1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 57 }; 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 59 60 /* 61 ** Delete all the content of a Select structure. Deallocate the structure 62 ** itself only if bFree is true. 63 */ 64 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 65 while( p ){ 66 Select *pPrior = p->pPrior; 67 sqlite3ExprListDelete(db, p->pEList); 68 sqlite3SrcListDelete(db, p->pSrc); 69 sqlite3ExprDelete(db, p->pWhere); 70 sqlite3ExprListDelete(db, p->pGroupBy); 71 sqlite3ExprDelete(db, p->pHaving); 72 sqlite3ExprListDelete(db, p->pOrderBy); 73 sqlite3ExprDelete(db, p->pLimit); 74 sqlite3ExprDelete(db, p->pOffset); 75 sqlite3WithDelete(db, p->pWith); 76 if( bFree ) sqlite3DbFree(db, p); 77 p = pPrior; 78 bFree = 1; 79 } 80 } 81 82 /* 83 ** Initialize a SelectDest structure. 84 */ 85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 86 pDest->eDest = (u8)eDest; 87 pDest->iSDParm = iParm; 88 pDest->affSdst = 0; 89 pDest->iSdst = 0; 90 pDest->nSdst = 0; 91 } 92 93 94 /* 95 ** Allocate a new Select structure and return a pointer to that 96 ** structure. 97 */ 98 Select *sqlite3SelectNew( 99 Parse *pParse, /* Parsing context */ 100 ExprList *pEList, /* which columns to include in the result */ 101 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 102 Expr *pWhere, /* the WHERE clause */ 103 ExprList *pGroupBy, /* the GROUP BY clause */ 104 Expr *pHaving, /* the HAVING clause */ 105 ExprList *pOrderBy, /* the ORDER BY clause */ 106 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 107 Expr *pLimit, /* LIMIT value. NULL means not used */ 108 Expr *pOffset /* OFFSET value. NULL means no offset */ 109 ){ 110 Select *pNew; 111 Select standin; 112 sqlite3 *db = pParse->db; 113 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 114 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 setJoinExpr(p->pLeft, iTable); 370 p = p->pRight; 371 } 372 } 373 374 /* 375 ** This routine processes the join information for a SELECT statement. 376 ** ON and USING clauses are converted into extra terms of the WHERE clause. 377 ** NATURAL joins also create extra WHERE clause terms. 378 ** 379 ** The terms of a FROM clause are contained in the Select.pSrc structure. 380 ** The left most table is the first entry in Select.pSrc. The right-most 381 ** table is the last entry. The join operator is held in the entry to 382 ** the left. Thus entry 0 contains the join operator for the join between 383 ** entries 0 and 1. Any ON or USING clauses associated with the join are 384 ** also attached to the left entry. 385 ** 386 ** This routine returns the number of errors encountered. 387 */ 388 static int sqliteProcessJoin(Parse *pParse, Select *p){ 389 SrcList *pSrc; /* All tables in the FROM clause */ 390 int i, j; /* Loop counters */ 391 struct SrcList_item *pLeft; /* Left table being joined */ 392 struct SrcList_item *pRight; /* Right table being joined */ 393 394 pSrc = p->pSrc; 395 pLeft = &pSrc->a[0]; 396 pRight = &pLeft[1]; 397 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 398 Table *pLeftTab = pLeft->pTab; 399 Table *pRightTab = pRight->pTab; 400 int isOuter; 401 402 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 403 isOuter = (pRight->jointype & JT_OUTER)!=0; 404 405 /* When the NATURAL keyword is present, add WHERE clause terms for 406 ** every column that the two tables have in common. 407 */ 408 if( pRight->jointype & JT_NATURAL ){ 409 if( pRight->pOn || pRight->pUsing ){ 410 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 411 "an ON or USING clause", 0); 412 return 1; 413 } 414 for(j=0; j<pRightTab->nCol; j++){ 415 char *zName; /* Name of column in the right table */ 416 int iLeft; /* Matching left table */ 417 int iLeftCol; /* Matching column in the left table */ 418 419 zName = pRightTab->aCol[j].zName; 420 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 421 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 422 isOuter, &p->pWhere); 423 } 424 } 425 } 426 427 /* Disallow both ON and USING clauses in the same join 428 */ 429 if( pRight->pOn && pRight->pUsing ){ 430 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 431 "clauses in the same join"); 432 return 1; 433 } 434 435 /* Add the ON clause to the end of the WHERE clause, connected by 436 ** an AND operator. 437 */ 438 if( pRight->pOn ){ 439 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 440 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 441 pRight->pOn = 0; 442 } 443 444 /* Create extra terms on the WHERE clause for each column named 445 ** in the USING clause. Example: If the two tables to be joined are 446 ** A and B and the USING clause names X, Y, and Z, then add this 447 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 448 ** Report an error if any column mentioned in the USING clause is 449 ** not contained in both tables to be joined. 450 */ 451 if( pRight->pUsing ){ 452 IdList *pList = pRight->pUsing; 453 for(j=0; j<pList->nId; j++){ 454 char *zName; /* Name of the term in the USING clause */ 455 int iLeft; /* Table on the left with matching column name */ 456 int iLeftCol; /* Column number of matching column on the left */ 457 int iRightCol; /* Column number of matching column on the right */ 458 459 zName = pList->a[j].zName; 460 iRightCol = columnIndex(pRightTab, zName); 461 if( iRightCol<0 462 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 463 ){ 464 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 465 "not present in both tables", zName); 466 return 1; 467 } 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 return 0; 474 } 475 476 /* Forward reference */ 477 static KeyInfo *keyInfoFromExprList( 478 Parse *pParse, /* Parsing context */ 479 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 480 int iStart, /* Begin with this column of pList */ 481 int nExtra /* Add this many extra columns to the end */ 482 ); 483 484 /* 485 ** Generate code that will push the record in registers regData 486 ** through regData+nData-1 onto the sorter. 487 */ 488 static void pushOntoSorter( 489 Parse *pParse, /* Parser context */ 490 SortCtx *pSort, /* Information about the ORDER BY clause */ 491 Select *pSelect, /* The whole SELECT statement */ 492 int regData, /* First register holding data to be sorted */ 493 int nData, /* Number of elements in the data array */ 494 int nPrefixReg /* No. of reg prior to regData available for use */ 495 ){ 496 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 497 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 498 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 499 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 500 int regBase; /* Regs for sorter record */ 501 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 502 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 503 int op; /* Opcode to add sorter record to sorter */ 504 505 assert( bSeq==0 || bSeq==1 ); 506 if( nPrefixReg ){ 507 assert( nPrefixReg==nExpr+bSeq ); 508 regBase = regData - nExpr - bSeq; 509 }else{ 510 regBase = pParse->nMem + 1; 511 pParse->nMem += nBase; 512 } 513 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 514 if( bSeq ){ 515 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 516 } 517 if( nPrefixReg==0 ){ 518 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 519 } 520 521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 522 if( nOBSat>0 ){ 523 int regPrevKey; /* The first nOBSat columns of the previous row */ 524 int addrFirst; /* Address of the OP_IfNot opcode */ 525 int addrJmp; /* Address of the OP_Jump opcode */ 526 VdbeOp *pOp; /* Opcode that opens the sorter */ 527 int nKey; /* Number of sorting key columns, including OP_Sequence */ 528 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 529 530 regPrevKey = pParse->nMem+1; 531 pParse->nMem += pSort->nOBSat; 532 nKey = nExpr - pSort->nOBSat + bSeq; 533 if( bSeq ){ 534 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 535 }else{ 536 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 537 } 538 VdbeCoverage(v); 539 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 540 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 541 if( pParse->db->mallocFailed ) return; 542 pOp->p2 = nKey + nData; 543 pKI = pOp->p4.pKeyInfo; 544 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 545 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 546 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 547 addrJmp = sqlite3VdbeCurrentAddr(v); 548 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 549 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 550 pSort->regReturn = ++pParse->nMem; 551 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 552 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 553 sqlite3VdbeJumpHere(v, addrFirst); 554 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 555 sqlite3VdbeJumpHere(v, addrJmp); 556 } 557 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 558 op = OP_SorterInsert; 559 }else{ 560 op = OP_IdxInsert; 561 } 562 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 563 if( pSelect->iLimit ){ 564 int addr1, addr2; 565 int iLimit; 566 if( pSelect->iOffset ){ 567 iLimit = pSelect->iOffset+1; 568 }else{ 569 iLimit = pSelect->iLimit; 570 } 571 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 572 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 573 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 574 sqlite3VdbeJumpHere(v, addr1); 575 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 576 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 577 sqlite3VdbeJumpHere(v, addr2); 578 } 579 } 580 581 /* 582 ** Add code to implement the OFFSET 583 */ 584 static void codeOffset( 585 Vdbe *v, /* Generate code into this VM */ 586 int iOffset, /* Register holding the offset counter */ 587 int iContinue /* Jump here to skip the current record */ 588 ){ 589 if( iOffset>0 ){ 590 int addr; 591 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 592 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 593 VdbeComment((v, "skip OFFSET records")); 594 sqlite3VdbeJumpHere(v, addr); 595 } 596 } 597 598 /* 599 ** Add code that will check to make sure the N registers starting at iMem 600 ** form a distinct entry. iTab is a sorting index that holds previously 601 ** seen combinations of the N values. A new entry is made in iTab 602 ** if the current N values are new. 603 ** 604 ** A jump to addrRepeat is made and the N+1 values are popped from the 605 ** stack if the top N elements are not distinct. 606 */ 607 static void codeDistinct( 608 Parse *pParse, /* Parsing and code generating context */ 609 int iTab, /* A sorting index used to test for distinctness */ 610 int addrRepeat, /* Jump to here if not distinct */ 611 int N, /* Number of elements */ 612 int iMem /* First element */ 613 ){ 614 Vdbe *v; 615 int r1; 616 617 v = pParse->pVdbe; 618 r1 = sqlite3GetTempReg(pParse); 619 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 620 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 621 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 622 sqlite3ReleaseTempReg(pParse, r1); 623 } 624 625 #ifndef SQLITE_OMIT_SUBQUERY 626 /* 627 ** Generate an error message when a SELECT is used within a subexpression 628 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 629 ** column. We do this in a subroutine because the error used to occur 630 ** in multiple places. (The error only occurs in one place now, but we 631 ** retain the subroutine to minimize code disruption.) 632 */ 633 static int checkForMultiColumnSelectError( 634 Parse *pParse, /* Parse context. */ 635 SelectDest *pDest, /* Destination of SELECT results */ 636 int nExpr /* Number of result columns returned by SELECT */ 637 ){ 638 int eDest = pDest->eDest; 639 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 640 sqlite3ErrorMsg(pParse, "only a single result allowed for " 641 "a SELECT that is part of an expression"); 642 return 1; 643 }else{ 644 return 0; 645 } 646 } 647 #endif 648 649 /* 650 ** This routine generates the code for the inside of the inner loop 651 ** of a SELECT. 652 ** 653 ** If srcTab is negative, then the pEList expressions 654 ** are evaluated in order to get the data for this row. If srcTab is 655 ** zero or more, then data is pulled from srcTab and pEList is used only 656 ** to get number columns and the datatype for each column. 657 */ 658 static void selectInnerLoop( 659 Parse *pParse, /* The parser context */ 660 Select *p, /* The complete select statement being coded */ 661 ExprList *pEList, /* List of values being extracted */ 662 int srcTab, /* Pull data from this table */ 663 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 664 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 665 SelectDest *pDest, /* How to dispose of the results */ 666 int iContinue, /* Jump here to continue with next row */ 667 int iBreak /* Jump here to break out of the inner loop */ 668 ){ 669 Vdbe *v = pParse->pVdbe; 670 int i; 671 int hasDistinct; /* True if the DISTINCT keyword is present */ 672 int regResult; /* Start of memory holding result set */ 673 int eDest = pDest->eDest; /* How to dispose of results */ 674 int iParm = pDest->iSDParm; /* First argument to disposal method */ 675 int nResultCol; /* Number of result columns */ 676 int nPrefixReg = 0; /* Number of extra registers before regResult */ 677 678 assert( v ); 679 assert( pEList!=0 ); 680 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 681 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 682 if( pSort==0 && !hasDistinct ){ 683 assert( iContinue!=0 ); 684 codeOffset(v, p->iOffset, iContinue); 685 } 686 687 /* Pull the requested columns. 688 */ 689 nResultCol = pEList->nExpr; 690 691 if( pDest->iSdst==0 ){ 692 if( pSort ){ 693 nPrefixReg = pSort->pOrderBy->nExpr; 694 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 695 pParse->nMem += nPrefixReg; 696 } 697 pDest->iSdst = pParse->nMem+1; 698 pParse->nMem += nResultCol; 699 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 700 /* This is an error condition that can result, for example, when a SELECT 701 ** on the right-hand side of an INSERT contains more result columns than 702 ** there are columns in the table on the left. The error will be caught 703 ** and reported later. But we need to make sure enough memory is allocated 704 ** to avoid other spurious errors in the meantime. */ 705 pParse->nMem += nResultCol; 706 } 707 pDest->nSdst = nResultCol; 708 regResult = pDest->iSdst; 709 if( srcTab>=0 ){ 710 for(i=0; i<nResultCol; i++){ 711 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 712 VdbeComment((v, "%s", pEList->a[i].zName)); 713 } 714 }else if( eDest!=SRT_Exists ){ 715 /* If the destination is an EXISTS(...) expression, the actual 716 ** values returned by the SELECT are not required. 717 */ 718 sqlite3ExprCodeExprList(pParse, pEList, regResult, 719 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 720 } 721 722 /* If the DISTINCT keyword was present on the SELECT statement 723 ** and this row has been seen before, then do not make this row 724 ** part of the result. 725 */ 726 if( hasDistinct ){ 727 switch( pDistinct->eTnctType ){ 728 case WHERE_DISTINCT_ORDERED: { 729 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 730 int iJump; /* Jump destination */ 731 int regPrev; /* Previous row content */ 732 733 /* Allocate space for the previous row */ 734 regPrev = pParse->nMem+1; 735 pParse->nMem += nResultCol; 736 737 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 738 ** sets the MEM_Cleared bit on the first register of the 739 ** previous value. This will cause the OP_Ne below to always 740 ** fail on the first iteration of the loop even if the first 741 ** row is all NULLs. 742 */ 743 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 744 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 745 pOp->opcode = OP_Null; 746 pOp->p1 = 1; 747 pOp->p2 = regPrev; 748 749 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 750 for(i=0; i<nResultCol; i++){ 751 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 752 if( i<nResultCol-1 ){ 753 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 754 VdbeCoverage(v); 755 }else{ 756 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 757 VdbeCoverage(v); 758 } 759 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 760 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 761 } 762 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 763 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 764 break; 765 } 766 767 case WHERE_DISTINCT_UNIQUE: { 768 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 769 break; 770 } 771 772 default: { 773 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 774 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 775 break; 776 } 777 } 778 if( pSort==0 ){ 779 codeOffset(v, p->iOffset, iContinue); 780 } 781 } 782 783 switch( eDest ){ 784 /* In this mode, write each query result to the key of the temporary 785 ** table iParm. 786 */ 787 #ifndef SQLITE_OMIT_COMPOUND_SELECT 788 case SRT_Union: { 789 int r1; 790 r1 = sqlite3GetTempReg(pParse); 791 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 792 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 793 sqlite3ReleaseTempReg(pParse, r1); 794 break; 795 } 796 797 /* Construct a record from the query result, but instead of 798 ** saving that record, use it as a key to delete elements from 799 ** the temporary table iParm. 800 */ 801 case SRT_Except: { 802 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 803 break; 804 } 805 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 806 807 /* Store the result as data using a unique key. 808 */ 809 case SRT_Fifo: 810 case SRT_DistFifo: 811 case SRT_Table: 812 case SRT_EphemTab: { 813 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 814 testcase( eDest==SRT_Table ); 815 testcase( eDest==SRT_EphemTab ); 816 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 817 #ifndef SQLITE_OMIT_CTE 818 if( eDest==SRT_DistFifo ){ 819 /* If the destination is DistFifo, then cursor (iParm+1) is open 820 ** on an ephemeral index. If the current row is already present 821 ** in the index, do not write it to the output. If not, add the 822 ** current row to the index and proceed with writing it to the 823 ** output table as well. */ 824 int addr = sqlite3VdbeCurrentAddr(v) + 4; 825 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 826 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 827 assert( pSort==0 ); 828 } 829 #endif 830 if( pSort ){ 831 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 832 }else{ 833 int r2 = sqlite3GetTempReg(pParse); 834 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 835 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 836 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 837 sqlite3ReleaseTempReg(pParse, r2); 838 } 839 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 840 break; 841 } 842 843 #ifndef SQLITE_OMIT_SUBQUERY 844 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 845 ** then there should be a single item on the stack. Write this 846 ** item into the set table with bogus data. 847 */ 848 case SRT_Set: { 849 assert( nResultCol==1 ); 850 pDest->affSdst = 851 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 852 if( pSort ){ 853 /* At first glance you would think we could optimize out the 854 ** ORDER BY in this case since the order of entries in the set 855 ** does not matter. But there might be a LIMIT clause, in which 856 ** case the order does matter */ 857 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 858 }else{ 859 int r1 = sqlite3GetTempReg(pParse); 860 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 861 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 862 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 863 sqlite3ReleaseTempReg(pParse, r1); 864 } 865 break; 866 } 867 868 /* If any row exist in the result set, record that fact and abort. 869 */ 870 case SRT_Exists: { 871 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 872 /* The LIMIT clause will terminate the loop for us */ 873 break; 874 } 875 876 /* If this is a scalar select that is part of an expression, then 877 ** store the results in the appropriate memory cell and break out 878 ** of the scan loop. 879 */ 880 case SRT_Mem: { 881 assert( nResultCol==1 ); 882 if( pSort ){ 883 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 884 }else{ 885 assert( regResult==iParm ); 886 /* The LIMIT clause will jump out of the loop for us */ 887 } 888 break; 889 } 890 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 891 892 case SRT_Coroutine: /* Send data to a co-routine */ 893 case SRT_Output: { /* Return the results */ 894 testcase( eDest==SRT_Coroutine ); 895 testcase( eDest==SRT_Output ); 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 898 }else if( eDest==SRT_Coroutine ){ 899 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 900 }else{ 901 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 902 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 903 } 904 break; 905 } 906 907 #ifndef SQLITE_OMIT_CTE 908 /* Write the results into a priority queue that is order according to 909 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 910 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 911 ** pSO->nExpr columns, then make sure all keys are unique by adding a 912 ** final OP_Sequence column. The last column is the record as a blob. 913 */ 914 case SRT_DistQueue: 915 case SRT_Queue: { 916 int nKey; 917 int r1, r2, r3; 918 int addrTest = 0; 919 ExprList *pSO; 920 pSO = pDest->pOrderBy; 921 assert( pSO ); 922 nKey = pSO->nExpr; 923 r1 = sqlite3GetTempReg(pParse); 924 r2 = sqlite3GetTempRange(pParse, nKey+2); 925 r3 = r2+nKey+1; 926 if( eDest==SRT_DistQueue ){ 927 /* If the destination is DistQueue, then cursor (iParm+1) is open 928 ** on a second ephemeral index that holds all values every previously 929 ** added to the queue. */ 930 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 931 regResult, nResultCol); 932 VdbeCoverage(v); 933 } 934 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 935 if( eDest==SRT_DistQueue ){ 936 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 937 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 938 } 939 for(i=0; i<nKey; i++){ 940 sqlite3VdbeAddOp2(v, OP_SCopy, 941 regResult + pSO->a[i].u.x.iOrderByCol - 1, 942 r2+i); 943 } 944 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 945 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 946 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 947 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 948 sqlite3ReleaseTempReg(pParse, r1); 949 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 950 break; 951 } 952 #endif /* SQLITE_OMIT_CTE */ 953 954 955 956 #if !defined(SQLITE_OMIT_TRIGGER) 957 /* Discard the results. This is used for SELECT statements inside 958 ** the body of a TRIGGER. The purpose of such selects is to call 959 ** user-defined functions that have side effects. We do not care 960 ** about the actual results of the select. 961 */ 962 default: { 963 assert( eDest==SRT_Discard ); 964 break; 965 } 966 #endif 967 } 968 969 /* Jump to the end of the loop if the LIMIT is reached. Except, if 970 ** there is a sorter, in which case the sorter has already limited 971 ** the output for us. 972 */ 973 if( pSort==0 && p->iLimit ){ 974 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 975 } 976 } 977 978 /* 979 ** Allocate a KeyInfo object sufficient for an index of N key columns and 980 ** X extra columns. 981 */ 982 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 983 KeyInfo *p = sqlite3DbMallocZero(0, 984 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 985 if( p ){ 986 p->aSortOrder = (u8*)&p->aColl[N+X]; 987 p->nField = (u16)N; 988 p->nXField = (u16)X; 989 p->enc = ENC(db); 990 p->db = db; 991 p->nRef = 1; 992 }else{ 993 db->mallocFailed = 1; 994 } 995 return p; 996 } 997 998 /* 999 ** Deallocate a KeyInfo object 1000 */ 1001 void sqlite3KeyInfoUnref(KeyInfo *p){ 1002 if( p ){ 1003 assert( p->nRef>0 ); 1004 p->nRef--; 1005 if( p->nRef==0 ) sqlite3DbFree(0, p); 1006 } 1007 } 1008 1009 /* 1010 ** Make a new pointer to a KeyInfo object 1011 */ 1012 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1013 if( p ){ 1014 assert( p->nRef>0 ); 1015 p->nRef++; 1016 } 1017 return p; 1018 } 1019 1020 #ifdef SQLITE_DEBUG 1021 /* 1022 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1023 ** can only be changed if this is just a single reference to the object. 1024 ** 1025 ** This routine is used only inside of assert() statements. 1026 */ 1027 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1028 #endif /* SQLITE_DEBUG */ 1029 1030 /* 1031 ** Given an expression list, generate a KeyInfo structure that records 1032 ** the collating sequence for each expression in that expression list. 1033 ** 1034 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1035 ** KeyInfo structure is appropriate for initializing a virtual index to 1036 ** implement that clause. If the ExprList is the result set of a SELECT 1037 ** then the KeyInfo structure is appropriate for initializing a virtual 1038 ** index to implement a DISTINCT test. 1039 ** 1040 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1041 ** function is responsible for seeing that this structure is eventually 1042 ** freed. 1043 */ 1044 static KeyInfo *keyInfoFromExprList( 1045 Parse *pParse, /* Parsing context */ 1046 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1047 int iStart, /* Begin with this column of pList */ 1048 int nExtra /* Add this many extra columns to the end */ 1049 ){ 1050 int nExpr; 1051 KeyInfo *pInfo; 1052 struct ExprList_item *pItem; 1053 sqlite3 *db = pParse->db; 1054 int i; 1055 1056 nExpr = pList->nExpr; 1057 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1058 if( pInfo ){ 1059 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1060 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1061 CollSeq *pColl; 1062 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1063 if( !pColl ) pColl = db->pDfltColl; 1064 pInfo->aColl[i-iStart] = pColl; 1065 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1066 } 1067 } 1068 return pInfo; 1069 } 1070 1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1072 /* 1073 ** Name of the connection operator, used for error messages. 1074 */ 1075 static const char *selectOpName(int id){ 1076 char *z; 1077 switch( id ){ 1078 case TK_ALL: z = "UNION ALL"; break; 1079 case TK_INTERSECT: z = "INTERSECT"; break; 1080 case TK_EXCEPT: z = "EXCEPT"; break; 1081 default: z = "UNION"; break; 1082 } 1083 return z; 1084 } 1085 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1086 1087 #ifndef SQLITE_OMIT_EXPLAIN 1088 /* 1089 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1090 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1091 ** where the caption is of the form: 1092 ** 1093 ** "USE TEMP B-TREE FOR xxx" 1094 ** 1095 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1096 ** is determined by the zUsage argument. 1097 */ 1098 static void explainTempTable(Parse *pParse, const char *zUsage){ 1099 if( pParse->explain==2 ){ 1100 Vdbe *v = pParse->pVdbe; 1101 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1102 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1103 } 1104 } 1105 1106 /* 1107 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1108 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1109 ** in sqlite3Select() to assign values to structure member variables that 1110 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1111 ** code with #ifndef directives. 1112 */ 1113 # define explainSetInteger(a, b) a = b 1114 1115 #else 1116 /* No-op versions of the explainXXX() functions and macros. */ 1117 # define explainTempTable(y,z) 1118 # define explainSetInteger(y,z) 1119 #endif 1120 1121 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1122 /* 1123 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1124 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1125 ** where the caption is of one of the two forms: 1126 ** 1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1128 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1129 ** 1130 ** where iSub1 and iSub2 are the integers passed as the corresponding 1131 ** function parameters, and op is the text representation of the parameter 1132 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1133 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1134 ** false, or the second form if it is true. 1135 */ 1136 static void explainComposite( 1137 Parse *pParse, /* Parse context */ 1138 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1139 int iSub1, /* Subquery id 1 */ 1140 int iSub2, /* Subquery id 2 */ 1141 int bUseTmp /* True if a temp table was used */ 1142 ){ 1143 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1144 if( pParse->explain==2 ){ 1145 Vdbe *v = pParse->pVdbe; 1146 char *zMsg = sqlite3MPrintf( 1147 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1148 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1149 ); 1150 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1151 } 1152 } 1153 #else 1154 /* No-op versions of the explainXXX() functions and macros. */ 1155 # define explainComposite(v,w,x,y,z) 1156 #endif 1157 1158 /* 1159 ** If the inner loop was generated using a non-null pOrderBy argument, 1160 ** then the results were placed in a sorter. After the loop is terminated 1161 ** we need to run the sorter and output the results. The following 1162 ** routine generates the code needed to do that. 1163 */ 1164 static void generateSortTail( 1165 Parse *pParse, /* Parsing context */ 1166 Select *p, /* The SELECT statement */ 1167 SortCtx *pSort, /* Information on the ORDER BY clause */ 1168 int nColumn, /* Number of columns of data */ 1169 SelectDest *pDest /* Write the sorted results here */ 1170 ){ 1171 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1172 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1173 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1174 int addr; 1175 int addrOnce = 0; 1176 int iTab; 1177 ExprList *pOrderBy = pSort->pOrderBy; 1178 int eDest = pDest->eDest; 1179 int iParm = pDest->iSDParm; 1180 int regRow; 1181 int regRowid; 1182 int nKey; 1183 int iSortTab; /* Sorter cursor to read from */ 1184 int nSortData; /* Trailing values to read from sorter */ 1185 int i; 1186 int bSeq; /* True if sorter record includes seq. no. */ 1187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1188 struct ExprList_item *aOutEx = p->pEList->a; 1189 #endif 1190 1191 if( pSort->labelBkOut ){ 1192 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1193 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1194 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1195 } 1196 iTab = pSort->iECursor; 1197 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1198 regRowid = 0; 1199 regRow = pDest->iSdst; 1200 nSortData = nColumn; 1201 }else{ 1202 regRowid = sqlite3GetTempReg(pParse); 1203 regRow = sqlite3GetTempReg(pParse); 1204 nSortData = 1; 1205 } 1206 nKey = pOrderBy->nExpr - pSort->nOBSat; 1207 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1208 int regSortOut = ++pParse->nMem; 1209 iSortTab = pParse->nTab++; 1210 if( pSort->labelBkOut ){ 1211 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1212 } 1213 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1214 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1215 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1216 VdbeCoverage(v); 1217 codeOffset(v, p->iOffset, addrContinue); 1218 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1219 bSeq = 0; 1220 }else{ 1221 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1222 codeOffset(v, p->iOffset, addrContinue); 1223 iSortTab = iTab; 1224 bSeq = 1; 1225 } 1226 for(i=0; i<nSortData; i++){ 1227 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1228 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1229 } 1230 switch( eDest ){ 1231 case SRT_Table: 1232 case SRT_EphemTab: { 1233 testcase( eDest==SRT_Table ); 1234 testcase( eDest==SRT_EphemTab ); 1235 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1236 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1237 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1238 break; 1239 } 1240 #ifndef SQLITE_OMIT_SUBQUERY 1241 case SRT_Set: { 1242 assert( nColumn==1 ); 1243 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1244 &pDest->affSdst, 1); 1245 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1246 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1247 break; 1248 } 1249 case SRT_Mem: { 1250 assert( nColumn==1 ); 1251 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1252 /* The LIMIT clause will terminate the loop for us */ 1253 break; 1254 } 1255 #endif 1256 default: { 1257 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1258 testcase( eDest==SRT_Output ); 1259 testcase( eDest==SRT_Coroutine ); 1260 if( eDest==SRT_Output ){ 1261 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1262 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1263 }else{ 1264 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1265 } 1266 break; 1267 } 1268 } 1269 if( regRowid ){ 1270 sqlite3ReleaseTempReg(pParse, regRow); 1271 sqlite3ReleaseTempReg(pParse, regRowid); 1272 } 1273 /* The bottom of the loop 1274 */ 1275 sqlite3VdbeResolveLabel(v, addrContinue); 1276 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1277 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1278 }else{ 1279 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1280 } 1281 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1282 sqlite3VdbeResolveLabel(v, addrBreak); 1283 } 1284 1285 /* 1286 ** Return a pointer to a string containing the 'declaration type' of the 1287 ** expression pExpr. The string may be treated as static by the caller. 1288 ** 1289 ** Also try to estimate the size of the returned value and return that 1290 ** result in *pEstWidth. 1291 ** 1292 ** The declaration type is the exact datatype definition extracted from the 1293 ** original CREATE TABLE statement if the expression is a column. The 1294 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1295 ** is considered a column can be complex in the presence of subqueries. The 1296 ** result-set expression in all of the following SELECT statements is 1297 ** considered a column by this function. 1298 ** 1299 ** SELECT col FROM tbl; 1300 ** SELECT (SELECT col FROM tbl; 1301 ** SELECT (SELECT col FROM tbl); 1302 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1303 ** 1304 ** The declaration type for any expression other than a column is NULL. 1305 ** 1306 ** This routine has either 3 or 6 parameters depending on whether or not 1307 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1308 */ 1309 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1310 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1311 static const char *columnTypeImpl( 1312 NameContext *pNC, 1313 Expr *pExpr, 1314 const char **pzOrigDb, 1315 const char **pzOrigTab, 1316 const char **pzOrigCol, 1317 u8 *pEstWidth 1318 ){ 1319 char const *zOrigDb = 0; 1320 char const *zOrigTab = 0; 1321 char const *zOrigCol = 0; 1322 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1324 static const char *columnTypeImpl( 1325 NameContext *pNC, 1326 Expr *pExpr, 1327 u8 *pEstWidth 1328 ){ 1329 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1330 char const *zType = 0; 1331 int j; 1332 u8 estWidth = 1; 1333 1334 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1335 switch( pExpr->op ){ 1336 case TK_AGG_COLUMN: 1337 case TK_COLUMN: { 1338 /* The expression is a column. Locate the table the column is being 1339 ** extracted from in NameContext.pSrcList. This table may be real 1340 ** database table or a subquery. 1341 */ 1342 Table *pTab = 0; /* Table structure column is extracted from */ 1343 Select *pS = 0; /* Select the column is extracted from */ 1344 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1345 testcase( pExpr->op==TK_AGG_COLUMN ); 1346 testcase( pExpr->op==TK_COLUMN ); 1347 while( pNC && !pTab ){ 1348 SrcList *pTabList = pNC->pSrcList; 1349 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1350 if( j<pTabList->nSrc ){ 1351 pTab = pTabList->a[j].pTab; 1352 pS = pTabList->a[j].pSelect; 1353 }else{ 1354 pNC = pNC->pNext; 1355 } 1356 } 1357 1358 if( pTab==0 ){ 1359 /* At one time, code such as "SELECT new.x" within a trigger would 1360 ** cause this condition to run. Since then, we have restructured how 1361 ** trigger code is generated and so this condition is no longer 1362 ** possible. However, it can still be true for statements like 1363 ** the following: 1364 ** 1365 ** CREATE TABLE t1(col INTEGER); 1366 ** SELECT (SELECT t1.col) FROM FROM t1; 1367 ** 1368 ** when columnType() is called on the expression "t1.col" in the 1369 ** sub-select. In this case, set the column type to NULL, even 1370 ** though it should really be "INTEGER". 1371 ** 1372 ** This is not a problem, as the column type of "t1.col" is never 1373 ** used. When columnType() is called on the expression 1374 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1375 ** branch below. */ 1376 break; 1377 } 1378 1379 assert( pTab && pExpr->pTab==pTab ); 1380 if( pS ){ 1381 /* The "table" is actually a sub-select or a view in the FROM clause 1382 ** of the SELECT statement. Return the declaration type and origin 1383 ** data for the result-set column of the sub-select. 1384 */ 1385 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1386 /* If iCol is less than zero, then the expression requests the 1387 ** rowid of the sub-select or view. This expression is legal (see 1388 ** test case misc2.2.2) - it always evaluates to NULL. 1389 */ 1390 NameContext sNC; 1391 Expr *p = pS->pEList->a[iCol].pExpr; 1392 sNC.pSrcList = pS->pSrc; 1393 sNC.pNext = pNC; 1394 sNC.pParse = pNC->pParse; 1395 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1396 } 1397 }else if( pTab->pSchema ){ 1398 /* A real table */ 1399 assert( !pS ); 1400 if( iCol<0 ) iCol = pTab->iPKey; 1401 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1402 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1403 if( iCol<0 ){ 1404 zType = "INTEGER"; 1405 zOrigCol = "rowid"; 1406 }else{ 1407 zType = pTab->aCol[iCol].zType; 1408 zOrigCol = pTab->aCol[iCol].zName; 1409 estWidth = pTab->aCol[iCol].szEst; 1410 } 1411 zOrigTab = pTab->zName; 1412 if( pNC->pParse ){ 1413 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1414 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1415 } 1416 #else 1417 if( iCol<0 ){ 1418 zType = "INTEGER"; 1419 }else{ 1420 zType = pTab->aCol[iCol].zType; 1421 estWidth = pTab->aCol[iCol].szEst; 1422 } 1423 #endif 1424 } 1425 break; 1426 } 1427 #ifndef SQLITE_OMIT_SUBQUERY 1428 case TK_SELECT: { 1429 /* The expression is a sub-select. Return the declaration type and 1430 ** origin info for the single column in the result set of the SELECT 1431 ** statement. 1432 */ 1433 NameContext sNC; 1434 Select *pS = pExpr->x.pSelect; 1435 Expr *p = pS->pEList->a[0].pExpr; 1436 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1437 sNC.pSrcList = pS->pSrc; 1438 sNC.pNext = pNC; 1439 sNC.pParse = pNC->pParse; 1440 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1441 break; 1442 } 1443 #endif 1444 } 1445 1446 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1447 if( pzOrigDb ){ 1448 assert( pzOrigTab && pzOrigCol ); 1449 *pzOrigDb = zOrigDb; 1450 *pzOrigTab = zOrigTab; 1451 *pzOrigCol = zOrigCol; 1452 } 1453 #endif 1454 if( pEstWidth ) *pEstWidth = estWidth; 1455 return zType; 1456 } 1457 1458 /* 1459 ** Generate code that will tell the VDBE the declaration types of columns 1460 ** in the result set. 1461 */ 1462 static void generateColumnTypes( 1463 Parse *pParse, /* Parser context */ 1464 SrcList *pTabList, /* List of tables */ 1465 ExprList *pEList /* Expressions defining the result set */ 1466 ){ 1467 #ifndef SQLITE_OMIT_DECLTYPE 1468 Vdbe *v = pParse->pVdbe; 1469 int i; 1470 NameContext sNC; 1471 sNC.pSrcList = pTabList; 1472 sNC.pParse = pParse; 1473 for(i=0; i<pEList->nExpr; i++){ 1474 Expr *p = pEList->a[i].pExpr; 1475 const char *zType; 1476 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1477 const char *zOrigDb = 0; 1478 const char *zOrigTab = 0; 1479 const char *zOrigCol = 0; 1480 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1481 1482 /* The vdbe must make its own copy of the column-type and other 1483 ** column specific strings, in case the schema is reset before this 1484 ** virtual machine is deleted. 1485 */ 1486 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1487 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1488 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1489 #else 1490 zType = columnType(&sNC, p, 0, 0, 0, 0); 1491 #endif 1492 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1493 } 1494 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1495 } 1496 1497 /* 1498 ** Generate code that will tell the VDBE the names of columns 1499 ** in the result set. This information is used to provide the 1500 ** azCol[] values in the callback. 1501 */ 1502 static void generateColumnNames( 1503 Parse *pParse, /* Parser context */ 1504 SrcList *pTabList, /* List of tables */ 1505 ExprList *pEList /* Expressions defining the result set */ 1506 ){ 1507 Vdbe *v = pParse->pVdbe; 1508 int i, j; 1509 sqlite3 *db = pParse->db; 1510 int fullNames, shortNames; 1511 1512 #ifndef SQLITE_OMIT_EXPLAIN 1513 /* If this is an EXPLAIN, skip this step */ 1514 if( pParse->explain ){ 1515 return; 1516 } 1517 #endif 1518 1519 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1520 pParse->colNamesSet = 1; 1521 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1522 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1523 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1524 for(i=0; i<pEList->nExpr; i++){ 1525 Expr *p; 1526 p = pEList->a[i].pExpr; 1527 if( NEVER(p==0) ) continue; 1528 if( pEList->a[i].zName ){ 1529 char *zName = pEList->a[i].zName; 1530 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1531 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1532 Table *pTab; 1533 char *zCol; 1534 int iCol = p->iColumn; 1535 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1536 if( pTabList->a[j].iCursor==p->iTable ) break; 1537 } 1538 assert( j<pTabList->nSrc ); 1539 pTab = pTabList->a[j].pTab; 1540 if( iCol<0 ) iCol = pTab->iPKey; 1541 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1542 if( iCol<0 ){ 1543 zCol = "rowid"; 1544 }else{ 1545 zCol = pTab->aCol[iCol].zName; 1546 } 1547 if( !shortNames && !fullNames ){ 1548 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1549 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1550 }else if( fullNames ){ 1551 char *zName = 0; 1552 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1553 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1554 }else{ 1555 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1556 } 1557 }else{ 1558 const char *z = pEList->a[i].zSpan; 1559 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1560 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1561 } 1562 } 1563 generateColumnTypes(pParse, pTabList, pEList); 1564 } 1565 1566 /* 1567 ** Given an expression list (which is really the list of expressions 1568 ** that form the result set of a SELECT statement) compute appropriate 1569 ** column names for a table that would hold the expression list. 1570 ** 1571 ** All column names will be unique. 1572 ** 1573 ** Only the column names are computed. Column.zType, Column.zColl, 1574 ** and other fields of Column are zeroed. 1575 ** 1576 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1577 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1578 */ 1579 static int selectColumnsFromExprList( 1580 Parse *pParse, /* Parsing context */ 1581 ExprList *pEList, /* Expr list from which to derive column names */ 1582 i16 *pnCol, /* Write the number of columns here */ 1583 Column **paCol /* Write the new column list here */ 1584 ){ 1585 sqlite3 *db = pParse->db; /* Database connection */ 1586 int i, j; /* Loop counters */ 1587 int cnt; /* Index added to make the name unique */ 1588 Column *aCol, *pCol; /* For looping over result columns */ 1589 int nCol; /* Number of columns in the result set */ 1590 Expr *p; /* Expression for a single result column */ 1591 char *zName; /* Column name */ 1592 int nName; /* Size of name in zName[] */ 1593 1594 if( pEList ){ 1595 nCol = pEList->nExpr; 1596 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1597 testcase( aCol==0 ); 1598 }else{ 1599 nCol = 0; 1600 aCol = 0; 1601 } 1602 *pnCol = nCol; 1603 *paCol = aCol; 1604 1605 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1606 /* Get an appropriate name for the column 1607 */ 1608 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1609 if( (zName = pEList->a[i].zName)!=0 ){ 1610 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1611 zName = sqlite3DbStrDup(db, zName); 1612 }else{ 1613 Expr *pColExpr = p; /* The expression that is the result column name */ 1614 Table *pTab; /* Table associated with this expression */ 1615 while( pColExpr->op==TK_DOT ){ 1616 pColExpr = pColExpr->pRight; 1617 assert( pColExpr!=0 ); 1618 } 1619 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1620 /* For columns use the column name name */ 1621 int iCol = pColExpr->iColumn; 1622 pTab = pColExpr->pTab; 1623 if( iCol<0 ) iCol = pTab->iPKey; 1624 zName = sqlite3MPrintf(db, "%s", 1625 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1626 }else if( pColExpr->op==TK_ID ){ 1627 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1628 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1629 }else{ 1630 /* Use the original text of the column expression as its name */ 1631 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1632 } 1633 } 1634 if( db->mallocFailed ){ 1635 sqlite3DbFree(db, zName); 1636 break; 1637 } 1638 1639 /* Make sure the column name is unique. If the name is not unique, 1640 ** append an integer to the name so that it becomes unique. 1641 */ 1642 nName = sqlite3Strlen30(zName); 1643 for(j=cnt=0; j<i; j++){ 1644 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1645 char *zNewName; 1646 int k; 1647 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1648 if( k>=0 && zName[k]==':' ) nName = k; 1649 zName[nName] = 0; 1650 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1651 sqlite3DbFree(db, zName); 1652 zName = zNewName; 1653 j = -1; 1654 if( zName==0 ) break; 1655 } 1656 } 1657 pCol->zName = zName; 1658 } 1659 if( db->mallocFailed ){ 1660 for(j=0; j<i; j++){ 1661 sqlite3DbFree(db, aCol[j].zName); 1662 } 1663 sqlite3DbFree(db, aCol); 1664 *paCol = 0; 1665 *pnCol = 0; 1666 return SQLITE_NOMEM; 1667 } 1668 return SQLITE_OK; 1669 } 1670 1671 /* 1672 ** Add type and collation information to a column list based on 1673 ** a SELECT statement. 1674 ** 1675 ** The column list presumably came from selectColumnNamesFromExprList(). 1676 ** The column list has only names, not types or collations. This 1677 ** routine goes through and adds the types and collations. 1678 ** 1679 ** This routine requires that all identifiers in the SELECT 1680 ** statement be resolved. 1681 */ 1682 static void selectAddColumnTypeAndCollation( 1683 Parse *pParse, /* Parsing contexts */ 1684 Table *pTab, /* Add column type information to this table */ 1685 Select *pSelect /* SELECT used to determine types and collations */ 1686 ){ 1687 sqlite3 *db = pParse->db; 1688 NameContext sNC; 1689 Column *pCol; 1690 CollSeq *pColl; 1691 int i; 1692 Expr *p; 1693 struct ExprList_item *a; 1694 u64 szAll = 0; 1695 1696 assert( pSelect!=0 ); 1697 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1698 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1699 if( db->mallocFailed ) return; 1700 memset(&sNC, 0, sizeof(sNC)); 1701 sNC.pSrcList = pSelect->pSrc; 1702 a = pSelect->pEList->a; 1703 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1704 p = a[i].pExpr; 1705 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1706 szAll += pCol->szEst; 1707 pCol->affinity = sqlite3ExprAffinity(p); 1708 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1709 pColl = sqlite3ExprCollSeq(pParse, p); 1710 if( pColl ){ 1711 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1712 } 1713 } 1714 pTab->szTabRow = sqlite3LogEst(szAll*4); 1715 } 1716 1717 /* 1718 ** Given a SELECT statement, generate a Table structure that describes 1719 ** the result set of that SELECT. 1720 */ 1721 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1722 Table *pTab; 1723 sqlite3 *db = pParse->db; 1724 int savedFlags; 1725 1726 savedFlags = db->flags; 1727 db->flags &= ~SQLITE_FullColNames; 1728 db->flags |= SQLITE_ShortColNames; 1729 sqlite3SelectPrep(pParse, pSelect, 0); 1730 if( pParse->nErr ) return 0; 1731 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1732 db->flags = savedFlags; 1733 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1734 if( pTab==0 ){ 1735 return 0; 1736 } 1737 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1738 ** is disabled */ 1739 assert( db->lookaside.bEnabled==0 ); 1740 pTab->nRef = 1; 1741 pTab->zName = 0; 1742 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1743 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1744 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1745 pTab->iPKey = -1; 1746 if( db->mallocFailed ){ 1747 sqlite3DeleteTable(db, pTab); 1748 return 0; 1749 } 1750 return pTab; 1751 } 1752 1753 /* 1754 ** Get a VDBE for the given parser context. Create a new one if necessary. 1755 ** If an error occurs, return NULL and leave a message in pParse. 1756 */ 1757 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1758 Vdbe *v = pParse->pVdbe; 1759 if( v==0 ){ 1760 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1761 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1762 if( pParse->pToplevel==0 1763 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1764 ){ 1765 pParse->okConstFactor = 1; 1766 } 1767 1768 } 1769 return v; 1770 } 1771 1772 1773 /* 1774 ** Compute the iLimit and iOffset fields of the SELECT based on the 1775 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1776 ** that appear in the original SQL statement after the LIMIT and OFFSET 1777 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1778 ** are the integer memory register numbers for counters used to compute 1779 ** the limit and offset. If there is no limit and/or offset, then 1780 ** iLimit and iOffset are negative. 1781 ** 1782 ** This routine changes the values of iLimit and iOffset only if 1783 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1784 ** iOffset should have been preset to appropriate default values (zero) 1785 ** prior to calling this routine. 1786 ** 1787 ** The iOffset register (if it exists) is initialized to the value 1788 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1789 ** iOffset+1 is initialized to LIMIT+OFFSET. 1790 ** 1791 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1792 ** redefined. The UNION ALL operator uses this property to force 1793 ** the reuse of the same limit and offset registers across multiple 1794 ** SELECT statements. 1795 */ 1796 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1797 Vdbe *v = 0; 1798 int iLimit = 0; 1799 int iOffset; 1800 int addr1, n; 1801 if( p->iLimit ) return; 1802 1803 /* 1804 ** "LIMIT -1" always shows all rows. There is some 1805 ** controversy about what the correct behavior should be. 1806 ** The current implementation interprets "LIMIT 0" to mean 1807 ** no rows. 1808 */ 1809 sqlite3ExprCacheClear(pParse); 1810 assert( p->pOffset==0 || p->pLimit!=0 ); 1811 if( p->pLimit ){ 1812 p->iLimit = iLimit = ++pParse->nMem; 1813 v = sqlite3GetVdbe(pParse); 1814 assert( v!=0 ); 1815 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1816 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1817 VdbeComment((v, "LIMIT counter")); 1818 if( n==0 ){ 1819 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1820 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1821 p->nSelectRow = n; 1822 } 1823 }else{ 1824 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1825 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1826 VdbeComment((v, "LIMIT counter")); 1827 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1828 } 1829 if( p->pOffset ){ 1830 p->iOffset = iOffset = ++pParse->nMem; 1831 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1832 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1833 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1834 VdbeComment((v, "OFFSET counter")); 1835 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1836 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1837 sqlite3VdbeJumpHere(v, addr1); 1838 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1839 VdbeComment((v, "LIMIT+OFFSET")); 1840 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1841 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1842 sqlite3VdbeJumpHere(v, addr1); 1843 } 1844 } 1845 } 1846 1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1848 /* 1849 ** Return the appropriate collating sequence for the iCol-th column of 1850 ** the result set for the compound-select statement "p". Return NULL if 1851 ** the column has no default collating sequence. 1852 ** 1853 ** The collating sequence for the compound select is taken from the 1854 ** left-most term of the select that has a collating sequence. 1855 */ 1856 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1857 CollSeq *pRet; 1858 if( p->pPrior ){ 1859 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1860 }else{ 1861 pRet = 0; 1862 } 1863 assert( iCol>=0 ); 1864 if( pRet==0 && iCol<p->pEList->nExpr ){ 1865 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1866 } 1867 return pRet; 1868 } 1869 1870 /* 1871 ** The select statement passed as the second parameter is a compound SELECT 1872 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1873 ** structure suitable for implementing the ORDER BY. 1874 ** 1875 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1876 ** function is responsible for ensuring that this structure is eventually 1877 ** freed. 1878 */ 1879 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1880 ExprList *pOrderBy = p->pOrderBy; 1881 int nOrderBy = p->pOrderBy->nExpr; 1882 sqlite3 *db = pParse->db; 1883 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1884 if( pRet ){ 1885 int i; 1886 for(i=0; i<nOrderBy; i++){ 1887 struct ExprList_item *pItem = &pOrderBy->a[i]; 1888 Expr *pTerm = pItem->pExpr; 1889 CollSeq *pColl; 1890 1891 if( pTerm->flags & EP_Collate ){ 1892 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1893 }else{ 1894 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1895 if( pColl==0 ) pColl = db->pDfltColl; 1896 pOrderBy->a[i].pExpr = 1897 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1898 } 1899 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1900 pRet->aColl[i] = pColl; 1901 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1902 } 1903 } 1904 1905 return pRet; 1906 } 1907 1908 #ifndef SQLITE_OMIT_CTE 1909 /* 1910 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1911 ** query of the form: 1912 ** 1913 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1914 ** \___________/ \_______________/ 1915 ** p->pPrior p 1916 ** 1917 ** 1918 ** There is exactly one reference to the recursive-table in the FROM clause 1919 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1920 ** 1921 ** The setup-query runs once to generate an initial set of rows that go 1922 ** into a Queue table. Rows are extracted from the Queue table one by 1923 ** one. Each row extracted from Queue is output to pDest. Then the single 1924 ** extracted row (now in the iCurrent table) becomes the content of the 1925 ** recursive-table for a recursive-query run. The output of the recursive-query 1926 ** is added back into the Queue table. Then another row is extracted from Queue 1927 ** and the iteration continues until the Queue table is empty. 1928 ** 1929 ** If the compound query operator is UNION then no duplicate rows are ever 1930 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1931 ** that have ever been inserted into Queue and causes duplicates to be 1932 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1933 ** 1934 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1935 ** ORDER BY order and the first entry is extracted for each cycle. Without 1936 ** an ORDER BY, the Queue table is just a FIFO. 1937 ** 1938 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1939 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1940 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1941 ** with a positive value, then the first OFFSET outputs are discarded rather 1942 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1943 ** rows have been skipped. 1944 */ 1945 static void generateWithRecursiveQuery( 1946 Parse *pParse, /* Parsing context */ 1947 Select *p, /* The recursive SELECT to be coded */ 1948 SelectDest *pDest /* What to do with query results */ 1949 ){ 1950 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1951 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1952 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1953 Select *pSetup = p->pPrior; /* The setup query */ 1954 int addrTop; /* Top of the loop */ 1955 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1956 int iCurrent = 0; /* The Current table */ 1957 int regCurrent; /* Register holding Current table */ 1958 int iQueue; /* The Queue table */ 1959 int iDistinct = 0; /* To ensure unique results if UNION */ 1960 int eDest = SRT_Fifo; /* How to write to Queue */ 1961 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1962 int i; /* Loop counter */ 1963 int rc; /* Result code */ 1964 ExprList *pOrderBy; /* The ORDER BY clause */ 1965 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1966 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1967 1968 /* Obtain authorization to do a recursive query */ 1969 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1970 1971 /* Process the LIMIT and OFFSET clauses, if they exist */ 1972 addrBreak = sqlite3VdbeMakeLabel(v); 1973 computeLimitRegisters(pParse, p, addrBreak); 1974 pLimit = p->pLimit; 1975 pOffset = p->pOffset; 1976 regLimit = p->iLimit; 1977 regOffset = p->iOffset; 1978 p->pLimit = p->pOffset = 0; 1979 p->iLimit = p->iOffset = 0; 1980 pOrderBy = p->pOrderBy; 1981 1982 /* Locate the cursor number of the Current table */ 1983 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1984 if( pSrc->a[i].isRecursive ){ 1985 iCurrent = pSrc->a[i].iCursor; 1986 break; 1987 } 1988 } 1989 1990 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1991 ** the Distinct table must be exactly one greater than Queue in order 1992 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1993 iQueue = pParse->nTab++; 1994 if( p->op==TK_UNION ){ 1995 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1996 iDistinct = pParse->nTab++; 1997 }else{ 1998 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1999 } 2000 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2001 2002 /* Allocate cursors for Current, Queue, and Distinct. */ 2003 regCurrent = ++pParse->nMem; 2004 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2005 if( pOrderBy ){ 2006 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2007 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2008 (char*)pKeyInfo, P4_KEYINFO); 2009 destQueue.pOrderBy = pOrderBy; 2010 }else{ 2011 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2012 } 2013 VdbeComment((v, "Queue table")); 2014 if( iDistinct ){ 2015 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2016 p->selFlags |= SF_UsesEphemeral; 2017 } 2018 2019 /* Detach the ORDER BY clause from the compound SELECT */ 2020 p->pOrderBy = 0; 2021 2022 /* Store the results of the setup-query in Queue. */ 2023 pSetup->pNext = 0; 2024 rc = sqlite3Select(pParse, pSetup, &destQueue); 2025 pSetup->pNext = p; 2026 if( rc ) goto end_of_recursive_query; 2027 2028 /* Find the next row in the Queue and output that row */ 2029 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2030 2031 /* Transfer the next row in Queue over to Current */ 2032 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2033 if( pOrderBy ){ 2034 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2035 }else{ 2036 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2037 } 2038 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2039 2040 /* Output the single row in Current */ 2041 addrCont = sqlite3VdbeMakeLabel(v); 2042 codeOffset(v, regOffset, addrCont); 2043 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2044 0, 0, pDest, addrCont, addrBreak); 2045 if( regLimit ){ 2046 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 2047 VdbeCoverage(v); 2048 } 2049 sqlite3VdbeResolveLabel(v, addrCont); 2050 2051 /* Execute the recursive SELECT taking the single row in Current as 2052 ** the value for the recursive-table. Store the results in the Queue. 2053 */ 2054 p->pPrior = 0; 2055 sqlite3Select(pParse, p, &destQueue); 2056 assert( p->pPrior==0 ); 2057 p->pPrior = pSetup; 2058 2059 /* Keep running the loop until the Queue is empty */ 2060 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2061 sqlite3VdbeResolveLabel(v, addrBreak); 2062 2063 end_of_recursive_query: 2064 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2065 p->pOrderBy = pOrderBy; 2066 p->pLimit = pLimit; 2067 p->pOffset = pOffset; 2068 return; 2069 } 2070 #endif /* SQLITE_OMIT_CTE */ 2071 2072 /* Forward references */ 2073 static int multiSelectOrderBy( 2074 Parse *pParse, /* Parsing context */ 2075 Select *p, /* The right-most of SELECTs to be coded */ 2076 SelectDest *pDest /* What to do with query results */ 2077 ); 2078 2079 /* 2080 ** Error message for when two or more terms of a compound select have different 2081 ** size result sets. 2082 */ 2083 static void selectWrongNumTermsError(Parse *pParse, Select *p){ 2084 if( p->selFlags & SF_Values ){ 2085 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2086 }else{ 2087 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2088 " do not have the same number of result columns", selectOpName(p->op)); 2089 } 2090 } 2091 2092 /* 2093 ** Handle the special case of a compound-select that originates from a 2094 ** VALUES clause. By handling this as a special case, we avoid deep 2095 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2096 ** on a VALUES clause. 2097 ** 2098 ** Because the Select object originates from a VALUES clause: 2099 ** (1) It has no LIMIT or OFFSET 2100 ** (2) All terms are UNION ALL 2101 ** (3) There is no ORDER BY clause 2102 */ 2103 static int multiSelectValues( 2104 Parse *pParse, /* Parsing context */ 2105 Select *p, /* The right-most of SELECTs to be coded */ 2106 SelectDest *pDest /* What to do with query results */ 2107 ){ 2108 Select *pPrior; 2109 int nExpr = p->pEList->nExpr; 2110 int nRow = 1; 2111 int rc = 0; 2112 assert( p->pNext==0 ); 2113 assert( p->selFlags & SF_AllValues ); 2114 do{ 2115 assert( p->selFlags & SF_Values ); 2116 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2117 assert( p->pLimit==0 ); 2118 assert( p->pOffset==0 ); 2119 if( p->pEList->nExpr!=nExpr ){ 2120 selectWrongNumTermsError(pParse, p); 2121 return 1; 2122 } 2123 if( p->pPrior==0 ) break; 2124 assert( p->pPrior->pNext==p ); 2125 p = p->pPrior; 2126 nRow++; 2127 }while(1); 2128 while( p ){ 2129 pPrior = p->pPrior; 2130 p->pPrior = 0; 2131 rc = sqlite3Select(pParse, p, pDest); 2132 p->pPrior = pPrior; 2133 if( rc ) break; 2134 p->nSelectRow = nRow; 2135 p = p->pNext; 2136 } 2137 return rc; 2138 } 2139 2140 /* 2141 ** This routine is called to process a compound query form from 2142 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2143 ** INTERSECT 2144 ** 2145 ** "p" points to the right-most of the two queries. the query on the 2146 ** left is p->pPrior. The left query could also be a compound query 2147 ** in which case this routine will be called recursively. 2148 ** 2149 ** The results of the total query are to be written into a destination 2150 ** of type eDest with parameter iParm. 2151 ** 2152 ** Example 1: Consider a three-way compound SQL statement. 2153 ** 2154 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2155 ** 2156 ** This statement is parsed up as follows: 2157 ** 2158 ** SELECT c FROM t3 2159 ** | 2160 ** `-----> SELECT b FROM t2 2161 ** | 2162 ** `------> SELECT a FROM t1 2163 ** 2164 ** The arrows in the diagram above represent the Select.pPrior pointer. 2165 ** So if this routine is called with p equal to the t3 query, then 2166 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2167 ** 2168 ** Notice that because of the way SQLite parses compound SELECTs, the 2169 ** individual selects always group from left to right. 2170 */ 2171 static int multiSelect( 2172 Parse *pParse, /* Parsing context */ 2173 Select *p, /* The right-most of SELECTs to be coded */ 2174 SelectDest *pDest /* What to do with query results */ 2175 ){ 2176 int rc = SQLITE_OK; /* Success code from a subroutine */ 2177 Select *pPrior; /* Another SELECT immediately to our left */ 2178 Vdbe *v; /* Generate code to this VDBE */ 2179 SelectDest dest; /* Alternative data destination */ 2180 Select *pDelete = 0; /* Chain of simple selects to delete */ 2181 sqlite3 *db; /* Database connection */ 2182 #ifndef SQLITE_OMIT_EXPLAIN 2183 int iSub1 = 0; /* EQP id of left-hand query */ 2184 int iSub2 = 0; /* EQP id of right-hand query */ 2185 #endif 2186 2187 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2188 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2189 */ 2190 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2191 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2192 db = pParse->db; 2193 pPrior = p->pPrior; 2194 dest = *pDest; 2195 if( pPrior->pOrderBy ){ 2196 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2197 selectOpName(p->op)); 2198 rc = 1; 2199 goto multi_select_end; 2200 } 2201 if( pPrior->pLimit ){ 2202 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2203 selectOpName(p->op)); 2204 rc = 1; 2205 goto multi_select_end; 2206 } 2207 2208 v = sqlite3GetVdbe(pParse); 2209 assert( v!=0 ); /* The VDBE already created by calling function */ 2210 2211 /* Create the destination temporary table if necessary 2212 */ 2213 if( dest.eDest==SRT_EphemTab ){ 2214 assert( p->pEList ); 2215 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2216 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2217 dest.eDest = SRT_Table; 2218 } 2219 2220 /* Special handling for a compound-select that originates as a VALUES clause. 2221 */ 2222 if( p->selFlags & SF_AllValues ){ 2223 rc = multiSelectValues(pParse, p, &dest); 2224 goto multi_select_end; 2225 } 2226 2227 /* Make sure all SELECTs in the statement have the same number of elements 2228 ** in their result sets. 2229 */ 2230 assert( p->pEList && pPrior->pEList ); 2231 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2232 selectWrongNumTermsError(pParse, p); 2233 rc = 1; 2234 goto multi_select_end; 2235 } 2236 2237 #ifndef SQLITE_OMIT_CTE 2238 if( p->selFlags & SF_Recursive ){ 2239 generateWithRecursiveQuery(pParse, p, &dest); 2240 }else 2241 #endif 2242 2243 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2244 */ 2245 if( p->pOrderBy ){ 2246 return multiSelectOrderBy(pParse, p, pDest); 2247 }else 2248 2249 /* Generate code for the left and right SELECT statements. 2250 */ 2251 switch( p->op ){ 2252 case TK_ALL: { 2253 int addr = 0; 2254 int nLimit; 2255 assert( !pPrior->pLimit ); 2256 pPrior->iLimit = p->iLimit; 2257 pPrior->iOffset = p->iOffset; 2258 pPrior->pLimit = p->pLimit; 2259 pPrior->pOffset = p->pOffset; 2260 explainSetInteger(iSub1, pParse->iNextSelectId); 2261 rc = sqlite3Select(pParse, pPrior, &dest); 2262 p->pLimit = 0; 2263 p->pOffset = 0; 2264 if( rc ){ 2265 goto multi_select_end; 2266 } 2267 p->pPrior = 0; 2268 p->iLimit = pPrior->iLimit; 2269 p->iOffset = pPrior->iOffset; 2270 if( p->iLimit ){ 2271 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2272 VdbeComment((v, "Jump ahead if LIMIT reached")); 2273 } 2274 explainSetInteger(iSub2, pParse->iNextSelectId); 2275 rc = sqlite3Select(pParse, p, &dest); 2276 testcase( rc!=SQLITE_OK ); 2277 pDelete = p->pPrior; 2278 p->pPrior = pPrior; 2279 p->nSelectRow += pPrior->nSelectRow; 2280 if( pPrior->pLimit 2281 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2282 && nLimit>0 && p->nSelectRow > (u64)nLimit 2283 ){ 2284 p->nSelectRow = nLimit; 2285 } 2286 if( addr ){ 2287 sqlite3VdbeJumpHere(v, addr); 2288 } 2289 break; 2290 } 2291 case TK_EXCEPT: 2292 case TK_UNION: { 2293 int unionTab; /* Cursor number of the temporary table holding result */ 2294 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2295 int priorOp; /* The SRT_ operation to apply to prior selects */ 2296 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2297 int addr; 2298 SelectDest uniondest; 2299 2300 testcase( p->op==TK_EXCEPT ); 2301 testcase( p->op==TK_UNION ); 2302 priorOp = SRT_Union; 2303 if( dest.eDest==priorOp ){ 2304 /* We can reuse a temporary table generated by a SELECT to our 2305 ** right. 2306 */ 2307 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2308 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2309 unionTab = dest.iSDParm; 2310 }else{ 2311 /* We will need to create our own temporary table to hold the 2312 ** intermediate results. 2313 */ 2314 unionTab = pParse->nTab++; 2315 assert( p->pOrderBy==0 ); 2316 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2317 assert( p->addrOpenEphm[0] == -1 ); 2318 p->addrOpenEphm[0] = addr; 2319 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2320 assert( p->pEList ); 2321 } 2322 2323 /* Code the SELECT statements to our left 2324 */ 2325 assert( !pPrior->pOrderBy ); 2326 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2327 explainSetInteger(iSub1, pParse->iNextSelectId); 2328 rc = sqlite3Select(pParse, pPrior, &uniondest); 2329 if( rc ){ 2330 goto multi_select_end; 2331 } 2332 2333 /* Code the current SELECT statement 2334 */ 2335 if( p->op==TK_EXCEPT ){ 2336 op = SRT_Except; 2337 }else{ 2338 assert( p->op==TK_UNION ); 2339 op = SRT_Union; 2340 } 2341 p->pPrior = 0; 2342 pLimit = p->pLimit; 2343 p->pLimit = 0; 2344 pOffset = p->pOffset; 2345 p->pOffset = 0; 2346 uniondest.eDest = op; 2347 explainSetInteger(iSub2, pParse->iNextSelectId); 2348 rc = sqlite3Select(pParse, p, &uniondest); 2349 testcase( rc!=SQLITE_OK ); 2350 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2351 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2352 sqlite3ExprListDelete(db, p->pOrderBy); 2353 pDelete = p->pPrior; 2354 p->pPrior = pPrior; 2355 p->pOrderBy = 0; 2356 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2357 sqlite3ExprDelete(db, p->pLimit); 2358 p->pLimit = pLimit; 2359 p->pOffset = pOffset; 2360 p->iLimit = 0; 2361 p->iOffset = 0; 2362 2363 /* Convert the data in the temporary table into whatever form 2364 ** it is that we currently need. 2365 */ 2366 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2367 if( dest.eDest!=priorOp ){ 2368 int iCont, iBreak, iStart; 2369 assert( p->pEList ); 2370 if( dest.eDest==SRT_Output ){ 2371 Select *pFirst = p; 2372 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2373 generateColumnNames(pParse, 0, pFirst->pEList); 2374 } 2375 iBreak = sqlite3VdbeMakeLabel(v); 2376 iCont = sqlite3VdbeMakeLabel(v); 2377 computeLimitRegisters(pParse, p, iBreak); 2378 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2379 iStart = sqlite3VdbeCurrentAddr(v); 2380 selectInnerLoop(pParse, p, p->pEList, unionTab, 2381 0, 0, &dest, iCont, iBreak); 2382 sqlite3VdbeResolveLabel(v, iCont); 2383 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2384 sqlite3VdbeResolveLabel(v, iBreak); 2385 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2386 } 2387 break; 2388 } 2389 default: assert( p->op==TK_INTERSECT ); { 2390 int tab1, tab2; 2391 int iCont, iBreak, iStart; 2392 Expr *pLimit, *pOffset; 2393 int addr; 2394 SelectDest intersectdest; 2395 int r1; 2396 2397 /* INTERSECT is different from the others since it requires 2398 ** two temporary tables. Hence it has its own case. Begin 2399 ** by allocating the tables we will need. 2400 */ 2401 tab1 = pParse->nTab++; 2402 tab2 = pParse->nTab++; 2403 assert( p->pOrderBy==0 ); 2404 2405 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2406 assert( p->addrOpenEphm[0] == -1 ); 2407 p->addrOpenEphm[0] = addr; 2408 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2409 assert( p->pEList ); 2410 2411 /* Code the SELECTs to our left into temporary table "tab1". 2412 */ 2413 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2414 explainSetInteger(iSub1, pParse->iNextSelectId); 2415 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2416 if( rc ){ 2417 goto multi_select_end; 2418 } 2419 2420 /* Code the current SELECT into temporary table "tab2" 2421 */ 2422 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2423 assert( p->addrOpenEphm[1] == -1 ); 2424 p->addrOpenEphm[1] = addr; 2425 p->pPrior = 0; 2426 pLimit = p->pLimit; 2427 p->pLimit = 0; 2428 pOffset = p->pOffset; 2429 p->pOffset = 0; 2430 intersectdest.iSDParm = tab2; 2431 explainSetInteger(iSub2, pParse->iNextSelectId); 2432 rc = sqlite3Select(pParse, p, &intersectdest); 2433 testcase( rc!=SQLITE_OK ); 2434 pDelete = p->pPrior; 2435 p->pPrior = pPrior; 2436 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2437 sqlite3ExprDelete(db, p->pLimit); 2438 p->pLimit = pLimit; 2439 p->pOffset = pOffset; 2440 2441 /* Generate code to take the intersection of the two temporary 2442 ** tables. 2443 */ 2444 assert( p->pEList ); 2445 if( dest.eDest==SRT_Output ){ 2446 Select *pFirst = p; 2447 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2448 generateColumnNames(pParse, 0, pFirst->pEList); 2449 } 2450 iBreak = sqlite3VdbeMakeLabel(v); 2451 iCont = sqlite3VdbeMakeLabel(v); 2452 computeLimitRegisters(pParse, p, iBreak); 2453 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2454 r1 = sqlite3GetTempReg(pParse); 2455 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2456 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2457 sqlite3ReleaseTempReg(pParse, r1); 2458 selectInnerLoop(pParse, p, p->pEList, tab1, 2459 0, 0, &dest, iCont, iBreak); 2460 sqlite3VdbeResolveLabel(v, iCont); 2461 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2462 sqlite3VdbeResolveLabel(v, iBreak); 2463 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2464 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2465 break; 2466 } 2467 } 2468 2469 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2470 2471 /* Compute collating sequences used by 2472 ** temporary tables needed to implement the compound select. 2473 ** Attach the KeyInfo structure to all temporary tables. 2474 ** 2475 ** This section is run by the right-most SELECT statement only. 2476 ** SELECT statements to the left always skip this part. The right-most 2477 ** SELECT might also skip this part if it has no ORDER BY clause and 2478 ** no temp tables are required. 2479 */ 2480 if( p->selFlags & SF_UsesEphemeral ){ 2481 int i; /* Loop counter */ 2482 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2483 Select *pLoop; /* For looping through SELECT statements */ 2484 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2485 int nCol; /* Number of columns in result set */ 2486 2487 assert( p->pNext==0 ); 2488 nCol = p->pEList->nExpr; 2489 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2490 if( !pKeyInfo ){ 2491 rc = SQLITE_NOMEM; 2492 goto multi_select_end; 2493 } 2494 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2495 *apColl = multiSelectCollSeq(pParse, p, i); 2496 if( 0==*apColl ){ 2497 *apColl = db->pDfltColl; 2498 } 2499 } 2500 2501 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2502 for(i=0; i<2; i++){ 2503 int addr = pLoop->addrOpenEphm[i]; 2504 if( addr<0 ){ 2505 /* If [0] is unused then [1] is also unused. So we can 2506 ** always safely abort as soon as the first unused slot is found */ 2507 assert( pLoop->addrOpenEphm[1]<0 ); 2508 break; 2509 } 2510 sqlite3VdbeChangeP2(v, addr, nCol); 2511 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2512 P4_KEYINFO); 2513 pLoop->addrOpenEphm[i] = -1; 2514 } 2515 } 2516 sqlite3KeyInfoUnref(pKeyInfo); 2517 } 2518 2519 multi_select_end: 2520 pDest->iSdst = dest.iSdst; 2521 pDest->nSdst = dest.nSdst; 2522 sqlite3SelectDelete(db, pDelete); 2523 return rc; 2524 } 2525 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2526 2527 /* 2528 ** Code an output subroutine for a coroutine implementation of a 2529 ** SELECT statment. 2530 ** 2531 ** The data to be output is contained in pIn->iSdst. There are 2532 ** pIn->nSdst columns to be output. pDest is where the output should 2533 ** be sent. 2534 ** 2535 ** regReturn is the number of the register holding the subroutine 2536 ** return address. 2537 ** 2538 ** If regPrev>0 then it is the first register in a vector that 2539 ** records the previous output. mem[regPrev] is a flag that is false 2540 ** if there has been no previous output. If regPrev>0 then code is 2541 ** generated to suppress duplicates. pKeyInfo is used for comparing 2542 ** keys. 2543 ** 2544 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2545 ** iBreak. 2546 */ 2547 static int generateOutputSubroutine( 2548 Parse *pParse, /* Parsing context */ 2549 Select *p, /* The SELECT statement */ 2550 SelectDest *pIn, /* Coroutine supplying data */ 2551 SelectDest *pDest, /* Where to send the data */ 2552 int regReturn, /* The return address register */ 2553 int regPrev, /* Previous result register. No uniqueness if 0 */ 2554 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2555 int iBreak /* Jump here if we hit the LIMIT */ 2556 ){ 2557 Vdbe *v = pParse->pVdbe; 2558 int iContinue; 2559 int addr; 2560 2561 addr = sqlite3VdbeCurrentAddr(v); 2562 iContinue = sqlite3VdbeMakeLabel(v); 2563 2564 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2565 */ 2566 if( regPrev ){ 2567 int j1, j2; 2568 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2569 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2570 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2571 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2572 sqlite3VdbeJumpHere(v, j1); 2573 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2574 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2575 } 2576 if( pParse->db->mallocFailed ) return 0; 2577 2578 /* Suppress the first OFFSET entries if there is an OFFSET clause 2579 */ 2580 codeOffset(v, p->iOffset, iContinue); 2581 2582 switch( pDest->eDest ){ 2583 /* Store the result as data using a unique key. 2584 */ 2585 case SRT_Table: 2586 case SRT_EphemTab: { 2587 int r1 = sqlite3GetTempReg(pParse); 2588 int r2 = sqlite3GetTempReg(pParse); 2589 testcase( pDest->eDest==SRT_Table ); 2590 testcase( pDest->eDest==SRT_EphemTab ); 2591 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2592 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2593 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2594 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2595 sqlite3ReleaseTempReg(pParse, r2); 2596 sqlite3ReleaseTempReg(pParse, r1); 2597 break; 2598 } 2599 2600 #ifndef SQLITE_OMIT_SUBQUERY 2601 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2602 ** then there should be a single item on the stack. Write this 2603 ** item into the set table with bogus data. 2604 */ 2605 case SRT_Set: { 2606 int r1; 2607 assert( pIn->nSdst==1 ); 2608 pDest->affSdst = 2609 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2610 r1 = sqlite3GetTempReg(pParse); 2611 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2612 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2613 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2614 sqlite3ReleaseTempReg(pParse, r1); 2615 break; 2616 } 2617 2618 #if 0 /* Never occurs on an ORDER BY query */ 2619 /* If any row exist in the result set, record that fact and abort. 2620 */ 2621 case SRT_Exists: { 2622 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2623 /* The LIMIT clause will terminate the loop for us */ 2624 break; 2625 } 2626 #endif 2627 2628 /* If this is a scalar select that is part of an expression, then 2629 ** store the results in the appropriate memory cell and break out 2630 ** of the scan loop. 2631 */ 2632 case SRT_Mem: { 2633 assert( pIn->nSdst==1 ); 2634 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2635 /* The LIMIT clause will jump out of the loop for us */ 2636 break; 2637 } 2638 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2639 2640 /* The results are stored in a sequence of registers 2641 ** starting at pDest->iSdst. Then the co-routine yields. 2642 */ 2643 case SRT_Coroutine: { 2644 if( pDest->iSdst==0 ){ 2645 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2646 pDest->nSdst = pIn->nSdst; 2647 } 2648 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2649 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2650 break; 2651 } 2652 2653 /* If none of the above, then the result destination must be 2654 ** SRT_Output. This routine is never called with any other 2655 ** destination other than the ones handled above or SRT_Output. 2656 ** 2657 ** For SRT_Output, results are stored in a sequence of registers. 2658 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2659 ** return the next row of result. 2660 */ 2661 default: { 2662 assert( pDest->eDest==SRT_Output ); 2663 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2664 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2665 break; 2666 } 2667 } 2668 2669 /* Jump to the end of the loop if the LIMIT is reached. 2670 */ 2671 if( p->iLimit ){ 2672 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2673 } 2674 2675 /* Generate the subroutine return 2676 */ 2677 sqlite3VdbeResolveLabel(v, iContinue); 2678 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2679 2680 return addr; 2681 } 2682 2683 /* 2684 ** Alternative compound select code generator for cases when there 2685 ** is an ORDER BY clause. 2686 ** 2687 ** We assume a query of the following form: 2688 ** 2689 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2690 ** 2691 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2692 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2693 ** co-routines. Then run the co-routines in parallel and merge the results 2694 ** into the output. In addition to the two coroutines (called selectA and 2695 ** selectB) there are 7 subroutines: 2696 ** 2697 ** outA: Move the output of the selectA coroutine into the output 2698 ** of the compound query. 2699 ** 2700 ** outB: Move the output of the selectB coroutine into the output 2701 ** of the compound query. (Only generated for UNION and 2702 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2703 ** appears only in B.) 2704 ** 2705 ** AltB: Called when there is data from both coroutines and A<B. 2706 ** 2707 ** AeqB: Called when there is data from both coroutines and A==B. 2708 ** 2709 ** AgtB: Called when there is data from both coroutines and A>B. 2710 ** 2711 ** EofA: Called when data is exhausted from selectA. 2712 ** 2713 ** EofB: Called when data is exhausted from selectB. 2714 ** 2715 ** The implementation of the latter five subroutines depend on which 2716 ** <operator> is used: 2717 ** 2718 ** 2719 ** UNION ALL UNION EXCEPT INTERSECT 2720 ** ------------- ----------------- -------------- ----------------- 2721 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2722 ** 2723 ** AeqB: outA, nextA nextA nextA outA, nextA 2724 ** 2725 ** AgtB: outB, nextB outB, nextB nextB nextB 2726 ** 2727 ** EofA: outB, nextB outB, nextB halt halt 2728 ** 2729 ** EofB: outA, nextA outA, nextA outA, nextA halt 2730 ** 2731 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2732 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2733 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2734 ** following nextX causes a jump to the end of the select processing. 2735 ** 2736 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2737 ** within the output subroutine. The regPrev register set holds the previously 2738 ** output value. A comparison is made against this value and the output 2739 ** is skipped if the next results would be the same as the previous. 2740 ** 2741 ** The implementation plan is to implement the two coroutines and seven 2742 ** subroutines first, then put the control logic at the bottom. Like this: 2743 ** 2744 ** goto Init 2745 ** coA: coroutine for left query (A) 2746 ** coB: coroutine for right query (B) 2747 ** outA: output one row of A 2748 ** outB: output one row of B (UNION and UNION ALL only) 2749 ** EofA: ... 2750 ** EofB: ... 2751 ** AltB: ... 2752 ** AeqB: ... 2753 ** AgtB: ... 2754 ** Init: initialize coroutine registers 2755 ** yield coA 2756 ** if eof(A) goto EofA 2757 ** yield coB 2758 ** if eof(B) goto EofB 2759 ** Cmpr: Compare A, B 2760 ** Jump AltB, AeqB, AgtB 2761 ** End: ... 2762 ** 2763 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2764 ** actually called using Gosub and they do not Return. EofA and EofB loop 2765 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2766 ** and AgtB jump to either L2 or to one of EofA or EofB. 2767 */ 2768 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2769 static int multiSelectOrderBy( 2770 Parse *pParse, /* Parsing context */ 2771 Select *p, /* The right-most of SELECTs to be coded */ 2772 SelectDest *pDest /* What to do with query results */ 2773 ){ 2774 int i, j; /* Loop counters */ 2775 Select *pPrior; /* Another SELECT immediately to our left */ 2776 Vdbe *v; /* Generate code to this VDBE */ 2777 SelectDest destA; /* Destination for coroutine A */ 2778 SelectDest destB; /* Destination for coroutine B */ 2779 int regAddrA; /* Address register for select-A coroutine */ 2780 int regAddrB; /* Address register for select-B coroutine */ 2781 int addrSelectA; /* Address of the select-A coroutine */ 2782 int addrSelectB; /* Address of the select-B coroutine */ 2783 int regOutA; /* Address register for the output-A subroutine */ 2784 int regOutB; /* Address register for the output-B subroutine */ 2785 int addrOutA; /* Address of the output-A subroutine */ 2786 int addrOutB = 0; /* Address of the output-B subroutine */ 2787 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2788 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2789 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2790 int addrAltB; /* Address of the A<B subroutine */ 2791 int addrAeqB; /* Address of the A==B subroutine */ 2792 int addrAgtB; /* Address of the A>B subroutine */ 2793 int regLimitA; /* Limit register for select-A */ 2794 int regLimitB; /* Limit register for select-A */ 2795 int regPrev; /* A range of registers to hold previous output */ 2796 int savedLimit; /* Saved value of p->iLimit */ 2797 int savedOffset; /* Saved value of p->iOffset */ 2798 int labelCmpr; /* Label for the start of the merge algorithm */ 2799 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2800 int j1; /* Jump instructions that get retargetted */ 2801 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2802 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2803 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2804 sqlite3 *db; /* Database connection */ 2805 ExprList *pOrderBy; /* The ORDER BY clause */ 2806 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2807 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2808 #ifndef SQLITE_OMIT_EXPLAIN 2809 int iSub1; /* EQP id of left-hand query */ 2810 int iSub2; /* EQP id of right-hand query */ 2811 #endif 2812 2813 assert( p->pOrderBy!=0 ); 2814 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2815 db = pParse->db; 2816 v = pParse->pVdbe; 2817 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2818 labelEnd = sqlite3VdbeMakeLabel(v); 2819 labelCmpr = sqlite3VdbeMakeLabel(v); 2820 2821 2822 /* Patch up the ORDER BY clause 2823 */ 2824 op = p->op; 2825 pPrior = p->pPrior; 2826 assert( pPrior->pOrderBy==0 ); 2827 pOrderBy = p->pOrderBy; 2828 assert( pOrderBy ); 2829 nOrderBy = pOrderBy->nExpr; 2830 2831 /* For operators other than UNION ALL we have to make sure that 2832 ** the ORDER BY clause covers every term of the result set. Add 2833 ** terms to the ORDER BY clause as necessary. 2834 */ 2835 if( op!=TK_ALL ){ 2836 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2837 struct ExprList_item *pItem; 2838 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2839 assert( pItem->u.x.iOrderByCol>0 ); 2840 if( pItem->u.x.iOrderByCol==i ) break; 2841 } 2842 if( j==nOrderBy ){ 2843 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2844 if( pNew==0 ) return SQLITE_NOMEM; 2845 pNew->flags |= EP_IntValue; 2846 pNew->u.iValue = i; 2847 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2848 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2849 } 2850 } 2851 } 2852 2853 /* Compute the comparison permutation and keyinfo that is used with 2854 ** the permutation used to determine if the next 2855 ** row of results comes from selectA or selectB. Also add explicit 2856 ** collations to the ORDER BY clause terms so that when the subqueries 2857 ** to the right and the left are evaluated, they use the correct 2858 ** collation. 2859 */ 2860 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2861 if( aPermute ){ 2862 struct ExprList_item *pItem; 2863 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2864 assert( pItem->u.x.iOrderByCol>0 2865 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2866 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2867 } 2868 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2869 }else{ 2870 pKeyMerge = 0; 2871 } 2872 2873 /* Reattach the ORDER BY clause to the query. 2874 */ 2875 p->pOrderBy = pOrderBy; 2876 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2877 2878 /* Allocate a range of temporary registers and the KeyInfo needed 2879 ** for the logic that removes duplicate result rows when the 2880 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2881 */ 2882 if( op==TK_ALL ){ 2883 regPrev = 0; 2884 }else{ 2885 int nExpr = p->pEList->nExpr; 2886 assert( nOrderBy>=nExpr || db->mallocFailed ); 2887 regPrev = pParse->nMem+1; 2888 pParse->nMem += nExpr+1; 2889 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2890 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2891 if( pKeyDup ){ 2892 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2893 for(i=0; i<nExpr; i++){ 2894 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2895 pKeyDup->aSortOrder[i] = 0; 2896 } 2897 } 2898 } 2899 2900 /* Separate the left and the right query from one another 2901 */ 2902 p->pPrior = 0; 2903 pPrior->pNext = 0; 2904 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2905 if( pPrior->pPrior==0 ){ 2906 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2907 } 2908 2909 /* Compute the limit registers */ 2910 computeLimitRegisters(pParse, p, labelEnd); 2911 if( p->iLimit && op==TK_ALL ){ 2912 regLimitA = ++pParse->nMem; 2913 regLimitB = ++pParse->nMem; 2914 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2915 regLimitA); 2916 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2917 }else{ 2918 regLimitA = regLimitB = 0; 2919 } 2920 sqlite3ExprDelete(db, p->pLimit); 2921 p->pLimit = 0; 2922 sqlite3ExprDelete(db, p->pOffset); 2923 p->pOffset = 0; 2924 2925 regAddrA = ++pParse->nMem; 2926 regAddrB = ++pParse->nMem; 2927 regOutA = ++pParse->nMem; 2928 regOutB = ++pParse->nMem; 2929 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2930 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2931 2932 /* Generate a coroutine to evaluate the SELECT statement to the 2933 ** left of the compound operator - the "A" select. 2934 */ 2935 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2936 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2937 VdbeComment((v, "left SELECT")); 2938 pPrior->iLimit = regLimitA; 2939 explainSetInteger(iSub1, pParse->iNextSelectId); 2940 sqlite3Select(pParse, pPrior, &destA); 2941 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2942 sqlite3VdbeJumpHere(v, j1); 2943 2944 /* Generate a coroutine to evaluate the SELECT statement on 2945 ** the right - the "B" select 2946 */ 2947 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2948 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2949 VdbeComment((v, "right SELECT")); 2950 savedLimit = p->iLimit; 2951 savedOffset = p->iOffset; 2952 p->iLimit = regLimitB; 2953 p->iOffset = 0; 2954 explainSetInteger(iSub2, pParse->iNextSelectId); 2955 sqlite3Select(pParse, p, &destB); 2956 p->iLimit = savedLimit; 2957 p->iOffset = savedOffset; 2958 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2959 2960 /* Generate a subroutine that outputs the current row of the A 2961 ** select as the next output row of the compound select. 2962 */ 2963 VdbeNoopComment((v, "Output routine for A")); 2964 addrOutA = generateOutputSubroutine(pParse, 2965 p, &destA, pDest, regOutA, 2966 regPrev, pKeyDup, labelEnd); 2967 2968 /* Generate a subroutine that outputs the current row of the B 2969 ** select as the next output row of the compound select. 2970 */ 2971 if( op==TK_ALL || op==TK_UNION ){ 2972 VdbeNoopComment((v, "Output routine for B")); 2973 addrOutB = generateOutputSubroutine(pParse, 2974 p, &destB, pDest, regOutB, 2975 regPrev, pKeyDup, labelEnd); 2976 } 2977 sqlite3KeyInfoUnref(pKeyDup); 2978 2979 /* Generate a subroutine to run when the results from select A 2980 ** are exhausted and only data in select B remains. 2981 */ 2982 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2983 addrEofA_noB = addrEofA = labelEnd; 2984 }else{ 2985 VdbeNoopComment((v, "eof-A subroutine")); 2986 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2987 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2988 VdbeCoverage(v); 2989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2990 p->nSelectRow += pPrior->nSelectRow; 2991 } 2992 2993 /* Generate a subroutine to run when the results from select B 2994 ** are exhausted and only data in select A remains. 2995 */ 2996 if( op==TK_INTERSECT ){ 2997 addrEofB = addrEofA; 2998 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2999 }else{ 3000 VdbeNoopComment((v, "eof-B subroutine")); 3001 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3002 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3003 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3004 } 3005 3006 /* Generate code to handle the case of A<B 3007 */ 3008 VdbeNoopComment((v, "A-lt-B subroutine")); 3009 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3010 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3011 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3012 3013 /* Generate code to handle the case of A==B 3014 */ 3015 if( op==TK_ALL ){ 3016 addrAeqB = addrAltB; 3017 }else if( op==TK_INTERSECT ){ 3018 addrAeqB = addrAltB; 3019 addrAltB++; 3020 }else{ 3021 VdbeNoopComment((v, "A-eq-B subroutine")); 3022 addrAeqB = 3023 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3024 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3025 } 3026 3027 /* Generate code to handle the case of A>B 3028 */ 3029 VdbeNoopComment((v, "A-gt-B subroutine")); 3030 addrAgtB = sqlite3VdbeCurrentAddr(v); 3031 if( op==TK_ALL || op==TK_UNION ){ 3032 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3033 } 3034 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3035 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3036 3037 /* This code runs once to initialize everything. 3038 */ 3039 sqlite3VdbeJumpHere(v, j1); 3040 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3041 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3042 3043 /* Implement the main merge loop 3044 */ 3045 sqlite3VdbeResolveLabel(v, labelCmpr); 3046 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3047 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3048 (char*)pKeyMerge, P4_KEYINFO); 3049 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3050 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3051 3052 /* Jump to the this point in order to terminate the query. 3053 */ 3054 sqlite3VdbeResolveLabel(v, labelEnd); 3055 3056 /* Set the number of output columns 3057 */ 3058 if( pDest->eDest==SRT_Output ){ 3059 Select *pFirst = pPrior; 3060 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3061 generateColumnNames(pParse, 0, pFirst->pEList); 3062 } 3063 3064 /* Reassembly the compound query so that it will be freed correctly 3065 ** by the calling function */ 3066 if( p->pPrior ){ 3067 sqlite3SelectDelete(db, p->pPrior); 3068 } 3069 p->pPrior = pPrior; 3070 pPrior->pNext = p; 3071 3072 /*** TBD: Insert subroutine calls to close cursors on incomplete 3073 **** subqueries ****/ 3074 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3075 return SQLITE_OK; 3076 } 3077 #endif 3078 3079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3080 /* Forward Declarations */ 3081 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3082 static void substSelect(sqlite3*, Select *, int, ExprList *); 3083 3084 /* 3085 ** Scan through the expression pExpr. Replace every reference to 3086 ** a column in table number iTable with a copy of the iColumn-th 3087 ** entry in pEList. (But leave references to the ROWID column 3088 ** unchanged.) 3089 ** 3090 ** This routine is part of the flattening procedure. A subquery 3091 ** whose result set is defined by pEList appears as entry in the 3092 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3093 ** FORM clause entry is iTable. This routine make the necessary 3094 ** changes to pExpr so that it refers directly to the source table 3095 ** of the subquery rather the result set of the subquery. 3096 */ 3097 static Expr *substExpr( 3098 sqlite3 *db, /* Report malloc errors to this connection */ 3099 Expr *pExpr, /* Expr in which substitution occurs */ 3100 int iTable, /* Table to be substituted */ 3101 ExprList *pEList /* Substitute expressions */ 3102 ){ 3103 if( pExpr==0 ) return 0; 3104 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3105 if( pExpr->iColumn<0 ){ 3106 pExpr->op = TK_NULL; 3107 }else{ 3108 Expr *pNew; 3109 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3110 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3111 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3112 sqlite3ExprDelete(db, pExpr); 3113 pExpr = pNew; 3114 } 3115 }else{ 3116 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3117 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3118 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3119 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3120 }else{ 3121 substExprList(db, pExpr->x.pList, iTable, pEList); 3122 } 3123 } 3124 return pExpr; 3125 } 3126 static void substExprList( 3127 sqlite3 *db, /* Report malloc errors here */ 3128 ExprList *pList, /* List to scan and in which to make substitutes */ 3129 int iTable, /* Table to be substituted */ 3130 ExprList *pEList /* Substitute values */ 3131 ){ 3132 int i; 3133 if( pList==0 ) return; 3134 for(i=0; i<pList->nExpr; i++){ 3135 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3136 } 3137 } 3138 static void substSelect( 3139 sqlite3 *db, /* Report malloc errors here */ 3140 Select *p, /* SELECT statement in which to make substitutions */ 3141 int iTable, /* Table to be replaced */ 3142 ExprList *pEList /* Substitute values */ 3143 ){ 3144 SrcList *pSrc; 3145 struct SrcList_item *pItem; 3146 int i; 3147 if( !p ) return; 3148 substExprList(db, p->pEList, iTable, pEList); 3149 substExprList(db, p->pGroupBy, iTable, pEList); 3150 substExprList(db, p->pOrderBy, iTable, pEList); 3151 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3152 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3153 substSelect(db, p->pPrior, iTable, pEList); 3154 pSrc = p->pSrc; 3155 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3156 if( ALWAYS(pSrc) ){ 3157 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3158 substSelect(db, pItem->pSelect, iTable, pEList); 3159 } 3160 } 3161 } 3162 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3163 3164 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3165 /* 3166 ** This routine attempts to flatten subqueries as a performance optimization. 3167 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3168 ** 3169 ** To understand the concept of flattening, consider the following 3170 ** query: 3171 ** 3172 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3173 ** 3174 ** The default way of implementing this query is to execute the 3175 ** subquery first and store the results in a temporary table, then 3176 ** run the outer query on that temporary table. This requires two 3177 ** passes over the data. Furthermore, because the temporary table 3178 ** has no indices, the WHERE clause on the outer query cannot be 3179 ** optimized. 3180 ** 3181 ** This routine attempts to rewrite queries such as the above into 3182 ** a single flat select, like this: 3183 ** 3184 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3185 ** 3186 ** The code generated for this simplification gives the same result 3187 ** but only has to scan the data once. And because indices might 3188 ** exist on the table t1, a complete scan of the data might be 3189 ** avoided. 3190 ** 3191 ** Flattening is only attempted if all of the following are true: 3192 ** 3193 ** (1) The subquery and the outer query do not both use aggregates. 3194 ** 3195 ** (2) The subquery is not an aggregate or the outer query is not a join. 3196 ** 3197 ** (3) The subquery is not the right operand of a left outer join 3198 ** (Originally ticket #306. Strengthened by ticket #3300) 3199 ** 3200 ** (4) The subquery is not DISTINCT. 3201 ** 3202 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3203 ** sub-queries that were excluded from this optimization. Restriction 3204 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3205 ** 3206 ** (6) The subquery does not use aggregates or the outer query is not 3207 ** DISTINCT. 3208 ** 3209 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3210 ** A FROM clause, consider adding a FROM close with the special 3211 ** table sqlite_once that consists of a single row containing a 3212 ** single NULL. 3213 ** 3214 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3215 ** 3216 ** (9) The subquery does not use LIMIT or the outer query does not use 3217 ** aggregates. 3218 ** 3219 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3220 ** accidently carried the comment forward until 2014-09-15. Original 3221 ** text: "The subquery does not use aggregates or the outer query does not 3222 ** use LIMIT." 3223 ** 3224 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3225 ** 3226 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3227 ** a separate restriction deriving from ticket #350. 3228 ** 3229 ** (13) The subquery and outer query do not both use LIMIT. 3230 ** 3231 ** (14) The subquery does not use OFFSET. 3232 ** 3233 ** (15) The outer query is not part of a compound select or the 3234 ** subquery does not have a LIMIT clause. 3235 ** (See ticket #2339 and ticket [02a8e81d44]). 3236 ** 3237 ** (16) The outer query is not an aggregate or the subquery does 3238 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3239 ** until we introduced the group_concat() function. 3240 ** 3241 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3242 ** compound clause made up entirely of non-aggregate queries, and 3243 ** the parent query: 3244 ** 3245 ** * is not itself part of a compound select, 3246 ** * is not an aggregate or DISTINCT query, and 3247 ** * is not a join 3248 ** 3249 ** The parent and sub-query may contain WHERE clauses. Subject to 3250 ** rules (11), (13) and (14), they may also contain ORDER BY, 3251 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3252 ** operator other than UNION ALL because all the other compound 3253 ** operators have an implied DISTINCT which is disallowed by 3254 ** restriction (4). 3255 ** 3256 ** Also, each component of the sub-query must return the same number 3257 ** of result columns. This is actually a requirement for any compound 3258 ** SELECT statement, but all the code here does is make sure that no 3259 ** such (illegal) sub-query is flattened. The caller will detect the 3260 ** syntax error and return a detailed message. 3261 ** 3262 ** (18) If the sub-query is a compound select, then all terms of the 3263 ** ORDER by clause of the parent must be simple references to 3264 ** columns of the sub-query. 3265 ** 3266 ** (19) The subquery does not use LIMIT or the outer query does not 3267 ** have a WHERE clause. 3268 ** 3269 ** (20) If the sub-query is a compound select, then it must not use 3270 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3271 ** somewhat by saying that the terms of the ORDER BY clause must 3272 ** appear as unmodified result columns in the outer query. But we 3273 ** have other optimizations in mind to deal with that case. 3274 ** 3275 ** (21) The subquery does not use LIMIT or the outer query is not 3276 ** DISTINCT. (See ticket [752e1646fc]). 3277 ** 3278 ** (22) The subquery is not a recursive CTE. 3279 ** 3280 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3281 ** compound query. This restriction is because transforming the 3282 ** parent to a compound query confuses the code that handles 3283 ** recursive queries in multiSelect(). 3284 ** 3285 ** (24) The subquery is not an aggregate that uses the built-in min() or 3286 ** or max() functions. (Without this restriction, a query like: 3287 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3288 ** return the value X for which Y was maximal.) 3289 ** 3290 ** 3291 ** In this routine, the "p" parameter is a pointer to the outer query. 3292 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3293 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3294 ** 3295 ** If flattening is not attempted, this routine is a no-op and returns 0. 3296 ** If flattening is attempted this routine returns 1. 3297 ** 3298 ** All of the expression analysis must occur on both the outer query and 3299 ** the subquery before this routine runs. 3300 */ 3301 static int flattenSubquery( 3302 Parse *pParse, /* Parsing context */ 3303 Select *p, /* The parent or outer SELECT statement */ 3304 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3305 int isAgg, /* True if outer SELECT uses aggregate functions */ 3306 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3307 ){ 3308 const char *zSavedAuthContext = pParse->zAuthContext; 3309 Select *pParent; 3310 Select *pSub; /* The inner query or "subquery" */ 3311 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3312 SrcList *pSrc; /* The FROM clause of the outer query */ 3313 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3314 ExprList *pList; /* The result set of the outer query */ 3315 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3316 int i; /* Loop counter */ 3317 Expr *pWhere; /* The WHERE clause */ 3318 struct SrcList_item *pSubitem; /* The subquery */ 3319 sqlite3 *db = pParse->db; 3320 3321 /* Check to see if flattening is permitted. Return 0 if not. 3322 */ 3323 assert( p!=0 ); 3324 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3325 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3326 pSrc = p->pSrc; 3327 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3328 pSubitem = &pSrc->a[iFrom]; 3329 iParent = pSubitem->iCursor; 3330 pSub = pSubitem->pSelect; 3331 assert( pSub!=0 ); 3332 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3333 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3334 pSubSrc = pSub->pSrc; 3335 assert( pSubSrc ); 3336 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3337 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3338 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3339 ** became arbitrary expressions, we were forced to add restrictions (13) 3340 ** and (14). */ 3341 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3342 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3343 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3344 return 0; /* Restriction (15) */ 3345 } 3346 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3347 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3348 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3349 return 0; /* Restrictions (8)(9) */ 3350 } 3351 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3352 return 0; /* Restriction (6) */ 3353 } 3354 if( p->pOrderBy && pSub->pOrderBy ){ 3355 return 0; /* Restriction (11) */ 3356 } 3357 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3358 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3359 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3360 return 0; /* Restriction (21) */ 3361 } 3362 testcase( pSub->selFlags & SF_Recursive ); 3363 testcase( pSub->selFlags & SF_MinMaxAgg ); 3364 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3365 return 0; /* Restrictions (22) and (24) */ 3366 } 3367 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3368 return 0; /* Restriction (23) */ 3369 } 3370 3371 /* OBSOLETE COMMENT 1: 3372 ** Restriction 3: If the subquery is a join, make sure the subquery is 3373 ** not used as the right operand of an outer join. Examples of why this 3374 ** is not allowed: 3375 ** 3376 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3377 ** 3378 ** If we flatten the above, we would get 3379 ** 3380 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3381 ** 3382 ** which is not at all the same thing. 3383 ** 3384 ** OBSOLETE COMMENT 2: 3385 ** Restriction 12: If the subquery is the right operand of a left outer 3386 ** join, make sure the subquery has no WHERE clause. 3387 ** An examples of why this is not allowed: 3388 ** 3389 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3390 ** 3391 ** If we flatten the above, we would get 3392 ** 3393 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3394 ** 3395 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3396 ** effectively converts the OUTER JOIN into an INNER JOIN. 3397 ** 3398 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3399 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3400 ** is fraught with danger. Best to avoid the whole thing. If the 3401 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3402 */ 3403 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3404 return 0; 3405 } 3406 3407 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3408 ** use only the UNION ALL operator. And none of the simple select queries 3409 ** that make up the compound SELECT are allowed to be aggregate or distinct 3410 ** queries. 3411 */ 3412 if( pSub->pPrior ){ 3413 if( pSub->pOrderBy ){ 3414 return 0; /* Restriction 20 */ 3415 } 3416 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3417 return 0; 3418 } 3419 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3420 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3421 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3422 assert( pSub->pSrc!=0 ); 3423 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3424 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3425 || pSub1->pSrc->nSrc<1 3426 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3427 ){ 3428 return 0; 3429 } 3430 testcase( pSub1->pSrc->nSrc>1 ); 3431 } 3432 3433 /* Restriction 18. */ 3434 if( p->pOrderBy ){ 3435 int ii; 3436 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3437 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3438 } 3439 } 3440 } 3441 3442 /***** If we reach this point, flattening is permitted. *****/ 3443 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3444 pSub->zSelName, pSub, iFrom)); 3445 3446 /* Authorize the subquery */ 3447 pParse->zAuthContext = pSubitem->zName; 3448 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3449 testcase( i==SQLITE_DENY ); 3450 pParse->zAuthContext = zSavedAuthContext; 3451 3452 /* If the sub-query is a compound SELECT statement, then (by restrictions 3453 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3454 ** be of the form: 3455 ** 3456 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3457 ** 3458 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3459 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3460 ** OFFSET clauses and joins them to the left-hand-side of the original 3461 ** using UNION ALL operators. In this case N is the number of simple 3462 ** select statements in the compound sub-query. 3463 ** 3464 ** Example: 3465 ** 3466 ** SELECT a+1 FROM ( 3467 ** SELECT x FROM tab 3468 ** UNION ALL 3469 ** SELECT y FROM tab 3470 ** UNION ALL 3471 ** SELECT abs(z*2) FROM tab2 3472 ** ) WHERE a!=5 ORDER BY 1 3473 ** 3474 ** Transformed into: 3475 ** 3476 ** SELECT x+1 FROM tab WHERE x+1!=5 3477 ** UNION ALL 3478 ** SELECT y+1 FROM tab WHERE y+1!=5 3479 ** UNION ALL 3480 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3481 ** ORDER BY 1 3482 ** 3483 ** We call this the "compound-subquery flattening". 3484 */ 3485 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3486 Select *pNew; 3487 ExprList *pOrderBy = p->pOrderBy; 3488 Expr *pLimit = p->pLimit; 3489 Expr *pOffset = p->pOffset; 3490 Select *pPrior = p->pPrior; 3491 p->pOrderBy = 0; 3492 p->pSrc = 0; 3493 p->pPrior = 0; 3494 p->pLimit = 0; 3495 p->pOffset = 0; 3496 pNew = sqlite3SelectDup(db, p, 0); 3497 sqlite3SelectSetName(pNew, pSub->zSelName); 3498 p->pOffset = pOffset; 3499 p->pLimit = pLimit; 3500 p->pOrderBy = pOrderBy; 3501 p->pSrc = pSrc; 3502 p->op = TK_ALL; 3503 if( pNew==0 ){ 3504 p->pPrior = pPrior; 3505 }else{ 3506 pNew->pPrior = pPrior; 3507 if( pPrior ) pPrior->pNext = pNew; 3508 pNew->pNext = p; 3509 p->pPrior = pNew; 3510 SELECTTRACE(2,pParse,p, 3511 ("compound-subquery flattener creates %s.%p as peer\n", 3512 pNew->zSelName, pNew)); 3513 } 3514 if( db->mallocFailed ) return 1; 3515 } 3516 3517 /* Begin flattening the iFrom-th entry of the FROM clause 3518 ** in the outer query. 3519 */ 3520 pSub = pSub1 = pSubitem->pSelect; 3521 3522 /* Delete the transient table structure associated with the 3523 ** subquery 3524 */ 3525 sqlite3DbFree(db, pSubitem->zDatabase); 3526 sqlite3DbFree(db, pSubitem->zName); 3527 sqlite3DbFree(db, pSubitem->zAlias); 3528 pSubitem->zDatabase = 0; 3529 pSubitem->zName = 0; 3530 pSubitem->zAlias = 0; 3531 pSubitem->pSelect = 0; 3532 3533 /* Defer deleting the Table object associated with the 3534 ** subquery until code generation is 3535 ** complete, since there may still exist Expr.pTab entries that 3536 ** refer to the subquery even after flattening. Ticket #3346. 3537 ** 3538 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3539 */ 3540 if( ALWAYS(pSubitem->pTab!=0) ){ 3541 Table *pTabToDel = pSubitem->pTab; 3542 if( pTabToDel->nRef==1 ){ 3543 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3544 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3545 pToplevel->pZombieTab = pTabToDel; 3546 }else{ 3547 pTabToDel->nRef--; 3548 } 3549 pSubitem->pTab = 0; 3550 } 3551 3552 /* The following loop runs once for each term in a compound-subquery 3553 ** flattening (as described above). If we are doing a different kind 3554 ** of flattening - a flattening other than a compound-subquery flattening - 3555 ** then this loop only runs once. 3556 ** 3557 ** This loop moves all of the FROM elements of the subquery into the 3558 ** the FROM clause of the outer query. Before doing this, remember 3559 ** the cursor number for the original outer query FROM element in 3560 ** iParent. The iParent cursor will never be used. Subsequent code 3561 ** will scan expressions looking for iParent references and replace 3562 ** those references with expressions that resolve to the subquery FROM 3563 ** elements we are now copying in. 3564 */ 3565 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3566 int nSubSrc; 3567 u8 jointype = 0; 3568 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3569 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3570 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3571 3572 if( pSrc ){ 3573 assert( pParent==p ); /* First time through the loop */ 3574 jointype = pSubitem->jointype; 3575 }else{ 3576 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3577 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3578 if( pSrc==0 ){ 3579 assert( db->mallocFailed ); 3580 break; 3581 } 3582 } 3583 3584 /* The subquery uses a single slot of the FROM clause of the outer 3585 ** query. If the subquery has more than one element in its FROM clause, 3586 ** then expand the outer query to make space for it to hold all elements 3587 ** of the subquery. 3588 ** 3589 ** Example: 3590 ** 3591 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3592 ** 3593 ** The outer query has 3 slots in its FROM clause. One slot of the 3594 ** outer query (the middle slot) is used by the subquery. The next 3595 ** block of code will expand the out query to 4 slots. The middle 3596 ** slot is expanded to two slots in order to make space for the 3597 ** two elements in the FROM clause of the subquery. 3598 */ 3599 if( nSubSrc>1 ){ 3600 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3601 if( db->mallocFailed ){ 3602 break; 3603 } 3604 } 3605 3606 /* Transfer the FROM clause terms from the subquery into the 3607 ** outer query. 3608 */ 3609 for(i=0; i<nSubSrc; i++){ 3610 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3611 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3612 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3613 } 3614 pSrc->a[iFrom].jointype = jointype; 3615 3616 /* Now begin substituting subquery result set expressions for 3617 ** references to the iParent in the outer query. 3618 ** 3619 ** Example: 3620 ** 3621 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3622 ** \ \_____________ subquery __________/ / 3623 ** \_____________________ outer query ______________________________/ 3624 ** 3625 ** We look at every expression in the outer query and every place we see 3626 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3627 */ 3628 pList = pParent->pEList; 3629 for(i=0; i<pList->nExpr; i++){ 3630 if( pList->a[i].zName==0 ){ 3631 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3632 sqlite3Dequote(zName); 3633 pList->a[i].zName = zName; 3634 } 3635 } 3636 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3637 if( isAgg ){ 3638 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3639 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3640 } 3641 if( pSub->pOrderBy ){ 3642 /* At this point, any non-zero iOrderByCol values indicate that the 3643 ** ORDER BY column expression is identical to the iOrderByCol'th 3644 ** expression returned by SELECT statement pSub. Since these values 3645 ** do not necessarily correspond to columns in SELECT statement pParent, 3646 ** zero them before transfering the ORDER BY clause. 3647 ** 3648 ** Not doing this may cause an error if a subsequent call to this 3649 ** function attempts to flatten a compound sub-query into pParent 3650 ** (the only way this can happen is if the compound sub-query is 3651 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3652 ExprList *pOrderBy = pSub->pOrderBy; 3653 for(i=0; i<pOrderBy->nExpr; i++){ 3654 pOrderBy->a[i].u.x.iOrderByCol = 0; 3655 } 3656 assert( pParent->pOrderBy==0 ); 3657 assert( pSub->pPrior==0 ); 3658 pParent->pOrderBy = pOrderBy; 3659 pSub->pOrderBy = 0; 3660 }else if( pParent->pOrderBy ){ 3661 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3662 } 3663 if( pSub->pWhere ){ 3664 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3665 }else{ 3666 pWhere = 0; 3667 } 3668 if( subqueryIsAgg ){ 3669 assert( pParent->pHaving==0 ); 3670 pParent->pHaving = pParent->pWhere; 3671 pParent->pWhere = pWhere; 3672 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3673 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3674 sqlite3ExprDup(db, pSub->pHaving, 0)); 3675 assert( pParent->pGroupBy==0 ); 3676 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3677 }else{ 3678 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3679 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3680 } 3681 3682 /* The flattened query is distinct if either the inner or the 3683 ** outer query is distinct. 3684 */ 3685 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3686 3687 /* 3688 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3689 ** 3690 ** One is tempted to try to add a and b to combine the limits. But this 3691 ** does not work if either limit is negative. 3692 */ 3693 if( pSub->pLimit ){ 3694 pParent->pLimit = pSub->pLimit; 3695 pSub->pLimit = 0; 3696 } 3697 } 3698 3699 /* Finially, delete what is left of the subquery and return 3700 ** success. 3701 */ 3702 sqlite3SelectDelete(db, pSub1); 3703 3704 #if SELECTTRACE_ENABLED 3705 if( sqlite3SelectTrace & 0x100 ){ 3706 sqlite3DebugPrintf("After flattening:\n"); 3707 sqlite3TreeViewSelect(0, p, 0); 3708 } 3709 #endif 3710 3711 return 1; 3712 } 3713 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3714 3715 /* 3716 ** Based on the contents of the AggInfo structure indicated by the first 3717 ** argument, this function checks if the following are true: 3718 ** 3719 ** * the query contains just a single aggregate function, 3720 ** * the aggregate function is either min() or max(), and 3721 ** * the argument to the aggregate function is a column value. 3722 ** 3723 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3724 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3725 ** list of arguments passed to the aggregate before returning. 3726 ** 3727 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3728 ** WHERE_ORDERBY_NORMAL is returned. 3729 */ 3730 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3731 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3732 3733 *ppMinMax = 0; 3734 if( pAggInfo->nFunc==1 ){ 3735 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3736 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3737 3738 assert( pExpr->op==TK_AGG_FUNCTION ); 3739 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3740 const char *zFunc = pExpr->u.zToken; 3741 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3742 eRet = WHERE_ORDERBY_MIN; 3743 *ppMinMax = pEList; 3744 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3745 eRet = WHERE_ORDERBY_MAX; 3746 *ppMinMax = pEList; 3747 } 3748 } 3749 } 3750 3751 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3752 return eRet; 3753 } 3754 3755 /* 3756 ** The select statement passed as the first argument is an aggregate query. 3757 ** The second argument is the associated aggregate-info object. This 3758 ** function tests if the SELECT is of the form: 3759 ** 3760 ** SELECT count(*) FROM <tbl> 3761 ** 3762 ** where table is a database table, not a sub-select or view. If the query 3763 ** does match this pattern, then a pointer to the Table object representing 3764 ** <tbl> is returned. Otherwise, 0 is returned. 3765 */ 3766 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3767 Table *pTab; 3768 Expr *pExpr; 3769 3770 assert( !p->pGroupBy ); 3771 3772 if( p->pWhere || p->pEList->nExpr!=1 3773 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3774 ){ 3775 return 0; 3776 } 3777 pTab = p->pSrc->a[0].pTab; 3778 pExpr = p->pEList->a[0].pExpr; 3779 assert( pTab && !pTab->pSelect && pExpr ); 3780 3781 if( IsVirtual(pTab) ) return 0; 3782 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3783 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3784 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3785 if( pExpr->flags&EP_Distinct ) return 0; 3786 3787 return pTab; 3788 } 3789 3790 /* 3791 ** If the source-list item passed as an argument was augmented with an 3792 ** INDEXED BY clause, then try to locate the specified index. If there 3793 ** was such a clause and the named index cannot be found, return 3794 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3795 ** pFrom->pIndex and return SQLITE_OK. 3796 */ 3797 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3798 if( pFrom->pTab && pFrom->zIndex ){ 3799 Table *pTab = pFrom->pTab; 3800 char *zIndex = pFrom->zIndex; 3801 Index *pIdx; 3802 for(pIdx=pTab->pIndex; 3803 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3804 pIdx=pIdx->pNext 3805 ); 3806 if( !pIdx ){ 3807 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3808 pParse->checkSchema = 1; 3809 return SQLITE_ERROR; 3810 } 3811 pFrom->pIndex = pIdx; 3812 } 3813 return SQLITE_OK; 3814 } 3815 /* 3816 ** Detect compound SELECT statements that use an ORDER BY clause with 3817 ** an alternative collating sequence. 3818 ** 3819 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3820 ** 3821 ** These are rewritten as a subquery: 3822 ** 3823 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3824 ** ORDER BY ... COLLATE ... 3825 ** 3826 ** This transformation is necessary because the multiSelectOrderBy() routine 3827 ** above that generates the code for a compound SELECT with an ORDER BY clause 3828 ** uses a merge algorithm that requires the same collating sequence on the 3829 ** result columns as on the ORDER BY clause. See ticket 3830 ** http://www.sqlite.org/src/info/6709574d2a 3831 ** 3832 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3833 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3834 ** there are COLLATE terms in the ORDER BY. 3835 */ 3836 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3837 int i; 3838 Select *pNew; 3839 Select *pX; 3840 sqlite3 *db; 3841 struct ExprList_item *a; 3842 SrcList *pNewSrc; 3843 Parse *pParse; 3844 Token dummy; 3845 3846 if( p->pPrior==0 ) return WRC_Continue; 3847 if( p->pOrderBy==0 ) return WRC_Continue; 3848 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3849 if( pX==0 ) return WRC_Continue; 3850 a = p->pOrderBy->a; 3851 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3852 if( a[i].pExpr->flags & EP_Collate ) break; 3853 } 3854 if( i<0 ) return WRC_Continue; 3855 3856 /* If we reach this point, that means the transformation is required. */ 3857 3858 pParse = pWalker->pParse; 3859 db = pParse->db; 3860 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3861 if( pNew==0 ) return WRC_Abort; 3862 memset(&dummy, 0, sizeof(dummy)); 3863 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3864 if( pNewSrc==0 ) return WRC_Abort; 3865 *pNew = *p; 3866 p->pSrc = pNewSrc; 3867 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3868 p->op = TK_SELECT; 3869 p->pWhere = 0; 3870 pNew->pGroupBy = 0; 3871 pNew->pHaving = 0; 3872 pNew->pOrderBy = 0; 3873 p->pPrior = 0; 3874 p->pNext = 0; 3875 p->selFlags &= ~SF_Compound; 3876 assert( pNew->pPrior!=0 ); 3877 pNew->pPrior->pNext = pNew; 3878 pNew->pLimit = 0; 3879 pNew->pOffset = 0; 3880 return WRC_Continue; 3881 } 3882 3883 #ifndef SQLITE_OMIT_CTE 3884 /* 3885 ** Argument pWith (which may be NULL) points to a linked list of nested 3886 ** WITH contexts, from inner to outermost. If the table identified by 3887 ** FROM clause element pItem is really a common-table-expression (CTE) 3888 ** then return a pointer to the CTE definition for that table. Otherwise 3889 ** return NULL. 3890 ** 3891 ** If a non-NULL value is returned, set *ppContext to point to the With 3892 ** object that the returned CTE belongs to. 3893 */ 3894 static struct Cte *searchWith( 3895 With *pWith, /* Current outermost WITH clause */ 3896 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3897 With **ppContext /* OUT: WITH clause return value belongs to */ 3898 ){ 3899 const char *zName; 3900 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3901 With *p; 3902 for(p=pWith; p; p=p->pOuter){ 3903 int i; 3904 for(i=0; i<p->nCte; i++){ 3905 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3906 *ppContext = p; 3907 return &p->a[i]; 3908 } 3909 } 3910 } 3911 } 3912 return 0; 3913 } 3914 3915 /* The code generator maintains a stack of active WITH clauses 3916 ** with the inner-most WITH clause being at the top of the stack. 3917 ** 3918 ** This routine pushes the WITH clause passed as the second argument 3919 ** onto the top of the stack. If argument bFree is true, then this 3920 ** WITH clause will never be popped from the stack. In this case it 3921 ** should be freed along with the Parse object. In other cases, when 3922 ** bFree==0, the With object will be freed along with the SELECT 3923 ** statement with which it is associated. 3924 */ 3925 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3926 assert( bFree==0 || pParse->pWith==0 ); 3927 if( pWith ){ 3928 pWith->pOuter = pParse->pWith; 3929 pParse->pWith = pWith; 3930 pParse->bFreeWith = bFree; 3931 } 3932 } 3933 3934 /* 3935 ** This function checks if argument pFrom refers to a CTE declared by 3936 ** a WITH clause on the stack currently maintained by the parser. And, 3937 ** if currently processing a CTE expression, if it is a recursive 3938 ** reference to the current CTE. 3939 ** 3940 ** If pFrom falls into either of the two categories above, pFrom->pTab 3941 ** and other fields are populated accordingly. The caller should check 3942 ** (pFrom->pTab!=0) to determine whether or not a successful match 3943 ** was found. 3944 ** 3945 ** Whether or not a match is found, SQLITE_OK is returned if no error 3946 ** occurs. If an error does occur, an error message is stored in the 3947 ** parser and some error code other than SQLITE_OK returned. 3948 */ 3949 static int withExpand( 3950 Walker *pWalker, 3951 struct SrcList_item *pFrom 3952 ){ 3953 Parse *pParse = pWalker->pParse; 3954 sqlite3 *db = pParse->db; 3955 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3956 With *pWith; /* WITH clause that pCte belongs to */ 3957 3958 assert( pFrom->pTab==0 ); 3959 3960 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3961 if( pCte ){ 3962 Table *pTab; 3963 ExprList *pEList; 3964 Select *pSel; 3965 Select *pLeft; /* Left-most SELECT statement */ 3966 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3967 With *pSavedWith; /* Initial value of pParse->pWith */ 3968 3969 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3970 ** recursive reference to CTE pCte. Leave an error in pParse and return 3971 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3972 ** In this case, proceed. */ 3973 if( pCte->zErr ){ 3974 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3975 return SQLITE_ERROR; 3976 } 3977 3978 assert( pFrom->pTab==0 ); 3979 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3980 if( pTab==0 ) return WRC_Abort; 3981 pTab->nRef = 1; 3982 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3983 pTab->iPKey = -1; 3984 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3985 pTab->tabFlags |= TF_Ephemeral; 3986 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3987 if( db->mallocFailed ) return SQLITE_NOMEM; 3988 assert( pFrom->pSelect ); 3989 3990 /* Check if this is a recursive CTE. */ 3991 pSel = pFrom->pSelect; 3992 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3993 if( bMayRecursive ){ 3994 int i; 3995 SrcList *pSrc = pFrom->pSelect->pSrc; 3996 for(i=0; i<pSrc->nSrc; i++){ 3997 struct SrcList_item *pItem = &pSrc->a[i]; 3998 if( pItem->zDatabase==0 3999 && pItem->zName!=0 4000 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4001 ){ 4002 pItem->pTab = pTab; 4003 pItem->isRecursive = 1; 4004 pTab->nRef++; 4005 pSel->selFlags |= SF_Recursive; 4006 } 4007 } 4008 } 4009 4010 /* Only one recursive reference is permitted. */ 4011 if( pTab->nRef>2 ){ 4012 sqlite3ErrorMsg( 4013 pParse, "multiple references to recursive table: %s", pCte->zName 4014 ); 4015 return SQLITE_ERROR; 4016 } 4017 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4018 4019 pCte->zErr = "circular reference: %s"; 4020 pSavedWith = pParse->pWith; 4021 pParse->pWith = pWith; 4022 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4023 4024 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4025 pEList = pLeft->pEList; 4026 if( pCte->pCols ){ 4027 if( pEList->nExpr!=pCte->pCols->nExpr ){ 4028 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4029 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4030 ); 4031 pParse->pWith = pSavedWith; 4032 return SQLITE_ERROR; 4033 } 4034 pEList = pCte->pCols; 4035 } 4036 4037 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4038 if( bMayRecursive ){ 4039 if( pSel->selFlags & SF_Recursive ){ 4040 pCte->zErr = "multiple recursive references: %s"; 4041 }else{ 4042 pCte->zErr = "recursive reference in a subquery: %s"; 4043 } 4044 sqlite3WalkSelect(pWalker, pSel); 4045 } 4046 pCte->zErr = 0; 4047 pParse->pWith = pSavedWith; 4048 } 4049 4050 return SQLITE_OK; 4051 } 4052 #endif 4053 4054 #ifndef SQLITE_OMIT_CTE 4055 /* 4056 ** If the SELECT passed as the second argument has an associated WITH 4057 ** clause, pop it from the stack stored as part of the Parse object. 4058 ** 4059 ** This function is used as the xSelectCallback2() callback by 4060 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4061 ** names and other FROM clause elements. 4062 */ 4063 static void selectPopWith(Walker *pWalker, Select *p){ 4064 Parse *pParse = pWalker->pParse; 4065 With *pWith = findRightmost(p)->pWith; 4066 if( pWith!=0 ){ 4067 assert( pParse->pWith==pWith ); 4068 pParse->pWith = pWith->pOuter; 4069 } 4070 } 4071 #else 4072 #define selectPopWith 0 4073 #endif 4074 4075 /* 4076 ** This routine is a Walker callback for "expanding" a SELECT statement. 4077 ** "Expanding" means to do the following: 4078 ** 4079 ** (1) Make sure VDBE cursor numbers have been assigned to every 4080 ** element of the FROM clause. 4081 ** 4082 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4083 ** defines FROM clause. When views appear in the FROM clause, 4084 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4085 ** that implements the view. A copy is made of the view's SELECT 4086 ** statement so that we can freely modify or delete that statement 4087 ** without worrying about messing up the persistent representation 4088 ** of the view. 4089 ** 4090 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4091 ** on joins and the ON and USING clause of joins. 4092 ** 4093 ** (4) Scan the list of columns in the result set (pEList) looking 4094 ** for instances of the "*" operator or the TABLE.* operator. 4095 ** If found, expand each "*" to be every column in every table 4096 ** and TABLE.* to be every column in TABLE. 4097 ** 4098 */ 4099 static int selectExpander(Walker *pWalker, Select *p){ 4100 Parse *pParse = pWalker->pParse; 4101 int i, j, k; 4102 SrcList *pTabList; 4103 ExprList *pEList; 4104 struct SrcList_item *pFrom; 4105 sqlite3 *db = pParse->db; 4106 Expr *pE, *pRight, *pExpr; 4107 u16 selFlags = p->selFlags; 4108 4109 p->selFlags |= SF_Expanded; 4110 if( db->mallocFailed ){ 4111 return WRC_Abort; 4112 } 4113 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4114 return WRC_Prune; 4115 } 4116 pTabList = p->pSrc; 4117 pEList = p->pEList; 4118 if( pWalker->xSelectCallback2==selectPopWith ){ 4119 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4120 } 4121 4122 /* Make sure cursor numbers have been assigned to all entries in 4123 ** the FROM clause of the SELECT statement. 4124 */ 4125 sqlite3SrcListAssignCursors(pParse, pTabList); 4126 4127 /* Look up every table named in the FROM clause of the select. If 4128 ** an entry of the FROM clause is a subquery instead of a table or view, 4129 ** then create a transient table structure to describe the subquery. 4130 */ 4131 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4132 Table *pTab; 4133 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4134 if( pFrom->isRecursive ) continue; 4135 if( pFrom->pTab!=0 ){ 4136 /* This statement has already been prepared. There is no need 4137 ** to go further. */ 4138 assert( i==0 ); 4139 #ifndef SQLITE_OMIT_CTE 4140 selectPopWith(pWalker, p); 4141 #endif 4142 return WRC_Prune; 4143 } 4144 #ifndef SQLITE_OMIT_CTE 4145 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4146 if( pFrom->pTab ) {} else 4147 #endif 4148 if( pFrom->zName==0 ){ 4149 #ifndef SQLITE_OMIT_SUBQUERY 4150 Select *pSel = pFrom->pSelect; 4151 /* A sub-query in the FROM clause of a SELECT */ 4152 assert( pSel!=0 ); 4153 assert( pFrom->pTab==0 ); 4154 sqlite3WalkSelect(pWalker, pSel); 4155 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4156 if( pTab==0 ) return WRC_Abort; 4157 pTab->nRef = 1; 4158 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4159 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4160 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4161 pTab->iPKey = -1; 4162 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4163 pTab->tabFlags |= TF_Ephemeral; 4164 #endif 4165 }else{ 4166 /* An ordinary table or view name in the FROM clause */ 4167 assert( pFrom->pTab==0 ); 4168 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4169 if( pTab==0 ) return WRC_Abort; 4170 if( pTab->nRef==0xffff ){ 4171 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4172 pTab->zName); 4173 pFrom->pTab = 0; 4174 return WRC_Abort; 4175 } 4176 pTab->nRef++; 4177 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4178 if( pTab->pSelect || IsVirtual(pTab) ){ 4179 /* We reach here if the named table is a really a view */ 4180 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4181 assert( pFrom->pSelect==0 ); 4182 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4183 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4184 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4185 } 4186 #endif 4187 } 4188 4189 /* Locate the index named by the INDEXED BY clause, if any. */ 4190 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4191 return WRC_Abort; 4192 } 4193 } 4194 4195 /* Process NATURAL keywords, and ON and USING clauses of joins. 4196 */ 4197 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4198 return WRC_Abort; 4199 } 4200 4201 /* For every "*" that occurs in the column list, insert the names of 4202 ** all columns in all tables. And for every TABLE.* insert the names 4203 ** of all columns in TABLE. The parser inserted a special expression 4204 ** with the TK_ALL operator for each "*" that it found in the column list. 4205 ** The following code just has to locate the TK_ALL expressions and expand 4206 ** each one to the list of all columns in all tables. 4207 ** 4208 ** The first loop just checks to see if there are any "*" operators 4209 ** that need expanding. 4210 */ 4211 for(k=0; k<pEList->nExpr; k++){ 4212 pE = pEList->a[k].pExpr; 4213 if( pE->op==TK_ALL ) break; 4214 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4215 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4216 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4217 } 4218 if( k<pEList->nExpr ){ 4219 /* 4220 ** If we get here it means the result set contains one or more "*" 4221 ** operators that need to be expanded. Loop through each expression 4222 ** in the result set and expand them one by one. 4223 */ 4224 struct ExprList_item *a = pEList->a; 4225 ExprList *pNew = 0; 4226 int flags = pParse->db->flags; 4227 int longNames = (flags & SQLITE_FullColNames)!=0 4228 && (flags & SQLITE_ShortColNames)==0; 4229 4230 /* When processing FROM-clause subqueries, it is always the case 4231 ** that full_column_names=OFF and short_column_names=ON. The 4232 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4233 assert( (p->selFlags & SF_NestedFrom)==0 4234 || ((flags & SQLITE_FullColNames)==0 && 4235 (flags & SQLITE_ShortColNames)!=0) ); 4236 4237 for(k=0; k<pEList->nExpr; k++){ 4238 pE = a[k].pExpr; 4239 pRight = pE->pRight; 4240 assert( pE->op!=TK_DOT || pRight!=0 ); 4241 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4242 /* This particular expression does not need to be expanded. 4243 */ 4244 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4245 if( pNew ){ 4246 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4247 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4248 a[k].zName = 0; 4249 a[k].zSpan = 0; 4250 } 4251 a[k].pExpr = 0; 4252 }else{ 4253 /* This expression is a "*" or a "TABLE.*" and needs to be 4254 ** expanded. */ 4255 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4256 char *zTName = 0; /* text of name of TABLE */ 4257 if( pE->op==TK_DOT ){ 4258 assert( pE->pLeft!=0 ); 4259 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4260 zTName = pE->pLeft->u.zToken; 4261 } 4262 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4263 Table *pTab = pFrom->pTab; 4264 Select *pSub = pFrom->pSelect; 4265 char *zTabName = pFrom->zAlias; 4266 const char *zSchemaName = 0; 4267 int iDb; 4268 if( zTabName==0 ){ 4269 zTabName = pTab->zName; 4270 } 4271 if( db->mallocFailed ) break; 4272 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4273 pSub = 0; 4274 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4275 continue; 4276 } 4277 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4278 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4279 } 4280 for(j=0; j<pTab->nCol; j++){ 4281 char *zName = pTab->aCol[j].zName; 4282 char *zColname; /* The computed column name */ 4283 char *zToFree; /* Malloced string that needs to be freed */ 4284 Token sColname; /* Computed column name as a token */ 4285 4286 assert( zName ); 4287 if( zTName && pSub 4288 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4289 ){ 4290 continue; 4291 } 4292 4293 /* If a column is marked as 'hidden' (currently only possible 4294 ** for virtual tables), do not include it in the expanded 4295 ** result-set list. 4296 */ 4297 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4298 assert(IsVirtual(pTab)); 4299 continue; 4300 } 4301 tableSeen = 1; 4302 4303 if( i>0 && zTName==0 ){ 4304 if( (pFrom->jointype & JT_NATURAL)!=0 4305 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4306 ){ 4307 /* In a NATURAL join, omit the join columns from the 4308 ** table to the right of the join */ 4309 continue; 4310 } 4311 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4312 /* In a join with a USING clause, omit columns in the 4313 ** using clause from the table on the right. */ 4314 continue; 4315 } 4316 } 4317 pRight = sqlite3Expr(db, TK_ID, zName); 4318 zColname = zName; 4319 zToFree = 0; 4320 if( longNames || pTabList->nSrc>1 ){ 4321 Expr *pLeft; 4322 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4323 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4324 if( zSchemaName ){ 4325 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4326 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4327 } 4328 if( longNames ){ 4329 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4330 zToFree = zColname; 4331 } 4332 }else{ 4333 pExpr = pRight; 4334 } 4335 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4336 sColname.z = zColname; 4337 sColname.n = sqlite3Strlen30(zColname); 4338 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4339 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4340 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4341 if( pSub ){ 4342 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4343 testcase( pX->zSpan==0 ); 4344 }else{ 4345 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4346 zSchemaName, zTabName, zColname); 4347 testcase( pX->zSpan==0 ); 4348 } 4349 pX->bSpanIsTab = 1; 4350 } 4351 sqlite3DbFree(db, zToFree); 4352 } 4353 } 4354 if( !tableSeen ){ 4355 if( zTName ){ 4356 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4357 }else{ 4358 sqlite3ErrorMsg(pParse, "no tables specified"); 4359 } 4360 } 4361 } 4362 } 4363 sqlite3ExprListDelete(db, pEList); 4364 p->pEList = pNew; 4365 } 4366 #if SQLITE_MAX_COLUMN 4367 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4368 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4369 } 4370 #endif 4371 return WRC_Continue; 4372 } 4373 4374 /* 4375 ** No-op routine for the parse-tree walker. 4376 ** 4377 ** When this routine is the Walker.xExprCallback then expression trees 4378 ** are walked without any actions being taken at each node. Presumably, 4379 ** when this routine is used for Walker.xExprCallback then 4380 ** Walker.xSelectCallback is set to do something useful for every 4381 ** subquery in the parser tree. 4382 */ 4383 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4384 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4385 return WRC_Continue; 4386 } 4387 4388 /* 4389 ** This routine "expands" a SELECT statement and all of its subqueries. 4390 ** For additional information on what it means to "expand" a SELECT 4391 ** statement, see the comment on the selectExpand worker callback above. 4392 ** 4393 ** Expanding a SELECT statement is the first step in processing a 4394 ** SELECT statement. The SELECT statement must be expanded before 4395 ** name resolution is performed. 4396 ** 4397 ** If anything goes wrong, an error message is written into pParse. 4398 ** The calling function can detect the problem by looking at pParse->nErr 4399 ** and/or pParse->db->mallocFailed. 4400 */ 4401 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4402 Walker w; 4403 memset(&w, 0, sizeof(w)); 4404 w.xExprCallback = exprWalkNoop; 4405 w.pParse = pParse; 4406 if( pParse->hasCompound ){ 4407 w.xSelectCallback = convertCompoundSelectToSubquery; 4408 sqlite3WalkSelect(&w, pSelect); 4409 } 4410 w.xSelectCallback = selectExpander; 4411 if( (pSelect->selFlags & SF_AllValues)==0 ){ 4412 w.xSelectCallback2 = selectPopWith; 4413 } 4414 sqlite3WalkSelect(&w, pSelect); 4415 } 4416 4417 4418 #ifndef SQLITE_OMIT_SUBQUERY 4419 /* 4420 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4421 ** interface. 4422 ** 4423 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4424 ** information to the Table structure that represents the result set 4425 ** of that subquery. 4426 ** 4427 ** The Table structure that represents the result set was constructed 4428 ** by selectExpander() but the type and collation information was omitted 4429 ** at that point because identifiers had not yet been resolved. This 4430 ** routine is called after identifier resolution. 4431 */ 4432 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4433 Parse *pParse; 4434 int i; 4435 SrcList *pTabList; 4436 struct SrcList_item *pFrom; 4437 4438 assert( p->selFlags & SF_Resolved ); 4439 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4440 p->selFlags |= SF_HasTypeInfo; 4441 pParse = pWalker->pParse; 4442 pTabList = p->pSrc; 4443 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4444 Table *pTab = pFrom->pTab; 4445 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4446 /* A sub-query in the FROM clause of a SELECT */ 4447 Select *pSel = pFrom->pSelect; 4448 if( pSel ){ 4449 while( pSel->pPrior ) pSel = pSel->pPrior; 4450 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4451 } 4452 } 4453 } 4454 } 4455 } 4456 #endif 4457 4458 4459 /* 4460 ** This routine adds datatype and collating sequence information to 4461 ** the Table structures of all FROM-clause subqueries in a 4462 ** SELECT statement. 4463 ** 4464 ** Use this routine after name resolution. 4465 */ 4466 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4467 #ifndef SQLITE_OMIT_SUBQUERY 4468 Walker w; 4469 memset(&w, 0, sizeof(w)); 4470 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4471 w.xExprCallback = exprWalkNoop; 4472 w.pParse = pParse; 4473 sqlite3WalkSelect(&w, pSelect); 4474 #endif 4475 } 4476 4477 4478 /* 4479 ** This routine sets up a SELECT statement for processing. The 4480 ** following is accomplished: 4481 ** 4482 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4483 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4484 ** * ON and USING clauses are shifted into WHERE statements 4485 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4486 ** * Identifiers in expression are matched to tables. 4487 ** 4488 ** This routine acts recursively on all subqueries within the SELECT. 4489 */ 4490 void sqlite3SelectPrep( 4491 Parse *pParse, /* The parser context */ 4492 Select *p, /* The SELECT statement being coded. */ 4493 NameContext *pOuterNC /* Name context for container */ 4494 ){ 4495 sqlite3 *db; 4496 if( NEVER(p==0) ) return; 4497 db = pParse->db; 4498 if( db->mallocFailed ) return; 4499 if( p->selFlags & SF_HasTypeInfo ) return; 4500 sqlite3SelectExpand(pParse, p); 4501 if( pParse->nErr || db->mallocFailed ) return; 4502 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4503 if( pParse->nErr || db->mallocFailed ) return; 4504 sqlite3SelectAddTypeInfo(pParse, p); 4505 } 4506 4507 /* 4508 ** Reset the aggregate accumulator. 4509 ** 4510 ** The aggregate accumulator is a set of memory cells that hold 4511 ** intermediate results while calculating an aggregate. This 4512 ** routine generates code that stores NULLs in all of those memory 4513 ** cells. 4514 */ 4515 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4516 Vdbe *v = pParse->pVdbe; 4517 int i; 4518 struct AggInfo_func *pFunc; 4519 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4520 if( nReg==0 ) return; 4521 #ifdef SQLITE_DEBUG 4522 /* Verify that all AggInfo registers are within the range specified by 4523 ** AggInfo.mnReg..AggInfo.mxReg */ 4524 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4525 for(i=0; i<pAggInfo->nColumn; i++){ 4526 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4527 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4528 } 4529 for(i=0; i<pAggInfo->nFunc; i++){ 4530 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4531 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4532 } 4533 #endif 4534 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4535 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4536 if( pFunc->iDistinct>=0 ){ 4537 Expr *pE = pFunc->pExpr; 4538 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4539 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4540 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4541 "argument"); 4542 pFunc->iDistinct = -1; 4543 }else{ 4544 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4545 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4546 (char*)pKeyInfo, P4_KEYINFO); 4547 } 4548 } 4549 } 4550 } 4551 4552 /* 4553 ** Invoke the OP_AggFinalize opcode for every aggregate function 4554 ** in the AggInfo structure. 4555 */ 4556 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4557 Vdbe *v = pParse->pVdbe; 4558 int i; 4559 struct AggInfo_func *pF; 4560 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4561 ExprList *pList = pF->pExpr->x.pList; 4562 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4563 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4564 (void*)pF->pFunc, P4_FUNCDEF); 4565 } 4566 } 4567 4568 /* 4569 ** Update the accumulator memory cells for an aggregate based on 4570 ** the current cursor position. 4571 */ 4572 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4573 Vdbe *v = pParse->pVdbe; 4574 int i; 4575 int regHit = 0; 4576 int addrHitTest = 0; 4577 struct AggInfo_func *pF; 4578 struct AggInfo_col *pC; 4579 4580 pAggInfo->directMode = 1; 4581 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4582 int nArg; 4583 int addrNext = 0; 4584 int regAgg; 4585 ExprList *pList = pF->pExpr->x.pList; 4586 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4587 if( pList ){ 4588 nArg = pList->nExpr; 4589 regAgg = sqlite3GetTempRange(pParse, nArg); 4590 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4591 }else{ 4592 nArg = 0; 4593 regAgg = 0; 4594 } 4595 if( pF->iDistinct>=0 ){ 4596 addrNext = sqlite3VdbeMakeLabel(v); 4597 assert( nArg==1 ); 4598 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4599 } 4600 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4601 CollSeq *pColl = 0; 4602 struct ExprList_item *pItem; 4603 int j; 4604 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4605 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4606 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4607 } 4608 if( !pColl ){ 4609 pColl = pParse->db->pDfltColl; 4610 } 4611 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4612 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4613 } 4614 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4615 (void*)pF->pFunc, P4_FUNCDEF); 4616 sqlite3VdbeChangeP5(v, (u8)nArg); 4617 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4618 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4619 if( addrNext ){ 4620 sqlite3VdbeResolveLabel(v, addrNext); 4621 sqlite3ExprCacheClear(pParse); 4622 } 4623 } 4624 4625 /* Before populating the accumulator registers, clear the column cache. 4626 ** Otherwise, if any of the required column values are already present 4627 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4628 ** to pC->iMem. But by the time the value is used, the original register 4629 ** may have been used, invalidating the underlying buffer holding the 4630 ** text or blob value. See ticket [883034dcb5]. 4631 ** 4632 ** Another solution would be to change the OP_SCopy used to copy cached 4633 ** values to an OP_Copy. 4634 */ 4635 if( regHit ){ 4636 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4637 } 4638 sqlite3ExprCacheClear(pParse); 4639 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4640 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4641 } 4642 pAggInfo->directMode = 0; 4643 sqlite3ExprCacheClear(pParse); 4644 if( addrHitTest ){ 4645 sqlite3VdbeJumpHere(v, addrHitTest); 4646 } 4647 } 4648 4649 /* 4650 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4651 ** count(*) query ("SELECT count(*) FROM pTab"). 4652 */ 4653 #ifndef SQLITE_OMIT_EXPLAIN 4654 static void explainSimpleCount( 4655 Parse *pParse, /* Parse context */ 4656 Table *pTab, /* Table being queried */ 4657 Index *pIdx /* Index used to optimize scan, or NULL */ 4658 ){ 4659 if( pParse->explain==2 ){ 4660 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4661 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4662 pTab->zName, 4663 bCover ? " USING COVERING INDEX " : "", 4664 bCover ? pIdx->zName : "" 4665 ); 4666 sqlite3VdbeAddOp4( 4667 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4668 ); 4669 } 4670 } 4671 #else 4672 # define explainSimpleCount(a,b,c) 4673 #endif 4674 4675 /* 4676 ** Generate code for the SELECT statement given in the p argument. 4677 ** 4678 ** The results are returned according to the SelectDest structure. 4679 ** See comments in sqliteInt.h for further information. 4680 ** 4681 ** This routine returns the number of errors. If any errors are 4682 ** encountered, then an appropriate error message is left in 4683 ** pParse->zErrMsg. 4684 ** 4685 ** This routine does NOT free the Select structure passed in. The 4686 ** calling function needs to do that. 4687 */ 4688 int sqlite3Select( 4689 Parse *pParse, /* The parser context */ 4690 Select *p, /* The SELECT statement being coded. */ 4691 SelectDest *pDest /* What to do with the query results */ 4692 ){ 4693 int i, j; /* Loop counters */ 4694 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4695 Vdbe *v; /* The virtual machine under construction */ 4696 int isAgg; /* True for select lists like "count(*)" */ 4697 ExprList *pEList; /* List of columns to extract. */ 4698 SrcList *pTabList; /* List of tables to select from */ 4699 Expr *pWhere; /* The WHERE clause. May be NULL */ 4700 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4701 Expr *pHaving; /* The HAVING clause. May be NULL */ 4702 int rc = 1; /* Value to return from this function */ 4703 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4704 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4705 AggInfo sAggInfo; /* Information used by aggregate queries */ 4706 int iEnd; /* Address of the end of the query */ 4707 sqlite3 *db; /* The database connection */ 4708 4709 #ifndef SQLITE_OMIT_EXPLAIN 4710 int iRestoreSelectId = pParse->iSelectId; 4711 pParse->iSelectId = pParse->iNextSelectId++; 4712 #endif 4713 4714 db = pParse->db; 4715 if( p==0 || db->mallocFailed || pParse->nErr ){ 4716 return 1; 4717 } 4718 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4719 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4720 #if SELECTTRACE_ENABLED 4721 pParse->nSelectIndent++; 4722 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4723 if( sqlite3SelectTrace & 0x100 ){ 4724 sqlite3TreeViewSelect(0, p, 0); 4725 } 4726 #endif 4727 4728 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4729 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4730 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4731 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4732 if( IgnorableOrderby(pDest) ){ 4733 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4734 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4735 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4736 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4737 /* If ORDER BY makes no difference in the output then neither does 4738 ** DISTINCT so it can be removed too. */ 4739 sqlite3ExprListDelete(db, p->pOrderBy); 4740 p->pOrderBy = 0; 4741 p->selFlags &= ~SF_Distinct; 4742 } 4743 sqlite3SelectPrep(pParse, p, 0); 4744 memset(&sSort, 0, sizeof(sSort)); 4745 sSort.pOrderBy = p->pOrderBy; 4746 pTabList = p->pSrc; 4747 pEList = p->pEList; 4748 if( pParse->nErr || db->mallocFailed ){ 4749 goto select_end; 4750 } 4751 isAgg = (p->selFlags & SF_Aggregate)!=0; 4752 assert( pEList!=0 ); 4753 4754 /* Begin generating code. 4755 */ 4756 v = sqlite3GetVdbe(pParse); 4757 if( v==0 ) goto select_end; 4758 4759 /* If writing to memory or generating a set 4760 ** only a single column may be output. 4761 */ 4762 #ifndef SQLITE_OMIT_SUBQUERY 4763 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4764 goto select_end; 4765 } 4766 #endif 4767 4768 /* Generate code for all sub-queries in the FROM clause 4769 */ 4770 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4771 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4772 struct SrcList_item *pItem = &pTabList->a[i]; 4773 SelectDest dest; 4774 Select *pSub = pItem->pSelect; 4775 int isAggSub; 4776 4777 if( pSub==0 ) continue; 4778 4779 /* Sometimes the code for a subquery will be generated more than 4780 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4781 ** for example. In that case, do not regenerate the code to manifest 4782 ** a view or the co-routine to implement a view. The first instance 4783 ** is sufficient, though the subroutine to manifest the view does need 4784 ** to be invoked again. */ 4785 if( pItem->addrFillSub ){ 4786 if( pItem->viaCoroutine==0 ){ 4787 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4788 } 4789 continue; 4790 } 4791 4792 /* Increment Parse.nHeight by the height of the largest expression 4793 ** tree referred to by this, the parent select. The child select 4794 ** may contain expression trees of at most 4795 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4796 ** more conservative than necessary, but much easier than enforcing 4797 ** an exact limit. 4798 */ 4799 pParse->nHeight += sqlite3SelectExprHeight(p); 4800 4801 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4802 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4803 /* This subquery can be absorbed into its parent. */ 4804 if( isAggSub ){ 4805 isAgg = 1; 4806 p->selFlags |= SF_Aggregate; 4807 } 4808 i = -1; 4809 }else if( pTabList->nSrc==1 4810 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4811 ){ 4812 /* Implement a co-routine that will return a single row of the result 4813 ** set on each invocation. 4814 */ 4815 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4816 pItem->regReturn = ++pParse->nMem; 4817 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4818 VdbeComment((v, "%s", pItem->pTab->zName)); 4819 pItem->addrFillSub = addrTop; 4820 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4821 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4822 sqlite3Select(pParse, pSub, &dest); 4823 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4824 pItem->viaCoroutine = 1; 4825 pItem->regResult = dest.iSdst; 4826 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4827 sqlite3VdbeJumpHere(v, addrTop-1); 4828 sqlite3ClearTempRegCache(pParse); 4829 }else{ 4830 /* Generate a subroutine that will fill an ephemeral table with 4831 ** the content of this subquery. pItem->addrFillSub will point 4832 ** to the address of the generated subroutine. pItem->regReturn 4833 ** is a register allocated to hold the subroutine return address 4834 */ 4835 int topAddr; 4836 int onceAddr = 0; 4837 int retAddr; 4838 assert( pItem->addrFillSub==0 ); 4839 pItem->regReturn = ++pParse->nMem; 4840 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4841 pItem->addrFillSub = topAddr+1; 4842 if( pItem->isCorrelated==0 ){ 4843 /* If the subquery is not correlated and if we are not inside of 4844 ** a trigger, then we only need to compute the value of the subquery 4845 ** once. */ 4846 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4847 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4848 }else{ 4849 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4850 } 4851 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4852 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4853 sqlite3Select(pParse, pSub, &dest); 4854 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4855 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4856 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4857 VdbeComment((v, "end %s", pItem->pTab->zName)); 4858 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4859 sqlite3ClearTempRegCache(pParse); 4860 } 4861 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4862 goto select_end; 4863 } 4864 pParse->nHeight -= sqlite3SelectExprHeight(p); 4865 pTabList = p->pSrc; 4866 if( !IgnorableOrderby(pDest) ){ 4867 sSort.pOrderBy = p->pOrderBy; 4868 } 4869 } 4870 pEList = p->pEList; 4871 #endif 4872 pWhere = p->pWhere; 4873 pGroupBy = p->pGroupBy; 4874 pHaving = p->pHaving; 4875 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4876 4877 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4878 /* If there is are a sequence of queries, do the earlier ones first. 4879 */ 4880 if( p->pPrior ){ 4881 rc = multiSelect(pParse, p, pDest); 4882 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4883 #if SELECTTRACE_ENABLED 4884 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4885 pParse->nSelectIndent--; 4886 #endif 4887 return rc; 4888 } 4889 #endif 4890 4891 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4892 ** if the select-list is the same as the ORDER BY list, then this query 4893 ** can be rewritten as a GROUP BY. In other words, this: 4894 ** 4895 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4896 ** 4897 ** is transformed to: 4898 ** 4899 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 4900 ** 4901 ** The second form is preferred as a single index (or temp-table) may be 4902 ** used for both the ORDER BY and DISTINCT processing. As originally 4903 ** written the query must use a temp-table for at least one of the ORDER 4904 ** BY and DISTINCT, and an index or separate temp-table for the other. 4905 */ 4906 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4907 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4908 ){ 4909 p->selFlags &= ~SF_Distinct; 4910 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4911 pGroupBy = p->pGroupBy; 4912 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4913 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4914 ** original setting of the SF_Distinct flag, not the current setting */ 4915 assert( sDistinct.isTnct ); 4916 } 4917 4918 /* If there is an ORDER BY clause, then this sorting 4919 ** index might end up being unused if the data can be 4920 ** extracted in pre-sorted order. If that is the case, then the 4921 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4922 ** we figure out that the sorting index is not needed. The addrSortIndex 4923 ** variable is used to facilitate that change. 4924 */ 4925 if( sSort.pOrderBy ){ 4926 KeyInfo *pKeyInfo; 4927 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4928 sSort.iECursor = pParse->nTab++; 4929 sSort.addrSortIndex = 4930 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4931 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4932 (char*)pKeyInfo, P4_KEYINFO 4933 ); 4934 }else{ 4935 sSort.addrSortIndex = -1; 4936 } 4937 4938 /* If the output is destined for a temporary table, open that table. 4939 */ 4940 if( pDest->eDest==SRT_EphemTab ){ 4941 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4942 } 4943 4944 /* Set the limiter. 4945 */ 4946 iEnd = sqlite3VdbeMakeLabel(v); 4947 p->nSelectRow = LARGEST_INT64; 4948 computeLimitRegisters(pParse, p, iEnd); 4949 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4950 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4951 sSort.sortFlags |= SORTFLAG_UseSorter; 4952 } 4953 4954 /* Open a virtual index to use for the distinct set. 4955 */ 4956 if( p->selFlags & SF_Distinct ){ 4957 sDistinct.tabTnct = pParse->nTab++; 4958 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4959 sDistinct.tabTnct, 0, 0, 4960 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4961 P4_KEYINFO); 4962 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4963 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4964 }else{ 4965 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4966 } 4967 4968 if( !isAgg && pGroupBy==0 ){ 4969 /* No aggregate functions and no GROUP BY clause */ 4970 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4971 4972 /* Begin the database scan. */ 4973 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4974 p->pEList, wctrlFlags, 0); 4975 if( pWInfo==0 ) goto select_end; 4976 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4977 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4978 } 4979 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4980 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4981 } 4982 if( sSort.pOrderBy ){ 4983 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4984 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4985 sSort.pOrderBy = 0; 4986 } 4987 } 4988 4989 /* If sorting index that was created by a prior OP_OpenEphemeral 4990 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4991 ** into an OP_Noop. 4992 */ 4993 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4994 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4995 } 4996 4997 /* Use the standard inner loop. */ 4998 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4999 sqlite3WhereContinueLabel(pWInfo), 5000 sqlite3WhereBreakLabel(pWInfo)); 5001 5002 /* End the database scan loop. 5003 */ 5004 sqlite3WhereEnd(pWInfo); 5005 }else{ 5006 /* This case when there exist aggregate functions or a GROUP BY clause 5007 ** or both */ 5008 NameContext sNC; /* Name context for processing aggregate information */ 5009 int iAMem; /* First Mem address for storing current GROUP BY */ 5010 int iBMem; /* First Mem address for previous GROUP BY */ 5011 int iUseFlag; /* Mem address holding flag indicating that at least 5012 ** one row of the input to the aggregator has been 5013 ** processed */ 5014 int iAbortFlag; /* Mem address which causes query abort if positive */ 5015 int groupBySort; /* Rows come from source in GROUP BY order */ 5016 int addrEnd; /* End of processing for this SELECT */ 5017 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5018 int sortOut = 0; /* Output register from the sorter */ 5019 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5020 5021 /* Remove any and all aliases between the result set and the 5022 ** GROUP BY clause. 5023 */ 5024 if( pGroupBy ){ 5025 int k; /* Loop counter */ 5026 struct ExprList_item *pItem; /* For looping over expression in a list */ 5027 5028 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5029 pItem->u.x.iAlias = 0; 5030 } 5031 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5032 pItem->u.x.iAlias = 0; 5033 } 5034 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5035 }else{ 5036 p->nSelectRow = 1; 5037 } 5038 5039 5040 /* If there is both a GROUP BY and an ORDER BY clause and they are 5041 ** identical, then it may be possible to disable the ORDER BY clause 5042 ** on the grounds that the GROUP BY will cause elements to come out 5043 ** in the correct order. It also may not - the GROUP BY may use a 5044 ** database index that causes rows to be grouped together as required 5045 ** but not actually sorted. Either way, record the fact that the 5046 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5047 ** variable. */ 5048 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5049 orderByGrp = 1; 5050 } 5051 5052 /* Create a label to jump to when we want to abort the query */ 5053 addrEnd = sqlite3VdbeMakeLabel(v); 5054 5055 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5056 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5057 ** SELECT statement. 5058 */ 5059 memset(&sNC, 0, sizeof(sNC)); 5060 sNC.pParse = pParse; 5061 sNC.pSrcList = pTabList; 5062 sNC.pAggInfo = &sAggInfo; 5063 sAggInfo.mnReg = pParse->nMem+1; 5064 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5065 sAggInfo.pGroupBy = pGroupBy; 5066 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5067 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5068 if( pHaving ){ 5069 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5070 } 5071 sAggInfo.nAccumulator = sAggInfo.nColumn; 5072 for(i=0; i<sAggInfo.nFunc; i++){ 5073 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5074 sNC.ncFlags |= NC_InAggFunc; 5075 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5076 sNC.ncFlags &= ~NC_InAggFunc; 5077 } 5078 sAggInfo.mxReg = pParse->nMem; 5079 if( db->mallocFailed ) goto select_end; 5080 5081 /* Processing for aggregates with GROUP BY is very different and 5082 ** much more complex than aggregates without a GROUP BY. 5083 */ 5084 if( pGroupBy ){ 5085 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5086 int j1; /* A-vs-B comparision jump */ 5087 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5088 int regOutputRow; /* Return address register for output subroutine */ 5089 int addrSetAbort; /* Set the abort flag and return */ 5090 int addrTopOfLoop; /* Top of the input loop */ 5091 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5092 int addrReset; /* Subroutine for resetting the accumulator */ 5093 int regReset; /* Return address register for reset subroutine */ 5094 5095 /* If there is a GROUP BY clause we might need a sorting index to 5096 ** implement it. Allocate that sorting index now. If it turns out 5097 ** that we do not need it after all, the OP_SorterOpen instruction 5098 ** will be converted into a Noop. 5099 */ 5100 sAggInfo.sortingIdx = pParse->nTab++; 5101 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 5102 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5103 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5104 0, (char*)pKeyInfo, P4_KEYINFO); 5105 5106 /* Initialize memory locations used by GROUP BY aggregate processing 5107 */ 5108 iUseFlag = ++pParse->nMem; 5109 iAbortFlag = ++pParse->nMem; 5110 regOutputRow = ++pParse->nMem; 5111 addrOutputRow = sqlite3VdbeMakeLabel(v); 5112 regReset = ++pParse->nMem; 5113 addrReset = sqlite3VdbeMakeLabel(v); 5114 iAMem = pParse->nMem + 1; 5115 pParse->nMem += pGroupBy->nExpr; 5116 iBMem = pParse->nMem + 1; 5117 pParse->nMem += pGroupBy->nExpr; 5118 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5119 VdbeComment((v, "clear abort flag")); 5120 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5121 VdbeComment((v, "indicate accumulator empty")); 5122 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5123 5124 /* Begin a loop that will extract all source rows in GROUP BY order. 5125 ** This might involve two separate loops with an OP_Sort in between, or 5126 ** it might be a single loop that uses an index to extract information 5127 ** in the right order to begin with. 5128 */ 5129 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5130 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5131 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5132 ); 5133 if( pWInfo==0 ) goto select_end; 5134 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5135 /* The optimizer is able to deliver rows in group by order so 5136 ** we do not have to sort. The OP_OpenEphemeral table will be 5137 ** cancelled later because we still need to use the pKeyInfo 5138 */ 5139 groupBySort = 0; 5140 }else{ 5141 /* Rows are coming out in undetermined order. We have to push 5142 ** each row into a sorting index, terminate the first loop, 5143 ** then loop over the sorting index in order to get the output 5144 ** in sorted order 5145 */ 5146 int regBase; 5147 int regRecord; 5148 int nCol; 5149 int nGroupBy; 5150 5151 explainTempTable(pParse, 5152 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5153 "DISTINCT" : "GROUP BY"); 5154 5155 groupBySort = 1; 5156 nGroupBy = pGroupBy->nExpr; 5157 nCol = nGroupBy; 5158 j = nGroupBy; 5159 for(i=0; i<sAggInfo.nColumn; i++){ 5160 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5161 nCol++; 5162 j++; 5163 } 5164 } 5165 regBase = sqlite3GetTempRange(pParse, nCol); 5166 sqlite3ExprCacheClear(pParse); 5167 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5168 j = nGroupBy; 5169 for(i=0; i<sAggInfo.nColumn; i++){ 5170 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5171 if( pCol->iSorterColumn>=j ){ 5172 int r1 = j + regBase; 5173 int r2; 5174 5175 r2 = sqlite3ExprCodeGetColumn(pParse, 5176 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5177 if( r1!=r2 ){ 5178 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5179 } 5180 j++; 5181 } 5182 } 5183 regRecord = sqlite3GetTempReg(pParse); 5184 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5185 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5186 sqlite3ReleaseTempReg(pParse, regRecord); 5187 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5188 sqlite3WhereEnd(pWInfo); 5189 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5190 sortOut = sqlite3GetTempReg(pParse); 5191 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5192 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5193 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5194 sAggInfo.useSortingIdx = 1; 5195 sqlite3ExprCacheClear(pParse); 5196 5197 } 5198 5199 /* If the index or temporary table used by the GROUP BY sort 5200 ** will naturally deliver rows in the order required by the ORDER BY 5201 ** clause, cancel the ephemeral table open coded earlier. 5202 ** 5203 ** This is an optimization - the correct answer should result regardless. 5204 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5205 ** disable this optimization for testing purposes. */ 5206 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5207 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5208 ){ 5209 sSort.pOrderBy = 0; 5210 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5211 } 5212 5213 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5214 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5215 ** Then compare the current GROUP BY terms against the GROUP BY terms 5216 ** from the previous row currently stored in a0, a1, a2... 5217 */ 5218 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5219 sqlite3ExprCacheClear(pParse); 5220 if( groupBySort ){ 5221 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); 5222 } 5223 for(j=0; j<pGroupBy->nExpr; j++){ 5224 if( groupBySort ){ 5225 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5226 }else{ 5227 sAggInfo.directMode = 1; 5228 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5229 } 5230 } 5231 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5232 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5233 j1 = sqlite3VdbeCurrentAddr(v); 5234 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5235 5236 /* Generate code that runs whenever the GROUP BY changes. 5237 ** Changes in the GROUP BY are detected by the previous code 5238 ** block. If there were no changes, this block is skipped. 5239 ** 5240 ** This code copies current group by terms in b0,b1,b2,... 5241 ** over to a0,a1,a2. It then calls the output subroutine 5242 ** and resets the aggregate accumulator registers in preparation 5243 ** for the next GROUP BY batch. 5244 */ 5245 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5246 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5247 VdbeComment((v, "output one row")); 5248 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5249 VdbeComment((v, "check abort flag")); 5250 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5251 VdbeComment((v, "reset accumulator")); 5252 5253 /* Update the aggregate accumulators based on the content of 5254 ** the current row 5255 */ 5256 sqlite3VdbeJumpHere(v, j1); 5257 updateAccumulator(pParse, &sAggInfo); 5258 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5259 VdbeComment((v, "indicate data in accumulator")); 5260 5261 /* End of the loop 5262 */ 5263 if( groupBySort ){ 5264 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5265 VdbeCoverage(v); 5266 }else{ 5267 sqlite3WhereEnd(pWInfo); 5268 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5269 } 5270 5271 /* Output the final row of result 5272 */ 5273 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5274 VdbeComment((v, "output final row")); 5275 5276 /* Jump over the subroutines 5277 */ 5278 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5279 5280 /* Generate a subroutine that outputs a single row of the result 5281 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5282 ** is less than or equal to zero, the subroutine is a no-op. If 5283 ** the processing calls for the query to abort, this subroutine 5284 ** increments the iAbortFlag memory location before returning in 5285 ** order to signal the caller to abort. 5286 */ 5287 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5288 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5289 VdbeComment((v, "set abort flag")); 5290 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5291 sqlite3VdbeResolveLabel(v, addrOutputRow); 5292 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5293 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5294 VdbeComment((v, "Groupby result generator entry point")); 5295 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5296 finalizeAggFunctions(pParse, &sAggInfo); 5297 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5298 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5299 &sDistinct, pDest, 5300 addrOutputRow+1, addrSetAbort); 5301 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5302 VdbeComment((v, "end groupby result generator")); 5303 5304 /* Generate a subroutine that will reset the group-by accumulator 5305 */ 5306 sqlite3VdbeResolveLabel(v, addrReset); 5307 resetAccumulator(pParse, &sAggInfo); 5308 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5309 5310 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5311 else { 5312 ExprList *pDel = 0; 5313 #ifndef SQLITE_OMIT_BTREECOUNT 5314 Table *pTab; 5315 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5316 /* If isSimpleCount() returns a pointer to a Table structure, then 5317 ** the SQL statement is of the form: 5318 ** 5319 ** SELECT count(*) FROM <tbl> 5320 ** 5321 ** where the Table structure returned represents table <tbl>. 5322 ** 5323 ** This statement is so common that it is optimized specially. The 5324 ** OP_Count instruction is executed either on the intkey table that 5325 ** contains the data for table <tbl> or on one of its indexes. It 5326 ** is better to execute the op on an index, as indexes are almost 5327 ** always spread across less pages than their corresponding tables. 5328 */ 5329 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5330 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5331 Index *pIdx; /* Iterator variable */ 5332 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5333 Index *pBest = 0; /* Best index found so far */ 5334 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5335 5336 sqlite3CodeVerifySchema(pParse, iDb); 5337 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5338 5339 /* Search for the index that has the lowest scan cost. 5340 ** 5341 ** (2011-04-15) Do not do a full scan of an unordered index. 5342 ** 5343 ** (2013-10-03) Do not count the entries in a partial index. 5344 ** 5345 ** In practice the KeyInfo structure will not be used. It is only 5346 ** passed to keep OP_OpenRead happy. 5347 */ 5348 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5349 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5350 if( pIdx->bUnordered==0 5351 && pIdx->szIdxRow<pTab->szTabRow 5352 && pIdx->pPartIdxWhere==0 5353 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5354 ){ 5355 pBest = pIdx; 5356 } 5357 } 5358 if( pBest ){ 5359 iRoot = pBest->tnum; 5360 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5361 } 5362 5363 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5364 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5365 if( pKeyInfo ){ 5366 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5367 } 5368 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5369 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5370 explainSimpleCount(pParse, pTab, pBest); 5371 }else 5372 #endif /* SQLITE_OMIT_BTREECOUNT */ 5373 { 5374 /* Check if the query is of one of the following forms: 5375 ** 5376 ** SELECT min(x) FROM ... 5377 ** SELECT max(x) FROM ... 5378 ** 5379 ** If it is, then ask the code in where.c to attempt to sort results 5380 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5381 ** If where.c is able to produce results sorted in this order, then 5382 ** add vdbe code to break out of the processing loop after the 5383 ** first iteration (since the first iteration of the loop is 5384 ** guaranteed to operate on the row with the minimum or maximum 5385 ** value of x, the only row required). 5386 ** 5387 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5388 ** modify behavior as follows: 5389 ** 5390 ** + If the query is a "SELECT min(x)", then the loop coded by 5391 ** where.c should not iterate over any values with a NULL value 5392 ** for x. 5393 ** 5394 ** + The optimizer code in where.c (the thing that decides which 5395 ** index or indices to use) should place a different priority on 5396 ** satisfying the 'ORDER BY' clause than it does in other cases. 5397 ** Refer to code and comments in where.c for details. 5398 */ 5399 ExprList *pMinMax = 0; 5400 u8 flag = WHERE_ORDERBY_NORMAL; 5401 5402 assert( p->pGroupBy==0 ); 5403 assert( flag==0 ); 5404 if( p->pHaving==0 ){ 5405 flag = minMaxQuery(&sAggInfo, &pMinMax); 5406 } 5407 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5408 5409 if( flag ){ 5410 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5411 pDel = pMinMax; 5412 if( pMinMax && !db->mallocFailed ){ 5413 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5414 pMinMax->a[0].pExpr->op = TK_COLUMN; 5415 } 5416 } 5417 5418 /* This case runs if the aggregate has no GROUP BY clause. The 5419 ** processing is much simpler since there is only a single row 5420 ** of output. 5421 */ 5422 resetAccumulator(pParse, &sAggInfo); 5423 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5424 if( pWInfo==0 ){ 5425 sqlite3ExprListDelete(db, pDel); 5426 goto select_end; 5427 } 5428 updateAccumulator(pParse, &sAggInfo); 5429 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5430 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5431 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5432 VdbeComment((v, "%s() by index", 5433 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5434 } 5435 sqlite3WhereEnd(pWInfo); 5436 finalizeAggFunctions(pParse, &sAggInfo); 5437 } 5438 5439 sSort.pOrderBy = 0; 5440 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5441 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5442 pDest, addrEnd, addrEnd); 5443 sqlite3ExprListDelete(db, pDel); 5444 } 5445 sqlite3VdbeResolveLabel(v, addrEnd); 5446 5447 } /* endif aggregate query */ 5448 5449 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5450 explainTempTable(pParse, "DISTINCT"); 5451 } 5452 5453 /* If there is an ORDER BY clause, then we need to sort the results 5454 ** and send them to the callback one by one. 5455 */ 5456 if( sSort.pOrderBy ){ 5457 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5458 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5459 } 5460 5461 /* Jump here to skip this query 5462 */ 5463 sqlite3VdbeResolveLabel(v, iEnd); 5464 5465 /* The SELECT was successfully coded. Set the return code to 0 5466 ** to indicate no errors. 5467 */ 5468 rc = 0; 5469 5470 /* Control jumps to here if an error is encountered above, or upon 5471 ** successful coding of the SELECT. 5472 */ 5473 select_end: 5474 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5475 5476 /* Identify column names if results of the SELECT are to be output. 5477 */ 5478 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5479 generateColumnNames(pParse, pTabList, pEList); 5480 } 5481 5482 sqlite3DbFree(db, sAggInfo.aCol); 5483 sqlite3DbFree(db, sAggInfo.aFunc); 5484 #if SELECTTRACE_ENABLED 5485 SELECTTRACE(1,pParse,p,("end processing\n")); 5486 pParse->nSelectIndent--; 5487 #endif 5488 return rc; 5489 } 5490 5491 #ifdef SQLITE_DEBUG 5492 /* 5493 ** Generate a human-readable description of a the Select object. 5494 */ 5495 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ 5496 int n = 0; 5497 pView = sqlite3TreeViewPush(pView, moreToFollow); 5498 sqlite3TreeViewLine(pView, "SELECT%s%s", 5499 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), 5500 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") 5501 ); 5502 if( p->pSrc && p->pSrc->nSrc ) n++; 5503 if( p->pWhere ) n++; 5504 if( p->pGroupBy ) n++; 5505 if( p->pHaving ) n++; 5506 if( p->pOrderBy ) n++; 5507 if( p->pLimit ) n++; 5508 if( p->pOffset ) n++; 5509 if( p->pPrior ) n++; 5510 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); 5511 if( p->pSrc && p->pSrc->nSrc ){ 5512 int i; 5513 pView = sqlite3TreeViewPush(pView, (n--)>0); 5514 sqlite3TreeViewLine(pView, "FROM"); 5515 for(i=0; i<p->pSrc->nSrc; i++){ 5516 struct SrcList_item *pItem = &p->pSrc->a[i]; 5517 StrAccum x; 5518 char zLine[100]; 5519 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); 5520 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); 5521 if( pItem->zDatabase ){ 5522 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); 5523 }else if( pItem->zName ){ 5524 sqlite3XPrintf(&x, 0, " %s", pItem->zName); 5525 } 5526 if( pItem->pTab ){ 5527 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); 5528 } 5529 if( pItem->zAlias ){ 5530 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); 5531 } 5532 if( pItem->jointype & JT_LEFT ){ 5533 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); 5534 } 5535 sqlite3StrAccumFinish(&x); 5536 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 5537 if( pItem->pSelect ){ 5538 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); 5539 } 5540 sqlite3TreeViewPop(pView); 5541 } 5542 sqlite3TreeViewPop(pView); 5543 } 5544 if( p->pWhere ){ 5545 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); 5546 sqlite3TreeViewExpr(pView, p->pWhere, 0); 5547 sqlite3TreeViewPop(pView); 5548 } 5549 if( p->pGroupBy ){ 5550 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); 5551 } 5552 if( p->pHaving ){ 5553 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); 5554 sqlite3TreeViewExpr(pView, p->pHaving, 0); 5555 sqlite3TreeViewPop(pView); 5556 } 5557 if( p->pOrderBy ){ 5558 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); 5559 } 5560 if( p->pLimit ){ 5561 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); 5562 sqlite3TreeViewExpr(pView, p->pLimit, 0); 5563 sqlite3TreeViewPop(pView); 5564 } 5565 if( p->pOffset ){ 5566 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); 5567 sqlite3TreeViewExpr(pView, p->pOffset, 0); 5568 sqlite3TreeViewPop(pView); 5569 } 5570 if( p->pPrior ){ 5571 const char *zOp = "UNION"; 5572 switch( p->op ){ 5573 case TK_ALL: zOp = "UNION ALL"; break; 5574 case TK_INTERSECT: zOp = "INTERSECT"; break; 5575 case TK_EXCEPT: zOp = "EXCEPT"; break; 5576 } 5577 sqlite3TreeViewItem(pView, zOp, (n--)>0); 5578 sqlite3TreeViewSelect(pView, p->pPrior, 0); 5579 sqlite3TreeViewPop(pView); 5580 } 5581 sqlite3TreeViewPop(pView); 5582 } 5583 #endif /* SQLITE_DEBUG */ 5584