1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 assert( p->pWin==0 ); 106 if( bFree ) sqlite3DbFreeNN(db, p); 107 p = pPrior; 108 bFree = 1; 109 } 110 } 111 112 /* 113 ** Initialize a SelectDest structure. 114 */ 115 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 116 pDest->eDest = (u8)eDest; 117 pDest->iSDParm = iParm; 118 pDest->zAffSdst = 0; 119 pDest->iSdst = 0; 120 pDest->nSdst = 0; 121 } 122 123 124 /* 125 ** Allocate a new Select structure and return a pointer to that 126 ** structure. 127 */ 128 Select *sqlite3SelectNew( 129 Parse *pParse, /* Parsing context */ 130 ExprList *pEList, /* which columns to include in the result */ 131 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 132 Expr *pWhere, /* the WHERE clause */ 133 ExprList *pGroupBy, /* the GROUP BY clause */ 134 Expr *pHaving, /* the HAVING clause */ 135 ExprList *pOrderBy, /* the ORDER BY clause */ 136 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 137 Expr *pLimit /* LIMIT value. NULL means not used */ 138 ){ 139 Select *pNew; 140 Select standin; 141 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 142 if( pNew==0 ){ 143 assert( pParse->db->mallocFailed ); 144 pNew = &standin; 145 } 146 if( pEList==0 ){ 147 pEList = sqlite3ExprListAppend(pParse, 0, 148 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 149 } 150 pNew->pEList = pEList; 151 pNew->op = TK_SELECT; 152 pNew->selFlags = selFlags; 153 pNew->iLimit = 0; 154 pNew->iOffset = 0; 155 pNew->selId = ++pParse->nSelect; 156 pNew->addrOpenEphm[0] = -1; 157 pNew->addrOpenEphm[1] = -1; 158 pNew->nSelectRow = 0; 159 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 160 pNew->pSrc = pSrc; 161 pNew->pWhere = pWhere; 162 pNew->pGroupBy = pGroupBy; 163 pNew->pHaving = pHaving; 164 pNew->pOrderBy = pOrderBy; 165 pNew->pPrior = 0; 166 pNew->pNext = 0; 167 pNew->pLimit = pLimit; 168 pNew->pWith = 0; 169 #ifndef SQLITE_OMIT_WINDOWFUNC 170 pNew->pWin = 0; 171 pNew->pWinDefn = 0; 172 #endif 173 if( pParse->db->mallocFailed ) { 174 clearSelect(pParse->db, pNew, pNew!=&standin); 175 pNew = 0; 176 }else{ 177 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 178 } 179 assert( pNew!=&standin ); 180 return pNew; 181 } 182 183 184 /* 185 ** Delete the given Select structure and all of its substructures. 186 */ 187 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 188 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 189 } 190 191 /* 192 ** Return a pointer to the right-most SELECT statement in a compound. 193 */ 194 static Select *findRightmost(Select *p){ 195 while( p->pNext ) p = p->pNext; 196 return p; 197 } 198 199 /* 200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 201 ** type of join. Return an integer constant that expresses that type 202 ** in terms of the following bit values: 203 ** 204 ** JT_INNER 205 ** JT_CROSS 206 ** JT_OUTER 207 ** JT_NATURAL 208 ** JT_LEFT 209 ** JT_RIGHT 210 ** 211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 212 ** 213 ** If an illegal or unsupported join type is seen, then still return 214 ** a join type, but put an error in the pParse structure. 215 */ 216 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 217 int jointype = 0; 218 Token *apAll[3]; 219 Token *p; 220 /* 0123456789 123456789 123456789 123 */ 221 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 222 static const struct { 223 u8 i; /* Beginning of keyword text in zKeyText[] */ 224 u8 nChar; /* Length of the keyword in characters */ 225 u8 code; /* Join type mask */ 226 } aKeyword[] = { 227 /* natural */ { 0, 7, JT_NATURAL }, 228 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 229 /* outer */ { 10, 5, JT_OUTER }, 230 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 231 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 232 /* inner */ { 23, 5, JT_INNER }, 233 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 234 }; 235 int i, j; 236 apAll[0] = pA; 237 apAll[1] = pB; 238 apAll[2] = pC; 239 for(i=0; i<3 && apAll[i]; i++){ 240 p = apAll[i]; 241 for(j=0; j<ArraySize(aKeyword); j++){ 242 if( p->n==aKeyword[j].nChar 243 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 244 jointype |= aKeyword[j].code; 245 break; 246 } 247 } 248 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 249 if( j>=ArraySize(aKeyword) ){ 250 jointype |= JT_ERROR; 251 break; 252 } 253 } 254 if( 255 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 256 (jointype & JT_ERROR)!=0 257 ){ 258 const char *zSp = " "; 259 assert( pB!=0 ); 260 if( pC==0 ){ zSp++; } 261 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 262 "%T %T%s%T", pA, pB, zSp, pC); 263 jointype = JT_INNER; 264 }else if( (jointype & JT_OUTER)!=0 265 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 266 sqlite3ErrorMsg(pParse, 267 "RIGHT and FULL OUTER JOINs are not currently supported"); 268 jointype = JT_INNER; 269 } 270 return jointype; 271 } 272 273 /* 274 ** Return the index of a column in a table. Return -1 if the column 275 ** is not contained in the table. 276 */ 277 static int columnIndex(Table *pTab, const char *zCol){ 278 int i; 279 for(i=0; i<pTab->nCol; i++){ 280 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 281 } 282 return -1; 283 } 284 285 /* 286 ** Search the first N tables in pSrc, from left to right, looking for a 287 ** table that has a column named zCol. 288 ** 289 ** When found, set *piTab and *piCol to the table index and column index 290 ** of the matching column and return TRUE. 291 ** 292 ** If not found, return FALSE. 293 */ 294 static int tableAndColumnIndex( 295 SrcList *pSrc, /* Array of tables to search */ 296 int N, /* Number of tables in pSrc->a[] to search */ 297 const char *zCol, /* Name of the column we are looking for */ 298 int *piTab, /* Write index of pSrc->a[] here */ 299 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 300 ){ 301 int i; /* For looping over tables in pSrc */ 302 int iCol; /* Index of column matching zCol */ 303 304 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 305 for(i=0; i<N; i++){ 306 iCol = columnIndex(pSrc->a[i].pTab, zCol); 307 if( iCol>=0 ){ 308 if( piTab ){ 309 *piTab = i; 310 *piCol = iCol; 311 } 312 return 1; 313 } 314 } 315 return 0; 316 } 317 318 /* 319 ** This function is used to add terms implied by JOIN syntax to the 320 ** WHERE clause expression of a SELECT statement. The new term, which 321 ** is ANDed with the existing WHERE clause, is of the form: 322 ** 323 ** (tab1.col1 = tab2.col2) 324 ** 325 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 326 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 327 ** column iColRight of tab2. 328 */ 329 static void addWhereTerm( 330 Parse *pParse, /* Parsing context */ 331 SrcList *pSrc, /* List of tables in FROM clause */ 332 int iLeft, /* Index of first table to join in pSrc */ 333 int iColLeft, /* Index of column in first table */ 334 int iRight, /* Index of second table in pSrc */ 335 int iColRight, /* Index of column in second table */ 336 int isOuterJoin, /* True if this is an OUTER join */ 337 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 338 ){ 339 sqlite3 *db = pParse->db; 340 Expr *pE1; 341 Expr *pE2; 342 Expr *pEq; 343 344 assert( iLeft<iRight ); 345 assert( pSrc->nSrc>iRight ); 346 assert( pSrc->a[iLeft].pTab ); 347 assert( pSrc->a[iRight].pTab ); 348 349 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 350 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 351 352 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = (i16)pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 static void setJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = (i16)iTable; 394 if( p->op==TK_FUNCTION && p->x.pList ){ 395 int i; 396 for(i=0; i<p->x.pList->nExpr; i++){ 397 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 398 } 399 } 400 setJoinExpr(p->pLeft, iTable); 401 p = p->pRight; 402 } 403 } 404 405 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 407 ** an ordinary term that omits the EP_FromJoin mark. 408 ** 409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 410 */ 411 static void unsetJoinExpr(Expr *p, int iTable){ 412 while( p ){ 413 if( ExprHasProperty(p, EP_FromJoin) 414 && (iTable<0 || p->iRightJoinTable==iTable) ){ 415 ExprClearProperty(p, EP_FromJoin); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 struct SrcList_item *pLeft; /* Left table being joined */ 446 struct SrcList_item *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 zName = pRightTab->aCol[j].zName; 473 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 480 /* Disallow both ON and USING clauses in the same join 481 */ 482 if( pRight->pOn && pRight->pUsing ){ 483 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 484 "clauses in the same join"); 485 return 1; 486 } 487 488 /* Add the ON clause to the end of the WHERE clause, connected by 489 ** an AND operator. 490 */ 491 if( pRight->pOn ){ 492 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 493 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 494 pRight->pOn = 0; 495 } 496 497 /* Create extra terms on the WHERE clause for each column named 498 ** in the USING clause. Example: If the two tables to be joined are 499 ** A and B and the USING clause names X, Y, and Z, then add this 500 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 501 ** Report an error if any column mentioned in the USING clause is 502 ** not contained in both tables to be joined. 503 */ 504 if( pRight->pUsing ){ 505 IdList *pList = pRight->pUsing; 506 for(j=0; j<pList->nId; j++){ 507 char *zName; /* Name of the term in the USING clause */ 508 int iLeft; /* Table on the left with matching column name */ 509 int iLeftCol; /* Column number of matching column on the left */ 510 int iRightCol; /* Column number of matching column on the right */ 511 512 zName = pList->a[j].zName; 513 iRightCol = columnIndex(pRightTab, zName); 514 if( iRightCol<0 515 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 516 ){ 517 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 518 "not present in both tables", zName); 519 return 1; 520 } 521 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 522 isOuter, &p->pWhere); 523 } 524 } 525 } 526 return 0; 527 } 528 529 /* 530 ** An instance of this object holds information (beyond pParse and pSelect) 531 ** needed to load the next result row that is to be added to the sorter. 532 */ 533 typedef struct RowLoadInfo RowLoadInfo; 534 struct RowLoadInfo { 535 int regResult; /* Store results in array of registers here */ 536 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 538 ExprList *pExtra; /* Extra columns needed by sorter refs */ 539 int regExtraResult; /* Where to load the extra columns */ 540 #endif 541 }; 542 543 /* 544 ** This routine does the work of loading query data into an array of 545 ** registers so that it can be added to the sorter. 546 */ 547 static void innerLoopLoadRow( 548 Parse *pParse, /* Statement under construction */ 549 Select *pSelect, /* The query being coded */ 550 RowLoadInfo *pInfo /* Info needed to complete the row load */ 551 ){ 552 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 553 0, pInfo->ecelFlags); 554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 555 if( pInfo->pExtra ){ 556 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 557 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 558 } 559 #endif 560 } 561 562 /* 563 ** Code the OP_MakeRecord instruction that generates the entry to be 564 ** added into the sorter. 565 ** 566 ** Return the register in which the result is stored. 567 */ 568 static int makeSorterRecord( 569 Parse *pParse, 570 SortCtx *pSort, 571 Select *pSelect, 572 int regBase, 573 int nBase 574 ){ 575 int nOBSat = pSort->nOBSat; 576 Vdbe *v = pParse->pVdbe; 577 int regOut = ++pParse->nMem; 578 if( pSort->pDeferredRowLoad ){ 579 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 580 } 581 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 582 return regOut; 583 } 584 585 /* 586 ** Generate code that will push the record in registers regData 587 ** through regData+nData-1 onto the sorter. 588 */ 589 static void pushOntoSorter( 590 Parse *pParse, /* Parser context */ 591 SortCtx *pSort, /* Information about the ORDER BY clause */ 592 Select *pSelect, /* The whole SELECT statement */ 593 int regData, /* First register holding data to be sorted */ 594 int regOrigData, /* First register holding data before packing */ 595 int nData, /* Number of elements in the regData data array */ 596 int nPrefixReg /* No. of reg prior to regData available for use */ 597 ){ 598 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 599 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 600 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 601 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 602 int regBase; /* Regs for sorter record */ 603 int regRecord = 0; /* Assembled sorter record */ 604 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 605 int op; /* Opcode to add sorter record to sorter */ 606 int iLimit; /* LIMIT counter */ 607 int iSkip = 0; /* End of the sorter insert loop */ 608 609 assert( bSeq==0 || bSeq==1 ); 610 611 /* Three cases: 612 ** (1) The data to be sorted has already been packed into a Record 613 ** by a prior OP_MakeRecord. In this case nData==1 and regData 614 ** will be completely unrelated to regOrigData. 615 ** (2) All output columns are included in the sort record. In that 616 ** case regData==regOrigData. 617 ** (3) Some output columns are omitted from the sort record due to 618 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 619 ** SQLITE_ECEL_OMITREF optimization, or due to the 620 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 621 ** regOrigData is 0 to prevent this routine from trying to copy 622 ** values that might not yet exist. 623 */ 624 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 625 626 if( nPrefixReg ){ 627 assert( nPrefixReg==nExpr+bSeq ); 628 regBase = regData - nPrefixReg; 629 }else{ 630 regBase = pParse->nMem + 1; 631 pParse->nMem += nBase; 632 } 633 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 634 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 635 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 636 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 637 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 638 if( bSeq ){ 639 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 640 } 641 if( nPrefixReg==0 && nData>0 ){ 642 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 643 } 644 if( nOBSat>0 ){ 645 int regPrevKey; /* The first nOBSat columns of the previous row */ 646 int addrFirst; /* Address of the OP_IfNot opcode */ 647 int addrJmp; /* Address of the OP_Jump opcode */ 648 VdbeOp *pOp; /* Opcode that opens the sorter */ 649 int nKey; /* Number of sorting key columns, including OP_Sequence */ 650 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 651 652 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 653 regPrevKey = pParse->nMem+1; 654 pParse->nMem += pSort->nOBSat; 655 nKey = nExpr - pSort->nOBSat + bSeq; 656 if( bSeq ){ 657 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 658 }else{ 659 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 660 } 661 VdbeCoverage(v); 662 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 663 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 664 if( pParse->db->mallocFailed ) return; 665 pOp->p2 = nKey + nData; 666 pKI = pOp->p4.pKeyInfo; 667 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 668 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 669 testcase( pKI->nAllField > pKI->nKeyField+2 ); 670 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 671 pKI->nAllField-pKI->nKeyField-1); 672 addrJmp = sqlite3VdbeCurrentAddr(v); 673 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 674 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 675 pSort->regReturn = ++pParse->nMem; 676 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 677 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 678 if( iLimit ){ 679 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 680 VdbeCoverage(v); 681 } 682 sqlite3VdbeJumpHere(v, addrFirst); 683 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 684 sqlite3VdbeJumpHere(v, addrJmp); 685 } 686 if( iLimit ){ 687 /* At this point the values for the new sorter entry are stored 688 ** in an array of registers. They need to be composed into a record 689 ** and inserted into the sorter if either (a) there are currently 690 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 691 ** the largest record currently in the sorter. If (b) is true and there 692 ** are already LIMIT+OFFSET items in the sorter, delete the largest 693 ** entry before inserting the new one. This way there are never more 694 ** than LIMIT+OFFSET items in the sorter. 695 ** 696 ** If the new record does not need to be inserted into the sorter, 697 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 698 ** value is not zero, then it is a label of where to jump. Otherwise, 699 ** just bypass the row insert logic. See the header comment on the 700 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 701 */ 702 int iCsr = pSort->iECursor; 703 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 704 VdbeCoverage(v); 705 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 706 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 707 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 708 VdbeCoverage(v); 709 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 710 } 711 if( regRecord==0 ){ 712 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 713 } 714 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 715 op = OP_SorterInsert; 716 }else{ 717 op = OP_IdxInsert; 718 } 719 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 720 regBase+nOBSat, nBase-nOBSat); 721 if( iSkip ){ 722 sqlite3VdbeChangeP2(v, iSkip, 723 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 724 } 725 } 726 727 /* 728 ** Add code to implement the OFFSET 729 */ 730 static void codeOffset( 731 Vdbe *v, /* Generate code into this VM */ 732 int iOffset, /* Register holding the offset counter */ 733 int iContinue /* Jump here to skip the current record */ 734 ){ 735 if( iOffset>0 ){ 736 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 737 VdbeComment((v, "OFFSET")); 738 } 739 } 740 741 /* 742 ** Add code that will check to make sure the N registers starting at iMem 743 ** form a distinct entry. iTab is a sorting index that holds previously 744 ** seen combinations of the N values. A new entry is made in iTab 745 ** if the current N values are new. 746 ** 747 ** A jump to addrRepeat is made and the N+1 values are popped from the 748 ** stack if the top N elements are not distinct. 749 */ 750 static void codeDistinct( 751 Parse *pParse, /* Parsing and code generating context */ 752 int iTab, /* A sorting index used to test for distinctness */ 753 int addrRepeat, /* Jump to here if not distinct */ 754 int N, /* Number of elements */ 755 int iMem /* First element */ 756 ){ 757 Vdbe *v; 758 int r1; 759 760 v = pParse->pVdbe; 761 r1 = sqlite3GetTempReg(pParse); 762 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 763 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 764 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 765 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 766 sqlite3ReleaseTempReg(pParse, r1); 767 } 768 769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 770 /* 771 ** This function is called as part of inner-loop generation for a SELECT 772 ** statement with an ORDER BY that is not optimized by an index. It 773 ** determines the expressions, if any, that the sorter-reference 774 ** optimization should be used for. The sorter-reference optimization 775 ** is used for SELECT queries like: 776 ** 777 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 778 ** 779 ** If the optimization is used for expression "bigblob", then instead of 780 ** storing values read from that column in the sorter records, the PK of 781 ** the row from table t1 is stored instead. Then, as records are extracted from 782 ** the sorter to return to the user, the required value of bigblob is 783 ** retrieved directly from table t1. If the values are very large, this 784 ** can be more efficient than storing them directly in the sorter records. 785 ** 786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 787 ** for which the sorter-reference optimization should be enabled. 788 ** Additionally, the pSort->aDefer[] array is populated with entries 789 ** for all cursors required to evaluate all selected expressions. Finally. 790 ** output variable (*ppExtra) is set to an expression list containing 791 ** expressions for all extra PK values that should be stored in the 792 ** sorter records. 793 */ 794 static void selectExprDefer( 795 Parse *pParse, /* Leave any error here */ 796 SortCtx *pSort, /* Sorter context */ 797 ExprList *pEList, /* Expressions destined for sorter */ 798 ExprList **ppExtra /* Expressions to append to sorter record */ 799 ){ 800 int i; 801 int nDefer = 0; 802 ExprList *pExtra = 0; 803 for(i=0; i<pEList->nExpr; i++){ 804 struct ExprList_item *pItem = &pEList->a[i]; 805 if( pItem->u.x.iOrderByCol==0 ){ 806 Expr *pExpr = pItem->pExpr; 807 Table *pTab = pExpr->y.pTab; 808 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 809 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 810 ){ 811 int j; 812 for(j=0; j<nDefer; j++){ 813 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 814 } 815 if( j==nDefer ){ 816 if( nDefer==ArraySize(pSort->aDefer) ){ 817 continue; 818 }else{ 819 int nKey = 1; 820 int k; 821 Index *pPk = 0; 822 if( !HasRowid(pTab) ){ 823 pPk = sqlite3PrimaryKeyIndex(pTab); 824 nKey = pPk->nKeyCol; 825 } 826 for(k=0; k<nKey; k++){ 827 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 828 if( pNew ){ 829 pNew->iTable = pExpr->iTable; 830 pNew->y.pTab = pExpr->y.pTab; 831 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 832 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 833 } 834 } 835 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 836 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 837 pSort->aDefer[nDefer].nKey = nKey; 838 nDefer++; 839 } 840 } 841 pItem->bSorterRef = 1; 842 } 843 } 844 } 845 pSort->nDefer = (u8)nDefer; 846 *ppExtra = pExtra; 847 } 848 #endif 849 850 /* 851 ** This routine generates the code for the inside of the inner loop 852 ** of a SELECT. 853 ** 854 ** If srcTab is negative, then the p->pEList expressions 855 ** are evaluated in order to get the data for this row. If srcTab is 856 ** zero or more, then data is pulled from srcTab and p->pEList is used only 857 ** to get the number of columns and the collation sequence for each column. 858 */ 859 static void selectInnerLoop( 860 Parse *pParse, /* The parser context */ 861 Select *p, /* The complete select statement being coded */ 862 int srcTab, /* Pull data from this table if non-negative */ 863 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 864 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 865 SelectDest *pDest, /* How to dispose of the results */ 866 int iContinue, /* Jump here to continue with next row */ 867 int iBreak /* Jump here to break out of the inner loop */ 868 ){ 869 Vdbe *v = pParse->pVdbe; 870 int i; 871 int hasDistinct; /* True if the DISTINCT keyword is present */ 872 int eDest = pDest->eDest; /* How to dispose of results */ 873 int iParm = pDest->iSDParm; /* First argument to disposal method */ 874 int nResultCol; /* Number of result columns */ 875 int nPrefixReg = 0; /* Number of extra registers before regResult */ 876 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 877 878 /* Usually, regResult is the first cell in an array of memory cells 879 ** containing the current result row. In this case regOrig is set to the 880 ** same value. However, if the results are being sent to the sorter, the 881 ** values for any expressions that are also part of the sort-key are omitted 882 ** from this array. In this case regOrig is set to zero. */ 883 int regResult; /* Start of memory holding current results */ 884 int regOrig; /* Start of memory holding full result (or 0) */ 885 886 assert( v ); 887 assert( p->pEList!=0 ); 888 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 889 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 890 if( pSort==0 && !hasDistinct ){ 891 assert( iContinue!=0 ); 892 codeOffset(v, p->iOffset, iContinue); 893 } 894 895 /* Pull the requested columns. 896 */ 897 nResultCol = p->pEList->nExpr; 898 899 if( pDest->iSdst==0 ){ 900 if( pSort ){ 901 nPrefixReg = pSort->pOrderBy->nExpr; 902 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 903 pParse->nMem += nPrefixReg; 904 } 905 pDest->iSdst = pParse->nMem+1; 906 pParse->nMem += nResultCol; 907 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 908 /* This is an error condition that can result, for example, when a SELECT 909 ** on the right-hand side of an INSERT contains more result columns than 910 ** there are columns in the table on the left. The error will be caught 911 ** and reported later. But we need to make sure enough memory is allocated 912 ** to avoid other spurious errors in the meantime. */ 913 pParse->nMem += nResultCol; 914 } 915 pDest->nSdst = nResultCol; 916 regOrig = regResult = pDest->iSdst; 917 if( srcTab>=0 ){ 918 for(i=0; i<nResultCol; i++){ 919 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 920 VdbeComment((v, "%s", p->pEList->a[i].zName)); 921 } 922 }else if( eDest!=SRT_Exists ){ 923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 924 ExprList *pExtra = 0; 925 #endif 926 /* If the destination is an EXISTS(...) expression, the actual 927 ** values returned by the SELECT are not required. 928 */ 929 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 930 ExprList *pEList; 931 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 932 ecelFlags = SQLITE_ECEL_DUP; 933 }else{ 934 ecelFlags = 0; 935 } 936 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 937 /* For each expression in p->pEList that is a copy of an expression in 938 ** the ORDER BY clause (pSort->pOrderBy), set the associated 939 ** iOrderByCol value to one more than the index of the ORDER BY 940 ** expression within the sort-key that pushOntoSorter() will generate. 941 ** This allows the p->pEList field to be omitted from the sorted record, 942 ** saving space and CPU cycles. */ 943 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 944 945 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 946 int j; 947 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 948 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 949 } 950 } 951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 952 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 953 if( pExtra && pParse->db->mallocFailed==0 ){ 954 /* If there are any extra PK columns to add to the sorter records, 955 ** allocate extra memory cells and adjust the OpenEphemeral 956 ** instruction to account for the larger records. This is only 957 ** required if there are one or more WITHOUT ROWID tables with 958 ** composite primary keys in the SortCtx.aDefer[] array. */ 959 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 960 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 961 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 962 pParse->nMem += pExtra->nExpr; 963 } 964 #endif 965 966 /* Adjust nResultCol to account for columns that are omitted 967 ** from the sorter by the optimizations in this branch */ 968 pEList = p->pEList; 969 for(i=0; i<pEList->nExpr; i++){ 970 if( pEList->a[i].u.x.iOrderByCol>0 971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 972 || pEList->a[i].bSorterRef 973 #endif 974 ){ 975 nResultCol--; 976 regOrig = 0; 977 } 978 } 979 980 testcase( regOrig ); 981 testcase( eDest==SRT_Set ); 982 testcase( eDest==SRT_Mem ); 983 testcase( eDest==SRT_Coroutine ); 984 testcase( eDest==SRT_Output ); 985 assert( eDest==SRT_Set || eDest==SRT_Mem 986 || eDest==SRT_Coroutine || eDest==SRT_Output ); 987 } 988 sRowLoadInfo.regResult = regResult; 989 sRowLoadInfo.ecelFlags = ecelFlags; 990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 991 sRowLoadInfo.pExtra = pExtra; 992 sRowLoadInfo.regExtraResult = regResult + nResultCol; 993 if( pExtra ) nResultCol += pExtra->nExpr; 994 #endif 995 if( p->iLimit 996 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 997 && nPrefixReg>0 998 ){ 999 assert( pSort!=0 ); 1000 assert( hasDistinct==0 ); 1001 pSort->pDeferredRowLoad = &sRowLoadInfo; 1002 regOrig = 0; 1003 }else{ 1004 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1005 } 1006 } 1007 1008 /* If the DISTINCT keyword was present on the SELECT statement 1009 ** and this row has been seen before, then do not make this row 1010 ** part of the result. 1011 */ 1012 if( hasDistinct ){ 1013 switch( pDistinct->eTnctType ){ 1014 case WHERE_DISTINCT_ORDERED: { 1015 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1016 int iJump; /* Jump destination */ 1017 int regPrev; /* Previous row content */ 1018 1019 /* Allocate space for the previous row */ 1020 regPrev = pParse->nMem+1; 1021 pParse->nMem += nResultCol; 1022 1023 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1024 ** sets the MEM_Cleared bit on the first register of the 1025 ** previous value. This will cause the OP_Ne below to always 1026 ** fail on the first iteration of the loop even if the first 1027 ** row is all NULLs. 1028 */ 1029 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1030 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1031 pOp->opcode = OP_Null; 1032 pOp->p1 = 1; 1033 pOp->p2 = regPrev; 1034 1035 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1036 for(i=0; i<nResultCol; i++){ 1037 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1038 if( i<nResultCol-1 ){ 1039 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1040 VdbeCoverage(v); 1041 }else{ 1042 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1043 VdbeCoverage(v); 1044 } 1045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1047 } 1048 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1049 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1050 break; 1051 } 1052 1053 case WHERE_DISTINCT_UNIQUE: { 1054 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1055 break; 1056 } 1057 1058 default: { 1059 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1060 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1061 regResult); 1062 break; 1063 } 1064 } 1065 if( pSort==0 ){ 1066 codeOffset(v, p->iOffset, iContinue); 1067 } 1068 } 1069 1070 switch( eDest ){ 1071 /* In this mode, write each query result to the key of the temporary 1072 ** table iParm. 1073 */ 1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1075 case SRT_Union: { 1076 int r1; 1077 r1 = sqlite3GetTempReg(pParse); 1078 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1079 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1080 sqlite3ReleaseTempReg(pParse, r1); 1081 break; 1082 } 1083 1084 /* Construct a record from the query result, but instead of 1085 ** saving that record, use it as a key to delete elements from 1086 ** the temporary table iParm. 1087 */ 1088 case SRT_Except: { 1089 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1090 break; 1091 } 1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1093 1094 /* Store the result as data using a unique key. 1095 */ 1096 case SRT_Fifo: 1097 case SRT_DistFifo: 1098 case SRT_Table: 1099 case SRT_EphemTab: { 1100 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1101 testcase( eDest==SRT_Table ); 1102 testcase( eDest==SRT_EphemTab ); 1103 testcase( eDest==SRT_Fifo ); 1104 testcase( eDest==SRT_DistFifo ); 1105 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1106 #ifndef SQLITE_OMIT_CTE 1107 if( eDest==SRT_DistFifo ){ 1108 /* If the destination is DistFifo, then cursor (iParm+1) is open 1109 ** on an ephemeral index. If the current row is already present 1110 ** in the index, do not write it to the output. If not, add the 1111 ** current row to the index and proceed with writing it to the 1112 ** output table as well. */ 1113 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1114 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1115 VdbeCoverage(v); 1116 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1117 assert( pSort==0 ); 1118 } 1119 #endif 1120 if( pSort ){ 1121 assert( regResult==regOrig ); 1122 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1123 }else{ 1124 int r2 = sqlite3GetTempReg(pParse); 1125 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1126 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1128 sqlite3ReleaseTempReg(pParse, r2); 1129 } 1130 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1131 break; 1132 } 1133 1134 #ifndef SQLITE_OMIT_SUBQUERY 1135 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1136 ** then there should be a single item on the stack. Write this 1137 ** item into the set table with bogus data. 1138 */ 1139 case SRT_Set: { 1140 if( pSort ){ 1141 /* At first glance you would think we could optimize out the 1142 ** ORDER BY in this case since the order of entries in the set 1143 ** does not matter. But there might be a LIMIT clause, in which 1144 ** case the order does matter */ 1145 pushOntoSorter( 1146 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1147 }else{ 1148 int r1 = sqlite3GetTempReg(pParse); 1149 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1150 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1151 r1, pDest->zAffSdst, nResultCol); 1152 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1153 sqlite3ReleaseTempReg(pParse, r1); 1154 } 1155 break; 1156 } 1157 1158 /* If any row exist in the result set, record that fact and abort. 1159 */ 1160 case SRT_Exists: { 1161 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1162 /* The LIMIT clause will terminate the loop for us */ 1163 break; 1164 } 1165 1166 /* If this is a scalar select that is part of an expression, then 1167 ** store the results in the appropriate memory cell or array of 1168 ** memory cells and break out of the scan loop. 1169 */ 1170 case SRT_Mem: { 1171 if( pSort ){ 1172 assert( nResultCol<=pDest->nSdst ); 1173 pushOntoSorter( 1174 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1175 }else{ 1176 assert( nResultCol==pDest->nSdst ); 1177 assert( regResult==iParm ); 1178 /* The LIMIT clause will jump out of the loop for us */ 1179 } 1180 break; 1181 } 1182 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1183 1184 case SRT_Coroutine: /* Send data to a co-routine */ 1185 case SRT_Output: { /* Return the results */ 1186 testcase( eDest==SRT_Coroutine ); 1187 testcase( eDest==SRT_Output ); 1188 if( pSort ){ 1189 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1190 nPrefixReg); 1191 }else if( eDest==SRT_Coroutine ){ 1192 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1193 }else{ 1194 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1195 } 1196 break; 1197 } 1198 1199 #ifndef SQLITE_OMIT_CTE 1200 /* Write the results into a priority queue that is order according to 1201 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1202 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1203 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1204 ** final OP_Sequence column. The last column is the record as a blob. 1205 */ 1206 case SRT_DistQueue: 1207 case SRT_Queue: { 1208 int nKey; 1209 int r1, r2, r3; 1210 int addrTest = 0; 1211 ExprList *pSO; 1212 pSO = pDest->pOrderBy; 1213 assert( pSO ); 1214 nKey = pSO->nExpr; 1215 r1 = sqlite3GetTempReg(pParse); 1216 r2 = sqlite3GetTempRange(pParse, nKey+2); 1217 r3 = r2+nKey+1; 1218 if( eDest==SRT_DistQueue ){ 1219 /* If the destination is DistQueue, then cursor (iParm+1) is open 1220 ** on a second ephemeral index that holds all values every previously 1221 ** added to the queue. */ 1222 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1223 regResult, nResultCol); 1224 VdbeCoverage(v); 1225 } 1226 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1227 if( eDest==SRT_DistQueue ){ 1228 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1229 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1230 } 1231 for(i=0; i<nKey; i++){ 1232 sqlite3VdbeAddOp2(v, OP_SCopy, 1233 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1234 r2+i); 1235 } 1236 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1237 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1238 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1239 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1240 sqlite3ReleaseTempReg(pParse, r1); 1241 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1242 break; 1243 } 1244 #endif /* SQLITE_OMIT_CTE */ 1245 1246 1247 1248 #if !defined(SQLITE_OMIT_TRIGGER) 1249 /* Discard the results. This is used for SELECT statements inside 1250 ** the body of a TRIGGER. The purpose of such selects is to call 1251 ** user-defined functions that have side effects. We do not care 1252 ** about the actual results of the select. 1253 */ 1254 default: { 1255 assert( eDest==SRT_Discard ); 1256 break; 1257 } 1258 #endif 1259 } 1260 1261 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1262 ** there is a sorter, in which case the sorter has already limited 1263 ** the output for us. 1264 */ 1265 if( pSort==0 && p->iLimit ){ 1266 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1267 } 1268 } 1269 1270 /* 1271 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1272 ** X extra columns. 1273 */ 1274 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1275 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1276 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1277 if( p ){ 1278 p->aSortOrder = (u8*)&p->aColl[N+X]; 1279 p->nKeyField = (u16)N; 1280 p->nAllField = (u16)(N+X); 1281 p->enc = ENC(db); 1282 p->db = db; 1283 p->nRef = 1; 1284 memset(&p[1], 0, nExtra); 1285 }else{ 1286 sqlite3OomFault(db); 1287 } 1288 return p; 1289 } 1290 1291 /* 1292 ** Deallocate a KeyInfo object 1293 */ 1294 void sqlite3KeyInfoUnref(KeyInfo *p){ 1295 if( p ){ 1296 assert( p->nRef>0 ); 1297 p->nRef--; 1298 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1299 } 1300 } 1301 1302 /* 1303 ** Make a new pointer to a KeyInfo object 1304 */ 1305 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1306 if( p ){ 1307 assert( p->nRef>0 ); 1308 p->nRef++; 1309 } 1310 return p; 1311 } 1312 1313 #ifdef SQLITE_DEBUG 1314 /* 1315 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1316 ** can only be changed if this is just a single reference to the object. 1317 ** 1318 ** This routine is used only inside of assert() statements. 1319 */ 1320 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1321 #endif /* SQLITE_DEBUG */ 1322 1323 /* 1324 ** Given an expression list, generate a KeyInfo structure that records 1325 ** the collating sequence for each expression in that expression list. 1326 ** 1327 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1328 ** KeyInfo structure is appropriate for initializing a virtual index to 1329 ** implement that clause. If the ExprList is the result set of a SELECT 1330 ** then the KeyInfo structure is appropriate for initializing a virtual 1331 ** index to implement a DISTINCT test. 1332 ** 1333 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1334 ** function is responsible for seeing that this structure is eventually 1335 ** freed. 1336 */ 1337 KeyInfo *sqlite3KeyInfoFromExprList( 1338 Parse *pParse, /* Parsing context */ 1339 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1340 int iStart, /* Begin with this column of pList */ 1341 int nExtra /* Add this many extra columns to the end */ 1342 ){ 1343 int nExpr; 1344 KeyInfo *pInfo; 1345 struct ExprList_item *pItem; 1346 sqlite3 *db = pParse->db; 1347 int i; 1348 1349 nExpr = pList->nExpr; 1350 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1351 if( pInfo ){ 1352 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1353 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1354 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1355 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1356 } 1357 } 1358 return pInfo; 1359 } 1360 1361 /* 1362 ** Name of the connection operator, used for error messages. 1363 */ 1364 static const char *selectOpName(int id){ 1365 char *z; 1366 switch( id ){ 1367 case TK_ALL: z = "UNION ALL"; break; 1368 case TK_INTERSECT: z = "INTERSECT"; break; 1369 case TK_EXCEPT: z = "EXCEPT"; break; 1370 default: z = "UNION"; break; 1371 } 1372 return z; 1373 } 1374 1375 #ifndef SQLITE_OMIT_EXPLAIN 1376 /* 1377 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1378 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1379 ** where the caption is of the form: 1380 ** 1381 ** "USE TEMP B-TREE FOR xxx" 1382 ** 1383 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1384 ** is determined by the zUsage argument. 1385 */ 1386 static void explainTempTable(Parse *pParse, const char *zUsage){ 1387 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1388 } 1389 1390 /* 1391 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1392 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1393 ** in sqlite3Select() to assign values to structure member variables that 1394 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1395 ** code with #ifndef directives. 1396 */ 1397 # define explainSetInteger(a, b) a = b 1398 1399 #else 1400 /* No-op versions of the explainXXX() functions and macros. */ 1401 # define explainTempTable(y,z) 1402 # define explainSetInteger(y,z) 1403 #endif 1404 1405 1406 /* 1407 ** If the inner loop was generated using a non-null pOrderBy argument, 1408 ** then the results were placed in a sorter. After the loop is terminated 1409 ** we need to run the sorter and output the results. The following 1410 ** routine generates the code needed to do that. 1411 */ 1412 static void generateSortTail( 1413 Parse *pParse, /* Parsing context */ 1414 Select *p, /* The SELECT statement */ 1415 SortCtx *pSort, /* Information on the ORDER BY clause */ 1416 int nColumn, /* Number of columns of data */ 1417 SelectDest *pDest /* Write the sorted results here */ 1418 ){ 1419 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1420 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1421 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1422 int addr; /* Top of output loop. Jump for Next. */ 1423 int addrOnce = 0; 1424 int iTab; 1425 ExprList *pOrderBy = pSort->pOrderBy; 1426 int eDest = pDest->eDest; 1427 int iParm = pDest->iSDParm; 1428 int regRow; 1429 int regRowid; 1430 int iCol; 1431 int nKey; /* Number of key columns in sorter record */ 1432 int iSortTab; /* Sorter cursor to read from */ 1433 int i; 1434 int bSeq; /* True if sorter record includes seq. no. */ 1435 int nRefKey = 0; 1436 struct ExprList_item *aOutEx = p->pEList->a; 1437 1438 assert( addrBreak<0 ); 1439 if( pSort->labelBkOut ){ 1440 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1441 sqlite3VdbeGoto(v, addrBreak); 1442 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1443 } 1444 1445 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1446 /* Open any cursors needed for sorter-reference expressions */ 1447 for(i=0; i<pSort->nDefer; i++){ 1448 Table *pTab = pSort->aDefer[i].pTab; 1449 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1450 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1451 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1452 } 1453 #endif 1454 1455 iTab = pSort->iECursor; 1456 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1457 regRowid = 0; 1458 regRow = pDest->iSdst; 1459 }else{ 1460 regRowid = sqlite3GetTempReg(pParse); 1461 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1462 regRow = sqlite3GetTempReg(pParse); 1463 nColumn = 0; 1464 }else{ 1465 regRow = sqlite3GetTempRange(pParse, nColumn); 1466 } 1467 } 1468 nKey = pOrderBy->nExpr - pSort->nOBSat; 1469 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1470 int regSortOut = ++pParse->nMem; 1471 iSortTab = pParse->nTab++; 1472 if( pSort->labelBkOut ){ 1473 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1474 } 1475 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1476 nKey+1+nColumn+nRefKey); 1477 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1478 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1479 VdbeCoverage(v); 1480 codeOffset(v, p->iOffset, addrContinue); 1481 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1482 bSeq = 0; 1483 }else{ 1484 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1485 codeOffset(v, p->iOffset, addrContinue); 1486 iSortTab = iTab; 1487 bSeq = 1; 1488 } 1489 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1490 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1491 if( aOutEx[i].bSorterRef ) continue; 1492 #endif 1493 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1494 } 1495 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1496 if( pSort->nDefer ){ 1497 int iKey = iCol+1; 1498 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1499 1500 for(i=0; i<pSort->nDefer; i++){ 1501 int iCsr = pSort->aDefer[i].iCsr; 1502 Table *pTab = pSort->aDefer[i].pTab; 1503 int nKey = pSort->aDefer[i].nKey; 1504 1505 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1506 if( HasRowid(pTab) ){ 1507 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1508 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1509 sqlite3VdbeCurrentAddr(v)+1, regKey); 1510 }else{ 1511 int k; 1512 int iJmp; 1513 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1514 for(k=0; k<nKey; k++){ 1515 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1516 } 1517 iJmp = sqlite3VdbeCurrentAddr(v); 1518 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1519 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1520 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1521 } 1522 } 1523 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1524 } 1525 #endif 1526 for(i=nColumn-1; i>=0; i--){ 1527 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1528 if( aOutEx[i].bSorterRef ){ 1529 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1530 }else 1531 #endif 1532 { 1533 int iRead; 1534 if( aOutEx[i].u.x.iOrderByCol ){ 1535 iRead = aOutEx[i].u.x.iOrderByCol-1; 1536 }else{ 1537 iRead = iCol--; 1538 } 1539 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1540 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1541 } 1542 } 1543 switch( eDest ){ 1544 case SRT_Table: 1545 case SRT_EphemTab: { 1546 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1547 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1548 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1549 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1550 break; 1551 } 1552 #ifndef SQLITE_OMIT_SUBQUERY 1553 case SRT_Set: { 1554 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1555 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1556 pDest->zAffSdst, nColumn); 1557 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1558 break; 1559 } 1560 case SRT_Mem: { 1561 /* The LIMIT clause will terminate the loop for us */ 1562 break; 1563 } 1564 #endif 1565 default: { 1566 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1567 testcase( eDest==SRT_Output ); 1568 testcase( eDest==SRT_Coroutine ); 1569 if( eDest==SRT_Output ){ 1570 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1571 }else{ 1572 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1573 } 1574 break; 1575 } 1576 } 1577 if( regRowid ){ 1578 if( eDest==SRT_Set ){ 1579 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1580 }else{ 1581 sqlite3ReleaseTempReg(pParse, regRow); 1582 } 1583 sqlite3ReleaseTempReg(pParse, regRowid); 1584 } 1585 /* The bottom of the loop 1586 */ 1587 sqlite3VdbeResolveLabel(v, addrContinue); 1588 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1589 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1590 }else{ 1591 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1592 } 1593 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1594 sqlite3VdbeResolveLabel(v, addrBreak); 1595 } 1596 1597 /* 1598 ** Return a pointer to a string containing the 'declaration type' of the 1599 ** expression pExpr. The string may be treated as static by the caller. 1600 ** 1601 ** Also try to estimate the size of the returned value and return that 1602 ** result in *pEstWidth. 1603 ** 1604 ** The declaration type is the exact datatype definition extracted from the 1605 ** original CREATE TABLE statement if the expression is a column. The 1606 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1607 ** is considered a column can be complex in the presence of subqueries. The 1608 ** result-set expression in all of the following SELECT statements is 1609 ** considered a column by this function. 1610 ** 1611 ** SELECT col FROM tbl; 1612 ** SELECT (SELECT col FROM tbl; 1613 ** SELECT (SELECT col FROM tbl); 1614 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1615 ** 1616 ** The declaration type for any expression other than a column is NULL. 1617 ** 1618 ** This routine has either 3 or 6 parameters depending on whether or not 1619 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1620 */ 1621 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1623 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1624 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1625 #endif 1626 static const char *columnTypeImpl( 1627 NameContext *pNC, 1628 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1629 Expr *pExpr 1630 #else 1631 Expr *pExpr, 1632 const char **pzOrigDb, 1633 const char **pzOrigTab, 1634 const char **pzOrigCol 1635 #endif 1636 ){ 1637 char const *zType = 0; 1638 int j; 1639 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1640 char const *zOrigDb = 0; 1641 char const *zOrigTab = 0; 1642 char const *zOrigCol = 0; 1643 #endif 1644 1645 assert( pExpr!=0 ); 1646 assert( pNC->pSrcList!=0 ); 1647 switch( pExpr->op ){ 1648 case TK_COLUMN: { 1649 /* The expression is a column. Locate the table the column is being 1650 ** extracted from in NameContext.pSrcList. This table may be real 1651 ** database table or a subquery. 1652 */ 1653 Table *pTab = 0; /* Table structure column is extracted from */ 1654 Select *pS = 0; /* Select the column is extracted from */ 1655 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1656 while( pNC && !pTab ){ 1657 SrcList *pTabList = pNC->pSrcList; 1658 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1659 if( j<pTabList->nSrc ){ 1660 pTab = pTabList->a[j].pTab; 1661 pS = pTabList->a[j].pSelect; 1662 }else{ 1663 pNC = pNC->pNext; 1664 } 1665 } 1666 1667 if( pTab==0 ){ 1668 /* At one time, code such as "SELECT new.x" within a trigger would 1669 ** cause this condition to run. Since then, we have restructured how 1670 ** trigger code is generated and so this condition is no longer 1671 ** possible. However, it can still be true for statements like 1672 ** the following: 1673 ** 1674 ** CREATE TABLE t1(col INTEGER); 1675 ** SELECT (SELECT t1.col) FROM FROM t1; 1676 ** 1677 ** when columnType() is called on the expression "t1.col" in the 1678 ** sub-select. In this case, set the column type to NULL, even 1679 ** though it should really be "INTEGER". 1680 ** 1681 ** This is not a problem, as the column type of "t1.col" is never 1682 ** used. When columnType() is called on the expression 1683 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1684 ** branch below. */ 1685 break; 1686 } 1687 1688 assert( pTab && pExpr->y.pTab==pTab ); 1689 if( pS ){ 1690 /* The "table" is actually a sub-select or a view in the FROM clause 1691 ** of the SELECT statement. Return the declaration type and origin 1692 ** data for the result-set column of the sub-select. 1693 */ 1694 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1695 /* If iCol is less than zero, then the expression requests the 1696 ** rowid of the sub-select or view. This expression is legal (see 1697 ** test case misc2.2.2) - it always evaluates to NULL. 1698 */ 1699 NameContext sNC; 1700 Expr *p = pS->pEList->a[iCol].pExpr; 1701 sNC.pSrcList = pS->pSrc; 1702 sNC.pNext = pNC; 1703 sNC.pParse = pNC->pParse; 1704 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1705 } 1706 }else{ 1707 /* A real table or a CTE table */ 1708 assert( !pS ); 1709 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1710 if( iCol<0 ) iCol = pTab->iPKey; 1711 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1712 if( iCol<0 ){ 1713 zType = "INTEGER"; 1714 zOrigCol = "rowid"; 1715 }else{ 1716 zOrigCol = pTab->aCol[iCol].zName; 1717 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1718 } 1719 zOrigTab = pTab->zName; 1720 if( pNC->pParse && pTab->pSchema ){ 1721 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1722 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1723 } 1724 #else 1725 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1726 if( iCol<0 ){ 1727 zType = "INTEGER"; 1728 }else{ 1729 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1730 } 1731 #endif 1732 } 1733 break; 1734 } 1735 #ifndef SQLITE_OMIT_SUBQUERY 1736 case TK_SELECT: { 1737 /* The expression is a sub-select. Return the declaration type and 1738 ** origin info for the single column in the result set of the SELECT 1739 ** statement. 1740 */ 1741 NameContext sNC; 1742 Select *pS = pExpr->x.pSelect; 1743 Expr *p = pS->pEList->a[0].pExpr; 1744 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1745 sNC.pSrcList = pS->pSrc; 1746 sNC.pNext = pNC; 1747 sNC.pParse = pNC->pParse; 1748 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1749 break; 1750 } 1751 #endif 1752 } 1753 1754 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1755 if( pzOrigDb ){ 1756 assert( pzOrigTab && pzOrigCol ); 1757 *pzOrigDb = zOrigDb; 1758 *pzOrigTab = zOrigTab; 1759 *pzOrigCol = zOrigCol; 1760 } 1761 #endif 1762 return zType; 1763 } 1764 1765 /* 1766 ** Generate code that will tell the VDBE the declaration types of columns 1767 ** in the result set. 1768 */ 1769 static void generateColumnTypes( 1770 Parse *pParse, /* Parser context */ 1771 SrcList *pTabList, /* List of tables */ 1772 ExprList *pEList /* Expressions defining the result set */ 1773 ){ 1774 #ifndef SQLITE_OMIT_DECLTYPE 1775 Vdbe *v = pParse->pVdbe; 1776 int i; 1777 NameContext sNC; 1778 sNC.pSrcList = pTabList; 1779 sNC.pParse = pParse; 1780 sNC.pNext = 0; 1781 for(i=0; i<pEList->nExpr; i++){ 1782 Expr *p = pEList->a[i].pExpr; 1783 const char *zType; 1784 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1785 const char *zOrigDb = 0; 1786 const char *zOrigTab = 0; 1787 const char *zOrigCol = 0; 1788 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1789 1790 /* The vdbe must make its own copy of the column-type and other 1791 ** column specific strings, in case the schema is reset before this 1792 ** virtual machine is deleted. 1793 */ 1794 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1795 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1796 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1797 #else 1798 zType = columnType(&sNC, p, 0, 0, 0); 1799 #endif 1800 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1801 } 1802 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1803 } 1804 1805 1806 /* 1807 ** Compute the column names for a SELECT statement. 1808 ** 1809 ** The only guarantee that SQLite makes about column names is that if the 1810 ** column has an AS clause assigning it a name, that will be the name used. 1811 ** That is the only documented guarantee. However, countless applications 1812 ** developed over the years have made baseless assumptions about column names 1813 ** and will break if those assumptions changes. Hence, use extreme caution 1814 ** when modifying this routine to avoid breaking legacy. 1815 ** 1816 ** See Also: sqlite3ColumnsFromExprList() 1817 ** 1818 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1819 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1820 ** applications should operate this way. Nevertheless, we need to support the 1821 ** other modes for legacy: 1822 ** 1823 ** short=OFF, full=OFF: Column name is the text of the expression has it 1824 ** originally appears in the SELECT statement. In 1825 ** other words, the zSpan of the result expression. 1826 ** 1827 ** short=ON, full=OFF: (This is the default setting). If the result 1828 ** refers directly to a table column, then the 1829 ** result column name is just the table column 1830 ** name: COLUMN. Otherwise use zSpan. 1831 ** 1832 ** full=ON, short=ANY: If the result refers directly to a table column, 1833 ** then the result column name with the table name 1834 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1835 */ 1836 static void generateColumnNames( 1837 Parse *pParse, /* Parser context */ 1838 Select *pSelect /* Generate column names for this SELECT statement */ 1839 ){ 1840 Vdbe *v = pParse->pVdbe; 1841 int i; 1842 Table *pTab; 1843 SrcList *pTabList; 1844 ExprList *pEList; 1845 sqlite3 *db = pParse->db; 1846 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1847 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1848 1849 #ifndef SQLITE_OMIT_EXPLAIN 1850 /* If this is an EXPLAIN, skip this step */ 1851 if( pParse->explain ){ 1852 return; 1853 } 1854 #endif 1855 1856 if( pParse->colNamesSet ) return; 1857 /* Column names are determined by the left-most term of a compound select */ 1858 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1859 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1860 pTabList = pSelect->pSrc; 1861 pEList = pSelect->pEList; 1862 assert( v!=0 ); 1863 assert( pTabList!=0 ); 1864 pParse->colNamesSet = 1; 1865 fullName = (db->flags & SQLITE_FullColNames)!=0; 1866 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1867 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1868 for(i=0; i<pEList->nExpr; i++){ 1869 Expr *p = pEList->a[i].pExpr; 1870 1871 assert( p!=0 ); 1872 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1873 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1874 if( pEList->a[i].zName ){ 1875 /* An AS clause always takes first priority */ 1876 char *zName = pEList->a[i].zName; 1877 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1878 }else if( srcName && p->op==TK_COLUMN ){ 1879 char *zCol; 1880 int iCol = p->iColumn; 1881 pTab = p->y.pTab; 1882 assert( pTab!=0 ); 1883 if( iCol<0 ) iCol = pTab->iPKey; 1884 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1885 if( iCol<0 ){ 1886 zCol = "rowid"; 1887 }else{ 1888 zCol = pTab->aCol[iCol].zName; 1889 } 1890 if( fullName ){ 1891 char *zName = 0; 1892 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1893 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1894 }else{ 1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1896 } 1897 }else{ 1898 const char *z = pEList->a[i].zSpan; 1899 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1900 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1901 } 1902 } 1903 generateColumnTypes(pParse, pTabList, pEList); 1904 } 1905 1906 /* 1907 ** Given an expression list (which is really the list of expressions 1908 ** that form the result set of a SELECT statement) compute appropriate 1909 ** column names for a table that would hold the expression list. 1910 ** 1911 ** All column names will be unique. 1912 ** 1913 ** Only the column names are computed. Column.zType, Column.zColl, 1914 ** and other fields of Column are zeroed. 1915 ** 1916 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1917 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1918 ** 1919 ** The only guarantee that SQLite makes about column names is that if the 1920 ** column has an AS clause assigning it a name, that will be the name used. 1921 ** That is the only documented guarantee. However, countless applications 1922 ** developed over the years have made baseless assumptions about column names 1923 ** and will break if those assumptions changes. Hence, use extreme caution 1924 ** when modifying this routine to avoid breaking legacy. 1925 ** 1926 ** See Also: generateColumnNames() 1927 */ 1928 int sqlite3ColumnsFromExprList( 1929 Parse *pParse, /* Parsing context */ 1930 ExprList *pEList, /* Expr list from which to derive column names */ 1931 i16 *pnCol, /* Write the number of columns here */ 1932 Column **paCol /* Write the new column list here */ 1933 ){ 1934 sqlite3 *db = pParse->db; /* Database connection */ 1935 int i, j; /* Loop counters */ 1936 u32 cnt; /* Index added to make the name unique */ 1937 Column *aCol, *pCol; /* For looping over result columns */ 1938 int nCol; /* Number of columns in the result set */ 1939 char *zName; /* Column name */ 1940 int nName; /* Size of name in zName[] */ 1941 Hash ht; /* Hash table of column names */ 1942 1943 sqlite3HashInit(&ht); 1944 if( pEList ){ 1945 nCol = pEList->nExpr; 1946 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1947 testcase( aCol==0 ); 1948 if( nCol>32767 ) nCol = 32767; 1949 }else{ 1950 nCol = 0; 1951 aCol = 0; 1952 } 1953 assert( nCol==(i16)nCol ); 1954 *pnCol = nCol; 1955 *paCol = aCol; 1956 1957 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1958 /* Get an appropriate name for the column 1959 */ 1960 if( (zName = pEList->a[i].zName)!=0 ){ 1961 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1962 }else{ 1963 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1964 while( pColExpr->op==TK_DOT ){ 1965 pColExpr = pColExpr->pRight; 1966 assert( pColExpr!=0 ); 1967 } 1968 if( pColExpr->op==TK_COLUMN ){ 1969 /* For columns use the column name name */ 1970 int iCol = pColExpr->iColumn; 1971 Table *pTab = pColExpr->y.pTab; 1972 assert( pTab!=0 ); 1973 if( iCol<0 ) iCol = pTab->iPKey; 1974 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1975 }else if( pColExpr->op==TK_ID ){ 1976 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1977 zName = pColExpr->u.zToken; 1978 }else{ 1979 /* Use the original text of the column expression as its name */ 1980 zName = pEList->a[i].zSpan; 1981 } 1982 } 1983 if( zName ){ 1984 zName = sqlite3DbStrDup(db, zName); 1985 }else{ 1986 zName = sqlite3MPrintf(db,"column%d",i+1); 1987 } 1988 1989 /* Make sure the column name is unique. If the name is not unique, 1990 ** append an integer to the name so that it becomes unique. 1991 */ 1992 cnt = 0; 1993 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1994 nName = sqlite3Strlen30(zName); 1995 if( nName>0 ){ 1996 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1997 if( zName[j]==':' ) nName = j; 1998 } 1999 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2000 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2001 } 2002 pCol->zName = zName; 2003 sqlite3ColumnPropertiesFromName(0, pCol); 2004 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2005 sqlite3OomFault(db); 2006 } 2007 } 2008 sqlite3HashClear(&ht); 2009 if( db->mallocFailed ){ 2010 for(j=0; j<i; j++){ 2011 sqlite3DbFree(db, aCol[j].zName); 2012 } 2013 sqlite3DbFree(db, aCol); 2014 *paCol = 0; 2015 *pnCol = 0; 2016 return SQLITE_NOMEM_BKPT; 2017 } 2018 return SQLITE_OK; 2019 } 2020 2021 /* 2022 ** Add type and collation information to a column list based on 2023 ** a SELECT statement. 2024 ** 2025 ** The column list presumably came from selectColumnNamesFromExprList(). 2026 ** The column list has only names, not types or collations. This 2027 ** routine goes through and adds the types and collations. 2028 ** 2029 ** This routine requires that all identifiers in the SELECT 2030 ** statement be resolved. 2031 */ 2032 void sqlite3SelectAddColumnTypeAndCollation( 2033 Parse *pParse, /* Parsing contexts */ 2034 Table *pTab, /* Add column type information to this table */ 2035 Select *pSelect, /* SELECT used to determine types and collations */ 2036 char aff /* Default affinity for columns */ 2037 ){ 2038 sqlite3 *db = pParse->db; 2039 NameContext sNC; 2040 Column *pCol; 2041 CollSeq *pColl; 2042 int i; 2043 Expr *p; 2044 struct ExprList_item *a; 2045 2046 assert( pSelect!=0 ); 2047 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2048 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2049 if( db->mallocFailed ) return; 2050 memset(&sNC, 0, sizeof(sNC)); 2051 sNC.pSrcList = pSelect->pSrc; 2052 a = pSelect->pEList->a; 2053 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2054 const char *zType; 2055 int n, m; 2056 p = a[i].pExpr; 2057 zType = columnType(&sNC, p, 0, 0, 0); 2058 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2059 pCol->affinity = sqlite3ExprAffinity(p); 2060 if( zType ){ 2061 m = sqlite3Strlen30(zType); 2062 n = sqlite3Strlen30(pCol->zName); 2063 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2064 if( pCol->zName ){ 2065 memcpy(&pCol->zName[n+1], zType, m+1); 2066 pCol->colFlags |= COLFLAG_HASTYPE; 2067 } 2068 } 2069 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2070 pColl = sqlite3ExprCollSeq(pParse, p); 2071 if( pColl && pCol->zColl==0 ){ 2072 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2073 } 2074 } 2075 pTab->szTabRow = 1; /* Any non-zero value works */ 2076 } 2077 2078 /* 2079 ** Given a SELECT statement, generate a Table structure that describes 2080 ** the result set of that SELECT. 2081 */ 2082 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2083 Table *pTab; 2084 sqlite3 *db = pParse->db; 2085 u64 savedFlags; 2086 2087 savedFlags = db->flags; 2088 db->flags &= ~(u64)SQLITE_FullColNames; 2089 db->flags |= SQLITE_ShortColNames; 2090 sqlite3SelectPrep(pParse, pSelect, 0); 2091 db->flags = savedFlags; 2092 if( pParse->nErr ) return 0; 2093 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2094 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2095 if( pTab==0 ){ 2096 return 0; 2097 } 2098 pTab->nTabRef = 1; 2099 pTab->zName = 0; 2100 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2101 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2102 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2103 pTab->iPKey = -1; 2104 if( db->mallocFailed ){ 2105 sqlite3DeleteTable(db, pTab); 2106 return 0; 2107 } 2108 return pTab; 2109 } 2110 2111 /* 2112 ** Get a VDBE for the given parser context. Create a new one if necessary. 2113 ** If an error occurs, return NULL and leave a message in pParse. 2114 */ 2115 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2116 if( pParse->pVdbe ){ 2117 return pParse->pVdbe; 2118 } 2119 if( pParse->pToplevel==0 2120 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2121 ){ 2122 pParse->okConstFactor = 1; 2123 } 2124 return sqlite3VdbeCreate(pParse); 2125 } 2126 2127 2128 /* 2129 ** Compute the iLimit and iOffset fields of the SELECT based on the 2130 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2131 ** that appear in the original SQL statement after the LIMIT and OFFSET 2132 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2133 ** are the integer memory register numbers for counters used to compute 2134 ** the limit and offset. If there is no limit and/or offset, then 2135 ** iLimit and iOffset are negative. 2136 ** 2137 ** This routine changes the values of iLimit and iOffset only if 2138 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2139 ** and iOffset should have been preset to appropriate default values (zero) 2140 ** prior to calling this routine. 2141 ** 2142 ** The iOffset register (if it exists) is initialized to the value 2143 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2144 ** iOffset+1 is initialized to LIMIT+OFFSET. 2145 ** 2146 ** Only if pLimit->pLeft!=0 do the limit registers get 2147 ** redefined. The UNION ALL operator uses this property to force 2148 ** the reuse of the same limit and offset registers across multiple 2149 ** SELECT statements. 2150 */ 2151 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2152 Vdbe *v = 0; 2153 int iLimit = 0; 2154 int iOffset; 2155 int n; 2156 Expr *pLimit = p->pLimit; 2157 2158 if( p->iLimit ) return; 2159 2160 /* 2161 ** "LIMIT -1" always shows all rows. There is some 2162 ** controversy about what the correct behavior should be. 2163 ** The current implementation interprets "LIMIT 0" to mean 2164 ** no rows. 2165 */ 2166 if( pLimit ){ 2167 assert( pLimit->op==TK_LIMIT ); 2168 assert( pLimit->pLeft!=0 ); 2169 p->iLimit = iLimit = ++pParse->nMem; 2170 v = sqlite3GetVdbe(pParse); 2171 assert( v!=0 ); 2172 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2173 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2174 VdbeComment((v, "LIMIT counter")); 2175 if( n==0 ){ 2176 sqlite3VdbeGoto(v, iBreak); 2177 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2178 p->nSelectRow = sqlite3LogEst((u64)n); 2179 p->selFlags |= SF_FixedLimit; 2180 } 2181 }else{ 2182 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2183 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2184 VdbeComment((v, "LIMIT counter")); 2185 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2186 } 2187 if( pLimit->pRight ){ 2188 p->iOffset = iOffset = ++pParse->nMem; 2189 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2190 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2191 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2192 VdbeComment((v, "OFFSET counter")); 2193 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2194 VdbeComment((v, "LIMIT+OFFSET")); 2195 } 2196 } 2197 } 2198 2199 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2200 /* 2201 ** Return the appropriate collating sequence for the iCol-th column of 2202 ** the result set for the compound-select statement "p". Return NULL if 2203 ** the column has no default collating sequence. 2204 ** 2205 ** The collating sequence for the compound select is taken from the 2206 ** left-most term of the select that has a collating sequence. 2207 */ 2208 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2209 CollSeq *pRet; 2210 if( p->pPrior ){ 2211 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2212 }else{ 2213 pRet = 0; 2214 } 2215 assert( iCol>=0 ); 2216 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2217 ** have been thrown during name resolution and we would not have gotten 2218 ** this far */ 2219 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2220 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2221 } 2222 return pRet; 2223 } 2224 2225 /* 2226 ** The select statement passed as the second parameter is a compound SELECT 2227 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2228 ** structure suitable for implementing the ORDER BY. 2229 ** 2230 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2231 ** function is responsible for ensuring that this structure is eventually 2232 ** freed. 2233 */ 2234 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2235 ExprList *pOrderBy = p->pOrderBy; 2236 int nOrderBy = p->pOrderBy->nExpr; 2237 sqlite3 *db = pParse->db; 2238 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2239 if( pRet ){ 2240 int i; 2241 for(i=0; i<nOrderBy; i++){ 2242 struct ExprList_item *pItem = &pOrderBy->a[i]; 2243 Expr *pTerm = pItem->pExpr; 2244 CollSeq *pColl; 2245 2246 if( pTerm->flags & EP_Collate ){ 2247 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2248 }else{ 2249 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2250 if( pColl==0 ) pColl = db->pDfltColl; 2251 pOrderBy->a[i].pExpr = 2252 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2253 } 2254 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2255 pRet->aColl[i] = pColl; 2256 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2257 } 2258 } 2259 2260 return pRet; 2261 } 2262 2263 #ifndef SQLITE_OMIT_CTE 2264 /* 2265 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2266 ** query of the form: 2267 ** 2268 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2269 ** \___________/ \_______________/ 2270 ** p->pPrior p 2271 ** 2272 ** 2273 ** There is exactly one reference to the recursive-table in the FROM clause 2274 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2275 ** 2276 ** The setup-query runs once to generate an initial set of rows that go 2277 ** into a Queue table. Rows are extracted from the Queue table one by 2278 ** one. Each row extracted from Queue is output to pDest. Then the single 2279 ** extracted row (now in the iCurrent table) becomes the content of the 2280 ** recursive-table for a recursive-query run. The output of the recursive-query 2281 ** is added back into the Queue table. Then another row is extracted from Queue 2282 ** and the iteration continues until the Queue table is empty. 2283 ** 2284 ** If the compound query operator is UNION then no duplicate rows are ever 2285 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2286 ** that have ever been inserted into Queue and causes duplicates to be 2287 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2288 ** 2289 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2290 ** ORDER BY order and the first entry is extracted for each cycle. Without 2291 ** an ORDER BY, the Queue table is just a FIFO. 2292 ** 2293 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2294 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2295 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2296 ** with a positive value, then the first OFFSET outputs are discarded rather 2297 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2298 ** rows have been skipped. 2299 */ 2300 static void generateWithRecursiveQuery( 2301 Parse *pParse, /* Parsing context */ 2302 Select *p, /* The recursive SELECT to be coded */ 2303 SelectDest *pDest /* What to do with query results */ 2304 ){ 2305 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2306 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2307 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2308 Select *pSetup = p->pPrior; /* The setup query */ 2309 int addrTop; /* Top of the loop */ 2310 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2311 int iCurrent = 0; /* The Current table */ 2312 int regCurrent; /* Register holding Current table */ 2313 int iQueue; /* The Queue table */ 2314 int iDistinct = 0; /* To ensure unique results if UNION */ 2315 int eDest = SRT_Fifo; /* How to write to Queue */ 2316 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2317 int i; /* Loop counter */ 2318 int rc; /* Result code */ 2319 ExprList *pOrderBy; /* The ORDER BY clause */ 2320 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2321 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2322 2323 #ifndef SQLITE_OMIT_WINDOWFUNC 2324 if( p->pWin ){ 2325 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2326 return; 2327 } 2328 #endif 2329 2330 /* Obtain authorization to do a recursive query */ 2331 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2332 2333 /* Process the LIMIT and OFFSET clauses, if they exist */ 2334 addrBreak = sqlite3VdbeMakeLabel(pParse); 2335 p->nSelectRow = 320; /* 4 billion rows */ 2336 computeLimitRegisters(pParse, p, addrBreak); 2337 pLimit = p->pLimit; 2338 regLimit = p->iLimit; 2339 regOffset = p->iOffset; 2340 p->pLimit = 0; 2341 p->iLimit = p->iOffset = 0; 2342 pOrderBy = p->pOrderBy; 2343 2344 /* Locate the cursor number of the Current table */ 2345 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2346 if( pSrc->a[i].fg.isRecursive ){ 2347 iCurrent = pSrc->a[i].iCursor; 2348 break; 2349 } 2350 } 2351 2352 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2353 ** the Distinct table must be exactly one greater than Queue in order 2354 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2355 iQueue = pParse->nTab++; 2356 if( p->op==TK_UNION ){ 2357 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2358 iDistinct = pParse->nTab++; 2359 }else{ 2360 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2361 } 2362 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2363 2364 /* Allocate cursors for Current, Queue, and Distinct. */ 2365 regCurrent = ++pParse->nMem; 2366 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2367 if( pOrderBy ){ 2368 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2369 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2370 (char*)pKeyInfo, P4_KEYINFO); 2371 destQueue.pOrderBy = pOrderBy; 2372 }else{ 2373 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2374 } 2375 VdbeComment((v, "Queue table")); 2376 if( iDistinct ){ 2377 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2378 p->selFlags |= SF_UsesEphemeral; 2379 } 2380 2381 /* Detach the ORDER BY clause from the compound SELECT */ 2382 p->pOrderBy = 0; 2383 2384 /* Store the results of the setup-query in Queue. */ 2385 pSetup->pNext = 0; 2386 ExplainQueryPlan((pParse, 1, "SETUP")); 2387 rc = sqlite3Select(pParse, pSetup, &destQueue); 2388 pSetup->pNext = p; 2389 if( rc ) goto end_of_recursive_query; 2390 2391 /* Find the next row in the Queue and output that row */ 2392 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2393 2394 /* Transfer the next row in Queue over to Current */ 2395 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2396 if( pOrderBy ){ 2397 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2398 }else{ 2399 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2400 } 2401 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2402 2403 /* Output the single row in Current */ 2404 addrCont = sqlite3VdbeMakeLabel(pParse); 2405 codeOffset(v, regOffset, addrCont); 2406 selectInnerLoop(pParse, p, iCurrent, 2407 0, 0, pDest, addrCont, addrBreak); 2408 if( regLimit ){ 2409 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2410 VdbeCoverage(v); 2411 } 2412 sqlite3VdbeResolveLabel(v, addrCont); 2413 2414 /* Execute the recursive SELECT taking the single row in Current as 2415 ** the value for the recursive-table. Store the results in the Queue. 2416 */ 2417 if( p->selFlags & SF_Aggregate ){ 2418 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2419 }else{ 2420 p->pPrior = 0; 2421 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2422 sqlite3Select(pParse, p, &destQueue); 2423 assert( p->pPrior==0 ); 2424 p->pPrior = pSetup; 2425 } 2426 2427 /* Keep running the loop until the Queue is empty */ 2428 sqlite3VdbeGoto(v, addrTop); 2429 sqlite3VdbeResolveLabel(v, addrBreak); 2430 2431 end_of_recursive_query: 2432 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2433 p->pOrderBy = pOrderBy; 2434 p->pLimit = pLimit; 2435 return; 2436 } 2437 #endif /* SQLITE_OMIT_CTE */ 2438 2439 /* Forward references */ 2440 static int multiSelectOrderBy( 2441 Parse *pParse, /* Parsing context */ 2442 Select *p, /* The right-most of SELECTs to be coded */ 2443 SelectDest *pDest /* What to do with query results */ 2444 ); 2445 2446 /* 2447 ** Handle the special case of a compound-select that originates from a 2448 ** VALUES clause. By handling this as a special case, we avoid deep 2449 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2450 ** on a VALUES clause. 2451 ** 2452 ** Because the Select object originates from a VALUES clause: 2453 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2454 ** (2) All terms are UNION ALL 2455 ** (3) There is no ORDER BY clause 2456 ** 2457 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2458 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2459 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2460 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2461 */ 2462 static int multiSelectValues( 2463 Parse *pParse, /* Parsing context */ 2464 Select *p, /* The right-most of SELECTs to be coded */ 2465 SelectDest *pDest /* What to do with query results */ 2466 ){ 2467 int nRow = 1; 2468 int rc = 0; 2469 int bShowAll = p->pLimit==0; 2470 assert( p->selFlags & SF_MultiValue ); 2471 do{ 2472 assert( p->selFlags & SF_Values ); 2473 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2474 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2475 if( p->pPrior==0 ) break; 2476 assert( p->pPrior->pNext==p ); 2477 p = p->pPrior; 2478 nRow += bShowAll; 2479 }while(1); 2480 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2481 nRow==1 ? "" : "S")); 2482 while( p ){ 2483 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2484 if( !bShowAll ) break; 2485 p->nSelectRow = nRow; 2486 p = p->pNext; 2487 } 2488 return rc; 2489 } 2490 2491 /* 2492 ** This routine is called to process a compound query form from 2493 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2494 ** INTERSECT 2495 ** 2496 ** "p" points to the right-most of the two queries. the query on the 2497 ** left is p->pPrior. The left query could also be a compound query 2498 ** in which case this routine will be called recursively. 2499 ** 2500 ** The results of the total query are to be written into a destination 2501 ** of type eDest with parameter iParm. 2502 ** 2503 ** Example 1: Consider a three-way compound SQL statement. 2504 ** 2505 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2506 ** 2507 ** This statement is parsed up as follows: 2508 ** 2509 ** SELECT c FROM t3 2510 ** | 2511 ** `-----> SELECT b FROM t2 2512 ** | 2513 ** `------> SELECT a FROM t1 2514 ** 2515 ** The arrows in the diagram above represent the Select.pPrior pointer. 2516 ** So if this routine is called with p equal to the t3 query, then 2517 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2518 ** 2519 ** Notice that because of the way SQLite parses compound SELECTs, the 2520 ** individual selects always group from left to right. 2521 */ 2522 static int multiSelect( 2523 Parse *pParse, /* Parsing context */ 2524 Select *p, /* The right-most of SELECTs to be coded */ 2525 SelectDest *pDest /* What to do with query results */ 2526 ){ 2527 int rc = SQLITE_OK; /* Success code from a subroutine */ 2528 Select *pPrior; /* Another SELECT immediately to our left */ 2529 Vdbe *v; /* Generate code to this VDBE */ 2530 SelectDest dest; /* Alternative data destination */ 2531 Select *pDelete = 0; /* Chain of simple selects to delete */ 2532 sqlite3 *db; /* Database connection */ 2533 2534 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2535 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2536 */ 2537 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2538 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2539 assert( p->selFlags & SF_Compound ); 2540 db = pParse->db; 2541 pPrior = p->pPrior; 2542 dest = *pDest; 2543 if( pPrior->pOrderBy || pPrior->pLimit ){ 2544 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2545 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2546 rc = 1; 2547 goto multi_select_end; 2548 } 2549 2550 v = sqlite3GetVdbe(pParse); 2551 assert( v!=0 ); /* The VDBE already created by calling function */ 2552 2553 /* Create the destination temporary table if necessary 2554 */ 2555 if( dest.eDest==SRT_EphemTab ){ 2556 assert( p->pEList ); 2557 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2558 dest.eDest = SRT_Table; 2559 } 2560 2561 /* Special handling for a compound-select that originates as a VALUES clause. 2562 */ 2563 if( p->selFlags & SF_MultiValue ){ 2564 rc = multiSelectValues(pParse, p, &dest); 2565 goto multi_select_end; 2566 } 2567 2568 /* Make sure all SELECTs in the statement have the same number of elements 2569 ** in their result sets. 2570 */ 2571 assert( p->pEList && pPrior->pEList ); 2572 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2573 2574 #ifndef SQLITE_OMIT_CTE 2575 if( p->selFlags & SF_Recursive ){ 2576 generateWithRecursiveQuery(pParse, p, &dest); 2577 }else 2578 #endif 2579 2580 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2581 */ 2582 if( p->pOrderBy ){ 2583 return multiSelectOrderBy(pParse, p, pDest); 2584 }else{ 2585 2586 #ifndef SQLITE_OMIT_EXPLAIN 2587 if( pPrior->pPrior==0 ){ 2588 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2589 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2590 } 2591 #endif 2592 2593 /* Generate code for the left and right SELECT statements. 2594 */ 2595 switch( p->op ){ 2596 case TK_ALL: { 2597 int addr = 0; 2598 int nLimit; 2599 assert( !pPrior->pLimit ); 2600 pPrior->iLimit = p->iLimit; 2601 pPrior->iOffset = p->iOffset; 2602 pPrior->pLimit = p->pLimit; 2603 rc = sqlite3Select(pParse, pPrior, &dest); 2604 p->pLimit = 0; 2605 if( rc ){ 2606 goto multi_select_end; 2607 } 2608 p->pPrior = 0; 2609 p->iLimit = pPrior->iLimit; 2610 p->iOffset = pPrior->iOffset; 2611 if( p->iLimit ){ 2612 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2613 VdbeComment((v, "Jump ahead if LIMIT reached")); 2614 if( p->iOffset ){ 2615 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2616 p->iLimit, p->iOffset+1, p->iOffset); 2617 } 2618 } 2619 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2620 rc = sqlite3Select(pParse, p, &dest); 2621 testcase( rc!=SQLITE_OK ); 2622 pDelete = p->pPrior; 2623 p->pPrior = pPrior; 2624 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2625 if( pPrior->pLimit 2626 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2627 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2628 ){ 2629 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2630 } 2631 if( addr ){ 2632 sqlite3VdbeJumpHere(v, addr); 2633 } 2634 break; 2635 } 2636 case TK_EXCEPT: 2637 case TK_UNION: { 2638 int unionTab; /* Cursor number of the temp table holding result */ 2639 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2640 int priorOp; /* The SRT_ operation to apply to prior selects */ 2641 Expr *pLimit; /* Saved values of p->nLimit */ 2642 int addr; 2643 SelectDest uniondest; 2644 2645 testcase( p->op==TK_EXCEPT ); 2646 testcase( p->op==TK_UNION ); 2647 priorOp = SRT_Union; 2648 if( dest.eDest==priorOp ){ 2649 /* We can reuse a temporary table generated by a SELECT to our 2650 ** right. 2651 */ 2652 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2653 unionTab = dest.iSDParm; 2654 }else{ 2655 /* We will need to create our own temporary table to hold the 2656 ** intermediate results. 2657 */ 2658 unionTab = pParse->nTab++; 2659 assert( p->pOrderBy==0 ); 2660 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2661 assert( p->addrOpenEphm[0] == -1 ); 2662 p->addrOpenEphm[0] = addr; 2663 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2664 assert( p->pEList ); 2665 } 2666 2667 /* Code the SELECT statements to our left 2668 */ 2669 assert( !pPrior->pOrderBy ); 2670 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2671 rc = sqlite3Select(pParse, pPrior, &uniondest); 2672 if( rc ){ 2673 goto multi_select_end; 2674 } 2675 2676 /* Code the current SELECT statement 2677 */ 2678 if( p->op==TK_EXCEPT ){ 2679 op = SRT_Except; 2680 }else{ 2681 assert( p->op==TK_UNION ); 2682 op = SRT_Union; 2683 } 2684 p->pPrior = 0; 2685 pLimit = p->pLimit; 2686 p->pLimit = 0; 2687 uniondest.eDest = op; 2688 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2689 selectOpName(p->op))); 2690 rc = sqlite3Select(pParse, p, &uniondest); 2691 testcase( rc!=SQLITE_OK ); 2692 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2693 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2694 sqlite3ExprListDelete(db, p->pOrderBy); 2695 pDelete = p->pPrior; 2696 p->pPrior = pPrior; 2697 p->pOrderBy = 0; 2698 if( p->op==TK_UNION ){ 2699 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2700 } 2701 sqlite3ExprDelete(db, p->pLimit); 2702 p->pLimit = pLimit; 2703 p->iLimit = 0; 2704 p->iOffset = 0; 2705 2706 /* Convert the data in the temporary table into whatever form 2707 ** it is that we currently need. 2708 */ 2709 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2710 if( dest.eDest!=priorOp ){ 2711 int iCont, iBreak, iStart; 2712 assert( p->pEList ); 2713 iBreak = sqlite3VdbeMakeLabel(pParse); 2714 iCont = sqlite3VdbeMakeLabel(pParse); 2715 computeLimitRegisters(pParse, p, iBreak); 2716 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2717 iStart = sqlite3VdbeCurrentAddr(v); 2718 selectInnerLoop(pParse, p, unionTab, 2719 0, 0, &dest, iCont, iBreak); 2720 sqlite3VdbeResolveLabel(v, iCont); 2721 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2722 sqlite3VdbeResolveLabel(v, iBreak); 2723 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2724 } 2725 break; 2726 } 2727 default: assert( p->op==TK_INTERSECT ); { 2728 int tab1, tab2; 2729 int iCont, iBreak, iStart; 2730 Expr *pLimit; 2731 int addr; 2732 SelectDest intersectdest; 2733 int r1; 2734 2735 /* INTERSECT is different from the others since it requires 2736 ** two temporary tables. Hence it has its own case. Begin 2737 ** by allocating the tables we will need. 2738 */ 2739 tab1 = pParse->nTab++; 2740 tab2 = pParse->nTab++; 2741 assert( p->pOrderBy==0 ); 2742 2743 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2744 assert( p->addrOpenEphm[0] == -1 ); 2745 p->addrOpenEphm[0] = addr; 2746 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2747 assert( p->pEList ); 2748 2749 /* Code the SELECTs to our left into temporary table "tab1". 2750 */ 2751 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2752 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2753 if( rc ){ 2754 goto multi_select_end; 2755 } 2756 2757 /* Code the current SELECT into temporary table "tab2" 2758 */ 2759 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2760 assert( p->addrOpenEphm[1] == -1 ); 2761 p->addrOpenEphm[1] = addr; 2762 p->pPrior = 0; 2763 pLimit = p->pLimit; 2764 p->pLimit = 0; 2765 intersectdest.iSDParm = tab2; 2766 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2767 selectOpName(p->op))); 2768 rc = sqlite3Select(pParse, p, &intersectdest); 2769 testcase( rc!=SQLITE_OK ); 2770 pDelete = p->pPrior; 2771 p->pPrior = pPrior; 2772 if( p->nSelectRow>pPrior->nSelectRow ){ 2773 p->nSelectRow = pPrior->nSelectRow; 2774 } 2775 sqlite3ExprDelete(db, p->pLimit); 2776 p->pLimit = pLimit; 2777 2778 /* Generate code to take the intersection of the two temporary 2779 ** tables. 2780 */ 2781 assert( p->pEList ); 2782 iBreak = sqlite3VdbeMakeLabel(pParse); 2783 iCont = sqlite3VdbeMakeLabel(pParse); 2784 computeLimitRegisters(pParse, p, iBreak); 2785 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2786 r1 = sqlite3GetTempReg(pParse); 2787 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2788 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2789 VdbeCoverage(v); 2790 sqlite3ReleaseTempReg(pParse, r1); 2791 selectInnerLoop(pParse, p, tab1, 2792 0, 0, &dest, iCont, iBreak); 2793 sqlite3VdbeResolveLabel(v, iCont); 2794 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2795 sqlite3VdbeResolveLabel(v, iBreak); 2796 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2797 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2798 break; 2799 } 2800 } 2801 2802 #ifndef SQLITE_OMIT_EXPLAIN 2803 if( p->pNext==0 ){ 2804 ExplainQueryPlanPop(pParse); 2805 } 2806 #endif 2807 } 2808 2809 /* Compute collating sequences used by 2810 ** temporary tables needed to implement the compound select. 2811 ** Attach the KeyInfo structure to all temporary tables. 2812 ** 2813 ** This section is run by the right-most SELECT statement only. 2814 ** SELECT statements to the left always skip this part. The right-most 2815 ** SELECT might also skip this part if it has no ORDER BY clause and 2816 ** no temp tables are required. 2817 */ 2818 if( p->selFlags & SF_UsesEphemeral ){ 2819 int i; /* Loop counter */ 2820 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2821 Select *pLoop; /* For looping through SELECT statements */ 2822 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2823 int nCol; /* Number of columns in result set */ 2824 2825 assert( p->pNext==0 ); 2826 nCol = p->pEList->nExpr; 2827 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2828 if( !pKeyInfo ){ 2829 rc = SQLITE_NOMEM_BKPT; 2830 goto multi_select_end; 2831 } 2832 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2833 *apColl = multiSelectCollSeq(pParse, p, i); 2834 if( 0==*apColl ){ 2835 *apColl = db->pDfltColl; 2836 } 2837 } 2838 2839 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2840 for(i=0; i<2; i++){ 2841 int addr = pLoop->addrOpenEphm[i]; 2842 if( addr<0 ){ 2843 /* If [0] is unused then [1] is also unused. So we can 2844 ** always safely abort as soon as the first unused slot is found */ 2845 assert( pLoop->addrOpenEphm[1]<0 ); 2846 break; 2847 } 2848 sqlite3VdbeChangeP2(v, addr, nCol); 2849 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2850 P4_KEYINFO); 2851 pLoop->addrOpenEphm[i] = -1; 2852 } 2853 } 2854 sqlite3KeyInfoUnref(pKeyInfo); 2855 } 2856 2857 multi_select_end: 2858 pDest->iSdst = dest.iSdst; 2859 pDest->nSdst = dest.nSdst; 2860 sqlite3SelectDelete(db, pDelete); 2861 return rc; 2862 } 2863 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2864 2865 /* 2866 ** Error message for when two or more terms of a compound select have different 2867 ** size result sets. 2868 */ 2869 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2870 if( p->selFlags & SF_Values ){ 2871 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2872 }else{ 2873 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2874 " do not have the same number of result columns", selectOpName(p->op)); 2875 } 2876 } 2877 2878 /* 2879 ** Code an output subroutine for a coroutine implementation of a 2880 ** SELECT statment. 2881 ** 2882 ** The data to be output is contained in pIn->iSdst. There are 2883 ** pIn->nSdst columns to be output. pDest is where the output should 2884 ** be sent. 2885 ** 2886 ** regReturn is the number of the register holding the subroutine 2887 ** return address. 2888 ** 2889 ** If regPrev>0 then it is the first register in a vector that 2890 ** records the previous output. mem[regPrev] is a flag that is false 2891 ** if there has been no previous output. If regPrev>0 then code is 2892 ** generated to suppress duplicates. pKeyInfo is used for comparing 2893 ** keys. 2894 ** 2895 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2896 ** iBreak. 2897 */ 2898 static int generateOutputSubroutine( 2899 Parse *pParse, /* Parsing context */ 2900 Select *p, /* The SELECT statement */ 2901 SelectDest *pIn, /* Coroutine supplying data */ 2902 SelectDest *pDest, /* Where to send the data */ 2903 int regReturn, /* The return address register */ 2904 int regPrev, /* Previous result register. No uniqueness if 0 */ 2905 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2906 int iBreak /* Jump here if we hit the LIMIT */ 2907 ){ 2908 Vdbe *v = pParse->pVdbe; 2909 int iContinue; 2910 int addr; 2911 2912 addr = sqlite3VdbeCurrentAddr(v); 2913 iContinue = sqlite3VdbeMakeLabel(pParse); 2914 2915 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2916 */ 2917 if( regPrev ){ 2918 int addr1, addr2; 2919 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2920 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2921 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2922 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2923 sqlite3VdbeJumpHere(v, addr1); 2924 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2925 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2926 } 2927 if( pParse->db->mallocFailed ) return 0; 2928 2929 /* Suppress the first OFFSET entries if there is an OFFSET clause 2930 */ 2931 codeOffset(v, p->iOffset, iContinue); 2932 2933 assert( pDest->eDest!=SRT_Exists ); 2934 assert( pDest->eDest!=SRT_Table ); 2935 switch( pDest->eDest ){ 2936 /* Store the result as data using a unique key. 2937 */ 2938 case SRT_EphemTab: { 2939 int r1 = sqlite3GetTempReg(pParse); 2940 int r2 = sqlite3GetTempReg(pParse); 2941 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2942 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2943 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2944 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2945 sqlite3ReleaseTempReg(pParse, r2); 2946 sqlite3ReleaseTempReg(pParse, r1); 2947 break; 2948 } 2949 2950 #ifndef SQLITE_OMIT_SUBQUERY 2951 /* If we are creating a set for an "expr IN (SELECT ...)". 2952 */ 2953 case SRT_Set: { 2954 int r1; 2955 testcase( pIn->nSdst>1 ); 2956 r1 = sqlite3GetTempReg(pParse); 2957 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2958 r1, pDest->zAffSdst, pIn->nSdst); 2959 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2960 pIn->iSdst, pIn->nSdst); 2961 sqlite3ReleaseTempReg(pParse, r1); 2962 break; 2963 } 2964 2965 /* If this is a scalar select that is part of an expression, then 2966 ** store the results in the appropriate memory cell and break out 2967 ** of the scan loop. Note that the select might return multiple columns 2968 ** if it is the RHS of a row-value IN operator. 2969 */ 2970 case SRT_Mem: { 2971 if( pParse->nErr==0 ){ 2972 testcase( pIn->nSdst>1 ); 2973 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 2974 } 2975 /* The LIMIT clause will jump out of the loop for us */ 2976 break; 2977 } 2978 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2979 2980 /* The results are stored in a sequence of registers 2981 ** starting at pDest->iSdst. Then the co-routine yields. 2982 */ 2983 case SRT_Coroutine: { 2984 if( pDest->iSdst==0 ){ 2985 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2986 pDest->nSdst = pIn->nSdst; 2987 } 2988 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2989 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2990 break; 2991 } 2992 2993 /* If none of the above, then the result destination must be 2994 ** SRT_Output. This routine is never called with any other 2995 ** destination other than the ones handled above or SRT_Output. 2996 ** 2997 ** For SRT_Output, results are stored in a sequence of registers. 2998 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2999 ** return the next row of result. 3000 */ 3001 default: { 3002 assert( pDest->eDest==SRT_Output ); 3003 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3004 break; 3005 } 3006 } 3007 3008 /* Jump to the end of the loop if the LIMIT is reached. 3009 */ 3010 if( p->iLimit ){ 3011 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3012 } 3013 3014 /* Generate the subroutine return 3015 */ 3016 sqlite3VdbeResolveLabel(v, iContinue); 3017 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3018 3019 return addr; 3020 } 3021 3022 /* 3023 ** Alternative compound select code generator for cases when there 3024 ** is an ORDER BY clause. 3025 ** 3026 ** We assume a query of the following form: 3027 ** 3028 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3029 ** 3030 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3031 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3032 ** co-routines. Then run the co-routines in parallel and merge the results 3033 ** into the output. In addition to the two coroutines (called selectA and 3034 ** selectB) there are 7 subroutines: 3035 ** 3036 ** outA: Move the output of the selectA coroutine into the output 3037 ** of the compound query. 3038 ** 3039 ** outB: Move the output of the selectB coroutine into the output 3040 ** of the compound query. (Only generated for UNION and 3041 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3042 ** appears only in B.) 3043 ** 3044 ** AltB: Called when there is data from both coroutines and A<B. 3045 ** 3046 ** AeqB: Called when there is data from both coroutines and A==B. 3047 ** 3048 ** AgtB: Called when there is data from both coroutines and A>B. 3049 ** 3050 ** EofA: Called when data is exhausted from selectA. 3051 ** 3052 ** EofB: Called when data is exhausted from selectB. 3053 ** 3054 ** The implementation of the latter five subroutines depend on which 3055 ** <operator> is used: 3056 ** 3057 ** 3058 ** UNION ALL UNION EXCEPT INTERSECT 3059 ** ------------- ----------------- -------------- ----------------- 3060 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3061 ** 3062 ** AeqB: outA, nextA nextA nextA outA, nextA 3063 ** 3064 ** AgtB: outB, nextB outB, nextB nextB nextB 3065 ** 3066 ** EofA: outB, nextB outB, nextB halt halt 3067 ** 3068 ** EofB: outA, nextA outA, nextA outA, nextA halt 3069 ** 3070 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3071 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3072 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3073 ** following nextX causes a jump to the end of the select processing. 3074 ** 3075 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3076 ** within the output subroutine. The regPrev register set holds the previously 3077 ** output value. A comparison is made against this value and the output 3078 ** is skipped if the next results would be the same as the previous. 3079 ** 3080 ** The implementation plan is to implement the two coroutines and seven 3081 ** subroutines first, then put the control logic at the bottom. Like this: 3082 ** 3083 ** goto Init 3084 ** coA: coroutine for left query (A) 3085 ** coB: coroutine for right query (B) 3086 ** outA: output one row of A 3087 ** outB: output one row of B (UNION and UNION ALL only) 3088 ** EofA: ... 3089 ** EofB: ... 3090 ** AltB: ... 3091 ** AeqB: ... 3092 ** AgtB: ... 3093 ** Init: initialize coroutine registers 3094 ** yield coA 3095 ** if eof(A) goto EofA 3096 ** yield coB 3097 ** if eof(B) goto EofB 3098 ** Cmpr: Compare A, B 3099 ** Jump AltB, AeqB, AgtB 3100 ** End: ... 3101 ** 3102 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3103 ** actually called using Gosub and they do not Return. EofA and EofB loop 3104 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3105 ** and AgtB jump to either L2 or to one of EofA or EofB. 3106 */ 3107 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3108 static int multiSelectOrderBy( 3109 Parse *pParse, /* Parsing context */ 3110 Select *p, /* The right-most of SELECTs to be coded */ 3111 SelectDest *pDest /* What to do with query results */ 3112 ){ 3113 int i, j; /* Loop counters */ 3114 Select *pPrior; /* Another SELECT immediately to our left */ 3115 Vdbe *v; /* Generate code to this VDBE */ 3116 SelectDest destA; /* Destination for coroutine A */ 3117 SelectDest destB; /* Destination for coroutine B */ 3118 int regAddrA; /* Address register for select-A coroutine */ 3119 int regAddrB; /* Address register for select-B coroutine */ 3120 int addrSelectA; /* Address of the select-A coroutine */ 3121 int addrSelectB; /* Address of the select-B coroutine */ 3122 int regOutA; /* Address register for the output-A subroutine */ 3123 int regOutB; /* Address register for the output-B subroutine */ 3124 int addrOutA; /* Address of the output-A subroutine */ 3125 int addrOutB = 0; /* Address of the output-B subroutine */ 3126 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3127 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3128 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3129 int addrAltB; /* Address of the A<B subroutine */ 3130 int addrAeqB; /* Address of the A==B subroutine */ 3131 int addrAgtB; /* Address of the A>B subroutine */ 3132 int regLimitA; /* Limit register for select-A */ 3133 int regLimitB; /* Limit register for select-A */ 3134 int regPrev; /* A range of registers to hold previous output */ 3135 int savedLimit; /* Saved value of p->iLimit */ 3136 int savedOffset; /* Saved value of p->iOffset */ 3137 int labelCmpr; /* Label for the start of the merge algorithm */ 3138 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3139 int addr1; /* Jump instructions that get retargetted */ 3140 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3141 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3142 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3143 sqlite3 *db; /* Database connection */ 3144 ExprList *pOrderBy; /* The ORDER BY clause */ 3145 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3146 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3147 3148 assert( p->pOrderBy!=0 ); 3149 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3150 db = pParse->db; 3151 v = pParse->pVdbe; 3152 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3153 labelEnd = sqlite3VdbeMakeLabel(pParse); 3154 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3155 3156 3157 /* Patch up the ORDER BY clause 3158 */ 3159 op = p->op; 3160 pPrior = p->pPrior; 3161 assert( pPrior->pOrderBy==0 ); 3162 pOrderBy = p->pOrderBy; 3163 assert( pOrderBy ); 3164 nOrderBy = pOrderBy->nExpr; 3165 3166 /* For operators other than UNION ALL we have to make sure that 3167 ** the ORDER BY clause covers every term of the result set. Add 3168 ** terms to the ORDER BY clause as necessary. 3169 */ 3170 if( op!=TK_ALL ){ 3171 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3172 struct ExprList_item *pItem; 3173 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3174 assert( pItem->u.x.iOrderByCol>0 ); 3175 if( pItem->u.x.iOrderByCol==i ) break; 3176 } 3177 if( j==nOrderBy ){ 3178 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3179 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3180 pNew->flags |= EP_IntValue; 3181 pNew->u.iValue = i; 3182 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3183 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3184 } 3185 } 3186 } 3187 3188 /* Compute the comparison permutation and keyinfo that is used with 3189 ** the permutation used to determine if the next 3190 ** row of results comes from selectA or selectB. Also add explicit 3191 ** collations to the ORDER BY clause terms so that when the subqueries 3192 ** to the right and the left are evaluated, they use the correct 3193 ** collation. 3194 */ 3195 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3196 if( aPermute ){ 3197 struct ExprList_item *pItem; 3198 aPermute[0] = nOrderBy; 3199 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3200 assert( pItem->u.x.iOrderByCol>0 ); 3201 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3202 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3203 } 3204 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3205 }else{ 3206 pKeyMerge = 0; 3207 } 3208 3209 /* Reattach the ORDER BY clause to the query. 3210 */ 3211 p->pOrderBy = pOrderBy; 3212 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3213 3214 /* Allocate a range of temporary registers and the KeyInfo needed 3215 ** for the logic that removes duplicate result rows when the 3216 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3217 */ 3218 if( op==TK_ALL ){ 3219 regPrev = 0; 3220 }else{ 3221 int nExpr = p->pEList->nExpr; 3222 assert( nOrderBy>=nExpr || db->mallocFailed ); 3223 regPrev = pParse->nMem+1; 3224 pParse->nMem += nExpr+1; 3225 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3226 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3227 if( pKeyDup ){ 3228 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3229 for(i=0; i<nExpr; i++){ 3230 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3231 pKeyDup->aSortOrder[i] = 0; 3232 } 3233 } 3234 } 3235 3236 /* Separate the left and the right query from one another 3237 */ 3238 p->pPrior = 0; 3239 pPrior->pNext = 0; 3240 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3241 if( pPrior->pPrior==0 ){ 3242 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3243 } 3244 3245 /* Compute the limit registers */ 3246 computeLimitRegisters(pParse, p, labelEnd); 3247 if( p->iLimit && op==TK_ALL ){ 3248 regLimitA = ++pParse->nMem; 3249 regLimitB = ++pParse->nMem; 3250 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3251 regLimitA); 3252 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3253 }else{ 3254 regLimitA = regLimitB = 0; 3255 } 3256 sqlite3ExprDelete(db, p->pLimit); 3257 p->pLimit = 0; 3258 3259 regAddrA = ++pParse->nMem; 3260 regAddrB = ++pParse->nMem; 3261 regOutA = ++pParse->nMem; 3262 regOutB = ++pParse->nMem; 3263 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3264 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3265 3266 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3267 3268 /* Generate a coroutine to evaluate the SELECT statement to the 3269 ** left of the compound operator - the "A" select. 3270 */ 3271 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3272 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3273 VdbeComment((v, "left SELECT")); 3274 pPrior->iLimit = regLimitA; 3275 ExplainQueryPlan((pParse, 1, "LEFT")); 3276 sqlite3Select(pParse, pPrior, &destA); 3277 sqlite3VdbeEndCoroutine(v, regAddrA); 3278 sqlite3VdbeJumpHere(v, addr1); 3279 3280 /* Generate a coroutine to evaluate the SELECT statement on 3281 ** the right - the "B" select 3282 */ 3283 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3284 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3285 VdbeComment((v, "right SELECT")); 3286 savedLimit = p->iLimit; 3287 savedOffset = p->iOffset; 3288 p->iLimit = regLimitB; 3289 p->iOffset = 0; 3290 ExplainQueryPlan((pParse, 1, "RIGHT")); 3291 sqlite3Select(pParse, p, &destB); 3292 p->iLimit = savedLimit; 3293 p->iOffset = savedOffset; 3294 sqlite3VdbeEndCoroutine(v, regAddrB); 3295 3296 /* Generate a subroutine that outputs the current row of the A 3297 ** select as the next output row of the compound select. 3298 */ 3299 VdbeNoopComment((v, "Output routine for A")); 3300 addrOutA = generateOutputSubroutine(pParse, 3301 p, &destA, pDest, regOutA, 3302 regPrev, pKeyDup, labelEnd); 3303 3304 /* Generate a subroutine that outputs the current row of the B 3305 ** select as the next output row of the compound select. 3306 */ 3307 if( op==TK_ALL || op==TK_UNION ){ 3308 VdbeNoopComment((v, "Output routine for B")); 3309 addrOutB = generateOutputSubroutine(pParse, 3310 p, &destB, pDest, regOutB, 3311 regPrev, pKeyDup, labelEnd); 3312 } 3313 sqlite3KeyInfoUnref(pKeyDup); 3314 3315 /* Generate a subroutine to run when the results from select A 3316 ** are exhausted and only data in select B remains. 3317 */ 3318 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3319 addrEofA_noB = addrEofA = labelEnd; 3320 }else{ 3321 VdbeNoopComment((v, "eof-A subroutine")); 3322 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3323 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3324 VdbeCoverage(v); 3325 sqlite3VdbeGoto(v, addrEofA); 3326 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3327 } 3328 3329 /* Generate a subroutine to run when the results from select B 3330 ** are exhausted and only data in select A remains. 3331 */ 3332 if( op==TK_INTERSECT ){ 3333 addrEofB = addrEofA; 3334 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3335 }else{ 3336 VdbeNoopComment((v, "eof-B subroutine")); 3337 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3338 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3339 sqlite3VdbeGoto(v, addrEofB); 3340 } 3341 3342 /* Generate code to handle the case of A<B 3343 */ 3344 VdbeNoopComment((v, "A-lt-B subroutine")); 3345 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, labelCmpr); 3348 3349 /* Generate code to handle the case of A==B 3350 */ 3351 if( op==TK_ALL ){ 3352 addrAeqB = addrAltB; 3353 }else if( op==TK_INTERSECT ){ 3354 addrAeqB = addrAltB; 3355 addrAltB++; 3356 }else{ 3357 VdbeNoopComment((v, "A-eq-B subroutine")); 3358 addrAeqB = 3359 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3360 sqlite3VdbeGoto(v, labelCmpr); 3361 } 3362 3363 /* Generate code to handle the case of A>B 3364 */ 3365 VdbeNoopComment((v, "A-gt-B subroutine")); 3366 addrAgtB = sqlite3VdbeCurrentAddr(v); 3367 if( op==TK_ALL || op==TK_UNION ){ 3368 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3369 } 3370 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3371 sqlite3VdbeGoto(v, labelCmpr); 3372 3373 /* This code runs once to initialize everything. 3374 */ 3375 sqlite3VdbeJumpHere(v, addr1); 3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3377 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3378 3379 /* Implement the main merge loop 3380 */ 3381 sqlite3VdbeResolveLabel(v, labelCmpr); 3382 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3383 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3384 (char*)pKeyMerge, P4_KEYINFO); 3385 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3386 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3387 3388 /* Jump to the this point in order to terminate the query. 3389 */ 3390 sqlite3VdbeResolveLabel(v, labelEnd); 3391 3392 /* Reassembly the compound query so that it will be freed correctly 3393 ** by the calling function */ 3394 if( p->pPrior ){ 3395 sqlite3SelectDelete(db, p->pPrior); 3396 } 3397 p->pPrior = pPrior; 3398 pPrior->pNext = p; 3399 3400 /*** TBD: Insert subroutine calls to close cursors on incomplete 3401 **** subqueries ****/ 3402 ExplainQueryPlanPop(pParse); 3403 return pParse->nErr!=0; 3404 } 3405 #endif 3406 3407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3408 3409 /* An instance of the SubstContext object describes an substitution edit 3410 ** to be performed on a parse tree. 3411 ** 3412 ** All references to columns in table iTable are to be replaced by corresponding 3413 ** expressions in pEList. 3414 */ 3415 typedef struct SubstContext { 3416 Parse *pParse; /* The parsing context */ 3417 int iTable; /* Replace references to this table */ 3418 int iNewTable; /* New table number */ 3419 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3420 ExprList *pEList; /* Replacement expressions */ 3421 } SubstContext; 3422 3423 /* Forward Declarations */ 3424 static void substExprList(SubstContext*, ExprList*); 3425 static void substSelect(SubstContext*, Select*, int); 3426 3427 /* 3428 ** Scan through the expression pExpr. Replace every reference to 3429 ** a column in table number iTable with a copy of the iColumn-th 3430 ** entry in pEList. (But leave references to the ROWID column 3431 ** unchanged.) 3432 ** 3433 ** This routine is part of the flattening procedure. A subquery 3434 ** whose result set is defined by pEList appears as entry in the 3435 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3436 ** FORM clause entry is iTable. This routine makes the necessary 3437 ** changes to pExpr so that it refers directly to the source table 3438 ** of the subquery rather the result set of the subquery. 3439 */ 3440 static Expr *substExpr( 3441 SubstContext *pSubst, /* Description of the substitution */ 3442 Expr *pExpr /* Expr in which substitution occurs */ 3443 ){ 3444 if( pExpr==0 ) return 0; 3445 if( ExprHasProperty(pExpr, EP_FromJoin) 3446 && pExpr->iRightJoinTable==pSubst->iTable 3447 ){ 3448 pExpr->iRightJoinTable = pSubst->iNewTable; 3449 } 3450 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3451 if( pExpr->iColumn<0 ){ 3452 pExpr->op = TK_NULL; 3453 }else{ 3454 Expr *pNew; 3455 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3456 Expr ifNullRow; 3457 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3458 assert( pExpr->pRight==0 ); 3459 if( sqlite3ExprIsVector(pCopy) ){ 3460 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3461 }else{ 3462 sqlite3 *db = pSubst->pParse->db; 3463 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3464 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3465 ifNullRow.op = TK_IF_NULL_ROW; 3466 ifNullRow.pLeft = pCopy; 3467 ifNullRow.iTable = pSubst->iNewTable; 3468 pCopy = &ifNullRow; 3469 } 3470 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3471 pNew = sqlite3ExprDup(db, pCopy, 0); 3472 if( pNew && pSubst->isLeftJoin ){ 3473 ExprSetProperty(pNew, EP_CanBeNull); 3474 } 3475 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3476 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3477 ExprSetProperty(pNew, EP_FromJoin); 3478 } 3479 if( pNew && ExprHasProperty(pExpr,EP_Generic) ){ 3480 ExprSetProperty(pNew, EP_Generic); 3481 } 3482 sqlite3ExprDelete(db, pExpr); 3483 pExpr = pNew; 3484 } 3485 } 3486 }else{ 3487 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3488 pExpr->iTable = pSubst->iNewTable; 3489 } 3490 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3491 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3492 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3493 substSelect(pSubst, pExpr->x.pSelect, 1); 3494 }else{ 3495 substExprList(pSubst, pExpr->x.pList); 3496 } 3497 } 3498 return pExpr; 3499 } 3500 static void substExprList( 3501 SubstContext *pSubst, /* Description of the substitution */ 3502 ExprList *pList /* List to scan and in which to make substitutes */ 3503 ){ 3504 int i; 3505 if( pList==0 ) return; 3506 for(i=0; i<pList->nExpr; i++){ 3507 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3508 } 3509 } 3510 static void substSelect( 3511 SubstContext *pSubst, /* Description of the substitution */ 3512 Select *p, /* SELECT statement in which to make substitutions */ 3513 int doPrior /* Do substitutes on p->pPrior too */ 3514 ){ 3515 SrcList *pSrc; 3516 struct SrcList_item *pItem; 3517 int i; 3518 if( !p ) return; 3519 do{ 3520 substExprList(pSubst, p->pEList); 3521 substExprList(pSubst, p->pGroupBy); 3522 substExprList(pSubst, p->pOrderBy); 3523 p->pHaving = substExpr(pSubst, p->pHaving); 3524 p->pWhere = substExpr(pSubst, p->pWhere); 3525 pSrc = p->pSrc; 3526 assert( pSrc!=0 ); 3527 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3528 substSelect(pSubst, pItem->pSelect, 1); 3529 if( pItem->fg.isTabFunc ){ 3530 substExprList(pSubst, pItem->u1.pFuncArg); 3531 } 3532 } 3533 }while( doPrior && (p = p->pPrior)!=0 ); 3534 } 3535 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3536 3537 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3538 /* 3539 ** This routine attempts to flatten subqueries as a performance optimization. 3540 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3541 ** 3542 ** To understand the concept of flattening, consider the following 3543 ** query: 3544 ** 3545 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3546 ** 3547 ** The default way of implementing this query is to execute the 3548 ** subquery first and store the results in a temporary table, then 3549 ** run the outer query on that temporary table. This requires two 3550 ** passes over the data. Furthermore, because the temporary table 3551 ** has no indices, the WHERE clause on the outer query cannot be 3552 ** optimized. 3553 ** 3554 ** This routine attempts to rewrite queries such as the above into 3555 ** a single flat select, like this: 3556 ** 3557 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3558 ** 3559 ** The code generated for this simplification gives the same result 3560 ** but only has to scan the data once. And because indices might 3561 ** exist on the table t1, a complete scan of the data might be 3562 ** avoided. 3563 ** 3564 ** Flattening is subject to the following constraints: 3565 ** 3566 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3567 ** The subquery and the outer query cannot both be aggregates. 3568 ** 3569 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3570 ** (2) If the subquery is an aggregate then 3571 ** (2a) the outer query must not be a join and 3572 ** (2b) the outer query must not use subqueries 3573 ** other than the one FROM-clause subquery that is a candidate 3574 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3575 ** from 2015-02-09.) 3576 ** 3577 ** (3) If the subquery is the right operand of a LEFT JOIN then 3578 ** (3a) the subquery may not be a join and 3579 ** (3b) the FROM clause of the subquery may not contain a virtual 3580 ** table and 3581 ** (3c) the outer query may not be an aggregate. 3582 ** 3583 ** (4) The subquery can not be DISTINCT. 3584 ** 3585 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3586 ** sub-queries that were excluded from this optimization. Restriction 3587 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3588 ** 3589 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3590 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3591 ** 3592 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3593 ** A FROM clause, consider adding a FROM clause with the special 3594 ** table sqlite_once that consists of a single row containing a 3595 ** single NULL. 3596 ** 3597 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3598 ** 3599 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3600 ** 3601 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3602 ** accidently carried the comment forward until 2014-09-15. Original 3603 ** constraint: "If the subquery is aggregate then the outer query 3604 ** may not use LIMIT." 3605 ** 3606 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3607 ** 3608 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3609 ** a separate restriction deriving from ticket #350. 3610 ** 3611 ** (13) The subquery and outer query may not both use LIMIT. 3612 ** 3613 ** (14) The subquery may not use OFFSET. 3614 ** 3615 ** (15) If the outer query is part of a compound select, then the 3616 ** subquery may not use LIMIT. 3617 ** (See ticket #2339 and ticket [02a8e81d44]). 3618 ** 3619 ** (16) If the outer query is aggregate, then the subquery may not 3620 ** use ORDER BY. (Ticket #2942) This used to not matter 3621 ** until we introduced the group_concat() function. 3622 ** 3623 ** (17) If the subquery is a compound select, then 3624 ** (17a) all compound operators must be a UNION ALL, and 3625 ** (17b) no terms within the subquery compound may be aggregate 3626 ** or DISTINCT, and 3627 ** (17c) every term within the subquery compound must have a FROM clause 3628 ** (17d) the outer query may not be 3629 ** (17d1) aggregate, or 3630 ** (17d2) DISTINCT, or 3631 ** (17d3) a join. 3632 ** 3633 ** The parent and sub-query may contain WHERE clauses. Subject to 3634 ** rules (11), (13) and (14), they may also contain ORDER BY, 3635 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3636 ** operator other than UNION ALL because all the other compound 3637 ** operators have an implied DISTINCT which is disallowed by 3638 ** restriction (4). 3639 ** 3640 ** Also, each component of the sub-query must return the same number 3641 ** of result columns. This is actually a requirement for any compound 3642 ** SELECT statement, but all the code here does is make sure that no 3643 ** such (illegal) sub-query is flattened. The caller will detect the 3644 ** syntax error and return a detailed message. 3645 ** 3646 ** (18) If the sub-query is a compound select, then all terms of the 3647 ** ORDER BY clause of the parent must be simple references to 3648 ** columns of the sub-query. 3649 ** 3650 ** (19) If the subquery uses LIMIT then the outer query may not 3651 ** have a WHERE clause. 3652 ** 3653 ** (20) If the sub-query is a compound select, then it must not use 3654 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3655 ** somewhat by saying that the terms of the ORDER BY clause must 3656 ** appear as unmodified result columns in the outer query. But we 3657 ** have other optimizations in mind to deal with that case. 3658 ** 3659 ** (21) If the subquery uses LIMIT then the outer query may not be 3660 ** DISTINCT. (See ticket [752e1646fc]). 3661 ** 3662 ** (22) The subquery may not be a recursive CTE. 3663 ** 3664 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3665 ** a recursive CTE, then the sub-query may not be a compound query. 3666 ** This restriction is because transforming the 3667 ** parent to a compound query confuses the code that handles 3668 ** recursive queries in multiSelect(). 3669 ** 3670 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3671 ** The subquery may not be an aggregate that uses the built-in min() or 3672 ** or max() functions. (Without this restriction, a query like: 3673 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3674 ** return the value X for which Y was maximal.) 3675 ** 3676 ** (25) If either the subquery or the parent query contains a window 3677 ** function in the select list or ORDER BY clause, flattening 3678 ** is not attempted. 3679 ** 3680 ** 3681 ** In this routine, the "p" parameter is a pointer to the outer query. 3682 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3683 ** uses aggregates. 3684 ** 3685 ** If flattening is not attempted, this routine is a no-op and returns 0. 3686 ** If flattening is attempted this routine returns 1. 3687 ** 3688 ** All of the expression analysis must occur on both the outer query and 3689 ** the subquery before this routine runs. 3690 */ 3691 static int flattenSubquery( 3692 Parse *pParse, /* Parsing context */ 3693 Select *p, /* The parent or outer SELECT statement */ 3694 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3695 int isAgg /* True if outer SELECT uses aggregate functions */ 3696 ){ 3697 const char *zSavedAuthContext = pParse->zAuthContext; 3698 Select *pParent; /* Current UNION ALL term of the other query */ 3699 Select *pSub; /* The inner query or "subquery" */ 3700 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3701 SrcList *pSrc; /* The FROM clause of the outer query */ 3702 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3703 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3704 int iNewParent = -1;/* Replacement table for iParent */ 3705 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3706 int i; /* Loop counter */ 3707 Expr *pWhere; /* The WHERE clause */ 3708 struct SrcList_item *pSubitem; /* The subquery */ 3709 sqlite3 *db = pParse->db; 3710 3711 /* Check to see if flattening is permitted. Return 0 if not. 3712 */ 3713 assert( p!=0 ); 3714 assert( p->pPrior==0 ); 3715 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3716 pSrc = p->pSrc; 3717 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3718 pSubitem = &pSrc->a[iFrom]; 3719 iParent = pSubitem->iCursor; 3720 pSub = pSubitem->pSelect; 3721 assert( pSub!=0 ); 3722 3723 #ifndef SQLITE_OMIT_WINDOWFUNC 3724 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3725 #endif 3726 3727 pSubSrc = pSub->pSrc; 3728 assert( pSubSrc ); 3729 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3730 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3731 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3732 ** became arbitrary expressions, we were forced to add restrictions (13) 3733 ** and (14). */ 3734 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3735 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3736 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3737 return 0; /* Restriction (15) */ 3738 } 3739 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3740 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3741 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3742 return 0; /* Restrictions (8)(9) */ 3743 } 3744 if( p->pOrderBy && pSub->pOrderBy ){ 3745 return 0; /* Restriction (11) */ 3746 } 3747 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3748 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3749 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3750 return 0; /* Restriction (21) */ 3751 } 3752 if( pSub->selFlags & (SF_Recursive) ){ 3753 return 0; /* Restrictions (22) */ 3754 } 3755 3756 /* 3757 ** If the subquery is the right operand of a LEFT JOIN, then the 3758 ** subquery may not be a join itself (3a). Example of why this is not 3759 ** allowed: 3760 ** 3761 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3762 ** 3763 ** If we flatten the above, we would get 3764 ** 3765 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3766 ** 3767 ** which is not at all the same thing. 3768 ** 3769 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3770 ** query cannot be an aggregate. (3c) This is an artifact of the way 3771 ** aggregates are processed - there is no mechanism to determine if 3772 ** the LEFT JOIN table should be all-NULL. 3773 ** 3774 ** See also tickets #306, #350, and #3300. 3775 */ 3776 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3777 isLeftJoin = 1; 3778 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3779 /* (3a) (3c) (3b) */ 3780 return 0; 3781 } 3782 } 3783 #ifdef SQLITE_EXTRA_IFNULLROW 3784 else if( iFrom>0 && !isAgg ){ 3785 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3786 ** every reference to any result column from subquery in a join, even 3787 ** though they are not necessary. This will stress-test the OP_IfNullRow 3788 ** opcode. */ 3789 isLeftJoin = -1; 3790 } 3791 #endif 3792 3793 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3794 ** use only the UNION ALL operator. And none of the simple select queries 3795 ** that make up the compound SELECT are allowed to be aggregate or distinct 3796 ** queries. 3797 */ 3798 if( pSub->pPrior ){ 3799 if( pSub->pOrderBy ){ 3800 return 0; /* Restriction (20) */ 3801 } 3802 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3803 return 0; /* (17d1), (17d2), or (17d3) */ 3804 } 3805 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3806 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3807 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3808 assert( pSub->pSrc!=0 ); 3809 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3810 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3811 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3812 || pSub1->pSrc->nSrc<1 /* (17c) */ 3813 ){ 3814 return 0; 3815 } 3816 testcase( pSub1->pSrc->nSrc>1 ); 3817 } 3818 3819 /* Restriction (18). */ 3820 if( p->pOrderBy ){ 3821 int ii; 3822 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3823 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3824 } 3825 } 3826 } 3827 3828 /* Ex-restriction (23): 3829 ** The only way that the recursive part of a CTE can contain a compound 3830 ** subquery is for the subquery to be one term of a join. But if the 3831 ** subquery is a join, then the flattening has already been stopped by 3832 ** restriction (17d3) 3833 */ 3834 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3835 3836 /***** If we reach this point, flattening is permitted. *****/ 3837 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3838 pSub->selId, pSub, iFrom)); 3839 3840 /* Authorize the subquery */ 3841 pParse->zAuthContext = pSubitem->zName; 3842 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3843 testcase( i==SQLITE_DENY ); 3844 pParse->zAuthContext = zSavedAuthContext; 3845 3846 /* If the sub-query is a compound SELECT statement, then (by restrictions 3847 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3848 ** be of the form: 3849 ** 3850 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3851 ** 3852 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3853 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3854 ** OFFSET clauses and joins them to the left-hand-side of the original 3855 ** using UNION ALL operators. In this case N is the number of simple 3856 ** select statements in the compound sub-query. 3857 ** 3858 ** Example: 3859 ** 3860 ** SELECT a+1 FROM ( 3861 ** SELECT x FROM tab 3862 ** UNION ALL 3863 ** SELECT y FROM tab 3864 ** UNION ALL 3865 ** SELECT abs(z*2) FROM tab2 3866 ** ) WHERE a!=5 ORDER BY 1 3867 ** 3868 ** Transformed into: 3869 ** 3870 ** SELECT x+1 FROM tab WHERE x+1!=5 3871 ** UNION ALL 3872 ** SELECT y+1 FROM tab WHERE y+1!=5 3873 ** UNION ALL 3874 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3875 ** ORDER BY 1 3876 ** 3877 ** We call this the "compound-subquery flattening". 3878 */ 3879 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3880 Select *pNew; 3881 ExprList *pOrderBy = p->pOrderBy; 3882 Expr *pLimit = p->pLimit; 3883 Select *pPrior = p->pPrior; 3884 p->pOrderBy = 0; 3885 p->pSrc = 0; 3886 p->pPrior = 0; 3887 p->pLimit = 0; 3888 pNew = sqlite3SelectDup(db, p, 0); 3889 p->pLimit = pLimit; 3890 p->pOrderBy = pOrderBy; 3891 p->pSrc = pSrc; 3892 p->op = TK_ALL; 3893 if( pNew==0 ){ 3894 p->pPrior = pPrior; 3895 }else{ 3896 pNew->pPrior = pPrior; 3897 if( pPrior ) pPrior->pNext = pNew; 3898 pNew->pNext = p; 3899 p->pPrior = pNew; 3900 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3901 " creates %u as peer\n",pNew->selId)); 3902 } 3903 if( db->mallocFailed ) return 1; 3904 } 3905 3906 /* Begin flattening the iFrom-th entry of the FROM clause 3907 ** in the outer query. 3908 */ 3909 pSub = pSub1 = pSubitem->pSelect; 3910 3911 /* Delete the transient table structure associated with the 3912 ** subquery 3913 */ 3914 sqlite3DbFree(db, pSubitem->zDatabase); 3915 sqlite3DbFree(db, pSubitem->zName); 3916 sqlite3DbFree(db, pSubitem->zAlias); 3917 pSubitem->zDatabase = 0; 3918 pSubitem->zName = 0; 3919 pSubitem->zAlias = 0; 3920 pSubitem->pSelect = 0; 3921 3922 /* Defer deleting the Table object associated with the 3923 ** subquery until code generation is 3924 ** complete, since there may still exist Expr.pTab entries that 3925 ** refer to the subquery even after flattening. Ticket #3346. 3926 ** 3927 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3928 */ 3929 if( ALWAYS(pSubitem->pTab!=0) ){ 3930 Table *pTabToDel = pSubitem->pTab; 3931 if( pTabToDel->nTabRef==1 ){ 3932 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3933 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3934 pToplevel->pZombieTab = pTabToDel; 3935 }else{ 3936 pTabToDel->nTabRef--; 3937 } 3938 pSubitem->pTab = 0; 3939 } 3940 3941 /* The following loop runs once for each term in a compound-subquery 3942 ** flattening (as described above). If we are doing a different kind 3943 ** of flattening - a flattening other than a compound-subquery flattening - 3944 ** then this loop only runs once. 3945 ** 3946 ** This loop moves all of the FROM elements of the subquery into the 3947 ** the FROM clause of the outer query. Before doing this, remember 3948 ** the cursor number for the original outer query FROM element in 3949 ** iParent. The iParent cursor will never be used. Subsequent code 3950 ** will scan expressions looking for iParent references and replace 3951 ** those references with expressions that resolve to the subquery FROM 3952 ** elements we are now copying in. 3953 */ 3954 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3955 int nSubSrc; 3956 u8 jointype = 0; 3957 assert( pSub!=0 ); 3958 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3959 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3960 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3961 3962 if( pSrc ){ 3963 assert( pParent==p ); /* First time through the loop */ 3964 jointype = pSubitem->fg.jointype; 3965 }else{ 3966 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3967 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 3968 if( pSrc==0 ) break; 3969 pParent->pSrc = pSrc; 3970 } 3971 3972 /* The subquery uses a single slot of the FROM clause of the outer 3973 ** query. If the subquery has more than one element in its FROM clause, 3974 ** then expand the outer query to make space for it to hold all elements 3975 ** of the subquery. 3976 ** 3977 ** Example: 3978 ** 3979 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3980 ** 3981 ** The outer query has 3 slots in its FROM clause. One slot of the 3982 ** outer query (the middle slot) is used by the subquery. The next 3983 ** block of code will expand the outer query FROM clause to 4 slots. 3984 ** The middle slot is expanded to two slots in order to make space 3985 ** for the two elements in the FROM clause of the subquery. 3986 */ 3987 if( nSubSrc>1 ){ 3988 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 3989 if( pSrc==0 ) break; 3990 pParent->pSrc = pSrc; 3991 } 3992 3993 /* Transfer the FROM clause terms from the subquery into the 3994 ** outer query. 3995 */ 3996 for(i=0; i<nSubSrc; i++){ 3997 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3998 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3999 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4000 iNewParent = pSubSrc->a[i].iCursor; 4001 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4002 } 4003 pSrc->a[iFrom].fg.jointype = jointype; 4004 4005 /* Now begin substituting subquery result set expressions for 4006 ** references to the iParent in the outer query. 4007 ** 4008 ** Example: 4009 ** 4010 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4011 ** \ \_____________ subquery __________/ / 4012 ** \_____________________ outer query ______________________________/ 4013 ** 4014 ** We look at every expression in the outer query and every place we see 4015 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4016 */ 4017 if( pSub->pOrderBy ){ 4018 /* At this point, any non-zero iOrderByCol values indicate that the 4019 ** ORDER BY column expression is identical to the iOrderByCol'th 4020 ** expression returned by SELECT statement pSub. Since these values 4021 ** do not necessarily correspond to columns in SELECT statement pParent, 4022 ** zero them before transfering the ORDER BY clause. 4023 ** 4024 ** Not doing this may cause an error if a subsequent call to this 4025 ** function attempts to flatten a compound sub-query into pParent 4026 ** (the only way this can happen is if the compound sub-query is 4027 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4028 ExprList *pOrderBy = pSub->pOrderBy; 4029 for(i=0; i<pOrderBy->nExpr; i++){ 4030 pOrderBy->a[i].u.x.iOrderByCol = 0; 4031 } 4032 assert( pParent->pOrderBy==0 ); 4033 pParent->pOrderBy = pOrderBy; 4034 pSub->pOrderBy = 0; 4035 } 4036 pWhere = pSub->pWhere; 4037 pSub->pWhere = 0; 4038 if( isLeftJoin>0 ){ 4039 setJoinExpr(pWhere, iNewParent); 4040 } 4041 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4042 if( db->mallocFailed==0 ){ 4043 SubstContext x; 4044 x.pParse = pParse; 4045 x.iTable = iParent; 4046 x.iNewTable = iNewParent; 4047 x.isLeftJoin = isLeftJoin; 4048 x.pEList = pSub->pEList; 4049 substSelect(&x, pParent, 0); 4050 } 4051 4052 /* The flattened query is a compound if either the inner or the 4053 ** outer query is a compound. */ 4054 pParent->selFlags |= pSub->selFlags & SF_Compound; 4055 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4056 4057 /* 4058 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4059 ** 4060 ** One is tempted to try to add a and b to combine the limits. But this 4061 ** does not work if either limit is negative. 4062 */ 4063 if( pSub->pLimit ){ 4064 pParent->pLimit = pSub->pLimit; 4065 pSub->pLimit = 0; 4066 } 4067 } 4068 4069 /* Finially, delete what is left of the subquery and return 4070 ** success. 4071 */ 4072 sqlite3SelectDelete(db, pSub1); 4073 4074 #if SELECTTRACE_ENABLED 4075 if( sqlite3SelectTrace & 0x100 ){ 4076 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4077 sqlite3TreeViewSelect(0, p, 0); 4078 } 4079 #endif 4080 4081 return 1; 4082 } 4083 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4084 4085 /* 4086 ** A structure to keep track of all of the column values that are fixed to 4087 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4088 */ 4089 typedef struct WhereConst WhereConst; 4090 struct WhereConst { 4091 Parse *pParse; /* Parsing context */ 4092 int nConst; /* Number for COLUMN=CONSTANT terms */ 4093 int nChng; /* Number of times a constant is propagated */ 4094 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4095 }; 4096 4097 /* 4098 ** Add a new entry to the pConst object. Except, do not add duplicate 4099 ** pColumn entires. 4100 */ 4101 static void constInsert( 4102 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4103 Expr *pColumn, /* The COLUMN part of the constraint */ 4104 Expr *pValue /* The VALUE part of the constraint */ 4105 ){ 4106 int i; 4107 assert( pColumn->op==TK_COLUMN ); 4108 4109 /* 2018-10-25 ticket [cf5ed20f] 4110 ** Make sure the same pColumn is not inserted more than once */ 4111 for(i=0; i<pConst->nConst; i++){ 4112 const Expr *pExpr = pConst->apExpr[i*2]; 4113 assert( pExpr->op==TK_COLUMN ); 4114 if( pExpr->iTable==pColumn->iTable 4115 && pExpr->iColumn==pColumn->iColumn 4116 ){ 4117 return; /* Already present. Return without doing anything. */ 4118 } 4119 } 4120 4121 pConst->nConst++; 4122 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4123 pConst->nConst*2*sizeof(Expr*)); 4124 if( pConst->apExpr==0 ){ 4125 pConst->nConst = 0; 4126 }else{ 4127 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4128 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4129 pConst->apExpr[pConst->nConst*2-1] = pValue; 4130 } 4131 } 4132 4133 /* 4134 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4135 ** is a constant expression and where the term must be true because it 4136 ** is part of the AND-connected terms of the expression. For each term 4137 ** found, add it to the pConst structure. 4138 */ 4139 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4140 Expr *pRight, *pLeft; 4141 if( pExpr==0 ) return; 4142 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4143 if( pExpr->op==TK_AND ){ 4144 findConstInWhere(pConst, pExpr->pRight); 4145 findConstInWhere(pConst, pExpr->pLeft); 4146 return; 4147 } 4148 if( pExpr->op!=TK_EQ ) return; 4149 pRight = pExpr->pRight; 4150 pLeft = pExpr->pLeft; 4151 assert( pRight!=0 ); 4152 assert( pLeft!=0 ); 4153 if( pRight->op==TK_COLUMN 4154 && !ExprHasProperty(pRight, EP_FixedCol) 4155 && sqlite3ExprIsConstant(pLeft) 4156 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4157 ){ 4158 constInsert(pConst, pRight, pLeft); 4159 }else 4160 if( pLeft->op==TK_COLUMN 4161 && !ExprHasProperty(pLeft, EP_FixedCol) 4162 && sqlite3ExprIsConstant(pRight) 4163 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4164 ){ 4165 constInsert(pConst, pLeft, pRight); 4166 } 4167 } 4168 4169 /* 4170 ** This is a Walker expression callback. pExpr is a candidate expression 4171 ** to be replaced by a value. If pExpr is equivalent to one of the 4172 ** columns named in pWalker->u.pConst, then overwrite it with its 4173 ** corresponding value. 4174 */ 4175 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4176 int i; 4177 WhereConst *pConst; 4178 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4179 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4180 pConst = pWalker->u.pConst; 4181 for(i=0; i<pConst->nConst; i++){ 4182 Expr *pColumn = pConst->apExpr[i*2]; 4183 if( pColumn==pExpr ) continue; 4184 if( pColumn->iTable!=pExpr->iTable ) continue; 4185 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4186 /* A match is found. Add the EP_FixedCol property */ 4187 pConst->nChng++; 4188 ExprClearProperty(pExpr, EP_Leaf); 4189 ExprSetProperty(pExpr, EP_FixedCol); 4190 assert( pExpr->pLeft==0 ); 4191 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4192 break; 4193 } 4194 return WRC_Prune; 4195 } 4196 4197 /* 4198 ** The WHERE-clause constant propagation optimization. 4199 ** 4200 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4201 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4202 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4203 ** then throughout the query replace all other occurrences of COLUMN 4204 ** with CONSTANT within the WHERE clause. 4205 ** 4206 ** For example, the query: 4207 ** 4208 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4209 ** 4210 ** Is transformed into 4211 ** 4212 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4213 ** 4214 ** Return true if any transformations where made and false if not. 4215 ** 4216 ** Implementation note: Constant propagation is tricky due to affinity 4217 ** and collating sequence interactions. Consider this example: 4218 ** 4219 ** CREATE TABLE t1(a INT,b TEXT); 4220 ** INSERT INTO t1 VALUES(123,'0123'); 4221 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4222 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4223 ** 4224 ** The two SELECT statements above should return different answers. b=a 4225 ** is alway true because the comparison uses numeric affinity, but b=123 4226 ** is false because it uses text affinity and '0123' is not the same as '123'. 4227 ** To work around this, the expression tree is not actually changed from 4228 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4229 ** and the "123" value is hung off of the pLeft pointer. Code generator 4230 ** routines know to generate the constant "123" instead of looking up the 4231 ** column value. Also, to avoid collation problems, this optimization is 4232 ** only attempted if the "a=123" term uses the default BINARY collation. 4233 */ 4234 static int propagateConstants( 4235 Parse *pParse, /* The parsing context */ 4236 Select *p /* The query in which to propagate constants */ 4237 ){ 4238 WhereConst x; 4239 Walker w; 4240 int nChng = 0; 4241 x.pParse = pParse; 4242 do{ 4243 x.nConst = 0; 4244 x.nChng = 0; 4245 x.apExpr = 0; 4246 findConstInWhere(&x, p->pWhere); 4247 if( x.nConst ){ 4248 memset(&w, 0, sizeof(w)); 4249 w.pParse = pParse; 4250 w.xExprCallback = propagateConstantExprRewrite; 4251 w.xSelectCallback = sqlite3SelectWalkNoop; 4252 w.xSelectCallback2 = 0; 4253 w.walkerDepth = 0; 4254 w.u.pConst = &x; 4255 sqlite3WalkExpr(&w, p->pWhere); 4256 sqlite3DbFree(x.pParse->db, x.apExpr); 4257 nChng += x.nChng; 4258 } 4259 }while( x.nChng ); 4260 return nChng; 4261 } 4262 4263 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4264 /* 4265 ** Make copies of relevant WHERE clause terms of the outer query into 4266 ** the WHERE clause of subquery. Example: 4267 ** 4268 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4269 ** 4270 ** Transformed into: 4271 ** 4272 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4273 ** WHERE x=5 AND y=10; 4274 ** 4275 ** The hope is that the terms added to the inner query will make it more 4276 ** efficient. 4277 ** 4278 ** Do not attempt this optimization if: 4279 ** 4280 ** (1) (** This restriction was removed on 2017-09-29. We used to 4281 ** disallow this optimization for aggregate subqueries, but now 4282 ** it is allowed by putting the extra terms on the HAVING clause. 4283 ** The added HAVING clause is pointless if the subquery lacks 4284 ** a GROUP BY clause. But such a HAVING clause is also harmless 4285 ** so there does not appear to be any reason to add extra logic 4286 ** to suppress it. **) 4287 ** 4288 ** (2) The inner query is the recursive part of a common table expression. 4289 ** 4290 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4291 ** clause would change the meaning of the LIMIT). 4292 ** 4293 ** (4) The inner query is the right operand of a LEFT JOIN and the 4294 ** expression to be pushed down does not come from the ON clause 4295 ** on that LEFT JOIN. 4296 ** 4297 ** (5) The WHERE clause expression originates in the ON or USING clause 4298 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4299 ** left join. An example: 4300 ** 4301 ** SELECT * 4302 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4303 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4304 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4305 ** 4306 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4307 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4308 ** then the (1,1,NULL) row would be suppressed. 4309 ** 4310 ** (6) The inner query features one or more window-functions (since 4311 ** changes to the WHERE clause of the inner query could change the 4312 ** window over which window functions are calculated). 4313 ** 4314 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4315 ** terms are duplicated into the subquery. 4316 */ 4317 static int pushDownWhereTerms( 4318 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4319 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4320 Expr *pWhere, /* The WHERE clause of the outer query */ 4321 int iCursor, /* Cursor number of the subquery */ 4322 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4323 ){ 4324 Expr *pNew; 4325 int nChng = 0; 4326 if( pWhere==0 ) return 0; 4327 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4328 4329 #ifndef SQLITE_OMIT_WINDOWFUNC 4330 if( pSubq->pWin ) return 0; /* restriction (6) */ 4331 #endif 4332 4333 #ifdef SQLITE_DEBUG 4334 /* Only the first term of a compound can have a WITH clause. But make 4335 ** sure no other terms are marked SF_Recursive in case something changes 4336 ** in the future. 4337 */ 4338 { 4339 Select *pX; 4340 for(pX=pSubq; pX; pX=pX->pPrior){ 4341 assert( (pX->selFlags & (SF_Recursive))==0 ); 4342 } 4343 } 4344 #endif 4345 4346 if( pSubq->pLimit!=0 ){ 4347 return 0; /* restriction (3) */ 4348 } 4349 while( pWhere->op==TK_AND ){ 4350 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4351 iCursor, isLeftJoin); 4352 pWhere = pWhere->pLeft; 4353 } 4354 if( isLeftJoin 4355 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4356 || pWhere->iRightJoinTable!=iCursor) 4357 ){ 4358 return 0; /* restriction (4) */ 4359 } 4360 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4361 return 0; /* restriction (5) */ 4362 } 4363 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4364 nChng++; 4365 while( pSubq ){ 4366 SubstContext x; 4367 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4368 unsetJoinExpr(pNew, -1); 4369 x.pParse = pParse; 4370 x.iTable = iCursor; 4371 x.iNewTable = iCursor; 4372 x.isLeftJoin = 0; 4373 x.pEList = pSubq->pEList; 4374 pNew = substExpr(&x, pNew); 4375 if( pSubq->selFlags & SF_Aggregate ){ 4376 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4377 }else{ 4378 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4379 } 4380 pSubq = pSubq->pPrior; 4381 } 4382 } 4383 return nChng; 4384 } 4385 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4386 4387 /* 4388 ** The pFunc is the only aggregate function in the query. Check to see 4389 ** if the query is a candidate for the min/max optimization. 4390 ** 4391 ** If the query is a candidate for the min/max optimization, then set 4392 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4393 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4394 ** whether pFunc is a min() or max() function. 4395 ** 4396 ** If the query is not a candidate for the min/max optimization, return 4397 ** WHERE_ORDERBY_NORMAL (which must be zero). 4398 ** 4399 ** This routine must be called after aggregate functions have been 4400 ** located but before their arguments have been subjected to aggregate 4401 ** analysis. 4402 */ 4403 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4404 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4405 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4406 const char *zFunc; /* Name of aggregate function pFunc */ 4407 ExprList *pOrderBy; 4408 u8 sortOrder; 4409 4410 assert( *ppMinMax==0 ); 4411 assert( pFunc->op==TK_AGG_FUNCTION ); 4412 assert( !IsWindowFunc(pFunc) ); 4413 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4414 return eRet; 4415 } 4416 zFunc = pFunc->u.zToken; 4417 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4418 eRet = WHERE_ORDERBY_MIN; 4419 sortOrder = SQLITE_SO_ASC; 4420 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4421 eRet = WHERE_ORDERBY_MAX; 4422 sortOrder = SQLITE_SO_DESC; 4423 }else{ 4424 return eRet; 4425 } 4426 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4427 assert( pOrderBy!=0 || db->mallocFailed ); 4428 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4429 return eRet; 4430 } 4431 4432 /* 4433 ** The select statement passed as the first argument is an aggregate query. 4434 ** The second argument is the associated aggregate-info object. This 4435 ** function tests if the SELECT is of the form: 4436 ** 4437 ** SELECT count(*) FROM <tbl> 4438 ** 4439 ** where table is a database table, not a sub-select or view. If the query 4440 ** does match this pattern, then a pointer to the Table object representing 4441 ** <tbl> is returned. Otherwise, 0 is returned. 4442 */ 4443 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4444 Table *pTab; 4445 Expr *pExpr; 4446 4447 assert( !p->pGroupBy ); 4448 4449 if( p->pWhere || p->pEList->nExpr!=1 4450 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4451 ){ 4452 return 0; 4453 } 4454 pTab = p->pSrc->a[0].pTab; 4455 pExpr = p->pEList->a[0].pExpr; 4456 assert( pTab && !pTab->pSelect && pExpr ); 4457 4458 if( IsVirtual(pTab) ) return 0; 4459 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4460 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4461 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4462 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4463 4464 return pTab; 4465 } 4466 4467 /* 4468 ** If the source-list item passed as an argument was augmented with an 4469 ** INDEXED BY clause, then try to locate the specified index. If there 4470 ** was such a clause and the named index cannot be found, return 4471 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4472 ** pFrom->pIndex and return SQLITE_OK. 4473 */ 4474 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4475 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4476 Table *pTab = pFrom->pTab; 4477 char *zIndexedBy = pFrom->u1.zIndexedBy; 4478 Index *pIdx; 4479 for(pIdx=pTab->pIndex; 4480 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4481 pIdx=pIdx->pNext 4482 ); 4483 if( !pIdx ){ 4484 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4485 pParse->checkSchema = 1; 4486 return SQLITE_ERROR; 4487 } 4488 pFrom->pIBIndex = pIdx; 4489 } 4490 return SQLITE_OK; 4491 } 4492 /* 4493 ** Detect compound SELECT statements that use an ORDER BY clause with 4494 ** an alternative collating sequence. 4495 ** 4496 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4497 ** 4498 ** These are rewritten as a subquery: 4499 ** 4500 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4501 ** ORDER BY ... COLLATE ... 4502 ** 4503 ** This transformation is necessary because the multiSelectOrderBy() routine 4504 ** above that generates the code for a compound SELECT with an ORDER BY clause 4505 ** uses a merge algorithm that requires the same collating sequence on the 4506 ** result columns as on the ORDER BY clause. See ticket 4507 ** http://www.sqlite.org/src/info/6709574d2a 4508 ** 4509 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4510 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4511 ** there are COLLATE terms in the ORDER BY. 4512 */ 4513 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4514 int i; 4515 Select *pNew; 4516 Select *pX; 4517 sqlite3 *db; 4518 struct ExprList_item *a; 4519 SrcList *pNewSrc; 4520 Parse *pParse; 4521 Token dummy; 4522 4523 if( p->pPrior==0 ) return WRC_Continue; 4524 if( p->pOrderBy==0 ) return WRC_Continue; 4525 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4526 if( pX==0 ) return WRC_Continue; 4527 a = p->pOrderBy->a; 4528 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4529 if( a[i].pExpr->flags & EP_Collate ) break; 4530 } 4531 if( i<0 ) return WRC_Continue; 4532 4533 /* If we reach this point, that means the transformation is required. */ 4534 4535 pParse = pWalker->pParse; 4536 db = pParse->db; 4537 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4538 if( pNew==0 ) return WRC_Abort; 4539 memset(&dummy, 0, sizeof(dummy)); 4540 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4541 if( pNewSrc==0 ) return WRC_Abort; 4542 *pNew = *p; 4543 p->pSrc = pNewSrc; 4544 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4545 p->op = TK_SELECT; 4546 p->pWhere = 0; 4547 pNew->pGroupBy = 0; 4548 pNew->pHaving = 0; 4549 pNew->pOrderBy = 0; 4550 p->pPrior = 0; 4551 p->pNext = 0; 4552 p->pWith = 0; 4553 p->selFlags &= ~SF_Compound; 4554 assert( (p->selFlags & SF_Converted)==0 ); 4555 p->selFlags |= SF_Converted; 4556 assert( pNew->pPrior!=0 ); 4557 pNew->pPrior->pNext = pNew; 4558 pNew->pLimit = 0; 4559 return WRC_Continue; 4560 } 4561 4562 /* 4563 ** Check to see if the FROM clause term pFrom has table-valued function 4564 ** arguments. If it does, leave an error message in pParse and return 4565 ** non-zero, since pFrom is not allowed to be a table-valued function. 4566 */ 4567 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4568 if( pFrom->fg.isTabFunc ){ 4569 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4570 return 1; 4571 } 4572 return 0; 4573 } 4574 4575 #ifndef SQLITE_OMIT_CTE 4576 /* 4577 ** Argument pWith (which may be NULL) points to a linked list of nested 4578 ** WITH contexts, from inner to outermost. If the table identified by 4579 ** FROM clause element pItem is really a common-table-expression (CTE) 4580 ** then return a pointer to the CTE definition for that table. Otherwise 4581 ** return NULL. 4582 ** 4583 ** If a non-NULL value is returned, set *ppContext to point to the With 4584 ** object that the returned CTE belongs to. 4585 */ 4586 static struct Cte *searchWith( 4587 With *pWith, /* Current innermost WITH clause */ 4588 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4589 With **ppContext /* OUT: WITH clause return value belongs to */ 4590 ){ 4591 const char *zName; 4592 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4593 With *p; 4594 for(p=pWith; p; p=p->pOuter){ 4595 int i; 4596 for(i=0; i<p->nCte; i++){ 4597 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4598 *ppContext = p; 4599 return &p->a[i]; 4600 } 4601 } 4602 } 4603 } 4604 return 0; 4605 } 4606 4607 /* The code generator maintains a stack of active WITH clauses 4608 ** with the inner-most WITH clause being at the top of the stack. 4609 ** 4610 ** This routine pushes the WITH clause passed as the second argument 4611 ** onto the top of the stack. If argument bFree is true, then this 4612 ** WITH clause will never be popped from the stack. In this case it 4613 ** should be freed along with the Parse object. In other cases, when 4614 ** bFree==0, the With object will be freed along with the SELECT 4615 ** statement with which it is associated. 4616 */ 4617 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4618 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4619 if( pWith ){ 4620 assert( pParse->pWith!=pWith ); 4621 pWith->pOuter = pParse->pWith; 4622 pParse->pWith = pWith; 4623 if( bFree ) pParse->pWithToFree = pWith; 4624 } 4625 } 4626 4627 /* 4628 ** This function checks if argument pFrom refers to a CTE declared by 4629 ** a WITH clause on the stack currently maintained by the parser. And, 4630 ** if currently processing a CTE expression, if it is a recursive 4631 ** reference to the current CTE. 4632 ** 4633 ** If pFrom falls into either of the two categories above, pFrom->pTab 4634 ** and other fields are populated accordingly. The caller should check 4635 ** (pFrom->pTab!=0) to determine whether or not a successful match 4636 ** was found. 4637 ** 4638 ** Whether or not a match is found, SQLITE_OK is returned if no error 4639 ** occurs. If an error does occur, an error message is stored in the 4640 ** parser and some error code other than SQLITE_OK returned. 4641 */ 4642 static int withExpand( 4643 Walker *pWalker, 4644 struct SrcList_item *pFrom 4645 ){ 4646 Parse *pParse = pWalker->pParse; 4647 sqlite3 *db = pParse->db; 4648 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4649 With *pWith; /* WITH clause that pCte belongs to */ 4650 4651 assert( pFrom->pTab==0 ); 4652 4653 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4654 if( pCte ){ 4655 Table *pTab; 4656 ExprList *pEList; 4657 Select *pSel; 4658 Select *pLeft; /* Left-most SELECT statement */ 4659 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4660 With *pSavedWith; /* Initial value of pParse->pWith */ 4661 4662 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4663 ** recursive reference to CTE pCte. Leave an error in pParse and return 4664 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4665 ** In this case, proceed. */ 4666 if( pCte->zCteErr ){ 4667 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4668 return SQLITE_ERROR; 4669 } 4670 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4671 4672 assert( pFrom->pTab==0 ); 4673 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4674 if( pTab==0 ) return WRC_Abort; 4675 pTab->nTabRef = 1; 4676 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4677 pTab->iPKey = -1; 4678 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4679 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4680 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4681 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4682 assert( pFrom->pSelect ); 4683 4684 /* Check if this is a recursive CTE. */ 4685 pSel = pFrom->pSelect; 4686 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4687 if( bMayRecursive ){ 4688 int i; 4689 SrcList *pSrc = pFrom->pSelect->pSrc; 4690 for(i=0; i<pSrc->nSrc; i++){ 4691 struct SrcList_item *pItem = &pSrc->a[i]; 4692 if( pItem->zDatabase==0 4693 && pItem->zName!=0 4694 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4695 ){ 4696 pItem->pTab = pTab; 4697 pItem->fg.isRecursive = 1; 4698 pTab->nTabRef++; 4699 pSel->selFlags |= SF_Recursive; 4700 } 4701 } 4702 } 4703 4704 /* Only one recursive reference is permitted. */ 4705 if( pTab->nTabRef>2 ){ 4706 sqlite3ErrorMsg( 4707 pParse, "multiple references to recursive table: %s", pCte->zName 4708 ); 4709 return SQLITE_ERROR; 4710 } 4711 assert( pTab->nTabRef==1 || 4712 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4713 4714 pCte->zCteErr = "circular reference: %s"; 4715 pSavedWith = pParse->pWith; 4716 pParse->pWith = pWith; 4717 if( bMayRecursive ){ 4718 Select *pPrior = pSel->pPrior; 4719 assert( pPrior->pWith==0 ); 4720 pPrior->pWith = pSel->pWith; 4721 sqlite3WalkSelect(pWalker, pPrior); 4722 pPrior->pWith = 0; 4723 }else{ 4724 sqlite3WalkSelect(pWalker, pSel); 4725 } 4726 pParse->pWith = pWith; 4727 4728 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4729 pEList = pLeft->pEList; 4730 if( pCte->pCols ){ 4731 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4732 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4733 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4734 ); 4735 pParse->pWith = pSavedWith; 4736 return SQLITE_ERROR; 4737 } 4738 pEList = pCte->pCols; 4739 } 4740 4741 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4742 if( bMayRecursive ){ 4743 if( pSel->selFlags & SF_Recursive ){ 4744 pCte->zCteErr = "multiple recursive references: %s"; 4745 }else{ 4746 pCte->zCteErr = "recursive reference in a subquery: %s"; 4747 } 4748 sqlite3WalkSelect(pWalker, pSel); 4749 } 4750 pCte->zCteErr = 0; 4751 pParse->pWith = pSavedWith; 4752 } 4753 4754 return SQLITE_OK; 4755 } 4756 #endif 4757 4758 #ifndef SQLITE_OMIT_CTE 4759 /* 4760 ** If the SELECT passed as the second argument has an associated WITH 4761 ** clause, pop it from the stack stored as part of the Parse object. 4762 ** 4763 ** This function is used as the xSelectCallback2() callback by 4764 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4765 ** names and other FROM clause elements. 4766 */ 4767 static void selectPopWith(Walker *pWalker, Select *p){ 4768 Parse *pParse = pWalker->pParse; 4769 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4770 With *pWith = findRightmost(p)->pWith; 4771 if( pWith!=0 ){ 4772 assert( pParse->pWith==pWith ); 4773 pParse->pWith = pWith->pOuter; 4774 } 4775 } 4776 } 4777 #else 4778 #define selectPopWith 0 4779 #endif 4780 4781 /* 4782 ** The SrcList_item structure passed as the second argument represents a 4783 ** sub-query in the FROM clause of a SELECT statement. This function 4784 ** allocates and populates the SrcList_item.pTab object. If successful, 4785 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4786 ** SQLITE_NOMEM. 4787 */ 4788 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4789 Select *pSel = pFrom->pSelect; 4790 Table *pTab; 4791 4792 assert( pSel ); 4793 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4794 if( pTab==0 ) return SQLITE_NOMEM; 4795 pTab->nTabRef = 1; 4796 if( pFrom->zAlias ){ 4797 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4798 }else{ 4799 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4800 } 4801 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4802 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4803 pTab->iPKey = -1; 4804 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4805 pTab->tabFlags |= TF_Ephemeral; 4806 4807 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4808 } 4809 4810 /* 4811 ** This routine is a Walker callback for "expanding" a SELECT statement. 4812 ** "Expanding" means to do the following: 4813 ** 4814 ** (1) Make sure VDBE cursor numbers have been assigned to every 4815 ** element of the FROM clause. 4816 ** 4817 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4818 ** defines FROM clause. When views appear in the FROM clause, 4819 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4820 ** that implements the view. A copy is made of the view's SELECT 4821 ** statement so that we can freely modify or delete that statement 4822 ** without worrying about messing up the persistent representation 4823 ** of the view. 4824 ** 4825 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4826 ** on joins and the ON and USING clause of joins. 4827 ** 4828 ** (4) Scan the list of columns in the result set (pEList) looking 4829 ** for instances of the "*" operator or the TABLE.* operator. 4830 ** If found, expand each "*" to be every column in every table 4831 ** and TABLE.* to be every column in TABLE. 4832 ** 4833 */ 4834 static int selectExpander(Walker *pWalker, Select *p){ 4835 Parse *pParse = pWalker->pParse; 4836 int i, j, k; 4837 SrcList *pTabList; 4838 ExprList *pEList; 4839 struct SrcList_item *pFrom; 4840 sqlite3 *db = pParse->db; 4841 Expr *pE, *pRight, *pExpr; 4842 u16 selFlags = p->selFlags; 4843 u32 elistFlags = 0; 4844 4845 p->selFlags |= SF_Expanded; 4846 if( db->mallocFailed ){ 4847 return WRC_Abort; 4848 } 4849 assert( p->pSrc!=0 ); 4850 if( (selFlags & SF_Expanded)!=0 ){ 4851 return WRC_Prune; 4852 } 4853 if( pWalker->eCode ){ 4854 /* Renumber selId because it has been copied from a view */ 4855 p->selId = ++pParse->nSelect; 4856 } 4857 pTabList = p->pSrc; 4858 pEList = p->pEList; 4859 sqlite3WithPush(pParse, p->pWith, 0); 4860 4861 /* Make sure cursor numbers have been assigned to all entries in 4862 ** the FROM clause of the SELECT statement. 4863 */ 4864 sqlite3SrcListAssignCursors(pParse, pTabList); 4865 4866 /* Look up every table named in the FROM clause of the select. If 4867 ** an entry of the FROM clause is a subquery instead of a table or view, 4868 ** then create a transient table structure to describe the subquery. 4869 */ 4870 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4871 Table *pTab; 4872 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4873 if( pFrom->fg.isRecursive ) continue; 4874 assert( pFrom->pTab==0 ); 4875 #ifndef SQLITE_OMIT_CTE 4876 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4877 if( pFrom->pTab ) {} else 4878 #endif 4879 if( pFrom->zName==0 ){ 4880 #ifndef SQLITE_OMIT_SUBQUERY 4881 Select *pSel = pFrom->pSelect; 4882 /* A sub-query in the FROM clause of a SELECT */ 4883 assert( pSel!=0 ); 4884 assert( pFrom->pTab==0 ); 4885 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4886 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4887 #endif 4888 }else{ 4889 /* An ordinary table or view name in the FROM clause */ 4890 assert( pFrom->pTab==0 ); 4891 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4892 if( pTab==0 ) return WRC_Abort; 4893 if( pTab->nTabRef>=0xffff ){ 4894 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4895 pTab->zName); 4896 pFrom->pTab = 0; 4897 return WRC_Abort; 4898 } 4899 pTab->nTabRef++; 4900 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4901 return WRC_Abort; 4902 } 4903 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4904 if( IsVirtual(pTab) || pTab->pSelect ){ 4905 i16 nCol; 4906 u8 eCodeOrig = pWalker->eCode; 4907 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4908 assert( pFrom->pSelect==0 ); 4909 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4910 nCol = pTab->nCol; 4911 pTab->nCol = -1; 4912 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4913 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4914 pWalker->eCode = eCodeOrig; 4915 pTab->nCol = nCol; 4916 } 4917 #endif 4918 } 4919 4920 /* Locate the index named by the INDEXED BY clause, if any. */ 4921 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4922 return WRC_Abort; 4923 } 4924 } 4925 4926 /* Process NATURAL keywords, and ON and USING clauses of joins. 4927 */ 4928 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4929 return WRC_Abort; 4930 } 4931 4932 /* For every "*" that occurs in the column list, insert the names of 4933 ** all columns in all tables. And for every TABLE.* insert the names 4934 ** of all columns in TABLE. The parser inserted a special expression 4935 ** with the TK_ASTERISK operator for each "*" that it found in the column 4936 ** list. The following code just has to locate the TK_ASTERISK 4937 ** expressions and expand each one to the list of all columns in 4938 ** all tables. 4939 ** 4940 ** The first loop just checks to see if there are any "*" operators 4941 ** that need expanding. 4942 */ 4943 for(k=0; k<pEList->nExpr; k++){ 4944 pE = pEList->a[k].pExpr; 4945 if( pE->op==TK_ASTERISK ) break; 4946 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4947 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4948 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4949 elistFlags |= pE->flags; 4950 } 4951 if( k<pEList->nExpr ){ 4952 /* 4953 ** If we get here it means the result set contains one or more "*" 4954 ** operators that need to be expanded. Loop through each expression 4955 ** in the result set and expand them one by one. 4956 */ 4957 struct ExprList_item *a = pEList->a; 4958 ExprList *pNew = 0; 4959 int flags = pParse->db->flags; 4960 int longNames = (flags & SQLITE_FullColNames)!=0 4961 && (flags & SQLITE_ShortColNames)==0; 4962 4963 for(k=0; k<pEList->nExpr; k++){ 4964 pE = a[k].pExpr; 4965 elistFlags |= pE->flags; 4966 pRight = pE->pRight; 4967 assert( pE->op!=TK_DOT || pRight!=0 ); 4968 if( pE->op!=TK_ASTERISK 4969 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4970 ){ 4971 /* This particular expression does not need to be expanded. 4972 */ 4973 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4974 if( pNew ){ 4975 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4976 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4977 a[k].zName = 0; 4978 a[k].zSpan = 0; 4979 } 4980 a[k].pExpr = 0; 4981 }else{ 4982 /* This expression is a "*" or a "TABLE.*" and needs to be 4983 ** expanded. */ 4984 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4985 char *zTName = 0; /* text of name of TABLE */ 4986 if( pE->op==TK_DOT ){ 4987 assert( pE->pLeft!=0 ); 4988 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4989 zTName = pE->pLeft->u.zToken; 4990 } 4991 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4992 Table *pTab = pFrom->pTab; 4993 Select *pSub = pFrom->pSelect; 4994 char *zTabName = pFrom->zAlias; 4995 const char *zSchemaName = 0; 4996 int iDb; 4997 if( zTabName==0 ){ 4998 zTabName = pTab->zName; 4999 } 5000 if( db->mallocFailed ) break; 5001 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5002 pSub = 0; 5003 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5004 continue; 5005 } 5006 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5007 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5008 } 5009 for(j=0; j<pTab->nCol; j++){ 5010 char *zName = pTab->aCol[j].zName; 5011 char *zColname; /* The computed column name */ 5012 char *zToFree; /* Malloced string that needs to be freed */ 5013 Token sColname; /* Computed column name as a token */ 5014 5015 assert( zName ); 5016 if( zTName && pSub 5017 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 5018 ){ 5019 continue; 5020 } 5021 5022 /* If a column is marked as 'hidden', omit it from the expanded 5023 ** result-set list unless the SELECT has the SF_IncludeHidden 5024 ** bit set. 5025 */ 5026 if( (p->selFlags & SF_IncludeHidden)==0 5027 && IsHiddenColumn(&pTab->aCol[j]) 5028 ){ 5029 continue; 5030 } 5031 tableSeen = 1; 5032 5033 if( i>0 && zTName==0 ){ 5034 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5035 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 5036 ){ 5037 /* In a NATURAL join, omit the join columns from the 5038 ** table to the right of the join */ 5039 continue; 5040 } 5041 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5042 /* In a join with a USING clause, omit columns in the 5043 ** using clause from the table on the right. */ 5044 continue; 5045 } 5046 } 5047 pRight = sqlite3Expr(db, TK_ID, zName); 5048 zColname = zName; 5049 zToFree = 0; 5050 if( longNames || pTabList->nSrc>1 ){ 5051 Expr *pLeft; 5052 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5053 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5054 if( zSchemaName ){ 5055 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5056 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5057 } 5058 if( longNames ){ 5059 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5060 zToFree = zColname; 5061 } 5062 }else{ 5063 pExpr = pRight; 5064 } 5065 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5066 sqlite3TokenInit(&sColname, zColname); 5067 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5068 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5069 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5070 if( pSub ){ 5071 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5072 testcase( pX->zSpan==0 ); 5073 }else{ 5074 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5075 zSchemaName, zTabName, zColname); 5076 testcase( pX->zSpan==0 ); 5077 } 5078 pX->bSpanIsTab = 1; 5079 } 5080 sqlite3DbFree(db, zToFree); 5081 } 5082 } 5083 if( !tableSeen ){ 5084 if( zTName ){ 5085 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5086 }else{ 5087 sqlite3ErrorMsg(pParse, "no tables specified"); 5088 } 5089 } 5090 } 5091 } 5092 sqlite3ExprListDelete(db, pEList); 5093 p->pEList = pNew; 5094 } 5095 if( p->pEList ){ 5096 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5097 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5098 return WRC_Abort; 5099 } 5100 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5101 p->selFlags |= SF_ComplexResult; 5102 } 5103 } 5104 return WRC_Continue; 5105 } 5106 5107 /* 5108 ** No-op routine for the parse-tree walker. 5109 ** 5110 ** When this routine is the Walker.xExprCallback then expression trees 5111 ** are walked without any actions being taken at each node. Presumably, 5112 ** when this routine is used for Walker.xExprCallback then 5113 ** Walker.xSelectCallback is set to do something useful for every 5114 ** subquery in the parser tree. 5115 */ 5116 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5117 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5118 return WRC_Continue; 5119 } 5120 5121 /* 5122 ** No-op routine for the parse-tree walker for SELECT statements. 5123 ** subquery in the parser tree. 5124 */ 5125 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5126 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5127 return WRC_Continue; 5128 } 5129 5130 #if SQLITE_DEBUG 5131 /* 5132 ** Always assert. This xSelectCallback2 implementation proves that the 5133 ** xSelectCallback2 is never invoked. 5134 */ 5135 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5136 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5137 assert( 0 ); 5138 } 5139 #endif 5140 /* 5141 ** This routine "expands" a SELECT statement and all of its subqueries. 5142 ** For additional information on what it means to "expand" a SELECT 5143 ** statement, see the comment on the selectExpand worker callback above. 5144 ** 5145 ** Expanding a SELECT statement is the first step in processing a 5146 ** SELECT statement. The SELECT statement must be expanded before 5147 ** name resolution is performed. 5148 ** 5149 ** If anything goes wrong, an error message is written into pParse. 5150 ** The calling function can detect the problem by looking at pParse->nErr 5151 ** and/or pParse->db->mallocFailed. 5152 */ 5153 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5154 Walker w; 5155 w.xExprCallback = sqlite3ExprWalkNoop; 5156 w.pParse = pParse; 5157 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5158 w.xSelectCallback = convertCompoundSelectToSubquery; 5159 w.xSelectCallback2 = 0; 5160 sqlite3WalkSelect(&w, pSelect); 5161 } 5162 w.xSelectCallback = selectExpander; 5163 w.xSelectCallback2 = selectPopWith; 5164 w.eCode = 0; 5165 sqlite3WalkSelect(&w, pSelect); 5166 } 5167 5168 5169 #ifndef SQLITE_OMIT_SUBQUERY 5170 /* 5171 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5172 ** interface. 5173 ** 5174 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5175 ** information to the Table structure that represents the result set 5176 ** of that subquery. 5177 ** 5178 ** The Table structure that represents the result set was constructed 5179 ** by selectExpander() but the type and collation information was omitted 5180 ** at that point because identifiers had not yet been resolved. This 5181 ** routine is called after identifier resolution. 5182 */ 5183 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5184 Parse *pParse; 5185 int i; 5186 SrcList *pTabList; 5187 struct SrcList_item *pFrom; 5188 5189 assert( p->selFlags & SF_Resolved ); 5190 if( p->selFlags & SF_HasTypeInfo ) return; 5191 p->selFlags |= SF_HasTypeInfo; 5192 pParse = pWalker->pParse; 5193 pTabList = p->pSrc; 5194 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5195 Table *pTab = pFrom->pTab; 5196 assert( pTab!=0 ); 5197 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5198 /* A sub-query in the FROM clause of a SELECT */ 5199 Select *pSel = pFrom->pSelect; 5200 if( pSel ){ 5201 while( pSel->pPrior ) pSel = pSel->pPrior; 5202 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5203 SQLITE_AFF_NONE); 5204 } 5205 } 5206 } 5207 } 5208 #endif 5209 5210 5211 /* 5212 ** This routine adds datatype and collating sequence information to 5213 ** the Table structures of all FROM-clause subqueries in a 5214 ** SELECT statement. 5215 ** 5216 ** Use this routine after name resolution. 5217 */ 5218 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5219 #ifndef SQLITE_OMIT_SUBQUERY 5220 Walker w; 5221 w.xSelectCallback = sqlite3SelectWalkNoop; 5222 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5223 w.xExprCallback = sqlite3ExprWalkNoop; 5224 w.pParse = pParse; 5225 sqlite3WalkSelect(&w, pSelect); 5226 #endif 5227 } 5228 5229 5230 /* 5231 ** This routine sets up a SELECT statement for processing. The 5232 ** following is accomplished: 5233 ** 5234 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5235 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5236 ** * ON and USING clauses are shifted into WHERE statements 5237 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5238 ** * Identifiers in expression are matched to tables. 5239 ** 5240 ** This routine acts recursively on all subqueries within the SELECT. 5241 */ 5242 void sqlite3SelectPrep( 5243 Parse *pParse, /* The parser context */ 5244 Select *p, /* The SELECT statement being coded. */ 5245 NameContext *pOuterNC /* Name context for container */ 5246 ){ 5247 assert( p!=0 || pParse->db->mallocFailed ); 5248 if( pParse->db->mallocFailed ) return; 5249 if( p->selFlags & SF_HasTypeInfo ) return; 5250 sqlite3SelectExpand(pParse, p); 5251 if( pParse->nErr || pParse->db->mallocFailed ) return; 5252 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5253 if( pParse->nErr || pParse->db->mallocFailed ) return; 5254 sqlite3SelectAddTypeInfo(pParse, p); 5255 } 5256 5257 /* 5258 ** Reset the aggregate accumulator. 5259 ** 5260 ** The aggregate accumulator is a set of memory cells that hold 5261 ** intermediate results while calculating an aggregate. This 5262 ** routine generates code that stores NULLs in all of those memory 5263 ** cells. 5264 */ 5265 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5266 Vdbe *v = pParse->pVdbe; 5267 int i; 5268 struct AggInfo_func *pFunc; 5269 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5270 if( nReg==0 ) return; 5271 #ifdef SQLITE_DEBUG 5272 /* Verify that all AggInfo registers are within the range specified by 5273 ** AggInfo.mnReg..AggInfo.mxReg */ 5274 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5275 for(i=0; i<pAggInfo->nColumn; i++){ 5276 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5277 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5278 } 5279 for(i=0; i<pAggInfo->nFunc; i++){ 5280 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5281 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5282 } 5283 #endif 5284 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5285 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5286 if( pFunc->iDistinct>=0 ){ 5287 Expr *pE = pFunc->pExpr; 5288 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5289 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5290 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5291 "argument"); 5292 pFunc->iDistinct = -1; 5293 }else{ 5294 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5295 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5296 (char*)pKeyInfo, P4_KEYINFO); 5297 } 5298 } 5299 } 5300 } 5301 5302 /* 5303 ** Invoke the OP_AggFinalize opcode for every aggregate function 5304 ** in the AggInfo structure. 5305 */ 5306 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5307 Vdbe *v = pParse->pVdbe; 5308 int i; 5309 struct AggInfo_func *pF; 5310 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5311 ExprList *pList = pF->pExpr->x.pList; 5312 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5313 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5314 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5315 } 5316 } 5317 5318 5319 /* 5320 ** Update the accumulator memory cells for an aggregate based on 5321 ** the current cursor position. 5322 ** 5323 ** If regAcc is non-zero and there are no min() or max() aggregates 5324 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5325 ** registers if register regAcc contains 0. The caller will take care 5326 ** of setting and clearing regAcc. 5327 */ 5328 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5329 Vdbe *v = pParse->pVdbe; 5330 int i; 5331 int regHit = 0; 5332 int addrHitTest = 0; 5333 struct AggInfo_func *pF; 5334 struct AggInfo_col *pC; 5335 5336 pAggInfo->directMode = 1; 5337 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5338 int nArg; 5339 int addrNext = 0; 5340 int regAgg; 5341 ExprList *pList = pF->pExpr->x.pList; 5342 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5343 assert( !IsWindowFunc(pF->pExpr) ); 5344 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5345 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5346 addrNext = sqlite3VdbeMakeLabel(pParse); 5347 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5348 } 5349 if( pList ){ 5350 nArg = pList->nExpr; 5351 regAgg = sqlite3GetTempRange(pParse, nArg); 5352 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5353 }else{ 5354 nArg = 0; 5355 regAgg = 0; 5356 } 5357 if( pF->iDistinct>=0 ){ 5358 if( addrNext==0 ){ 5359 addrNext = sqlite3VdbeMakeLabel(pParse); 5360 } 5361 testcase( nArg==0 ); /* Error condition */ 5362 testcase( nArg>1 ); /* Also an error */ 5363 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5364 } 5365 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5366 CollSeq *pColl = 0; 5367 struct ExprList_item *pItem; 5368 int j; 5369 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5370 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5371 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5372 } 5373 if( !pColl ){ 5374 pColl = pParse->db->pDfltColl; 5375 } 5376 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5377 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5378 } 5379 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5380 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5381 sqlite3VdbeChangeP5(v, (u8)nArg); 5382 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5383 if( addrNext ){ 5384 sqlite3VdbeResolveLabel(v, addrNext); 5385 } 5386 } 5387 if( regHit==0 && pAggInfo->nAccumulator ){ 5388 regHit = regAcc; 5389 } 5390 if( regHit ){ 5391 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5392 } 5393 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5394 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5395 } 5396 pAggInfo->directMode = 0; 5397 if( addrHitTest ){ 5398 sqlite3VdbeJumpHere(v, addrHitTest); 5399 } 5400 } 5401 5402 /* 5403 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5404 ** count(*) query ("SELECT count(*) FROM pTab"). 5405 */ 5406 #ifndef SQLITE_OMIT_EXPLAIN 5407 static void explainSimpleCount( 5408 Parse *pParse, /* Parse context */ 5409 Table *pTab, /* Table being queried */ 5410 Index *pIdx /* Index used to optimize scan, or NULL */ 5411 ){ 5412 if( pParse->explain==2 ){ 5413 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5414 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5415 pTab->zName, 5416 bCover ? " USING COVERING INDEX " : "", 5417 bCover ? pIdx->zName : "" 5418 ); 5419 } 5420 } 5421 #else 5422 # define explainSimpleCount(a,b,c) 5423 #endif 5424 5425 /* 5426 ** sqlite3WalkExpr() callback used by havingToWhere(). 5427 ** 5428 ** If the node passed to the callback is a TK_AND node, return 5429 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5430 ** 5431 ** Otherwise, return WRC_Prune. In this case, also check if the 5432 ** sub-expression matches the criteria for being moved to the WHERE 5433 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5434 ** within the HAVING expression with a constant "1". 5435 */ 5436 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5437 if( pExpr->op!=TK_AND ){ 5438 Select *pS = pWalker->u.pSelect; 5439 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5440 sqlite3 *db = pWalker->pParse->db; 5441 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5442 if( pNew ){ 5443 Expr *pWhere = pS->pWhere; 5444 SWAP(Expr, *pNew, *pExpr); 5445 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5446 pS->pWhere = pNew; 5447 pWalker->eCode = 1; 5448 } 5449 } 5450 return WRC_Prune; 5451 } 5452 return WRC_Continue; 5453 } 5454 5455 /* 5456 ** Transfer eligible terms from the HAVING clause of a query, which is 5457 ** processed after grouping, to the WHERE clause, which is processed before 5458 ** grouping. For example, the query: 5459 ** 5460 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5461 ** 5462 ** can be rewritten as: 5463 ** 5464 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5465 ** 5466 ** A term of the HAVING expression is eligible for transfer if it consists 5467 ** entirely of constants and expressions that are also GROUP BY terms that 5468 ** use the "BINARY" collation sequence. 5469 */ 5470 static void havingToWhere(Parse *pParse, Select *p){ 5471 Walker sWalker; 5472 memset(&sWalker, 0, sizeof(sWalker)); 5473 sWalker.pParse = pParse; 5474 sWalker.xExprCallback = havingToWhereExprCb; 5475 sWalker.u.pSelect = p; 5476 sqlite3WalkExpr(&sWalker, p->pHaving); 5477 #if SELECTTRACE_ENABLED 5478 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5479 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5480 sqlite3TreeViewSelect(0, p, 0); 5481 } 5482 #endif 5483 } 5484 5485 /* 5486 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5487 ** If it is, then return the SrcList_item for the prior view. If it is not, 5488 ** then return 0. 5489 */ 5490 static struct SrcList_item *isSelfJoinView( 5491 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5492 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5493 ){ 5494 struct SrcList_item *pItem; 5495 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5496 Select *pS1; 5497 if( pItem->pSelect==0 ) continue; 5498 if( pItem->fg.viaCoroutine ) continue; 5499 if( pItem->zName==0 ) continue; 5500 assert( pItem->pTab!=0 ); 5501 assert( pThis->pTab!=0 ); 5502 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5503 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5504 pS1 = pItem->pSelect; 5505 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5506 /* The query flattener left two different CTE tables with identical 5507 ** names in the same FROM clause. */ 5508 continue; 5509 } 5510 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5511 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5512 ){ 5513 /* The view was modified by some other optimization such as 5514 ** pushDownWhereTerms() */ 5515 continue; 5516 } 5517 return pItem; 5518 } 5519 return 0; 5520 } 5521 5522 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5523 /* 5524 ** Attempt to transform a query of the form 5525 ** 5526 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5527 ** 5528 ** Into this: 5529 ** 5530 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5531 ** 5532 ** The transformation only works if all of the following are true: 5533 ** 5534 ** * The subquery is a UNION ALL of two or more terms 5535 ** * The subquery does not have a LIMIT clause 5536 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5537 ** * The outer query is a simple count(*) with no WHERE clause or other 5538 ** extraneous syntax. 5539 ** 5540 ** Return TRUE if the optimization is undertaken. 5541 */ 5542 static int countOfViewOptimization(Parse *pParse, Select *p){ 5543 Select *pSub, *pPrior; 5544 Expr *pExpr; 5545 Expr *pCount; 5546 sqlite3 *db; 5547 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5548 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5549 if( p->pWhere ) return 0; 5550 if( p->pGroupBy ) return 0; 5551 pExpr = p->pEList->a[0].pExpr; 5552 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5553 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5554 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5555 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5556 pSub = p->pSrc->a[0].pSelect; 5557 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5558 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5559 do{ 5560 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5561 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5562 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5563 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5564 pSub = pSub->pPrior; /* Repeat over compound */ 5565 }while( pSub ); 5566 5567 /* If we reach this point then it is OK to perform the transformation */ 5568 5569 db = pParse->db; 5570 pCount = pExpr; 5571 pExpr = 0; 5572 pSub = p->pSrc->a[0].pSelect; 5573 p->pSrc->a[0].pSelect = 0; 5574 sqlite3SrcListDelete(db, p->pSrc); 5575 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5576 while( pSub ){ 5577 Expr *pTerm; 5578 pPrior = pSub->pPrior; 5579 pSub->pPrior = 0; 5580 pSub->pNext = 0; 5581 pSub->selFlags |= SF_Aggregate; 5582 pSub->selFlags &= ~SF_Compound; 5583 pSub->nSelectRow = 0; 5584 sqlite3ExprListDelete(db, pSub->pEList); 5585 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5586 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5587 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5588 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5589 if( pExpr==0 ){ 5590 pExpr = pTerm; 5591 }else{ 5592 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5593 } 5594 pSub = pPrior; 5595 } 5596 p->pEList->a[0].pExpr = pExpr; 5597 p->selFlags &= ~SF_Aggregate; 5598 5599 #if SELECTTRACE_ENABLED 5600 if( sqlite3SelectTrace & 0x400 ){ 5601 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5602 sqlite3TreeViewSelect(0, p, 0); 5603 } 5604 #endif 5605 return 1; 5606 } 5607 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5608 5609 /* 5610 ** Generate code for the SELECT statement given in the p argument. 5611 ** 5612 ** The results are returned according to the SelectDest structure. 5613 ** See comments in sqliteInt.h for further information. 5614 ** 5615 ** This routine returns the number of errors. If any errors are 5616 ** encountered, then an appropriate error message is left in 5617 ** pParse->zErrMsg. 5618 ** 5619 ** This routine does NOT free the Select structure passed in. The 5620 ** calling function needs to do that. 5621 */ 5622 int sqlite3Select( 5623 Parse *pParse, /* The parser context */ 5624 Select *p, /* The SELECT statement being coded. */ 5625 SelectDest *pDest /* What to do with the query results */ 5626 ){ 5627 int i, j; /* Loop counters */ 5628 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5629 Vdbe *v; /* The virtual machine under construction */ 5630 int isAgg; /* True for select lists like "count(*)" */ 5631 ExprList *pEList = 0; /* List of columns to extract. */ 5632 SrcList *pTabList; /* List of tables to select from */ 5633 Expr *pWhere; /* The WHERE clause. May be NULL */ 5634 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5635 Expr *pHaving; /* The HAVING clause. May be NULL */ 5636 int rc = 1; /* Value to return from this function */ 5637 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5638 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5639 AggInfo sAggInfo; /* Information used by aggregate queries */ 5640 int iEnd; /* Address of the end of the query */ 5641 sqlite3 *db; /* The database connection */ 5642 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5643 u8 minMaxFlag; /* Flag for min/max queries */ 5644 5645 db = pParse->db; 5646 v = sqlite3GetVdbe(pParse); 5647 if( p==0 || db->mallocFailed || pParse->nErr ){ 5648 return 1; 5649 } 5650 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5651 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5652 #if SELECTTRACE_ENABLED 5653 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5654 if( sqlite3SelectTrace & 0x100 ){ 5655 sqlite3TreeViewSelect(0, p, 0); 5656 } 5657 #endif 5658 5659 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5660 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5663 if( IgnorableOrderby(pDest) ){ 5664 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5665 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5666 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5667 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5668 /* If ORDER BY makes no difference in the output then neither does 5669 ** DISTINCT so it can be removed too. */ 5670 sqlite3ExprListDelete(db, p->pOrderBy); 5671 p->pOrderBy = 0; 5672 p->selFlags &= ~SF_Distinct; 5673 } 5674 sqlite3SelectPrep(pParse, p, 0); 5675 if( pParse->nErr || db->mallocFailed ){ 5676 goto select_end; 5677 } 5678 assert( p->pEList!=0 ); 5679 #if SELECTTRACE_ENABLED 5680 if( sqlite3SelectTrace & 0x104 ){ 5681 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5682 sqlite3TreeViewSelect(0, p, 0); 5683 } 5684 #endif 5685 5686 if( pDest->eDest==SRT_Output ){ 5687 generateColumnNames(pParse, p); 5688 } 5689 5690 #ifndef SQLITE_OMIT_WINDOWFUNC 5691 if( sqlite3WindowRewrite(pParse, p) ){ 5692 goto select_end; 5693 } 5694 #if SELECTTRACE_ENABLED 5695 if( sqlite3SelectTrace & 0x108 ){ 5696 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5697 sqlite3TreeViewSelect(0, p, 0); 5698 } 5699 #endif 5700 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5701 pTabList = p->pSrc; 5702 isAgg = (p->selFlags & SF_Aggregate)!=0; 5703 memset(&sSort, 0, sizeof(sSort)); 5704 sSort.pOrderBy = p->pOrderBy; 5705 5706 /* Try to various optimizations (flattening subqueries, and strength 5707 ** reduction of join operators) in the FROM clause up into the main query 5708 */ 5709 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5710 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5711 struct SrcList_item *pItem = &pTabList->a[i]; 5712 Select *pSub = pItem->pSelect; 5713 Table *pTab = pItem->pTab; 5714 5715 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5716 ** of the LEFT JOIN used in the WHERE clause. 5717 */ 5718 if( (pItem->fg.jointype & JT_LEFT)!=0 5719 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5720 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5721 ){ 5722 SELECTTRACE(0x100,pParse,p, 5723 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5724 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5725 unsetJoinExpr(p->pWhere, pItem->iCursor); 5726 } 5727 5728 /* No futher action if this term of the FROM clause is no a subquery */ 5729 if( pSub==0 ) continue; 5730 5731 /* Catch mismatch in the declared columns of a view and the number of 5732 ** columns in the SELECT on the RHS */ 5733 if( pTab->nCol!=pSub->pEList->nExpr ){ 5734 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5735 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5736 goto select_end; 5737 } 5738 5739 /* Do not try to flatten an aggregate subquery. 5740 ** 5741 ** Flattening an aggregate subquery is only possible if the outer query 5742 ** is not a join. But if the outer query is not a join, then the subquery 5743 ** will be implemented as a co-routine and there is no advantage to 5744 ** flattening in that case. 5745 */ 5746 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5747 assert( pSub->pGroupBy==0 ); 5748 5749 /* If the outer query contains a "complex" result set (that is, 5750 ** if the result set of the outer query uses functions or subqueries) 5751 ** and if the subquery contains an ORDER BY clause and if 5752 ** it will be implemented as a co-routine, then do not flatten. This 5753 ** restriction allows SQL constructs like this: 5754 ** 5755 ** SELECT expensive_function(x) 5756 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5757 ** 5758 ** The expensive_function() is only computed on the 10 rows that 5759 ** are output, rather than every row of the table. 5760 ** 5761 ** The requirement that the outer query have a complex result set 5762 ** means that flattening does occur on simpler SQL constraints without 5763 ** the expensive_function() like: 5764 ** 5765 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5766 */ 5767 if( pSub->pOrderBy!=0 5768 && i==0 5769 && (p->selFlags & SF_ComplexResult)!=0 5770 && (pTabList->nSrc==1 5771 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5772 ){ 5773 continue; 5774 } 5775 5776 if( flattenSubquery(pParse, p, i, isAgg) ){ 5777 if( pParse->nErr ) goto select_end; 5778 /* This subquery can be absorbed into its parent. */ 5779 i = -1; 5780 } 5781 pTabList = p->pSrc; 5782 if( db->mallocFailed ) goto select_end; 5783 if( !IgnorableOrderby(pDest) ){ 5784 sSort.pOrderBy = p->pOrderBy; 5785 } 5786 } 5787 #endif 5788 5789 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5790 /* Handle compound SELECT statements using the separate multiSelect() 5791 ** procedure. 5792 */ 5793 if( p->pPrior ){ 5794 rc = multiSelect(pParse, p, pDest); 5795 #if SELECTTRACE_ENABLED 5796 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5797 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5798 sqlite3TreeViewSelect(0, p, 0); 5799 } 5800 #endif 5801 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5802 return rc; 5803 } 5804 #endif 5805 5806 /* Do the WHERE-clause constant propagation optimization if this is 5807 ** a join. No need to speed time on this operation for non-join queries 5808 ** as the equivalent optimization will be handled by query planner in 5809 ** sqlite3WhereBegin(). 5810 */ 5811 if( pTabList->nSrc>1 5812 && OptimizationEnabled(db, SQLITE_PropagateConst) 5813 && propagateConstants(pParse, p) 5814 ){ 5815 #if SELECTTRACE_ENABLED 5816 if( sqlite3SelectTrace & 0x100 ){ 5817 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5818 sqlite3TreeViewSelect(0, p, 0); 5819 } 5820 #endif 5821 }else{ 5822 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5823 } 5824 5825 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5826 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5827 && countOfViewOptimization(pParse, p) 5828 ){ 5829 if( db->mallocFailed ) goto select_end; 5830 pEList = p->pEList; 5831 pTabList = p->pSrc; 5832 } 5833 #endif 5834 5835 /* For each term in the FROM clause, do two things: 5836 ** (1) Authorized unreferenced tables 5837 ** (2) Generate code for all sub-queries 5838 */ 5839 for(i=0; i<pTabList->nSrc; i++){ 5840 struct SrcList_item *pItem = &pTabList->a[i]; 5841 SelectDest dest; 5842 Select *pSub; 5843 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5844 const char *zSavedAuthContext; 5845 #endif 5846 5847 /* Issue SQLITE_READ authorizations with a fake column name for any 5848 ** tables that are referenced but from which no values are extracted. 5849 ** Examples of where these kinds of null SQLITE_READ authorizations 5850 ** would occur: 5851 ** 5852 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5853 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5854 ** 5855 ** The fake column name is an empty string. It is possible for a table to 5856 ** have a column named by the empty string, in which case there is no way to 5857 ** distinguish between an unreferenced table and an actual reference to the 5858 ** "" column. The original design was for the fake column name to be a NULL, 5859 ** which would be unambiguous. But legacy authorization callbacks might 5860 ** assume the column name is non-NULL and segfault. The use of an empty 5861 ** string for the fake column name seems safer. 5862 */ 5863 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5864 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5865 } 5866 5867 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5868 /* Generate code for all sub-queries in the FROM clause 5869 */ 5870 pSub = pItem->pSelect; 5871 if( pSub==0 ) continue; 5872 5873 /* The code for a subquery should only be generated once, though it is 5874 ** technically harmless for it to be generated multiple times. The 5875 ** following assert() will detect if something changes to cause 5876 ** the same subquery to be coded multiple times, as a signal to the 5877 ** developers to try to optimize the situation. 5878 ** 5879 ** Update 2019-07-24: 5880 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5881 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5882 ** coded twice. So this assert() now becomes a testcase(). It should 5883 ** be very rare, though. 5884 */ 5885 testcase( pItem->addrFillSub!=0 ); 5886 5887 /* Increment Parse.nHeight by the height of the largest expression 5888 ** tree referred to by this, the parent select. The child select 5889 ** may contain expression trees of at most 5890 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5891 ** more conservative than necessary, but much easier than enforcing 5892 ** an exact limit. 5893 */ 5894 pParse->nHeight += sqlite3SelectExprHeight(p); 5895 5896 /* Make copies of constant WHERE-clause terms in the outer query down 5897 ** inside the subquery. This can help the subquery to run more efficiently. 5898 */ 5899 if( OptimizationEnabled(db, SQLITE_PushDown) 5900 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5901 (pItem->fg.jointype & JT_OUTER)!=0) 5902 ){ 5903 #if SELECTTRACE_ENABLED 5904 if( sqlite3SelectTrace & 0x100 ){ 5905 SELECTTRACE(0x100,pParse,p, 5906 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5907 sqlite3TreeViewSelect(0, p, 0); 5908 } 5909 #endif 5910 }else{ 5911 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5912 } 5913 5914 zSavedAuthContext = pParse->zAuthContext; 5915 pParse->zAuthContext = pItem->zName; 5916 5917 /* Generate code to implement the subquery 5918 ** 5919 ** The subquery is implemented as a co-routine if the subquery is 5920 ** guaranteed to be the outer loop (so that it does not need to be 5921 ** computed more than once) 5922 ** 5923 ** TODO: Are there other reasons beside (1) to use a co-routine 5924 ** implementation? 5925 */ 5926 if( i==0 5927 && (pTabList->nSrc==1 5928 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5929 ){ 5930 /* Implement a co-routine that will return a single row of the result 5931 ** set on each invocation. 5932 */ 5933 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5934 5935 pItem->regReturn = ++pParse->nMem; 5936 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5937 VdbeComment((v, "%s", pItem->pTab->zName)); 5938 pItem->addrFillSub = addrTop; 5939 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5940 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5941 sqlite3Select(pParse, pSub, &dest); 5942 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5943 pItem->fg.viaCoroutine = 1; 5944 pItem->regResult = dest.iSdst; 5945 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5946 sqlite3VdbeJumpHere(v, addrTop-1); 5947 sqlite3ClearTempRegCache(pParse); 5948 }else{ 5949 /* Generate a subroutine that will fill an ephemeral table with 5950 ** the content of this subquery. pItem->addrFillSub will point 5951 ** to the address of the generated subroutine. pItem->regReturn 5952 ** is a register allocated to hold the subroutine return address 5953 */ 5954 int topAddr; 5955 int onceAddr = 0; 5956 int retAddr; 5957 struct SrcList_item *pPrior; 5958 5959 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 5960 pItem->regReturn = ++pParse->nMem; 5961 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5962 pItem->addrFillSub = topAddr+1; 5963 if( pItem->fg.isCorrelated==0 ){ 5964 /* If the subquery is not correlated and if we are not inside of 5965 ** a trigger, then we only need to compute the value of the subquery 5966 ** once. */ 5967 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5968 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5969 }else{ 5970 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5971 } 5972 pPrior = isSelfJoinView(pTabList, pItem); 5973 if( pPrior ){ 5974 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5975 assert( pPrior->pSelect!=0 ); 5976 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5977 }else{ 5978 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5979 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5980 sqlite3Select(pParse, pSub, &dest); 5981 } 5982 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5983 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5984 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5985 VdbeComment((v, "end %s", pItem->pTab->zName)); 5986 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5987 sqlite3ClearTempRegCache(pParse); 5988 } 5989 if( db->mallocFailed ) goto select_end; 5990 pParse->nHeight -= sqlite3SelectExprHeight(p); 5991 pParse->zAuthContext = zSavedAuthContext; 5992 #endif 5993 } 5994 5995 /* Various elements of the SELECT copied into local variables for 5996 ** convenience */ 5997 pEList = p->pEList; 5998 pWhere = p->pWhere; 5999 pGroupBy = p->pGroupBy; 6000 pHaving = p->pHaving; 6001 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6002 6003 #if SELECTTRACE_ENABLED 6004 if( sqlite3SelectTrace & 0x400 ){ 6005 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6006 sqlite3TreeViewSelect(0, p, 0); 6007 } 6008 #endif 6009 6010 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6011 ** if the select-list is the same as the ORDER BY list, then this query 6012 ** can be rewritten as a GROUP BY. In other words, this: 6013 ** 6014 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6015 ** 6016 ** is transformed to: 6017 ** 6018 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6019 ** 6020 ** The second form is preferred as a single index (or temp-table) may be 6021 ** used for both the ORDER BY and DISTINCT processing. As originally 6022 ** written the query must use a temp-table for at least one of the ORDER 6023 ** BY and DISTINCT, and an index or separate temp-table for the other. 6024 */ 6025 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6026 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6027 ){ 6028 p->selFlags &= ~SF_Distinct; 6029 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6030 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6031 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6032 ** original setting of the SF_Distinct flag, not the current setting */ 6033 assert( sDistinct.isTnct ); 6034 6035 #if SELECTTRACE_ENABLED 6036 if( sqlite3SelectTrace & 0x400 ){ 6037 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6038 sqlite3TreeViewSelect(0, p, 0); 6039 } 6040 #endif 6041 } 6042 6043 /* If there is an ORDER BY clause, then create an ephemeral index to 6044 ** do the sorting. But this sorting ephemeral index might end up 6045 ** being unused if the data can be extracted in pre-sorted order. 6046 ** If that is the case, then the OP_OpenEphemeral instruction will be 6047 ** changed to an OP_Noop once we figure out that the sorting index is 6048 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6049 ** that change. 6050 */ 6051 if( sSort.pOrderBy ){ 6052 KeyInfo *pKeyInfo; 6053 pKeyInfo = sqlite3KeyInfoFromExprList( 6054 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6055 sSort.iECursor = pParse->nTab++; 6056 sSort.addrSortIndex = 6057 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6058 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6059 (char*)pKeyInfo, P4_KEYINFO 6060 ); 6061 }else{ 6062 sSort.addrSortIndex = -1; 6063 } 6064 6065 /* If the output is destined for a temporary table, open that table. 6066 */ 6067 if( pDest->eDest==SRT_EphemTab ){ 6068 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6069 } 6070 6071 /* Set the limiter. 6072 */ 6073 iEnd = sqlite3VdbeMakeLabel(pParse); 6074 if( (p->selFlags & SF_FixedLimit)==0 ){ 6075 p->nSelectRow = 320; /* 4 billion rows */ 6076 } 6077 computeLimitRegisters(pParse, p, iEnd); 6078 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6079 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6080 sSort.sortFlags |= SORTFLAG_UseSorter; 6081 } 6082 6083 /* Open an ephemeral index to use for the distinct set. 6084 */ 6085 if( p->selFlags & SF_Distinct ){ 6086 sDistinct.tabTnct = pParse->nTab++; 6087 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6088 sDistinct.tabTnct, 0, 0, 6089 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6090 P4_KEYINFO); 6091 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6092 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6093 }else{ 6094 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6095 } 6096 6097 if( !isAgg && pGroupBy==0 ){ 6098 /* No aggregate functions and no GROUP BY clause */ 6099 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6100 | (p->selFlags & SF_FixedLimit); 6101 #ifndef SQLITE_OMIT_WINDOWFUNC 6102 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6103 if( pWin ){ 6104 sqlite3WindowCodeInit(pParse, pWin); 6105 } 6106 #endif 6107 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6108 6109 6110 /* Begin the database scan. */ 6111 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6112 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6113 p->pEList, wctrlFlags, p->nSelectRow); 6114 if( pWInfo==0 ) goto select_end; 6115 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6116 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6117 } 6118 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6119 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6120 } 6121 if( sSort.pOrderBy ){ 6122 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6123 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6124 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6125 sSort.pOrderBy = 0; 6126 } 6127 } 6128 6129 /* If sorting index that was created by a prior OP_OpenEphemeral 6130 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6131 ** into an OP_Noop. 6132 */ 6133 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6134 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6135 } 6136 6137 assert( p->pEList==pEList ); 6138 #ifndef SQLITE_OMIT_WINDOWFUNC 6139 if( pWin ){ 6140 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6141 int iCont = sqlite3VdbeMakeLabel(pParse); 6142 int iBreak = sqlite3VdbeMakeLabel(pParse); 6143 int regGosub = ++pParse->nMem; 6144 6145 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6146 6147 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6148 sqlite3VdbeResolveLabel(v, addrGosub); 6149 VdbeNoopComment((v, "inner-loop subroutine")); 6150 sSort.labelOBLopt = 0; 6151 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6152 sqlite3VdbeResolveLabel(v, iCont); 6153 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6154 VdbeComment((v, "end inner-loop subroutine")); 6155 sqlite3VdbeResolveLabel(v, iBreak); 6156 }else 6157 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6158 { 6159 /* Use the standard inner loop. */ 6160 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6161 sqlite3WhereContinueLabel(pWInfo), 6162 sqlite3WhereBreakLabel(pWInfo)); 6163 6164 /* End the database scan loop. 6165 */ 6166 sqlite3WhereEnd(pWInfo); 6167 } 6168 }else{ 6169 /* This case when there exist aggregate functions or a GROUP BY clause 6170 ** or both */ 6171 NameContext sNC; /* Name context for processing aggregate information */ 6172 int iAMem; /* First Mem address for storing current GROUP BY */ 6173 int iBMem; /* First Mem address for previous GROUP BY */ 6174 int iUseFlag; /* Mem address holding flag indicating that at least 6175 ** one row of the input to the aggregator has been 6176 ** processed */ 6177 int iAbortFlag; /* Mem address which causes query abort if positive */ 6178 int groupBySort; /* Rows come from source in GROUP BY order */ 6179 int addrEnd; /* End of processing for this SELECT */ 6180 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6181 int sortOut = 0; /* Output register from the sorter */ 6182 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6183 6184 /* Remove any and all aliases between the result set and the 6185 ** GROUP BY clause. 6186 */ 6187 if( pGroupBy ){ 6188 int k; /* Loop counter */ 6189 struct ExprList_item *pItem; /* For looping over expression in a list */ 6190 6191 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6192 pItem->u.x.iAlias = 0; 6193 } 6194 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6195 pItem->u.x.iAlias = 0; 6196 } 6197 assert( 66==sqlite3LogEst(100) ); 6198 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6199 }else{ 6200 assert( 0==sqlite3LogEst(1) ); 6201 p->nSelectRow = 0; 6202 } 6203 6204 /* If there is both a GROUP BY and an ORDER BY clause and they are 6205 ** identical, then it may be possible to disable the ORDER BY clause 6206 ** on the grounds that the GROUP BY will cause elements to come out 6207 ** in the correct order. It also may not - the GROUP BY might use a 6208 ** database index that causes rows to be grouped together as required 6209 ** but not actually sorted. Either way, record the fact that the 6210 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6211 ** variable. */ 6212 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6213 orderByGrp = 1; 6214 } 6215 6216 /* Create a label to jump to when we want to abort the query */ 6217 addrEnd = sqlite3VdbeMakeLabel(pParse); 6218 6219 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6220 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6221 ** SELECT statement. 6222 */ 6223 memset(&sNC, 0, sizeof(sNC)); 6224 sNC.pParse = pParse; 6225 sNC.pSrcList = pTabList; 6226 sNC.uNC.pAggInfo = &sAggInfo; 6227 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6228 sAggInfo.mnReg = pParse->nMem+1; 6229 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6230 sAggInfo.pGroupBy = pGroupBy; 6231 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6232 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6233 if( pHaving ){ 6234 if( pGroupBy ){ 6235 assert( pWhere==p->pWhere ); 6236 assert( pHaving==p->pHaving ); 6237 assert( pGroupBy==p->pGroupBy ); 6238 havingToWhere(pParse, p); 6239 pWhere = p->pWhere; 6240 } 6241 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6242 } 6243 sAggInfo.nAccumulator = sAggInfo.nColumn; 6244 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6245 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6246 }else{ 6247 minMaxFlag = WHERE_ORDERBY_NORMAL; 6248 } 6249 for(i=0; i<sAggInfo.nFunc; i++){ 6250 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6251 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6252 sNC.ncFlags |= NC_InAggFunc; 6253 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6254 #ifndef SQLITE_OMIT_WINDOWFUNC 6255 assert( !IsWindowFunc(pExpr) ); 6256 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6257 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6258 } 6259 #endif 6260 sNC.ncFlags &= ~NC_InAggFunc; 6261 } 6262 sAggInfo.mxReg = pParse->nMem; 6263 if( db->mallocFailed ) goto select_end; 6264 #if SELECTTRACE_ENABLED 6265 if( sqlite3SelectTrace & 0x400 ){ 6266 int ii; 6267 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6268 sqlite3TreeViewSelect(0, p, 0); 6269 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6270 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6271 ii, sAggInfo.aCol[ii].iMem); 6272 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6273 } 6274 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6275 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6276 ii, sAggInfo.aFunc[ii].iMem); 6277 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6278 } 6279 } 6280 #endif 6281 6282 6283 /* Processing for aggregates with GROUP BY is very different and 6284 ** much more complex than aggregates without a GROUP BY. 6285 */ 6286 if( pGroupBy ){ 6287 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6288 int addr1; /* A-vs-B comparision jump */ 6289 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6290 int regOutputRow; /* Return address register for output subroutine */ 6291 int addrSetAbort; /* Set the abort flag and return */ 6292 int addrTopOfLoop; /* Top of the input loop */ 6293 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6294 int addrReset; /* Subroutine for resetting the accumulator */ 6295 int regReset; /* Return address register for reset subroutine */ 6296 6297 /* If there is a GROUP BY clause we might need a sorting index to 6298 ** implement it. Allocate that sorting index now. If it turns out 6299 ** that we do not need it after all, the OP_SorterOpen instruction 6300 ** will be converted into a Noop. 6301 */ 6302 sAggInfo.sortingIdx = pParse->nTab++; 6303 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6304 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6305 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6306 0, (char*)pKeyInfo, P4_KEYINFO); 6307 6308 /* Initialize memory locations used by GROUP BY aggregate processing 6309 */ 6310 iUseFlag = ++pParse->nMem; 6311 iAbortFlag = ++pParse->nMem; 6312 regOutputRow = ++pParse->nMem; 6313 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6314 regReset = ++pParse->nMem; 6315 addrReset = sqlite3VdbeMakeLabel(pParse); 6316 iAMem = pParse->nMem + 1; 6317 pParse->nMem += pGroupBy->nExpr; 6318 iBMem = pParse->nMem + 1; 6319 pParse->nMem += pGroupBy->nExpr; 6320 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6321 VdbeComment((v, "clear abort flag")); 6322 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6323 6324 /* Begin a loop that will extract all source rows in GROUP BY order. 6325 ** This might involve two separate loops with an OP_Sort in between, or 6326 ** it might be a single loop that uses an index to extract information 6327 ** in the right order to begin with. 6328 */ 6329 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6330 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6331 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6332 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6333 ); 6334 if( pWInfo==0 ) goto select_end; 6335 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6336 /* The optimizer is able to deliver rows in group by order so 6337 ** we do not have to sort. The OP_OpenEphemeral table will be 6338 ** cancelled later because we still need to use the pKeyInfo 6339 */ 6340 groupBySort = 0; 6341 }else{ 6342 /* Rows are coming out in undetermined order. We have to push 6343 ** each row into a sorting index, terminate the first loop, 6344 ** then loop over the sorting index in order to get the output 6345 ** in sorted order 6346 */ 6347 int regBase; 6348 int regRecord; 6349 int nCol; 6350 int nGroupBy; 6351 6352 explainTempTable(pParse, 6353 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6354 "DISTINCT" : "GROUP BY"); 6355 6356 groupBySort = 1; 6357 nGroupBy = pGroupBy->nExpr; 6358 nCol = nGroupBy; 6359 j = nGroupBy; 6360 for(i=0; i<sAggInfo.nColumn; i++){ 6361 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6362 nCol++; 6363 j++; 6364 } 6365 } 6366 regBase = sqlite3GetTempRange(pParse, nCol); 6367 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6368 j = nGroupBy; 6369 for(i=0; i<sAggInfo.nColumn; i++){ 6370 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6371 if( pCol->iSorterColumn>=j ){ 6372 int r1 = j + regBase; 6373 sqlite3ExprCodeGetColumnOfTable(v, 6374 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6375 j++; 6376 } 6377 } 6378 regRecord = sqlite3GetTempReg(pParse); 6379 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6380 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6381 sqlite3ReleaseTempReg(pParse, regRecord); 6382 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6383 sqlite3WhereEnd(pWInfo); 6384 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6385 sortOut = sqlite3GetTempReg(pParse); 6386 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6387 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6388 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6389 sAggInfo.useSortingIdx = 1; 6390 } 6391 6392 /* If the index or temporary table used by the GROUP BY sort 6393 ** will naturally deliver rows in the order required by the ORDER BY 6394 ** clause, cancel the ephemeral table open coded earlier. 6395 ** 6396 ** This is an optimization - the correct answer should result regardless. 6397 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6398 ** disable this optimization for testing purposes. */ 6399 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6400 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6401 ){ 6402 sSort.pOrderBy = 0; 6403 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6404 } 6405 6406 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6407 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6408 ** Then compare the current GROUP BY terms against the GROUP BY terms 6409 ** from the previous row currently stored in a0, a1, a2... 6410 */ 6411 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6412 if( groupBySort ){ 6413 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6414 sortOut, sortPTab); 6415 } 6416 for(j=0; j<pGroupBy->nExpr; j++){ 6417 if( groupBySort ){ 6418 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6419 }else{ 6420 sAggInfo.directMode = 1; 6421 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6422 } 6423 } 6424 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6425 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6426 addr1 = sqlite3VdbeCurrentAddr(v); 6427 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6428 6429 /* Generate code that runs whenever the GROUP BY changes. 6430 ** Changes in the GROUP BY are detected by the previous code 6431 ** block. If there were no changes, this block is skipped. 6432 ** 6433 ** This code copies current group by terms in b0,b1,b2,... 6434 ** over to a0,a1,a2. It then calls the output subroutine 6435 ** and resets the aggregate accumulator registers in preparation 6436 ** for the next GROUP BY batch. 6437 */ 6438 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6439 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6440 VdbeComment((v, "output one row")); 6441 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6442 VdbeComment((v, "check abort flag")); 6443 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6444 VdbeComment((v, "reset accumulator")); 6445 6446 /* Update the aggregate accumulators based on the content of 6447 ** the current row 6448 */ 6449 sqlite3VdbeJumpHere(v, addr1); 6450 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6451 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6452 VdbeComment((v, "indicate data in accumulator")); 6453 6454 /* End of the loop 6455 */ 6456 if( groupBySort ){ 6457 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6458 VdbeCoverage(v); 6459 }else{ 6460 sqlite3WhereEnd(pWInfo); 6461 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6462 } 6463 6464 /* Output the final row of result 6465 */ 6466 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6467 VdbeComment((v, "output final row")); 6468 6469 /* Jump over the subroutines 6470 */ 6471 sqlite3VdbeGoto(v, addrEnd); 6472 6473 /* Generate a subroutine that outputs a single row of the result 6474 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6475 ** is less than or equal to zero, the subroutine is a no-op. If 6476 ** the processing calls for the query to abort, this subroutine 6477 ** increments the iAbortFlag memory location before returning in 6478 ** order to signal the caller to abort. 6479 */ 6480 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6481 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6482 VdbeComment((v, "set abort flag")); 6483 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6484 sqlite3VdbeResolveLabel(v, addrOutputRow); 6485 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6486 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6487 VdbeCoverage(v); 6488 VdbeComment((v, "Groupby result generator entry point")); 6489 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6490 finalizeAggFunctions(pParse, &sAggInfo); 6491 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6492 selectInnerLoop(pParse, p, -1, &sSort, 6493 &sDistinct, pDest, 6494 addrOutputRow+1, addrSetAbort); 6495 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6496 VdbeComment((v, "end groupby result generator")); 6497 6498 /* Generate a subroutine that will reset the group-by accumulator 6499 */ 6500 sqlite3VdbeResolveLabel(v, addrReset); 6501 resetAccumulator(pParse, &sAggInfo); 6502 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6503 VdbeComment((v, "indicate accumulator empty")); 6504 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6505 6506 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6507 else { 6508 #ifndef SQLITE_OMIT_BTREECOUNT 6509 Table *pTab; 6510 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6511 /* If isSimpleCount() returns a pointer to a Table structure, then 6512 ** the SQL statement is of the form: 6513 ** 6514 ** SELECT count(*) FROM <tbl> 6515 ** 6516 ** where the Table structure returned represents table <tbl>. 6517 ** 6518 ** This statement is so common that it is optimized specially. The 6519 ** OP_Count instruction is executed either on the intkey table that 6520 ** contains the data for table <tbl> or on one of its indexes. It 6521 ** is better to execute the op on an index, as indexes are almost 6522 ** always spread across less pages than their corresponding tables. 6523 */ 6524 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6525 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6526 Index *pIdx; /* Iterator variable */ 6527 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6528 Index *pBest = 0; /* Best index found so far */ 6529 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6530 6531 sqlite3CodeVerifySchema(pParse, iDb); 6532 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6533 6534 /* Search for the index that has the lowest scan cost. 6535 ** 6536 ** (2011-04-15) Do not do a full scan of an unordered index. 6537 ** 6538 ** (2013-10-03) Do not count the entries in a partial index. 6539 ** 6540 ** In practice the KeyInfo structure will not be used. It is only 6541 ** passed to keep OP_OpenRead happy. 6542 */ 6543 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6544 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6545 if( pIdx->bUnordered==0 6546 && pIdx->szIdxRow<pTab->szTabRow 6547 && pIdx->pPartIdxWhere==0 6548 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6549 ){ 6550 pBest = pIdx; 6551 } 6552 } 6553 if( pBest ){ 6554 iRoot = pBest->tnum; 6555 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6556 } 6557 6558 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6559 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6560 if( pKeyInfo ){ 6561 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6562 } 6563 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6564 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6565 explainSimpleCount(pParse, pTab, pBest); 6566 }else 6567 #endif /* SQLITE_OMIT_BTREECOUNT */ 6568 { 6569 int regAcc = 0; /* "populate accumulators" flag */ 6570 6571 /* If there are accumulator registers but no min() or max() functions, 6572 ** allocate register regAcc. Register regAcc will contain 0 the first 6573 ** time the inner loop runs, and 1 thereafter. The code generated 6574 ** by updateAccumulator() only updates the accumulator registers if 6575 ** regAcc contains 0. */ 6576 if( sAggInfo.nAccumulator ){ 6577 for(i=0; i<sAggInfo.nFunc; i++){ 6578 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6579 } 6580 if( i==sAggInfo.nFunc ){ 6581 regAcc = ++pParse->nMem; 6582 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6583 } 6584 } 6585 6586 /* This case runs if the aggregate has no GROUP BY clause. The 6587 ** processing is much simpler since there is only a single row 6588 ** of output. 6589 */ 6590 assert( p->pGroupBy==0 ); 6591 resetAccumulator(pParse, &sAggInfo); 6592 6593 /* If this query is a candidate for the min/max optimization, then 6594 ** minMaxFlag will have been previously set to either 6595 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6596 ** be an appropriate ORDER BY expression for the optimization. 6597 */ 6598 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6599 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6600 6601 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6602 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6603 0, minMaxFlag, 0); 6604 if( pWInfo==0 ){ 6605 goto select_end; 6606 } 6607 updateAccumulator(pParse, regAcc, &sAggInfo); 6608 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6609 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6610 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6611 VdbeComment((v, "%s() by index", 6612 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6613 } 6614 sqlite3WhereEnd(pWInfo); 6615 finalizeAggFunctions(pParse, &sAggInfo); 6616 } 6617 6618 sSort.pOrderBy = 0; 6619 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6620 selectInnerLoop(pParse, p, -1, 0, 0, 6621 pDest, addrEnd, addrEnd); 6622 } 6623 sqlite3VdbeResolveLabel(v, addrEnd); 6624 6625 } /* endif aggregate query */ 6626 6627 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6628 explainTempTable(pParse, "DISTINCT"); 6629 } 6630 6631 /* If there is an ORDER BY clause, then we need to sort the results 6632 ** and send them to the callback one by one. 6633 */ 6634 if( sSort.pOrderBy ){ 6635 explainTempTable(pParse, 6636 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6637 assert( p->pEList==pEList ); 6638 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6639 } 6640 6641 /* Jump here to skip this query 6642 */ 6643 sqlite3VdbeResolveLabel(v, iEnd); 6644 6645 /* The SELECT has been coded. If there is an error in the Parse structure, 6646 ** set the return code to 1. Otherwise 0. */ 6647 rc = (pParse->nErr>0); 6648 6649 /* Control jumps to here if an error is encountered above, or upon 6650 ** successful coding of the SELECT. 6651 */ 6652 select_end: 6653 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6654 sqlite3DbFree(db, sAggInfo.aCol); 6655 sqlite3DbFree(db, sAggInfo.aFunc); 6656 #if SELECTTRACE_ENABLED 6657 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6658 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6659 sqlite3TreeViewSelect(0, p, 0); 6660 } 6661 #endif 6662 ExplainQueryPlanPop(pParse); 6663 return rc; 6664 } 6665