1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 57 }; 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 59 60 /* 61 ** Delete all the content of a Select structure but do not deallocate 62 ** the select structure itself. 63 */ 64 static void clearSelect(sqlite3 *db, Select *p){ 65 sqlite3ExprListDelete(db, p->pEList); 66 sqlite3SrcListDelete(db, p->pSrc); 67 sqlite3ExprDelete(db, p->pWhere); 68 sqlite3ExprListDelete(db, p->pGroupBy); 69 sqlite3ExprDelete(db, p->pHaving); 70 sqlite3ExprListDelete(db, p->pOrderBy); 71 sqlite3SelectDelete(db, p->pPrior); 72 sqlite3ExprDelete(db, p->pLimit); 73 sqlite3ExprDelete(db, p->pOffset); 74 sqlite3WithDelete(db, p->pWith); 75 } 76 77 /* 78 ** Initialize a SelectDest structure. 79 */ 80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 81 pDest->eDest = (u8)eDest; 82 pDest->iSDParm = iParm; 83 pDest->affSdst = 0; 84 pDest->iSdst = 0; 85 pDest->nSdst = 0; 86 } 87 88 89 /* 90 ** Allocate a new Select structure and return a pointer to that 91 ** structure. 92 */ 93 Select *sqlite3SelectNew( 94 Parse *pParse, /* Parsing context */ 95 ExprList *pEList, /* which columns to include in the result */ 96 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 97 Expr *pWhere, /* the WHERE clause */ 98 ExprList *pGroupBy, /* the GROUP BY clause */ 99 Expr *pHaving, /* the HAVING clause */ 100 ExprList *pOrderBy, /* the ORDER BY clause */ 101 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 102 Expr *pLimit, /* LIMIT value. NULL means not used */ 103 Expr *pOffset /* OFFSET value. NULL means no offset */ 104 ){ 105 Select *pNew; 106 Select standin; 107 sqlite3 *db = pParse->db; 108 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 109 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 110 if( pNew==0 ){ 111 assert( db->mallocFailed ); 112 pNew = &standin; 113 memset(pNew, 0, sizeof(*pNew)); 114 } 115 if( pEList==0 ){ 116 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 117 } 118 pNew->pEList = pEList; 119 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 120 pNew->pSrc = pSrc; 121 pNew->pWhere = pWhere; 122 pNew->pGroupBy = pGroupBy; 123 pNew->pHaving = pHaving; 124 pNew->pOrderBy = pOrderBy; 125 pNew->selFlags = selFlags; 126 pNew->op = TK_SELECT; 127 pNew->pLimit = pLimit; 128 pNew->pOffset = pOffset; 129 assert( pOffset==0 || pLimit!=0 ); 130 pNew->addrOpenEphm[0] = -1; 131 pNew->addrOpenEphm[1] = -1; 132 if( db->mallocFailed ) { 133 clearSelect(db, pNew); 134 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 135 pNew = 0; 136 }else{ 137 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 138 } 139 assert( pNew!=&standin ); 140 return pNew; 141 } 142 143 #if SELECTTRACE_ENABLED 144 /* 145 ** Set the name of a Select object 146 */ 147 void sqlite3SelectSetName(Select *p, const char *zName){ 148 if( p && zName ){ 149 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 150 } 151 } 152 #endif 153 154 155 /* 156 ** Delete the given Select structure and all of its substructures. 157 */ 158 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 159 if( p ){ 160 clearSelect(db, p); 161 sqlite3DbFree(db, p); 162 } 163 } 164 165 /* 166 ** Return a pointer to the right-most SELECT statement in a compound. 167 */ 168 static Select *findRightmost(Select *p){ 169 while( p->pNext ) p = p->pNext; 170 return p; 171 } 172 173 /* 174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 175 ** type of join. Return an integer constant that expresses that type 176 ** in terms of the following bit values: 177 ** 178 ** JT_INNER 179 ** JT_CROSS 180 ** JT_OUTER 181 ** JT_NATURAL 182 ** JT_LEFT 183 ** JT_RIGHT 184 ** 185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 186 ** 187 ** If an illegal or unsupported join type is seen, then still return 188 ** a join type, but put an error in the pParse structure. 189 */ 190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 191 int jointype = 0; 192 Token *apAll[3]; 193 Token *p; 194 /* 0123456789 123456789 123456789 123 */ 195 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 196 static const struct { 197 u8 i; /* Beginning of keyword text in zKeyText[] */ 198 u8 nChar; /* Length of the keyword in characters */ 199 u8 code; /* Join type mask */ 200 } aKeyword[] = { 201 /* natural */ { 0, 7, JT_NATURAL }, 202 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 203 /* outer */ { 10, 5, JT_OUTER }, 204 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 205 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 206 /* inner */ { 23, 5, JT_INNER }, 207 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 208 }; 209 int i, j; 210 apAll[0] = pA; 211 apAll[1] = pB; 212 apAll[2] = pC; 213 for(i=0; i<3 && apAll[i]; i++){ 214 p = apAll[i]; 215 for(j=0; j<ArraySize(aKeyword); j++){ 216 if( p->n==aKeyword[j].nChar 217 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 218 jointype |= aKeyword[j].code; 219 break; 220 } 221 } 222 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 223 if( j>=ArraySize(aKeyword) ){ 224 jointype |= JT_ERROR; 225 break; 226 } 227 } 228 if( 229 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 230 (jointype & JT_ERROR)!=0 231 ){ 232 const char *zSp = " "; 233 assert( pB!=0 ); 234 if( pC==0 ){ zSp++; } 235 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 236 "%T %T%s%T", pA, pB, zSp, pC); 237 jointype = JT_INNER; 238 }else if( (jointype & JT_OUTER)!=0 239 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 240 sqlite3ErrorMsg(pParse, 241 "RIGHT and FULL OUTER JOINs are not currently supported"); 242 jointype = JT_INNER; 243 } 244 return jointype; 245 } 246 247 /* 248 ** Return the index of a column in a table. Return -1 if the column 249 ** is not contained in the table. 250 */ 251 static int columnIndex(Table *pTab, const char *zCol){ 252 int i; 253 for(i=0; i<pTab->nCol; i++){ 254 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 255 } 256 return -1; 257 } 258 259 /* 260 ** Search the first N tables in pSrc, from left to right, looking for a 261 ** table that has a column named zCol. 262 ** 263 ** When found, set *piTab and *piCol to the table index and column index 264 ** of the matching column and return TRUE. 265 ** 266 ** If not found, return FALSE. 267 */ 268 static int tableAndColumnIndex( 269 SrcList *pSrc, /* Array of tables to search */ 270 int N, /* Number of tables in pSrc->a[] to search */ 271 const char *zCol, /* Name of the column we are looking for */ 272 int *piTab, /* Write index of pSrc->a[] here */ 273 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 274 ){ 275 int i; /* For looping over tables in pSrc */ 276 int iCol; /* Index of column matching zCol */ 277 278 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 279 for(i=0; i<N; i++){ 280 iCol = columnIndex(pSrc->a[i].pTab, zCol); 281 if( iCol>=0 ){ 282 if( piTab ){ 283 *piTab = i; 284 *piCol = iCol; 285 } 286 return 1; 287 } 288 } 289 return 0; 290 } 291 292 /* 293 ** This function is used to add terms implied by JOIN syntax to the 294 ** WHERE clause expression of a SELECT statement. The new term, which 295 ** is ANDed with the existing WHERE clause, is of the form: 296 ** 297 ** (tab1.col1 = tab2.col2) 298 ** 299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 301 ** column iColRight of tab2. 302 */ 303 static void addWhereTerm( 304 Parse *pParse, /* Parsing context */ 305 SrcList *pSrc, /* List of tables in FROM clause */ 306 int iLeft, /* Index of first table to join in pSrc */ 307 int iColLeft, /* Index of column in first table */ 308 int iRight, /* Index of second table in pSrc */ 309 int iColRight, /* Index of column in second table */ 310 int isOuterJoin, /* True if this is an OUTER join */ 311 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 312 ){ 313 sqlite3 *db = pParse->db; 314 Expr *pE1; 315 Expr *pE2; 316 Expr *pEq; 317 318 assert( iLeft<iRight ); 319 assert( pSrc->nSrc>iRight ); 320 assert( pSrc->a[iLeft].pTab ); 321 assert( pSrc->a[iRight].pTab ); 322 323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 325 326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 327 if( pEq && isOuterJoin ){ 328 ExprSetProperty(pEq, EP_FromJoin); 329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 330 ExprSetVVAProperty(pEq, EP_NoReduce); 331 pEq->iRightJoinTable = (i16)pE2->iTable; 332 } 333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 334 } 335 336 /* 337 ** Set the EP_FromJoin property on all terms of the given expression. 338 ** And set the Expr.iRightJoinTable to iTable for every term in the 339 ** expression. 340 ** 341 ** The EP_FromJoin property is used on terms of an expression to tell 342 ** the LEFT OUTER JOIN processing logic that this term is part of the 343 ** join restriction specified in the ON or USING clause and not a part 344 ** of the more general WHERE clause. These terms are moved over to the 345 ** WHERE clause during join processing but we need to remember that they 346 ** originated in the ON or USING clause. 347 ** 348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 349 ** expression depends on table iRightJoinTable even if that table is not 350 ** explicitly mentioned in the expression. That information is needed 351 ** for cases like this: 352 ** 353 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 354 ** 355 ** The where clause needs to defer the handling of the t1.x=5 356 ** term until after the t2 loop of the join. In that way, a 357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 358 ** defer the handling of t1.x=5, it will be processed immediately 359 ** after the t1 loop and rows with t1.x!=5 will never appear in 360 ** the output, which is incorrect. 361 */ 362 static void setJoinExpr(Expr *p, int iTable){ 363 while( p ){ 364 ExprSetProperty(p, EP_FromJoin); 365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 366 ExprSetVVAProperty(p, EP_NoReduce); 367 p->iRightJoinTable = (i16)iTable; 368 setJoinExpr(p->pLeft, iTable); 369 p = p->pRight; 370 } 371 } 372 373 /* 374 ** This routine processes the join information for a SELECT statement. 375 ** ON and USING clauses are converted into extra terms of the WHERE clause. 376 ** NATURAL joins also create extra WHERE clause terms. 377 ** 378 ** The terms of a FROM clause are contained in the Select.pSrc structure. 379 ** The left most table is the first entry in Select.pSrc. The right-most 380 ** table is the last entry. The join operator is held in the entry to 381 ** the left. Thus entry 0 contains the join operator for the join between 382 ** entries 0 and 1. Any ON or USING clauses associated with the join are 383 ** also attached to the left entry. 384 ** 385 ** This routine returns the number of errors encountered. 386 */ 387 static int sqliteProcessJoin(Parse *pParse, Select *p){ 388 SrcList *pSrc; /* All tables in the FROM clause */ 389 int i, j; /* Loop counters */ 390 struct SrcList_item *pLeft; /* Left table being joined */ 391 struct SrcList_item *pRight; /* Right table being joined */ 392 393 pSrc = p->pSrc; 394 pLeft = &pSrc->a[0]; 395 pRight = &pLeft[1]; 396 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 397 Table *pLeftTab = pLeft->pTab; 398 Table *pRightTab = pRight->pTab; 399 int isOuter; 400 401 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 402 isOuter = (pRight->jointype & JT_OUTER)!=0; 403 404 /* When the NATURAL keyword is present, add WHERE clause terms for 405 ** every column that the two tables have in common. 406 */ 407 if( pRight->jointype & JT_NATURAL ){ 408 if( pRight->pOn || pRight->pUsing ){ 409 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 410 "an ON or USING clause", 0); 411 return 1; 412 } 413 for(j=0; j<pRightTab->nCol; j++){ 414 char *zName; /* Name of column in the right table */ 415 int iLeft; /* Matching left table */ 416 int iLeftCol; /* Matching column in the left table */ 417 418 zName = pRightTab->aCol[j].zName; 419 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 420 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 421 isOuter, &p->pWhere); 422 } 423 } 424 } 425 426 /* Disallow both ON and USING clauses in the same join 427 */ 428 if( pRight->pOn && pRight->pUsing ){ 429 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 430 "clauses in the same join"); 431 return 1; 432 } 433 434 /* Add the ON clause to the end of the WHERE clause, connected by 435 ** an AND operator. 436 */ 437 if( pRight->pOn ){ 438 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 439 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 440 pRight->pOn = 0; 441 } 442 443 /* Create extra terms on the WHERE clause for each column named 444 ** in the USING clause. Example: If the two tables to be joined are 445 ** A and B and the USING clause names X, Y, and Z, then add this 446 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 447 ** Report an error if any column mentioned in the USING clause is 448 ** not contained in both tables to be joined. 449 */ 450 if( pRight->pUsing ){ 451 IdList *pList = pRight->pUsing; 452 for(j=0; j<pList->nId; j++){ 453 char *zName; /* Name of the term in the USING clause */ 454 int iLeft; /* Table on the left with matching column name */ 455 int iLeftCol; /* Column number of matching column on the left */ 456 int iRightCol; /* Column number of matching column on the right */ 457 458 zName = pList->a[j].zName; 459 iRightCol = columnIndex(pRightTab, zName); 460 if( iRightCol<0 461 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 462 ){ 463 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 464 "not present in both tables", zName); 465 return 1; 466 } 467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 468 isOuter, &p->pWhere); 469 } 470 } 471 } 472 return 0; 473 } 474 475 /* Forward reference */ 476 static KeyInfo *keyInfoFromExprList( 477 Parse *pParse, /* Parsing context */ 478 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 479 int iStart, /* Begin with this column of pList */ 480 int nExtra /* Add this many extra columns to the end */ 481 ); 482 483 /* 484 ** Generate code that will push the record in registers regData 485 ** through regData+nData-1 onto the sorter. 486 */ 487 static void pushOntoSorter( 488 Parse *pParse, /* Parser context */ 489 SortCtx *pSort, /* Information about the ORDER BY clause */ 490 Select *pSelect, /* The whole SELECT statement */ 491 int regData, /* First register holding data to be sorted */ 492 int nData, /* Number of elements in the data array */ 493 int nPrefixReg /* No. of reg prior to regData available for use */ 494 ){ 495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 499 int regBase; /* Regs for sorter record */ 500 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 502 int op; /* Opcode to add sorter record to sorter */ 503 504 assert( bSeq==0 || bSeq==1 ); 505 if( nPrefixReg ){ 506 assert( nPrefixReg==nExpr+bSeq ); 507 regBase = regData - nExpr - bSeq; 508 }else{ 509 regBase = pParse->nMem + 1; 510 pParse->nMem += nBase; 511 } 512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 513 if( bSeq ){ 514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 515 } 516 if( nPrefixReg==0 ){ 517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 518 } 519 520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 521 if( nOBSat>0 ){ 522 int regPrevKey; /* The first nOBSat columns of the previous row */ 523 int addrFirst; /* Address of the OP_IfNot opcode */ 524 int addrJmp; /* Address of the OP_Jump opcode */ 525 VdbeOp *pOp; /* Opcode that opens the sorter */ 526 int nKey; /* Number of sorting key columns, including OP_Sequence */ 527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 528 529 regPrevKey = pParse->nMem+1; 530 pParse->nMem += pSort->nOBSat; 531 nKey = nExpr - pSort->nOBSat + bSeq; 532 if( bSeq ){ 533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 534 }else{ 535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 536 } 537 VdbeCoverage(v); 538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 540 if( pParse->db->mallocFailed ) return; 541 pOp->p2 = nKey + nData; 542 pKI = pOp->p4.pKeyInfo; 543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 545 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 546 addrJmp = sqlite3VdbeCurrentAddr(v); 547 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 548 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 549 pSort->regReturn = ++pParse->nMem; 550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 551 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 552 sqlite3VdbeJumpHere(v, addrFirst); 553 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 554 sqlite3VdbeJumpHere(v, addrJmp); 555 } 556 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 557 op = OP_SorterInsert; 558 }else{ 559 op = OP_IdxInsert; 560 } 561 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 562 if( pSelect->iLimit ){ 563 int addr1, addr2; 564 int iLimit; 565 if( pSelect->iOffset ){ 566 iLimit = pSelect->iOffset+1; 567 }else{ 568 iLimit = pSelect->iLimit; 569 } 570 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 571 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 572 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 573 sqlite3VdbeJumpHere(v, addr1); 574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 576 sqlite3VdbeJumpHere(v, addr2); 577 } 578 } 579 580 /* 581 ** Add code to implement the OFFSET 582 */ 583 static void codeOffset( 584 Vdbe *v, /* Generate code into this VM */ 585 int iOffset, /* Register holding the offset counter */ 586 int iContinue /* Jump here to skip the current record */ 587 ){ 588 if( iOffset>0 ){ 589 int addr; 590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 592 VdbeComment((v, "skip OFFSET records")); 593 sqlite3VdbeJumpHere(v, addr); 594 } 595 } 596 597 /* 598 ** Add code that will check to make sure the N registers starting at iMem 599 ** form a distinct entry. iTab is a sorting index that holds previously 600 ** seen combinations of the N values. A new entry is made in iTab 601 ** if the current N values are new. 602 ** 603 ** A jump to addrRepeat is made and the N+1 values are popped from the 604 ** stack if the top N elements are not distinct. 605 */ 606 static void codeDistinct( 607 Parse *pParse, /* Parsing and code generating context */ 608 int iTab, /* A sorting index used to test for distinctness */ 609 int addrRepeat, /* Jump to here if not distinct */ 610 int N, /* Number of elements */ 611 int iMem /* First element */ 612 ){ 613 Vdbe *v; 614 int r1; 615 616 v = pParse->pVdbe; 617 r1 = sqlite3GetTempReg(pParse); 618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 621 sqlite3ReleaseTempReg(pParse, r1); 622 } 623 624 #ifndef SQLITE_OMIT_SUBQUERY 625 /* 626 ** Generate an error message when a SELECT is used within a subexpression 627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 628 ** column. We do this in a subroutine because the error used to occur 629 ** in multiple places. (The error only occurs in one place now, but we 630 ** retain the subroutine to minimize code disruption.) 631 */ 632 static int checkForMultiColumnSelectError( 633 Parse *pParse, /* Parse context. */ 634 SelectDest *pDest, /* Destination of SELECT results */ 635 int nExpr /* Number of result columns returned by SELECT */ 636 ){ 637 int eDest = pDest->eDest; 638 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 639 sqlite3ErrorMsg(pParse, "only a single result allowed for " 640 "a SELECT that is part of an expression"); 641 return 1; 642 }else{ 643 return 0; 644 } 645 } 646 #endif 647 648 /* 649 ** This routine generates the code for the inside of the inner loop 650 ** of a SELECT. 651 ** 652 ** If srcTab is negative, then the pEList expressions 653 ** are evaluated in order to get the data for this row. If srcTab is 654 ** zero or more, then data is pulled from srcTab and pEList is used only 655 ** to get number columns and the datatype for each column. 656 */ 657 static void selectInnerLoop( 658 Parse *pParse, /* The parser context */ 659 Select *p, /* The complete select statement being coded */ 660 ExprList *pEList, /* List of values being extracted */ 661 int srcTab, /* Pull data from this table */ 662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 664 SelectDest *pDest, /* How to dispose of the results */ 665 int iContinue, /* Jump here to continue with next row */ 666 int iBreak /* Jump here to break out of the inner loop */ 667 ){ 668 Vdbe *v = pParse->pVdbe; 669 int i; 670 int hasDistinct; /* True if the DISTINCT keyword is present */ 671 int regResult; /* Start of memory holding result set */ 672 int eDest = pDest->eDest; /* How to dispose of results */ 673 int iParm = pDest->iSDParm; /* First argument to disposal method */ 674 int nResultCol; /* Number of result columns */ 675 int nPrefixReg = 0; /* Number of extra registers before regResult */ 676 677 assert( v ); 678 assert( pEList!=0 ); 679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 680 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 681 if( pSort==0 && !hasDistinct ){ 682 assert( iContinue!=0 ); 683 codeOffset(v, p->iOffset, iContinue); 684 } 685 686 /* Pull the requested columns. 687 */ 688 nResultCol = pEList->nExpr; 689 690 if( pDest->iSdst==0 ){ 691 if( pSort ){ 692 nPrefixReg = pSort->pOrderBy->nExpr; 693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 694 pParse->nMem += nPrefixReg; 695 } 696 pDest->iSdst = pParse->nMem+1; 697 pParse->nMem += nResultCol; 698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 699 /* This is an error condition that can result, for example, when a SELECT 700 ** on the right-hand side of an INSERT contains more result columns than 701 ** there are columns in the table on the left. The error will be caught 702 ** and reported later. But we need to make sure enough memory is allocated 703 ** to avoid other spurious errors in the meantime. */ 704 pParse->nMem += nResultCol; 705 } 706 pDest->nSdst = nResultCol; 707 regResult = pDest->iSdst; 708 if( srcTab>=0 ){ 709 for(i=0; i<nResultCol; i++){ 710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 711 VdbeComment((v, "%s", pEList->a[i].zName)); 712 } 713 }else if( eDest!=SRT_Exists ){ 714 /* If the destination is an EXISTS(...) expression, the actual 715 ** values returned by the SELECT are not required. 716 */ 717 sqlite3ExprCodeExprList(pParse, pEList, regResult, 718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 719 } 720 721 /* If the DISTINCT keyword was present on the SELECT statement 722 ** and this row has been seen before, then do not make this row 723 ** part of the result. 724 */ 725 if( hasDistinct ){ 726 switch( pDistinct->eTnctType ){ 727 case WHERE_DISTINCT_ORDERED: { 728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 729 int iJump; /* Jump destination */ 730 int regPrev; /* Previous row content */ 731 732 /* Allocate space for the previous row */ 733 regPrev = pParse->nMem+1; 734 pParse->nMem += nResultCol; 735 736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 737 ** sets the MEM_Cleared bit on the first register of the 738 ** previous value. This will cause the OP_Ne below to always 739 ** fail on the first iteration of the loop even if the first 740 ** row is all NULLs. 741 */ 742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 744 pOp->opcode = OP_Null; 745 pOp->p1 = 1; 746 pOp->p2 = regPrev; 747 748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 749 for(i=0; i<nResultCol; i++){ 750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 751 if( i<nResultCol-1 ){ 752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 753 VdbeCoverage(v); 754 }else{ 755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 756 VdbeCoverage(v); 757 } 758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 760 } 761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 763 break; 764 } 765 766 case WHERE_DISTINCT_UNIQUE: { 767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 768 break; 769 } 770 771 default: { 772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 774 break; 775 } 776 } 777 if( pSort==0 ){ 778 codeOffset(v, p->iOffset, iContinue); 779 } 780 } 781 782 switch( eDest ){ 783 /* In this mode, write each query result to the key of the temporary 784 ** table iParm. 785 */ 786 #ifndef SQLITE_OMIT_COMPOUND_SELECT 787 case SRT_Union: { 788 int r1; 789 r1 = sqlite3GetTempReg(pParse); 790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 792 sqlite3ReleaseTempReg(pParse, r1); 793 break; 794 } 795 796 /* Construct a record from the query result, but instead of 797 ** saving that record, use it as a key to delete elements from 798 ** the temporary table iParm. 799 */ 800 case SRT_Except: { 801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 802 break; 803 } 804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 805 806 /* Store the result as data using a unique key. 807 */ 808 case SRT_Fifo: 809 case SRT_DistFifo: 810 case SRT_Table: 811 case SRT_EphemTab: { 812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 813 testcase( eDest==SRT_Table ); 814 testcase( eDest==SRT_EphemTab ); 815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 816 #ifndef SQLITE_OMIT_CTE 817 if( eDest==SRT_DistFifo ){ 818 /* If the destination is DistFifo, then cursor (iParm+1) is open 819 ** on an ephemeral index. If the current row is already present 820 ** in the index, do not write it to the output. If not, add the 821 ** current row to the index and proceed with writing it to the 822 ** output table as well. */ 823 int addr = sqlite3VdbeCurrentAddr(v) + 4; 824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 826 assert( pSort==0 ); 827 } 828 #endif 829 if( pSort ){ 830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 831 }else{ 832 int r2 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 836 sqlite3ReleaseTempReg(pParse, r2); 837 } 838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 839 break; 840 } 841 842 #ifndef SQLITE_OMIT_SUBQUERY 843 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 844 ** then there should be a single item on the stack. Write this 845 ** item into the set table with bogus data. 846 */ 847 case SRT_Set: { 848 assert( nResultCol==1 ); 849 pDest->affSdst = 850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 851 if( pSort ){ 852 /* At first glance you would think we could optimize out the 853 ** ORDER BY in this case since the order of entries in the set 854 ** does not matter. But there might be a LIMIT clause, in which 855 ** case the order does matter */ 856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 857 }else{ 858 int r1 = sqlite3GetTempReg(pParse); 859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 862 sqlite3ReleaseTempReg(pParse, r1); 863 } 864 break; 865 } 866 867 /* If any row exist in the result set, record that fact and abort. 868 */ 869 case SRT_Exists: { 870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 871 /* The LIMIT clause will terminate the loop for us */ 872 break; 873 } 874 875 /* If this is a scalar select that is part of an expression, then 876 ** store the results in the appropriate memory cell and break out 877 ** of the scan loop. 878 */ 879 case SRT_Mem: { 880 assert( nResultCol==1 ); 881 if( pSort ){ 882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 883 }else{ 884 assert( regResult==iParm ); 885 /* The LIMIT clause will jump out of the loop for us */ 886 } 887 break; 888 } 889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 890 891 case SRT_Coroutine: /* Send data to a co-routine */ 892 case SRT_Output: { /* Return the results */ 893 testcase( eDest==SRT_Coroutine ); 894 testcase( eDest==SRT_Output ); 895 if( pSort ){ 896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 897 }else if( eDest==SRT_Coroutine ){ 898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 899 }else{ 900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 902 } 903 break; 904 } 905 906 #ifndef SQLITE_OMIT_CTE 907 /* Write the results into a priority queue that is order according to 908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 910 ** pSO->nExpr columns, then make sure all keys are unique by adding a 911 ** final OP_Sequence column. The last column is the record as a blob. 912 */ 913 case SRT_DistQueue: 914 case SRT_Queue: { 915 int nKey; 916 int r1, r2, r3; 917 int addrTest = 0; 918 ExprList *pSO; 919 pSO = pDest->pOrderBy; 920 assert( pSO ); 921 nKey = pSO->nExpr; 922 r1 = sqlite3GetTempReg(pParse); 923 r2 = sqlite3GetTempRange(pParse, nKey+2); 924 r3 = r2+nKey+1; 925 if( eDest==SRT_DistQueue ){ 926 /* If the destination is DistQueue, then cursor (iParm+1) is open 927 ** on a second ephemeral index that holds all values every previously 928 ** added to the queue. */ 929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 930 regResult, nResultCol); 931 VdbeCoverage(v); 932 } 933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 934 if( eDest==SRT_DistQueue ){ 935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 937 } 938 for(i=0; i<nKey; i++){ 939 sqlite3VdbeAddOp2(v, OP_SCopy, 940 regResult + pSO->a[i].u.x.iOrderByCol - 1, 941 r2+i); 942 } 943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 947 sqlite3ReleaseTempReg(pParse, r1); 948 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 949 break; 950 } 951 #endif /* SQLITE_OMIT_CTE */ 952 953 954 955 #if !defined(SQLITE_OMIT_TRIGGER) 956 /* Discard the results. This is used for SELECT statements inside 957 ** the body of a TRIGGER. The purpose of such selects is to call 958 ** user-defined functions that have side effects. We do not care 959 ** about the actual results of the select. 960 */ 961 default: { 962 assert( eDest==SRT_Discard ); 963 break; 964 } 965 #endif 966 } 967 968 /* Jump to the end of the loop if the LIMIT is reached. Except, if 969 ** there is a sorter, in which case the sorter has already limited 970 ** the output for us. 971 */ 972 if( pSort==0 && p->iLimit ){ 973 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 974 } 975 } 976 977 /* 978 ** Allocate a KeyInfo object sufficient for an index of N key columns and 979 ** X extra columns. 980 */ 981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 982 KeyInfo *p = sqlite3DbMallocZero(0, 983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 984 if( p ){ 985 p->aSortOrder = (u8*)&p->aColl[N+X]; 986 p->nField = (u16)N; 987 p->nXField = (u16)X; 988 p->enc = ENC(db); 989 p->db = db; 990 p->nRef = 1; 991 }else{ 992 db->mallocFailed = 1; 993 } 994 return p; 995 } 996 997 /* 998 ** Deallocate a KeyInfo object 999 */ 1000 void sqlite3KeyInfoUnref(KeyInfo *p){ 1001 if( p ){ 1002 assert( p->nRef>0 ); 1003 p->nRef--; 1004 if( p->nRef==0 ) sqlite3DbFree(0, p); 1005 } 1006 } 1007 1008 /* 1009 ** Make a new pointer to a KeyInfo object 1010 */ 1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1012 if( p ){ 1013 assert( p->nRef>0 ); 1014 p->nRef++; 1015 } 1016 return p; 1017 } 1018 1019 #ifdef SQLITE_DEBUG 1020 /* 1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1022 ** can only be changed if this is just a single reference to the object. 1023 ** 1024 ** This routine is used only inside of assert() statements. 1025 */ 1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1027 #endif /* SQLITE_DEBUG */ 1028 1029 /* 1030 ** Given an expression list, generate a KeyInfo structure that records 1031 ** the collating sequence for each expression in that expression list. 1032 ** 1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1034 ** KeyInfo structure is appropriate for initializing a virtual index to 1035 ** implement that clause. If the ExprList is the result set of a SELECT 1036 ** then the KeyInfo structure is appropriate for initializing a virtual 1037 ** index to implement a DISTINCT test. 1038 ** 1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1040 ** function is responsible for seeing that this structure is eventually 1041 ** freed. 1042 */ 1043 static KeyInfo *keyInfoFromExprList( 1044 Parse *pParse, /* Parsing context */ 1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1046 int iStart, /* Begin with this column of pList */ 1047 int nExtra /* Add this many extra columns to the end */ 1048 ){ 1049 int nExpr; 1050 KeyInfo *pInfo; 1051 struct ExprList_item *pItem; 1052 sqlite3 *db = pParse->db; 1053 int i; 1054 1055 nExpr = pList->nExpr; 1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1057 if( pInfo ){ 1058 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1060 CollSeq *pColl; 1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1062 if( !pColl ) pColl = db->pDfltColl; 1063 pInfo->aColl[i-iStart] = pColl; 1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1065 } 1066 } 1067 return pInfo; 1068 } 1069 1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1071 /* 1072 ** Name of the connection operator, used for error messages. 1073 */ 1074 static const char *selectOpName(int id){ 1075 char *z; 1076 switch( id ){ 1077 case TK_ALL: z = "UNION ALL"; break; 1078 case TK_INTERSECT: z = "INTERSECT"; break; 1079 case TK_EXCEPT: z = "EXCEPT"; break; 1080 default: z = "UNION"; break; 1081 } 1082 return z; 1083 } 1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1085 1086 #ifndef SQLITE_OMIT_EXPLAIN 1087 /* 1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1090 ** where the caption is of the form: 1091 ** 1092 ** "USE TEMP B-TREE FOR xxx" 1093 ** 1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1095 ** is determined by the zUsage argument. 1096 */ 1097 static void explainTempTable(Parse *pParse, const char *zUsage){ 1098 if( pParse->explain==2 ){ 1099 Vdbe *v = pParse->pVdbe; 1100 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1102 } 1103 } 1104 1105 /* 1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1108 ** in sqlite3Select() to assign values to structure member variables that 1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1110 ** code with #ifndef directives. 1111 */ 1112 # define explainSetInteger(a, b) a = b 1113 1114 #else 1115 /* No-op versions of the explainXXX() functions and macros. */ 1116 # define explainTempTable(y,z) 1117 # define explainSetInteger(y,z) 1118 #endif 1119 1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1121 /* 1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1124 ** where the caption is of one of the two forms: 1125 ** 1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1128 ** 1129 ** where iSub1 and iSub2 are the integers passed as the corresponding 1130 ** function parameters, and op is the text representation of the parameter 1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1133 ** false, or the second form if it is true. 1134 */ 1135 static void explainComposite( 1136 Parse *pParse, /* Parse context */ 1137 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1138 int iSub1, /* Subquery id 1 */ 1139 int iSub2, /* Subquery id 2 */ 1140 int bUseTmp /* True if a temp table was used */ 1141 ){ 1142 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1143 if( pParse->explain==2 ){ 1144 Vdbe *v = pParse->pVdbe; 1145 char *zMsg = sqlite3MPrintf( 1146 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1147 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1148 ); 1149 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1150 } 1151 } 1152 #else 1153 /* No-op versions of the explainXXX() functions and macros. */ 1154 # define explainComposite(v,w,x,y,z) 1155 #endif 1156 1157 /* 1158 ** If the inner loop was generated using a non-null pOrderBy argument, 1159 ** then the results were placed in a sorter. After the loop is terminated 1160 ** we need to run the sorter and output the results. The following 1161 ** routine generates the code needed to do that. 1162 */ 1163 static void generateSortTail( 1164 Parse *pParse, /* Parsing context */ 1165 Select *p, /* The SELECT statement */ 1166 SortCtx *pSort, /* Information on the ORDER BY clause */ 1167 int nColumn, /* Number of columns of data */ 1168 SelectDest *pDest /* Write the sorted results here */ 1169 ){ 1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1173 int addr; 1174 int addrOnce = 0; 1175 int iTab; 1176 ExprList *pOrderBy = pSort->pOrderBy; 1177 int eDest = pDest->eDest; 1178 int iParm = pDest->iSDParm; 1179 int regRow; 1180 int regRowid; 1181 int nKey; 1182 int iSortTab; /* Sorter cursor to read from */ 1183 int nSortData; /* Trailing values to read from sorter */ 1184 int i; 1185 int bSeq; /* True if sorter record includes seq. no. */ 1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1187 struct ExprList_item *aOutEx = p->pEList->a; 1188 #endif 1189 1190 if( pSort->labelBkOut ){ 1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1194 } 1195 iTab = pSort->iECursor; 1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1197 regRowid = 0; 1198 regRow = pDest->iSdst; 1199 nSortData = nColumn; 1200 }else{ 1201 regRowid = sqlite3GetTempReg(pParse); 1202 regRow = sqlite3GetTempReg(pParse); 1203 nSortData = 1; 1204 } 1205 nKey = pOrderBy->nExpr - pSort->nOBSat; 1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1207 int regSortOut = ++pParse->nMem; 1208 iSortTab = pParse->nTab++; 1209 if( pSort->labelBkOut ){ 1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1211 } 1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1215 VdbeCoverage(v); 1216 codeOffset(v, p->iOffset, addrContinue); 1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1218 bSeq = 0; 1219 }else{ 1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1221 codeOffset(v, p->iOffset, addrContinue); 1222 iSortTab = iTab; 1223 bSeq = 1; 1224 } 1225 for(i=0; i<nSortData; i++){ 1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1228 } 1229 switch( eDest ){ 1230 case SRT_Table: 1231 case SRT_EphemTab: { 1232 testcase( eDest==SRT_Table ); 1233 testcase( eDest==SRT_EphemTab ); 1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1237 break; 1238 } 1239 #ifndef SQLITE_OMIT_SUBQUERY 1240 case SRT_Set: { 1241 assert( nColumn==1 ); 1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1243 &pDest->affSdst, 1); 1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1246 break; 1247 } 1248 case SRT_Mem: { 1249 assert( nColumn==1 ); 1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1251 /* The LIMIT clause will terminate the loop for us */ 1252 break; 1253 } 1254 #endif 1255 default: { 1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1257 testcase( eDest==SRT_Output ); 1258 testcase( eDest==SRT_Coroutine ); 1259 if( eDest==SRT_Output ){ 1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1262 }else{ 1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1264 } 1265 break; 1266 } 1267 } 1268 if( regRowid ){ 1269 sqlite3ReleaseTempReg(pParse, regRow); 1270 sqlite3ReleaseTempReg(pParse, regRowid); 1271 } 1272 /* The bottom of the loop 1273 */ 1274 sqlite3VdbeResolveLabel(v, addrContinue); 1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1277 }else{ 1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1279 } 1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1281 sqlite3VdbeResolveLabel(v, addrBreak); 1282 } 1283 1284 /* 1285 ** Return a pointer to a string containing the 'declaration type' of the 1286 ** expression pExpr. The string may be treated as static by the caller. 1287 ** 1288 ** Also try to estimate the size of the returned value and return that 1289 ** result in *pEstWidth. 1290 ** 1291 ** The declaration type is the exact datatype definition extracted from the 1292 ** original CREATE TABLE statement if the expression is a column. The 1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1294 ** is considered a column can be complex in the presence of subqueries. The 1295 ** result-set expression in all of the following SELECT statements is 1296 ** considered a column by this function. 1297 ** 1298 ** SELECT col FROM tbl; 1299 ** SELECT (SELECT col FROM tbl; 1300 ** SELECT (SELECT col FROM tbl); 1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1302 ** 1303 ** The declaration type for any expression other than a column is NULL. 1304 ** 1305 ** This routine has either 3 or 6 parameters depending on whether or not 1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1307 */ 1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1310 static const char *columnTypeImpl( 1311 NameContext *pNC, 1312 Expr *pExpr, 1313 const char **pzOrigDb, 1314 const char **pzOrigTab, 1315 const char **pzOrigCol, 1316 u8 *pEstWidth 1317 ){ 1318 char const *zOrigDb = 0; 1319 char const *zOrigTab = 0; 1320 char const *zOrigCol = 0; 1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1323 static const char *columnTypeImpl( 1324 NameContext *pNC, 1325 Expr *pExpr, 1326 u8 *pEstWidth 1327 ){ 1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1329 char const *zType = 0; 1330 int j; 1331 u8 estWidth = 1; 1332 1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1334 switch( pExpr->op ){ 1335 case TK_AGG_COLUMN: 1336 case TK_COLUMN: { 1337 /* The expression is a column. Locate the table the column is being 1338 ** extracted from in NameContext.pSrcList. This table may be real 1339 ** database table or a subquery. 1340 */ 1341 Table *pTab = 0; /* Table structure column is extracted from */ 1342 Select *pS = 0; /* Select the column is extracted from */ 1343 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1344 testcase( pExpr->op==TK_AGG_COLUMN ); 1345 testcase( pExpr->op==TK_COLUMN ); 1346 while( pNC && !pTab ){ 1347 SrcList *pTabList = pNC->pSrcList; 1348 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1349 if( j<pTabList->nSrc ){ 1350 pTab = pTabList->a[j].pTab; 1351 pS = pTabList->a[j].pSelect; 1352 }else{ 1353 pNC = pNC->pNext; 1354 } 1355 } 1356 1357 if( pTab==0 ){ 1358 /* At one time, code such as "SELECT new.x" within a trigger would 1359 ** cause this condition to run. Since then, we have restructured how 1360 ** trigger code is generated and so this condition is no longer 1361 ** possible. However, it can still be true for statements like 1362 ** the following: 1363 ** 1364 ** CREATE TABLE t1(col INTEGER); 1365 ** SELECT (SELECT t1.col) FROM FROM t1; 1366 ** 1367 ** when columnType() is called on the expression "t1.col" in the 1368 ** sub-select. In this case, set the column type to NULL, even 1369 ** though it should really be "INTEGER". 1370 ** 1371 ** This is not a problem, as the column type of "t1.col" is never 1372 ** used. When columnType() is called on the expression 1373 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1374 ** branch below. */ 1375 break; 1376 } 1377 1378 assert( pTab && pExpr->pTab==pTab ); 1379 if( pS ){ 1380 /* The "table" is actually a sub-select or a view in the FROM clause 1381 ** of the SELECT statement. Return the declaration type and origin 1382 ** data for the result-set column of the sub-select. 1383 */ 1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1385 /* If iCol is less than zero, then the expression requests the 1386 ** rowid of the sub-select or view. This expression is legal (see 1387 ** test case misc2.2.2) - it always evaluates to NULL. 1388 */ 1389 NameContext sNC; 1390 Expr *p = pS->pEList->a[iCol].pExpr; 1391 sNC.pSrcList = pS->pSrc; 1392 sNC.pNext = pNC; 1393 sNC.pParse = pNC->pParse; 1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1395 } 1396 }else if( pTab->pSchema ){ 1397 /* A real table */ 1398 assert( !pS ); 1399 if( iCol<0 ) iCol = pTab->iPKey; 1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1402 if( iCol<0 ){ 1403 zType = "INTEGER"; 1404 zOrigCol = "rowid"; 1405 }else{ 1406 zType = pTab->aCol[iCol].zType; 1407 zOrigCol = pTab->aCol[iCol].zName; 1408 estWidth = pTab->aCol[iCol].szEst; 1409 } 1410 zOrigTab = pTab->zName; 1411 if( pNC->pParse ){ 1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1414 } 1415 #else 1416 if( iCol<0 ){ 1417 zType = "INTEGER"; 1418 }else{ 1419 zType = pTab->aCol[iCol].zType; 1420 estWidth = pTab->aCol[iCol].szEst; 1421 } 1422 #endif 1423 } 1424 break; 1425 } 1426 #ifndef SQLITE_OMIT_SUBQUERY 1427 case TK_SELECT: { 1428 /* The expression is a sub-select. Return the declaration type and 1429 ** origin info for the single column in the result set of the SELECT 1430 ** statement. 1431 */ 1432 NameContext sNC; 1433 Select *pS = pExpr->x.pSelect; 1434 Expr *p = pS->pEList->a[0].pExpr; 1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1436 sNC.pSrcList = pS->pSrc; 1437 sNC.pNext = pNC; 1438 sNC.pParse = pNC->pParse; 1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1440 break; 1441 } 1442 #endif 1443 } 1444 1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1446 if( pzOrigDb ){ 1447 assert( pzOrigTab && pzOrigCol ); 1448 *pzOrigDb = zOrigDb; 1449 *pzOrigTab = zOrigTab; 1450 *pzOrigCol = zOrigCol; 1451 } 1452 #endif 1453 if( pEstWidth ) *pEstWidth = estWidth; 1454 return zType; 1455 } 1456 1457 /* 1458 ** Generate code that will tell the VDBE the declaration types of columns 1459 ** in the result set. 1460 */ 1461 static void generateColumnTypes( 1462 Parse *pParse, /* Parser context */ 1463 SrcList *pTabList, /* List of tables */ 1464 ExprList *pEList /* Expressions defining the result set */ 1465 ){ 1466 #ifndef SQLITE_OMIT_DECLTYPE 1467 Vdbe *v = pParse->pVdbe; 1468 int i; 1469 NameContext sNC; 1470 sNC.pSrcList = pTabList; 1471 sNC.pParse = pParse; 1472 for(i=0; i<pEList->nExpr; i++){ 1473 Expr *p = pEList->a[i].pExpr; 1474 const char *zType; 1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1476 const char *zOrigDb = 0; 1477 const char *zOrigTab = 0; 1478 const char *zOrigCol = 0; 1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1480 1481 /* The vdbe must make its own copy of the column-type and other 1482 ** column specific strings, in case the schema is reset before this 1483 ** virtual machine is deleted. 1484 */ 1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1488 #else 1489 zType = columnType(&sNC, p, 0, 0, 0, 0); 1490 #endif 1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1492 } 1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1494 } 1495 1496 /* 1497 ** Generate code that will tell the VDBE the names of columns 1498 ** in the result set. This information is used to provide the 1499 ** azCol[] values in the callback. 1500 */ 1501 static void generateColumnNames( 1502 Parse *pParse, /* Parser context */ 1503 SrcList *pTabList, /* List of tables */ 1504 ExprList *pEList /* Expressions defining the result set */ 1505 ){ 1506 Vdbe *v = pParse->pVdbe; 1507 int i, j; 1508 sqlite3 *db = pParse->db; 1509 int fullNames, shortNames; 1510 1511 #ifndef SQLITE_OMIT_EXPLAIN 1512 /* If this is an EXPLAIN, skip this step */ 1513 if( pParse->explain ){ 1514 return; 1515 } 1516 #endif 1517 1518 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1519 pParse->colNamesSet = 1; 1520 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1521 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1522 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1523 for(i=0; i<pEList->nExpr; i++){ 1524 Expr *p; 1525 p = pEList->a[i].pExpr; 1526 if( NEVER(p==0) ) continue; 1527 if( pEList->a[i].zName ){ 1528 char *zName = pEList->a[i].zName; 1529 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1530 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1531 Table *pTab; 1532 char *zCol; 1533 int iCol = p->iColumn; 1534 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1535 if( pTabList->a[j].iCursor==p->iTable ) break; 1536 } 1537 assert( j<pTabList->nSrc ); 1538 pTab = pTabList->a[j].pTab; 1539 if( iCol<0 ) iCol = pTab->iPKey; 1540 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1541 if( iCol<0 ){ 1542 zCol = "rowid"; 1543 }else{ 1544 zCol = pTab->aCol[iCol].zName; 1545 } 1546 if( !shortNames && !fullNames ){ 1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1549 }else if( fullNames ){ 1550 char *zName = 0; 1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1553 }else{ 1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1555 } 1556 }else{ 1557 const char *z = pEList->a[i].zSpan; 1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1560 } 1561 } 1562 generateColumnTypes(pParse, pTabList, pEList); 1563 } 1564 1565 /* 1566 ** Given an expression list (which is really the list of expressions 1567 ** that form the result set of a SELECT statement) compute appropriate 1568 ** column names for a table that would hold the expression list. 1569 ** 1570 ** All column names will be unique. 1571 ** 1572 ** Only the column names are computed. Column.zType, Column.zColl, 1573 ** and other fields of Column are zeroed. 1574 ** 1575 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1577 */ 1578 static int selectColumnsFromExprList( 1579 Parse *pParse, /* Parsing context */ 1580 ExprList *pEList, /* Expr list from which to derive column names */ 1581 i16 *pnCol, /* Write the number of columns here */ 1582 Column **paCol /* Write the new column list here */ 1583 ){ 1584 sqlite3 *db = pParse->db; /* Database connection */ 1585 int i, j; /* Loop counters */ 1586 int cnt; /* Index added to make the name unique */ 1587 Column *aCol, *pCol; /* For looping over result columns */ 1588 int nCol; /* Number of columns in the result set */ 1589 Expr *p; /* Expression for a single result column */ 1590 char *zName; /* Column name */ 1591 int nName; /* Size of name in zName[] */ 1592 1593 if( pEList ){ 1594 nCol = pEList->nExpr; 1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1596 testcase( aCol==0 ); 1597 }else{ 1598 nCol = 0; 1599 aCol = 0; 1600 } 1601 *pnCol = nCol; 1602 *paCol = aCol; 1603 1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1605 /* Get an appropriate name for the column 1606 */ 1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1608 if( (zName = pEList->a[i].zName)!=0 ){ 1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1610 zName = sqlite3DbStrDup(db, zName); 1611 }else{ 1612 Expr *pColExpr = p; /* The expression that is the result column name */ 1613 Table *pTab; /* Table associated with this expression */ 1614 while( pColExpr->op==TK_DOT ){ 1615 pColExpr = pColExpr->pRight; 1616 assert( pColExpr!=0 ); 1617 } 1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1619 /* For columns use the column name name */ 1620 int iCol = pColExpr->iColumn; 1621 pTab = pColExpr->pTab; 1622 if( iCol<0 ) iCol = pTab->iPKey; 1623 zName = sqlite3MPrintf(db, "%s", 1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1625 }else if( pColExpr->op==TK_ID ){ 1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1628 }else{ 1629 /* Use the original text of the column expression as its name */ 1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1631 } 1632 } 1633 if( db->mallocFailed ){ 1634 sqlite3DbFree(db, zName); 1635 break; 1636 } 1637 1638 /* Make sure the column name is unique. If the name is not unique, 1639 ** append an integer to the name so that it becomes unique. 1640 */ 1641 nName = sqlite3Strlen30(zName); 1642 for(j=cnt=0; j<i; j++){ 1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1644 char *zNewName; 1645 int k; 1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1647 if( k>=0 && zName[k]==':' ) nName = k; 1648 zName[nName] = 0; 1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1650 sqlite3DbFree(db, zName); 1651 zName = zNewName; 1652 j = -1; 1653 if( zName==0 ) break; 1654 } 1655 } 1656 pCol->zName = zName; 1657 } 1658 if( db->mallocFailed ){ 1659 for(j=0; j<i; j++){ 1660 sqlite3DbFree(db, aCol[j].zName); 1661 } 1662 sqlite3DbFree(db, aCol); 1663 *paCol = 0; 1664 *pnCol = 0; 1665 return SQLITE_NOMEM; 1666 } 1667 return SQLITE_OK; 1668 } 1669 1670 /* 1671 ** Add type and collation information to a column list based on 1672 ** a SELECT statement. 1673 ** 1674 ** The column list presumably came from selectColumnNamesFromExprList(). 1675 ** The column list has only names, not types or collations. This 1676 ** routine goes through and adds the types and collations. 1677 ** 1678 ** This routine requires that all identifiers in the SELECT 1679 ** statement be resolved. 1680 */ 1681 static void selectAddColumnTypeAndCollation( 1682 Parse *pParse, /* Parsing contexts */ 1683 Table *pTab, /* Add column type information to this table */ 1684 Select *pSelect /* SELECT used to determine types and collations */ 1685 ){ 1686 sqlite3 *db = pParse->db; 1687 NameContext sNC; 1688 Column *pCol; 1689 CollSeq *pColl; 1690 int i; 1691 Expr *p; 1692 struct ExprList_item *a; 1693 u64 szAll = 0; 1694 1695 assert( pSelect!=0 ); 1696 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1698 if( db->mallocFailed ) return; 1699 memset(&sNC, 0, sizeof(sNC)); 1700 sNC.pSrcList = pSelect->pSrc; 1701 a = pSelect->pEList->a; 1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1703 p = a[i].pExpr; 1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1705 szAll += pCol->szEst; 1706 pCol->affinity = sqlite3ExprAffinity(p); 1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1708 pColl = sqlite3ExprCollSeq(pParse, p); 1709 if( pColl ){ 1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1711 } 1712 } 1713 pTab->szTabRow = sqlite3LogEst(szAll*4); 1714 } 1715 1716 /* 1717 ** Given a SELECT statement, generate a Table structure that describes 1718 ** the result set of that SELECT. 1719 */ 1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1721 Table *pTab; 1722 sqlite3 *db = pParse->db; 1723 int savedFlags; 1724 1725 savedFlags = db->flags; 1726 db->flags &= ~SQLITE_FullColNames; 1727 db->flags |= SQLITE_ShortColNames; 1728 sqlite3SelectPrep(pParse, pSelect, 0); 1729 if( pParse->nErr ) return 0; 1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1731 db->flags = savedFlags; 1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1733 if( pTab==0 ){ 1734 return 0; 1735 } 1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1737 ** is disabled */ 1738 assert( db->lookaside.bEnabled==0 ); 1739 pTab->nRef = 1; 1740 pTab->zName = 0; 1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1744 pTab->iPKey = -1; 1745 if( db->mallocFailed ){ 1746 sqlite3DeleteTable(db, pTab); 1747 return 0; 1748 } 1749 return pTab; 1750 } 1751 1752 /* 1753 ** Get a VDBE for the given parser context. Create a new one if necessary. 1754 ** If an error occurs, return NULL and leave a message in pParse. 1755 */ 1756 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1757 Vdbe *v = pParse->pVdbe; 1758 if( v==0 ){ 1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1761 if( pParse->pToplevel==0 1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1763 ){ 1764 pParse->okConstFactor = 1; 1765 } 1766 1767 } 1768 return v; 1769 } 1770 1771 1772 /* 1773 ** Compute the iLimit and iOffset fields of the SELECT based on the 1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1775 ** that appear in the original SQL statement after the LIMIT and OFFSET 1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1777 ** are the integer memory register numbers for counters used to compute 1778 ** the limit and offset. If there is no limit and/or offset, then 1779 ** iLimit and iOffset are negative. 1780 ** 1781 ** This routine changes the values of iLimit and iOffset only if 1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1783 ** iOffset should have been preset to appropriate default values (zero) 1784 ** prior to calling this routine. 1785 ** 1786 ** The iOffset register (if it exists) is initialized to the value 1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1788 ** iOffset+1 is initialized to LIMIT+OFFSET. 1789 ** 1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1791 ** redefined. The UNION ALL operator uses this property to force 1792 ** the reuse of the same limit and offset registers across multiple 1793 ** SELECT statements. 1794 */ 1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1796 Vdbe *v = 0; 1797 int iLimit = 0; 1798 int iOffset; 1799 int addr1, n; 1800 if( p->iLimit ) return; 1801 1802 /* 1803 ** "LIMIT -1" always shows all rows. There is some 1804 ** controversy about what the correct behavior should be. 1805 ** The current implementation interprets "LIMIT 0" to mean 1806 ** no rows. 1807 */ 1808 sqlite3ExprCacheClear(pParse); 1809 assert( p->pOffset==0 || p->pLimit!=0 ); 1810 if( p->pLimit ){ 1811 p->iLimit = iLimit = ++pParse->nMem; 1812 v = sqlite3GetVdbe(pParse); 1813 assert( v!=0 ); 1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1816 VdbeComment((v, "LIMIT counter")); 1817 if( n==0 ){ 1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1819 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1820 p->nSelectRow = n; 1821 } 1822 }else{ 1823 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1825 VdbeComment((v, "LIMIT counter")); 1826 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1827 } 1828 if( p->pOffset ){ 1829 p->iOffset = iOffset = ++pParse->nMem; 1830 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1831 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1833 VdbeComment((v, "OFFSET counter")); 1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1836 sqlite3VdbeJumpHere(v, addr1); 1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1838 VdbeComment((v, "LIMIT+OFFSET")); 1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1841 sqlite3VdbeJumpHere(v, addr1); 1842 } 1843 } 1844 } 1845 1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1847 /* 1848 ** Return the appropriate collating sequence for the iCol-th column of 1849 ** the result set for the compound-select statement "p". Return NULL if 1850 ** the column has no default collating sequence. 1851 ** 1852 ** The collating sequence for the compound select is taken from the 1853 ** left-most term of the select that has a collating sequence. 1854 */ 1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1856 CollSeq *pRet; 1857 if( p->pPrior ){ 1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1859 }else{ 1860 pRet = 0; 1861 } 1862 assert( iCol>=0 ); 1863 if( pRet==0 && iCol<p->pEList->nExpr ){ 1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1865 } 1866 return pRet; 1867 } 1868 1869 /* 1870 ** The select statement passed as the second parameter is a compound SELECT 1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1872 ** structure suitable for implementing the ORDER BY. 1873 ** 1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1875 ** function is responsible for ensuring that this structure is eventually 1876 ** freed. 1877 */ 1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1879 ExprList *pOrderBy = p->pOrderBy; 1880 int nOrderBy = p->pOrderBy->nExpr; 1881 sqlite3 *db = pParse->db; 1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1883 if( pRet ){ 1884 int i; 1885 for(i=0; i<nOrderBy; i++){ 1886 struct ExprList_item *pItem = &pOrderBy->a[i]; 1887 Expr *pTerm = pItem->pExpr; 1888 CollSeq *pColl; 1889 1890 if( pTerm->flags & EP_Collate ){ 1891 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1892 }else{ 1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1894 if( pColl==0 ) pColl = db->pDfltColl; 1895 pOrderBy->a[i].pExpr = 1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1897 } 1898 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1899 pRet->aColl[i] = pColl; 1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1901 } 1902 } 1903 1904 return pRet; 1905 } 1906 1907 #ifndef SQLITE_OMIT_CTE 1908 /* 1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1910 ** query of the form: 1911 ** 1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1913 ** \___________/ \_______________/ 1914 ** p->pPrior p 1915 ** 1916 ** 1917 ** There is exactly one reference to the recursive-table in the FROM clause 1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1919 ** 1920 ** The setup-query runs once to generate an initial set of rows that go 1921 ** into a Queue table. Rows are extracted from the Queue table one by 1922 ** one. Each row extracted from Queue is output to pDest. Then the single 1923 ** extracted row (now in the iCurrent table) becomes the content of the 1924 ** recursive-table for a recursive-query run. The output of the recursive-query 1925 ** is added back into the Queue table. Then another row is extracted from Queue 1926 ** and the iteration continues until the Queue table is empty. 1927 ** 1928 ** If the compound query operator is UNION then no duplicate rows are ever 1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1930 ** that have ever been inserted into Queue and causes duplicates to be 1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1932 ** 1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1934 ** ORDER BY order and the first entry is extracted for each cycle. Without 1935 ** an ORDER BY, the Queue table is just a FIFO. 1936 ** 1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1940 ** with a positive value, then the first OFFSET outputs are discarded rather 1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1942 ** rows have been skipped. 1943 */ 1944 static void generateWithRecursiveQuery( 1945 Parse *pParse, /* Parsing context */ 1946 Select *p, /* The recursive SELECT to be coded */ 1947 SelectDest *pDest /* What to do with query results */ 1948 ){ 1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1952 Select *pSetup = p->pPrior; /* The setup query */ 1953 int addrTop; /* Top of the loop */ 1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1955 int iCurrent = 0; /* The Current table */ 1956 int regCurrent; /* Register holding Current table */ 1957 int iQueue; /* The Queue table */ 1958 int iDistinct = 0; /* To ensure unique results if UNION */ 1959 int eDest = SRT_Fifo; /* How to write to Queue */ 1960 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1961 int i; /* Loop counter */ 1962 int rc; /* Result code */ 1963 ExprList *pOrderBy; /* The ORDER BY clause */ 1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1966 1967 /* Obtain authorization to do a recursive query */ 1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1969 1970 /* Process the LIMIT and OFFSET clauses, if they exist */ 1971 addrBreak = sqlite3VdbeMakeLabel(v); 1972 computeLimitRegisters(pParse, p, addrBreak); 1973 pLimit = p->pLimit; 1974 pOffset = p->pOffset; 1975 regLimit = p->iLimit; 1976 regOffset = p->iOffset; 1977 p->pLimit = p->pOffset = 0; 1978 p->iLimit = p->iOffset = 0; 1979 pOrderBy = p->pOrderBy; 1980 1981 /* Locate the cursor number of the Current table */ 1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1983 if( pSrc->a[i].isRecursive ){ 1984 iCurrent = pSrc->a[i].iCursor; 1985 break; 1986 } 1987 } 1988 1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1990 ** the Distinct table must be exactly one greater than Queue in order 1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1992 iQueue = pParse->nTab++; 1993 if( p->op==TK_UNION ){ 1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1995 iDistinct = pParse->nTab++; 1996 }else{ 1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1998 } 1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2000 2001 /* Allocate cursors for Current, Queue, and Distinct. */ 2002 regCurrent = ++pParse->nMem; 2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2004 if( pOrderBy ){ 2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2007 (char*)pKeyInfo, P4_KEYINFO); 2008 destQueue.pOrderBy = pOrderBy; 2009 }else{ 2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2011 } 2012 VdbeComment((v, "Queue table")); 2013 if( iDistinct ){ 2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2015 p->selFlags |= SF_UsesEphemeral; 2016 } 2017 2018 /* Detach the ORDER BY clause from the compound SELECT */ 2019 p->pOrderBy = 0; 2020 2021 /* Store the results of the setup-query in Queue. */ 2022 pSetup->pNext = 0; 2023 rc = sqlite3Select(pParse, pSetup, &destQueue); 2024 pSetup->pNext = p; 2025 if( rc ) goto end_of_recursive_query; 2026 2027 /* Find the next row in the Queue and output that row */ 2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2029 2030 /* Transfer the next row in Queue over to Current */ 2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2032 if( pOrderBy ){ 2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2034 }else{ 2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2036 } 2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2038 2039 /* Output the single row in Current */ 2040 addrCont = sqlite3VdbeMakeLabel(v); 2041 codeOffset(v, regOffset, addrCont); 2042 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2043 0, 0, pDest, addrCont, addrBreak); 2044 if( regLimit ){ 2045 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 2046 VdbeCoverage(v); 2047 } 2048 sqlite3VdbeResolveLabel(v, addrCont); 2049 2050 /* Execute the recursive SELECT taking the single row in Current as 2051 ** the value for the recursive-table. Store the results in the Queue. 2052 */ 2053 p->pPrior = 0; 2054 sqlite3Select(pParse, p, &destQueue); 2055 assert( p->pPrior==0 ); 2056 p->pPrior = pSetup; 2057 2058 /* Keep running the loop until the Queue is empty */ 2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2060 sqlite3VdbeResolveLabel(v, addrBreak); 2061 2062 end_of_recursive_query: 2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2064 p->pOrderBy = pOrderBy; 2065 p->pLimit = pLimit; 2066 p->pOffset = pOffset; 2067 return; 2068 } 2069 #endif /* SQLITE_OMIT_CTE */ 2070 2071 /* Forward references */ 2072 static int multiSelectOrderBy( 2073 Parse *pParse, /* Parsing context */ 2074 Select *p, /* The right-most of SELECTs to be coded */ 2075 SelectDest *pDest /* What to do with query results */ 2076 ); 2077 2078 2079 /* 2080 ** This routine is called to process a compound query form from 2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2082 ** INTERSECT 2083 ** 2084 ** "p" points to the right-most of the two queries. the query on the 2085 ** left is p->pPrior. The left query could also be a compound query 2086 ** in which case this routine will be called recursively. 2087 ** 2088 ** The results of the total query are to be written into a destination 2089 ** of type eDest with parameter iParm. 2090 ** 2091 ** Example 1: Consider a three-way compound SQL statement. 2092 ** 2093 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2094 ** 2095 ** This statement is parsed up as follows: 2096 ** 2097 ** SELECT c FROM t3 2098 ** | 2099 ** `-----> SELECT b FROM t2 2100 ** | 2101 ** `------> SELECT a FROM t1 2102 ** 2103 ** The arrows in the diagram above represent the Select.pPrior pointer. 2104 ** So if this routine is called with p equal to the t3 query, then 2105 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2106 ** 2107 ** Notice that because of the way SQLite parses compound SELECTs, the 2108 ** individual selects always group from left to right. 2109 */ 2110 static int multiSelect( 2111 Parse *pParse, /* Parsing context */ 2112 Select *p, /* The right-most of SELECTs to be coded */ 2113 SelectDest *pDest /* What to do with query results */ 2114 ){ 2115 int rc = SQLITE_OK; /* Success code from a subroutine */ 2116 Select *pPrior; /* Another SELECT immediately to our left */ 2117 Vdbe *v; /* Generate code to this VDBE */ 2118 SelectDest dest; /* Alternative data destination */ 2119 Select *pDelete = 0; /* Chain of simple selects to delete */ 2120 sqlite3 *db; /* Database connection */ 2121 #ifndef SQLITE_OMIT_EXPLAIN 2122 int iSub1 = 0; /* EQP id of left-hand query */ 2123 int iSub2 = 0; /* EQP id of right-hand query */ 2124 #endif 2125 2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2128 */ 2129 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2130 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2131 db = pParse->db; 2132 pPrior = p->pPrior; 2133 dest = *pDest; 2134 if( pPrior->pOrderBy ){ 2135 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2136 selectOpName(p->op)); 2137 rc = 1; 2138 goto multi_select_end; 2139 } 2140 if( pPrior->pLimit ){ 2141 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2142 selectOpName(p->op)); 2143 rc = 1; 2144 goto multi_select_end; 2145 } 2146 2147 v = sqlite3GetVdbe(pParse); 2148 assert( v!=0 ); /* The VDBE already created by calling function */ 2149 2150 /* Create the destination temporary table if necessary 2151 */ 2152 if( dest.eDest==SRT_EphemTab ){ 2153 assert( p->pEList ); 2154 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2155 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2156 dest.eDest = SRT_Table; 2157 } 2158 2159 /* Make sure all SELECTs in the statement have the same number of elements 2160 ** in their result sets. 2161 */ 2162 assert( p->pEList && pPrior->pEList ); 2163 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2164 if( p->selFlags & SF_Values ){ 2165 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2166 }else{ 2167 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2168 " do not have the same number of result columns", selectOpName(p->op)); 2169 } 2170 rc = 1; 2171 goto multi_select_end; 2172 } 2173 2174 #ifndef SQLITE_OMIT_CTE 2175 if( p->selFlags & SF_Recursive ){ 2176 generateWithRecursiveQuery(pParse, p, &dest); 2177 }else 2178 #endif 2179 2180 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2181 */ 2182 if( p->pOrderBy ){ 2183 return multiSelectOrderBy(pParse, p, pDest); 2184 }else 2185 2186 /* Generate code for the left and right SELECT statements. 2187 */ 2188 switch( p->op ){ 2189 case TK_ALL: { 2190 int addr = 0; 2191 int nLimit; 2192 assert( !pPrior->pLimit ); 2193 pPrior->iLimit = p->iLimit; 2194 pPrior->iOffset = p->iOffset; 2195 pPrior->pLimit = p->pLimit; 2196 pPrior->pOffset = p->pOffset; 2197 explainSetInteger(iSub1, pParse->iNextSelectId); 2198 rc = sqlite3Select(pParse, pPrior, &dest); 2199 p->pLimit = 0; 2200 p->pOffset = 0; 2201 if( rc ){ 2202 goto multi_select_end; 2203 } 2204 p->pPrior = 0; 2205 p->iLimit = pPrior->iLimit; 2206 p->iOffset = pPrior->iOffset; 2207 if( p->iLimit ){ 2208 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2209 VdbeComment((v, "Jump ahead if LIMIT reached")); 2210 } 2211 explainSetInteger(iSub2, pParse->iNextSelectId); 2212 rc = sqlite3Select(pParse, p, &dest); 2213 testcase( rc!=SQLITE_OK ); 2214 pDelete = p->pPrior; 2215 p->pPrior = pPrior; 2216 p->nSelectRow += pPrior->nSelectRow; 2217 if( pPrior->pLimit 2218 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2219 && nLimit>0 && p->nSelectRow > (u64)nLimit 2220 ){ 2221 p->nSelectRow = nLimit; 2222 } 2223 if( addr ){ 2224 sqlite3VdbeJumpHere(v, addr); 2225 } 2226 break; 2227 } 2228 case TK_EXCEPT: 2229 case TK_UNION: { 2230 int unionTab; /* Cursor number of the temporary table holding result */ 2231 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2232 int priorOp; /* The SRT_ operation to apply to prior selects */ 2233 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2234 int addr; 2235 SelectDest uniondest; 2236 2237 testcase( p->op==TK_EXCEPT ); 2238 testcase( p->op==TK_UNION ); 2239 priorOp = SRT_Union; 2240 if( dest.eDest==priorOp ){ 2241 /* We can reuse a temporary table generated by a SELECT to our 2242 ** right. 2243 */ 2244 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2245 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2246 unionTab = dest.iSDParm; 2247 }else{ 2248 /* We will need to create our own temporary table to hold the 2249 ** intermediate results. 2250 */ 2251 unionTab = pParse->nTab++; 2252 assert( p->pOrderBy==0 ); 2253 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2254 assert( p->addrOpenEphm[0] == -1 ); 2255 p->addrOpenEphm[0] = addr; 2256 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2257 assert( p->pEList ); 2258 } 2259 2260 /* Code the SELECT statements to our left 2261 */ 2262 assert( !pPrior->pOrderBy ); 2263 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2264 explainSetInteger(iSub1, pParse->iNextSelectId); 2265 rc = sqlite3Select(pParse, pPrior, &uniondest); 2266 if( rc ){ 2267 goto multi_select_end; 2268 } 2269 2270 /* Code the current SELECT statement 2271 */ 2272 if( p->op==TK_EXCEPT ){ 2273 op = SRT_Except; 2274 }else{ 2275 assert( p->op==TK_UNION ); 2276 op = SRT_Union; 2277 } 2278 p->pPrior = 0; 2279 pLimit = p->pLimit; 2280 p->pLimit = 0; 2281 pOffset = p->pOffset; 2282 p->pOffset = 0; 2283 uniondest.eDest = op; 2284 explainSetInteger(iSub2, pParse->iNextSelectId); 2285 rc = sqlite3Select(pParse, p, &uniondest); 2286 testcase( rc!=SQLITE_OK ); 2287 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2288 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2289 sqlite3ExprListDelete(db, p->pOrderBy); 2290 pDelete = p->pPrior; 2291 p->pPrior = pPrior; 2292 p->pOrderBy = 0; 2293 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2294 sqlite3ExprDelete(db, p->pLimit); 2295 p->pLimit = pLimit; 2296 p->pOffset = pOffset; 2297 p->iLimit = 0; 2298 p->iOffset = 0; 2299 2300 /* Convert the data in the temporary table into whatever form 2301 ** it is that we currently need. 2302 */ 2303 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2304 if( dest.eDest!=priorOp ){ 2305 int iCont, iBreak, iStart; 2306 assert( p->pEList ); 2307 if( dest.eDest==SRT_Output ){ 2308 Select *pFirst = p; 2309 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2310 generateColumnNames(pParse, 0, pFirst->pEList); 2311 } 2312 iBreak = sqlite3VdbeMakeLabel(v); 2313 iCont = sqlite3VdbeMakeLabel(v); 2314 computeLimitRegisters(pParse, p, iBreak); 2315 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2316 iStart = sqlite3VdbeCurrentAddr(v); 2317 selectInnerLoop(pParse, p, p->pEList, unionTab, 2318 0, 0, &dest, iCont, iBreak); 2319 sqlite3VdbeResolveLabel(v, iCont); 2320 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2321 sqlite3VdbeResolveLabel(v, iBreak); 2322 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2323 } 2324 break; 2325 } 2326 default: assert( p->op==TK_INTERSECT ); { 2327 int tab1, tab2; 2328 int iCont, iBreak, iStart; 2329 Expr *pLimit, *pOffset; 2330 int addr; 2331 SelectDest intersectdest; 2332 int r1; 2333 2334 /* INTERSECT is different from the others since it requires 2335 ** two temporary tables. Hence it has its own case. Begin 2336 ** by allocating the tables we will need. 2337 */ 2338 tab1 = pParse->nTab++; 2339 tab2 = pParse->nTab++; 2340 assert( p->pOrderBy==0 ); 2341 2342 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2343 assert( p->addrOpenEphm[0] == -1 ); 2344 p->addrOpenEphm[0] = addr; 2345 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2346 assert( p->pEList ); 2347 2348 /* Code the SELECTs to our left into temporary table "tab1". 2349 */ 2350 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2351 explainSetInteger(iSub1, pParse->iNextSelectId); 2352 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2353 if( rc ){ 2354 goto multi_select_end; 2355 } 2356 2357 /* Code the current SELECT into temporary table "tab2" 2358 */ 2359 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2360 assert( p->addrOpenEphm[1] == -1 ); 2361 p->addrOpenEphm[1] = addr; 2362 p->pPrior = 0; 2363 pLimit = p->pLimit; 2364 p->pLimit = 0; 2365 pOffset = p->pOffset; 2366 p->pOffset = 0; 2367 intersectdest.iSDParm = tab2; 2368 explainSetInteger(iSub2, pParse->iNextSelectId); 2369 rc = sqlite3Select(pParse, p, &intersectdest); 2370 testcase( rc!=SQLITE_OK ); 2371 pDelete = p->pPrior; 2372 p->pPrior = pPrior; 2373 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2374 sqlite3ExprDelete(db, p->pLimit); 2375 p->pLimit = pLimit; 2376 p->pOffset = pOffset; 2377 2378 /* Generate code to take the intersection of the two temporary 2379 ** tables. 2380 */ 2381 assert( p->pEList ); 2382 if( dest.eDest==SRT_Output ){ 2383 Select *pFirst = p; 2384 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2385 generateColumnNames(pParse, 0, pFirst->pEList); 2386 } 2387 iBreak = sqlite3VdbeMakeLabel(v); 2388 iCont = sqlite3VdbeMakeLabel(v); 2389 computeLimitRegisters(pParse, p, iBreak); 2390 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2391 r1 = sqlite3GetTempReg(pParse); 2392 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2393 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2394 sqlite3ReleaseTempReg(pParse, r1); 2395 selectInnerLoop(pParse, p, p->pEList, tab1, 2396 0, 0, &dest, iCont, iBreak); 2397 sqlite3VdbeResolveLabel(v, iCont); 2398 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2399 sqlite3VdbeResolveLabel(v, iBreak); 2400 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2401 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2402 break; 2403 } 2404 } 2405 2406 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2407 2408 /* Compute collating sequences used by 2409 ** temporary tables needed to implement the compound select. 2410 ** Attach the KeyInfo structure to all temporary tables. 2411 ** 2412 ** This section is run by the right-most SELECT statement only. 2413 ** SELECT statements to the left always skip this part. The right-most 2414 ** SELECT might also skip this part if it has no ORDER BY clause and 2415 ** no temp tables are required. 2416 */ 2417 if( p->selFlags & SF_UsesEphemeral ){ 2418 int i; /* Loop counter */ 2419 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2420 Select *pLoop; /* For looping through SELECT statements */ 2421 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2422 int nCol; /* Number of columns in result set */ 2423 2424 assert( p->pNext==0 ); 2425 nCol = p->pEList->nExpr; 2426 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2427 if( !pKeyInfo ){ 2428 rc = SQLITE_NOMEM; 2429 goto multi_select_end; 2430 } 2431 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2432 *apColl = multiSelectCollSeq(pParse, p, i); 2433 if( 0==*apColl ){ 2434 *apColl = db->pDfltColl; 2435 } 2436 } 2437 2438 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2439 for(i=0; i<2; i++){ 2440 int addr = pLoop->addrOpenEphm[i]; 2441 if( addr<0 ){ 2442 /* If [0] is unused then [1] is also unused. So we can 2443 ** always safely abort as soon as the first unused slot is found */ 2444 assert( pLoop->addrOpenEphm[1]<0 ); 2445 break; 2446 } 2447 sqlite3VdbeChangeP2(v, addr, nCol); 2448 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2449 P4_KEYINFO); 2450 pLoop->addrOpenEphm[i] = -1; 2451 } 2452 } 2453 sqlite3KeyInfoUnref(pKeyInfo); 2454 } 2455 2456 multi_select_end: 2457 pDest->iSdst = dest.iSdst; 2458 pDest->nSdst = dest.nSdst; 2459 sqlite3SelectDelete(db, pDelete); 2460 return rc; 2461 } 2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2463 2464 /* 2465 ** Code an output subroutine for a coroutine implementation of a 2466 ** SELECT statment. 2467 ** 2468 ** The data to be output is contained in pIn->iSdst. There are 2469 ** pIn->nSdst columns to be output. pDest is where the output should 2470 ** be sent. 2471 ** 2472 ** regReturn is the number of the register holding the subroutine 2473 ** return address. 2474 ** 2475 ** If regPrev>0 then it is the first register in a vector that 2476 ** records the previous output. mem[regPrev] is a flag that is false 2477 ** if there has been no previous output. If regPrev>0 then code is 2478 ** generated to suppress duplicates. pKeyInfo is used for comparing 2479 ** keys. 2480 ** 2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2482 ** iBreak. 2483 */ 2484 static int generateOutputSubroutine( 2485 Parse *pParse, /* Parsing context */ 2486 Select *p, /* The SELECT statement */ 2487 SelectDest *pIn, /* Coroutine supplying data */ 2488 SelectDest *pDest, /* Where to send the data */ 2489 int regReturn, /* The return address register */ 2490 int regPrev, /* Previous result register. No uniqueness if 0 */ 2491 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2492 int iBreak /* Jump here if we hit the LIMIT */ 2493 ){ 2494 Vdbe *v = pParse->pVdbe; 2495 int iContinue; 2496 int addr; 2497 2498 addr = sqlite3VdbeCurrentAddr(v); 2499 iContinue = sqlite3VdbeMakeLabel(v); 2500 2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2502 */ 2503 if( regPrev ){ 2504 int j1, j2; 2505 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2506 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2508 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2509 sqlite3VdbeJumpHere(v, j1); 2510 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2511 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2512 } 2513 if( pParse->db->mallocFailed ) return 0; 2514 2515 /* Suppress the first OFFSET entries if there is an OFFSET clause 2516 */ 2517 codeOffset(v, p->iOffset, iContinue); 2518 2519 switch( pDest->eDest ){ 2520 /* Store the result as data using a unique key. 2521 */ 2522 case SRT_Table: 2523 case SRT_EphemTab: { 2524 int r1 = sqlite3GetTempReg(pParse); 2525 int r2 = sqlite3GetTempReg(pParse); 2526 testcase( pDest->eDest==SRT_Table ); 2527 testcase( pDest->eDest==SRT_EphemTab ); 2528 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2529 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2530 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2531 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2532 sqlite3ReleaseTempReg(pParse, r2); 2533 sqlite3ReleaseTempReg(pParse, r1); 2534 break; 2535 } 2536 2537 #ifndef SQLITE_OMIT_SUBQUERY 2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2539 ** then there should be a single item on the stack. Write this 2540 ** item into the set table with bogus data. 2541 */ 2542 case SRT_Set: { 2543 int r1; 2544 assert( pIn->nSdst==1 ); 2545 pDest->affSdst = 2546 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2547 r1 = sqlite3GetTempReg(pParse); 2548 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2549 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2550 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2551 sqlite3ReleaseTempReg(pParse, r1); 2552 break; 2553 } 2554 2555 #if 0 /* Never occurs on an ORDER BY query */ 2556 /* If any row exist in the result set, record that fact and abort. 2557 */ 2558 case SRT_Exists: { 2559 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2560 /* The LIMIT clause will terminate the loop for us */ 2561 break; 2562 } 2563 #endif 2564 2565 /* If this is a scalar select that is part of an expression, then 2566 ** store the results in the appropriate memory cell and break out 2567 ** of the scan loop. 2568 */ 2569 case SRT_Mem: { 2570 assert( pIn->nSdst==1 ); 2571 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2572 /* The LIMIT clause will jump out of the loop for us */ 2573 break; 2574 } 2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2576 2577 /* The results are stored in a sequence of registers 2578 ** starting at pDest->iSdst. Then the co-routine yields. 2579 */ 2580 case SRT_Coroutine: { 2581 if( pDest->iSdst==0 ){ 2582 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2583 pDest->nSdst = pIn->nSdst; 2584 } 2585 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2586 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2587 break; 2588 } 2589 2590 /* If none of the above, then the result destination must be 2591 ** SRT_Output. This routine is never called with any other 2592 ** destination other than the ones handled above or SRT_Output. 2593 ** 2594 ** For SRT_Output, results are stored in a sequence of registers. 2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2596 ** return the next row of result. 2597 */ 2598 default: { 2599 assert( pDest->eDest==SRT_Output ); 2600 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2601 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2602 break; 2603 } 2604 } 2605 2606 /* Jump to the end of the loop if the LIMIT is reached. 2607 */ 2608 if( p->iLimit ){ 2609 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2610 } 2611 2612 /* Generate the subroutine return 2613 */ 2614 sqlite3VdbeResolveLabel(v, iContinue); 2615 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2616 2617 return addr; 2618 } 2619 2620 /* 2621 ** Alternative compound select code generator for cases when there 2622 ** is an ORDER BY clause. 2623 ** 2624 ** We assume a query of the following form: 2625 ** 2626 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2627 ** 2628 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2629 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2630 ** co-routines. Then run the co-routines in parallel and merge the results 2631 ** into the output. In addition to the two coroutines (called selectA and 2632 ** selectB) there are 7 subroutines: 2633 ** 2634 ** outA: Move the output of the selectA coroutine into the output 2635 ** of the compound query. 2636 ** 2637 ** outB: Move the output of the selectB coroutine into the output 2638 ** of the compound query. (Only generated for UNION and 2639 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2640 ** appears only in B.) 2641 ** 2642 ** AltB: Called when there is data from both coroutines and A<B. 2643 ** 2644 ** AeqB: Called when there is data from both coroutines and A==B. 2645 ** 2646 ** AgtB: Called when there is data from both coroutines and A>B. 2647 ** 2648 ** EofA: Called when data is exhausted from selectA. 2649 ** 2650 ** EofB: Called when data is exhausted from selectB. 2651 ** 2652 ** The implementation of the latter five subroutines depend on which 2653 ** <operator> is used: 2654 ** 2655 ** 2656 ** UNION ALL UNION EXCEPT INTERSECT 2657 ** ------------- ----------------- -------------- ----------------- 2658 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2659 ** 2660 ** AeqB: outA, nextA nextA nextA outA, nextA 2661 ** 2662 ** AgtB: outB, nextB outB, nextB nextB nextB 2663 ** 2664 ** EofA: outB, nextB outB, nextB halt halt 2665 ** 2666 ** EofB: outA, nextA outA, nextA outA, nextA halt 2667 ** 2668 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2669 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2670 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2671 ** following nextX causes a jump to the end of the select processing. 2672 ** 2673 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2674 ** within the output subroutine. The regPrev register set holds the previously 2675 ** output value. A comparison is made against this value and the output 2676 ** is skipped if the next results would be the same as the previous. 2677 ** 2678 ** The implementation plan is to implement the two coroutines and seven 2679 ** subroutines first, then put the control logic at the bottom. Like this: 2680 ** 2681 ** goto Init 2682 ** coA: coroutine for left query (A) 2683 ** coB: coroutine for right query (B) 2684 ** outA: output one row of A 2685 ** outB: output one row of B (UNION and UNION ALL only) 2686 ** EofA: ... 2687 ** EofB: ... 2688 ** AltB: ... 2689 ** AeqB: ... 2690 ** AgtB: ... 2691 ** Init: initialize coroutine registers 2692 ** yield coA 2693 ** if eof(A) goto EofA 2694 ** yield coB 2695 ** if eof(B) goto EofB 2696 ** Cmpr: Compare A, B 2697 ** Jump AltB, AeqB, AgtB 2698 ** End: ... 2699 ** 2700 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2701 ** actually called using Gosub and they do not Return. EofA and EofB loop 2702 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2703 ** and AgtB jump to either L2 or to one of EofA or EofB. 2704 */ 2705 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2706 static int multiSelectOrderBy( 2707 Parse *pParse, /* Parsing context */ 2708 Select *p, /* The right-most of SELECTs to be coded */ 2709 SelectDest *pDest /* What to do with query results */ 2710 ){ 2711 int i, j; /* Loop counters */ 2712 Select *pPrior; /* Another SELECT immediately to our left */ 2713 Vdbe *v; /* Generate code to this VDBE */ 2714 SelectDest destA; /* Destination for coroutine A */ 2715 SelectDest destB; /* Destination for coroutine B */ 2716 int regAddrA; /* Address register for select-A coroutine */ 2717 int regAddrB; /* Address register for select-B coroutine */ 2718 int addrSelectA; /* Address of the select-A coroutine */ 2719 int addrSelectB; /* Address of the select-B coroutine */ 2720 int regOutA; /* Address register for the output-A subroutine */ 2721 int regOutB; /* Address register for the output-B subroutine */ 2722 int addrOutA; /* Address of the output-A subroutine */ 2723 int addrOutB = 0; /* Address of the output-B subroutine */ 2724 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2725 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2726 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2727 int addrAltB; /* Address of the A<B subroutine */ 2728 int addrAeqB; /* Address of the A==B subroutine */ 2729 int addrAgtB; /* Address of the A>B subroutine */ 2730 int regLimitA; /* Limit register for select-A */ 2731 int regLimitB; /* Limit register for select-A */ 2732 int regPrev; /* A range of registers to hold previous output */ 2733 int savedLimit; /* Saved value of p->iLimit */ 2734 int savedOffset; /* Saved value of p->iOffset */ 2735 int labelCmpr; /* Label for the start of the merge algorithm */ 2736 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2737 int j1; /* Jump instructions that get retargetted */ 2738 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2739 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2740 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2741 sqlite3 *db; /* Database connection */ 2742 ExprList *pOrderBy; /* The ORDER BY clause */ 2743 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2744 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2745 #ifndef SQLITE_OMIT_EXPLAIN 2746 int iSub1; /* EQP id of left-hand query */ 2747 int iSub2; /* EQP id of right-hand query */ 2748 #endif 2749 2750 assert( p->pOrderBy!=0 ); 2751 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2752 db = pParse->db; 2753 v = pParse->pVdbe; 2754 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2755 labelEnd = sqlite3VdbeMakeLabel(v); 2756 labelCmpr = sqlite3VdbeMakeLabel(v); 2757 2758 2759 /* Patch up the ORDER BY clause 2760 */ 2761 op = p->op; 2762 pPrior = p->pPrior; 2763 assert( pPrior->pOrderBy==0 ); 2764 pOrderBy = p->pOrderBy; 2765 assert( pOrderBy ); 2766 nOrderBy = pOrderBy->nExpr; 2767 2768 /* For operators other than UNION ALL we have to make sure that 2769 ** the ORDER BY clause covers every term of the result set. Add 2770 ** terms to the ORDER BY clause as necessary. 2771 */ 2772 if( op!=TK_ALL ){ 2773 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2774 struct ExprList_item *pItem; 2775 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2776 assert( pItem->u.x.iOrderByCol>0 ); 2777 if( pItem->u.x.iOrderByCol==i ) break; 2778 } 2779 if( j==nOrderBy ){ 2780 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2781 if( pNew==0 ) return SQLITE_NOMEM; 2782 pNew->flags |= EP_IntValue; 2783 pNew->u.iValue = i; 2784 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2785 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2786 } 2787 } 2788 } 2789 2790 /* Compute the comparison permutation and keyinfo that is used with 2791 ** the permutation used to determine if the next 2792 ** row of results comes from selectA or selectB. Also add explicit 2793 ** collations to the ORDER BY clause terms so that when the subqueries 2794 ** to the right and the left are evaluated, they use the correct 2795 ** collation. 2796 */ 2797 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2798 if( aPermute ){ 2799 struct ExprList_item *pItem; 2800 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2801 assert( pItem->u.x.iOrderByCol>0 2802 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2803 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2804 } 2805 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2806 }else{ 2807 pKeyMerge = 0; 2808 } 2809 2810 /* Reattach the ORDER BY clause to the query. 2811 */ 2812 p->pOrderBy = pOrderBy; 2813 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2814 2815 /* Allocate a range of temporary registers and the KeyInfo needed 2816 ** for the logic that removes duplicate result rows when the 2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2818 */ 2819 if( op==TK_ALL ){ 2820 regPrev = 0; 2821 }else{ 2822 int nExpr = p->pEList->nExpr; 2823 assert( nOrderBy>=nExpr || db->mallocFailed ); 2824 regPrev = pParse->nMem+1; 2825 pParse->nMem += nExpr+1; 2826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2827 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2828 if( pKeyDup ){ 2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2830 for(i=0; i<nExpr; i++){ 2831 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2832 pKeyDup->aSortOrder[i] = 0; 2833 } 2834 } 2835 } 2836 2837 /* Separate the left and the right query from one another 2838 */ 2839 p->pPrior = 0; 2840 pPrior->pNext = 0; 2841 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2842 if( pPrior->pPrior==0 ){ 2843 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2844 } 2845 2846 /* Compute the limit registers */ 2847 computeLimitRegisters(pParse, p, labelEnd); 2848 if( p->iLimit && op==TK_ALL ){ 2849 regLimitA = ++pParse->nMem; 2850 regLimitB = ++pParse->nMem; 2851 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2852 regLimitA); 2853 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2854 }else{ 2855 regLimitA = regLimitB = 0; 2856 } 2857 sqlite3ExprDelete(db, p->pLimit); 2858 p->pLimit = 0; 2859 sqlite3ExprDelete(db, p->pOffset); 2860 p->pOffset = 0; 2861 2862 regAddrA = ++pParse->nMem; 2863 regAddrB = ++pParse->nMem; 2864 regOutA = ++pParse->nMem; 2865 regOutB = ++pParse->nMem; 2866 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2867 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2868 2869 /* Generate a coroutine to evaluate the SELECT statement to the 2870 ** left of the compound operator - the "A" select. 2871 */ 2872 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2873 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2874 VdbeComment((v, "left SELECT")); 2875 pPrior->iLimit = regLimitA; 2876 explainSetInteger(iSub1, pParse->iNextSelectId); 2877 sqlite3Select(pParse, pPrior, &destA); 2878 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2879 sqlite3VdbeJumpHere(v, j1); 2880 2881 /* Generate a coroutine to evaluate the SELECT statement on 2882 ** the right - the "B" select 2883 */ 2884 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2885 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2886 VdbeComment((v, "right SELECT")); 2887 savedLimit = p->iLimit; 2888 savedOffset = p->iOffset; 2889 p->iLimit = regLimitB; 2890 p->iOffset = 0; 2891 explainSetInteger(iSub2, pParse->iNextSelectId); 2892 sqlite3Select(pParse, p, &destB); 2893 p->iLimit = savedLimit; 2894 p->iOffset = savedOffset; 2895 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2896 2897 /* Generate a subroutine that outputs the current row of the A 2898 ** select as the next output row of the compound select. 2899 */ 2900 VdbeNoopComment((v, "Output routine for A")); 2901 addrOutA = generateOutputSubroutine(pParse, 2902 p, &destA, pDest, regOutA, 2903 regPrev, pKeyDup, labelEnd); 2904 2905 /* Generate a subroutine that outputs the current row of the B 2906 ** select as the next output row of the compound select. 2907 */ 2908 if( op==TK_ALL || op==TK_UNION ){ 2909 VdbeNoopComment((v, "Output routine for B")); 2910 addrOutB = generateOutputSubroutine(pParse, 2911 p, &destB, pDest, regOutB, 2912 regPrev, pKeyDup, labelEnd); 2913 } 2914 sqlite3KeyInfoUnref(pKeyDup); 2915 2916 /* Generate a subroutine to run when the results from select A 2917 ** are exhausted and only data in select B remains. 2918 */ 2919 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2920 addrEofA_noB = addrEofA = labelEnd; 2921 }else{ 2922 VdbeNoopComment((v, "eof-A subroutine")); 2923 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2924 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2925 VdbeCoverage(v); 2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2927 p->nSelectRow += pPrior->nSelectRow; 2928 } 2929 2930 /* Generate a subroutine to run when the results from select B 2931 ** are exhausted and only data in select A remains. 2932 */ 2933 if( op==TK_INTERSECT ){ 2934 addrEofB = addrEofA; 2935 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2936 }else{ 2937 VdbeNoopComment((v, "eof-B subroutine")); 2938 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2939 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2941 } 2942 2943 /* Generate code to handle the case of A<B 2944 */ 2945 VdbeNoopComment((v, "A-lt-B subroutine")); 2946 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2947 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2949 2950 /* Generate code to handle the case of A==B 2951 */ 2952 if( op==TK_ALL ){ 2953 addrAeqB = addrAltB; 2954 }else if( op==TK_INTERSECT ){ 2955 addrAeqB = addrAltB; 2956 addrAltB++; 2957 }else{ 2958 VdbeNoopComment((v, "A-eq-B subroutine")); 2959 addrAeqB = 2960 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2961 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2962 } 2963 2964 /* Generate code to handle the case of A>B 2965 */ 2966 VdbeNoopComment((v, "A-gt-B subroutine")); 2967 addrAgtB = sqlite3VdbeCurrentAddr(v); 2968 if( op==TK_ALL || op==TK_UNION ){ 2969 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2970 } 2971 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2973 2974 /* This code runs once to initialize everything. 2975 */ 2976 sqlite3VdbeJumpHere(v, j1); 2977 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 2978 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2979 2980 /* Implement the main merge loop 2981 */ 2982 sqlite3VdbeResolveLabel(v, labelCmpr); 2983 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2984 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2985 (char*)pKeyMerge, P4_KEYINFO); 2986 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2987 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 2988 2989 /* Jump to the this point in order to terminate the query. 2990 */ 2991 sqlite3VdbeResolveLabel(v, labelEnd); 2992 2993 /* Set the number of output columns 2994 */ 2995 if( pDest->eDest==SRT_Output ){ 2996 Select *pFirst = pPrior; 2997 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2998 generateColumnNames(pParse, 0, pFirst->pEList); 2999 } 3000 3001 /* Reassembly the compound query so that it will be freed correctly 3002 ** by the calling function */ 3003 if( p->pPrior ){ 3004 sqlite3SelectDelete(db, p->pPrior); 3005 } 3006 p->pPrior = pPrior; 3007 pPrior->pNext = p; 3008 3009 /*** TBD: Insert subroutine calls to close cursors on incomplete 3010 **** subqueries ****/ 3011 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3012 return SQLITE_OK; 3013 } 3014 #endif 3015 3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3017 /* Forward Declarations */ 3018 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3019 static void substSelect(sqlite3*, Select *, int, ExprList *); 3020 3021 /* 3022 ** Scan through the expression pExpr. Replace every reference to 3023 ** a column in table number iTable with a copy of the iColumn-th 3024 ** entry in pEList. (But leave references to the ROWID column 3025 ** unchanged.) 3026 ** 3027 ** This routine is part of the flattening procedure. A subquery 3028 ** whose result set is defined by pEList appears as entry in the 3029 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3030 ** FORM clause entry is iTable. This routine make the necessary 3031 ** changes to pExpr so that it refers directly to the source table 3032 ** of the subquery rather the result set of the subquery. 3033 */ 3034 static Expr *substExpr( 3035 sqlite3 *db, /* Report malloc errors to this connection */ 3036 Expr *pExpr, /* Expr in which substitution occurs */ 3037 int iTable, /* Table to be substituted */ 3038 ExprList *pEList /* Substitute expressions */ 3039 ){ 3040 if( pExpr==0 ) return 0; 3041 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3042 if( pExpr->iColumn<0 ){ 3043 pExpr->op = TK_NULL; 3044 }else{ 3045 Expr *pNew; 3046 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3047 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3048 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3049 sqlite3ExprDelete(db, pExpr); 3050 pExpr = pNew; 3051 } 3052 }else{ 3053 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3054 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3055 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3056 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3057 }else{ 3058 substExprList(db, pExpr->x.pList, iTable, pEList); 3059 } 3060 } 3061 return pExpr; 3062 } 3063 static void substExprList( 3064 sqlite3 *db, /* Report malloc errors here */ 3065 ExprList *pList, /* List to scan and in which to make substitutes */ 3066 int iTable, /* Table to be substituted */ 3067 ExprList *pEList /* Substitute values */ 3068 ){ 3069 int i; 3070 if( pList==0 ) return; 3071 for(i=0; i<pList->nExpr; i++){ 3072 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3073 } 3074 } 3075 static void substSelect( 3076 sqlite3 *db, /* Report malloc errors here */ 3077 Select *p, /* SELECT statement in which to make substitutions */ 3078 int iTable, /* Table to be replaced */ 3079 ExprList *pEList /* Substitute values */ 3080 ){ 3081 SrcList *pSrc; 3082 struct SrcList_item *pItem; 3083 int i; 3084 if( !p ) return; 3085 substExprList(db, p->pEList, iTable, pEList); 3086 substExprList(db, p->pGroupBy, iTable, pEList); 3087 substExprList(db, p->pOrderBy, iTable, pEList); 3088 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3089 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3090 substSelect(db, p->pPrior, iTable, pEList); 3091 pSrc = p->pSrc; 3092 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3093 if( ALWAYS(pSrc) ){ 3094 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3095 substSelect(db, pItem->pSelect, iTable, pEList); 3096 } 3097 } 3098 } 3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3100 3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3102 /* 3103 ** This routine attempts to flatten subqueries as a performance optimization. 3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3105 ** 3106 ** To understand the concept of flattening, consider the following 3107 ** query: 3108 ** 3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3110 ** 3111 ** The default way of implementing this query is to execute the 3112 ** subquery first and store the results in a temporary table, then 3113 ** run the outer query on that temporary table. This requires two 3114 ** passes over the data. Furthermore, because the temporary table 3115 ** has no indices, the WHERE clause on the outer query cannot be 3116 ** optimized. 3117 ** 3118 ** This routine attempts to rewrite queries such as the above into 3119 ** a single flat select, like this: 3120 ** 3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3122 ** 3123 ** The code generated for this simplification gives the same result 3124 ** but only has to scan the data once. And because indices might 3125 ** exist on the table t1, a complete scan of the data might be 3126 ** avoided. 3127 ** 3128 ** Flattening is only attempted if all of the following are true: 3129 ** 3130 ** (1) The subquery and the outer query do not both use aggregates. 3131 ** 3132 ** (2) The subquery is not an aggregate or the outer query is not a join. 3133 ** 3134 ** (3) The subquery is not the right operand of a left outer join 3135 ** (Originally ticket #306. Strengthened by ticket #3300) 3136 ** 3137 ** (4) The subquery is not DISTINCT. 3138 ** 3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3140 ** sub-queries that were excluded from this optimization. Restriction 3141 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3142 ** 3143 ** (6) The subquery does not use aggregates or the outer query is not 3144 ** DISTINCT. 3145 ** 3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3147 ** A FROM clause, consider adding a FROM close with the special 3148 ** table sqlite_once that consists of a single row containing a 3149 ** single NULL. 3150 ** 3151 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3152 ** 3153 ** (9) The subquery does not use LIMIT or the outer query does not use 3154 ** aggregates. 3155 ** 3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3157 ** accidently carried the comment forward until 2014-09-15. Original 3158 ** text: "The subquery does not use aggregates or the outer query does not 3159 ** use LIMIT." 3160 ** 3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3162 ** 3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3164 ** a separate restriction deriving from ticket #350. 3165 ** 3166 ** (13) The subquery and outer query do not both use LIMIT. 3167 ** 3168 ** (14) The subquery does not use OFFSET. 3169 ** 3170 ** (15) The outer query is not part of a compound select or the 3171 ** subquery does not have a LIMIT clause. 3172 ** (See ticket #2339 and ticket [02a8e81d44]). 3173 ** 3174 ** (16) The outer query is not an aggregate or the subquery does 3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3176 ** until we introduced the group_concat() function. 3177 ** 3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3179 ** compound clause made up entirely of non-aggregate queries, and 3180 ** the parent query: 3181 ** 3182 ** * is not itself part of a compound select, 3183 ** * is not an aggregate or DISTINCT query, and 3184 ** * is not a join 3185 ** 3186 ** The parent and sub-query may contain WHERE clauses. Subject to 3187 ** rules (11), (13) and (14), they may also contain ORDER BY, 3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3189 ** operator other than UNION ALL because all the other compound 3190 ** operators have an implied DISTINCT which is disallowed by 3191 ** restriction (4). 3192 ** 3193 ** Also, each component of the sub-query must return the same number 3194 ** of result columns. This is actually a requirement for any compound 3195 ** SELECT statement, but all the code here does is make sure that no 3196 ** such (illegal) sub-query is flattened. The caller will detect the 3197 ** syntax error and return a detailed message. 3198 ** 3199 ** (18) If the sub-query is a compound select, then all terms of the 3200 ** ORDER by clause of the parent must be simple references to 3201 ** columns of the sub-query. 3202 ** 3203 ** (19) The subquery does not use LIMIT or the outer query does not 3204 ** have a WHERE clause. 3205 ** 3206 ** (20) If the sub-query is a compound select, then it must not use 3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3208 ** somewhat by saying that the terms of the ORDER BY clause must 3209 ** appear as unmodified result columns in the outer query. But we 3210 ** have other optimizations in mind to deal with that case. 3211 ** 3212 ** (21) The subquery does not use LIMIT or the outer query is not 3213 ** DISTINCT. (See ticket [752e1646fc]). 3214 ** 3215 ** (22) The subquery is not a recursive CTE. 3216 ** 3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3218 ** compound query. This restriction is because transforming the 3219 ** parent to a compound query confuses the code that handles 3220 ** recursive queries in multiSelect(). 3221 ** 3222 ** (24) The subquery is not an aggregate that uses the built-in min() or 3223 ** or max() functions. (Without this restriction, a query like: 3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3225 ** return the value X for which Y was maximal.) 3226 ** 3227 ** 3228 ** In this routine, the "p" parameter is a pointer to the outer query. 3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3231 ** 3232 ** If flattening is not attempted, this routine is a no-op and returns 0. 3233 ** If flattening is attempted this routine returns 1. 3234 ** 3235 ** All of the expression analysis must occur on both the outer query and 3236 ** the subquery before this routine runs. 3237 */ 3238 static int flattenSubquery( 3239 Parse *pParse, /* Parsing context */ 3240 Select *p, /* The parent or outer SELECT statement */ 3241 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3242 int isAgg, /* True if outer SELECT uses aggregate functions */ 3243 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3244 ){ 3245 const char *zSavedAuthContext = pParse->zAuthContext; 3246 Select *pParent; 3247 Select *pSub; /* The inner query or "subquery" */ 3248 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3249 SrcList *pSrc; /* The FROM clause of the outer query */ 3250 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3251 ExprList *pList; /* The result set of the outer query */ 3252 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3253 int i; /* Loop counter */ 3254 Expr *pWhere; /* The WHERE clause */ 3255 struct SrcList_item *pSubitem; /* The subquery */ 3256 sqlite3 *db = pParse->db; 3257 3258 /* Check to see if flattening is permitted. Return 0 if not. 3259 */ 3260 assert( p!=0 ); 3261 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3262 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3263 pSrc = p->pSrc; 3264 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3265 pSubitem = &pSrc->a[iFrom]; 3266 iParent = pSubitem->iCursor; 3267 pSub = pSubitem->pSelect; 3268 assert( pSub!=0 ); 3269 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3270 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3271 pSubSrc = pSub->pSrc; 3272 assert( pSubSrc ); 3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3276 ** became arbitrary expressions, we were forced to add restrictions (13) 3277 ** and (14). */ 3278 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3279 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3280 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3281 return 0; /* Restriction (15) */ 3282 } 3283 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3284 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3285 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3286 return 0; /* Restrictions (8)(9) */ 3287 } 3288 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3289 return 0; /* Restriction (6) */ 3290 } 3291 if( p->pOrderBy && pSub->pOrderBy ){ 3292 return 0; /* Restriction (11) */ 3293 } 3294 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3295 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3296 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3297 return 0; /* Restriction (21) */ 3298 } 3299 testcase( pSub->selFlags & SF_Recursive ); 3300 testcase( pSub->selFlags & SF_MinMaxAgg ); 3301 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3302 return 0; /* Restrictions (22) and (24) */ 3303 } 3304 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3305 return 0; /* Restriction (23) */ 3306 } 3307 3308 /* OBSOLETE COMMENT 1: 3309 ** Restriction 3: If the subquery is a join, make sure the subquery is 3310 ** not used as the right operand of an outer join. Examples of why this 3311 ** is not allowed: 3312 ** 3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3314 ** 3315 ** If we flatten the above, we would get 3316 ** 3317 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3318 ** 3319 ** which is not at all the same thing. 3320 ** 3321 ** OBSOLETE COMMENT 2: 3322 ** Restriction 12: If the subquery is the right operand of a left outer 3323 ** join, make sure the subquery has no WHERE clause. 3324 ** An examples of why this is not allowed: 3325 ** 3326 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3327 ** 3328 ** If we flatten the above, we would get 3329 ** 3330 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3331 ** 3332 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3333 ** effectively converts the OUTER JOIN into an INNER JOIN. 3334 ** 3335 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3336 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3337 ** is fraught with danger. Best to avoid the whole thing. If the 3338 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3339 */ 3340 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3341 return 0; 3342 } 3343 3344 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3345 ** use only the UNION ALL operator. And none of the simple select queries 3346 ** that make up the compound SELECT are allowed to be aggregate or distinct 3347 ** queries. 3348 */ 3349 if( pSub->pPrior ){ 3350 if( pSub->pOrderBy ){ 3351 return 0; /* Restriction 20 */ 3352 } 3353 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3354 return 0; 3355 } 3356 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3357 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3358 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3359 assert( pSub->pSrc!=0 ); 3360 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3361 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3362 || pSub1->pSrc->nSrc<1 3363 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3364 ){ 3365 return 0; 3366 } 3367 testcase( pSub1->pSrc->nSrc>1 ); 3368 } 3369 3370 /* Restriction 18. */ 3371 if( p->pOrderBy ){ 3372 int ii; 3373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3375 } 3376 } 3377 } 3378 3379 /***** If we reach this point, flattening is permitted. *****/ 3380 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3381 pSub->zSelName, pSub, iFrom)); 3382 3383 /* Authorize the subquery */ 3384 pParse->zAuthContext = pSubitem->zName; 3385 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3386 testcase( i==SQLITE_DENY ); 3387 pParse->zAuthContext = zSavedAuthContext; 3388 3389 /* If the sub-query is a compound SELECT statement, then (by restrictions 3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3391 ** be of the form: 3392 ** 3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3394 ** 3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3397 ** OFFSET clauses and joins them to the left-hand-side of the original 3398 ** using UNION ALL operators. In this case N is the number of simple 3399 ** select statements in the compound sub-query. 3400 ** 3401 ** Example: 3402 ** 3403 ** SELECT a+1 FROM ( 3404 ** SELECT x FROM tab 3405 ** UNION ALL 3406 ** SELECT y FROM tab 3407 ** UNION ALL 3408 ** SELECT abs(z*2) FROM tab2 3409 ** ) WHERE a!=5 ORDER BY 1 3410 ** 3411 ** Transformed into: 3412 ** 3413 ** SELECT x+1 FROM tab WHERE x+1!=5 3414 ** UNION ALL 3415 ** SELECT y+1 FROM tab WHERE y+1!=5 3416 ** UNION ALL 3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3418 ** ORDER BY 1 3419 ** 3420 ** We call this the "compound-subquery flattening". 3421 */ 3422 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3423 Select *pNew; 3424 ExprList *pOrderBy = p->pOrderBy; 3425 Expr *pLimit = p->pLimit; 3426 Expr *pOffset = p->pOffset; 3427 Select *pPrior = p->pPrior; 3428 p->pOrderBy = 0; 3429 p->pSrc = 0; 3430 p->pPrior = 0; 3431 p->pLimit = 0; 3432 p->pOffset = 0; 3433 pNew = sqlite3SelectDup(db, p, 0); 3434 sqlite3SelectSetName(pNew, pSub->zSelName); 3435 p->pOffset = pOffset; 3436 p->pLimit = pLimit; 3437 p->pOrderBy = pOrderBy; 3438 p->pSrc = pSrc; 3439 p->op = TK_ALL; 3440 if( pNew==0 ){ 3441 p->pPrior = pPrior; 3442 }else{ 3443 pNew->pPrior = pPrior; 3444 if( pPrior ) pPrior->pNext = pNew; 3445 pNew->pNext = p; 3446 p->pPrior = pNew; 3447 SELECTTRACE(2,pParse,p, 3448 ("compound-subquery flattener creates %s.%p as peer\n", 3449 pNew->zSelName, pNew)); 3450 } 3451 if( db->mallocFailed ) return 1; 3452 } 3453 3454 /* Begin flattening the iFrom-th entry of the FROM clause 3455 ** in the outer query. 3456 */ 3457 pSub = pSub1 = pSubitem->pSelect; 3458 3459 /* Delete the transient table structure associated with the 3460 ** subquery 3461 */ 3462 sqlite3DbFree(db, pSubitem->zDatabase); 3463 sqlite3DbFree(db, pSubitem->zName); 3464 sqlite3DbFree(db, pSubitem->zAlias); 3465 pSubitem->zDatabase = 0; 3466 pSubitem->zName = 0; 3467 pSubitem->zAlias = 0; 3468 pSubitem->pSelect = 0; 3469 3470 /* Defer deleting the Table object associated with the 3471 ** subquery until code generation is 3472 ** complete, since there may still exist Expr.pTab entries that 3473 ** refer to the subquery even after flattening. Ticket #3346. 3474 ** 3475 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3476 */ 3477 if( ALWAYS(pSubitem->pTab!=0) ){ 3478 Table *pTabToDel = pSubitem->pTab; 3479 if( pTabToDel->nRef==1 ){ 3480 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3481 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3482 pToplevel->pZombieTab = pTabToDel; 3483 }else{ 3484 pTabToDel->nRef--; 3485 } 3486 pSubitem->pTab = 0; 3487 } 3488 3489 /* The following loop runs once for each term in a compound-subquery 3490 ** flattening (as described above). If we are doing a different kind 3491 ** of flattening - a flattening other than a compound-subquery flattening - 3492 ** then this loop only runs once. 3493 ** 3494 ** This loop moves all of the FROM elements of the subquery into the 3495 ** the FROM clause of the outer query. Before doing this, remember 3496 ** the cursor number for the original outer query FROM element in 3497 ** iParent. The iParent cursor will never be used. Subsequent code 3498 ** will scan expressions looking for iParent references and replace 3499 ** those references with expressions that resolve to the subquery FROM 3500 ** elements we are now copying in. 3501 */ 3502 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3503 int nSubSrc; 3504 u8 jointype = 0; 3505 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3506 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3507 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3508 3509 if( pSrc ){ 3510 assert( pParent==p ); /* First time through the loop */ 3511 jointype = pSubitem->jointype; 3512 }else{ 3513 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3514 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3515 if( pSrc==0 ){ 3516 assert( db->mallocFailed ); 3517 break; 3518 } 3519 } 3520 3521 /* The subquery uses a single slot of the FROM clause of the outer 3522 ** query. If the subquery has more than one element in its FROM clause, 3523 ** then expand the outer query to make space for it to hold all elements 3524 ** of the subquery. 3525 ** 3526 ** Example: 3527 ** 3528 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3529 ** 3530 ** The outer query has 3 slots in its FROM clause. One slot of the 3531 ** outer query (the middle slot) is used by the subquery. The next 3532 ** block of code will expand the out query to 4 slots. The middle 3533 ** slot is expanded to two slots in order to make space for the 3534 ** two elements in the FROM clause of the subquery. 3535 */ 3536 if( nSubSrc>1 ){ 3537 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3538 if( db->mallocFailed ){ 3539 break; 3540 } 3541 } 3542 3543 /* Transfer the FROM clause terms from the subquery into the 3544 ** outer query. 3545 */ 3546 for(i=0; i<nSubSrc; i++){ 3547 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3548 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3549 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3550 } 3551 pSrc->a[iFrom].jointype = jointype; 3552 3553 /* Now begin substituting subquery result set expressions for 3554 ** references to the iParent in the outer query. 3555 ** 3556 ** Example: 3557 ** 3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3559 ** \ \_____________ subquery __________/ / 3560 ** \_____________________ outer query ______________________________/ 3561 ** 3562 ** We look at every expression in the outer query and every place we see 3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3564 */ 3565 pList = pParent->pEList; 3566 for(i=0; i<pList->nExpr; i++){ 3567 if( pList->a[i].zName==0 ){ 3568 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3569 sqlite3Dequote(zName); 3570 pList->a[i].zName = zName; 3571 } 3572 } 3573 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3574 if( isAgg ){ 3575 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3576 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3577 } 3578 if( pSub->pOrderBy ){ 3579 /* At this point, any non-zero iOrderByCol values indicate that the 3580 ** ORDER BY column expression is identical to the iOrderByCol'th 3581 ** expression returned by SELECT statement pSub. Since these values 3582 ** do not necessarily correspond to columns in SELECT statement pParent, 3583 ** zero them before transfering the ORDER BY clause. 3584 ** 3585 ** Not doing this may cause an error if a subsequent call to this 3586 ** function attempts to flatten a compound sub-query into pParent 3587 ** (the only way this can happen is if the compound sub-query is 3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3589 ExprList *pOrderBy = pSub->pOrderBy; 3590 for(i=0; i<pOrderBy->nExpr; i++){ 3591 pOrderBy->a[i].u.x.iOrderByCol = 0; 3592 } 3593 assert( pParent->pOrderBy==0 ); 3594 assert( pSub->pPrior==0 ); 3595 pParent->pOrderBy = pOrderBy; 3596 pSub->pOrderBy = 0; 3597 }else if( pParent->pOrderBy ){ 3598 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3599 } 3600 if( pSub->pWhere ){ 3601 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3602 }else{ 3603 pWhere = 0; 3604 } 3605 if( subqueryIsAgg ){ 3606 assert( pParent->pHaving==0 ); 3607 pParent->pHaving = pParent->pWhere; 3608 pParent->pWhere = pWhere; 3609 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3610 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3611 sqlite3ExprDup(db, pSub->pHaving, 0)); 3612 assert( pParent->pGroupBy==0 ); 3613 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3614 }else{ 3615 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3616 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3617 } 3618 3619 /* The flattened query is distinct if either the inner or the 3620 ** outer query is distinct. 3621 */ 3622 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3623 3624 /* 3625 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3626 ** 3627 ** One is tempted to try to add a and b to combine the limits. But this 3628 ** does not work if either limit is negative. 3629 */ 3630 if( pSub->pLimit ){ 3631 pParent->pLimit = pSub->pLimit; 3632 pSub->pLimit = 0; 3633 } 3634 } 3635 3636 /* Finially, delete what is left of the subquery and return 3637 ** success. 3638 */ 3639 sqlite3SelectDelete(db, pSub1); 3640 3641 #if SELECTTRACE_ENABLED 3642 if( sqlite3SelectTrace & 0x100 ){ 3643 sqlite3DebugPrintf("After flattening:\n"); 3644 sqlite3TreeViewSelect(0, p, 0); 3645 } 3646 #endif 3647 3648 return 1; 3649 } 3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3651 3652 /* 3653 ** Based on the contents of the AggInfo structure indicated by the first 3654 ** argument, this function checks if the following are true: 3655 ** 3656 ** * the query contains just a single aggregate function, 3657 ** * the aggregate function is either min() or max(), and 3658 ** * the argument to the aggregate function is a column value. 3659 ** 3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3662 ** list of arguments passed to the aggregate before returning. 3663 ** 3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3665 ** WHERE_ORDERBY_NORMAL is returned. 3666 */ 3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3668 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3669 3670 *ppMinMax = 0; 3671 if( pAggInfo->nFunc==1 ){ 3672 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3673 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3674 3675 assert( pExpr->op==TK_AGG_FUNCTION ); 3676 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3677 const char *zFunc = pExpr->u.zToken; 3678 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3679 eRet = WHERE_ORDERBY_MIN; 3680 *ppMinMax = pEList; 3681 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3682 eRet = WHERE_ORDERBY_MAX; 3683 *ppMinMax = pEList; 3684 } 3685 } 3686 } 3687 3688 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3689 return eRet; 3690 } 3691 3692 /* 3693 ** The select statement passed as the first argument is an aggregate query. 3694 ** The second argument is the associated aggregate-info object. This 3695 ** function tests if the SELECT is of the form: 3696 ** 3697 ** SELECT count(*) FROM <tbl> 3698 ** 3699 ** where table is a database table, not a sub-select or view. If the query 3700 ** does match this pattern, then a pointer to the Table object representing 3701 ** <tbl> is returned. Otherwise, 0 is returned. 3702 */ 3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3704 Table *pTab; 3705 Expr *pExpr; 3706 3707 assert( !p->pGroupBy ); 3708 3709 if( p->pWhere || p->pEList->nExpr!=1 3710 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3711 ){ 3712 return 0; 3713 } 3714 pTab = p->pSrc->a[0].pTab; 3715 pExpr = p->pEList->a[0].pExpr; 3716 assert( pTab && !pTab->pSelect && pExpr ); 3717 3718 if( IsVirtual(pTab) ) return 0; 3719 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3720 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3721 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3722 if( pExpr->flags&EP_Distinct ) return 0; 3723 3724 return pTab; 3725 } 3726 3727 /* 3728 ** If the source-list item passed as an argument was augmented with an 3729 ** INDEXED BY clause, then try to locate the specified index. If there 3730 ** was such a clause and the named index cannot be found, return 3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3732 ** pFrom->pIndex and return SQLITE_OK. 3733 */ 3734 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3735 if( pFrom->pTab && pFrom->zIndex ){ 3736 Table *pTab = pFrom->pTab; 3737 char *zIndex = pFrom->zIndex; 3738 Index *pIdx; 3739 for(pIdx=pTab->pIndex; 3740 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3741 pIdx=pIdx->pNext 3742 ); 3743 if( !pIdx ){ 3744 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3745 pParse->checkSchema = 1; 3746 return SQLITE_ERROR; 3747 } 3748 pFrom->pIndex = pIdx; 3749 } 3750 return SQLITE_OK; 3751 } 3752 /* 3753 ** Detect compound SELECT statements that use an ORDER BY clause with 3754 ** an alternative collating sequence. 3755 ** 3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3757 ** 3758 ** These are rewritten as a subquery: 3759 ** 3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3761 ** ORDER BY ... COLLATE ... 3762 ** 3763 ** This transformation is necessary because the multiSelectOrderBy() routine 3764 ** above that generates the code for a compound SELECT with an ORDER BY clause 3765 ** uses a merge algorithm that requires the same collating sequence on the 3766 ** result columns as on the ORDER BY clause. See ticket 3767 ** http://www.sqlite.org/src/info/6709574d2a 3768 ** 3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3771 ** there are COLLATE terms in the ORDER BY. 3772 */ 3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3774 int i; 3775 Select *pNew; 3776 Select *pX; 3777 sqlite3 *db; 3778 struct ExprList_item *a; 3779 SrcList *pNewSrc; 3780 Parse *pParse; 3781 Token dummy; 3782 3783 if( p->pPrior==0 ) return WRC_Continue; 3784 if( p->pOrderBy==0 ) return WRC_Continue; 3785 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3786 if( pX==0 ) return WRC_Continue; 3787 a = p->pOrderBy->a; 3788 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3789 if( a[i].pExpr->flags & EP_Collate ) break; 3790 } 3791 if( i<0 ) return WRC_Continue; 3792 3793 /* If we reach this point, that means the transformation is required. */ 3794 3795 pParse = pWalker->pParse; 3796 db = pParse->db; 3797 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3798 if( pNew==0 ) return WRC_Abort; 3799 memset(&dummy, 0, sizeof(dummy)); 3800 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3801 if( pNewSrc==0 ) return WRC_Abort; 3802 *pNew = *p; 3803 p->pSrc = pNewSrc; 3804 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3805 p->op = TK_SELECT; 3806 p->pWhere = 0; 3807 pNew->pGroupBy = 0; 3808 pNew->pHaving = 0; 3809 pNew->pOrderBy = 0; 3810 p->pPrior = 0; 3811 p->pNext = 0; 3812 p->selFlags &= ~SF_Compound; 3813 assert( pNew->pPrior!=0 ); 3814 pNew->pPrior->pNext = pNew; 3815 pNew->pLimit = 0; 3816 pNew->pOffset = 0; 3817 return WRC_Continue; 3818 } 3819 3820 #ifndef SQLITE_OMIT_CTE 3821 /* 3822 ** Argument pWith (which may be NULL) points to a linked list of nested 3823 ** WITH contexts, from inner to outermost. If the table identified by 3824 ** FROM clause element pItem is really a common-table-expression (CTE) 3825 ** then return a pointer to the CTE definition for that table. Otherwise 3826 ** return NULL. 3827 ** 3828 ** If a non-NULL value is returned, set *ppContext to point to the With 3829 ** object that the returned CTE belongs to. 3830 */ 3831 static struct Cte *searchWith( 3832 With *pWith, /* Current outermost WITH clause */ 3833 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3834 With **ppContext /* OUT: WITH clause return value belongs to */ 3835 ){ 3836 const char *zName; 3837 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3838 With *p; 3839 for(p=pWith; p; p=p->pOuter){ 3840 int i; 3841 for(i=0; i<p->nCte; i++){ 3842 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3843 *ppContext = p; 3844 return &p->a[i]; 3845 } 3846 } 3847 } 3848 } 3849 return 0; 3850 } 3851 3852 /* The code generator maintains a stack of active WITH clauses 3853 ** with the inner-most WITH clause being at the top of the stack. 3854 ** 3855 ** This routine pushes the WITH clause passed as the second argument 3856 ** onto the top of the stack. If argument bFree is true, then this 3857 ** WITH clause will never be popped from the stack. In this case it 3858 ** should be freed along with the Parse object. In other cases, when 3859 ** bFree==0, the With object will be freed along with the SELECT 3860 ** statement with which it is associated. 3861 */ 3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3863 assert( bFree==0 || pParse->pWith==0 ); 3864 if( pWith ){ 3865 pWith->pOuter = pParse->pWith; 3866 pParse->pWith = pWith; 3867 pParse->bFreeWith = bFree; 3868 } 3869 } 3870 3871 /* 3872 ** This function checks if argument pFrom refers to a CTE declared by 3873 ** a WITH clause on the stack currently maintained by the parser. And, 3874 ** if currently processing a CTE expression, if it is a recursive 3875 ** reference to the current CTE. 3876 ** 3877 ** If pFrom falls into either of the two categories above, pFrom->pTab 3878 ** and other fields are populated accordingly. The caller should check 3879 ** (pFrom->pTab!=0) to determine whether or not a successful match 3880 ** was found. 3881 ** 3882 ** Whether or not a match is found, SQLITE_OK is returned if no error 3883 ** occurs. If an error does occur, an error message is stored in the 3884 ** parser and some error code other than SQLITE_OK returned. 3885 */ 3886 static int withExpand( 3887 Walker *pWalker, 3888 struct SrcList_item *pFrom 3889 ){ 3890 Parse *pParse = pWalker->pParse; 3891 sqlite3 *db = pParse->db; 3892 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3893 With *pWith; /* WITH clause that pCte belongs to */ 3894 3895 assert( pFrom->pTab==0 ); 3896 3897 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3898 if( pCte ){ 3899 Table *pTab; 3900 ExprList *pEList; 3901 Select *pSel; 3902 Select *pLeft; /* Left-most SELECT statement */ 3903 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3904 With *pSavedWith; /* Initial value of pParse->pWith */ 3905 3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3907 ** recursive reference to CTE pCte. Leave an error in pParse and return 3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3909 ** In this case, proceed. */ 3910 if( pCte->zErr ){ 3911 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3912 return SQLITE_ERROR; 3913 } 3914 3915 assert( pFrom->pTab==0 ); 3916 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3917 if( pTab==0 ) return WRC_Abort; 3918 pTab->nRef = 1; 3919 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3920 pTab->iPKey = -1; 3921 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3922 pTab->tabFlags |= TF_Ephemeral; 3923 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3924 if( db->mallocFailed ) return SQLITE_NOMEM; 3925 assert( pFrom->pSelect ); 3926 3927 /* Check if this is a recursive CTE. */ 3928 pSel = pFrom->pSelect; 3929 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3930 if( bMayRecursive ){ 3931 int i; 3932 SrcList *pSrc = pFrom->pSelect->pSrc; 3933 for(i=0; i<pSrc->nSrc; i++){ 3934 struct SrcList_item *pItem = &pSrc->a[i]; 3935 if( pItem->zDatabase==0 3936 && pItem->zName!=0 3937 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3938 ){ 3939 pItem->pTab = pTab; 3940 pItem->isRecursive = 1; 3941 pTab->nRef++; 3942 pSel->selFlags |= SF_Recursive; 3943 } 3944 } 3945 } 3946 3947 /* Only one recursive reference is permitted. */ 3948 if( pTab->nRef>2 ){ 3949 sqlite3ErrorMsg( 3950 pParse, "multiple references to recursive table: %s", pCte->zName 3951 ); 3952 return SQLITE_ERROR; 3953 } 3954 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3955 3956 pCte->zErr = "circular reference: %s"; 3957 pSavedWith = pParse->pWith; 3958 pParse->pWith = pWith; 3959 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3960 3961 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3962 pEList = pLeft->pEList; 3963 if( pCte->pCols ){ 3964 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3965 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3966 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3967 ); 3968 pParse->pWith = pSavedWith; 3969 return SQLITE_ERROR; 3970 } 3971 pEList = pCte->pCols; 3972 } 3973 3974 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3975 if( bMayRecursive ){ 3976 if( pSel->selFlags & SF_Recursive ){ 3977 pCte->zErr = "multiple recursive references: %s"; 3978 }else{ 3979 pCte->zErr = "recursive reference in a subquery: %s"; 3980 } 3981 sqlite3WalkSelect(pWalker, pSel); 3982 } 3983 pCte->zErr = 0; 3984 pParse->pWith = pSavedWith; 3985 } 3986 3987 return SQLITE_OK; 3988 } 3989 #endif 3990 3991 #ifndef SQLITE_OMIT_CTE 3992 /* 3993 ** If the SELECT passed as the second argument has an associated WITH 3994 ** clause, pop it from the stack stored as part of the Parse object. 3995 ** 3996 ** This function is used as the xSelectCallback2() callback by 3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3998 ** names and other FROM clause elements. 3999 */ 4000 static void selectPopWith(Walker *pWalker, Select *p){ 4001 Parse *pParse = pWalker->pParse; 4002 With *pWith = findRightmost(p)->pWith; 4003 if( pWith!=0 ){ 4004 assert( pParse->pWith==pWith ); 4005 pParse->pWith = pWith->pOuter; 4006 } 4007 } 4008 #else 4009 #define selectPopWith 0 4010 #endif 4011 4012 /* 4013 ** This routine is a Walker callback for "expanding" a SELECT statement. 4014 ** "Expanding" means to do the following: 4015 ** 4016 ** (1) Make sure VDBE cursor numbers have been assigned to every 4017 ** element of the FROM clause. 4018 ** 4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4020 ** defines FROM clause. When views appear in the FROM clause, 4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4022 ** that implements the view. A copy is made of the view's SELECT 4023 ** statement so that we can freely modify or delete that statement 4024 ** without worrying about messing up the persistent representation 4025 ** of the view. 4026 ** 4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4028 ** on joins and the ON and USING clause of joins. 4029 ** 4030 ** (4) Scan the list of columns in the result set (pEList) looking 4031 ** for instances of the "*" operator or the TABLE.* operator. 4032 ** If found, expand each "*" to be every column in every table 4033 ** and TABLE.* to be every column in TABLE. 4034 ** 4035 */ 4036 static int selectExpander(Walker *pWalker, Select *p){ 4037 Parse *pParse = pWalker->pParse; 4038 int i, j, k; 4039 SrcList *pTabList; 4040 ExprList *pEList; 4041 struct SrcList_item *pFrom; 4042 sqlite3 *db = pParse->db; 4043 Expr *pE, *pRight, *pExpr; 4044 u16 selFlags = p->selFlags; 4045 4046 p->selFlags |= SF_Expanded; 4047 if( db->mallocFailed ){ 4048 return WRC_Abort; 4049 } 4050 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4051 return WRC_Prune; 4052 } 4053 pTabList = p->pSrc; 4054 pEList = p->pEList; 4055 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4056 4057 /* Make sure cursor numbers have been assigned to all entries in 4058 ** the FROM clause of the SELECT statement. 4059 */ 4060 sqlite3SrcListAssignCursors(pParse, pTabList); 4061 4062 /* Look up every table named in the FROM clause of the select. If 4063 ** an entry of the FROM clause is a subquery instead of a table or view, 4064 ** then create a transient table structure to describe the subquery. 4065 */ 4066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4067 Table *pTab; 4068 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4069 if( pFrom->isRecursive ) continue; 4070 if( pFrom->pTab!=0 ){ 4071 /* This statement has already been prepared. There is no need 4072 ** to go further. */ 4073 assert( i==0 ); 4074 #ifndef SQLITE_OMIT_CTE 4075 selectPopWith(pWalker, p); 4076 #endif 4077 return WRC_Prune; 4078 } 4079 #ifndef SQLITE_OMIT_CTE 4080 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4081 if( pFrom->pTab ) {} else 4082 #endif 4083 if( pFrom->zName==0 ){ 4084 #ifndef SQLITE_OMIT_SUBQUERY 4085 Select *pSel = pFrom->pSelect; 4086 /* A sub-query in the FROM clause of a SELECT */ 4087 assert( pSel!=0 ); 4088 assert( pFrom->pTab==0 ); 4089 sqlite3WalkSelect(pWalker, pSel); 4090 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4091 if( pTab==0 ) return WRC_Abort; 4092 pTab->nRef = 1; 4093 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4094 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4095 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4096 pTab->iPKey = -1; 4097 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4098 pTab->tabFlags |= TF_Ephemeral; 4099 #endif 4100 }else{ 4101 /* An ordinary table or view name in the FROM clause */ 4102 assert( pFrom->pTab==0 ); 4103 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4104 if( pTab==0 ) return WRC_Abort; 4105 if( pTab->nRef==0xffff ){ 4106 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4107 pTab->zName); 4108 pFrom->pTab = 0; 4109 return WRC_Abort; 4110 } 4111 pTab->nRef++; 4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4113 if( pTab->pSelect || IsVirtual(pTab) ){ 4114 /* We reach here if the named table is a really a view */ 4115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4116 assert( pFrom->pSelect==0 ); 4117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4118 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4119 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4120 } 4121 #endif 4122 } 4123 4124 /* Locate the index named by the INDEXED BY clause, if any. */ 4125 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4126 return WRC_Abort; 4127 } 4128 } 4129 4130 /* Process NATURAL keywords, and ON and USING clauses of joins. 4131 */ 4132 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4133 return WRC_Abort; 4134 } 4135 4136 /* For every "*" that occurs in the column list, insert the names of 4137 ** all columns in all tables. And for every TABLE.* insert the names 4138 ** of all columns in TABLE. The parser inserted a special expression 4139 ** with the TK_ALL operator for each "*" that it found in the column list. 4140 ** The following code just has to locate the TK_ALL expressions and expand 4141 ** each one to the list of all columns in all tables. 4142 ** 4143 ** The first loop just checks to see if there are any "*" operators 4144 ** that need expanding. 4145 */ 4146 for(k=0; k<pEList->nExpr; k++){ 4147 pE = pEList->a[k].pExpr; 4148 if( pE->op==TK_ALL ) break; 4149 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4150 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4151 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4152 } 4153 if( k<pEList->nExpr ){ 4154 /* 4155 ** If we get here it means the result set contains one or more "*" 4156 ** operators that need to be expanded. Loop through each expression 4157 ** in the result set and expand them one by one. 4158 */ 4159 struct ExprList_item *a = pEList->a; 4160 ExprList *pNew = 0; 4161 int flags = pParse->db->flags; 4162 int longNames = (flags & SQLITE_FullColNames)!=0 4163 && (flags & SQLITE_ShortColNames)==0; 4164 4165 /* When processing FROM-clause subqueries, it is always the case 4166 ** that full_column_names=OFF and short_column_names=ON. The 4167 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4168 assert( (p->selFlags & SF_NestedFrom)==0 4169 || ((flags & SQLITE_FullColNames)==0 && 4170 (flags & SQLITE_ShortColNames)!=0) ); 4171 4172 for(k=0; k<pEList->nExpr; k++){ 4173 pE = a[k].pExpr; 4174 pRight = pE->pRight; 4175 assert( pE->op!=TK_DOT || pRight!=0 ); 4176 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4177 /* This particular expression does not need to be expanded. 4178 */ 4179 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4180 if( pNew ){ 4181 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4182 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4183 a[k].zName = 0; 4184 a[k].zSpan = 0; 4185 } 4186 a[k].pExpr = 0; 4187 }else{ 4188 /* This expression is a "*" or a "TABLE.*" and needs to be 4189 ** expanded. */ 4190 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4191 char *zTName = 0; /* text of name of TABLE */ 4192 if( pE->op==TK_DOT ){ 4193 assert( pE->pLeft!=0 ); 4194 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4195 zTName = pE->pLeft->u.zToken; 4196 } 4197 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4198 Table *pTab = pFrom->pTab; 4199 Select *pSub = pFrom->pSelect; 4200 char *zTabName = pFrom->zAlias; 4201 const char *zSchemaName = 0; 4202 int iDb; 4203 if( zTabName==0 ){ 4204 zTabName = pTab->zName; 4205 } 4206 if( db->mallocFailed ) break; 4207 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4208 pSub = 0; 4209 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4210 continue; 4211 } 4212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4213 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4214 } 4215 for(j=0; j<pTab->nCol; j++){ 4216 char *zName = pTab->aCol[j].zName; 4217 char *zColname; /* The computed column name */ 4218 char *zToFree; /* Malloced string that needs to be freed */ 4219 Token sColname; /* Computed column name as a token */ 4220 4221 assert( zName ); 4222 if( zTName && pSub 4223 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4224 ){ 4225 continue; 4226 } 4227 4228 /* If a column is marked as 'hidden' (currently only possible 4229 ** for virtual tables), do not include it in the expanded 4230 ** result-set list. 4231 */ 4232 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4233 assert(IsVirtual(pTab)); 4234 continue; 4235 } 4236 tableSeen = 1; 4237 4238 if( i>0 && zTName==0 ){ 4239 if( (pFrom->jointype & JT_NATURAL)!=0 4240 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4241 ){ 4242 /* In a NATURAL join, omit the join columns from the 4243 ** table to the right of the join */ 4244 continue; 4245 } 4246 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4247 /* In a join with a USING clause, omit columns in the 4248 ** using clause from the table on the right. */ 4249 continue; 4250 } 4251 } 4252 pRight = sqlite3Expr(db, TK_ID, zName); 4253 zColname = zName; 4254 zToFree = 0; 4255 if( longNames || pTabList->nSrc>1 ){ 4256 Expr *pLeft; 4257 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4258 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4259 if( zSchemaName ){ 4260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4262 } 4263 if( longNames ){ 4264 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4265 zToFree = zColname; 4266 } 4267 }else{ 4268 pExpr = pRight; 4269 } 4270 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4271 sColname.z = zColname; 4272 sColname.n = sqlite3Strlen30(zColname); 4273 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4274 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4275 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4276 if( pSub ){ 4277 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4278 testcase( pX->zSpan==0 ); 4279 }else{ 4280 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4281 zSchemaName, zTabName, zColname); 4282 testcase( pX->zSpan==0 ); 4283 } 4284 pX->bSpanIsTab = 1; 4285 } 4286 sqlite3DbFree(db, zToFree); 4287 } 4288 } 4289 if( !tableSeen ){ 4290 if( zTName ){ 4291 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4292 }else{ 4293 sqlite3ErrorMsg(pParse, "no tables specified"); 4294 } 4295 } 4296 } 4297 } 4298 sqlite3ExprListDelete(db, pEList); 4299 p->pEList = pNew; 4300 } 4301 #if SQLITE_MAX_COLUMN 4302 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4303 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4304 } 4305 #endif 4306 return WRC_Continue; 4307 } 4308 4309 /* 4310 ** No-op routine for the parse-tree walker. 4311 ** 4312 ** When this routine is the Walker.xExprCallback then expression trees 4313 ** are walked without any actions being taken at each node. Presumably, 4314 ** when this routine is used for Walker.xExprCallback then 4315 ** Walker.xSelectCallback is set to do something useful for every 4316 ** subquery in the parser tree. 4317 */ 4318 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4319 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4320 return WRC_Continue; 4321 } 4322 4323 /* 4324 ** This routine "expands" a SELECT statement and all of its subqueries. 4325 ** For additional information on what it means to "expand" a SELECT 4326 ** statement, see the comment on the selectExpand worker callback above. 4327 ** 4328 ** Expanding a SELECT statement is the first step in processing a 4329 ** SELECT statement. The SELECT statement must be expanded before 4330 ** name resolution is performed. 4331 ** 4332 ** If anything goes wrong, an error message is written into pParse. 4333 ** The calling function can detect the problem by looking at pParse->nErr 4334 ** and/or pParse->db->mallocFailed. 4335 */ 4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4337 Walker w; 4338 memset(&w, 0, sizeof(w)); 4339 w.xExprCallback = exprWalkNoop; 4340 w.pParse = pParse; 4341 if( pParse->hasCompound ){ 4342 w.xSelectCallback = convertCompoundSelectToSubquery; 4343 sqlite3WalkSelect(&w, pSelect); 4344 } 4345 w.xSelectCallback = selectExpander; 4346 w.xSelectCallback2 = selectPopWith; 4347 sqlite3WalkSelect(&w, pSelect); 4348 } 4349 4350 4351 #ifndef SQLITE_OMIT_SUBQUERY 4352 /* 4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4354 ** interface. 4355 ** 4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4357 ** information to the Table structure that represents the result set 4358 ** of that subquery. 4359 ** 4360 ** The Table structure that represents the result set was constructed 4361 ** by selectExpander() but the type and collation information was omitted 4362 ** at that point because identifiers had not yet been resolved. This 4363 ** routine is called after identifier resolution. 4364 */ 4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4366 Parse *pParse; 4367 int i; 4368 SrcList *pTabList; 4369 struct SrcList_item *pFrom; 4370 4371 assert( p->selFlags & SF_Resolved ); 4372 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4373 p->selFlags |= SF_HasTypeInfo; 4374 pParse = pWalker->pParse; 4375 pTabList = p->pSrc; 4376 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4377 Table *pTab = pFrom->pTab; 4378 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4379 /* A sub-query in the FROM clause of a SELECT */ 4380 Select *pSel = pFrom->pSelect; 4381 if( pSel ){ 4382 while( pSel->pPrior ) pSel = pSel->pPrior; 4383 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4384 } 4385 } 4386 } 4387 } 4388 } 4389 #endif 4390 4391 4392 /* 4393 ** This routine adds datatype and collating sequence information to 4394 ** the Table structures of all FROM-clause subqueries in a 4395 ** SELECT statement. 4396 ** 4397 ** Use this routine after name resolution. 4398 */ 4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4400 #ifndef SQLITE_OMIT_SUBQUERY 4401 Walker w; 4402 memset(&w, 0, sizeof(w)); 4403 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4404 w.xExprCallback = exprWalkNoop; 4405 w.pParse = pParse; 4406 sqlite3WalkSelect(&w, pSelect); 4407 #endif 4408 } 4409 4410 4411 /* 4412 ** This routine sets up a SELECT statement for processing. The 4413 ** following is accomplished: 4414 ** 4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4417 ** * ON and USING clauses are shifted into WHERE statements 4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4419 ** * Identifiers in expression are matched to tables. 4420 ** 4421 ** This routine acts recursively on all subqueries within the SELECT. 4422 */ 4423 void sqlite3SelectPrep( 4424 Parse *pParse, /* The parser context */ 4425 Select *p, /* The SELECT statement being coded. */ 4426 NameContext *pOuterNC /* Name context for container */ 4427 ){ 4428 sqlite3 *db; 4429 if( NEVER(p==0) ) return; 4430 db = pParse->db; 4431 if( db->mallocFailed ) return; 4432 if( p->selFlags & SF_HasTypeInfo ) return; 4433 sqlite3SelectExpand(pParse, p); 4434 if( pParse->nErr || db->mallocFailed ) return; 4435 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4436 if( pParse->nErr || db->mallocFailed ) return; 4437 sqlite3SelectAddTypeInfo(pParse, p); 4438 } 4439 4440 /* 4441 ** Reset the aggregate accumulator. 4442 ** 4443 ** The aggregate accumulator is a set of memory cells that hold 4444 ** intermediate results while calculating an aggregate. This 4445 ** routine generates code that stores NULLs in all of those memory 4446 ** cells. 4447 */ 4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4449 Vdbe *v = pParse->pVdbe; 4450 int i; 4451 struct AggInfo_func *pFunc; 4452 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4453 if( nReg==0 ) return; 4454 #ifdef SQLITE_DEBUG 4455 /* Verify that all AggInfo registers are within the range specified by 4456 ** AggInfo.mnReg..AggInfo.mxReg */ 4457 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4458 for(i=0; i<pAggInfo->nColumn; i++){ 4459 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4460 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4461 } 4462 for(i=0; i<pAggInfo->nFunc; i++){ 4463 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4464 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4465 } 4466 #endif 4467 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4468 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4469 if( pFunc->iDistinct>=0 ){ 4470 Expr *pE = pFunc->pExpr; 4471 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4472 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4473 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4474 "argument"); 4475 pFunc->iDistinct = -1; 4476 }else{ 4477 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4478 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4479 (char*)pKeyInfo, P4_KEYINFO); 4480 } 4481 } 4482 } 4483 } 4484 4485 /* 4486 ** Invoke the OP_AggFinalize opcode for every aggregate function 4487 ** in the AggInfo structure. 4488 */ 4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4490 Vdbe *v = pParse->pVdbe; 4491 int i; 4492 struct AggInfo_func *pF; 4493 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4494 ExprList *pList = pF->pExpr->x.pList; 4495 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4496 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4497 (void*)pF->pFunc, P4_FUNCDEF); 4498 } 4499 } 4500 4501 /* 4502 ** Update the accumulator memory cells for an aggregate based on 4503 ** the current cursor position. 4504 */ 4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4506 Vdbe *v = pParse->pVdbe; 4507 int i; 4508 int regHit = 0; 4509 int addrHitTest = 0; 4510 struct AggInfo_func *pF; 4511 struct AggInfo_col *pC; 4512 4513 pAggInfo->directMode = 1; 4514 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4515 int nArg; 4516 int addrNext = 0; 4517 int regAgg; 4518 ExprList *pList = pF->pExpr->x.pList; 4519 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4520 if( pList ){ 4521 nArg = pList->nExpr; 4522 regAgg = sqlite3GetTempRange(pParse, nArg); 4523 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4524 }else{ 4525 nArg = 0; 4526 regAgg = 0; 4527 } 4528 if( pF->iDistinct>=0 ){ 4529 addrNext = sqlite3VdbeMakeLabel(v); 4530 assert( nArg==1 ); 4531 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4532 } 4533 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4534 CollSeq *pColl = 0; 4535 struct ExprList_item *pItem; 4536 int j; 4537 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4538 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4539 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4540 } 4541 if( !pColl ){ 4542 pColl = pParse->db->pDfltColl; 4543 } 4544 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4545 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4546 } 4547 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4548 (void*)pF->pFunc, P4_FUNCDEF); 4549 sqlite3VdbeChangeP5(v, (u8)nArg); 4550 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4551 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4552 if( addrNext ){ 4553 sqlite3VdbeResolveLabel(v, addrNext); 4554 sqlite3ExprCacheClear(pParse); 4555 } 4556 } 4557 4558 /* Before populating the accumulator registers, clear the column cache. 4559 ** Otherwise, if any of the required column values are already present 4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4561 ** to pC->iMem. But by the time the value is used, the original register 4562 ** may have been used, invalidating the underlying buffer holding the 4563 ** text or blob value. See ticket [883034dcb5]. 4564 ** 4565 ** Another solution would be to change the OP_SCopy used to copy cached 4566 ** values to an OP_Copy. 4567 */ 4568 if( regHit ){ 4569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4570 } 4571 sqlite3ExprCacheClear(pParse); 4572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4573 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4574 } 4575 pAggInfo->directMode = 0; 4576 sqlite3ExprCacheClear(pParse); 4577 if( addrHitTest ){ 4578 sqlite3VdbeJumpHere(v, addrHitTest); 4579 } 4580 } 4581 4582 /* 4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4584 ** count(*) query ("SELECT count(*) FROM pTab"). 4585 */ 4586 #ifndef SQLITE_OMIT_EXPLAIN 4587 static void explainSimpleCount( 4588 Parse *pParse, /* Parse context */ 4589 Table *pTab, /* Table being queried */ 4590 Index *pIdx /* Index used to optimize scan, or NULL */ 4591 ){ 4592 if( pParse->explain==2 ){ 4593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4594 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4595 pTab->zName, 4596 bCover ? " USING COVERING INDEX " : "", 4597 bCover ? pIdx->zName : "" 4598 ); 4599 sqlite3VdbeAddOp4( 4600 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4601 ); 4602 } 4603 } 4604 #else 4605 # define explainSimpleCount(a,b,c) 4606 #endif 4607 4608 /* 4609 ** Generate code for the SELECT statement given in the p argument. 4610 ** 4611 ** The results are returned according to the SelectDest structure. 4612 ** See comments in sqliteInt.h for further information. 4613 ** 4614 ** This routine returns the number of errors. If any errors are 4615 ** encountered, then an appropriate error message is left in 4616 ** pParse->zErrMsg. 4617 ** 4618 ** This routine does NOT free the Select structure passed in. The 4619 ** calling function needs to do that. 4620 */ 4621 int sqlite3Select( 4622 Parse *pParse, /* The parser context */ 4623 Select *p, /* The SELECT statement being coded. */ 4624 SelectDest *pDest /* What to do with the query results */ 4625 ){ 4626 int i, j; /* Loop counters */ 4627 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4628 Vdbe *v; /* The virtual machine under construction */ 4629 int isAgg; /* True for select lists like "count(*)" */ 4630 ExprList *pEList; /* List of columns to extract. */ 4631 SrcList *pTabList; /* List of tables to select from */ 4632 Expr *pWhere; /* The WHERE clause. May be NULL */ 4633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4634 Expr *pHaving; /* The HAVING clause. May be NULL */ 4635 int rc = 1; /* Value to return from this function */ 4636 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4637 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4638 AggInfo sAggInfo; /* Information used by aggregate queries */ 4639 int iEnd; /* Address of the end of the query */ 4640 sqlite3 *db; /* The database connection */ 4641 4642 #ifndef SQLITE_OMIT_EXPLAIN 4643 int iRestoreSelectId = pParse->iSelectId; 4644 pParse->iSelectId = pParse->iNextSelectId++; 4645 #endif 4646 4647 db = pParse->db; 4648 if( p==0 || db->mallocFailed || pParse->nErr ){ 4649 return 1; 4650 } 4651 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4652 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4653 #if SELECTTRACE_ENABLED 4654 pParse->nSelectIndent++; 4655 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4656 if( sqlite3SelectTrace & 0x100 ){ 4657 sqlite3TreeViewSelect(0, p, 0); 4658 } 4659 #endif 4660 4661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4664 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4665 if( IgnorableOrderby(pDest) ){ 4666 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4667 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4668 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4669 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4670 /* If ORDER BY makes no difference in the output then neither does 4671 ** DISTINCT so it can be removed too. */ 4672 sqlite3ExprListDelete(db, p->pOrderBy); 4673 p->pOrderBy = 0; 4674 p->selFlags &= ~SF_Distinct; 4675 } 4676 sqlite3SelectPrep(pParse, p, 0); 4677 memset(&sSort, 0, sizeof(sSort)); 4678 sSort.pOrderBy = p->pOrderBy; 4679 pTabList = p->pSrc; 4680 pEList = p->pEList; 4681 if( pParse->nErr || db->mallocFailed ){ 4682 goto select_end; 4683 } 4684 isAgg = (p->selFlags & SF_Aggregate)!=0; 4685 assert( pEList!=0 ); 4686 4687 /* Begin generating code. 4688 */ 4689 v = sqlite3GetVdbe(pParse); 4690 if( v==0 ) goto select_end; 4691 4692 /* If writing to memory or generating a set 4693 ** only a single column may be output. 4694 */ 4695 #ifndef SQLITE_OMIT_SUBQUERY 4696 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4697 goto select_end; 4698 } 4699 #endif 4700 4701 /* Generate code for all sub-queries in the FROM clause 4702 */ 4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4704 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4705 struct SrcList_item *pItem = &pTabList->a[i]; 4706 SelectDest dest; 4707 Select *pSub = pItem->pSelect; 4708 int isAggSub; 4709 4710 if( pSub==0 ) continue; 4711 4712 /* Sometimes the code for a subquery will be generated more than 4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4714 ** for example. In that case, do not regenerate the code to manifest 4715 ** a view or the co-routine to implement a view. The first instance 4716 ** is sufficient, though the subroutine to manifest the view does need 4717 ** to be invoked again. */ 4718 if( pItem->addrFillSub ){ 4719 if( pItem->viaCoroutine==0 ){ 4720 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4721 } 4722 continue; 4723 } 4724 4725 /* Increment Parse.nHeight by the height of the largest expression 4726 ** tree referred to by this, the parent select. The child select 4727 ** may contain expression trees of at most 4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4729 ** more conservative than necessary, but much easier than enforcing 4730 ** an exact limit. 4731 */ 4732 pParse->nHeight += sqlite3SelectExprHeight(p); 4733 4734 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4735 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4736 /* This subquery can be absorbed into its parent. */ 4737 if( isAggSub ){ 4738 isAgg = 1; 4739 p->selFlags |= SF_Aggregate; 4740 } 4741 i = -1; 4742 }else if( pTabList->nSrc==1 4743 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4744 ){ 4745 /* Implement a co-routine that will return a single row of the result 4746 ** set on each invocation. 4747 */ 4748 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4749 pItem->regReturn = ++pParse->nMem; 4750 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4751 VdbeComment((v, "%s", pItem->pTab->zName)); 4752 pItem->addrFillSub = addrTop; 4753 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4754 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4755 sqlite3Select(pParse, pSub, &dest); 4756 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4757 pItem->viaCoroutine = 1; 4758 pItem->regResult = dest.iSdst; 4759 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4760 sqlite3VdbeJumpHere(v, addrTop-1); 4761 sqlite3ClearTempRegCache(pParse); 4762 }else{ 4763 /* Generate a subroutine that will fill an ephemeral table with 4764 ** the content of this subquery. pItem->addrFillSub will point 4765 ** to the address of the generated subroutine. pItem->regReturn 4766 ** is a register allocated to hold the subroutine return address 4767 */ 4768 int topAddr; 4769 int onceAddr = 0; 4770 int retAddr; 4771 assert( pItem->addrFillSub==0 ); 4772 pItem->regReturn = ++pParse->nMem; 4773 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4774 pItem->addrFillSub = topAddr+1; 4775 if( pItem->isCorrelated==0 ){ 4776 /* If the subquery is not correlated and if we are not inside of 4777 ** a trigger, then we only need to compute the value of the subquery 4778 ** once. */ 4779 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4780 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4781 }else{ 4782 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4783 } 4784 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4785 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4786 sqlite3Select(pParse, pSub, &dest); 4787 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4788 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4789 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4790 VdbeComment((v, "end %s", pItem->pTab->zName)); 4791 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4792 sqlite3ClearTempRegCache(pParse); 4793 } 4794 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4795 goto select_end; 4796 } 4797 pParse->nHeight -= sqlite3SelectExprHeight(p); 4798 pTabList = p->pSrc; 4799 if( !IgnorableOrderby(pDest) ){ 4800 sSort.pOrderBy = p->pOrderBy; 4801 } 4802 } 4803 pEList = p->pEList; 4804 #endif 4805 pWhere = p->pWhere; 4806 pGroupBy = p->pGroupBy; 4807 pHaving = p->pHaving; 4808 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4809 4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4811 /* If there is are a sequence of queries, do the earlier ones first. 4812 */ 4813 if( p->pPrior ){ 4814 rc = multiSelect(pParse, p, pDest); 4815 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4816 #if SELECTTRACE_ENABLED 4817 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4818 pParse->nSelectIndent--; 4819 #endif 4820 return rc; 4821 } 4822 #endif 4823 4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4825 ** if the select-list is the same as the ORDER BY list, then this query 4826 ** can be rewritten as a GROUP BY. In other words, this: 4827 ** 4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4829 ** 4830 ** is transformed to: 4831 ** 4832 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 4833 ** 4834 ** The second form is preferred as a single index (or temp-table) may be 4835 ** used for both the ORDER BY and DISTINCT processing. As originally 4836 ** written the query must use a temp-table for at least one of the ORDER 4837 ** BY and DISTINCT, and an index or separate temp-table for the other. 4838 */ 4839 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4840 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4841 ){ 4842 p->selFlags &= ~SF_Distinct; 4843 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4844 pGroupBy = p->pGroupBy; 4845 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4846 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4847 ** original setting of the SF_Distinct flag, not the current setting */ 4848 assert( sDistinct.isTnct ); 4849 } 4850 4851 /* If there is an ORDER BY clause, then this sorting 4852 ** index might end up being unused if the data can be 4853 ** extracted in pre-sorted order. If that is the case, then the 4854 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4855 ** we figure out that the sorting index is not needed. The addrSortIndex 4856 ** variable is used to facilitate that change. 4857 */ 4858 if( sSort.pOrderBy ){ 4859 KeyInfo *pKeyInfo; 4860 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4861 sSort.iECursor = pParse->nTab++; 4862 sSort.addrSortIndex = 4863 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4864 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4865 (char*)pKeyInfo, P4_KEYINFO 4866 ); 4867 }else{ 4868 sSort.addrSortIndex = -1; 4869 } 4870 4871 /* If the output is destined for a temporary table, open that table. 4872 */ 4873 if( pDest->eDest==SRT_EphemTab ){ 4874 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4875 } 4876 4877 /* Set the limiter. 4878 */ 4879 iEnd = sqlite3VdbeMakeLabel(v); 4880 p->nSelectRow = LARGEST_INT64; 4881 computeLimitRegisters(pParse, p, iEnd); 4882 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4883 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4884 sSort.sortFlags |= SORTFLAG_UseSorter; 4885 } 4886 4887 /* Open a virtual index to use for the distinct set. 4888 */ 4889 if( p->selFlags & SF_Distinct ){ 4890 sDistinct.tabTnct = pParse->nTab++; 4891 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4892 sDistinct.tabTnct, 0, 0, 4893 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4894 P4_KEYINFO); 4895 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4896 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4897 }else{ 4898 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4899 } 4900 4901 if( !isAgg && pGroupBy==0 ){ 4902 /* No aggregate functions and no GROUP BY clause */ 4903 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4904 4905 /* Begin the database scan. */ 4906 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4907 p->pEList, wctrlFlags, 0); 4908 if( pWInfo==0 ) goto select_end; 4909 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4910 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4911 } 4912 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4913 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4914 } 4915 if( sSort.pOrderBy ){ 4916 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4917 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4918 sSort.pOrderBy = 0; 4919 } 4920 } 4921 4922 /* If sorting index that was created by a prior OP_OpenEphemeral 4923 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4924 ** into an OP_Noop. 4925 */ 4926 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4927 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4928 } 4929 4930 /* Use the standard inner loop. */ 4931 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4932 sqlite3WhereContinueLabel(pWInfo), 4933 sqlite3WhereBreakLabel(pWInfo)); 4934 4935 /* End the database scan loop. 4936 */ 4937 sqlite3WhereEnd(pWInfo); 4938 }else{ 4939 /* This case when there exist aggregate functions or a GROUP BY clause 4940 ** or both */ 4941 NameContext sNC; /* Name context for processing aggregate information */ 4942 int iAMem; /* First Mem address for storing current GROUP BY */ 4943 int iBMem; /* First Mem address for previous GROUP BY */ 4944 int iUseFlag; /* Mem address holding flag indicating that at least 4945 ** one row of the input to the aggregator has been 4946 ** processed */ 4947 int iAbortFlag; /* Mem address which causes query abort if positive */ 4948 int groupBySort; /* Rows come from source in GROUP BY order */ 4949 int addrEnd; /* End of processing for this SELECT */ 4950 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4951 int sortOut = 0; /* Output register from the sorter */ 4952 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 4953 4954 /* Remove any and all aliases between the result set and the 4955 ** GROUP BY clause. 4956 */ 4957 if( pGroupBy ){ 4958 int k; /* Loop counter */ 4959 struct ExprList_item *pItem; /* For looping over expression in a list */ 4960 4961 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4962 pItem->u.x.iAlias = 0; 4963 } 4964 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4965 pItem->u.x.iAlias = 0; 4966 } 4967 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4968 }else{ 4969 p->nSelectRow = 1; 4970 } 4971 4972 4973 /* If there is both a GROUP BY and an ORDER BY clause and they are 4974 ** identical, then it may be possible to disable the ORDER BY clause 4975 ** on the grounds that the GROUP BY will cause elements to come out 4976 ** in the correct order. It also may not - the GROUP BY may use a 4977 ** database index that causes rows to be grouped together as required 4978 ** but not actually sorted. Either way, record the fact that the 4979 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 4980 ** variable. */ 4981 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 4982 orderByGrp = 1; 4983 } 4984 4985 /* Create a label to jump to when we want to abort the query */ 4986 addrEnd = sqlite3VdbeMakeLabel(v); 4987 4988 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4989 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4990 ** SELECT statement. 4991 */ 4992 memset(&sNC, 0, sizeof(sNC)); 4993 sNC.pParse = pParse; 4994 sNC.pSrcList = pTabList; 4995 sNC.pAggInfo = &sAggInfo; 4996 sAggInfo.mnReg = pParse->nMem+1; 4997 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 4998 sAggInfo.pGroupBy = pGroupBy; 4999 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5000 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5001 if( pHaving ){ 5002 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5003 } 5004 sAggInfo.nAccumulator = sAggInfo.nColumn; 5005 for(i=0; i<sAggInfo.nFunc; i++){ 5006 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5007 sNC.ncFlags |= NC_InAggFunc; 5008 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5009 sNC.ncFlags &= ~NC_InAggFunc; 5010 } 5011 sAggInfo.mxReg = pParse->nMem; 5012 if( db->mallocFailed ) goto select_end; 5013 5014 /* Processing for aggregates with GROUP BY is very different and 5015 ** much more complex than aggregates without a GROUP BY. 5016 */ 5017 if( pGroupBy ){ 5018 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5019 int j1; /* A-vs-B comparision jump */ 5020 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5021 int regOutputRow; /* Return address register for output subroutine */ 5022 int addrSetAbort; /* Set the abort flag and return */ 5023 int addrTopOfLoop; /* Top of the input loop */ 5024 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5025 int addrReset; /* Subroutine for resetting the accumulator */ 5026 int regReset; /* Return address register for reset subroutine */ 5027 5028 /* If there is a GROUP BY clause we might need a sorting index to 5029 ** implement it. Allocate that sorting index now. If it turns out 5030 ** that we do not need it after all, the OP_SorterOpen instruction 5031 ** will be converted into a Noop. 5032 */ 5033 sAggInfo.sortingIdx = pParse->nTab++; 5034 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 5035 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5036 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5037 0, (char*)pKeyInfo, P4_KEYINFO); 5038 5039 /* Initialize memory locations used by GROUP BY aggregate processing 5040 */ 5041 iUseFlag = ++pParse->nMem; 5042 iAbortFlag = ++pParse->nMem; 5043 regOutputRow = ++pParse->nMem; 5044 addrOutputRow = sqlite3VdbeMakeLabel(v); 5045 regReset = ++pParse->nMem; 5046 addrReset = sqlite3VdbeMakeLabel(v); 5047 iAMem = pParse->nMem + 1; 5048 pParse->nMem += pGroupBy->nExpr; 5049 iBMem = pParse->nMem + 1; 5050 pParse->nMem += pGroupBy->nExpr; 5051 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5052 VdbeComment((v, "clear abort flag")); 5053 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5054 VdbeComment((v, "indicate accumulator empty")); 5055 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5056 5057 /* Begin a loop that will extract all source rows in GROUP BY order. 5058 ** This might involve two separate loops with an OP_Sort in between, or 5059 ** it might be a single loop that uses an index to extract information 5060 ** in the right order to begin with. 5061 */ 5062 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5063 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5064 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5065 ); 5066 if( pWInfo==0 ) goto select_end; 5067 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5068 /* The optimizer is able to deliver rows in group by order so 5069 ** we do not have to sort. The OP_OpenEphemeral table will be 5070 ** cancelled later because we still need to use the pKeyInfo 5071 */ 5072 groupBySort = 0; 5073 }else{ 5074 /* Rows are coming out in undetermined order. We have to push 5075 ** each row into a sorting index, terminate the first loop, 5076 ** then loop over the sorting index in order to get the output 5077 ** in sorted order 5078 */ 5079 int regBase; 5080 int regRecord; 5081 int nCol; 5082 int nGroupBy; 5083 5084 explainTempTable(pParse, 5085 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5086 "DISTINCT" : "GROUP BY"); 5087 5088 groupBySort = 1; 5089 nGroupBy = pGroupBy->nExpr; 5090 nCol = nGroupBy; 5091 j = nGroupBy; 5092 for(i=0; i<sAggInfo.nColumn; i++){ 5093 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5094 nCol++; 5095 j++; 5096 } 5097 } 5098 regBase = sqlite3GetTempRange(pParse, nCol); 5099 sqlite3ExprCacheClear(pParse); 5100 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5101 j = nGroupBy; 5102 for(i=0; i<sAggInfo.nColumn; i++){ 5103 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5104 if( pCol->iSorterColumn>=j ){ 5105 int r1 = j + regBase; 5106 int r2; 5107 5108 r2 = sqlite3ExprCodeGetColumn(pParse, 5109 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5110 if( r1!=r2 ){ 5111 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5112 } 5113 j++; 5114 } 5115 } 5116 regRecord = sqlite3GetTempReg(pParse); 5117 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5118 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5119 sqlite3ReleaseTempReg(pParse, regRecord); 5120 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5121 sqlite3WhereEnd(pWInfo); 5122 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5123 sortOut = sqlite3GetTempReg(pParse); 5124 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5125 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5126 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5127 sAggInfo.useSortingIdx = 1; 5128 sqlite3ExprCacheClear(pParse); 5129 5130 } 5131 5132 /* If the index or temporary table used by the GROUP BY sort 5133 ** will naturally deliver rows in the order required by the ORDER BY 5134 ** clause, cancel the ephemeral table open coded earlier. 5135 ** 5136 ** This is an optimization - the correct answer should result regardless. 5137 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5138 ** disable this optimization for testing purposes. */ 5139 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5140 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5141 ){ 5142 sSort.pOrderBy = 0; 5143 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5144 } 5145 5146 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5147 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5148 ** Then compare the current GROUP BY terms against the GROUP BY terms 5149 ** from the previous row currently stored in a0, a1, a2... 5150 */ 5151 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5152 sqlite3ExprCacheClear(pParse); 5153 if( groupBySort ){ 5154 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); 5155 } 5156 for(j=0; j<pGroupBy->nExpr; j++){ 5157 if( groupBySort ){ 5158 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5159 }else{ 5160 sAggInfo.directMode = 1; 5161 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5162 } 5163 } 5164 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5165 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5166 j1 = sqlite3VdbeCurrentAddr(v); 5167 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5168 5169 /* Generate code that runs whenever the GROUP BY changes. 5170 ** Changes in the GROUP BY are detected by the previous code 5171 ** block. If there were no changes, this block is skipped. 5172 ** 5173 ** This code copies current group by terms in b0,b1,b2,... 5174 ** over to a0,a1,a2. It then calls the output subroutine 5175 ** and resets the aggregate accumulator registers in preparation 5176 ** for the next GROUP BY batch. 5177 */ 5178 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5179 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5180 VdbeComment((v, "output one row")); 5181 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5182 VdbeComment((v, "check abort flag")); 5183 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5184 VdbeComment((v, "reset accumulator")); 5185 5186 /* Update the aggregate accumulators based on the content of 5187 ** the current row 5188 */ 5189 sqlite3VdbeJumpHere(v, j1); 5190 updateAccumulator(pParse, &sAggInfo); 5191 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5192 VdbeComment((v, "indicate data in accumulator")); 5193 5194 /* End of the loop 5195 */ 5196 if( groupBySort ){ 5197 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5198 VdbeCoverage(v); 5199 }else{ 5200 sqlite3WhereEnd(pWInfo); 5201 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5202 } 5203 5204 /* Output the final row of result 5205 */ 5206 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5207 VdbeComment((v, "output final row")); 5208 5209 /* Jump over the subroutines 5210 */ 5211 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5212 5213 /* Generate a subroutine that outputs a single row of the result 5214 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5215 ** is less than or equal to zero, the subroutine is a no-op. If 5216 ** the processing calls for the query to abort, this subroutine 5217 ** increments the iAbortFlag memory location before returning in 5218 ** order to signal the caller to abort. 5219 */ 5220 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5221 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5222 VdbeComment((v, "set abort flag")); 5223 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5224 sqlite3VdbeResolveLabel(v, addrOutputRow); 5225 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5226 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5227 VdbeComment((v, "Groupby result generator entry point")); 5228 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5229 finalizeAggFunctions(pParse, &sAggInfo); 5230 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5231 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5232 &sDistinct, pDest, 5233 addrOutputRow+1, addrSetAbort); 5234 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5235 VdbeComment((v, "end groupby result generator")); 5236 5237 /* Generate a subroutine that will reset the group-by accumulator 5238 */ 5239 sqlite3VdbeResolveLabel(v, addrReset); 5240 resetAccumulator(pParse, &sAggInfo); 5241 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5242 5243 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5244 else { 5245 ExprList *pDel = 0; 5246 #ifndef SQLITE_OMIT_BTREECOUNT 5247 Table *pTab; 5248 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5249 /* If isSimpleCount() returns a pointer to a Table structure, then 5250 ** the SQL statement is of the form: 5251 ** 5252 ** SELECT count(*) FROM <tbl> 5253 ** 5254 ** where the Table structure returned represents table <tbl>. 5255 ** 5256 ** This statement is so common that it is optimized specially. The 5257 ** OP_Count instruction is executed either on the intkey table that 5258 ** contains the data for table <tbl> or on one of its indexes. It 5259 ** is better to execute the op on an index, as indexes are almost 5260 ** always spread across less pages than their corresponding tables. 5261 */ 5262 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5263 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5264 Index *pIdx; /* Iterator variable */ 5265 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5266 Index *pBest = 0; /* Best index found so far */ 5267 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5268 5269 sqlite3CodeVerifySchema(pParse, iDb); 5270 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5271 5272 /* Search for the index that has the lowest scan cost. 5273 ** 5274 ** (2011-04-15) Do not do a full scan of an unordered index. 5275 ** 5276 ** (2013-10-03) Do not count the entries in a partial index. 5277 ** 5278 ** In practice the KeyInfo structure will not be used. It is only 5279 ** passed to keep OP_OpenRead happy. 5280 */ 5281 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5282 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5283 if( pIdx->bUnordered==0 5284 && pIdx->szIdxRow<pTab->szTabRow 5285 && pIdx->pPartIdxWhere==0 5286 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5287 ){ 5288 pBest = pIdx; 5289 } 5290 } 5291 if( pBest ){ 5292 iRoot = pBest->tnum; 5293 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5294 } 5295 5296 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5297 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5298 if( pKeyInfo ){ 5299 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5300 } 5301 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5302 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5303 explainSimpleCount(pParse, pTab, pBest); 5304 }else 5305 #endif /* SQLITE_OMIT_BTREECOUNT */ 5306 { 5307 /* Check if the query is of one of the following forms: 5308 ** 5309 ** SELECT min(x) FROM ... 5310 ** SELECT max(x) FROM ... 5311 ** 5312 ** If it is, then ask the code in where.c to attempt to sort results 5313 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5314 ** If where.c is able to produce results sorted in this order, then 5315 ** add vdbe code to break out of the processing loop after the 5316 ** first iteration (since the first iteration of the loop is 5317 ** guaranteed to operate on the row with the minimum or maximum 5318 ** value of x, the only row required). 5319 ** 5320 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5321 ** modify behavior as follows: 5322 ** 5323 ** + If the query is a "SELECT min(x)", then the loop coded by 5324 ** where.c should not iterate over any values with a NULL value 5325 ** for x. 5326 ** 5327 ** + The optimizer code in where.c (the thing that decides which 5328 ** index or indices to use) should place a different priority on 5329 ** satisfying the 'ORDER BY' clause than it does in other cases. 5330 ** Refer to code and comments in where.c for details. 5331 */ 5332 ExprList *pMinMax = 0; 5333 u8 flag = WHERE_ORDERBY_NORMAL; 5334 5335 assert( p->pGroupBy==0 ); 5336 assert( flag==0 ); 5337 if( p->pHaving==0 ){ 5338 flag = minMaxQuery(&sAggInfo, &pMinMax); 5339 } 5340 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5341 5342 if( flag ){ 5343 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5344 pDel = pMinMax; 5345 if( pMinMax && !db->mallocFailed ){ 5346 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5347 pMinMax->a[0].pExpr->op = TK_COLUMN; 5348 } 5349 } 5350 5351 /* This case runs if the aggregate has no GROUP BY clause. The 5352 ** processing is much simpler since there is only a single row 5353 ** of output. 5354 */ 5355 resetAccumulator(pParse, &sAggInfo); 5356 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5357 if( pWInfo==0 ){ 5358 sqlite3ExprListDelete(db, pDel); 5359 goto select_end; 5360 } 5361 updateAccumulator(pParse, &sAggInfo); 5362 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5363 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5364 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5365 VdbeComment((v, "%s() by index", 5366 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5367 } 5368 sqlite3WhereEnd(pWInfo); 5369 finalizeAggFunctions(pParse, &sAggInfo); 5370 } 5371 5372 sSort.pOrderBy = 0; 5373 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5374 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5375 pDest, addrEnd, addrEnd); 5376 sqlite3ExprListDelete(db, pDel); 5377 } 5378 sqlite3VdbeResolveLabel(v, addrEnd); 5379 5380 } /* endif aggregate query */ 5381 5382 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5383 explainTempTable(pParse, "DISTINCT"); 5384 } 5385 5386 /* If there is an ORDER BY clause, then we need to sort the results 5387 ** and send them to the callback one by one. 5388 */ 5389 if( sSort.pOrderBy ){ 5390 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5391 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5392 } 5393 5394 /* Jump here to skip this query 5395 */ 5396 sqlite3VdbeResolveLabel(v, iEnd); 5397 5398 /* The SELECT was successfully coded. Set the return code to 0 5399 ** to indicate no errors. 5400 */ 5401 rc = 0; 5402 5403 /* Control jumps to here if an error is encountered above, or upon 5404 ** successful coding of the SELECT. 5405 */ 5406 select_end: 5407 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5408 5409 /* Identify column names if results of the SELECT are to be output. 5410 */ 5411 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5412 generateColumnNames(pParse, pTabList, pEList); 5413 } 5414 5415 sqlite3DbFree(db, sAggInfo.aCol); 5416 sqlite3DbFree(db, sAggInfo.aFunc); 5417 #if SELECTTRACE_ENABLED 5418 SELECTTRACE(1,pParse,p,("end processing\n")); 5419 pParse->nSelectIndent--; 5420 #endif 5421 return rc; 5422 } 5423 5424 #ifdef SQLITE_DEBUG 5425 /* 5426 ** Generate a human-readable description of a the Select object. 5427 */ 5428 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ 5429 int n = 0; 5430 pView = sqlite3TreeViewPush(pView, moreToFollow); 5431 sqlite3TreeViewLine(pView, "SELECT%s%s", 5432 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), 5433 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") 5434 ); 5435 if( p->pSrc && p->pSrc->nSrc ) n++; 5436 if( p->pWhere ) n++; 5437 if( p->pGroupBy ) n++; 5438 if( p->pHaving ) n++; 5439 if( p->pOrderBy ) n++; 5440 if( p->pLimit ) n++; 5441 if( p->pOffset ) n++; 5442 if( p->pPrior ) n++; 5443 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); 5444 if( p->pSrc && p->pSrc->nSrc ){ 5445 int i; 5446 pView = sqlite3TreeViewPush(pView, (n--)>0); 5447 sqlite3TreeViewLine(pView, "FROM"); 5448 for(i=0; i<p->pSrc->nSrc; i++){ 5449 struct SrcList_item *pItem = &p->pSrc->a[i]; 5450 StrAccum x; 5451 char zLine[100]; 5452 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); 5453 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); 5454 if( pItem->zDatabase ){ 5455 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); 5456 }else if( pItem->zName ){ 5457 sqlite3XPrintf(&x, 0, " %s", pItem->zName); 5458 } 5459 if( pItem->pTab ){ 5460 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); 5461 } 5462 if( pItem->zAlias ){ 5463 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); 5464 } 5465 if( pItem->jointype & JT_LEFT ){ 5466 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); 5467 } 5468 sqlite3StrAccumFinish(&x); 5469 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 5470 if( pItem->pSelect ){ 5471 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); 5472 } 5473 sqlite3TreeViewPop(pView); 5474 } 5475 sqlite3TreeViewPop(pView); 5476 } 5477 if( p->pWhere ){ 5478 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); 5479 sqlite3TreeViewExpr(pView, p->pWhere, 0); 5480 sqlite3TreeViewPop(pView); 5481 } 5482 if( p->pGroupBy ){ 5483 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); 5484 } 5485 if( p->pHaving ){ 5486 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); 5487 sqlite3TreeViewExpr(pView, p->pHaving, 0); 5488 sqlite3TreeViewPop(pView); 5489 } 5490 if( p->pOrderBy ){ 5491 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); 5492 } 5493 if( p->pLimit ){ 5494 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); 5495 sqlite3TreeViewExpr(pView, p->pLimit, 0); 5496 sqlite3TreeViewPop(pView); 5497 } 5498 if( p->pOffset ){ 5499 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); 5500 sqlite3TreeViewExpr(pView, p->pOffset, 0); 5501 sqlite3TreeViewPop(pView); 5502 } 5503 if( p->pPrior ){ 5504 const char *zOp = "UNION"; 5505 switch( p->op ){ 5506 case TK_ALL: zOp = "UNION ALL"; break; 5507 case TK_INTERSECT: zOp = "INTERSECT"; break; 5508 case TK_EXCEPT: zOp = "EXCEPT"; break; 5509 } 5510 sqlite3TreeViewItem(pView, zOp, (n--)>0); 5511 sqlite3TreeViewSelect(pView, p->pPrior, 0); 5512 sqlite3TreeViewPop(pView); 5513 } 5514 sqlite3TreeViewPop(pView); 5515 } 5516 #endif /* SQLITE_DEBUG */ 5517