1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION && p->x.pList ){ 395 int i; 396 for(i=0; i<p->x.pList->nExpr; i++){ 397 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 398 } 399 } 400 sqlite3SetJoinExpr(p->pLeft, iTable); 401 p = p->pRight; 402 } 403 } 404 405 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 407 ** an ordinary term that omits the EP_FromJoin mark. 408 ** 409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 410 */ 411 static void unsetJoinExpr(Expr *p, int iTable){ 412 while( p ){ 413 if( ExprHasProperty(p, EP_FromJoin) 414 && (iTable<0 || p->iRightJoinTable==iTable) ){ 415 ExprClearProperty(p, EP_FromJoin); 416 } 417 if( p->op==TK_COLUMN && p->iTable==iTable ){ 418 ExprClearProperty(p, EP_CanBeNull); 419 } 420 if( p->op==TK_FUNCTION && p->x.pList ){ 421 int i; 422 for(i=0; i<p->x.pList->nExpr; i++){ 423 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 424 } 425 } 426 unsetJoinExpr(p->pLeft, iTable); 427 p = p->pRight; 428 } 429 } 430 431 /* 432 ** This routine processes the join information for a SELECT statement. 433 ** ON and USING clauses are converted into extra terms of the WHERE clause. 434 ** NATURAL joins also create extra WHERE clause terms. 435 ** 436 ** The terms of a FROM clause are contained in the Select.pSrc structure. 437 ** The left most table is the first entry in Select.pSrc. The right-most 438 ** table is the last entry. The join operator is held in the entry to 439 ** the left. Thus entry 0 contains the join operator for the join between 440 ** entries 0 and 1. Any ON or USING clauses associated with the join are 441 ** also attached to the left entry. 442 ** 443 ** This routine returns the number of errors encountered. 444 */ 445 static int sqliteProcessJoin(Parse *pParse, Select *p){ 446 SrcList *pSrc; /* All tables in the FROM clause */ 447 int i, j; /* Loop counters */ 448 SrcItem *pLeft; /* Left table being joined */ 449 SrcItem *pRight; /* Right table being joined */ 450 451 pSrc = p->pSrc; 452 pLeft = &pSrc->a[0]; 453 pRight = &pLeft[1]; 454 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 455 Table *pRightTab = pRight->pTab; 456 int isOuter; 457 458 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 459 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 460 461 /* When the NATURAL keyword is present, add WHERE clause terms for 462 ** every column that the two tables have in common. 463 */ 464 if( pRight->fg.jointype & JT_NATURAL ){ 465 if( pRight->pOn || pRight->pUsing ){ 466 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 467 "an ON or USING clause", 0); 468 return 1; 469 } 470 for(j=0; j<pRightTab->nCol; j++){ 471 char *zName; /* Name of column in the right table */ 472 int iLeft; /* Matching left table */ 473 int iLeftCol; /* Matching column in the left table */ 474 475 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 476 zName = pRightTab->aCol[j].zCnName; 477 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 478 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 479 isOuter, &p->pWhere); 480 } 481 } 482 } 483 484 /* Disallow both ON and USING clauses in the same join 485 */ 486 if( pRight->pOn && pRight->pUsing ){ 487 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 488 "clauses in the same join"); 489 return 1; 490 } 491 492 /* Add the ON clause to the end of the WHERE clause, connected by 493 ** an AND operator. 494 */ 495 if( pRight->pOn ){ 496 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 497 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 498 pRight->pOn = 0; 499 } 500 501 /* Create extra terms on the WHERE clause for each column named 502 ** in the USING clause. Example: If the two tables to be joined are 503 ** A and B and the USING clause names X, Y, and Z, then add this 504 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 505 ** Report an error if any column mentioned in the USING clause is 506 ** not contained in both tables to be joined. 507 */ 508 if( pRight->pUsing ){ 509 IdList *pList = pRight->pUsing; 510 for(j=0; j<pList->nId; j++){ 511 char *zName; /* Name of the term in the USING clause */ 512 int iLeft; /* Table on the left with matching column name */ 513 int iLeftCol; /* Column number of matching column on the left */ 514 int iRightCol; /* Column number of matching column on the right */ 515 516 zName = pList->a[j].zName; 517 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 518 if( iRightCol<0 519 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 520 ){ 521 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 522 "not present in both tables", zName); 523 return 1; 524 } 525 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 526 isOuter, &p->pWhere); 527 } 528 } 529 } 530 return 0; 531 } 532 533 /* 534 ** An instance of this object holds information (beyond pParse and pSelect) 535 ** needed to load the next result row that is to be added to the sorter. 536 */ 537 typedef struct RowLoadInfo RowLoadInfo; 538 struct RowLoadInfo { 539 int regResult; /* Store results in array of registers here */ 540 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 541 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 542 ExprList *pExtra; /* Extra columns needed by sorter refs */ 543 int regExtraResult; /* Where to load the extra columns */ 544 #endif 545 }; 546 547 /* 548 ** This routine does the work of loading query data into an array of 549 ** registers so that it can be added to the sorter. 550 */ 551 static void innerLoopLoadRow( 552 Parse *pParse, /* Statement under construction */ 553 Select *pSelect, /* The query being coded */ 554 RowLoadInfo *pInfo /* Info needed to complete the row load */ 555 ){ 556 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 557 0, pInfo->ecelFlags); 558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 559 if( pInfo->pExtra ){ 560 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 561 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 562 } 563 #endif 564 } 565 566 /* 567 ** Code the OP_MakeRecord instruction that generates the entry to be 568 ** added into the sorter. 569 ** 570 ** Return the register in which the result is stored. 571 */ 572 static int makeSorterRecord( 573 Parse *pParse, 574 SortCtx *pSort, 575 Select *pSelect, 576 int regBase, 577 int nBase 578 ){ 579 int nOBSat = pSort->nOBSat; 580 Vdbe *v = pParse->pVdbe; 581 int regOut = ++pParse->nMem; 582 if( pSort->pDeferredRowLoad ){ 583 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 584 } 585 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 586 return regOut; 587 } 588 589 /* 590 ** Generate code that will push the record in registers regData 591 ** through regData+nData-1 onto the sorter. 592 */ 593 static void pushOntoSorter( 594 Parse *pParse, /* Parser context */ 595 SortCtx *pSort, /* Information about the ORDER BY clause */ 596 Select *pSelect, /* The whole SELECT statement */ 597 int regData, /* First register holding data to be sorted */ 598 int regOrigData, /* First register holding data before packing */ 599 int nData, /* Number of elements in the regData data array */ 600 int nPrefixReg /* No. of reg prior to regData available for use */ 601 ){ 602 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 603 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 604 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 605 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 606 int regBase; /* Regs for sorter record */ 607 int regRecord = 0; /* Assembled sorter record */ 608 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 609 int op; /* Opcode to add sorter record to sorter */ 610 int iLimit; /* LIMIT counter */ 611 int iSkip = 0; /* End of the sorter insert loop */ 612 613 assert( bSeq==0 || bSeq==1 ); 614 615 /* Three cases: 616 ** (1) The data to be sorted has already been packed into a Record 617 ** by a prior OP_MakeRecord. In this case nData==1 and regData 618 ** will be completely unrelated to regOrigData. 619 ** (2) All output columns are included in the sort record. In that 620 ** case regData==regOrigData. 621 ** (3) Some output columns are omitted from the sort record due to 622 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 623 ** SQLITE_ECEL_OMITREF optimization, or due to the 624 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 625 ** regOrigData is 0 to prevent this routine from trying to copy 626 ** values that might not yet exist. 627 */ 628 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 629 630 if( nPrefixReg ){ 631 assert( nPrefixReg==nExpr+bSeq ); 632 regBase = regData - nPrefixReg; 633 }else{ 634 regBase = pParse->nMem + 1; 635 pParse->nMem += nBase; 636 } 637 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 638 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 639 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 640 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 641 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 642 if( bSeq ){ 643 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 644 } 645 if( nPrefixReg==0 && nData>0 ){ 646 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 647 } 648 if( nOBSat>0 ){ 649 int regPrevKey; /* The first nOBSat columns of the previous row */ 650 int addrFirst; /* Address of the OP_IfNot opcode */ 651 int addrJmp; /* Address of the OP_Jump opcode */ 652 VdbeOp *pOp; /* Opcode that opens the sorter */ 653 int nKey; /* Number of sorting key columns, including OP_Sequence */ 654 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 655 656 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 657 regPrevKey = pParse->nMem+1; 658 pParse->nMem += pSort->nOBSat; 659 nKey = nExpr - pSort->nOBSat + bSeq; 660 if( bSeq ){ 661 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 662 }else{ 663 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 664 } 665 VdbeCoverage(v); 666 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 667 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 668 if( pParse->db->mallocFailed ) return; 669 pOp->p2 = nKey + nData; 670 pKI = pOp->p4.pKeyInfo; 671 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 672 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 673 testcase( pKI->nAllField > pKI->nKeyField+2 ); 674 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 675 pKI->nAllField-pKI->nKeyField-1); 676 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 677 addrJmp = sqlite3VdbeCurrentAddr(v); 678 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 679 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 680 pSort->regReturn = ++pParse->nMem; 681 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 682 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 683 if( iLimit ){ 684 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 685 VdbeCoverage(v); 686 } 687 sqlite3VdbeJumpHere(v, addrFirst); 688 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 689 sqlite3VdbeJumpHere(v, addrJmp); 690 } 691 if( iLimit ){ 692 /* At this point the values for the new sorter entry are stored 693 ** in an array of registers. They need to be composed into a record 694 ** and inserted into the sorter if either (a) there are currently 695 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 696 ** the largest record currently in the sorter. If (b) is true and there 697 ** are already LIMIT+OFFSET items in the sorter, delete the largest 698 ** entry before inserting the new one. This way there are never more 699 ** than LIMIT+OFFSET items in the sorter. 700 ** 701 ** If the new record does not need to be inserted into the sorter, 702 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 703 ** value is not zero, then it is a label of where to jump. Otherwise, 704 ** just bypass the row insert logic. See the header comment on the 705 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 706 */ 707 int iCsr = pSort->iECursor; 708 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 709 VdbeCoverage(v); 710 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 711 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 712 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 713 VdbeCoverage(v); 714 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 715 } 716 if( regRecord==0 ){ 717 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 718 } 719 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 720 op = OP_SorterInsert; 721 }else{ 722 op = OP_IdxInsert; 723 } 724 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 725 regBase+nOBSat, nBase-nOBSat); 726 if( iSkip ){ 727 sqlite3VdbeChangeP2(v, iSkip, 728 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 729 } 730 } 731 732 /* 733 ** Add code to implement the OFFSET 734 */ 735 static void codeOffset( 736 Vdbe *v, /* Generate code into this VM */ 737 int iOffset, /* Register holding the offset counter */ 738 int iContinue /* Jump here to skip the current record */ 739 ){ 740 if( iOffset>0 ){ 741 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 742 VdbeComment((v, "OFFSET")); 743 } 744 } 745 746 /* 747 ** Add code that will check to make sure the array of registers starting at 748 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 749 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 750 ** are available. Which is used depends on the value of parameter eTnctType, 751 ** as follows: 752 ** 753 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 754 ** Build an ephemeral table that contains all entries seen before and 755 ** skip entries which have been seen before. 756 ** 757 ** Parameter iTab is the cursor number of an ephemeral table that must 758 ** be opened before the VM code generated by this routine is executed. 759 ** The ephemeral cursor table is queried for a record identical to the 760 ** record formed by the current array of registers. If one is found, 761 ** jump to VM address addrRepeat. Otherwise, insert a new record into 762 ** the ephemeral cursor and proceed. 763 ** 764 ** The returned value in this case is a copy of parameter iTab. 765 ** 766 ** WHERE_DISTINCT_ORDERED: 767 ** In this case rows are being delivered sorted order. The ephermal 768 ** table is not required. Instead, the current set of values 769 ** is compared against previous row. If they match, the new row 770 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 771 ** the VM program proceeds with processing the new row. 772 ** 773 ** The returned value in this case is the register number of the first 774 ** in an array of registers used to store the previous result row so that 775 ** it can be compared to the next. The caller must ensure that this 776 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 777 ** will take care of this initialization.) 778 ** 779 ** WHERE_DISTINCT_UNIQUE: 780 ** In this case it has already been determined that the rows are distinct. 781 ** No special action is required. The return value is zero. 782 ** 783 ** Parameter pEList is the list of expressions used to generated the 784 ** contents of each row. It is used by this routine to determine (a) 785 ** how many elements there are in the array of registers and (b) the 786 ** collation sequences that should be used for the comparisons if 787 ** eTnctType is WHERE_DISTINCT_ORDERED. 788 */ 789 static int codeDistinct( 790 Parse *pParse, /* Parsing and code generating context */ 791 int eTnctType, /* WHERE_DISTINCT_* value */ 792 int iTab, /* A sorting index used to test for distinctness */ 793 int addrRepeat, /* Jump to here if not distinct */ 794 ExprList *pEList, /* Expression for each element */ 795 int regElem /* First element */ 796 ){ 797 int iRet = 0; 798 int nResultCol = pEList->nExpr; 799 Vdbe *v = pParse->pVdbe; 800 801 switch( eTnctType ){ 802 case WHERE_DISTINCT_ORDERED: { 803 int i; 804 int iJump; /* Jump destination */ 805 int regPrev; /* Previous row content */ 806 807 /* Allocate space for the previous row */ 808 iRet = regPrev = pParse->nMem+1; 809 pParse->nMem += nResultCol; 810 811 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 812 for(i=0; i<nResultCol; i++){ 813 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 814 if( i<nResultCol-1 ){ 815 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 816 VdbeCoverage(v); 817 }else{ 818 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 819 VdbeCoverage(v); 820 } 821 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 822 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 823 } 824 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 825 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 826 break; 827 } 828 829 case WHERE_DISTINCT_UNIQUE: { 830 /* nothing to do */ 831 break; 832 } 833 834 default: { 835 int r1 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 837 VdbeCoverage(v); 838 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 839 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 840 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 841 sqlite3ReleaseTempReg(pParse, r1); 842 iRet = iTab; 843 break; 844 } 845 } 846 847 return iRet; 848 } 849 850 /* 851 ** This routine runs after codeDistinct(). It makes necessary 852 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 853 ** routine made use of. This processing must be done separately since 854 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 855 ** laid down. 856 ** 857 ** WHERE_DISTINCT_NOOP: 858 ** WHERE_DISTINCT_UNORDERED: 859 ** 860 ** No adjustments necessary. This function is a no-op. 861 ** 862 ** WHERE_DISTINCT_UNIQUE: 863 ** 864 ** The ephemeral table is not needed. So change the 865 ** OP_OpenEphemeral opcode into an OP_Noop. 866 ** 867 ** WHERE_DISTINCT_ORDERED: 868 ** 869 ** The ephemeral table is not needed. But we do need register 870 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 871 ** into an OP_Null on the iVal register. 872 */ 873 static void fixDistinctOpenEph( 874 Parse *pParse, /* Parsing and code generating context */ 875 int eTnctType, /* WHERE_DISTINCT_* value */ 876 int iVal, /* Value returned by codeDistinct() */ 877 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 878 ){ 879 if( pParse->nErr==0 880 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 881 ){ 882 Vdbe *v = pParse->pVdbe; 883 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 884 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 885 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 886 } 887 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 888 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 889 ** bit on the first register of the previous value. This will cause the 890 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 891 ** the loop even if the first row is all NULLs. */ 892 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 893 pOp->opcode = OP_Null; 894 pOp->p1 = 1; 895 pOp->p2 = iVal; 896 } 897 } 898 } 899 900 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 901 /* 902 ** This function is called as part of inner-loop generation for a SELECT 903 ** statement with an ORDER BY that is not optimized by an index. It 904 ** determines the expressions, if any, that the sorter-reference 905 ** optimization should be used for. The sorter-reference optimization 906 ** is used for SELECT queries like: 907 ** 908 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 909 ** 910 ** If the optimization is used for expression "bigblob", then instead of 911 ** storing values read from that column in the sorter records, the PK of 912 ** the row from table t1 is stored instead. Then, as records are extracted from 913 ** the sorter to return to the user, the required value of bigblob is 914 ** retrieved directly from table t1. If the values are very large, this 915 ** can be more efficient than storing them directly in the sorter records. 916 ** 917 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 918 ** for which the sorter-reference optimization should be enabled. 919 ** Additionally, the pSort->aDefer[] array is populated with entries 920 ** for all cursors required to evaluate all selected expressions. Finally. 921 ** output variable (*ppExtra) is set to an expression list containing 922 ** expressions for all extra PK values that should be stored in the 923 ** sorter records. 924 */ 925 static void selectExprDefer( 926 Parse *pParse, /* Leave any error here */ 927 SortCtx *pSort, /* Sorter context */ 928 ExprList *pEList, /* Expressions destined for sorter */ 929 ExprList **ppExtra /* Expressions to append to sorter record */ 930 ){ 931 int i; 932 int nDefer = 0; 933 ExprList *pExtra = 0; 934 for(i=0; i<pEList->nExpr; i++){ 935 struct ExprList_item *pItem = &pEList->a[i]; 936 if( pItem->u.x.iOrderByCol==0 ){ 937 Expr *pExpr = pItem->pExpr; 938 Table *pTab = pExpr->y.pTab; 939 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 940 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 941 ){ 942 int j; 943 for(j=0; j<nDefer; j++){ 944 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 945 } 946 if( j==nDefer ){ 947 if( nDefer==ArraySize(pSort->aDefer) ){ 948 continue; 949 }else{ 950 int nKey = 1; 951 int k; 952 Index *pPk = 0; 953 if( !HasRowid(pTab) ){ 954 pPk = sqlite3PrimaryKeyIndex(pTab); 955 nKey = pPk->nKeyCol; 956 } 957 for(k=0; k<nKey; k++){ 958 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 959 if( pNew ){ 960 pNew->iTable = pExpr->iTable; 961 pNew->y.pTab = pExpr->y.pTab; 962 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 963 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 964 } 965 } 966 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 967 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 968 pSort->aDefer[nDefer].nKey = nKey; 969 nDefer++; 970 } 971 } 972 pItem->bSorterRef = 1; 973 } 974 } 975 } 976 pSort->nDefer = (u8)nDefer; 977 *ppExtra = pExtra; 978 } 979 #endif 980 981 /* 982 ** This routine generates the code for the inside of the inner loop 983 ** of a SELECT. 984 ** 985 ** If srcTab is negative, then the p->pEList expressions 986 ** are evaluated in order to get the data for this row. If srcTab is 987 ** zero or more, then data is pulled from srcTab and p->pEList is used only 988 ** to get the number of columns and the collation sequence for each column. 989 */ 990 static void selectInnerLoop( 991 Parse *pParse, /* The parser context */ 992 Select *p, /* The complete select statement being coded */ 993 int srcTab, /* Pull data from this table if non-negative */ 994 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 995 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 996 SelectDest *pDest, /* How to dispose of the results */ 997 int iContinue, /* Jump here to continue with next row */ 998 int iBreak /* Jump here to break out of the inner loop */ 999 ){ 1000 Vdbe *v = pParse->pVdbe; 1001 int i; 1002 int hasDistinct; /* True if the DISTINCT keyword is present */ 1003 int eDest = pDest->eDest; /* How to dispose of results */ 1004 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1005 int nResultCol; /* Number of result columns */ 1006 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1007 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1008 1009 /* Usually, regResult is the first cell in an array of memory cells 1010 ** containing the current result row. In this case regOrig is set to the 1011 ** same value. However, if the results are being sent to the sorter, the 1012 ** values for any expressions that are also part of the sort-key are omitted 1013 ** from this array. In this case regOrig is set to zero. */ 1014 int regResult; /* Start of memory holding current results */ 1015 int regOrig; /* Start of memory holding full result (or 0) */ 1016 1017 assert( v ); 1018 assert( p->pEList!=0 ); 1019 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1020 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1021 if( pSort==0 && !hasDistinct ){ 1022 assert( iContinue!=0 ); 1023 codeOffset(v, p->iOffset, iContinue); 1024 } 1025 1026 /* Pull the requested columns. 1027 */ 1028 nResultCol = p->pEList->nExpr; 1029 1030 if( pDest->iSdst==0 ){ 1031 if( pSort ){ 1032 nPrefixReg = pSort->pOrderBy->nExpr; 1033 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1034 pParse->nMem += nPrefixReg; 1035 } 1036 pDest->iSdst = pParse->nMem+1; 1037 pParse->nMem += nResultCol; 1038 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1039 /* This is an error condition that can result, for example, when a SELECT 1040 ** on the right-hand side of an INSERT contains more result columns than 1041 ** there are columns in the table on the left. The error will be caught 1042 ** and reported later. But we need to make sure enough memory is allocated 1043 ** to avoid other spurious errors in the meantime. */ 1044 pParse->nMem += nResultCol; 1045 } 1046 pDest->nSdst = nResultCol; 1047 regOrig = regResult = pDest->iSdst; 1048 if( srcTab>=0 ){ 1049 for(i=0; i<nResultCol; i++){ 1050 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1051 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1052 } 1053 }else if( eDest!=SRT_Exists ){ 1054 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1055 ExprList *pExtra = 0; 1056 #endif 1057 /* If the destination is an EXISTS(...) expression, the actual 1058 ** values returned by the SELECT are not required. 1059 */ 1060 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1061 ExprList *pEList; 1062 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1063 ecelFlags = SQLITE_ECEL_DUP; 1064 }else{ 1065 ecelFlags = 0; 1066 } 1067 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1068 /* For each expression in p->pEList that is a copy of an expression in 1069 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1070 ** iOrderByCol value to one more than the index of the ORDER BY 1071 ** expression within the sort-key that pushOntoSorter() will generate. 1072 ** This allows the p->pEList field to be omitted from the sorted record, 1073 ** saving space and CPU cycles. */ 1074 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1075 1076 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1077 int j; 1078 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1079 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1080 } 1081 } 1082 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1083 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1084 if( pExtra && pParse->db->mallocFailed==0 ){ 1085 /* If there are any extra PK columns to add to the sorter records, 1086 ** allocate extra memory cells and adjust the OpenEphemeral 1087 ** instruction to account for the larger records. This is only 1088 ** required if there are one or more WITHOUT ROWID tables with 1089 ** composite primary keys in the SortCtx.aDefer[] array. */ 1090 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1091 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1092 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1093 pParse->nMem += pExtra->nExpr; 1094 } 1095 #endif 1096 1097 /* Adjust nResultCol to account for columns that are omitted 1098 ** from the sorter by the optimizations in this branch */ 1099 pEList = p->pEList; 1100 for(i=0; i<pEList->nExpr; i++){ 1101 if( pEList->a[i].u.x.iOrderByCol>0 1102 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1103 || pEList->a[i].bSorterRef 1104 #endif 1105 ){ 1106 nResultCol--; 1107 regOrig = 0; 1108 } 1109 } 1110 1111 testcase( regOrig ); 1112 testcase( eDest==SRT_Set ); 1113 testcase( eDest==SRT_Mem ); 1114 testcase( eDest==SRT_Coroutine ); 1115 testcase( eDest==SRT_Output ); 1116 assert( eDest==SRT_Set || eDest==SRT_Mem 1117 || eDest==SRT_Coroutine || eDest==SRT_Output 1118 || eDest==SRT_Upfrom ); 1119 } 1120 sRowLoadInfo.regResult = regResult; 1121 sRowLoadInfo.ecelFlags = ecelFlags; 1122 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1123 sRowLoadInfo.pExtra = pExtra; 1124 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1125 if( pExtra ) nResultCol += pExtra->nExpr; 1126 #endif 1127 if( p->iLimit 1128 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1129 && nPrefixReg>0 1130 ){ 1131 assert( pSort!=0 ); 1132 assert( hasDistinct==0 ); 1133 pSort->pDeferredRowLoad = &sRowLoadInfo; 1134 regOrig = 0; 1135 }else{ 1136 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1137 } 1138 } 1139 1140 /* If the DISTINCT keyword was present on the SELECT statement 1141 ** and this row has been seen before, then do not make this row 1142 ** part of the result. 1143 */ 1144 if( hasDistinct ){ 1145 int eType = pDistinct->eTnctType; 1146 int iTab = pDistinct->tabTnct; 1147 assert( nResultCol==p->pEList->nExpr ); 1148 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1149 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1150 if( pSort==0 ){ 1151 codeOffset(v, p->iOffset, iContinue); 1152 } 1153 } 1154 1155 switch( eDest ){ 1156 /* In this mode, write each query result to the key of the temporary 1157 ** table iParm. 1158 */ 1159 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1160 case SRT_Union: { 1161 int r1; 1162 r1 = sqlite3GetTempReg(pParse); 1163 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1164 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1165 sqlite3ReleaseTempReg(pParse, r1); 1166 break; 1167 } 1168 1169 /* Construct a record from the query result, but instead of 1170 ** saving that record, use it as a key to delete elements from 1171 ** the temporary table iParm. 1172 */ 1173 case SRT_Except: { 1174 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1175 break; 1176 } 1177 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1178 1179 /* Store the result as data using a unique key. 1180 */ 1181 case SRT_Fifo: 1182 case SRT_DistFifo: 1183 case SRT_Table: 1184 case SRT_EphemTab: { 1185 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1186 testcase( eDest==SRT_Table ); 1187 testcase( eDest==SRT_EphemTab ); 1188 testcase( eDest==SRT_Fifo ); 1189 testcase( eDest==SRT_DistFifo ); 1190 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1191 #ifndef SQLITE_OMIT_CTE 1192 if( eDest==SRT_DistFifo ){ 1193 /* If the destination is DistFifo, then cursor (iParm+1) is open 1194 ** on an ephemeral index. If the current row is already present 1195 ** in the index, do not write it to the output. If not, add the 1196 ** current row to the index and proceed with writing it to the 1197 ** output table as well. */ 1198 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1199 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1200 VdbeCoverage(v); 1201 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1202 assert( pSort==0 ); 1203 } 1204 #endif 1205 if( pSort ){ 1206 assert( regResult==regOrig ); 1207 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1208 }else{ 1209 int r2 = sqlite3GetTempReg(pParse); 1210 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1211 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1212 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1213 sqlite3ReleaseTempReg(pParse, r2); 1214 } 1215 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1216 break; 1217 } 1218 1219 case SRT_Upfrom: { 1220 if( pSort ){ 1221 pushOntoSorter( 1222 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1223 }else{ 1224 int i2 = pDest->iSDParm2; 1225 int r1 = sqlite3GetTempReg(pParse); 1226 1227 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1228 ** might still be trying to return one row, because that is what 1229 ** aggregates do. Don't record that empty row in the output table. */ 1230 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1231 1232 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1233 regResult+(i2<0), nResultCol-(i2<0), r1); 1234 if( i2<0 ){ 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1236 }else{ 1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1238 } 1239 } 1240 break; 1241 } 1242 1243 #ifndef SQLITE_OMIT_SUBQUERY 1244 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1245 ** then there should be a single item on the stack. Write this 1246 ** item into the set table with bogus data. 1247 */ 1248 case SRT_Set: { 1249 if( pSort ){ 1250 /* At first glance you would think we could optimize out the 1251 ** ORDER BY in this case since the order of entries in the set 1252 ** does not matter. But there might be a LIMIT clause, in which 1253 ** case the order does matter */ 1254 pushOntoSorter( 1255 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1256 }else{ 1257 int r1 = sqlite3GetTempReg(pParse); 1258 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1259 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1260 r1, pDest->zAffSdst, nResultCol); 1261 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1262 sqlite3ReleaseTempReg(pParse, r1); 1263 } 1264 break; 1265 } 1266 1267 1268 /* If any row exist in the result set, record that fact and abort. 1269 */ 1270 case SRT_Exists: { 1271 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1272 /* The LIMIT clause will terminate the loop for us */ 1273 break; 1274 } 1275 1276 /* If this is a scalar select that is part of an expression, then 1277 ** store the results in the appropriate memory cell or array of 1278 ** memory cells and break out of the scan loop. 1279 */ 1280 case SRT_Mem: { 1281 if( pSort ){ 1282 assert( nResultCol<=pDest->nSdst ); 1283 pushOntoSorter( 1284 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1285 }else{ 1286 assert( nResultCol==pDest->nSdst ); 1287 assert( regResult==iParm ); 1288 /* The LIMIT clause will jump out of the loop for us */ 1289 } 1290 break; 1291 } 1292 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1293 1294 case SRT_Coroutine: /* Send data to a co-routine */ 1295 case SRT_Output: { /* Return the results */ 1296 testcase( eDest==SRT_Coroutine ); 1297 testcase( eDest==SRT_Output ); 1298 if( pSort ){ 1299 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1300 nPrefixReg); 1301 }else if( eDest==SRT_Coroutine ){ 1302 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1303 }else{ 1304 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1305 } 1306 break; 1307 } 1308 1309 #ifndef SQLITE_OMIT_CTE 1310 /* Write the results into a priority queue that is order according to 1311 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1312 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1313 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1314 ** final OP_Sequence column. The last column is the record as a blob. 1315 */ 1316 case SRT_DistQueue: 1317 case SRT_Queue: { 1318 int nKey; 1319 int r1, r2, r3; 1320 int addrTest = 0; 1321 ExprList *pSO; 1322 pSO = pDest->pOrderBy; 1323 assert( pSO ); 1324 nKey = pSO->nExpr; 1325 r1 = sqlite3GetTempReg(pParse); 1326 r2 = sqlite3GetTempRange(pParse, nKey+2); 1327 r3 = r2+nKey+1; 1328 if( eDest==SRT_DistQueue ){ 1329 /* If the destination is DistQueue, then cursor (iParm+1) is open 1330 ** on a second ephemeral index that holds all values every previously 1331 ** added to the queue. */ 1332 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1333 regResult, nResultCol); 1334 VdbeCoverage(v); 1335 } 1336 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1337 if( eDest==SRT_DistQueue ){ 1338 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1339 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1340 } 1341 for(i=0; i<nKey; i++){ 1342 sqlite3VdbeAddOp2(v, OP_SCopy, 1343 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1344 r2+i); 1345 } 1346 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1347 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1348 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1349 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1350 sqlite3ReleaseTempReg(pParse, r1); 1351 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1352 break; 1353 } 1354 #endif /* SQLITE_OMIT_CTE */ 1355 1356 1357 1358 #if !defined(SQLITE_OMIT_TRIGGER) 1359 /* Discard the results. This is used for SELECT statements inside 1360 ** the body of a TRIGGER. The purpose of such selects is to call 1361 ** user-defined functions that have side effects. We do not care 1362 ** about the actual results of the select. 1363 */ 1364 default: { 1365 assert( eDest==SRT_Discard ); 1366 break; 1367 } 1368 #endif 1369 } 1370 1371 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1372 ** there is a sorter, in which case the sorter has already limited 1373 ** the output for us. 1374 */ 1375 if( pSort==0 && p->iLimit ){ 1376 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1377 } 1378 } 1379 1380 /* 1381 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1382 ** X extra columns. 1383 */ 1384 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1385 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1386 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1387 if( p ){ 1388 p->aSortFlags = (u8*)&p->aColl[N+X]; 1389 p->nKeyField = (u16)N; 1390 p->nAllField = (u16)(N+X); 1391 p->enc = ENC(db); 1392 p->db = db; 1393 p->nRef = 1; 1394 memset(&p[1], 0, nExtra); 1395 }else{ 1396 sqlite3OomFault(db); 1397 } 1398 return p; 1399 } 1400 1401 /* 1402 ** Deallocate a KeyInfo object 1403 */ 1404 void sqlite3KeyInfoUnref(KeyInfo *p){ 1405 if( p ){ 1406 assert( p->nRef>0 ); 1407 p->nRef--; 1408 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1409 } 1410 } 1411 1412 /* 1413 ** Make a new pointer to a KeyInfo object 1414 */ 1415 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1416 if( p ){ 1417 assert( p->nRef>0 ); 1418 p->nRef++; 1419 } 1420 return p; 1421 } 1422 1423 #ifdef SQLITE_DEBUG 1424 /* 1425 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1426 ** can only be changed if this is just a single reference to the object. 1427 ** 1428 ** This routine is used only inside of assert() statements. 1429 */ 1430 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1431 #endif /* SQLITE_DEBUG */ 1432 1433 /* 1434 ** Given an expression list, generate a KeyInfo structure that records 1435 ** the collating sequence for each expression in that expression list. 1436 ** 1437 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1438 ** KeyInfo structure is appropriate for initializing a virtual index to 1439 ** implement that clause. If the ExprList is the result set of a SELECT 1440 ** then the KeyInfo structure is appropriate for initializing a virtual 1441 ** index to implement a DISTINCT test. 1442 ** 1443 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1444 ** function is responsible for seeing that this structure is eventually 1445 ** freed. 1446 */ 1447 KeyInfo *sqlite3KeyInfoFromExprList( 1448 Parse *pParse, /* Parsing context */ 1449 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1450 int iStart, /* Begin with this column of pList */ 1451 int nExtra /* Add this many extra columns to the end */ 1452 ){ 1453 int nExpr; 1454 KeyInfo *pInfo; 1455 struct ExprList_item *pItem; 1456 sqlite3 *db = pParse->db; 1457 int i; 1458 1459 nExpr = pList->nExpr; 1460 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1461 if( pInfo ){ 1462 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1463 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1464 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1465 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1466 } 1467 } 1468 return pInfo; 1469 } 1470 1471 /* 1472 ** Name of the connection operator, used for error messages. 1473 */ 1474 const char *sqlite3SelectOpName(int id){ 1475 char *z; 1476 switch( id ){ 1477 case TK_ALL: z = "UNION ALL"; break; 1478 case TK_INTERSECT: z = "INTERSECT"; break; 1479 case TK_EXCEPT: z = "EXCEPT"; break; 1480 default: z = "UNION"; break; 1481 } 1482 return z; 1483 } 1484 1485 #ifndef SQLITE_OMIT_EXPLAIN 1486 /* 1487 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1488 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1489 ** where the caption is of the form: 1490 ** 1491 ** "USE TEMP B-TREE FOR xxx" 1492 ** 1493 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1494 ** is determined by the zUsage argument. 1495 */ 1496 static void explainTempTable(Parse *pParse, const char *zUsage){ 1497 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1498 } 1499 1500 /* 1501 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1502 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1503 ** in sqlite3Select() to assign values to structure member variables that 1504 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1505 ** code with #ifndef directives. 1506 */ 1507 # define explainSetInteger(a, b) a = b 1508 1509 #else 1510 /* No-op versions of the explainXXX() functions and macros. */ 1511 # define explainTempTable(y,z) 1512 # define explainSetInteger(y,z) 1513 #endif 1514 1515 1516 /* 1517 ** If the inner loop was generated using a non-null pOrderBy argument, 1518 ** then the results were placed in a sorter. After the loop is terminated 1519 ** we need to run the sorter and output the results. The following 1520 ** routine generates the code needed to do that. 1521 */ 1522 static void generateSortTail( 1523 Parse *pParse, /* Parsing context */ 1524 Select *p, /* The SELECT statement */ 1525 SortCtx *pSort, /* Information on the ORDER BY clause */ 1526 int nColumn, /* Number of columns of data */ 1527 SelectDest *pDest /* Write the sorted results here */ 1528 ){ 1529 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1530 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1531 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1532 int addr; /* Top of output loop. Jump for Next. */ 1533 int addrOnce = 0; 1534 int iTab; 1535 ExprList *pOrderBy = pSort->pOrderBy; 1536 int eDest = pDest->eDest; 1537 int iParm = pDest->iSDParm; 1538 int regRow; 1539 int regRowid; 1540 int iCol; 1541 int nKey; /* Number of key columns in sorter record */ 1542 int iSortTab; /* Sorter cursor to read from */ 1543 int i; 1544 int bSeq; /* True if sorter record includes seq. no. */ 1545 int nRefKey = 0; 1546 struct ExprList_item *aOutEx = p->pEList->a; 1547 1548 assert( addrBreak<0 ); 1549 if( pSort->labelBkOut ){ 1550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1551 sqlite3VdbeGoto(v, addrBreak); 1552 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1553 } 1554 1555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1556 /* Open any cursors needed for sorter-reference expressions */ 1557 for(i=0; i<pSort->nDefer; i++){ 1558 Table *pTab = pSort->aDefer[i].pTab; 1559 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1560 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1561 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1562 } 1563 #endif 1564 1565 iTab = pSort->iECursor; 1566 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1567 regRowid = 0; 1568 regRow = pDest->iSdst; 1569 }else{ 1570 regRowid = sqlite3GetTempReg(pParse); 1571 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1572 regRow = sqlite3GetTempReg(pParse); 1573 nColumn = 0; 1574 }else{ 1575 regRow = sqlite3GetTempRange(pParse, nColumn); 1576 } 1577 } 1578 nKey = pOrderBy->nExpr - pSort->nOBSat; 1579 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1580 int regSortOut = ++pParse->nMem; 1581 iSortTab = pParse->nTab++; 1582 if( pSort->labelBkOut ){ 1583 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1584 } 1585 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1586 nKey+1+nColumn+nRefKey); 1587 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1588 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1589 VdbeCoverage(v); 1590 codeOffset(v, p->iOffset, addrContinue); 1591 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1592 bSeq = 0; 1593 }else{ 1594 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1595 codeOffset(v, p->iOffset, addrContinue); 1596 iSortTab = iTab; 1597 bSeq = 1; 1598 } 1599 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1601 if( aOutEx[i].bSorterRef ) continue; 1602 #endif 1603 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1604 } 1605 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1606 if( pSort->nDefer ){ 1607 int iKey = iCol+1; 1608 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1609 1610 for(i=0; i<pSort->nDefer; i++){ 1611 int iCsr = pSort->aDefer[i].iCsr; 1612 Table *pTab = pSort->aDefer[i].pTab; 1613 int nKey = pSort->aDefer[i].nKey; 1614 1615 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1616 if( HasRowid(pTab) ){ 1617 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1618 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1619 sqlite3VdbeCurrentAddr(v)+1, regKey); 1620 }else{ 1621 int k; 1622 int iJmp; 1623 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1624 for(k=0; k<nKey; k++){ 1625 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1626 } 1627 iJmp = sqlite3VdbeCurrentAddr(v); 1628 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1629 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1630 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1631 } 1632 } 1633 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1634 } 1635 #endif 1636 for(i=nColumn-1; i>=0; i--){ 1637 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1638 if( aOutEx[i].bSorterRef ){ 1639 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1640 }else 1641 #endif 1642 { 1643 int iRead; 1644 if( aOutEx[i].u.x.iOrderByCol ){ 1645 iRead = aOutEx[i].u.x.iOrderByCol-1; 1646 }else{ 1647 iRead = iCol--; 1648 } 1649 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1650 VdbeComment((v, "%s", aOutEx[i].zEName)); 1651 } 1652 } 1653 switch( eDest ){ 1654 case SRT_Table: 1655 case SRT_EphemTab: { 1656 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1657 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1658 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1659 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1660 break; 1661 } 1662 #ifndef SQLITE_OMIT_SUBQUERY 1663 case SRT_Set: { 1664 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1665 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1666 pDest->zAffSdst, nColumn); 1667 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1668 break; 1669 } 1670 case SRT_Mem: { 1671 /* The LIMIT clause will terminate the loop for us */ 1672 break; 1673 } 1674 #endif 1675 case SRT_Upfrom: { 1676 int i2 = pDest->iSDParm2; 1677 int r1 = sqlite3GetTempReg(pParse); 1678 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1679 if( i2<0 ){ 1680 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1681 }else{ 1682 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1683 } 1684 break; 1685 } 1686 default: { 1687 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1688 testcase( eDest==SRT_Output ); 1689 testcase( eDest==SRT_Coroutine ); 1690 if( eDest==SRT_Output ){ 1691 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1692 }else{ 1693 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1694 } 1695 break; 1696 } 1697 } 1698 if( regRowid ){ 1699 if( eDest==SRT_Set ){ 1700 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1701 }else{ 1702 sqlite3ReleaseTempReg(pParse, regRow); 1703 } 1704 sqlite3ReleaseTempReg(pParse, regRowid); 1705 } 1706 /* The bottom of the loop 1707 */ 1708 sqlite3VdbeResolveLabel(v, addrContinue); 1709 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1710 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1711 }else{ 1712 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1713 } 1714 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1715 sqlite3VdbeResolveLabel(v, addrBreak); 1716 } 1717 1718 /* 1719 ** Return a pointer to a string containing the 'declaration type' of the 1720 ** expression pExpr. The string may be treated as static by the caller. 1721 ** 1722 ** Also try to estimate the size of the returned value and return that 1723 ** result in *pEstWidth. 1724 ** 1725 ** The declaration type is the exact datatype definition extracted from the 1726 ** original CREATE TABLE statement if the expression is a column. The 1727 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1728 ** is considered a column can be complex in the presence of subqueries. The 1729 ** result-set expression in all of the following SELECT statements is 1730 ** considered a column by this function. 1731 ** 1732 ** SELECT col FROM tbl; 1733 ** SELECT (SELECT col FROM tbl; 1734 ** SELECT (SELECT col FROM tbl); 1735 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1736 ** 1737 ** The declaration type for any expression other than a column is NULL. 1738 ** 1739 ** This routine has either 3 or 6 parameters depending on whether or not 1740 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1741 */ 1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1743 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1744 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1745 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1746 #endif 1747 static const char *columnTypeImpl( 1748 NameContext *pNC, 1749 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1750 Expr *pExpr 1751 #else 1752 Expr *pExpr, 1753 const char **pzOrigDb, 1754 const char **pzOrigTab, 1755 const char **pzOrigCol 1756 #endif 1757 ){ 1758 char const *zType = 0; 1759 int j; 1760 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1761 char const *zOrigDb = 0; 1762 char const *zOrigTab = 0; 1763 char const *zOrigCol = 0; 1764 #endif 1765 1766 assert( pExpr!=0 ); 1767 assert( pNC->pSrcList!=0 ); 1768 switch( pExpr->op ){ 1769 case TK_COLUMN: { 1770 /* The expression is a column. Locate the table the column is being 1771 ** extracted from in NameContext.pSrcList. This table may be real 1772 ** database table or a subquery. 1773 */ 1774 Table *pTab = 0; /* Table structure column is extracted from */ 1775 Select *pS = 0; /* Select the column is extracted from */ 1776 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1777 while( pNC && !pTab ){ 1778 SrcList *pTabList = pNC->pSrcList; 1779 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1780 if( j<pTabList->nSrc ){ 1781 pTab = pTabList->a[j].pTab; 1782 pS = pTabList->a[j].pSelect; 1783 }else{ 1784 pNC = pNC->pNext; 1785 } 1786 } 1787 1788 if( pTab==0 ){ 1789 /* At one time, code such as "SELECT new.x" within a trigger would 1790 ** cause this condition to run. Since then, we have restructured how 1791 ** trigger code is generated and so this condition is no longer 1792 ** possible. However, it can still be true for statements like 1793 ** the following: 1794 ** 1795 ** CREATE TABLE t1(col INTEGER); 1796 ** SELECT (SELECT t1.col) FROM FROM t1; 1797 ** 1798 ** when columnType() is called on the expression "t1.col" in the 1799 ** sub-select. In this case, set the column type to NULL, even 1800 ** though it should really be "INTEGER". 1801 ** 1802 ** This is not a problem, as the column type of "t1.col" is never 1803 ** used. When columnType() is called on the expression 1804 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1805 ** branch below. */ 1806 break; 1807 } 1808 1809 assert( pTab && pExpr->y.pTab==pTab ); 1810 if( pS ){ 1811 /* The "table" is actually a sub-select or a view in the FROM clause 1812 ** of the SELECT statement. Return the declaration type and origin 1813 ** data for the result-set column of the sub-select. 1814 */ 1815 if( iCol<pS->pEList->nExpr 1816 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1817 && iCol>=0 1818 #else 1819 && ALWAYS(iCol>=0) 1820 #endif 1821 ){ 1822 /* If iCol is less than zero, then the expression requests the 1823 ** rowid of the sub-select or view. This expression is legal (see 1824 ** test case misc2.2.2) - it always evaluates to NULL. 1825 */ 1826 NameContext sNC; 1827 Expr *p = pS->pEList->a[iCol].pExpr; 1828 sNC.pSrcList = pS->pSrc; 1829 sNC.pNext = pNC; 1830 sNC.pParse = pNC->pParse; 1831 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1832 } 1833 }else{ 1834 /* A real table or a CTE table */ 1835 assert( !pS ); 1836 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1837 if( iCol<0 ) iCol = pTab->iPKey; 1838 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1839 if( iCol<0 ){ 1840 zType = "INTEGER"; 1841 zOrigCol = "rowid"; 1842 }else{ 1843 zOrigCol = pTab->aCol[iCol].zCnName; 1844 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1845 } 1846 zOrigTab = pTab->zName; 1847 if( pNC->pParse && pTab->pSchema ){ 1848 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1849 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1850 } 1851 #else 1852 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1853 if( iCol<0 ){ 1854 zType = "INTEGER"; 1855 }else{ 1856 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1857 } 1858 #endif 1859 } 1860 break; 1861 } 1862 #ifndef SQLITE_OMIT_SUBQUERY 1863 case TK_SELECT: { 1864 /* The expression is a sub-select. Return the declaration type and 1865 ** origin info for the single column in the result set of the SELECT 1866 ** statement. 1867 */ 1868 NameContext sNC; 1869 Select *pS = pExpr->x.pSelect; 1870 Expr *p = pS->pEList->a[0].pExpr; 1871 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1872 sNC.pSrcList = pS->pSrc; 1873 sNC.pNext = pNC; 1874 sNC.pParse = pNC->pParse; 1875 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1876 break; 1877 } 1878 #endif 1879 } 1880 1881 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1882 if( pzOrigDb ){ 1883 assert( pzOrigTab && pzOrigCol ); 1884 *pzOrigDb = zOrigDb; 1885 *pzOrigTab = zOrigTab; 1886 *pzOrigCol = zOrigCol; 1887 } 1888 #endif 1889 return zType; 1890 } 1891 1892 /* 1893 ** Generate code that will tell the VDBE the declaration types of columns 1894 ** in the result set. 1895 */ 1896 static void generateColumnTypes( 1897 Parse *pParse, /* Parser context */ 1898 SrcList *pTabList, /* List of tables */ 1899 ExprList *pEList /* Expressions defining the result set */ 1900 ){ 1901 #ifndef SQLITE_OMIT_DECLTYPE 1902 Vdbe *v = pParse->pVdbe; 1903 int i; 1904 NameContext sNC; 1905 sNC.pSrcList = pTabList; 1906 sNC.pParse = pParse; 1907 sNC.pNext = 0; 1908 for(i=0; i<pEList->nExpr; i++){ 1909 Expr *p = pEList->a[i].pExpr; 1910 const char *zType; 1911 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1912 const char *zOrigDb = 0; 1913 const char *zOrigTab = 0; 1914 const char *zOrigCol = 0; 1915 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1916 1917 /* The vdbe must make its own copy of the column-type and other 1918 ** column specific strings, in case the schema is reset before this 1919 ** virtual machine is deleted. 1920 */ 1921 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1922 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1923 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1924 #else 1925 zType = columnType(&sNC, p, 0, 0, 0); 1926 #endif 1927 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1928 } 1929 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1930 } 1931 1932 1933 /* 1934 ** Compute the column names for a SELECT statement. 1935 ** 1936 ** The only guarantee that SQLite makes about column names is that if the 1937 ** column has an AS clause assigning it a name, that will be the name used. 1938 ** That is the only documented guarantee. However, countless applications 1939 ** developed over the years have made baseless assumptions about column names 1940 ** and will break if those assumptions changes. Hence, use extreme caution 1941 ** when modifying this routine to avoid breaking legacy. 1942 ** 1943 ** See Also: sqlite3ColumnsFromExprList() 1944 ** 1945 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1946 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1947 ** applications should operate this way. Nevertheless, we need to support the 1948 ** other modes for legacy: 1949 ** 1950 ** short=OFF, full=OFF: Column name is the text of the expression has it 1951 ** originally appears in the SELECT statement. In 1952 ** other words, the zSpan of the result expression. 1953 ** 1954 ** short=ON, full=OFF: (This is the default setting). If the result 1955 ** refers directly to a table column, then the 1956 ** result column name is just the table column 1957 ** name: COLUMN. Otherwise use zSpan. 1958 ** 1959 ** full=ON, short=ANY: If the result refers directly to a table column, 1960 ** then the result column name with the table name 1961 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1962 */ 1963 void sqlite3GenerateColumnNames( 1964 Parse *pParse, /* Parser context */ 1965 Select *pSelect /* Generate column names for this SELECT statement */ 1966 ){ 1967 Vdbe *v = pParse->pVdbe; 1968 int i; 1969 Table *pTab; 1970 SrcList *pTabList; 1971 ExprList *pEList; 1972 sqlite3 *db = pParse->db; 1973 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1974 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1975 1976 #ifndef SQLITE_OMIT_EXPLAIN 1977 /* If this is an EXPLAIN, skip this step */ 1978 if( pParse->explain ){ 1979 return; 1980 } 1981 #endif 1982 1983 if( pParse->colNamesSet ) return; 1984 /* Column names are determined by the left-most term of a compound select */ 1985 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1986 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1987 pTabList = pSelect->pSrc; 1988 pEList = pSelect->pEList; 1989 assert( v!=0 ); 1990 assert( pTabList!=0 ); 1991 pParse->colNamesSet = 1; 1992 fullName = (db->flags & SQLITE_FullColNames)!=0; 1993 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1994 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1995 for(i=0; i<pEList->nExpr; i++){ 1996 Expr *p = pEList->a[i].pExpr; 1997 1998 assert( p!=0 ); 1999 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2000 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 2001 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2002 /* An AS clause always takes first priority */ 2003 char *zName = pEList->a[i].zEName; 2004 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2005 }else if( srcName && p->op==TK_COLUMN ){ 2006 char *zCol; 2007 int iCol = p->iColumn; 2008 pTab = p->y.pTab; 2009 assert( pTab!=0 ); 2010 if( iCol<0 ) iCol = pTab->iPKey; 2011 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2012 if( iCol<0 ){ 2013 zCol = "rowid"; 2014 }else{ 2015 zCol = pTab->aCol[iCol].zCnName; 2016 } 2017 if( fullName ){ 2018 char *zName = 0; 2019 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2020 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2021 }else{ 2022 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2023 } 2024 }else{ 2025 const char *z = pEList->a[i].zEName; 2026 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2027 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2028 } 2029 } 2030 generateColumnTypes(pParse, pTabList, pEList); 2031 } 2032 2033 /* 2034 ** Given an expression list (which is really the list of expressions 2035 ** that form the result set of a SELECT statement) compute appropriate 2036 ** column names for a table that would hold the expression list. 2037 ** 2038 ** All column names will be unique. 2039 ** 2040 ** Only the column names are computed. Column.zType, Column.zColl, 2041 ** and other fields of Column are zeroed. 2042 ** 2043 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2044 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2045 ** 2046 ** The only guarantee that SQLite makes about column names is that if the 2047 ** column has an AS clause assigning it a name, that will be the name used. 2048 ** That is the only documented guarantee. However, countless applications 2049 ** developed over the years have made baseless assumptions about column names 2050 ** and will break if those assumptions changes. Hence, use extreme caution 2051 ** when modifying this routine to avoid breaking legacy. 2052 ** 2053 ** See Also: sqlite3GenerateColumnNames() 2054 */ 2055 int sqlite3ColumnsFromExprList( 2056 Parse *pParse, /* Parsing context */ 2057 ExprList *pEList, /* Expr list from which to derive column names */ 2058 i16 *pnCol, /* Write the number of columns here */ 2059 Column **paCol /* Write the new column list here */ 2060 ){ 2061 sqlite3 *db = pParse->db; /* Database connection */ 2062 int i, j; /* Loop counters */ 2063 u32 cnt; /* Index added to make the name unique */ 2064 Column *aCol, *pCol; /* For looping over result columns */ 2065 int nCol; /* Number of columns in the result set */ 2066 char *zName; /* Column name */ 2067 int nName; /* Size of name in zName[] */ 2068 Hash ht; /* Hash table of column names */ 2069 Table *pTab; 2070 2071 sqlite3HashInit(&ht); 2072 if( pEList ){ 2073 nCol = pEList->nExpr; 2074 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2075 testcase( aCol==0 ); 2076 if( NEVER(nCol>32767) ) nCol = 32767; 2077 }else{ 2078 nCol = 0; 2079 aCol = 0; 2080 } 2081 assert( nCol==(i16)nCol ); 2082 *pnCol = nCol; 2083 *paCol = aCol; 2084 2085 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2086 /* Get an appropriate name for the column 2087 */ 2088 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2089 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2090 }else{ 2091 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2092 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2093 pColExpr = pColExpr->pRight; 2094 assert( pColExpr!=0 ); 2095 } 2096 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2097 /* For columns use the column name name */ 2098 int iCol = pColExpr->iColumn; 2099 if( iCol<0 ) iCol = pTab->iPKey; 2100 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2101 }else if( pColExpr->op==TK_ID ){ 2102 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2103 zName = pColExpr->u.zToken; 2104 }else{ 2105 /* Use the original text of the column expression as its name */ 2106 zName = pEList->a[i].zEName; 2107 } 2108 } 2109 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2110 zName = sqlite3DbStrDup(db, zName); 2111 }else{ 2112 zName = sqlite3MPrintf(db,"column%d",i+1); 2113 } 2114 2115 /* Make sure the column name is unique. If the name is not unique, 2116 ** append an integer to the name so that it becomes unique. 2117 */ 2118 cnt = 0; 2119 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2120 nName = sqlite3Strlen30(zName); 2121 if( nName>0 ){ 2122 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2123 if( zName[j]==':' ) nName = j; 2124 } 2125 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2126 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2127 } 2128 pCol->zCnName = zName; 2129 pCol->hName = sqlite3StrIHash(zName); 2130 sqlite3ColumnPropertiesFromName(0, pCol); 2131 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2132 sqlite3OomFault(db); 2133 } 2134 } 2135 sqlite3HashClear(&ht); 2136 if( db->mallocFailed ){ 2137 for(j=0; j<i; j++){ 2138 sqlite3DbFree(db, aCol[j].zCnName); 2139 } 2140 sqlite3DbFree(db, aCol); 2141 *paCol = 0; 2142 *pnCol = 0; 2143 return SQLITE_NOMEM_BKPT; 2144 } 2145 return SQLITE_OK; 2146 } 2147 2148 /* 2149 ** Add type and collation information to a column list based on 2150 ** a SELECT statement. 2151 ** 2152 ** The column list presumably came from selectColumnNamesFromExprList(). 2153 ** The column list has only names, not types or collations. This 2154 ** routine goes through and adds the types and collations. 2155 ** 2156 ** This routine requires that all identifiers in the SELECT 2157 ** statement be resolved. 2158 */ 2159 void sqlite3SelectAddColumnTypeAndCollation( 2160 Parse *pParse, /* Parsing contexts */ 2161 Table *pTab, /* Add column type information to this table */ 2162 Select *pSelect, /* SELECT used to determine types and collations */ 2163 char aff /* Default affinity for columns */ 2164 ){ 2165 sqlite3 *db = pParse->db; 2166 NameContext sNC; 2167 Column *pCol; 2168 CollSeq *pColl; 2169 int i; 2170 Expr *p; 2171 struct ExprList_item *a; 2172 2173 assert( pSelect!=0 ); 2174 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2175 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2176 if( db->mallocFailed ) return; 2177 memset(&sNC, 0, sizeof(sNC)); 2178 sNC.pSrcList = pSelect->pSrc; 2179 a = pSelect->pEList->a; 2180 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2181 const char *zType; 2182 int n, m; 2183 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2184 p = a[i].pExpr; 2185 zType = columnType(&sNC, p, 0, 0, 0); 2186 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2187 pCol->affinity = sqlite3ExprAffinity(p); 2188 if( zType ){ 2189 m = sqlite3Strlen30(zType); 2190 n = sqlite3Strlen30(pCol->zCnName); 2191 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2192 if( pCol->zCnName ){ 2193 memcpy(&pCol->zCnName[n+1], zType, m+1); 2194 pCol->colFlags |= COLFLAG_HASTYPE; 2195 } 2196 } 2197 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2198 pColl = sqlite3ExprCollSeq(pParse, p); 2199 if( pColl ){ 2200 assert( pTab->pIndex==0 ); 2201 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2202 } 2203 } 2204 pTab->szTabRow = 1; /* Any non-zero value works */ 2205 } 2206 2207 /* 2208 ** Given a SELECT statement, generate a Table structure that describes 2209 ** the result set of that SELECT. 2210 */ 2211 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2212 Table *pTab; 2213 sqlite3 *db = pParse->db; 2214 u64 savedFlags; 2215 2216 savedFlags = db->flags; 2217 db->flags &= ~(u64)SQLITE_FullColNames; 2218 db->flags |= SQLITE_ShortColNames; 2219 sqlite3SelectPrep(pParse, pSelect, 0); 2220 db->flags = savedFlags; 2221 if( pParse->nErr ) return 0; 2222 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2223 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2224 if( pTab==0 ){ 2225 return 0; 2226 } 2227 pTab->nTabRef = 1; 2228 pTab->zName = 0; 2229 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2230 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2231 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2232 pTab->iPKey = -1; 2233 if( db->mallocFailed ){ 2234 sqlite3DeleteTable(db, pTab); 2235 return 0; 2236 } 2237 return pTab; 2238 } 2239 2240 /* 2241 ** Get a VDBE for the given parser context. Create a new one if necessary. 2242 ** If an error occurs, return NULL and leave a message in pParse. 2243 */ 2244 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2245 if( pParse->pVdbe ){ 2246 return pParse->pVdbe; 2247 } 2248 if( pParse->pToplevel==0 2249 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2250 ){ 2251 pParse->okConstFactor = 1; 2252 } 2253 return sqlite3VdbeCreate(pParse); 2254 } 2255 2256 2257 /* 2258 ** Compute the iLimit and iOffset fields of the SELECT based on the 2259 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2260 ** that appear in the original SQL statement after the LIMIT and OFFSET 2261 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2262 ** are the integer memory register numbers for counters used to compute 2263 ** the limit and offset. If there is no limit and/or offset, then 2264 ** iLimit and iOffset are negative. 2265 ** 2266 ** This routine changes the values of iLimit and iOffset only if 2267 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2268 ** and iOffset should have been preset to appropriate default values (zero) 2269 ** prior to calling this routine. 2270 ** 2271 ** The iOffset register (if it exists) is initialized to the value 2272 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2273 ** iOffset+1 is initialized to LIMIT+OFFSET. 2274 ** 2275 ** Only if pLimit->pLeft!=0 do the limit registers get 2276 ** redefined. The UNION ALL operator uses this property to force 2277 ** the reuse of the same limit and offset registers across multiple 2278 ** SELECT statements. 2279 */ 2280 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2281 Vdbe *v = 0; 2282 int iLimit = 0; 2283 int iOffset; 2284 int n; 2285 Expr *pLimit = p->pLimit; 2286 2287 if( p->iLimit ) return; 2288 2289 /* 2290 ** "LIMIT -1" always shows all rows. There is some 2291 ** controversy about what the correct behavior should be. 2292 ** The current implementation interprets "LIMIT 0" to mean 2293 ** no rows. 2294 */ 2295 if( pLimit ){ 2296 assert( pLimit->op==TK_LIMIT ); 2297 assert( pLimit->pLeft!=0 ); 2298 p->iLimit = iLimit = ++pParse->nMem; 2299 v = sqlite3GetVdbe(pParse); 2300 assert( v!=0 ); 2301 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2302 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2303 VdbeComment((v, "LIMIT counter")); 2304 if( n==0 ){ 2305 sqlite3VdbeGoto(v, iBreak); 2306 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2307 p->nSelectRow = sqlite3LogEst((u64)n); 2308 p->selFlags |= SF_FixedLimit; 2309 } 2310 }else{ 2311 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2312 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2313 VdbeComment((v, "LIMIT counter")); 2314 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2315 } 2316 if( pLimit->pRight ){ 2317 p->iOffset = iOffset = ++pParse->nMem; 2318 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2319 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2320 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2321 VdbeComment((v, "OFFSET counter")); 2322 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2323 VdbeComment((v, "LIMIT+OFFSET")); 2324 } 2325 } 2326 } 2327 2328 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2329 /* 2330 ** Return the appropriate collating sequence for the iCol-th column of 2331 ** the result set for the compound-select statement "p". Return NULL if 2332 ** the column has no default collating sequence. 2333 ** 2334 ** The collating sequence for the compound select is taken from the 2335 ** left-most term of the select that has a collating sequence. 2336 */ 2337 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2338 CollSeq *pRet; 2339 if( p->pPrior ){ 2340 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2341 }else{ 2342 pRet = 0; 2343 } 2344 assert( iCol>=0 ); 2345 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2346 ** have been thrown during name resolution and we would not have gotten 2347 ** this far */ 2348 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2349 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2350 } 2351 return pRet; 2352 } 2353 2354 /* 2355 ** The select statement passed as the second parameter is a compound SELECT 2356 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2357 ** structure suitable for implementing the ORDER BY. 2358 ** 2359 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2360 ** function is responsible for ensuring that this structure is eventually 2361 ** freed. 2362 */ 2363 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2364 ExprList *pOrderBy = p->pOrderBy; 2365 int nOrderBy = p->pOrderBy->nExpr; 2366 sqlite3 *db = pParse->db; 2367 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2368 if( pRet ){ 2369 int i; 2370 for(i=0; i<nOrderBy; i++){ 2371 struct ExprList_item *pItem = &pOrderBy->a[i]; 2372 Expr *pTerm = pItem->pExpr; 2373 CollSeq *pColl; 2374 2375 if( pTerm->flags & EP_Collate ){ 2376 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2377 }else{ 2378 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2379 if( pColl==0 ) pColl = db->pDfltColl; 2380 pOrderBy->a[i].pExpr = 2381 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2382 } 2383 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2384 pRet->aColl[i] = pColl; 2385 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2386 } 2387 } 2388 2389 return pRet; 2390 } 2391 2392 #ifndef SQLITE_OMIT_CTE 2393 /* 2394 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2395 ** query of the form: 2396 ** 2397 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2398 ** \___________/ \_______________/ 2399 ** p->pPrior p 2400 ** 2401 ** 2402 ** There is exactly one reference to the recursive-table in the FROM clause 2403 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2404 ** 2405 ** The setup-query runs once to generate an initial set of rows that go 2406 ** into a Queue table. Rows are extracted from the Queue table one by 2407 ** one. Each row extracted from Queue is output to pDest. Then the single 2408 ** extracted row (now in the iCurrent table) becomes the content of the 2409 ** recursive-table for a recursive-query run. The output of the recursive-query 2410 ** is added back into the Queue table. Then another row is extracted from Queue 2411 ** and the iteration continues until the Queue table is empty. 2412 ** 2413 ** If the compound query operator is UNION then no duplicate rows are ever 2414 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2415 ** that have ever been inserted into Queue and causes duplicates to be 2416 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2417 ** 2418 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2419 ** ORDER BY order and the first entry is extracted for each cycle. Without 2420 ** an ORDER BY, the Queue table is just a FIFO. 2421 ** 2422 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2423 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2424 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2425 ** with a positive value, then the first OFFSET outputs are discarded rather 2426 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2427 ** rows have been skipped. 2428 */ 2429 static void generateWithRecursiveQuery( 2430 Parse *pParse, /* Parsing context */ 2431 Select *p, /* The recursive SELECT to be coded */ 2432 SelectDest *pDest /* What to do with query results */ 2433 ){ 2434 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2435 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2436 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2437 Select *pSetup = p->pPrior; /* The setup query */ 2438 Select *pFirstRec; /* Left-most recursive term */ 2439 int addrTop; /* Top of the loop */ 2440 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2441 int iCurrent = 0; /* The Current table */ 2442 int regCurrent; /* Register holding Current table */ 2443 int iQueue; /* The Queue table */ 2444 int iDistinct = 0; /* To ensure unique results if UNION */ 2445 int eDest = SRT_Fifo; /* How to write to Queue */ 2446 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2447 int i; /* Loop counter */ 2448 int rc; /* Result code */ 2449 ExprList *pOrderBy; /* The ORDER BY clause */ 2450 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2451 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2452 2453 #ifndef SQLITE_OMIT_WINDOWFUNC 2454 if( p->pWin ){ 2455 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2456 return; 2457 } 2458 #endif 2459 2460 /* Obtain authorization to do a recursive query */ 2461 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2462 2463 /* Process the LIMIT and OFFSET clauses, if they exist */ 2464 addrBreak = sqlite3VdbeMakeLabel(pParse); 2465 p->nSelectRow = 320; /* 4 billion rows */ 2466 computeLimitRegisters(pParse, p, addrBreak); 2467 pLimit = p->pLimit; 2468 regLimit = p->iLimit; 2469 regOffset = p->iOffset; 2470 p->pLimit = 0; 2471 p->iLimit = p->iOffset = 0; 2472 pOrderBy = p->pOrderBy; 2473 2474 /* Locate the cursor number of the Current table */ 2475 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2476 if( pSrc->a[i].fg.isRecursive ){ 2477 iCurrent = pSrc->a[i].iCursor; 2478 break; 2479 } 2480 } 2481 2482 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2483 ** the Distinct table must be exactly one greater than Queue in order 2484 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2485 iQueue = pParse->nTab++; 2486 if( p->op==TK_UNION ){ 2487 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2488 iDistinct = pParse->nTab++; 2489 }else{ 2490 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2491 } 2492 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2493 2494 /* Allocate cursors for Current, Queue, and Distinct. */ 2495 regCurrent = ++pParse->nMem; 2496 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2497 if( pOrderBy ){ 2498 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2499 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2500 (char*)pKeyInfo, P4_KEYINFO); 2501 destQueue.pOrderBy = pOrderBy; 2502 }else{ 2503 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2504 } 2505 VdbeComment((v, "Queue table")); 2506 if( iDistinct ){ 2507 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2508 p->selFlags |= SF_UsesEphemeral; 2509 } 2510 2511 /* Detach the ORDER BY clause from the compound SELECT */ 2512 p->pOrderBy = 0; 2513 2514 /* Figure out how many elements of the compound SELECT are part of the 2515 ** recursive query. Make sure no recursive elements use aggregate 2516 ** functions. Mark the recursive elements as UNION ALL even if they 2517 ** are really UNION because the distinctness will be enforced by the 2518 ** iDistinct table. pFirstRec is left pointing to the left-most 2519 ** recursive term of the CTE. 2520 */ 2521 pFirstRec = p; 2522 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2523 if( pFirstRec->selFlags & SF_Aggregate ){ 2524 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2525 goto end_of_recursive_query; 2526 } 2527 pFirstRec->op = TK_ALL; 2528 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2529 } 2530 2531 /* Store the results of the setup-query in Queue. */ 2532 pSetup = pFirstRec->pPrior; 2533 pSetup->pNext = 0; 2534 ExplainQueryPlan((pParse, 1, "SETUP")); 2535 rc = sqlite3Select(pParse, pSetup, &destQueue); 2536 pSetup->pNext = p; 2537 if( rc ) goto end_of_recursive_query; 2538 2539 /* Find the next row in the Queue and output that row */ 2540 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2541 2542 /* Transfer the next row in Queue over to Current */ 2543 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2544 if( pOrderBy ){ 2545 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2546 }else{ 2547 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2548 } 2549 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2550 2551 /* Output the single row in Current */ 2552 addrCont = sqlite3VdbeMakeLabel(pParse); 2553 codeOffset(v, regOffset, addrCont); 2554 selectInnerLoop(pParse, p, iCurrent, 2555 0, 0, pDest, addrCont, addrBreak); 2556 if( regLimit ){ 2557 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2558 VdbeCoverage(v); 2559 } 2560 sqlite3VdbeResolveLabel(v, addrCont); 2561 2562 /* Execute the recursive SELECT taking the single row in Current as 2563 ** the value for the recursive-table. Store the results in the Queue. 2564 */ 2565 pFirstRec->pPrior = 0; 2566 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2567 sqlite3Select(pParse, p, &destQueue); 2568 assert( pFirstRec->pPrior==0 ); 2569 pFirstRec->pPrior = pSetup; 2570 2571 /* Keep running the loop until the Queue is empty */ 2572 sqlite3VdbeGoto(v, addrTop); 2573 sqlite3VdbeResolveLabel(v, addrBreak); 2574 2575 end_of_recursive_query: 2576 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2577 p->pOrderBy = pOrderBy; 2578 p->pLimit = pLimit; 2579 return; 2580 } 2581 #endif /* SQLITE_OMIT_CTE */ 2582 2583 /* Forward references */ 2584 static int multiSelectOrderBy( 2585 Parse *pParse, /* Parsing context */ 2586 Select *p, /* The right-most of SELECTs to be coded */ 2587 SelectDest *pDest /* What to do with query results */ 2588 ); 2589 2590 /* 2591 ** Handle the special case of a compound-select that originates from a 2592 ** VALUES clause. By handling this as a special case, we avoid deep 2593 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2594 ** on a VALUES clause. 2595 ** 2596 ** Because the Select object originates from a VALUES clause: 2597 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2598 ** (2) All terms are UNION ALL 2599 ** (3) There is no ORDER BY clause 2600 ** 2601 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2602 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2603 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2604 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2605 */ 2606 static int multiSelectValues( 2607 Parse *pParse, /* Parsing context */ 2608 Select *p, /* The right-most of SELECTs to be coded */ 2609 SelectDest *pDest /* What to do with query results */ 2610 ){ 2611 int nRow = 1; 2612 int rc = 0; 2613 int bShowAll = p->pLimit==0; 2614 assert( p->selFlags & SF_MultiValue ); 2615 do{ 2616 assert( p->selFlags & SF_Values ); 2617 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2618 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2619 #ifndef SQLITE_OMIT_WINDOWFUNC 2620 if( p->pWin ) return -1; 2621 #endif 2622 if( p->pPrior==0 ) break; 2623 assert( p->pPrior->pNext==p ); 2624 p = p->pPrior; 2625 nRow += bShowAll; 2626 }while(1); 2627 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2628 nRow==1 ? "" : "S")); 2629 while( p ){ 2630 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2631 if( !bShowAll ) break; 2632 p->nSelectRow = nRow; 2633 p = p->pNext; 2634 } 2635 return rc; 2636 } 2637 2638 /* 2639 ** Return true if the SELECT statement which is known to be the recursive 2640 ** part of a recursive CTE still has its anchor terms attached. If the 2641 ** anchor terms have already been removed, then return false. 2642 */ 2643 static int hasAnchor(Select *p){ 2644 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2645 return p!=0; 2646 } 2647 2648 /* 2649 ** This routine is called to process a compound query form from 2650 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2651 ** INTERSECT 2652 ** 2653 ** "p" points to the right-most of the two queries. the query on the 2654 ** left is p->pPrior. The left query could also be a compound query 2655 ** in which case this routine will be called recursively. 2656 ** 2657 ** The results of the total query are to be written into a destination 2658 ** of type eDest with parameter iParm. 2659 ** 2660 ** Example 1: Consider a three-way compound SQL statement. 2661 ** 2662 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2663 ** 2664 ** This statement is parsed up as follows: 2665 ** 2666 ** SELECT c FROM t3 2667 ** | 2668 ** `-----> SELECT b FROM t2 2669 ** | 2670 ** `------> SELECT a FROM t1 2671 ** 2672 ** The arrows in the diagram above represent the Select.pPrior pointer. 2673 ** So if this routine is called with p equal to the t3 query, then 2674 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2675 ** 2676 ** Notice that because of the way SQLite parses compound SELECTs, the 2677 ** individual selects always group from left to right. 2678 */ 2679 static int multiSelect( 2680 Parse *pParse, /* Parsing context */ 2681 Select *p, /* The right-most of SELECTs to be coded */ 2682 SelectDest *pDest /* What to do with query results */ 2683 ){ 2684 int rc = SQLITE_OK; /* Success code from a subroutine */ 2685 Select *pPrior; /* Another SELECT immediately to our left */ 2686 Vdbe *v; /* Generate code to this VDBE */ 2687 SelectDest dest; /* Alternative data destination */ 2688 Select *pDelete = 0; /* Chain of simple selects to delete */ 2689 sqlite3 *db; /* Database connection */ 2690 2691 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2692 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2693 */ 2694 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2695 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2696 assert( p->selFlags & SF_Compound ); 2697 db = pParse->db; 2698 pPrior = p->pPrior; 2699 dest = *pDest; 2700 assert( pPrior->pOrderBy==0 ); 2701 assert( pPrior->pLimit==0 ); 2702 2703 v = sqlite3GetVdbe(pParse); 2704 assert( v!=0 ); /* The VDBE already created by calling function */ 2705 2706 /* Create the destination temporary table if necessary 2707 */ 2708 if( dest.eDest==SRT_EphemTab ){ 2709 assert( p->pEList ); 2710 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2711 dest.eDest = SRT_Table; 2712 } 2713 2714 /* Special handling for a compound-select that originates as a VALUES clause. 2715 */ 2716 if( p->selFlags & SF_MultiValue ){ 2717 rc = multiSelectValues(pParse, p, &dest); 2718 if( rc>=0 ) goto multi_select_end; 2719 rc = SQLITE_OK; 2720 } 2721 2722 /* Make sure all SELECTs in the statement have the same number of elements 2723 ** in their result sets. 2724 */ 2725 assert( p->pEList && pPrior->pEList ); 2726 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2727 2728 #ifndef SQLITE_OMIT_CTE 2729 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2730 generateWithRecursiveQuery(pParse, p, &dest); 2731 }else 2732 #endif 2733 2734 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2735 */ 2736 if( p->pOrderBy ){ 2737 return multiSelectOrderBy(pParse, p, pDest); 2738 }else{ 2739 2740 #ifndef SQLITE_OMIT_EXPLAIN 2741 if( pPrior->pPrior==0 ){ 2742 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2743 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2744 } 2745 #endif 2746 2747 /* Generate code for the left and right SELECT statements. 2748 */ 2749 switch( p->op ){ 2750 case TK_ALL: { 2751 int addr = 0; 2752 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2753 assert( !pPrior->pLimit ); 2754 pPrior->iLimit = p->iLimit; 2755 pPrior->iOffset = p->iOffset; 2756 pPrior->pLimit = p->pLimit; 2757 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2758 rc = sqlite3Select(pParse, pPrior, &dest); 2759 pPrior->pLimit = 0; 2760 if( rc ){ 2761 goto multi_select_end; 2762 } 2763 p->pPrior = 0; 2764 p->iLimit = pPrior->iLimit; 2765 p->iOffset = pPrior->iOffset; 2766 if( p->iLimit ){ 2767 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2768 VdbeComment((v, "Jump ahead if LIMIT reached")); 2769 if( p->iOffset ){ 2770 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2771 p->iLimit, p->iOffset+1, p->iOffset); 2772 } 2773 } 2774 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2775 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2776 rc = sqlite3Select(pParse, p, &dest); 2777 testcase( rc!=SQLITE_OK ); 2778 pDelete = p->pPrior; 2779 p->pPrior = pPrior; 2780 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2781 if( p->pLimit 2782 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2783 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2784 ){ 2785 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2786 } 2787 if( addr ){ 2788 sqlite3VdbeJumpHere(v, addr); 2789 } 2790 break; 2791 } 2792 case TK_EXCEPT: 2793 case TK_UNION: { 2794 int unionTab; /* Cursor number of the temp table holding result */ 2795 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2796 int priorOp; /* The SRT_ operation to apply to prior selects */ 2797 Expr *pLimit; /* Saved values of p->nLimit */ 2798 int addr; 2799 SelectDest uniondest; 2800 2801 testcase( p->op==TK_EXCEPT ); 2802 testcase( p->op==TK_UNION ); 2803 priorOp = SRT_Union; 2804 if( dest.eDest==priorOp ){ 2805 /* We can reuse a temporary table generated by a SELECT to our 2806 ** right. 2807 */ 2808 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2809 unionTab = dest.iSDParm; 2810 }else{ 2811 /* We will need to create our own temporary table to hold the 2812 ** intermediate results. 2813 */ 2814 unionTab = pParse->nTab++; 2815 assert( p->pOrderBy==0 ); 2816 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2817 assert( p->addrOpenEphm[0] == -1 ); 2818 p->addrOpenEphm[0] = addr; 2819 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2820 assert( p->pEList ); 2821 } 2822 2823 2824 /* Code the SELECT statements to our left 2825 */ 2826 assert( !pPrior->pOrderBy ); 2827 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2828 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2829 rc = sqlite3Select(pParse, pPrior, &uniondest); 2830 if( rc ){ 2831 goto multi_select_end; 2832 } 2833 2834 /* Code the current SELECT statement 2835 */ 2836 if( p->op==TK_EXCEPT ){ 2837 op = SRT_Except; 2838 }else{ 2839 assert( p->op==TK_UNION ); 2840 op = SRT_Union; 2841 } 2842 p->pPrior = 0; 2843 pLimit = p->pLimit; 2844 p->pLimit = 0; 2845 uniondest.eDest = op; 2846 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2847 sqlite3SelectOpName(p->op))); 2848 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2849 rc = sqlite3Select(pParse, p, &uniondest); 2850 testcase( rc!=SQLITE_OK ); 2851 assert( p->pOrderBy==0 ); 2852 pDelete = p->pPrior; 2853 p->pPrior = pPrior; 2854 p->pOrderBy = 0; 2855 if( p->op==TK_UNION ){ 2856 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2857 } 2858 sqlite3ExprDelete(db, p->pLimit); 2859 p->pLimit = pLimit; 2860 p->iLimit = 0; 2861 p->iOffset = 0; 2862 2863 /* Convert the data in the temporary table into whatever form 2864 ** it is that we currently need. 2865 */ 2866 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2867 assert( p->pEList || db->mallocFailed ); 2868 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2869 int iCont, iBreak, iStart; 2870 iBreak = sqlite3VdbeMakeLabel(pParse); 2871 iCont = sqlite3VdbeMakeLabel(pParse); 2872 computeLimitRegisters(pParse, p, iBreak); 2873 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2874 iStart = sqlite3VdbeCurrentAddr(v); 2875 selectInnerLoop(pParse, p, unionTab, 2876 0, 0, &dest, iCont, iBreak); 2877 sqlite3VdbeResolveLabel(v, iCont); 2878 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2879 sqlite3VdbeResolveLabel(v, iBreak); 2880 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2881 } 2882 break; 2883 } 2884 default: assert( p->op==TK_INTERSECT ); { 2885 int tab1, tab2; 2886 int iCont, iBreak, iStart; 2887 Expr *pLimit; 2888 int addr; 2889 SelectDest intersectdest; 2890 int r1; 2891 2892 /* INTERSECT is different from the others since it requires 2893 ** two temporary tables. Hence it has its own case. Begin 2894 ** by allocating the tables we will need. 2895 */ 2896 tab1 = pParse->nTab++; 2897 tab2 = pParse->nTab++; 2898 assert( p->pOrderBy==0 ); 2899 2900 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2901 assert( p->addrOpenEphm[0] == -1 ); 2902 p->addrOpenEphm[0] = addr; 2903 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2904 assert( p->pEList ); 2905 2906 /* Code the SELECTs to our left into temporary table "tab1". 2907 */ 2908 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2909 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2910 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2911 if( rc ){ 2912 goto multi_select_end; 2913 } 2914 2915 /* Code the current SELECT into temporary table "tab2" 2916 */ 2917 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2918 assert( p->addrOpenEphm[1] == -1 ); 2919 p->addrOpenEphm[1] = addr; 2920 p->pPrior = 0; 2921 pLimit = p->pLimit; 2922 p->pLimit = 0; 2923 intersectdest.iSDParm = tab2; 2924 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2925 sqlite3SelectOpName(p->op))); 2926 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2927 rc = sqlite3Select(pParse, p, &intersectdest); 2928 testcase( rc!=SQLITE_OK ); 2929 pDelete = p->pPrior; 2930 p->pPrior = pPrior; 2931 if( p->nSelectRow>pPrior->nSelectRow ){ 2932 p->nSelectRow = pPrior->nSelectRow; 2933 } 2934 sqlite3ExprDelete(db, p->pLimit); 2935 p->pLimit = pLimit; 2936 2937 /* Generate code to take the intersection of the two temporary 2938 ** tables. 2939 */ 2940 if( rc ) break; 2941 assert( p->pEList ); 2942 iBreak = sqlite3VdbeMakeLabel(pParse); 2943 iCont = sqlite3VdbeMakeLabel(pParse); 2944 computeLimitRegisters(pParse, p, iBreak); 2945 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2946 r1 = sqlite3GetTempReg(pParse); 2947 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2948 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2949 VdbeCoverage(v); 2950 sqlite3ReleaseTempReg(pParse, r1); 2951 selectInnerLoop(pParse, p, tab1, 2952 0, 0, &dest, iCont, iBreak); 2953 sqlite3VdbeResolveLabel(v, iCont); 2954 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2955 sqlite3VdbeResolveLabel(v, iBreak); 2956 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2957 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2958 break; 2959 } 2960 } 2961 2962 #ifndef SQLITE_OMIT_EXPLAIN 2963 if( p->pNext==0 ){ 2964 ExplainQueryPlanPop(pParse); 2965 } 2966 #endif 2967 } 2968 if( pParse->nErr ) goto multi_select_end; 2969 2970 /* Compute collating sequences used by 2971 ** temporary tables needed to implement the compound select. 2972 ** Attach the KeyInfo structure to all temporary tables. 2973 ** 2974 ** This section is run by the right-most SELECT statement only. 2975 ** SELECT statements to the left always skip this part. The right-most 2976 ** SELECT might also skip this part if it has no ORDER BY clause and 2977 ** no temp tables are required. 2978 */ 2979 if( p->selFlags & SF_UsesEphemeral ){ 2980 int i; /* Loop counter */ 2981 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2982 Select *pLoop; /* For looping through SELECT statements */ 2983 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2984 int nCol; /* Number of columns in result set */ 2985 2986 assert( p->pNext==0 ); 2987 nCol = p->pEList->nExpr; 2988 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2989 if( !pKeyInfo ){ 2990 rc = SQLITE_NOMEM_BKPT; 2991 goto multi_select_end; 2992 } 2993 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2994 *apColl = multiSelectCollSeq(pParse, p, i); 2995 if( 0==*apColl ){ 2996 *apColl = db->pDfltColl; 2997 } 2998 } 2999 3000 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3001 for(i=0; i<2; i++){ 3002 int addr = pLoop->addrOpenEphm[i]; 3003 if( addr<0 ){ 3004 /* If [0] is unused then [1] is also unused. So we can 3005 ** always safely abort as soon as the first unused slot is found */ 3006 assert( pLoop->addrOpenEphm[1]<0 ); 3007 break; 3008 } 3009 sqlite3VdbeChangeP2(v, addr, nCol); 3010 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3011 P4_KEYINFO); 3012 pLoop->addrOpenEphm[i] = -1; 3013 } 3014 } 3015 sqlite3KeyInfoUnref(pKeyInfo); 3016 } 3017 3018 multi_select_end: 3019 pDest->iSdst = dest.iSdst; 3020 pDest->nSdst = dest.nSdst; 3021 if( pDelete ){ 3022 sqlite3ParserAddCleanup(pParse, 3023 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3024 pDelete); 3025 } 3026 return rc; 3027 } 3028 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3029 3030 /* 3031 ** Error message for when two or more terms of a compound select have different 3032 ** size result sets. 3033 */ 3034 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3035 if( p->selFlags & SF_Values ){ 3036 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3037 }else{ 3038 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3039 " do not have the same number of result columns", 3040 sqlite3SelectOpName(p->op)); 3041 } 3042 } 3043 3044 /* 3045 ** Code an output subroutine for a coroutine implementation of a 3046 ** SELECT statment. 3047 ** 3048 ** The data to be output is contained in pIn->iSdst. There are 3049 ** pIn->nSdst columns to be output. pDest is where the output should 3050 ** be sent. 3051 ** 3052 ** regReturn is the number of the register holding the subroutine 3053 ** return address. 3054 ** 3055 ** If regPrev>0 then it is the first register in a vector that 3056 ** records the previous output. mem[regPrev] is a flag that is false 3057 ** if there has been no previous output. If regPrev>0 then code is 3058 ** generated to suppress duplicates. pKeyInfo is used for comparing 3059 ** keys. 3060 ** 3061 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3062 ** iBreak. 3063 */ 3064 static int generateOutputSubroutine( 3065 Parse *pParse, /* Parsing context */ 3066 Select *p, /* The SELECT statement */ 3067 SelectDest *pIn, /* Coroutine supplying data */ 3068 SelectDest *pDest, /* Where to send the data */ 3069 int regReturn, /* The return address register */ 3070 int regPrev, /* Previous result register. No uniqueness if 0 */ 3071 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3072 int iBreak /* Jump here if we hit the LIMIT */ 3073 ){ 3074 Vdbe *v = pParse->pVdbe; 3075 int iContinue; 3076 int addr; 3077 3078 addr = sqlite3VdbeCurrentAddr(v); 3079 iContinue = sqlite3VdbeMakeLabel(pParse); 3080 3081 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3082 */ 3083 if( regPrev ){ 3084 int addr1, addr2; 3085 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3086 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3087 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3088 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3089 sqlite3VdbeJumpHere(v, addr1); 3090 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3091 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3092 } 3093 if( pParse->db->mallocFailed ) return 0; 3094 3095 /* Suppress the first OFFSET entries if there is an OFFSET clause 3096 */ 3097 codeOffset(v, p->iOffset, iContinue); 3098 3099 assert( pDest->eDest!=SRT_Exists ); 3100 assert( pDest->eDest!=SRT_Table ); 3101 switch( pDest->eDest ){ 3102 /* Store the result as data using a unique key. 3103 */ 3104 case SRT_EphemTab: { 3105 int r1 = sqlite3GetTempReg(pParse); 3106 int r2 = sqlite3GetTempReg(pParse); 3107 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3108 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3109 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3110 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3111 sqlite3ReleaseTempReg(pParse, r2); 3112 sqlite3ReleaseTempReg(pParse, r1); 3113 break; 3114 } 3115 3116 #ifndef SQLITE_OMIT_SUBQUERY 3117 /* If we are creating a set for an "expr IN (SELECT ...)". 3118 */ 3119 case SRT_Set: { 3120 int r1; 3121 testcase( pIn->nSdst>1 ); 3122 r1 = sqlite3GetTempReg(pParse); 3123 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3124 r1, pDest->zAffSdst, pIn->nSdst); 3125 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3126 pIn->iSdst, pIn->nSdst); 3127 sqlite3ReleaseTempReg(pParse, r1); 3128 break; 3129 } 3130 3131 /* If this is a scalar select that is part of an expression, then 3132 ** store the results in the appropriate memory cell and break out 3133 ** of the scan loop. Note that the select might return multiple columns 3134 ** if it is the RHS of a row-value IN operator. 3135 */ 3136 case SRT_Mem: { 3137 testcase( pIn->nSdst>1 ); 3138 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3139 /* The LIMIT clause will jump out of the loop for us */ 3140 break; 3141 } 3142 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3143 3144 /* The results are stored in a sequence of registers 3145 ** starting at pDest->iSdst. Then the co-routine yields. 3146 */ 3147 case SRT_Coroutine: { 3148 if( pDest->iSdst==0 ){ 3149 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3150 pDest->nSdst = pIn->nSdst; 3151 } 3152 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3153 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3154 break; 3155 } 3156 3157 /* If none of the above, then the result destination must be 3158 ** SRT_Output. This routine is never called with any other 3159 ** destination other than the ones handled above or SRT_Output. 3160 ** 3161 ** For SRT_Output, results are stored in a sequence of registers. 3162 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3163 ** return the next row of result. 3164 */ 3165 default: { 3166 assert( pDest->eDest==SRT_Output ); 3167 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3168 break; 3169 } 3170 } 3171 3172 /* Jump to the end of the loop if the LIMIT is reached. 3173 */ 3174 if( p->iLimit ){ 3175 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3176 } 3177 3178 /* Generate the subroutine return 3179 */ 3180 sqlite3VdbeResolveLabel(v, iContinue); 3181 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3182 3183 return addr; 3184 } 3185 3186 /* 3187 ** Alternative compound select code generator for cases when there 3188 ** is an ORDER BY clause. 3189 ** 3190 ** We assume a query of the following form: 3191 ** 3192 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3193 ** 3194 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3195 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3196 ** co-routines. Then run the co-routines in parallel and merge the results 3197 ** into the output. In addition to the two coroutines (called selectA and 3198 ** selectB) there are 7 subroutines: 3199 ** 3200 ** outA: Move the output of the selectA coroutine into the output 3201 ** of the compound query. 3202 ** 3203 ** outB: Move the output of the selectB coroutine into the output 3204 ** of the compound query. (Only generated for UNION and 3205 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3206 ** appears only in B.) 3207 ** 3208 ** AltB: Called when there is data from both coroutines and A<B. 3209 ** 3210 ** AeqB: Called when there is data from both coroutines and A==B. 3211 ** 3212 ** AgtB: Called when there is data from both coroutines and A>B. 3213 ** 3214 ** EofA: Called when data is exhausted from selectA. 3215 ** 3216 ** EofB: Called when data is exhausted from selectB. 3217 ** 3218 ** The implementation of the latter five subroutines depend on which 3219 ** <operator> is used: 3220 ** 3221 ** 3222 ** UNION ALL UNION EXCEPT INTERSECT 3223 ** ------------- ----------------- -------------- ----------------- 3224 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3225 ** 3226 ** AeqB: outA, nextA nextA nextA outA, nextA 3227 ** 3228 ** AgtB: outB, nextB outB, nextB nextB nextB 3229 ** 3230 ** EofA: outB, nextB outB, nextB halt halt 3231 ** 3232 ** EofB: outA, nextA outA, nextA outA, nextA halt 3233 ** 3234 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3235 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3236 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3237 ** following nextX causes a jump to the end of the select processing. 3238 ** 3239 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3240 ** within the output subroutine. The regPrev register set holds the previously 3241 ** output value. A comparison is made against this value and the output 3242 ** is skipped if the next results would be the same as the previous. 3243 ** 3244 ** The implementation plan is to implement the two coroutines and seven 3245 ** subroutines first, then put the control logic at the bottom. Like this: 3246 ** 3247 ** goto Init 3248 ** coA: coroutine for left query (A) 3249 ** coB: coroutine for right query (B) 3250 ** outA: output one row of A 3251 ** outB: output one row of B (UNION and UNION ALL only) 3252 ** EofA: ... 3253 ** EofB: ... 3254 ** AltB: ... 3255 ** AeqB: ... 3256 ** AgtB: ... 3257 ** Init: initialize coroutine registers 3258 ** yield coA 3259 ** if eof(A) goto EofA 3260 ** yield coB 3261 ** if eof(B) goto EofB 3262 ** Cmpr: Compare A, B 3263 ** Jump AltB, AeqB, AgtB 3264 ** End: ... 3265 ** 3266 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3267 ** actually called using Gosub and they do not Return. EofA and EofB loop 3268 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3269 ** and AgtB jump to either L2 or to one of EofA or EofB. 3270 */ 3271 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3272 static int multiSelectOrderBy( 3273 Parse *pParse, /* Parsing context */ 3274 Select *p, /* The right-most of SELECTs to be coded */ 3275 SelectDest *pDest /* What to do with query results */ 3276 ){ 3277 int i, j; /* Loop counters */ 3278 Select *pPrior; /* Another SELECT immediately to our left */ 3279 Vdbe *v; /* Generate code to this VDBE */ 3280 SelectDest destA; /* Destination for coroutine A */ 3281 SelectDest destB; /* Destination for coroutine B */ 3282 int regAddrA; /* Address register for select-A coroutine */ 3283 int regAddrB; /* Address register for select-B coroutine */ 3284 int addrSelectA; /* Address of the select-A coroutine */ 3285 int addrSelectB; /* Address of the select-B coroutine */ 3286 int regOutA; /* Address register for the output-A subroutine */ 3287 int regOutB; /* Address register for the output-B subroutine */ 3288 int addrOutA; /* Address of the output-A subroutine */ 3289 int addrOutB = 0; /* Address of the output-B subroutine */ 3290 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3291 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3292 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3293 int addrAltB; /* Address of the A<B subroutine */ 3294 int addrAeqB; /* Address of the A==B subroutine */ 3295 int addrAgtB; /* Address of the A>B subroutine */ 3296 int regLimitA; /* Limit register for select-A */ 3297 int regLimitB; /* Limit register for select-A */ 3298 int regPrev; /* A range of registers to hold previous output */ 3299 int savedLimit; /* Saved value of p->iLimit */ 3300 int savedOffset; /* Saved value of p->iOffset */ 3301 int labelCmpr; /* Label for the start of the merge algorithm */ 3302 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3303 int addr1; /* Jump instructions that get retargetted */ 3304 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3305 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3306 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3307 sqlite3 *db; /* Database connection */ 3308 ExprList *pOrderBy; /* The ORDER BY clause */ 3309 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3310 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3311 3312 assert( p->pOrderBy!=0 ); 3313 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3314 db = pParse->db; 3315 v = pParse->pVdbe; 3316 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3317 labelEnd = sqlite3VdbeMakeLabel(pParse); 3318 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3319 3320 3321 /* Patch up the ORDER BY clause 3322 */ 3323 op = p->op; 3324 pPrior = p->pPrior; 3325 assert( pPrior->pOrderBy==0 ); 3326 pOrderBy = p->pOrderBy; 3327 assert( pOrderBy ); 3328 nOrderBy = pOrderBy->nExpr; 3329 3330 /* For operators other than UNION ALL we have to make sure that 3331 ** the ORDER BY clause covers every term of the result set. Add 3332 ** terms to the ORDER BY clause as necessary. 3333 */ 3334 if( op!=TK_ALL ){ 3335 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3336 struct ExprList_item *pItem; 3337 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3338 assert( pItem->u.x.iOrderByCol>0 ); 3339 if( pItem->u.x.iOrderByCol==i ) break; 3340 } 3341 if( j==nOrderBy ){ 3342 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3343 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3344 pNew->flags |= EP_IntValue; 3345 pNew->u.iValue = i; 3346 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3347 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3348 } 3349 } 3350 } 3351 3352 /* Compute the comparison permutation and keyinfo that is used with 3353 ** the permutation used to determine if the next 3354 ** row of results comes from selectA or selectB. Also add explicit 3355 ** collations to the ORDER BY clause terms so that when the subqueries 3356 ** to the right and the left are evaluated, they use the correct 3357 ** collation. 3358 */ 3359 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3360 if( aPermute ){ 3361 struct ExprList_item *pItem; 3362 aPermute[0] = nOrderBy; 3363 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3364 assert( pItem->u.x.iOrderByCol>0 ); 3365 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3366 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3367 } 3368 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3369 }else{ 3370 pKeyMerge = 0; 3371 } 3372 3373 /* Reattach the ORDER BY clause to the query. 3374 */ 3375 p->pOrderBy = pOrderBy; 3376 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3377 3378 /* Allocate a range of temporary registers and the KeyInfo needed 3379 ** for the logic that removes duplicate result rows when the 3380 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3381 */ 3382 if( op==TK_ALL ){ 3383 regPrev = 0; 3384 }else{ 3385 int nExpr = p->pEList->nExpr; 3386 assert( nOrderBy>=nExpr || db->mallocFailed ); 3387 regPrev = pParse->nMem+1; 3388 pParse->nMem += nExpr+1; 3389 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3390 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3391 if( pKeyDup ){ 3392 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3393 for(i=0; i<nExpr; i++){ 3394 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3395 pKeyDup->aSortFlags[i] = 0; 3396 } 3397 } 3398 } 3399 3400 /* Separate the left and the right query from one another 3401 */ 3402 p->pPrior = 0; 3403 pPrior->pNext = 0; 3404 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3405 if( pPrior->pPrior==0 ){ 3406 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3407 } 3408 3409 /* Compute the limit registers */ 3410 computeLimitRegisters(pParse, p, labelEnd); 3411 if( p->iLimit && op==TK_ALL ){ 3412 regLimitA = ++pParse->nMem; 3413 regLimitB = ++pParse->nMem; 3414 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3415 regLimitA); 3416 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3417 }else{ 3418 regLimitA = regLimitB = 0; 3419 } 3420 sqlite3ExprDelete(db, p->pLimit); 3421 p->pLimit = 0; 3422 3423 regAddrA = ++pParse->nMem; 3424 regAddrB = ++pParse->nMem; 3425 regOutA = ++pParse->nMem; 3426 regOutB = ++pParse->nMem; 3427 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3428 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3429 3430 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3431 3432 /* Generate a coroutine to evaluate the SELECT statement to the 3433 ** left of the compound operator - the "A" select. 3434 */ 3435 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3436 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3437 VdbeComment((v, "left SELECT")); 3438 pPrior->iLimit = regLimitA; 3439 ExplainQueryPlan((pParse, 1, "LEFT")); 3440 sqlite3Select(pParse, pPrior, &destA); 3441 sqlite3VdbeEndCoroutine(v, regAddrA); 3442 sqlite3VdbeJumpHere(v, addr1); 3443 3444 /* Generate a coroutine to evaluate the SELECT statement on 3445 ** the right - the "B" select 3446 */ 3447 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3448 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3449 VdbeComment((v, "right SELECT")); 3450 savedLimit = p->iLimit; 3451 savedOffset = p->iOffset; 3452 p->iLimit = regLimitB; 3453 p->iOffset = 0; 3454 ExplainQueryPlan((pParse, 1, "RIGHT")); 3455 sqlite3Select(pParse, p, &destB); 3456 p->iLimit = savedLimit; 3457 p->iOffset = savedOffset; 3458 sqlite3VdbeEndCoroutine(v, regAddrB); 3459 3460 /* Generate a subroutine that outputs the current row of the A 3461 ** select as the next output row of the compound select. 3462 */ 3463 VdbeNoopComment((v, "Output routine for A")); 3464 addrOutA = generateOutputSubroutine(pParse, 3465 p, &destA, pDest, regOutA, 3466 regPrev, pKeyDup, labelEnd); 3467 3468 /* Generate a subroutine that outputs the current row of the B 3469 ** select as the next output row of the compound select. 3470 */ 3471 if( op==TK_ALL || op==TK_UNION ){ 3472 VdbeNoopComment((v, "Output routine for B")); 3473 addrOutB = generateOutputSubroutine(pParse, 3474 p, &destB, pDest, regOutB, 3475 regPrev, pKeyDup, labelEnd); 3476 } 3477 sqlite3KeyInfoUnref(pKeyDup); 3478 3479 /* Generate a subroutine to run when the results from select A 3480 ** are exhausted and only data in select B remains. 3481 */ 3482 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3483 addrEofA_noB = addrEofA = labelEnd; 3484 }else{ 3485 VdbeNoopComment((v, "eof-A subroutine")); 3486 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3487 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3488 VdbeCoverage(v); 3489 sqlite3VdbeGoto(v, addrEofA); 3490 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3491 } 3492 3493 /* Generate a subroutine to run when the results from select B 3494 ** are exhausted and only data in select A remains. 3495 */ 3496 if( op==TK_INTERSECT ){ 3497 addrEofB = addrEofA; 3498 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3499 }else{ 3500 VdbeNoopComment((v, "eof-B subroutine")); 3501 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3502 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3503 sqlite3VdbeGoto(v, addrEofB); 3504 } 3505 3506 /* Generate code to handle the case of A<B 3507 */ 3508 VdbeNoopComment((v, "A-lt-B subroutine")); 3509 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3510 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3511 sqlite3VdbeGoto(v, labelCmpr); 3512 3513 /* Generate code to handle the case of A==B 3514 */ 3515 if( op==TK_ALL ){ 3516 addrAeqB = addrAltB; 3517 }else if( op==TK_INTERSECT ){ 3518 addrAeqB = addrAltB; 3519 addrAltB++; 3520 }else{ 3521 VdbeNoopComment((v, "A-eq-B subroutine")); 3522 addrAeqB = 3523 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3524 sqlite3VdbeGoto(v, labelCmpr); 3525 } 3526 3527 /* Generate code to handle the case of A>B 3528 */ 3529 VdbeNoopComment((v, "A-gt-B subroutine")); 3530 addrAgtB = sqlite3VdbeCurrentAddr(v); 3531 if( op==TK_ALL || op==TK_UNION ){ 3532 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3533 } 3534 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3535 sqlite3VdbeGoto(v, labelCmpr); 3536 3537 /* This code runs once to initialize everything. 3538 */ 3539 sqlite3VdbeJumpHere(v, addr1); 3540 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3541 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3542 3543 /* Implement the main merge loop 3544 */ 3545 sqlite3VdbeResolveLabel(v, labelCmpr); 3546 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3547 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3548 (char*)pKeyMerge, P4_KEYINFO); 3549 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3550 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3551 3552 /* Jump to the this point in order to terminate the query. 3553 */ 3554 sqlite3VdbeResolveLabel(v, labelEnd); 3555 3556 /* Reassembly the compound query so that it will be freed correctly 3557 ** by the calling function */ 3558 if( p->pPrior ){ 3559 sqlite3SelectDelete(db, p->pPrior); 3560 } 3561 p->pPrior = pPrior; 3562 pPrior->pNext = p; 3563 3564 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3565 pPrior->pOrderBy = 0; 3566 3567 /*** TBD: Insert subroutine calls to close cursors on incomplete 3568 **** subqueries ****/ 3569 ExplainQueryPlanPop(pParse); 3570 return pParse->nErr!=0; 3571 } 3572 #endif 3573 3574 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3575 3576 /* An instance of the SubstContext object describes an substitution edit 3577 ** to be performed on a parse tree. 3578 ** 3579 ** All references to columns in table iTable are to be replaced by corresponding 3580 ** expressions in pEList. 3581 */ 3582 typedef struct SubstContext { 3583 Parse *pParse; /* The parsing context */ 3584 int iTable; /* Replace references to this table */ 3585 int iNewTable; /* New table number */ 3586 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3587 ExprList *pEList; /* Replacement expressions */ 3588 } SubstContext; 3589 3590 /* Forward Declarations */ 3591 static void substExprList(SubstContext*, ExprList*); 3592 static void substSelect(SubstContext*, Select*, int); 3593 3594 /* 3595 ** Scan through the expression pExpr. Replace every reference to 3596 ** a column in table number iTable with a copy of the iColumn-th 3597 ** entry in pEList. (But leave references to the ROWID column 3598 ** unchanged.) 3599 ** 3600 ** This routine is part of the flattening procedure. A subquery 3601 ** whose result set is defined by pEList appears as entry in the 3602 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3603 ** FORM clause entry is iTable. This routine makes the necessary 3604 ** changes to pExpr so that it refers directly to the source table 3605 ** of the subquery rather the result set of the subquery. 3606 */ 3607 static Expr *substExpr( 3608 SubstContext *pSubst, /* Description of the substitution */ 3609 Expr *pExpr /* Expr in which substitution occurs */ 3610 ){ 3611 if( pExpr==0 ) return 0; 3612 if( ExprHasProperty(pExpr, EP_FromJoin) 3613 && pExpr->iRightJoinTable==pSubst->iTable 3614 ){ 3615 pExpr->iRightJoinTable = pSubst->iNewTable; 3616 } 3617 if( pExpr->op==TK_COLUMN 3618 && pExpr->iTable==pSubst->iTable 3619 && !ExprHasProperty(pExpr, EP_FixedCol) 3620 ){ 3621 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3622 if( pExpr->iColumn<0 ){ 3623 pExpr->op = TK_NULL; 3624 }else 3625 #endif 3626 { 3627 Expr *pNew; 3628 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3629 Expr ifNullRow; 3630 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3631 assert( pExpr->pRight==0 ); 3632 if( sqlite3ExprIsVector(pCopy) ){ 3633 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3634 }else{ 3635 sqlite3 *db = pSubst->pParse->db; 3636 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3637 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3638 ifNullRow.op = TK_IF_NULL_ROW; 3639 ifNullRow.pLeft = pCopy; 3640 ifNullRow.iTable = pSubst->iNewTable; 3641 ifNullRow.flags = EP_IfNullRow; 3642 pCopy = &ifNullRow; 3643 } 3644 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3645 pNew = sqlite3ExprDup(db, pCopy, 0); 3646 if( db->mallocFailed ){ 3647 sqlite3ExprDelete(db, pNew); 3648 return pExpr; 3649 } 3650 if( pSubst->isLeftJoin ){ 3651 ExprSetProperty(pNew, EP_CanBeNull); 3652 } 3653 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3654 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3655 } 3656 sqlite3ExprDelete(db, pExpr); 3657 pExpr = pNew; 3658 3659 /* Ensure that the expression now has an implicit collation sequence, 3660 ** just as it did when it was a column of a view or sub-query. */ 3661 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3662 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3663 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3664 (pColl ? pColl->zName : "BINARY") 3665 ); 3666 } 3667 ExprClearProperty(pExpr, EP_Collate); 3668 } 3669 } 3670 }else{ 3671 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3672 pExpr->iTable = pSubst->iNewTable; 3673 } 3674 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3675 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3676 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3677 substSelect(pSubst, pExpr->x.pSelect, 1); 3678 }else{ 3679 substExprList(pSubst, pExpr->x.pList); 3680 } 3681 #ifndef SQLITE_OMIT_WINDOWFUNC 3682 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3683 Window *pWin = pExpr->y.pWin; 3684 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3685 substExprList(pSubst, pWin->pPartition); 3686 substExprList(pSubst, pWin->pOrderBy); 3687 } 3688 #endif 3689 } 3690 return pExpr; 3691 } 3692 static void substExprList( 3693 SubstContext *pSubst, /* Description of the substitution */ 3694 ExprList *pList /* List to scan and in which to make substitutes */ 3695 ){ 3696 int i; 3697 if( pList==0 ) return; 3698 for(i=0; i<pList->nExpr; i++){ 3699 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3700 } 3701 } 3702 static void substSelect( 3703 SubstContext *pSubst, /* Description of the substitution */ 3704 Select *p, /* SELECT statement in which to make substitutions */ 3705 int doPrior /* Do substitutes on p->pPrior too */ 3706 ){ 3707 SrcList *pSrc; 3708 SrcItem *pItem; 3709 int i; 3710 if( !p ) return; 3711 do{ 3712 substExprList(pSubst, p->pEList); 3713 substExprList(pSubst, p->pGroupBy); 3714 substExprList(pSubst, p->pOrderBy); 3715 p->pHaving = substExpr(pSubst, p->pHaving); 3716 p->pWhere = substExpr(pSubst, p->pWhere); 3717 pSrc = p->pSrc; 3718 assert( pSrc!=0 ); 3719 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3720 substSelect(pSubst, pItem->pSelect, 1); 3721 if( pItem->fg.isTabFunc ){ 3722 substExprList(pSubst, pItem->u1.pFuncArg); 3723 } 3724 } 3725 }while( doPrior && (p = p->pPrior)!=0 ); 3726 } 3727 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3728 3729 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3730 /* 3731 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3732 ** clause of that SELECT. 3733 ** 3734 ** This routine scans the entire SELECT statement and recomputes the 3735 ** pSrcItem->colUsed mask. 3736 */ 3737 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3738 SrcItem *pItem; 3739 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3740 pItem = pWalker->u.pSrcItem; 3741 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3742 if( pExpr->iColumn<0 ) return WRC_Continue; 3743 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3744 return WRC_Continue; 3745 } 3746 static void recomputeColumnsUsed( 3747 Select *pSelect, /* The complete SELECT statement */ 3748 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3749 ){ 3750 Walker w; 3751 if( NEVER(pSrcItem->pTab==0) ) return; 3752 memset(&w, 0, sizeof(w)); 3753 w.xExprCallback = recomputeColumnsUsedExpr; 3754 w.xSelectCallback = sqlite3SelectWalkNoop; 3755 w.u.pSrcItem = pSrcItem; 3756 pSrcItem->colUsed = 0; 3757 sqlite3WalkSelect(&w, pSelect); 3758 } 3759 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3760 3761 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3762 /* 3763 ** Assign new cursor numbers to each of the items in pSrc. For each 3764 ** new cursor number assigned, set an entry in the aCsrMap[] array 3765 ** to map the old cursor number to the new: 3766 ** 3767 ** aCsrMap[iOld+1] = iNew; 3768 ** 3769 ** The array is guaranteed by the caller to be large enough for all 3770 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3771 ** 3772 ** If pSrc contains any sub-selects, call this routine recursively 3773 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3774 */ 3775 static void srclistRenumberCursors( 3776 Parse *pParse, /* Parse context */ 3777 int *aCsrMap, /* Array to store cursor mappings in */ 3778 SrcList *pSrc, /* FROM clause to renumber */ 3779 int iExcept /* FROM clause item to skip */ 3780 ){ 3781 int i; 3782 SrcItem *pItem; 3783 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3784 if( i!=iExcept ){ 3785 Select *p; 3786 assert( pItem->iCursor < aCsrMap[0] ); 3787 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3788 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3789 } 3790 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3791 for(p=pItem->pSelect; p; p=p->pPrior){ 3792 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3793 } 3794 } 3795 } 3796 } 3797 3798 /* 3799 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3800 */ 3801 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3802 int *aCsrMap = pWalker->u.aiCol; 3803 int iCsr = *piCursor; 3804 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3805 *piCursor = aCsrMap[iCsr+1]; 3806 } 3807 } 3808 3809 /* 3810 ** Expression walker callback used by renumberCursors() to update 3811 ** Expr objects to match newly assigned cursor numbers. 3812 */ 3813 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3814 int op = pExpr->op; 3815 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3816 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3817 } 3818 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3819 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3820 } 3821 return WRC_Continue; 3822 } 3823 3824 /* 3825 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3826 ** of the SELECT statement passed as the second argument, and to each 3827 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3828 ** Except, do not assign a new cursor number to the iExcept'th element in 3829 ** the FROM clause of (*p). Update all expressions and other references 3830 ** to refer to the new cursor numbers. 3831 ** 3832 ** Argument aCsrMap is an array that may be used for temporary working 3833 ** space. Two guarantees are made by the caller: 3834 ** 3835 ** * the array is larger than the largest cursor number used within the 3836 ** select statement passed as an argument, and 3837 ** 3838 ** * the array entries for all cursor numbers that do *not* appear in 3839 ** FROM clauses of the select statement as described above are 3840 ** initialized to zero. 3841 */ 3842 static void renumberCursors( 3843 Parse *pParse, /* Parse context */ 3844 Select *p, /* Select to renumber cursors within */ 3845 int iExcept, /* FROM clause item to skip */ 3846 int *aCsrMap /* Working space */ 3847 ){ 3848 Walker w; 3849 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3850 memset(&w, 0, sizeof(w)); 3851 w.u.aiCol = aCsrMap; 3852 w.xExprCallback = renumberCursorsCb; 3853 w.xSelectCallback = sqlite3SelectWalkNoop; 3854 sqlite3WalkSelect(&w, p); 3855 } 3856 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3857 3858 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3859 /* 3860 ** This routine attempts to flatten subqueries as a performance optimization. 3861 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3862 ** 3863 ** To understand the concept of flattening, consider the following 3864 ** query: 3865 ** 3866 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3867 ** 3868 ** The default way of implementing this query is to execute the 3869 ** subquery first and store the results in a temporary table, then 3870 ** run the outer query on that temporary table. This requires two 3871 ** passes over the data. Furthermore, because the temporary table 3872 ** has no indices, the WHERE clause on the outer query cannot be 3873 ** optimized. 3874 ** 3875 ** This routine attempts to rewrite queries such as the above into 3876 ** a single flat select, like this: 3877 ** 3878 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3879 ** 3880 ** The code generated for this simplification gives the same result 3881 ** but only has to scan the data once. And because indices might 3882 ** exist on the table t1, a complete scan of the data might be 3883 ** avoided. 3884 ** 3885 ** Flattening is subject to the following constraints: 3886 ** 3887 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3888 ** The subquery and the outer query cannot both be aggregates. 3889 ** 3890 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3891 ** (2) If the subquery is an aggregate then 3892 ** (2a) the outer query must not be a join and 3893 ** (2b) the outer query must not use subqueries 3894 ** other than the one FROM-clause subquery that is a candidate 3895 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3896 ** from 2015-02-09.) 3897 ** 3898 ** (3) If the subquery is the right operand of a LEFT JOIN then 3899 ** (3a) the subquery may not be a join and 3900 ** (3b) the FROM clause of the subquery may not contain a virtual 3901 ** table and 3902 ** (3c) the outer query may not be an aggregate. 3903 ** (3d) the outer query may not be DISTINCT. 3904 ** 3905 ** (4) The subquery can not be DISTINCT. 3906 ** 3907 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3908 ** sub-queries that were excluded from this optimization. Restriction 3909 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3910 ** 3911 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3912 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3913 ** 3914 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3915 ** A FROM clause, consider adding a FROM clause with the special 3916 ** table sqlite_once that consists of a single row containing a 3917 ** single NULL. 3918 ** 3919 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3920 ** 3921 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3922 ** 3923 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3924 ** accidently carried the comment forward until 2014-09-15. Original 3925 ** constraint: "If the subquery is aggregate then the outer query 3926 ** may not use LIMIT." 3927 ** 3928 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3929 ** 3930 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3931 ** a separate restriction deriving from ticket #350. 3932 ** 3933 ** (13) The subquery and outer query may not both use LIMIT. 3934 ** 3935 ** (14) The subquery may not use OFFSET. 3936 ** 3937 ** (15) If the outer query is part of a compound select, then the 3938 ** subquery may not use LIMIT. 3939 ** (See ticket #2339 and ticket [02a8e81d44]). 3940 ** 3941 ** (16) If the outer query is aggregate, then the subquery may not 3942 ** use ORDER BY. (Ticket #2942) This used to not matter 3943 ** until we introduced the group_concat() function. 3944 ** 3945 ** (17) If the subquery is a compound select, then 3946 ** (17a) all compound operators must be a UNION ALL, and 3947 ** (17b) no terms within the subquery compound may be aggregate 3948 ** or DISTINCT, and 3949 ** (17c) every term within the subquery compound must have a FROM clause 3950 ** (17d) the outer query may not be 3951 ** (17d1) aggregate, or 3952 ** (17d2) DISTINCT 3953 ** (17e) the subquery may not contain window functions, and 3954 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3955 ** 3956 ** The parent and sub-query may contain WHERE clauses. Subject to 3957 ** rules (11), (13) and (14), they may also contain ORDER BY, 3958 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3959 ** operator other than UNION ALL because all the other compound 3960 ** operators have an implied DISTINCT which is disallowed by 3961 ** restriction (4). 3962 ** 3963 ** Also, each component of the sub-query must return the same number 3964 ** of result columns. This is actually a requirement for any compound 3965 ** SELECT statement, but all the code here does is make sure that no 3966 ** such (illegal) sub-query is flattened. The caller will detect the 3967 ** syntax error and return a detailed message. 3968 ** 3969 ** (18) If the sub-query is a compound select, then all terms of the 3970 ** ORDER BY clause of the parent must be copies of a term returned 3971 ** by the parent query. 3972 ** 3973 ** (19) If the subquery uses LIMIT then the outer query may not 3974 ** have a WHERE clause. 3975 ** 3976 ** (20) If the sub-query is a compound select, then it must not use 3977 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3978 ** somewhat by saying that the terms of the ORDER BY clause must 3979 ** appear as unmodified result columns in the outer query. But we 3980 ** have other optimizations in mind to deal with that case. 3981 ** 3982 ** (21) If the subquery uses LIMIT then the outer query may not be 3983 ** DISTINCT. (See ticket [752e1646fc]). 3984 ** 3985 ** (22) The subquery may not be a recursive CTE. 3986 ** 3987 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3988 ** a compound query. This restriction is because transforming the 3989 ** parent to a compound query confuses the code that handles 3990 ** recursive queries in multiSelect(). 3991 ** 3992 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3993 ** The subquery may not be an aggregate that uses the built-in min() or 3994 ** or max() functions. (Without this restriction, a query like: 3995 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3996 ** return the value X for which Y was maximal.) 3997 ** 3998 ** (25) If either the subquery or the parent query contains a window 3999 ** function in the select list or ORDER BY clause, flattening 4000 ** is not attempted. 4001 ** 4002 ** 4003 ** In this routine, the "p" parameter is a pointer to the outer query. 4004 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4005 ** uses aggregates. 4006 ** 4007 ** If flattening is not attempted, this routine is a no-op and returns 0. 4008 ** If flattening is attempted this routine returns 1. 4009 ** 4010 ** All of the expression analysis must occur on both the outer query and 4011 ** the subquery before this routine runs. 4012 */ 4013 static int flattenSubquery( 4014 Parse *pParse, /* Parsing context */ 4015 Select *p, /* The parent or outer SELECT statement */ 4016 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4017 int isAgg /* True if outer SELECT uses aggregate functions */ 4018 ){ 4019 const char *zSavedAuthContext = pParse->zAuthContext; 4020 Select *pParent; /* Current UNION ALL term of the other query */ 4021 Select *pSub; /* The inner query or "subquery" */ 4022 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4023 SrcList *pSrc; /* The FROM clause of the outer query */ 4024 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4025 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4026 int iNewParent = -1;/* Replacement table for iParent */ 4027 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4028 int i; /* Loop counter */ 4029 Expr *pWhere; /* The WHERE clause */ 4030 SrcItem *pSubitem; /* The subquery */ 4031 sqlite3 *db = pParse->db; 4032 Walker w; /* Walker to persist agginfo data */ 4033 int *aCsrMap = 0; 4034 4035 /* Check to see if flattening is permitted. Return 0 if not. 4036 */ 4037 assert( p!=0 ); 4038 assert( p->pPrior==0 ); 4039 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4040 pSrc = p->pSrc; 4041 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4042 pSubitem = &pSrc->a[iFrom]; 4043 iParent = pSubitem->iCursor; 4044 pSub = pSubitem->pSelect; 4045 assert( pSub!=0 ); 4046 4047 #ifndef SQLITE_OMIT_WINDOWFUNC 4048 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4049 #endif 4050 4051 pSubSrc = pSub->pSrc; 4052 assert( pSubSrc ); 4053 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4054 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4055 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4056 ** became arbitrary expressions, we were forced to add restrictions (13) 4057 ** and (14). */ 4058 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4059 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4060 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4061 return 0; /* Restriction (15) */ 4062 } 4063 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4064 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4065 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4066 return 0; /* Restrictions (8)(9) */ 4067 } 4068 if( p->pOrderBy && pSub->pOrderBy ){ 4069 return 0; /* Restriction (11) */ 4070 } 4071 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4072 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4073 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4074 return 0; /* Restriction (21) */ 4075 } 4076 if( pSub->selFlags & (SF_Recursive) ){ 4077 return 0; /* Restrictions (22) */ 4078 } 4079 4080 /* 4081 ** If the subquery is the right operand of a LEFT JOIN, then the 4082 ** subquery may not be a join itself (3a). Example of why this is not 4083 ** allowed: 4084 ** 4085 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4086 ** 4087 ** If we flatten the above, we would get 4088 ** 4089 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4090 ** 4091 ** which is not at all the same thing. 4092 ** 4093 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4094 ** query cannot be an aggregate. (3c) This is an artifact of the way 4095 ** aggregates are processed - there is no mechanism to determine if 4096 ** the LEFT JOIN table should be all-NULL. 4097 ** 4098 ** See also tickets #306, #350, and #3300. 4099 */ 4100 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4101 isLeftJoin = 1; 4102 if( pSubSrc->nSrc>1 /* (3a) */ 4103 || isAgg /* (3b) */ 4104 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4105 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4106 ){ 4107 return 0; 4108 } 4109 } 4110 #ifdef SQLITE_EXTRA_IFNULLROW 4111 else if( iFrom>0 && !isAgg ){ 4112 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4113 ** every reference to any result column from subquery in a join, even 4114 ** though they are not necessary. This will stress-test the OP_IfNullRow 4115 ** opcode. */ 4116 isLeftJoin = -1; 4117 } 4118 #endif 4119 4120 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4121 ** use only the UNION ALL operator. And none of the simple select queries 4122 ** that make up the compound SELECT are allowed to be aggregate or distinct 4123 ** queries. 4124 */ 4125 if( pSub->pPrior ){ 4126 if( pSub->pOrderBy ){ 4127 return 0; /* Restriction (20) */ 4128 } 4129 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4130 return 0; /* (17d1), (17d2), or (17f) */ 4131 } 4132 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4133 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4134 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4135 assert( pSub->pSrc!=0 ); 4136 assert( (pSub->selFlags & SF_Recursive)==0 ); 4137 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4138 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4139 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4140 || pSub1->pSrc->nSrc<1 /* (17c) */ 4141 #ifndef SQLITE_OMIT_WINDOWFUNC 4142 || pSub1->pWin /* (17e) */ 4143 #endif 4144 ){ 4145 return 0; 4146 } 4147 testcase( pSub1->pSrc->nSrc>1 ); 4148 } 4149 4150 /* Restriction (18). */ 4151 if( p->pOrderBy ){ 4152 int ii; 4153 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4154 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4155 } 4156 } 4157 4158 /* Restriction (23) */ 4159 if( (p->selFlags & SF_Recursive) ) return 0; 4160 4161 if( pSrc->nSrc>1 ){ 4162 if( pParse->nSelect>500 ) return 0; 4163 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4164 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4165 } 4166 } 4167 4168 /***** If we reach this point, flattening is permitted. *****/ 4169 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4170 pSub->selId, pSub, iFrom)); 4171 4172 /* Authorize the subquery */ 4173 pParse->zAuthContext = pSubitem->zName; 4174 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4175 testcase( i==SQLITE_DENY ); 4176 pParse->zAuthContext = zSavedAuthContext; 4177 4178 /* Delete the transient structures associated with thesubquery */ 4179 pSub1 = pSubitem->pSelect; 4180 sqlite3DbFree(db, pSubitem->zDatabase); 4181 sqlite3DbFree(db, pSubitem->zName); 4182 sqlite3DbFree(db, pSubitem->zAlias); 4183 pSubitem->zDatabase = 0; 4184 pSubitem->zName = 0; 4185 pSubitem->zAlias = 0; 4186 pSubitem->pSelect = 0; 4187 assert( pSubitem->pOn==0 ); 4188 4189 /* If the sub-query is a compound SELECT statement, then (by restrictions 4190 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4191 ** be of the form: 4192 ** 4193 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4194 ** 4195 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4196 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4197 ** OFFSET clauses and joins them to the left-hand-side of the original 4198 ** using UNION ALL operators. In this case N is the number of simple 4199 ** select statements in the compound sub-query. 4200 ** 4201 ** Example: 4202 ** 4203 ** SELECT a+1 FROM ( 4204 ** SELECT x FROM tab 4205 ** UNION ALL 4206 ** SELECT y FROM tab 4207 ** UNION ALL 4208 ** SELECT abs(z*2) FROM tab2 4209 ** ) WHERE a!=5 ORDER BY 1 4210 ** 4211 ** Transformed into: 4212 ** 4213 ** SELECT x+1 FROM tab WHERE x+1!=5 4214 ** UNION ALL 4215 ** SELECT y+1 FROM tab WHERE y+1!=5 4216 ** UNION ALL 4217 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4218 ** ORDER BY 1 4219 ** 4220 ** We call this the "compound-subquery flattening". 4221 */ 4222 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4223 Select *pNew; 4224 ExprList *pOrderBy = p->pOrderBy; 4225 Expr *pLimit = p->pLimit; 4226 Select *pPrior = p->pPrior; 4227 Table *pItemTab = pSubitem->pTab; 4228 pSubitem->pTab = 0; 4229 p->pOrderBy = 0; 4230 p->pPrior = 0; 4231 p->pLimit = 0; 4232 pNew = sqlite3SelectDup(db, p, 0); 4233 p->pLimit = pLimit; 4234 p->pOrderBy = pOrderBy; 4235 p->op = TK_ALL; 4236 pSubitem->pTab = pItemTab; 4237 if( pNew==0 ){ 4238 p->pPrior = pPrior; 4239 }else{ 4240 pNew->selId = ++pParse->nSelect; 4241 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4242 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4243 } 4244 pNew->pPrior = pPrior; 4245 if( pPrior ) pPrior->pNext = pNew; 4246 pNew->pNext = p; 4247 p->pPrior = pNew; 4248 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4249 " creates %u as peer\n",pNew->selId)); 4250 } 4251 assert( pSubitem->pSelect==0 ); 4252 } 4253 sqlite3DbFree(db, aCsrMap); 4254 if( db->mallocFailed ){ 4255 pSubitem->pSelect = pSub1; 4256 return 1; 4257 } 4258 4259 /* Defer deleting the Table object associated with the 4260 ** subquery until code generation is 4261 ** complete, since there may still exist Expr.pTab entries that 4262 ** refer to the subquery even after flattening. Ticket #3346. 4263 ** 4264 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4265 */ 4266 if( ALWAYS(pSubitem->pTab!=0) ){ 4267 Table *pTabToDel = pSubitem->pTab; 4268 if( pTabToDel->nTabRef==1 ){ 4269 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4270 sqlite3ParserAddCleanup(pToplevel, 4271 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4272 pTabToDel); 4273 testcase( pToplevel->earlyCleanup ); 4274 }else{ 4275 pTabToDel->nTabRef--; 4276 } 4277 pSubitem->pTab = 0; 4278 } 4279 4280 /* The following loop runs once for each term in a compound-subquery 4281 ** flattening (as described above). If we are doing a different kind 4282 ** of flattening - a flattening other than a compound-subquery flattening - 4283 ** then this loop only runs once. 4284 ** 4285 ** This loop moves all of the FROM elements of the subquery into the 4286 ** the FROM clause of the outer query. Before doing this, remember 4287 ** the cursor number for the original outer query FROM element in 4288 ** iParent. The iParent cursor will never be used. Subsequent code 4289 ** will scan expressions looking for iParent references and replace 4290 ** those references with expressions that resolve to the subquery FROM 4291 ** elements we are now copying in. 4292 */ 4293 pSub = pSub1; 4294 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4295 int nSubSrc; 4296 u8 jointype = 0; 4297 assert( pSub!=0 ); 4298 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4299 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4300 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4301 4302 if( pParent==p ){ 4303 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4304 } 4305 4306 /* The subquery uses a single slot of the FROM clause of the outer 4307 ** query. If the subquery has more than one element in its FROM clause, 4308 ** then expand the outer query to make space for it to hold all elements 4309 ** of the subquery. 4310 ** 4311 ** Example: 4312 ** 4313 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4314 ** 4315 ** The outer query has 3 slots in its FROM clause. One slot of the 4316 ** outer query (the middle slot) is used by the subquery. The next 4317 ** block of code will expand the outer query FROM clause to 4 slots. 4318 ** The middle slot is expanded to two slots in order to make space 4319 ** for the two elements in the FROM clause of the subquery. 4320 */ 4321 if( nSubSrc>1 ){ 4322 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4323 if( pSrc==0 ) break; 4324 pParent->pSrc = pSrc; 4325 } 4326 4327 /* Transfer the FROM clause terms from the subquery into the 4328 ** outer query. 4329 */ 4330 for(i=0; i<nSubSrc; i++){ 4331 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4332 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4333 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4334 iNewParent = pSubSrc->a[i].iCursor; 4335 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4336 } 4337 pSrc->a[iFrom].fg.jointype = jointype; 4338 4339 /* Now begin substituting subquery result set expressions for 4340 ** references to the iParent in the outer query. 4341 ** 4342 ** Example: 4343 ** 4344 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4345 ** \ \_____________ subquery __________/ / 4346 ** \_____________________ outer query ______________________________/ 4347 ** 4348 ** We look at every expression in the outer query and every place we see 4349 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4350 */ 4351 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4352 /* At this point, any non-zero iOrderByCol values indicate that the 4353 ** ORDER BY column expression is identical to the iOrderByCol'th 4354 ** expression returned by SELECT statement pSub. Since these values 4355 ** do not necessarily correspond to columns in SELECT statement pParent, 4356 ** zero them before transfering the ORDER BY clause. 4357 ** 4358 ** Not doing this may cause an error if a subsequent call to this 4359 ** function attempts to flatten a compound sub-query into pParent 4360 ** (the only way this can happen is if the compound sub-query is 4361 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4362 ExprList *pOrderBy = pSub->pOrderBy; 4363 for(i=0; i<pOrderBy->nExpr; i++){ 4364 pOrderBy->a[i].u.x.iOrderByCol = 0; 4365 } 4366 assert( pParent->pOrderBy==0 ); 4367 pParent->pOrderBy = pOrderBy; 4368 pSub->pOrderBy = 0; 4369 } 4370 pWhere = pSub->pWhere; 4371 pSub->pWhere = 0; 4372 if( isLeftJoin>0 ){ 4373 sqlite3SetJoinExpr(pWhere, iNewParent); 4374 } 4375 if( pWhere ){ 4376 if( pParent->pWhere ){ 4377 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4378 }else{ 4379 pParent->pWhere = pWhere; 4380 } 4381 } 4382 if( db->mallocFailed==0 ){ 4383 SubstContext x; 4384 x.pParse = pParse; 4385 x.iTable = iParent; 4386 x.iNewTable = iNewParent; 4387 x.isLeftJoin = isLeftJoin; 4388 x.pEList = pSub->pEList; 4389 substSelect(&x, pParent, 0); 4390 } 4391 4392 /* The flattened query is a compound if either the inner or the 4393 ** outer query is a compound. */ 4394 pParent->selFlags |= pSub->selFlags & SF_Compound; 4395 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4396 4397 /* 4398 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4399 ** 4400 ** One is tempted to try to add a and b to combine the limits. But this 4401 ** does not work if either limit is negative. 4402 */ 4403 if( pSub->pLimit ){ 4404 pParent->pLimit = pSub->pLimit; 4405 pSub->pLimit = 0; 4406 } 4407 4408 /* Recompute the SrcList_item.colUsed masks for the flattened 4409 ** tables. */ 4410 for(i=0; i<nSubSrc; i++){ 4411 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4412 } 4413 } 4414 4415 /* Finially, delete what is left of the subquery and return 4416 ** success. 4417 */ 4418 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4419 sqlite3WalkSelect(&w,pSub1); 4420 sqlite3SelectDelete(db, pSub1); 4421 4422 #if SELECTTRACE_ENABLED 4423 if( sqlite3SelectTrace & 0x100 ){ 4424 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4425 sqlite3TreeViewSelect(0, p, 0); 4426 } 4427 #endif 4428 4429 return 1; 4430 } 4431 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4432 4433 /* 4434 ** A structure to keep track of all of the column values that are fixed to 4435 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4436 */ 4437 typedef struct WhereConst WhereConst; 4438 struct WhereConst { 4439 Parse *pParse; /* Parsing context */ 4440 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4441 int nConst; /* Number for COLUMN=CONSTANT terms */ 4442 int nChng; /* Number of times a constant is propagated */ 4443 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4444 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4445 }; 4446 4447 /* 4448 ** Add a new entry to the pConst object. Except, do not add duplicate 4449 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4450 ** 4451 ** The caller guarantees the pColumn is a column and pValue is a constant. 4452 ** This routine has to do some additional checks before completing the 4453 ** insert. 4454 */ 4455 static void constInsert( 4456 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4457 Expr *pColumn, /* The COLUMN part of the constraint */ 4458 Expr *pValue, /* The VALUE part of the constraint */ 4459 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4460 ){ 4461 int i; 4462 assert( pColumn->op==TK_COLUMN ); 4463 assert( sqlite3ExprIsConstant(pValue) ); 4464 4465 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4466 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4467 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4468 return; 4469 } 4470 4471 /* 2018-10-25 ticket [cf5ed20f] 4472 ** Make sure the same pColumn is not inserted more than once */ 4473 for(i=0; i<pConst->nConst; i++){ 4474 const Expr *pE2 = pConst->apExpr[i*2]; 4475 assert( pE2->op==TK_COLUMN ); 4476 if( pE2->iTable==pColumn->iTable 4477 && pE2->iColumn==pColumn->iColumn 4478 ){ 4479 return; /* Already present. Return without doing anything. */ 4480 } 4481 } 4482 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4483 pConst->bHasAffBlob = 1; 4484 } 4485 4486 pConst->nConst++; 4487 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4488 pConst->nConst*2*sizeof(Expr*)); 4489 if( pConst->apExpr==0 ){ 4490 pConst->nConst = 0; 4491 }else{ 4492 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4493 pConst->apExpr[pConst->nConst*2-1] = pValue; 4494 } 4495 } 4496 4497 /* 4498 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4499 ** is a constant expression and where the term must be true because it 4500 ** is part of the AND-connected terms of the expression. For each term 4501 ** found, add it to the pConst structure. 4502 */ 4503 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4504 Expr *pRight, *pLeft; 4505 if( NEVER(pExpr==0) ) return; 4506 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4507 if( pExpr->op==TK_AND ){ 4508 findConstInWhere(pConst, pExpr->pRight); 4509 findConstInWhere(pConst, pExpr->pLeft); 4510 return; 4511 } 4512 if( pExpr->op!=TK_EQ ) return; 4513 pRight = pExpr->pRight; 4514 pLeft = pExpr->pLeft; 4515 assert( pRight!=0 ); 4516 assert( pLeft!=0 ); 4517 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4518 constInsert(pConst,pRight,pLeft,pExpr); 4519 } 4520 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4521 constInsert(pConst,pLeft,pRight,pExpr); 4522 } 4523 } 4524 4525 /* 4526 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4527 ** 4528 ** Argument pExpr is a candidate expression to be replaced by a value. If 4529 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4530 ** then overwrite it with the corresponding value. Except, do not do so 4531 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4532 ** is SQLITE_AFF_BLOB. 4533 */ 4534 static int propagateConstantExprRewriteOne( 4535 WhereConst *pConst, 4536 Expr *pExpr, 4537 int bIgnoreAffBlob 4538 ){ 4539 int i; 4540 if( pConst->pOomFault[0] ) return WRC_Prune; 4541 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4542 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4543 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4544 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4545 return WRC_Continue; 4546 } 4547 for(i=0; i<pConst->nConst; i++){ 4548 Expr *pColumn = pConst->apExpr[i*2]; 4549 if( pColumn==pExpr ) continue; 4550 if( pColumn->iTable!=pExpr->iTable ) continue; 4551 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4552 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4553 break; 4554 } 4555 /* A match is found. Add the EP_FixedCol property */ 4556 pConst->nChng++; 4557 ExprClearProperty(pExpr, EP_Leaf); 4558 ExprSetProperty(pExpr, EP_FixedCol); 4559 assert( pExpr->pLeft==0 ); 4560 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4561 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4562 break; 4563 } 4564 return WRC_Prune; 4565 } 4566 4567 /* 4568 ** This is a Walker expression callback. pExpr is a node from the WHERE 4569 ** clause of a SELECT statement. This function examines pExpr to see if 4570 ** any substitutions based on the contents of pWalker->u.pConst should 4571 ** be made to pExpr or its immediate children. 4572 ** 4573 ** A substitution is made if: 4574 ** 4575 ** + pExpr is a column with an affinity other than BLOB that matches 4576 ** one of the columns in pWalker->u.pConst, or 4577 ** 4578 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4579 ** uses an affinity other than TEXT and one of its immediate 4580 ** children is a column that matches one of the columns in 4581 ** pWalker->u.pConst. 4582 */ 4583 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4584 WhereConst *pConst = pWalker->u.pConst; 4585 assert( TK_GT==TK_EQ+1 ); 4586 assert( TK_LE==TK_EQ+2 ); 4587 assert( TK_LT==TK_EQ+3 ); 4588 assert( TK_GE==TK_EQ+4 ); 4589 if( pConst->bHasAffBlob ){ 4590 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4591 || pExpr->op==TK_IS 4592 ){ 4593 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4594 if( pConst->pOomFault[0] ) return WRC_Prune; 4595 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4596 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4597 } 4598 } 4599 } 4600 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4601 } 4602 4603 /* 4604 ** The WHERE-clause constant propagation optimization. 4605 ** 4606 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4607 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4608 ** part of a ON clause from a LEFT JOIN, then throughout the query 4609 ** replace all other occurrences of COLUMN with CONSTANT. 4610 ** 4611 ** For example, the query: 4612 ** 4613 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4614 ** 4615 ** Is transformed into 4616 ** 4617 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4618 ** 4619 ** Return true if any transformations where made and false if not. 4620 ** 4621 ** Implementation note: Constant propagation is tricky due to affinity 4622 ** and collating sequence interactions. Consider this example: 4623 ** 4624 ** CREATE TABLE t1(a INT,b TEXT); 4625 ** INSERT INTO t1 VALUES(123,'0123'); 4626 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4627 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4628 ** 4629 ** The two SELECT statements above should return different answers. b=a 4630 ** is alway true because the comparison uses numeric affinity, but b=123 4631 ** is false because it uses text affinity and '0123' is not the same as '123'. 4632 ** To work around this, the expression tree is not actually changed from 4633 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4634 ** and the "123" value is hung off of the pLeft pointer. Code generator 4635 ** routines know to generate the constant "123" instead of looking up the 4636 ** column value. Also, to avoid collation problems, this optimization is 4637 ** only attempted if the "a=123" term uses the default BINARY collation. 4638 ** 4639 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4640 ** 4641 ** CREATE TABLE t1(x); 4642 ** INSERT INTO t1 VALUES(10.0); 4643 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4644 ** 4645 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4646 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4647 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4648 ** resulting in a false positive. To avoid this, constant propagation for 4649 ** columns with BLOB affinity is only allowed if the constant is used with 4650 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4651 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4652 ** for details. 4653 */ 4654 static int propagateConstants( 4655 Parse *pParse, /* The parsing context */ 4656 Select *p /* The query in which to propagate constants */ 4657 ){ 4658 WhereConst x; 4659 Walker w; 4660 int nChng = 0; 4661 x.pParse = pParse; 4662 x.pOomFault = &pParse->db->mallocFailed; 4663 do{ 4664 x.nConst = 0; 4665 x.nChng = 0; 4666 x.apExpr = 0; 4667 x.bHasAffBlob = 0; 4668 findConstInWhere(&x, p->pWhere); 4669 if( x.nConst ){ 4670 memset(&w, 0, sizeof(w)); 4671 w.pParse = pParse; 4672 w.xExprCallback = propagateConstantExprRewrite; 4673 w.xSelectCallback = sqlite3SelectWalkNoop; 4674 w.xSelectCallback2 = 0; 4675 w.walkerDepth = 0; 4676 w.u.pConst = &x; 4677 sqlite3WalkExpr(&w, p->pWhere); 4678 sqlite3DbFree(x.pParse->db, x.apExpr); 4679 nChng += x.nChng; 4680 } 4681 }while( x.nChng ); 4682 return nChng; 4683 } 4684 4685 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4686 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4687 /* 4688 ** This function is called to determine whether or not it is safe to 4689 ** push WHERE clause expression pExpr down to FROM clause sub-query 4690 ** pSubq, which contains at least one window function. Return 1 4691 ** if it is safe and the expression should be pushed down, or 0 4692 ** otherwise. 4693 ** 4694 ** It is only safe to push the expression down if it consists only 4695 ** of constants and copies of expressions that appear in the PARTITION 4696 ** BY clause of all window function used by the sub-query. It is safe 4697 ** to filter out entire partitions, but not rows within partitions, as 4698 ** this may change the results of the window functions. 4699 ** 4700 ** At the time this function is called it is guaranteed that 4701 ** 4702 ** * the sub-query uses only one distinct window frame, and 4703 ** * that the window frame has a PARTITION BY clase. 4704 */ 4705 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4706 assert( pSubq->pWin->pPartition ); 4707 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4708 assert( pSubq->pPrior==0 ); 4709 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4710 } 4711 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4712 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4713 4714 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4715 /* 4716 ** Make copies of relevant WHERE clause terms of the outer query into 4717 ** the WHERE clause of subquery. Example: 4718 ** 4719 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4720 ** 4721 ** Transformed into: 4722 ** 4723 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4724 ** WHERE x=5 AND y=10; 4725 ** 4726 ** The hope is that the terms added to the inner query will make it more 4727 ** efficient. 4728 ** 4729 ** Do not attempt this optimization if: 4730 ** 4731 ** (1) (** This restriction was removed on 2017-09-29. We used to 4732 ** disallow this optimization for aggregate subqueries, but now 4733 ** it is allowed by putting the extra terms on the HAVING clause. 4734 ** The added HAVING clause is pointless if the subquery lacks 4735 ** a GROUP BY clause. But such a HAVING clause is also harmless 4736 ** so there does not appear to be any reason to add extra logic 4737 ** to suppress it. **) 4738 ** 4739 ** (2) The inner query is the recursive part of a common table expression. 4740 ** 4741 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4742 ** clause would change the meaning of the LIMIT). 4743 ** 4744 ** (4) The inner query is the right operand of a LEFT JOIN and the 4745 ** expression to be pushed down does not come from the ON clause 4746 ** on that LEFT JOIN. 4747 ** 4748 ** (5) The WHERE clause expression originates in the ON or USING clause 4749 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4750 ** left join. An example: 4751 ** 4752 ** SELECT * 4753 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4754 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4755 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4756 ** 4757 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4758 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4759 ** then the (1,1,NULL) row would be suppressed. 4760 ** 4761 ** (6) Window functions make things tricky as changes to the WHERE clause 4762 ** of the inner query could change the window over which window 4763 ** functions are calculated. Therefore, do not attempt the optimization 4764 ** if: 4765 ** 4766 ** (6a) The inner query uses multiple incompatible window partitions. 4767 ** 4768 ** (6b) The inner query is a compound and uses window-functions. 4769 ** 4770 ** (6c) The WHERE clause does not consist entirely of constants and 4771 ** copies of expressions found in the PARTITION BY clause of 4772 ** all window-functions used by the sub-query. It is safe to 4773 ** filter out entire partitions, as this does not change the 4774 ** window over which any window-function is calculated. 4775 ** 4776 ** (7) The inner query is a Common Table Expression (CTE) that should 4777 ** be materialized. (This restriction is implemented in the calling 4778 ** routine.) 4779 ** 4780 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4781 ** terms are duplicated into the subquery. 4782 */ 4783 static int pushDownWhereTerms( 4784 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4785 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4786 Expr *pWhere, /* The WHERE clause of the outer query */ 4787 int iCursor, /* Cursor number of the subquery */ 4788 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4789 ){ 4790 Expr *pNew; 4791 int nChng = 0; 4792 if( pWhere==0 ) return 0; 4793 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4794 4795 #ifndef SQLITE_OMIT_WINDOWFUNC 4796 if( pSubq->pPrior ){ 4797 Select *pSel; 4798 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4799 if( pSel->pWin ) return 0; /* restriction (6b) */ 4800 } 4801 }else{ 4802 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4803 } 4804 #endif 4805 4806 #ifdef SQLITE_DEBUG 4807 /* Only the first term of a compound can have a WITH clause. But make 4808 ** sure no other terms are marked SF_Recursive in case something changes 4809 ** in the future. 4810 */ 4811 { 4812 Select *pX; 4813 for(pX=pSubq; pX; pX=pX->pPrior){ 4814 assert( (pX->selFlags & (SF_Recursive))==0 ); 4815 } 4816 } 4817 #endif 4818 4819 if( pSubq->pLimit!=0 ){ 4820 return 0; /* restriction (3) */ 4821 } 4822 while( pWhere->op==TK_AND ){ 4823 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4824 iCursor, isLeftJoin); 4825 pWhere = pWhere->pLeft; 4826 } 4827 if( isLeftJoin 4828 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4829 || pWhere->iRightJoinTable!=iCursor) 4830 ){ 4831 return 0; /* restriction (4) */ 4832 } 4833 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4834 return 0; /* restriction (5) */ 4835 } 4836 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4837 nChng++; 4838 pSubq->selFlags |= SF_PushDown; 4839 while( pSubq ){ 4840 SubstContext x; 4841 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4842 unsetJoinExpr(pNew, -1); 4843 x.pParse = pParse; 4844 x.iTable = iCursor; 4845 x.iNewTable = iCursor; 4846 x.isLeftJoin = 0; 4847 x.pEList = pSubq->pEList; 4848 pNew = substExpr(&x, pNew); 4849 #ifndef SQLITE_OMIT_WINDOWFUNC 4850 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4851 /* Restriction 6c has prevented push-down in this case */ 4852 sqlite3ExprDelete(pParse->db, pNew); 4853 nChng--; 4854 break; 4855 } 4856 #endif 4857 if( pSubq->selFlags & SF_Aggregate ){ 4858 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4859 }else{ 4860 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4861 } 4862 pSubq = pSubq->pPrior; 4863 } 4864 } 4865 return nChng; 4866 } 4867 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4868 4869 /* 4870 ** The pFunc is the only aggregate function in the query. Check to see 4871 ** if the query is a candidate for the min/max optimization. 4872 ** 4873 ** If the query is a candidate for the min/max optimization, then set 4874 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4875 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4876 ** whether pFunc is a min() or max() function. 4877 ** 4878 ** If the query is not a candidate for the min/max optimization, return 4879 ** WHERE_ORDERBY_NORMAL (which must be zero). 4880 ** 4881 ** This routine must be called after aggregate functions have been 4882 ** located but before their arguments have been subjected to aggregate 4883 ** analysis. 4884 */ 4885 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4886 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4887 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4888 const char *zFunc; /* Name of aggregate function pFunc */ 4889 ExprList *pOrderBy; 4890 u8 sortFlags = 0; 4891 4892 assert( *ppMinMax==0 ); 4893 assert( pFunc->op==TK_AGG_FUNCTION ); 4894 assert( !IsWindowFunc(pFunc) ); 4895 if( pEList==0 4896 || pEList->nExpr!=1 4897 || ExprHasProperty(pFunc, EP_WinFunc) 4898 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4899 ){ 4900 return eRet; 4901 } 4902 zFunc = pFunc->u.zToken; 4903 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4904 eRet = WHERE_ORDERBY_MIN; 4905 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4906 sortFlags = KEYINFO_ORDER_BIGNULL; 4907 } 4908 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4909 eRet = WHERE_ORDERBY_MAX; 4910 sortFlags = KEYINFO_ORDER_DESC; 4911 }else{ 4912 return eRet; 4913 } 4914 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4915 assert( pOrderBy!=0 || db->mallocFailed ); 4916 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4917 return eRet; 4918 } 4919 4920 /* 4921 ** The select statement passed as the first argument is an aggregate query. 4922 ** The second argument is the associated aggregate-info object. This 4923 ** function tests if the SELECT is of the form: 4924 ** 4925 ** SELECT count(*) FROM <tbl> 4926 ** 4927 ** where table is a database table, not a sub-select or view. If the query 4928 ** does match this pattern, then a pointer to the Table object representing 4929 ** <tbl> is returned. Otherwise, 0 is returned. 4930 */ 4931 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4932 Table *pTab; 4933 Expr *pExpr; 4934 4935 assert( !p->pGroupBy ); 4936 4937 if( p->pWhere || p->pEList->nExpr!=1 4938 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4939 ){ 4940 return 0; 4941 } 4942 pTab = p->pSrc->a[0].pTab; 4943 pExpr = p->pEList->a[0].pExpr; 4944 assert( pTab && !IsView(pTab) && pExpr ); 4945 4946 if( IsVirtual(pTab) ) return 0; 4947 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4948 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4949 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4950 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4951 4952 return pTab; 4953 } 4954 4955 /* 4956 ** If the source-list item passed as an argument was augmented with an 4957 ** INDEXED BY clause, then try to locate the specified index. If there 4958 ** was such a clause and the named index cannot be found, return 4959 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4960 ** pFrom->pIndex and return SQLITE_OK. 4961 */ 4962 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4963 Table *pTab = pFrom->pTab; 4964 char *zIndexedBy = pFrom->u1.zIndexedBy; 4965 Index *pIdx; 4966 assert( pTab!=0 ); 4967 assert( pFrom->fg.isIndexedBy!=0 ); 4968 4969 for(pIdx=pTab->pIndex; 4970 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4971 pIdx=pIdx->pNext 4972 ); 4973 if( !pIdx ){ 4974 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4975 pParse->checkSchema = 1; 4976 return SQLITE_ERROR; 4977 } 4978 pFrom->u2.pIBIndex = pIdx; 4979 return SQLITE_OK; 4980 } 4981 4982 /* 4983 ** Detect compound SELECT statements that use an ORDER BY clause with 4984 ** an alternative collating sequence. 4985 ** 4986 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4987 ** 4988 ** These are rewritten as a subquery: 4989 ** 4990 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4991 ** ORDER BY ... COLLATE ... 4992 ** 4993 ** This transformation is necessary because the multiSelectOrderBy() routine 4994 ** above that generates the code for a compound SELECT with an ORDER BY clause 4995 ** uses a merge algorithm that requires the same collating sequence on the 4996 ** result columns as on the ORDER BY clause. See ticket 4997 ** http://www.sqlite.org/src/info/6709574d2a 4998 ** 4999 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5000 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5001 ** there are COLLATE terms in the ORDER BY. 5002 */ 5003 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5004 int i; 5005 Select *pNew; 5006 Select *pX; 5007 sqlite3 *db; 5008 struct ExprList_item *a; 5009 SrcList *pNewSrc; 5010 Parse *pParse; 5011 Token dummy; 5012 5013 if( p->pPrior==0 ) return WRC_Continue; 5014 if( p->pOrderBy==0 ) return WRC_Continue; 5015 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5016 if( pX==0 ) return WRC_Continue; 5017 a = p->pOrderBy->a; 5018 #ifndef SQLITE_OMIT_WINDOWFUNC 5019 /* If iOrderByCol is already non-zero, then it has already been matched 5020 ** to a result column of the SELECT statement. This occurs when the 5021 ** SELECT is rewritten for window-functions processing and then passed 5022 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5023 ** by this function is not required in this case. */ 5024 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5025 #endif 5026 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5027 if( a[i].pExpr->flags & EP_Collate ) break; 5028 } 5029 if( i<0 ) return WRC_Continue; 5030 5031 /* If we reach this point, that means the transformation is required. */ 5032 5033 pParse = pWalker->pParse; 5034 db = pParse->db; 5035 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5036 if( pNew==0 ) return WRC_Abort; 5037 memset(&dummy, 0, sizeof(dummy)); 5038 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5039 if( pNewSrc==0 ) return WRC_Abort; 5040 *pNew = *p; 5041 p->pSrc = pNewSrc; 5042 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5043 p->op = TK_SELECT; 5044 p->pWhere = 0; 5045 pNew->pGroupBy = 0; 5046 pNew->pHaving = 0; 5047 pNew->pOrderBy = 0; 5048 p->pPrior = 0; 5049 p->pNext = 0; 5050 p->pWith = 0; 5051 #ifndef SQLITE_OMIT_WINDOWFUNC 5052 p->pWinDefn = 0; 5053 #endif 5054 p->selFlags &= ~SF_Compound; 5055 assert( (p->selFlags & SF_Converted)==0 ); 5056 p->selFlags |= SF_Converted; 5057 assert( pNew->pPrior!=0 ); 5058 pNew->pPrior->pNext = pNew; 5059 pNew->pLimit = 0; 5060 return WRC_Continue; 5061 } 5062 5063 /* 5064 ** Check to see if the FROM clause term pFrom has table-valued function 5065 ** arguments. If it does, leave an error message in pParse and return 5066 ** non-zero, since pFrom is not allowed to be a table-valued function. 5067 */ 5068 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5069 if( pFrom->fg.isTabFunc ){ 5070 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5071 return 1; 5072 } 5073 return 0; 5074 } 5075 5076 #ifndef SQLITE_OMIT_CTE 5077 /* 5078 ** Argument pWith (which may be NULL) points to a linked list of nested 5079 ** WITH contexts, from inner to outermost. If the table identified by 5080 ** FROM clause element pItem is really a common-table-expression (CTE) 5081 ** then return a pointer to the CTE definition for that table. Otherwise 5082 ** return NULL. 5083 ** 5084 ** If a non-NULL value is returned, set *ppContext to point to the With 5085 ** object that the returned CTE belongs to. 5086 */ 5087 static struct Cte *searchWith( 5088 With *pWith, /* Current innermost WITH clause */ 5089 SrcItem *pItem, /* FROM clause element to resolve */ 5090 With **ppContext /* OUT: WITH clause return value belongs to */ 5091 ){ 5092 const char *zName = pItem->zName; 5093 With *p; 5094 assert( pItem->zDatabase==0 ); 5095 assert( zName!=0 ); 5096 for(p=pWith; p; p=p->pOuter){ 5097 int i; 5098 for(i=0; i<p->nCte; i++){ 5099 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5100 *ppContext = p; 5101 return &p->a[i]; 5102 } 5103 } 5104 if( p->bView ) break; 5105 } 5106 return 0; 5107 } 5108 5109 /* The code generator maintains a stack of active WITH clauses 5110 ** with the inner-most WITH clause being at the top of the stack. 5111 ** 5112 ** This routine pushes the WITH clause passed as the second argument 5113 ** onto the top of the stack. If argument bFree is true, then this 5114 ** WITH clause will never be popped from the stack but should instead 5115 ** be freed along with the Parse object. In other cases, when 5116 ** bFree==0, the With object will be freed along with the SELECT 5117 ** statement with which it is associated. 5118 ** 5119 ** This routine returns a copy of pWith. Or, if bFree is true and 5120 ** the pWith object is destroyed immediately due to an OOM condition, 5121 ** then this routine return NULL. 5122 ** 5123 ** If bFree is true, do not continue to use the pWith pointer after 5124 ** calling this routine, Instead, use only the return value. 5125 */ 5126 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5127 if( pWith ){ 5128 if( bFree ){ 5129 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5130 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5131 pWith); 5132 if( pWith==0 ) return 0; 5133 } 5134 if( pParse->nErr==0 ){ 5135 assert( pParse->pWith!=pWith ); 5136 pWith->pOuter = pParse->pWith; 5137 pParse->pWith = pWith; 5138 } 5139 } 5140 return pWith; 5141 } 5142 5143 /* 5144 ** This function checks if argument pFrom refers to a CTE declared by 5145 ** a WITH clause on the stack currently maintained by the parser (on the 5146 ** pParse->pWith linked list). And if currently processing a CTE 5147 ** CTE expression, through routine checks to see if the reference is 5148 ** a recursive reference to the CTE. 5149 ** 5150 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5151 ** and other fields are populated accordingly. 5152 ** 5153 ** Return 0 if no match is found. 5154 ** Return 1 if a match is found. 5155 ** Return 2 if an error condition is detected. 5156 */ 5157 static int resolveFromTermToCte( 5158 Parse *pParse, /* The parsing context */ 5159 Walker *pWalker, /* Current tree walker */ 5160 SrcItem *pFrom /* The FROM clause term to check */ 5161 ){ 5162 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5163 With *pWith; /* The matching WITH */ 5164 5165 assert( pFrom->pTab==0 ); 5166 if( pParse->pWith==0 ){ 5167 /* There are no WITH clauses in the stack. No match is possible */ 5168 return 0; 5169 } 5170 if( pParse->nErr ){ 5171 /* Prior errors might have left pParse->pWith in a goofy state, so 5172 ** go no further. */ 5173 return 0; 5174 } 5175 if( pFrom->zDatabase!=0 ){ 5176 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5177 ** it cannot possibly be a CTE reference. */ 5178 return 0; 5179 } 5180 if( pFrom->fg.notCte ){ 5181 /* The FROM term is specifically excluded from matching a CTE. 5182 ** (1) It is part of a trigger that used to have zDatabase but had 5183 ** zDatabase removed by sqlite3FixTriggerStep(). 5184 ** (2) This is the first term in the FROM clause of an UPDATE. 5185 */ 5186 return 0; 5187 } 5188 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5189 if( pCte ){ 5190 sqlite3 *db = pParse->db; 5191 Table *pTab; 5192 ExprList *pEList; 5193 Select *pSel; 5194 Select *pLeft; /* Left-most SELECT statement */ 5195 Select *pRecTerm; /* Left-most recursive term */ 5196 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5197 With *pSavedWith; /* Initial value of pParse->pWith */ 5198 int iRecTab = -1; /* Cursor for recursive table */ 5199 CteUse *pCteUse; 5200 5201 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5202 ** recursive reference to CTE pCte. Leave an error in pParse and return 5203 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5204 ** In this case, proceed. */ 5205 if( pCte->zCteErr ){ 5206 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5207 return 2; 5208 } 5209 if( cannotBeFunction(pParse, pFrom) ) return 2; 5210 5211 assert( pFrom->pTab==0 ); 5212 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5213 if( pTab==0 ) return 2; 5214 pCteUse = pCte->pUse; 5215 if( pCteUse==0 ){ 5216 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5217 if( pCteUse==0 5218 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5219 ){ 5220 sqlite3DbFree(db, pTab); 5221 return 2; 5222 } 5223 pCteUse->eM10d = pCte->eM10d; 5224 } 5225 pFrom->pTab = pTab; 5226 pTab->nTabRef = 1; 5227 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5228 pTab->iPKey = -1; 5229 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5230 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5231 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5232 if( db->mallocFailed ) return 2; 5233 pFrom->pSelect->selFlags |= SF_CopyCte; 5234 assert( pFrom->pSelect ); 5235 pFrom->fg.isCte = 1; 5236 pFrom->u2.pCteUse = pCteUse; 5237 pCteUse->nUse++; 5238 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5239 pCteUse->eM10d = M10d_Yes; 5240 } 5241 5242 /* Check if this is a recursive CTE. */ 5243 pRecTerm = pSel = pFrom->pSelect; 5244 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5245 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5246 int i; 5247 SrcList *pSrc = pRecTerm->pSrc; 5248 assert( pRecTerm->pPrior!=0 ); 5249 for(i=0; i<pSrc->nSrc; i++){ 5250 SrcItem *pItem = &pSrc->a[i]; 5251 if( pItem->zDatabase==0 5252 && pItem->zName!=0 5253 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5254 ){ 5255 pItem->pTab = pTab; 5256 pTab->nTabRef++; 5257 pItem->fg.isRecursive = 1; 5258 if( pRecTerm->selFlags & SF_Recursive ){ 5259 sqlite3ErrorMsg(pParse, 5260 "multiple references to recursive table: %s", pCte->zName 5261 ); 5262 return 2; 5263 } 5264 pRecTerm->selFlags |= SF_Recursive; 5265 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5266 pItem->iCursor = iRecTab; 5267 } 5268 } 5269 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5270 pRecTerm = pRecTerm->pPrior; 5271 } 5272 5273 pCte->zCteErr = "circular reference: %s"; 5274 pSavedWith = pParse->pWith; 5275 pParse->pWith = pWith; 5276 if( pSel->selFlags & SF_Recursive ){ 5277 int rc; 5278 assert( pRecTerm!=0 ); 5279 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5280 assert( pRecTerm->pNext!=0 ); 5281 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5282 assert( pRecTerm->pWith==0 ); 5283 pRecTerm->pWith = pSel->pWith; 5284 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5285 pRecTerm->pWith = 0; 5286 if( rc ){ 5287 pParse->pWith = pSavedWith; 5288 return 2; 5289 } 5290 }else{ 5291 if( sqlite3WalkSelect(pWalker, pSel) ){ 5292 pParse->pWith = pSavedWith; 5293 return 2; 5294 } 5295 } 5296 pParse->pWith = pWith; 5297 5298 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5299 pEList = pLeft->pEList; 5300 if( pCte->pCols ){ 5301 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5302 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5303 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5304 ); 5305 pParse->pWith = pSavedWith; 5306 return 2; 5307 } 5308 pEList = pCte->pCols; 5309 } 5310 5311 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5312 if( bMayRecursive ){ 5313 if( pSel->selFlags & SF_Recursive ){ 5314 pCte->zCteErr = "multiple recursive references: %s"; 5315 }else{ 5316 pCte->zCteErr = "recursive reference in a subquery: %s"; 5317 } 5318 sqlite3WalkSelect(pWalker, pSel); 5319 } 5320 pCte->zCteErr = 0; 5321 pParse->pWith = pSavedWith; 5322 return 1; /* Success */ 5323 } 5324 return 0; /* No match */ 5325 } 5326 #endif 5327 5328 #ifndef SQLITE_OMIT_CTE 5329 /* 5330 ** If the SELECT passed as the second argument has an associated WITH 5331 ** clause, pop it from the stack stored as part of the Parse object. 5332 ** 5333 ** This function is used as the xSelectCallback2() callback by 5334 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5335 ** names and other FROM clause elements. 5336 */ 5337 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5338 Parse *pParse = pWalker->pParse; 5339 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5340 With *pWith = findRightmost(p)->pWith; 5341 if( pWith!=0 ){ 5342 assert( pParse->pWith==pWith || pParse->nErr ); 5343 pParse->pWith = pWith->pOuter; 5344 } 5345 } 5346 } 5347 #endif 5348 5349 /* 5350 ** The SrcList_item structure passed as the second argument represents a 5351 ** sub-query in the FROM clause of a SELECT statement. This function 5352 ** allocates and populates the SrcList_item.pTab object. If successful, 5353 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5354 ** SQLITE_NOMEM. 5355 */ 5356 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5357 Select *pSel = pFrom->pSelect; 5358 Table *pTab; 5359 5360 assert( pSel ); 5361 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5362 if( pTab==0 ) return SQLITE_NOMEM; 5363 pTab->nTabRef = 1; 5364 if( pFrom->zAlias ){ 5365 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5366 }else{ 5367 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5368 } 5369 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5370 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5371 pTab->iPKey = -1; 5372 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5373 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5374 /* The usual case - do not allow ROWID on a subquery */ 5375 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5376 #else 5377 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5378 #endif 5379 5380 5381 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5382 } 5383 5384 /* 5385 ** This routine is a Walker callback for "expanding" a SELECT statement. 5386 ** "Expanding" means to do the following: 5387 ** 5388 ** (1) Make sure VDBE cursor numbers have been assigned to every 5389 ** element of the FROM clause. 5390 ** 5391 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5392 ** defines FROM clause. When views appear in the FROM clause, 5393 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5394 ** that implements the view. A copy is made of the view's SELECT 5395 ** statement so that we can freely modify or delete that statement 5396 ** without worrying about messing up the persistent representation 5397 ** of the view. 5398 ** 5399 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5400 ** on joins and the ON and USING clause of joins. 5401 ** 5402 ** (4) Scan the list of columns in the result set (pEList) looking 5403 ** for instances of the "*" operator or the TABLE.* operator. 5404 ** If found, expand each "*" to be every column in every table 5405 ** and TABLE.* to be every column in TABLE. 5406 ** 5407 */ 5408 static int selectExpander(Walker *pWalker, Select *p){ 5409 Parse *pParse = pWalker->pParse; 5410 int i, j, k, rc; 5411 SrcList *pTabList; 5412 ExprList *pEList; 5413 SrcItem *pFrom; 5414 sqlite3 *db = pParse->db; 5415 Expr *pE, *pRight, *pExpr; 5416 u16 selFlags = p->selFlags; 5417 u32 elistFlags = 0; 5418 5419 p->selFlags |= SF_Expanded; 5420 if( db->mallocFailed ){ 5421 return WRC_Abort; 5422 } 5423 assert( p->pSrc!=0 ); 5424 if( (selFlags & SF_Expanded)!=0 ){ 5425 return WRC_Prune; 5426 } 5427 if( pWalker->eCode ){ 5428 /* Renumber selId because it has been copied from a view */ 5429 p->selId = ++pParse->nSelect; 5430 } 5431 pTabList = p->pSrc; 5432 pEList = p->pEList; 5433 if( pParse->pWith && (p->selFlags & SF_View) ){ 5434 if( p->pWith==0 ){ 5435 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5436 if( p->pWith==0 ){ 5437 return WRC_Abort; 5438 } 5439 } 5440 p->pWith->bView = 1; 5441 } 5442 sqlite3WithPush(pParse, p->pWith, 0); 5443 5444 /* Make sure cursor numbers have been assigned to all entries in 5445 ** the FROM clause of the SELECT statement. 5446 */ 5447 sqlite3SrcListAssignCursors(pParse, pTabList); 5448 5449 /* Look up every table named in the FROM clause of the select. If 5450 ** an entry of the FROM clause is a subquery instead of a table or view, 5451 ** then create a transient table structure to describe the subquery. 5452 */ 5453 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5454 Table *pTab; 5455 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5456 if( pFrom->pTab ) continue; 5457 assert( pFrom->fg.isRecursive==0 ); 5458 if( pFrom->zName==0 ){ 5459 #ifndef SQLITE_OMIT_SUBQUERY 5460 Select *pSel = pFrom->pSelect; 5461 /* A sub-query in the FROM clause of a SELECT */ 5462 assert( pSel!=0 ); 5463 assert( pFrom->pTab==0 ); 5464 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5465 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5466 #endif 5467 #ifndef SQLITE_OMIT_CTE 5468 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5469 if( rc>1 ) return WRC_Abort; 5470 pTab = pFrom->pTab; 5471 assert( pTab!=0 ); 5472 #endif 5473 }else{ 5474 /* An ordinary table or view name in the FROM clause */ 5475 assert( pFrom->pTab==0 ); 5476 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5477 if( pTab==0 ) return WRC_Abort; 5478 if( pTab->nTabRef>=0xffff ){ 5479 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5480 pTab->zName); 5481 pFrom->pTab = 0; 5482 return WRC_Abort; 5483 } 5484 pTab->nTabRef++; 5485 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5486 return WRC_Abort; 5487 } 5488 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5489 if( !IsOrdinaryTable(pTab) ){ 5490 i16 nCol; 5491 u8 eCodeOrig = pWalker->eCode; 5492 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5493 assert( pFrom->pSelect==0 ); 5494 if( IsView(pTab) ){ 5495 if( (db->flags & SQLITE_EnableView)==0 5496 && pTab->pSchema!=db->aDb[1].pSchema 5497 ){ 5498 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5499 pTab->zName); 5500 } 5501 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5502 }else 5503 #ifndef SQLITE_OMIT_VIRTUALTABLE 5504 if( ALWAYS(IsVirtual(pTab)) 5505 && pFrom->fg.fromDDL 5506 && ALWAYS(pTab->u.vtab.p!=0) 5507 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5508 ){ 5509 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5510 pTab->zName); 5511 } 5512 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5513 #endif 5514 nCol = pTab->nCol; 5515 pTab->nCol = -1; 5516 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5517 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5518 pWalker->eCode = eCodeOrig; 5519 pTab->nCol = nCol; 5520 } 5521 #endif 5522 } 5523 5524 /* Locate the index named by the INDEXED BY clause, if any. */ 5525 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5526 return WRC_Abort; 5527 } 5528 } 5529 5530 /* Process NATURAL keywords, and ON and USING clauses of joins. 5531 */ 5532 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5533 return WRC_Abort; 5534 } 5535 5536 /* For every "*" that occurs in the column list, insert the names of 5537 ** all columns in all tables. And for every TABLE.* insert the names 5538 ** of all columns in TABLE. The parser inserted a special expression 5539 ** with the TK_ASTERISK operator for each "*" that it found in the column 5540 ** list. The following code just has to locate the TK_ASTERISK 5541 ** expressions and expand each one to the list of all columns in 5542 ** all tables. 5543 ** 5544 ** The first loop just checks to see if there are any "*" operators 5545 ** that need expanding. 5546 */ 5547 for(k=0; k<pEList->nExpr; k++){ 5548 pE = pEList->a[k].pExpr; 5549 if( pE->op==TK_ASTERISK ) break; 5550 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5551 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5552 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5553 elistFlags |= pE->flags; 5554 } 5555 if( k<pEList->nExpr ){ 5556 /* 5557 ** If we get here it means the result set contains one or more "*" 5558 ** operators that need to be expanded. Loop through each expression 5559 ** in the result set and expand them one by one. 5560 */ 5561 struct ExprList_item *a = pEList->a; 5562 ExprList *pNew = 0; 5563 int flags = pParse->db->flags; 5564 int longNames = (flags & SQLITE_FullColNames)!=0 5565 && (flags & SQLITE_ShortColNames)==0; 5566 5567 for(k=0; k<pEList->nExpr; k++){ 5568 pE = a[k].pExpr; 5569 elistFlags |= pE->flags; 5570 pRight = pE->pRight; 5571 assert( pE->op!=TK_DOT || pRight!=0 ); 5572 if( pE->op!=TK_ASTERISK 5573 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5574 ){ 5575 /* This particular expression does not need to be expanded. 5576 */ 5577 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5578 if( pNew ){ 5579 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5580 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5581 a[k].zEName = 0; 5582 } 5583 a[k].pExpr = 0; 5584 }else{ 5585 /* This expression is a "*" or a "TABLE.*" and needs to be 5586 ** expanded. */ 5587 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5588 char *zTName = 0; /* text of name of TABLE */ 5589 if( pE->op==TK_DOT ){ 5590 assert( pE->pLeft!=0 ); 5591 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5592 zTName = pE->pLeft->u.zToken; 5593 } 5594 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5595 Table *pTab = pFrom->pTab; 5596 Select *pSub = pFrom->pSelect; 5597 char *zTabName = pFrom->zAlias; 5598 const char *zSchemaName = 0; 5599 int iDb; 5600 if( zTabName==0 ){ 5601 zTabName = pTab->zName; 5602 } 5603 if( db->mallocFailed ) break; 5604 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5605 pSub = 0; 5606 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5607 continue; 5608 } 5609 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5610 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5611 } 5612 for(j=0; j<pTab->nCol; j++){ 5613 char *zName = pTab->aCol[j].zCnName; 5614 char *zColname; /* The computed column name */ 5615 char *zToFree; /* Malloced string that needs to be freed */ 5616 Token sColname; /* Computed column name as a token */ 5617 5618 assert( zName ); 5619 if( zTName && pSub 5620 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5621 ){ 5622 continue; 5623 } 5624 5625 /* If a column is marked as 'hidden', omit it from the expanded 5626 ** result-set list unless the SELECT has the SF_IncludeHidden 5627 ** bit set. 5628 */ 5629 if( (p->selFlags & SF_IncludeHidden)==0 5630 && IsHiddenColumn(&pTab->aCol[j]) 5631 ){ 5632 continue; 5633 } 5634 tableSeen = 1; 5635 5636 if( i>0 && zTName==0 ){ 5637 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5638 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5639 ){ 5640 /* In a NATURAL join, omit the join columns from the 5641 ** table to the right of the join */ 5642 continue; 5643 } 5644 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5645 /* In a join with a USING clause, omit columns in the 5646 ** using clause from the table on the right. */ 5647 continue; 5648 } 5649 } 5650 pRight = sqlite3Expr(db, TK_ID, zName); 5651 zColname = zName; 5652 zToFree = 0; 5653 if( longNames || pTabList->nSrc>1 ){ 5654 Expr *pLeft; 5655 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5656 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5657 if( zSchemaName ){ 5658 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5659 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5660 } 5661 if( longNames ){ 5662 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5663 zToFree = zColname; 5664 } 5665 }else{ 5666 pExpr = pRight; 5667 } 5668 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5669 sqlite3TokenInit(&sColname, zColname); 5670 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5671 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5672 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5673 sqlite3DbFree(db, pX->zEName); 5674 if( pSub ){ 5675 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5676 testcase( pX->zEName==0 ); 5677 }else{ 5678 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5679 zSchemaName, zTabName, zColname); 5680 testcase( pX->zEName==0 ); 5681 } 5682 pX->eEName = ENAME_TAB; 5683 } 5684 sqlite3DbFree(db, zToFree); 5685 } 5686 } 5687 if( !tableSeen ){ 5688 if( zTName ){ 5689 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5690 }else{ 5691 sqlite3ErrorMsg(pParse, "no tables specified"); 5692 } 5693 } 5694 } 5695 } 5696 sqlite3ExprListDelete(db, pEList); 5697 p->pEList = pNew; 5698 } 5699 if( p->pEList ){ 5700 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5701 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5702 return WRC_Abort; 5703 } 5704 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5705 p->selFlags |= SF_ComplexResult; 5706 } 5707 } 5708 return WRC_Continue; 5709 } 5710 5711 #if SQLITE_DEBUG 5712 /* 5713 ** Always assert. This xSelectCallback2 implementation proves that the 5714 ** xSelectCallback2 is never invoked. 5715 */ 5716 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5717 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5718 assert( 0 ); 5719 } 5720 #endif 5721 /* 5722 ** This routine "expands" a SELECT statement and all of its subqueries. 5723 ** For additional information on what it means to "expand" a SELECT 5724 ** statement, see the comment on the selectExpand worker callback above. 5725 ** 5726 ** Expanding a SELECT statement is the first step in processing a 5727 ** SELECT statement. The SELECT statement must be expanded before 5728 ** name resolution is performed. 5729 ** 5730 ** If anything goes wrong, an error message is written into pParse. 5731 ** The calling function can detect the problem by looking at pParse->nErr 5732 ** and/or pParse->db->mallocFailed. 5733 */ 5734 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5735 Walker w; 5736 w.xExprCallback = sqlite3ExprWalkNoop; 5737 w.pParse = pParse; 5738 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5739 w.xSelectCallback = convertCompoundSelectToSubquery; 5740 w.xSelectCallback2 = 0; 5741 sqlite3WalkSelect(&w, pSelect); 5742 } 5743 w.xSelectCallback = selectExpander; 5744 w.xSelectCallback2 = sqlite3SelectPopWith; 5745 w.eCode = 0; 5746 sqlite3WalkSelect(&w, pSelect); 5747 } 5748 5749 5750 #ifndef SQLITE_OMIT_SUBQUERY 5751 /* 5752 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5753 ** interface. 5754 ** 5755 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5756 ** information to the Table structure that represents the result set 5757 ** of that subquery. 5758 ** 5759 ** The Table structure that represents the result set was constructed 5760 ** by selectExpander() but the type and collation information was omitted 5761 ** at that point because identifiers had not yet been resolved. This 5762 ** routine is called after identifier resolution. 5763 */ 5764 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5765 Parse *pParse; 5766 int i; 5767 SrcList *pTabList; 5768 SrcItem *pFrom; 5769 5770 assert( p->selFlags & SF_Resolved ); 5771 if( p->selFlags & SF_HasTypeInfo ) return; 5772 p->selFlags |= SF_HasTypeInfo; 5773 pParse = pWalker->pParse; 5774 pTabList = p->pSrc; 5775 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5776 Table *pTab = pFrom->pTab; 5777 assert( pTab!=0 ); 5778 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5779 /* A sub-query in the FROM clause of a SELECT */ 5780 Select *pSel = pFrom->pSelect; 5781 if( pSel ){ 5782 while( pSel->pPrior ) pSel = pSel->pPrior; 5783 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5784 SQLITE_AFF_NONE); 5785 } 5786 } 5787 } 5788 } 5789 #endif 5790 5791 5792 /* 5793 ** This routine adds datatype and collating sequence information to 5794 ** the Table structures of all FROM-clause subqueries in a 5795 ** SELECT statement. 5796 ** 5797 ** Use this routine after name resolution. 5798 */ 5799 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5800 #ifndef SQLITE_OMIT_SUBQUERY 5801 Walker w; 5802 w.xSelectCallback = sqlite3SelectWalkNoop; 5803 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5804 w.xExprCallback = sqlite3ExprWalkNoop; 5805 w.pParse = pParse; 5806 sqlite3WalkSelect(&w, pSelect); 5807 #endif 5808 } 5809 5810 5811 /* 5812 ** This routine sets up a SELECT statement for processing. The 5813 ** following is accomplished: 5814 ** 5815 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5816 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5817 ** * ON and USING clauses are shifted into WHERE statements 5818 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5819 ** * Identifiers in expression are matched to tables. 5820 ** 5821 ** This routine acts recursively on all subqueries within the SELECT. 5822 */ 5823 void sqlite3SelectPrep( 5824 Parse *pParse, /* The parser context */ 5825 Select *p, /* The SELECT statement being coded. */ 5826 NameContext *pOuterNC /* Name context for container */ 5827 ){ 5828 assert( p!=0 || pParse->db->mallocFailed ); 5829 if( pParse->db->mallocFailed ) return; 5830 if( p->selFlags & SF_HasTypeInfo ) return; 5831 sqlite3SelectExpand(pParse, p); 5832 if( pParse->nErr || pParse->db->mallocFailed ) return; 5833 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5834 if( pParse->nErr || pParse->db->mallocFailed ) return; 5835 sqlite3SelectAddTypeInfo(pParse, p); 5836 } 5837 5838 /* 5839 ** Reset the aggregate accumulator. 5840 ** 5841 ** The aggregate accumulator is a set of memory cells that hold 5842 ** intermediate results while calculating an aggregate. This 5843 ** routine generates code that stores NULLs in all of those memory 5844 ** cells. 5845 */ 5846 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5847 Vdbe *v = pParse->pVdbe; 5848 int i; 5849 struct AggInfo_func *pFunc; 5850 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5851 if( nReg==0 ) return; 5852 if( pParse->nErr || pParse->db->mallocFailed ) return; 5853 #ifdef SQLITE_DEBUG 5854 /* Verify that all AggInfo registers are within the range specified by 5855 ** AggInfo.mnReg..AggInfo.mxReg */ 5856 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5857 for(i=0; i<pAggInfo->nColumn; i++){ 5858 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5859 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5860 } 5861 for(i=0; i<pAggInfo->nFunc; i++){ 5862 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5863 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5864 } 5865 #endif 5866 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5867 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5868 if( pFunc->iDistinct>=0 ){ 5869 Expr *pE = pFunc->pFExpr; 5870 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5871 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5872 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5873 "argument"); 5874 pFunc->iDistinct = -1; 5875 }else{ 5876 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5877 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5878 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5879 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5880 pFunc->pFunc->zName)); 5881 } 5882 } 5883 } 5884 } 5885 5886 /* 5887 ** Invoke the OP_AggFinalize opcode for every aggregate function 5888 ** in the AggInfo structure. 5889 */ 5890 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5891 Vdbe *v = pParse->pVdbe; 5892 int i; 5893 struct AggInfo_func *pF; 5894 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5895 ExprList *pList = pF->pFExpr->x.pList; 5896 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5897 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5898 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5899 } 5900 } 5901 5902 5903 /* 5904 ** Update the accumulator memory cells for an aggregate based on 5905 ** the current cursor position. 5906 ** 5907 ** If regAcc is non-zero and there are no min() or max() aggregates 5908 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5909 ** registers if register regAcc contains 0. The caller will take care 5910 ** of setting and clearing regAcc. 5911 */ 5912 static void updateAccumulator( 5913 Parse *pParse, 5914 int regAcc, 5915 AggInfo *pAggInfo, 5916 int eDistinctType 5917 ){ 5918 Vdbe *v = pParse->pVdbe; 5919 int i; 5920 int regHit = 0; 5921 int addrHitTest = 0; 5922 struct AggInfo_func *pF; 5923 struct AggInfo_col *pC; 5924 5925 pAggInfo->directMode = 1; 5926 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5927 int nArg; 5928 int addrNext = 0; 5929 int regAgg; 5930 ExprList *pList = pF->pFExpr->x.pList; 5931 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5932 assert( !IsWindowFunc(pF->pFExpr) ); 5933 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5934 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5935 if( pAggInfo->nAccumulator 5936 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5937 && regAcc 5938 ){ 5939 /* If regAcc==0, there there exists some min() or max() function 5940 ** without a FILTER clause that will ensure the magnet registers 5941 ** are populated. */ 5942 if( regHit==0 ) regHit = ++pParse->nMem; 5943 /* If this is the first row of the group (regAcc contains 0), clear the 5944 ** "magnet" register regHit so that the accumulator registers 5945 ** are populated if the FILTER clause jumps over the the 5946 ** invocation of min() or max() altogether. Or, if this is not 5947 ** the first row (regAcc contains 1), set the magnet register so that 5948 ** the accumulators are not populated unless the min()/max() is invoked 5949 ** and indicates that they should be. */ 5950 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5951 } 5952 addrNext = sqlite3VdbeMakeLabel(pParse); 5953 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5954 } 5955 if( pList ){ 5956 nArg = pList->nExpr; 5957 regAgg = sqlite3GetTempRange(pParse, nArg); 5958 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5959 }else{ 5960 nArg = 0; 5961 regAgg = 0; 5962 } 5963 if( pF->iDistinct>=0 && pList ){ 5964 if( addrNext==0 ){ 5965 addrNext = sqlite3VdbeMakeLabel(pParse); 5966 } 5967 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5968 pF->iDistinct, addrNext, pList, regAgg); 5969 } 5970 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5971 CollSeq *pColl = 0; 5972 struct ExprList_item *pItem; 5973 int j; 5974 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5975 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5976 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5977 } 5978 if( !pColl ){ 5979 pColl = pParse->db->pDfltColl; 5980 } 5981 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5982 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5983 } 5984 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5985 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5986 sqlite3VdbeChangeP5(v, (u8)nArg); 5987 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5988 if( addrNext ){ 5989 sqlite3VdbeResolveLabel(v, addrNext); 5990 } 5991 } 5992 if( regHit==0 && pAggInfo->nAccumulator ){ 5993 regHit = regAcc; 5994 } 5995 if( regHit ){ 5996 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5997 } 5998 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5999 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6000 } 6001 6002 pAggInfo->directMode = 0; 6003 if( addrHitTest ){ 6004 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6005 } 6006 } 6007 6008 /* 6009 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6010 ** count(*) query ("SELECT count(*) FROM pTab"). 6011 */ 6012 #ifndef SQLITE_OMIT_EXPLAIN 6013 static void explainSimpleCount( 6014 Parse *pParse, /* Parse context */ 6015 Table *pTab, /* Table being queried */ 6016 Index *pIdx /* Index used to optimize scan, or NULL */ 6017 ){ 6018 if( pParse->explain==2 ){ 6019 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6020 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6021 pTab->zName, 6022 bCover ? " USING COVERING INDEX " : "", 6023 bCover ? pIdx->zName : "" 6024 ); 6025 } 6026 } 6027 #else 6028 # define explainSimpleCount(a,b,c) 6029 #endif 6030 6031 /* 6032 ** sqlite3WalkExpr() callback used by havingToWhere(). 6033 ** 6034 ** If the node passed to the callback is a TK_AND node, return 6035 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6036 ** 6037 ** Otherwise, return WRC_Prune. In this case, also check if the 6038 ** sub-expression matches the criteria for being moved to the WHERE 6039 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6040 ** within the HAVING expression with a constant "1". 6041 */ 6042 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6043 if( pExpr->op!=TK_AND ){ 6044 Select *pS = pWalker->u.pSelect; 6045 /* This routine is called before the HAVING clause of the current 6046 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6047 ** here, it indicates that the expression is a correlated reference to a 6048 ** column from an outer aggregate query, or an aggregate function that 6049 ** belongs to an outer query. Do not move the expression to the WHERE 6050 ** clause in this obscure case, as doing so may corrupt the outer Select 6051 ** statements AggInfo structure. */ 6052 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6053 && ExprAlwaysFalse(pExpr)==0 6054 && pExpr->pAggInfo==0 6055 ){ 6056 sqlite3 *db = pWalker->pParse->db; 6057 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6058 if( pNew ){ 6059 Expr *pWhere = pS->pWhere; 6060 SWAP(Expr, *pNew, *pExpr); 6061 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6062 pS->pWhere = pNew; 6063 pWalker->eCode = 1; 6064 } 6065 } 6066 return WRC_Prune; 6067 } 6068 return WRC_Continue; 6069 } 6070 6071 /* 6072 ** Transfer eligible terms from the HAVING clause of a query, which is 6073 ** processed after grouping, to the WHERE clause, which is processed before 6074 ** grouping. For example, the query: 6075 ** 6076 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6077 ** 6078 ** can be rewritten as: 6079 ** 6080 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6081 ** 6082 ** A term of the HAVING expression is eligible for transfer if it consists 6083 ** entirely of constants and expressions that are also GROUP BY terms that 6084 ** use the "BINARY" collation sequence. 6085 */ 6086 static void havingToWhere(Parse *pParse, Select *p){ 6087 Walker sWalker; 6088 memset(&sWalker, 0, sizeof(sWalker)); 6089 sWalker.pParse = pParse; 6090 sWalker.xExprCallback = havingToWhereExprCb; 6091 sWalker.u.pSelect = p; 6092 sqlite3WalkExpr(&sWalker, p->pHaving); 6093 #if SELECTTRACE_ENABLED 6094 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6095 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6096 sqlite3TreeViewSelect(0, p, 0); 6097 } 6098 #endif 6099 } 6100 6101 /* 6102 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6103 ** If it is, then return the SrcList_item for the prior view. If it is not, 6104 ** then return 0. 6105 */ 6106 static SrcItem *isSelfJoinView( 6107 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6108 SrcItem *pThis /* Search for prior reference to this subquery */ 6109 ){ 6110 SrcItem *pItem; 6111 assert( pThis->pSelect!=0 ); 6112 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6113 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6114 Select *pS1; 6115 if( pItem->pSelect==0 ) continue; 6116 if( pItem->fg.viaCoroutine ) continue; 6117 if( pItem->zName==0 ) continue; 6118 assert( pItem->pTab!=0 ); 6119 assert( pThis->pTab!=0 ); 6120 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6121 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6122 pS1 = pItem->pSelect; 6123 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6124 /* The query flattener left two different CTE tables with identical 6125 ** names in the same FROM clause. */ 6126 continue; 6127 } 6128 if( pItem->pSelect->selFlags & SF_PushDown ){ 6129 /* The view was modified by some other optimization such as 6130 ** pushDownWhereTerms() */ 6131 continue; 6132 } 6133 return pItem; 6134 } 6135 return 0; 6136 } 6137 6138 /* 6139 ** Deallocate a single AggInfo object 6140 */ 6141 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6142 sqlite3DbFree(db, p->aCol); 6143 sqlite3DbFree(db, p->aFunc); 6144 sqlite3DbFreeNN(db, p); 6145 } 6146 6147 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6148 /* 6149 ** Attempt to transform a query of the form 6150 ** 6151 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6152 ** 6153 ** Into this: 6154 ** 6155 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6156 ** 6157 ** The transformation only works if all of the following are true: 6158 ** 6159 ** * The subquery is a UNION ALL of two or more terms 6160 ** * The subquery does not have a LIMIT clause 6161 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6162 ** * The outer query is a simple count(*) with no WHERE clause or other 6163 ** extraneous syntax. 6164 ** 6165 ** Return TRUE if the optimization is undertaken. 6166 */ 6167 static int countOfViewOptimization(Parse *pParse, Select *p){ 6168 Select *pSub, *pPrior; 6169 Expr *pExpr; 6170 Expr *pCount; 6171 sqlite3 *db; 6172 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6173 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6174 if( p->pWhere ) return 0; 6175 if( p->pGroupBy ) return 0; 6176 pExpr = p->pEList->a[0].pExpr; 6177 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6178 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6179 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6180 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6181 pSub = p->pSrc->a[0].pSelect; 6182 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6183 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6184 do{ 6185 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6186 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6187 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6188 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6189 pSub = pSub->pPrior; /* Repeat over compound */ 6190 }while( pSub ); 6191 6192 /* If we reach this point then it is OK to perform the transformation */ 6193 6194 db = pParse->db; 6195 pCount = pExpr; 6196 pExpr = 0; 6197 pSub = p->pSrc->a[0].pSelect; 6198 p->pSrc->a[0].pSelect = 0; 6199 sqlite3SrcListDelete(db, p->pSrc); 6200 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6201 while( pSub ){ 6202 Expr *pTerm; 6203 pPrior = pSub->pPrior; 6204 pSub->pPrior = 0; 6205 pSub->pNext = 0; 6206 pSub->selFlags |= SF_Aggregate; 6207 pSub->selFlags &= ~SF_Compound; 6208 pSub->nSelectRow = 0; 6209 sqlite3ExprListDelete(db, pSub->pEList); 6210 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6211 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6212 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6213 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6214 if( pExpr==0 ){ 6215 pExpr = pTerm; 6216 }else{ 6217 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6218 } 6219 pSub = pPrior; 6220 } 6221 p->pEList->a[0].pExpr = pExpr; 6222 p->selFlags &= ~SF_Aggregate; 6223 6224 #if SELECTTRACE_ENABLED 6225 if( sqlite3SelectTrace & 0x400 ){ 6226 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6227 sqlite3TreeViewSelect(0, p, 0); 6228 } 6229 #endif 6230 return 1; 6231 } 6232 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6233 6234 /* 6235 ** Generate code for the SELECT statement given in the p argument. 6236 ** 6237 ** The results are returned according to the SelectDest structure. 6238 ** See comments in sqliteInt.h for further information. 6239 ** 6240 ** This routine returns the number of errors. If any errors are 6241 ** encountered, then an appropriate error message is left in 6242 ** pParse->zErrMsg. 6243 ** 6244 ** This routine does NOT free the Select structure passed in. The 6245 ** calling function needs to do that. 6246 */ 6247 int sqlite3Select( 6248 Parse *pParse, /* The parser context */ 6249 Select *p, /* The SELECT statement being coded. */ 6250 SelectDest *pDest /* What to do with the query results */ 6251 ){ 6252 int i, j; /* Loop counters */ 6253 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6254 Vdbe *v; /* The virtual machine under construction */ 6255 int isAgg; /* True for select lists like "count(*)" */ 6256 ExprList *pEList = 0; /* List of columns to extract. */ 6257 SrcList *pTabList; /* List of tables to select from */ 6258 Expr *pWhere; /* The WHERE clause. May be NULL */ 6259 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6260 Expr *pHaving; /* The HAVING clause. May be NULL */ 6261 AggInfo *pAggInfo = 0; /* Aggregate information */ 6262 int rc = 1; /* Value to return from this function */ 6263 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6264 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6265 int iEnd; /* Address of the end of the query */ 6266 sqlite3 *db; /* The database connection */ 6267 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6268 u8 minMaxFlag; /* Flag for min/max queries */ 6269 6270 db = pParse->db; 6271 v = sqlite3GetVdbe(pParse); 6272 if( p==0 || db->mallocFailed || pParse->nErr ){ 6273 return 1; 6274 } 6275 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6276 #if SELECTTRACE_ENABLED 6277 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6278 if( sqlite3SelectTrace & 0x100 ){ 6279 sqlite3TreeViewSelect(0, p, 0); 6280 } 6281 #endif 6282 6283 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6284 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6285 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6286 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6287 if( IgnorableDistinct(pDest) ){ 6288 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6289 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6290 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6291 /* All of these destinations are also able to ignore the ORDER BY clause */ 6292 if( p->pOrderBy ){ 6293 #if SELECTTRACE_ENABLED 6294 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6295 if( sqlite3SelectTrace & 0x100 ){ 6296 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6297 } 6298 #endif 6299 sqlite3ParserAddCleanup(pParse, 6300 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6301 p->pOrderBy); 6302 testcase( pParse->earlyCleanup ); 6303 p->pOrderBy = 0; 6304 } 6305 p->selFlags &= ~SF_Distinct; 6306 p->selFlags |= SF_NoopOrderBy; 6307 } 6308 sqlite3SelectPrep(pParse, p, 0); 6309 if( pParse->nErr || db->mallocFailed ){ 6310 goto select_end; 6311 } 6312 assert( p->pEList!=0 ); 6313 #if SELECTTRACE_ENABLED 6314 if( sqlite3SelectTrace & 0x104 ){ 6315 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6316 sqlite3TreeViewSelect(0, p, 0); 6317 } 6318 #endif 6319 6320 /* If the SF_UFSrcCheck flag is set, then this function is being called 6321 ** as part of populating the temp table for an UPDATE...FROM statement. 6322 ** In this case, it is an error if the target object (pSrc->a[0]) name 6323 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6324 ** 6325 ** Postgres disallows this case too. The reason is that some other 6326 ** systems handle this case differently, and not all the same way, 6327 ** which is just confusing. To avoid this, we follow PG's lead and 6328 ** disallow it altogether. */ 6329 if( p->selFlags & SF_UFSrcCheck ){ 6330 SrcItem *p0 = &p->pSrc->a[0]; 6331 for(i=1; i<p->pSrc->nSrc; i++){ 6332 SrcItem *p1 = &p->pSrc->a[i]; 6333 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6334 sqlite3ErrorMsg(pParse, 6335 "target object/alias may not appear in FROM clause: %s", 6336 p0->zAlias ? p0->zAlias : p0->pTab->zName 6337 ); 6338 goto select_end; 6339 } 6340 } 6341 6342 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6343 ** and leaving this flag set can cause errors if a compound sub-query 6344 ** in p->pSrc is flattened into this query and this function called 6345 ** again as part of compound SELECT processing. */ 6346 p->selFlags &= ~SF_UFSrcCheck; 6347 } 6348 6349 if( pDest->eDest==SRT_Output ){ 6350 sqlite3GenerateColumnNames(pParse, p); 6351 } 6352 6353 #ifndef SQLITE_OMIT_WINDOWFUNC 6354 if( sqlite3WindowRewrite(pParse, p) ){ 6355 assert( db->mallocFailed || pParse->nErr>0 ); 6356 goto select_end; 6357 } 6358 #if SELECTTRACE_ENABLED 6359 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6360 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6361 sqlite3TreeViewSelect(0, p, 0); 6362 } 6363 #endif 6364 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6365 pTabList = p->pSrc; 6366 isAgg = (p->selFlags & SF_Aggregate)!=0; 6367 memset(&sSort, 0, sizeof(sSort)); 6368 sSort.pOrderBy = p->pOrderBy; 6369 6370 /* Try to do various optimizations (flattening subqueries, and strength 6371 ** reduction of join operators) in the FROM clause up into the main query 6372 */ 6373 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6374 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6375 SrcItem *pItem = &pTabList->a[i]; 6376 Select *pSub = pItem->pSelect; 6377 Table *pTab = pItem->pTab; 6378 6379 /* The expander should have already created transient Table objects 6380 ** even for FROM clause elements such as subqueries that do not correspond 6381 ** to a real table */ 6382 assert( pTab!=0 ); 6383 6384 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6385 ** of the LEFT JOIN used in the WHERE clause. 6386 */ 6387 if( (pItem->fg.jointype & JT_LEFT)!=0 6388 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6389 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6390 ){ 6391 SELECTTRACE(0x100,pParse,p, 6392 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6393 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6394 unsetJoinExpr(p->pWhere, pItem->iCursor); 6395 } 6396 6397 /* No futher action if this term of the FROM clause is no a subquery */ 6398 if( pSub==0 ) continue; 6399 6400 /* Catch mismatch in the declared columns of a view and the number of 6401 ** columns in the SELECT on the RHS */ 6402 if( pTab->nCol!=pSub->pEList->nExpr ){ 6403 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6404 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6405 goto select_end; 6406 } 6407 6408 /* Do not try to flatten an aggregate subquery. 6409 ** 6410 ** Flattening an aggregate subquery is only possible if the outer query 6411 ** is not a join. But if the outer query is not a join, then the subquery 6412 ** will be implemented as a co-routine and there is no advantage to 6413 ** flattening in that case. 6414 */ 6415 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6416 assert( pSub->pGroupBy==0 ); 6417 6418 /* If a FROM-clause subquery has an ORDER BY clause that is not 6419 ** really doing anything, then delete it now so that it does not 6420 ** interfere with query flattening. See the discussion at 6421 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6422 ** 6423 ** Beware of these cases where the ORDER BY clause may not be safely 6424 ** omitted: 6425 ** 6426 ** (1) There is also a LIMIT clause 6427 ** (2) The subquery was added to help with window-function 6428 ** processing 6429 ** (3) The subquery is in the FROM clause of an UPDATE 6430 ** (4) The outer query uses an aggregate function other than 6431 ** the built-in count(), min(), or max(). 6432 ** (5) The ORDER BY isn't going to accomplish anything because 6433 ** one of: 6434 ** (a) The outer query has a different ORDER BY clause 6435 ** (b) The subquery is part of a join 6436 ** See forum post 062d576715d277c8 6437 */ 6438 if( pSub->pOrderBy!=0 6439 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6440 && pSub->pLimit==0 /* Condition (1) */ 6441 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6442 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6443 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6444 ){ 6445 SELECTTRACE(0x100,pParse,p, 6446 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6447 sqlite3ExprListDelete(db, pSub->pOrderBy); 6448 pSub->pOrderBy = 0; 6449 } 6450 6451 /* If the outer query contains a "complex" result set (that is, 6452 ** if the result set of the outer query uses functions or subqueries) 6453 ** and if the subquery contains an ORDER BY clause and if 6454 ** it will be implemented as a co-routine, then do not flatten. This 6455 ** restriction allows SQL constructs like this: 6456 ** 6457 ** SELECT expensive_function(x) 6458 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6459 ** 6460 ** The expensive_function() is only computed on the 10 rows that 6461 ** are output, rather than every row of the table. 6462 ** 6463 ** The requirement that the outer query have a complex result set 6464 ** means that flattening does occur on simpler SQL constraints without 6465 ** the expensive_function() like: 6466 ** 6467 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6468 */ 6469 if( pSub->pOrderBy!=0 6470 && i==0 6471 && (p->selFlags & SF_ComplexResult)!=0 6472 && (pTabList->nSrc==1 6473 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6474 ){ 6475 continue; 6476 } 6477 6478 if( flattenSubquery(pParse, p, i, isAgg) ){ 6479 if( pParse->nErr ) goto select_end; 6480 /* This subquery can be absorbed into its parent. */ 6481 i = -1; 6482 } 6483 pTabList = p->pSrc; 6484 if( db->mallocFailed ) goto select_end; 6485 if( !IgnorableOrderby(pDest) ){ 6486 sSort.pOrderBy = p->pOrderBy; 6487 } 6488 } 6489 #endif 6490 6491 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6492 /* Handle compound SELECT statements using the separate multiSelect() 6493 ** procedure. 6494 */ 6495 if( p->pPrior ){ 6496 rc = multiSelect(pParse, p, pDest); 6497 #if SELECTTRACE_ENABLED 6498 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6499 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6500 sqlite3TreeViewSelect(0, p, 0); 6501 } 6502 #endif 6503 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6504 return rc; 6505 } 6506 #endif 6507 6508 /* Do the WHERE-clause constant propagation optimization if this is 6509 ** a join. No need to speed time on this operation for non-join queries 6510 ** as the equivalent optimization will be handled by query planner in 6511 ** sqlite3WhereBegin(). 6512 */ 6513 if( p->pWhere!=0 6514 && p->pWhere->op==TK_AND 6515 && OptimizationEnabled(db, SQLITE_PropagateConst) 6516 && propagateConstants(pParse, p) 6517 ){ 6518 #if SELECTTRACE_ENABLED 6519 if( sqlite3SelectTrace & 0x100 ){ 6520 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6521 sqlite3TreeViewSelect(0, p, 0); 6522 } 6523 #endif 6524 }else{ 6525 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6526 } 6527 6528 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6529 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6530 && countOfViewOptimization(pParse, p) 6531 ){ 6532 if( db->mallocFailed ) goto select_end; 6533 pEList = p->pEList; 6534 pTabList = p->pSrc; 6535 } 6536 #endif 6537 6538 /* For each term in the FROM clause, do two things: 6539 ** (1) Authorized unreferenced tables 6540 ** (2) Generate code for all sub-queries 6541 */ 6542 for(i=0; i<pTabList->nSrc; i++){ 6543 SrcItem *pItem = &pTabList->a[i]; 6544 SrcItem *pPrior; 6545 SelectDest dest; 6546 Select *pSub; 6547 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6548 const char *zSavedAuthContext; 6549 #endif 6550 6551 /* Issue SQLITE_READ authorizations with a fake column name for any 6552 ** tables that are referenced but from which no values are extracted. 6553 ** Examples of where these kinds of null SQLITE_READ authorizations 6554 ** would occur: 6555 ** 6556 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6557 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6558 ** 6559 ** The fake column name is an empty string. It is possible for a table to 6560 ** have a column named by the empty string, in which case there is no way to 6561 ** distinguish between an unreferenced table and an actual reference to the 6562 ** "" column. The original design was for the fake column name to be a NULL, 6563 ** which would be unambiguous. But legacy authorization callbacks might 6564 ** assume the column name is non-NULL and segfault. The use of an empty 6565 ** string for the fake column name seems safer. 6566 */ 6567 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6568 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6569 } 6570 6571 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6572 /* Generate code for all sub-queries in the FROM clause 6573 */ 6574 pSub = pItem->pSelect; 6575 if( pSub==0 ) continue; 6576 6577 /* The code for a subquery should only be generated once. */ 6578 assert( pItem->addrFillSub==0 ); 6579 6580 /* Increment Parse.nHeight by the height of the largest expression 6581 ** tree referred to by this, the parent select. The child select 6582 ** may contain expression trees of at most 6583 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6584 ** more conservative than necessary, but much easier than enforcing 6585 ** an exact limit. 6586 */ 6587 pParse->nHeight += sqlite3SelectExprHeight(p); 6588 6589 /* Make copies of constant WHERE-clause terms in the outer query down 6590 ** inside the subquery. This can help the subquery to run more efficiently. 6591 */ 6592 if( OptimizationEnabled(db, SQLITE_PushDown) 6593 && (pItem->fg.isCte==0 6594 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6595 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6596 (pItem->fg.jointype & JT_OUTER)!=0) 6597 ){ 6598 #if SELECTTRACE_ENABLED 6599 if( sqlite3SelectTrace & 0x100 ){ 6600 SELECTTRACE(0x100,pParse,p, 6601 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6602 sqlite3TreeViewSelect(0, p, 0); 6603 } 6604 #endif 6605 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6606 }else{ 6607 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6608 } 6609 6610 zSavedAuthContext = pParse->zAuthContext; 6611 pParse->zAuthContext = pItem->zName; 6612 6613 /* Generate code to implement the subquery 6614 ** 6615 ** The subquery is implemented as a co-routine if: 6616 ** (1) the subquery is guaranteed to be the outer loop (so that 6617 ** it does not need to be computed more than once), and 6618 ** (2) the subquery is not a CTE that should be materialized 6619 ** 6620 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6621 ** implementation? 6622 */ 6623 if( i==0 6624 && (pTabList->nSrc==1 6625 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6626 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6627 ){ 6628 /* Implement a co-routine that will return a single row of the result 6629 ** set on each invocation. 6630 */ 6631 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6632 6633 pItem->regReturn = ++pParse->nMem; 6634 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6635 VdbeComment((v, "%!S", pItem)); 6636 pItem->addrFillSub = addrTop; 6637 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6638 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6639 sqlite3Select(pParse, pSub, &dest); 6640 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6641 pItem->fg.viaCoroutine = 1; 6642 pItem->regResult = dest.iSdst; 6643 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6644 sqlite3VdbeJumpHere(v, addrTop-1); 6645 sqlite3ClearTempRegCache(pParse); 6646 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6647 /* This is a CTE for which materialization code has already been 6648 ** generated. Invoke the subroutine to compute the materialization, 6649 ** the make the pItem->iCursor be a copy of the ephemerial table that 6650 ** holds the result of the materialization. */ 6651 CteUse *pCteUse = pItem->u2.pCteUse; 6652 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6653 if( pItem->iCursor!=pCteUse->iCur ){ 6654 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6655 VdbeComment((v, "%!S", pItem)); 6656 } 6657 pSub->nSelectRow = pCteUse->nRowEst; 6658 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6659 /* This view has already been materialized by a prior entry in 6660 ** this same FROM clause. Reuse it. */ 6661 if( pPrior->addrFillSub ){ 6662 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6663 } 6664 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6665 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6666 }else{ 6667 /* Materialize the view. If the view is not correlated, generate a 6668 ** subroutine to do the materialization so that subsequent uses of 6669 ** the same view can reuse the materialization. */ 6670 int topAddr; 6671 int onceAddr = 0; 6672 int retAddr; 6673 6674 pItem->regReturn = ++pParse->nMem; 6675 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6676 pItem->addrFillSub = topAddr+1; 6677 if( pItem->fg.isCorrelated==0 ){ 6678 /* If the subquery is not correlated and if we are not inside of 6679 ** a trigger, then we only need to compute the value of the subquery 6680 ** once. */ 6681 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6682 VdbeComment((v, "materialize %!S", pItem)); 6683 }else{ 6684 VdbeNoopComment((v, "materialize %!S", pItem)); 6685 } 6686 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6687 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6688 sqlite3Select(pParse, pSub, &dest); 6689 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6690 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6691 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6692 VdbeComment((v, "end %!S", pItem)); 6693 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6694 sqlite3ClearTempRegCache(pParse); 6695 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6696 CteUse *pCteUse = pItem->u2.pCteUse; 6697 pCteUse->addrM9e = pItem->addrFillSub; 6698 pCteUse->regRtn = pItem->regReturn; 6699 pCteUse->iCur = pItem->iCursor; 6700 pCteUse->nRowEst = pSub->nSelectRow; 6701 } 6702 } 6703 if( db->mallocFailed ) goto select_end; 6704 pParse->nHeight -= sqlite3SelectExprHeight(p); 6705 pParse->zAuthContext = zSavedAuthContext; 6706 #endif 6707 } 6708 6709 /* Various elements of the SELECT copied into local variables for 6710 ** convenience */ 6711 pEList = p->pEList; 6712 pWhere = p->pWhere; 6713 pGroupBy = p->pGroupBy; 6714 pHaving = p->pHaving; 6715 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6716 6717 #if SELECTTRACE_ENABLED 6718 if( sqlite3SelectTrace & 0x400 ){ 6719 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6720 sqlite3TreeViewSelect(0, p, 0); 6721 } 6722 #endif 6723 6724 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6725 ** if the select-list is the same as the ORDER BY list, then this query 6726 ** can be rewritten as a GROUP BY. In other words, this: 6727 ** 6728 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6729 ** 6730 ** is transformed to: 6731 ** 6732 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6733 ** 6734 ** The second form is preferred as a single index (or temp-table) may be 6735 ** used for both the ORDER BY and DISTINCT processing. As originally 6736 ** written the query must use a temp-table for at least one of the ORDER 6737 ** BY and DISTINCT, and an index or separate temp-table for the other. 6738 */ 6739 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6740 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6741 #ifndef SQLITE_OMIT_WINDOWFUNC 6742 && p->pWin==0 6743 #endif 6744 ){ 6745 p->selFlags &= ~SF_Distinct; 6746 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6747 p->selFlags |= SF_Aggregate; 6748 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6749 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6750 ** original setting of the SF_Distinct flag, not the current setting */ 6751 assert( sDistinct.isTnct ); 6752 6753 #if SELECTTRACE_ENABLED 6754 if( sqlite3SelectTrace & 0x400 ){ 6755 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6756 sqlite3TreeViewSelect(0, p, 0); 6757 } 6758 #endif 6759 } 6760 6761 /* If there is an ORDER BY clause, then create an ephemeral index to 6762 ** do the sorting. But this sorting ephemeral index might end up 6763 ** being unused if the data can be extracted in pre-sorted order. 6764 ** If that is the case, then the OP_OpenEphemeral instruction will be 6765 ** changed to an OP_Noop once we figure out that the sorting index is 6766 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6767 ** that change. 6768 */ 6769 if( sSort.pOrderBy ){ 6770 KeyInfo *pKeyInfo; 6771 pKeyInfo = sqlite3KeyInfoFromExprList( 6772 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6773 sSort.iECursor = pParse->nTab++; 6774 sSort.addrSortIndex = 6775 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6776 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6777 (char*)pKeyInfo, P4_KEYINFO 6778 ); 6779 }else{ 6780 sSort.addrSortIndex = -1; 6781 } 6782 6783 /* If the output is destined for a temporary table, open that table. 6784 */ 6785 if( pDest->eDest==SRT_EphemTab ){ 6786 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6787 } 6788 6789 /* Set the limiter. 6790 */ 6791 iEnd = sqlite3VdbeMakeLabel(pParse); 6792 if( (p->selFlags & SF_FixedLimit)==0 ){ 6793 p->nSelectRow = 320; /* 4 billion rows */ 6794 } 6795 computeLimitRegisters(pParse, p, iEnd); 6796 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6797 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6798 sSort.sortFlags |= SORTFLAG_UseSorter; 6799 } 6800 6801 /* Open an ephemeral index to use for the distinct set. 6802 */ 6803 if( p->selFlags & SF_Distinct ){ 6804 sDistinct.tabTnct = pParse->nTab++; 6805 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6806 sDistinct.tabTnct, 0, 0, 6807 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6808 P4_KEYINFO); 6809 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6810 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6811 }else{ 6812 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6813 } 6814 6815 if( !isAgg && pGroupBy==0 ){ 6816 /* No aggregate functions and no GROUP BY clause */ 6817 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6818 | (p->selFlags & SF_FixedLimit); 6819 #ifndef SQLITE_OMIT_WINDOWFUNC 6820 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6821 if( pWin ){ 6822 sqlite3WindowCodeInit(pParse, p); 6823 } 6824 #endif 6825 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6826 6827 6828 /* Begin the database scan. */ 6829 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6830 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6831 p->pEList, wctrlFlags, p->nSelectRow); 6832 if( pWInfo==0 ) goto select_end; 6833 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6834 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6835 } 6836 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6837 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6838 } 6839 if( sSort.pOrderBy ){ 6840 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6841 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6842 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6843 sSort.pOrderBy = 0; 6844 } 6845 } 6846 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6847 6848 /* If sorting index that was created by a prior OP_OpenEphemeral 6849 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6850 ** into an OP_Noop. 6851 */ 6852 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6853 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6854 } 6855 6856 assert( p->pEList==pEList ); 6857 #ifndef SQLITE_OMIT_WINDOWFUNC 6858 if( pWin ){ 6859 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6860 int iCont = sqlite3VdbeMakeLabel(pParse); 6861 int iBreak = sqlite3VdbeMakeLabel(pParse); 6862 int regGosub = ++pParse->nMem; 6863 6864 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6865 6866 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6867 sqlite3VdbeResolveLabel(v, addrGosub); 6868 VdbeNoopComment((v, "inner-loop subroutine")); 6869 sSort.labelOBLopt = 0; 6870 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6871 sqlite3VdbeResolveLabel(v, iCont); 6872 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6873 VdbeComment((v, "end inner-loop subroutine")); 6874 sqlite3VdbeResolveLabel(v, iBreak); 6875 }else 6876 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6877 { 6878 /* Use the standard inner loop. */ 6879 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6880 sqlite3WhereContinueLabel(pWInfo), 6881 sqlite3WhereBreakLabel(pWInfo)); 6882 6883 /* End the database scan loop. 6884 */ 6885 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6886 sqlite3WhereEnd(pWInfo); 6887 } 6888 }else{ 6889 /* This case when there exist aggregate functions or a GROUP BY clause 6890 ** or both */ 6891 NameContext sNC; /* Name context for processing aggregate information */ 6892 int iAMem; /* First Mem address for storing current GROUP BY */ 6893 int iBMem; /* First Mem address for previous GROUP BY */ 6894 int iUseFlag; /* Mem address holding flag indicating that at least 6895 ** one row of the input to the aggregator has been 6896 ** processed */ 6897 int iAbortFlag; /* Mem address which causes query abort if positive */ 6898 int groupBySort; /* Rows come from source in GROUP BY order */ 6899 int addrEnd; /* End of processing for this SELECT */ 6900 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6901 int sortOut = 0; /* Output register from the sorter */ 6902 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6903 6904 /* Remove any and all aliases between the result set and the 6905 ** GROUP BY clause. 6906 */ 6907 if( pGroupBy ){ 6908 int k; /* Loop counter */ 6909 struct ExprList_item *pItem; /* For looping over expression in a list */ 6910 6911 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6912 pItem->u.x.iAlias = 0; 6913 } 6914 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6915 pItem->u.x.iAlias = 0; 6916 } 6917 assert( 66==sqlite3LogEst(100) ); 6918 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6919 6920 /* If there is both a GROUP BY and an ORDER BY clause and they are 6921 ** identical, then it may be possible to disable the ORDER BY clause 6922 ** on the grounds that the GROUP BY will cause elements to come out 6923 ** in the correct order. It also may not - the GROUP BY might use a 6924 ** database index that causes rows to be grouped together as required 6925 ** but not actually sorted. Either way, record the fact that the 6926 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6927 ** variable. */ 6928 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6929 int ii; 6930 /* The GROUP BY processing doesn't care whether rows are delivered in 6931 ** ASC or DESC order - only that each group is returned contiguously. 6932 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6933 ** ORDER BY to maximize the chances of rows being delivered in an 6934 ** order that makes the ORDER BY redundant. */ 6935 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6936 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6937 pGroupBy->a[ii].sortFlags = sortFlags; 6938 } 6939 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6940 orderByGrp = 1; 6941 } 6942 } 6943 }else{ 6944 assert( 0==sqlite3LogEst(1) ); 6945 p->nSelectRow = 0; 6946 } 6947 6948 /* Create a label to jump to when we want to abort the query */ 6949 addrEnd = sqlite3VdbeMakeLabel(pParse); 6950 6951 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6952 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6953 ** SELECT statement. 6954 */ 6955 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6956 if( pAggInfo ){ 6957 sqlite3ParserAddCleanup(pParse, 6958 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6959 testcase( pParse->earlyCleanup ); 6960 } 6961 if( db->mallocFailed ){ 6962 goto select_end; 6963 } 6964 pAggInfo->selId = p->selId; 6965 memset(&sNC, 0, sizeof(sNC)); 6966 sNC.pParse = pParse; 6967 sNC.pSrcList = pTabList; 6968 sNC.uNC.pAggInfo = pAggInfo; 6969 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6970 pAggInfo->mnReg = pParse->nMem+1; 6971 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6972 pAggInfo->pGroupBy = pGroupBy; 6973 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6974 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6975 if( pHaving ){ 6976 if( pGroupBy ){ 6977 assert( pWhere==p->pWhere ); 6978 assert( pHaving==p->pHaving ); 6979 assert( pGroupBy==p->pGroupBy ); 6980 havingToWhere(pParse, p); 6981 pWhere = p->pWhere; 6982 } 6983 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6984 } 6985 pAggInfo->nAccumulator = pAggInfo->nColumn; 6986 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6987 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6988 }else{ 6989 minMaxFlag = WHERE_ORDERBY_NORMAL; 6990 } 6991 for(i=0; i<pAggInfo->nFunc; i++){ 6992 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6993 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6994 sNC.ncFlags |= NC_InAggFunc; 6995 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6996 #ifndef SQLITE_OMIT_WINDOWFUNC 6997 assert( !IsWindowFunc(pExpr) ); 6998 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6999 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7000 } 7001 #endif 7002 sNC.ncFlags &= ~NC_InAggFunc; 7003 } 7004 pAggInfo->mxReg = pParse->nMem; 7005 if( db->mallocFailed ) goto select_end; 7006 #if SELECTTRACE_ENABLED 7007 if( sqlite3SelectTrace & 0x400 ){ 7008 int ii; 7009 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7010 sqlite3TreeViewSelect(0, p, 0); 7011 if( minMaxFlag ){ 7012 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7013 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7014 } 7015 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7016 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7017 ii, pAggInfo->aCol[ii].iMem); 7018 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7019 } 7020 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7021 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7022 ii, pAggInfo->aFunc[ii].iMem); 7023 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7024 } 7025 } 7026 #endif 7027 7028 7029 /* Processing for aggregates with GROUP BY is very different and 7030 ** much more complex than aggregates without a GROUP BY. 7031 */ 7032 if( pGroupBy ){ 7033 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7034 int addr1; /* A-vs-B comparision jump */ 7035 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7036 int regOutputRow; /* Return address register for output subroutine */ 7037 int addrSetAbort; /* Set the abort flag and return */ 7038 int addrTopOfLoop; /* Top of the input loop */ 7039 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7040 int addrReset; /* Subroutine for resetting the accumulator */ 7041 int regReset; /* Return address register for reset subroutine */ 7042 ExprList *pDistinct = 0; 7043 u16 distFlag = 0; 7044 int eDist = WHERE_DISTINCT_NOOP; 7045 7046 if( pAggInfo->nFunc==1 7047 && pAggInfo->aFunc[0].iDistinct>=0 7048 && pAggInfo->aFunc[0].pFExpr->x.pList 7049 ){ 7050 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7051 pExpr = sqlite3ExprDup(db, pExpr, 0); 7052 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7053 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7054 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7055 } 7056 7057 /* If there is a GROUP BY clause we might need a sorting index to 7058 ** implement it. Allocate that sorting index now. If it turns out 7059 ** that we do not need it after all, the OP_SorterOpen instruction 7060 ** will be converted into a Noop. 7061 */ 7062 pAggInfo->sortingIdx = pParse->nTab++; 7063 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7064 0, pAggInfo->nColumn); 7065 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7066 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7067 0, (char*)pKeyInfo, P4_KEYINFO); 7068 7069 /* Initialize memory locations used by GROUP BY aggregate processing 7070 */ 7071 iUseFlag = ++pParse->nMem; 7072 iAbortFlag = ++pParse->nMem; 7073 regOutputRow = ++pParse->nMem; 7074 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7075 regReset = ++pParse->nMem; 7076 addrReset = sqlite3VdbeMakeLabel(pParse); 7077 iAMem = pParse->nMem + 1; 7078 pParse->nMem += pGroupBy->nExpr; 7079 iBMem = pParse->nMem + 1; 7080 pParse->nMem += pGroupBy->nExpr; 7081 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7082 VdbeComment((v, "clear abort flag")); 7083 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7084 7085 /* Begin a loop that will extract all source rows in GROUP BY order. 7086 ** This might involve two separate loops with an OP_Sort in between, or 7087 ** it might be a single loop that uses an index to extract information 7088 ** in the right order to begin with. 7089 */ 7090 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7091 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7092 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7093 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7094 ); 7095 if( pWInfo==0 ){ 7096 sqlite3ExprListDelete(db, pDistinct); 7097 goto select_end; 7098 } 7099 eDist = sqlite3WhereIsDistinct(pWInfo); 7100 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7101 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7102 /* The optimizer is able to deliver rows in group by order so 7103 ** we do not have to sort. The OP_OpenEphemeral table will be 7104 ** cancelled later because we still need to use the pKeyInfo 7105 */ 7106 groupBySort = 0; 7107 }else{ 7108 /* Rows are coming out in undetermined order. We have to push 7109 ** each row into a sorting index, terminate the first loop, 7110 ** then loop over the sorting index in order to get the output 7111 ** in sorted order 7112 */ 7113 int regBase; 7114 int regRecord; 7115 int nCol; 7116 int nGroupBy; 7117 7118 explainTempTable(pParse, 7119 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7120 "DISTINCT" : "GROUP BY"); 7121 7122 groupBySort = 1; 7123 nGroupBy = pGroupBy->nExpr; 7124 nCol = nGroupBy; 7125 j = nGroupBy; 7126 for(i=0; i<pAggInfo->nColumn; i++){ 7127 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7128 nCol++; 7129 j++; 7130 } 7131 } 7132 regBase = sqlite3GetTempRange(pParse, nCol); 7133 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7134 j = nGroupBy; 7135 for(i=0; i<pAggInfo->nColumn; i++){ 7136 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7137 if( pCol->iSorterColumn>=j ){ 7138 int r1 = j + regBase; 7139 sqlite3ExprCodeGetColumnOfTable(v, 7140 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7141 j++; 7142 } 7143 } 7144 regRecord = sqlite3GetTempReg(pParse); 7145 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7146 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7147 sqlite3ReleaseTempReg(pParse, regRecord); 7148 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7149 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7150 sqlite3WhereEnd(pWInfo); 7151 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7152 sortOut = sqlite3GetTempReg(pParse); 7153 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7154 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7155 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7156 pAggInfo->useSortingIdx = 1; 7157 } 7158 7159 /* If the index or temporary table used by the GROUP BY sort 7160 ** will naturally deliver rows in the order required by the ORDER BY 7161 ** clause, cancel the ephemeral table open coded earlier. 7162 ** 7163 ** This is an optimization - the correct answer should result regardless. 7164 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7165 ** disable this optimization for testing purposes. */ 7166 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7167 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7168 ){ 7169 sSort.pOrderBy = 0; 7170 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7171 } 7172 7173 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7174 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7175 ** Then compare the current GROUP BY terms against the GROUP BY terms 7176 ** from the previous row currently stored in a0, a1, a2... 7177 */ 7178 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7179 if( groupBySort ){ 7180 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7181 sortOut, sortPTab); 7182 } 7183 for(j=0; j<pGroupBy->nExpr; j++){ 7184 if( groupBySort ){ 7185 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7186 }else{ 7187 pAggInfo->directMode = 1; 7188 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7189 } 7190 } 7191 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7192 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7193 addr1 = sqlite3VdbeCurrentAddr(v); 7194 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7195 7196 /* Generate code that runs whenever the GROUP BY changes. 7197 ** Changes in the GROUP BY are detected by the previous code 7198 ** block. If there were no changes, this block is skipped. 7199 ** 7200 ** This code copies current group by terms in b0,b1,b2,... 7201 ** over to a0,a1,a2. It then calls the output subroutine 7202 ** and resets the aggregate accumulator registers in preparation 7203 ** for the next GROUP BY batch. 7204 */ 7205 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7206 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7207 VdbeComment((v, "output one row")); 7208 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7209 VdbeComment((v, "check abort flag")); 7210 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7211 VdbeComment((v, "reset accumulator")); 7212 7213 /* Update the aggregate accumulators based on the content of 7214 ** the current row 7215 */ 7216 sqlite3VdbeJumpHere(v, addr1); 7217 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7218 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7219 VdbeComment((v, "indicate data in accumulator")); 7220 7221 /* End of the loop 7222 */ 7223 if( groupBySort ){ 7224 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7225 VdbeCoverage(v); 7226 }else{ 7227 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7228 sqlite3WhereEnd(pWInfo); 7229 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7230 } 7231 sqlite3ExprListDelete(db, pDistinct); 7232 7233 /* Output the final row of result 7234 */ 7235 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7236 VdbeComment((v, "output final row")); 7237 7238 /* Jump over the subroutines 7239 */ 7240 sqlite3VdbeGoto(v, addrEnd); 7241 7242 /* Generate a subroutine that outputs a single row of the result 7243 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7244 ** is less than or equal to zero, the subroutine is a no-op. If 7245 ** the processing calls for the query to abort, this subroutine 7246 ** increments the iAbortFlag memory location before returning in 7247 ** order to signal the caller to abort. 7248 */ 7249 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7250 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7251 VdbeComment((v, "set abort flag")); 7252 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7253 sqlite3VdbeResolveLabel(v, addrOutputRow); 7254 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7255 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7256 VdbeCoverage(v); 7257 VdbeComment((v, "Groupby result generator entry point")); 7258 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7259 finalizeAggFunctions(pParse, pAggInfo); 7260 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7261 selectInnerLoop(pParse, p, -1, &sSort, 7262 &sDistinct, pDest, 7263 addrOutputRow+1, addrSetAbort); 7264 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7265 VdbeComment((v, "end groupby result generator")); 7266 7267 /* Generate a subroutine that will reset the group-by accumulator 7268 */ 7269 sqlite3VdbeResolveLabel(v, addrReset); 7270 resetAccumulator(pParse, pAggInfo); 7271 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7272 VdbeComment((v, "indicate accumulator empty")); 7273 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7274 7275 if( eDist!=WHERE_DISTINCT_NOOP ){ 7276 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7277 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7278 } 7279 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7280 else { 7281 Table *pTab; 7282 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7283 /* If isSimpleCount() returns a pointer to a Table structure, then 7284 ** the SQL statement is of the form: 7285 ** 7286 ** SELECT count(*) FROM <tbl> 7287 ** 7288 ** where the Table structure returned represents table <tbl>. 7289 ** 7290 ** This statement is so common that it is optimized specially. The 7291 ** OP_Count instruction is executed either on the intkey table that 7292 ** contains the data for table <tbl> or on one of its indexes. It 7293 ** is better to execute the op on an index, as indexes are almost 7294 ** always spread across less pages than their corresponding tables. 7295 */ 7296 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7297 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7298 Index *pIdx; /* Iterator variable */ 7299 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7300 Index *pBest = 0; /* Best index found so far */ 7301 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7302 7303 sqlite3CodeVerifySchema(pParse, iDb); 7304 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7305 7306 /* Search for the index that has the lowest scan cost. 7307 ** 7308 ** (2011-04-15) Do not do a full scan of an unordered index. 7309 ** 7310 ** (2013-10-03) Do not count the entries in a partial index. 7311 ** 7312 ** In practice the KeyInfo structure will not be used. It is only 7313 ** passed to keep OP_OpenRead happy. 7314 */ 7315 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7316 if( !p->pSrc->a[0].fg.notIndexed ){ 7317 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7318 if( pIdx->bUnordered==0 7319 && pIdx->szIdxRow<pTab->szTabRow 7320 && pIdx->pPartIdxWhere==0 7321 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7322 ){ 7323 pBest = pIdx; 7324 } 7325 } 7326 } 7327 if( pBest ){ 7328 iRoot = pBest->tnum; 7329 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7330 } 7331 7332 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7333 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7334 if( pKeyInfo ){ 7335 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7336 } 7337 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7338 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7339 explainSimpleCount(pParse, pTab, pBest); 7340 }else{ 7341 int regAcc = 0; /* "populate accumulators" flag */ 7342 ExprList *pDistinct = 0; 7343 u16 distFlag = 0; 7344 int eDist; 7345 7346 /* If there are accumulator registers but no min() or max() functions 7347 ** without FILTER clauses, allocate register regAcc. Register regAcc 7348 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7349 ** The code generated by updateAccumulator() uses this to ensure 7350 ** that the accumulator registers are (a) updated only once if 7351 ** there are no min() or max functions or (b) always updated for the 7352 ** first row visited by the aggregate, so that they are updated at 7353 ** least once even if the FILTER clause means the min() or max() 7354 ** function visits zero rows. */ 7355 if( pAggInfo->nAccumulator ){ 7356 for(i=0; i<pAggInfo->nFunc; i++){ 7357 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7358 continue; 7359 } 7360 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7361 break; 7362 } 7363 } 7364 if( i==pAggInfo->nFunc ){ 7365 regAcc = ++pParse->nMem; 7366 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7367 } 7368 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7369 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7370 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7371 } 7372 7373 /* This case runs if the aggregate has no GROUP BY clause. The 7374 ** processing is much simpler since there is only a single row 7375 ** of output. 7376 */ 7377 assert( p->pGroupBy==0 ); 7378 resetAccumulator(pParse, pAggInfo); 7379 7380 /* If this query is a candidate for the min/max optimization, then 7381 ** minMaxFlag will have been previously set to either 7382 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7383 ** be an appropriate ORDER BY expression for the optimization. 7384 */ 7385 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7386 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7387 7388 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7389 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7390 pDistinct, minMaxFlag|distFlag, 0); 7391 if( pWInfo==0 ){ 7392 goto select_end; 7393 } 7394 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7395 eDist = sqlite3WhereIsDistinct(pWInfo); 7396 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7397 if( eDist!=WHERE_DISTINCT_NOOP ){ 7398 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7399 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7400 } 7401 7402 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7403 if( minMaxFlag ){ 7404 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7405 } 7406 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7407 sqlite3WhereEnd(pWInfo); 7408 finalizeAggFunctions(pParse, pAggInfo); 7409 } 7410 7411 sSort.pOrderBy = 0; 7412 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7413 selectInnerLoop(pParse, p, -1, 0, 0, 7414 pDest, addrEnd, addrEnd); 7415 } 7416 sqlite3VdbeResolveLabel(v, addrEnd); 7417 7418 } /* endif aggregate query */ 7419 7420 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7421 explainTempTable(pParse, "DISTINCT"); 7422 } 7423 7424 /* If there is an ORDER BY clause, then we need to sort the results 7425 ** and send them to the callback one by one. 7426 */ 7427 if( sSort.pOrderBy ){ 7428 explainTempTable(pParse, 7429 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7430 assert( p->pEList==pEList ); 7431 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7432 } 7433 7434 /* Jump here to skip this query 7435 */ 7436 sqlite3VdbeResolveLabel(v, iEnd); 7437 7438 /* The SELECT has been coded. If there is an error in the Parse structure, 7439 ** set the return code to 1. Otherwise 0. */ 7440 rc = (pParse->nErr>0); 7441 7442 /* Control jumps to here if an error is encountered above, or upon 7443 ** successful coding of the SELECT. 7444 */ 7445 select_end: 7446 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7447 pParse->nErr += db->mallocFailed; 7448 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7449 #ifdef SQLITE_DEBUG 7450 if( pAggInfo && !db->mallocFailed ){ 7451 for(i=0; i<pAggInfo->nColumn; i++){ 7452 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7453 assert( pExpr!=0 ); 7454 assert( pExpr->pAggInfo==pAggInfo ); 7455 assert( pExpr->iAgg==i ); 7456 } 7457 for(i=0; i<pAggInfo->nFunc; i++){ 7458 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7459 assert( pExpr!=0 ); 7460 assert( pExpr->pAggInfo==pAggInfo ); 7461 assert( pExpr->iAgg==i ); 7462 } 7463 } 7464 #endif 7465 7466 #if SELECTTRACE_ENABLED 7467 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7468 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7469 sqlite3TreeViewSelect(0, p, 0); 7470 } 7471 #endif 7472 ExplainQueryPlanPop(pParse); 7473 return rc; 7474 } 7475