xref: /sqlite-3.40.0/src/select.c (revision bd41d566)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
59 
60 /*
61 ** Delete all the content of a Select structure but do not deallocate
62 ** the select structure itself.
63 */
64 static void clearSelect(sqlite3 *db, Select *p){
65   sqlite3ExprListDelete(db, p->pEList);
66   sqlite3SrcListDelete(db, p->pSrc);
67   sqlite3ExprDelete(db, p->pWhere);
68   sqlite3ExprListDelete(db, p->pGroupBy);
69   sqlite3ExprDelete(db, p->pHaving);
70   sqlite3ExprListDelete(db, p->pOrderBy);
71   sqlite3SelectDelete(db, p->pPrior);
72   sqlite3ExprDelete(db, p->pLimit);
73   sqlite3ExprDelete(db, p->pOffset);
74   sqlite3WithDelete(db, p->pWith);
75 }
76 
77 /*
78 ** Initialize a SelectDest structure.
79 */
80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
81   pDest->eDest = (u8)eDest;
82   pDest->iSDParm = iParm;
83   pDest->affSdst = 0;
84   pDest->iSdst = 0;
85   pDest->nSdst = 0;
86 }
87 
88 
89 /*
90 ** Allocate a new Select structure and return a pointer to that
91 ** structure.
92 */
93 Select *sqlite3SelectNew(
94   Parse *pParse,        /* Parsing context */
95   ExprList *pEList,     /* which columns to include in the result */
96   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
97   Expr *pWhere,         /* the WHERE clause */
98   ExprList *pGroupBy,   /* the GROUP BY clause */
99   Expr *pHaving,        /* the HAVING clause */
100   ExprList *pOrderBy,   /* the ORDER BY clause */
101   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
102   Expr *pLimit,         /* LIMIT value.  NULL means not used */
103   Expr *pOffset         /* OFFSET value.  NULL means no offset */
104 ){
105   Select *pNew;
106   Select standin;
107   sqlite3 *db = pParse->db;
108   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
109   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
110   if( pNew==0 ){
111     assert( db->mallocFailed );
112     pNew = &standin;
113     memset(pNew, 0, sizeof(*pNew));
114   }
115   if( pEList==0 ){
116     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
117   }
118   pNew->pEList = pEList;
119   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
120   pNew->pSrc = pSrc;
121   pNew->pWhere = pWhere;
122   pNew->pGroupBy = pGroupBy;
123   pNew->pHaving = pHaving;
124   pNew->pOrderBy = pOrderBy;
125   pNew->selFlags = selFlags;
126   pNew->op = TK_SELECT;
127   pNew->pLimit = pLimit;
128   pNew->pOffset = pOffset;
129   assert( pOffset==0 || pLimit!=0 );
130   pNew->addrOpenEphm[0] = -1;
131   pNew->addrOpenEphm[1] = -1;
132   if( db->mallocFailed ) {
133     clearSelect(db, pNew);
134     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
135     pNew = 0;
136   }else{
137     assert( pNew->pSrc!=0 || pParse->nErr>0 );
138   }
139   assert( pNew!=&standin );
140   return pNew;
141 }
142 
143 #if SELECTTRACE_ENABLED
144 /*
145 ** Set the name of a Select object
146 */
147 void sqlite3SelectSetName(Select *p, const char *zName){
148   if( p && zName ){
149     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
150   }
151 }
152 #endif
153 
154 
155 /*
156 ** Delete the given Select structure and all of its substructures.
157 */
158 void sqlite3SelectDelete(sqlite3 *db, Select *p){
159   if( p ){
160     clearSelect(db, p);
161     sqlite3DbFree(db, p);
162   }
163 }
164 
165 /*
166 ** Return a pointer to the right-most SELECT statement in a compound.
167 */
168 static Select *findRightmost(Select *p){
169   while( p->pNext ) p = p->pNext;
170   return p;
171 }
172 
173 /*
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
175 ** type of join.  Return an integer constant that expresses that type
176 ** in terms of the following bit values:
177 **
178 **     JT_INNER
179 **     JT_CROSS
180 **     JT_OUTER
181 **     JT_NATURAL
182 **     JT_LEFT
183 **     JT_RIGHT
184 **
185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
186 **
187 ** If an illegal or unsupported join type is seen, then still return
188 ** a join type, but put an error in the pParse structure.
189 */
190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
191   int jointype = 0;
192   Token *apAll[3];
193   Token *p;
194                              /*   0123456789 123456789 123456789 123 */
195   static const char zKeyText[] = "naturaleftouterightfullinnercross";
196   static const struct {
197     u8 i;        /* Beginning of keyword text in zKeyText[] */
198     u8 nChar;    /* Length of the keyword in characters */
199     u8 code;     /* Join type mask */
200   } aKeyword[] = {
201     /* natural */ { 0,  7, JT_NATURAL                },
202     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
203     /* outer   */ { 10, 5, JT_OUTER                  },
204     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
205     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
206     /* inner   */ { 23, 5, JT_INNER                  },
207     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
208   };
209   int i, j;
210   apAll[0] = pA;
211   apAll[1] = pB;
212   apAll[2] = pC;
213   for(i=0; i<3 && apAll[i]; i++){
214     p = apAll[i];
215     for(j=0; j<ArraySize(aKeyword); j++){
216       if( p->n==aKeyword[j].nChar
217           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
218         jointype |= aKeyword[j].code;
219         break;
220       }
221     }
222     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
223     if( j>=ArraySize(aKeyword) ){
224       jointype |= JT_ERROR;
225       break;
226     }
227   }
228   if(
229      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
230      (jointype & JT_ERROR)!=0
231   ){
232     const char *zSp = " ";
233     assert( pB!=0 );
234     if( pC==0 ){ zSp++; }
235     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
236        "%T %T%s%T", pA, pB, zSp, pC);
237     jointype = JT_INNER;
238   }else if( (jointype & JT_OUTER)!=0
239          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
240     sqlite3ErrorMsg(pParse,
241       "RIGHT and FULL OUTER JOINs are not currently supported");
242     jointype = JT_INNER;
243   }
244   return jointype;
245 }
246 
247 /*
248 ** Return the index of a column in a table.  Return -1 if the column
249 ** is not contained in the table.
250 */
251 static int columnIndex(Table *pTab, const char *zCol){
252   int i;
253   for(i=0; i<pTab->nCol; i++){
254     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
255   }
256   return -1;
257 }
258 
259 /*
260 ** Search the first N tables in pSrc, from left to right, looking for a
261 ** table that has a column named zCol.
262 **
263 ** When found, set *piTab and *piCol to the table index and column index
264 ** of the matching column and return TRUE.
265 **
266 ** If not found, return FALSE.
267 */
268 static int tableAndColumnIndex(
269   SrcList *pSrc,       /* Array of tables to search */
270   int N,               /* Number of tables in pSrc->a[] to search */
271   const char *zCol,    /* Name of the column we are looking for */
272   int *piTab,          /* Write index of pSrc->a[] here */
273   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
274 ){
275   int i;               /* For looping over tables in pSrc */
276   int iCol;            /* Index of column matching zCol */
277 
278   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
279   for(i=0; i<N; i++){
280     iCol = columnIndex(pSrc->a[i].pTab, zCol);
281     if( iCol>=0 ){
282       if( piTab ){
283         *piTab = i;
284         *piCol = iCol;
285       }
286       return 1;
287     }
288   }
289   return 0;
290 }
291 
292 /*
293 ** This function is used to add terms implied by JOIN syntax to the
294 ** WHERE clause expression of a SELECT statement. The new term, which
295 ** is ANDed with the existing WHERE clause, is of the form:
296 **
297 **    (tab1.col1 = tab2.col2)
298 **
299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
301 ** column iColRight of tab2.
302 */
303 static void addWhereTerm(
304   Parse *pParse,                  /* Parsing context */
305   SrcList *pSrc,                  /* List of tables in FROM clause */
306   int iLeft,                      /* Index of first table to join in pSrc */
307   int iColLeft,                   /* Index of column in first table */
308   int iRight,                     /* Index of second table in pSrc */
309   int iColRight,                  /* Index of column in second table */
310   int isOuterJoin,                /* True if this is an OUTER join */
311   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
312 ){
313   sqlite3 *db = pParse->db;
314   Expr *pE1;
315   Expr *pE2;
316   Expr *pEq;
317 
318   assert( iLeft<iRight );
319   assert( pSrc->nSrc>iRight );
320   assert( pSrc->a[iLeft].pTab );
321   assert( pSrc->a[iRight].pTab );
322 
323   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
324   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
325 
326   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
327   if( pEq && isOuterJoin ){
328     ExprSetProperty(pEq, EP_FromJoin);
329     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
330     ExprSetVVAProperty(pEq, EP_NoReduce);
331     pEq->iRightJoinTable = (i16)pE2->iTable;
332   }
333   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
334 }
335 
336 /*
337 ** Set the EP_FromJoin property on all terms of the given expression.
338 ** And set the Expr.iRightJoinTable to iTable for every term in the
339 ** expression.
340 **
341 ** The EP_FromJoin property is used on terms of an expression to tell
342 ** the LEFT OUTER JOIN processing logic that this term is part of the
343 ** join restriction specified in the ON or USING clause and not a part
344 ** of the more general WHERE clause.  These terms are moved over to the
345 ** WHERE clause during join processing but we need to remember that they
346 ** originated in the ON or USING clause.
347 **
348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
349 ** expression depends on table iRightJoinTable even if that table is not
350 ** explicitly mentioned in the expression.  That information is needed
351 ** for cases like this:
352 **
353 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
354 **
355 ** The where clause needs to defer the handling of the t1.x=5
356 ** term until after the t2 loop of the join.  In that way, a
357 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
358 ** defer the handling of t1.x=5, it will be processed immediately
359 ** after the t1 loop and rows with t1.x!=5 will never appear in
360 ** the output, which is incorrect.
361 */
362 static void setJoinExpr(Expr *p, int iTable){
363   while( p ){
364     ExprSetProperty(p, EP_FromJoin);
365     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
366     ExprSetVVAProperty(p, EP_NoReduce);
367     p->iRightJoinTable = (i16)iTable;
368     setJoinExpr(p->pLeft, iTable);
369     p = p->pRight;
370   }
371 }
372 
373 /*
374 ** This routine processes the join information for a SELECT statement.
375 ** ON and USING clauses are converted into extra terms of the WHERE clause.
376 ** NATURAL joins also create extra WHERE clause terms.
377 **
378 ** The terms of a FROM clause are contained in the Select.pSrc structure.
379 ** The left most table is the first entry in Select.pSrc.  The right-most
380 ** table is the last entry.  The join operator is held in the entry to
381 ** the left.  Thus entry 0 contains the join operator for the join between
382 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
383 ** also attached to the left entry.
384 **
385 ** This routine returns the number of errors encountered.
386 */
387 static int sqliteProcessJoin(Parse *pParse, Select *p){
388   SrcList *pSrc;                  /* All tables in the FROM clause */
389   int i, j;                       /* Loop counters */
390   struct SrcList_item *pLeft;     /* Left table being joined */
391   struct SrcList_item *pRight;    /* Right table being joined */
392 
393   pSrc = p->pSrc;
394   pLeft = &pSrc->a[0];
395   pRight = &pLeft[1];
396   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
397     Table *pLeftTab = pLeft->pTab;
398     Table *pRightTab = pRight->pTab;
399     int isOuter;
400 
401     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
402     isOuter = (pRight->jointype & JT_OUTER)!=0;
403 
404     /* When the NATURAL keyword is present, add WHERE clause terms for
405     ** every column that the two tables have in common.
406     */
407     if( pRight->jointype & JT_NATURAL ){
408       if( pRight->pOn || pRight->pUsing ){
409         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
410            "an ON or USING clause", 0);
411         return 1;
412       }
413       for(j=0; j<pRightTab->nCol; j++){
414         char *zName;   /* Name of column in the right table */
415         int iLeft;     /* Matching left table */
416         int iLeftCol;  /* Matching column in the left table */
417 
418         zName = pRightTab->aCol[j].zName;
419         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
420           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
421                        isOuter, &p->pWhere);
422         }
423       }
424     }
425 
426     /* Disallow both ON and USING clauses in the same join
427     */
428     if( pRight->pOn && pRight->pUsing ){
429       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
430         "clauses in the same join");
431       return 1;
432     }
433 
434     /* Add the ON clause to the end of the WHERE clause, connected by
435     ** an AND operator.
436     */
437     if( pRight->pOn ){
438       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
439       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
440       pRight->pOn = 0;
441     }
442 
443     /* Create extra terms on the WHERE clause for each column named
444     ** in the USING clause.  Example: If the two tables to be joined are
445     ** A and B and the USING clause names X, Y, and Z, then add this
446     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
447     ** Report an error if any column mentioned in the USING clause is
448     ** not contained in both tables to be joined.
449     */
450     if( pRight->pUsing ){
451       IdList *pList = pRight->pUsing;
452       for(j=0; j<pList->nId; j++){
453         char *zName;     /* Name of the term in the USING clause */
454         int iLeft;       /* Table on the left with matching column name */
455         int iLeftCol;    /* Column number of matching column on the left */
456         int iRightCol;   /* Column number of matching column on the right */
457 
458         zName = pList->a[j].zName;
459         iRightCol = columnIndex(pRightTab, zName);
460         if( iRightCol<0
461          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
462         ){
463           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
464             "not present in both tables", zName);
465           return 1;
466         }
467         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
468                      isOuter, &p->pWhere);
469       }
470     }
471   }
472   return 0;
473 }
474 
475 /* Forward reference */
476 static KeyInfo *keyInfoFromExprList(
477   Parse *pParse,       /* Parsing context */
478   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
479   int iStart,          /* Begin with this column of pList */
480   int nExtra           /* Add this many extra columns to the end */
481 );
482 
483 /*
484 ** Generate code that will push the record in registers regData
485 ** through regData+nData-1 onto the sorter.
486 */
487 static void pushOntoSorter(
488   Parse *pParse,         /* Parser context */
489   SortCtx *pSort,        /* Information about the ORDER BY clause */
490   Select *pSelect,       /* The whole SELECT statement */
491   int regData,           /* First register holding data to be sorted */
492   int nData,             /* Number of elements in the data array */
493   int nPrefixReg         /* No. of reg prior to regData available for use */
494 ){
495   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
496   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
497   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
498   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
499   int regBase;                                     /* Regs for sorter record */
500   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
501   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
502   int op;                            /* Opcode to add sorter record to sorter */
503 
504   assert( bSeq==0 || bSeq==1 );
505   if( nPrefixReg ){
506     assert( nPrefixReg==nExpr+bSeq );
507     regBase = regData - nExpr - bSeq;
508   }else{
509     regBase = pParse->nMem + 1;
510     pParse->nMem += nBase;
511   }
512   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
513   if( bSeq ){
514     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
515   }
516   if( nPrefixReg==0 ){
517     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
518   }
519 
520   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
521   if( nOBSat>0 ){
522     int regPrevKey;   /* The first nOBSat columns of the previous row */
523     int addrFirst;    /* Address of the OP_IfNot opcode */
524     int addrJmp;      /* Address of the OP_Jump opcode */
525     VdbeOp *pOp;      /* Opcode that opens the sorter */
526     int nKey;         /* Number of sorting key columns, including OP_Sequence */
527     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
528 
529     regPrevKey = pParse->nMem+1;
530     pParse->nMem += pSort->nOBSat;
531     nKey = nExpr - pSort->nOBSat + bSeq;
532     if( bSeq ){
533       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
534     }else{
535       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
536     }
537     VdbeCoverage(v);
538     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
539     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
540     if( pParse->db->mallocFailed ) return;
541     pOp->p2 = nKey + nData;
542     pKI = pOp->p4.pKeyInfo;
543     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
544     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
545     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
546     addrJmp = sqlite3VdbeCurrentAddr(v);
547     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
548     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
549     pSort->regReturn = ++pParse->nMem;
550     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
551     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
552     sqlite3VdbeJumpHere(v, addrFirst);
553     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
554     sqlite3VdbeJumpHere(v, addrJmp);
555   }
556   if( pSort->sortFlags & SORTFLAG_UseSorter ){
557     op = OP_SorterInsert;
558   }else{
559     op = OP_IdxInsert;
560   }
561   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
562   if( pSelect->iLimit ){
563     int addr1, addr2;
564     int iLimit;
565     if( pSelect->iOffset ){
566       iLimit = pSelect->iOffset+1;
567     }else{
568       iLimit = pSelect->iLimit;
569     }
570     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
571     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
572     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
573     sqlite3VdbeJumpHere(v, addr1);
574     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
575     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
576     sqlite3VdbeJumpHere(v, addr2);
577   }
578 }
579 
580 /*
581 ** Add code to implement the OFFSET
582 */
583 static void codeOffset(
584   Vdbe *v,          /* Generate code into this VM */
585   int iOffset,      /* Register holding the offset counter */
586   int iContinue     /* Jump here to skip the current record */
587 ){
588   if( iOffset>0 ){
589     int addr;
590     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
591     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
592     VdbeComment((v, "skip OFFSET records"));
593     sqlite3VdbeJumpHere(v, addr);
594   }
595 }
596 
597 /*
598 ** Add code that will check to make sure the N registers starting at iMem
599 ** form a distinct entry.  iTab is a sorting index that holds previously
600 ** seen combinations of the N values.  A new entry is made in iTab
601 ** if the current N values are new.
602 **
603 ** A jump to addrRepeat is made and the N+1 values are popped from the
604 ** stack if the top N elements are not distinct.
605 */
606 static void codeDistinct(
607   Parse *pParse,     /* Parsing and code generating context */
608   int iTab,          /* A sorting index used to test for distinctness */
609   int addrRepeat,    /* Jump to here if not distinct */
610   int N,             /* Number of elements */
611   int iMem           /* First element */
612 ){
613   Vdbe *v;
614   int r1;
615 
616   v = pParse->pVdbe;
617   r1 = sqlite3GetTempReg(pParse);
618   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
619   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
620   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
621   sqlite3ReleaseTempReg(pParse, r1);
622 }
623 
624 #ifndef SQLITE_OMIT_SUBQUERY
625 /*
626 ** Generate an error message when a SELECT is used within a subexpression
627 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
628 ** column.  We do this in a subroutine because the error used to occur
629 ** in multiple places.  (The error only occurs in one place now, but we
630 ** retain the subroutine to minimize code disruption.)
631 */
632 static int checkForMultiColumnSelectError(
633   Parse *pParse,       /* Parse context. */
634   SelectDest *pDest,   /* Destination of SELECT results */
635   int nExpr            /* Number of result columns returned by SELECT */
636 ){
637   int eDest = pDest->eDest;
638   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
639     sqlite3ErrorMsg(pParse, "only a single result allowed for "
640        "a SELECT that is part of an expression");
641     return 1;
642   }else{
643     return 0;
644   }
645 }
646 #endif
647 
648 /*
649 ** This routine generates the code for the inside of the inner loop
650 ** of a SELECT.
651 **
652 ** If srcTab is negative, then the pEList expressions
653 ** are evaluated in order to get the data for this row.  If srcTab is
654 ** zero or more, then data is pulled from srcTab and pEList is used only
655 ** to get number columns and the datatype for each column.
656 */
657 static void selectInnerLoop(
658   Parse *pParse,          /* The parser context */
659   Select *p,              /* The complete select statement being coded */
660   ExprList *pEList,       /* List of values being extracted */
661   int srcTab,             /* Pull data from this table */
662   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
663   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
664   SelectDest *pDest,      /* How to dispose of the results */
665   int iContinue,          /* Jump here to continue with next row */
666   int iBreak              /* Jump here to break out of the inner loop */
667 ){
668   Vdbe *v = pParse->pVdbe;
669   int i;
670   int hasDistinct;        /* True if the DISTINCT keyword is present */
671   int regResult;              /* Start of memory holding result set */
672   int eDest = pDest->eDest;   /* How to dispose of results */
673   int iParm = pDest->iSDParm; /* First argument to disposal method */
674   int nResultCol;             /* Number of result columns */
675   int nPrefixReg = 0;         /* Number of extra registers before regResult */
676 
677   assert( v );
678   assert( pEList!=0 );
679   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
680   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
681   if( pSort==0 && !hasDistinct ){
682     assert( iContinue!=0 );
683     codeOffset(v, p->iOffset, iContinue);
684   }
685 
686   /* Pull the requested columns.
687   */
688   nResultCol = pEList->nExpr;
689 
690   if( pDest->iSdst==0 ){
691     if( pSort ){
692       nPrefixReg = pSort->pOrderBy->nExpr;
693       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
694       pParse->nMem += nPrefixReg;
695     }
696     pDest->iSdst = pParse->nMem+1;
697     pParse->nMem += nResultCol;
698   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
699     /* This is an error condition that can result, for example, when a SELECT
700     ** on the right-hand side of an INSERT contains more result columns than
701     ** there are columns in the table on the left.  The error will be caught
702     ** and reported later.  But we need to make sure enough memory is allocated
703     ** to avoid other spurious errors in the meantime. */
704     pParse->nMem += nResultCol;
705   }
706   pDest->nSdst = nResultCol;
707   regResult = pDest->iSdst;
708   if( srcTab>=0 ){
709     for(i=0; i<nResultCol; i++){
710       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
711       VdbeComment((v, "%s", pEList->a[i].zName));
712     }
713   }else if( eDest!=SRT_Exists ){
714     /* If the destination is an EXISTS(...) expression, the actual
715     ** values returned by the SELECT are not required.
716     */
717     sqlite3ExprCodeExprList(pParse, pEList, regResult,
718                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
719   }
720 
721   /* If the DISTINCT keyword was present on the SELECT statement
722   ** and this row has been seen before, then do not make this row
723   ** part of the result.
724   */
725   if( hasDistinct ){
726     switch( pDistinct->eTnctType ){
727       case WHERE_DISTINCT_ORDERED: {
728         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
729         int iJump;              /* Jump destination */
730         int regPrev;            /* Previous row content */
731 
732         /* Allocate space for the previous row */
733         regPrev = pParse->nMem+1;
734         pParse->nMem += nResultCol;
735 
736         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
737         ** sets the MEM_Cleared bit on the first register of the
738         ** previous value.  This will cause the OP_Ne below to always
739         ** fail on the first iteration of the loop even if the first
740         ** row is all NULLs.
741         */
742         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
743         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
744         pOp->opcode = OP_Null;
745         pOp->p1 = 1;
746         pOp->p2 = regPrev;
747 
748         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
749         for(i=0; i<nResultCol; i++){
750           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
751           if( i<nResultCol-1 ){
752             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
753             VdbeCoverage(v);
754           }else{
755             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
756             VdbeCoverage(v);
757            }
758           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
759           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
760         }
761         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
762         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
763         break;
764       }
765 
766       case WHERE_DISTINCT_UNIQUE: {
767         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
768         break;
769       }
770 
771       default: {
772         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
773         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
774         break;
775       }
776     }
777     if( pSort==0 ){
778       codeOffset(v, p->iOffset, iContinue);
779     }
780   }
781 
782   switch( eDest ){
783     /* In this mode, write each query result to the key of the temporary
784     ** table iParm.
785     */
786 #ifndef SQLITE_OMIT_COMPOUND_SELECT
787     case SRT_Union: {
788       int r1;
789       r1 = sqlite3GetTempReg(pParse);
790       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
791       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
792       sqlite3ReleaseTempReg(pParse, r1);
793       break;
794     }
795 
796     /* Construct a record from the query result, but instead of
797     ** saving that record, use it as a key to delete elements from
798     ** the temporary table iParm.
799     */
800     case SRT_Except: {
801       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
802       break;
803     }
804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
805 
806     /* Store the result as data using a unique key.
807     */
808     case SRT_Fifo:
809     case SRT_DistFifo:
810     case SRT_Table:
811     case SRT_EphemTab: {
812       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
813       testcase( eDest==SRT_Table );
814       testcase( eDest==SRT_EphemTab );
815       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
816 #ifndef SQLITE_OMIT_CTE
817       if( eDest==SRT_DistFifo ){
818         /* If the destination is DistFifo, then cursor (iParm+1) is open
819         ** on an ephemeral index. If the current row is already present
820         ** in the index, do not write it to the output. If not, add the
821         ** current row to the index and proceed with writing it to the
822         ** output table as well.  */
823         int addr = sqlite3VdbeCurrentAddr(v) + 4;
824         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
825         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
826         assert( pSort==0 );
827       }
828 #endif
829       if( pSort ){
830         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
831       }else{
832         int r2 = sqlite3GetTempReg(pParse);
833         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
834         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
835         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
836         sqlite3ReleaseTempReg(pParse, r2);
837       }
838       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
839       break;
840     }
841 
842 #ifndef SQLITE_OMIT_SUBQUERY
843     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
844     ** then there should be a single item on the stack.  Write this
845     ** item into the set table with bogus data.
846     */
847     case SRT_Set: {
848       assert( nResultCol==1 );
849       pDest->affSdst =
850                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
851       if( pSort ){
852         /* At first glance you would think we could optimize out the
853         ** ORDER BY in this case since the order of entries in the set
854         ** does not matter.  But there might be a LIMIT clause, in which
855         ** case the order does matter */
856         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
857       }else{
858         int r1 = sqlite3GetTempReg(pParse);
859         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
860         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
861         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
862         sqlite3ReleaseTempReg(pParse, r1);
863       }
864       break;
865     }
866 
867     /* If any row exist in the result set, record that fact and abort.
868     */
869     case SRT_Exists: {
870       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
871       /* The LIMIT clause will terminate the loop for us */
872       break;
873     }
874 
875     /* If this is a scalar select that is part of an expression, then
876     ** store the results in the appropriate memory cell and break out
877     ** of the scan loop.
878     */
879     case SRT_Mem: {
880       assert( nResultCol==1 );
881       if( pSort ){
882         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
883       }else{
884         assert( regResult==iParm );
885         /* The LIMIT clause will jump out of the loop for us */
886       }
887       break;
888     }
889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
890 
891     case SRT_Coroutine:       /* Send data to a co-routine */
892     case SRT_Output: {        /* Return the results */
893       testcase( eDest==SRT_Coroutine );
894       testcase( eDest==SRT_Output );
895       if( pSort ){
896         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
897       }else if( eDest==SRT_Coroutine ){
898         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
899       }else{
900         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
901         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
902       }
903       break;
904     }
905 
906 #ifndef SQLITE_OMIT_CTE
907     /* Write the results into a priority queue that is order according to
908     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
909     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
910     ** pSO->nExpr columns, then make sure all keys are unique by adding a
911     ** final OP_Sequence column.  The last column is the record as a blob.
912     */
913     case SRT_DistQueue:
914     case SRT_Queue: {
915       int nKey;
916       int r1, r2, r3;
917       int addrTest = 0;
918       ExprList *pSO;
919       pSO = pDest->pOrderBy;
920       assert( pSO );
921       nKey = pSO->nExpr;
922       r1 = sqlite3GetTempReg(pParse);
923       r2 = sqlite3GetTempRange(pParse, nKey+2);
924       r3 = r2+nKey+1;
925       if( eDest==SRT_DistQueue ){
926         /* If the destination is DistQueue, then cursor (iParm+1) is open
927         ** on a second ephemeral index that holds all values every previously
928         ** added to the queue. */
929         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
930                                         regResult, nResultCol);
931         VdbeCoverage(v);
932       }
933       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
934       if( eDest==SRT_DistQueue ){
935         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
936         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
937       }
938       for(i=0; i<nKey; i++){
939         sqlite3VdbeAddOp2(v, OP_SCopy,
940                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
941                           r2+i);
942       }
943       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
944       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
945       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
946       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
947       sqlite3ReleaseTempReg(pParse, r1);
948       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
949       break;
950     }
951 #endif /* SQLITE_OMIT_CTE */
952 
953 
954 
955 #if !defined(SQLITE_OMIT_TRIGGER)
956     /* Discard the results.  This is used for SELECT statements inside
957     ** the body of a TRIGGER.  The purpose of such selects is to call
958     ** user-defined functions that have side effects.  We do not care
959     ** about the actual results of the select.
960     */
961     default: {
962       assert( eDest==SRT_Discard );
963       break;
964     }
965 #endif
966   }
967 
968   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
969   ** there is a sorter, in which case the sorter has already limited
970   ** the output for us.
971   */
972   if( pSort==0 && p->iLimit ){
973     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
974   }
975 }
976 
977 /*
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and
979 ** X extra columns.
980 */
981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
982   KeyInfo *p = sqlite3DbMallocZero(0,
983                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
984   if( p ){
985     p->aSortOrder = (u8*)&p->aColl[N+X];
986     p->nField = (u16)N;
987     p->nXField = (u16)X;
988     p->enc = ENC(db);
989     p->db = db;
990     p->nRef = 1;
991   }else{
992     db->mallocFailed = 1;
993   }
994   return p;
995 }
996 
997 /*
998 ** Deallocate a KeyInfo object
999 */
1000 void sqlite3KeyInfoUnref(KeyInfo *p){
1001   if( p ){
1002     assert( p->nRef>0 );
1003     p->nRef--;
1004     if( p->nRef==0 ) sqlite3DbFree(0, p);
1005   }
1006 }
1007 
1008 /*
1009 ** Make a new pointer to a KeyInfo object
1010 */
1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1012   if( p ){
1013     assert( p->nRef>0 );
1014     p->nRef++;
1015   }
1016   return p;
1017 }
1018 
1019 #ifdef SQLITE_DEBUG
1020 /*
1021 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1022 ** can only be changed if this is just a single reference to the object.
1023 **
1024 ** This routine is used only inside of assert() statements.
1025 */
1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1027 #endif /* SQLITE_DEBUG */
1028 
1029 /*
1030 ** Given an expression list, generate a KeyInfo structure that records
1031 ** the collating sequence for each expression in that expression list.
1032 **
1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1034 ** KeyInfo structure is appropriate for initializing a virtual index to
1035 ** implement that clause.  If the ExprList is the result set of a SELECT
1036 ** then the KeyInfo structure is appropriate for initializing a virtual
1037 ** index to implement a DISTINCT test.
1038 **
1039 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1040 ** function is responsible for seeing that this structure is eventually
1041 ** freed.
1042 */
1043 static KeyInfo *keyInfoFromExprList(
1044   Parse *pParse,       /* Parsing context */
1045   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1046   int iStart,          /* Begin with this column of pList */
1047   int nExtra           /* Add this many extra columns to the end */
1048 ){
1049   int nExpr;
1050   KeyInfo *pInfo;
1051   struct ExprList_item *pItem;
1052   sqlite3 *db = pParse->db;
1053   int i;
1054 
1055   nExpr = pList->nExpr;
1056   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1057   if( pInfo ){
1058     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1059     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1060       CollSeq *pColl;
1061       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1062       if( !pColl ) pColl = db->pDfltColl;
1063       pInfo->aColl[i-iStart] = pColl;
1064       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1065     }
1066   }
1067   return pInfo;
1068 }
1069 
1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1071 /*
1072 ** Name of the connection operator, used for error messages.
1073 */
1074 static const char *selectOpName(int id){
1075   char *z;
1076   switch( id ){
1077     case TK_ALL:       z = "UNION ALL";   break;
1078     case TK_INTERSECT: z = "INTERSECT";   break;
1079     case TK_EXCEPT:    z = "EXCEPT";      break;
1080     default:           z = "UNION";       break;
1081   }
1082   return z;
1083 }
1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1085 
1086 #ifndef SQLITE_OMIT_EXPLAIN
1087 /*
1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1090 ** where the caption is of the form:
1091 **
1092 **   "USE TEMP B-TREE FOR xxx"
1093 **
1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1095 ** is determined by the zUsage argument.
1096 */
1097 static void explainTempTable(Parse *pParse, const char *zUsage){
1098   if( pParse->explain==2 ){
1099     Vdbe *v = pParse->pVdbe;
1100     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1101     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1102   }
1103 }
1104 
1105 /*
1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1108 ** in sqlite3Select() to assign values to structure member variables that
1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1110 ** code with #ifndef directives.
1111 */
1112 # define explainSetInteger(a, b) a = b
1113 
1114 #else
1115 /* No-op versions of the explainXXX() functions and macros. */
1116 # define explainTempTable(y,z)
1117 # define explainSetInteger(y,z)
1118 #endif
1119 
1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1121 /*
1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1124 ** where the caption is of one of the two forms:
1125 **
1126 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1127 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1128 **
1129 ** where iSub1 and iSub2 are the integers passed as the corresponding
1130 ** function parameters, and op is the text representation of the parameter
1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1133 ** false, or the second form if it is true.
1134 */
1135 static void explainComposite(
1136   Parse *pParse,                  /* Parse context */
1137   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1138   int iSub1,                      /* Subquery id 1 */
1139   int iSub2,                      /* Subquery id 2 */
1140   int bUseTmp                     /* True if a temp table was used */
1141 ){
1142   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1143   if( pParse->explain==2 ){
1144     Vdbe *v = pParse->pVdbe;
1145     char *zMsg = sqlite3MPrintf(
1146         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1147         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1148     );
1149     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1150   }
1151 }
1152 #else
1153 /* No-op versions of the explainXXX() functions and macros. */
1154 # define explainComposite(v,w,x,y,z)
1155 #endif
1156 
1157 /*
1158 ** If the inner loop was generated using a non-null pOrderBy argument,
1159 ** then the results were placed in a sorter.  After the loop is terminated
1160 ** we need to run the sorter and output the results.  The following
1161 ** routine generates the code needed to do that.
1162 */
1163 static void generateSortTail(
1164   Parse *pParse,    /* Parsing context */
1165   Select *p,        /* The SELECT statement */
1166   SortCtx *pSort,   /* Information on the ORDER BY clause */
1167   int nColumn,      /* Number of columns of data */
1168   SelectDest *pDest /* Write the sorted results here */
1169 ){
1170   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1171   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1172   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1173   int addr;
1174   int addrOnce = 0;
1175   int iTab;
1176   ExprList *pOrderBy = pSort->pOrderBy;
1177   int eDest = pDest->eDest;
1178   int iParm = pDest->iSDParm;
1179   int regRow;
1180   int regRowid;
1181   int nKey;
1182   int iSortTab;                   /* Sorter cursor to read from */
1183   int nSortData;                  /* Trailing values to read from sorter */
1184   int i;
1185   int bSeq;                       /* True if sorter record includes seq. no. */
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1187   struct ExprList_item *aOutEx = p->pEList->a;
1188 #endif
1189 
1190   if( pSort->labelBkOut ){
1191     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1192     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1193     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1194   }
1195   iTab = pSort->iECursor;
1196   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1197     regRowid = 0;
1198     regRow = pDest->iSdst;
1199     nSortData = nColumn;
1200   }else{
1201     regRowid = sqlite3GetTempReg(pParse);
1202     regRow = sqlite3GetTempReg(pParse);
1203     nSortData = 1;
1204   }
1205   nKey = pOrderBy->nExpr - pSort->nOBSat;
1206   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1207     int regSortOut = ++pParse->nMem;
1208     iSortTab = pParse->nTab++;
1209     if( pSort->labelBkOut ){
1210       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1211     }
1212     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1213     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1214     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1215     VdbeCoverage(v);
1216     codeOffset(v, p->iOffset, addrContinue);
1217     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1218     bSeq = 0;
1219   }else{
1220     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1221     codeOffset(v, p->iOffset, addrContinue);
1222     iSortTab = iTab;
1223     bSeq = 1;
1224   }
1225   for(i=0; i<nSortData; i++){
1226     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1227     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1228   }
1229   switch( eDest ){
1230     case SRT_Table:
1231     case SRT_EphemTab: {
1232       testcase( eDest==SRT_Table );
1233       testcase( eDest==SRT_EphemTab );
1234       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1235       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1236       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1237       break;
1238     }
1239 #ifndef SQLITE_OMIT_SUBQUERY
1240     case SRT_Set: {
1241       assert( nColumn==1 );
1242       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1243                         &pDest->affSdst, 1);
1244       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1245       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1246       break;
1247     }
1248     case SRT_Mem: {
1249       assert( nColumn==1 );
1250       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1251       /* The LIMIT clause will terminate the loop for us */
1252       break;
1253     }
1254 #endif
1255     default: {
1256       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1257       testcase( eDest==SRT_Output );
1258       testcase( eDest==SRT_Coroutine );
1259       if( eDest==SRT_Output ){
1260         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1261         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1262       }else{
1263         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1264       }
1265       break;
1266     }
1267   }
1268   if( regRowid ){
1269     sqlite3ReleaseTempReg(pParse, regRow);
1270     sqlite3ReleaseTempReg(pParse, regRowid);
1271   }
1272   /* The bottom of the loop
1273   */
1274   sqlite3VdbeResolveLabel(v, addrContinue);
1275   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1276     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1277   }else{
1278     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1279   }
1280   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1281   sqlite3VdbeResolveLabel(v, addrBreak);
1282 }
1283 
1284 /*
1285 ** Return a pointer to a string containing the 'declaration type' of the
1286 ** expression pExpr. The string may be treated as static by the caller.
1287 **
1288 ** Also try to estimate the size of the returned value and return that
1289 ** result in *pEstWidth.
1290 **
1291 ** The declaration type is the exact datatype definition extracted from the
1292 ** original CREATE TABLE statement if the expression is a column. The
1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1294 ** is considered a column can be complex in the presence of subqueries. The
1295 ** result-set expression in all of the following SELECT statements is
1296 ** considered a column by this function.
1297 **
1298 **   SELECT col FROM tbl;
1299 **   SELECT (SELECT col FROM tbl;
1300 **   SELECT (SELECT col FROM tbl);
1301 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1302 **
1303 ** The declaration type for any expression other than a column is NULL.
1304 **
1305 ** This routine has either 3 or 6 parameters depending on whether or not
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1307 */
1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1310 static const char *columnTypeImpl(
1311   NameContext *pNC,
1312   Expr *pExpr,
1313   const char **pzOrigDb,
1314   const char **pzOrigTab,
1315   const char **pzOrigCol,
1316   u8 *pEstWidth
1317 ){
1318   char const *zOrigDb = 0;
1319   char const *zOrigTab = 0;
1320   char const *zOrigCol = 0;
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 static const char *columnTypeImpl(
1324   NameContext *pNC,
1325   Expr *pExpr,
1326   u8 *pEstWidth
1327 ){
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1329   char const *zType = 0;
1330   int j;
1331   u8 estWidth = 1;
1332 
1333   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1334   switch( pExpr->op ){
1335     case TK_AGG_COLUMN:
1336     case TK_COLUMN: {
1337       /* The expression is a column. Locate the table the column is being
1338       ** extracted from in NameContext.pSrcList. This table may be real
1339       ** database table or a subquery.
1340       */
1341       Table *pTab = 0;            /* Table structure column is extracted from */
1342       Select *pS = 0;             /* Select the column is extracted from */
1343       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1344       testcase( pExpr->op==TK_AGG_COLUMN );
1345       testcase( pExpr->op==TK_COLUMN );
1346       while( pNC && !pTab ){
1347         SrcList *pTabList = pNC->pSrcList;
1348         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1349         if( j<pTabList->nSrc ){
1350           pTab = pTabList->a[j].pTab;
1351           pS = pTabList->a[j].pSelect;
1352         }else{
1353           pNC = pNC->pNext;
1354         }
1355       }
1356 
1357       if( pTab==0 ){
1358         /* At one time, code such as "SELECT new.x" within a trigger would
1359         ** cause this condition to run.  Since then, we have restructured how
1360         ** trigger code is generated and so this condition is no longer
1361         ** possible. However, it can still be true for statements like
1362         ** the following:
1363         **
1364         **   CREATE TABLE t1(col INTEGER);
1365         **   SELECT (SELECT t1.col) FROM FROM t1;
1366         **
1367         ** when columnType() is called on the expression "t1.col" in the
1368         ** sub-select. In this case, set the column type to NULL, even
1369         ** though it should really be "INTEGER".
1370         **
1371         ** This is not a problem, as the column type of "t1.col" is never
1372         ** used. When columnType() is called on the expression
1373         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1374         ** branch below.  */
1375         break;
1376       }
1377 
1378       assert( pTab && pExpr->pTab==pTab );
1379       if( pS ){
1380         /* The "table" is actually a sub-select or a view in the FROM clause
1381         ** of the SELECT statement. Return the declaration type and origin
1382         ** data for the result-set column of the sub-select.
1383         */
1384         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1385           /* If iCol is less than zero, then the expression requests the
1386           ** rowid of the sub-select or view. This expression is legal (see
1387           ** test case misc2.2.2) - it always evaluates to NULL.
1388           */
1389           NameContext sNC;
1390           Expr *p = pS->pEList->a[iCol].pExpr;
1391           sNC.pSrcList = pS->pSrc;
1392           sNC.pNext = pNC;
1393           sNC.pParse = pNC->pParse;
1394           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1395         }
1396       }else if( pTab->pSchema ){
1397         /* A real table */
1398         assert( !pS );
1399         if( iCol<0 ) iCol = pTab->iPKey;
1400         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1402         if( iCol<0 ){
1403           zType = "INTEGER";
1404           zOrigCol = "rowid";
1405         }else{
1406           zType = pTab->aCol[iCol].zType;
1407           zOrigCol = pTab->aCol[iCol].zName;
1408           estWidth = pTab->aCol[iCol].szEst;
1409         }
1410         zOrigTab = pTab->zName;
1411         if( pNC->pParse ){
1412           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1413           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1414         }
1415 #else
1416         if( iCol<0 ){
1417           zType = "INTEGER";
1418         }else{
1419           zType = pTab->aCol[iCol].zType;
1420           estWidth = pTab->aCol[iCol].szEst;
1421         }
1422 #endif
1423       }
1424       break;
1425     }
1426 #ifndef SQLITE_OMIT_SUBQUERY
1427     case TK_SELECT: {
1428       /* The expression is a sub-select. Return the declaration type and
1429       ** origin info for the single column in the result set of the SELECT
1430       ** statement.
1431       */
1432       NameContext sNC;
1433       Select *pS = pExpr->x.pSelect;
1434       Expr *p = pS->pEList->a[0].pExpr;
1435       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1436       sNC.pSrcList = pS->pSrc;
1437       sNC.pNext = pNC;
1438       sNC.pParse = pNC->pParse;
1439       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1440       break;
1441     }
1442 #endif
1443   }
1444 
1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1446   if( pzOrigDb ){
1447     assert( pzOrigTab && pzOrigCol );
1448     *pzOrigDb = zOrigDb;
1449     *pzOrigTab = zOrigTab;
1450     *pzOrigCol = zOrigCol;
1451   }
1452 #endif
1453   if( pEstWidth ) *pEstWidth = estWidth;
1454   return zType;
1455 }
1456 
1457 /*
1458 ** Generate code that will tell the VDBE the declaration types of columns
1459 ** in the result set.
1460 */
1461 static void generateColumnTypes(
1462   Parse *pParse,      /* Parser context */
1463   SrcList *pTabList,  /* List of tables */
1464   ExprList *pEList    /* Expressions defining the result set */
1465 ){
1466 #ifndef SQLITE_OMIT_DECLTYPE
1467   Vdbe *v = pParse->pVdbe;
1468   int i;
1469   NameContext sNC;
1470   sNC.pSrcList = pTabList;
1471   sNC.pParse = pParse;
1472   for(i=0; i<pEList->nExpr; i++){
1473     Expr *p = pEList->a[i].pExpr;
1474     const char *zType;
1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1476     const char *zOrigDb = 0;
1477     const char *zOrigTab = 0;
1478     const char *zOrigCol = 0;
1479     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1480 
1481     /* The vdbe must make its own copy of the column-type and other
1482     ** column specific strings, in case the schema is reset before this
1483     ** virtual machine is deleted.
1484     */
1485     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1486     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1487     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1488 #else
1489     zType = columnType(&sNC, p, 0, 0, 0, 0);
1490 #endif
1491     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1492   }
1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1494 }
1495 
1496 /*
1497 ** Generate code that will tell the VDBE the names of columns
1498 ** in the result set.  This information is used to provide the
1499 ** azCol[] values in the callback.
1500 */
1501 static void generateColumnNames(
1502   Parse *pParse,      /* Parser context */
1503   SrcList *pTabList,  /* List of tables */
1504   ExprList *pEList    /* Expressions defining the result set */
1505 ){
1506   Vdbe *v = pParse->pVdbe;
1507   int i, j;
1508   sqlite3 *db = pParse->db;
1509   int fullNames, shortNames;
1510 
1511 #ifndef SQLITE_OMIT_EXPLAIN
1512   /* If this is an EXPLAIN, skip this step */
1513   if( pParse->explain ){
1514     return;
1515   }
1516 #endif
1517 
1518   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1519   pParse->colNamesSet = 1;
1520   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1521   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1522   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1523   for(i=0; i<pEList->nExpr; i++){
1524     Expr *p;
1525     p = pEList->a[i].pExpr;
1526     if( NEVER(p==0) ) continue;
1527     if( pEList->a[i].zName ){
1528       char *zName = pEList->a[i].zName;
1529       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1530     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1531       Table *pTab;
1532       char *zCol;
1533       int iCol = p->iColumn;
1534       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1535         if( pTabList->a[j].iCursor==p->iTable ) break;
1536       }
1537       assert( j<pTabList->nSrc );
1538       pTab = pTabList->a[j].pTab;
1539       if( iCol<0 ) iCol = pTab->iPKey;
1540       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1541       if( iCol<0 ){
1542         zCol = "rowid";
1543       }else{
1544         zCol = pTab->aCol[iCol].zName;
1545       }
1546       if( !shortNames && !fullNames ){
1547         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1548             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1549       }else if( fullNames ){
1550         char *zName = 0;
1551         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1552         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1553       }else{
1554         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1555       }
1556     }else{
1557       const char *z = pEList->a[i].zSpan;
1558       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1559       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1560     }
1561   }
1562   generateColumnTypes(pParse, pTabList, pEList);
1563 }
1564 
1565 /*
1566 ** Given an expression list (which is really the list of expressions
1567 ** that form the result set of a SELECT statement) compute appropriate
1568 ** column names for a table that would hold the expression list.
1569 **
1570 ** All column names will be unique.
1571 **
1572 ** Only the column names are computed.  Column.zType, Column.zColl,
1573 ** and other fields of Column are zeroed.
1574 **
1575 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1577 */
1578 static int selectColumnsFromExprList(
1579   Parse *pParse,          /* Parsing context */
1580   ExprList *pEList,       /* Expr list from which to derive column names */
1581   i16 *pnCol,             /* Write the number of columns here */
1582   Column **paCol          /* Write the new column list here */
1583 ){
1584   sqlite3 *db = pParse->db;   /* Database connection */
1585   int i, j;                   /* Loop counters */
1586   int cnt;                    /* Index added to make the name unique */
1587   Column *aCol, *pCol;        /* For looping over result columns */
1588   int nCol;                   /* Number of columns in the result set */
1589   Expr *p;                    /* Expression for a single result column */
1590   char *zName;                /* Column name */
1591   int nName;                  /* Size of name in zName[] */
1592 
1593   if( pEList ){
1594     nCol = pEList->nExpr;
1595     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1596     testcase( aCol==0 );
1597   }else{
1598     nCol = 0;
1599     aCol = 0;
1600   }
1601   *pnCol = nCol;
1602   *paCol = aCol;
1603 
1604   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1605     /* Get an appropriate name for the column
1606     */
1607     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1608     if( (zName = pEList->a[i].zName)!=0 ){
1609       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1610       zName = sqlite3DbStrDup(db, zName);
1611     }else{
1612       Expr *pColExpr = p;  /* The expression that is the result column name */
1613       Table *pTab;         /* Table associated with this expression */
1614       while( pColExpr->op==TK_DOT ){
1615         pColExpr = pColExpr->pRight;
1616         assert( pColExpr!=0 );
1617       }
1618       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1619         /* For columns use the column name name */
1620         int iCol = pColExpr->iColumn;
1621         pTab = pColExpr->pTab;
1622         if( iCol<0 ) iCol = pTab->iPKey;
1623         zName = sqlite3MPrintf(db, "%s",
1624                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1625       }else if( pColExpr->op==TK_ID ){
1626         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1627         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1628       }else{
1629         /* Use the original text of the column expression as its name */
1630         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1631       }
1632     }
1633     if( db->mallocFailed ){
1634       sqlite3DbFree(db, zName);
1635       break;
1636     }
1637 
1638     /* Make sure the column name is unique.  If the name is not unique,
1639     ** append an integer to the name so that it becomes unique.
1640     */
1641     nName = sqlite3Strlen30(zName);
1642     for(j=cnt=0; j<i; j++){
1643       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1644         char *zNewName;
1645         int k;
1646         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1647         if( k>=0 && zName[k]==':' ) nName = k;
1648         zName[nName] = 0;
1649         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1650         sqlite3DbFree(db, zName);
1651         zName = zNewName;
1652         j = -1;
1653         if( zName==0 ) break;
1654       }
1655     }
1656     pCol->zName = zName;
1657   }
1658   if( db->mallocFailed ){
1659     for(j=0; j<i; j++){
1660       sqlite3DbFree(db, aCol[j].zName);
1661     }
1662     sqlite3DbFree(db, aCol);
1663     *paCol = 0;
1664     *pnCol = 0;
1665     return SQLITE_NOMEM;
1666   }
1667   return SQLITE_OK;
1668 }
1669 
1670 /*
1671 ** Add type and collation information to a column list based on
1672 ** a SELECT statement.
1673 **
1674 ** The column list presumably came from selectColumnNamesFromExprList().
1675 ** The column list has only names, not types or collations.  This
1676 ** routine goes through and adds the types and collations.
1677 **
1678 ** This routine requires that all identifiers in the SELECT
1679 ** statement be resolved.
1680 */
1681 static void selectAddColumnTypeAndCollation(
1682   Parse *pParse,        /* Parsing contexts */
1683   Table *pTab,          /* Add column type information to this table */
1684   Select *pSelect       /* SELECT used to determine types and collations */
1685 ){
1686   sqlite3 *db = pParse->db;
1687   NameContext sNC;
1688   Column *pCol;
1689   CollSeq *pColl;
1690   int i;
1691   Expr *p;
1692   struct ExprList_item *a;
1693   u64 szAll = 0;
1694 
1695   assert( pSelect!=0 );
1696   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1697   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1698   if( db->mallocFailed ) return;
1699   memset(&sNC, 0, sizeof(sNC));
1700   sNC.pSrcList = pSelect->pSrc;
1701   a = pSelect->pEList->a;
1702   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1703     p = a[i].pExpr;
1704     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1705     szAll += pCol->szEst;
1706     pCol->affinity = sqlite3ExprAffinity(p);
1707     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1708     pColl = sqlite3ExprCollSeq(pParse, p);
1709     if( pColl ){
1710       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1711     }
1712   }
1713   pTab->szTabRow = sqlite3LogEst(szAll*4);
1714 }
1715 
1716 /*
1717 ** Given a SELECT statement, generate a Table structure that describes
1718 ** the result set of that SELECT.
1719 */
1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1721   Table *pTab;
1722   sqlite3 *db = pParse->db;
1723   int savedFlags;
1724 
1725   savedFlags = db->flags;
1726   db->flags &= ~SQLITE_FullColNames;
1727   db->flags |= SQLITE_ShortColNames;
1728   sqlite3SelectPrep(pParse, pSelect, 0);
1729   if( pParse->nErr ) return 0;
1730   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1731   db->flags = savedFlags;
1732   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1733   if( pTab==0 ){
1734     return 0;
1735   }
1736   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1737   ** is disabled */
1738   assert( db->lookaside.bEnabled==0 );
1739   pTab->nRef = 1;
1740   pTab->zName = 0;
1741   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1742   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1743   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1744   pTab->iPKey = -1;
1745   if( db->mallocFailed ){
1746     sqlite3DeleteTable(db, pTab);
1747     return 0;
1748   }
1749   return pTab;
1750 }
1751 
1752 /*
1753 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1754 ** If an error occurs, return NULL and leave a message in pParse.
1755 */
1756 Vdbe *sqlite3GetVdbe(Parse *pParse){
1757   Vdbe *v = pParse->pVdbe;
1758   if( v==0 ){
1759     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1760     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1761     if( pParse->pToplevel==0
1762      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1763     ){
1764       pParse->okConstFactor = 1;
1765     }
1766 
1767   }
1768   return v;
1769 }
1770 
1771 
1772 /*
1773 ** Compute the iLimit and iOffset fields of the SELECT based on the
1774 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1775 ** that appear in the original SQL statement after the LIMIT and OFFSET
1776 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1777 ** are the integer memory register numbers for counters used to compute
1778 ** the limit and offset.  If there is no limit and/or offset, then
1779 ** iLimit and iOffset are negative.
1780 **
1781 ** This routine changes the values of iLimit and iOffset only if
1782 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1783 ** iOffset should have been preset to appropriate default values (zero)
1784 ** prior to calling this routine.
1785 **
1786 ** The iOffset register (if it exists) is initialized to the value
1787 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1788 ** iOffset+1 is initialized to LIMIT+OFFSET.
1789 **
1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1791 ** redefined.  The UNION ALL operator uses this property to force
1792 ** the reuse of the same limit and offset registers across multiple
1793 ** SELECT statements.
1794 */
1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1796   Vdbe *v = 0;
1797   int iLimit = 0;
1798   int iOffset;
1799   int addr1, n;
1800   if( p->iLimit ) return;
1801 
1802   /*
1803   ** "LIMIT -1" always shows all rows.  There is some
1804   ** controversy about what the correct behavior should be.
1805   ** The current implementation interprets "LIMIT 0" to mean
1806   ** no rows.
1807   */
1808   sqlite3ExprCacheClear(pParse);
1809   assert( p->pOffset==0 || p->pLimit!=0 );
1810   if( p->pLimit ){
1811     p->iLimit = iLimit = ++pParse->nMem;
1812     v = sqlite3GetVdbe(pParse);
1813     assert( v!=0 );
1814     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1815       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1816       VdbeComment((v, "LIMIT counter"));
1817       if( n==0 ){
1818         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1819       }else if( n>=0 && p->nSelectRow>(u64)n ){
1820         p->nSelectRow = n;
1821       }
1822     }else{
1823       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1824       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1825       VdbeComment((v, "LIMIT counter"));
1826       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1827     }
1828     if( p->pOffset ){
1829       p->iOffset = iOffset = ++pParse->nMem;
1830       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1831       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1832       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1833       VdbeComment((v, "OFFSET counter"));
1834       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1835       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1836       sqlite3VdbeJumpHere(v, addr1);
1837       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1838       VdbeComment((v, "LIMIT+OFFSET"));
1839       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1840       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1841       sqlite3VdbeJumpHere(v, addr1);
1842     }
1843   }
1844 }
1845 
1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1847 /*
1848 ** Return the appropriate collating sequence for the iCol-th column of
1849 ** the result set for the compound-select statement "p".  Return NULL if
1850 ** the column has no default collating sequence.
1851 **
1852 ** The collating sequence for the compound select is taken from the
1853 ** left-most term of the select that has a collating sequence.
1854 */
1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1856   CollSeq *pRet;
1857   if( p->pPrior ){
1858     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1859   }else{
1860     pRet = 0;
1861   }
1862   assert( iCol>=0 );
1863   if( pRet==0 && iCol<p->pEList->nExpr ){
1864     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1865   }
1866   return pRet;
1867 }
1868 
1869 /*
1870 ** The select statement passed as the second parameter is a compound SELECT
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1872 ** structure suitable for implementing the ORDER BY.
1873 **
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1875 ** function is responsible for ensuring that this structure is eventually
1876 ** freed.
1877 */
1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1879   ExprList *pOrderBy = p->pOrderBy;
1880   int nOrderBy = p->pOrderBy->nExpr;
1881   sqlite3 *db = pParse->db;
1882   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1883   if( pRet ){
1884     int i;
1885     for(i=0; i<nOrderBy; i++){
1886       struct ExprList_item *pItem = &pOrderBy->a[i];
1887       Expr *pTerm = pItem->pExpr;
1888       CollSeq *pColl;
1889 
1890       if( pTerm->flags & EP_Collate ){
1891         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1892       }else{
1893         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1894         if( pColl==0 ) pColl = db->pDfltColl;
1895         pOrderBy->a[i].pExpr =
1896           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1897       }
1898       assert( sqlite3KeyInfoIsWriteable(pRet) );
1899       pRet->aColl[i] = pColl;
1900       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1901     }
1902   }
1903 
1904   return pRet;
1905 }
1906 
1907 #ifndef SQLITE_OMIT_CTE
1908 /*
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1910 ** query of the form:
1911 **
1912 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1913 **                         \___________/             \_______________/
1914 **                           p->pPrior                      p
1915 **
1916 **
1917 ** There is exactly one reference to the recursive-table in the FROM clause
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1919 **
1920 ** The setup-query runs once to generate an initial set of rows that go
1921 ** into a Queue table.  Rows are extracted from the Queue table one by
1922 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1923 ** extracted row (now in the iCurrent table) becomes the content of the
1924 ** recursive-table for a recursive-query run.  The output of the recursive-query
1925 ** is added back into the Queue table.  Then another row is extracted from Queue
1926 ** and the iteration continues until the Queue table is empty.
1927 **
1928 ** If the compound query operator is UNION then no duplicate rows are ever
1929 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1930 ** that have ever been inserted into Queue and causes duplicates to be
1931 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1932 **
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1934 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1935 ** an ORDER BY, the Queue table is just a FIFO.
1936 **
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1938 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1939 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1940 ** with a positive value, then the first OFFSET outputs are discarded rather
1941 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1942 ** rows have been skipped.
1943 */
1944 static void generateWithRecursiveQuery(
1945   Parse *pParse,        /* Parsing context */
1946   Select *p,            /* The recursive SELECT to be coded */
1947   SelectDest *pDest     /* What to do with query results */
1948 ){
1949   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1950   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1951   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1952   Select *pSetup = p->pPrior;   /* The setup query */
1953   int addrTop;                  /* Top of the loop */
1954   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1955   int iCurrent = 0;             /* The Current table */
1956   int regCurrent;               /* Register holding Current table */
1957   int iQueue;                   /* The Queue table */
1958   int iDistinct = 0;            /* To ensure unique results if UNION */
1959   int eDest = SRT_Fifo;         /* How to write to Queue */
1960   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1961   int i;                        /* Loop counter */
1962   int rc;                       /* Result code */
1963   ExprList *pOrderBy;           /* The ORDER BY clause */
1964   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1965   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1966 
1967   /* Obtain authorization to do a recursive query */
1968   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1969 
1970   /* Process the LIMIT and OFFSET clauses, if they exist */
1971   addrBreak = sqlite3VdbeMakeLabel(v);
1972   computeLimitRegisters(pParse, p, addrBreak);
1973   pLimit = p->pLimit;
1974   pOffset = p->pOffset;
1975   regLimit = p->iLimit;
1976   regOffset = p->iOffset;
1977   p->pLimit = p->pOffset = 0;
1978   p->iLimit = p->iOffset = 0;
1979   pOrderBy = p->pOrderBy;
1980 
1981   /* Locate the cursor number of the Current table */
1982   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1983     if( pSrc->a[i].isRecursive ){
1984       iCurrent = pSrc->a[i].iCursor;
1985       break;
1986     }
1987   }
1988 
1989   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1990   ** the Distinct table must be exactly one greater than Queue in order
1991   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1992   iQueue = pParse->nTab++;
1993   if( p->op==TK_UNION ){
1994     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1995     iDistinct = pParse->nTab++;
1996   }else{
1997     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1998   }
1999   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2000 
2001   /* Allocate cursors for Current, Queue, and Distinct. */
2002   regCurrent = ++pParse->nMem;
2003   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2004   if( pOrderBy ){
2005     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2006     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2007                       (char*)pKeyInfo, P4_KEYINFO);
2008     destQueue.pOrderBy = pOrderBy;
2009   }else{
2010     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2011   }
2012   VdbeComment((v, "Queue table"));
2013   if( iDistinct ){
2014     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2015     p->selFlags |= SF_UsesEphemeral;
2016   }
2017 
2018   /* Detach the ORDER BY clause from the compound SELECT */
2019   p->pOrderBy = 0;
2020 
2021   /* Store the results of the setup-query in Queue. */
2022   pSetup->pNext = 0;
2023   rc = sqlite3Select(pParse, pSetup, &destQueue);
2024   pSetup->pNext = p;
2025   if( rc ) goto end_of_recursive_query;
2026 
2027   /* Find the next row in the Queue and output that row */
2028   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2029 
2030   /* Transfer the next row in Queue over to Current */
2031   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2032   if( pOrderBy ){
2033     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2034   }else{
2035     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2036   }
2037   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2038 
2039   /* Output the single row in Current */
2040   addrCont = sqlite3VdbeMakeLabel(v);
2041   codeOffset(v, regOffset, addrCont);
2042   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2043       0, 0, pDest, addrCont, addrBreak);
2044   if( regLimit ){
2045     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2046     VdbeCoverage(v);
2047   }
2048   sqlite3VdbeResolveLabel(v, addrCont);
2049 
2050   /* Execute the recursive SELECT taking the single row in Current as
2051   ** the value for the recursive-table. Store the results in the Queue.
2052   */
2053   p->pPrior = 0;
2054   sqlite3Select(pParse, p, &destQueue);
2055   assert( p->pPrior==0 );
2056   p->pPrior = pSetup;
2057 
2058   /* Keep running the loop until the Queue is empty */
2059   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2060   sqlite3VdbeResolveLabel(v, addrBreak);
2061 
2062 end_of_recursive_query:
2063   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2064   p->pOrderBy = pOrderBy;
2065   p->pLimit = pLimit;
2066   p->pOffset = pOffset;
2067   return;
2068 }
2069 #endif /* SQLITE_OMIT_CTE */
2070 
2071 /* Forward references */
2072 static int multiSelectOrderBy(
2073   Parse *pParse,        /* Parsing context */
2074   Select *p,            /* The right-most of SELECTs to be coded */
2075   SelectDest *pDest     /* What to do with query results */
2076 );
2077 
2078 
2079 /*
2080 ** This routine is called to process a compound query form from
2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2082 ** INTERSECT
2083 **
2084 ** "p" points to the right-most of the two queries.  the query on the
2085 ** left is p->pPrior.  The left query could also be a compound query
2086 ** in which case this routine will be called recursively.
2087 **
2088 ** The results of the total query are to be written into a destination
2089 ** of type eDest with parameter iParm.
2090 **
2091 ** Example 1:  Consider a three-way compound SQL statement.
2092 **
2093 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2094 **
2095 ** This statement is parsed up as follows:
2096 **
2097 **     SELECT c FROM t3
2098 **      |
2099 **      `----->  SELECT b FROM t2
2100 **                |
2101 **                `------>  SELECT a FROM t1
2102 **
2103 ** The arrows in the diagram above represent the Select.pPrior pointer.
2104 ** So if this routine is called with p equal to the t3 query, then
2105 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2106 **
2107 ** Notice that because of the way SQLite parses compound SELECTs, the
2108 ** individual selects always group from left to right.
2109 */
2110 static int multiSelect(
2111   Parse *pParse,        /* Parsing context */
2112   Select *p,            /* The right-most of SELECTs to be coded */
2113   SelectDest *pDest     /* What to do with query results */
2114 ){
2115   int rc = SQLITE_OK;   /* Success code from a subroutine */
2116   Select *pPrior;       /* Another SELECT immediately to our left */
2117   Vdbe *v;              /* Generate code to this VDBE */
2118   SelectDest dest;      /* Alternative data destination */
2119   Select *pDelete = 0;  /* Chain of simple selects to delete */
2120   sqlite3 *db;          /* Database connection */
2121 #ifndef SQLITE_OMIT_EXPLAIN
2122   int iSub1 = 0;        /* EQP id of left-hand query */
2123   int iSub2 = 0;        /* EQP id of right-hand query */
2124 #endif
2125 
2126   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2127   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2128   */
2129   assert( p && p->pPrior );  /* Calling function guarantees this much */
2130   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2131   db = pParse->db;
2132   pPrior = p->pPrior;
2133   dest = *pDest;
2134   if( pPrior->pOrderBy ){
2135     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2136       selectOpName(p->op));
2137     rc = 1;
2138     goto multi_select_end;
2139   }
2140   if( pPrior->pLimit ){
2141     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2142       selectOpName(p->op));
2143     rc = 1;
2144     goto multi_select_end;
2145   }
2146 
2147   v = sqlite3GetVdbe(pParse);
2148   assert( v!=0 );  /* The VDBE already created by calling function */
2149 
2150   /* Create the destination temporary table if necessary
2151   */
2152   if( dest.eDest==SRT_EphemTab ){
2153     assert( p->pEList );
2154     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2155     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2156     dest.eDest = SRT_Table;
2157   }
2158 
2159   /* Make sure all SELECTs in the statement have the same number of elements
2160   ** in their result sets.
2161   */
2162   assert( p->pEList && pPrior->pEList );
2163   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2164     if( p->selFlags & SF_Values ){
2165       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2166     }else{
2167       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2168         " do not have the same number of result columns", selectOpName(p->op));
2169     }
2170     rc = 1;
2171     goto multi_select_end;
2172   }
2173 
2174 #ifndef SQLITE_OMIT_CTE
2175   if( p->selFlags & SF_Recursive ){
2176     generateWithRecursiveQuery(pParse, p, &dest);
2177   }else
2178 #endif
2179 
2180   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2181   */
2182   if( p->pOrderBy ){
2183     return multiSelectOrderBy(pParse, p, pDest);
2184   }else
2185 
2186   /* Generate code for the left and right SELECT statements.
2187   */
2188   switch( p->op ){
2189     case TK_ALL: {
2190       int addr = 0;
2191       int nLimit;
2192       assert( !pPrior->pLimit );
2193       pPrior->iLimit = p->iLimit;
2194       pPrior->iOffset = p->iOffset;
2195       pPrior->pLimit = p->pLimit;
2196       pPrior->pOffset = p->pOffset;
2197       explainSetInteger(iSub1, pParse->iNextSelectId);
2198       rc = sqlite3Select(pParse, pPrior, &dest);
2199       p->pLimit = 0;
2200       p->pOffset = 0;
2201       if( rc ){
2202         goto multi_select_end;
2203       }
2204       p->pPrior = 0;
2205       p->iLimit = pPrior->iLimit;
2206       p->iOffset = pPrior->iOffset;
2207       if( p->iLimit ){
2208         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2209         VdbeComment((v, "Jump ahead if LIMIT reached"));
2210       }
2211       explainSetInteger(iSub2, pParse->iNextSelectId);
2212       rc = sqlite3Select(pParse, p, &dest);
2213       testcase( rc!=SQLITE_OK );
2214       pDelete = p->pPrior;
2215       p->pPrior = pPrior;
2216       p->nSelectRow += pPrior->nSelectRow;
2217       if( pPrior->pLimit
2218        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2219        && nLimit>0 && p->nSelectRow > (u64)nLimit
2220       ){
2221         p->nSelectRow = nLimit;
2222       }
2223       if( addr ){
2224         sqlite3VdbeJumpHere(v, addr);
2225       }
2226       break;
2227     }
2228     case TK_EXCEPT:
2229     case TK_UNION: {
2230       int unionTab;    /* Cursor number of the temporary table holding result */
2231       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2232       int priorOp;     /* The SRT_ operation to apply to prior selects */
2233       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2234       int addr;
2235       SelectDest uniondest;
2236 
2237       testcase( p->op==TK_EXCEPT );
2238       testcase( p->op==TK_UNION );
2239       priorOp = SRT_Union;
2240       if( dest.eDest==priorOp ){
2241         /* We can reuse a temporary table generated by a SELECT to our
2242         ** right.
2243         */
2244         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2245         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2246         unionTab = dest.iSDParm;
2247       }else{
2248         /* We will need to create our own temporary table to hold the
2249         ** intermediate results.
2250         */
2251         unionTab = pParse->nTab++;
2252         assert( p->pOrderBy==0 );
2253         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2254         assert( p->addrOpenEphm[0] == -1 );
2255         p->addrOpenEphm[0] = addr;
2256         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2257         assert( p->pEList );
2258       }
2259 
2260       /* Code the SELECT statements to our left
2261       */
2262       assert( !pPrior->pOrderBy );
2263       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2264       explainSetInteger(iSub1, pParse->iNextSelectId);
2265       rc = sqlite3Select(pParse, pPrior, &uniondest);
2266       if( rc ){
2267         goto multi_select_end;
2268       }
2269 
2270       /* Code the current SELECT statement
2271       */
2272       if( p->op==TK_EXCEPT ){
2273         op = SRT_Except;
2274       }else{
2275         assert( p->op==TK_UNION );
2276         op = SRT_Union;
2277       }
2278       p->pPrior = 0;
2279       pLimit = p->pLimit;
2280       p->pLimit = 0;
2281       pOffset = p->pOffset;
2282       p->pOffset = 0;
2283       uniondest.eDest = op;
2284       explainSetInteger(iSub2, pParse->iNextSelectId);
2285       rc = sqlite3Select(pParse, p, &uniondest);
2286       testcase( rc!=SQLITE_OK );
2287       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2288       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2289       sqlite3ExprListDelete(db, p->pOrderBy);
2290       pDelete = p->pPrior;
2291       p->pPrior = pPrior;
2292       p->pOrderBy = 0;
2293       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2294       sqlite3ExprDelete(db, p->pLimit);
2295       p->pLimit = pLimit;
2296       p->pOffset = pOffset;
2297       p->iLimit = 0;
2298       p->iOffset = 0;
2299 
2300       /* Convert the data in the temporary table into whatever form
2301       ** it is that we currently need.
2302       */
2303       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2304       if( dest.eDest!=priorOp ){
2305         int iCont, iBreak, iStart;
2306         assert( p->pEList );
2307         if( dest.eDest==SRT_Output ){
2308           Select *pFirst = p;
2309           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2310           generateColumnNames(pParse, 0, pFirst->pEList);
2311         }
2312         iBreak = sqlite3VdbeMakeLabel(v);
2313         iCont = sqlite3VdbeMakeLabel(v);
2314         computeLimitRegisters(pParse, p, iBreak);
2315         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2316         iStart = sqlite3VdbeCurrentAddr(v);
2317         selectInnerLoop(pParse, p, p->pEList, unionTab,
2318                         0, 0, &dest, iCont, iBreak);
2319         sqlite3VdbeResolveLabel(v, iCont);
2320         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2321         sqlite3VdbeResolveLabel(v, iBreak);
2322         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2323       }
2324       break;
2325     }
2326     default: assert( p->op==TK_INTERSECT ); {
2327       int tab1, tab2;
2328       int iCont, iBreak, iStart;
2329       Expr *pLimit, *pOffset;
2330       int addr;
2331       SelectDest intersectdest;
2332       int r1;
2333 
2334       /* INTERSECT is different from the others since it requires
2335       ** two temporary tables.  Hence it has its own case.  Begin
2336       ** by allocating the tables we will need.
2337       */
2338       tab1 = pParse->nTab++;
2339       tab2 = pParse->nTab++;
2340       assert( p->pOrderBy==0 );
2341 
2342       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2343       assert( p->addrOpenEphm[0] == -1 );
2344       p->addrOpenEphm[0] = addr;
2345       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2346       assert( p->pEList );
2347 
2348       /* Code the SELECTs to our left into temporary table "tab1".
2349       */
2350       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2351       explainSetInteger(iSub1, pParse->iNextSelectId);
2352       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2353       if( rc ){
2354         goto multi_select_end;
2355       }
2356 
2357       /* Code the current SELECT into temporary table "tab2"
2358       */
2359       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2360       assert( p->addrOpenEphm[1] == -1 );
2361       p->addrOpenEphm[1] = addr;
2362       p->pPrior = 0;
2363       pLimit = p->pLimit;
2364       p->pLimit = 0;
2365       pOffset = p->pOffset;
2366       p->pOffset = 0;
2367       intersectdest.iSDParm = tab2;
2368       explainSetInteger(iSub2, pParse->iNextSelectId);
2369       rc = sqlite3Select(pParse, p, &intersectdest);
2370       testcase( rc!=SQLITE_OK );
2371       pDelete = p->pPrior;
2372       p->pPrior = pPrior;
2373       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2374       sqlite3ExprDelete(db, p->pLimit);
2375       p->pLimit = pLimit;
2376       p->pOffset = pOffset;
2377 
2378       /* Generate code to take the intersection of the two temporary
2379       ** tables.
2380       */
2381       assert( p->pEList );
2382       if( dest.eDest==SRT_Output ){
2383         Select *pFirst = p;
2384         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2385         generateColumnNames(pParse, 0, pFirst->pEList);
2386       }
2387       iBreak = sqlite3VdbeMakeLabel(v);
2388       iCont = sqlite3VdbeMakeLabel(v);
2389       computeLimitRegisters(pParse, p, iBreak);
2390       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2391       r1 = sqlite3GetTempReg(pParse);
2392       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2393       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2394       sqlite3ReleaseTempReg(pParse, r1);
2395       selectInnerLoop(pParse, p, p->pEList, tab1,
2396                       0, 0, &dest, iCont, iBreak);
2397       sqlite3VdbeResolveLabel(v, iCont);
2398       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2399       sqlite3VdbeResolveLabel(v, iBreak);
2400       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2401       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2402       break;
2403     }
2404   }
2405 
2406   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2407 
2408   /* Compute collating sequences used by
2409   ** temporary tables needed to implement the compound select.
2410   ** Attach the KeyInfo structure to all temporary tables.
2411   **
2412   ** This section is run by the right-most SELECT statement only.
2413   ** SELECT statements to the left always skip this part.  The right-most
2414   ** SELECT might also skip this part if it has no ORDER BY clause and
2415   ** no temp tables are required.
2416   */
2417   if( p->selFlags & SF_UsesEphemeral ){
2418     int i;                        /* Loop counter */
2419     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2420     Select *pLoop;                /* For looping through SELECT statements */
2421     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2422     int nCol;                     /* Number of columns in result set */
2423 
2424     assert( p->pNext==0 );
2425     nCol = p->pEList->nExpr;
2426     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2427     if( !pKeyInfo ){
2428       rc = SQLITE_NOMEM;
2429       goto multi_select_end;
2430     }
2431     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2432       *apColl = multiSelectCollSeq(pParse, p, i);
2433       if( 0==*apColl ){
2434         *apColl = db->pDfltColl;
2435       }
2436     }
2437 
2438     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2439       for(i=0; i<2; i++){
2440         int addr = pLoop->addrOpenEphm[i];
2441         if( addr<0 ){
2442           /* If [0] is unused then [1] is also unused.  So we can
2443           ** always safely abort as soon as the first unused slot is found */
2444           assert( pLoop->addrOpenEphm[1]<0 );
2445           break;
2446         }
2447         sqlite3VdbeChangeP2(v, addr, nCol);
2448         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2449                             P4_KEYINFO);
2450         pLoop->addrOpenEphm[i] = -1;
2451       }
2452     }
2453     sqlite3KeyInfoUnref(pKeyInfo);
2454   }
2455 
2456 multi_select_end:
2457   pDest->iSdst = dest.iSdst;
2458   pDest->nSdst = dest.nSdst;
2459   sqlite3SelectDelete(db, pDelete);
2460   return rc;
2461 }
2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2463 
2464 /*
2465 ** Code an output subroutine for a coroutine implementation of a
2466 ** SELECT statment.
2467 **
2468 ** The data to be output is contained in pIn->iSdst.  There are
2469 ** pIn->nSdst columns to be output.  pDest is where the output should
2470 ** be sent.
2471 **
2472 ** regReturn is the number of the register holding the subroutine
2473 ** return address.
2474 **
2475 ** If regPrev>0 then it is the first register in a vector that
2476 ** records the previous output.  mem[regPrev] is a flag that is false
2477 ** if there has been no previous output.  If regPrev>0 then code is
2478 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2479 ** keys.
2480 **
2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2482 ** iBreak.
2483 */
2484 static int generateOutputSubroutine(
2485   Parse *pParse,          /* Parsing context */
2486   Select *p,              /* The SELECT statement */
2487   SelectDest *pIn,        /* Coroutine supplying data */
2488   SelectDest *pDest,      /* Where to send the data */
2489   int regReturn,          /* The return address register */
2490   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2491   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2492   int iBreak              /* Jump here if we hit the LIMIT */
2493 ){
2494   Vdbe *v = pParse->pVdbe;
2495   int iContinue;
2496   int addr;
2497 
2498   addr = sqlite3VdbeCurrentAddr(v);
2499   iContinue = sqlite3VdbeMakeLabel(v);
2500 
2501   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2502   */
2503   if( regPrev ){
2504     int j1, j2;
2505     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2506     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2507                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2508     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2509     sqlite3VdbeJumpHere(v, j1);
2510     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2511     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2512   }
2513   if( pParse->db->mallocFailed ) return 0;
2514 
2515   /* Suppress the first OFFSET entries if there is an OFFSET clause
2516   */
2517   codeOffset(v, p->iOffset, iContinue);
2518 
2519   switch( pDest->eDest ){
2520     /* Store the result as data using a unique key.
2521     */
2522     case SRT_Table:
2523     case SRT_EphemTab: {
2524       int r1 = sqlite3GetTempReg(pParse);
2525       int r2 = sqlite3GetTempReg(pParse);
2526       testcase( pDest->eDest==SRT_Table );
2527       testcase( pDest->eDest==SRT_EphemTab );
2528       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2529       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2530       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2531       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2532       sqlite3ReleaseTempReg(pParse, r2);
2533       sqlite3ReleaseTempReg(pParse, r1);
2534       break;
2535     }
2536 
2537 #ifndef SQLITE_OMIT_SUBQUERY
2538     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2539     ** then there should be a single item on the stack.  Write this
2540     ** item into the set table with bogus data.
2541     */
2542     case SRT_Set: {
2543       int r1;
2544       assert( pIn->nSdst==1 );
2545       pDest->affSdst =
2546          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2547       r1 = sqlite3GetTempReg(pParse);
2548       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2549       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2550       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2551       sqlite3ReleaseTempReg(pParse, r1);
2552       break;
2553     }
2554 
2555 #if 0  /* Never occurs on an ORDER BY query */
2556     /* If any row exist in the result set, record that fact and abort.
2557     */
2558     case SRT_Exists: {
2559       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2560       /* The LIMIT clause will terminate the loop for us */
2561       break;
2562     }
2563 #endif
2564 
2565     /* If this is a scalar select that is part of an expression, then
2566     ** store the results in the appropriate memory cell and break out
2567     ** of the scan loop.
2568     */
2569     case SRT_Mem: {
2570       assert( pIn->nSdst==1 );
2571       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2572       /* The LIMIT clause will jump out of the loop for us */
2573       break;
2574     }
2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2576 
2577     /* The results are stored in a sequence of registers
2578     ** starting at pDest->iSdst.  Then the co-routine yields.
2579     */
2580     case SRT_Coroutine: {
2581       if( pDest->iSdst==0 ){
2582         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2583         pDest->nSdst = pIn->nSdst;
2584       }
2585       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2586       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2587       break;
2588     }
2589 
2590     /* If none of the above, then the result destination must be
2591     ** SRT_Output.  This routine is never called with any other
2592     ** destination other than the ones handled above or SRT_Output.
2593     **
2594     ** For SRT_Output, results are stored in a sequence of registers.
2595     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2596     ** return the next row of result.
2597     */
2598     default: {
2599       assert( pDest->eDest==SRT_Output );
2600       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2601       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2602       break;
2603     }
2604   }
2605 
2606   /* Jump to the end of the loop if the LIMIT is reached.
2607   */
2608   if( p->iLimit ){
2609     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2610   }
2611 
2612   /* Generate the subroutine return
2613   */
2614   sqlite3VdbeResolveLabel(v, iContinue);
2615   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2616 
2617   return addr;
2618 }
2619 
2620 /*
2621 ** Alternative compound select code generator for cases when there
2622 ** is an ORDER BY clause.
2623 **
2624 ** We assume a query of the following form:
2625 **
2626 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2627 **
2628 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2629 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2630 ** co-routines.  Then run the co-routines in parallel and merge the results
2631 ** into the output.  In addition to the two coroutines (called selectA and
2632 ** selectB) there are 7 subroutines:
2633 **
2634 **    outA:    Move the output of the selectA coroutine into the output
2635 **             of the compound query.
2636 **
2637 **    outB:    Move the output of the selectB coroutine into the output
2638 **             of the compound query.  (Only generated for UNION and
2639 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2640 **             appears only in B.)
2641 **
2642 **    AltB:    Called when there is data from both coroutines and A<B.
2643 **
2644 **    AeqB:    Called when there is data from both coroutines and A==B.
2645 **
2646 **    AgtB:    Called when there is data from both coroutines and A>B.
2647 **
2648 **    EofA:    Called when data is exhausted from selectA.
2649 **
2650 **    EofB:    Called when data is exhausted from selectB.
2651 **
2652 ** The implementation of the latter five subroutines depend on which
2653 ** <operator> is used:
2654 **
2655 **
2656 **             UNION ALL         UNION            EXCEPT          INTERSECT
2657 **          -------------  -----------------  --------------  -----------------
2658 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2659 **
2660 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2661 **
2662 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2663 **
2664 **   EofA:   outB, nextB      outB, nextB          halt             halt
2665 **
2666 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2667 **
2668 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2669 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2670 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2671 ** following nextX causes a jump to the end of the select processing.
2672 **
2673 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2674 ** within the output subroutine.  The regPrev register set holds the previously
2675 ** output value.  A comparison is made against this value and the output
2676 ** is skipped if the next results would be the same as the previous.
2677 **
2678 ** The implementation plan is to implement the two coroutines and seven
2679 ** subroutines first, then put the control logic at the bottom.  Like this:
2680 **
2681 **          goto Init
2682 **     coA: coroutine for left query (A)
2683 **     coB: coroutine for right query (B)
2684 **    outA: output one row of A
2685 **    outB: output one row of B (UNION and UNION ALL only)
2686 **    EofA: ...
2687 **    EofB: ...
2688 **    AltB: ...
2689 **    AeqB: ...
2690 **    AgtB: ...
2691 **    Init: initialize coroutine registers
2692 **          yield coA
2693 **          if eof(A) goto EofA
2694 **          yield coB
2695 **          if eof(B) goto EofB
2696 **    Cmpr: Compare A, B
2697 **          Jump AltB, AeqB, AgtB
2698 **     End: ...
2699 **
2700 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2701 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2702 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2703 ** and AgtB jump to either L2 or to one of EofA or EofB.
2704 */
2705 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2706 static int multiSelectOrderBy(
2707   Parse *pParse,        /* Parsing context */
2708   Select *p,            /* The right-most of SELECTs to be coded */
2709   SelectDest *pDest     /* What to do with query results */
2710 ){
2711   int i, j;             /* Loop counters */
2712   Select *pPrior;       /* Another SELECT immediately to our left */
2713   Vdbe *v;              /* Generate code to this VDBE */
2714   SelectDest destA;     /* Destination for coroutine A */
2715   SelectDest destB;     /* Destination for coroutine B */
2716   int regAddrA;         /* Address register for select-A coroutine */
2717   int regAddrB;         /* Address register for select-B coroutine */
2718   int addrSelectA;      /* Address of the select-A coroutine */
2719   int addrSelectB;      /* Address of the select-B coroutine */
2720   int regOutA;          /* Address register for the output-A subroutine */
2721   int regOutB;          /* Address register for the output-B subroutine */
2722   int addrOutA;         /* Address of the output-A subroutine */
2723   int addrOutB = 0;     /* Address of the output-B subroutine */
2724   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2725   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2726   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2727   int addrAltB;         /* Address of the A<B subroutine */
2728   int addrAeqB;         /* Address of the A==B subroutine */
2729   int addrAgtB;         /* Address of the A>B subroutine */
2730   int regLimitA;        /* Limit register for select-A */
2731   int regLimitB;        /* Limit register for select-A */
2732   int regPrev;          /* A range of registers to hold previous output */
2733   int savedLimit;       /* Saved value of p->iLimit */
2734   int savedOffset;      /* Saved value of p->iOffset */
2735   int labelCmpr;        /* Label for the start of the merge algorithm */
2736   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2737   int j1;               /* Jump instructions that get retargetted */
2738   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2739   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2740   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2741   sqlite3 *db;          /* Database connection */
2742   ExprList *pOrderBy;   /* The ORDER BY clause */
2743   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2744   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2745 #ifndef SQLITE_OMIT_EXPLAIN
2746   int iSub1;            /* EQP id of left-hand query */
2747   int iSub2;            /* EQP id of right-hand query */
2748 #endif
2749 
2750   assert( p->pOrderBy!=0 );
2751   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2752   db = pParse->db;
2753   v = pParse->pVdbe;
2754   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2755   labelEnd = sqlite3VdbeMakeLabel(v);
2756   labelCmpr = sqlite3VdbeMakeLabel(v);
2757 
2758 
2759   /* Patch up the ORDER BY clause
2760   */
2761   op = p->op;
2762   pPrior = p->pPrior;
2763   assert( pPrior->pOrderBy==0 );
2764   pOrderBy = p->pOrderBy;
2765   assert( pOrderBy );
2766   nOrderBy = pOrderBy->nExpr;
2767 
2768   /* For operators other than UNION ALL we have to make sure that
2769   ** the ORDER BY clause covers every term of the result set.  Add
2770   ** terms to the ORDER BY clause as necessary.
2771   */
2772   if( op!=TK_ALL ){
2773     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2774       struct ExprList_item *pItem;
2775       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2776         assert( pItem->u.x.iOrderByCol>0 );
2777         if( pItem->u.x.iOrderByCol==i ) break;
2778       }
2779       if( j==nOrderBy ){
2780         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2781         if( pNew==0 ) return SQLITE_NOMEM;
2782         pNew->flags |= EP_IntValue;
2783         pNew->u.iValue = i;
2784         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2785         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2786       }
2787     }
2788   }
2789 
2790   /* Compute the comparison permutation and keyinfo that is used with
2791   ** the permutation used to determine if the next
2792   ** row of results comes from selectA or selectB.  Also add explicit
2793   ** collations to the ORDER BY clause terms so that when the subqueries
2794   ** to the right and the left are evaluated, they use the correct
2795   ** collation.
2796   */
2797   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2798   if( aPermute ){
2799     struct ExprList_item *pItem;
2800     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2801       assert( pItem->u.x.iOrderByCol>0
2802           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2803       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2804     }
2805     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2806   }else{
2807     pKeyMerge = 0;
2808   }
2809 
2810   /* Reattach the ORDER BY clause to the query.
2811   */
2812   p->pOrderBy = pOrderBy;
2813   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2814 
2815   /* Allocate a range of temporary registers and the KeyInfo needed
2816   ** for the logic that removes duplicate result rows when the
2817   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2818   */
2819   if( op==TK_ALL ){
2820     regPrev = 0;
2821   }else{
2822     int nExpr = p->pEList->nExpr;
2823     assert( nOrderBy>=nExpr || db->mallocFailed );
2824     regPrev = pParse->nMem+1;
2825     pParse->nMem += nExpr+1;
2826     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2827     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2828     if( pKeyDup ){
2829       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2830       for(i=0; i<nExpr; i++){
2831         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2832         pKeyDup->aSortOrder[i] = 0;
2833       }
2834     }
2835   }
2836 
2837   /* Separate the left and the right query from one another
2838   */
2839   p->pPrior = 0;
2840   pPrior->pNext = 0;
2841   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2842   if( pPrior->pPrior==0 ){
2843     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2844   }
2845 
2846   /* Compute the limit registers */
2847   computeLimitRegisters(pParse, p, labelEnd);
2848   if( p->iLimit && op==TK_ALL ){
2849     regLimitA = ++pParse->nMem;
2850     regLimitB = ++pParse->nMem;
2851     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2852                                   regLimitA);
2853     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2854   }else{
2855     regLimitA = regLimitB = 0;
2856   }
2857   sqlite3ExprDelete(db, p->pLimit);
2858   p->pLimit = 0;
2859   sqlite3ExprDelete(db, p->pOffset);
2860   p->pOffset = 0;
2861 
2862   regAddrA = ++pParse->nMem;
2863   regAddrB = ++pParse->nMem;
2864   regOutA = ++pParse->nMem;
2865   regOutB = ++pParse->nMem;
2866   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2867   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2868 
2869   /* Generate a coroutine to evaluate the SELECT statement to the
2870   ** left of the compound operator - the "A" select.
2871   */
2872   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2873   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2874   VdbeComment((v, "left SELECT"));
2875   pPrior->iLimit = regLimitA;
2876   explainSetInteger(iSub1, pParse->iNextSelectId);
2877   sqlite3Select(pParse, pPrior, &destA);
2878   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2879   sqlite3VdbeJumpHere(v, j1);
2880 
2881   /* Generate a coroutine to evaluate the SELECT statement on
2882   ** the right - the "B" select
2883   */
2884   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2885   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2886   VdbeComment((v, "right SELECT"));
2887   savedLimit = p->iLimit;
2888   savedOffset = p->iOffset;
2889   p->iLimit = regLimitB;
2890   p->iOffset = 0;
2891   explainSetInteger(iSub2, pParse->iNextSelectId);
2892   sqlite3Select(pParse, p, &destB);
2893   p->iLimit = savedLimit;
2894   p->iOffset = savedOffset;
2895   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2896 
2897   /* Generate a subroutine that outputs the current row of the A
2898   ** select as the next output row of the compound select.
2899   */
2900   VdbeNoopComment((v, "Output routine for A"));
2901   addrOutA = generateOutputSubroutine(pParse,
2902                  p, &destA, pDest, regOutA,
2903                  regPrev, pKeyDup, labelEnd);
2904 
2905   /* Generate a subroutine that outputs the current row of the B
2906   ** select as the next output row of the compound select.
2907   */
2908   if( op==TK_ALL || op==TK_UNION ){
2909     VdbeNoopComment((v, "Output routine for B"));
2910     addrOutB = generateOutputSubroutine(pParse,
2911                  p, &destB, pDest, regOutB,
2912                  regPrev, pKeyDup, labelEnd);
2913   }
2914   sqlite3KeyInfoUnref(pKeyDup);
2915 
2916   /* Generate a subroutine to run when the results from select A
2917   ** are exhausted and only data in select B remains.
2918   */
2919   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2920     addrEofA_noB = addrEofA = labelEnd;
2921   }else{
2922     VdbeNoopComment((v, "eof-A subroutine"));
2923     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2924     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2925                                      VdbeCoverage(v);
2926     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2927     p->nSelectRow += pPrior->nSelectRow;
2928   }
2929 
2930   /* Generate a subroutine to run when the results from select B
2931   ** are exhausted and only data in select A remains.
2932   */
2933   if( op==TK_INTERSECT ){
2934     addrEofB = addrEofA;
2935     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2936   }else{
2937     VdbeNoopComment((v, "eof-B subroutine"));
2938     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2939     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2940     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2941   }
2942 
2943   /* Generate code to handle the case of A<B
2944   */
2945   VdbeNoopComment((v, "A-lt-B subroutine"));
2946   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2947   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2948   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2949 
2950   /* Generate code to handle the case of A==B
2951   */
2952   if( op==TK_ALL ){
2953     addrAeqB = addrAltB;
2954   }else if( op==TK_INTERSECT ){
2955     addrAeqB = addrAltB;
2956     addrAltB++;
2957   }else{
2958     VdbeNoopComment((v, "A-eq-B subroutine"));
2959     addrAeqB =
2960     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2961     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2962   }
2963 
2964   /* Generate code to handle the case of A>B
2965   */
2966   VdbeNoopComment((v, "A-gt-B subroutine"));
2967   addrAgtB = sqlite3VdbeCurrentAddr(v);
2968   if( op==TK_ALL || op==TK_UNION ){
2969     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2970   }
2971   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2972   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2973 
2974   /* This code runs once to initialize everything.
2975   */
2976   sqlite3VdbeJumpHere(v, j1);
2977   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2978   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2979 
2980   /* Implement the main merge loop
2981   */
2982   sqlite3VdbeResolveLabel(v, labelCmpr);
2983   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2984   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2985                          (char*)pKeyMerge, P4_KEYINFO);
2986   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2987   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2988 
2989   /* Jump to the this point in order to terminate the query.
2990   */
2991   sqlite3VdbeResolveLabel(v, labelEnd);
2992 
2993   /* Set the number of output columns
2994   */
2995   if( pDest->eDest==SRT_Output ){
2996     Select *pFirst = pPrior;
2997     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2998     generateColumnNames(pParse, 0, pFirst->pEList);
2999   }
3000 
3001   /* Reassembly the compound query so that it will be freed correctly
3002   ** by the calling function */
3003   if( p->pPrior ){
3004     sqlite3SelectDelete(db, p->pPrior);
3005   }
3006   p->pPrior = pPrior;
3007   pPrior->pNext = p;
3008 
3009   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3010   **** subqueries ****/
3011   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3012   return SQLITE_OK;
3013 }
3014 #endif
3015 
3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3017 /* Forward Declarations */
3018 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3019 static void substSelect(sqlite3*, Select *, int, ExprList *);
3020 
3021 /*
3022 ** Scan through the expression pExpr.  Replace every reference to
3023 ** a column in table number iTable with a copy of the iColumn-th
3024 ** entry in pEList.  (But leave references to the ROWID column
3025 ** unchanged.)
3026 **
3027 ** This routine is part of the flattening procedure.  A subquery
3028 ** whose result set is defined by pEList appears as entry in the
3029 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3030 ** FORM clause entry is iTable.  This routine make the necessary
3031 ** changes to pExpr so that it refers directly to the source table
3032 ** of the subquery rather the result set of the subquery.
3033 */
3034 static Expr *substExpr(
3035   sqlite3 *db,        /* Report malloc errors to this connection */
3036   Expr *pExpr,        /* Expr in which substitution occurs */
3037   int iTable,         /* Table to be substituted */
3038   ExprList *pEList    /* Substitute expressions */
3039 ){
3040   if( pExpr==0 ) return 0;
3041   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3042     if( pExpr->iColumn<0 ){
3043       pExpr->op = TK_NULL;
3044     }else{
3045       Expr *pNew;
3046       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3047       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3048       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3049       sqlite3ExprDelete(db, pExpr);
3050       pExpr = pNew;
3051     }
3052   }else{
3053     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3054     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3055     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3056       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3057     }else{
3058       substExprList(db, pExpr->x.pList, iTable, pEList);
3059     }
3060   }
3061   return pExpr;
3062 }
3063 static void substExprList(
3064   sqlite3 *db,         /* Report malloc errors here */
3065   ExprList *pList,     /* List to scan and in which to make substitutes */
3066   int iTable,          /* Table to be substituted */
3067   ExprList *pEList     /* Substitute values */
3068 ){
3069   int i;
3070   if( pList==0 ) return;
3071   for(i=0; i<pList->nExpr; i++){
3072     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3073   }
3074 }
3075 static void substSelect(
3076   sqlite3 *db,         /* Report malloc errors here */
3077   Select *p,           /* SELECT statement in which to make substitutions */
3078   int iTable,          /* Table to be replaced */
3079   ExprList *pEList     /* Substitute values */
3080 ){
3081   SrcList *pSrc;
3082   struct SrcList_item *pItem;
3083   int i;
3084   if( !p ) return;
3085   substExprList(db, p->pEList, iTable, pEList);
3086   substExprList(db, p->pGroupBy, iTable, pEList);
3087   substExprList(db, p->pOrderBy, iTable, pEList);
3088   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3089   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3090   substSelect(db, p->pPrior, iTable, pEList);
3091   pSrc = p->pSrc;
3092   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3093   if( ALWAYS(pSrc) ){
3094     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3095       substSelect(db, pItem->pSelect, iTable, pEList);
3096     }
3097   }
3098 }
3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3100 
3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3102 /*
3103 ** This routine attempts to flatten subqueries as a performance optimization.
3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3105 **
3106 ** To understand the concept of flattening, consider the following
3107 ** query:
3108 **
3109 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3110 **
3111 ** The default way of implementing this query is to execute the
3112 ** subquery first and store the results in a temporary table, then
3113 ** run the outer query on that temporary table.  This requires two
3114 ** passes over the data.  Furthermore, because the temporary table
3115 ** has no indices, the WHERE clause on the outer query cannot be
3116 ** optimized.
3117 **
3118 ** This routine attempts to rewrite queries such as the above into
3119 ** a single flat select, like this:
3120 **
3121 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3122 **
3123 ** The code generated for this simplification gives the same result
3124 ** but only has to scan the data once.  And because indices might
3125 ** exist on the table t1, a complete scan of the data might be
3126 ** avoided.
3127 **
3128 ** Flattening is only attempted if all of the following are true:
3129 **
3130 **   (1)  The subquery and the outer query do not both use aggregates.
3131 **
3132 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3133 **
3134 **   (3)  The subquery is not the right operand of a left outer join
3135 **        (Originally ticket #306.  Strengthened by ticket #3300)
3136 **
3137 **   (4)  The subquery is not DISTINCT.
3138 **
3139 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3140 **        sub-queries that were excluded from this optimization. Restriction
3141 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3142 **
3143 **   (6)  The subquery does not use aggregates or the outer query is not
3144 **        DISTINCT.
3145 **
3146 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3147 **        A FROM clause, consider adding a FROM close with the special
3148 **        table sqlite_once that consists of a single row containing a
3149 **        single NULL.
3150 **
3151 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3152 **
3153 **   (9)  The subquery does not use LIMIT or the outer query does not use
3154 **        aggregates.
3155 **
3156 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3157 **        accidently carried the comment forward until 2014-09-15.  Original
3158 **        text: "The subquery does not use aggregates or the outer query does not
3159 **        use LIMIT."
3160 **
3161 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3162 **
3163 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3164 **        a separate restriction deriving from ticket #350.
3165 **
3166 **  (13)  The subquery and outer query do not both use LIMIT.
3167 **
3168 **  (14)  The subquery does not use OFFSET.
3169 **
3170 **  (15)  The outer query is not part of a compound select or the
3171 **        subquery does not have a LIMIT clause.
3172 **        (See ticket #2339 and ticket [02a8e81d44]).
3173 **
3174 **  (16)  The outer query is not an aggregate or the subquery does
3175 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3176 **        until we introduced the group_concat() function.
3177 **
3178 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3179 **        compound clause made up entirely of non-aggregate queries, and
3180 **        the parent query:
3181 **
3182 **          * is not itself part of a compound select,
3183 **          * is not an aggregate or DISTINCT query, and
3184 **          * is not a join
3185 **
3186 **        The parent and sub-query may contain WHERE clauses. Subject to
3187 **        rules (11), (13) and (14), they may also contain ORDER BY,
3188 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3189 **        operator other than UNION ALL because all the other compound
3190 **        operators have an implied DISTINCT which is disallowed by
3191 **        restriction (4).
3192 **
3193 **        Also, each component of the sub-query must return the same number
3194 **        of result columns. This is actually a requirement for any compound
3195 **        SELECT statement, but all the code here does is make sure that no
3196 **        such (illegal) sub-query is flattened. The caller will detect the
3197 **        syntax error and return a detailed message.
3198 **
3199 **  (18)  If the sub-query is a compound select, then all terms of the
3200 **        ORDER by clause of the parent must be simple references to
3201 **        columns of the sub-query.
3202 **
3203 **  (19)  The subquery does not use LIMIT or the outer query does not
3204 **        have a WHERE clause.
3205 **
3206 **  (20)  If the sub-query is a compound select, then it must not use
3207 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3208 **        somewhat by saying that the terms of the ORDER BY clause must
3209 **        appear as unmodified result columns in the outer query.  But we
3210 **        have other optimizations in mind to deal with that case.
3211 **
3212 **  (21)  The subquery does not use LIMIT or the outer query is not
3213 **        DISTINCT.  (See ticket [752e1646fc]).
3214 **
3215 **  (22)  The subquery is not a recursive CTE.
3216 **
3217 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3218 **        compound query. This restriction is because transforming the
3219 **        parent to a compound query confuses the code that handles
3220 **        recursive queries in multiSelect().
3221 **
3222 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3223 **        or max() functions.  (Without this restriction, a query like:
3224 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3225 **        return the value X for which Y was maximal.)
3226 **
3227 **
3228 ** In this routine, the "p" parameter is a pointer to the outer query.
3229 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3231 **
3232 ** If flattening is not attempted, this routine is a no-op and returns 0.
3233 ** If flattening is attempted this routine returns 1.
3234 **
3235 ** All of the expression analysis must occur on both the outer query and
3236 ** the subquery before this routine runs.
3237 */
3238 static int flattenSubquery(
3239   Parse *pParse,       /* Parsing context */
3240   Select *p,           /* The parent or outer SELECT statement */
3241   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3242   int isAgg,           /* True if outer SELECT uses aggregate functions */
3243   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3244 ){
3245   const char *zSavedAuthContext = pParse->zAuthContext;
3246   Select *pParent;
3247   Select *pSub;       /* The inner query or "subquery" */
3248   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3249   SrcList *pSrc;      /* The FROM clause of the outer query */
3250   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3251   ExprList *pList;    /* The result set of the outer query */
3252   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3253   int i;              /* Loop counter */
3254   Expr *pWhere;                    /* The WHERE clause */
3255   struct SrcList_item *pSubitem;   /* The subquery */
3256   sqlite3 *db = pParse->db;
3257 
3258   /* Check to see if flattening is permitted.  Return 0 if not.
3259   */
3260   assert( p!=0 );
3261   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3262   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3263   pSrc = p->pSrc;
3264   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3265   pSubitem = &pSrc->a[iFrom];
3266   iParent = pSubitem->iCursor;
3267   pSub = pSubitem->pSelect;
3268   assert( pSub!=0 );
3269   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3270   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3271   pSubSrc = pSub->pSrc;
3272   assert( pSubSrc );
3273   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3274   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3275   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3276   ** became arbitrary expressions, we were forced to add restrictions (13)
3277   ** and (14). */
3278   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3279   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3280   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3281     return 0;                                            /* Restriction (15) */
3282   }
3283   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3284   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3285   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3286      return 0;         /* Restrictions (8)(9) */
3287   }
3288   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3289      return 0;         /* Restriction (6)  */
3290   }
3291   if( p->pOrderBy && pSub->pOrderBy ){
3292      return 0;                                           /* Restriction (11) */
3293   }
3294   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3295   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3296   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3297      return 0;         /* Restriction (21) */
3298   }
3299   testcase( pSub->selFlags & SF_Recursive );
3300   testcase( pSub->selFlags & SF_MinMaxAgg );
3301   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3302     return 0; /* Restrictions (22) and (24) */
3303   }
3304   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3305     return 0; /* Restriction (23) */
3306   }
3307 
3308   /* OBSOLETE COMMENT 1:
3309   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3310   ** not used as the right operand of an outer join.  Examples of why this
3311   ** is not allowed:
3312   **
3313   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3314   **
3315   ** If we flatten the above, we would get
3316   **
3317   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3318   **
3319   ** which is not at all the same thing.
3320   **
3321   ** OBSOLETE COMMENT 2:
3322   ** Restriction 12:  If the subquery is the right operand of a left outer
3323   ** join, make sure the subquery has no WHERE clause.
3324   ** An examples of why this is not allowed:
3325   **
3326   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3327   **
3328   ** If we flatten the above, we would get
3329   **
3330   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3331   **
3332   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3333   ** effectively converts the OUTER JOIN into an INNER JOIN.
3334   **
3335   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3336   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3337   ** is fraught with danger.  Best to avoid the whole thing.  If the
3338   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3339   */
3340   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3341     return 0;
3342   }
3343 
3344   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3345   ** use only the UNION ALL operator. And none of the simple select queries
3346   ** that make up the compound SELECT are allowed to be aggregate or distinct
3347   ** queries.
3348   */
3349   if( pSub->pPrior ){
3350     if( pSub->pOrderBy ){
3351       return 0;  /* Restriction 20 */
3352     }
3353     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3354       return 0;
3355     }
3356     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3357       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3358       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3359       assert( pSub->pSrc!=0 );
3360       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3361        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3362        || pSub1->pSrc->nSrc<1
3363        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3364       ){
3365         return 0;
3366       }
3367       testcase( pSub1->pSrc->nSrc>1 );
3368     }
3369 
3370     /* Restriction 18. */
3371     if( p->pOrderBy ){
3372       int ii;
3373       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3374         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3375       }
3376     }
3377   }
3378 
3379   /***** If we reach this point, flattening is permitted. *****/
3380   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3381                    pSub->zSelName, pSub, iFrom));
3382 
3383   /* Authorize the subquery */
3384   pParse->zAuthContext = pSubitem->zName;
3385   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3386   testcase( i==SQLITE_DENY );
3387   pParse->zAuthContext = zSavedAuthContext;
3388 
3389   /* If the sub-query is a compound SELECT statement, then (by restrictions
3390   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3391   ** be of the form:
3392   **
3393   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3394   **
3395   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3396   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3397   ** OFFSET clauses and joins them to the left-hand-side of the original
3398   ** using UNION ALL operators. In this case N is the number of simple
3399   ** select statements in the compound sub-query.
3400   **
3401   ** Example:
3402   **
3403   **     SELECT a+1 FROM (
3404   **        SELECT x FROM tab
3405   **        UNION ALL
3406   **        SELECT y FROM tab
3407   **        UNION ALL
3408   **        SELECT abs(z*2) FROM tab2
3409   **     ) WHERE a!=5 ORDER BY 1
3410   **
3411   ** Transformed into:
3412   **
3413   **     SELECT x+1 FROM tab WHERE x+1!=5
3414   **     UNION ALL
3415   **     SELECT y+1 FROM tab WHERE y+1!=5
3416   **     UNION ALL
3417   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3418   **     ORDER BY 1
3419   **
3420   ** We call this the "compound-subquery flattening".
3421   */
3422   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3423     Select *pNew;
3424     ExprList *pOrderBy = p->pOrderBy;
3425     Expr *pLimit = p->pLimit;
3426     Expr *pOffset = p->pOffset;
3427     Select *pPrior = p->pPrior;
3428     p->pOrderBy = 0;
3429     p->pSrc = 0;
3430     p->pPrior = 0;
3431     p->pLimit = 0;
3432     p->pOffset = 0;
3433     pNew = sqlite3SelectDup(db, p, 0);
3434     sqlite3SelectSetName(pNew, pSub->zSelName);
3435     p->pOffset = pOffset;
3436     p->pLimit = pLimit;
3437     p->pOrderBy = pOrderBy;
3438     p->pSrc = pSrc;
3439     p->op = TK_ALL;
3440     if( pNew==0 ){
3441       p->pPrior = pPrior;
3442     }else{
3443       pNew->pPrior = pPrior;
3444       if( pPrior ) pPrior->pNext = pNew;
3445       pNew->pNext = p;
3446       p->pPrior = pNew;
3447       SELECTTRACE(2,pParse,p,
3448          ("compound-subquery flattener creates %s.%p as peer\n",
3449          pNew->zSelName, pNew));
3450     }
3451     if( db->mallocFailed ) return 1;
3452   }
3453 
3454   /* Begin flattening the iFrom-th entry of the FROM clause
3455   ** in the outer query.
3456   */
3457   pSub = pSub1 = pSubitem->pSelect;
3458 
3459   /* Delete the transient table structure associated with the
3460   ** subquery
3461   */
3462   sqlite3DbFree(db, pSubitem->zDatabase);
3463   sqlite3DbFree(db, pSubitem->zName);
3464   sqlite3DbFree(db, pSubitem->zAlias);
3465   pSubitem->zDatabase = 0;
3466   pSubitem->zName = 0;
3467   pSubitem->zAlias = 0;
3468   pSubitem->pSelect = 0;
3469 
3470   /* Defer deleting the Table object associated with the
3471   ** subquery until code generation is
3472   ** complete, since there may still exist Expr.pTab entries that
3473   ** refer to the subquery even after flattening.  Ticket #3346.
3474   **
3475   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3476   */
3477   if( ALWAYS(pSubitem->pTab!=0) ){
3478     Table *pTabToDel = pSubitem->pTab;
3479     if( pTabToDel->nRef==1 ){
3480       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3481       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3482       pToplevel->pZombieTab = pTabToDel;
3483     }else{
3484       pTabToDel->nRef--;
3485     }
3486     pSubitem->pTab = 0;
3487   }
3488 
3489   /* The following loop runs once for each term in a compound-subquery
3490   ** flattening (as described above).  If we are doing a different kind
3491   ** of flattening - a flattening other than a compound-subquery flattening -
3492   ** then this loop only runs once.
3493   **
3494   ** This loop moves all of the FROM elements of the subquery into the
3495   ** the FROM clause of the outer query.  Before doing this, remember
3496   ** the cursor number for the original outer query FROM element in
3497   ** iParent.  The iParent cursor will never be used.  Subsequent code
3498   ** will scan expressions looking for iParent references and replace
3499   ** those references with expressions that resolve to the subquery FROM
3500   ** elements we are now copying in.
3501   */
3502   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3503     int nSubSrc;
3504     u8 jointype = 0;
3505     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3506     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3507     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3508 
3509     if( pSrc ){
3510       assert( pParent==p );  /* First time through the loop */
3511       jointype = pSubitem->jointype;
3512     }else{
3513       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3514       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3515       if( pSrc==0 ){
3516         assert( db->mallocFailed );
3517         break;
3518       }
3519     }
3520 
3521     /* The subquery uses a single slot of the FROM clause of the outer
3522     ** query.  If the subquery has more than one element in its FROM clause,
3523     ** then expand the outer query to make space for it to hold all elements
3524     ** of the subquery.
3525     **
3526     ** Example:
3527     **
3528     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3529     **
3530     ** The outer query has 3 slots in its FROM clause.  One slot of the
3531     ** outer query (the middle slot) is used by the subquery.  The next
3532     ** block of code will expand the out query to 4 slots.  The middle
3533     ** slot is expanded to two slots in order to make space for the
3534     ** two elements in the FROM clause of the subquery.
3535     */
3536     if( nSubSrc>1 ){
3537       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3538       if( db->mallocFailed ){
3539         break;
3540       }
3541     }
3542 
3543     /* Transfer the FROM clause terms from the subquery into the
3544     ** outer query.
3545     */
3546     for(i=0; i<nSubSrc; i++){
3547       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3548       pSrc->a[i+iFrom] = pSubSrc->a[i];
3549       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3550     }
3551     pSrc->a[iFrom].jointype = jointype;
3552 
3553     /* Now begin substituting subquery result set expressions for
3554     ** references to the iParent in the outer query.
3555     **
3556     ** Example:
3557     **
3558     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3559     **   \                     \_____________ subquery __________/          /
3560     **    \_____________________ outer query ______________________________/
3561     **
3562     ** We look at every expression in the outer query and every place we see
3563     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3564     */
3565     pList = pParent->pEList;
3566     for(i=0; i<pList->nExpr; i++){
3567       if( pList->a[i].zName==0 ){
3568         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3569         sqlite3Dequote(zName);
3570         pList->a[i].zName = zName;
3571       }
3572     }
3573     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3574     if( isAgg ){
3575       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3576       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3577     }
3578     if( pSub->pOrderBy ){
3579       /* At this point, any non-zero iOrderByCol values indicate that the
3580       ** ORDER BY column expression is identical to the iOrderByCol'th
3581       ** expression returned by SELECT statement pSub. Since these values
3582       ** do not necessarily correspond to columns in SELECT statement pParent,
3583       ** zero them before transfering the ORDER BY clause.
3584       **
3585       ** Not doing this may cause an error if a subsequent call to this
3586       ** function attempts to flatten a compound sub-query into pParent
3587       ** (the only way this can happen is if the compound sub-query is
3588       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3589       ExprList *pOrderBy = pSub->pOrderBy;
3590       for(i=0; i<pOrderBy->nExpr; i++){
3591         pOrderBy->a[i].u.x.iOrderByCol = 0;
3592       }
3593       assert( pParent->pOrderBy==0 );
3594       assert( pSub->pPrior==0 );
3595       pParent->pOrderBy = pOrderBy;
3596       pSub->pOrderBy = 0;
3597     }else if( pParent->pOrderBy ){
3598       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3599     }
3600     if( pSub->pWhere ){
3601       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3602     }else{
3603       pWhere = 0;
3604     }
3605     if( subqueryIsAgg ){
3606       assert( pParent->pHaving==0 );
3607       pParent->pHaving = pParent->pWhere;
3608       pParent->pWhere = pWhere;
3609       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3610       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3611                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3612       assert( pParent->pGroupBy==0 );
3613       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3614     }else{
3615       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3616       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3617     }
3618 
3619     /* The flattened query is distinct if either the inner or the
3620     ** outer query is distinct.
3621     */
3622     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3623 
3624     /*
3625     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3626     **
3627     ** One is tempted to try to add a and b to combine the limits.  But this
3628     ** does not work if either limit is negative.
3629     */
3630     if( pSub->pLimit ){
3631       pParent->pLimit = pSub->pLimit;
3632       pSub->pLimit = 0;
3633     }
3634   }
3635 
3636   /* Finially, delete what is left of the subquery and return
3637   ** success.
3638   */
3639   sqlite3SelectDelete(db, pSub1);
3640 
3641 #if SELECTTRACE_ENABLED
3642   if( sqlite3SelectTrace & 0x100 ){
3643     sqlite3DebugPrintf("After flattening:\n");
3644     sqlite3TreeViewSelect(0, p, 0);
3645   }
3646 #endif
3647 
3648   return 1;
3649 }
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3651 
3652 /*
3653 ** Based on the contents of the AggInfo structure indicated by the first
3654 ** argument, this function checks if the following are true:
3655 **
3656 **    * the query contains just a single aggregate function,
3657 **    * the aggregate function is either min() or max(), and
3658 **    * the argument to the aggregate function is a column value.
3659 **
3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3662 ** list of arguments passed to the aggregate before returning.
3663 **
3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3665 ** WHERE_ORDERBY_NORMAL is returned.
3666 */
3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3668   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3669 
3670   *ppMinMax = 0;
3671   if( pAggInfo->nFunc==1 ){
3672     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3673     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3674 
3675     assert( pExpr->op==TK_AGG_FUNCTION );
3676     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3677       const char *zFunc = pExpr->u.zToken;
3678       if( sqlite3StrICmp(zFunc, "min")==0 ){
3679         eRet = WHERE_ORDERBY_MIN;
3680         *ppMinMax = pEList;
3681       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3682         eRet = WHERE_ORDERBY_MAX;
3683         *ppMinMax = pEList;
3684       }
3685     }
3686   }
3687 
3688   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3689   return eRet;
3690 }
3691 
3692 /*
3693 ** The select statement passed as the first argument is an aggregate query.
3694 ** The second argument is the associated aggregate-info object. This
3695 ** function tests if the SELECT is of the form:
3696 **
3697 **   SELECT count(*) FROM <tbl>
3698 **
3699 ** where table is a database table, not a sub-select or view. If the query
3700 ** does match this pattern, then a pointer to the Table object representing
3701 ** <tbl> is returned. Otherwise, 0 is returned.
3702 */
3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3704   Table *pTab;
3705   Expr *pExpr;
3706 
3707   assert( !p->pGroupBy );
3708 
3709   if( p->pWhere || p->pEList->nExpr!=1
3710    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3711   ){
3712     return 0;
3713   }
3714   pTab = p->pSrc->a[0].pTab;
3715   pExpr = p->pEList->a[0].pExpr;
3716   assert( pTab && !pTab->pSelect && pExpr );
3717 
3718   if( IsVirtual(pTab) ) return 0;
3719   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3720   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3721   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3722   if( pExpr->flags&EP_Distinct ) return 0;
3723 
3724   return pTab;
3725 }
3726 
3727 /*
3728 ** If the source-list item passed as an argument was augmented with an
3729 ** INDEXED BY clause, then try to locate the specified index. If there
3730 ** was such a clause and the named index cannot be found, return
3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3732 ** pFrom->pIndex and return SQLITE_OK.
3733 */
3734 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3735   if( pFrom->pTab && pFrom->zIndex ){
3736     Table *pTab = pFrom->pTab;
3737     char *zIndex = pFrom->zIndex;
3738     Index *pIdx;
3739     for(pIdx=pTab->pIndex;
3740         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3741         pIdx=pIdx->pNext
3742     );
3743     if( !pIdx ){
3744       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3745       pParse->checkSchema = 1;
3746       return SQLITE_ERROR;
3747     }
3748     pFrom->pIndex = pIdx;
3749   }
3750   return SQLITE_OK;
3751 }
3752 /*
3753 ** Detect compound SELECT statements that use an ORDER BY clause with
3754 ** an alternative collating sequence.
3755 **
3756 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3757 **
3758 ** These are rewritten as a subquery:
3759 **
3760 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3761 **     ORDER BY ... COLLATE ...
3762 **
3763 ** This transformation is necessary because the multiSelectOrderBy() routine
3764 ** above that generates the code for a compound SELECT with an ORDER BY clause
3765 ** uses a merge algorithm that requires the same collating sequence on the
3766 ** result columns as on the ORDER BY clause.  See ticket
3767 ** http://www.sqlite.org/src/info/6709574d2a
3768 **
3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3771 ** there are COLLATE terms in the ORDER BY.
3772 */
3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3774   int i;
3775   Select *pNew;
3776   Select *pX;
3777   sqlite3 *db;
3778   struct ExprList_item *a;
3779   SrcList *pNewSrc;
3780   Parse *pParse;
3781   Token dummy;
3782 
3783   if( p->pPrior==0 ) return WRC_Continue;
3784   if( p->pOrderBy==0 ) return WRC_Continue;
3785   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3786   if( pX==0 ) return WRC_Continue;
3787   a = p->pOrderBy->a;
3788   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3789     if( a[i].pExpr->flags & EP_Collate ) break;
3790   }
3791   if( i<0 ) return WRC_Continue;
3792 
3793   /* If we reach this point, that means the transformation is required. */
3794 
3795   pParse = pWalker->pParse;
3796   db = pParse->db;
3797   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3798   if( pNew==0 ) return WRC_Abort;
3799   memset(&dummy, 0, sizeof(dummy));
3800   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3801   if( pNewSrc==0 ) return WRC_Abort;
3802   *pNew = *p;
3803   p->pSrc = pNewSrc;
3804   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3805   p->op = TK_SELECT;
3806   p->pWhere = 0;
3807   pNew->pGroupBy = 0;
3808   pNew->pHaving = 0;
3809   pNew->pOrderBy = 0;
3810   p->pPrior = 0;
3811   p->pNext = 0;
3812   p->selFlags &= ~SF_Compound;
3813   assert( pNew->pPrior!=0 );
3814   pNew->pPrior->pNext = pNew;
3815   pNew->pLimit = 0;
3816   pNew->pOffset = 0;
3817   return WRC_Continue;
3818 }
3819 
3820 #ifndef SQLITE_OMIT_CTE
3821 /*
3822 ** Argument pWith (which may be NULL) points to a linked list of nested
3823 ** WITH contexts, from inner to outermost. If the table identified by
3824 ** FROM clause element pItem is really a common-table-expression (CTE)
3825 ** then return a pointer to the CTE definition for that table. Otherwise
3826 ** return NULL.
3827 **
3828 ** If a non-NULL value is returned, set *ppContext to point to the With
3829 ** object that the returned CTE belongs to.
3830 */
3831 static struct Cte *searchWith(
3832   With *pWith,                    /* Current outermost WITH clause */
3833   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3834   With **ppContext                /* OUT: WITH clause return value belongs to */
3835 ){
3836   const char *zName;
3837   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3838     With *p;
3839     for(p=pWith; p; p=p->pOuter){
3840       int i;
3841       for(i=0; i<p->nCte; i++){
3842         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3843           *ppContext = p;
3844           return &p->a[i];
3845         }
3846       }
3847     }
3848   }
3849   return 0;
3850 }
3851 
3852 /* The code generator maintains a stack of active WITH clauses
3853 ** with the inner-most WITH clause being at the top of the stack.
3854 **
3855 ** This routine pushes the WITH clause passed as the second argument
3856 ** onto the top of the stack. If argument bFree is true, then this
3857 ** WITH clause will never be popped from the stack. In this case it
3858 ** should be freed along with the Parse object. In other cases, when
3859 ** bFree==0, the With object will be freed along with the SELECT
3860 ** statement with which it is associated.
3861 */
3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3863   assert( bFree==0 || pParse->pWith==0 );
3864   if( pWith ){
3865     pWith->pOuter = pParse->pWith;
3866     pParse->pWith = pWith;
3867     pParse->bFreeWith = bFree;
3868   }
3869 }
3870 
3871 /*
3872 ** This function checks if argument pFrom refers to a CTE declared by
3873 ** a WITH clause on the stack currently maintained by the parser. And,
3874 ** if currently processing a CTE expression, if it is a recursive
3875 ** reference to the current CTE.
3876 **
3877 ** If pFrom falls into either of the two categories above, pFrom->pTab
3878 ** and other fields are populated accordingly. The caller should check
3879 ** (pFrom->pTab!=0) to determine whether or not a successful match
3880 ** was found.
3881 **
3882 ** Whether or not a match is found, SQLITE_OK is returned if no error
3883 ** occurs. If an error does occur, an error message is stored in the
3884 ** parser and some error code other than SQLITE_OK returned.
3885 */
3886 static int withExpand(
3887   Walker *pWalker,
3888   struct SrcList_item *pFrom
3889 ){
3890   Parse *pParse = pWalker->pParse;
3891   sqlite3 *db = pParse->db;
3892   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3893   With *pWith;                    /* WITH clause that pCte belongs to */
3894 
3895   assert( pFrom->pTab==0 );
3896 
3897   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3898   if( pCte ){
3899     Table *pTab;
3900     ExprList *pEList;
3901     Select *pSel;
3902     Select *pLeft;                /* Left-most SELECT statement */
3903     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3904     With *pSavedWith;             /* Initial value of pParse->pWith */
3905 
3906     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3907     ** recursive reference to CTE pCte. Leave an error in pParse and return
3908     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3909     ** In this case, proceed.  */
3910     if( pCte->zErr ){
3911       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3912       return SQLITE_ERROR;
3913     }
3914 
3915     assert( pFrom->pTab==0 );
3916     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3917     if( pTab==0 ) return WRC_Abort;
3918     pTab->nRef = 1;
3919     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3920     pTab->iPKey = -1;
3921     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3922     pTab->tabFlags |= TF_Ephemeral;
3923     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3924     if( db->mallocFailed ) return SQLITE_NOMEM;
3925     assert( pFrom->pSelect );
3926 
3927     /* Check if this is a recursive CTE. */
3928     pSel = pFrom->pSelect;
3929     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3930     if( bMayRecursive ){
3931       int i;
3932       SrcList *pSrc = pFrom->pSelect->pSrc;
3933       for(i=0; i<pSrc->nSrc; i++){
3934         struct SrcList_item *pItem = &pSrc->a[i];
3935         if( pItem->zDatabase==0
3936          && pItem->zName!=0
3937          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3938           ){
3939           pItem->pTab = pTab;
3940           pItem->isRecursive = 1;
3941           pTab->nRef++;
3942           pSel->selFlags |= SF_Recursive;
3943         }
3944       }
3945     }
3946 
3947     /* Only one recursive reference is permitted. */
3948     if( pTab->nRef>2 ){
3949       sqlite3ErrorMsg(
3950           pParse, "multiple references to recursive table: %s", pCte->zName
3951       );
3952       return SQLITE_ERROR;
3953     }
3954     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3955 
3956     pCte->zErr = "circular reference: %s";
3957     pSavedWith = pParse->pWith;
3958     pParse->pWith = pWith;
3959     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3960 
3961     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3962     pEList = pLeft->pEList;
3963     if( pCte->pCols ){
3964       if( pEList->nExpr!=pCte->pCols->nExpr ){
3965         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3966             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3967         );
3968         pParse->pWith = pSavedWith;
3969         return SQLITE_ERROR;
3970       }
3971       pEList = pCte->pCols;
3972     }
3973 
3974     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3975     if( bMayRecursive ){
3976       if( pSel->selFlags & SF_Recursive ){
3977         pCte->zErr = "multiple recursive references: %s";
3978       }else{
3979         pCte->zErr = "recursive reference in a subquery: %s";
3980       }
3981       sqlite3WalkSelect(pWalker, pSel);
3982     }
3983     pCte->zErr = 0;
3984     pParse->pWith = pSavedWith;
3985   }
3986 
3987   return SQLITE_OK;
3988 }
3989 #endif
3990 
3991 #ifndef SQLITE_OMIT_CTE
3992 /*
3993 ** If the SELECT passed as the second argument has an associated WITH
3994 ** clause, pop it from the stack stored as part of the Parse object.
3995 **
3996 ** This function is used as the xSelectCallback2() callback by
3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3998 ** names and other FROM clause elements.
3999 */
4000 static void selectPopWith(Walker *pWalker, Select *p){
4001   Parse *pParse = pWalker->pParse;
4002   With *pWith = findRightmost(p)->pWith;
4003   if( pWith!=0 ){
4004     assert( pParse->pWith==pWith );
4005     pParse->pWith = pWith->pOuter;
4006   }
4007 }
4008 #else
4009 #define selectPopWith 0
4010 #endif
4011 
4012 /*
4013 ** This routine is a Walker callback for "expanding" a SELECT statement.
4014 ** "Expanding" means to do the following:
4015 **
4016 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4017 **         element of the FROM clause.
4018 **
4019 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4020 **         defines FROM clause.  When views appear in the FROM clause,
4021 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4022 **         that implements the view.  A copy is made of the view's SELECT
4023 **         statement so that we can freely modify or delete that statement
4024 **         without worrying about messing up the persistent representation
4025 **         of the view.
4026 **
4027 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4028 **         on joins and the ON and USING clause of joins.
4029 **
4030 **    (4)  Scan the list of columns in the result set (pEList) looking
4031 **         for instances of the "*" operator or the TABLE.* operator.
4032 **         If found, expand each "*" to be every column in every table
4033 **         and TABLE.* to be every column in TABLE.
4034 **
4035 */
4036 static int selectExpander(Walker *pWalker, Select *p){
4037   Parse *pParse = pWalker->pParse;
4038   int i, j, k;
4039   SrcList *pTabList;
4040   ExprList *pEList;
4041   struct SrcList_item *pFrom;
4042   sqlite3 *db = pParse->db;
4043   Expr *pE, *pRight, *pExpr;
4044   u16 selFlags = p->selFlags;
4045 
4046   p->selFlags |= SF_Expanded;
4047   if( db->mallocFailed  ){
4048     return WRC_Abort;
4049   }
4050   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4051     return WRC_Prune;
4052   }
4053   pTabList = p->pSrc;
4054   pEList = p->pEList;
4055   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4056 
4057   /* Make sure cursor numbers have been assigned to all entries in
4058   ** the FROM clause of the SELECT statement.
4059   */
4060   sqlite3SrcListAssignCursors(pParse, pTabList);
4061 
4062   /* Look up every table named in the FROM clause of the select.  If
4063   ** an entry of the FROM clause is a subquery instead of a table or view,
4064   ** then create a transient table structure to describe the subquery.
4065   */
4066   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4067     Table *pTab;
4068     assert( pFrom->isRecursive==0 || pFrom->pTab );
4069     if( pFrom->isRecursive ) continue;
4070     if( pFrom->pTab!=0 ){
4071       /* This statement has already been prepared.  There is no need
4072       ** to go further. */
4073       assert( i==0 );
4074 #ifndef SQLITE_OMIT_CTE
4075       selectPopWith(pWalker, p);
4076 #endif
4077       return WRC_Prune;
4078     }
4079 #ifndef SQLITE_OMIT_CTE
4080     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4081     if( pFrom->pTab ) {} else
4082 #endif
4083     if( pFrom->zName==0 ){
4084 #ifndef SQLITE_OMIT_SUBQUERY
4085       Select *pSel = pFrom->pSelect;
4086       /* A sub-query in the FROM clause of a SELECT */
4087       assert( pSel!=0 );
4088       assert( pFrom->pTab==0 );
4089       sqlite3WalkSelect(pWalker, pSel);
4090       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4091       if( pTab==0 ) return WRC_Abort;
4092       pTab->nRef = 1;
4093       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4094       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4095       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4096       pTab->iPKey = -1;
4097       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4098       pTab->tabFlags |= TF_Ephemeral;
4099 #endif
4100     }else{
4101       /* An ordinary table or view name in the FROM clause */
4102       assert( pFrom->pTab==0 );
4103       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4104       if( pTab==0 ) return WRC_Abort;
4105       if( pTab->nRef==0xffff ){
4106         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4107            pTab->zName);
4108         pFrom->pTab = 0;
4109         return WRC_Abort;
4110       }
4111       pTab->nRef++;
4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4113       if( pTab->pSelect || IsVirtual(pTab) ){
4114         /* We reach here if the named table is a really a view */
4115         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4116         assert( pFrom->pSelect==0 );
4117         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4118         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4119         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4120       }
4121 #endif
4122     }
4123 
4124     /* Locate the index named by the INDEXED BY clause, if any. */
4125     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4126       return WRC_Abort;
4127     }
4128   }
4129 
4130   /* Process NATURAL keywords, and ON and USING clauses of joins.
4131   */
4132   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4133     return WRC_Abort;
4134   }
4135 
4136   /* For every "*" that occurs in the column list, insert the names of
4137   ** all columns in all tables.  And for every TABLE.* insert the names
4138   ** of all columns in TABLE.  The parser inserted a special expression
4139   ** with the TK_ALL operator for each "*" that it found in the column list.
4140   ** The following code just has to locate the TK_ALL expressions and expand
4141   ** each one to the list of all columns in all tables.
4142   **
4143   ** The first loop just checks to see if there are any "*" operators
4144   ** that need expanding.
4145   */
4146   for(k=0; k<pEList->nExpr; k++){
4147     pE = pEList->a[k].pExpr;
4148     if( pE->op==TK_ALL ) break;
4149     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4150     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4151     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4152   }
4153   if( k<pEList->nExpr ){
4154     /*
4155     ** If we get here it means the result set contains one or more "*"
4156     ** operators that need to be expanded.  Loop through each expression
4157     ** in the result set and expand them one by one.
4158     */
4159     struct ExprList_item *a = pEList->a;
4160     ExprList *pNew = 0;
4161     int flags = pParse->db->flags;
4162     int longNames = (flags & SQLITE_FullColNames)!=0
4163                       && (flags & SQLITE_ShortColNames)==0;
4164 
4165     /* When processing FROM-clause subqueries, it is always the case
4166     ** that full_column_names=OFF and short_column_names=ON.  The
4167     ** sqlite3ResultSetOfSelect() routine makes it so. */
4168     assert( (p->selFlags & SF_NestedFrom)==0
4169           || ((flags & SQLITE_FullColNames)==0 &&
4170               (flags & SQLITE_ShortColNames)!=0) );
4171 
4172     for(k=0; k<pEList->nExpr; k++){
4173       pE = a[k].pExpr;
4174       pRight = pE->pRight;
4175       assert( pE->op!=TK_DOT || pRight!=0 );
4176       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4177         /* This particular expression does not need to be expanded.
4178         */
4179         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4180         if( pNew ){
4181           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4182           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4183           a[k].zName = 0;
4184           a[k].zSpan = 0;
4185         }
4186         a[k].pExpr = 0;
4187       }else{
4188         /* This expression is a "*" or a "TABLE.*" and needs to be
4189         ** expanded. */
4190         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4191         char *zTName = 0;       /* text of name of TABLE */
4192         if( pE->op==TK_DOT ){
4193           assert( pE->pLeft!=0 );
4194           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4195           zTName = pE->pLeft->u.zToken;
4196         }
4197         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4198           Table *pTab = pFrom->pTab;
4199           Select *pSub = pFrom->pSelect;
4200           char *zTabName = pFrom->zAlias;
4201           const char *zSchemaName = 0;
4202           int iDb;
4203           if( zTabName==0 ){
4204             zTabName = pTab->zName;
4205           }
4206           if( db->mallocFailed ) break;
4207           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4208             pSub = 0;
4209             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4210               continue;
4211             }
4212             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4213             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4214           }
4215           for(j=0; j<pTab->nCol; j++){
4216             char *zName = pTab->aCol[j].zName;
4217             char *zColname;  /* The computed column name */
4218             char *zToFree;   /* Malloced string that needs to be freed */
4219             Token sColname;  /* Computed column name as a token */
4220 
4221             assert( zName );
4222             if( zTName && pSub
4223              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4224             ){
4225               continue;
4226             }
4227 
4228             /* If a column is marked as 'hidden' (currently only possible
4229             ** for virtual tables), do not include it in the expanded
4230             ** result-set list.
4231             */
4232             if( IsHiddenColumn(&pTab->aCol[j]) ){
4233               assert(IsVirtual(pTab));
4234               continue;
4235             }
4236             tableSeen = 1;
4237 
4238             if( i>0 && zTName==0 ){
4239               if( (pFrom->jointype & JT_NATURAL)!=0
4240                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4241               ){
4242                 /* In a NATURAL join, omit the join columns from the
4243                 ** table to the right of the join */
4244                 continue;
4245               }
4246               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4247                 /* In a join with a USING clause, omit columns in the
4248                 ** using clause from the table on the right. */
4249                 continue;
4250               }
4251             }
4252             pRight = sqlite3Expr(db, TK_ID, zName);
4253             zColname = zName;
4254             zToFree = 0;
4255             if( longNames || pTabList->nSrc>1 ){
4256               Expr *pLeft;
4257               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4258               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4259               if( zSchemaName ){
4260                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4261                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4262               }
4263               if( longNames ){
4264                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4265                 zToFree = zColname;
4266               }
4267             }else{
4268               pExpr = pRight;
4269             }
4270             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4271             sColname.z = zColname;
4272             sColname.n = sqlite3Strlen30(zColname);
4273             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4274             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4275               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4276               if( pSub ){
4277                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4278                 testcase( pX->zSpan==0 );
4279               }else{
4280                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4281                                            zSchemaName, zTabName, zColname);
4282                 testcase( pX->zSpan==0 );
4283               }
4284               pX->bSpanIsTab = 1;
4285             }
4286             sqlite3DbFree(db, zToFree);
4287           }
4288         }
4289         if( !tableSeen ){
4290           if( zTName ){
4291             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4292           }else{
4293             sqlite3ErrorMsg(pParse, "no tables specified");
4294           }
4295         }
4296       }
4297     }
4298     sqlite3ExprListDelete(db, pEList);
4299     p->pEList = pNew;
4300   }
4301 #if SQLITE_MAX_COLUMN
4302   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4303     sqlite3ErrorMsg(pParse, "too many columns in result set");
4304   }
4305 #endif
4306   return WRC_Continue;
4307 }
4308 
4309 /*
4310 ** No-op routine for the parse-tree walker.
4311 **
4312 ** When this routine is the Walker.xExprCallback then expression trees
4313 ** are walked without any actions being taken at each node.  Presumably,
4314 ** when this routine is used for Walker.xExprCallback then
4315 ** Walker.xSelectCallback is set to do something useful for every
4316 ** subquery in the parser tree.
4317 */
4318 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4319   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4320   return WRC_Continue;
4321 }
4322 
4323 /*
4324 ** This routine "expands" a SELECT statement and all of its subqueries.
4325 ** For additional information on what it means to "expand" a SELECT
4326 ** statement, see the comment on the selectExpand worker callback above.
4327 **
4328 ** Expanding a SELECT statement is the first step in processing a
4329 ** SELECT statement.  The SELECT statement must be expanded before
4330 ** name resolution is performed.
4331 **
4332 ** If anything goes wrong, an error message is written into pParse.
4333 ** The calling function can detect the problem by looking at pParse->nErr
4334 ** and/or pParse->db->mallocFailed.
4335 */
4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4337   Walker w;
4338   memset(&w, 0, sizeof(w));
4339   w.xExprCallback = exprWalkNoop;
4340   w.pParse = pParse;
4341   if( pParse->hasCompound ){
4342     w.xSelectCallback = convertCompoundSelectToSubquery;
4343     sqlite3WalkSelect(&w, pSelect);
4344   }
4345   w.xSelectCallback = selectExpander;
4346   w.xSelectCallback2 = selectPopWith;
4347   sqlite3WalkSelect(&w, pSelect);
4348 }
4349 
4350 
4351 #ifndef SQLITE_OMIT_SUBQUERY
4352 /*
4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4354 ** interface.
4355 **
4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4357 ** information to the Table structure that represents the result set
4358 ** of that subquery.
4359 **
4360 ** The Table structure that represents the result set was constructed
4361 ** by selectExpander() but the type and collation information was omitted
4362 ** at that point because identifiers had not yet been resolved.  This
4363 ** routine is called after identifier resolution.
4364 */
4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4366   Parse *pParse;
4367   int i;
4368   SrcList *pTabList;
4369   struct SrcList_item *pFrom;
4370 
4371   assert( p->selFlags & SF_Resolved );
4372   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4373     p->selFlags |= SF_HasTypeInfo;
4374     pParse = pWalker->pParse;
4375     pTabList = p->pSrc;
4376     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4377       Table *pTab = pFrom->pTab;
4378       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4379         /* A sub-query in the FROM clause of a SELECT */
4380         Select *pSel = pFrom->pSelect;
4381         if( pSel ){
4382           while( pSel->pPrior ) pSel = pSel->pPrior;
4383           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4384         }
4385       }
4386     }
4387   }
4388 }
4389 #endif
4390 
4391 
4392 /*
4393 ** This routine adds datatype and collating sequence information to
4394 ** the Table structures of all FROM-clause subqueries in a
4395 ** SELECT statement.
4396 **
4397 ** Use this routine after name resolution.
4398 */
4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4400 #ifndef SQLITE_OMIT_SUBQUERY
4401   Walker w;
4402   memset(&w, 0, sizeof(w));
4403   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4404   w.xExprCallback = exprWalkNoop;
4405   w.pParse = pParse;
4406   sqlite3WalkSelect(&w, pSelect);
4407 #endif
4408 }
4409 
4410 
4411 /*
4412 ** This routine sets up a SELECT statement for processing.  The
4413 ** following is accomplished:
4414 **
4415 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4416 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4417 **     *  ON and USING clauses are shifted into WHERE statements
4418 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4419 **     *  Identifiers in expression are matched to tables.
4420 **
4421 ** This routine acts recursively on all subqueries within the SELECT.
4422 */
4423 void sqlite3SelectPrep(
4424   Parse *pParse,         /* The parser context */
4425   Select *p,             /* The SELECT statement being coded. */
4426   NameContext *pOuterNC  /* Name context for container */
4427 ){
4428   sqlite3 *db;
4429   if( NEVER(p==0) ) return;
4430   db = pParse->db;
4431   if( db->mallocFailed ) return;
4432   if( p->selFlags & SF_HasTypeInfo ) return;
4433   sqlite3SelectExpand(pParse, p);
4434   if( pParse->nErr || db->mallocFailed ) return;
4435   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4436   if( pParse->nErr || db->mallocFailed ) return;
4437   sqlite3SelectAddTypeInfo(pParse, p);
4438 }
4439 
4440 /*
4441 ** Reset the aggregate accumulator.
4442 **
4443 ** The aggregate accumulator is a set of memory cells that hold
4444 ** intermediate results while calculating an aggregate.  This
4445 ** routine generates code that stores NULLs in all of those memory
4446 ** cells.
4447 */
4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4449   Vdbe *v = pParse->pVdbe;
4450   int i;
4451   struct AggInfo_func *pFunc;
4452   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4453   if( nReg==0 ) return;
4454 #ifdef SQLITE_DEBUG
4455   /* Verify that all AggInfo registers are within the range specified by
4456   ** AggInfo.mnReg..AggInfo.mxReg */
4457   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4458   for(i=0; i<pAggInfo->nColumn; i++){
4459     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4460          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4461   }
4462   for(i=0; i<pAggInfo->nFunc; i++){
4463     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4464          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4465   }
4466 #endif
4467   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4468   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4469     if( pFunc->iDistinct>=0 ){
4470       Expr *pE = pFunc->pExpr;
4471       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4472       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4473         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4474            "argument");
4475         pFunc->iDistinct = -1;
4476       }else{
4477         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4478         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4479                           (char*)pKeyInfo, P4_KEYINFO);
4480       }
4481     }
4482   }
4483 }
4484 
4485 /*
4486 ** Invoke the OP_AggFinalize opcode for every aggregate function
4487 ** in the AggInfo structure.
4488 */
4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4490   Vdbe *v = pParse->pVdbe;
4491   int i;
4492   struct AggInfo_func *pF;
4493   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4494     ExprList *pList = pF->pExpr->x.pList;
4495     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4496     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4497                       (void*)pF->pFunc, P4_FUNCDEF);
4498   }
4499 }
4500 
4501 /*
4502 ** Update the accumulator memory cells for an aggregate based on
4503 ** the current cursor position.
4504 */
4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4506   Vdbe *v = pParse->pVdbe;
4507   int i;
4508   int regHit = 0;
4509   int addrHitTest = 0;
4510   struct AggInfo_func *pF;
4511   struct AggInfo_col *pC;
4512 
4513   pAggInfo->directMode = 1;
4514   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4515     int nArg;
4516     int addrNext = 0;
4517     int regAgg;
4518     ExprList *pList = pF->pExpr->x.pList;
4519     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4520     if( pList ){
4521       nArg = pList->nExpr;
4522       regAgg = sqlite3GetTempRange(pParse, nArg);
4523       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4524     }else{
4525       nArg = 0;
4526       regAgg = 0;
4527     }
4528     if( pF->iDistinct>=0 ){
4529       addrNext = sqlite3VdbeMakeLabel(v);
4530       assert( nArg==1 );
4531       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4532     }
4533     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4534       CollSeq *pColl = 0;
4535       struct ExprList_item *pItem;
4536       int j;
4537       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4538       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4539         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4540       }
4541       if( !pColl ){
4542         pColl = pParse->db->pDfltColl;
4543       }
4544       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4545       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4546     }
4547     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4548                       (void*)pF->pFunc, P4_FUNCDEF);
4549     sqlite3VdbeChangeP5(v, (u8)nArg);
4550     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4551     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4552     if( addrNext ){
4553       sqlite3VdbeResolveLabel(v, addrNext);
4554       sqlite3ExprCacheClear(pParse);
4555     }
4556   }
4557 
4558   /* Before populating the accumulator registers, clear the column cache.
4559   ** Otherwise, if any of the required column values are already present
4560   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4561   ** to pC->iMem. But by the time the value is used, the original register
4562   ** may have been used, invalidating the underlying buffer holding the
4563   ** text or blob value. See ticket [883034dcb5].
4564   **
4565   ** Another solution would be to change the OP_SCopy used to copy cached
4566   ** values to an OP_Copy.
4567   */
4568   if( regHit ){
4569     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4570   }
4571   sqlite3ExprCacheClear(pParse);
4572   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4573     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4574   }
4575   pAggInfo->directMode = 0;
4576   sqlite3ExprCacheClear(pParse);
4577   if( addrHitTest ){
4578     sqlite3VdbeJumpHere(v, addrHitTest);
4579   }
4580 }
4581 
4582 /*
4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4584 ** count(*) query ("SELECT count(*) FROM pTab").
4585 */
4586 #ifndef SQLITE_OMIT_EXPLAIN
4587 static void explainSimpleCount(
4588   Parse *pParse,                  /* Parse context */
4589   Table *pTab,                    /* Table being queried */
4590   Index *pIdx                     /* Index used to optimize scan, or NULL */
4591 ){
4592   if( pParse->explain==2 ){
4593     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4594     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4595         pTab->zName,
4596         bCover ? " USING COVERING INDEX " : "",
4597         bCover ? pIdx->zName : ""
4598     );
4599     sqlite3VdbeAddOp4(
4600         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4601     );
4602   }
4603 }
4604 #else
4605 # define explainSimpleCount(a,b,c)
4606 #endif
4607 
4608 /*
4609 ** Generate code for the SELECT statement given in the p argument.
4610 **
4611 ** The results are returned according to the SelectDest structure.
4612 ** See comments in sqliteInt.h for further information.
4613 **
4614 ** This routine returns the number of errors.  If any errors are
4615 ** encountered, then an appropriate error message is left in
4616 ** pParse->zErrMsg.
4617 **
4618 ** This routine does NOT free the Select structure passed in.  The
4619 ** calling function needs to do that.
4620 */
4621 int sqlite3Select(
4622   Parse *pParse,         /* The parser context */
4623   Select *p,             /* The SELECT statement being coded. */
4624   SelectDest *pDest      /* What to do with the query results */
4625 ){
4626   int i, j;              /* Loop counters */
4627   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4628   Vdbe *v;               /* The virtual machine under construction */
4629   int isAgg;             /* True for select lists like "count(*)" */
4630   ExprList *pEList;      /* List of columns to extract. */
4631   SrcList *pTabList;     /* List of tables to select from */
4632   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4633   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4634   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4635   int rc = 1;            /* Value to return from this function */
4636   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4637   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4638   AggInfo sAggInfo;      /* Information used by aggregate queries */
4639   int iEnd;              /* Address of the end of the query */
4640   sqlite3 *db;           /* The database connection */
4641 
4642 #ifndef SQLITE_OMIT_EXPLAIN
4643   int iRestoreSelectId = pParse->iSelectId;
4644   pParse->iSelectId = pParse->iNextSelectId++;
4645 #endif
4646 
4647   db = pParse->db;
4648   if( p==0 || db->mallocFailed || pParse->nErr ){
4649     return 1;
4650   }
4651   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4652   memset(&sAggInfo, 0, sizeof(sAggInfo));
4653 #if SELECTTRACE_ENABLED
4654   pParse->nSelectIndent++;
4655   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4656   if( sqlite3SelectTrace & 0x100 ){
4657     sqlite3TreeViewSelect(0, p, 0);
4658   }
4659 #endif
4660 
4661   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4662   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4663   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4664   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4665   if( IgnorableOrderby(pDest) ){
4666     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4667            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4668            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4669            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4670     /* If ORDER BY makes no difference in the output then neither does
4671     ** DISTINCT so it can be removed too. */
4672     sqlite3ExprListDelete(db, p->pOrderBy);
4673     p->pOrderBy = 0;
4674     p->selFlags &= ~SF_Distinct;
4675   }
4676   sqlite3SelectPrep(pParse, p, 0);
4677   memset(&sSort, 0, sizeof(sSort));
4678   sSort.pOrderBy = p->pOrderBy;
4679   pTabList = p->pSrc;
4680   pEList = p->pEList;
4681   if( pParse->nErr || db->mallocFailed ){
4682     goto select_end;
4683   }
4684   isAgg = (p->selFlags & SF_Aggregate)!=0;
4685   assert( pEList!=0 );
4686 
4687   /* Begin generating code.
4688   */
4689   v = sqlite3GetVdbe(pParse);
4690   if( v==0 ) goto select_end;
4691 
4692   /* If writing to memory or generating a set
4693   ** only a single column may be output.
4694   */
4695 #ifndef SQLITE_OMIT_SUBQUERY
4696   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4697     goto select_end;
4698   }
4699 #endif
4700 
4701   /* Generate code for all sub-queries in the FROM clause
4702   */
4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4704   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4705     struct SrcList_item *pItem = &pTabList->a[i];
4706     SelectDest dest;
4707     Select *pSub = pItem->pSelect;
4708     int isAggSub;
4709 
4710     if( pSub==0 ) continue;
4711 
4712     /* Sometimes the code for a subquery will be generated more than
4713     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4714     ** for example.  In that case, do not regenerate the code to manifest
4715     ** a view or the co-routine to implement a view.  The first instance
4716     ** is sufficient, though the subroutine to manifest the view does need
4717     ** to be invoked again. */
4718     if( pItem->addrFillSub ){
4719       if( pItem->viaCoroutine==0 ){
4720         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4721       }
4722       continue;
4723     }
4724 
4725     /* Increment Parse.nHeight by the height of the largest expression
4726     ** tree referred to by this, the parent select. The child select
4727     ** may contain expression trees of at most
4728     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4729     ** more conservative than necessary, but much easier than enforcing
4730     ** an exact limit.
4731     */
4732     pParse->nHeight += sqlite3SelectExprHeight(p);
4733 
4734     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4735     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4736       /* This subquery can be absorbed into its parent. */
4737       if( isAggSub ){
4738         isAgg = 1;
4739         p->selFlags |= SF_Aggregate;
4740       }
4741       i = -1;
4742     }else if( pTabList->nSrc==1
4743            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4744     ){
4745       /* Implement a co-routine that will return a single row of the result
4746       ** set on each invocation.
4747       */
4748       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4749       pItem->regReturn = ++pParse->nMem;
4750       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4751       VdbeComment((v, "%s", pItem->pTab->zName));
4752       pItem->addrFillSub = addrTop;
4753       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4754       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4755       sqlite3Select(pParse, pSub, &dest);
4756       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4757       pItem->viaCoroutine = 1;
4758       pItem->regResult = dest.iSdst;
4759       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4760       sqlite3VdbeJumpHere(v, addrTop-1);
4761       sqlite3ClearTempRegCache(pParse);
4762     }else{
4763       /* Generate a subroutine that will fill an ephemeral table with
4764       ** the content of this subquery.  pItem->addrFillSub will point
4765       ** to the address of the generated subroutine.  pItem->regReturn
4766       ** is a register allocated to hold the subroutine return address
4767       */
4768       int topAddr;
4769       int onceAddr = 0;
4770       int retAddr;
4771       assert( pItem->addrFillSub==0 );
4772       pItem->regReturn = ++pParse->nMem;
4773       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4774       pItem->addrFillSub = topAddr+1;
4775       if( pItem->isCorrelated==0 ){
4776         /* If the subquery is not correlated and if we are not inside of
4777         ** a trigger, then we only need to compute the value of the subquery
4778         ** once. */
4779         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4780         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4781       }else{
4782         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4783       }
4784       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4785       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4786       sqlite3Select(pParse, pSub, &dest);
4787       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4788       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4789       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4790       VdbeComment((v, "end %s", pItem->pTab->zName));
4791       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4792       sqlite3ClearTempRegCache(pParse);
4793     }
4794     if( /*pParse->nErr ||*/ db->mallocFailed ){
4795       goto select_end;
4796     }
4797     pParse->nHeight -= sqlite3SelectExprHeight(p);
4798     pTabList = p->pSrc;
4799     if( !IgnorableOrderby(pDest) ){
4800       sSort.pOrderBy = p->pOrderBy;
4801     }
4802   }
4803   pEList = p->pEList;
4804 #endif
4805   pWhere = p->pWhere;
4806   pGroupBy = p->pGroupBy;
4807   pHaving = p->pHaving;
4808   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4809 
4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4811   /* If there is are a sequence of queries, do the earlier ones first.
4812   */
4813   if( p->pPrior ){
4814     rc = multiSelect(pParse, p, pDest);
4815     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4816 #if SELECTTRACE_ENABLED
4817     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4818     pParse->nSelectIndent--;
4819 #endif
4820     return rc;
4821   }
4822 #endif
4823 
4824   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4825   ** if the select-list is the same as the ORDER BY list, then this query
4826   ** can be rewritten as a GROUP BY. In other words, this:
4827   **
4828   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4829   **
4830   ** is transformed to:
4831   **
4832   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
4833   **
4834   ** The second form is preferred as a single index (or temp-table) may be
4835   ** used for both the ORDER BY and DISTINCT processing. As originally
4836   ** written the query must use a temp-table for at least one of the ORDER
4837   ** BY and DISTINCT, and an index or separate temp-table for the other.
4838   */
4839   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4840    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4841   ){
4842     p->selFlags &= ~SF_Distinct;
4843     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4844     pGroupBy = p->pGroupBy;
4845     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4846     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4847     ** original setting of the SF_Distinct flag, not the current setting */
4848     assert( sDistinct.isTnct );
4849   }
4850 
4851   /* If there is an ORDER BY clause, then this sorting
4852   ** index might end up being unused if the data can be
4853   ** extracted in pre-sorted order.  If that is the case, then the
4854   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4855   ** we figure out that the sorting index is not needed.  The addrSortIndex
4856   ** variable is used to facilitate that change.
4857   */
4858   if( sSort.pOrderBy ){
4859     KeyInfo *pKeyInfo;
4860     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4861     sSort.iECursor = pParse->nTab++;
4862     sSort.addrSortIndex =
4863       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4864           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4865           (char*)pKeyInfo, P4_KEYINFO
4866       );
4867   }else{
4868     sSort.addrSortIndex = -1;
4869   }
4870 
4871   /* If the output is destined for a temporary table, open that table.
4872   */
4873   if( pDest->eDest==SRT_EphemTab ){
4874     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4875   }
4876 
4877   /* Set the limiter.
4878   */
4879   iEnd = sqlite3VdbeMakeLabel(v);
4880   p->nSelectRow = LARGEST_INT64;
4881   computeLimitRegisters(pParse, p, iEnd);
4882   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4883     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4884     sSort.sortFlags |= SORTFLAG_UseSorter;
4885   }
4886 
4887   /* Open a virtual index to use for the distinct set.
4888   */
4889   if( p->selFlags & SF_Distinct ){
4890     sDistinct.tabTnct = pParse->nTab++;
4891     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4892                                 sDistinct.tabTnct, 0, 0,
4893                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4894                                 P4_KEYINFO);
4895     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4896     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4897   }else{
4898     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4899   }
4900 
4901   if( !isAgg && pGroupBy==0 ){
4902     /* No aggregate functions and no GROUP BY clause */
4903     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4904 
4905     /* Begin the database scan. */
4906     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4907                                p->pEList, wctrlFlags, 0);
4908     if( pWInfo==0 ) goto select_end;
4909     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4910       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4911     }
4912     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4913       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4914     }
4915     if( sSort.pOrderBy ){
4916       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4917       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4918         sSort.pOrderBy = 0;
4919       }
4920     }
4921 
4922     /* If sorting index that was created by a prior OP_OpenEphemeral
4923     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4924     ** into an OP_Noop.
4925     */
4926     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4927       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4928     }
4929 
4930     /* Use the standard inner loop. */
4931     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4932                     sqlite3WhereContinueLabel(pWInfo),
4933                     sqlite3WhereBreakLabel(pWInfo));
4934 
4935     /* End the database scan loop.
4936     */
4937     sqlite3WhereEnd(pWInfo);
4938   }else{
4939     /* This case when there exist aggregate functions or a GROUP BY clause
4940     ** or both */
4941     NameContext sNC;    /* Name context for processing aggregate information */
4942     int iAMem;          /* First Mem address for storing current GROUP BY */
4943     int iBMem;          /* First Mem address for previous GROUP BY */
4944     int iUseFlag;       /* Mem address holding flag indicating that at least
4945                         ** one row of the input to the aggregator has been
4946                         ** processed */
4947     int iAbortFlag;     /* Mem address which causes query abort if positive */
4948     int groupBySort;    /* Rows come from source in GROUP BY order */
4949     int addrEnd;        /* End of processing for this SELECT */
4950     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4951     int sortOut = 0;    /* Output register from the sorter */
4952     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4953 
4954     /* Remove any and all aliases between the result set and the
4955     ** GROUP BY clause.
4956     */
4957     if( pGroupBy ){
4958       int k;                        /* Loop counter */
4959       struct ExprList_item *pItem;  /* For looping over expression in a list */
4960 
4961       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4962         pItem->u.x.iAlias = 0;
4963       }
4964       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4965         pItem->u.x.iAlias = 0;
4966       }
4967       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4968     }else{
4969       p->nSelectRow = 1;
4970     }
4971 
4972 
4973     /* If there is both a GROUP BY and an ORDER BY clause and they are
4974     ** identical, then it may be possible to disable the ORDER BY clause
4975     ** on the grounds that the GROUP BY will cause elements to come out
4976     ** in the correct order. It also may not - the GROUP BY may use a
4977     ** database index that causes rows to be grouped together as required
4978     ** but not actually sorted. Either way, record the fact that the
4979     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4980     ** variable.  */
4981     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4982       orderByGrp = 1;
4983     }
4984 
4985     /* Create a label to jump to when we want to abort the query */
4986     addrEnd = sqlite3VdbeMakeLabel(v);
4987 
4988     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4989     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4990     ** SELECT statement.
4991     */
4992     memset(&sNC, 0, sizeof(sNC));
4993     sNC.pParse = pParse;
4994     sNC.pSrcList = pTabList;
4995     sNC.pAggInfo = &sAggInfo;
4996     sAggInfo.mnReg = pParse->nMem+1;
4997     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
4998     sAggInfo.pGroupBy = pGroupBy;
4999     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5000     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5001     if( pHaving ){
5002       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5003     }
5004     sAggInfo.nAccumulator = sAggInfo.nColumn;
5005     for(i=0; i<sAggInfo.nFunc; i++){
5006       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5007       sNC.ncFlags |= NC_InAggFunc;
5008       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5009       sNC.ncFlags &= ~NC_InAggFunc;
5010     }
5011     sAggInfo.mxReg = pParse->nMem;
5012     if( db->mallocFailed ) goto select_end;
5013 
5014     /* Processing for aggregates with GROUP BY is very different and
5015     ** much more complex than aggregates without a GROUP BY.
5016     */
5017     if( pGroupBy ){
5018       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5019       int j1;             /* A-vs-B comparision jump */
5020       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5021       int regOutputRow;   /* Return address register for output subroutine */
5022       int addrSetAbort;   /* Set the abort flag and return */
5023       int addrTopOfLoop;  /* Top of the input loop */
5024       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5025       int addrReset;      /* Subroutine for resetting the accumulator */
5026       int regReset;       /* Return address register for reset subroutine */
5027 
5028       /* If there is a GROUP BY clause we might need a sorting index to
5029       ** implement it.  Allocate that sorting index now.  If it turns out
5030       ** that we do not need it after all, the OP_SorterOpen instruction
5031       ** will be converted into a Noop.
5032       */
5033       sAggInfo.sortingIdx = pParse->nTab++;
5034       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
5035       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5036           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5037           0, (char*)pKeyInfo, P4_KEYINFO);
5038 
5039       /* Initialize memory locations used by GROUP BY aggregate processing
5040       */
5041       iUseFlag = ++pParse->nMem;
5042       iAbortFlag = ++pParse->nMem;
5043       regOutputRow = ++pParse->nMem;
5044       addrOutputRow = sqlite3VdbeMakeLabel(v);
5045       regReset = ++pParse->nMem;
5046       addrReset = sqlite3VdbeMakeLabel(v);
5047       iAMem = pParse->nMem + 1;
5048       pParse->nMem += pGroupBy->nExpr;
5049       iBMem = pParse->nMem + 1;
5050       pParse->nMem += pGroupBy->nExpr;
5051       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5052       VdbeComment((v, "clear abort flag"));
5053       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5054       VdbeComment((v, "indicate accumulator empty"));
5055       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5056 
5057       /* Begin a loop that will extract all source rows in GROUP BY order.
5058       ** This might involve two separate loops with an OP_Sort in between, or
5059       ** it might be a single loop that uses an index to extract information
5060       ** in the right order to begin with.
5061       */
5062       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5063       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5064           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5065       );
5066       if( pWInfo==0 ) goto select_end;
5067       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5068         /* The optimizer is able to deliver rows in group by order so
5069         ** we do not have to sort.  The OP_OpenEphemeral table will be
5070         ** cancelled later because we still need to use the pKeyInfo
5071         */
5072         groupBySort = 0;
5073       }else{
5074         /* Rows are coming out in undetermined order.  We have to push
5075         ** each row into a sorting index, terminate the first loop,
5076         ** then loop over the sorting index in order to get the output
5077         ** in sorted order
5078         */
5079         int regBase;
5080         int regRecord;
5081         int nCol;
5082         int nGroupBy;
5083 
5084         explainTempTable(pParse,
5085             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5086                     "DISTINCT" : "GROUP BY");
5087 
5088         groupBySort = 1;
5089         nGroupBy = pGroupBy->nExpr;
5090         nCol = nGroupBy;
5091         j = nGroupBy;
5092         for(i=0; i<sAggInfo.nColumn; i++){
5093           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5094             nCol++;
5095             j++;
5096           }
5097         }
5098         regBase = sqlite3GetTempRange(pParse, nCol);
5099         sqlite3ExprCacheClear(pParse);
5100         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5101         j = nGroupBy;
5102         for(i=0; i<sAggInfo.nColumn; i++){
5103           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5104           if( pCol->iSorterColumn>=j ){
5105             int r1 = j + regBase;
5106             int r2;
5107 
5108             r2 = sqlite3ExprCodeGetColumn(pParse,
5109                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5110             if( r1!=r2 ){
5111               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5112             }
5113             j++;
5114           }
5115         }
5116         regRecord = sqlite3GetTempReg(pParse);
5117         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5118         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5119         sqlite3ReleaseTempReg(pParse, regRecord);
5120         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5121         sqlite3WhereEnd(pWInfo);
5122         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5123         sortOut = sqlite3GetTempReg(pParse);
5124         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5125         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5126         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5127         sAggInfo.useSortingIdx = 1;
5128         sqlite3ExprCacheClear(pParse);
5129 
5130       }
5131 
5132       /* If the index or temporary table used by the GROUP BY sort
5133       ** will naturally deliver rows in the order required by the ORDER BY
5134       ** clause, cancel the ephemeral table open coded earlier.
5135       **
5136       ** This is an optimization - the correct answer should result regardless.
5137       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5138       ** disable this optimization for testing purposes.  */
5139       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5140        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5141       ){
5142         sSort.pOrderBy = 0;
5143         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5144       }
5145 
5146       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5147       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5148       ** Then compare the current GROUP BY terms against the GROUP BY terms
5149       ** from the previous row currently stored in a0, a1, a2...
5150       */
5151       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5152       sqlite3ExprCacheClear(pParse);
5153       if( groupBySort ){
5154         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5155       }
5156       for(j=0; j<pGroupBy->nExpr; j++){
5157         if( groupBySort ){
5158           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5159         }else{
5160           sAggInfo.directMode = 1;
5161           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5162         }
5163       }
5164       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5165                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5166       j1 = sqlite3VdbeCurrentAddr(v);
5167       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5168 
5169       /* Generate code that runs whenever the GROUP BY changes.
5170       ** Changes in the GROUP BY are detected by the previous code
5171       ** block.  If there were no changes, this block is skipped.
5172       **
5173       ** This code copies current group by terms in b0,b1,b2,...
5174       ** over to a0,a1,a2.  It then calls the output subroutine
5175       ** and resets the aggregate accumulator registers in preparation
5176       ** for the next GROUP BY batch.
5177       */
5178       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5179       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5180       VdbeComment((v, "output one row"));
5181       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5182       VdbeComment((v, "check abort flag"));
5183       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5184       VdbeComment((v, "reset accumulator"));
5185 
5186       /* Update the aggregate accumulators based on the content of
5187       ** the current row
5188       */
5189       sqlite3VdbeJumpHere(v, j1);
5190       updateAccumulator(pParse, &sAggInfo);
5191       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5192       VdbeComment((v, "indicate data in accumulator"));
5193 
5194       /* End of the loop
5195       */
5196       if( groupBySort ){
5197         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5198         VdbeCoverage(v);
5199       }else{
5200         sqlite3WhereEnd(pWInfo);
5201         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5202       }
5203 
5204       /* Output the final row of result
5205       */
5206       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5207       VdbeComment((v, "output final row"));
5208 
5209       /* Jump over the subroutines
5210       */
5211       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5212 
5213       /* Generate a subroutine that outputs a single row of the result
5214       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5215       ** is less than or equal to zero, the subroutine is a no-op.  If
5216       ** the processing calls for the query to abort, this subroutine
5217       ** increments the iAbortFlag memory location before returning in
5218       ** order to signal the caller to abort.
5219       */
5220       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5221       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5222       VdbeComment((v, "set abort flag"));
5223       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5224       sqlite3VdbeResolveLabel(v, addrOutputRow);
5225       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5226       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5227       VdbeComment((v, "Groupby result generator entry point"));
5228       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5229       finalizeAggFunctions(pParse, &sAggInfo);
5230       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5231       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5232                       &sDistinct, pDest,
5233                       addrOutputRow+1, addrSetAbort);
5234       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5235       VdbeComment((v, "end groupby result generator"));
5236 
5237       /* Generate a subroutine that will reset the group-by accumulator
5238       */
5239       sqlite3VdbeResolveLabel(v, addrReset);
5240       resetAccumulator(pParse, &sAggInfo);
5241       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5242 
5243     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5244     else {
5245       ExprList *pDel = 0;
5246 #ifndef SQLITE_OMIT_BTREECOUNT
5247       Table *pTab;
5248       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5249         /* If isSimpleCount() returns a pointer to a Table structure, then
5250         ** the SQL statement is of the form:
5251         **
5252         **   SELECT count(*) FROM <tbl>
5253         **
5254         ** where the Table structure returned represents table <tbl>.
5255         **
5256         ** This statement is so common that it is optimized specially. The
5257         ** OP_Count instruction is executed either on the intkey table that
5258         ** contains the data for table <tbl> or on one of its indexes. It
5259         ** is better to execute the op on an index, as indexes are almost
5260         ** always spread across less pages than their corresponding tables.
5261         */
5262         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5263         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5264         Index *pIdx;                         /* Iterator variable */
5265         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5266         Index *pBest = 0;                    /* Best index found so far */
5267         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5268 
5269         sqlite3CodeVerifySchema(pParse, iDb);
5270         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5271 
5272         /* Search for the index that has the lowest scan cost.
5273         **
5274         ** (2011-04-15) Do not do a full scan of an unordered index.
5275         **
5276         ** (2013-10-03) Do not count the entries in a partial index.
5277         **
5278         ** In practice the KeyInfo structure will not be used. It is only
5279         ** passed to keep OP_OpenRead happy.
5280         */
5281         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5282         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5283           if( pIdx->bUnordered==0
5284            && pIdx->szIdxRow<pTab->szTabRow
5285            && pIdx->pPartIdxWhere==0
5286            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5287           ){
5288             pBest = pIdx;
5289           }
5290         }
5291         if( pBest ){
5292           iRoot = pBest->tnum;
5293           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5294         }
5295 
5296         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5297         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5298         if( pKeyInfo ){
5299           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5300         }
5301         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5302         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5303         explainSimpleCount(pParse, pTab, pBest);
5304       }else
5305 #endif /* SQLITE_OMIT_BTREECOUNT */
5306       {
5307         /* Check if the query is of one of the following forms:
5308         **
5309         **   SELECT min(x) FROM ...
5310         **   SELECT max(x) FROM ...
5311         **
5312         ** If it is, then ask the code in where.c to attempt to sort results
5313         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5314         ** If where.c is able to produce results sorted in this order, then
5315         ** add vdbe code to break out of the processing loop after the
5316         ** first iteration (since the first iteration of the loop is
5317         ** guaranteed to operate on the row with the minimum or maximum
5318         ** value of x, the only row required).
5319         **
5320         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5321         ** modify behavior as follows:
5322         **
5323         **   + If the query is a "SELECT min(x)", then the loop coded by
5324         **     where.c should not iterate over any values with a NULL value
5325         **     for x.
5326         **
5327         **   + The optimizer code in where.c (the thing that decides which
5328         **     index or indices to use) should place a different priority on
5329         **     satisfying the 'ORDER BY' clause than it does in other cases.
5330         **     Refer to code and comments in where.c for details.
5331         */
5332         ExprList *pMinMax = 0;
5333         u8 flag = WHERE_ORDERBY_NORMAL;
5334 
5335         assert( p->pGroupBy==0 );
5336         assert( flag==0 );
5337         if( p->pHaving==0 ){
5338           flag = minMaxQuery(&sAggInfo, &pMinMax);
5339         }
5340         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5341 
5342         if( flag ){
5343           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5344           pDel = pMinMax;
5345           if( pMinMax && !db->mallocFailed ){
5346             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5347             pMinMax->a[0].pExpr->op = TK_COLUMN;
5348           }
5349         }
5350 
5351         /* This case runs if the aggregate has no GROUP BY clause.  The
5352         ** processing is much simpler since there is only a single row
5353         ** of output.
5354         */
5355         resetAccumulator(pParse, &sAggInfo);
5356         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5357         if( pWInfo==0 ){
5358           sqlite3ExprListDelete(db, pDel);
5359           goto select_end;
5360         }
5361         updateAccumulator(pParse, &sAggInfo);
5362         assert( pMinMax==0 || pMinMax->nExpr==1 );
5363         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5364           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5365           VdbeComment((v, "%s() by index",
5366                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5367         }
5368         sqlite3WhereEnd(pWInfo);
5369         finalizeAggFunctions(pParse, &sAggInfo);
5370       }
5371 
5372       sSort.pOrderBy = 0;
5373       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5374       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5375                       pDest, addrEnd, addrEnd);
5376       sqlite3ExprListDelete(db, pDel);
5377     }
5378     sqlite3VdbeResolveLabel(v, addrEnd);
5379 
5380   } /* endif aggregate query */
5381 
5382   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5383     explainTempTable(pParse, "DISTINCT");
5384   }
5385 
5386   /* If there is an ORDER BY clause, then we need to sort the results
5387   ** and send them to the callback one by one.
5388   */
5389   if( sSort.pOrderBy ){
5390     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5391     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5392   }
5393 
5394   /* Jump here to skip this query
5395   */
5396   sqlite3VdbeResolveLabel(v, iEnd);
5397 
5398   /* The SELECT was successfully coded.   Set the return code to 0
5399   ** to indicate no errors.
5400   */
5401   rc = 0;
5402 
5403   /* Control jumps to here if an error is encountered above, or upon
5404   ** successful coding of the SELECT.
5405   */
5406 select_end:
5407   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5408 
5409   /* Identify column names if results of the SELECT are to be output.
5410   */
5411   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5412     generateColumnNames(pParse, pTabList, pEList);
5413   }
5414 
5415   sqlite3DbFree(db, sAggInfo.aCol);
5416   sqlite3DbFree(db, sAggInfo.aFunc);
5417 #if SELECTTRACE_ENABLED
5418   SELECTTRACE(1,pParse,p,("end processing\n"));
5419   pParse->nSelectIndent--;
5420 #endif
5421   return rc;
5422 }
5423 
5424 #ifdef SQLITE_DEBUG
5425 /*
5426 ** Generate a human-readable description of a the Select object.
5427 */
5428 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5429   int n = 0;
5430   pView = sqlite3TreeViewPush(pView, moreToFollow);
5431   sqlite3TreeViewLine(pView, "SELECT%s%s",
5432     ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5433     ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
5434   );
5435   if( p->pSrc && p->pSrc->nSrc ) n++;
5436   if( p->pWhere ) n++;
5437   if( p->pGroupBy ) n++;
5438   if( p->pHaving ) n++;
5439   if( p->pOrderBy ) n++;
5440   if( p->pLimit ) n++;
5441   if( p->pOffset ) n++;
5442   if( p->pPrior ) n++;
5443   sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5444   if( p->pSrc && p->pSrc->nSrc ){
5445     int i;
5446     pView = sqlite3TreeViewPush(pView, (n--)>0);
5447     sqlite3TreeViewLine(pView, "FROM");
5448     for(i=0; i<p->pSrc->nSrc; i++){
5449       struct SrcList_item *pItem = &p->pSrc->a[i];
5450       StrAccum x;
5451       char zLine[100];
5452       sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
5453       sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5454       if( pItem->zDatabase ){
5455         sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5456       }else if( pItem->zName ){
5457         sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5458       }
5459       if( pItem->pTab ){
5460         sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5461       }
5462       if( pItem->zAlias ){
5463         sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5464       }
5465       if( pItem->jointype & JT_LEFT ){
5466         sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5467       }
5468       sqlite3StrAccumFinish(&x);
5469       sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5470       if( pItem->pSelect ){
5471         sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5472       }
5473       sqlite3TreeViewPop(pView);
5474     }
5475     sqlite3TreeViewPop(pView);
5476   }
5477   if( p->pWhere ){
5478     sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5479     sqlite3TreeViewExpr(pView, p->pWhere, 0);
5480     sqlite3TreeViewPop(pView);
5481   }
5482   if( p->pGroupBy ){
5483     sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5484   }
5485   if( p->pHaving ){
5486     sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5487     sqlite3TreeViewExpr(pView, p->pHaving, 0);
5488     sqlite3TreeViewPop(pView);
5489   }
5490   if( p->pOrderBy ){
5491     sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5492   }
5493   if( p->pLimit ){
5494     sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5495     sqlite3TreeViewExpr(pView, p->pLimit, 0);
5496     sqlite3TreeViewPop(pView);
5497   }
5498   if( p->pOffset ){
5499     sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5500     sqlite3TreeViewExpr(pView, p->pOffset, 0);
5501     sqlite3TreeViewPop(pView);
5502   }
5503   if( p->pPrior ){
5504     const char *zOp = "UNION";
5505     switch( p->op ){
5506       case TK_ALL:         zOp = "UNION ALL";  break;
5507       case TK_INTERSECT:   zOp = "INTERSECT";  break;
5508       case TK_EXCEPT:      zOp = "EXCEPT";     break;
5509     }
5510     sqlite3TreeViewItem(pView, zOp, (n--)>0);
5511     sqlite3TreeViewSelect(pView, p->pPrior, 0);
5512     sqlite3TreeViewPop(pView);
5513   }
5514   sqlite3TreeViewPop(pView);
5515 }
5516 #endif /* SQLITE_DEBUG */
5517