xref: /sqlite-3.40.0/src/select.c (revision be217793)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.504 2009/02/25 08:56:47 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = (u8)eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   pNew->addrOpenEphm[0] = -1;
87   pNew->addrOpenEphm[1] = -1;
88   pNew->addrOpenEphm[2] = -1;
89   if( db->mallocFailed ) {
90     clearSelect(db, pNew);
91     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
92     pNew = 0;
93   }
94   return pNew;
95 }
96 
97 /*
98 ** Delete the given Select structure and all of its substructures.
99 */
100 void sqlite3SelectDelete(sqlite3 *db, Select *p){
101   if( p ){
102     clearSelect(db, p);
103     sqlite3DbFree(db, p);
104   }
105 }
106 
107 /*
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
109 ** type of join.  Return an integer constant that expresses that type
110 ** in terms of the following bit values:
111 **
112 **     JT_INNER
113 **     JT_CROSS
114 **     JT_OUTER
115 **     JT_NATURAL
116 **     JT_LEFT
117 **     JT_RIGHT
118 **
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 **
121 ** If an illegal or unsupported join type is seen, then still return
122 ** a join type, but put an error in the pParse structure.
123 */
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
125   int jointype = 0;
126   Token *apAll[3];
127   Token *p;
128   static const struct {
129     const char zKeyword[8];
130     u8 nChar;
131     u8 code;
132   } keywords[] = {
133     { "natural", 7, JT_NATURAL },
134     { "left",    4, JT_LEFT|JT_OUTER },
135     { "right",   5, JT_RIGHT|JT_OUTER },
136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
137     { "outer",   5, JT_OUTER },
138     { "inner",   5, JT_INNER },
139     { "cross",   5, JT_INNER|JT_CROSS },
140   };
141   int i, j;
142   apAll[0] = pA;
143   apAll[1] = pB;
144   apAll[2] = pC;
145   for(i=0; i<3 && apAll[i]; i++){
146     p = apAll[i];
147     for(j=0; j<ArraySize(keywords); j++){
148       if( p->n==keywords[j].nChar
149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
150         jointype |= keywords[j].code;
151         break;
152       }
153     }
154     if( j>=ArraySize(keywords) ){
155       jointype |= JT_ERROR;
156       break;
157     }
158   }
159   if(
160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
161      (jointype & JT_ERROR)!=0
162   ){
163     const char *zSp = " ";
164     assert( pB!=0 );
165     if( pC==0 ){ zSp++; }
166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
167        "%T %T%s%T", pA, pB, zSp, pC);
168     jointype = JT_INNER;
169   }else if( jointype & JT_RIGHT ){
170     sqlite3ErrorMsg(pParse,
171       "RIGHT and FULL OUTER JOINs are not currently supported");
172     jointype = JT_INNER;
173   }
174   return jointype;
175 }
176 
177 /*
178 ** Return the index of a column in a table.  Return -1 if the column
179 ** is not contained in the table.
180 */
181 static int columnIndex(Table *pTab, const char *zCol){
182   int i;
183   for(i=0; i<pTab->nCol; i++){
184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
185   }
186   return -1;
187 }
188 
189 /*
190 ** Set the value of a token to a '\000'-terminated string.
191 */
192 static void setToken(Token *p, const char *z){
193   p->z = (u8*)z;
194   p->n = z ? sqlite3Strlen30(z) : 0;
195   p->dyn = 0;
196 }
197 
198 /*
199 ** Set the token to the double-quoted and escaped version of the string pointed
200 ** to by z. For example;
201 **
202 **    {a"bc}  ->  {"a""bc"}
203 */
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
205 
206   /* Check if the string appears to be quoted using "..." or `...`
207   ** or [...] or '...' or if the string contains any " characters.
208   ** If it does, then record a version of the string with the special
209   ** characters escaped.
210   */
211   const char *z2 = z;
212   if( *z2!='[' && *z2!='`' && *z2!='\'' ){
213     while( *z2 ){
214       if( *z2=='"' ) break;
215       z2++;
216     }
217   }
218 
219   if( *z2 ){
220     /* String contains " characters - copy and quote the string. */
221     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
222     if( p->z ){
223       p->n = sqlite3Strlen30((char *)p->z);
224       p->dyn = 1;
225     }
226   }else{
227     /* String contains no " characters - copy the pointer. */
228     p->z = (u8*)z;
229     p->n = (int)(z2 - z);
230     p->dyn = 0;
231   }
232 }
233 
234 /*
235 ** Create an expression node for an identifier with the name of zName
236 */
237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
238   Token dummy;
239   setToken(&dummy, zName);
240   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
241 }
242 
243 /*
244 ** Add a term to the WHERE expression in *ppExpr that requires the
245 ** zCol column to be equal in the two tables pTab1 and pTab2.
246 */
247 static void addWhereTerm(
248   Parse *pParse,           /* Parsing context */
249   const char *zCol,        /* Name of the column */
250   const Table *pTab1,      /* First table */
251   const char *zAlias1,     /* Alias for first table.  May be NULL */
252   const Table *pTab2,      /* Second table */
253   const char *zAlias2,     /* Alias for second table.  May be NULL */
254   int iRightJoinTable,     /* VDBE cursor for the right table */
255   Expr **ppExpr,           /* Add the equality term to this expression */
256   int isOuterJoin          /* True if dealing with an OUTER join */
257 ){
258   Expr *pE1a, *pE1b, *pE1c;
259   Expr *pE2a, *pE2b, *pE2c;
260   Expr *pE;
261 
262   pE1a = sqlite3CreateIdExpr(pParse, zCol);
263   pE2a = sqlite3CreateIdExpr(pParse, zCol);
264   if( zAlias1==0 ){
265     zAlias1 = pTab1->zName;
266   }
267   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
268   if( zAlias2==0 ){
269     zAlias2 = pTab2->zName;
270   }
271   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
272   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
273   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
274   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
275   if( pE && isOuterJoin ){
276     ExprSetProperty(pE, EP_FromJoin);
277     pE->iRightJoinTable = iRightJoinTable;
278   }
279   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
280 }
281 
282 /*
283 ** Set the EP_FromJoin property on all terms of the given expression.
284 ** And set the Expr.iRightJoinTable to iTable for every term in the
285 ** expression.
286 **
287 ** The EP_FromJoin property is used on terms of an expression to tell
288 ** the LEFT OUTER JOIN processing logic that this term is part of the
289 ** join restriction specified in the ON or USING clause and not a part
290 ** of the more general WHERE clause.  These terms are moved over to the
291 ** WHERE clause during join processing but we need to remember that they
292 ** originated in the ON or USING clause.
293 **
294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
295 ** expression depends on table iRightJoinTable even if that table is not
296 ** explicitly mentioned in the expression.  That information is needed
297 ** for cases like this:
298 **
299 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
300 **
301 ** The where clause needs to defer the handling of the t1.x=5
302 ** term until after the t2 loop of the join.  In that way, a
303 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
304 ** defer the handling of t1.x=5, it will be processed immediately
305 ** after the t1 loop and rows with t1.x!=5 will never appear in
306 ** the output, which is incorrect.
307 */
308 static void setJoinExpr(Expr *p, int iTable){
309   while( p ){
310     ExprSetProperty(p, EP_FromJoin);
311     p->iRightJoinTable = iTable;
312     setJoinExpr(p->pLeft, iTable);
313     p = p->pRight;
314   }
315 }
316 
317 /*
318 ** This routine processes the join information for a SELECT statement.
319 ** ON and USING clauses are converted into extra terms of the WHERE clause.
320 ** NATURAL joins also create extra WHERE clause terms.
321 **
322 ** The terms of a FROM clause are contained in the Select.pSrc structure.
323 ** The left most table is the first entry in Select.pSrc.  The right-most
324 ** table is the last entry.  The join operator is held in the entry to
325 ** the left.  Thus entry 0 contains the join operator for the join between
326 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
327 ** also attached to the left entry.
328 **
329 ** This routine returns the number of errors encountered.
330 */
331 static int sqliteProcessJoin(Parse *pParse, Select *p){
332   SrcList *pSrc;                  /* All tables in the FROM clause */
333   int i, j;                       /* Loop counters */
334   struct SrcList_item *pLeft;     /* Left table being joined */
335   struct SrcList_item *pRight;    /* Right table being joined */
336 
337   pSrc = p->pSrc;
338   pLeft = &pSrc->a[0];
339   pRight = &pLeft[1];
340   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
341     Table *pLeftTab = pLeft->pTab;
342     Table *pRightTab = pRight->pTab;
343     int isOuter;
344 
345     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
346     isOuter = (pRight->jointype & JT_OUTER)!=0;
347 
348     /* When the NATURAL keyword is present, add WHERE clause terms for
349     ** every column that the two tables have in common.
350     */
351     if( pRight->jointype & JT_NATURAL ){
352       if( pRight->pOn || pRight->pUsing ){
353         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
354            "an ON or USING clause", 0);
355         return 1;
356       }
357       for(j=0; j<pLeftTab->nCol; j++){
358         char *zName = pLeftTab->aCol[j].zName;
359         if( columnIndex(pRightTab, zName)>=0 ){
360           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
361                               pRightTab, pRight->zAlias,
362                               pRight->iCursor, &p->pWhere, isOuter);
363 
364         }
365       }
366     }
367 
368     /* Disallow both ON and USING clauses in the same join
369     */
370     if( pRight->pOn && pRight->pUsing ){
371       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
372         "clauses in the same join");
373       return 1;
374     }
375 
376     /* Add the ON clause to the end of the WHERE clause, connected by
377     ** an AND operator.
378     */
379     if( pRight->pOn ){
380       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
381       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
382       pRight->pOn = 0;
383     }
384 
385     /* Create extra terms on the WHERE clause for each column named
386     ** in the USING clause.  Example: If the two tables to be joined are
387     ** A and B and the USING clause names X, Y, and Z, then add this
388     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
389     ** Report an error if any column mentioned in the USING clause is
390     ** not contained in both tables to be joined.
391     */
392     if( pRight->pUsing ){
393       IdList *pList = pRight->pUsing;
394       for(j=0; j<pList->nId; j++){
395         char *zName = pList->a[j].zName;
396         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
397           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
398             "not present in both tables", zName);
399           return 1;
400         }
401         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
402                             pRightTab, pRight->zAlias,
403                             pRight->iCursor, &p->pWhere, isOuter);
404       }
405     }
406   }
407   return 0;
408 }
409 
410 /*
411 ** Insert code into "v" that will push the record on the top of the
412 ** stack into the sorter.
413 */
414 static void pushOntoSorter(
415   Parse *pParse,         /* Parser context */
416   ExprList *pOrderBy,    /* The ORDER BY clause */
417   Select *pSelect,       /* The whole SELECT statement */
418   int regData            /* Register holding data to be sorted */
419 ){
420   Vdbe *v = pParse->pVdbe;
421   int nExpr = pOrderBy->nExpr;
422   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
423   int regRecord = sqlite3GetTempReg(pParse);
424   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
425   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
426   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
427   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
428   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
429   sqlite3ReleaseTempReg(pParse, regRecord);
430   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
431   if( pSelect->iLimit ){
432     int addr1, addr2;
433     int iLimit;
434     if( pSelect->iOffset ){
435       iLimit = pSelect->iOffset+1;
436     }else{
437       iLimit = pSelect->iLimit;
438     }
439     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
440     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
441     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
442     sqlite3VdbeJumpHere(v, addr1);
443     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
444     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
445     sqlite3VdbeJumpHere(v, addr2);
446     pSelect->iLimit = 0;
447   }
448 }
449 
450 /*
451 ** Add code to implement the OFFSET
452 */
453 static void codeOffset(
454   Vdbe *v,          /* Generate code into this VM */
455   Select *p,        /* The SELECT statement being coded */
456   int iContinue     /* Jump here to skip the current record */
457 ){
458   if( p->iOffset && iContinue!=0 ){
459     int addr;
460     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
461     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
462     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
463     VdbeComment((v, "skip OFFSET records"));
464     sqlite3VdbeJumpHere(v, addr);
465   }
466 }
467 
468 /*
469 ** Add code that will check to make sure the N registers starting at iMem
470 ** form a distinct entry.  iTab is a sorting index that holds previously
471 ** seen combinations of the N values.  A new entry is made in iTab
472 ** if the current N values are new.
473 **
474 ** A jump to addrRepeat is made and the N+1 values are popped from the
475 ** stack if the top N elements are not distinct.
476 */
477 static void codeDistinct(
478   Parse *pParse,     /* Parsing and code generating context */
479   int iTab,          /* A sorting index used to test for distinctness */
480   int addrRepeat,    /* Jump to here if not distinct */
481   int N,             /* Number of elements */
482   int iMem           /* First element */
483 ){
484   Vdbe *v;
485   int r1;
486 
487   v = pParse->pVdbe;
488   r1 = sqlite3GetTempReg(pParse);
489   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
490   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
491   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
492   sqlite3ReleaseTempReg(pParse, r1);
493 }
494 
495 /*
496 ** Generate an error message when a SELECT is used within a subexpression
497 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
498 ** column.  We do this in a subroutine because the error occurs in multiple
499 ** places.
500 */
501 static int checkForMultiColumnSelectError(
502   Parse *pParse,       /* Parse context. */
503   SelectDest *pDest,   /* Destination of SELECT results */
504   int nExpr            /* Number of result columns returned by SELECT */
505 ){
506   int eDest = pDest->eDest;
507   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
508     sqlite3ErrorMsg(pParse, "only a single result allowed for "
509        "a SELECT that is part of an expression");
510     return 1;
511   }else{
512     return 0;
513   }
514 }
515 
516 /*
517 ** This routine generates the code for the inside of the inner loop
518 ** of a SELECT.
519 **
520 ** If srcTab and nColumn are both zero, then the pEList expressions
521 ** are evaluated in order to get the data for this row.  If nColumn>0
522 ** then data is pulled from srcTab and pEList is used only to get the
523 ** datatypes for each column.
524 */
525 static void selectInnerLoop(
526   Parse *pParse,          /* The parser context */
527   Select *p,              /* The complete select statement being coded */
528   ExprList *pEList,       /* List of values being extracted */
529   int srcTab,             /* Pull data from this table */
530   int nColumn,            /* Number of columns in the source table */
531   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
532   int distinct,           /* If >=0, make sure results are distinct */
533   SelectDest *pDest,      /* How to dispose of the results */
534   int iContinue,          /* Jump here to continue with next row */
535   int iBreak              /* Jump here to break out of the inner loop */
536 ){
537   Vdbe *v = pParse->pVdbe;
538   int i;
539   int hasDistinct;        /* True if the DISTINCT keyword is present */
540   int regResult;              /* Start of memory holding result set */
541   int eDest = pDest->eDest;   /* How to dispose of results */
542   int iParm = pDest->iParm;   /* First argument to disposal method */
543   int nResultCol;             /* Number of result columns */
544 
545   assert( v );
546   if( NEVER(v==0) ) return;
547   assert( pEList!=0 );
548   hasDistinct = distinct>=0;
549   if( pOrderBy==0 && !hasDistinct ){
550     codeOffset(v, p, iContinue);
551   }
552 
553   /* Pull the requested columns.
554   */
555   if( nColumn>0 ){
556     nResultCol = nColumn;
557   }else{
558     nResultCol = pEList->nExpr;
559   }
560   if( pDest->iMem==0 ){
561     pDest->iMem = pParse->nMem+1;
562     pDest->nMem = nResultCol;
563     pParse->nMem += nResultCol;
564   }else{
565     assert( pDest->nMem==nResultCol );
566   }
567   regResult = pDest->iMem;
568   if( nColumn>0 ){
569     for(i=0; i<nColumn; i++){
570       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
571     }
572   }else if( eDest!=SRT_Exists ){
573     /* If the destination is an EXISTS(...) expression, the actual
574     ** values returned by the SELECT are not required.
575     */
576     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
577   }
578   nColumn = nResultCol;
579 
580   /* If the DISTINCT keyword was present on the SELECT statement
581   ** and this row has been seen before, then do not make this row
582   ** part of the result.
583   */
584   if( hasDistinct ){
585     assert( pEList!=0 );
586     assert( pEList->nExpr==nColumn );
587     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
588     if( pOrderBy==0 ){
589       codeOffset(v, p, iContinue);
590     }
591   }
592 
593   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
594     return;
595   }
596 
597   switch( eDest ){
598     /* In this mode, write each query result to the key of the temporary
599     ** table iParm.
600     */
601 #ifndef SQLITE_OMIT_COMPOUND_SELECT
602     case SRT_Union: {
603       int r1;
604       r1 = sqlite3GetTempReg(pParse);
605       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
606       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
607       sqlite3ReleaseTempReg(pParse, r1);
608       break;
609     }
610 
611     /* Construct a record from the query result, but instead of
612     ** saving that record, use it as a key to delete elements from
613     ** the temporary table iParm.
614     */
615     case SRT_Except: {
616       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
617       break;
618     }
619 #endif
620 
621     /* Store the result as data using a unique key.
622     */
623     case SRT_Table:
624     case SRT_EphemTab: {
625       int r1 = sqlite3GetTempReg(pParse);
626       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
627       if( pOrderBy ){
628         pushOntoSorter(pParse, pOrderBy, p, r1);
629       }else{
630         int r2 = sqlite3GetTempReg(pParse);
631         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634         sqlite3ReleaseTempReg(pParse, r2);
635       }
636       sqlite3ReleaseTempReg(pParse, r1);
637       break;
638     }
639 
640 #ifndef SQLITE_OMIT_SUBQUERY
641     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642     ** then there should be a single item on the stack.  Write this
643     ** item into the set table with bogus data.
644     */
645     case SRT_Set: {
646       assert( nColumn==1 );
647       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
648       if( pOrderBy ){
649         /* At first glance you would think we could optimize out the
650         ** ORDER BY in this case since the order of entries in the set
651         ** does not matter.  But there might be a LIMIT clause, in which
652         ** case the order does matter */
653         pushOntoSorter(pParse, pOrderBy, p, regResult);
654       }else{
655         int r1 = sqlite3GetTempReg(pParse);
656         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
657         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659         sqlite3ReleaseTempReg(pParse, r1);
660       }
661       break;
662     }
663 
664     /* If any row exist in the result set, record that fact and abort.
665     */
666     case SRT_Exists: {
667       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668       /* The LIMIT clause will terminate the loop for us */
669       break;
670     }
671 
672     /* If this is a scalar select that is part of an expression, then
673     ** store the results in the appropriate memory cell and break out
674     ** of the scan loop.
675     */
676     case SRT_Mem: {
677       assert( nColumn==1 );
678       if( pOrderBy ){
679         pushOntoSorter(pParse, pOrderBy, p, regResult);
680       }else{
681         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
682         /* The LIMIT clause will jump out of the loop for us */
683       }
684       break;
685     }
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
687 
688     /* Send the data to the callback function or to a subroutine.  In the
689     ** case of a subroutine, the subroutine itself is responsible for
690     ** popping the data from the stack.
691     */
692     case SRT_Coroutine:
693     case SRT_Output: {
694       if( pOrderBy ){
695         int r1 = sqlite3GetTempReg(pParse);
696         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
697         pushOntoSorter(pParse, pOrderBy, p, r1);
698         sqlite3ReleaseTempReg(pParse, r1);
699       }else if( eDest==SRT_Coroutine ){
700         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
701       }else{
702         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
703         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
704       }
705       break;
706     }
707 
708 #if !defined(SQLITE_OMIT_TRIGGER)
709     /* Discard the results.  This is used for SELECT statements inside
710     ** the body of a TRIGGER.  The purpose of such selects is to call
711     ** user-defined functions that have side effects.  We do not care
712     ** about the actual results of the select.
713     */
714     default: {
715       assert( eDest==SRT_Discard );
716       break;
717     }
718 #endif
719   }
720 
721   /* Jump to the end of the loop if the LIMIT is reached.
722   */
723   if( p->iLimit ){
724     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
725                             ** pushOntoSorter() would have cleared p->iLimit */
726     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
727     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
728   }
729 }
730 
731 /*
732 ** Given an expression list, generate a KeyInfo structure that records
733 ** the collating sequence for each expression in that expression list.
734 **
735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
736 ** KeyInfo structure is appropriate for initializing a virtual index to
737 ** implement that clause.  If the ExprList is the result set of a SELECT
738 ** then the KeyInfo structure is appropriate for initializing a virtual
739 ** index to implement a DISTINCT test.
740 **
741 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
742 ** function is responsible for seeing that this structure is eventually
743 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
745 */
746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
747   sqlite3 *db = pParse->db;
748   int nExpr;
749   KeyInfo *pInfo;
750   struct ExprList_item *pItem;
751   int i;
752 
753   nExpr = pList->nExpr;
754   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
755   if( pInfo ){
756     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
757     pInfo->nField = (u16)nExpr;
758     pInfo->enc = ENC(db);
759     pInfo->db = db;
760     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
761       CollSeq *pColl;
762       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
763       if( !pColl ){
764         pColl = db->pDfltColl;
765       }
766       pInfo->aColl[i] = pColl;
767       pInfo->aSortOrder[i] = pItem->sortOrder;
768     }
769   }
770   return pInfo;
771 }
772 
773 
774 /*
775 ** If the inner loop was generated using a non-null pOrderBy argument,
776 ** then the results were placed in a sorter.  After the loop is terminated
777 ** we need to run the sorter and output the results.  The following
778 ** routine generates the code needed to do that.
779 */
780 static void generateSortTail(
781   Parse *pParse,    /* Parsing context */
782   Select *p,        /* The SELECT statement */
783   Vdbe *v,          /* Generate code into this VDBE */
784   int nColumn,      /* Number of columns of data */
785   SelectDest *pDest /* Write the sorted results here */
786 ){
787   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
788   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
789   int addr;
790   int iTab;
791   int pseudoTab = 0;
792   ExprList *pOrderBy = p->pOrderBy;
793 
794   int eDest = pDest->eDest;
795   int iParm = pDest->iParm;
796 
797   int regRow;
798   int regRowid;
799 
800   iTab = pOrderBy->iECursor;
801   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
802     pseudoTab = pParse->nTab++;
803     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn);
804   }
805   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
806   codeOffset(v, p, addrContinue);
807   regRow = sqlite3GetTempReg(pParse);
808   regRowid = sqlite3GetTempReg(pParse);
809   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
810   switch( eDest ){
811     case SRT_Table:
812     case SRT_EphemTab: {
813       testcase( eDest==SRT_Table );
814       testcase( eDest==SRT_EphemTab );
815       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
816       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
817       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
818       break;
819     }
820 #ifndef SQLITE_OMIT_SUBQUERY
821     case SRT_Set: {
822       assert( nColumn==1 );
823       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
824       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
825       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
826       break;
827     }
828     case SRT_Mem: {
829       assert( nColumn==1 );
830       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
831       /* The LIMIT clause will terminate the loop for us */
832       break;
833     }
834 #endif
835     case SRT_Output:
836     case SRT_Coroutine: {
837       int i;
838       testcase( eDest==SRT_Output );
839       testcase( eDest==SRT_Coroutine );
840       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
841       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
842       for(i=0; i<nColumn; i++){
843         assert( regRow!=pDest->iMem+i );
844         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
845       }
846       if( eDest==SRT_Output ){
847         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
848         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
849       }else{
850         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
851       }
852       break;
853     }
854     default: {
855       /* Do nothing */
856       break;
857     }
858   }
859   sqlite3ReleaseTempReg(pParse, regRow);
860   sqlite3ReleaseTempReg(pParse, regRowid);
861 
862   /* LIMIT has been implemented by the pushOntoSorter() routine.
863   */
864   assert( p->iLimit==0 );
865 
866   /* The bottom of the loop
867   */
868   sqlite3VdbeResolveLabel(v, addrContinue);
869   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
870   sqlite3VdbeResolveLabel(v, addrBreak);
871   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
872     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
873   }
874 }
875 
876 /*
877 ** Return a pointer to a string containing the 'declaration type' of the
878 ** expression pExpr. The string may be treated as static by the caller.
879 **
880 ** The declaration type is the exact datatype definition extracted from the
881 ** original CREATE TABLE statement if the expression is a column. The
882 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
883 ** is considered a column can be complex in the presence of subqueries. The
884 ** result-set expression in all of the following SELECT statements is
885 ** considered a column by this function.
886 **
887 **   SELECT col FROM tbl;
888 **   SELECT (SELECT col FROM tbl;
889 **   SELECT (SELECT col FROM tbl);
890 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
891 **
892 ** The declaration type for any expression other than a column is NULL.
893 */
894 static const char *columnType(
895   NameContext *pNC,
896   Expr *pExpr,
897   const char **pzOriginDb,
898   const char **pzOriginTab,
899   const char **pzOriginCol
900 ){
901   char const *zType = 0;
902   char const *zOriginDb = 0;
903   char const *zOriginTab = 0;
904   char const *zOriginCol = 0;
905   int j;
906   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
907 
908   switch( pExpr->op ){
909     case TK_AGG_COLUMN:
910     case TK_COLUMN: {
911       /* The expression is a column. Locate the table the column is being
912       ** extracted from in NameContext.pSrcList. This table may be real
913       ** database table or a subquery.
914       */
915       Table *pTab = 0;            /* Table structure column is extracted from */
916       Select *pS = 0;             /* Select the column is extracted from */
917       int iCol = pExpr->iColumn;  /* Index of column in pTab */
918       while( pNC && !pTab ){
919         SrcList *pTabList = pNC->pSrcList;
920         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
921         if( j<pTabList->nSrc ){
922           pTab = pTabList->a[j].pTab;
923           pS = pTabList->a[j].pSelect;
924         }else{
925           pNC = pNC->pNext;
926         }
927       }
928 
929       if( pTab==0 ){
930         /* FIX ME:
931         ** This can occurs if you have something like "SELECT new.x;" inside
932         ** a trigger.  In other words, if you reference the special "new"
933         ** table in the result set of a select.  We do not have a good way
934         ** to find the actual table type, so call it "TEXT".  This is really
935         ** something of a bug, but I do not know how to fix it.
936         **
937         ** This code does not produce the correct answer - it just prevents
938         ** a segfault.  See ticket #1229.
939         */
940         zType = "TEXT";
941         break;
942       }
943 
944       assert( pTab );
945       if( pS ){
946         /* The "table" is actually a sub-select or a view in the FROM clause
947         ** of the SELECT statement. Return the declaration type and origin
948         ** data for the result-set column of the sub-select.
949         */
950         if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
951           /* If iCol is less than zero, then the expression requests the
952           ** rowid of the sub-select or view. This expression is legal (see
953           ** test case misc2.2.2) - it always evaluates to NULL.
954           */
955           NameContext sNC;
956           Expr *p = pS->pEList->a[iCol].pExpr;
957           sNC.pSrcList = pS->pSrc;
958           sNC.pNext = 0;
959           sNC.pParse = pNC->pParse;
960           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
961         }
962       }else if( ALWAYS(pTab->pSchema) ){
963         /* A real table */
964         assert( !pS );
965         if( iCol<0 ) iCol = pTab->iPKey;
966         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
967         if( iCol<0 ){
968           zType = "INTEGER";
969           zOriginCol = "rowid";
970         }else{
971           zType = pTab->aCol[iCol].zType;
972           zOriginCol = pTab->aCol[iCol].zName;
973         }
974         zOriginTab = pTab->zName;
975         if( pNC->pParse ){
976           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
977           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
978         }
979       }
980       break;
981     }
982 #ifndef SQLITE_OMIT_SUBQUERY
983     case TK_SELECT: {
984       /* The expression is a sub-select. Return the declaration type and
985       ** origin info for the single column in the result set of the SELECT
986       ** statement.
987       */
988       NameContext sNC;
989       Select *pS = pExpr->x.pSelect;
990       Expr *p = pS->pEList->a[0].pExpr;
991       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
992       sNC.pSrcList = pS->pSrc;
993       sNC.pNext = pNC;
994       sNC.pParse = pNC->pParse;
995       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
996       break;
997     }
998 #endif
999   }
1000 
1001   if( pzOriginDb ){
1002     assert( pzOriginTab && pzOriginCol );
1003     *pzOriginDb = zOriginDb;
1004     *pzOriginTab = zOriginTab;
1005     *pzOriginCol = zOriginCol;
1006   }
1007   return zType;
1008 }
1009 
1010 /*
1011 ** Generate code that will tell the VDBE the declaration types of columns
1012 ** in the result set.
1013 */
1014 static void generateColumnTypes(
1015   Parse *pParse,      /* Parser context */
1016   SrcList *pTabList,  /* List of tables */
1017   ExprList *pEList    /* Expressions defining the result set */
1018 ){
1019 #ifndef SQLITE_OMIT_DECLTYPE
1020   Vdbe *v = pParse->pVdbe;
1021   int i;
1022   NameContext sNC;
1023   sNC.pSrcList = pTabList;
1024   sNC.pParse = pParse;
1025   for(i=0; i<pEList->nExpr; i++){
1026     Expr *p = pEList->a[i].pExpr;
1027     const char *zType;
1028 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1029     const char *zOrigDb = 0;
1030     const char *zOrigTab = 0;
1031     const char *zOrigCol = 0;
1032     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1033 
1034     /* The vdbe must make its own copy of the column-type and other
1035     ** column specific strings, in case the schema is reset before this
1036     ** virtual machine is deleted.
1037     */
1038     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1039     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1040     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1041 #else
1042     zType = columnType(&sNC, p, 0, 0, 0);
1043 #endif
1044     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1045   }
1046 #endif /* SQLITE_OMIT_DECLTYPE */
1047 }
1048 
1049 /*
1050 ** Generate code that will tell the VDBE the names of columns
1051 ** in the result set.  This information is used to provide the
1052 ** azCol[] values in the callback.
1053 */
1054 static void generateColumnNames(
1055   Parse *pParse,      /* Parser context */
1056   SrcList *pTabList,  /* List of tables */
1057   ExprList *pEList    /* Expressions defining the result set */
1058 ){
1059   Vdbe *v = pParse->pVdbe;
1060   int i, j;
1061   sqlite3 *db = pParse->db;
1062   int fullNames, shortNames;
1063 
1064 #ifndef SQLITE_OMIT_EXPLAIN
1065   /* If this is an EXPLAIN, skip this step */
1066   if( pParse->explain ){
1067     return;
1068   }
1069 #endif
1070 
1071   assert( v!=0 );
1072   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1073   pParse->colNamesSet = 1;
1074   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1075   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1076   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1077   for(i=0; i<pEList->nExpr; i++){
1078     Expr *p;
1079     p = pEList->a[i].pExpr;
1080     if( p==0 ) continue;
1081     if( pEList->a[i].zName ){
1082       char *zName = pEList->a[i].zName;
1083       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1084     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1085       Table *pTab;
1086       char *zCol;
1087       int iCol = p->iColumn;
1088       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1089         if( pTabList->a[j].iCursor==p->iTable ) break;
1090       }
1091       assert( j<pTabList->nSrc );
1092       pTab = pTabList->a[j].pTab;
1093       if( iCol<0 ) iCol = pTab->iPKey;
1094       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1095       if( iCol<0 ){
1096         zCol = "rowid";
1097       }else{
1098         zCol = pTab->aCol[iCol].zName;
1099       }
1100       if( !shortNames && !fullNames ){
1101         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1102             sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1103       }else if( fullNames ){
1104         char *zName = 0;
1105         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1106         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1107       }else{
1108         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1109       }
1110     }else{
1111       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1112           sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1113     }
1114   }
1115   generateColumnTypes(pParse, pTabList, pEList);
1116 }
1117 
1118 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1119 /*
1120 ** Name of the connection operator, used for error messages.
1121 */
1122 static const char *selectOpName(int id){
1123   char *z;
1124   switch( id ){
1125     case TK_ALL:       z = "UNION ALL";   break;
1126     case TK_INTERSECT: z = "INTERSECT";   break;
1127     case TK_EXCEPT:    z = "EXCEPT";      break;
1128     default:           z = "UNION";       break;
1129   }
1130   return z;
1131 }
1132 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1133 
1134 /*
1135 ** Given a an expression list (which is really the list of expressions
1136 ** that form the result set of a SELECT statement) compute appropriate
1137 ** column names for a table that would hold the expression list.
1138 **
1139 ** All column names will be unique.
1140 **
1141 ** Only the column names are computed.  Column.zType, Column.zColl,
1142 ** and other fields of Column are zeroed.
1143 **
1144 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1146 */
1147 static int selectColumnsFromExprList(
1148   Parse *pParse,          /* Parsing context */
1149   ExprList *pEList,       /* Expr list from which to derive column names */
1150   int *pnCol,             /* Write the number of columns here */
1151   Column **paCol          /* Write the new column list here */
1152 ){
1153   sqlite3 *db = pParse->db;   /* Database connection */
1154   int i, j;                   /* Loop counters */
1155   int cnt;                    /* Index added to make the name unique */
1156   Column *aCol, *pCol;        /* For looping over result columns */
1157   int nCol;                   /* Number of columns in the result set */
1158   Expr *p;                    /* Expression for a single result column */
1159   char *zName;                /* Column name */
1160   int nName;                  /* Size of name in zName[] */
1161 
1162   *pnCol = nCol = pEList->nExpr;
1163   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1164   if( aCol==0 ) return SQLITE_NOMEM;
1165   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1166     /* Get an appropriate name for the column
1167     */
1168     p = pEList->a[i].pExpr;
1169     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1170     if( (zName = pEList->a[i].zName)!=0 ){
1171       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1172       zName = sqlite3DbStrDup(db, zName);
1173     }else{
1174       Expr *pColExpr = p;  /* The expression that is the result column name */
1175       Table *pTab;         /* Table associated with this expression */
1176       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1177       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){
1178         /* For columns use the column name name */
1179         int iCol = pColExpr->iColumn;
1180         if( iCol<0 ) iCol = pTab->iPKey;
1181         zName = sqlite3MPrintf(db, "%s",
1182                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1183       }else{
1184         /* Use the original text of the column expression as its name */
1185         Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token);
1186         zName = sqlite3MPrintf(db, "%T", pToken);
1187       }
1188     }
1189     if( db->mallocFailed ){
1190       sqlite3DbFree(db, zName);
1191       break;
1192     }
1193     sqlite3Dequote(zName);
1194 
1195     /* Make sure the column name is unique.  If the name is not unique,
1196     ** append a integer to the name so that it becomes unique.
1197     */
1198     nName = sqlite3Strlen30(zName);
1199     for(j=cnt=0; j<i; j++){
1200       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1201         char *zNewName;
1202         zName[nName] = 0;
1203         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1204         sqlite3DbFree(db, zName);
1205         zName = zNewName;
1206         j = -1;
1207         if( zName==0 ) break;
1208       }
1209     }
1210     pCol->zName = zName;
1211   }
1212   if( db->mallocFailed ){
1213     for(j=0; j<i; j++){
1214       sqlite3DbFree(db, aCol[j].zName);
1215     }
1216     sqlite3DbFree(db, aCol);
1217     *paCol = 0;
1218     *pnCol = 0;
1219     return SQLITE_NOMEM;
1220   }
1221   return SQLITE_OK;
1222 }
1223 
1224 /*
1225 ** Add type and collation information to a column list based on
1226 ** a SELECT statement.
1227 **
1228 ** The column list presumably came from selectColumnNamesFromExprList().
1229 ** The column list has only names, not types or collations.  This
1230 ** routine goes through and adds the types and collations.
1231 **
1232 ** This routine requires that all indentifiers in the SELECT
1233 ** statement be resolved.
1234 */
1235 static void selectAddColumnTypeAndCollation(
1236   Parse *pParse,        /* Parsing contexts */
1237   int nCol,             /* Number of columns */
1238   Column *aCol,         /* List of columns */
1239   Select *pSelect       /* SELECT used to determine types and collations */
1240 ){
1241   sqlite3 *db = pParse->db;
1242   NameContext sNC;
1243   Column *pCol;
1244   CollSeq *pColl;
1245   int i;
1246   Expr *p;
1247   struct ExprList_item *a;
1248 
1249   assert( pSelect!=0 );
1250   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1251   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1252   if( db->mallocFailed ) return;
1253   memset(&sNC, 0, sizeof(sNC));
1254   sNC.pSrcList = pSelect->pSrc;
1255   a = pSelect->pEList->a;
1256   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1257     p = a[i].pExpr;
1258     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1259     pCol->affinity = sqlite3ExprAffinity(p);
1260     pColl = sqlite3ExprCollSeq(pParse, p);
1261     if( pColl ){
1262       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1263     }
1264   }
1265 }
1266 
1267 /*
1268 ** Given a SELECT statement, generate a Table structure that describes
1269 ** the result set of that SELECT.
1270 */
1271 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1272   Table *pTab;
1273   sqlite3 *db = pParse->db;
1274   int savedFlags;
1275 
1276   savedFlags = db->flags;
1277   db->flags &= ~SQLITE_FullColNames;
1278   db->flags |= SQLITE_ShortColNames;
1279   sqlite3SelectPrep(pParse, pSelect, 0);
1280   if( pParse->nErr ) return 0;
1281   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1282   db->flags = savedFlags;
1283   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1284   if( pTab==0 ){
1285     return 0;
1286   }
1287   pTab->db = db;
1288   pTab->nRef = 1;
1289   pTab->zName = 0;
1290   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1291   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1292   pTab->iPKey = -1;
1293   if( db->mallocFailed ){
1294     sqlite3DeleteTable(pTab);
1295     return 0;
1296   }
1297   return pTab;
1298 }
1299 
1300 /*
1301 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1302 ** If an error occurs, return NULL and leave a message in pParse.
1303 */
1304 Vdbe *sqlite3GetVdbe(Parse *pParse){
1305   Vdbe *v = pParse->pVdbe;
1306   if( v==0 ){
1307     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1308 #ifndef SQLITE_OMIT_TRACE
1309     if( v ){
1310       sqlite3VdbeAddOp0(v, OP_Trace);
1311     }
1312 #endif
1313   }
1314   return v;
1315 }
1316 
1317 
1318 /*
1319 ** Compute the iLimit and iOffset fields of the SELECT based on the
1320 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1321 ** that appear in the original SQL statement after the LIMIT and OFFSET
1322 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1323 ** are the integer memory register numbers for counters used to compute
1324 ** the limit and offset.  If there is no limit and/or offset, then
1325 ** iLimit and iOffset are negative.
1326 **
1327 ** This routine changes the values of iLimit and iOffset only if
1328 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1329 ** iOffset should have been preset to appropriate default values
1330 ** (usually but not always -1) prior to calling this routine.
1331 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1332 ** redefined.  The UNION ALL operator uses this property to force
1333 ** the reuse of the same limit and offset registers across multiple
1334 ** SELECT statements.
1335 */
1336 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1337   Vdbe *v = 0;
1338   int iLimit = 0;
1339   int iOffset;
1340   int addr1;
1341   if( p->iLimit ) return;
1342 
1343   /*
1344   ** "LIMIT -1" always shows all rows.  There is some
1345   ** contraversy about what the correct behavior should be.
1346   ** The current implementation interprets "LIMIT 0" to mean
1347   ** no rows.
1348   */
1349   if( p->pLimit ){
1350     p->iLimit = iLimit = ++pParse->nMem;
1351     v = sqlite3GetVdbe(pParse);
1352     if( v==0 ) return;
1353     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1354     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1355     VdbeComment((v, "LIMIT counter"));
1356     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1357   }
1358   if( p->pOffset ){
1359     p->iOffset = iOffset = ++pParse->nMem;
1360     if( p->pLimit ){
1361       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1362     }
1363     v = sqlite3GetVdbe(pParse);
1364     if( v==0 ) return;
1365     sqlite3ExprCode(pParse, p->pOffset, iOffset);
1366     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1367     VdbeComment((v, "OFFSET counter"));
1368     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1369     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1370     sqlite3VdbeJumpHere(v, addr1);
1371     if( p->pLimit ){
1372       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1373       VdbeComment((v, "LIMIT+OFFSET"));
1374       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1375       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1376       sqlite3VdbeJumpHere(v, addr1);
1377     }
1378   }
1379 }
1380 
1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1382 /*
1383 ** Return the appropriate collating sequence for the iCol-th column of
1384 ** the result set for the compound-select statement "p".  Return NULL if
1385 ** the column has no default collating sequence.
1386 **
1387 ** The collating sequence for the compound select is taken from the
1388 ** left-most term of the select that has a collating sequence.
1389 */
1390 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1391   CollSeq *pRet;
1392   if( p->pPrior ){
1393     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1394   }else{
1395     pRet = 0;
1396   }
1397   if( pRet==0 ){
1398     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1399   }
1400   return pRet;
1401 }
1402 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1403 
1404 /* Forward reference */
1405 static int multiSelectOrderBy(
1406   Parse *pParse,        /* Parsing context */
1407   Select *p,            /* The right-most of SELECTs to be coded */
1408   SelectDest *pDest     /* What to do with query results */
1409 );
1410 
1411 
1412 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1413 /*
1414 ** This routine is called to process a compound query form from
1415 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1416 ** INTERSECT
1417 **
1418 ** "p" points to the right-most of the two queries.  the query on the
1419 ** left is p->pPrior.  The left query could also be a compound query
1420 ** in which case this routine will be called recursively.
1421 **
1422 ** The results of the total query are to be written into a destination
1423 ** of type eDest with parameter iParm.
1424 **
1425 ** Example 1:  Consider a three-way compound SQL statement.
1426 **
1427 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1428 **
1429 ** This statement is parsed up as follows:
1430 **
1431 **     SELECT c FROM t3
1432 **      |
1433 **      `----->  SELECT b FROM t2
1434 **                |
1435 **                `------>  SELECT a FROM t1
1436 **
1437 ** The arrows in the diagram above represent the Select.pPrior pointer.
1438 ** So if this routine is called with p equal to the t3 query, then
1439 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1440 **
1441 ** Notice that because of the way SQLite parses compound SELECTs, the
1442 ** individual selects always group from left to right.
1443 */
1444 static int multiSelect(
1445   Parse *pParse,        /* Parsing context */
1446   Select *p,            /* The right-most of SELECTs to be coded */
1447   SelectDest *pDest     /* What to do with query results */
1448 ){
1449   int rc = SQLITE_OK;   /* Success code from a subroutine */
1450   Select *pPrior;       /* Another SELECT immediately to our left */
1451   Vdbe *v;              /* Generate code to this VDBE */
1452   SelectDest dest;      /* Alternative data destination */
1453   Select *pDelete = 0;  /* Chain of simple selects to delete */
1454   sqlite3 *db;          /* Database connection */
1455 
1456   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1457   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1458   */
1459   assert( p && p->pPrior );  /* Calling function guarantees this much */
1460   db = pParse->db;
1461   pPrior = p->pPrior;
1462   assert( pPrior->pRightmost!=pPrior );
1463   assert( pPrior->pRightmost==p->pRightmost );
1464   dest = *pDest;
1465   if( pPrior->pOrderBy ){
1466     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1467       selectOpName(p->op));
1468     rc = 1;
1469     goto multi_select_end;
1470   }
1471   if( pPrior->pLimit ){
1472     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1473       selectOpName(p->op));
1474     rc = 1;
1475     goto multi_select_end;
1476   }
1477 
1478   v = sqlite3GetVdbe(pParse);
1479   assert( v!=0 );  /* The VDBE already created by calling function */
1480 
1481   /* Create the destination temporary table if necessary
1482   */
1483   if( dest.eDest==SRT_EphemTab ){
1484     assert( p->pEList );
1485     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1486     dest.eDest = SRT_Table;
1487   }
1488 
1489   /* Make sure all SELECTs in the statement have the same number of elements
1490   ** in their result sets.
1491   */
1492   assert( p->pEList && pPrior->pEList );
1493   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1494     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1495       " do not have the same number of result columns", selectOpName(p->op));
1496     rc = 1;
1497     goto multi_select_end;
1498   }
1499 
1500   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1501   */
1502   if( p->pOrderBy ){
1503     return multiSelectOrderBy(pParse, p, pDest);
1504   }
1505 
1506   /* Generate code for the left and right SELECT statements.
1507   */
1508   switch( p->op ){
1509     case TK_ALL: {
1510       int addr = 0;
1511       assert( !pPrior->pLimit );
1512       pPrior->pLimit = p->pLimit;
1513       pPrior->pOffset = p->pOffset;
1514       rc = sqlite3Select(pParse, pPrior, &dest);
1515       p->pLimit = 0;
1516       p->pOffset = 0;
1517       if( rc ){
1518         goto multi_select_end;
1519       }
1520       p->pPrior = 0;
1521       p->iLimit = pPrior->iLimit;
1522       p->iOffset = pPrior->iOffset;
1523       if( p->iLimit ){
1524         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1525         VdbeComment((v, "Jump ahead if LIMIT reached"));
1526       }
1527       rc = sqlite3Select(pParse, p, &dest);
1528       pDelete = p->pPrior;
1529       p->pPrior = pPrior;
1530       if( rc ){
1531         goto multi_select_end;
1532       }
1533       if( addr ){
1534         sqlite3VdbeJumpHere(v, addr);
1535       }
1536       break;
1537     }
1538     case TK_EXCEPT:
1539     case TK_UNION: {
1540       int unionTab;    /* Cursor number of the temporary table holding result */
1541       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1542       int priorOp;     /* The SRT_ operation to apply to prior selects */
1543       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1544       int addr;
1545       SelectDest uniondest;
1546 
1547       priorOp = SRT_Union;
1548       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1549         /* We can reuse a temporary table generated by a SELECT to our
1550         ** right.
1551         */
1552         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1553                                      ** of a 3-way or more compound */
1554         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1555         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1556         unionTab = dest.iParm;
1557       }else{
1558         /* We will need to create our own temporary table to hold the
1559         ** intermediate results.
1560         */
1561         unionTab = pParse->nTab++;
1562         assert( p->pOrderBy==0 );
1563         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1564         assert( p->addrOpenEphm[0] == -1 );
1565         p->addrOpenEphm[0] = addr;
1566         p->pRightmost->selFlags |= SF_UsesEphemeral;
1567         assert( p->pEList );
1568       }
1569 
1570       /* Code the SELECT statements to our left
1571       */
1572       assert( !pPrior->pOrderBy );
1573       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1574       rc = sqlite3Select(pParse, pPrior, &uniondest);
1575       if( rc ){
1576         goto multi_select_end;
1577       }
1578 
1579       /* Code the current SELECT statement
1580       */
1581       if( p->op==TK_EXCEPT ){
1582         op = SRT_Except;
1583       }else{
1584         assert( p->op==TK_UNION );
1585         op = SRT_Union;
1586       }
1587       p->pPrior = 0;
1588       pLimit = p->pLimit;
1589       p->pLimit = 0;
1590       pOffset = p->pOffset;
1591       p->pOffset = 0;
1592       uniondest.eDest = op;
1593       rc = sqlite3Select(pParse, p, &uniondest);
1594       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1595       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1596       sqlite3ExprListDelete(db, p->pOrderBy);
1597       pDelete = p->pPrior;
1598       p->pPrior = pPrior;
1599       p->pOrderBy = 0;
1600       sqlite3ExprDelete(db, p->pLimit);
1601       p->pLimit = pLimit;
1602       p->pOffset = pOffset;
1603       p->iLimit = 0;
1604       p->iOffset = 0;
1605       if( rc ){
1606         goto multi_select_end;
1607       }
1608 
1609 
1610       /* Convert the data in the temporary table into whatever form
1611       ** it is that we currently need.
1612       */
1613       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
1614         int iCont, iBreak, iStart;
1615         assert( p->pEList );
1616         if( dest.eDest==SRT_Output ){
1617           Select *pFirst = p;
1618           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1619           generateColumnNames(pParse, 0, pFirst->pEList);
1620         }
1621         iBreak = sqlite3VdbeMakeLabel(v);
1622         iCont = sqlite3VdbeMakeLabel(v);
1623         computeLimitRegisters(pParse, p, iBreak);
1624         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1625         iStart = sqlite3VdbeCurrentAddr(v);
1626         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1627                         0, -1, &dest, iCont, iBreak);
1628         sqlite3VdbeResolveLabel(v, iCont);
1629         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1630         sqlite3VdbeResolveLabel(v, iBreak);
1631         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1632       }
1633       break;
1634     }
1635     case TK_INTERSECT: {
1636       int tab1, tab2;
1637       int iCont, iBreak, iStart;
1638       Expr *pLimit, *pOffset;
1639       int addr;
1640       SelectDest intersectdest;
1641       int r1;
1642 
1643       /* INTERSECT is different from the others since it requires
1644       ** two temporary tables.  Hence it has its own case.  Begin
1645       ** by allocating the tables we will need.
1646       */
1647       tab1 = pParse->nTab++;
1648       tab2 = pParse->nTab++;
1649       assert( p->pOrderBy==0 );
1650 
1651       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1652       assert( p->addrOpenEphm[0] == -1 );
1653       p->addrOpenEphm[0] = addr;
1654       p->pRightmost->selFlags |= SF_UsesEphemeral;
1655       assert( p->pEList );
1656 
1657       /* Code the SELECTs to our left into temporary table "tab1".
1658       */
1659       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1660       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1661       if( rc ){
1662         goto multi_select_end;
1663       }
1664 
1665       /* Code the current SELECT into temporary table "tab2"
1666       */
1667       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1668       assert( p->addrOpenEphm[1] == -1 );
1669       p->addrOpenEphm[1] = addr;
1670       p->pPrior = 0;
1671       pLimit = p->pLimit;
1672       p->pLimit = 0;
1673       pOffset = p->pOffset;
1674       p->pOffset = 0;
1675       intersectdest.iParm = tab2;
1676       rc = sqlite3Select(pParse, p, &intersectdest);
1677       pDelete = p->pPrior;
1678       p->pPrior = pPrior;
1679       sqlite3ExprDelete(db, p->pLimit);
1680       p->pLimit = pLimit;
1681       p->pOffset = pOffset;
1682       if( rc ){
1683         goto multi_select_end;
1684       }
1685 
1686       /* Generate code to take the intersection of the two temporary
1687       ** tables.
1688       */
1689       assert( p->pEList );
1690       if( dest.eDest==SRT_Output ){
1691         Select *pFirst = p;
1692         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1693         generateColumnNames(pParse, 0, pFirst->pEList);
1694       }
1695       iBreak = sqlite3VdbeMakeLabel(v);
1696       iCont = sqlite3VdbeMakeLabel(v);
1697       computeLimitRegisters(pParse, p, iBreak);
1698       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1699       r1 = sqlite3GetTempReg(pParse);
1700       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1701       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1702       sqlite3ReleaseTempReg(pParse, r1);
1703       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1704                       0, -1, &dest, iCont, iBreak);
1705       sqlite3VdbeResolveLabel(v, iCont);
1706       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1707       sqlite3VdbeResolveLabel(v, iBreak);
1708       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1709       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1710       break;
1711     }
1712   }
1713 
1714   /* Compute collating sequences used by
1715   ** temporary tables needed to implement the compound select.
1716   ** Attach the KeyInfo structure to all temporary tables.
1717   **
1718   ** This section is run by the right-most SELECT statement only.
1719   ** SELECT statements to the left always skip this part.  The right-most
1720   ** SELECT might also skip this part if it has no ORDER BY clause and
1721   ** no temp tables are required.
1722   */
1723   if( p->selFlags & SF_UsesEphemeral ){
1724     int i;                        /* Loop counter */
1725     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1726     Select *pLoop;                /* For looping through SELECT statements */
1727     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1728     int nCol;                     /* Number of columns in result set */
1729 
1730     assert( p->pRightmost==p );
1731     nCol = p->pEList->nExpr;
1732     pKeyInfo = sqlite3DbMallocZero(db,
1733                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1734     if( !pKeyInfo ){
1735       rc = SQLITE_NOMEM;
1736       goto multi_select_end;
1737     }
1738 
1739     pKeyInfo->enc = ENC(db);
1740     pKeyInfo->nField = (u16)nCol;
1741 
1742     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1743       *apColl = multiSelectCollSeq(pParse, p, i);
1744       if( 0==*apColl ){
1745         *apColl = db->pDfltColl;
1746       }
1747     }
1748 
1749     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1750       for(i=0; i<2; i++){
1751         int addr = pLoop->addrOpenEphm[i];
1752         if( addr<0 ){
1753           /* If [0] is unused then [1] is also unused.  So we can
1754           ** always safely abort as soon as the first unused slot is found */
1755           assert( pLoop->addrOpenEphm[1]<0 );
1756           break;
1757         }
1758         sqlite3VdbeChangeP2(v, addr, nCol);
1759         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1760         pLoop->addrOpenEphm[i] = -1;
1761       }
1762     }
1763     sqlite3DbFree(db, pKeyInfo);
1764   }
1765 
1766 multi_select_end:
1767   pDest->iMem = dest.iMem;
1768   pDest->nMem = dest.nMem;
1769   sqlite3SelectDelete(db, pDelete);
1770   return rc;
1771 }
1772 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1773 
1774 /*
1775 ** Code an output subroutine for a coroutine implementation of a
1776 ** SELECT statment.
1777 **
1778 ** The data to be output is contained in pIn->iMem.  There are
1779 ** pIn->nMem columns to be output.  pDest is where the output should
1780 ** be sent.
1781 **
1782 ** regReturn is the number of the register holding the subroutine
1783 ** return address.
1784 **
1785 ** If regPrev>0 then it is a the first register in a vector that
1786 ** records the previous output.  mem[regPrev] is a flag that is false
1787 ** if there has been no previous output.  If regPrev>0 then code is
1788 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1789 ** keys.
1790 **
1791 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1792 ** iBreak.
1793 */
1794 static int generateOutputSubroutine(
1795   Parse *pParse,          /* Parsing context */
1796   Select *p,              /* The SELECT statement */
1797   SelectDest *pIn,        /* Coroutine supplying data */
1798   SelectDest *pDest,      /* Where to send the data */
1799   int regReturn,          /* The return address register */
1800   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1801   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1802   int p4type,             /* The p4 type for pKeyInfo */
1803   int iBreak              /* Jump here if we hit the LIMIT */
1804 ){
1805   Vdbe *v = pParse->pVdbe;
1806   int iContinue;
1807   int addr;
1808 
1809   addr = sqlite3VdbeCurrentAddr(v);
1810   iContinue = sqlite3VdbeMakeLabel(v);
1811 
1812   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1813   */
1814   if( regPrev ){
1815     int j1, j2;
1816     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1817     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1818                               (char*)pKeyInfo, p4type);
1819     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1820     sqlite3VdbeJumpHere(v, j1);
1821     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1822     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1823   }
1824   if( pParse->db->mallocFailed ) return 0;
1825 
1826   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1827   */
1828   codeOffset(v, p, iContinue);
1829 
1830   switch( pDest->eDest ){
1831     /* Store the result as data using a unique key.
1832     */
1833     case SRT_Table:
1834     case SRT_EphemTab: {
1835       int r1 = sqlite3GetTempReg(pParse);
1836       int r2 = sqlite3GetTempReg(pParse);
1837       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1838       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1839       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1840       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1841       sqlite3ReleaseTempReg(pParse, r2);
1842       sqlite3ReleaseTempReg(pParse, r1);
1843       break;
1844     }
1845 
1846 #ifndef SQLITE_OMIT_SUBQUERY
1847     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1848     ** then there should be a single item on the stack.  Write this
1849     ** item into the set table with bogus data.
1850     */
1851     case SRT_Set: {
1852       int r1;
1853       assert( pIn->nMem==1 );
1854       p->affinity =
1855          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1856       r1 = sqlite3GetTempReg(pParse);
1857       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1858       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1859       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1860       sqlite3ReleaseTempReg(pParse, r1);
1861       break;
1862     }
1863 
1864 #if 0  /* Never occurs on an ORDER BY query */
1865     /* If any row exist in the result set, record that fact and abort.
1866     */
1867     case SRT_Exists: {
1868       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1869       /* The LIMIT clause will terminate the loop for us */
1870       break;
1871     }
1872 #endif
1873 
1874     /* If this is a scalar select that is part of an expression, then
1875     ** store the results in the appropriate memory cell and break out
1876     ** of the scan loop.
1877     */
1878     case SRT_Mem: {
1879       assert( pIn->nMem==1 );
1880       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1881       /* The LIMIT clause will jump out of the loop for us */
1882       break;
1883     }
1884 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1885 
1886     /* The results are stored in a sequence of registers
1887     ** starting at pDest->iMem.  Then the co-routine yields.
1888     */
1889     case SRT_Coroutine: {
1890       if( pDest->iMem==0 ){
1891         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1892         pDest->nMem = pIn->nMem;
1893       }
1894       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1895       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1896       break;
1897     }
1898 
1899     /* Results are stored in a sequence of registers.  Then the
1900     ** OP_ResultRow opcode is used to cause sqlite3_step() to return
1901     ** the next row of result.
1902     */
1903     case SRT_Output: {
1904       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1905       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1906       break;
1907     }
1908 
1909 #if !defined(SQLITE_OMIT_TRIGGER)
1910     /* Discard the results.  This is used for SELECT statements inside
1911     ** the body of a TRIGGER.  The purpose of such selects is to call
1912     ** user-defined functions that have side effects.  We do not care
1913     ** about the actual results of the select.
1914     */
1915     default: {
1916       break;
1917     }
1918 #endif
1919   }
1920 
1921   /* Jump to the end of the loop if the LIMIT is reached.
1922   */
1923   if( p->iLimit ){
1924     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1925     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1926   }
1927 
1928   /* Generate the subroutine return
1929   */
1930   sqlite3VdbeResolveLabel(v, iContinue);
1931   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1932 
1933   return addr;
1934 }
1935 
1936 /*
1937 ** Alternative compound select code generator for cases when there
1938 ** is an ORDER BY clause.
1939 **
1940 ** We assume a query of the following form:
1941 **
1942 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1943 **
1944 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1945 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1946 ** co-routines.  Then run the co-routines in parallel and merge the results
1947 ** into the output.  In addition to the two coroutines (called selectA and
1948 ** selectB) there are 7 subroutines:
1949 **
1950 **    outA:    Move the output of the selectA coroutine into the output
1951 **             of the compound query.
1952 **
1953 **    outB:    Move the output of the selectB coroutine into the output
1954 **             of the compound query.  (Only generated for UNION and
1955 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1956 **             appears only in B.)
1957 **
1958 **    AltB:    Called when there is data from both coroutines and A<B.
1959 **
1960 **    AeqB:    Called when there is data from both coroutines and A==B.
1961 **
1962 **    AgtB:    Called when there is data from both coroutines and A>B.
1963 **
1964 **    EofA:    Called when data is exhausted from selectA.
1965 **
1966 **    EofB:    Called when data is exhausted from selectB.
1967 **
1968 ** The implementation of the latter five subroutines depend on which
1969 ** <operator> is used:
1970 **
1971 **
1972 **             UNION ALL         UNION            EXCEPT          INTERSECT
1973 **          -------------  -----------------  --------------  -----------------
1974 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1975 **
1976 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1977 **
1978 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1979 **
1980 **   EofA:   outB, nextB      outB, nextB          halt             halt
1981 **
1982 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1983 **
1984 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1985 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1986 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1987 ** following nextX causes a jump to the end of the select processing.
1988 **
1989 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1990 ** within the output subroutine.  The regPrev register set holds the previously
1991 ** output value.  A comparison is made against this value and the output
1992 ** is skipped if the next results would be the same as the previous.
1993 **
1994 ** The implementation plan is to implement the two coroutines and seven
1995 ** subroutines first, then put the control logic at the bottom.  Like this:
1996 **
1997 **          goto Init
1998 **     coA: coroutine for left query (A)
1999 **     coB: coroutine for right query (B)
2000 **    outA: output one row of A
2001 **    outB: output one row of B (UNION and UNION ALL only)
2002 **    EofA: ...
2003 **    EofB: ...
2004 **    AltB: ...
2005 **    AeqB: ...
2006 **    AgtB: ...
2007 **    Init: initialize coroutine registers
2008 **          yield coA
2009 **          if eof(A) goto EofA
2010 **          yield coB
2011 **          if eof(B) goto EofB
2012 **    Cmpr: Compare A, B
2013 **          Jump AltB, AeqB, AgtB
2014 **     End: ...
2015 **
2016 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2017 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2018 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2019 ** and AgtB jump to either L2 or to one of EofA or EofB.
2020 */
2021 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2022 static int multiSelectOrderBy(
2023   Parse *pParse,        /* Parsing context */
2024   Select *p,            /* The right-most of SELECTs to be coded */
2025   SelectDest *pDest     /* What to do with query results */
2026 ){
2027   int i, j;             /* Loop counters */
2028   Select *pPrior;       /* Another SELECT immediately to our left */
2029   Vdbe *v;              /* Generate code to this VDBE */
2030   SelectDest destA;     /* Destination for coroutine A */
2031   SelectDest destB;     /* Destination for coroutine B */
2032   int regAddrA;         /* Address register for select-A coroutine */
2033   int regEofA;          /* Flag to indicate when select-A is complete */
2034   int regAddrB;         /* Address register for select-B coroutine */
2035   int regEofB;          /* Flag to indicate when select-B is complete */
2036   int addrSelectA;      /* Address of the select-A coroutine */
2037   int addrSelectB;      /* Address of the select-B coroutine */
2038   int regOutA;          /* Address register for the output-A subroutine */
2039   int regOutB;          /* Address register for the output-B subroutine */
2040   int addrOutA;         /* Address of the output-A subroutine */
2041   int addrOutB = 0;     /* Address of the output-B subroutine */
2042   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2043   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2044   int addrAltB;         /* Address of the A<B subroutine */
2045   int addrAeqB;         /* Address of the A==B subroutine */
2046   int addrAgtB;         /* Address of the A>B subroutine */
2047   int regLimitA;        /* Limit register for select-A */
2048   int regLimitB;        /* Limit register for select-A */
2049   int regPrev;          /* A range of registers to hold previous output */
2050   int savedLimit;       /* Saved value of p->iLimit */
2051   int savedOffset;      /* Saved value of p->iOffset */
2052   int labelCmpr;        /* Label for the start of the merge algorithm */
2053   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2054   int j1;               /* Jump instructions that get retargetted */
2055   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2056   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2057   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2058   sqlite3 *db;          /* Database connection */
2059   ExprList *pOrderBy;   /* The ORDER BY clause */
2060   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2061   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2062 
2063   assert( p->pOrderBy!=0 );
2064   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2065   db = pParse->db;
2066   v = pParse->pVdbe;
2067   if( v==0 ) return SQLITE_NOMEM;
2068   labelEnd = sqlite3VdbeMakeLabel(v);
2069   labelCmpr = sqlite3VdbeMakeLabel(v);
2070 
2071 
2072   /* Patch up the ORDER BY clause
2073   */
2074   op = p->op;
2075   pPrior = p->pPrior;
2076   assert( pPrior->pOrderBy==0 );
2077   pOrderBy = p->pOrderBy;
2078   assert( pOrderBy );
2079   nOrderBy = pOrderBy->nExpr;
2080 
2081   /* For operators other than UNION ALL we have to make sure that
2082   ** the ORDER BY clause covers every term of the result set.  Add
2083   ** terms to the ORDER BY clause as necessary.
2084   */
2085   if( op!=TK_ALL ){
2086     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2087       struct ExprList_item *pItem;
2088       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2089         assert( pItem->iCol>0 );
2090         if( pItem->iCol==i ) break;
2091       }
2092       if( j==nOrderBy ){
2093         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2094         if( pNew==0 ) return SQLITE_NOMEM;
2095         pNew->flags |= EP_IntValue;
2096         pNew->iTable = i;
2097         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2098         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2099       }
2100     }
2101   }
2102 
2103   /* Compute the comparison permutation and keyinfo that is used with
2104   ** the permutation in order to comparisons to determine if the next
2105   ** row of results comes from selectA or selectB.  Also add explicit
2106   ** collations to the ORDER BY clause terms so that when the subqueries
2107   ** to the right and the left are evaluated, they use the correct
2108   ** collation.
2109   */
2110   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2111   if( aPermute ){
2112     struct ExprList_item *pItem;
2113     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2114       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2115       aPermute[i] = pItem->iCol - 1;
2116     }
2117     pKeyMerge =
2118       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2119     if( pKeyMerge ){
2120       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2121       pKeyMerge->nField = (u16)nOrderBy;
2122       pKeyMerge->enc = ENC(db);
2123       for(i=0; i<nOrderBy; i++){
2124         CollSeq *pColl;
2125         Expr *pTerm = pOrderBy->a[i].pExpr;
2126         if( pTerm->flags & EP_ExpCollate ){
2127           pColl = pTerm->pColl;
2128         }else{
2129           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2130           pTerm->flags |= EP_ExpCollate;
2131           pTerm->pColl = pColl;
2132         }
2133         pKeyMerge->aColl[i] = pColl;
2134         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2135       }
2136     }
2137   }else{
2138     pKeyMerge = 0;
2139   }
2140 
2141   /* Reattach the ORDER BY clause to the query.
2142   */
2143   p->pOrderBy = pOrderBy;
2144   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2145 
2146   /* Allocate a range of temporary registers and the KeyInfo needed
2147   ** for the logic that removes duplicate result rows when the
2148   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2149   */
2150   if( op==TK_ALL ){
2151     regPrev = 0;
2152   }else{
2153     int nExpr = p->pEList->nExpr;
2154     assert( nOrderBy>=nExpr || db->mallocFailed );
2155     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2156     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2157     pKeyDup = sqlite3DbMallocZero(db,
2158                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2159     if( pKeyDup ){
2160       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2161       pKeyDup->nField = (u16)nExpr;
2162       pKeyDup->enc = ENC(db);
2163       for(i=0; i<nExpr; i++){
2164         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2165         pKeyDup->aSortOrder[i] = 0;
2166       }
2167     }
2168   }
2169 
2170   /* Separate the left and the right query from one another
2171   */
2172   p->pPrior = 0;
2173   pPrior->pRightmost = 0;
2174   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2175   if( pPrior->pPrior==0 ){
2176     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2177   }
2178 
2179   /* Compute the limit registers */
2180   computeLimitRegisters(pParse, p, labelEnd);
2181   if( p->iLimit && op==TK_ALL ){
2182     regLimitA = ++pParse->nMem;
2183     regLimitB = ++pParse->nMem;
2184     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2185                                   regLimitA);
2186     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2187   }else{
2188     regLimitA = regLimitB = 0;
2189   }
2190   sqlite3ExprDelete(db, p->pLimit);
2191   p->pLimit = 0;
2192   sqlite3ExprDelete(db, p->pOffset);
2193   p->pOffset = 0;
2194 
2195   regAddrA = ++pParse->nMem;
2196   regEofA = ++pParse->nMem;
2197   regAddrB = ++pParse->nMem;
2198   regEofB = ++pParse->nMem;
2199   regOutA = ++pParse->nMem;
2200   regOutB = ++pParse->nMem;
2201   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2202   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2203 
2204   /* Jump past the various subroutines and coroutines to the main
2205   ** merge loop
2206   */
2207   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2208   addrSelectA = sqlite3VdbeCurrentAddr(v);
2209 
2210 
2211   /* Generate a coroutine to evaluate the SELECT statement to the
2212   ** left of the compound operator - the "A" select.
2213   */
2214   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2215   pPrior->iLimit = regLimitA;
2216   sqlite3Select(pParse, pPrior, &destA);
2217   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2218   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2219   VdbeNoopComment((v, "End coroutine for left SELECT"));
2220 
2221   /* Generate a coroutine to evaluate the SELECT statement on
2222   ** the right - the "B" select
2223   */
2224   addrSelectB = sqlite3VdbeCurrentAddr(v);
2225   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2226   savedLimit = p->iLimit;
2227   savedOffset = p->iOffset;
2228   p->iLimit = regLimitB;
2229   p->iOffset = 0;
2230   sqlite3Select(pParse, p, &destB);
2231   p->iLimit = savedLimit;
2232   p->iOffset = savedOffset;
2233   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2234   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2235   VdbeNoopComment((v, "End coroutine for right SELECT"));
2236 
2237   /* Generate a subroutine that outputs the current row of the A
2238   ** select as the next output row of the compound select.
2239   */
2240   VdbeNoopComment((v, "Output routine for A"));
2241   addrOutA = generateOutputSubroutine(pParse,
2242                  p, &destA, pDest, regOutA,
2243                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2244 
2245   /* Generate a subroutine that outputs the current row of the B
2246   ** select as the next output row of the compound select.
2247   */
2248   if( op==TK_ALL || op==TK_UNION ){
2249     VdbeNoopComment((v, "Output routine for B"));
2250     addrOutB = generateOutputSubroutine(pParse,
2251                  p, &destB, pDest, regOutB,
2252                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2253   }
2254 
2255   /* Generate a subroutine to run when the results from select A
2256   ** are exhausted and only data in select B remains.
2257   */
2258   VdbeNoopComment((v, "eof-A subroutine"));
2259   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2260     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2261   }else{
2262     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2263     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2264     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2265     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2266   }
2267 
2268   /* Generate a subroutine to run when the results from select B
2269   ** are exhausted and only data in select A remains.
2270   */
2271   if( op==TK_INTERSECT ){
2272     addrEofB = addrEofA;
2273   }else{
2274     VdbeNoopComment((v, "eof-B subroutine"));
2275     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2276     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2277     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2278     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2279   }
2280 
2281   /* Generate code to handle the case of A<B
2282   */
2283   VdbeNoopComment((v, "A-lt-B subroutine"));
2284   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2285   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2286   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2287   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2288 
2289   /* Generate code to handle the case of A==B
2290   */
2291   if( op==TK_ALL ){
2292     addrAeqB = addrAltB;
2293   }else if( op==TK_INTERSECT ){
2294     addrAeqB = addrAltB;
2295     addrAltB++;
2296   }else{
2297     VdbeNoopComment((v, "A-eq-B subroutine"));
2298     addrAeqB =
2299     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2300     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2301     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2302   }
2303 
2304   /* Generate code to handle the case of A>B
2305   */
2306   VdbeNoopComment((v, "A-gt-B subroutine"));
2307   addrAgtB = sqlite3VdbeCurrentAddr(v);
2308   if( op==TK_ALL || op==TK_UNION ){
2309     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2310   }
2311   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2312   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2313   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2314 
2315   /* This code runs once to initialize everything.
2316   */
2317   sqlite3VdbeJumpHere(v, j1);
2318   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2319   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2320   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2321   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2322   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2323   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2324 
2325   /* Implement the main merge loop
2326   */
2327   sqlite3VdbeResolveLabel(v, labelCmpr);
2328   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2329   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2330                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2331   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2332 
2333   /* Release temporary registers
2334   */
2335   if( regPrev ){
2336     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2337   }
2338 
2339   /* Jump to the this point in order to terminate the query.
2340   */
2341   sqlite3VdbeResolveLabel(v, labelEnd);
2342 
2343   /* Set the number of output columns
2344   */
2345   if( pDest->eDest==SRT_Output ){
2346     Select *pFirst = pPrior;
2347     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2348     generateColumnNames(pParse, 0, pFirst->pEList);
2349   }
2350 
2351   /* Reassembly the compound query so that it will be freed correctly
2352   ** by the calling function */
2353   if( p->pPrior ){
2354     sqlite3SelectDelete(db, p->pPrior);
2355   }
2356   p->pPrior = pPrior;
2357 
2358   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2359   **** subqueries ****/
2360   return SQLITE_OK;
2361 }
2362 #endif
2363 
2364 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2365 /* Forward Declarations */
2366 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2367 static void substSelect(sqlite3*, Select *, int, ExprList *);
2368 
2369 /*
2370 ** Scan through the expression pExpr.  Replace every reference to
2371 ** a column in table number iTable with a copy of the iColumn-th
2372 ** entry in pEList.  (But leave references to the ROWID column
2373 ** unchanged.)
2374 **
2375 ** This routine is part of the flattening procedure.  A subquery
2376 ** whose result set is defined by pEList appears as entry in the
2377 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2378 ** FORM clause entry is iTable.  This routine make the necessary
2379 ** changes to pExpr so that it refers directly to the source table
2380 ** of the subquery rather the result set of the subquery.
2381 */
2382 static void substExpr(
2383   sqlite3 *db,        /* Report malloc errors to this connection */
2384   Expr *pExpr,        /* Expr in which substitution occurs */
2385   int iTable,         /* Table to be substituted */
2386   ExprList *pEList    /* Substitute expressions */
2387 ){
2388   if( pExpr==0 ) return;
2389   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2390     if( pExpr->iColumn<0 ){
2391       pExpr->op = TK_NULL;
2392     }else{
2393       Expr *pNew;
2394       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2395       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2396       pNew = pEList->a[pExpr->iColumn].pExpr;
2397       assert( pNew!=0 );
2398       pExpr->op = pNew->op;
2399       assert( pExpr->pLeft==0 );
2400       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0);
2401       assert( pExpr->pRight==0 );
2402       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0);
2403       pExpr->iTable = pNew->iTable;
2404       pExpr->pTab = pNew->pTab;
2405       pExpr->iColumn = pNew->iColumn;
2406       pExpr->iAgg = pNew->iAgg;
2407       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2408       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2409       assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 );
2410       if( ExprHasProperty(pNew, EP_xIsSelect) ){
2411         pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0);
2412       }else{
2413         pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0);
2414       }
2415       pExpr->flags = pNew->flags;
2416       pExpr->pAggInfo = pNew->pAggInfo;
2417       pNew->pAggInfo = 0;
2418     }
2419   }else{
2420     substExpr(db, pExpr->pLeft, iTable, pEList);
2421     substExpr(db, pExpr->pRight, iTable, pEList);
2422     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2423       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2424     }else{
2425       substExprList(db, pExpr->x.pList, iTable, pEList);
2426     }
2427   }
2428 }
2429 static void substExprList(
2430   sqlite3 *db,         /* Report malloc errors here */
2431   ExprList *pList,     /* List to scan and in which to make substitutes */
2432   int iTable,          /* Table to be substituted */
2433   ExprList *pEList     /* Substitute values */
2434 ){
2435   int i;
2436   if( pList==0 ) return;
2437   for(i=0; i<pList->nExpr; i++){
2438     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2439   }
2440 }
2441 static void substSelect(
2442   sqlite3 *db,         /* Report malloc errors here */
2443   Select *p,           /* SELECT statement in which to make substitutions */
2444   int iTable,          /* Table to be replaced */
2445   ExprList *pEList     /* Substitute values */
2446 ){
2447   SrcList *pSrc;
2448   struct SrcList_item *pItem;
2449   int i;
2450   if( !p ) return;
2451   substExprList(db, p->pEList, iTable, pEList);
2452   substExprList(db, p->pGroupBy, iTable, pEList);
2453   substExprList(db, p->pOrderBy, iTable, pEList);
2454   substExpr(db, p->pHaving, iTable, pEList);
2455   substExpr(db, p->pWhere, iTable, pEList);
2456   substSelect(db, p->pPrior, iTable, pEList);
2457   pSrc = p->pSrc;
2458   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2459   if( ALWAYS(pSrc) ){
2460     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2461       substSelect(db, pItem->pSelect, iTable, pEList);
2462     }
2463   }
2464 }
2465 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2466 
2467 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2468 /*
2469 ** This routine attempts to flatten subqueries in order to speed
2470 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2471 ** occurs.
2472 **
2473 ** To understand the concept of flattening, consider the following
2474 ** query:
2475 **
2476 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2477 **
2478 ** The default way of implementing this query is to execute the
2479 ** subquery first and store the results in a temporary table, then
2480 ** run the outer query on that temporary table.  This requires two
2481 ** passes over the data.  Furthermore, because the temporary table
2482 ** has no indices, the WHERE clause on the outer query cannot be
2483 ** optimized.
2484 **
2485 ** This routine attempts to rewrite queries such as the above into
2486 ** a single flat select, like this:
2487 **
2488 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2489 **
2490 ** The code generated for this simpification gives the same result
2491 ** but only has to scan the data once.  And because indices might
2492 ** exist on the table t1, a complete scan of the data might be
2493 ** avoided.
2494 **
2495 ** Flattening is only attempted if all of the following are true:
2496 **
2497 **   (1)  The subquery and the outer query do not both use aggregates.
2498 **
2499 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2500 **
2501 **   (3)  The subquery is not the right operand of a left outer join
2502 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2503 **
2504 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2505 **
2506 **   (5)  The subquery is not DISTINCT or the outer query does not use
2507 **        aggregates.
2508 **
2509 **   (6)  The subquery does not use aggregates or the outer query is not
2510 **        DISTINCT.
2511 **
2512 **   (7)  The subquery has a FROM clause.
2513 **
2514 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2515 **
2516 **   (9)  The subquery does not use LIMIT or the outer query does not use
2517 **        aggregates.
2518 **
2519 **  (10)  The subquery does not use aggregates or the outer query does not
2520 **        use LIMIT.
2521 **
2522 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2523 **
2524 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2525 **        a separate restriction deriving from ticket #350.
2526 **
2527 **  (13)  The subquery and outer query do not both use LIMIT
2528 **
2529 **  (14)  The subquery does not use OFFSET
2530 **
2531 **  (15)  The outer query is not part of a compound select or the
2532 **        subquery does not have both an ORDER BY and a LIMIT clause.
2533 **        (See ticket #2339)
2534 **
2535 **  (16)  The outer query is not an aggregate or the subquery does
2536 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2537 **        until we introduced the group_concat() function.
2538 **
2539 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2540 **        compound clause made up entirely of non-aggregate queries, and
2541 **        the parent query:
2542 **
2543 **          * is not itself part of a compound select,
2544 **          * is not an aggregate or DISTINCT query, and
2545 **          * has no other tables or sub-selects in the FROM clause.
2546 **
2547 **        The parent and sub-query may contain WHERE clauses. Subject to
2548 **        rules (11), (13) and (14), they may also contain ORDER BY,
2549 **        LIMIT and OFFSET clauses.
2550 **
2551 **  (18)  If the sub-query is a compound select, then all terms of the
2552 **        ORDER by clause of the parent must be simple references to
2553 **        columns of the sub-query.
2554 **
2555 **  (19)  The subquery does not use LIMIT or the outer query does not
2556 **        have a WHERE clause.
2557 **
2558 ** In this routine, the "p" parameter is a pointer to the outer query.
2559 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2560 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2561 **
2562 ** If flattening is not attempted, this routine is a no-op and returns 0.
2563 ** If flattening is attempted this routine returns 1.
2564 **
2565 ** All of the expression analysis must occur on both the outer query and
2566 ** the subquery before this routine runs.
2567 */
2568 static int flattenSubquery(
2569   Parse *pParse,       /* Parsing context */
2570   Select *p,           /* The parent or outer SELECT statement */
2571   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2572   int isAgg,           /* True if outer SELECT uses aggregate functions */
2573   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2574 ){
2575   const char *zSavedAuthContext = pParse->zAuthContext;
2576   Select *pParent;
2577   Select *pSub;       /* The inner query or "subquery" */
2578   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2579   SrcList *pSrc;      /* The FROM clause of the outer query */
2580   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2581   ExprList *pList;    /* The result set of the outer query */
2582   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2583   int i;              /* Loop counter */
2584   Expr *pWhere;                    /* The WHERE clause */
2585   struct SrcList_item *pSubitem;   /* The subquery */
2586   sqlite3 *db = pParse->db;
2587 
2588   /* Check to see if flattening is permitted.  Return 0 if not.
2589   */
2590   assert( p!=0 );
2591   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2592   pSrc = p->pSrc;
2593   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2594   pSubitem = &pSrc->a[iFrom];
2595   iParent = pSubitem->iCursor;
2596   pSub = pSubitem->pSelect;
2597   assert( pSub!=0 );
2598   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2599   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2600   pSubSrc = pSub->pSrc;
2601   assert( pSubSrc );
2602   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2603   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2604   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2605   ** became arbitrary expressions, we were forced to add restrictions (13)
2606   ** and (14). */
2607   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2608   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2609   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2610     return 0;                                            /* Restriction (15) */
2611   }
2612   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2613   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2614          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2615      return 0;
2616   }
2617   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2618      return 0;         /* Restriction (6)  */
2619   }
2620   if( p->pOrderBy && pSub->pOrderBy ){
2621      return 0;                                           /* Restriction (11) */
2622   }
2623   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2624   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2625 
2626   /* OBSOLETE COMMENT 1:
2627   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2628   ** not used as the right operand of an outer join.  Examples of why this
2629   ** is not allowed:
2630   **
2631   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2632   **
2633   ** If we flatten the above, we would get
2634   **
2635   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2636   **
2637   ** which is not at all the same thing.
2638   **
2639   ** OBSOLETE COMMENT 2:
2640   ** Restriction 12:  If the subquery is the right operand of a left outer
2641   ** join, make sure the subquery has no WHERE clause.
2642   ** An examples of why this is not allowed:
2643   **
2644   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2645   **
2646   ** If we flatten the above, we would get
2647   **
2648   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2649   **
2650   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2651   ** effectively converts the OUTER JOIN into an INNER JOIN.
2652   **
2653   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2654   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2655   ** is fraught with danger.  Best to avoid the whole thing.  If the
2656   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2657   */
2658   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2659     return 0;
2660   }
2661 
2662   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2663   ** use only the UNION ALL operator. And none of the simple select queries
2664   ** that make up the compound SELECT are allowed to be aggregate or distinct
2665   ** queries.
2666   */
2667   if( pSub->pPrior ){
2668     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2669       return 0;
2670     }
2671     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2672       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2673        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2674        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
2675       ){
2676         return 0;
2677       }
2678     }
2679 
2680     /* Restriction 18. */
2681     if( p->pOrderBy ){
2682       int ii;
2683       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2684         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2685       }
2686     }
2687   }
2688 
2689   /***** If we reach this point, flattening is permitted. *****/
2690 
2691   /* Authorize the subquery */
2692   pParse->zAuthContext = pSubitem->zName;
2693   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2694   pParse->zAuthContext = zSavedAuthContext;
2695 
2696   /* If the sub-query is a compound SELECT statement, then (by restrictions
2697   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2698   ** be of the form:
2699   **
2700   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2701   **
2702   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2703   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2704   ** OFFSET clauses and joins them to the left-hand-side of the original
2705   ** using UNION ALL operators. In this case N is the number of simple
2706   ** select statements in the compound sub-query.
2707   **
2708   ** Example:
2709   **
2710   **     SELECT a+1 FROM (
2711   **        SELECT x FROM tab
2712   **        UNION ALL
2713   **        SELECT y FROM tab
2714   **        UNION ALL
2715   **        SELECT abs(z*2) FROM tab2
2716   **     ) WHERE a!=5 ORDER BY 1
2717   **
2718   ** Transformed into:
2719   **
2720   **     SELECT x+1 FROM tab WHERE x+1!=5
2721   **     UNION ALL
2722   **     SELECT y+1 FROM tab WHERE y+1!=5
2723   **     UNION ALL
2724   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2725   **     ORDER BY 1
2726   **
2727   ** We call this the "compound-subquery flattening".
2728   */
2729   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2730     Select *pNew;
2731     ExprList *pOrderBy = p->pOrderBy;
2732     Expr *pLimit = p->pLimit;
2733     Select *pPrior = p->pPrior;
2734     p->pOrderBy = 0;
2735     p->pSrc = 0;
2736     p->pPrior = 0;
2737     p->pLimit = 0;
2738     pNew = sqlite3SelectDup(db, p, 0);
2739     p->pLimit = pLimit;
2740     p->pOrderBy = pOrderBy;
2741     p->pSrc = pSrc;
2742     p->op = TK_ALL;
2743     p->pRightmost = 0;
2744     if( pNew==0 ){
2745       pNew = pPrior;
2746     }else{
2747       pNew->pPrior = pPrior;
2748       pNew->pRightmost = 0;
2749     }
2750     p->pPrior = pNew;
2751     if( db->mallocFailed ) return 1;
2752   }
2753 
2754   /* Begin flattening the iFrom-th entry of the FROM clause
2755   ** in the outer query.
2756   */
2757   pSub = pSub1 = pSubitem->pSelect;
2758 
2759   /* Delete the transient table structure associated with the
2760   ** subquery
2761   */
2762   sqlite3DbFree(db, pSubitem->zDatabase);
2763   sqlite3DbFree(db, pSubitem->zName);
2764   sqlite3DbFree(db, pSubitem->zAlias);
2765   pSubitem->zDatabase = 0;
2766   pSubitem->zName = 0;
2767   pSubitem->zAlias = 0;
2768   pSubitem->pSelect = 0;
2769 
2770   /* Defer deleting the Table object associated with the
2771   ** subquery until code generation is
2772   ** complete, since there may still exist Expr.pTab entries that
2773   ** refer to the subquery even after flattening.  Ticket #3346.
2774   */
2775   if( pSubitem->pTab!=0 ){
2776     Table *pTabToDel = pSubitem->pTab;
2777     if( pTabToDel->nRef==1 ){
2778       pTabToDel->pNextZombie = pParse->pZombieTab;
2779       pParse->pZombieTab = pTabToDel;
2780     }else{
2781       pTabToDel->nRef--;
2782     }
2783     pSubitem->pTab = 0;
2784   }
2785 
2786   /* The following loop runs once for each term in a compound-subquery
2787   ** flattening (as described above).  If we are doing a different kind
2788   ** of flattening - a flattening other than a compound-subquery flattening -
2789   ** then this loop only runs once.
2790   **
2791   ** This loop moves all of the FROM elements of the subquery into the
2792   ** the FROM clause of the outer query.  Before doing this, remember
2793   ** the cursor number for the original outer query FROM element in
2794   ** iParent.  The iParent cursor will never be used.  Subsequent code
2795   ** will scan expressions looking for iParent references and replace
2796   ** those references with expressions that resolve to the subquery FROM
2797   ** elements we are now copying in.
2798   */
2799   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2800     int nSubSrc;
2801     u8 jointype = 0;
2802     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2803     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2804     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2805 
2806     if( pSrc ){
2807       assert( pParent==p );  /* First time through the loop */
2808       jointype = pSubitem->jointype;
2809     }else{
2810       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2811       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2812       if( pSrc==0 ){
2813         assert( db->mallocFailed );
2814         break;
2815       }
2816     }
2817 
2818     /* The subquery uses a single slot of the FROM clause of the outer
2819     ** query.  If the subquery has more than one element in its FROM clause,
2820     ** then expand the outer query to make space for it to hold all elements
2821     ** of the subquery.
2822     **
2823     ** Example:
2824     **
2825     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2826     **
2827     ** The outer query has 3 slots in its FROM clause.  One slot of the
2828     ** outer query (the middle slot) is used by the subquery.  The next
2829     ** block of code will expand the out query to 4 slots.  The middle
2830     ** slot is expanded to two slots in order to make space for the
2831     ** two elements in the FROM clause of the subquery.
2832     */
2833     if( nSubSrc>1 ){
2834       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2835       if( db->mallocFailed ){
2836         break;
2837       }
2838     }
2839 
2840     /* Transfer the FROM clause terms from the subquery into the
2841     ** outer query.
2842     */
2843     for(i=0; i<nSubSrc; i++){
2844       pSrc->a[i+iFrom] = pSubSrc->a[i];
2845       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2846     }
2847     pSrc->a[iFrom].jointype = jointype;
2848 
2849     /* Now begin substituting subquery result set expressions for
2850     ** references to the iParent in the outer query.
2851     **
2852     ** Example:
2853     **
2854     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2855     **   \                     \_____________ subquery __________/          /
2856     **    \_____________________ outer query ______________________________/
2857     **
2858     ** We look at every expression in the outer query and every place we see
2859     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2860     */
2861     pList = pParent->pEList;
2862     for(i=0; i<pList->nExpr; i++){
2863       Expr *pExpr;
2864       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2865         pList->a[i].zName =
2866                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2867       }
2868     }
2869     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2870     if( isAgg ){
2871       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2872       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2873     }
2874     if( pSub->pOrderBy ){
2875       assert( pParent->pOrderBy==0 );
2876       pParent->pOrderBy = pSub->pOrderBy;
2877       pSub->pOrderBy = 0;
2878     }else if( pParent->pOrderBy ){
2879       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2880     }
2881     if( pSub->pWhere ){
2882       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2883     }else{
2884       pWhere = 0;
2885     }
2886     if( subqueryIsAgg ){
2887       assert( pParent->pHaving==0 );
2888       pParent->pHaving = pParent->pWhere;
2889       pParent->pWhere = pWhere;
2890       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2891       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2892                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2893       assert( pParent->pGroupBy==0 );
2894       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2895     }else{
2896       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2897       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2898     }
2899 
2900     /* The flattened query is distinct if either the inner or the
2901     ** outer query is distinct.
2902     */
2903     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2904 
2905     /*
2906     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2907     **
2908     ** One is tempted to try to add a and b to combine the limits.  But this
2909     ** does not work if either limit is negative.
2910     */
2911     if( pSub->pLimit ){
2912       pParent->pLimit = pSub->pLimit;
2913       pSub->pLimit = 0;
2914     }
2915   }
2916 
2917   /* Finially, delete what is left of the subquery and return
2918   ** success.
2919   */
2920   sqlite3SelectDelete(db, pSub1);
2921 
2922   return 1;
2923 }
2924 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2925 
2926 /*
2927 ** Analyze the SELECT statement passed as an argument to see if it
2928 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2929 ** it is, or 0 otherwise. At present, a query is considered to be
2930 ** a min()/max() query if:
2931 **
2932 **   1. There is a single object in the FROM clause.
2933 **
2934 **   2. There is a single expression in the result set, and it is
2935 **      either min(x) or max(x), where x is a column reference.
2936 */
2937 static u8 minMaxQuery(Select *p){
2938   Expr *pExpr;
2939   ExprList *pEList = p->pEList;
2940 
2941   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2942   pExpr = pEList->a[0].pExpr;
2943   if( ExprHasProperty(pExpr, EP_xIsSelect) ) return 0;
2944   pEList = pExpr->x.pList;
2945   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
2946   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2947   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
2948   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2949     return WHERE_ORDERBY_MIN;
2950   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2951     return WHERE_ORDERBY_MAX;
2952   }
2953   return WHERE_ORDERBY_NORMAL;
2954 }
2955 
2956 /*
2957 ** The select statement passed as the first argument is an aggregate query.
2958 ** The second argment is the associated aggregate-info object. This
2959 ** function tests if the SELECT is of the form:
2960 **
2961 **   SELECT count(*) FROM <tbl>
2962 **
2963 ** where table is a database table, not a sub-select or view. If the query
2964 ** does match this pattern, then a pointer to the Table object representing
2965 ** <tbl> is returned. Otherwise, 0 is returned.
2966 */
2967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2968   Table *pTab;
2969   Expr *pExpr;
2970 
2971   assert( !p->pGroupBy );
2972 
2973   if( p->pWhere || p->pEList->nExpr!=1
2974    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2975   ){
2976     return 0;
2977   }
2978   pTab = p->pSrc->a[0].pTab;
2979   pExpr = p->pEList->a[0].pExpr;
2980   assert( pTab && !pTab->pSelect && pExpr );
2981 
2982   if( IsVirtual(pTab) ) return 0;
2983   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2984   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
2985   if( pExpr->flags&EP_Distinct ) return 0;
2986 
2987   return pTab;
2988 }
2989 
2990 /*
2991 ** If the source-list item passed as an argument was augmented with an
2992 ** INDEXED BY clause, then try to locate the specified index. If there
2993 ** was such a clause and the named index cannot be found, return
2994 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
2995 ** pFrom->pIndex and return SQLITE_OK.
2996 */
2997 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
2998   if( pFrom->pTab && pFrom->zIndex ){
2999     Table *pTab = pFrom->pTab;
3000     char *zIndex = pFrom->zIndex;
3001     Index *pIdx;
3002     for(pIdx=pTab->pIndex;
3003         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3004         pIdx=pIdx->pNext
3005     );
3006     if( !pIdx ){
3007       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3008       return SQLITE_ERROR;
3009     }
3010     pFrom->pIndex = pIdx;
3011   }
3012   return SQLITE_OK;
3013 }
3014 
3015 /*
3016 ** This routine is a Walker callback for "expanding" a SELECT statement.
3017 ** "Expanding" means to do the following:
3018 **
3019 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3020 **         element of the FROM clause.
3021 **
3022 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3023 **         defines FROM clause.  When views appear in the FROM clause,
3024 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3025 **         that implements the view.  A copy is made of the view's SELECT
3026 **         statement so that we can freely modify or delete that statement
3027 **         without worrying about messing up the presistent representation
3028 **         of the view.
3029 **
3030 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3031 **         on joins and the ON and USING clause of joins.
3032 **
3033 **    (4)  Scan the list of columns in the result set (pEList) looking
3034 **         for instances of the "*" operator or the TABLE.* operator.
3035 **         If found, expand each "*" to be every column in every table
3036 **         and TABLE.* to be every column in TABLE.
3037 **
3038 */
3039 static int selectExpander(Walker *pWalker, Select *p){
3040   Parse *pParse = pWalker->pParse;
3041   int i, j, k;
3042   SrcList *pTabList;
3043   ExprList *pEList;
3044   struct SrcList_item *pFrom;
3045   sqlite3 *db = pParse->db;
3046 
3047   if( db->mallocFailed  ){
3048     return WRC_Abort;
3049   }
3050   if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
3051     return WRC_Prune;
3052   }
3053   p->selFlags |= SF_Expanded;
3054   pTabList = p->pSrc;
3055   pEList = p->pEList;
3056 
3057   /* Make sure cursor numbers have been assigned to all entries in
3058   ** the FROM clause of the SELECT statement.
3059   */
3060   sqlite3SrcListAssignCursors(pParse, pTabList);
3061 
3062   /* Look up every table named in the FROM clause of the select.  If
3063   ** an entry of the FROM clause is a subquery instead of a table or view,
3064   ** then create a transient table structure to describe the subquery.
3065   */
3066   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3067     Table *pTab;
3068     if( pFrom->pTab!=0 ){
3069       /* This statement has already been prepared.  There is no need
3070       ** to go further. */
3071       assert( i==0 );
3072       return WRC_Prune;
3073     }
3074     if( pFrom->zName==0 ){
3075 #ifndef SQLITE_OMIT_SUBQUERY
3076       Select *pSel = pFrom->pSelect;
3077       /* A sub-query in the FROM clause of a SELECT */
3078       assert( pSel!=0 );
3079       assert( pFrom->pTab==0 );
3080       sqlite3WalkSelect(pWalker, pSel);
3081       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3082       if( pTab==0 ) return WRC_Abort;
3083       pTab->db = db;
3084       pTab->nRef = 1;
3085       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3086       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3087       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3088       pTab->iPKey = -1;
3089       pTab->tabFlags |= TF_Ephemeral;
3090 #endif
3091     }else{
3092       /* An ordinary table or view name in the FROM clause */
3093       assert( pFrom->pTab==0 );
3094       pFrom->pTab = pTab =
3095         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3096       if( pTab==0 ) return WRC_Abort;
3097       pTab->nRef++;
3098 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3099       if( pTab->pSelect || IsVirtual(pTab) ){
3100         /* We reach here if the named table is a really a view */
3101         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3102 
3103         /* If pFrom->pSelect!=0 it means we are dealing with a
3104         ** view within a view.  The SELECT structure has already been
3105         ** copied by the outer view so we can skip the copy step here
3106         ** in the inner view.
3107         */
3108         if( pFrom->pSelect==0 ){
3109           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3110           sqlite3WalkSelect(pWalker, pFrom->pSelect);
3111         }
3112       }
3113 #endif
3114     }
3115 
3116     /* Locate the index named by the INDEXED BY clause, if any. */
3117     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3118       return WRC_Abort;
3119     }
3120   }
3121 
3122   /* Process NATURAL keywords, and ON and USING clauses of joins.
3123   */
3124   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3125     return WRC_Abort;
3126   }
3127 
3128   /* For every "*" that occurs in the column list, insert the names of
3129   ** all columns in all tables.  And for every TABLE.* insert the names
3130   ** of all columns in TABLE.  The parser inserted a special expression
3131   ** with the TK_ALL operator for each "*" that it found in the column list.
3132   ** The following code just has to locate the TK_ALL expressions and expand
3133   ** each one to the list of all columns in all tables.
3134   **
3135   ** The first loop just checks to see if there are any "*" operators
3136   ** that need expanding.
3137   */
3138   for(k=0; k<pEList->nExpr; k++){
3139     Expr *pE = pEList->a[k].pExpr;
3140     if( pE->op==TK_ALL ) break;
3141     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
3142          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
3143   }
3144   if( k<pEList->nExpr ){
3145     /*
3146     ** If we get here it means the result set contains one or more "*"
3147     ** operators that need to be expanded.  Loop through each expression
3148     ** in the result set and expand them one by one.
3149     */
3150     struct ExprList_item *a = pEList->a;
3151     ExprList *pNew = 0;
3152     int flags = pParse->db->flags;
3153     int longNames = (flags & SQLITE_FullColNames)!=0
3154                       && (flags & SQLITE_ShortColNames)==0;
3155 
3156     for(k=0; k<pEList->nExpr; k++){
3157       Expr *pE = a[k].pExpr;
3158       if( pE->op!=TK_ALL &&
3159            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
3160         /* This particular expression does not need to be expanded.
3161         */
3162         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
3163         if( pNew ){
3164           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3165         }
3166         a[k].pExpr = 0;
3167         a[k].zName = 0;
3168       }else{
3169         /* This expression is a "*" or a "TABLE.*" and needs to be
3170         ** expanded. */
3171         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3172         char *zTName;            /* text of name of TABLE */
3173         if( pE->op==TK_DOT && pE->pLeft ){
3174           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
3175         }else{
3176           zTName = 0;
3177         }
3178         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3179           Table *pTab = pFrom->pTab;
3180           char *zTabName = pFrom->zAlias;
3181           if( zTabName==0 || zTabName[0]==0 ){
3182             zTabName = pTab->zName;
3183           }
3184           if( db->mallocFailed ) break;
3185           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3186             continue;
3187           }
3188           tableSeen = 1;
3189           for(j=0; j<pTab->nCol; j++){
3190             Expr *pExpr, *pRight;
3191             char *zName = pTab->aCol[j].zName;
3192 
3193             /* If a column is marked as 'hidden' (currently only possible
3194             ** for virtual tables), do not include it in the expanded
3195             ** result-set list.
3196             */
3197             if( IsHiddenColumn(&pTab->aCol[j]) ){
3198               assert(IsVirtual(pTab));
3199               continue;
3200             }
3201 
3202             if( i>0 && zTName==0 ){
3203               struct SrcList_item *pLeft = &pTabList->a[i-1];
3204               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3205                         columnIndex(pLeft->pTab, zName)>=0 ){
3206                 /* In a NATURAL join, omit the join columns from the
3207                 ** table on the right */
3208                 continue;
3209               }
3210               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3211                 /* In a join with a USING clause, omit columns in the
3212                 ** using clause from the table on the right. */
3213                 continue;
3214               }
3215             }
3216             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3217             if( pRight==0 ) break;
3218             setQuotedToken(pParse, &pRight->token, zName);
3219             if( longNames || pTabList->nSrc>1 ){
3220               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3221               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3222               if( pExpr==0 ) break;
3223               setQuotedToken(pParse, &pLeft->token, zTabName);
3224               setToken(&pExpr->span,
3225                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
3226               pExpr->span.dyn = 1;
3227               pExpr->token.z = 0;
3228               pExpr->token.n = 0;
3229               pExpr->token.dyn = 0;
3230             }else{
3231               pExpr = pRight;
3232               pExpr->span = pExpr->token;
3233               pExpr->span.dyn = 0;
3234             }
3235             if( longNames ){
3236               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
3237             }else{
3238               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
3239             }
3240           }
3241         }
3242         if( !tableSeen ){
3243           if( zTName ){
3244             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3245           }else{
3246             sqlite3ErrorMsg(pParse, "no tables specified");
3247           }
3248         }
3249         sqlite3DbFree(db, zTName);
3250       }
3251     }
3252     sqlite3ExprListDelete(db, pEList);
3253     p->pEList = pNew;
3254   }
3255 #if SQLITE_MAX_COLUMN
3256   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3257     sqlite3ErrorMsg(pParse, "too many columns in result set");
3258   }
3259 #endif
3260   return WRC_Continue;
3261 }
3262 
3263 /*
3264 ** No-op routine for the parse-tree walker.
3265 **
3266 ** When this routine is the Walker.xExprCallback then expression trees
3267 ** are walked without any actions being taken at each node.  Presumably,
3268 ** when this routine is used for Walker.xExprCallback then
3269 ** Walker.xSelectCallback is set to do something useful for every
3270 ** subquery in the parser tree.
3271 */
3272 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3273   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3274   return WRC_Continue;
3275 }
3276 
3277 /*
3278 ** This routine "expands" a SELECT statement and all of its subqueries.
3279 ** For additional information on what it means to "expand" a SELECT
3280 ** statement, see the comment on the selectExpand worker callback above.
3281 **
3282 ** Expanding a SELECT statement is the first step in processing a
3283 ** SELECT statement.  The SELECT statement must be expanded before
3284 ** name resolution is performed.
3285 **
3286 ** If anything goes wrong, an error message is written into pParse.
3287 ** The calling function can detect the problem by looking at pParse->nErr
3288 ** and/or pParse->db->mallocFailed.
3289 */
3290 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3291   Walker w;
3292   w.xSelectCallback = selectExpander;
3293   w.xExprCallback = exprWalkNoop;
3294   w.pParse = pParse;
3295   sqlite3WalkSelect(&w, pSelect);
3296 }
3297 
3298 
3299 #ifndef SQLITE_OMIT_SUBQUERY
3300 /*
3301 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3302 ** interface.
3303 **
3304 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3305 ** information to the Table structure that represents the result set
3306 ** of that subquery.
3307 **
3308 ** The Table structure that represents the result set was constructed
3309 ** by selectExpander() but the type and collation information was omitted
3310 ** at that point because identifiers had not yet been resolved.  This
3311 ** routine is called after identifier resolution.
3312 */
3313 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3314   Parse *pParse;
3315   int i;
3316   SrcList *pTabList;
3317   struct SrcList_item *pFrom;
3318 
3319   assert( p->selFlags & SF_Resolved );
3320   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3321     p->selFlags |= SF_HasTypeInfo;
3322     pParse = pWalker->pParse;
3323     pTabList = p->pSrc;
3324     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3325       Table *pTab = pFrom->pTab;
3326       if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3327         /* A sub-query in the FROM clause of a SELECT */
3328         Select *pSel = pFrom->pSelect;
3329         assert( pSel );
3330         while( pSel->pPrior ) pSel = pSel->pPrior;
3331         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3332       }
3333     }
3334   }
3335   return WRC_Continue;
3336 }
3337 #endif
3338 
3339 
3340 /*
3341 ** This routine adds datatype and collating sequence information to
3342 ** the Table structures of all FROM-clause subqueries in a
3343 ** SELECT statement.
3344 **
3345 ** Use this routine after name resolution.
3346 */
3347 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3348 #ifndef SQLITE_OMIT_SUBQUERY
3349   Walker w;
3350   w.xSelectCallback = selectAddSubqueryTypeInfo;
3351   w.xExprCallback = exprWalkNoop;
3352   w.pParse = pParse;
3353   sqlite3WalkSelect(&w, pSelect);
3354 #endif
3355 }
3356 
3357 
3358 /*
3359 ** This routine sets of a SELECT statement for processing.  The
3360 ** following is accomplished:
3361 **
3362 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3363 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3364 **     *  ON and USING clauses are shifted into WHERE statements
3365 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3366 **     *  Identifiers in expression are matched to tables.
3367 **
3368 ** This routine acts recursively on all subqueries within the SELECT.
3369 */
3370 void sqlite3SelectPrep(
3371   Parse *pParse,         /* The parser context */
3372   Select *p,             /* The SELECT statement being coded. */
3373   NameContext *pOuterNC  /* Name context for container */
3374 ){
3375   sqlite3 *db;
3376   if( p==0 ) return;
3377   db = pParse->db;
3378   if( p->selFlags & SF_HasTypeInfo ) return;
3379   if( pParse->nErr || db->mallocFailed ) return;
3380   sqlite3SelectExpand(pParse, p);
3381   if( pParse->nErr || db->mallocFailed ) return;
3382   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3383   if( pParse->nErr || db->mallocFailed ) return;
3384   sqlite3SelectAddTypeInfo(pParse, p);
3385 }
3386 
3387 /*
3388 ** Reset the aggregate accumulator.
3389 **
3390 ** The aggregate accumulator is a set of memory cells that hold
3391 ** intermediate results while calculating an aggregate.  This
3392 ** routine simply stores NULLs in all of those memory cells.
3393 */
3394 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3395   Vdbe *v = pParse->pVdbe;
3396   int i;
3397   struct AggInfo_func *pFunc;
3398   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3399     return;
3400   }
3401   for(i=0; i<pAggInfo->nColumn; i++){
3402     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3403   }
3404   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3405     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3406     if( pFunc->iDistinct>=0 ){
3407       Expr *pE = pFunc->pExpr;
3408       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3409       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3410         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3411            "argument");
3412         pFunc->iDistinct = -1;
3413       }else{
3414         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3415         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3416                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3417       }
3418     }
3419   }
3420 }
3421 
3422 /*
3423 ** Invoke the OP_AggFinalize opcode for every aggregate function
3424 ** in the AggInfo structure.
3425 */
3426 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3427   Vdbe *v = pParse->pVdbe;
3428   int i;
3429   struct AggInfo_func *pF;
3430   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3431     ExprList *pList = pF->pExpr->x.pList;
3432     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3433     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3434                       (void*)pF->pFunc, P4_FUNCDEF);
3435   }
3436 }
3437 
3438 /*
3439 ** Update the accumulator memory cells for an aggregate based on
3440 ** the current cursor position.
3441 */
3442 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3443   Vdbe *v = pParse->pVdbe;
3444   int i;
3445   struct AggInfo_func *pF;
3446   struct AggInfo_col *pC;
3447 
3448   pAggInfo->directMode = 1;
3449   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3450     int nArg;
3451     int addrNext = 0;
3452     int regAgg;
3453     ExprList *pList = pF->pExpr->x.pList;
3454     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3455     if( pList ){
3456       nArg = pList->nExpr;
3457       regAgg = sqlite3GetTempRange(pParse, nArg);
3458       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3459     }else{
3460       nArg = 0;
3461       regAgg = 0;
3462     }
3463     if( pF->iDistinct>=0 ){
3464       addrNext = sqlite3VdbeMakeLabel(v);
3465       assert( nArg==1 );
3466       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3467     }
3468     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3469       CollSeq *pColl = 0;
3470       struct ExprList_item *pItem;
3471       int j;
3472       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3473       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3474         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3475       }
3476       if( !pColl ){
3477         pColl = pParse->db->pDfltColl;
3478       }
3479       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3480     }
3481     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3482                       (void*)pF->pFunc, P4_FUNCDEF);
3483     sqlite3VdbeChangeP5(v, (u8)nArg);
3484     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3485     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3486     if( addrNext ){
3487       sqlite3VdbeResolveLabel(v, addrNext);
3488     }
3489   }
3490   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3491     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3492   }
3493   pAggInfo->directMode = 0;
3494 }
3495 
3496 /*
3497 ** Generate code for the SELECT statement given in the p argument.
3498 **
3499 ** The results are distributed in various ways depending on the
3500 ** contents of the SelectDest structure pointed to by argument pDest
3501 ** as follows:
3502 **
3503 **     pDest->eDest    Result
3504 **     ------------    -------------------------------------------
3505 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3506 **                     opcode) for each row in the result set.
3507 **
3508 **     SRT_Mem         Only valid if the result is a single column.
3509 **                     Store the first column of the first result row
3510 **                     in register pDest->iParm then abandon the rest
3511 **                     of the query.  This destination implies "LIMIT 1".
3512 **
3513 **     SRT_Set         The result must be a single column.  Store each
3514 **                     row of result as the key in table pDest->iParm.
3515 **                     Apply the affinity pDest->affinity before storing
3516 **                     results.  Used to implement "IN (SELECT ...)".
3517 **
3518 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3519 **
3520 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3521 **
3522 **     SRT_Table       Store results in temporary table pDest->iParm.
3523 **                     This is like SRT_EphemTab except that the table
3524 **                     is assumed to already be open.
3525 **
3526 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3527 **                     the result there. The cursor is left open after
3528 **                     returning.  This is like SRT_Table except that
3529 **                     this destination uses OP_OpenEphemeral to create
3530 **                     the table first.
3531 **
3532 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3533 **                     results each time it is invoked.  The entry point
3534 **                     of the co-routine is stored in register pDest->iParm.
3535 **
3536 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3537 **                     set is not empty.
3538 **
3539 **     SRT_Discard     Throw the results away.  This is used by SELECT
3540 **                     statements within triggers whose only purpose is
3541 **                     the side-effects of functions.
3542 **
3543 ** This routine returns the number of errors.  If any errors are
3544 ** encountered, then an appropriate error message is left in
3545 ** pParse->zErrMsg.
3546 **
3547 ** This routine does NOT free the Select structure passed in.  The
3548 ** calling function needs to do that.
3549 */
3550 int sqlite3Select(
3551   Parse *pParse,         /* The parser context */
3552   Select *p,             /* The SELECT statement being coded. */
3553   SelectDest *pDest      /* What to do with the query results */
3554 ){
3555   int i, j;              /* Loop counters */
3556   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3557   Vdbe *v;               /* The virtual machine under construction */
3558   int isAgg;             /* True for select lists like "count(*)" */
3559   ExprList *pEList;      /* List of columns to extract. */
3560   SrcList *pTabList;     /* List of tables to select from */
3561   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3562   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3563   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3564   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3565   int isDistinct;        /* True if the DISTINCT keyword is present */
3566   int distinct;          /* Table to use for the distinct set */
3567   int rc = 1;            /* Value to return from this function */
3568   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3569   AggInfo sAggInfo;      /* Information used by aggregate queries */
3570   int iEnd;              /* Address of the end of the query */
3571   sqlite3 *db;           /* The database connection */
3572 
3573   db = pParse->db;
3574   if( p==0 || db->mallocFailed || pParse->nErr ){
3575     return 1;
3576   }
3577   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3578   memset(&sAggInfo, 0, sizeof(sAggInfo));
3579 
3580   pOrderBy = p->pOrderBy;
3581   if( IgnorableOrderby(pDest) ){
3582     p->pOrderBy = 0;
3583 
3584     /* In these cases the DISTINCT operator makes no difference to the
3585     ** results, so remove it if it were specified.
3586     */
3587     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3588            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3589     p->selFlags &= ~SF_Distinct;
3590   }
3591   sqlite3SelectPrep(pParse, p, 0);
3592   pTabList = p->pSrc;
3593   pEList = p->pEList;
3594   if( pParse->nErr || db->mallocFailed ){
3595     goto select_end;
3596   }
3597   p->pOrderBy = pOrderBy;
3598   isAgg = (p->selFlags & SF_Aggregate)!=0;
3599   if( pEList==0 ) goto select_end;
3600 
3601   /*
3602   ** Do not even attempt to generate any code if we have already seen
3603   ** errors before this routine starts.
3604   */
3605   if( pParse->nErr>0 ) goto select_end;
3606 
3607   /* ORDER BY is ignored for some destinations.
3608   */
3609   if( IgnorableOrderby(pDest) ){
3610     pOrderBy = 0;
3611   }
3612 
3613   /* Begin generating code.
3614   */
3615   v = sqlite3GetVdbe(pParse);
3616   if( v==0 ) goto select_end;
3617 
3618   /* Generate code for all sub-queries in the FROM clause
3619   */
3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3621   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3622     struct SrcList_item *pItem = &pTabList->a[i];
3623     SelectDest dest;
3624     Select *pSub = pItem->pSelect;
3625     int isAggSub;
3626 
3627     if( pSub==0 || pItem->isPopulated ) continue;
3628 
3629     /* Increment Parse.nHeight by the height of the largest expression
3630     ** tree refered to by this, the parent select. The child select
3631     ** may contain expression trees of at most
3632     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3633     ** more conservative than necessary, but much easier than enforcing
3634     ** an exact limit.
3635     */
3636     pParse->nHeight += sqlite3SelectExprHeight(p);
3637 
3638     /* Check to see if the subquery can be absorbed into the parent. */
3639     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3640     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3641       if( isAggSub ){
3642         isAgg = 1;
3643         p->selFlags |= SF_Aggregate;
3644       }
3645       i = -1;
3646     }else{
3647       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3648       assert( pItem->isPopulated==0 );
3649       sqlite3Select(pParse, pSub, &dest);
3650       pItem->isPopulated = 1;
3651     }
3652     if( pParse->nErr || db->mallocFailed ){
3653       goto select_end;
3654     }
3655     pParse->nHeight -= sqlite3SelectExprHeight(p);
3656     pTabList = p->pSrc;
3657     if( !IgnorableOrderby(pDest) ){
3658       pOrderBy = p->pOrderBy;
3659     }
3660   }
3661   pEList = p->pEList;
3662 #endif
3663   pWhere = p->pWhere;
3664   pGroupBy = p->pGroupBy;
3665   pHaving = p->pHaving;
3666   isDistinct = (p->selFlags & SF_Distinct)!=0;
3667 
3668 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3669   /* If there is are a sequence of queries, do the earlier ones first.
3670   */
3671   if( p->pPrior ){
3672     if( p->pRightmost==0 ){
3673       Select *pLoop, *pRight = 0;
3674       int cnt = 0;
3675       int mxSelect;
3676       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3677         pLoop->pRightmost = p;
3678         pLoop->pNext = pRight;
3679         pRight = pLoop;
3680       }
3681       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3682       if( mxSelect && cnt>mxSelect ){
3683         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3684         return 1;
3685       }
3686     }
3687     return multiSelect(pParse, p, pDest);
3688   }
3689 #endif
3690 
3691   /* If writing to memory or generating a set
3692   ** only a single column may be output.
3693   */
3694 #ifndef SQLITE_OMIT_SUBQUERY
3695   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3696     goto select_end;
3697   }
3698 #endif
3699 
3700   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3701   ** GROUP BY might use an index, DISTINCT never does.
3702   */
3703   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
3704     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3705     pGroupBy = p->pGroupBy;
3706     p->selFlags &= ~SF_Distinct;
3707     isDistinct = 0;
3708   }
3709 
3710   /* If there is an ORDER BY clause, then this sorting
3711   ** index might end up being unused if the data can be
3712   ** extracted in pre-sorted order.  If that is the case, then the
3713   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3714   ** we figure out that the sorting index is not needed.  The addrSortIndex
3715   ** variable is used to facilitate that change.
3716   */
3717   if( pOrderBy ){
3718     KeyInfo *pKeyInfo;
3719     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3720     pOrderBy->iECursor = pParse->nTab++;
3721     p->addrOpenEphm[2] = addrSortIndex =
3722       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3723                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3724                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3725   }else{
3726     addrSortIndex = -1;
3727   }
3728 
3729   /* If the output is destined for a temporary table, open that table.
3730   */
3731   if( pDest->eDest==SRT_EphemTab ){
3732     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3733   }
3734 
3735   /* Set the limiter.
3736   */
3737   iEnd = sqlite3VdbeMakeLabel(v);
3738   computeLimitRegisters(pParse, p, iEnd);
3739 
3740   /* Open a virtual index to use for the distinct set.
3741   */
3742   if( isDistinct ){
3743     KeyInfo *pKeyInfo;
3744     assert( isAgg || pGroupBy );
3745     distinct = pParse->nTab++;
3746     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3747     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3748                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3749   }else{
3750     distinct = -1;
3751   }
3752 
3753   /* Aggregate and non-aggregate queries are handled differently */
3754   if( !isAgg && pGroupBy==0 ){
3755     /* This case is for non-aggregate queries
3756     ** Begin the database scan
3757     */
3758     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0, 0);
3759     if( pWInfo==0 ) goto select_end;
3760 
3761     /* If sorting index that was created by a prior OP_OpenEphemeral
3762     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3763     ** into an OP_Noop.
3764     */
3765     if( addrSortIndex>=0 && pOrderBy==0 ){
3766       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3767       p->addrOpenEphm[2] = -1;
3768     }
3769 
3770     /* Use the standard inner loop
3771     */
3772     assert(!isDistinct);
3773     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3774                     pWInfo->iContinue, pWInfo->iBreak);
3775 
3776     /* End the database scan loop.
3777     */
3778     sqlite3WhereEnd(pWInfo);
3779   }else{
3780     /* This is the processing for aggregate queries */
3781     NameContext sNC;    /* Name context for processing aggregate information */
3782     int iAMem;          /* First Mem address for storing current GROUP BY */
3783     int iBMem;          /* First Mem address for previous GROUP BY */
3784     int iUseFlag;       /* Mem address holding flag indicating that at least
3785                         ** one row of the input to the aggregator has been
3786                         ** processed */
3787     int iAbortFlag;     /* Mem address which causes query abort if positive */
3788     int groupBySort;    /* Rows come from source in GROUP BY order */
3789     int addrEnd;        /* End of processing for this SELECT */
3790 
3791     /* Remove any and all aliases between the result set and the
3792     ** GROUP BY clause.
3793     */
3794     if( pGroupBy ){
3795       int k;                        /* Loop counter */
3796       struct ExprList_item *pItem;  /* For looping over expression in a list */
3797 
3798       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3799         pItem->iAlias = 0;
3800       }
3801       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3802         pItem->iAlias = 0;
3803       }
3804     }
3805 
3806 
3807     /* Create a label to jump to when we want to abort the query */
3808     addrEnd = sqlite3VdbeMakeLabel(v);
3809 
3810     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3811     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3812     ** SELECT statement.
3813     */
3814     memset(&sNC, 0, sizeof(sNC));
3815     sNC.pParse = pParse;
3816     sNC.pSrcList = pTabList;
3817     sNC.pAggInfo = &sAggInfo;
3818     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3819     sAggInfo.pGroupBy = pGroupBy;
3820     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3821     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3822     if( pHaving ){
3823       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3824     }
3825     sAggInfo.nAccumulator = sAggInfo.nColumn;
3826     for(i=0; i<sAggInfo.nFunc; i++){
3827       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3828       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3829     }
3830     if( db->mallocFailed ) goto select_end;
3831 
3832     /* Processing for aggregates with GROUP BY is very different and
3833     ** much more complex than aggregates without a GROUP BY.
3834     */
3835     if( pGroupBy ){
3836       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3837       int j1;             /* A-vs-B comparision jump */
3838       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3839       int regOutputRow;   /* Return address register for output subroutine */
3840       int addrSetAbort;   /* Set the abort flag and return */
3841       int addrTopOfLoop;  /* Top of the input loop */
3842       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3843       int addrReset;      /* Subroutine for resetting the accumulator */
3844       int regReset;       /* Return address register for reset subroutine */
3845 
3846       /* If there is a GROUP BY clause we might need a sorting index to
3847       ** implement it.  Allocate that sorting index now.  If it turns out
3848       ** that we do not need it after all, the OpenEphemeral instruction
3849       ** will be converted into a Noop.
3850       */
3851       sAggInfo.sortingIdx = pParse->nTab++;
3852       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3853       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3854           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3855           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3856 
3857       /* Initialize memory locations used by GROUP BY aggregate processing
3858       */
3859       iUseFlag = ++pParse->nMem;
3860       iAbortFlag = ++pParse->nMem;
3861       regOutputRow = ++pParse->nMem;
3862       addrOutputRow = sqlite3VdbeMakeLabel(v);
3863       regReset = ++pParse->nMem;
3864       addrReset = sqlite3VdbeMakeLabel(v);
3865       iAMem = pParse->nMem + 1;
3866       pParse->nMem += pGroupBy->nExpr;
3867       iBMem = pParse->nMem + 1;
3868       pParse->nMem += pGroupBy->nExpr;
3869       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3870       VdbeComment((v, "clear abort flag"));
3871       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3872       VdbeComment((v, "indicate accumulator empty"));
3873 
3874       /* Begin a loop that will extract all source rows in GROUP BY order.
3875       ** This might involve two separate loops with an OP_Sort in between, or
3876       ** it might be a single loop that uses an index to extract information
3877       ** in the right order to begin with.
3878       */
3879       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3880       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
3881       if( pWInfo==0 ) goto select_end;
3882       if( pGroupBy==0 ){
3883         /* The optimizer is able to deliver rows in group by order so
3884         ** we do not have to sort.  The OP_OpenEphemeral table will be
3885         ** cancelled later because we still need to use the pKeyInfo
3886         */
3887         pGroupBy = p->pGroupBy;
3888         groupBySort = 0;
3889       }else{
3890         /* Rows are coming out in undetermined order.  We have to push
3891         ** each row into a sorting index, terminate the first loop,
3892         ** then loop over the sorting index in order to get the output
3893         ** in sorted order
3894         */
3895         int regBase;
3896         int regRecord;
3897         int nCol;
3898         int nGroupBy;
3899 
3900         groupBySort = 1;
3901         nGroupBy = pGroupBy->nExpr;
3902         nCol = nGroupBy + 1;
3903         j = nGroupBy+1;
3904         for(i=0; i<sAggInfo.nColumn; i++){
3905           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3906             nCol++;
3907             j++;
3908           }
3909         }
3910         regBase = sqlite3GetTempRange(pParse, nCol);
3911         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3912         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3913         j = nGroupBy+1;
3914         for(i=0; i<sAggInfo.nColumn; i++){
3915           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3916           if( pCol->iSorterColumn>=j ){
3917             int r1 = j + regBase;
3918             int r2;
3919 
3920             r2 = sqlite3ExprCodeGetColumn(pParse,
3921                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3922             if( r1!=r2 ){
3923               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3924             }
3925             j++;
3926           }
3927         }
3928         regRecord = sqlite3GetTempReg(pParse);
3929         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3930         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3931         sqlite3ReleaseTempReg(pParse, regRecord);
3932         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3933         sqlite3WhereEnd(pWInfo);
3934         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3935         VdbeComment((v, "GROUP BY sort"));
3936         sAggInfo.useSortingIdx = 1;
3937       }
3938 
3939       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3940       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3941       ** Then compare the current GROUP BY terms against the GROUP BY terms
3942       ** from the previous row currently stored in a0, a1, a2...
3943       */
3944       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3945       for(j=0; j<pGroupBy->nExpr; j++){
3946         if( groupBySort ){
3947           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3948         }else{
3949           sAggInfo.directMode = 1;
3950           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3951         }
3952       }
3953       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3954                           (char*)pKeyInfo, P4_KEYINFO);
3955       j1 = sqlite3VdbeCurrentAddr(v);
3956       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3957 
3958       /* Generate code that runs whenever the GROUP BY changes.
3959       ** Changes in the GROUP BY are detected by the previous code
3960       ** block.  If there were no changes, this block is skipped.
3961       **
3962       ** This code copies current group by terms in b0,b1,b2,...
3963       ** over to a0,a1,a2.  It then calls the output subroutine
3964       ** and resets the aggregate accumulator registers in preparation
3965       ** for the next GROUP BY batch.
3966       */
3967       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3968       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3969       VdbeComment((v, "output one row"));
3970       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3971       VdbeComment((v, "check abort flag"));
3972       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3973       VdbeComment((v, "reset accumulator"));
3974 
3975       /* Update the aggregate accumulators based on the content of
3976       ** the current row
3977       */
3978       sqlite3VdbeJumpHere(v, j1);
3979       updateAccumulator(pParse, &sAggInfo);
3980       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3981       VdbeComment((v, "indicate data in accumulator"));
3982 
3983       /* End of the loop
3984       */
3985       if( groupBySort ){
3986         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3987       }else{
3988         sqlite3WhereEnd(pWInfo);
3989         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3990       }
3991 
3992       /* Output the final row of result
3993       */
3994       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3995       VdbeComment((v, "output final row"));
3996 
3997       /* Jump over the subroutines
3998       */
3999       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4000 
4001       /* Generate a subroutine that outputs a single row of the result
4002       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4003       ** is less than or equal to zero, the subroutine is a no-op.  If
4004       ** the processing calls for the query to abort, this subroutine
4005       ** increments the iAbortFlag memory location before returning in
4006       ** order to signal the caller to abort.
4007       */
4008       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4009       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4010       VdbeComment((v, "set abort flag"));
4011       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4012       sqlite3VdbeResolveLabel(v, addrOutputRow);
4013       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4014       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4015       VdbeComment((v, "Groupby result generator entry point"));
4016       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4017       finalizeAggFunctions(pParse, &sAggInfo);
4018       if( pHaving ){
4019         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4020       }
4021       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4022                       distinct, pDest,
4023                       addrOutputRow+1, addrSetAbort);
4024       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4025       VdbeComment((v, "end groupby result generator"));
4026 
4027       /* Generate a subroutine that will reset the group-by accumulator
4028       */
4029       sqlite3VdbeResolveLabel(v, addrReset);
4030       resetAccumulator(pParse, &sAggInfo);
4031       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4032 
4033     } /* endif pGroupBy */
4034     else {
4035       ExprList *pDel = 0;
4036 #ifndef SQLITE_OMIT_BTREECOUNT
4037       Table *pTab;
4038       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4039         /* If isSimpleCount() returns a pointer to a Table structure, then
4040         ** the SQL statement is of the form:
4041         **
4042         **   SELECT count(*) FROM <tbl>
4043         **
4044         ** where the Table structure returned represents table <tbl>.
4045         **
4046         ** This statement is so common that it is optimized specially. The
4047         ** OP_Count instruction is executed either on the intkey table that
4048         ** contains the data for table <tbl> or on one of its indexes. It
4049         ** is better to execute the op on an index, as indexes are almost
4050         ** always spread across less pages than their corresponding tables.
4051         */
4052         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4053         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4054         Index *pIdx;                         /* Iterator variable */
4055         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4056         Index *pBest = 0;                    /* Best index found so far */
4057         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4058 
4059         sqlite3CodeVerifySchema(pParse, iDb);
4060         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4061 
4062         /* Search for the index that has the least amount of columns. If
4063         ** there is such an index, and it has less columns than the table
4064         ** does, then we can assume that it consumes less space on disk and
4065         ** will therefore be cheaper to scan to determine the query result.
4066         ** In this case set iRoot to the root page number of the index b-tree
4067         ** and pKeyInfo to the KeyInfo structure required to navigate the
4068         ** index.
4069         **
4070         ** In practice the KeyInfo structure will not be used. It is only
4071         ** passed to keep OP_OpenRead happy.
4072         */
4073         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4074           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4075             pBest = pIdx;
4076           }
4077         }
4078         if( pBest && pBest->nColumn<pTab->nCol ){
4079           iRoot = pBest->tnum;
4080           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4081         }
4082 
4083         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4084         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4085         if( pKeyInfo ){
4086           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4087         }
4088         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4089         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4090       }else
4091 #endif /* SQLITE_OMIT_BTREECOUNT */
4092       {
4093         /* Check if the query is of one of the following forms:
4094         **
4095         **   SELECT min(x) FROM ...
4096         **   SELECT max(x) FROM ...
4097         **
4098         ** If it is, then ask the code in where.c to attempt to sort results
4099         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4100         ** If where.c is able to produce results sorted in this order, then
4101         ** add vdbe code to break out of the processing loop after the
4102         ** first iteration (since the first iteration of the loop is
4103         ** guaranteed to operate on the row with the minimum or maximum
4104         ** value of x, the only row required).
4105         **
4106         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4107         ** modify behaviour as follows:
4108         **
4109         **   + If the query is a "SELECT min(x)", then the loop coded by
4110         **     where.c should not iterate over any values with a NULL value
4111         **     for x.
4112         **
4113         **   + The optimizer code in where.c (the thing that decides which
4114         **     index or indices to use) should place a different priority on
4115         **     satisfying the 'ORDER BY' clause than it does in other cases.
4116         **     Refer to code and comments in where.c for details.
4117         */
4118         ExprList *pMinMax = 0;
4119         u8 flag = minMaxQuery(p);
4120         if( flag ){
4121           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4122           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4123           pDel = pMinMax;
4124           if( pMinMax && !db->mallocFailed ){
4125             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4126             pMinMax->a[0].pExpr->op = TK_COLUMN;
4127           }
4128         }
4129 
4130         /* This case runs if the aggregate has no GROUP BY clause.  The
4131         ** processing is much simpler since there is only a single row
4132         ** of output.
4133         */
4134         resetAccumulator(pParse, &sAggInfo);
4135         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag, 0);
4136         if( pWInfo==0 ){
4137           sqlite3ExprListDelete(db, pDel);
4138           goto select_end;
4139         }
4140         updateAccumulator(pParse, &sAggInfo);
4141         if( !pMinMax && flag ){
4142           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4143           VdbeComment((v, "%s() by index",
4144                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4145         }
4146         sqlite3WhereEnd(pWInfo);
4147         finalizeAggFunctions(pParse, &sAggInfo);
4148       }
4149 
4150       pOrderBy = 0;
4151       if( pHaving ){
4152         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4153       }
4154       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4155                       pDest, addrEnd, addrEnd);
4156       sqlite3ExprListDelete(db, pDel);
4157     }
4158     sqlite3VdbeResolveLabel(v, addrEnd);
4159 
4160   } /* endif aggregate query */
4161 
4162   /* If there is an ORDER BY clause, then we need to sort the results
4163   ** and send them to the callback one by one.
4164   */
4165   if( pOrderBy ){
4166     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4167   }
4168 
4169   /* Jump here to skip this query
4170   */
4171   sqlite3VdbeResolveLabel(v, iEnd);
4172 
4173   /* The SELECT was successfully coded.   Set the return code to 0
4174   ** to indicate no errors.
4175   */
4176   rc = 0;
4177 
4178   /* Control jumps to here if an error is encountered above, or upon
4179   ** successful coding of the SELECT.
4180   */
4181 select_end:
4182 
4183   /* Identify column names if results of the SELECT are to be output.
4184   */
4185   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4186     generateColumnNames(pParse, pTabList, pEList);
4187   }
4188 
4189   sqlite3DbFree(db, sAggInfo.aCol);
4190   sqlite3DbFree(db, sAggInfo.aFunc);
4191   return rc;
4192 }
4193 
4194 #if defined(SQLITE_DEBUG)
4195 /*
4196 *******************************************************************************
4197 ** The following code is used for testing and debugging only.  The code
4198 ** that follows does not appear in normal builds.
4199 **
4200 ** These routines are used to print out the content of all or part of a
4201 ** parse structures such as Select or Expr.  Such printouts are useful
4202 ** for helping to understand what is happening inside the code generator
4203 ** during the execution of complex SELECT statements.
4204 **
4205 ** These routine are not called anywhere from within the normal
4206 ** code base.  Then are intended to be called from within the debugger
4207 ** or from temporary "printf" statements inserted for debugging.
4208 */
4209 void sqlite3PrintExpr(Expr *p){
4210   if( p->token.z && p->token.n>0 ){
4211     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4212   }else{
4213     sqlite3DebugPrintf("(%d", p->op);
4214   }
4215   if( p->pLeft ){
4216     sqlite3DebugPrintf(" ");
4217     sqlite3PrintExpr(p->pLeft);
4218   }
4219   if( p->pRight ){
4220     sqlite3DebugPrintf(" ");
4221     sqlite3PrintExpr(p->pRight);
4222   }
4223   sqlite3DebugPrintf(")");
4224 }
4225 void sqlite3PrintExprList(ExprList *pList){
4226   int i;
4227   for(i=0; i<pList->nExpr; i++){
4228     sqlite3PrintExpr(pList->a[i].pExpr);
4229     if( i<pList->nExpr-1 ){
4230       sqlite3DebugPrintf(", ");
4231     }
4232   }
4233 }
4234 void sqlite3PrintSelect(Select *p, int indent){
4235   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4236   sqlite3PrintExprList(p->pEList);
4237   sqlite3DebugPrintf("\n");
4238   if( p->pSrc ){
4239     char *zPrefix;
4240     int i;
4241     zPrefix = "FROM";
4242     for(i=0; i<p->pSrc->nSrc; i++){
4243       struct SrcList_item *pItem = &p->pSrc->a[i];
4244       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4245       zPrefix = "";
4246       if( pItem->pSelect ){
4247         sqlite3DebugPrintf("(\n");
4248         sqlite3PrintSelect(pItem->pSelect, indent+10);
4249         sqlite3DebugPrintf("%*s)", indent+8, "");
4250       }else if( pItem->zName ){
4251         sqlite3DebugPrintf("%s", pItem->zName);
4252       }
4253       if( pItem->pTab ){
4254         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4255       }
4256       if( pItem->zAlias ){
4257         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4258       }
4259       if( i<p->pSrc->nSrc-1 ){
4260         sqlite3DebugPrintf(",");
4261       }
4262       sqlite3DebugPrintf("\n");
4263     }
4264   }
4265   if( p->pWhere ){
4266     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4267     sqlite3PrintExpr(p->pWhere);
4268     sqlite3DebugPrintf("\n");
4269   }
4270   if( p->pGroupBy ){
4271     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4272     sqlite3PrintExprList(p->pGroupBy);
4273     sqlite3DebugPrintf("\n");
4274   }
4275   if( p->pHaving ){
4276     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4277     sqlite3PrintExpr(p->pHaving);
4278     sqlite3DebugPrintf("\n");
4279   }
4280   if( p->pOrderBy ){
4281     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4282     sqlite3PrintExprList(p->pOrderBy);
4283     sqlite3DebugPrintf("\n");
4284   }
4285 }
4286 /* End of the structure debug printing code
4287 *****************************************************************************/
4288 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4289