2653 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2654 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2655 ** is fraught with danger. Best to avoid the whole thing. If the 2656 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2657 */ 2658 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2659 return 0; 2660 } 2661 2662 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2663 ** use only the UNION ALL operator. And none of the simple select queries 2664 ** that make up the compound SELECT are allowed to be aggregate or distinct 2665 ** queries. 2666 */ 2667 if( pSub->pPrior ){ 2668 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2669 return 0; 2670 } 2671 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2672 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2673 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2674 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 2675 ){ 2676 return 0; 2677 } 2678 } 2679 2680 /* Restriction 18. */ 2681 if( p->pOrderBy ){ 2682 int ii; 2683 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2684 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2685 } 2686 } 2687 } 2688 2689 /***** If we reach this point, flattening is permitted. *****/ 2690 2691 /* Authorize the subquery */ 2692 pParse->zAuthContext = pSubitem->zName; 2693 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2694 pParse->zAuthContext = zSavedAuthContext; 2695 2696 /* If the sub-query is a compound SELECT statement, then (by restrictions 2697 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2698 ** be of the form: 2699 ** 2700 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2701 ** 2702 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2703 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2704 ** OFFSET clauses and joins them to the left-hand-side of the original 2705 ** using UNION ALL operators. In this case N is the number of simple 2706 ** select statements in the compound sub-query. 2707 ** 2708 ** Example: 2709 ** 2710 ** SELECT a+1 FROM ( 2711 ** SELECT x FROM tab 2712 ** UNION ALL 2713 ** SELECT y FROM tab 2714 ** UNION ALL 2715 ** SELECT abs(z*2) FROM tab2 2716 ** ) WHERE a!=5 ORDER BY 1 2717 ** 2718 ** Transformed into: 2719 ** 2720 ** SELECT x+1 FROM tab WHERE x+1!=5 2721 ** UNION ALL 2722 ** SELECT y+1 FROM tab WHERE y+1!=5 2723 ** UNION ALL 2724 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2725 ** ORDER BY 1 2726 ** 2727 ** We call this the "compound-subquery flattening". 2728 */ 2729 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2730 Select *pNew; 2731 ExprList *pOrderBy = p->pOrderBy; 2732 Expr *pLimit = p->pLimit; 2733 Select *pPrior = p->pPrior; 2734 p->pOrderBy = 0; 2735 p->pSrc = 0; 2736 p->pPrior = 0; 2737 p->pLimit = 0; 2738 pNew = sqlite3SelectDup(db, p, 0); 2739 p->pLimit = pLimit; 2740 p->pOrderBy = pOrderBy; 2741 p->pSrc = pSrc; 2742 p->op = TK_ALL; 2743 p->pRightmost = 0; 2744 if( pNew==0 ){ 2745 pNew = pPrior; 2746 }else{ 2747 pNew->pPrior = pPrior; 2748 pNew->pRightmost = 0; 2749 } 2750 p->pPrior = pNew; 2751 if( db->mallocFailed ) return 1; 2752 } 2753 2754 /* Begin flattening the iFrom-th entry of the FROM clause 2755 ** in the outer query. 2756 */ 2757 pSub = pSub1 = pSubitem->pSelect; 2758 2759 /* Delete the transient table structure associated with the 2760 ** subquery 2761 */ 2762 sqlite3DbFree(db, pSubitem->zDatabase); 2763 sqlite3DbFree(db, pSubitem->zName); 2764 sqlite3DbFree(db, pSubitem->zAlias); 2765 pSubitem->zDatabase = 0; 2766 pSubitem->zName = 0; 2767 pSubitem->zAlias = 0; 2768 pSubitem->pSelect = 0; 2769 2770 /* Defer deleting the Table object associated with the 2771 ** subquery until code generation is 2772 ** complete, since there may still exist Expr.pTab entries that 2773 ** refer to the subquery even after flattening. Ticket #3346. 2774 */ 2775 if( pSubitem->pTab!=0 ){ 2776 Table *pTabToDel = pSubitem->pTab; 2777 if( pTabToDel->nRef==1 ){ 2778 pTabToDel->pNextZombie = pParse->pZombieTab; 2779 pParse->pZombieTab = pTabToDel; 2780 }else{ 2781 pTabToDel->nRef--; 2782 } 2783 pSubitem->pTab = 0; 2784 } 2785 2786 /* The following loop runs once for each term in a compound-subquery 2787 ** flattening (as described above). If we are doing a different kind 2788 ** of flattening - a flattening other than a compound-subquery flattening - 2789 ** then this loop only runs once. 2790 ** 2791 ** This loop moves all of the FROM elements of the subquery into the 2792 ** the FROM clause of the outer query. Before doing this, remember 2793 ** the cursor number for the original outer query FROM element in 2794 ** iParent. The iParent cursor will never be used. Subsequent code 2795 ** will scan expressions looking for iParent references and replace 2796 ** those references with expressions that resolve to the subquery FROM 2797 ** elements we are now copying in. 2798 */ 2799 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2800 int nSubSrc; 2801 u8 jointype = 0; 2802 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2803 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2804 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2805 2806 if( pSrc ){ 2807 assert( pParent==p ); /* First time through the loop */ 2808 jointype = pSubitem->jointype; 2809 }else{ 2810 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2811 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2812 if( pSrc==0 ){ 2813 assert( db->mallocFailed ); 2814 break; 2815 } 2816 } 2817 2818 /* The subquery uses a single slot of the FROM clause of the outer 2819 ** query. If the subquery has more than one element in its FROM clause, 2820 ** then expand the outer query to make space for it to hold all elements 2821 ** of the subquery. 2822 ** 2823 ** Example: 2824 ** 2825 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2826 ** 2827 ** The outer query has 3 slots in its FROM clause. One slot of the 2828 ** outer query (the middle slot) is used by the subquery. The next 2829 ** block of code will expand the out query to 4 slots. The middle 2830 ** slot is expanded to two slots in order to make space for the 2831 ** two elements in the FROM clause of the subquery. 2832 */ 2833 if( nSubSrc>1 ){ 2834 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2835 if( db->mallocFailed ){ 2836 break; 2837 } 2838 } 2839 2840 /* Transfer the FROM clause terms from the subquery into the 2841 ** outer query. 2842 */ 2843 for(i=0; i<nSubSrc; i++){ 2844 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2845 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2846 } 2847 pSrc->a[iFrom].jointype = jointype; 2848 2849 /* Now begin substituting subquery result set expressions for 2850 ** references to the iParent in the outer query. 2851 ** 2852 ** Example: 2853 ** 2854 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2855 ** \ \_____________ subquery __________/ / 2856 ** \_____________________ outer query ______________________________/ 2857 ** 2858 ** We look at every expression in the outer query and every place we see 2859 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2860 */ 2861 pList = pParent->pEList; 2862 for(i=0; i<pList->nExpr; i++){ 2863 Expr *pExpr; 2864 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2865 pList->a[i].zName = 2866 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2867 } 2868 } 2869 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2870 if( isAgg ){ 2871 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2872 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2873 } 2874 if( pSub->pOrderBy ){ 2875 assert( pParent->pOrderBy==0 ); 2876 pParent->pOrderBy = pSub->pOrderBy; 2877 pSub->pOrderBy = 0; 2878 }else if( pParent->pOrderBy ){ 2879 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2880 } 2881 if( pSub->pWhere ){ 2882 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2883 }else{ 2884 pWhere = 0; 2885 } 2886 if( subqueryIsAgg ){ 2887 assert( pParent->pHaving==0 ); 2888 pParent->pHaving = pParent->pWhere; 2889 pParent->pWhere = pWhere; 2890 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2891 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2892 sqlite3ExprDup(db, pSub->pHaving, 0)); 2893 assert( pParent->pGroupBy==0 ); 2894 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2895 }else{ 2896 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2897 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2898 } 2899 2900 /* The flattened query is distinct if either the inner or the 2901 ** outer query is distinct. 2902 */ 2903 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2904 2905 /* 2906 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2907 ** 2908 ** One is tempted to try to add a and b to combine the limits. But this 2909 ** does not work if either limit is negative. 2910 */ 2911 if( pSub->pLimit ){ 2912 pParent->pLimit = pSub->pLimit; 2913 pSub->pLimit = 0; 2914 } 2915 } 2916 2917 /* Finially, delete what is left of the subquery and return 2918 ** success. 2919 */ 2920 sqlite3SelectDelete(db, pSub1); 2921 2922 return 1; 2923 } 2924 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2925 2926 /* 2927 ** Analyze the SELECT statement passed as an argument to see if it 2928 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2929 ** it is, or 0 otherwise. At present, a query is considered to be 2930 ** a min()/max() query if: 2931 ** 2932 ** 1. There is a single object in the FROM clause. 2933 ** 2934 ** 2. There is a single expression in the result set, and it is 2935 ** either min(x) or max(x), where x is a column reference. 2936 */ 2937 static u8 minMaxQuery(Select *p){ 2938 Expr *pExpr; 2939 ExprList *pEList = p->pEList; 2940 2941 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2942 pExpr = pEList->a[0].pExpr; 2943 if( ExprHasProperty(pExpr, EP_xIsSelect) ) return 0; 2944 pEList = pExpr->x.pList; 2945 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 2946 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2947 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 2948 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2949 return WHERE_ORDERBY_MIN; 2950 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2951 return WHERE_ORDERBY_MAX; 2952 } 2953 return WHERE_ORDERBY_NORMAL; 2954 } 2955 2956 /* 2957 ** The select statement passed as the first argument is an aggregate query. 2958 ** The second argment is the associated aggregate-info object. This 2959 ** function tests if the SELECT is of the form: 2960 ** 2961 ** SELECT count(*) FROM <tbl> 2962 ** 2963 ** where table is a database table, not a sub-select or view. If the query 2964 ** does match this pattern, then a pointer to the Table object representing 2965 ** <tbl> is returned. Otherwise, 0 is returned. 2966 */ 2967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2968 Table *pTab; 2969 Expr *pExpr; 2970 2971 assert( !p->pGroupBy ); 2972 2973 if( p->pWhere || p->pEList->nExpr!=1 2974 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2975 ){ 2976 return 0; 2977 } 2978 pTab = p->pSrc->a[0].pTab; 2979 pExpr = p->pEList->a[0].pExpr; 2980 assert( pTab && !pTab->pSelect && pExpr ); 2981 2982 if( IsVirtual(pTab) ) return 0; 2983 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2984 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2985 if( pExpr->flags&EP_Distinct ) return 0; 2986 2987 return pTab; 2988 } 2989 2990 /* 2991 ** If the source-list item passed as an argument was augmented with an 2992 ** INDEXED BY clause, then try to locate the specified index. If there 2993 ** was such a clause and the named index cannot be found, return 2994 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2995 ** pFrom->pIndex and return SQLITE_OK. 2996 */ 2997 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2998 if( pFrom->pTab && pFrom->zIndex ){ 2999 Table *pTab = pFrom->pTab; 3000 char *zIndex = pFrom->zIndex; 3001 Index *pIdx; 3002 for(pIdx=pTab->pIndex; 3003 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3004 pIdx=pIdx->pNext 3005 ); 3006 if( !pIdx ){ 3007 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3008 return SQLITE_ERROR; 3009 } 3010 pFrom->pIndex = pIdx; 3011 } 3012 return SQLITE_OK; 3013 } 3014 3015 /* 3016 ** This routine is a Walker callback for "expanding" a SELECT statement. 3017 ** "Expanding" means to do the following: 3018 ** 3019 ** (1) Make sure VDBE cursor numbers have been assigned to every 3020 ** element of the FROM clause. 3021 ** 3022 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3023 ** defines FROM clause. When views appear in the FROM clause, 3024 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3025 ** that implements the view. A copy is made of the view's SELECT 3026 ** statement so that we can freely modify or delete that statement 3027 ** without worrying about messing up the presistent representation 3028 ** of the view. 3029 ** 3030 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3031 ** on joins and the ON and USING clause of joins. 3032 ** 3033 ** (4) Scan the list of columns in the result set (pEList) looking 3034 ** for instances of the "*" operator or the TABLE.* operator. 3035 ** If found, expand each "*" to be every column in every table 3036 ** and TABLE.* to be every column in TABLE. 3037 ** 3038 */ 3039 static int selectExpander(Walker *pWalker, Select *p){ 3040 Parse *pParse = pWalker->pParse; 3041 int i, j, k; 3042 SrcList *pTabList; 3043 ExprList *pEList; 3044 struct SrcList_item *pFrom; 3045 sqlite3 *db = pParse->db; 3046 3047 if( db->mallocFailed ){ 3048 return WRC_Abort; 3049 } 3050 if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){ 3051 return WRC_Prune; 3052 } 3053 p->selFlags |= SF_Expanded; 3054 pTabList = p->pSrc; 3055 pEList = p->pEList; 3056 3057 /* Make sure cursor numbers have been assigned to all entries in 3058 ** the FROM clause of the SELECT statement. 3059 */ 3060 sqlite3SrcListAssignCursors(pParse, pTabList); 3061 3062 /* Look up every table named in the FROM clause of the select. If 3063 ** an entry of the FROM clause is a subquery instead of a table or view, 3064 ** then create a transient table structure to describe the subquery. 3065 */ 3066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3067 Table *pTab; 3068 if( pFrom->pTab!=0 ){ 3069 /* This statement has already been prepared. There is no need 3070 ** to go further. */ 3071 assert( i==0 ); 3072 return WRC_Prune; 3073 } 3074 if( pFrom->zName==0 ){ 3075 #ifndef SQLITE_OMIT_SUBQUERY 3076 Select *pSel = pFrom->pSelect; 3077 /* A sub-query in the FROM clause of a SELECT */ 3078 assert( pSel!=0 ); 3079 assert( pFrom->pTab==0 ); 3080 sqlite3WalkSelect(pWalker, pSel); 3081 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3082 if( pTab==0 ) return WRC_Abort; 3083 pTab->db = db; 3084 pTab->nRef = 1; 3085 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3086 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3087 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3088 pTab->iPKey = -1; 3089 pTab->tabFlags |= TF_Ephemeral; 3090 #endif 3091 }else{ 3092 /* An ordinary table or view name in the FROM clause */ 3093 assert( pFrom->pTab==0 ); 3094 pFrom->pTab = pTab = 3095 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3096 if( pTab==0 ) return WRC_Abort; 3097 pTab->nRef++; 3098 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3099 if( pTab->pSelect || IsVirtual(pTab) ){ 3100 /* We reach here if the named table is a really a view */ 3101 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3102 3103 /* If pFrom->pSelect!=0 it means we are dealing with a 3104 ** view within a view. The SELECT structure has already been 3105 ** copied by the outer view so we can skip the copy step here 3106 ** in the inner view. 3107 */ 3108 if( pFrom->pSelect==0 ){ 3109 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3110 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3111 } 3112 } 3113 #endif 3114 } 3115 3116 /* Locate the index named by the INDEXED BY clause, if any. */ 3117 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3118 return WRC_Abort; 3119 } 3120 } 3121 3122 /* Process NATURAL keywords, and ON and USING clauses of joins. 3123 */ 3124 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3125 return WRC_Abort; 3126 } 3127 3128 /* For every "*" that occurs in the column list, insert the names of 3129 ** all columns in all tables. And for every TABLE.* insert the names 3130 ** of all columns in TABLE. The parser inserted a special expression 3131 ** with the TK_ALL operator for each "*" that it found in the column list. 3132 ** The following code just has to locate the TK_ALL expressions and expand 3133 ** each one to the list of all columns in all tables. 3134 ** 3135 ** The first loop just checks to see if there are any "*" operators 3136 ** that need expanding. 3137 */ 3138 for(k=0; k<pEList->nExpr; k++){ 3139 Expr *pE = pEList->a[k].pExpr; 3140 if( pE->op==TK_ALL ) break; 3141 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 3142 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 3143 } 3144 if( k<pEList->nExpr ){ 3145 /* 3146 ** If we get here it means the result set contains one or more "*" 3147 ** operators that need to be expanded. Loop through each expression 3148 ** in the result set and expand them one by one. 3149 */ 3150 struct ExprList_item *a = pEList->a; 3151 ExprList *pNew = 0; 3152 int flags = pParse->db->flags; 3153 int longNames = (flags & SQLITE_FullColNames)!=0 3154 && (flags & SQLITE_ShortColNames)==0; 3155 3156 for(k=0; k<pEList->nExpr; k++){ 3157 Expr *pE = a[k].pExpr; 3158 if( pE->op!=TK_ALL && 3159 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 3160 /* This particular expression does not need to be expanded. 3161 */ 3162 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 3163 if( pNew ){ 3164 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3165 } 3166 a[k].pExpr = 0; 3167 a[k].zName = 0; 3168 }else{ 3169 /* This expression is a "*" or a "TABLE.*" and needs to be 3170 ** expanded. */ 3171 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3172 char *zTName; /* text of name of TABLE */ 3173 if( pE->op==TK_DOT && pE->pLeft ){ 3174 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 3175 }else{ 3176 zTName = 0; 3177 } 3178 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3179 Table *pTab = pFrom->pTab; 3180 char *zTabName = pFrom->zAlias; 3181 if( zTabName==0 || zTabName[0]==0 ){ 3182 zTabName = pTab->zName; 3183 } 3184 if( db->mallocFailed ) break; 3185 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3186 continue; 3187 } 3188 tableSeen = 1; 3189 for(j=0; j<pTab->nCol; j++){ 3190 Expr *pExpr, *pRight; 3191 char *zName = pTab->aCol[j].zName; 3192 3193 /* If a column is marked as 'hidden' (currently only possible 3194 ** for virtual tables), do not include it in the expanded 3195 ** result-set list. 3196 */ 3197 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3198 assert(IsVirtual(pTab)); 3199 continue; 3200 } 3201 3202 if( i>0 && zTName==0 ){ 3203 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3204 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3205 columnIndex(pLeft->pTab, zName)>=0 ){ 3206 /* In a NATURAL join, omit the join columns from the 3207 ** table on the right */ 3208 continue; 3209 } 3210 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3211 /* In a join with a USING clause, omit columns in the 3212 ** using clause from the table on the right. */ 3213 continue; 3214 } 3215 } 3216 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3217 if( pRight==0 ) break; 3218 setQuotedToken(pParse, &pRight->token, zName); 3219 if( longNames || pTabList->nSrc>1 ){ 3220 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3221 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3222 if( pExpr==0 ) break; 3223 setQuotedToken(pParse, &pLeft->token, zTabName); 3224 setToken(&pExpr->span, 3225 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 3226 pExpr->span.dyn = 1; 3227 pExpr->token.z = 0; 3228 pExpr->token.n = 0; 3229 pExpr->token.dyn = 0; 3230 }else{ 3231 pExpr = pRight; 3232 pExpr->span = pExpr->token; 3233 pExpr->span.dyn = 0; 3234 } 3235 if( longNames ){ 3236 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 3237 }else{ 3238 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 3239 } 3240 } 3241 } 3242 if( !tableSeen ){ 3243 if( zTName ){ 3244 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3245 }else{ 3246 sqlite3ErrorMsg(pParse, "no tables specified"); 3247 } 3248 } 3249 sqlite3DbFree(db, zTName); 3250 } 3251 } 3252 sqlite3ExprListDelete(db, pEList); 3253 p->pEList = pNew; 3254 } 3255 #if SQLITE_MAX_COLUMN 3256 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3257 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3258 } 3259 #endif 3260 return WRC_Continue; 3261 } 3262 3263 /* 3264 ** No-op routine for the parse-tree walker. 3265 ** 3266 ** When this routine is the Walker.xExprCallback then expression trees 3267 ** are walked without any actions being taken at each node. Presumably, 3268 ** when this routine is used for Walker.xExprCallback then 3269 ** Walker.xSelectCallback is set to do something useful for every 3270 ** subquery in the parser tree. 3271 */ 3272 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3273 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3274 return WRC_Continue; 3275 } 3276 3277 /* 3278 ** This routine "expands" a SELECT statement and all of its subqueries. 3279 ** For additional information on what it means to "expand" a SELECT 3280 ** statement, see the comment on the selectExpand worker callback above. 3281 ** 3282 ** Expanding a SELECT statement is the first step in processing a 3283 ** SELECT statement. The SELECT statement must be expanded before 3284 ** name resolution is performed. 3285 ** 3286 ** If anything goes wrong, an error message is written into pParse. 3287 ** The calling function can detect the problem by looking at pParse->nErr 3288 ** and/or pParse->db->mallocFailed. 3289 */ 3290 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3291 Walker w; 3292 w.xSelectCallback = selectExpander; 3293 w.xExprCallback = exprWalkNoop; 3294 w.pParse = pParse; 3295 sqlite3WalkSelect(&w, pSelect); 3296 } 3297 3298 3299 #ifndef SQLITE_OMIT_SUBQUERY 3300 /* 3301 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3302 ** interface. 3303 ** 3304 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3305 ** information to the Table structure that represents the result set 3306 ** of that subquery. 3307 ** 3308 ** The Table structure that represents the result set was constructed 3309 ** by selectExpander() but the type and collation information was omitted 3310 ** at that point because identifiers had not yet been resolved. This 3311 ** routine is called after identifier resolution. 3312 */ 3313 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3314 Parse *pParse; 3315 int i; 3316 SrcList *pTabList; 3317 struct SrcList_item *pFrom; 3318 3319 assert( p->selFlags & SF_Resolved ); 3320 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3321 p->selFlags |= SF_HasTypeInfo; 3322 pParse = pWalker->pParse; 3323 pTabList = p->pSrc; 3324 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3325 Table *pTab = pFrom->pTab; 3326 if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3327 /* A sub-query in the FROM clause of a SELECT */ 3328 Select *pSel = pFrom->pSelect; 3329 assert( pSel ); 3330 while( pSel->pPrior ) pSel = pSel->pPrior; 3331 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3332 } 3333 } 3334 } 3335 return WRC_Continue; 3336 } 3337 #endif 3338 3339 3340 /* 3341 ** This routine adds datatype and collating sequence information to 3342 ** the Table structures of all FROM-clause subqueries in a 3343 ** SELECT statement. 3344 ** 3345 ** Use this routine after name resolution. 3346 */ 3347 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3348 #ifndef SQLITE_OMIT_SUBQUERY 3349 Walker w; 3350 w.xSelectCallback = selectAddSubqueryTypeInfo; 3351 w.xExprCallback = exprWalkNoop; 3352 w.pParse = pParse; 3353 sqlite3WalkSelect(&w, pSelect); 3354 #endif 3355 } 3356 3357 3358 /* 3359 ** This routine sets of a SELECT statement for processing. The 3360 ** following is accomplished: 3361 ** 3362 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3363 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3364 ** * ON and USING clauses are shifted into WHERE statements 3365 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3366 ** * Identifiers in expression are matched to tables. 3367 ** 3368 ** This routine acts recursively on all subqueries within the SELECT. 3369 */ 3370 void sqlite3SelectPrep( 3371 Parse *pParse, /* The parser context */ 3372 Select *p, /* The SELECT statement being coded. */ 3373 NameContext *pOuterNC /* Name context for container */ 3374 ){ 3375 sqlite3 *db; 3376 if( p==0 ) return; 3377 db = pParse->db; 3378 if( p->selFlags & SF_HasTypeInfo ) return; 3379 if( pParse->nErr || db->mallocFailed ) return; 3380 sqlite3SelectExpand(pParse, p); 3381 if( pParse->nErr || db->mallocFailed ) return; 3382 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3383 if( pParse->nErr || db->mallocFailed ) return; 3384 sqlite3SelectAddTypeInfo(pParse, p); 3385 } 3386 3387 /* 3388 ** Reset the aggregate accumulator. 3389 ** 3390 ** The aggregate accumulator is a set of memory cells that hold 3391 ** intermediate results while calculating an aggregate. This 3392 ** routine simply stores NULLs in all of those memory cells. 3393 */ 3394 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3395 Vdbe *v = pParse->pVdbe; 3396 int i; 3397 struct AggInfo_func *pFunc; 3398 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3399 return; 3400 } 3401 for(i=0; i<pAggInfo->nColumn; i++){ 3402 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3403 } 3404 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3405 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3406 if( pFunc->iDistinct>=0 ){ 3407 Expr *pE = pFunc->pExpr; 3408 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3409 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3410 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3411 "argument"); 3412 pFunc->iDistinct = -1; 3413 }else{ 3414 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3415 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3416 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3417 } 3418 } 3419 } 3420 } 3421 3422 /* 3423 ** Invoke the OP_AggFinalize opcode for every aggregate function 3424 ** in the AggInfo structure. 3425 */ 3426 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3427 Vdbe *v = pParse->pVdbe; 3428 int i; 3429 struct AggInfo_func *pF; 3430 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3431 ExprList *pList = pF->pExpr->x.pList; 3432 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3433 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3434 (void*)pF->pFunc, P4_FUNCDEF); 3435 } 3436 } 3437 3438 /* 3439 ** Update the accumulator memory cells for an aggregate based on 3440 ** the current cursor position. 3441 */ 3442 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3443 Vdbe *v = pParse->pVdbe; 3444 int i; 3445 struct AggInfo_func *pF; 3446 struct AggInfo_col *pC; 3447 3448 pAggInfo->directMode = 1; 3449 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3450 int nArg; 3451 int addrNext = 0; 3452 int regAgg; 3453 ExprList *pList = pF->pExpr->x.pList; 3454 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3455 if( pList ){ 3456 nArg = pList->nExpr; 3457 regAgg = sqlite3GetTempRange(pParse, nArg); 3458 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3459 }else{ 3460 nArg = 0; 3461 regAgg = 0; 3462 } 3463 if( pF->iDistinct>=0 ){ 3464 addrNext = sqlite3VdbeMakeLabel(v); 3465 assert( nArg==1 ); 3466 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3467 } 3468 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3469 CollSeq *pColl = 0; 3470 struct ExprList_item *pItem; 3471 int j; 3472 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3473 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3474 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3475 } 3476 if( !pColl ){ 3477 pColl = pParse->db->pDfltColl; 3478 } 3479 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3480 } 3481 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3482 (void*)pF->pFunc, P4_FUNCDEF); 3483 sqlite3VdbeChangeP5(v, (u8)nArg); 3484 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3485 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3486 if( addrNext ){ 3487 sqlite3VdbeResolveLabel(v, addrNext); 3488 } 3489 } 3490 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3491 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3492 } 3493 pAggInfo->directMode = 0; 3494 } 3495 3496 /* 3497 ** Generate code for the SELECT statement given in the p argument. 3498 ** 3499 ** The results are distributed in various ways depending on the 3500 ** contents of the SelectDest structure pointed to by argument pDest 3501 ** as follows: 3502 ** 3503 ** pDest->eDest Result 3504 ** ------------ ------------------------------------------- 3505 ** SRT_Output Generate a row of output (using the OP_ResultRow 3506 ** opcode) for each row in the result set. 3507 ** 3508 ** SRT_Mem Only valid if the result is a single column. 3509 ** Store the first column of the first result row 3510 ** in register pDest->iParm then abandon the rest 3511 ** of the query. This destination implies "LIMIT 1". 3512 ** 3513 ** SRT_Set The result must be a single column. Store each 3514 ** row of result as the key in table pDest->iParm. 3515 ** Apply the affinity pDest->affinity before storing 3516 ** results. Used to implement "IN (SELECT ...)". 3517 ** 3518 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3519 ** 3520 ** SRT_Except Remove results from the temporary table pDest->iParm. 3521 ** 3522 ** SRT_Table Store results in temporary table pDest->iParm. 3523 ** This is like SRT_EphemTab except that the table 3524 ** is assumed to already be open. 3525 ** 3526 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3527 ** the result there. The cursor is left open after 3528 ** returning. This is like SRT_Table except that 3529 ** this destination uses OP_OpenEphemeral to create 3530 ** the table first. 3531 ** 3532 ** SRT_Coroutine Generate a co-routine that returns a new row of 3533 ** results each time it is invoked. The entry point 3534 ** of the co-routine is stored in register pDest->iParm. 3535 ** 3536 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3537 ** set is not empty. 3538 ** 3539 ** SRT_Discard Throw the results away. This is used by SELECT 3540 ** statements within triggers whose only purpose is 3541 ** the side-effects of functions. 3542 ** 3543 ** This routine returns the number of errors. If any errors are 3544 ** encountered, then an appropriate error message is left in 3545 ** pParse->zErrMsg. 3546 ** 3547 ** This routine does NOT free the Select structure passed in. The 3548 ** calling function needs to do that. 3549 */ 3550 int sqlite3Select( 3551 Parse *pParse, /* The parser context */ 3552 Select *p, /* The SELECT statement being coded. */ 3553 SelectDest *pDest /* What to do with the query results */ 3554 ){ 3555 int i, j; /* Loop counters */ 3556 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3557 Vdbe *v; /* The virtual machine under construction */ 3558 int isAgg; /* True for select lists like "count(*)" */ 3559 ExprList *pEList; /* List of columns to extract. */ 3560 SrcList *pTabList; /* List of tables to select from */ 3561 Expr *pWhere; /* The WHERE clause. May be NULL */ 3562 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3563 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3564 Expr *pHaving; /* The HAVING clause. May be NULL */ 3565 int isDistinct; /* True if the DISTINCT keyword is present */ 3566 int distinct; /* Table to use for the distinct set */ 3567 int rc = 1; /* Value to return from this function */ 3568 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3569 AggInfo sAggInfo; /* Information used by aggregate queries */ 3570 int iEnd; /* Address of the end of the query */ 3571 sqlite3 *db; /* The database connection */ 3572 3573 db = pParse->db; 3574 if( p==0 || db->mallocFailed || pParse->nErr ){ 3575 return 1; 3576 } 3577 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3578 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3579 3580 pOrderBy = p->pOrderBy; 3581 if( IgnorableOrderby(pDest) ){ 3582 p->pOrderBy = 0; 3583 3584 /* In these cases the DISTINCT operator makes no difference to the 3585 ** results, so remove it if it were specified. 3586 */ 3587 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3588 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3589 p->selFlags &= ~SF_Distinct; 3590 } 3591 sqlite3SelectPrep(pParse, p, 0); 3592 pTabList = p->pSrc; 3593 pEList = p->pEList; 3594 if( pParse->nErr || db->mallocFailed ){ 3595 goto select_end; 3596 } 3597 p->pOrderBy = pOrderBy; 3598 isAgg = (p->selFlags & SF_Aggregate)!=0; 3599 if( pEList==0 ) goto select_end; 3600 3601 /* 3602 ** Do not even attempt to generate any code if we have already seen 3603 ** errors before this routine starts. 3604 */ 3605 if( pParse->nErr>0 ) goto select_end; 3606 3607 /* ORDER BY is ignored for some destinations. 3608 */ 3609 if( IgnorableOrderby(pDest) ){ 3610 pOrderBy = 0; 3611 } 3612 3613 /* Begin generating code. 3614 */ 3615 v = sqlite3GetVdbe(pParse); 3616 if( v==0 ) goto select_end; 3617 3618 /* Generate code for all sub-queries in the FROM clause 3619 */ 3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3621 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3622 struct SrcList_item *pItem = &pTabList->a[i]; 3623 SelectDest dest; 3624 Select *pSub = pItem->pSelect; 3625 int isAggSub; 3626 3627 if( pSub==0 || pItem->isPopulated ) continue; 3628 3629 /* Increment Parse.nHeight by the height of the largest expression 3630 ** tree refered to by this, the parent select. The child select 3631 ** may contain expression trees of at most 3632 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3633 ** more conservative than necessary, but much easier than enforcing 3634 ** an exact limit. 3635 */ 3636 pParse->nHeight += sqlite3SelectExprHeight(p); 3637 3638 /* Check to see if the subquery can be absorbed into the parent. */ 3639 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3640 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3641 if( isAggSub ){ 3642 isAgg = 1; 3643 p->selFlags |= SF_Aggregate; 3644 } 3645 i = -1; 3646 }else{ 3647 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3648 assert( pItem->isPopulated==0 ); 3649 sqlite3Select(pParse, pSub, &dest); 3650 pItem->isPopulated = 1; 3651 } 3652 if( pParse->nErr || db->mallocFailed ){ 3653 goto select_end; 3654 } 3655 pParse->nHeight -= sqlite3SelectExprHeight(p); 3656 pTabList = p->pSrc; 3657 if( !IgnorableOrderby(pDest) ){ 3658 pOrderBy = p->pOrderBy; 3659 } 3660 } 3661 pEList = p->pEList; 3662 #endif 3663 pWhere = p->pWhere; 3664 pGroupBy = p->pGroupBy; 3665 pHaving = p->pHaving; 3666 isDistinct = (p->selFlags & SF_Distinct)!=0; 3667 3668 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3669 /* If there is are a sequence of queries, do the earlier ones first. 3670 */ 3671 if( p->pPrior ){ 3672 if( p->pRightmost==0 ){ 3673 Select *pLoop, *pRight = 0; 3674 int cnt = 0; 3675 int mxSelect; 3676 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3677 pLoop->pRightmost = p; 3678 pLoop->pNext = pRight; 3679 pRight = pLoop; 3680 } 3681 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3682 if( mxSelect && cnt>mxSelect ){ 3683 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3684 return 1; 3685 } 3686 } 3687 return multiSelect(pParse, p, pDest); 3688 } 3689 #endif 3690 3691 /* If writing to memory or generating a set 3692 ** only a single column may be output. 3693 */ 3694 #ifndef SQLITE_OMIT_SUBQUERY 3695 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3696 goto select_end; 3697 } 3698 #endif 3699 3700 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3701 ** GROUP BY might use an index, DISTINCT never does. 3702 */ 3703 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){ 3704 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3705 pGroupBy = p->pGroupBy; 3706 p->selFlags &= ~SF_Distinct; 3707 isDistinct = 0; 3708 } 3709 3710 /* If there is an ORDER BY clause, then this sorting 3711 ** index might end up being unused if the data can be 3712 ** extracted in pre-sorted order. If that is the case, then the 3713 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3714 ** we figure out that the sorting index is not needed. The addrSortIndex 3715 ** variable is used to facilitate that change. 3716 */ 3717 if( pOrderBy ){ 3718 KeyInfo *pKeyInfo; 3719 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3720 pOrderBy->iECursor = pParse->nTab++; 3721 p->addrOpenEphm[2] = addrSortIndex = 3722 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3723 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3724 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3725 }else{ 3726 addrSortIndex = -1; 3727 } 3728 3729 /* If the output is destined for a temporary table, open that table. 3730 */ 3731 if( pDest->eDest==SRT_EphemTab ){ 3732 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3733 } 3734 3735 /* Set the limiter. 3736 */ 3737 iEnd = sqlite3VdbeMakeLabel(v); 3738 computeLimitRegisters(pParse, p, iEnd); 3739 3740 /* Open a virtual index to use for the distinct set. 3741 */ 3742 if( isDistinct ){ 3743 KeyInfo *pKeyInfo; 3744 assert( isAgg || pGroupBy ); 3745 distinct = pParse->nTab++; 3746 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3747 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3748 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3749 }else{ 3750 distinct = -1; 3751 } 3752 3753 /* Aggregate and non-aggregate queries are handled differently */ 3754 if( !isAgg && pGroupBy==0 ){ 3755 /* This case is for non-aggregate queries 3756 ** Begin the database scan 3757 */ 3758 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0, 0); 3759 if( pWInfo==0 ) goto select_end; 3760 3761 /* If sorting index that was created by a prior OP_OpenEphemeral 3762 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3763 ** into an OP_Noop. 3764 */ 3765 if( addrSortIndex>=0 && pOrderBy==0 ){ 3766 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3767 p->addrOpenEphm[2] = -1; 3768 } 3769 3770 /* Use the standard inner loop 3771 */ 3772 assert(!isDistinct); 3773 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3774 pWInfo->iContinue, pWInfo->iBreak); 3775 3776 /* End the database scan loop. 3777 */ 3778 sqlite3WhereEnd(pWInfo); 3779 }else{ 3780 /* This is the processing for aggregate queries */ 3781 NameContext sNC; /* Name context for processing aggregate information */ 3782 int iAMem; /* First Mem address for storing current GROUP BY */ 3783 int iBMem; /* First Mem address for previous GROUP BY */ 3784 int iUseFlag; /* Mem address holding flag indicating that at least 3785 ** one row of the input to the aggregator has been 3786 ** processed */ 3787 int iAbortFlag; /* Mem address which causes query abort if positive */ 3788 int groupBySort; /* Rows come from source in GROUP BY order */ 3789 int addrEnd; /* End of processing for this SELECT */ 3790 3791 /* Remove any and all aliases between the result set and the 3792 ** GROUP BY clause. 3793 */ 3794 if( pGroupBy ){ 3795 int k; /* Loop counter */ 3796 struct ExprList_item *pItem; /* For looping over expression in a list */ 3797 3798 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3799 pItem->iAlias = 0; 3800 } 3801 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3802 pItem->iAlias = 0; 3803 } 3804 } 3805 3806 3807 /* Create a label to jump to when we want to abort the query */ 3808 addrEnd = sqlite3VdbeMakeLabel(v); 3809 3810 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3811 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3812 ** SELECT statement. 3813 */ 3814 memset(&sNC, 0, sizeof(sNC)); 3815 sNC.pParse = pParse; 3816 sNC.pSrcList = pTabList; 3817 sNC.pAggInfo = &sAggInfo; 3818 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3819 sAggInfo.pGroupBy = pGroupBy; 3820 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3821 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3822 if( pHaving ){ 3823 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3824 } 3825 sAggInfo.nAccumulator = sAggInfo.nColumn; 3826 for(i=0; i<sAggInfo.nFunc; i++){ 3827 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3828 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3829 } 3830 if( db->mallocFailed ) goto select_end; 3831 3832 /* Processing for aggregates with GROUP BY is very different and 3833 ** much more complex than aggregates without a GROUP BY. 3834 */ 3835 if( pGroupBy ){ 3836 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3837 int j1; /* A-vs-B comparision jump */ 3838 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3839 int regOutputRow; /* Return address register for output subroutine */ 3840 int addrSetAbort; /* Set the abort flag and return */ 3841 int addrTopOfLoop; /* Top of the input loop */ 3842 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3843 int addrReset; /* Subroutine for resetting the accumulator */ 3844 int regReset; /* Return address register for reset subroutine */ 3845 3846 /* If there is a GROUP BY clause we might need a sorting index to 3847 ** implement it. Allocate that sorting index now. If it turns out 3848 ** that we do not need it after all, the OpenEphemeral instruction 3849 ** will be converted into a Noop. 3850 */ 3851 sAggInfo.sortingIdx = pParse->nTab++; 3852 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3853 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3854 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3855 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3856 3857 /* Initialize memory locations used by GROUP BY aggregate processing 3858 */ 3859 iUseFlag = ++pParse->nMem; 3860 iAbortFlag = ++pParse->nMem; 3861 regOutputRow = ++pParse->nMem; 3862 addrOutputRow = sqlite3VdbeMakeLabel(v); 3863 regReset = ++pParse->nMem; 3864 addrReset = sqlite3VdbeMakeLabel(v); 3865 iAMem = pParse->nMem + 1; 3866 pParse->nMem += pGroupBy->nExpr; 3867 iBMem = pParse->nMem + 1; 3868 pParse->nMem += pGroupBy->nExpr; 3869 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3870 VdbeComment((v, "clear abort flag")); 3871 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3872 VdbeComment((v, "indicate accumulator empty")); 3873 3874 /* Begin a loop that will extract all source rows in GROUP BY order. 3875 ** This might involve two separate loops with an OP_Sort in between, or 3876 ** it might be a single loop that uses an index to extract information 3877 ** in the right order to begin with. 3878 */ 3879 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3880 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); 3881 if( pWInfo==0 ) goto select_end; 3882 if( pGroupBy==0 ){ 3883 /* The optimizer is able to deliver rows in group by order so 3884 ** we do not have to sort. The OP_OpenEphemeral table will be 3885 ** cancelled later because we still need to use the pKeyInfo 3886 */ 3887 pGroupBy = p->pGroupBy; 3888 groupBySort = 0; 3889 }else{ 3890 /* Rows are coming out in undetermined order. We have to push 3891 ** each row into a sorting index, terminate the first loop, 3892 ** then loop over the sorting index in order to get the output 3893 ** in sorted order 3894 */ 3895 int regBase; 3896 int regRecord; 3897 int nCol; 3898 int nGroupBy; 3899 3900 groupBySort = 1; 3901 nGroupBy = pGroupBy->nExpr; 3902 nCol = nGroupBy + 1; 3903 j = nGroupBy+1; 3904 for(i=0; i<sAggInfo.nColumn; i++){ 3905 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3906 nCol++; 3907 j++; 3908 } 3909 } 3910 regBase = sqlite3GetTempRange(pParse, nCol); 3911 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3912 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3913 j = nGroupBy+1; 3914 for(i=0; i<sAggInfo.nColumn; i++){ 3915 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3916 if( pCol->iSorterColumn>=j ){ 3917 int r1 = j + regBase; 3918 int r2; 3919 3920 r2 = sqlite3ExprCodeGetColumn(pParse, 3921 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3922 if( r1!=r2 ){ 3923 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3924 } 3925 j++; 3926 } 3927 } 3928 regRecord = sqlite3GetTempReg(pParse); 3929 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3930 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3931 sqlite3ReleaseTempReg(pParse, regRecord); 3932 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3933 sqlite3WhereEnd(pWInfo); 3934 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3935 VdbeComment((v, "GROUP BY sort")); 3936 sAggInfo.useSortingIdx = 1; 3937 } 3938 3939 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3940 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3941 ** Then compare the current GROUP BY terms against the GROUP BY terms 3942 ** from the previous row currently stored in a0, a1, a2... 3943 */ 3944 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3945 for(j=0; j<pGroupBy->nExpr; j++){ 3946 if( groupBySort ){ 3947 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3948 }else{ 3949 sAggInfo.directMode = 1; 3950 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3951 } 3952 } 3953 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3954 (char*)pKeyInfo, P4_KEYINFO); 3955 j1 = sqlite3VdbeCurrentAddr(v); 3956 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3957 3958 /* Generate code that runs whenever the GROUP BY changes. 3959 ** Changes in the GROUP BY are detected by the previous code 3960 ** block. If there were no changes, this block is skipped. 3961 ** 3962 ** This code copies current group by terms in b0,b1,b2,... 3963 ** over to a0,a1,a2. It then calls the output subroutine 3964 ** and resets the aggregate accumulator registers in preparation 3965 ** for the next GROUP BY batch. 3966 */ 3967 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3968 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3969 VdbeComment((v, "output one row")); 3970 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3971 VdbeComment((v, "check abort flag")); 3972 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3973 VdbeComment((v, "reset accumulator")); 3974 3975 /* Update the aggregate accumulators based on the content of 3976 ** the current row 3977 */ 3978 sqlite3VdbeJumpHere(v, j1); 3979 updateAccumulator(pParse, &sAggInfo); 3980 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3981 VdbeComment((v, "indicate data in accumulator")); 3982 3983 /* End of the loop 3984 */ 3985 if( groupBySort ){ 3986 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3987 }else{ 3988 sqlite3WhereEnd(pWInfo); 3989 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3990 } 3991 3992 /* Output the final row of result 3993 */ 3994 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3995 VdbeComment((v, "output final row")); 3996 3997 /* Jump over the subroutines 3998 */ 3999 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4000 4001 /* Generate a subroutine that outputs a single row of the result 4002 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4003 ** is less than or equal to zero, the subroutine is a no-op. If 4004 ** the processing calls for the query to abort, this subroutine 4005 ** increments the iAbortFlag memory location before returning in 4006 ** order to signal the caller to abort. 4007 */ 4008 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4009 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4010 VdbeComment((v, "set abort flag")); 4011 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4012 sqlite3VdbeResolveLabel(v, addrOutputRow); 4013 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4014 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4015 VdbeComment((v, "Groupby result generator entry point")); 4016 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4017 finalizeAggFunctions(pParse, &sAggInfo); 4018 if( pHaving ){ 4019 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4020 } 4021 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4022 distinct, pDest, 4023 addrOutputRow+1, addrSetAbort); 4024 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4025 VdbeComment((v, "end groupby result generator")); 4026 4027 /* Generate a subroutine that will reset the group-by accumulator 4028 */ 4029 sqlite3VdbeResolveLabel(v, addrReset); 4030 resetAccumulator(pParse, &sAggInfo); 4031 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4032 4033 } /* endif pGroupBy */ 4034 else { 4035 ExprList *pDel = 0; 4036 #ifndef SQLITE_OMIT_BTREECOUNT 4037 Table *pTab; 4038 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4039 /* If isSimpleCount() returns a pointer to a Table structure, then 4040 ** the SQL statement is of the form: 4041 ** 4042 ** SELECT count(*) FROM <tbl> 4043 ** 4044 ** where the Table structure returned represents table <tbl>. 4045 ** 4046 ** This statement is so common that it is optimized specially. The 4047 ** OP_Count instruction is executed either on the intkey table that 4048 ** contains the data for table <tbl> or on one of its indexes. It 4049 ** is better to execute the op on an index, as indexes are almost 4050 ** always spread across less pages than their corresponding tables. 4051 */ 4052 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4053 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4054 Index *pIdx; /* Iterator variable */ 4055 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4056 Index *pBest = 0; /* Best index found so far */ 4057 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4058 4059 sqlite3CodeVerifySchema(pParse, iDb); 4060 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4061 4062 /* Search for the index that has the least amount of columns. If 4063 ** there is such an index, and it has less columns than the table 4064 ** does, then we can assume that it consumes less space on disk and 4065 ** will therefore be cheaper to scan to determine the query result. 4066 ** In this case set iRoot to the root page number of the index b-tree 4067 ** and pKeyInfo to the KeyInfo structure required to navigate the 4068 ** index. 4069 ** 4070 ** In practice the KeyInfo structure will not be used. It is only 4071 ** passed to keep OP_OpenRead happy. 4072 */ 4073 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4074 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4075 pBest = pIdx; 4076 } 4077 } 4078 if( pBest && pBest->nColumn<pTab->nCol ){ 4079 iRoot = pBest->tnum; 4080 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4081 } 4082 4083 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4084 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4085 if( pKeyInfo ){ 4086 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4087 } 4088 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4089 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4090 }else 4091 #endif /* SQLITE_OMIT_BTREECOUNT */ 4092 { 4093 /* Check if the query is of one of the following forms: 4094 ** 4095 ** SELECT min(x) FROM ... 4096 ** SELECT max(x) FROM ... 4097 ** 4098 ** If it is, then ask the code in where.c to attempt to sort results 4099 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4100 ** If where.c is able to produce results sorted in this order, then 4101 ** add vdbe code to break out of the processing loop after the 4102 ** first iteration (since the first iteration of the loop is 4103 ** guaranteed to operate on the row with the minimum or maximum 4104 ** value of x, the only row required). 4105 ** 4106 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4107 ** modify behaviour as follows: 4108 ** 4109 ** + If the query is a "SELECT min(x)", then the loop coded by 4110 ** where.c should not iterate over any values with a NULL value 4111 ** for x. 4112 ** 4113 ** + The optimizer code in where.c (the thing that decides which 4114 ** index or indices to use) should place a different priority on 4115 ** satisfying the 'ORDER BY' clause than it does in other cases. 4116 ** Refer to code and comments in where.c for details. 4117 */ 4118 ExprList *pMinMax = 0; 4119 u8 flag = minMaxQuery(p); 4120 if( flag ){ 4121 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4122 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4123 pDel = pMinMax; 4124 if( pMinMax && !db->mallocFailed ){ 4125 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4126 pMinMax->a[0].pExpr->op = TK_COLUMN; 4127 } 4128 } 4129 4130 /* This case runs if the aggregate has no GROUP BY clause. The 4131 ** processing is much simpler since there is only a single row 4132 ** of output. 4133 */ 4134 resetAccumulator(pParse, &sAggInfo); 4135 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag, 0); 4136 if( pWInfo==0 ){ 4137 sqlite3ExprListDelete(db, pDel); 4138 goto select_end; 4139 } 4140 updateAccumulator(pParse, &sAggInfo); 4141 if( !pMinMax && flag ){ 4142 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4143 VdbeComment((v, "%s() by index", 4144 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4145 } 4146 sqlite3WhereEnd(pWInfo); 4147 finalizeAggFunctions(pParse, &sAggInfo); 4148 } 4149 4150 pOrderBy = 0; 4151 if( pHaving ){ 4152 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4153 } 4154 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4155 pDest, addrEnd, addrEnd); 4156 sqlite3ExprListDelete(db, pDel); 4157 } 4158 sqlite3VdbeResolveLabel(v, addrEnd); 4159 4160 } /* endif aggregate query */ 4161 4162 /* If there is an ORDER BY clause, then we need to sort the results 4163 ** and send them to the callback one by one. 4164 */ 4165 if( pOrderBy ){ 4166 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4167 } 4168 4169 /* Jump here to skip this query 4170 */ 4171 sqlite3VdbeResolveLabel(v, iEnd); 4172 4173 /* The SELECT was successfully coded. Set the return code to 0 4174 ** to indicate no errors. 4175 */ 4176 rc = 0; 4177 4178 /* Control jumps to here if an error is encountered above, or upon 4179 ** successful coding of the SELECT. 4180 */ 4181 select_end: 4182 4183 /* Identify column names if results of the SELECT are to be output. 4184 */ 4185 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4186 generateColumnNames(pParse, pTabList, pEList); 4187 } 4188 4189 sqlite3DbFree(db, sAggInfo.aCol); 4190 sqlite3DbFree(db, sAggInfo.aFunc); 4191 return rc; 4192 } 4193 4194 #if defined(SQLITE_DEBUG) 4195 /* 4196 ******************************************************************************* 4197 ** The following code is used for testing and debugging only. The code 4198 ** that follows does not appear in normal builds. 4199 ** 4200 ** These routines are used to print out the content of all or part of a 4201 ** parse structures such as Select or Expr. Such printouts are useful 4202 ** for helping to understand what is happening inside the code generator 4203 ** during the execution of complex SELECT statements. 4204 ** 4205 ** These routine are not called anywhere from within the normal 4206 ** code base. Then are intended to be called from within the debugger 4207 ** or from temporary "printf" statements inserted for debugging. 4208 */ 4209 void sqlite3PrintExpr(Expr *p){ 4210 if( p->token.z && p->token.n>0 ){ 4211 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4212 }else{ 4213 sqlite3DebugPrintf("(%d", p->op); 4214 } 4215 if( p->pLeft ){ 4216 sqlite3DebugPrintf(" "); 4217 sqlite3PrintExpr(p->pLeft); 4218 } 4219 if( p->pRight ){ 4220 sqlite3DebugPrintf(" "); 4221 sqlite3PrintExpr(p->pRight); 4222 } 4223 sqlite3DebugPrintf(")"); 4224 } 4225 void sqlite3PrintExprList(ExprList *pList){ 4226 int i; 4227 for(i=0; i<pList->nExpr; i++){ 4228 sqlite3PrintExpr(pList->a[i].pExpr); 4229 if( i<pList->nExpr-1 ){ 4230 sqlite3DebugPrintf(", "); 4231 } 4232 } 4233 } 4234 void sqlite3PrintSelect(Select *p, int indent){ 4235 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4236 sqlite3PrintExprList(p->pEList); 4237 sqlite3DebugPrintf("\n"); 4238 if( p->pSrc ){ 4239 char *zPrefix; 4240 int i; 4241 zPrefix = "FROM"; 4242 for(i=0; i<p->pSrc->nSrc; i++){ 4243 struct SrcList_item *pItem = &p->pSrc->a[i]; 4244 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4245 zPrefix = ""; 4246 if( pItem->pSelect ){ 4247 sqlite3DebugPrintf("(\n"); 4248 sqlite3PrintSelect(pItem->pSelect, indent+10); 4249 sqlite3DebugPrintf("%*s)", indent+8, ""); 4250 }else if( pItem->zName ){ 4251 sqlite3DebugPrintf("%s", pItem->zName); 4252 } 4253 if( pItem->pTab ){ 4254 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4255 } 4256 if( pItem->zAlias ){ 4257 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4258 } 4259 if( i<p->pSrc->nSrc-1 ){ 4260 sqlite3DebugPrintf(","); 4261 } 4262 sqlite3DebugPrintf("\n"); 4263 } 4264 } 4265 if( p->pWhere ){ 4266 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4267 sqlite3PrintExpr(p->pWhere); 4268 sqlite3DebugPrintf("\n"); 4269 } 4270 if( p->pGroupBy ){ 4271 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4272 sqlite3PrintExprList(p->pGroupBy); 4273 sqlite3DebugPrintf("\n"); 4274 } 4275 if( p->pHaving ){ 4276 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4277 sqlite3PrintExpr(p->pHaving); 4278 sqlite3DebugPrintf("\n"); 4279 } 4280 if( p->pOrderBy ){ 4281 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4282 sqlite3PrintExprList(p->pOrderBy); 4283 sqlite3DebugPrintf("\n"); 4284 } 4285 } 4286 /* End of the structure debug printing code 4287 *****************************************************************************/ 4288 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4289