1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 ** 208 ** These are the valid join types: 209 ** 210 ** 211 ** pA pB pC Return Value 212 ** ------- ----- ----- ------------ 213 ** CROSS - - JT_CROSS 214 ** INNER - - JT_INNER 215 ** LEFT - - JT_LEFT|JT_OUTER 216 ** LEFT OUTER - JT_LEFT|JT_OUTER 217 ** RIGHT - - JT_RIGHT|JT_OUTER 218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** NATURAL INNER - JT_NATURAL|JT_INNER 222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 228 ** 229 ** To preserve historical compatibly, SQLite also accepts a variety 230 ** of other non-standard and in many cases non-sensical join types. 231 ** This routine makes as much sense at it can from the nonsense join 232 ** type and returns a result. Examples of accepted nonsense join types 233 ** include but are not limited to: 234 ** 235 ** INNER CROSS JOIN -> same as JOIN 236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 237 ** OUTER LEFT JOIN -> same as LEFT JOIN 238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 239 ** LEFT RIGHT JOIN -> same as FULL JOIN 240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 241 ** CROSS CROSS CROSS JOIN -> same as JOIN 242 ** 243 ** The only restrictions on the join type name are: 244 ** 245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 246 ** or "FULL". 247 ** 248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 249 ** or "FULL". 250 ** 251 ** * If "OUTER" is present then there must also be one of 252 ** "LEFT", "RIGHT", or "FULL" 253 */ 254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 255 int jointype = 0; 256 Token *apAll[3]; 257 Token *p; 258 /* 0123456789 123456789 123456789 123 */ 259 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 260 static const struct { 261 u8 i; /* Beginning of keyword text in zKeyText[] */ 262 u8 nChar; /* Length of the keyword in characters */ 263 u8 code; /* Join type mask */ 264 } aKeyword[] = { 265 /* (0) natural */ { 0, 7, JT_NATURAL }, 266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 267 /* (2) outer */ { 10, 5, JT_OUTER }, 268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 270 /* (5) inner */ { 23, 5, JT_INNER }, 271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 272 }; 273 int i, j; 274 apAll[0] = pA; 275 apAll[1] = pB; 276 apAll[2] = pC; 277 for(i=0; i<3 && apAll[i]; i++){ 278 p = apAll[i]; 279 for(j=0; j<ArraySize(aKeyword); j++){ 280 if( p->n==aKeyword[j].nChar 281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 282 jointype |= aKeyword[j].code; 283 break; 284 } 285 } 286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 287 if( j>=ArraySize(aKeyword) ){ 288 jointype |= JT_ERROR; 289 break; 290 } 291 } 292 if( 293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 294 (jointype & JT_ERROR)!=0 || 295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 296 ){ 297 const char *zSp1 = " "; 298 const char *zSp2 = " "; 299 if( pB==0 ){ zSp1++; } 300 if( pC==0 ){ zSp2++; } 301 sqlite3ErrorMsg(pParse, "unknown join type: " 302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 303 jointype = JT_INNER; 304 } 305 return jointype; 306 } 307 308 /* 309 ** Return the index of a column in a table. Return -1 if the column 310 ** is not contained in the table. 311 */ 312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 313 int i; 314 u8 h = sqlite3StrIHash(zCol); 315 Column *pCol; 316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 318 } 319 return -1; 320 } 321 322 /* 323 ** Mark a subquery result column as having been used. 324 */ 325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 326 assert( pItem!=0 ); 327 assert( pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 328 if( pItem->fg.isNestedFrom ){ 329 ExprList *pResults; 330 assert( pItem->pSelect!=0 ); 331 pResults = pItem->pSelect->pEList; 332 assert( pResults!=0 ); 333 assert( iCol>=0 && iCol<pResults->nExpr ); 334 pResults->a[iCol].fg.bUsed = 1; 335 } 336 } 337 338 /* 339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 340 ** table that has a column named zCol. The search is left-to-right. 341 ** The first match found is returned. 342 ** 343 ** When found, set *piTab and *piCol to the table index and column index 344 ** of the matching column and return TRUE. 345 ** 346 ** If not found, return FALSE. 347 */ 348 static int tableAndColumnIndex( 349 SrcList *pSrc, /* Array of tables to search */ 350 int iStart, /* First member of pSrc->a[] to check */ 351 int iEnd, /* Last member of pSrc->a[] to check */ 352 const char *zCol, /* Name of the column we are looking for */ 353 int *piTab, /* Write index of pSrc->a[] here */ 354 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 355 int bIgnoreHidden /* Ignore hidden columns */ 356 ){ 357 int i; /* For looping over tables in pSrc */ 358 int iCol; /* Index of column matching zCol */ 359 360 assert( iEnd<pSrc->nSrc ); 361 assert( iStart>=0 ); 362 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 363 364 for(i=iStart; i<=iEnd; i++){ 365 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 366 if( iCol>=0 367 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 368 ){ 369 if( piTab ){ 370 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 371 *piTab = i; 372 *piCol = iCol; 373 } 374 return 1; 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Set the EP_OuterON property on all terms of the given expression. 382 ** And set the Expr.w.iJoin to iTable for every term in the 383 ** expression. 384 ** 385 ** The EP_OuterON property is used on terms of an expression to tell 386 ** the OUTER JOIN processing logic that this term is part of the 387 ** join restriction specified in the ON or USING clause and not a part 388 ** of the more general WHERE clause. These terms are moved over to the 389 ** WHERE clause during join processing but we need to remember that they 390 ** originated in the ON or USING clause. 391 ** 392 ** The Expr.w.iJoin tells the WHERE clause processing that the 393 ** expression depends on table w.iJoin even if that table is not 394 ** explicitly mentioned in the expression. That information is needed 395 ** for cases like this: 396 ** 397 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 398 ** 399 ** The where clause needs to defer the handling of the t1.x=5 400 ** term until after the t2 loop of the join. In that way, a 401 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 402 ** defer the handling of t1.x=5, it will be processed immediately 403 ** after the t1 loop and rows with t1.x!=5 will never appear in 404 ** the output, which is incorrect. 405 */ 406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 407 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); 408 while( p ){ 409 ExprSetProperty(p, joinFlag); 410 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 411 ExprSetVVAProperty(p, EP_NoReduce); 412 p->w.iJoin = iTable; 413 if( p->op==TK_FUNCTION ){ 414 assert( ExprUseXList(p) ); 415 if( p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 419 } 420 } 421 } 422 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 423 p = p->pRight; 424 } 425 } 426 427 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN 428 ** is simplified into an ordinary JOIN, and when an ON expression is 429 ** "pushed down" into the WHERE clause of a subquery. 430 ** 431 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into 432 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then 433 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. 434 ** 435 ** If nullable is true, that means that Expr p might evaluate to NULL even 436 ** if it is a reference to a NOT NULL column. This can happen, for example, 437 ** if the table that p references is on the left side of a RIGHT JOIN. 438 ** If nullable is true, then take care to not remove the EP_CanBeNull bit. 439 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c 440 */ 441 static void unsetJoinExpr(Expr *p, int iTable, int nullable){ 442 while( p ){ 443 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ 444 ExprClearProperty(p, EP_OuterON|EP_InnerON); 445 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); 446 } 447 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ 448 ExprClearProperty(p, EP_CanBeNull); 449 } 450 if( p->op==TK_FUNCTION ){ 451 assert( ExprUseXList(p) ); 452 if( p->x.pList ){ 453 int i; 454 for(i=0; i<p->x.pList->nExpr; i++){ 455 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); 456 } 457 } 458 } 459 unsetJoinExpr(p->pLeft, iTable, nullable); 460 p = p->pRight; 461 } 462 } 463 464 /* 465 ** This routine processes the join information for a SELECT statement. 466 ** 467 ** * A NATURAL join is converted into a USING join. After that, we 468 ** do not need to be concerned with NATURAL joins and we only have 469 ** think about USING joins. 470 ** 471 ** * ON and USING clauses result in extra terms being added to the 472 ** WHERE clause to enforce the specified constraints. The extra 473 ** WHERE clause terms will be tagged with EP_OuterON or 474 ** EP_InnerON so that we know that they originated in ON/USING. 475 ** 476 ** The terms of a FROM clause are contained in the Select.pSrc structure. 477 ** The left most table is the first entry in Select.pSrc. The right-most 478 ** table is the last entry. The join operator is held in the entry to 479 ** the right. Thus entry 1 contains the join operator for the join between 480 ** entries 0 and 1. Any ON or USING clauses associated with the join are 481 ** also attached to the right entry. 482 ** 483 ** This routine returns the number of errors encountered. 484 */ 485 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 486 SrcList *pSrc; /* All tables in the FROM clause */ 487 int i, j; /* Loop counters */ 488 SrcItem *pLeft; /* Left table being joined */ 489 SrcItem *pRight; /* Right table being joined */ 490 491 pSrc = p->pSrc; 492 pLeft = &pSrc->a[0]; 493 pRight = &pLeft[1]; 494 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 495 Table *pRightTab = pRight->pTab; 496 u32 joinType; 497 498 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 499 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; 500 501 /* If this is a NATURAL join, synthesize an approprate USING clause 502 ** to specify which columns should be joined. 503 */ 504 if( pRight->fg.jointype & JT_NATURAL ){ 505 IdList *pUsing = 0; 506 if( pRight->fg.isUsing || pRight->u3.pOn ){ 507 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 508 "an ON or USING clause", 0); 509 return 1; 510 } 511 for(j=0; j<pRightTab->nCol; j++){ 512 char *zName; /* Name of column in the right table */ 513 514 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 515 zName = pRightTab->aCol[j].zCnName; 516 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 517 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 518 if( pUsing ){ 519 assert( pUsing->nId>0 ); 520 assert( pUsing->a[pUsing->nId-1].zName==0 ); 521 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 522 } 523 } 524 } 525 if( pUsing ){ 526 pRight->fg.isUsing = 1; 527 pRight->fg.isSynthUsing = 1; 528 pRight->u3.pUsing = pUsing; 529 } 530 if( pParse->nErr ) return 1; 531 } 532 533 /* Create extra terms on the WHERE clause for each column named 534 ** in the USING clause. Example: If the two tables to be joined are 535 ** A and B and the USING clause names X, Y, and Z, then add this 536 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 537 ** Report an error if any column mentioned in the USING clause is 538 ** not contained in both tables to be joined. 539 */ 540 if( pRight->fg.isUsing ){ 541 IdList *pList = pRight->u3.pUsing; 542 sqlite3 *db = pParse->db; 543 assert( pList!=0 ); 544 for(j=0; j<pList->nId; j++){ 545 char *zName; /* Name of the term in the USING clause */ 546 int iLeft; /* Table on the left with matching column name */ 547 int iLeftCol; /* Column number of matching column on the left */ 548 int iRightCol; /* Column number of matching column on the right */ 549 Expr *pE1; /* Reference to the column on the LEFT of the join */ 550 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 551 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 552 553 zName = pList->a[j].zName; 554 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 555 if( iRightCol<0 556 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 557 pRight->fg.isSynthUsing)==0 558 ){ 559 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 560 "not present in both tables", zName); 561 return 1; 562 } 563 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 564 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 565 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 566 /* This branch runs if the query contains one or more RIGHT or FULL 567 ** JOINs. If only a single table on the left side of this join 568 ** contains the zName column, then this branch is a no-op. 569 ** But if there are two or more tables on the left side 570 ** of the join, construct a coalesce() function that gathers all 571 ** such tables. Raise an error if more than one of those references 572 ** to zName is not also within a prior USING clause. 573 ** 574 ** We really ought to raise an error if there are two or more 575 ** non-USING references to zName on the left of an INNER or LEFT 576 ** JOIN. But older versions of SQLite do not do that, so we avoid 577 ** adding a new error so as to not break legacy applications. 578 */ 579 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 580 static const Token tkCoalesce = { "coalesce", 8 }; 581 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 582 pRight->fg.isSynthUsing)!=0 ){ 583 if( pSrc->a[iLeft].fg.isUsing==0 584 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 585 ){ 586 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 587 zName); 588 break; 589 } 590 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 591 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 592 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 593 } 594 if( pFuncArgs ){ 595 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 596 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 597 } 598 } 599 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 600 sqlite3SrcItemColumnUsed(pRight, iRightCol); 601 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 602 assert( pE2!=0 || pEq==0 ); 603 if( pEq ){ 604 ExprSetProperty(pEq, joinType); 605 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 606 ExprSetVVAProperty(pEq, EP_NoReduce); 607 pEq->w.iJoin = pE2->iTable; 608 } 609 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 610 } 611 } 612 613 /* Add the ON clause to the end of the WHERE clause, connected by 614 ** an AND operator. 615 */ 616 else if( pRight->u3.pOn ){ 617 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 619 pRight->u3.pOn = 0; 620 pRight->fg.isOn = 1; 621 } 622 } 623 return 0; 624 } 625 626 /* 627 ** An instance of this object holds information (beyond pParse and pSelect) 628 ** needed to load the next result row that is to be added to the sorter. 629 */ 630 typedef struct RowLoadInfo RowLoadInfo; 631 struct RowLoadInfo { 632 int regResult; /* Store results in array of registers here */ 633 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 635 ExprList *pExtra; /* Extra columns needed by sorter refs */ 636 int regExtraResult; /* Where to load the extra columns */ 637 #endif 638 }; 639 640 /* 641 ** This routine does the work of loading query data into an array of 642 ** registers so that it can be added to the sorter. 643 */ 644 static void innerLoopLoadRow( 645 Parse *pParse, /* Statement under construction */ 646 Select *pSelect, /* The query being coded */ 647 RowLoadInfo *pInfo /* Info needed to complete the row load */ 648 ){ 649 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 650 0, pInfo->ecelFlags); 651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 652 if( pInfo->pExtra ){ 653 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 654 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 655 } 656 #endif 657 } 658 659 /* 660 ** Code the OP_MakeRecord instruction that generates the entry to be 661 ** added into the sorter. 662 ** 663 ** Return the register in which the result is stored. 664 */ 665 static int makeSorterRecord( 666 Parse *pParse, 667 SortCtx *pSort, 668 Select *pSelect, 669 int regBase, 670 int nBase 671 ){ 672 int nOBSat = pSort->nOBSat; 673 Vdbe *v = pParse->pVdbe; 674 int regOut = ++pParse->nMem; 675 if( pSort->pDeferredRowLoad ){ 676 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 677 } 678 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 679 return regOut; 680 } 681 682 /* 683 ** Generate code that will push the record in registers regData 684 ** through regData+nData-1 onto the sorter. 685 */ 686 static void pushOntoSorter( 687 Parse *pParse, /* Parser context */ 688 SortCtx *pSort, /* Information about the ORDER BY clause */ 689 Select *pSelect, /* The whole SELECT statement */ 690 int regData, /* First register holding data to be sorted */ 691 int regOrigData, /* First register holding data before packing */ 692 int nData, /* Number of elements in the regData data array */ 693 int nPrefixReg /* No. of reg prior to regData available for use */ 694 ){ 695 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 696 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 697 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 698 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 699 int regBase; /* Regs for sorter record */ 700 int regRecord = 0; /* Assembled sorter record */ 701 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 702 int op; /* Opcode to add sorter record to sorter */ 703 int iLimit; /* LIMIT counter */ 704 int iSkip = 0; /* End of the sorter insert loop */ 705 706 assert( bSeq==0 || bSeq==1 ); 707 708 /* Three cases: 709 ** (1) The data to be sorted has already been packed into a Record 710 ** by a prior OP_MakeRecord. In this case nData==1 and regData 711 ** will be completely unrelated to regOrigData. 712 ** (2) All output columns are included in the sort record. In that 713 ** case regData==regOrigData. 714 ** (3) Some output columns are omitted from the sort record due to 715 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 716 ** SQLITE_ECEL_OMITREF optimization, or due to the 717 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 718 ** regOrigData is 0 to prevent this routine from trying to copy 719 ** values that might not yet exist. 720 */ 721 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 722 723 if( nPrefixReg ){ 724 assert( nPrefixReg==nExpr+bSeq ); 725 regBase = regData - nPrefixReg; 726 }else{ 727 regBase = pParse->nMem + 1; 728 pParse->nMem += nBase; 729 } 730 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 731 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 732 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 733 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 734 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 735 if( bSeq ){ 736 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 737 } 738 if( nPrefixReg==0 && nData>0 ){ 739 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 740 } 741 if( nOBSat>0 ){ 742 int regPrevKey; /* The first nOBSat columns of the previous row */ 743 int addrFirst; /* Address of the OP_IfNot opcode */ 744 int addrJmp; /* Address of the OP_Jump opcode */ 745 VdbeOp *pOp; /* Opcode that opens the sorter */ 746 int nKey; /* Number of sorting key columns, including OP_Sequence */ 747 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 748 749 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 750 regPrevKey = pParse->nMem+1; 751 pParse->nMem += pSort->nOBSat; 752 nKey = nExpr - pSort->nOBSat + bSeq; 753 if( bSeq ){ 754 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 755 }else{ 756 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 757 } 758 VdbeCoverage(v); 759 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 760 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 761 if( pParse->db->mallocFailed ) return; 762 pOp->p2 = nKey + nData; 763 pKI = pOp->p4.pKeyInfo; 764 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 765 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 766 testcase( pKI->nAllField > pKI->nKeyField+2 ); 767 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 768 pKI->nAllField-pKI->nKeyField-1); 769 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 770 addrJmp = sqlite3VdbeCurrentAddr(v); 771 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 772 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 773 pSort->regReturn = ++pParse->nMem; 774 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 775 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 776 if( iLimit ){ 777 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 778 VdbeCoverage(v); 779 } 780 sqlite3VdbeJumpHere(v, addrFirst); 781 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 782 sqlite3VdbeJumpHere(v, addrJmp); 783 } 784 if( iLimit ){ 785 /* At this point the values for the new sorter entry are stored 786 ** in an array of registers. They need to be composed into a record 787 ** and inserted into the sorter if either (a) there are currently 788 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 789 ** the largest record currently in the sorter. If (b) is true and there 790 ** are already LIMIT+OFFSET items in the sorter, delete the largest 791 ** entry before inserting the new one. This way there are never more 792 ** than LIMIT+OFFSET items in the sorter. 793 ** 794 ** If the new record does not need to be inserted into the sorter, 795 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 796 ** value is not zero, then it is a label of where to jump. Otherwise, 797 ** just bypass the row insert logic. See the header comment on the 798 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 799 */ 800 int iCsr = pSort->iECursor; 801 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 802 VdbeCoverage(v); 803 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 804 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 805 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 806 VdbeCoverage(v); 807 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 808 } 809 if( regRecord==0 ){ 810 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 811 } 812 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 813 op = OP_SorterInsert; 814 }else{ 815 op = OP_IdxInsert; 816 } 817 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 818 regBase+nOBSat, nBase-nOBSat); 819 if( iSkip ){ 820 sqlite3VdbeChangeP2(v, iSkip, 821 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 822 } 823 } 824 825 /* 826 ** Add code to implement the OFFSET 827 */ 828 static void codeOffset( 829 Vdbe *v, /* Generate code into this VM */ 830 int iOffset, /* Register holding the offset counter */ 831 int iContinue /* Jump here to skip the current record */ 832 ){ 833 if( iOffset>0 ){ 834 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 835 VdbeComment((v, "OFFSET")); 836 } 837 } 838 839 /* 840 ** Add code that will check to make sure the array of registers starting at 841 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 842 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 843 ** are available. Which is used depends on the value of parameter eTnctType, 844 ** as follows: 845 ** 846 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 847 ** Build an ephemeral table that contains all entries seen before and 848 ** skip entries which have been seen before. 849 ** 850 ** Parameter iTab is the cursor number of an ephemeral table that must 851 ** be opened before the VM code generated by this routine is executed. 852 ** The ephemeral cursor table is queried for a record identical to the 853 ** record formed by the current array of registers. If one is found, 854 ** jump to VM address addrRepeat. Otherwise, insert a new record into 855 ** the ephemeral cursor and proceed. 856 ** 857 ** The returned value in this case is a copy of parameter iTab. 858 ** 859 ** WHERE_DISTINCT_ORDERED: 860 ** In this case rows are being delivered sorted order. The ephermal 861 ** table is not required. Instead, the current set of values 862 ** is compared against previous row. If they match, the new row 863 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 864 ** the VM program proceeds with processing the new row. 865 ** 866 ** The returned value in this case is the register number of the first 867 ** in an array of registers used to store the previous result row so that 868 ** it can be compared to the next. The caller must ensure that this 869 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 870 ** will take care of this initialization.) 871 ** 872 ** WHERE_DISTINCT_UNIQUE: 873 ** In this case it has already been determined that the rows are distinct. 874 ** No special action is required. The return value is zero. 875 ** 876 ** Parameter pEList is the list of expressions used to generated the 877 ** contents of each row. It is used by this routine to determine (a) 878 ** how many elements there are in the array of registers and (b) the 879 ** collation sequences that should be used for the comparisons if 880 ** eTnctType is WHERE_DISTINCT_ORDERED. 881 */ 882 static int codeDistinct( 883 Parse *pParse, /* Parsing and code generating context */ 884 int eTnctType, /* WHERE_DISTINCT_* value */ 885 int iTab, /* A sorting index used to test for distinctness */ 886 int addrRepeat, /* Jump to here if not distinct */ 887 ExprList *pEList, /* Expression for each element */ 888 int regElem /* First element */ 889 ){ 890 int iRet = 0; 891 int nResultCol = pEList->nExpr; 892 Vdbe *v = pParse->pVdbe; 893 894 switch( eTnctType ){ 895 case WHERE_DISTINCT_ORDERED: { 896 int i; 897 int iJump; /* Jump destination */ 898 int regPrev; /* Previous row content */ 899 900 /* Allocate space for the previous row */ 901 iRet = regPrev = pParse->nMem+1; 902 pParse->nMem += nResultCol; 903 904 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 905 for(i=0; i<nResultCol; i++){ 906 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 907 if( i<nResultCol-1 ){ 908 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 909 VdbeCoverage(v); 910 }else{ 911 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 912 VdbeCoverage(v); 913 } 914 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 915 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 916 } 917 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 918 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 919 break; 920 } 921 922 case WHERE_DISTINCT_UNIQUE: { 923 /* nothing to do */ 924 break; 925 } 926 927 default: { 928 int r1 = sqlite3GetTempReg(pParse); 929 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 930 VdbeCoverage(v); 931 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 932 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 933 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 934 sqlite3ReleaseTempReg(pParse, r1); 935 iRet = iTab; 936 break; 937 } 938 } 939 940 return iRet; 941 } 942 943 /* 944 ** This routine runs after codeDistinct(). It makes necessary 945 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 946 ** routine made use of. This processing must be done separately since 947 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 948 ** laid down. 949 ** 950 ** WHERE_DISTINCT_NOOP: 951 ** WHERE_DISTINCT_UNORDERED: 952 ** 953 ** No adjustments necessary. This function is a no-op. 954 ** 955 ** WHERE_DISTINCT_UNIQUE: 956 ** 957 ** The ephemeral table is not needed. So change the 958 ** OP_OpenEphemeral opcode into an OP_Noop. 959 ** 960 ** WHERE_DISTINCT_ORDERED: 961 ** 962 ** The ephemeral table is not needed. But we do need register 963 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 964 ** into an OP_Null on the iVal register. 965 */ 966 static void fixDistinctOpenEph( 967 Parse *pParse, /* Parsing and code generating context */ 968 int eTnctType, /* WHERE_DISTINCT_* value */ 969 int iVal, /* Value returned by codeDistinct() */ 970 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 971 ){ 972 if( pParse->nErr==0 973 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 974 ){ 975 Vdbe *v = pParse->pVdbe; 976 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 977 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 978 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 979 } 980 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 981 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 982 ** bit on the first register of the previous value. This will cause the 983 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 984 ** the loop even if the first row is all NULLs. */ 985 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 986 pOp->opcode = OP_Null; 987 pOp->p1 = 1; 988 pOp->p2 = iVal; 989 } 990 } 991 } 992 993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 994 /* 995 ** This function is called as part of inner-loop generation for a SELECT 996 ** statement with an ORDER BY that is not optimized by an index. It 997 ** determines the expressions, if any, that the sorter-reference 998 ** optimization should be used for. The sorter-reference optimization 999 ** is used for SELECT queries like: 1000 ** 1001 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 1002 ** 1003 ** If the optimization is used for expression "bigblob", then instead of 1004 ** storing values read from that column in the sorter records, the PK of 1005 ** the row from table t1 is stored instead. Then, as records are extracted from 1006 ** the sorter to return to the user, the required value of bigblob is 1007 ** retrieved directly from table t1. If the values are very large, this 1008 ** can be more efficient than storing them directly in the sorter records. 1009 ** 1010 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList 1011 ** for which the sorter-reference optimization should be enabled. 1012 ** Additionally, the pSort->aDefer[] array is populated with entries 1013 ** for all cursors required to evaluate all selected expressions. Finally. 1014 ** output variable (*ppExtra) is set to an expression list containing 1015 ** expressions for all extra PK values that should be stored in the 1016 ** sorter records. 1017 */ 1018 static void selectExprDefer( 1019 Parse *pParse, /* Leave any error here */ 1020 SortCtx *pSort, /* Sorter context */ 1021 ExprList *pEList, /* Expressions destined for sorter */ 1022 ExprList **ppExtra /* Expressions to append to sorter record */ 1023 ){ 1024 int i; 1025 int nDefer = 0; 1026 ExprList *pExtra = 0; 1027 for(i=0; i<pEList->nExpr; i++){ 1028 struct ExprList_item *pItem = &pEList->a[i]; 1029 if( pItem->u.x.iOrderByCol==0 ){ 1030 Expr *pExpr = pItem->pExpr; 1031 Table *pTab; 1032 if( pExpr->op==TK_COLUMN 1033 && pExpr->iColumn>=0 1034 && ALWAYS( ExprUseYTab(pExpr) ) 1035 && (pTab = pExpr->y.pTab)!=0 1036 && IsOrdinaryTable(pTab) 1037 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1038 ){ 1039 int j; 1040 for(j=0; j<nDefer; j++){ 1041 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1042 } 1043 if( j==nDefer ){ 1044 if( nDefer==ArraySize(pSort->aDefer) ){ 1045 continue; 1046 }else{ 1047 int nKey = 1; 1048 int k; 1049 Index *pPk = 0; 1050 if( !HasRowid(pTab) ){ 1051 pPk = sqlite3PrimaryKeyIndex(pTab); 1052 nKey = pPk->nKeyCol; 1053 } 1054 for(k=0; k<nKey; k++){ 1055 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1056 if( pNew ){ 1057 pNew->iTable = pExpr->iTable; 1058 assert( ExprUseYTab(pNew) ); 1059 pNew->y.pTab = pExpr->y.pTab; 1060 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1061 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1062 } 1063 } 1064 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1065 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1066 pSort->aDefer[nDefer].nKey = nKey; 1067 nDefer++; 1068 } 1069 } 1070 pItem->fg.bSorterRef = 1; 1071 } 1072 } 1073 } 1074 pSort->nDefer = (u8)nDefer; 1075 *ppExtra = pExtra; 1076 } 1077 #endif 1078 1079 /* 1080 ** This routine generates the code for the inside of the inner loop 1081 ** of a SELECT. 1082 ** 1083 ** If srcTab is negative, then the p->pEList expressions 1084 ** are evaluated in order to get the data for this row. If srcTab is 1085 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1086 ** to get the number of columns and the collation sequence for each column. 1087 */ 1088 static void selectInnerLoop( 1089 Parse *pParse, /* The parser context */ 1090 Select *p, /* The complete select statement being coded */ 1091 int srcTab, /* Pull data from this table if non-negative */ 1092 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1093 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1094 SelectDest *pDest, /* How to dispose of the results */ 1095 int iContinue, /* Jump here to continue with next row */ 1096 int iBreak /* Jump here to break out of the inner loop */ 1097 ){ 1098 Vdbe *v = pParse->pVdbe; 1099 int i; 1100 int hasDistinct; /* True if the DISTINCT keyword is present */ 1101 int eDest = pDest->eDest; /* How to dispose of results */ 1102 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1103 int nResultCol; /* Number of result columns */ 1104 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1105 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1106 1107 /* Usually, regResult is the first cell in an array of memory cells 1108 ** containing the current result row. In this case regOrig is set to the 1109 ** same value. However, if the results are being sent to the sorter, the 1110 ** values for any expressions that are also part of the sort-key are omitted 1111 ** from this array. In this case regOrig is set to zero. */ 1112 int regResult; /* Start of memory holding current results */ 1113 int regOrig; /* Start of memory holding full result (or 0) */ 1114 1115 assert( v ); 1116 assert( p->pEList!=0 ); 1117 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1118 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1119 if( pSort==0 && !hasDistinct ){ 1120 assert( iContinue!=0 ); 1121 codeOffset(v, p->iOffset, iContinue); 1122 } 1123 1124 /* Pull the requested columns. 1125 */ 1126 nResultCol = p->pEList->nExpr; 1127 1128 if( pDest->iSdst==0 ){ 1129 if( pSort ){ 1130 nPrefixReg = pSort->pOrderBy->nExpr; 1131 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1132 pParse->nMem += nPrefixReg; 1133 } 1134 pDest->iSdst = pParse->nMem+1; 1135 pParse->nMem += nResultCol; 1136 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1137 /* This is an error condition that can result, for example, when a SELECT 1138 ** on the right-hand side of an INSERT contains more result columns than 1139 ** there are columns in the table on the left. The error will be caught 1140 ** and reported later. But we need to make sure enough memory is allocated 1141 ** to avoid other spurious errors in the meantime. */ 1142 pParse->nMem += nResultCol; 1143 } 1144 pDest->nSdst = nResultCol; 1145 regOrig = regResult = pDest->iSdst; 1146 if( srcTab>=0 ){ 1147 for(i=0; i<nResultCol; i++){ 1148 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1149 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1150 } 1151 }else if( eDest!=SRT_Exists ){ 1152 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1153 ExprList *pExtra = 0; 1154 #endif 1155 /* If the destination is an EXISTS(...) expression, the actual 1156 ** values returned by the SELECT are not required. 1157 */ 1158 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1159 ExprList *pEList; 1160 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1161 ecelFlags = SQLITE_ECEL_DUP; 1162 }else{ 1163 ecelFlags = 0; 1164 } 1165 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1166 /* For each expression in p->pEList that is a copy of an expression in 1167 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1168 ** iOrderByCol value to one more than the index of the ORDER BY 1169 ** expression within the sort-key that pushOntoSorter() will generate. 1170 ** This allows the p->pEList field to be omitted from the sorted record, 1171 ** saving space and CPU cycles. */ 1172 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1173 1174 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1175 int j; 1176 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1177 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1178 } 1179 } 1180 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1181 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1182 if( pExtra && pParse->db->mallocFailed==0 ){ 1183 /* If there are any extra PK columns to add to the sorter records, 1184 ** allocate extra memory cells and adjust the OpenEphemeral 1185 ** instruction to account for the larger records. This is only 1186 ** required if there are one or more WITHOUT ROWID tables with 1187 ** composite primary keys in the SortCtx.aDefer[] array. */ 1188 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1189 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1190 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1191 pParse->nMem += pExtra->nExpr; 1192 } 1193 #endif 1194 1195 /* Adjust nResultCol to account for columns that are omitted 1196 ** from the sorter by the optimizations in this branch */ 1197 pEList = p->pEList; 1198 for(i=0; i<pEList->nExpr; i++){ 1199 if( pEList->a[i].u.x.iOrderByCol>0 1200 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1201 || pEList->a[i].fg.bSorterRef 1202 #endif 1203 ){ 1204 nResultCol--; 1205 regOrig = 0; 1206 } 1207 } 1208 1209 testcase( regOrig ); 1210 testcase( eDest==SRT_Set ); 1211 testcase( eDest==SRT_Mem ); 1212 testcase( eDest==SRT_Coroutine ); 1213 testcase( eDest==SRT_Output ); 1214 assert( eDest==SRT_Set || eDest==SRT_Mem 1215 || eDest==SRT_Coroutine || eDest==SRT_Output 1216 || eDest==SRT_Upfrom ); 1217 } 1218 sRowLoadInfo.regResult = regResult; 1219 sRowLoadInfo.ecelFlags = ecelFlags; 1220 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1221 sRowLoadInfo.pExtra = pExtra; 1222 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1223 if( pExtra ) nResultCol += pExtra->nExpr; 1224 #endif 1225 if( p->iLimit 1226 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1227 && nPrefixReg>0 1228 ){ 1229 assert( pSort!=0 ); 1230 assert( hasDistinct==0 ); 1231 pSort->pDeferredRowLoad = &sRowLoadInfo; 1232 regOrig = 0; 1233 }else{ 1234 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1235 } 1236 } 1237 1238 /* If the DISTINCT keyword was present on the SELECT statement 1239 ** and this row has been seen before, then do not make this row 1240 ** part of the result. 1241 */ 1242 if( hasDistinct ){ 1243 int eType = pDistinct->eTnctType; 1244 int iTab = pDistinct->tabTnct; 1245 assert( nResultCol==p->pEList->nExpr ); 1246 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1247 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1248 if( pSort==0 ){ 1249 codeOffset(v, p->iOffset, iContinue); 1250 } 1251 } 1252 1253 switch( eDest ){ 1254 /* In this mode, write each query result to the key of the temporary 1255 ** table iParm. 1256 */ 1257 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1258 case SRT_Union: { 1259 int r1; 1260 r1 = sqlite3GetTempReg(pParse); 1261 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1262 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1263 sqlite3ReleaseTempReg(pParse, r1); 1264 break; 1265 } 1266 1267 /* Construct a record from the query result, but instead of 1268 ** saving that record, use it as a key to delete elements from 1269 ** the temporary table iParm. 1270 */ 1271 case SRT_Except: { 1272 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1273 break; 1274 } 1275 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1276 1277 /* Store the result as data using a unique key. 1278 */ 1279 case SRT_Fifo: 1280 case SRT_DistFifo: 1281 case SRT_Table: 1282 case SRT_EphemTab: { 1283 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1284 testcase( eDest==SRT_Table ); 1285 testcase( eDest==SRT_EphemTab ); 1286 testcase( eDest==SRT_Fifo ); 1287 testcase( eDest==SRT_DistFifo ); 1288 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1289 #ifndef SQLITE_OMIT_CTE 1290 if( eDest==SRT_DistFifo ){ 1291 /* If the destination is DistFifo, then cursor (iParm+1) is open 1292 ** on an ephemeral index. If the current row is already present 1293 ** in the index, do not write it to the output. If not, add the 1294 ** current row to the index and proceed with writing it to the 1295 ** output table as well. */ 1296 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1297 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1298 VdbeCoverage(v); 1299 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1300 assert( pSort==0 ); 1301 } 1302 #endif 1303 if( pSort ){ 1304 assert( regResult==regOrig ); 1305 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1306 }else{ 1307 int r2 = sqlite3GetTempReg(pParse); 1308 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1309 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1310 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1311 sqlite3ReleaseTempReg(pParse, r2); 1312 } 1313 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1314 break; 1315 } 1316 1317 case SRT_Upfrom: { 1318 if( pSort ){ 1319 pushOntoSorter( 1320 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1321 }else{ 1322 int i2 = pDest->iSDParm2; 1323 int r1 = sqlite3GetTempReg(pParse); 1324 1325 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1326 ** might still be trying to return one row, because that is what 1327 ** aggregates do. Don't record that empty row in the output table. */ 1328 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1329 1330 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1331 regResult+(i2<0), nResultCol-(i2<0), r1); 1332 if( i2<0 ){ 1333 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1334 }else{ 1335 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1336 } 1337 } 1338 break; 1339 } 1340 1341 #ifndef SQLITE_OMIT_SUBQUERY 1342 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1343 ** then there should be a single item on the stack. Write this 1344 ** item into the set table with bogus data. 1345 */ 1346 case SRT_Set: { 1347 if( pSort ){ 1348 /* At first glance you would think we could optimize out the 1349 ** ORDER BY in this case since the order of entries in the set 1350 ** does not matter. But there might be a LIMIT clause, in which 1351 ** case the order does matter */ 1352 pushOntoSorter( 1353 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1354 }else{ 1355 int r1 = sqlite3GetTempReg(pParse); 1356 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1357 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1358 r1, pDest->zAffSdst, nResultCol); 1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1360 sqlite3ReleaseTempReg(pParse, r1); 1361 } 1362 break; 1363 } 1364 1365 1366 /* If any row exist in the result set, record that fact and abort. 1367 */ 1368 case SRT_Exists: { 1369 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1370 /* The LIMIT clause will terminate the loop for us */ 1371 break; 1372 } 1373 1374 /* If this is a scalar select that is part of an expression, then 1375 ** store the results in the appropriate memory cell or array of 1376 ** memory cells and break out of the scan loop. 1377 */ 1378 case SRT_Mem: { 1379 if( pSort ){ 1380 assert( nResultCol<=pDest->nSdst ); 1381 pushOntoSorter( 1382 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1383 }else{ 1384 assert( nResultCol==pDest->nSdst ); 1385 assert( regResult==iParm ); 1386 /* The LIMIT clause will jump out of the loop for us */ 1387 } 1388 break; 1389 } 1390 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1391 1392 case SRT_Coroutine: /* Send data to a co-routine */ 1393 case SRT_Output: { /* Return the results */ 1394 testcase( eDest==SRT_Coroutine ); 1395 testcase( eDest==SRT_Output ); 1396 if( pSort ){ 1397 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1398 nPrefixReg); 1399 }else if( eDest==SRT_Coroutine ){ 1400 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1401 }else{ 1402 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1403 } 1404 break; 1405 } 1406 1407 #ifndef SQLITE_OMIT_CTE 1408 /* Write the results into a priority queue that is order according to 1409 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1410 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1411 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1412 ** final OP_Sequence column. The last column is the record as a blob. 1413 */ 1414 case SRT_DistQueue: 1415 case SRT_Queue: { 1416 int nKey; 1417 int r1, r2, r3; 1418 int addrTest = 0; 1419 ExprList *pSO; 1420 pSO = pDest->pOrderBy; 1421 assert( pSO ); 1422 nKey = pSO->nExpr; 1423 r1 = sqlite3GetTempReg(pParse); 1424 r2 = sqlite3GetTempRange(pParse, nKey+2); 1425 r3 = r2+nKey+1; 1426 if( eDest==SRT_DistQueue ){ 1427 /* If the destination is DistQueue, then cursor (iParm+1) is open 1428 ** on a second ephemeral index that holds all values every previously 1429 ** added to the queue. */ 1430 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1431 regResult, nResultCol); 1432 VdbeCoverage(v); 1433 } 1434 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1435 if( eDest==SRT_DistQueue ){ 1436 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1437 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1438 } 1439 for(i=0; i<nKey; i++){ 1440 sqlite3VdbeAddOp2(v, OP_SCopy, 1441 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1442 r2+i); 1443 } 1444 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1445 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1446 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1447 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1448 sqlite3ReleaseTempReg(pParse, r1); 1449 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1450 break; 1451 } 1452 #endif /* SQLITE_OMIT_CTE */ 1453 1454 1455 1456 #if !defined(SQLITE_OMIT_TRIGGER) 1457 /* Discard the results. This is used for SELECT statements inside 1458 ** the body of a TRIGGER. The purpose of such selects is to call 1459 ** user-defined functions that have side effects. We do not care 1460 ** about the actual results of the select. 1461 */ 1462 default: { 1463 assert( eDest==SRT_Discard ); 1464 break; 1465 } 1466 #endif 1467 } 1468 1469 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1470 ** there is a sorter, in which case the sorter has already limited 1471 ** the output for us. 1472 */ 1473 if( pSort==0 && p->iLimit ){ 1474 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1475 } 1476 } 1477 1478 /* 1479 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1480 ** X extra columns. 1481 */ 1482 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1483 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1484 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1485 if( p ){ 1486 p->aSortFlags = (u8*)&p->aColl[N+X]; 1487 p->nKeyField = (u16)N; 1488 p->nAllField = (u16)(N+X); 1489 p->enc = ENC(db); 1490 p->db = db; 1491 p->nRef = 1; 1492 memset(&p[1], 0, nExtra); 1493 }else{ 1494 return (KeyInfo*)sqlite3OomFault(db); 1495 } 1496 return p; 1497 } 1498 1499 /* 1500 ** Deallocate a KeyInfo object 1501 */ 1502 void sqlite3KeyInfoUnref(KeyInfo *p){ 1503 if( p ){ 1504 assert( p->nRef>0 ); 1505 p->nRef--; 1506 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1507 } 1508 } 1509 1510 /* 1511 ** Make a new pointer to a KeyInfo object 1512 */ 1513 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1514 if( p ){ 1515 assert( p->nRef>0 ); 1516 p->nRef++; 1517 } 1518 return p; 1519 } 1520 1521 #ifdef SQLITE_DEBUG 1522 /* 1523 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1524 ** can only be changed if this is just a single reference to the object. 1525 ** 1526 ** This routine is used only inside of assert() statements. 1527 */ 1528 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1529 #endif /* SQLITE_DEBUG */ 1530 1531 /* 1532 ** Given an expression list, generate a KeyInfo structure that records 1533 ** the collating sequence for each expression in that expression list. 1534 ** 1535 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1536 ** KeyInfo structure is appropriate for initializing a virtual index to 1537 ** implement that clause. If the ExprList is the result set of a SELECT 1538 ** then the KeyInfo structure is appropriate for initializing a virtual 1539 ** index to implement a DISTINCT test. 1540 ** 1541 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1542 ** function is responsible for seeing that this structure is eventually 1543 ** freed. 1544 */ 1545 KeyInfo *sqlite3KeyInfoFromExprList( 1546 Parse *pParse, /* Parsing context */ 1547 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1548 int iStart, /* Begin with this column of pList */ 1549 int nExtra /* Add this many extra columns to the end */ 1550 ){ 1551 int nExpr; 1552 KeyInfo *pInfo; 1553 struct ExprList_item *pItem; 1554 sqlite3 *db = pParse->db; 1555 int i; 1556 1557 nExpr = pList->nExpr; 1558 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1559 if( pInfo ){ 1560 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1561 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1562 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1563 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; 1564 } 1565 } 1566 return pInfo; 1567 } 1568 1569 /* 1570 ** Name of the connection operator, used for error messages. 1571 */ 1572 const char *sqlite3SelectOpName(int id){ 1573 char *z; 1574 switch( id ){ 1575 case TK_ALL: z = "UNION ALL"; break; 1576 case TK_INTERSECT: z = "INTERSECT"; break; 1577 case TK_EXCEPT: z = "EXCEPT"; break; 1578 default: z = "UNION"; break; 1579 } 1580 return z; 1581 } 1582 1583 #ifndef SQLITE_OMIT_EXPLAIN 1584 /* 1585 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1586 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1587 ** where the caption is of the form: 1588 ** 1589 ** "USE TEMP B-TREE FOR xxx" 1590 ** 1591 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1592 ** is determined by the zUsage argument. 1593 */ 1594 static void explainTempTable(Parse *pParse, const char *zUsage){ 1595 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1596 } 1597 1598 /* 1599 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1600 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1601 ** in sqlite3Select() to assign values to structure member variables that 1602 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1603 ** code with #ifndef directives. 1604 */ 1605 # define explainSetInteger(a, b) a = b 1606 1607 #else 1608 /* No-op versions of the explainXXX() functions and macros. */ 1609 # define explainTempTable(y,z) 1610 # define explainSetInteger(y,z) 1611 #endif 1612 1613 1614 /* 1615 ** If the inner loop was generated using a non-null pOrderBy argument, 1616 ** then the results were placed in a sorter. After the loop is terminated 1617 ** we need to run the sorter and output the results. The following 1618 ** routine generates the code needed to do that. 1619 */ 1620 static void generateSortTail( 1621 Parse *pParse, /* Parsing context */ 1622 Select *p, /* The SELECT statement */ 1623 SortCtx *pSort, /* Information on the ORDER BY clause */ 1624 int nColumn, /* Number of columns of data */ 1625 SelectDest *pDest /* Write the sorted results here */ 1626 ){ 1627 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1628 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1629 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1630 int addr; /* Top of output loop. Jump for Next. */ 1631 int addrOnce = 0; 1632 int iTab; 1633 ExprList *pOrderBy = pSort->pOrderBy; 1634 int eDest = pDest->eDest; 1635 int iParm = pDest->iSDParm; 1636 int regRow; 1637 int regRowid; 1638 int iCol; 1639 int nKey; /* Number of key columns in sorter record */ 1640 int iSortTab; /* Sorter cursor to read from */ 1641 int i; 1642 int bSeq; /* True if sorter record includes seq. no. */ 1643 int nRefKey = 0; 1644 struct ExprList_item *aOutEx = p->pEList->a; 1645 1646 assert( addrBreak<0 ); 1647 if( pSort->labelBkOut ){ 1648 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1649 sqlite3VdbeGoto(v, addrBreak); 1650 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1651 } 1652 1653 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1654 /* Open any cursors needed for sorter-reference expressions */ 1655 for(i=0; i<pSort->nDefer; i++){ 1656 Table *pTab = pSort->aDefer[i].pTab; 1657 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1658 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1659 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1660 } 1661 #endif 1662 1663 iTab = pSort->iECursor; 1664 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1665 if( eDest==SRT_Mem && p->iOffset ){ 1666 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1667 } 1668 regRowid = 0; 1669 regRow = pDest->iSdst; 1670 }else{ 1671 regRowid = sqlite3GetTempReg(pParse); 1672 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1673 regRow = sqlite3GetTempReg(pParse); 1674 nColumn = 0; 1675 }else{ 1676 regRow = sqlite3GetTempRange(pParse, nColumn); 1677 } 1678 } 1679 nKey = pOrderBy->nExpr - pSort->nOBSat; 1680 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1681 int regSortOut = ++pParse->nMem; 1682 iSortTab = pParse->nTab++; 1683 if( pSort->labelBkOut ){ 1684 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1685 } 1686 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1687 nKey+1+nColumn+nRefKey); 1688 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1689 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1690 VdbeCoverage(v); 1691 codeOffset(v, p->iOffset, addrContinue); 1692 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1693 bSeq = 0; 1694 }else{ 1695 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1696 codeOffset(v, p->iOffset, addrContinue); 1697 iSortTab = iTab; 1698 bSeq = 1; 1699 } 1700 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1701 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1702 if( aOutEx[i].fg.bSorterRef ) continue; 1703 #endif 1704 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1705 } 1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1707 if( pSort->nDefer ){ 1708 int iKey = iCol+1; 1709 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1710 1711 for(i=0; i<pSort->nDefer; i++){ 1712 int iCsr = pSort->aDefer[i].iCsr; 1713 Table *pTab = pSort->aDefer[i].pTab; 1714 int nKey = pSort->aDefer[i].nKey; 1715 1716 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1717 if( HasRowid(pTab) ){ 1718 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1719 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1720 sqlite3VdbeCurrentAddr(v)+1, regKey); 1721 }else{ 1722 int k; 1723 int iJmp; 1724 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1725 for(k=0; k<nKey; k++){ 1726 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1727 } 1728 iJmp = sqlite3VdbeCurrentAddr(v); 1729 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1730 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1731 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1732 } 1733 } 1734 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1735 } 1736 #endif 1737 for(i=nColumn-1; i>=0; i--){ 1738 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1739 if( aOutEx[i].fg.bSorterRef ){ 1740 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1741 }else 1742 #endif 1743 { 1744 int iRead; 1745 if( aOutEx[i].u.x.iOrderByCol ){ 1746 iRead = aOutEx[i].u.x.iOrderByCol-1; 1747 }else{ 1748 iRead = iCol--; 1749 } 1750 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1751 VdbeComment((v, "%s", aOutEx[i].zEName)); 1752 } 1753 } 1754 switch( eDest ){ 1755 case SRT_Table: 1756 case SRT_EphemTab: { 1757 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1758 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1759 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1760 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1761 break; 1762 } 1763 #ifndef SQLITE_OMIT_SUBQUERY 1764 case SRT_Set: { 1765 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1766 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1767 pDest->zAffSdst, nColumn); 1768 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1769 break; 1770 } 1771 case SRT_Mem: { 1772 /* The LIMIT clause will terminate the loop for us */ 1773 break; 1774 } 1775 #endif 1776 case SRT_Upfrom: { 1777 int i2 = pDest->iSDParm2; 1778 int r1 = sqlite3GetTempReg(pParse); 1779 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1780 if( i2<0 ){ 1781 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1782 }else{ 1783 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1784 } 1785 break; 1786 } 1787 default: { 1788 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1789 testcase( eDest==SRT_Output ); 1790 testcase( eDest==SRT_Coroutine ); 1791 if( eDest==SRT_Output ){ 1792 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1793 }else{ 1794 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1795 } 1796 break; 1797 } 1798 } 1799 if( regRowid ){ 1800 if( eDest==SRT_Set ){ 1801 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1802 }else{ 1803 sqlite3ReleaseTempReg(pParse, regRow); 1804 } 1805 sqlite3ReleaseTempReg(pParse, regRowid); 1806 } 1807 /* The bottom of the loop 1808 */ 1809 sqlite3VdbeResolveLabel(v, addrContinue); 1810 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1811 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1812 }else{ 1813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1814 } 1815 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1816 sqlite3VdbeResolveLabel(v, addrBreak); 1817 } 1818 1819 /* 1820 ** Return a pointer to a string containing the 'declaration type' of the 1821 ** expression pExpr. The string may be treated as static by the caller. 1822 ** 1823 ** Also try to estimate the size of the returned value and return that 1824 ** result in *pEstWidth. 1825 ** 1826 ** The declaration type is the exact datatype definition extracted from the 1827 ** original CREATE TABLE statement if the expression is a column. The 1828 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1829 ** is considered a column can be complex in the presence of subqueries. The 1830 ** result-set expression in all of the following SELECT statements is 1831 ** considered a column by this function. 1832 ** 1833 ** SELECT col FROM tbl; 1834 ** SELECT (SELECT col FROM tbl; 1835 ** SELECT (SELECT col FROM tbl); 1836 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1837 ** 1838 ** The declaration type for any expression other than a column is NULL. 1839 ** 1840 ** This routine has either 3 or 6 parameters depending on whether or not 1841 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1842 */ 1843 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1844 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1845 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1847 #endif 1848 static const char *columnTypeImpl( 1849 NameContext *pNC, 1850 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1851 Expr *pExpr 1852 #else 1853 Expr *pExpr, 1854 const char **pzOrigDb, 1855 const char **pzOrigTab, 1856 const char **pzOrigCol 1857 #endif 1858 ){ 1859 char const *zType = 0; 1860 int j; 1861 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1862 char const *zOrigDb = 0; 1863 char const *zOrigTab = 0; 1864 char const *zOrigCol = 0; 1865 #endif 1866 1867 assert( pExpr!=0 ); 1868 assert( pNC->pSrcList!=0 ); 1869 switch( pExpr->op ){ 1870 case TK_COLUMN: { 1871 /* The expression is a column. Locate the table the column is being 1872 ** extracted from in NameContext.pSrcList. This table may be real 1873 ** database table or a subquery. 1874 */ 1875 Table *pTab = 0; /* Table structure column is extracted from */ 1876 Select *pS = 0; /* Select the column is extracted from */ 1877 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1878 while( pNC && !pTab ){ 1879 SrcList *pTabList = pNC->pSrcList; 1880 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1881 if( j<pTabList->nSrc ){ 1882 pTab = pTabList->a[j].pTab; 1883 pS = pTabList->a[j].pSelect; 1884 }else{ 1885 pNC = pNC->pNext; 1886 } 1887 } 1888 1889 if( pTab==0 ){ 1890 /* At one time, code such as "SELECT new.x" within a trigger would 1891 ** cause this condition to run. Since then, we have restructured how 1892 ** trigger code is generated and so this condition is no longer 1893 ** possible. However, it can still be true for statements like 1894 ** the following: 1895 ** 1896 ** CREATE TABLE t1(col INTEGER); 1897 ** SELECT (SELECT t1.col) FROM FROM t1; 1898 ** 1899 ** when columnType() is called on the expression "t1.col" in the 1900 ** sub-select. In this case, set the column type to NULL, even 1901 ** though it should really be "INTEGER". 1902 ** 1903 ** This is not a problem, as the column type of "t1.col" is never 1904 ** used. When columnType() is called on the expression 1905 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1906 ** branch below. */ 1907 break; 1908 } 1909 1910 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1911 if( pS ){ 1912 /* The "table" is actually a sub-select or a view in the FROM clause 1913 ** of the SELECT statement. Return the declaration type and origin 1914 ** data for the result-set column of the sub-select. 1915 */ 1916 if( iCol<pS->pEList->nExpr 1917 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1918 && iCol>=0 1919 #else 1920 && ALWAYS(iCol>=0) 1921 #endif 1922 ){ 1923 /* If iCol is less than zero, then the expression requests the 1924 ** rowid of the sub-select or view. This expression is legal (see 1925 ** test case misc2.2.2) - it always evaluates to NULL. 1926 */ 1927 NameContext sNC; 1928 Expr *p = pS->pEList->a[iCol].pExpr; 1929 sNC.pSrcList = pS->pSrc; 1930 sNC.pNext = pNC; 1931 sNC.pParse = pNC->pParse; 1932 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1933 } 1934 }else{ 1935 /* A real table or a CTE table */ 1936 assert( !pS ); 1937 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1938 if( iCol<0 ) iCol = pTab->iPKey; 1939 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1940 if( iCol<0 ){ 1941 zType = "INTEGER"; 1942 zOrigCol = "rowid"; 1943 }else{ 1944 zOrigCol = pTab->aCol[iCol].zCnName; 1945 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1946 } 1947 zOrigTab = pTab->zName; 1948 if( pNC->pParse && pTab->pSchema ){ 1949 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1950 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1951 } 1952 #else 1953 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1954 if( iCol<0 ){ 1955 zType = "INTEGER"; 1956 }else{ 1957 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1958 } 1959 #endif 1960 } 1961 break; 1962 } 1963 #ifndef SQLITE_OMIT_SUBQUERY 1964 case TK_SELECT: { 1965 /* The expression is a sub-select. Return the declaration type and 1966 ** origin info for the single column in the result set of the SELECT 1967 ** statement. 1968 */ 1969 NameContext sNC; 1970 Select *pS; 1971 Expr *p; 1972 assert( ExprUseXSelect(pExpr) ); 1973 pS = pExpr->x.pSelect; 1974 p = pS->pEList->a[0].pExpr; 1975 sNC.pSrcList = pS->pSrc; 1976 sNC.pNext = pNC; 1977 sNC.pParse = pNC->pParse; 1978 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1979 break; 1980 } 1981 #endif 1982 } 1983 1984 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1985 if( pzOrigDb ){ 1986 assert( pzOrigTab && pzOrigCol ); 1987 *pzOrigDb = zOrigDb; 1988 *pzOrigTab = zOrigTab; 1989 *pzOrigCol = zOrigCol; 1990 } 1991 #endif 1992 return zType; 1993 } 1994 1995 /* 1996 ** Generate code that will tell the VDBE the declaration types of columns 1997 ** in the result set. 1998 */ 1999 static void generateColumnTypes( 2000 Parse *pParse, /* Parser context */ 2001 SrcList *pTabList, /* List of tables */ 2002 ExprList *pEList /* Expressions defining the result set */ 2003 ){ 2004 #ifndef SQLITE_OMIT_DECLTYPE 2005 Vdbe *v = pParse->pVdbe; 2006 int i; 2007 NameContext sNC; 2008 sNC.pSrcList = pTabList; 2009 sNC.pParse = pParse; 2010 sNC.pNext = 0; 2011 for(i=0; i<pEList->nExpr; i++){ 2012 Expr *p = pEList->a[i].pExpr; 2013 const char *zType; 2014 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2015 const char *zOrigDb = 0; 2016 const char *zOrigTab = 0; 2017 const char *zOrigCol = 0; 2018 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2019 2020 /* The vdbe must make its own copy of the column-type and other 2021 ** column specific strings, in case the schema is reset before this 2022 ** virtual machine is deleted. 2023 */ 2024 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2025 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2026 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2027 #else 2028 zType = columnType(&sNC, p, 0, 0, 0); 2029 #endif 2030 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2031 } 2032 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2033 } 2034 2035 2036 /* 2037 ** Compute the column names for a SELECT statement. 2038 ** 2039 ** The only guarantee that SQLite makes about column names is that if the 2040 ** column has an AS clause assigning it a name, that will be the name used. 2041 ** That is the only documented guarantee. However, countless applications 2042 ** developed over the years have made baseless assumptions about column names 2043 ** and will break if those assumptions changes. Hence, use extreme caution 2044 ** when modifying this routine to avoid breaking legacy. 2045 ** 2046 ** See Also: sqlite3ColumnsFromExprList() 2047 ** 2048 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2049 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2050 ** applications should operate this way. Nevertheless, we need to support the 2051 ** other modes for legacy: 2052 ** 2053 ** short=OFF, full=OFF: Column name is the text of the expression has it 2054 ** originally appears in the SELECT statement. In 2055 ** other words, the zSpan of the result expression. 2056 ** 2057 ** short=ON, full=OFF: (This is the default setting). If the result 2058 ** refers directly to a table column, then the 2059 ** result column name is just the table column 2060 ** name: COLUMN. Otherwise use zSpan. 2061 ** 2062 ** full=ON, short=ANY: If the result refers directly to a table column, 2063 ** then the result column name with the table name 2064 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2065 */ 2066 void sqlite3GenerateColumnNames( 2067 Parse *pParse, /* Parser context */ 2068 Select *pSelect /* Generate column names for this SELECT statement */ 2069 ){ 2070 Vdbe *v = pParse->pVdbe; 2071 int i; 2072 Table *pTab; 2073 SrcList *pTabList; 2074 ExprList *pEList; 2075 sqlite3 *db = pParse->db; 2076 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2077 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2078 2079 #ifndef SQLITE_OMIT_EXPLAIN 2080 /* If this is an EXPLAIN, skip this step */ 2081 if( pParse->explain ){ 2082 return; 2083 } 2084 #endif 2085 2086 if( pParse->colNamesSet ) return; 2087 /* Column names are determined by the left-most term of a compound select */ 2088 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2089 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2090 pTabList = pSelect->pSrc; 2091 pEList = pSelect->pEList; 2092 assert( v!=0 ); 2093 assert( pTabList!=0 ); 2094 pParse->colNamesSet = 1; 2095 fullName = (db->flags & SQLITE_FullColNames)!=0; 2096 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2097 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2098 for(i=0; i<pEList->nExpr; i++){ 2099 Expr *p = pEList->a[i].pExpr; 2100 2101 assert( p!=0 ); 2102 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2103 assert( p->op!=TK_COLUMN 2104 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2105 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ 2106 /* An AS clause always takes first priority */ 2107 char *zName = pEList->a[i].zEName; 2108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2109 }else if( srcName && p->op==TK_COLUMN ){ 2110 char *zCol; 2111 int iCol = p->iColumn; 2112 pTab = p->y.pTab; 2113 assert( pTab!=0 ); 2114 if( iCol<0 ) iCol = pTab->iPKey; 2115 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2116 if( iCol<0 ){ 2117 zCol = "rowid"; 2118 }else{ 2119 zCol = pTab->aCol[iCol].zCnName; 2120 } 2121 if( fullName ){ 2122 char *zName = 0; 2123 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2124 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2125 }else{ 2126 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2127 } 2128 }else{ 2129 const char *z = pEList->a[i].zEName; 2130 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2131 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2132 } 2133 } 2134 generateColumnTypes(pParse, pTabList, pEList); 2135 } 2136 2137 /* 2138 ** Given an expression list (which is really the list of expressions 2139 ** that form the result set of a SELECT statement) compute appropriate 2140 ** column names for a table that would hold the expression list. 2141 ** 2142 ** All column names will be unique. 2143 ** 2144 ** Only the column names are computed. Column.zType, Column.zColl, 2145 ** and other fields of Column are zeroed. 2146 ** 2147 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2148 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2149 ** 2150 ** The only guarantee that SQLite makes about column names is that if the 2151 ** column has an AS clause assigning it a name, that will be the name used. 2152 ** That is the only documented guarantee. However, countless applications 2153 ** developed over the years have made baseless assumptions about column names 2154 ** and will break if those assumptions changes. Hence, use extreme caution 2155 ** when modifying this routine to avoid breaking legacy. 2156 ** 2157 ** See Also: sqlite3GenerateColumnNames() 2158 */ 2159 int sqlite3ColumnsFromExprList( 2160 Parse *pParse, /* Parsing context */ 2161 ExprList *pEList, /* Expr list from which to derive column names */ 2162 i16 *pnCol, /* Write the number of columns here */ 2163 Column **paCol /* Write the new column list here */ 2164 ){ 2165 sqlite3 *db = pParse->db; /* Database connection */ 2166 int i, j; /* Loop counters */ 2167 u32 cnt; /* Index added to make the name unique */ 2168 Column *aCol, *pCol; /* For looping over result columns */ 2169 int nCol; /* Number of columns in the result set */ 2170 char *zName; /* Column name */ 2171 int nName; /* Size of name in zName[] */ 2172 Hash ht; /* Hash table of column names */ 2173 Table *pTab; 2174 2175 sqlite3HashInit(&ht); 2176 if( pEList ){ 2177 nCol = pEList->nExpr; 2178 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2179 testcase( aCol==0 ); 2180 if( NEVER(nCol>32767) ) nCol = 32767; 2181 }else{ 2182 nCol = 0; 2183 aCol = 0; 2184 } 2185 assert( nCol==(i16)nCol ); 2186 *pnCol = nCol; 2187 *paCol = aCol; 2188 2189 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2190 struct ExprList_item *pX = &pEList->a[i]; 2191 struct ExprList_item *pCollide; 2192 /* Get an appropriate name for the column 2193 */ 2194 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ 2195 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2196 }else{ 2197 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2198 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2199 pColExpr = pColExpr->pRight; 2200 assert( pColExpr!=0 ); 2201 } 2202 if( pColExpr->op==TK_COLUMN 2203 && ALWAYS( ExprUseYTab(pColExpr) ) 2204 && ALWAYS( pColExpr->y.pTab!=0 ) 2205 ){ 2206 /* For columns use the column name name */ 2207 int iCol = pColExpr->iColumn; 2208 pTab = pColExpr->y.pTab; 2209 if( iCol<0 ) iCol = pTab->iPKey; 2210 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2211 }else if( pColExpr->op==TK_ID ){ 2212 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2213 zName = pColExpr->u.zToken; 2214 }else{ 2215 /* Use the original text of the column expression as its name */ 2216 assert( zName==pX->zEName ); /* pointer comparison intended */ 2217 } 2218 } 2219 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2220 zName = sqlite3DbStrDup(db, zName); 2221 }else{ 2222 zName = sqlite3MPrintf(db,"column%d",i+1); 2223 } 2224 2225 /* Make sure the column name is unique. If the name is not unique, 2226 ** append an integer to the name so that it becomes unique. 2227 */ 2228 cnt = 0; 2229 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ 2230 if( pCollide->fg.bUsingTerm ){ 2231 pCol->colFlags |= COLFLAG_NOEXPAND; 2232 } 2233 nName = sqlite3Strlen30(zName); 2234 if( nName>0 ){ 2235 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2236 if( zName[j]==':' ) nName = j; 2237 } 2238 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2239 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2240 } 2241 pCol->zCnName = zName; 2242 pCol->hName = sqlite3StrIHash(zName); 2243 if( pX->fg.bNoExpand ){ 2244 pCol->colFlags |= COLFLAG_NOEXPAND; 2245 } 2246 sqlite3ColumnPropertiesFromName(0, pCol); 2247 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ 2248 sqlite3OomFault(db); 2249 } 2250 } 2251 sqlite3HashClear(&ht); 2252 if( db->mallocFailed ){ 2253 for(j=0; j<i; j++){ 2254 sqlite3DbFree(db, aCol[j].zCnName); 2255 } 2256 sqlite3DbFree(db, aCol); 2257 *paCol = 0; 2258 *pnCol = 0; 2259 return SQLITE_NOMEM_BKPT; 2260 } 2261 return SQLITE_OK; 2262 } 2263 2264 /* 2265 ** Add type and collation information to a column list based on 2266 ** a SELECT statement. 2267 ** 2268 ** The column list presumably came from selectColumnNamesFromExprList(). 2269 ** The column list has only names, not types or collations. This 2270 ** routine goes through and adds the types and collations. 2271 ** 2272 ** This routine requires that all identifiers in the SELECT 2273 ** statement be resolved. 2274 */ 2275 void sqlite3SelectAddColumnTypeAndCollation( 2276 Parse *pParse, /* Parsing contexts */ 2277 Table *pTab, /* Add column type information to this table */ 2278 Select *pSelect, /* SELECT used to determine types and collations */ 2279 char aff /* Default affinity for columns */ 2280 ){ 2281 sqlite3 *db = pParse->db; 2282 NameContext sNC; 2283 Column *pCol; 2284 CollSeq *pColl; 2285 int i; 2286 Expr *p; 2287 struct ExprList_item *a; 2288 2289 assert( pSelect!=0 ); 2290 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2291 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2292 if( db->mallocFailed ) return; 2293 memset(&sNC, 0, sizeof(sNC)); 2294 sNC.pSrcList = pSelect->pSrc; 2295 a = pSelect->pEList->a; 2296 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2297 const char *zType; 2298 i64 n, m; 2299 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2300 p = a[i].pExpr; 2301 zType = columnType(&sNC, p, 0, 0, 0); 2302 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2303 pCol->affinity = sqlite3ExprAffinity(p); 2304 if( zType ){ 2305 m = sqlite3Strlen30(zType); 2306 n = sqlite3Strlen30(pCol->zCnName); 2307 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2308 if( pCol->zCnName ){ 2309 memcpy(&pCol->zCnName[n+1], zType, m+1); 2310 pCol->colFlags |= COLFLAG_HASTYPE; 2311 }else{ 2312 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2313 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2314 } 2315 } 2316 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2317 pColl = sqlite3ExprCollSeq(pParse, p); 2318 if( pColl ){ 2319 assert( pTab->pIndex==0 ); 2320 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2321 } 2322 } 2323 pTab->szTabRow = 1; /* Any non-zero value works */ 2324 } 2325 2326 /* 2327 ** Given a SELECT statement, generate a Table structure that describes 2328 ** the result set of that SELECT. 2329 */ 2330 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2331 Table *pTab; 2332 sqlite3 *db = pParse->db; 2333 u64 savedFlags; 2334 2335 savedFlags = db->flags; 2336 db->flags &= ~(u64)SQLITE_FullColNames; 2337 db->flags |= SQLITE_ShortColNames; 2338 sqlite3SelectPrep(pParse, pSelect, 0); 2339 db->flags = savedFlags; 2340 if( pParse->nErr ) return 0; 2341 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2342 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2343 if( pTab==0 ){ 2344 return 0; 2345 } 2346 pTab->nTabRef = 1; 2347 pTab->zName = 0; 2348 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2349 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2350 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2351 pTab->iPKey = -1; 2352 if( db->mallocFailed ){ 2353 sqlite3DeleteTable(db, pTab); 2354 return 0; 2355 } 2356 return pTab; 2357 } 2358 2359 /* 2360 ** Get a VDBE for the given parser context. Create a new one if necessary. 2361 ** If an error occurs, return NULL and leave a message in pParse. 2362 */ 2363 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2364 if( pParse->pVdbe ){ 2365 return pParse->pVdbe; 2366 } 2367 if( pParse->pToplevel==0 2368 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2369 ){ 2370 pParse->okConstFactor = 1; 2371 } 2372 return sqlite3VdbeCreate(pParse); 2373 } 2374 2375 2376 /* 2377 ** Compute the iLimit and iOffset fields of the SELECT based on the 2378 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2379 ** that appear in the original SQL statement after the LIMIT and OFFSET 2380 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2381 ** are the integer memory register numbers for counters used to compute 2382 ** the limit and offset. If there is no limit and/or offset, then 2383 ** iLimit and iOffset are negative. 2384 ** 2385 ** This routine changes the values of iLimit and iOffset only if 2386 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2387 ** and iOffset should have been preset to appropriate default values (zero) 2388 ** prior to calling this routine. 2389 ** 2390 ** The iOffset register (if it exists) is initialized to the value 2391 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2392 ** iOffset+1 is initialized to LIMIT+OFFSET. 2393 ** 2394 ** Only if pLimit->pLeft!=0 do the limit registers get 2395 ** redefined. The UNION ALL operator uses this property to force 2396 ** the reuse of the same limit and offset registers across multiple 2397 ** SELECT statements. 2398 */ 2399 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2400 Vdbe *v = 0; 2401 int iLimit = 0; 2402 int iOffset; 2403 int n; 2404 Expr *pLimit = p->pLimit; 2405 2406 if( p->iLimit ) return; 2407 2408 /* 2409 ** "LIMIT -1" always shows all rows. There is some 2410 ** controversy about what the correct behavior should be. 2411 ** The current implementation interprets "LIMIT 0" to mean 2412 ** no rows. 2413 */ 2414 if( pLimit ){ 2415 assert( pLimit->op==TK_LIMIT ); 2416 assert( pLimit->pLeft!=0 ); 2417 p->iLimit = iLimit = ++pParse->nMem; 2418 v = sqlite3GetVdbe(pParse); 2419 assert( v!=0 ); 2420 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2421 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2422 VdbeComment((v, "LIMIT counter")); 2423 if( n==0 ){ 2424 sqlite3VdbeGoto(v, iBreak); 2425 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2426 p->nSelectRow = sqlite3LogEst((u64)n); 2427 p->selFlags |= SF_FixedLimit; 2428 } 2429 }else{ 2430 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2431 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2432 VdbeComment((v, "LIMIT counter")); 2433 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2434 } 2435 if( pLimit->pRight ){ 2436 p->iOffset = iOffset = ++pParse->nMem; 2437 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2438 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2439 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2440 VdbeComment((v, "OFFSET counter")); 2441 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2442 VdbeComment((v, "LIMIT+OFFSET")); 2443 } 2444 } 2445 } 2446 2447 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2448 /* 2449 ** Return the appropriate collating sequence for the iCol-th column of 2450 ** the result set for the compound-select statement "p". Return NULL if 2451 ** the column has no default collating sequence. 2452 ** 2453 ** The collating sequence for the compound select is taken from the 2454 ** left-most term of the select that has a collating sequence. 2455 */ 2456 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2457 CollSeq *pRet; 2458 if( p->pPrior ){ 2459 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2460 }else{ 2461 pRet = 0; 2462 } 2463 assert( iCol>=0 ); 2464 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2465 ** have been thrown during name resolution and we would not have gotten 2466 ** this far */ 2467 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2468 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2469 } 2470 return pRet; 2471 } 2472 2473 /* 2474 ** The select statement passed as the second parameter is a compound SELECT 2475 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2476 ** structure suitable for implementing the ORDER BY. 2477 ** 2478 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2479 ** function is responsible for ensuring that this structure is eventually 2480 ** freed. 2481 */ 2482 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2483 ExprList *pOrderBy = p->pOrderBy; 2484 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2485 sqlite3 *db = pParse->db; 2486 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2487 if( pRet ){ 2488 int i; 2489 for(i=0; i<nOrderBy; i++){ 2490 struct ExprList_item *pItem = &pOrderBy->a[i]; 2491 Expr *pTerm = pItem->pExpr; 2492 CollSeq *pColl; 2493 2494 if( pTerm->flags & EP_Collate ){ 2495 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2496 }else{ 2497 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2498 if( pColl==0 ) pColl = db->pDfltColl; 2499 pOrderBy->a[i].pExpr = 2500 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2501 } 2502 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2503 pRet->aColl[i] = pColl; 2504 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; 2505 } 2506 } 2507 2508 return pRet; 2509 } 2510 2511 #ifndef SQLITE_OMIT_CTE 2512 /* 2513 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2514 ** query of the form: 2515 ** 2516 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2517 ** \___________/ \_______________/ 2518 ** p->pPrior p 2519 ** 2520 ** 2521 ** There is exactly one reference to the recursive-table in the FROM clause 2522 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2523 ** 2524 ** The setup-query runs once to generate an initial set of rows that go 2525 ** into a Queue table. Rows are extracted from the Queue table one by 2526 ** one. Each row extracted from Queue is output to pDest. Then the single 2527 ** extracted row (now in the iCurrent table) becomes the content of the 2528 ** recursive-table for a recursive-query run. The output of the recursive-query 2529 ** is added back into the Queue table. Then another row is extracted from Queue 2530 ** and the iteration continues until the Queue table is empty. 2531 ** 2532 ** If the compound query operator is UNION then no duplicate rows are ever 2533 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2534 ** that have ever been inserted into Queue and causes duplicates to be 2535 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2536 ** 2537 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2538 ** ORDER BY order and the first entry is extracted for each cycle. Without 2539 ** an ORDER BY, the Queue table is just a FIFO. 2540 ** 2541 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2542 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2543 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2544 ** with a positive value, then the first OFFSET outputs are discarded rather 2545 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2546 ** rows have been skipped. 2547 */ 2548 static void generateWithRecursiveQuery( 2549 Parse *pParse, /* Parsing context */ 2550 Select *p, /* The recursive SELECT to be coded */ 2551 SelectDest *pDest /* What to do with query results */ 2552 ){ 2553 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2554 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2555 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2556 Select *pSetup; /* The setup query */ 2557 Select *pFirstRec; /* Left-most recursive term */ 2558 int addrTop; /* Top of the loop */ 2559 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2560 int iCurrent = 0; /* The Current table */ 2561 int regCurrent; /* Register holding Current table */ 2562 int iQueue; /* The Queue table */ 2563 int iDistinct = 0; /* To ensure unique results if UNION */ 2564 int eDest = SRT_Fifo; /* How to write to Queue */ 2565 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2566 int i; /* Loop counter */ 2567 int rc; /* Result code */ 2568 ExprList *pOrderBy; /* The ORDER BY clause */ 2569 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2570 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2571 2572 #ifndef SQLITE_OMIT_WINDOWFUNC 2573 if( p->pWin ){ 2574 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2575 return; 2576 } 2577 #endif 2578 2579 /* Obtain authorization to do a recursive query */ 2580 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2581 2582 /* Process the LIMIT and OFFSET clauses, if they exist */ 2583 addrBreak = sqlite3VdbeMakeLabel(pParse); 2584 p->nSelectRow = 320; /* 4 billion rows */ 2585 computeLimitRegisters(pParse, p, addrBreak); 2586 pLimit = p->pLimit; 2587 regLimit = p->iLimit; 2588 regOffset = p->iOffset; 2589 p->pLimit = 0; 2590 p->iLimit = p->iOffset = 0; 2591 pOrderBy = p->pOrderBy; 2592 2593 /* Locate the cursor number of the Current table */ 2594 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2595 if( pSrc->a[i].fg.isRecursive ){ 2596 iCurrent = pSrc->a[i].iCursor; 2597 break; 2598 } 2599 } 2600 2601 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2602 ** the Distinct table must be exactly one greater than Queue in order 2603 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2604 iQueue = pParse->nTab++; 2605 if( p->op==TK_UNION ){ 2606 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2607 iDistinct = pParse->nTab++; 2608 }else{ 2609 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2610 } 2611 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2612 2613 /* Allocate cursors for Current, Queue, and Distinct. */ 2614 regCurrent = ++pParse->nMem; 2615 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2616 if( pOrderBy ){ 2617 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2618 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2619 (char*)pKeyInfo, P4_KEYINFO); 2620 destQueue.pOrderBy = pOrderBy; 2621 }else{ 2622 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2623 } 2624 VdbeComment((v, "Queue table")); 2625 if( iDistinct ){ 2626 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2627 p->selFlags |= SF_UsesEphemeral; 2628 } 2629 2630 /* Detach the ORDER BY clause from the compound SELECT */ 2631 p->pOrderBy = 0; 2632 2633 /* Figure out how many elements of the compound SELECT are part of the 2634 ** recursive query. Make sure no recursive elements use aggregate 2635 ** functions. Mark the recursive elements as UNION ALL even if they 2636 ** are really UNION because the distinctness will be enforced by the 2637 ** iDistinct table. pFirstRec is left pointing to the left-most 2638 ** recursive term of the CTE. 2639 */ 2640 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2641 if( pFirstRec->selFlags & SF_Aggregate ){ 2642 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2643 goto end_of_recursive_query; 2644 } 2645 pFirstRec->op = TK_ALL; 2646 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2647 } 2648 2649 /* Store the results of the setup-query in Queue. */ 2650 pSetup = pFirstRec->pPrior; 2651 pSetup->pNext = 0; 2652 ExplainQueryPlan((pParse, 1, "SETUP")); 2653 rc = sqlite3Select(pParse, pSetup, &destQueue); 2654 pSetup->pNext = p; 2655 if( rc ) goto end_of_recursive_query; 2656 2657 /* Find the next row in the Queue and output that row */ 2658 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2659 2660 /* Transfer the next row in Queue over to Current */ 2661 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2662 if( pOrderBy ){ 2663 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2664 }else{ 2665 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2666 } 2667 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2668 2669 /* Output the single row in Current */ 2670 addrCont = sqlite3VdbeMakeLabel(pParse); 2671 codeOffset(v, regOffset, addrCont); 2672 selectInnerLoop(pParse, p, iCurrent, 2673 0, 0, pDest, addrCont, addrBreak); 2674 if( regLimit ){ 2675 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2676 VdbeCoverage(v); 2677 } 2678 sqlite3VdbeResolveLabel(v, addrCont); 2679 2680 /* Execute the recursive SELECT taking the single row in Current as 2681 ** the value for the recursive-table. Store the results in the Queue. 2682 */ 2683 pFirstRec->pPrior = 0; 2684 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2685 sqlite3Select(pParse, p, &destQueue); 2686 assert( pFirstRec->pPrior==0 ); 2687 pFirstRec->pPrior = pSetup; 2688 2689 /* Keep running the loop until the Queue is empty */ 2690 sqlite3VdbeGoto(v, addrTop); 2691 sqlite3VdbeResolveLabel(v, addrBreak); 2692 2693 end_of_recursive_query: 2694 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2695 p->pOrderBy = pOrderBy; 2696 p->pLimit = pLimit; 2697 return; 2698 } 2699 #endif /* SQLITE_OMIT_CTE */ 2700 2701 /* Forward references */ 2702 static int multiSelectOrderBy( 2703 Parse *pParse, /* Parsing context */ 2704 Select *p, /* The right-most of SELECTs to be coded */ 2705 SelectDest *pDest /* What to do with query results */ 2706 ); 2707 2708 /* 2709 ** Handle the special case of a compound-select that originates from a 2710 ** VALUES clause. By handling this as a special case, we avoid deep 2711 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2712 ** on a VALUES clause. 2713 ** 2714 ** Because the Select object originates from a VALUES clause: 2715 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2716 ** (2) All terms are UNION ALL 2717 ** (3) There is no ORDER BY clause 2718 ** 2719 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2720 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2721 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2722 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2723 */ 2724 static int multiSelectValues( 2725 Parse *pParse, /* Parsing context */ 2726 Select *p, /* The right-most of SELECTs to be coded */ 2727 SelectDest *pDest /* What to do with query results */ 2728 ){ 2729 int nRow = 1; 2730 int rc = 0; 2731 int bShowAll = p->pLimit==0; 2732 assert( p->selFlags & SF_MultiValue ); 2733 do{ 2734 assert( p->selFlags & SF_Values ); 2735 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2736 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2737 #ifndef SQLITE_OMIT_WINDOWFUNC 2738 if( p->pWin ) return -1; 2739 #endif 2740 if( p->pPrior==0 ) break; 2741 assert( p->pPrior->pNext==p ); 2742 p = p->pPrior; 2743 nRow += bShowAll; 2744 }while(1); 2745 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2746 nRow==1 ? "" : "S")); 2747 while( p ){ 2748 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2749 if( !bShowAll ) break; 2750 p->nSelectRow = nRow; 2751 p = p->pNext; 2752 } 2753 return rc; 2754 } 2755 2756 /* 2757 ** Return true if the SELECT statement which is known to be the recursive 2758 ** part of a recursive CTE still has its anchor terms attached. If the 2759 ** anchor terms have already been removed, then return false. 2760 */ 2761 static int hasAnchor(Select *p){ 2762 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2763 return p!=0; 2764 } 2765 2766 /* 2767 ** This routine is called to process a compound query form from 2768 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2769 ** INTERSECT 2770 ** 2771 ** "p" points to the right-most of the two queries. the query on the 2772 ** left is p->pPrior. The left query could also be a compound query 2773 ** in which case this routine will be called recursively. 2774 ** 2775 ** The results of the total query are to be written into a destination 2776 ** of type eDest with parameter iParm. 2777 ** 2778 ** Example 1: Consider a three-way compound SQL statement. 2779 ** 2780 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2781 ** 2782 ** This statement is parsed up as follows: 2783 ** 2784 ** SELECT c FROM t3 2785 ** | 2786 ** `-----> SELECT b FROM t2 2787 ** | 2788 ** `------> SELECT a FROM t1 2789 ** 2790 ** The arrows in the diagram above represent the Select.pPrior pointer. 2791 ** So if this routine is called with p equal to the t3 query, then 2792 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2793 ** 2794 ** Notice that because of the way SQLite parses compound SELECTs, the 2795 ** individual selects always group from left to right. 2796 */ 2797 static int multiSelect( 2798 Parse *pParse, /* Parsing context */ 2799 Select *p, /* The right-most of SELECTs to be coded */ 2800 SelectDest *pDest /* What to do with query results */ 2801 ){ 2802 int rc = SQLITE_OK; /* Success code from a subroutine */ 2803 Select *pPrior; /* Another SELECT immediately to our left */ 2804 Vdbe *v; /* Generate code to this VDBE */ 2805 SelectDest dest; /* Alternative data destination */ 2806 Select *pDelete = 0; /* Chain of simple selects to delete */ 2807 sqlite3 *db; /* Database connection */ 2808 2809 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2810 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2811 */ 2812 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2813 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2814 assert( p->selFlags & SF_Compound ); 2815 db = pParse->db; 2816 pPrior = p->pPrior; 2817 dest = *pDest; 2818 assert( pPrior->pOrderBy==0 ); 2819 assert( pPrior->pLimit==0 ); 2820 2821 v = sqlite3GetVdbe(pParse); 2822 assert( v!=0 ); /* The VDBE already created by calling function */ 2823 2824 /* Create the destination temporary table if necessary 2825 */ 2826 if( dest.eDest==SRT_EphemTab ){ 2827 assert( p->pEList ); 2828 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2829 dest.eDest = SRT_Table; 2830 } 2831 2832 /* Special handling for a compound-select that originates as a VALUES clause. 2833 */ 2834 if( p->selFlags & SF_MultiValue ){ 2835 rc = multiSelectValues(pParse, p, &dest); 2836 if( rc>=0 ) goto multi_select_end; 2837 rc = SQLITE_OK; 2838 } 2839 2840 /* Make sure all SELECTs in the statement have the same number of elements 2841 ** in their result sets. 2842 */ 2843 assert( p->pEList && pPrior->pEList ); 2844 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2845 2846 #ifndef SQLITE_OMIT_CTE 2847 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2848 generateWithRecursiveQuery(pParse, p, &dest); 2849 }else 2850 #endif 2851 2852 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2853 */ 2854 if( p->pOrderBy ){ 2855 return multiSelectOrderBy(pParse, p, pDest); 2856 }else{ 2857 2858 #ifndef SQLITE_OMIT_EXPLAIN 2859 if( pPrior->pPrior==0 ){ 2860 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2861 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2862 } 2863 #endif 2864 2865 /* Generate code for the left and right SELECT statements. 2866 */ 2867 switch( p->op ){ 2868 case TK_ALL: { 2869 int addr = 0; 2870 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2871 assert( !pPrior->pLimit ); 2872 pPrior->iLimit = p->iLimit; 2873 pPrior->iOffset = p->iOffset; 2874 pPrior->pLimit = p->pLimit; 2875 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2876 rc = sqlite3Select(pParse, pPrior, &dest); 2877 pPrior->pLimit = 0; 2878 if( rc ){ 2879 goto multi_select_end; 2880 } 2881 p->pPrior = 0; 2882 p->iLimit = pPrior->iLimit; 2883 p->iOffset = pPrior->iOffset; 2884 if( p->iLimit ){ 2885 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2886 VdbeComment((v, "Jump ahead if LIMIT reached")); 2887 if( p->iOffset ){ 2888 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2889 p->iLimit, p->iOffset+1, p->iOffset); 2890 } 2891 } 2892 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2893 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2894 rc = sqlite3Select(pParse, p, &dest); 2895 testcase( rc!=SQLITE_OK ); 2896 pDelete = p->pPrior; 2897 p->pPrior = pPrior; 2898 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2899 if( p->pLimit 2900 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2901 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2902 ){ 2903 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2904 } 2905 if( addr ){ 2906 sqlite3VdbeJumpHere(v, addr); 2907 } 2908 break; 2909 } 2910 case TK_EXCEPT: 2911 case TK_UNION: { 2912 int unionTab; /* Cursor number of the temp table holding result */ 2913 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2914 int priorOp; /* The SRT_ operation to apply to prior selects */ 2915 Expr *pLimit; /* Saved values of p->nLimit */ 2916 int addr; 2917 SelectDest uniondest; 2918 2919 testcase( p->op==TK_EXCEPT ); 2920 testcase( p->op==TK_UNION ); 2921 priorOp = SRT_Union; 2922 if( dest.eDest==priorOp ){ 2923 /* We can reuse a temporary table generated by a SELECT to our 2924 ** right. 2925 */ 2926 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2927 unionTab = dest.iSDParm; 2928 }else{ 2929 /* We will need to create our own temporary table to hold the 2930 ** intermediate results. 2931 */ 2932 unionTab = pParse->nTab++; 2933 assert( p->pOrderBy==0 ); 2934 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2935 assert( p->addrOpenEphm[0] == -1 ); 2936 p->addrOpenEphm[0] = addr; 2937 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2938 assert( p->pEList ); 2939 } 2940 2941 2942 /* Code the SELECT statements to our left 2943 */ 2944 assert( !pPrior->pOrderBy ); 2945 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2946 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2947 rc = sqlite3Select(pParse, pPrior, &uniondest); 2948 if( rc ){ 2949 goto multi_select_end; 2950 } 2951 2952 /* Code the current SELECT statement 2953 */ 2954 if( p->op==TK_EXCEPT ){ 2955 op = SRT_Except; 2956 }else{ 2957 assert( p->op==TK_UNION ); 2958 op = SRT_Union; 2959 } 2960 p->pPrior = 0; 2961 pLimit = p->pLimit; 2962 p->pLimit = 0; 2963 uniondest.eDest = op; 2964 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2965 sqlite3SelectOpName(p->op))); 2966 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2967 rc = sqlite3Select(pParse, p, &uniondest); 2968 testcase( rc!=SQLITE_OK ); 2969 assert( p->pOrderBy==0 ); 2970 pDelete = p->pPrior; 2971 p->pPrior = pPrior; 2972 p->pOrderBy = 0; 2973 if( p->op==TK_UNION ){ 2974 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2975 } 2976 sqlite3ExprDelete(db, p->pLimit); 2977 p->pLimit = pLimit; 2978 p->iLimit = 0; 2979 p->iOffset = 0; 2980 2981 /* Convert the data in the temporary table into whatever form 2982 ** it is that we currently need. 2983 */ 2984 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2985 assert( p->pEList || db->mallocFailed ); 2986 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2987 int iCont, iBreak, iStart; 2988 iBreak = sqlite3VdbeMakeLabel(pParse); 2989 iCont = sqlite3VdbeMakeLabel(pParse); 2990 computeLimitRegisters(pParse, p, iBreak); 2991 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2992 iStart = sqlite3VdbeCurrentAddr(v); 2993 selectInnerLoop(pParse, p, unionTab, 2994 0, 0, &dest, iCont, iBreak); 2995 sqlite3VdbeResolveLabel(v, iCont); 2996 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2997 sqlite3VdbeResolveLabel(v, iBreak); 2998 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2999 } 3000 break; 3001 } 3002 default: assert( p->op==TK_INTERSECT ); { 3003 int tab1, tab2; 3004 int iCont, iBreak, iStart; 3005 Expr *pLimit; 3006 int addr; 3007 SelectDest intersectdest; 3008 int r1; 3009 3010 /* INTERSECT is different from the others since it requires 3011 ** two temporary tables. Hence it has its own case. Begin 3012 ** by allocating the tables we will need. 3013 */ 3014 tab1 = pParse->nTab++; 3015 tab2 = pParse->nTab++; 3016 assert( p->pOrderBy==0 ); 3017 3018 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3019 assert( p->addrOpenEphm[0] == -1 ); 3020 p->addrOpenEphm[0] = addr; 3021 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3022 assert( p->pEList ); 3023 3024 /* Code the SELECTs to our left into temporary table "tab1". 3025 */ 3026 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3027 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3028 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3029 if( rc ){ 3030 goto multi_select_end; 3031 } 3032 3033 /* Code the current SELECT into temporary table "tab2" 3034 */ 3035 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3036 assert( p->addrOpenEphm[1] == -1 ); 3037 p->addrOpenEphm[1] = addr; 3038 p->pPrior = 0; 3039 pLimit = p->pLimit; 3040 p->pLimit = 0; 3041 intersectdest.iSDParm = tab2; 3042 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3043 sqlite3SelectOpName(p->op))); 3044 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3045 rc = sqlite3Select(pParse, p, &intersectdest); 3046 testcase( rc!=SQLITE_OK ); 3047 pDelete = p->pPrior; 3048 p->pPrior = pPrior; 3049 if( p->nSelectRow>pPrior->nSelectRow ){ 3050 p->nSelectRow = pPrior->nSelectRow; 3051 } 3052 sqlite3ExprDelete(db, p->pLimit); 3053 p->pLimit = pLimit; 3054 3055 /* Generate code to take the intersection of the two temporary 3056 ** tables. 3057 */ 3058 if( rc ) break; 3059 assert( p->pEList ); 3060 iBreak = sqlite3VdbeMakeLabel(pParse); 3061 iCont = sqlite3VdbeMakeLabel(pParse); 3062 computeLimitRegisters(pParse, p, iBreak); 3063 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3064 r1 = sqlite3GetTempReg(pParse); 3065 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3066 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3067 VdbeCoverage(v); 3068 sqlite3ReleaseTempReg(pParse, r1); 3069 selectInnerLoop(pParse, p, tab1, 3070 0, 0, &dest, iCont, iBreak); 3071 sqlite3VdbeResolveLabel(v, iCont); 3072 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3073 sqlite3VdbeResolveLabel(v, iBreak); 3074 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3075 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3076 break; 3077 } 3078 } 3079 3080 #ifndef SQLITE_OMIT_EXPLAIN 3081 if( p->pNext==0 ){ 3082 ExplainQueryPlanPop(pParse); 3083 } 3084 #endif 3085 } 3086 if( pParse->nErr ) goto multi_select_end; 3087 3088 /* Compute collating sequences used by 3089 ** temporary tables needed to implement the compound select. 3090 ** Attach the KeyInfo structure to all temporary tables. 3091 ** 3092 ** This section is run by the right-most SELECT statement only. 3093 ** SELECT statements to the left always skip this part. The right-most 3094 ** SELECT might also skip this part if it has no ORDER BY clause and 3095 ** no temp tables are required. 3096 */ 3097 if( p->selFlags & SF_UsesEphemeral ){ 3098 int i; /* Loop counter */ 3099 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3100 Select *pLoop; /* For looping through SELECT statements */ 3101 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3102 int nCol; /* Number of columns in result set */ 3103 3104 assert( p->pNext==0 ); 3105 assert( p->pEList!=0 ); 3106 nCol = p->pEList->nExpr; 3107 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3108 if( !pKeyInfo ){ 3109 rc = SQLITE_NOMEM_BKPT; 3110 goto multi_select_end; 3111 } 3112 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3113 *apColl = multiSelectCollSeq(pParse, p, i); 3114 if( 0==*apColl ){ 3115 *apColl = db->pDfltColl; 3116 } 3117 } 3118 3119 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3120 for(i=0; i<2; i++){ 3121 int addr = pLoop->addrOpenEphm[i]; 3122 if( addr<0 ){ 3123 /* If [0] is unused then [1] is also unused. So we can 3124 ** always safely abort as soon as the first unused slot is found */ 3125 assert( pLoop->addrOpenEphm[1]<0 ); 3126 break; 3127 } 3128 sqlite3VdbeChangeP2(v, addr, nCol); 3129 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3130 P4_KEYINFO); 3131 pLoop->addrOpenEphm[i] = -1; 3132 } 3133 } 3134 sqlite3KeyInfoUnref(pKeyInfo); 3135 } 3136 3137 multi_select_end: 3138 pDest->iSdst = dest.iSdst; 3139 pDest->nSdst = dest.nSdst; 3140 if( pDelete ){ 3141 sqlite3ParserAddCleanup(pParse, 3142 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3143 pDelete); 3144 } 3145 return rc; 3146 } 3147 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3148 3149 /* 3150 ** Error message for when two or more terms of a compound select have different 3151 ** size result sets. 3152 */ 3153 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3154 if( p->selFlags & SF_Values ){ 3155 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3156 }else{ 3157 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3158 " do not have the same number of result columns", 3159 sqlite3SelectOpName(p->op)); 3160 } 3161 } 3162 3163 /* 3164 ** Code an output subroutine for a coroutine implementation of a 3165 ** SELECT statment. 3166 ** 3167 ** The data to be output is contained in pIn->iSdst. There are 3168 ** pIn->nSdst columns to be output. pDest is where the output should 3169 ** be sent. 3170 ** 3171 ** regReturn is the number of the register holding the subroutine 3172 ** return address. 3173 ** 3174 ** If regPrev>0 then it is the first register in a vector that 3175 ** records the previous output. mem[regPrev] is a flag that is false 3176 ** if there has been no previous output. If regPrev>0 then code is 3177 ** generated to suppress duplicates. pKeyInfo is used for comparing 3178 ** keys. 3179 ** 3180 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3181 ** iBreak. 3182 */ 3183 static int generateOutputSubroutine( 3184 Parse *pParse, /* Parsing context */ 3185 Select *p, /* The SELECT statement */ 3186 SelectDest *pIn, /* Coroutine supplying data */ 3187 SelectDest *pDest, /* Where to send the data */ 3188 int regReturn, /* The return address register */ 3189 int regPrev, /* Previous result register. No uniqueness if 0 */ 3190 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3191 int iBreak /* Jump here if we hit the LIMIT */ 3192 ){ 3193 Vdbe *v = pParse->pVdbe; 3194 int iContinue; 3195 int addr; 3196 3197 addr = sqlite3VdbeCurrentAddr(v); 3198 iContinue = sqlite3VdbeMakeLabel(pParse); 3199 3200 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3201 */ 3202 if( regPrev ){ 3203 int addr1, addr2; 3204 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3205 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3206 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3207 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3208 sqlite3VdbeJumpHere(v, addr1); 3209 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3210 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3211 } 3212 if( pParse->db->mallocFailed ) return 0; 3213 3214 /* Suppress the first OFFSET entries if there is an OFFSET clause 3215 */ 3216 codeOffset(v, p->iOffset, iContinue); 3217 3218 assert( pDest->eDest!=SRT_Exists ); 3219 assert( pDest->eDest!=SRT_Table ); 3220 switch( pDest->eDest ){ 3221 /* Store the result as data using a unique key. 3222 */ 3223 case SRT_EphemTab: { 3224 int r1 = sqlite3GetTempReg(pParse); 3225 int r2 = sqlite3GetTempReg(pParse); 3226 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3227 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3228 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3229 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3230 sqlite3ReleaseTempReg(pParse, r2); 3231 sqlite3ReleaseTempReg(pParse, r1); 3232 break; 3233 } 3234 3235 #ifndef SQLITE_OMIT_SUBQUERY 3236 /* If we are creating a set for an "expr IN (SELECT ...)". 3237 */ 3238 case SRT_Set: { 3239 int r1; 3240 testcase( pIn->nSdst>1 ); 3241 r1 = sqlite3GetTempReg(pParse); 3242 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3243 r1, pDest->zAffSdst, pIn->nSdst); 3244 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3245 pIn->iSdst, pIn->nSdst); 3246 sqlite3ReleaseTempReg(pParse, r1); 3247 break; 3248 } 3249 3250 /* If this is a scalar select that is part of an expression, then 3251 ** store the results in the appropriate memory cell and break out 3252 ** of the scan loop. Note that the select might return multiple columns 3253 ** if it is the RHS of a row-value IN operator. 3254 */ 3255 case SRT_Mem: { 3256 testcase( pIn->nSdst>1 ); 3257 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3258 /* The LIMIT clause will jump out of the loop for us */ 3259 break; 3260 } 3261 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3262 3263 /* The results are stored in a sequence of registers 3264 ** starting at pDest->iSdst. Then the co-routine yields. 3265 */ 3266 case SRT_Coroutine: { 3267 if( pDest->iSdst==0 ){ 3268 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3269 pDest->nSdst = pIn->nSdst; 3270 } 3271 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3272 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3273 break; 3274 } 3275 3276 /* If none of the above, then the result destination must be 3277 ** SRT_Output. This routine is never called with any other 3278 ** destination other than the ones handled above or SRT_Output. 3279 ** 3280 ** For SRT_Output, results are stored in a sequence of registers. 3281 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3282 ** return the next row of result. 3283 */ 3284 default: { 3285 assert( pDest->eDest==SRT_Output ); 3286 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3287 break; 3288 } 3289 } 3290 3291 /* Jump to the end of the loop if the LIMIT is reached. 3292 */ 3293 if( p->iLimit ){ 3294 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3295 } 3296 3297 /* Generate the subroutine return 3298 */ 3299 sqlite3VdbeResolveLabel(v, iContinue); 3300 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3301 3302 return addr; 3303 } 3304 3305 /* 3306 ** Alternative compound select code generator for cases when there 3307 ** is an ORDER BY clause. 3308 ** 3309 ** We assume a query of the following form: 3310 ** 3311 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3312 ** 3313 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3314 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3315 ** co-routines. Then run the co-routines in parallel and merge the results 3316 ** into the output. In addition to the two coroutines (called selectA and 3317 ** selectB) there are 7 subroutines: 3318 ** 3319 ** outA: Move the output of the selectA coroutine into the output 3320 ** of the compound query. 3321 ** 3322 ** outB: Move the output of the selectB coroutine into the output 3323 ** of the compound query. (Only generated for UNION and 3324 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3325 ** appears only in B.) 3326 ** 3327 ** AltB: Called when there is data from both coroutines and A<B. 3328 ** 3329 ** AeqB: Called when there is data from both coroutines and A==B. 3330 ** 3331 ** AgtB: Called when there is data from both coroutines and A>B. 3332 ** 3333 ** EofA: Called when data is exhausted from selectA. 3334 ** 3335 ** EofB: Called when data is exhausted from selectB. 3336 ** 3337 ** The implementation of the latter five subroutines depend on which 3338 ** <operator> is used: 3339 ** 3340 ** 3341 ** UNION ALL UNION EXCEPT INTERSECT 3342 ** ------------- ----------------- -------------- ----------------- 3343 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3344 ** 3345 ** AeqB: outA, nextA nextA nextA outA, nextA 3346 ** 3347 ** AgtB: outB, nextB outB, nextB nextB nextB 3348 ** 3349 ** EofA: outB, nextB outB, nextB halt halt 3350 ** 3351 ** EofB: outA, nextA outA, nextA outA, nextA halt 3352 ** 3353 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3354 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3355 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3356 ** following nextX causes a jump to the end of the select processing. 3357 ** 3358 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3359 ** within the output subroutine. The regPrev register set holds the previously 3360 ** output value. A comparison is made against this value and the output 3361 ** is skipped if the next results would be the same as the previous. 3362 ** 3363 ** The implementation plan is to implement the two coroutines and seven 3364 ** subroutines first, then put the control logic at the bottom. Like this: 3365 ** 3366 ** goto Init 3367 ** coA: coroutine for left query (A) 3368 ** coB: coroutine for right query (B) 3369 ** outA: output one row of A 3370 ** outB: output one row of B (UNION and UNION ALL only) 3371 ** EofA: ... 3372 ** EofB: ... 3373 ** AltB: ... 3374 ** AeqB: ... 3375 ** AgtB: ... 3376 ** Init: initialize coroutine registers 3377 ** yield coA 3378 ** if eof(A) goto EofA 3379 ** yield coB 3380 ** if eof(B) goto EofB 3381 ** Cmpr: Compare A, B 3382 ** Jump AltB, AeqB, AgtB 3383 ** End: ... 3384 ** 3385 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3386 ** actually called using Gosub and they do not Return. EofA and EofB loop 3387 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3388 ** and AgtB jump to either L2 or to one of EofA or EofB. 3389 */ 3390 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3391 static int multiSelectOrderBy( 3392 Parse *pParse, /* Parsing context */ 3393 Select *p, /* The right-most of SELECTs to be coded */ 3394 SelectDest *pDest /* What to do with query results */ 3395 ){ 3396 int i, j; /* Loop counters */ 3397 Select *pPrior; /* Another SELECT immediately to our left */ 3398 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3399 int nSelect; /* Number of SELECT statements in the compound */ 3400 Vdbe *v; /* Generate code to this VDBE */ 3401 SelectDest destA; /* Destination for coroutine A */ 3402 SelectDest destB; /* Destination for coroutine B */ 3403 int regAddrA; /* Address register for select-A coroutine */ 3404 int regAddrB; /* Address register for select-B coroutine */ 3405 int addrSelectA; /* Address of the select-A coroutine */ 3406 int addrSelectB; /* Address of the select-B coroutine */ 3407 int regOutA; /* Address register for the output-A subroutine */ 3408 int regOutB; /* Address register for the output-B subroutine */ 3409 int addrOutA; /* Address of the output-A subroutine */ 3410 int addrOutB = 0; /* Address of the output-B subroutine */ 3411 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3412 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3413 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3414 int addrAltB; /* Address of the A<B subroutine */ 3415 int addrAeqB; /* Address of the A==B subroutine */ 3416 int addrAgtB; /* Address of the A>B subroutine */ 3417 int regLimitA; /* Limit register for select-A */ 3418 int regLimitB; /* Limit register for select-A */ 3419 int regPrev; /* A range of registers to hold previous output */ 3420 int savedLimit; /* Saved value of p->iLimit */ 3421 int savedOffset; /* Saved value of p->iOffset */ 3422 int labelCmpr; /* Label for the start of the merge algorithm */ 3423 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3424 int addr1; /* Jump instructions that get retargetted */ 3425 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3426 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3427 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3428 sqlite3 *db; /* Database connection */ 3429 ExprList *pOrderBy; /* The ORDER BY clause */ 3430 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3431 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3432 3433 assert( p->pOrderBy!=0 ); 3434 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3435 db = pParse->db; 3436 v = pParse->pVdbe; 3437 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3438 labelEnd = sqlite3VdbeMakeLabel(pParse); 3439 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3440 3441 3442 /* Patch up the ORDER BY clause 3443 */ 3444 op = p->op; 3445 assert( p->pPrior->pOrderBy==0 ); 3446 pOrderBy = p->pOrderBy; 3447 assert( pOrderBy ); 3448 nOrderBy = pOrderBy->nExpr; 3449 3450 /* For operators other than UNION ALL we have to make sure that 3451 ** the ORDER BY clause covers every term of the result set. Add 3452 ** terms to the ORDER BY clause as necessary. 3453 */ 3454 if( op!=TK_ALL ){ 3455 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3456 struct ExprList_item *pItem; 3457 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3458 assert( pItem!=0 ); 3459 assert( pItem->u.x.iOrderByCol>0 ); 3460 if( pItem->u.x.iOrderByCol==i ) break; 3461 } 3462 if( j==nOrderBy ){ 3463 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3464 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3465 pNew->flags |= EP_IntValue; 3466 pNew->u.iValue = i; 3467 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3468 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3469 } 3470 } 3471 } 3472 3473 /* Compute the comparison permutation and keyinfo that is used with 3474 ** the permutation used to determine if the next 3475 ** row of results comes from selectA or selectB. Also add explicit 3476 ** collations to the ORDER BY clause terms so that when the subqueries 3477 ** to the right and the left are evaluated, they use the correct 3478 ** collation. 3479 */ 3480 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3481 if( aPermute ){ 3482 struct ExprList_item *pItem; 3483 aPermute[0] = nOrderBy; 3484 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3485 assert( pItem!=0 ); 3486 assert( pItem->u.x.iOrderByCol>0 ); 3487 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3488 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3489 } 3490 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3491 }else{ 3492 pKeyMerge = 0; 3493 } 3494 3495 /* Allocate a range of temporary registers and the KeyInfo needed 3496 ** for the logic that removes duplicate result rows when the 3497 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3498 */ 3499 if( op==TK_ALL ){ 3500 regPrev = 0; 3501 }else{ 3502 int nExpr = p->pEList->nExpr; 3503 assert( nOrderBy>=nExpr || db->mallocFailed ); 3504 regPrev = pParse->nMem+1; 3505 pParse->nMem += nExpr+1; 3506 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3507 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3508 if( pKeyDup ){ 3509 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3510 for(i=0; i<nExpr; i++){ 3511 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3512 pKeyDup->aSortFlags[i] = 0; 3513 } 3514 } 3515 } 3516 3517 /* Separate the left and the right query from one another 3518 */ 3519 nSelect = 1; 3520 if( (op==TK_ALL || op==TK_UNION) 3521 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3522 ){ 3523 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3524 nSelect++; 3525 assert( pSplit->pPrior->pNext==pSplit ); 3526 } 3527 } 3528 if( nSelect<=3 ){ 3529 pSplit = p; 3530 }else{ 3531 pSplit = p; 3532 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3533 } 3534 pPrior = pSplit->pPrior; 3535 assert( pPrior!=0 ); 3536 pSplit->pPrior = 0; 3537 pPrior->pNext = 0; 3538 assert( p->pOrderBy == pOrderBy ); 3539 assert( pOrderBy!=0 || db->mallocFailed ); 3540 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3541 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3542 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3543 3544 /* Compute the limit registers */ 3545 computeLimitRegisters(pParse, p, labelEnd); 3546 if( p->iLimit && op==TK_ALL ){ 3547 regLimitA = ++pParse->nMem; 3548 regLimitB = ++pParse->nMem; 3549 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3550 regLimitA); 3551 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3552 }else{ 3553 regLimitA = regLimitB = 0; 3554 } 3555 sqlite3ExprDelete(db, p->pLimit); 3556 p->pLimit = 0; 3557 3558 regAddrA = ++pParse->nMem; 3559 regAddrB = ++pParse->nMem; 3560 regOutA = ++pParse->nMem; 3561 regOutB = ++pParse->nMem; 3562 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3563 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3564 3565 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3566 3567 /* Generate a coroutine to evaluate the SELECT statement to the 3568 ** left of the compound operator - the "A" select. 3569 */ 3570 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3571 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3572 VdbeComment((v, "left SELECT")); 3573 pPrior->iLimit = regLimitA; 3574 ExplainQueryPlan((pParse, 1, "LEFT")); 3575 sqlite3Select(pParse, pPrior, &destA); 3576 sqlite3VdbeEndCoroutine(v, regAddrA); 3577 sqlite3VdbeJumpHere(v, addr1); 3578 3579 /* Generate a coroutine to evaluate the SELECT statement on 3580 ** the right - the "B" select 3581 */ 3582 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3583 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3584 VdbeComment((v, "right SELECT")); 3585 savedLimit = p->iLimit; 3586 savedOffset = p->iOffset; 3587 p->iLimit = regLimitB; 3588 p->iOffset = 0; 3589 ExplainQueryPlan((pParse, 1, "RIGHT")); 3590 sqlite3Select(pParse, p, &destB); 3591 p->iLimit = savedLimit; 3592 p->iOffset = savedOffset; 3593 sqlite3VdbeEndCoroutine(v, regAddrB); 3594 3595 /* Generate a subroutine that outputs the current row of the A 3596 ** select as the next output row of the compound select. 3597 */ 3598 VdbeNoopComment((v, "Output routine for A")); 3599 addrOutA = generateOutputSubroutine(pParse, 3600 p, &destA, pDest, regOutA, 3601 regPrev, pKeyDup, labelEnd); 3602 3603 /* Generate a subroutine that outputs the current row of the B 3604 ** select as the next output row of the compound select. 3605 */ 3606 if( op==TK_ALL || op==TK_UNION ){ 3607 VdbeNoopComment((v, "Output routine for B")); 3608 addrOutB = generateOutputSubroutine(pParse, 3609 p, &destB, pDest, regOutB, 3610 regPrev, pKeyDup, labelEnd); 3611 } 3612 sqlite3KeyInfoUnref(pKeyDup); 3613 3614 /* Generate a subroutine to run when the results from select A 3615 ** are exhausted and only data in select B remains. 3616 */ 3617 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3618 addrEofA_noB = addrEofA = labelEnd; 3619 }else{ 3620 VdbeNoopComment((v, "eof-A subroutine")); 3621 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3622 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3623 VdbeCoverage(v); 3624 sqlite3VdbeGoto(v, addrEofA); 3625 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3626 } 3627 3628 /* Generate a subroutine to run when the results from select B 3629 ** are exhausted and only data in select A remains. 3630 */ 3631 if( op==TK_INTERSECT ){ 3632 addrEofB = addrEofA; 3633 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3634 }else{ 3635 VdbeNoopComment((v, "eof-B subroutine")); 3636 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3637 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3638 sqlite3VdbeGoto(v, addrEofB); 3639 } 3640 3641 /* Generate code to handle the case of A<B 3642 */ 3643 VdbeNoopComment((v, "A-lt-B subroutine")); 3644 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3645 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3646 sqlite3VdbeGoto(v, labelCmpr); 3647 3648 /* Generate code to handle the case of A==B 3649 */ 3650 if( op==TK_ALL ){ 3651 addrAeqB = addrAltB; 3652 }else if( op==TK_INTERSECT ){ 3653 addrAeqB = addrAltB; 3654 addrAltB++; 3655 }else{ 3656 VdbeNoopComment((v, "A-eq-B subroutine")); 3657 addrAeqB = 3658 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3659 sqlite3VdbeGoto(v, labelCmpr); 3660 } 3661 3662 /* Generate code to handle the case of A>B 3663 */ 3664 VdbeNoopComment((v, "A-gt-B subroutine")); 3665 addrAgtB = sqlite3VdbeCurrentAddr(v); 3666 if( op==TK_ALL || op==TK_UNION ){ 3667 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3668 } 3669 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3670 sqlite3VdbeGoto(v, labelCmpr); 3671 3672 /* This code runs once to initialize everything. 3673 */ 3674 sqlite3VdbeJumpHere(v, addr1); 3675 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3676 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3677 3678 /* Implement the main merge loop 3679 */ 3680 sqlite3VdbeResolveLabel(v, labelCmpr); 3681 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3682 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3683 (char*)pKeyMerge, P4_KEYINFO); 3684 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3685 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3686 3687 /* Jump to the this point in order to terminate the query. 3688 */ 3689 sqlite3VdbeResolveLabel(v, labelEnd); 3690 3691 /* Reassembly the compound query so that it will be freed correctly 3692 ** by the calling function */ 3693 if( pSplit->pPrior ){ 3694 sqlite3SelectDelete(db, pSplit->pPrior); 3695 } 3696 pSplit->pPrior = pPrior; 3697 pPrior->pNext = pSplit; 3698 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3699 pPrior->pOrderBy = 0; 3700 3701 /*** TBD: Insert subroutine calls to close cursors on incomplete 3702 **** subqueries ****/ 3703 ExplainQueryPlanPop(pParse); 3704 return pParse->nErr!=0; 3705 } 3706 #endif 3707 3708 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3709 3710 /* An instance of the SubstContext object describes an substitution edit 3711 ** to be performed on a parse tree. 3712 ** 3713 ** All references to columns in table iTable are to be replaced by corresponding 3714 ** expressions in pEList. 3715 ** 3716 ** ## About "isOuterJoin": 3717 ** 3718 ** The isOuterJoin column indicates that the replacement will occur into a 3719 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3720 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3721 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3722 ** bypass the substituted expression with OP_IfNullRow. 3723 ** 3724 ** Suppose the original expression integer constant. Even though the table 3725 ** has the nullRow flag set, because the expression is an integer constant, 3726 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3727 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3728 ** flag is set, then the value in the register is set to NULL and the original 3729 ** expression is bypassed. If the nullRow flag is not set, then the original 3730 ** expression runs to populate the register. 3731 ** 3732 ** Example where this is needed: 3733 ** 3734 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3735 ** CREATE TABLE t2(x INT UNIQUE); 3736 ** 3737 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3738 ** 3739 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3740 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3741 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3742 ** when processing a non-matched row of the left. 3743 */ 3744 typedef struct SubstContext { 3745 Parse *pParse; /* The parsing context */ 3746 int iTable; /* Replace references to this table */ 3747 int iNewTable; /* New table number */ 3748 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3749 ExprList *pEList; /* Replacement expressions */ 3750 } SubstContext; 3751 3752 /* Forward Declarations */ 3753 static void substExprList(SubstContext*, ExprList*); 3754 static void substSelect(SubstContext*, Select*, int); 3755 3756 /* 3757 ** Scan through the expression pExpr. Replace every reference to 3758 ** a column in table number iTable with a copy of the iColumn-th 3759 ** entry in pEList. (But leave references to the ROWID column 3760 ** unchanged.) 3761 ** 3762 ** This routine is part of the flattening procedure. A subquery 3763 ** whose result set is defined by pEList appears as entry in the 3764 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3765 ** FORM clause entry is iTable. This routine makes the necessary 3766 ** changes to pExpr so that it refers directly to the source table 3767 ** of the subquery rather the result set of the subquery. 3768 */ 3769 static Expr *substExpr( 3770 SubstContext *pSubst, /* Description of the substitution */ 3771 Expr *pExpr /* Expr in which substitution occurs */ 3772 ){ 3773 if( pExpr==0 ) return 0; 3774 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) 3775 && pExpr->w.iJoin==pSubst->iTable 3776 ){ 3777 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 3778 pExpr->w.iJoin = pSubst->iNewTable; 3779 } 3780 if( pExpr->op==TK_COLUMN 3781 && pExpr->iTable==pSubst->iTable 3782 && !ExprHasProperty(pExpr, EP_FixedCol) 3783 ){ 3784 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3785 if( pExpr->iColumn<0 ){ 3786 pExpr->op = TK_NULL; 3787 }else 3788 #endif 3789 { 3790 Expr *pNew; 3791 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3792 Expr ifNullRow; 3793 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3794 assert( pExpr->pRight==0 ); 3795 if( sqlite3ExprIsVector(pCopy) ){ 3796 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3797 }else{ 3798 sqlite3 *db = pSubst->pParse->db; 3799 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3800 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3801 ifNullRow.op = TK_IF_NULL_ROW; 3802 ifNullRow.pLeft = pCopy; 3803 ifNullRow.iTable = pSubst->iNewTable; 3804 ifNullRow.flags = EP_IfNullRow; 3805 pCopy = &ifNullRow; 3806 } 3807 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3808 pNew = sqlite3ExprDup(db, pCopy, 0); 3809 if( db->mallocFailed ){ 3810 sqlite3ExprDelete(db, pNew); 3811 return pExpr; 3812 } 3813 if( pSubst->isOuterJoin ){ 3814 ExprSetProperty(pNew, EP_CanBeNull); 3815 } 3816 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ 3817 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3818 pExpr->flags & (EP_OuterON|EP_InnerON)); 3819 } 3820 sqlite3ExprDelete(db, pExpr); 3821 pExpr = pNew; 3822 if( pExpr->op==TK_TRUEFALSE ){ 3823 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); 3824 pExpr->op = TK_INTEGER; 3825 ExprSetProperty(pExpr, EP_IntValue); 3826 } 3827 3828 /* Ensure that the expression now has an implicit collation sequence, 3829 ** just as it did when it was a column of a view or sub-query. */ 3830 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3831 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3832 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3833 (pColl ? pColl->zName : "BINARY") 3834 ); 3835 } 3836 ExprClearProperty(pExpr, EP_Collate); 3837 } 3838 } 3839 }else{ 3840 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3841 pExpr->iTable = pSubst->iNewTable; 3842 } 3843 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3844 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3845 if( ExprUseXSelect(pExpr) ){ 3846 substSelect(pSubst, pExpr->x.pSelect, 1); 3847 }else{ 3848 substExprList(pSubst, pExpr->x.pList); 3849 } 3850 #ifndef SQLITE_OMIT_WINDOWFUNC 3851 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3852 Window *pWin = pExpr->y.pWin; 3853 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3854 substExprList(pSubst, pWin->pPartition); 3855 substExprList(pSubst, pWin->pOrderBy); 3856 } 3857 #endif 3858 } 3859 return pExpr; 3860 } 3861 static void substExprList( 3862 SubstContext *pSubst, /* Description of the substitution */ 3863 ExprList *pList /* List to scan and in which to make substitutes */ 3864 ){ 3865 int i; 3866 if( pList==0 ) return; 3867 for(i=0; i<pList->nExpr; i++){ 3868 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3869 } 3870 } 3871 static void substSelect( 3872 SubstContext *pSubst, /* Description of the substitution */ 3873 Select *p, /* SELECT statement in which to make substitutions */ 3874 int doPrior /* Do substitutes on p->pPrior too */ 3875 ){ 3876 SrcList *pSrc; 3877 SrcItem *pItem; 3878 int i; 3879 if( !p ) return; 3880 do{ 3881 substExprList(pSubst, p->pEList); 3882 substExprList(pSubst, p->pGroupBy); 3883 substExprList(pSubst, p->pOrderBy); 3884 p->pHaving = substExpr(pSubst, p->pHaving); 3885 p->pWhere = substExpr(pSubst, p->pWhere); 3886 pSrc = p->pSrc; 3887 assert( pSrc!=0 ); 3888 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3889 substSelect(pSubst, pItem->pSelect, 1); 3890 if( pItem->fg.isTabFunc ){ 3891 substExprList(pSubst, pItem->u1.pFuncArg); 3892 } 3893 } 3894 }while( doPrior && (p = p->pPrior)!=0 ); 3895 } 3896 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3897 3898 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3899 /* 3900 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3901 ** clause of that SELECT. 3902 ** 3903 ** This routine scans the entire SELECT statement and recomputes the 3904 ** pSrcItem->colUsed mask. 3905 */ 3906 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3907 SrcItem *pItem; 3908 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3909 pItem = pWalker->u.pSrcItem; 3910 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3911 if( pExpr->iColumn<0 ) return WRC_Continue; 3912 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3913 return WRC_Continue; 3914 } 3915 static void recomputeColumnsUsed( 3916 Select *pSelect, /* The complete SELECT statement */ 3917 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3918 ){ 3919 Walker w; 3920 if( NEVER(pSrcItem->pTab==0) ) return; 3921 memset(&w, 0, sizeof(w)); 3922 w.xExprCallback = recomputeColumnsUsedExpr; 3923 w.xSelectCallback = sqlite3SelectWalkNoop; 3924 w.u.pSrcItem = pSrcItem; 3925 pSrcItem->colUsed = 0; 3926 sqlite3WalkSelect(&w, pSelect); 3927 } 3928 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3929 3930 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3931 /* 3932 ** Assign new cursor numbers to each of the items in pSrc. For each 3933 ** new cursor number assigned, set an entry in the aCsrMap[] array 3934 ** to map the old cursor number to the new: 3935 ** 3936 ** aCsrMap[iOld+1] = iNew; 3937 ** 3938 ** The array is guaranteed by the caller to be large enough for all 3939 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3940 ** 3941 ** If pSrc contains any sub-selects, call this routine recursively 3942 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3943 */ 3944 static void srclistRenumberCursors( 3945 Parse *pParse, /* Parse context */ 3946 int *aCsrMap, /* Array to store cursor mappings in */ 3947 SrcList *pSrc, /* FROM clause to renumber */ 3948 int iExcept /* FROM clause item to skip */ 3949 ){ 3950 int i; 3951 SrcItem *pItem; 3952 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3953 if( i!=iExcept ){ 3954 Select *p; 3955 assert( pItem->iCursor < aCsrMap[0] ); 3956 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3957 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3958 } 3959 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3960 for(p=pItem->pSelect; p; p=p->pPrior){ 3961 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3962 } 3963 } 3964 } 3965 } 3966 3967 /* 3968 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3969 */ 3970 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3971 int *aCsrMap = pWalker->u.aiCol; 3972 int iCsr = *piCursor; 3973 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3974 *piCursor = aCsrMap[iCsr+1]; 3975 } 3976 } 3977 3978 /* 3979 ** Expression walker callback used by renumberCursors() to update 3980 ** Expr objects to match newly assigned cursor numbers. 3981 */ 3982 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3983 int op = pExpr->op; 3984 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3985 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3986 } 3987 if( ExprHasProperty(pExpr, EP_OuterON) ){ 3988 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3989 } 3990 return WRC_Continue; 3991 } 3992 3993 /* 3994 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3995 ** of the SELECT statement passed as the second argument, and to each 3996 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3997 ** Except, do not assign a new cursor number to the iExcept'th element in 3998 ** the FROM clause of (*p). Update all expressions and other references 3999 ** to refer to the new cursor numbers. 4000 ** 4001 ** Argument aCsrMap is an array that may be used for temporary working 4002 ** space. Two guarantees are made by the caller: 4003 ** 4004 ** * the array is larger than the largest cursor number used within the 4005 ** select statement passed as an argument, and 4006 ** 4007 ** * the array entries for all cursor numbers that do *not* appear in 4008 ** FROM clauses of the select statement as described above are 4009 ** initialized to zero. 4010 */ 4011 static void renumberCursors( 4012 Parse *pParse, /* Parse context */ 4013 Select *p, /* Select to renumber cursors within */ 4014 int iExcept, /* FROM clause item to skip */ 4015 int *aCsrMap /* Working space */ 4016 ){ 4017 Walker w; 4018 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 4019 memset(&w, 0, sizeof(w)); 4020 w.u.aiCol = aCsrMap; 4021 w.xExprCallback = renumberCursorsCb; 4022 w.xSelectCallback = sqlite3SelectWalkNoop; 4023 sqlite3WalkSelect(&w, p); 4024 } 4025 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4026 4027 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4028 /* 4029 ** This routine attempts to flatten subqueries as a performance optimization. 4030 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4031 ** 4032 ** To understand the concept of flattening, consider the following 4033 ** query: 4034 ** 4035 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4036 ** 4037 ** The default way of implementing this query is to execute the 4038 ** subquery first and store the results in a temporary table, then 4039 ** run the outer query on that temporary table. This requires two 4040 ** passes over the data. Furthermore, because the temporary table 4041 ** has no indices, the WHERE clause on the outer query cannot be 4042 ** optimized. 4043 ** 4044 ** This routine attempts to rewrite queries such as the above into 4045 ** a single flat select, like this: 4046 ** 4047 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4048 ** 4049 ** The code generated for this simplification gives the same result 4050 ** but only has to scan the data once. And because indices might 4051 ** exist on the table t1, a complete scan of the data might be 4052 ** avoided. 4053 ** 4054 ** Flattening is subject to the following constraints: 4055 ** 4056 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4057 ** The subquery and the outer query cannot both be aggregates. 4058 ** 4059 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4060 ** (2) If the subquery is an aggregate then 4061 ** (2a) the outer query must not be a join and 4062 ** (2b) the outer query must not use subqueries 4063 ** other than the one FROM-clause subquery that is a candidate 4064 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4065 ** from 2015-02-09.) 4066 ** 4067 ** (3) If the subquery is the right operand of a LEFT JOIN then 4068 ** (3a) the subquery may not be a join and 4069 ** (3b) the FROM clause of the subquery may not contain a virtual 4070 ** table and 4071 ** (3c) the outer query may not be an aggregate. 4072 ** (3d) the outer query may not be DISTINCT. 4073 ** See also (26) for restrictions on RIGHT JOIN. 4074 ** 4075 ** (4) The subquery can not be DISTINCT. 4076 ** 4077 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4078 ** sub-queries that were excluded from this optimization. Restriction 4079 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4080 ** 4081 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4082 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4083 ** 4084 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4085 ** A FROM clause, consider adding a FROM clause with the special 4086 ** table sqlite_once that consists of a single row containing a 4087 ** single NULL. 4088 ** 4089 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4090 ** 4091 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4092 ** 4093 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4094 ** accidently carried the comment forward until 2014-09-15. Original 4095 ** constraint: "If the subquery is aggregate then the outer query 4096 ** may not use LIMIT." 4097 ** 4098 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4099 ** 4100 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4101 ** a separate restriction deriving from ticket #350. 4102 ** 4103 ** (13) The subquery and outer query may not both use LIMIT. 4104 ** 4105 ** (14) The subquery may not use OFFSET. 4106 ** 4107 ** (15) If the outer query is part of a compound select, then the 4108 ** subquery may not use LIMIT. 4109 ** (See ticket #2339 and ticket [02a8e81d44]). 4110 ** 4111 ** (16) If the outer query is aggregate, then the subquery may not 4112 ** use ORDER BY. (Ticket #2942) This used to not matter 4113 ** until we introduced the group_concat() function. 4114 ** 4115 ** (17) If the subquery is a compound select, then 4116 ** (17a) all compound operators must be a UNION ALL, and 4117 ** (17b) no terms within the subquery compound may be aggregate 4118 ** or DISTINCT, and 4119 ** (17c) every term within the subquery compound must have a FROM clause 4120 ** (17d) the outer query may not be 4121 ** (17d1) aggregate, or 4122 ** (17d2) DISTINCT 4123 ** (17e) the subquery may not contain window functions, and 4124 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4125 ** 4126 ** The parent and sub-query may contain WHERE clauses. Subject to 4127 ** rules (11), (13) and (14), they may also contain ORDER BY, 4128 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4129 ** operator other than UNION ALL because all the other compound 4130 ** operators have an implied DISTINCT which is disallowed by 4131 ** restriction (4). 4132 ** 4133 ** Also, each component of the sub-query must return the same number 4134 ** of result columns. This is actually a requirement for any compound 4135 ** SELECT statement, but all the code here does is make sure that no 4136 ** such (illegal) sub-query is flattened. The caller will detect the 4137 ** syntax error and return a detailed message. 4138 ** 4139 ** (18) If the sub-query is a compound select, then all terms of the 4140 ** ORDER BY clause of the parent must be copies of a term returned 4141 ** by the parent query. 4142 ** 4143 ** (19) If the subquery uses LIMIT then the outer query may not 4144 ** have a WHERE clause. 4145 ** 4146 ** (20) If the sub-query is a compound select, then it must not use 4147 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4148 ** somewhat by saying that the terms of the ORDER BY clause must 4149 ** appear as unmodified result columns in the outer query. But we 4150 ** have other optimizations in mind to deal with that case. 4151 ** 4152 ** (21) If the subquery uses LIMIT then the outer query may not be 4153 ** DISTINCT. (See ticket [752e1646fc]). 4154 ** 4155 ** (22) The subquery may not be a recursive CTE. 4156 ** 4157 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4158 ** a compound query. This restriction is because transforming the 4159 ** parent to a compound query confuses the code that handles 4160 ** recursive queries in multiSelect(). 4161 ** 4162 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4163 ** The subquery may not be an aggregate that uses the built-in min() or 4164 ** or max() functions. (Without this restriction, a query like: 4165 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4166 ** return the value X for which Y was maximal.) 4167 ** 4168 ** (25) If either the subquery or the parent query contains a window 4169 ** function in the select list or ORDER BY clause, flattening 4170 ** is not attempted. 4171 ** 4172 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4173 ** See also (3) for restrictions on LEFT JOIN. 4174 ** 4175 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4176 ** is the first element of the parent query. 4177 ** 4178 ** (28) The subquery is not a MATERIALIZED CTE. 4179 ** 4180 ** (29) Either the subquery is not the right-hand operand of a join with an 4181 ** ON or USING clause nor the right-hand operand of a NATURAL JOIN, or 4182 ** the right-most table within the FROM clause of the subquery 4183 ** is not part of an outer join. 4184 ** 4185 ** 4186 ** In this routine, the "p" parameter is a pointer to the outer query. 4187 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4188 ** uses aggregates. 4189 ** 4190 ** If flattening is not attempted, this routine is a no-op and returns 0. 4191 ** If flattening is attempted this routine returns 1. 4192 ** 4193 ** All of the expression analysis must occur on both the outer query and 4194 ** the subquery before this routine runs. 4195 */ 4196 static int flattenSubquery( 4197 Parse *pParse, /* Parsing context */ 4198 Select *p, /* The parent or outer SELECT statement */ 4199 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4200 int isAgg /* True if outer SELECT uses aggregate functions */ 4201 ){ 4202 const char *zSavedAuthContext = pParse->zAuthContext; 4203 Select *pParent; /* Current UNION ALL term of the other query */ 4204 Select *pSub; /* The inner query or "subquery" */ 4205 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4206 SrcList *pSrc; /* The FROM clause of the outer query */ 4207 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4208 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4209 int iNewParent = -1;/* Replacement table for iParent */ 4210 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4211 int i; /* Loop counter */ 4212 Expr *pWhere; /* The WHERE clause */ 4213 SrcItem *pSubitem; /* The subquery */ 4214 sqlite3 *db = pParse->db; 4215 Walker w; /* Walker to persist agginfo data */ 4216 int *aCsrMap = 0; 4217 4218 /* Check to see if flattening is permitted. Return 0 if not. 4219 */ 4220 assert( p!=0 ); 4221 assert( p->pPrior==0 ); 4222 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4223 pSrc = p->pSrc; 4224 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4225 pSubitem = &pSrc->a[iFrom]; 4226 iParent = pSubitem->iCursor; 4227 pSub = pSubitem->pSelect; 4228 assert( pSub!=0 ); 4229 4230 #ifndef SQLITE_OMIT_WINDOWFUNC 4231 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4232 #endif 4233 4234 pSubSrc = pSub->pSrc; 4235 assert( pSubSrc ); 4236 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4237 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4238 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4239 ** became arbitrary expressions, we were forced to add restrictions (13) 4240 ** and (14). */ 4241 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4242 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4243 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4244 return 0; /* Restriction (15) */ 4245 } 4246 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4247 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4248 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4249 return 0; /* Restrictions (8)(9) */ 4250 } 4251 if( p->pOrderBy && pSub->pOrderBy ){ 4252 return 0; /* Restriction (11) */ 4253 } 4254 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4255 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4256 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4257 return 0; /* Restriction (21) */ 4258 } 4259 if( pSub->selFlags & (SF_Recursive) ){ 4260 return 0; /* Restrictions (22) */ 4261 } 4262 4263 /* 4264 ** If the subquery is the right operand of a LEFT JOIN, then the 4265 ** subquery may not be a join itself (3a). Example of why this is not 4266 ** allowed: 4267 ** 4268 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4269 ** 4270 ** If we flatten the above, we would get 4271 ** 4272 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4273 ** 4274 ** which is not at all the same thing. 4275 ** 4276 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4277 ** query cannot be an aggregate. (3c) This is an artifact of the way 4278 ** aggregates are processed - there is no mechanism to determine if 4279 ** the LEFT JOIN table should be all-NULL. 4280 ** 4281 ** See also tickets #306, #350, and #3300. 4282 */ 4283 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4284 if( pSubSrc->nSrc>1 /* (3a) */ 4285 || isAgg /* (3b) */ 4286 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4287 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4288 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4289 ){ 4290 return 0; 4291 } 4292 isOuterJoin = 1; 4293 } 4294 #ifdef SQLITE_EXTRA_IFNULLROW 4295 else if( iFrom>0 && !isAgg ){ 4296 /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for 4297 ** every reference to any result column from subquery in a join, even 4298 ** though they are not necessary. This will stress-test the OP_IfNullRow 4299 ** opcode. */ 4300 isOuterJoin = -1; 4301 } 4302 #endif 4303 4304 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4305 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4306 return 0; /* Restriction (27) */ 4307 } 4308 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4309 return 0; /* (28) */ 4310 } 4311 4312 /* Restriction (29): 4313 ** 4314 ** We do not want two constraints on the same term of the flattened 4315 ** query where one constraint has EP_InnerON and the other is EP_OuterON. 4316 ** To prevent this, one or the other of the following conditions must be 4317 ** false: 4318 ** 4319 ** (29a) The right-most entry in the FROM clause of the subquery 4320 ** must not be part of an outer join. 4321 ** 4322 ** (29b) The subquery itself must not be the right operand of a 4323 ** NATURAL join or a join that as an ON or USING clause. 4324 ** 4325 ** These conditions are sufficient to keep an EP_OuterON from being 4326 ** flattened into an EP_InnerON. Restrictions (3a) and (27) prevent 4327 ** an EP_InnerON from being flattened into an EP_OuterON. 4328 */ 4329 if( pSubSrc->nSrc>=2 4330 && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0 4331 ){ 4332 if( (pSubitem->fg.jointype & JT_NATURAL)!=0 4333 || pSubitem->fg.isUsing 4334 || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */ 4335 || pSubitem->fg.isOn 4336 ){ 4337 return 0; 4338 } 4339 } 4340 4341 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4342 ** use only the UNION ALL operator. And none of the simple select queries 4343 ** that make up the compound SELECT are allowed to be aggregate or distinct 4344 ** queries. 4345 */ 4346 if( pSub->pPrior ){ 4347 if( pSub->pOrderBy ){ 4348 return 0; /* Restriction (20) */ 4349 } 4350 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4351 return 0; /* (17d1), (17d2), or (17f) */ 4352 } 4353 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4354 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4355 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4356 assert( pSub->pSrc!=0 ); 4357 assert( (pSub->selFlags & SF_Recursive)==0 ); 4358 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4359 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4360 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4361 || pSub1->pSrc->nSrc<1 /* (17c) */ 4362 #ifndef SQLITE_OMIT_WINDOWFUNC 4363 || pSub1->pWin /* (17e) */ 4364 #endif 4365 ){ 4366 return 0; 4367 } 4368 testcase( pSub1->pSrc->nSrc>1 ); 4369 } 4370 4371 /* Restriction (18). */ 4372 if( p->pOrderBy ){ 4373 int ii; 4374 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4375 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4376 } 4377 } 4378 4379 /* Restriction (23) */ 4380 if( (p->selFlags & SF_Recursive) ) return 0; 4381 4382 if( pSrc->nSrc>1 ){ 4383 if( pParse->nSelect>500 ) return 0; 4384 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4385 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4386 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4387 } 4388 } 4389 4390 /***** If we reach this point, flattening is permitted. *****/ 4391 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4392 pSub->selId, pSub, iFrom)); 4393 4394 /* Authorize the subquery */ 4395 pParse->zAuthContext = pSubitem->zName; 4396 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4397 testcase( i==SQLITE_DENY ); 4398 pParse->zAuthContext = zSavedAuthContext; 4399 4400 /* Delete the transient structures associated with thesubquery */ 4401 pSub1 = pSubitem->pSelect; 4402 sqlite3DbFree(db, pSubitem->zDatabase); 4403 sqlite3DbFree(db, pSubitem->zName); 4404 sqlite3DbFree(db, pSubitem->zAlias); 4405 pSubitem->zDatabase = 0; 4406 pSubitem->zName = 0; 4407 pSubitem->zAlias = 0; 4408 pSubitem->pSelect = 0; 4409 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4410 4411 /* If the sub-query is a compound SELECT statement, then (by restrictions 4412 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4413 ** be of the form: 4414 ** 4415 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4416 ** 4417 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4418 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4419 ** OFFSET clauses and joins them to the left-hand-side of the original 4420 ** using UNION ALL operators. In this case N is the number of simple 4421 ** select statements in the compound sub-query. 4422 ** 4423 ** Example: 4424 ** 4425 ** SELECT a+1 FROM ( 4426 ** SELECT x FROM tab 4427 ** UNION ALL 4428 ** SELECT y FROM tab 4429 ** UNION ALL 4430 ** SELECT abs(z*2) FROM tab2 4431 ** ) WHERE a!=5 ORDER BY 1 4432 ** 4433 ** Transformed into: 4434 ** 4435 ** SELECT x+1 FROM tab WHERE x+1!=5 4436 ** UNION ALL 4437 ** SELECT y+1 FROM tab WHERE y+1!=5 4438 ** UNION ALL 4439 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4440 ** ORDER BY 1 4441 ** 4442 ** We call this the "compound-subquery flattening". 4443 */ 4444 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4445 Select *pNew; 4446 ExprList *pOrderBy = p->pOrderBy; 4447 Expr *pLimit = p->pLimit; 4448 Select *pPrior = p->pPrior; 4449 Table *pItemTab = pSubitem->pTab; 4450 pSubitem->pTab = 0; 4451 p->pOrderBy = 0; 4452 p->pPrior = 0; 4453 p->pLimit = 0; 4454 pNew = sqlite3SelectDup(db, p, 0); 4455 p->pLimit = pLimit; 4456 p->pOrderBy = pOrderBy; 4457 p->op = TK_ALL; 4458 pSubitem->pTab = pItemTab; 4459 if( pNew==0 ){ 4460 p->pPrior = pPrior; 4461 }else{ 4462 pNew->selId = ++pParse->nSelect; 4463 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4464 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4465 } 4466 pNew->pPrior = pPrior; 4467 if( pPrior ) pPrior->pNext = pNew; 4468 pNew->pNext = p; 4469 p->pPrior = pNew; 4470 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4471 " creates %u as peer\n",pNew->selId)); 4472 } 4473 assert( pSubitem->pSelect==0 ); 4474 } 4475 sqlite3DbFree(db, aCsrMap); 4476 if( db->mallocFailed ){ 4477 pSubitem->pSelect = pSub1; 4478 return 1; 4479 } 4480 4481 /* Defer deleting the Table object associated with the 4482 ** subquery until code generation is 4483 ** complete, since there may still exist Expr.pTab entries that 4484 ** refer to the subquery even after flattening. Ticket #3346. 4485 ** 4486 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4487 */ 4488 if( ALWAYS(pSubitem->pTab!=0) ){ 4489 Table *pTabToDel = pSubitem->pTab; 4490 if( pTabToDel->nTabRef==1 ){ 4491 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4492 sqlite3ParserAddCleanup(pToplevel, 4493 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4494 pTabToDel); 4495 testcase( pToplevel->earlyCleanup ); 4496 }else{ 4497 pTabToDel->nTabRef--; 4498 } 4499 pSubitem->pTab = 0; 4500 } 4501 4502 /* The following loop runs once for each term in a compound-subquery 4503 ** flattening (as described above). If we are doing a different kind 4504 ** of flattening - a flattening other than a compound-subquery flattening - 4505 ** then this loop only runs once. 4506 ** 4507 ** This loop moves all of the FROM elements of the subquery into the 4508 ** the FROM clause of the outer query. Before doing this, remember 4509 ** the cursor number for the original outer query FROM element in 4510 ** iParent. The iParent cursor will never be used. Subsequent code 4511 ** will scan expressions looking for iParent references and replace 4512 ** those references with expressions that resolve to the subquery FROM 4513 ** elements we are now copying in. 4514 */ 4515 pSub = pSub1; 4516 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4517 int nSubSrc; 4518 u8 jointype = 0; 4519 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4520 assert( pSub!=0 ); 4521 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4522 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4523 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4524 4525 if( pParent==p ){ 4526 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4527 } 4528 4529 /* The subquery uses a single slot of the FROM clause of the outer 4530 ** query. If the subquery has more than one element in its FROM clause, 4531 ** then expand the outer query to make space for it to hold all elements 4532 ** of the subquery. 4533 ** 4534 ** Example: 4535 ** 4536 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4537 ** 4538 ** The outer query has 3 slots in its FROM clause. One slot of the 4539 ** outer query (the middle slot) is used by the subquery. The next 4540 ** block of code will expand the outer query FROM clause to 4 slots. 4541 ** The middle slot is expanded to two slots in order to make space 4542 ** for the two elements in the FROM clause of the subquery. 4543 */ 4544 if( nSubSrc>1 ){ 4545 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4546 if( pSrc==0 ) break; 4547 pParent->pSrc = pSrc; 4548 } 4549 4550 /* Transfer the FROM clause terms from the subquery into the 4551 ** outer query. 4552 */ 4553 for(i=0; i<nSubSrc; i++){ 4554 SrcItem *pItem = &pSrc->a[i+iFrom]; 4555 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4556 assert( pItem->fg.isTabFunc==0 ); 4557 *pItem = pSubSrc->a[i]; 4558 pItem->fg.jointype |= ltorj; 4559 iNewParent = pSubSrc->a[i].iCursor; 4560 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4561 } 4562 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4563 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4564 4565 /* Now begin substituting subquery result set expressions for 4566 ** references to the iParent in the outer query. 4567 ** 4568 ** Example: 4569 ** 4570 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4571 ** \ \_____________ subquery __________/ / 4572 ** \_____________________ outer query ______________________________/ 4573 ** 4574 ** We look at every expression in the outer query and every place we see 4575 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4576 */ 4577 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4578 /* At this point, any non-zero iOrderByCol values indicate that the 4579 ** ORDER BY column expression is identical to the iOrderByCol'th 4580 ** expression returned by SELECT statement pSub. Since these values 4581 ** do not necessarily correspond to columns in SELECT statement pParent, 4582 ** zero them before transfering the ORDER BY clause. 4583 ** 4584 ** Not doing this may cause an error if a subsequent call to this 4585 ** function attempts to flatten a compound sub-query into pParent 4586 ** (the only way this can happen is if the compound sub-query is 4587 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4588 ExprList *pOrderBy = pSub->pOrderBy; 4589 for(i=0; i<pOrderBy->nExpr; i++){ 4590 pOrderBy->a[i].u.x.iOrderByCol = 0; 4591 } 4592 assert( pParent->pOrderBy==0 ); 4593 pParent->pOrderBy = pOrderBy; 4594 pSub->pOrderBy = 0; 4595 } 4596 pWhere = pSub->pWhere; 4597 pSub->pWhere = 0; 4598 if( isOuterJoin>0 ){ 4599 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); 4600 } 4601 if( pWhere ){ 4602 if( pParent->pWhere ){ 4603 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4604 }else{ 4605 pParent->pWhere = pWhere; 4606 } 4607 } 4608 if( db->mallocFailed==0 ){ 4609 SubstContext x; 4610 x.pParse = pParse; 4611 x.iTable = iParent; 4612 x.iNewTable = iNewParent; 4613 x.isOuterJoin = isOuterJoin; 4614 x.pEList = pSub->pEList; 4615 substSelect(&x, pParent, 0); 4616 } 4617 4618 /* The flattened query is a compound if either the inner or the 4619 ** outer query is a compound. */ 4620 pParent->selFlags |= pSub->selFlags & SF_Compound; 4621 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4622 4623 /* 4624 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4625 ** 4626 ** One is tempted to try to add a and b to combine the limits. But this 4627 ** does not work if either limit is negative. 4628 */ 4629 if( pSub->pLimit ){ 4630 pParent->pLimit = pSub->pLimit; 4631 pSub->pLimit = 0; 4632 } 4633 4634 /* Recompute the SrcList_item.colUsed masks for the flattened 4635 ** tables. */ 4636 for(i=0; i<nSubSrc; i++){ 4637 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4638 } 4639 } 4640 4641 /* Finially, delete what is left of the subquery and return 4642 ** success. 4643 */ 4644 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4645 sqlite3WalkSelect(&w,pSub1); 4646 sqlite3SelectDelete(db, pSub1); 4647 4648 #if TREETRACE_ENABLED 4649 if( sqlite3TreeTrace & 0x100 ){ 4650 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4651 sqlite3TreeViewSelect(0, p, 0); 4652 } 4653 #endif 4654 4655 return 1; 4656 } 4657 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4658 4659 /* 4660 ** A structure to keep track of all of the column values that are fixed to 4661 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4662 */ 4663 typedef struct WhereConst WhereConst; 4664 struct WhereConst { 4665 Parse *pParse; /* Parsing context */ 4666 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4667 int nConst; /* Number for COLUMN=CONSTANT terms */ 4668 int nChng; /* Number of times a constant is propagated */ 4669 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4670 u32 mExcludeOn; /* Which ON expressions to exclude from considertion. 4671 ** Either EP_OuterON or EP_InnerON|EP_OuterON */ 4672 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4673 }; 4674 4675 /* 4676 ** Add a new entry to the pConst object. Except, do not add duplicate 4677 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4678 ** 4679 ** The caller guarantees the pColumn is a column and pValue is a constant. 4680 ** This routine has to do some additional checks before completing the 4681 ** insert. 4682 */ 4683 static void constInsert( 4684 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4685 Expr *pColumn, /* The COLUMN part of the constraint */ 4686 Expr *pValue, /* The VALUE part of the constraint */ 4687 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4688 ){ 4689 int i; 4690 assert( pColumn->op==TK_COLUMN ); 4691 assert( sqlite3ExprIsConstant(pValue) ); 4692 4693 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4694 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4695 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4696 return; 4697 } 4698 4699 /* 2018-10-25 ticket [cf5ed20f] 4700 ** Make sure the same pColumn is not inserted more than once */ 4701 for(i=0; i<pConst->nConst; i++){ 4702 const Expr *pE2 = pConst->apExpr[i*2]; 4703 assert( pE2->op==TK_COLUMN ); 4704 if( pE2->iTable==pColumn->iTable 4705 && pE2->iColumn==pColumn->iColumn 4706 ){ 4707 return; /* Already present. Return without doing anything. */ 4708 } 4709 } 4710 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4711 pConst->bHasAffBlob = 1; 4712 } 4713 4714 pConst->nConst++; 4715 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4716 pConst->nConst*2*sizeof(Expr*)); 4717 if( pConst->apExpr==0 ){ 4718 pConst->nConst = 0; 4719 }else{ 4720 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4721 pConst->apExpr[pConst->nConst*2-1] = pValue; 4722 } 4723 } 4724 4725 /* 4726 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4727 ** is a constant expression and where the term must be true because it 4728 ** is part of the AND-connected terms of the expression. For each term 4729 ** found, add it to the pConst structure. 4730 */ 4731 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4732 Expr *pRight, *pLeft; 4733 if( NEVER(pExpr==0) ) return; 4734 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ 4735 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4736 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4737 return; 4738 } 4739 if( pExpr->op==TK_AND ){ 4740 findConstInWhere(pConst, pExpr->pRight); 4741 findConstInWhere(pConst, pExpr->pLeft); 4742 return; 4743 } 4744 if( pExpr->op!=TK_EQ ) return; 4745 pRight = pExpr->pRight; 4746 pLeft = pExpr->pLeft; 4747 assert( pRight!=0 ); 4748 assert( pLeft!=0 ); 4749 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4750 constInsert(pConst,pRight,pLeft,pExpr); 4751 } 4752 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4753 constInsert(pConst,pLeft,pRight,pExpr); 4754 } 4755 } 4756 4757 /* 4758 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4759 ** 4760 ** Argument pExpr is a candidate expression to be replaced by a value. If 4761 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4762 ** then overwrite it with the corresponding value. Except, do not do so 4763 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4764 ** is SQLITE_AFF_BLOB. 4765 */ 4766 static int propagateConstantExprRewriteOne( 4767 WhereConst *pConst, 4768 Expr *pExpr, 4769 int bIgnoreAffBlob 4770 ){ 4771 int i; 4772 if( pConst->pOomFault[0] ) return WRC_Prune; 4773 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4774 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ 4775 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4776 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4777 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4778 return WRC_Continue; 4779 } 4780 for(i=0; i<pConst->nConst; i++){ 4781 Expr *pColumn = pConst->apExpr[i*2]; 4782 if( pColumn==pExpr ) continue; 4783 if( pColumn->iTable!=pExpr->iTable ) continue; 4784 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4785 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4786 break; 4787 } 4788 /* A match is found. Add the EP_FixedCol property */ 4789 pConst->nChng++; 4790 ExprClearProperty(pExpr, EP_Leaf); 4791 ExprSetProperty(pExpr, EP_FixedCol); 4792 assert( pExpr->pLeft==0 ); 4793 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4794 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4795 break; 4796 } 4797 return WRC_Prune; 4798 } 4799 4800 /* 4801 ** This is a Walker expression callback. pExpr is a node from the WHERE 4802 ** clause of a SELECT statement. This function examines pExpr to see if 4803 ** any substitutions based on the contents of pWalker->u.pConst should 4804 ** be made to pExpr or its immediate children. 4805 ** 4806 ** A substitution is made if: 4807 ** 4808 ** + pExpr is a column with an affinity other than BLOB that matches 4809 ** one of the columns in pWalker->u.pConst, or 4810 ** 4811 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4812 ** uses an affinity other than TEXT and one of its immediate 4813 ** children is a column that matches one of the columns in 4814 ** pWalker->u.pConst. 4815 */ 4816 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4817 WhereConst *pConst = pWalker->u.pConst; 4818 assert( TK_GT==TK_EQ+1 ); 4819 assert( TK_LE==TK_EQ+2 ); 4820 assert( TK_LT==TK_EQ+3 ); 4821 assert( TK_GE==TK_EQ+4 ); 4822 if( pConst->bHasAffBlob ){ 4823 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4824 || pExpr->op==TK_IS 4825 ){ 4826 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4827 if( pConst->pOomFault[0] ) return WRC_Prune; 4828 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4829 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4830 } 4831 } 4832 } 4833 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4834 } 4835 4836 /* 4837 ** The WHERE-clause constant propagation optimization. 4838 ** 4839 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4840 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4841 ** part of a ON clause from a LEFT JOIN, then throughout the query 4842 ** replace all other occurrences of COLUMN with CONSTANT. 4843 ** 4844 ** For example, the query: 4845 ** 4846 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4847 ** 4848 ** Is transformed into 4849 ** 4850 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4851 ** 4852 ** Return true if any transformations where made and false if not. 4853 ** 4854 ** Implementation note: Constant propagation is tricky due to affinity 4855 ** and collating sequence interactions. Consider this example: 4856 ** 4857 ** CREATE TABLE t1(a INT,b TEXT); 4858 ** INSERT INTO t1 VALUES(123,'0123'); 4859 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4860 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4861 ** 4862 ** The two SELECT statements above should return different answers. b=a 4863 ** is alway true because the comparison uses numeric affinity, but b=123 4864 ** is false because it uses text affinity and '0123' is not the same as '123'. 4865 ** To work around this, the expression tree is not actually changed from 4866 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4867 ** and the "123" value is hung off of the pLeft pointer. Code generator 4868 ** routines know to generate the constant "123" instead of looking up the 4869 ** column value. Also, to avoid collation problems, this optimization is 4870 ** only attempted if the "a=123" term uses the default BINARY collation. 4871 ** 4872 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4873 ** 4874 ** CREATE TABLE t1(x); 4875 ** INSERT INTO t1 VALUES(10.0); 4876 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4877 ** 4878 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4879 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4880 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4881 ** resulting in a false positive. To avoid this, constant propagation for 4882 ** columns with BLOB affinity is only allowed if the constant is used with 4883 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4884 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4885 ** for details. 4886 */ 4887 static int propagateConstants( 4888 Parse *pParse, /* The parsing context */ 4889 Select *p /* The query in which to propagate constants */ 4890 ){ 4891 WhereConst x; 4892 Walker w; 4893 int nChng = 0; 4894 x.pParse = pParse; 4895 x.pOomFault = &pParse->db->mallocFailed; 4896 do{ 4897 x.nConst = 0; 4898 x.nChng = 0; 4899 x.apExpr = 0; 4900 x.bHasAffBlob = 0; 4901 if( ALWAYS(p->pSrc!=0) 4902 && p->pSrc->nSrc>0 4903 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 4904 ){ 4905 /* Do not propagate constants on any ON clause if there is a 4906 ** RIGHT JOIN anywhere in the query */ 4907 x.mExcludeOn = EP_InnerON | EP_OuterON; 4908 }else{ 4909 /* Do not propagate constants through the ON clause of a LEFT JOIN */ 4910 x.mExcludeOn = EP_OuterON; 4911 } 4912 findConstInWhere(&x, p->pWhere); 4913 if( x.nConst ){ 4914 memset(&w, 0, sizeof(w)); 4915 w.pParse = pParse; 4916 w.xExprCallback = propagateConstantExprRewrite; 4917 w.xSelectCallback = sqlite3SelectWalkNoop; 4918 w.xSelectCallback2 = 0; 4919 w.walkerDepth = 0; 4920 w.u.pConst = &x; 4921 sqlite3WalkExpr(&w, p->pWhere); 4922 sqlite3DbFree(x.pParse->db, x.apExpr); 4923 nChng += x.nChng; 4924 } 4925 }while( x.nChng ); 4926 return nChng; 4927 } 4928 4929 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4930 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4931 /* 4932 ** This function is called to determine whether or not it is safe to 4933 ** push WHERE clause expression pExpr down to FROM clause sub-query 4934 ** pSubq, which contains at least one window function. Return 1 4935 ** if it is safe and the expression should be pushed down, or 0 4936 ** otherwise. 4937 ** 4938 ** It is only safe to push the expression down if it consists only 4939 ** of constants and copies of expressions that appear in the PARTITION 4940 ** BY clause of all window function used by the sub-query. It is safe 4941 ** to filter out entire partitions, but not rows within partitions, as 4942 ** this may change the results of the window functions. 4943 ** 4944 ** At the time this function is called it is guaranteed that 4945 ** 4946 ** * the sub-query uses only one distinct window frame, and 4947 ** * that the window frame has a PARTITION BY clase. 4948 */ 4949 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4950 assert( pSubq->pWin->pPartition ); 4951 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4952 assert( pSubq->pPrior==0 ); 4953 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4954 } 4955 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4956 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4957 4958 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4959 /* 4960 ** Make copies of relevant WHERE clause terms of the outer query into 4961 ** the WHERE clause of subquery. Example: 4962 ** 4963 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4964 ** 4965 ** Transformed into: 4966 ** 4967 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4968 ** WHERE x=5 AND y=10; 4969 ** 4970 ** The hope is that the terms added to the inner query will make it more 4971 ** efficient. 4972 ** 4973 ** Do not attempt this optimization if: 4974 ** 4975 ** (1) (** This restriction was removed on 2017-09-29. We used to 4976 ** disallow this optimization for aggregate subqueries, but now 4977 ** it is allowed by putting the extra terms on the HAVING clause. 4978 ** The added HAVING clause is pointless if the subquery lacks 4979 ** a GROUP BY clause. But such a HAVING clause is also harmless 4980 ** so there does not appear to be any reason to add extra logic 4981 ** to suppress it. **) 4982 ** 4983 ** (2) The inner query is the recursive part of a common table expression. 4984 ** 4985 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4986 ** clause would change the meaning of the LIMIT). 4987 ** 4988 ** (4) The inner query is the right operand of a LEFT JOIN and the 4989 ** expression to be pushed down does not come from the ON clause 4990 ** on that LEFT JOIN. 4991 ** 4992 ** (5) The WHERE clause expression originates in the ON or USING clause 4993 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4994 ** left join. An example: 4995 ** 4996 ** SELECT * 4997 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4998 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4999 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 5000 ** 5001 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 5002 ** But if the (b2=2) term were to be pushed down into the bb subquery, 5003 ** then the (1,1,NULL) row would be suppressed. 5004 ** 5005 ** (6) Window functions make things tricky as changes to the WHERE clause 5006 ** of the inner query could change the window over which window 5007 ** functions are calculated. Therefore, do not attempt the optimization 5008 ** if: 5009 ** 5010 ** (6a) The inner query uses multiple incompatible window partitions. 5011 ** 5012 ** (6b) The inner query is a compound and uses window-functions. 5013 ** 5014 ** (6c) The WHERE clause does not consist entirely of constants and 5015 ** copies of expressions found in the PARTITION BY clause of 5016 ** all window-functions used by the sub-query. It is safe to 5017 ** filter out entire partitions, as this does not change the 5018 ** window over which any window-function is calculated. 5019 ** 5020 ** (7) The inner query is a Common Table Expression (CTE) that should 5021 ** be materialized. (This restriction is implemented in the calling 5022 ** routine.) 5023 ** 5024 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 5025 ** terms are duplicated into the subquery. 5026 */ 5027 static int pushDownWhereTerms( 5028 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 5029 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 5030 Expr *pWhere, /* The WHERE clause of the outer query */ 5031 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 5032 ){ 5033 Expr *pNew; 5034 int nChng = 0; 5035 if( pWhere==0 ) return 0; 5036 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 5037 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 5038 5039 #ifndef SQLITE_OMIT_WINDOWFUNC 5040 if( pSubq->pPrior ){ 5041 Select *pSel; 5042 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 5043 if( pSel->pWin ) return 0; /* restriction (6b) */ 5044 } 5045 }else{ 5046 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 5047 } 5048 #endif 5049 5050 #ifdef SQLITE_DEBUG 5051 /* Only the first term of a compound can have a WITH clause. But make 5052 ** sure no other terms are marked SF_Recursive in case something changes 5053 ** in the future. 5054 */ 5055 { 5056 Select *pX; 5057 for(pX=pSubq; pX; pX=pX->pPrior){ 5058 assert( (pX->selFlags & (SF_Recursive))==0 ); 5059 } 5060 } 5061 #endif 5062 5063 if( pSubq->pLimit!=0 ){ 5064 return 0; /* restriction (3) */ 5065 } 5066 while( pWhere->op==TK_AND ){ 5067 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 5068 pWhere = pWhere->pLeft; 5069 } 5070 5071 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 5072 if( isLeftJoin 5073 && (ExprHasProperty(pWhere,EP_OuterON)==0 5074 || pWhere->w.iJoin!=iCursor) 5075 ){ 5076 return 0; /* restriction (4) */ 5077 } 5078 if( ExprHasProperty(pWhere,EP_OuterON) 5079 && pWhere->w.iJoin!=iCursor 5080 ){ 5081 return 0; /* restriction (5) */ 5082 } 5083 #endif 5084 5085 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5086 nChng++; 5087 pSubq->selFlags |= SF_PushDown; 5088 while( pSubq ){ 5089 SubstContext x; 5090 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5091 unsetJoinExpr(pNew, -1, 1); 5092 x.pParse = pParse; 5093 x.iTable = pSrc->iCursor; 5094 x.iNewTable = pSrc->iCursor; 5095 x.isOuterJoin = 0; 5096 x.pEList = pSubq->pEList; 5097 pNew = substExpr(&x, pNew); 5098 #ifndef SQLITE_OMIT_WINDOWFUNC 5099 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5100 /* Restriction 6c has prevented push-down in this case */ 5101 sqlite3ExprDelete(pParse->db, pNew); 5102 nChng--; 5103 break; 5104 } 5105 #endif 5106 if( pSubq->selFlags & SF_Aggregate ){ 5107 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5108 }else{ 5109 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5110 } 5111 pSubq = pSubq->pPrior; 5112 } 5113 } 5114 return nChng; 5115 } 5116 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5117 5118 /* 5119 ** The pFunc is the only aggregate function in the query. Check to see 5120 ** if the query is a candidate for the min/max optimization. 5121 ** 5122 ** If the query is a candidate for the min/max optimization, then set 5123 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5124 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5125 ** whether pFunc is a min() or max() function. 5126 ** 5127 ** If the query is not a candidate for the min/max optimization, return 5128 ** WHERE_ORDERBY_NORMAL (which must be zero). 5129 ** 5130 ** This routine must be called after aggregate functions have been 5131 ** located but before their arguments have been subjected to aggregate 5132 ** analysis. 5133 */ 5134 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5135 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5136 ExprList *pEList; /* Arguments to agg function */ 5137 const char *zFunc; /* Name of aggregate function pFunc */ 5138 ExprList *pOrderBy; 5139 u8 sortFlags = 0; 5140 5141 assert( *ppMinMax==0 ); 5142 assert( pFunc->op==TK_AGG_FUNCTION ); 5143 assert( !IsWindowFunc(pFunc) ); 5144 assert( ExprUseXList(pFunc) ); 5145 pEList = pFunc->x.pList; 5146 if( pEList==0 5147 || pEList->nExpr!=1 5148 || ExprHasProperty(pFunc, EP_WinFunc) 5149 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5150 ){ 5151 return eRet; 5152 } 5153 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5154 zFunc = pFunc->u.zToken; 5155 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5156 eRet = WHERE_ORDERBY_MIN; 5157 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5158 sortFlags = KEYINFO_ORDER_BIGNULL; 5159 } 5160 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5161 eRet = WHERE_ORDERBY_MAX; 5162 sortFlags = KEYINFO_ORDER_DESC; 5163 }else{ 5164 return eRet; 5165 } 5166 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5167 assert( pOrderBy!=0 || db->mallocFailed ); 5168 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; 5169 return eRet; 5170 } 5171 5172 /* 5173 ** The select statement passed as the first argument is an aggregate query. 5174 ** The second argument is the associated aggregate-info object. This 5175 ** function tests if the SELECT is of the form: 5176 ** 5177 ** SELECT count(*) FROM <tbl> 5178 ** 5179 ** where table is a database table, not a sub-select or view. If the query 5180 ** does match this pattern, then a pointer to the Table object representing 5181 ** <tbl> is returned. Otherwise, NULL is returned. 5182 ** 5183 ** This routine checks to see if it is safe to use the count optimization. 5184 ** A correct answer is still obtained (though perhaps more slowly) if 5185 ** this routine returns NULL when it could have returned a table pointer. 5186 ** But returning the pointer when NULL should have been returned can 5187 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5188 */ 5189 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5190 Table *pTab; 5191 Expr *pExpr; 5192 5193 assert( !p->pGroupBy ); 5194 5195 if( p->pWhere 5196 || p->pEList->nExpr!=1 5197 || p->pSrc->nSrc!=1 5198 || p->pSrc->a[0].pSelect 5199 || pAggInfo->nFunc!=1 5200 ){ 5201 return 0; 5202 } 5203 pTab = p->pSrc->a[0].pTab; 5204 assert( pTab!=0 ); 5205 assert( !IsView(pTab) ); 5206 if( !IsOrdinaryTable(pTab) ) return 0; 5207 pExpr = p->pEList->a[0].pExpr; 5208 assert( pExpr!=0 ); 5209 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5210 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5211 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5212 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5213 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5214 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5215 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5216 5217 return pTab; 5218 } 5219 5220 /* 5221 ** If the source-list item passed as an argument was augmented with an 5222 ** INDEXED BY clause, then try to locate the specified index. If there 5223 ** was such a clause and the named index cannot be found, return 5224 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5225 ** pFrom->pIndex and return SQLITE_OK. 5226 */ 5227 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5228 Table *pTab = pFrom->pTab; 5229 char *zIndexedBy = pFrom->u1.zIndexedBy; 5230 Index *pIdx; 5231 assert( pTab!=0 ); 5232 assert( pFrom->fg.isIndexedBy!=0 ); 5233 5234 for(pIdx=pTab->pIndex; 5235 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5236 pIdx=pIdx->pNext 5237 ); 5238 if( !pIdx ){ 5239 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5240 pParse->checkSchema = 1; 5241 return SQLITE_ERROR; 5242 } 5243 assert( pFrom->fg.isCte==0 ); 5244 pFrom->u2.pIBIndex = pIdx; 5245 return SQLITE_OK; 5246 } 5247 5248 /* 5249 ** Detect compound SELECT statements that use an ORDER BY clause with 5250 ** an alternative collating sequence. 5251 ** 5252 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5253 ** 5254 ** These are rewritten as a subquery: 5255 ** 5256 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5257 ** ORDER BY ... COLLATE ... 5258 ** 5259 ** This transformation is necessary because the multiSelectOrderBy() routine 5260 ** above that generates the code for a compound SELECT with an ORDER BY clause 5261 ** uses a merge algorithm that requires the same collating sequence on the 5262 ** result columns as on the ORDER BY clause. See ticket 5263 ** http://www.sqlite.org/src/info/6709574d2a 5264 ** 5265 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5266 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5267 ** there are COLLATE terms in the ORDER BY. 5268 */ 5269 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5270 int i; 5271 Select *pNew; 5272 Select *pX; 5273 sqlite3 *db; 5274 struct ExprList_item *a; 5275 SrcList *pNewSrc; 5276 Parse *pParse; 5277 Token dummy; 5278 5279 if( p->pPrior==0 ) return WRC_Continue; 5280 if( p->pOrderBy==0 ) return WRC_Continue; 5281 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5282 if( pX==0 ) return WRC_Continue; 5283 a = p->pOrderBy->a; 5284 #ifndef SQLITE_OMIT_WINDOWFUNC 5285 /* If iOrderByCol is already non-zero, then it has already been matched 5286 ** to a result column of the SELECT statement. This occurs when the 5287 ** SELECT is rewritten for window-functions processing and then passed 5288 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5289 ** by this function is not required in this case. */ 5290 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5291 #endif 5292 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5293 if( a[i].pExpr->flags & EP_Collate ) break; 5294 } 5295 if( i<0 ) return WRC_Continue; 5296 5297 /* If we reach this point, that means the transformation is required. */ 5298 5299 pParse = pWalker->pParse; 5300 db = pParse->db; 5301 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5302 if( pNew==0 ) return WRC_Abort; 5303 memset(&dummy, 0, sizeof(dummy)); 5304 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5305 if( pNewSrc==0 ) return WRC_Abort; 5306 *pNew = *p; 5307 p->pSrc = pNewSrc; 5308 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5309 p->op = TK_SELECT; 5310 p->pWhere = 0; 5311 pNew->pGroupBy = 0; 5312 pNew->pHaving = 0; 5313 pNew->pOrderBy = 0; 5314 p->pPrior = 0; 5315 p->pNext = 0; 5316 p->pWith = 0; 5317 #ifndef SQLITE_OMIT_WINDOWFUNC 5318 p->pWinDefn = 0; 5319 #endif 5320 p->selFlags &= ~SF_Compound; 5321 assert( (p->selFlags & SF_Converted)==0 ); 5322 p->selFlags |= SF_Converted; 5323 assert( pNew->pPrior!=0 ); 5324 pNew->pPrior->pNext = pNew; 5325 pNew->pLimit = 0; 5326 return WRC_Continue; 5327 } 5328 5329 /* 5330 ** Check to see if the FROM clause term pFrom has table-valued function 5331 ** arguments. If it does, leave an error message in pParse and return 5332 ** non-zero, since pFrom is not allowed to be a table-valued function. 5333 */ 5334 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5335 if( pFrom->fg.isTabFunc ){ 5336 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5337 return 1; 5338 } 5339 return 0; 5340 } 5341 5342 #ifndef SQLITE_OMIT_CTE 5343 /* 5344 ** Argument pWith (which may be NULL) points to a linked list of nested 5345 ** WITH contexts, from inner to outermost. If the table identified by 5346 ** FROM clause element pItem is really a common-table-expression (CTE) 5347 ** then return a pointer to the CTE definition for that table. Otherwise 5348 ** return NULL. 5349 ** 5350 ** If a non-NULL value is returned, set *ppContext to point to the With 5351 ** object that the returned CTE belongs to. 5352 */ 5353 static struct Cte *searchWith( 5354 With *pWith, /* Current innermost WITH clause */ 5355 SrcItem *pItem, /* FROM clause element to resolve */ 5356 With **ppContext /* OUT: WITH clause return value belongs to */ 5357 ){ 5358 const char *zName = pItem->zName; 5359 With *p; 5360 assert( pItem->zDatabase==0 ); 5361 assert( zName!=0 ); 5362 for(p=pWith; p; p=p->pOuter){ 5363 int i; 5364 for(i=0; i<p->nCte; i++){ 5365 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5366 *ppContext = p; 5367 return &p->a[i]; 5368 } 5369 } 5370 if( p->bView ) break; 5371 } 5372 return 0; 5373 } 5374 5375 /* The code generator maintains a stack of active WITH clauses 5376 ** with the inner-most WITH clause being at the top of the stack. 5377 ** 5378 ** This routine pushes the WITH clause passed as the second argument 5379 ** onto the top of the stack. If argument bFree is true, then this 5380 ** WITH clause will never be popped from the stack but should instead 5381 ** be freed along with the Parse object. In other cases, when 5382 ** bFree==0, the With object will be freed along with the SELECT 5383 ** statement with which it is associated. 5384 ** 5385 ** This routine returns a copy of pWith. Or, if bFree is true and 5386 ** the pWith object is destroyed immediately due to an OOM condition, 5387 ** then this routine return NULL. 5388 ** 5389 ** If bFree is true, do not continue to use the pWith pointer after 5390 ** calling this routine, Instead, use only the return value. 5391 */ 5392 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5393 if( pWith ){ 5394 if( bFree ){ 5395 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5396 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5397 pWith); 5398 if( pWith==0 ) return 0; 5399 } 5400 if( pParse->nErr==0 ){ 5401 assert( pParse->pWith!=pWith ); 5402 pWith->pOuter = pParse->pWith; 5403 pParse->pWith = pWith; 5404 } 5405 } 5406 return pWith; 5407 } 5408 5409 /* 5410 ** This function checks if argument pFrom refers to a CTE declared by 5411 ** a WITH clause on the stack currently maintained by the parser (on the 5412 ** pParse->pWith linked list). And if currently processing a CTE 5413 ** CTE expression, through routine checks to see if the reference is 5414 ** a recursive reference to the CTE. 5415 ** 5416 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5417 ** and other fields are populated accordingly. 5418 ** 5419 ** Return 0 if no match is found. 5420 ** Return 1 if a match is found. 5421 ** Return 2 if an error condition is detected. 5422 */ 5423 static int resolveFromTermToCte( 5424 Parse *pParse, /* The parsing context */ 5425 Walker *pWalker, /* Current tree walker */ 5426 SrcItem *pFrom /* The FROM clause term to check */ 5427 ){ 5428 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5429 With *pWith; /* The matching WITH */ 5430 5431 assert( pFrom->pTab==0 ); 5432 if( pParse->pWith==0 ){ 5433 /* There are no WITH clauses in the stack. No match is possible */ 5434 return 0; 5435 } 5436 if( pParse->nErr ){ 5437 /* Prior errors might have left pParse->pWith in a goofy state, so 5438 ** go no further. */ 5439 return 0; 5440 } 5441 if( pFrom->zDatabase!=0 ){ 5442 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5443 ** it cannot possibly be a CTE reference. */ 5444 return 0; 5445 } 5446 if( pFrom->fg.notCte ){ 5447 /* The FROM term is specifically excluded from matching a CTE. 5448 ** (1) It is part of a trigger that used to have zDatabase but had 5449 ** zDatabase removed by sqlite3FixTriggerStep(). 5450 ** (2) This is the first term in the FROM clause of an UPDATE. 5451 */ 5452 return 0; 5453 } 5454 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5455 if( pCte ){ 5456 sqlite3 *db = pParse->db; 5457 Table *pTab; 5458 ExprList *pEList; 5459 Select *pSel; 5460 Select *pLeft; /* Left-most SELECT statement */ 5461 Select *pRecTerm; /* Left-most recursive term */ 5462 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5463 With *pSavedWith; /* Initial value of pParse->pWith */ 5464 int iRecTab = -1; /* Cursor for recursive table */ 5465 CteUse *pCteUse; 5466 5467 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5468 ** recursive reference to CTE pCte. Leave an error in pParse and return 5469 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5470 ** In this case, proceed. */ 5471 if( pCte->zCteErr ){ 5472 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5473 return 2; 5474 } 5475 if( cannotBeFunction(pParse, pFrom) ) return 2; 5476 5477 assert( pFrom->pTab==0 ); 5478 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5479 if( pTab==0 ) return 2; 5480 pCteUse = pCte->pUse; 5481 if( pCteUse==0 ){ 5482 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5483 if( pCteUse==0 5484 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5485 ){ 5486 sqlite3DbFree(db, pTab); 5487 return 2; 5488 } 5489 pCteUse->eM10d = pCte->eM10d; 5490 } 5491 pFrom->pTab = pTab; 5492 pTab->nTabRef = 1; 5493 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5494 pTab->iPKey = -1; 5495 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5496 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5497 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5498 if( db->mallocFailed ) return 2; 5499 pFrom->pSelect->selFlags |= SF_CopyCte; 5500 assert( pFrom->pSelect ); 5501 if( pFrom->fg.isIndexedBy ){ 5502 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5503 return 2; 5504 } 5505 pFrom->fg.isCte = 1; 5506 pFrom->u2.pCteUse = pCteUse; 5507 pCteUse->nUse++; 5508 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5509 pCteUse->eM10d = M10d_Yes; 5510 } 5511 5512 /* Check if this is a recursive CTE. */ 5513 pRecTerm = pSel = pFrom->pSelect; 5514 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5515 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5516 int i; 5517 SrcList *pSrc = pRecTerm->pSrc; 5518 assert( pRecTerm->pPrior!=0 ); 5519 for(i=0; i<pSrc->nSrc; i++){ 5520 SrcItem *pItem = &pSrc->a[i]; 5521 if( pItem->zDatabase==0 5522 && pItem->zName!=0 5523 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5524 ){ 5525 pItem->pTab = pTab; 5526 pTab->nTabRef++; 5527 pItem->fg.isRecursive = 1; 5528 if( pRecTerm->selFlags & SF_Recursive ){ 5529 sqlite3ErrorMsg(pParse, 5530 "multiple references to recursive table: %s", pCte->zName 5531 ); 5532 return 2; 5533 } 5534 pRecTerm->selFlags |= SF_Recursive; 5535 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5536 pItem->iCursor = iRecTab; 5537 } 5538 } 5539 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5540 pRecTerm = pRecTerm->pPrior; 5541 } 5542 5543 pCte->zCteErr = "circular reference: %s"; 5544 pSavedWith = pParse->pWith; 5545 pParse->pWith = pWith; 5546 if( pSel->selFlags & SF_Recursive ){ 5547 int rc; 5548 assert( pRecTerm!=0 ); 5549 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5550 assert( pRecTerm->pNext!=0 ); 5551 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5552 assert( pRecTerm->pWith==0 ); 5553 pRecTerm->pWith = pSel->pWith; 5554 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5555 pRecTerm->pWith = 0; 5556 if( rc ){ 5557 pParse->pWith = pSavedWith; 5558 return 2; 5559 } 5560 }else{ 5561 if( sqlite3WalkSelect(pWalker, pSel) ){ 5562 pParse->pWith = pSavedWith; 5563 return 2; 5564 } 5565 } 5566 pParse->pWith = pWith; 5567 5568 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5569 pEList = pLeft->pEList; 5570 if( pCte->pCols ){ 5571 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5572 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5573 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5574 ); 5575 pParse->pWith = pSavedWith; 5576 return 2; 5577 } 5578 pEList = pCte->pCols; 5579 } 5580 5581 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5582 if( bMayRecursive ){ 5583 if( pSel->selFlags & SF_Recursive ){ 5584 pCte->zCteErr = "multiple recursive references: %s"; 5585 }else{ 5586 pCte->zCteErr = "recursive reference in a subquery: %s"; 5587 } 5588 sqlite3WalkSelect(pWalker, pSel); 5589 } 5590 pCte->zCteErr = 0; 5591 pParse->pWith = pSavedWith; 5592 return 1; /* Success */ 5593 } 5594 return 0; /* No match */ 5595 } 5596 #endif 5597 5598 #ifndef SQLITE_OMIT_CTE 5599 /* 5600 ** If the SELECT passed as the second argument has an associated WITH 5601 ** clause, pop it from the stack stored as part of the Parse object. 5602 ** 5603 ** This function is used as the xSelectCallback2() callback by 5604 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5605 ** names and other FROM clause elements. 5606 */ 5607 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5608 Parse *pParse = pWalker->pParse; 5609 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5610 With *pWith = findRightmost(p)->pWith; 5611 if( pWith!=0 ){ 5612 assert( pParse->pWith==pWith || pParse->nErr ); 5613 pParse->pWith = pWith->pOuter; 5614 } 5615 } 5616 } 5617 #endif 5618 5619 /* 5620 ** The SrcList_item structure passed as the second argument represents a 5621 ** sub-query in the FROM clause of a SELECT statement. This function 5622 ** allocates and populates the SrcList_item.pTab object. If successful, 5623 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5624 ** SQLITE_NOMEM. 5625 */ 5626 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5627 Select *pSel = pFrom->pSelect; 5628 Table *pTab; 5629 5630 assert( pSel ); 5631 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5632 if( pTab==0 ) return SQLITE_NOMEM; 5633 pTab->nTabRef = 1; 5634 if( pFrom->zAlias ){ 5635 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5636 }else{ 5637 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5638 } 5639 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5640 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5641 pTab->iPKey = -1; 5642 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5643 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5644 /* The usual case - do not allow ROWID on a subquery */ 5645 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5646 #else 5647 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5648 #endif 5649 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5650 } 5651 5652 5653 /* 5654 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5655 ** If any of those SrcItem objects have a USING clause containing zName 5656 ** then return true. 5657 ** 5658 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5659 ** contains a USING clause, or if none of the USING clauses contain zName, 5660 ** then return false. 5661 */ 5662 static int inAnyUsingClause( 5663 const char *zName, /* Name we are looking for */ 5664 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5665 int N /* How many SrcItems to check */ 5666 ){ 5667 while( N>0 ){ 5668 N--; 5669 pBase++; 5670 if( pBase->fg.isUsing==0 ) continue; 5671 if( NEVER(pBase->u3.pUsing==0) ) continue; 5672 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5673 } 5674 return 0; 5675 } 5676 5677 5678 /* 5679 ** This routine is a Walker callback for "expanding" a SELECT statement. 5680 ** "Expanding" means to do the following: 5681 ** 5682 ** (1) Make sure VDBE cursor numbers have been assigned to every 5683 ** element of the FROM clause. 5684 ** 5685 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5686 ** defines FROM clause. When views appear in the FROM clause, 5687 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5688 ** that implements the view. A copy is made of the view's SELECT 5689 ** statement so that we can freely modify or delete that statement 5690 ** without worrying about messing up the persistent representation 5691 ** of the view. 5692 ** 5693 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5694 ** on joins and the ON and USING clause of joins. 5695 ** 5696 ** (4) Scan the list of columns in the result set (pEList) looking 5697 ** for instances of the "*" operator or the TABLE.* operator. 5698 ** If found, expand each "*" to be every column in every table 5699 ** and TABLE.* to be every column in TABLE. 5700 ** 5701 */ 5702 static int selectExpander(Walker *pWalker, Select *p){ 5703 Parse *pParse = pWalker->pParse; 5704 int i, j, k, rc; 5705 SrcList *pTabList; 5706 ExprList *pEList; 5707 SrcItem *pFrom; 5708 sqlite3 *db = pParse->db; 5709 Expr *pE, *pRight, *pExpr; 5710 u16 selFlags = p->selFlags; 5711 u32 elistFlags = 0; 5712 5713 p->selFlags |= SF_Expanded; 5714 if( db->mallocFailed ){ 5715 return WRC_Abort; 5716 } 5717 assert( p->pSrc!=0 ); 5718 if( (selFlags & SF_Expanded)!=0 ){ 5719 return WRC_Prune; 5720 } 5721 if( pWalker->eCode ){ 5722 /* Renumber selId because it has been copied from a view */ 5723 p->selId = ++pParse->nSelect; 5724 } 5725 pTabList = p->pSrc; 5726 pEList = p->pEList; 5727 if( pParse->pWith && (p->selFlags & SF_View) ){ 5728 if( p->pWith==0 ){ 5729 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5730 if( p->pWith==0 ){ 5731 return WRC_Abort; 5732 } 5733 } 5734 p->pWith->bView = 1; 5735 } 5736 sqlite3WithPush(pParse, p->pWith, 0); 5737 5738 /* Make sure cursor numbers have been assigned to all entries in 5739 ** the FROM clause of the SELECT statement. 5740 */ 5741 sqlite3SrcListAssignCursors(pParse, pTabList); 5742 5743 /* Look up every table named in the FROM clause of the select. If 5744 ** an entry of the FROM clause is a subquery instead of a table or view, 5745 ** then create a transient table structure to describe the subquery. 5746 */ 5747 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5748 Table *pTab; 5749 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5750 if( pFrom->pTab ) continue; 5751 assert( pFrom->fg.isRecursive==0 ); 5752 if( pFrom->zName==0 ){ 5753 #ifndef SQLITE_OMIT_SUBQUERY 5754 Select *pSel = pFrom->pSelect; 5755 /* A sub-query in the FROM clause of a SELECT */ 5756 assert( pSel!=0 ); 5757 assert( pFrom->pTab==0 ); 5758 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5759 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5760 #endif 5761 #ifndef SQLITE_OMIT_CTE 5762 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5763 if( rc>1 ) return WRC_Abort; 5764 pTab = pFrom->pTab; 5765 assert( pTab!=0 ); 5766 #endif 5767 }else{ 5768 /* An ordinary table or view name in the FROM clause */ 5769 assert( pFrom->pTab==0 ); 5770 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5771 if( pTab==0 ) return WRC_Abort; 5772 if( pTab->nTabRef>=0xffff ){ 5773 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5774 pTab->zName); 5775 pFrom->pTab = 0; 5776 return WRC_Abort; 5777 } 5778 pTab->nTabRef++; 5779 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5780 return WRC_Abort; 5781 } 5782 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5783 if( !IsOrdinaryTable(pTab) ){ 5784 i16 nCol; 5785 u8 eCodeOrig = pWalker->eCode; 5786 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5787 assert( pFrom->pSelect==0 ); 5788 if( IsView(pTab) ){ 5789 if( (db->flags & SQLITE_EnableView)==0 5790 && pTab->pSchema!=db->aDb[1].pSchema 5791 ){ 5792 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5793 pTab->zName); 5794 } 5795 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5796 } 5797 #ifndef SQLITE_OMIT_VIRTUALTABLE 5798 else if( ALWAYS(IsVirtual(pTab)) 5799 && pFrom->fg.fromDDL 5800 && ALWAYS(pTab->u.vtab.p!=0) 5801 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5802 ){ 5803 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5804 pTab->zName); 5805 } 5806 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5807 #endif 5808 nCol = pTab->nCol; 5809 pTab->nCol = -1; 5810 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5811 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5812 pWalker->eCode = eCodeOrig; 5813 pTab->nCol = nCol; 5814 } 5815 #endif 5816 } 5817 5818 /* Locate the index named by the INDEXED BY clause, if any. */ 5819 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5820 return WRC_Abort; 5821 } 5822 } 5823 5824 /* Process NATURAL keywords, and ON and USING clauses of joins. 5825 */ 5826 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5827 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5828 return WRC_Abort; 5829 } 5830 5831 /* For every "*" that occurs in the column list, insert the names of 5832 ** all columns in all tables. And for every TABLE.* insert the names 5833 ** of all columns in TABLE. The parser inserted a special expression 5834 ** with the TK_ASTERISK operator for each "*" that it found in the column 5835 ** list. The following code just has to locate the TK_ASTERISK 5836 ** expressions and expand each one to the list of all columns in 5837 ** all tables. 5838 ** 5839 ** The first loop just checks to see if there are any "*" operators 5840 ** that need expanding. 5841 */ 5842 for(k=0; k<pEList->nExpr; k++){ 5843 pE = pEList->a[k].pExpr; 5844 if( pE->op==TK_ASTERISK ) break; 5845 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5846 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5847 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5848 elistFlags |= pE->flags; 5849 } 5850 if( k<pEList->nExpr ){ 5851 /* 5852 ** If we get here it means the result set contains one or more "*" 5853 ** operators that need to be expanded. Loop through each expression 5854 ** in the result set and expand them one by one. 5855 */ 5856 struct ExprList_item *a = pEList->a; 5857 ExprList *pNew = 0; 5858 int flags = pParse->db->flags; 5859 int longNames = (flags & SQLITE_FullColNames)!=0 5860 && (flags & SQLITE_ShortColNames)==0; 5861 5862 for(k=0; k<pEList->nExpr; k++){ 5863 pE = a[k].pExpr; 5864 elistFlags |= pE->flags; 5865 pRight = pE->pRight; 5866 assert( pE->op!=TK_DOT || pRight!=0 ); 5867 if( pE->op!=TK_ASTERISK 5868 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5869 ){ 5870 /* This particular expression does not need to be expanded. 5871 */ 5872 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5873 if( pNew ){ 5874 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5875 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; 5876 a[k].zEName = 0; 5877 } 5878 a[k].pExpr = 0; 5879 }else{ 5880 /* This expression is a "*" or a "TABLE.*" and needs to be 5881 ** expanded. */ 5882 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5883 char *zTName = 0; /* text of name of TABLE */ 5884 if( pE->op==TK_DOT ){ 5885 assert( pE->pLeft!=0 ); 5886 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5887 zTName = pE->pLeft->u.zToken; 5888 } 5889 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5890 Table *pTab = pFrom->pTab; /* Table for this data source */ 5891 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5892 char *zTabName; /* AS name for this data source */ 5893 const char *zSchemaName = 0; /* Schema name for this data source */ 5894 int iDb; /* Schema index for this data src */ 5895 IdList *pUsing; /* USING clause for pFrom[1] */ 5896 5897 if( (zTabName = pFrom->zAlias)==0 ){ 5898 zTabName = pTab->zName; 5899 } 5900 if( db->mallocFailed ) break; 5901 assert( pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5902 if( pFrom->fg.isNestedFrom ){ 5903 assert( pFrom->pSelect!=0 ); 5904 pNestedFrom = pFrom->pSelect->pEList; 5905 assert( pNestedFrom!=0 ); 5906 assert( pNestedFrom->nExpr==pTab->nCol ); 5907 }else{ 5908 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5909 continue; 5910 } 5911 pNestedFrom = 0; 5912 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5913 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5914 } 5915 if( i+1<pTabList->nSrc 5916 && pFrom[1].fg.isUsing 5917 && (selFlags & SF_NestedFrom)!=0 5918 ){ 5919 int ii; 5920 pUsing = pFrom[1].u3.pUsing; 5921 for(ii=0; ii<pUsing->nId; ii++){ 5922 const char *zUName = pUsing->a[ii].zName; 5923 pRight = sqlite3Expr(db, TK_ID, zUName); 5924 pNew = sqlite3ExprListAppend(pParse, pNew, pRight); 5925 if( pNew ){ 5926 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5927 assert( pX->zEName==0 ); 5928 pX->zEName = sqlite3MPrintf(db,"..%s", zUName); 5929 pX->fg.eEName = ENAME_TAB; 5930 pX->fg.bUsingTerm = 1; 5931 } 5932 } 5933 }else{ 5934 pUsing = 0; 5935 } 5936 for(j=0; j<pTab->nCol; j++){ 5937 char *zName = pTab->aCol[j].zCnName; 5938 struct ExprList_item *pX; /* Newly added ExprList term */ 5939 5940 assert( zName ); 5941 if( zTName 5942 && pNestedFrom 5943 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5944 ){ 5945 continue; 5946 } 5947 5948 /* If a column is marked as 'hidden', omit it from the expanded 5949 ** result-set list unless the SELECT has the SF_IncludeHidden 5950 ** bit set. 5951 */ 5952 if( (p->selFlags & SF_IncludeHidden)==0 5953 && IsHiddenColumn(&pTab->aCol[j]) 5954 ){ 5955 continue; 5956 } 5957 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5958 && zTName==0 5959 && (selFlags & (SF_NestedFrom))==0 5960 ){ 5961 continue; 5962 } 5963 tableSeen = 1; 5964 5965 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ 5966 if( pFrom->fg.isUsing 5967 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5968 ){ 5969 /* In a join with a USING clause, omit columns in the 5970 ** using clause from the table on the right. */ 5971 continue; 5972 } 5973 } 5974 pRight = sqlite3Expr(db, TK_ID, zName); 5975 if( (pTabList->nSrc>1 5976 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5977 || (selFlags & SF_NestedFrom)!=0 5978 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5979 ) 5980 ) 5981 || IN_RENAME_OBJECT 5982 ){ 5983 Expr *pLeft; 5984 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5985 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5986 if( IN_RENAME_OBJECT && pE->pLeft ){ 5987 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5988 } 5989 if( zSchemaName ){ 5990 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5991 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5992 } 5993 }else{ 5994 pExpr = pRight; 5995 } 5996 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5997 if( pNew==0 ){ 5998 break; /* OOM */ 5999 } 6000 pX = &pNew->a[pNew->nExpr-1]; 6001 assert( pX->zEName==0 ); 6002 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 6003 if( pNestedFrom ){ 6004 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 6005 testcase( pX->zEName==0 ); 6006 }else{ 6007 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 6008 zSchemaName, zTabName, zName); 6009 testcase( pX->zEName==0 ); 6010 } 6011 pX->fg.eEName = ENAME_TAB; 6012 if( (pFrom->fg.isUsing 6013 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) 6014 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) 6015 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 6016 ){ 6017 pX->fg.bNoExpand = 1; 6018 } 6019 }else if( longNames ){ 6020 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 6021 pX->fg.eEName = ENAME_NAME; 6022 }else{ 6023 pX->zEName = sqlite3DbStrDup(db, zName); 6024 pX->fg.eEName = ENAME_NAME; 6025 } 6026 } 6027 } 6028 if( !tableSeen ){ 6029 if( zTName ){ 6030 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 6031 }else{ 6032 sqlite3ErrorMsg(pParse, "no tables specified"); 6033 } 6034 } 6035 } 6036 } 6037 sqlite3ExprListDelete(db, pEList); 6038 p->pEList = pNew; 6039 } 6040 if( p->pEList ){ 6041 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 6042 sqlite3ErrorMsg(pParse, "too many columns in result set"); 6043 return WRC_Abort; 6044 } 6045 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 6046 p->selFlags |= SF_ComplexResult; 6047 } 6048 } 6049 #if TREETRACE_ENABLED 6050 if( sqlite3TreeTrace & 0x100 ){ 6051 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 6052 sqlite3TreeViewSelect(0, p, 0); 6053 } 6054 #endif 6055 return WRC_Continue; 6056 } 6057 6058 #if SQLITE_DEBUG 6059 /* 6060 ** Always assert. This xSelectCallback2 implementation proves that the 6061 ** xSelectCallback2 is never invoked. 6062 */ 6063 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 6064 UNUSED_PARAMETER2(NotUsed, NotUsed2); 6065 assert( 0 ); 6066 } 6067 #endif 6068 /* 6069 ** This routine "expands" a SELECT statement and all of its subqueries. 6070 ** For additional information on what it means to "expand" a SELECT 6071 ** statement, see the comment on the selectExpand worker callback above. 6072 ** 6073 ** Expanding a SELECT statement is the first step in processing a 6074 ** SELECT statement. The SELECT statement must be expanded before 6075 ** name resolution is performed. 6076 ** 6077 ** If anything goes wrong, an error message is written into pParse. 6078 ** The calling function can detect the problem by looking at pParse->nErr 6079 ** and/or pParse->db->mallocFailed. 6080 */ 6081 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 6082 Walker w; 6083 w.xExprCallback = sqlite3ExprWalkNoop; 6084 w.pParse = pParse; 6085 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 6086 w.xSelectCallback = convertCompoundSelectToSubquery; 6087 w.xSelectCallback2 = 0; 6088 sqlite3WalkSelect(&w, pSelect); 6089 } 6090 w.xSelectCallback = selectExpander; 6091 w.xSelectCallback2 = sqlite3SelectPopWith; 6092 w.eCode = 0; 6093 sqlite3WalkSelect(&w, pSelect); 6094 } 6095 6096 6097 #ifndef SQLITE_OMIT_SUBQUERY 6098 /* 6099 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 6100 ** interface. 6101 ** 6102 ** For each FROM-clause subquery, add Column.zType and Column.zColl 6103 ** information to the Table structure that represents the result set 6104 ** of that subquery. 6105 ** 6106 ** The Table structure that represents the result set was constructed 6107 ** by selectExpander() but the type and collation information was omitted 6108 ** at that point because identifiers had not yet been resolved. This 6109 ** routine is called after identifier resolution. 6110 */ 6111 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6112 Parse *pParse; 6113 int i; 6114 SrcList *pTabList; 6115 SrcItem *pFrom; 6116 6117 assert( p->selFlags & SF_Resolved ); 6118 if( p->selFlags & SF_HasTypeInfo ) return; 6119 p->selFlags |= SF_HasTypeInfo; 6120 pParse = pWalker->pParse; 6121 pTabList = p->pSrc; 6122 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6123 Table *pTab = pFrom->pTab; 6124 assert( pTab!=0 ); 6125 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6126 /* A sub-query in the FROM clause of a SELECT */ 6127 Select *pSel = pFrom->pSelect; 6128 if( pSel ){ 6129 while( pSel->pPrior ) pSel = pSel->pPrior; 6130 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6131 SQLITE_AFF_NONE); 6132 } 6133 } 6134 } 6135 } 6136 #endif 6137 6138 6139 /* 6140 ** This routine adds datatype and collating sequence information to 6141 ** the Table structures of all FROM-clause subqueries in a 6142 ** SELECT statement. 6143 ** 6144 ** Use this routine after name resolution. 6145 */ 6146 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6147 #ifndef SQLITE_OMIT_SUBQUERY 6148 Walker w; 6149 w.xSelectCallback = sqlite3SelectWalkNoop; 6150 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6151 w.xExprCallback = sqlite3ExprWalkNoop; 6152 w.pParse = pParse; 6153 sqlite3WalkSelect(&w, pSelect); 6154 #endif 6155 } 6156 6157 6158 /* 6159 ** This routine sets up a SELECT statement for processing. The 6160 ** following is accomplished: 6161 ** 6162 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6163 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6164 ** * ON and USING clauses are shifted into WHERE statements 6165 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6166 ** * Identifiers in expression are matched to tables. 6167 ** 6168 ** This routine acts recursively on all subqueries within the SELECT. 6169 */ 6170 void sqlite3SelectPrep( 6171 Parse *pParse, /* The parser context */ 6172 Select *p, /* The SELECT statement being coded. */ 6173 NameContext *pOuterNC /* Name context for container */ 6174 ){ 6175 assert( p!=0 || pParse->db->mallocFailed ); 6176 assert( pParse->db->pParse==pParse ); 6177 if( pParse->db->mallocFailed ) return; 6178 if( p->selFlags & SF_HasTypeInfo ) return; 6179 sqlite3SelectExpand(pParse, p); 6180 if( pParse->nErr ) return; 6181 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6182 if( pParse->nErr ) return; 6183 sqlite3SelectAddTypeInfo(pParse, p); 6184 } 6185 6186 /* 6187 ** Reset the aggregate accumulator. 6188 ** 6189 ** The aggregate accumulator is a set of memory cells that hold 6190 ** intermediate results while calculating an aggregate. This 6191 ** routine generates code that stores NULLs in all of those memory 6192 ** cells. 6193 */ 6194 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6195 Vdbe *v = pParse->pVdbe; 6196 int i; 6197 struct AggInfo_func *pFunc; 6198 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6199 assert( pParse->db->pParse==pParse ); 6200 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6201 if( nReg==0 ) return; 6202 if( pParse->nErr ) return; 6203 #ifdef SQLITE_DEBUG 6204 /* Verify that all AggInfo registers are within the range specified by 6205 ** AggInfo.mnReg..AggInfo.mxReg */ 6206 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6207 for(i=0; i<pAggInfo->nColumn; i++){ 6208 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6209 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6210 } 6211 for(i=0; i<pAggInfo->nFunc; i++){ 6212 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6213 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6214 } 6215 #endif 6216 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6217 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6218 if( pFunc->iDistinct>=0 ){ 6219 Expr *pE = pFunc->pFExpr; 6220 assert( ExprUseXList(pE) ); 6221 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6222 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6223 "argument"); 6224 pFunc->iDistinct = -1; 6225 }else{ 6226 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6227 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6228 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6229 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6230 pFunc->pFunc->zName)); 6231 } 6232 } 6233 } 6234 } 6235 6236 /* 6237 ** Invoke the OP_AggFinalize opcode for every aggregate function 6238 ** in the AggInfo structure. 6239 */ 6240 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6241 Vdbe *v = pParse->pVdbe; 6242 int i; 6243 struct AggInfo_func *pF; 6244 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6245 ExprList *pList; 6246 assert( ExprUseXList(pF->pFExpr) ); 6247 pList = pF->pFExpr->x.pList; 6248 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6249 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6250 } 6251 } 6252 6253 6254 /* 6255 ** Update the accumulator memory cells for an aggregate based on 6256 ** the current cursor position. 6257 ** 6258 ** If regAcc is non-zero and there are no min() or max() aggregates 6259 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6260 ** registers if register regAcc contains 0. The caller will take care 6261 ** of setting and clearing regAcc. 6262 */ 6263 static void updateAccumulator( 6264 Parse *pParse, 6265 int regAcc, 6266 AggInfo *pAggInfo, 6267 int eDistinctType 6268 ){ 6269 Vdbe *v = pParse->pVdbe; 6270 int i; 6271 int regHit = 0; 6272 int addrHitTest = 0; 6273 struct AggInfo_func *pF; 6274 struct AggInfo_col *pC; 6275 6276 pAggInfo->directMode = 1; 6277 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6278 int nArg; 6279 int addrNext = 0; 6280 int regAgg; 6281 ExprList *pList; 6282 assert( ExprUseXList(pF->pFExpr) ); 6283 assert( !IsWindowFunc(pF->pFExpr) ); 6284 pList = pF->pFExpr->x.pList; 6285 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6286 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6287 if( pAggInfo->nAccumulator 6288 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6289 && regAcc 6290 ){ 6291 /* If regAcc==0, there there exists some min() or max() function 6292 ** without a FILTER clause that will ensure the magnet registers 6293 ** are populated. */ 6294 if( regHit==0 ) regHit = ++pParse->nMem; 6295 /* If this is the first row of the group (regAcc contains 0), clear the 6296 ** "magnet" register regHit so that the accumulator registers 6297 ** are populated if the FILTER clause jumps over the the 6298 ** invocation of min() or max() altogether. Or, if this is not 6299 ** the first row (regAcc contains 1), set the magnet register so that 6300 ** the accumulators are not populated unless the min()/max() is invoked 6301 ** and indicates that they should be. */ 6302 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6303 } 6304 addrNext = sqlite3VdbeMakeLabel(pParse); 6305 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6306 } 6307 if( pList ){ 6308 nArg = pList->nExpr; 6309 regAgg = sqlite3GetTempRange(pParse, nArg); 6310 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6311 }else{ 6312 nArg = 0; 6313 regAgg = 0; 6314 } 6315 if( pF->iDistinct>=0 && pList ){ 6316 if( addrNext==0 ){ 6317 addrNext = sqlite3VdbeMakeLabel(pParse); 6318 } 6319 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6320 pF->iDistinct, addrNext, pList, regAgg); 6321 } 6322 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6323 CollSeq *pColl = 0; 6324 struct ExprList_item *pItem; 6325 int j; 6326 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6327 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6328 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6329 } 6330 if( !pColl ){ 6331 pColl = pParse->db->pDfltColl; 6332 } 6333 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6334 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6335 } 6336 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6337 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6338 sqlite3VdbeChangeP5(v, (u8)nArg); 6339 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6340 if( addrNext ){ 6341 sqlite3VdbeResolveLabel(v, addrNext); 6342 } 6343 } 6344 if( regHit==0 && pAggInfo->nAccumulator ){ 6345 regHit = regAcc; 6346 } 6347 if( regHit ){ 6348 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6349 } 6350 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6351 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6352 } 6353 6354 pAggInfo->directMode = 0; 6355 if( addrHitTest ){ 6356 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6357 } 6358 } 6359 6360 /* 6361 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6362 ** count(*) query ("SELECT count(*) FROM pTab"). 6363 */ 6364 #ifndef SQLITE_OMIT_EXPLAIN 6365 static void explainSimpleCount( 6366 Parse *pParse, /* Parse context */ 6367 Table *pTab, /* Table being queried */ 6368 Index *pIdx /* Index used to optimize scan, or NULL */ 6369 ){ 6370 if( pParse->explain==2 ){ 6371 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6372 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6373 pTab->zName, 6374 bCover ? " USING COVERING INDEX " : "", 6375 bCover ? pIdx->zName : "" 6376 ); 6377 } 6378 } 6379 #else 6380 # define explainSimpleCount(a,b,c) 6381 #endif 6382 6383 /* 6384 ** sqlite3WalkExpr() callback used by havingToWhere(). 6385 ** 6386 ** If the node passed to the callback is a TK_AND node, return 6387 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6388 ** 6389 ** Otherwise, return WRC_Prune. In this case, also check if the 6390 ** sub-expression matches the criteria for being moved to the WHERE 6391 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6392 ** within the HAVING expression with a constant "1". 6393 */ 6394 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6395 if( pExpr->op!=TK_AND ){ 6396 Select *pS = pWalker->u.pSelect; 6397 /* This routine is called before the HAVING clause of the current 6398 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6399 ** here, it indicates that the expression is a correlated reference to a 6400 ** column from an outer aggregate query, or an aggregate function that 6401 ** belongs to an outer query. Do not move the expression to the WHERE 6402 ** clause in this obscure case, as doing so may corrupt the outer Select 6403 ** statements AggInfo structure. */ 6404 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6405 && ExprAlwaysFalse(pExpr)==0 6406 && pExpr->pAggInfo==0 6407 ){ 6408 sqlite3 *db = pWalker->pParse->db; 6409 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6410 if( pNew ){ 6411 Expr *pWhere = pS->pWhere; 6412 SWAP(Expr, *pNew, *pExpr); 6413 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6414 pS->pWhere = pNew; 6415 pWalker->eCode = 1; 6416 } 6417 } 6418 return WRC_Prune; 6419 } 6420 return WRC_Continue; 6421 } 6422 6423 /* 6424 ** Transfer eligible terms from the HAVING clause of a query, which is 6425 ** processed after grouping, to the WHERE clause, which is processed before 6426 ** grouping. For example, the query: 6427 ** 6428 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6429 ** 6430 ** can be rewritten as: 6431 ** 6432 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6433 ** 6434 ** A term of the HAVING expression is eligible for transfer if it consists 6435 ** entirely of constants and expressions that are also GROUP BY terms that 6436 ** use the "BINARY" collation sequence. 6437 */ 6438 static void havingToWhere(Parse *pParse, Select *p){ 6439 Walker sWalker; 6440 memset(&sWalker, 0, sizeof(sWalker)); 6441 sWalker.pParse = pParse; 6442 sWalker.xExprCallback = havingToWhereExprCb; 6443 sWalker.u.pSelect = p; 6444 sqlite3WalkExpr(&sWalker, p->pHaving); 6445 #if TREETRACE_ENABLED 6446 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6447 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6448 sqlite3TreeViewSelect(0, p, 0); 6449 } 6450 #endif 6451 } 6452 6453 /* 6454 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6455 ** If it is, then return the SrcList_item for the prior view. If it is not, 6456 ** then return 0. 6457 */ 6458 static SrcItem *isSelfJoinView( 6459 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6460 SrcItem *pThis /* Search for prior reference to this subquery */ 6461 ){ 6462 SrcItem *pItem; 6463 assert( pThis->pSelect!=0 ); 6464 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6465 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6466 Select *pS1; 6467 if( pItem->pSelect==0 ) continue; 6468 if( pItem->fg.viaCoroutine ) continue; 6469 if( pItem->zName==0 ) continue; 6470 assert( pItem->pTab!=0 ); 6471 assert( pThis->pTab!=0 ); 6472 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6473 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6474 pS1 = pItem->pSelect; 6475 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6476 /* The query flattener left two different CTE tables with identical 6477 ** names in the same FROM clause. */ 6478 continue; 6479 } 6480 if( pItem->pSelect->selFlags & SF_PushDown ){ 6481 /* The view was modified by some other optimization such as 6482 ** pushDownWhereTerms() */ 6483 continue; 6484 } 6485 return pItem; 6486 } 6487 return 0; 6488 } 6489 6490 /* 6491 ** Deallocate a single AggInfo object 6492 */ 6493 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6494 sqlite3DbFree(db, p->aCol); 6495 sqlite3DbFree(db, p->aFunc); 6496 sqlite3DbFreeNN(db, p); 6497 } 6498 6499 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6500 /* 6501 ** Attempt to transform a query of the form 6502 ** 6503 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6504 ** 6505 ** Into this: 6506 ** 6507 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6508 ** 6509 ** The transformation only works if all of the following are true: 6510 ** 6511 ** * The subquery is a UNION ALL of two or more terms 6512 ** * The subquery does not have a LIMIT clause 6513 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6514 ** * The outer query is a simple count(*) with no WHERE clause or other 6515 ** extraneous syntax. 6516 ** 6517 ** Return TRUE if the optimization is undertaken. 6518 */ 6519 static int countOfViewOptimization(Parse *pParse, Select *p){ 6520 Select *pSub, *pPrior; 6521 Expr *pExpr; 6522 Expr *pCount; 6523 sqlite3 *db; 6524 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6525 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6526 if( p->pWhere ) return 0; 6527 if( p->pGroupBy ) return 0; 6528 pExpr = p->pEList->a[0].pExpr; 6529 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6530 assert( ExprUseUToken(pExpr) ); 6531 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6532 assert( ExprUseXList(pExpr) ); 6533 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6534 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6535 pSub = p->pSrc->a[0].pSelect; 6536 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6537 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6538 do{ 6539 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6540 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6541 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6542 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6543 pSub = pSub->pPrior; /* Repeat over compound */ 6544 }while( pSub ); 6545 6546 /* If we reach this point then it is OK to perform the transformation */ 6547 6548 db = pParse->db; 6549 pCount = pExpr; 6550 pExpr = 0; 6551 pSub = p->pSrc->a[0].pSelect; 6552 p->pSrc->a[0].pSelect = 0; 6553 sqlite3SrcListDelete(db, p->pSrc); 6554 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6555 while( pSub ){ 6556 Expr *pTerm; 6557 pPrior = pSub->pPrior; 6558 pSub->pPrior = 0; 6559 pSub->pNext = 0; 6560 pSub->selFlags |= SF_Aggregate; 6561 pSub->selFlags &= ~SF_Compound; 6562 pSub->nSelectRow = 0; 6563 sqlite3ExprListDelete(db, pSub->pEList); 6564 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6565 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6566 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6567 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6568 if( pExpr==0 ){ 6569 pExpr = pTerm; 6570 }else{ 6571 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6572 } 6573 pSub = pPrior; 6574 } 6575 p->pEList->a[0].pExpr = pExpr; 6576 p->selFlags &= ~SF_Aggregate; 6577 6578 #if TREETRACE_ENABLED 6579 if( sqlite3TreeTrace & 0x400 ){ 6580 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6581 sqlite3TreeViewSelect(0, p, 0); 6582 } 6583 #endif 6584 return 1; 6585 } 6586 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6587 6588 /* 6589 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same 6590 ** as pSrcItem but has the same alias as p0, then return true. 6591 ** Otherwise return false. 6592 */ 6593 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ 6594 int i; 6595 for(i=0; i<pSrc->nSrc; i++){ 6596 SrcItem *p1 = &pSrc->a[i]; 6597 if( p1==p0 ) continue; 6598 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6599 return 1; 6600 } 6601 if( p1->pSelect 6602 && (p1->pSelect->selFlags & SF_NestedFrom)!=0 6603 && sameSrcAlias(p0, p1->pSelect->pSrc) 6604 ){ 6605 return 1; 6606 } 6607 } 6608 return 0; 6609 } 6610 6611 /* 6612 ** Generate code for the SELECT statement given in the p argument. 6613 ** 6614 ** The results are returned according to the SelectDest structure. 6615 ** See comments in sqliteInt.h for further information. 6616 ** 6617 ** This routine returns the number of errors. If any errors are 6618 ** encountered, then an appropriate error message is left in 6619 ** pParse->zErrMsg. 6620 ** 6621 ** This routine does NOT free the Select structure passed in. The 6622 ** calling function needs to do that. 6623 */ 6624 int sqlite3Select( 6625 Parse *pParse, /* The parser context */ 6626 Select *p, /* The SELECT statement being coded. */ 6627 SelectDest *pDest /* What to do with the query results */ 6628 ){ 6629 int i, j; /* Loop counters */ 6630 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6631 Vdbe *v; /* The virtual machine under construction */ 6632 int isAgg; /* True for select lists like "count(*)" */ 6633 ExprList *pEList = 0; /* List of columns to extract. */ 6634 SrcList *pTabList; /* List of tables to select from */ 6635 Expr *pWhere; /* The WHERE clause. May be NULL */ 6636 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6637 Expr *pHaving; /* The HAVING clause. May be NULL */ 6638 AggInfo *pAggInfo = 0; /* Aggregate information */ 6639 int rc = 1; /* Value to return from this function */ 6640 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6641 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6642 int iEnd; /* Address of the end of the query */ 6643 sqlite3 *db; /* The database connection */ 6644 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6645 u8 minMaxFlag; /* Flag for min/max queries */ 6646 6647 db = pParse->db; 6648 assert( pParse==db->pParse ); 6649 v = sqlite3GetVdbe(pParse); 6650 if( p==0 || pParse->nErr ){ 6651 return 1; 6652 } 6653 assert( db->mallocFailed==0 ); 6654 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6655 #if TREETRACE_ENABLED 6656 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6657 if( sqlite3TreeTrace & 0x10100 ){ 6658 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6659 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6660 __FILE__, __LINE__); 6661 } 6662 sqlite3ShowSelect(p); 6663 } 6664 #endif 6665 6666 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6667 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6668 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6669 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6670 if( IgnorableDistinct(pDest) ){ 6671 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6672 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6673 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6674 /* All of these destinations are also able to ignore the ORDER BY clause */ 6675 if( p->pOrderBy ){ 6676 #if TREETRACE_ENABLED 6677 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6678 if( sqlite3TreeTrace & 0x100 ){ 6679 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6680 } 6681 #endif 6682 sqlite3ParserAddCleanup(pParse, 6683 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6684 p->pOrderBy); 6685 testcase( pParse->earlyCleanup ); 6686 p->pOrderBy = 0; 6687 } 6688 p->selFlags &= ~SF_Distinct; 6689 p->selFlags |= SF_NoopOrderBy; 6690 } 6691 sqlite3SelectPrep(pParse, p, 0); 6692 if( pParse->nErr ){ 6693 goto select_end; 6694 } 6695 assert( db->mallocFailed==0 ); 6696 assert( p->pEList!=0 ); 6697 #if TREETRACE_ENABLED 6698 if( sqlite3TreeTrace & 0x104 ){ 6699 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6700 sqlite3TreeViewSelect(0, p, 0); 6701 } 6702 #endif 6703 6704 /* If the SF_UFSrcCheck flag is set, then this function is being called 6705 ** as part of populating the temp table for an UPDATE...FROM statement. 6706 ** In this case, it is an error if the target object (pSrc->a[0]) name 6707 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6708 ** 6709 ** Postgres disallows this case too. The reason is that some other 6710 ** systems handle this case differently, and not all the same way, 6711 ** which is just confusing. To avoid this, we follow PG's lead and 6712 ** disallow it altogether. */ 6713 if( p->selFlags & SF_UFSrcCheck ){ 6714 SrcItem *p0 = &p->pSrc->a[0]; 6715 if( sameSrcAlias(p0, p->pSrc) ){ 6716 sqlite3ErrorMsg(pParse, 6717 "target object/alias may not appear in FROM clause: %s", 6718 p0->zAlias ? p0->zAlias : p0->pTab->zName 6719 ); 6720 goto select_end; 6721 } 6722 6723 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6724 ** and leaving this flag set can cause errors if a compound sub-query 6725 ** in p->pSrc is flattened into this query and this function called 6726 ** again as part of compound SELECT processing. */ 6727 p->selFlags &= ~SF_UFSrcCheck; 6728 } 6729 6730 if( pDest->eDest==SRT_Output ){ 6731 sqlite3GenerateColumnNames(pParse, p); 6732 } 6733 6734 #ifndef SQLITE_OMIT_WINDOWFUNC 6735 if( sqlite3WindowRewrite(pParse, p) ){ 6736 assert( pParse->nErr ); 6737 goto select_end; 6738 } 6739 #if TREETRACE_ENABLED 6740 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6741 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6742 sqlite3TreeViewSelect(0, p, 0); 6743 } 6744 #endif 6745 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6746 pTabList = p->pSrc; 6747 isAgg = (p->selFlags & SF_Aggregate)!=0; 6748 memset(&sSort, 0, sizeof(sSort)); 6749 sSort.pOrderBy = p->pOrderBy; 6750 6751 /* Try to do various optimizations (flattening subqueries, and strength 6752 ** reduction of join operators) in the FROM clause up into the main query 6753 */ 6754 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6755 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6756 SrcItem *pItem = &pTabList->a[i]; 6757 Select *pSub = pItem->pSelect; 6758 Table *pTab = pItem->pTab; 6759 6760 /* The expander should have already created transient Table objects 6761 ** even for FROM clause elements such as subqueries that do not correspond 6762 ** to a real table */ 6763 assert( pTab!=0 ); 6764 6765 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6766 ** of the LEFT JOIN used in the WHERE clause. 6767 */ 6768 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6769 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6770 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6771 ){ 6772 SELECTTRACE(0x100,pParse,p, 6773 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6774 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6775 assert( pItem->iCursor>=0 ); 6776 unsetJoinExpr(p->pWhere, pItem->iCursor, 6777 pTabList->a[0].fg.jointype & JT_LTORJ); 6778 } 6779 6780 /* No futher action if this term of the FROM clause is no a subquery */ 6781 if( pSub==0 ) continue; 6782 6783 /* Catch mismatch in the declared columns of a view and the number of 6784 ** columns in the SELECT on the RHS */ 6785 if( pTab->nCol!=pSub->pEList->nExpr ){ 6786 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6787 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6788 goto select_end; 6789 } 6790 6791 /* Do not try to flatten an aggregate subquery. 6792 ** 6793 ** Flattening an aggregate subquery is only possible if the outer query 6794 ** is not a join. But if the outer query is not a join, then the subquery 6795 ** will be implemented as a co-routine and there is no advantage to 6796 ** flattening in that case. 6797 */ 6798 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6799 assert( pSub->pGroupBy==0 ); 6800 6801 /* If a FROM-clause subquery has an ORDER BY clause that is not 6802 ** really doing anything, then delete it now so that it does not 6803 ** interfere with query flattening. See the discussion at 6804 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6805 ** 6806 ** Beware of these cases where the ORDER BY clause may not be safely 6807 ** omitted: 6808 ** 6809 ** (1) There is also a LIMIT clause 6810 ** (2) The subquery was added to help with window-function 6811 ** processing 6812 ** (3) The subquery is in the FROM clause of an UPDATE 6813 ** (4) The outer query uses an aggregate function other than 6814 ** the built-in count(), min(), or max(). 6815 ** (5) The ORDER BY isn't going to accomplish anything because 6816 ** one of: 6817 ** (a) The outer query has a different ORDER BY clause 6818 ** (b) The subquery is part of a join 6819 ** See forum post 062d576715d277c8 6820 */ 6821 if( pSub->pOrderBy!=0 6822 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6823 && pSub->pLimit==0 /* Condition (1) */ 6824 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6825 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6826 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6827 ){ 6828 SELECTTRACE(0x100,pParse,p, 6829 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6830 sqlite3ExprListDelete(db, pSub->pOrderBy); 6831 pSub->pOrderBy = 0; 6832 } 6833 6834 /* If the outer query contains a "complex" result set (that is, 6835 ** if the result set of the outer query uses functions or subqueries) 6836 ** and if the subquery contains an ORDER BY clause and if 6837 ** it will be implemented as a co-routine, then do not flatten. This 6838 ** restriction allows SQL constructs like this: 6839 ** 6840 ** SELECT expensive_function(x) 6841 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6842 ** 6843 ** The expensive_function() is only computed on the 10 rows that 6844 ** are output, rather than every row of the table. 6845 ** 6846 ** The requirement that the outer query have a complex result set 6847 ** means that flattening does occur on simpler SQL constraints without 6848 ** the expensive_function() like: 6849 ** 6850 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6851 */ 6852 if( pSub->pOrderBy!=0 6853 && i==0 6854 && (p->selFlags & SF_ComplexResult)!=0 6855 && (pTabList->nSrc==1 6856 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6857 ){ 6858 continue; 6859 } 6860 6861 if( flattenSubquery(pParse, p, i, isAgg) ){ 6862 if( pParse->nErr ) goto select_end; 6863 /* This subquery can be absorbed into its parent. */ 6864 i = -1; 6865 } 6866 pTabList = p->pSrc; 6867 if( db->mallocFailed ) goto select_end; 6868 if( !IgnorableOrderby(pDest) ){ 6869 sSort.pOrderBy = p->pOrderBy; 6870 } 6871 } 6872 #endif 6873 6874 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6875 /* Handle compound SELECT statements using the separate multiSelect() 6876 ** procedure. 6877 */ 6878 if( p->pPrior ){ 6879 rc = multiSelect(pParse, p, pDest); 6880 #if TREETRACE_ENABLED 6881 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6882 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6883 sqlite3TreeViewSelect(0, p, 0); 6884 } 6885 #endif 6886 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6887 return rc; 6888 } 6889 #endif 6890 6891 /* Do the WHERE-clause constant propagation optimization if this is 6892 ** a join. No need to speed time on this operation for non-join queries 6893 ** as the equivalent optimization will be handled by query planner in 6894 ** sqlite3WhereBegin(). 6895 */ 6896 if( p->pWhere!=0 6897 && p->pWhere->op==TK_AND 6898 && OptimizationEnabled(db, SQLITE_PropagateConst) 6899 && propagateConstants(pParse, p) 6900 ){ 6901 #if TREETRACE_ENABLED 6902 if( sqlite3TreeTrace & 0x100 ){ 6903 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6904 sqlite3TreeViewSelect(0, p, 0); 6905 } 6906 #endif 6907 }else{ 6908 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6909 } 6910 6911 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6912 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6913 && countOfViewOptimization(pParse, p) 6914 ){ 6915 if( db->mallocFailed ) goto select_end; 6916 pEList = p->pEList; 6917 pTabList = p->pSrc; 6918 } 6919 #endif 6920 6921 /* For each term in the FROM clause, do two things: 6922 ** (1) Authorized unreferenced tables 6923 ** (2) Generate code for all sub-queries 6924 */ 6925 for(i=0; i<pTabList->nSrc; i++){ 6926 SrcItem *pItem = &pTabList->a[i]; 6927 SrcItem *pPrior; 6928 SelectDest dest; 6929 Select *pSub; 6930 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6931 const char *zSavedAuthContext; 6932 #endif 6933 6934 /* Issue SQLITE_READ authorizations with a fake column name for any 6935 ** tables that are referenced but from which no values are extracted. 6936 ** Examples of where these kinds of null SQLITE_READ authorizations 6937 ** would occur: 6938 ** 6939 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6940 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6941 ** 6942 ** The fake column name is an empty string. It is possible for a table to 6943 ** have a column named by the empty string, in which case there is no way to 6944 ** distinguish between an unreferenced table and an actual reference to the 6945 ** "" column. The original design was for the fake column name to be a NULL, 6946 ** which would be unambiguous. But legacy authorization callbacks might 6947 ** assume the column name is non-NULL and segfault. The use of an empty 6948 ** string for the fake column name seems safer. 6949 */ 6950 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6951 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6952 } 6953 6954 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6955 /* Generate code for all sub-queries in the FROM clause 6956 */ 6957 pSub = pItem->pSelect; 6958 if( pSub==0 ) continue; 6959 6960 /* The code for a subquery should only be generated once. */ 6961 assert( pItem->addrFillSub==0 ); 6962 6963 /* Increment Parse.nHeight by the height of the largest expression 6964 ** tree referred to by this, the parent select. The child select 6965 ** may contain expression trees of at most 6966 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6967 ** more conservative than necessary, but much easier than enforcing 6968 ** an exact limit. 6969 */ 6970 pParse->nHeight += sqlite3SelectExprHeight(p); 6971 6972 /* Make copies of constant WHERE-clause terms in the outer query down 6973 ** inside the subquery. This can help the subquery to run more efficiently. 6974 */ 6975 if( OptimizationEnabled(db, SQLITE_PushDown) 6976 && (pItem->fg.isCte==0 6977 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6978 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6979 ){ 6980 #if TREETRACE_ENABLED 6981 if( sqlite3TreeTrace & 0x100 ){ 6982 SELECTTRACE(0x100,pParse,p, 6983 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6984 sqlite3TreeViewSelect(0, p, 0); 6985 } 6986 #endif 6987 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6988 }else{ 6989 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6990 } 6991 6992 zSavedAuthContext = pParse->zAuthContext; 6993 pParse->zAuthContext = pItem->zName; 6994 6995 /* Generate code to implement the subquery 6996 ** 6997 ** The subquery is implemented as a co-routine all if the following are 6998 ** true: 6999 ** 7000 ** (1) the subquery is guaranteed to be the outer loop (so that 7001 ** it does not need to be computed more than once), and 7002 ** (2) the subquery is not a CTE that should be materialized 7003 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 7004 */ 7005 if( i==0 7006 && (pTabList->nSrc==1 7007 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 7008 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 7009 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 7010 ){ 7011 /* Implement a co-routine that will return a single row of the result 7012 ** set on each invocation. 7013 */ 7014 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 7015 7016 pItem->regReturn = ++pParse->nMem; 7017 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 7018 VdbeComment((v, "%!S", pItem)); 7019 pItem->addrFillSub = addrTop; 7020 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 7021 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 7022 sqlite3Select(pParse, pSub, &dest); 7023 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7024 pItem->fg.viaCoroutine = 1; 7025 pItem->regResult = dest.iSdst; 7026 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 7027 sqlite3VdbeJumpHere(v, addrTop-1); 7028 sqlite3ClearTempRegCache(pParse); 7029 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 7030 /* This is a CTE for which materialization code has already been 7031 ** generated. Invoke the subroutine to compute the materialization, 7032 ** the make the pItem->iCursor be a copy of the ephemerial table that 7033 ** holds the result of the materialization. */ 7034 CteUse *pCteUse = pItem->u2.pCteUse; 7035 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 7036 if( pItem->iCursor!=pCteUse->iCur ){ 7037 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 7038 VdbeComment((v, "%!S", pItem)); 7039 } 7040 pSub->nSelectRow = pCteUse->nRowEst; 7041 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 7042 /* This view has already been materialized by a prior entry in 7043 ** this same FROM clause. Reuse it. */ 7044 if( pPrior->addrFillSub ){ 7045 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 7046 } 7047 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 7048 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 7049 }else{ 7050 /* Materialize the view. If the view is not correlated, generate a 7051 ** subroutine to do the materialization so that subsequent uses of 7052 ** the same view can reuse the materialization. */ 7053 int topAddr; 7054 int onceAddr = 0; 7055 7056 pItem->regReturn = ++pParse->nMem; 7057 topAddr = sqlite3VdbeAddOp0(v, OP_Goto); 7058 pItem->addrFillSub = topAddr+1; 7059 pItem->fg.isMaterialized = 1; 7060 if( pItem->fg.isCorrelated==0 ){ 7061 /* If the subquery is not correlated and if we are not inside of 7062 ** a trigger, then we only need to compute the value of the subquery 7063 ** once. */ 7064 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 7065 VdbeComment((v, "materialize %!S", pItem)); 7066 }else{ 7067 VdbeNoopComment((v, "materialize %!S", pItem)); 7068 } 7069 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 7070 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 7071 sqlite3Select(pParse, pSub, &dest); 7072 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7073 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 7074 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); 7075 VdbeComment((v, "end %!S", pItem)); 7076 sqlite3VdbeJumpHere(v, topAddr); 7077 sqlite3ClearTempRegCache(pParse); 7078 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 7079 CteUse *pCteUse = pItem->u2.pCteUse; 7080 pCteUse->addrM9e = pItem->addrFillSub; 7081 pCteUse->regRtn = pItem->regReturn; 7082 pCteUse->iCur = pItem->iCursor; 7083 pCteUse->nRowEst = pSub->nSelectRow; 7084 } 7085 } 7086 if( db->mallocFailed ) goto select_end; 7087 pParse->nHeight -= sqlite3SelectExprHeight(p); 7088 pParse->zAuthContext = zSavedAuthContext; 7089 #endif 7090 } 7091 7092 /* Various elements of the SELECT copied into local variables for 7093 ** convenience */ 7094 pEList = p->pEList; 7095 pWhere = p->pWhere; 7096 pGroupBy = p->pGroupBy; 7097 pHaving = p->pHaving; 7098 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 7099 7100 #if TREETRACE_ENABLED 7101 if( sqlite3TreeTrace & 0x400 ){ 7102 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 7103 sqlite3TreeViewSelect(0, p, 0); 7104 } 7105 #endif 7106 7107 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 7108 ** if the select-list is the same as the ORDER BY list, then this query 7109 ** can be rewritten as a GROUP BY. In other words, this: 7110 ** 7111 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 7112 ** 7113 ** is transformed to: 7114 ** 7115 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 7116 ** 7117 ** The second form is preferred as a single index (or temp-table) may be 7118 ** used for both the ORDER BY and DISTINCT processing. As originally 7119 ** written the query must use a temp-table for at least one of the ORDER 7120 ** BY and DISTINCT, and an index or separate temp-table for the other. 7121 */ 7122 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 7123 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 7124 #ifndef SQLITE_OMIT_WINDOWFUNC 7125 && p->pWin==0 7126 #endif 7127 ){ 7128 p->selFlags &= ~SF_Distinct; 7129 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 7130 p->selFlags |= SF_Aggregate; 7131 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7132 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7133 ** original setting of the SF_Distinct flag, not the current setting */ 7134 assert( sDistinct.isTnct ); 7135 sDistinct.isTnct = 2; 7136 7137 #if TREETRACE_ENABLED 7138 if( sqlite3TreeTrace & 0x400 ){ 7139 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7140 sqlite3TreeViewSelect(0, p, 0); 7141 } 7142 #endif 7143 } 7144 7145 /* If there is an ORDER BY clause, then create an ephemeral index to 7146 ** do the sorting. But this sorting ephemeral index might end up 7147 ** being unused if the data can be extracted in pre-sorted order. 7148 ** If that is the case, then the OP_OpenEphemeral instruction will be 7149 ** changed to an OP_Noop once we figure out that the sorting index is 7150 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7151 ** that change. 7152 */ 7153 if( sSort.pOrderBy ){ 7154 KeyInfo *pKeyInfo; 7155 pKeyInfo = sqlite3KeyInfoFromExprList( 7156 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7157 sSort.iECursor = pParse->nTab++; 7158 sSort.addrSortIndex = 7159 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7160 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7161 (char*)pKeyInfo, P4_KEYINFO 7162 ); 7163 }else{ 7164 sSort.addrSortIndex = -1; 7165 } 7166 7167 /* If the output is destined for a temporary table, open that table. 7168 */ 7169 if( pDest->eDest==SRT_EphemTab ){ 7170 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7171 if( p->selFlags & SF_NestedFrom ){ 7172 /* Delete or NULL-out result columns that will never be used */ 7173 int ii; 7174 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ 7175 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7176 sqlite3DbFree(db, pEList->a[ii].zEName); 7177 pEList->nExpr--; 7178 } 7179 for(ii=0; ii<pEList->nExpr; ii++){ 7180 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7181 } 7182 } 7183 } 7184 7185 /* Set the limiter. 7186 */ 7187 iEnd = sqlite3VdbeMakeLabel(pParse); 7188 if( (p->selFlags & SF_FixedLimit)==0 ){ 7189 p->nSelectRow = 320; /* 4 billion rows */ 7190 } 7191 computeLimitRegisters(pParse, p, iEnd); 7192 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7193 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7194 sSort.sortFlags |= SORTFLAG_UseSorter; 7195 } 7196 7197 /* Open an ephemeral index to use for the distinct set. 7198 */ 7199 if( p->selFlags & SF_Distinct ){ 7200 sDistinct.tabTnct = pParse->nTab++; 7201 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7202 sDistinct.tabTnct, 0, 0, 7203 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7204 P4_KEYINFO); 7205 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7206 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7207 }else{ 7208 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7209 } 7210 7211 if( !isAgg && pGroupBy==0 ){ 7212 /* No aggregate functions and no GROUP BY clause */ 7213 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7214 | (p->selFlags & SF_FixedLimit); 7215 #ifndef SQLITE_OMIT_WINDOWFUNC 7216 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7217 if( pWin ){ 7218 sqlite3WindowCodeInit(pParse, p); 7219 } 7220 #endif 7221 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7222 7223 7224 /* Begin the database scan. */ 7225 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7226 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7227 p->pEList, p, wctrlFlags, p->nSelectRow); 7228 if( pWInfo==0 ) goto select_end; 7229 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7230 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7231 } 7232 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7233 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7234 } 7235 if( sSort.pOrderBy ){ 7236 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7237 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7238 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7239 sSort.pOrderBy = 0; 7240 } 7241 } 7242 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7243 7244 /* If sorting index that was created by a prior OP_OpenEphemeral 7245 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7246 ** into an OP_Noop. 7247 */ 7248 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7249 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7250 } 7251 7252 assert( p->pEList==pEList ); 7253 #ifndef SQLITE_OMIT_WINDOWFUNC 7254 if( pWin ){ 7255 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7256 int iCont = sqlite3VdbeMakeLabel(pParse); 7257 int iBreak = sqlite3VdbeMakeLabel(pParse); 7258 int regGosub = ++pParse->nMem; 7259 7260 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7261 7262 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7263 sqlite3VdbeResolveLabel(v, addrGosub); 7264 VdbeNoopComment((v, "inner-loop subroutine")); 7265 sSort.labelOBLopt = 0; 7266 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7267 sqlite3VdbeResolveLabel(v, iCont); 7268 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7269 VdbeComment((v, "end inner-loop subroutine")); 7270 sqlite3VdbeResolveLabel(v, iBreak); 7271 }else 7272 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7273 { 7274 /* Use the standard inner loop. */ 7275 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7276 sqlite3WhereContinueLabel(pWInfo), 7277 sqlite3WhereBreakLabel(pWInfo)); 7278 7279 /* End the database scan loop. 7280 */ 7281 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7282 sqlite3WhereEnd(pWInfo); 7283 } 7284 }else{ 7285 /* This case when there exist aggregate functions or a GROUP BY clause 7286 ** or both */ 7287 NameContext sNC; /* Name context for processing aggregate information */ 7288 int iAMem; /* First Mem address for storing current GROUP BY */ 7289 int iBMem; /* First Mem address for previous GROUP BY */ 7290 int iUseFlag; /* Mem address holding flag indicating that at least 7291 ** one row of the input to the aggregator has been 7292 ** processed */ 7293 int iAbortFlag; /* Mem address which causes query abort if positive */ 7294 int groupBySort; /* Rows come from source in GROUP BY order */ 7295 int addrEnd; /* End of processing for this SELECT */ 7296 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7297 int sortOut = 0; /* Output register from the sorter */ 7298 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7299 7300 /* Remove any and all aliases between the result set and the 7301 ** GROUP BY clause. 7302 */ 7303 if( pGroupBy ){ 7304 int k; /* Loop counter */ 7305 struct ExprList_item *pItem; /* For looping over expression in a list */ 7306 7307 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7308 pItem->u.x.iAlias = 0; 7309 } 7310 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7311 pItem->u.x.iAlias = 0; 7312 } 7313 assert( 66==sqlite3LogEst(100) ); 7314 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7315 7316 /* If there is both a GROUP BY and an ORDER BY clause and they are 7317 ** identical, then it may be possible to disable the ORDER BY clause 7318 ** on the grounds that the GROUP BY will cause elements to come out 7319 ** in the correct order. It also may not - the GROUP BY might use a 7320 ** database index that causes rows to be grouped together as required 7321 ** but not actually sorted. Either way, record the fact that the 7322 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7323 ** variable. */ 7324 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7325 int ii; 7326 /* The GROUP BY processing doesn't care whether rows are delivered in 7327 ** ASC or DESC order - only that each group is returned contiguously. 7328 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7329 ** ORDER BY to maximize the chances of rows being delivered in an 7330 ** order that makes the ORDER BY redundant. */ 7331 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7332 u8 sortFlags; 7333 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; 7334 pGroupBy->a[ii].fg.sortFlags = sortFlags; 7335 } 7336 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7337 orderByGrp = 1; 7338 } 7339 } 7340 }else{ 7341 assert( 0==sqlite3LogEst(1) ); 7342 p->nSelectRow = 0; 7343 } 7344 7345 /* Create a label to jump to when we want to abort the query */ 7346 addrEnd = sqlite3VdbeMakeLabel(pParse); 7347 7348 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7349 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7350 ** SELECT statement. 7351 */ 7352 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7353 if( pAggInfo ){ 7354 sqlite3ParserAddCleanup(pParse, 7355 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7356 testcase( pParse->earlyCleanup ); 7357 } 7358 if( db->mallocFailed ){ 7359 goto select_end; 7360 } 7361 pAggInfo->selId = p->selId; 7362 memset(&sNC, 0, sizeof(sNC)); 7363 sNC.pParse = pParse; 7364 sNC.pSrcList = pTabList; 7365 sNC.uNC.pAggInfo = pAggInfo; 7366 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7367 pAggInfo->mnReg = pParse->nMem+1; 7368 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7369 pAggInfo->pGroupBy = pGroupBy; 7370 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7371 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7372 if( pHaving ){ 7373 if( pGroupBy ){ 7374 assert( pWhere==p->pWhere ); 7375 assert( pHaving==p->pHaving ); 7376 assert( pGroupBy==p->pGroupBy ); 7377 havingToWhere(pParse, p); 7378 pWhere = p->pWhere; 7379 } 7380 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7381 } 7382 pAggInfo->nAccumulator = pAggInfo->nColumn; 7383 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7384 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7385 }else{ 7386 minMaxFlag = WHERE_ORDERBY_NORMAL; 7387 } 7388 for(i=0; i<pAggInfo->nFunc; i++){ 7389 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7390 assert( ExprUseXList(pExpr) ); 7391 sNC.ncFlags |= NC_InAggFunc; 7392 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7393 #ifndef SQLITE_OMIT_WINDOWFUNC 7394 assert( !IsWindowFunc(pExpr) ); 7395 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7396 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7397 } 7398 #endif 7399 sNC.ncFlags &= ~NC_InAggFunc; 7400 } 7401 pAggInfo->mxReg = pParse->nMem; 7402 if( db->mallocFailed ) goto select_end; 7403 #if TREETRACE_ENABLED 7404 if( sqlite3TreeTrace & 0x400 ){ 7405 int ii; 7406 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7407 sqlite3TreeViewSelect(0, p, 0); 7408 if( minMaxFlag ){ 7409 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7410 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7411 } 7412 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7413 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7414 ii, pAggInfo->aCol[ii].iMem); 7415 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7416 } 7417 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7418 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7419 ii, pAggInfo->aFunc[ii].iMem); 7420 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7421 } 7422 } 7423 #endif 7424 7425 7426 /* Processing for aggregates with GROUP BY is very different and 7427 ** much more complex than aggregates without a GROUP BY. 7428 */ 7429 if( pGroupBy ){ 7430 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7431 int addr1; /* A-vs-B comparision jump */ 7432 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7433 int regOutputRow; /* Return address register for output subroutine */ 7434 int addrSetAbort; /* Set the abort flag and return */ 7435 int addrTopOfLoop; /* Top of the input loop */ 7436 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7437 int addrReset; /* Subroutine for resetting the accumulator */ 7438 int regReset; /* Return address register for reset subroutine */ 7439 ExprList *pDistinct = 0; 7440 u16 distFlag = 0; 7441 int eDist = WHERE_DISTINCT_NOOP; 7442 7443 if( pAggInfo->nFunc==1 7444 && pAggInfo->aFunc[0].iDistinct>=0 7445 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7446 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7447 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7448 ){ 7449 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7450 pExpr = sqlite3ExprDup(db, pExpr, 0); 7451 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7452 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7453 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7454 } 7455 7456 /* If there is a GROUP BY clause we might need a sorting index to 7457 ** implement it. Allocate that sorting index now. If it turns out 7458 ** that we do not need it after all, the OP_SorterOpen instruction 7459 ** will be converted into a Noop. 7460 */ 7461 pAggInfo->sortingIdx = pParse->nTab++; 7462 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7463 0, pAggInfo->nColumn); 7464 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7465 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7466 0, (char*)pKeyInfo, P4_KEYINFO); 7467 7468 /* Initialize memory locations used by GROUP BY aggregate processing 7469 */ 7470 iUseFlag = ++pParse->nMem; 7471 iAbortFlag = ++pParse->nMem; 7472 regOutputRow = ++pParse->nMem; 7473 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7474 regReset = ++pParse->nMem; 7475 addrReset = sqlite3VdbeMakeLabel(pParse); 7476 iAMem = pParse->nMem + 1; 7477 pParse->nMem += pGroupBy->nExpr; 7478 iBMem = pParse->nMem + 1; 7479 pParse->nMem += pGroupBy->nExpr; 7480 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7481 VdbeComment((v, "clear abort flag")); 7482 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7483 7484 /* Begin a loop that will extract all source rows in GROUP BY order. 7485 ** This might involve two separate loops with an OP_Sort in between, or 7486 ** it might be a single loop that uses an index to extract information 7487 ** in the right order to begin with. 7488 */ 7489 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7490 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7491 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7492 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7493 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7494 ); 7495 if( pWInfo==0 ){ 7496 sqlite3ExprListDelete(db, pDistinct); 7497 goto select_end; 7498 } 7499 eDist = sqlite3WhereIsDistinct(pWInfo); 7500 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7501 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7502 /* The optimizer is able to deliver rows in group by order so 7503 ** we do not have to sort. The OP_OpenEphemeral table will be 7504 ** cancelled later because we still need to use the pKeyInfo 7505 */ 7506 groupBySort = 0; 7507 }else{ 7508 /* Rows are coming out in undetermined order. We have to push 7509 ** each row into a sorting index, terminate the first loop, 7510 ** then loop over the sorting index in order to get the output 7511 ** in sorted order 7512 */ 7513 int regBase; 7514 int regRecord; 7515 int nCol; 7516 int nGroupBy; 7517 7518 explainTempTable(pParse, 7519 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7520 "DISTINCT" : "GROUP BY"); 7521 7522 groupBySort = 1; 7523 nGroupBy = pGroupBy->nExpr; 7524 nCol = nGroupBy; 7525 j = nGroupBy; 7526 for(i=0; i<pAggInfo->nColumn; i++){ 7527 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7528 nCol++; 7529 j++; 7530 } 7531 } 7532 regBase = sqlite3GetTempRange(pParse, nCol); 7533 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7534 j = nGroupBy; 7535 for(i=0; i<pAggInfo->nColumn; i++){ 7536 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7537 if( pCol->iSorterColumn>=j ){ 7538 int r1 = j + regBase; 7539 sqlite3ExprCodeGetColumnOfTable(v, 7540 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7541 j++; 7542 } 7543 } 7544 regRecord = sqlite3GetTempReg(pParse); 7545 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7546 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7547 sqlite3ReleaseTempReg(pParse, regRecord); 7548 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7549 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7550 sqlite3WhereEnd(pWInfo); 7551 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7552 sortOut = sqlite3GetTempReg(pParse); 7553 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7554 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7555 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7556 pAggInfo->useSortingIdx = 1; 7557 } 7558 7559 /* If the index or temporary table used by the GROUP BY sort 7560 ** will naturally deliver rows in the order required by the ORDER BY 7561 ** clause, cancel the ephemeral table open coded earlier. 7562 ** 7563 ** This is an optimization - the correct answer should result regardless. 7564 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7565 ** disable this optimization for testing purposes. */ 7566 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7567 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7568 ){ 7569 sSort.pOrderBy = 0; 7570 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7571 } 7572 7573 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7574 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7575 ** Then compare the current GROUP BY terms against the GROUP BY terms 7576 ** from the previous row currently stored in a0, a1, a2... 7577 */ 7578 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7579 if( groupBySort ){ 7580 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7581 sortOut, sortPTab); 7582 } 7583 for(j=0; j<pGroupBy->nExpr; j++){ 7584 if( groupBySort ){ 7585 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7586 }else{ 7587 pAggInfo->directMode = 1; 7588 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7589 } 7590 } 7591 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7592 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7593 addr1 = sqlite3VdbeCurrentAddr(v); 7594 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7595 7596 /* Generate code that runs whenever the GROUP BY changes. 7597 ** Changes in the GROUP BY are detected by the previous code 7598 ** block. If there were no changes, this block is skipped. 7599 ** 7600 ** This code copies current group by terms in b0,b1,b2,... 7601 ** over to a0,a1,a2. It then calls the output subroutine 7602 ** and resets the aggregate accumulator registers in preparation 7603 ** for the next GROUP BY batch. 7604 */ 7605 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7606 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7607 VdbeComment((v, "output one row")); 7608 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7609 VdbeComment((v, "check abort flag")); 7610 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7611 VdbeComment((v, "reset accumulator")); 7612 7613 /* Update the aggregate accumulators based on the content of 7614 ** the current row 7615 */ 7616 sqlite3VdbeJumpHere(v, addr1); 7617 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7618 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7619 VdbeComment((v, "indicate data in accumulator")); 7620 7621 /* End of the loop 7622 */ 7623 if( groupBySort ){ 7624 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7625 VdbeCoverage(v); 7626 }else{ 7627 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7628 sqlite3WhereEnd(pWInfo); 7629 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7630 } 7631 sqlite3ExprListDelete(db, pDistinct); 7632 7633 /* Output the final row of result 7634 */ 7635 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7636 VdbeComment((v, "output final row")); 7637 7638 /* Jump over the subroutines 7639 */ 7640 sqlite3VdbeGoto(v, addrEnd); 7641 7642 /* Generate a subroutine that outputs a single row of the result 7643 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7644 ** is less than or equal to zero, the subroutine is a no-op. If 7645 ** the processing calls for the query to abort, this subroutine 7646 ** increments the iAbortFlag memory location before returning in 7647 ** order to signal the caller to abort. 7648 */ 7649 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7650 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7651 VdbeComment((v, "set abort flag")); 7652 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7653 sqlite3VdbeResolveLabel(v, addrOutputRow); 7654 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7655 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7656 VdbeCoverage(v); 7657 VdbeComment((v, "Groupby result generator entry point")); 7658 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7659 finalizeAggFunctions(pParse, pAggInfo); 7660 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7661 selectInnerLoop(pParse, p, -1, &sSort, 7662 &sDistinct, pDest, 7663 addrOutputRow+1, addrSetAbort); 7664 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7665 VdbeComment((v, "end groupby result generator")); 7666 7667 /* Generate a subroutine that will reset the group-by accumulator 7668 */ 7669 sqlite3VdbeResolveLabel(v, addrReset); 7670 resetAccumulator(pParse, pAggInfo); 7671 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7672 VdbeComment((v, "indicate accumulator empty")); 7673 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7674 7675 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7676 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7677 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7678 } 7679 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7680 else { 7681 Table *pTab; 7682 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7683 /* If isSimpleCount() returns a pointer to a Table structure, then 7684 ** the SQL statement is of the form: 7685 ** 7686 ** SELECT count(*) FROM <tbl> 7687 ** 7688 ** where the Table structure returned represents table <tbl>. 7689 ** 7690 ** This statement is so common that it is optimized specially. The 7691 ** OP_Count instruction is executed either on the intkey table that 7692 ** contains the data for table <tbl> or on one of its indexes. It 7693 ** is better to execute the op on an index, as indexes are almost 7694 ** always spread across less pages than their corresponding tables. 7695 */ 7696 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7697 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7698 Index *pIdx; /* Iterator variable */ 7699 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7700 Index *pBest = 0; /* Best index found so far */ 7701 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7702 7703 sqlite3CodeVerifySchema(pParse, iDb); 7704 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7705 7706 /* Search for the index that has the lowest scan cost. 7707 ** 7708 ** (2011-04-15) Do not do a full scan of an unordered index. 7709 ** 7710 ** (2013-10-03) Do not count the entries in a partial index. 7711 ** 7712 ** In practice the KeyInfo structure will not be used. It is only 7713 ** passed to keep OP_OpenRead happy. 7714 */ 7715 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7716 if( !p->pSrc->a[0].fg.notIndexed ){ 7717 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7718 if( pIdx->bUnordered==0 7719 && pIdx->szIdxRow<pTab->szTabRow 7720 && pIdx->pPartIdxWhere==0 7721 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7722 ){ 7723 pBest = pIdx; 7724 } 7725 } 7726 } 7727 if( pBest ){ 7728 iRoot = pBest->tnum; 7729 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7730 } 7731 7732 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7733 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7734 if( pKeyInfo ){ 7735 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7736 } 7737 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7738 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7739 explainSimpleCount(pParse, pTab, pBest); 7740 }else{ 7741 int regAcc = 0; /* "populate accumulators" flag */ 7742 ExprList *pDistinct = 0; 7743 u16 distFlag = 0; 7744 int eDist; 7745 7746 /* If there are accumulator registers but no min() or max() functions 7747 ** without FILTER clauses, allocate register regAcc. Register regAcc 7748 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7749 ** The code generated by updateAccumulator() uses this to ensure 7750 ** that the accumulator registers are (a) updated only once if 7751 ** there are no min() or max functions or (b) always updated for the 7752 ** first row visited by the aggregate, so that they are updated at 7753 ** least once even if the FILTER clause means the min() or max() 7754 ** function visits zero rows. */ 7755 if( pAggInfo->nAccumulator ){ 7756 for(i=0; i<pAggInfo->nFunc; i++){ 7757 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7758 continue; 7759 } 7760 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7761 break; 7762 } 7763 } 7764 if( i==pAggInfo->nFunc ){ 7765 regAcc = ++pParse->nMem; 7766 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7767 } 7768 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7769 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7770 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7771 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7772 } 7773 7774 /* This case runs if the aggregate has no GROUP BY clause. The 7775 ** processing is much simpler since there is only a single row 7776 ** of output. 7777 */ 7778 assert( p->pGroupBy==0 ); 7779 resetAccumulator(pParse, pAggInfo); 7780 7781 /* If this query is a candidate for the min/max optimization, then 7782 ** minMaxFlag will have been previously set to either 7783 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7784 ** be an appropriate ORDER BY expression for the optimization. 7785 */ 7786 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7787 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7788 7789 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7790 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7791 pDistinct, 0, minMaxFlag|distFlag, 0); 7792 if( pWInfo==0 ){ 7793 goto select_end; 7794 } 7795 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7796 eDist = sqlite3WhereIsDistinct(pWInfo); 7797 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7798 if( eDist!=WHERE_DISTINCT_NOOP ){ 7799 struct AggInfo_func *pF = pAggInfo->aFunc; 7800 if( pF ){ 7801 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7802 } 7803 } 7804 7805 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7806 if( minMaxFlag ){ 7807 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7808 } 7809 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7810 sqlite3WhereEnd(pWInfo); 7811 finalizeAggFunctions(pParse, pAggInfo); 7812 } 7813 7814 sSort.pOrderBy = 0; 7815 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7816 selectInnerLoop(pParse, p, -1, 0, 0, 7817 pDest, addrEnd, addrEnd); 7818 } 7819 sqlite3VdbeResolveLabel(v, addrEnd); 7820 7821 } /* endif aggregate query */ 7822 7823 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7824 explainTempTable(pParse, "DISTINCT"); 7825 } 7826 7827 /* If there is an ORDER BY clause, then we need to sort the results 7828 ** and send them to the callback one by one. 7829 */ 7830 if( sSort.pOrderBy ){ 7831 explainTempTable(pParse, 7832 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7833 assert( p->pEList==pEList ); 7834 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7835 } 7836 7837 /* Jump here to skip this query 7838 */ 7839 sqlite3VdbeResolveLabel(v, iEnd); 7840 7841 /* The SELECT has been coded. If there is an error in the Parse structure, 7842 ** set the return code to 1. Otherwise 0. */ 7843 rc = (pParse->nErr>0); 7844 7845 /* Control jumps to here if an error is encountered above, or upon 7846 ** successful coding of the SELECT. 7847 */ 7848 select_end: 7849 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7850 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7851 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7852 #ifdef SQLITE_DEBUG 7853 if( pAggInfo && !db->mallocFailed ){ 7854 for(i=0; i<pAggInfo->nColumn; i++){ 7855 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7856 assert( pExpr!=0 ); 7857 assert( pExpr->pAggInfo==pAggInfo ); 7858 assert( pExpr->iAgg==i ); 7859 } 7860 for(i=0; i<pAggInfo->nFunc; i++){ 7861 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7862 assert( pExpr!=0 ); 7863 assert( pExpr->pAggInfo==pAggInfo ); 7864 assert( pExpr->iAgg==i ); 7865 } 7866 } 7867 #endif 7868 7869 #if TREETRACE_ENABLED 7870 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7871 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7872 sqlite3TreeViewSelect(0, p, 0); 7873 } 7874 #endif 7875 ExplainQueryPlanPop(pParse); 7876 return rc; 7877 } 7878