xref: /sqlite-3.40.0/src/select.c (revision b43be55e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
59 
60 /*
61 ** Delete all the content of a Select structure.  Deallocate the structure
62 ** itself only if bFree is true.
63 */
64 static void clearSelect(sqlite3 *db, Select *p, int bFree){
65   while( p ){
66     Select *pPrior = p->pPrior;
67     sqlite3ExprListDelete(db, p->pEList);
68     sqlite3SrcListDelete(db, p->pSrc);
69     sqlite3ExprDelete(db, p->pWhere);
70     sqlite3ExprListDelete(db, p->pGroupBy);
71     sqlite3ExprDelete(db, p->pHaving);
72     sqlite3ExprListDelete(db, p->pOrderBy);
73     sqlite3ExprDelete(db, p->pLimit);
74     sqlite3ExprDelete(db, p->pOffset);
75     sqlite3WithDelete(db, p->pWith);
76     if( bFree ) sqlite3DbFree(db, p);
77     p = pPrior;
78     bFree = 1;
79   }
80 }
81 
82 /*
83 ** Initialize a SelectDest structure.
84 */
85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
86   pDest->eDest = (u8)eDest;
87   pDest->iSDParm = iParm;
88   pDest->affSdst = 0;
89   pDest->iSdst = 0;
90   pDest->nSdst = 0;
91 }
92 
93 
94 /*
95 ** Allocate a new Select structure and return a pointer to that
96 ** structure.
97 */
98 Select *sqlite3SelectNew(
99   Parse *pParse,        /* Parsing context */
100   ExprList *pEList,     /* which columns to include in the result */
101   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
102   Expr *pWhere,         /* the WHERE clause */
103   ExprList *pGroupBy,   /* the GROUP BY clause */
104   Expr *pHaving,        /* the HAVING clause */
105   ExprList *pOrderBy,   /* the ORDER BY clause */
106   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
107   Expr *pLimit,         /* LIMIT value.  NULL means not used */
108   Expr *pOffset         /* OFFSET value.  NULL means no offset */
109 ){
110   Select *pNew;
111   Select standin;
112   sqlite3 *db = pParse->db;
113   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
114   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     setJoinExpr(p->pLeft, iTable);
370     p = p->pRight;
371   }
372 }
373 
374 /*
375 ** This routine processes the join information for a SELECT statement.
376 ** ON and USING clauses are converted into extra terms of the WHERE clause.
377 ** NATURAL joins also create extra WHERE clause terms.
378 **
379 ** The terms of a FROM clause are contained in the Select.pSrc structure.
380 ** The left most table is the first entry in Select.pSrc.  The right-most
381 ** table is the last entry.  The join operator is held in the entry to
382 ** the left.  Thus entry 0 contains the join operator for the join between
383 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
384 ** also attached to the left entry.
385 **
386 ** This routine returns the number of errors encountered.
387 */
388 static int sqliteProcessJoin(Parse *pParse, Select *p){
389   SrcList *pSrc;                  /* All tables in the FROM clause */
390   int i, j;                       /* Loop counters */
391   struct SrcList_item *pLeft;     /* Left table being joined */
392   struct SrcList_item *pRight;    /* Right table being joined */
393 
394   pSrc = p->pSrc;
395   pLeft = &pSrc->a[0];
396   pRight = &pLeft[1];
397   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
398     Table *pLeftTab = pLeft->pTab;
399     Table *pRightTab = pRight->pTab;
400     int isOuter;
401 
402     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
403     isOuter = (pRight->jointype & JT_OUTER)!=0;
404 
405     /* When the NATURAL keyword is present, add WHERE clause terms for
406     ** every column that the two tables have in common.
407     */
408     if( pRight->jointype & JT_NATURAL ){
409       if( pRight->pOn || pRight->pUsing ){
410         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
411            "an ON or USING clause", 0);
412         return 1;
413       }
414       for(j=0; j<pRightTab->nCol; j++){
415         char *zName;   /* Name of column in the right table */
416         int iLeft;     /* Matching left table */
417         int iLeftCol;  /* Matching column in the left table */
418 
419         zName = pRightTab->aCol[j].zName;
420         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
421           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
422                        isOuter, &p->pWhere);
423         }
424       }
425     }
426 
427     /* Disallow both ON and USING clauses in the same join
428     */
429     if( pRight->pOn && pRight->pUsing ){
430       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
431         "clauses in the same join");
432       return 1;
433     }
434 
435     /* Add the ON clause to the end of the WHERE clause, connected by
436     ** an AND operator.
437     */
438     if( pRight->pOn ){
439       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
440       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
441       pRight->pOn = 0;
442     }
443 
444     /* Create extra terms on the WHERE clause for each column named
445     ** in the USING clause.  Example: If the two tables to be joined are
446     ** A and B and the USING clause names X, Y, and Z, then add this
447     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
448     ** Report an error if any column mentioned in the USING clause is
449     ** not contained in both tables to be joined.
450     */
451     if( pRight->pUsing ){
452       IdList *pList = pRight->pUsing;
453       for(j=0; j<pList->nId; j++){
454         char *zName;     /* Name of the term in the USING clause */
455         int iLeft;       /* Table on the left with matching column name */
456         int iLeftCol;    /* Column number of matching column on the left */
457         int iRightCol;   /* Column number of matching column on the right */
458 
459         zName = pList->a[j].zName;
460         iRightCol = columnIndex(pRightTab, zName);
461         if( iRightCol<0
462          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
463         ){
464           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
465             "not present in both tables", zName);
466           return 1;
467         }
468         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
469                      isOuter, &p->pWhere);
470       }
471     }
472   }
473   return 0;
474 }
475 
476 /* Forward reference */
477 static KeyInfo *keyInfoFromExprList(
478   Parse *pParse,       /* Parsing context */
479   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
480   int iStart,          /* Begin with this column of pList */
481   int nExtra           /* Add this many extra columns to the end */
482 );
483 
484 /*
485 ** Generate code that will push the record in registers regData
486 ** through regData+nData-1 onto the sorter.
487 */
488 static void pushOntoSorter(
489   Parse *pParse,         /* Parser context */
490   SortCtx *pSort,        /* Information about the ORDER BY clause */
491   Select *pSelect,       /* The whole SELECT statement */
492   int regData,           /* First register holding data to be sorted */
493   int nData,             /* Number of elements in the data array */
494   int nPrefixReg         /* No. of reg prior to regData available for use */
495 ){
496   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
497   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
498   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
499   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
500   int regBase;                                     /* Regs for sorter record */
501   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
502   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
503   int op;                            /* Opcode to add sorter record to sorter */
504 
505   assert( bSeq==0 || bSeq==1 );
506   if( nPrefixReg ){
507     assert( nPrefixReg==nExpr+bSeq );
508     regBase = regData - nExpr - bSeq;
509   }else{
510     regBase = pParse->nMem + 1;
511     pParse->nMem += nBase;
512   }
513   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
514   if( bSeq ){
515     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
516   }
517   if( nPrefixReg==0 ){
518     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
519   }
520 
521   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
522   if( nOBSat>0 ){
523     int regPrevKey;   /* The first nOBSat columns of the previous row */
524     int addrFirst;    /* Address of the OP_IfNot opcode */
525     int addrJmp;      /* Address of the OP_Jump opcode */
526     VdbeOp *pOp;      /* Opcode that opens the sorter */
527     int nKey;         /* Number of sorting key columns, including OP_Sequence */
528     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
529 
530     regPrevKey = pParse->nMem+1;
531     pParse->nMem += pSort->nOBSat;
532     nKey = nExpr - pSort->nOBSat + bSeq;
533     if( bSeq ){
534       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
535     }else{
536       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
537     }
538     VdbeCoverage(v);
539     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
540     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
541     if( pParse->db->mallocFailed ) return;
542     pOp->p2 = nKey + nData;
543     pKI = pOp->p4.pKeyInfo;
544     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
545     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
546     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
547     addrJmp = sqlite3VdbeCurrentAddr(v);
548     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
549     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
550     pSort->regReturn = ++pParse->nMem;
551     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
552     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
553     sqlite3VdbeJumpHere(v, addrFirst);
554     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
555     sqlite3VdbeJumpHere(v, addrJmp);
556   }
557   if( pSort->sortFlags & SORTFLAG_UseSorter ){
558     op = OP_SorterInsert;
559   }else{
560     op = OP_IdxInsert;
561   }
562   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
563   if( pSelect->iLimit ){
564     int addr1, addr2;
565     int iLimit;
566     if( pSelect->iOffset ){
567       iLimit = pSelect->iOffset+1;
568     }else{
569       iLimit = pSelect->iLimit;
570     }
571     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
572     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
573     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
574     sqlite3VdbeJumpHere(v, addr1);
575     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
576     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
577     sqlite3VdbeJumpHere(v, addr2);
578   }
579 }
580 
581 /*
582 ** Add code to implement the OFFSET
583 */
584 static void codeOffset(
585   Vdbe *v,          /* Generate code into this VM */
586   int iOffset,      /* Register holding the offset counter */
587   int iContinue     /* Jump here to skip the current record */
588 ){
589   if( iOffset>0 ){
590     int addr;
591     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
592     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
593     VdbeComment((v, "skip OFFSET records"));
594     sqlite3VdbeJumpHere(v, addr);
595   }
596 }
597 
598 /*
599 ** Add code that will check to make sure the N registers starting at iMem
600 ** form a distinct entry.  iTab is a sorting index that holds previously
601 ** seen combinations of the N values.  A new entry is made in iTab
602 ** if the current N values are new.
603 **
604 ** A jump to addrRepeat is made and the N+1 values are popped from the
605 ** stack if the top N elements are not distinct.
606 */
607 static void codeDistinct(
608   Parse *pParse,     /* Parsing and code generating context */
609   int iTab,          /* A sorting index used to test for distinctness */
610   int addrRepeat,    /* Jump to here if not distinct */
611   int N,             /* Number of elements */
612   int iMem           /* First element */
613 ){
614   Vdbe *v;
615   int r1;
616 
617   v = pParse->pVdbe;
618   r1 = sqlite3GetTempReg(pParse);
619   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
620   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
621   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
622   sqlite3ReleaseTempReg(pParse, r1);
623 }
624 
625 #ifndef SQLITE_OMIT_SUBQUERY
626 /*
627 ** Generate an error message when a SELECT is used within a subexpression
628 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
629 ** column.  We do this in a subroutine because the error used to occur
630 ** in multiple places.  (The error only occurs in one place now, but we
631 ** retain the subroutine to minimize code disruption.)
632 */
633 static int checkForMultiColumnSelectError(
634   Parse *pParse,       /* Parse context. */
635   SelectDest *pDest,   /* Destination of SELECT results */
636   int nExpr            /* Number of result columns returned by SELECT */
637 ){
638   int eDest = pDest->eDest;
639   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
640     sqlite3ErrorMsg(pParse, "only a single result allowed for "
641        "a SELECT that is part of an expression");
642     return 1;
643   }else{
644     return 0;
645   }
646 }
647 #endif
648 
649 /*
650 ** This routine generates the code for the inside of the inner loop
651 ** of a SELECT.
652 **
653 ** If srcTab is negative, then the pEList expressions
654 ** are evaluated in order to get the data for this row.  If srcTab is
655 ** zero or more, then data is pulled from srcTab and pEList is used only
656 ** to get number columns and the datatype for each column.
657 */
658 static void selectInnerLoop(
659   Parse *pParse,          /* The parser context */
660   Select *p,              /* The complete select statement being coded */
661   ExprList *pEList,       /* List of values being extracted */
662   int srcTab,             /* Pull data from this table */
663   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
664   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
665   SelectDest *pDest,      /* How to dispose of the results */
666   int iContinue,          /* Jump here to continue with next row */
667   int iBreak              /* Jump here to break out of the inner loop */
668 ){
669   Vdbe *v = pParse->pVdbe;
670   int i;
671   int hasDistinct;        /* True if the DISTINCT keyword is present */
672   int regResult;              /* Start of memory holding result set */
673   int eDest = pDest->eDest;   /* How to dispose of results */
674   int iParm = pDest->iSDParm; /* First argument to disposal method */
675   int nResultCol;             /* Number of result columns */
676   int nPrefixReg = 0;         /* Number of extra registers before regResult */
677 
678   assert( v );
679   assert( pEList!=0 );
680   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
681   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
682   if( pSort==0 && !hasDistinct ){
683     assert( iContinue!=0 );
684     codeOffset(v, p->iOffset, iContinue);
685   }
686 
687   /* Pull the requested columns.
688   */
689   nResultCol = pEList->nExpr;
690 
691   if( pDest->iSdst==0 ){
692     if( pSort ){
693       nPrefixReg = pSort->pOrderBy->nExpr;
694       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
695       pParse->nMem += nPrefixReg;
696     }
697     pDest->iSdst = pParse->nMem+1;
698     pParse->nMem += nResultCol;
699   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
700     /* This is an error condition that can result, for example, when a SELECT
701     ** on the right-hand side of an INSERT contains more result columns than
702     ** there are columns in the table on the left.  The error will be caught
703     ** and reported later.  But we need to make sure enough memory is allocated
704     ** to avoid other spurious errors in the meantime. */
705     pParse->nMem += nResultCol;
706   }
707   pDest->nSdst = nResultCol;
708   regResult = pDest->iSdst;
709   if( srcTab>=0 ){
710     for(i=0; i<nResultCol; i++){
711       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
712       VdbeComment((v, "%s", pEList->a[i].zName));
713     }
714   }else if( eDest!=SRT_Exists ){
715     /* If the destination is an EXISTS(...) expression, the actual
716     ** values returned by the SELECT are not required.
717     */
718     sqlite3ExprCodeExprList(pParse, pEList, regResult,
719                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
720   }
721 
722   /* If the DISTINCT keyword was present on the SELECT statement
723   ** and this row has been seen before, then do not make this row
724   ** part of the result.
725   */
726   if( hasDistinct ){
727     switch( pDistinct->eTnctType ){
728       case WHERE_DISTINCT_ORDERED: {
729         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
730         int iJump;              /* Jump destination */
731         int regPrev;            /* Previous row content */
732 
733         /* Allocate space for the previous row */
734         regPrev = pParse->nMem+1;
735         pParse->nMem += nResultCol;
736 
737         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
738         ** sets the MEM_Cleared bit on the first register of the
739         ** previous value.  This will cause the OP_Ne below to always
740         ** fail on the first iteration of the loop even if the first
741         ** row is all NULLs.
742         */
743         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
744         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
745         pOp->opcode = OP_Null;
746         pOp->p1 = 1;
747         pOp->p2 = regPrev;
748 
749         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
750         for(i=0; i<nResultCol; i++){
751           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
752           if( i<nResultCol-1 ){
753             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
754             VdbeCoverage(v);
755           }else{
756             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
757             VdbeCoverage(v);
758            }
759           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
760           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
761         }
762         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
763         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
764         break;
765       }
766 
767       case WHERE_DISTINCT_UNIQUE: {
768         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
769         break;
770       }
771 
772       default: {
773         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
774         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
775         break;
776       }
777     }
778     if( pSort==0 ){
779       codeOffset(v, p->iOffset, iContinue);
780     }
781   }
782 
783   switch( eDest ){
784     /* In this mode, write each query result to the key of the temporary
785     ** table iParm.
786     */
787 #ifndef SQLITE_OMIT_COMPOUND_SELECT
788     case SRT_Union: {
789       int r1;
790       r1 = sqlite3GetTempReg(pParse);
791       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
792       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
793       sqlite3ReleaseTempReg(pParse, r1);
794       break;
795     }
796 
797     /* Construct a record from the query result, but instead of
798     ** saving that record, use it as a key to delete elements from
799     ** the temporary table iParm.
800     */
801     case SRT_Except: {
802       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
803       break;
804     }
805 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
806 
807     /* Store the result as data using a unique key.
808     */
809     case SRT_Fifo:
810     case SRT_DistFifo:
811     case SRT_Table:
812     case SRT_EphemTab: {
813       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
814       testcase( eDest==SRT_Table );
815       testcase( eDest==SRT_EphemTab );
816       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
817 #ifndef SQLITE_OMIT_CTE
818       if( eDest==SRT_DistFifo ){
819         /* If the destination is DistFifo, then cursor (iParm+1) is open
820         ** on an ephemeral index. If the current row is already present
821         ** in the index, do not write it to the output. If not, add the
822         ** current row to the index and proceed with writing it to the
823         ** output table as well.  */
824         int addr = sqlite3VdbeCurrentAddr(v) + 4;
825         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
826         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
827         assert( pSort==0 );
828       }
829 #endif
830       if( pSort ){
831         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
832       }else{
833         int r2 = sqlite3GetTempReg(pParse);
834         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
835         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
836         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
837         sqlite3ReleaseTempReg(pParse, r2);
838       }
839       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
840       break;
841     }
842 
843 #ifndef SQLITE_OMIT_SUBQUERY
844     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
845     ** then there should be a single item on the stack.  Write this
846     ** item into the set table with bogus data.
847     */
848     case SRT_Set: {
849       assert( nResultCol==1 );
850       pDest->affSdst =
851                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
852       if( pSort ){
853         /* At first glance you would think we could optimize out the
854         ** ORDER BY in this case since the order of entries in the set
855         ** does not matter.  But there might be a LIMIT clause, in which
856         ** case the order does matter */
857         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
858       }else{
859         int r1 = sqlite3GetTempReg(pParse);
860         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
861         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
862         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
863         sqlite3ReleaseTempReg(pParse, r1);
864       }
865       break;
866     }
867 
868     /* If any row exist in the result set, record that fact and abort.
869     */
870     case SRT_Exists: {
871       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
872       /* The LIMIT clause will terminate the loop for us */
873       break;
874     }
875 
876     /* If this is a scalar select that is part of an expression, then
877     ** store the results in the appropriate memory cell and break out
878     ** of the scan loop.
879     */
880     case SRT_Mem: {
881       assert( nResultCol==1 );
882       if( pSort ){
883         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
884       }else{
885         assert( regResult==iParm );
886         /* The LIMIT clause will jump out of the loop for us */
887       }
888       break;
889     }
890 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
891 
892     case SRT_Coroutine:       /* Send data to a co-routine */
893     case SRT_Output: {        /* Return the results */
894       testcase( eDest==SRT_Coroutine );
895       testcase( eDest==SRT_Output );
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
898       }else if( eDest==SRT_Coroutine ){
899         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
900       }else{
901         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
902         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
903       }
904       break;
905     }
906 
907 #ifndef SQLITE_OMIT_CTE
908     /* Write the results into a priority queue that is order according to
909     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
910     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
911     ** pSO->nExpr columns, then make sure all keys are unique by adding a
912     ** final OP_Sequence column.  The last column is the record as a blob.
913     */
914     case SRT_DistQueue:
915     case SRT_Queue: {
916       int nKey;
917       int r1, r2, r3;
918       int addrTest = 0;
919       ExprList *pSO;
920       pSO = pDest->pOrderBy;
921       assert( pSO );
922       nKey = pSO->nExpr;
923       r1 = sqlite3GetTempReg(pParse);
924       r2 = sqlite3GetTempRange(pParse, nKey+2);
925       r3 = r2+nKey+1;
926       if( eDest==SRT_DistQueue ){
927         /* If the destination is DistQueue, then cursor (iParm+1) is open
928         ** on a second ephemeral index that holds all values every previously
929         ** added to the queue. */
930         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
931                                         regResult, nResultCol);
932         VdbeCoverage(v);
933       }
934       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
935       if( eDest==SRT_DistQueue ){
936         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
937         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
938       }
939       for(i=0; i<nKey; i++){
940         sqlite3VdbeAddOp2(v, OP_SCopy,
941                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
942                           r2+i);
943       }
944       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
945       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
946       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
947       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
948       sqlite3ReleaseTempReg(pParse, r1);
949       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
950       break;
951     }
952 #endif /* SQLITE_OMIT_CTE */
953 
954 
955 
956 #if !defined(SQLITE_OMIT_TRIGGER)
957     /* Discard the results.  This is used for SELECT statements inside
958     ** the body of a TRIGGER.  The purpose of such selects is to call
959     ** user-defined functions that have side effects.  We do not care
960     ** about the actual results of the select.
961     */
962     default: {
963       assert( eDest==SRT_Discard );
964       break;
965     }
966 #endif
967   }
968 
969   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
970   ** there is a sorter, in which case the sorter has already limited
971   ** the output for us.
972   */
973   if( pSort==0 && p->iLimit ){
974     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
975   }
976 }
977 
978 /*
979 ** Allocate a KeyInfo object sufficient for an index of N key columns and
980 ** X extra columns.
981 */
982 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
983   KeyInfo *p = sqlite3DbMallocZero(0,
984                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
985   if( p ){
986     p->aSortOrder = (u8*)&p->aColl[N+X];
987     p->nField = (u16)N;
988     p->nXField = (u16)X;
989     p->enc = ENC(db);
990     p->db = db;
991     p->nRef = 1;
992   }else{
993     db->mallocFailed = 1;
994   }
995   return p;
996 }
997 
998 /*
999 ** Deallocate a KeyInfo object
1000 */
1001 void sqlite3KeyInfoUnref(KeyInfo *p){
1002   if( p ){
1003     assert( p->nRef>0 );
1004     p->nRef--;
1005     if( p->nRef==0 ) sqlite3DbFree(0, p);
1006   }
1007 }
1008 
1009 /*
1010 ** Make a new pointer to a KeyInfo object
1011 */
1012 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1013   if( p ){
1014     assert( p->nRef>0 );
1015     p->nRef++;
1016   }
1017   return p;
1018 }
1019 
1020 #ifdef SQLITE_DEBUG
1021 /*
1022 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1023 ** can only be changed if this is just a single reference to the object.
1024 **
1025 ** This routine is used only inside of assert() statements.
1026 */
1027 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1028 #endif /* SQLITE_DEBUG */
1029 
1030 /*
1031 ** Given an expression list, generate a KeyInfo structure that records
1032 ** the collating sequence for each expression in that expression list.
1033 **
1034 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1035 ** KeyInfo structure is appropriate for initializing a virtual index to
1036 ** implement that clause.  If the ExprList is the result set of a SELECT
1037 ** then the KeyInfo structure is appropriate for initializing a virtual
1038 ** index to implement a DISTINCT test.
1039 **
1040 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1041 ** function is responsible for seeing that this structure is eventually
1042 ** freed.
1043 */
1044 static KeyInfo *keyInfoFromExprList(
1045   Parse *pParse,       /* Parsing context */
1046   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1047   int iStart,          /* Begin with this column of pList */
1048   int nExtra           /* Add this many extra columns to the end */
1049 ){
1050   int nExpr;
1051   KeyInfo *pInfo;
1052   struct ExprList_item *pItem;
1053   sqlite3 *db = pParse->db;
1054   int i;
1055 
1056   nExpr = pList->nExpr;
1057   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1058   if( pInfo ){
1059     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1060     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1061       CollSeq *pColl;
1062       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1063       if( !pColl ) pColl = db->pDfltColl;
1064       pInfo->aColl[i-iStart] = pColl;
1065       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1066     }
1067   }
1068   return pInfo;
1069 }
1070 
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072 /*
1073 ** Name of the connection operator, used for error messages.
1074 */
1075 static const char *selectOpName(int id){
1076   char *z;
1077   switch( id ){
1078     case TK_ALL:       z = "UNION ALL";   break;
1079     case TK_INTERSECT: z = "INTERSECT";   break;
1080     case TK_EXCEPT:    z = "EXCEPT";      break;
1081     default:           z = "UNION";       break;
1082   }
1083   return z;
1084 }
1085 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1086 
1087 #ifndef SQLITE_OMIT_EXPLAIN
1088 /*
1089 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1090 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1091 ** where the caption is of the form:
1092 **
1093 **   "USE TEMP B-TREE FOR xxx"
1094 **
1095 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1096 ** is determined by the zUsage argument.
1097 */
1098 static void explainTempTable(Parse *pParse, const char *zUsage){
1099   if( pParse->explain==2 ){
1100     Vdbe *v = pParse->pVdbe;
1101     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1102     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1103   }
1104 }
1105 
1106 /*
1107 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1108 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1109 ** in sqlite3Select() to assign values to structure member variables that
1110 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1111 ** code with #ifndef directives.
1112 */
1113 # define explainSetInteger(a, b) a = b
1114 
1115 #else
1116 /* No-op versions of the explainXXX() functions and macros. */
1117 # define explainTempTable(y,z)
1118 # define explainSetInteger(y,z)
1119 #endif
1120 
1121 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1122 /*
1123 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1124 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1125 ** where the caption is of one of the two forms:
1126 **
1127 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1128 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1129 **
1130 ** where iSub1 and iSub2 are the integers passed as the corresponding
1131 ** function parameters, and op is the text representation of the parameter
1132 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1133 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1134 ** false, or the second form if it is true.
1135 */
1136 static void explainComposite(
1137   Parse *pParse,                  /* Parse context */
1138   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1139   int iSub1,                      /* Subquery id 1 */
1140   int iSub2,                      /* Subquery id 2 */
1141   int bUseTmp                     /* True if a temp table was used */
1142 ){
1143   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1144   if( pParse->explain==2 ){
1145     Vdbe *v = pParse->pVdbe;
1146     char *zMsg = sqlite3MPrintf(
1147         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1148         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1149     );
1150     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1151   }
1152 }
1153 #else
1154 /* No-op versions of the explainXXX() functions and macros. */
1155 # define explainComposite(v,w,x,y,z)
1156 #endif
1157 
1158 /*
1159 ** If the inner loop was generated using a non-null pOrderBy argument,
1160 ** then the results were placed in a sorter.  After the loop is terminated
1161 ** we need to run the sorter and output the results.  The following
1162 ** routine generates the code needed to do that.
1163 */
1164 static void generateSortTail(
1165   Parse *pParse,    /* Parsing context */
1166   Select *p,        /* The SELECT statement */
1167   SortCtx *pSort,   /* Information on the ORDER BY clause */
1168   int nColumn,      /* Number of columns of data */
1169   SelectDest *pDest /* Write the sorted results here */
1170 ){
1171   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1172   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1173   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1174   int addr;
1175   int addrOnce = 0;
1176   int iTab;
1177   ExprList *pOrderBy = pSort->pOrderBy;
1178   int eDest = pDest->eDest;
1179   int iParm = pDest->iSDParm;
1180   int regRow;
1181   int regRowid;
1182   int nKey;
1183   int iSortTab;                   /* Sorter cursor to read from */
1184   int nSortData;                  /* Trailing values to read from sorter */
1185   int i;
1186   int bSeq;                       /* True if sorter record includes seq. no. */
1187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1188   struct ExprList_item *aOutEx = p->pEList->a;
1189 #endif
1190 
1191   if( pSort->labelBkOut ){
1192     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1193     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1194     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1195   }
1196   iTab = pSort->iECursor;
1197   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1198     regRowid = 0;
1199     regRow = pDest->iSdst;
1200     nSortData = nColumn;
1201   }else{
1202     regRowid = sqlite3GetTempReg(pParse);
1203     regRow = sqlite3GetTempReg(pParse);
1204     nSortData = 1;
1205   }
1206   nKey = pOrderBy->nExpr - pSort->nOBSat;
1207   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1208     int regSortOut = ++pParse->nMem;
1209     iSortTab = pParse->nTab++;
1210     if( pSort->labelBkOut ){
1211       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1212     }
1213     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1214     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1215     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1216     VdbeCoverage(v);
1217     codeOffset(v, p->iOffset, addrContinue);
1218     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1219     bSeq = 0;
1220   }else{
1221     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1222     codeOffset(v, p->iOffset, addrContinue);
1223     iSortTab = iTab;
1224     bSeq = 1;
1225   }
1226   for(i=0; i<nSortData; i++){
1227     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1228     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1229   }
1230   switch( eDest ){
1231     case SRT_Table:
1232     case SRT_EphemTab: {
1233       testcase( eDest==SRT_Table );
1234       testcase( eDest==SRT_EphemTab );
1235       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1236       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1237       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1238       break;
1239     }
1240 #ifndef SQLITE_OMIT_SUBQUERY
1241     case SRT_Set: {
1242       assert( nColumn==1 );
1243       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1244                         &pDest->affSdst, 1);
1245       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1246       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1247       break;
1248     }
1249     case SRT_Mem: {
1250       assert( nColumn==1 );
1251       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1252       /* The LIMIT clause will terminate the loop for us */
1253       break;
1254     }
1255 #endif
1256     default: {
1257       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1258       testcase( eDest==SRT_Output );
1259       testcase( eDest==SRT_Coroutine );
1260       if( eDest==SRT_Output ){
1261         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1262         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1263       }else{
1264         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1265       }
1266       break;
1267     }
1268   }
1269   if( regRowid ){
1270     sqlite3ReleaseTempReg(pParse, regRow);
1271     sqlite3ReleaseTempReg(pParse, regRowid);
1272   }
1273   /* The bottom of the loop
1274   */
1275   sqlite3VdbeResolveLabel(v, addrContinue);
1276   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1277     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1278   }else{
1279     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1280   }
1281   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1282   sqlite3VdbeResolveLabel(v, addrBreak);
1283 }
1284 
1285 /*
1286 ** Return a pointer to a string containing the 'declaration type' of the
1287 ** expression pExpr. The string may be treated as static by the caller.
1288 **
1289 ** Also try to estimate the size of the returned value and return that
1290 ** result in *pEstWidth.
1291 **
1292 ** The declaration type is the exact datatype definition extracted from the
1293 ** original CREATE TABLE statement if the expression is a column. The
1294 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1295 ** is considered a column can be complex in the presence of subqueries. The
1296 ** result-set expression in all of the following SELECT statements is
1297 ** considered a column by this function.
1298 **
1299 **   SELECT col FROM tbl;
1300 **   SELECT (SELECT col FROM tbl;
1301 **   SELECT (SELECT col FROM tbl);
1302 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1303 **
1304 ** The declaration type for any expression other than a column is NULL.
1305 **
1306 ** This routine has either 3 or 6 parameters depending on whether or not
1307 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1308 */
1309 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1310 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1311 static const char *columnTypeImpl(
1312   NameContext *pNC,
1313   Expr *pExpr,
1314   const char **pzOrigDb,
1315   const char **pzOrigTab,
1316   const char **pzOrigCol,
1317   u8 *pEstWidth
1318 ){
1319   char const *zOrigDb = 0;
1320   char const *zOrigTab = 0;
1321   char const *zOrigCol = 0;
1322 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1324 static const char *columnTypeImpl(
1325   NameContext *pNC,
1326   Expr *pExpr,
1327   u8 *pEstWidth
1328 ){
1329 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1330   char const *zType = 0;
1331   int j;
1332   u8 estWidth = 1;
1333 
1334   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1335   switch( pExpr->op ){
1336     case TK_AGG_COLUMN:
1337     case TK_COLUMN: {
1338       /* The expression is a column. Locate the table the column is being
1339       ** extracted from in NameContext.pSrcList. This table may be real
1340       ** database table or a subquery.
1341       */
1342       Table *pTab = 0;            /* Table structure column is extracted from */
1343       Select *pS = 0;             /* Select the column is extracted from */
1344       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1345       testcase( pExpr->op==TK_AGG_COLUMN );
1346       testcase( pExpr->op==TK_COLUMN );
1347       while( pNC && !pTab ){
1348         SrcList *pTabList = pNC->pSrcList;
1349         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1350         if( j<pTabList->nSrc ){
1351           pTab = pTabList->a[j].pTab;
1352           pS = pTabList->a[j].pSelect;
1353         }else{
1354           pNC = pNC->pNext;
1355         }
1356       }
1357 
1358       if( pTab==0 ){
1359         /* At one time, code such as "SELECT new.x" within a trigger would
1360         ** cause this condition to run.  Since then, we have restructured how
1361         ** trigger code is generated and so this condition is no longer
1362         ** possible. However, it can still be true for statements like
1363         ** the following:
1364         **
1365         **   CREATE TABLE t1(col INTEGER);
1366         **   SELECT (SELECT t1.col) FROM FROM t1;
1367         **
1368         ** when columnType() is called on the expression "t1.col" in the
1369         ** sub-select. In this case, set the column type to NULL, even
1370         ** though it should really be "INTEGER".
1371         **
1372         ** This is not a problem, as the column type of "t1.col" is never
1373         ** used. When columnType() is called on the expression
1374         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1375         ** branch below.  */
1376         break;
1377       }
1378 
1379       assert( pTab && pExpr->pTab==pTab );
1380       if( pS ){
1381         /* The "table" is actually a sub-select or a view in the FROM clause
1382         ** of the SELECT statement. Return the declaration type and origin
1383         ** data for the result-set column of the sub-select.
1384         */
1385         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1386           /* If iCol is less than zero, then the expression requests the
1387           ** rowid of the sub-select or view. This expression is legal (see
1388           ** test case misc2.2.2) - it always evaluates to NULL.
1389           */
1390           NameContext sNC;
1391           Expr *p = pS->pEList->a[iCol].pExpr;
1392           sNC.pSrcList = pS->pSrc;
1393           sNC.pNext = pNC;
1394           sNC.pParse = pNC->pParse;
1395           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1396         }
1397       }else if( pTab->pSchema ){
1398         /* A real table */
1399         assert( !pS );
1400         if( iCol<0 ) iCol = pTab->iPKey;
1401         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1402 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1403         if( iCol<0 ){
1404           zType = "INTEGER";
1405           zOrigCol = "rowid";
1406         }else{
1407           zType = pTab->aCol[iCol].zType;
1408           zOrigCol = pTab->aCol[iCol].zName;
1409           estWidth = pTab->aCol[iCol].szEst;
1410         }
1411         zOrigTab = pTab->zName;
1412         if( pNC->pParse ){
1413           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1414           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1415         }
1416 #else
1417         if( iCol<0 ){
1418           zType = "INTEGER";
1419         }else{
1420           zType = pTab->aCol[iCol].zType;
1421           estWidth = pTab->aCol[iCol].szEst;
1422         }
1423 #endif
1424       }
1425       break;
1426     }
1427 #ifndef SQLITE_OMIT_SUBQUERY
1428     case TK_SELECT: {
1429       /* The expression is a sub-select. Return the declaration type and
1430       ** origin info for the single column in the result set of the SELECT
1431       ** statement.
1432       */
1433       NameContext sNC;
1434       Select *pS = pExpr->x.pSelect;
1435       Expr *p = pS->pEList->a[0].pExpr;
1436       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1437       sNC.pSrcList = pS->pSrc;
1438       sNC.pNext = pNC;
1439       sNC.pParse = pNC->pParse;
1440       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1441       break;
1442     }
1443 #endif
1444   }
1445 
1446 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1447   if( pzOrigDb ){
1448     assert( pzOrigTab && pzOrigCol );
1449     *pzOrigDb = zOrigDb;
1450     *pzOrigTab = zOrigTab;
1451     *pzOrigCol = zOrigCol;
1452   }
1453 #endif
1454   if( pEstWidth ) *pEstWidth = estWidth;
1455   return zType;
1456 }
1457 
1458 /*
1459 ** Generate code that will tell the VDBE the declaration types of columns
1460 ** in the result set.
1461 */
1462 static void generateColumnTypes(
1463   Parse *pParse,      /* Parser context */
1464   SrcList *pTabList,  /* List of tables */
1465   ExprList *pEList    /* Expressions defining the result set */
1466 ){
1467 #ifndef SQLITE_OMIT_DECLTYPE
1468   Vdbe *v = pParse->pVdbe;
1469   int i;
1470   NameContext sNC;
1471   sNC.pSrcList = pTabList;
1472   sNC.pParse = pParse;
1473   for(i=0; i<pEList->nExpr; i++){
1474     Expr *p = pEList->a[i].pExpr;
1475     const char *zType;
1476 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1477     const char *zOrigDb = 0;
1478     const char *zOrigTab = 0;
1479     const char *zOrigCol = 0;
1480     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1481 
1482     /* The vdbe must make its own copy of the column-type and other
1483     ** column specific strings, in case the schema is reset before this
1484     ** virtual machine is deleted.
1485     */
1486     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1487     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1488     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1489 #else
1490     zType = columnType(&sNC, p, 0, 0, 0, 0);
1491 #endif
1492     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1493   }
1494 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1495 }
1496 
1497 /*
1498 ** Generate code that will tell the VDBE the names of columns
1499 ** in the result set.  This information is used to provide the
1500 ** azCol[] values in the callback.
1501 */
1502 static void generateColumnNames(
1503   Parse *pParse,      /* Parser context */
1504   SrcList *pTabList,  /* List of tables */
1505   ExprList *pEList    /* Expressions defining the result set */
1506 ){
1507   Vdbe *v = pParse->pVdbe;
1508   int i, j;
1509   sqlite3 *db = pParse->db;
1510   int fullNames, shortNames;
1511 
1512 #ifndef SQLITE_OMIT_EXPLAIN
1513   /* If this is an EXPLAIN, skip this step */
1514   if( pParse->explain ){
1515     return;
1516   }
1517 #endif
1518 
1519   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1520   pParse->colNamesSet = 1;
1521   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1522   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1523   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1524   for(i=0; i<pEList->nExpr; i++){
1525     Expr *p;
1526     p = pEList->a[i].pExpr;
1527     if( NEVER(p==0) ) continue;
1528     if( pEList->a[i].zName ){
1529       char *zName = pEList->a[i].zName;
1530       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1531     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1532       Table *pTab;
1533       char *zCol;
1534       int iCol = p->iColumn;
1535       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1536         if( pTabList->a[j].iCursor==p->iTable ) break;
1537       }
1538       assert( j<pTabList->nSrc );
1539       pTab = pTabList->a[j].pTab;
1540       if( iCol<0 ) iCol = pTab->iPKey;
1541       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1542       if( iCol<0 ){
1543         zCol = "rowid";
1544       }else{
1545         zCol = pTab->aCol[iCol].zName;
1546       }
1547       if( !shortNames && !fullNames ){
1548         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1549             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1550       }else if( fullNames ){
1551         char *zName = 0;
1552         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1553         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1554       }else{
1555         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1556       }
1557     }else{
1558       const char *z = pEList->a[i].zSpan;
1559       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1560       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1561     }
1562   }
1563   generateColumnTypes(pParse, pTabList, pEList);
1564 }
1565 
1566 /*
1567 ** Given an expression list (which is really the list of expressions
1568 ** that form the result set of a SELECT statement) compute appropriate
1569 ** column names for a table that would hold the expression list.
1570 **
1571 ** All column names will be unique.
1572 **
1573 ** Only the column names are computed.  Column.zType, Column.zColl,
1574 ** and other fields of Column are zeroed.
1575 **
1576 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1577 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1578 */
1579 static int selectColumnsFromExprList(
1580   Parse *pParse,          /* Parsing context */
1581   ExprList *pEList,       /* Expr list from which to derive column names */
1582   i16 *pnCol,             /* Write the number of columns here */
1583   Column **paCol          /* Write the new column list here */
1584 ){
1585   sqlite3 *db = pParse->db;   /* Database connection */
1586   int i, j;                   /* Loop counters */
1587   int cnt;                    /* Index added to make the name unique */
1588   Column *aCol, *pCol;        /* For looping over result columns */
1589   int nCol;                   /* Number of columns in the result set */
1590   Expr *p;                    /* Expression for a single result column */
1591   char *zName;                /* Column name */
1592   int nName;                  /* Size of name in zName[] */
1593 
1594   if( pEList ){
1595     nCol = pEList->nExpr;
1596     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1597     testcase( aCol==0 );
1598   }else{
1599     nCol = 0;
1600     aCol = 0;
1601   }
1602   *pnCol = nCol;
1603   *paCol = aCol;
1604 
1605   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1606     /* Get an appropriate name for the column
1607     */
1608     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1609     if( (zName = pEList->a[i].zName)!=0 ){
1610       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1611       zName = sqlite3DbStrDup(db, zName);
1612     }else{
1613       Expr *pColExpr = p;  /* The expression that is the result column name */
1614       Table *pTab;         /* Table associated with this expression */
1615       while( pColExpr->op==TK_DOT ){
1616         pColExpr = pColExpr->pRight;
1617         assert( pColExpr!=0 );
1618       }
1619       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1620         /* For columns use the column name name */
1621         int iCol = pColExpr->iColumn;
1622         pTab = pColExpr->pTab;
1623         if( iCol<0 ) iCol = pTab->iPKey;
1624         zName = sqlite3MPrintf(db, "%s",
1625                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1626       }else if( pColExpr->op==TK_ID ){
1627         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1628         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1629       }else{
1630         /* Use the original text of the column expression as its name */
1631         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1632       }
1633     }
1634     if( db->mallocFailed ){
1635       sqlite3DbFree(db, zName);
1636       break;
1637     }
1638 
1639     /* Make sure the column name is unique.  If the name is not unique,
1640     ** append an integer to the name so that it becomes unique.
1641     */
1642     nName = sqlite3Strlen30(zName);
1643     for(j=cnt=0; j<i; j++){
1644       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1645         char *zNewName;
1646         int k;
1647         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1648         if( k>=0 && zName[k]==':' ) nName = k;
1649         zName[nName] = 0;
1650         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1651         sqlite3DbFree(db, zName);
1652         zName = zNewName;
1653         j = -1;
1654         if( zName==0 ) break;
1655       }
1656     }
1657     pCol->zName = zName;
1658   }
1659   if( db->mallocFailed ){
1660     for(j=0; j<i; j++){
1661       sqlite3DbFree(db, aCol[j].zName);
1662     }
1663     sqlite3DbFree(db, aCol);
1664     *paCol = 0;
1665     *pnCol = 0;
1666     return SQLITE_NOMEM;
1667   }
1668   return SQLITE_OK;
1669 }
1670 
1671 /*
1672 ** Add type and collation information to a column list based on
1673 ** a SELECT statement.
1674 **
1675 ** The column list presumably came from selectColumnNamesFromExprList().
1676 ** The column list has only names, not types or collations.  This
1677 ** routine goes through and adds the types and collations.
1678 **
1679 ** This routine requires that all identifiers in the SELECT
1680 ** statement be resolved.
1681 */
1682 static void selectAddColumnTypeAndCollation(
1683   Parse *pParse,        /* Parsing contexts */
1684   Table *pTab,          /* Add column type information to this table */
1685   Select *pSelect       /* SELECT used to determine types and collations */
1686 ){
1687   sqlite3 *db = pParse->db;
1688   NameContext sNC;
1689   Column *pCol;
1690   CollSeq *pColl;
1691   int i;
1692   Expr *p;
1693   struct ExprList_item *a;
1694   u64 szAll = 0;
1695 
1696   assert( pSelect!=0 );
1697   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1698   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1699   if( db->mallocFailed ) return;
1700   memset(&sNC, 0, sizeof(sNC));
1701   sNC.pSrcList = pSelect->pSrc;
1702   a = pSelect->pEList->a;
1703   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1704     p = a[i].pExpr;
1705     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1706     szAll += pCol->szEst;
1707     pCol->affinity = sqlite3ExprAffinity(p);
1708     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1709     pColl = sqlite3ExprCollSeq(pParse, p);
1710     if( pColl ){
1711       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1712     }
1713   }
1714   pTab->szTabRow = sqlite3LogEst(szAll*4);
1715 }
1716 
1717 /*
1718 ** Given a SELECT statement, generate a Table structure that describes
1719 ** the result set of that SELECT.
1720 */
1721 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1722   Table *pTab;
1723   sqlite3 *db = pParse->db;
1724   int savedFlags;
1725 
1726   savedFlags = db->flags;
1727   db->flags &= ~SQLITE_FullColNames;
1728   db->flags |= SQLITE_ShortColNames;
1729   sqlite3SelectPrep(pParse, pSelect, 0);
1730   if( pParse->nErr ) return 0;
1731   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1732   db->flags = savedFlags;
1733   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1734   if( pTab==0 ){
1735     return 0;
1736   }
1737   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1738   ** is disabled */
1739   assert( db->lookaside.bEnabled==0 );
1740   pTab->nRef = 1;
1741   pTab->zName = 0;
1742   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1743   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1744   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1745   pTab->iPKey = -1;
1746   if( db->mallocFailed ){
1747     sqlite3DeleteTable(db, pTab);
1748     return 0;
1749   }
1750   return pTab;
1751 }
1752 
1753 /*
1754 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1755 ** If an error occurs, return NULL and leave a message in pParse.
1756 */
1757 Vdbe *sqlite3GetVdbe(Parse *pParse){
1758   Vdbe *v = pParse->pVdbe;
1759   if( v==0 ){
1760     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1761     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1762     if( pParse->pToplevel==0
1763      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1764     ){
1765       pParse->okConstFactor = 1;
1766     }
1767 
1768   }
1769   return v;
1770 }
1771 
1772 
1773 /*
1774 ** Compute the iLimit and iOffset fields of the SELECT based on the
1775 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1776 ** that appear in the original SQL statement after the LIMIT and OFFSET
1777 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1778 ** are the integer memory register numbers for counters used to compute
1779 ** the limit and offset.  If there is no limit and/or offset, then
1780 ** iLimit and iOffset are negative.
1781 **
1782 ** This routine changes the values of iLimit and iOffset only if
1783 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1784 ** iOffset should have been preset to appropriate default values (zero)
1785 ** prior to calling this routine.
1786 **
1787 ** The iOffset register (if it exists) is initialized to the value
1788 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1789 ** iOffset+1 is initialized to LIMIT+OFFSET.
1790 **
1791 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1792 ** redefined.  The UNION ALL operator uses this property to force
1793 ** the reuse of the same limit and offset registers across multiple
1794 ** SELECT statements.
1795 */
1796 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1797   Vdbe *v = 0;
1798   int iLimit = 0;
1799   int iOffset;
1800   int addr1, n;
1801   if( p->iLimit ) return;
1802 
1803   /*
1804   ** "LIMIT -1" always shows all rows.  There is some
1805   ** controversy about what the correct behavior should be.
1806   ** The current implementation interprets "LIMIT 0" to mean
1807   ** no rows.
1808   */
1809   sqlite3ExprCacheClear(pParse);
1810   assert( p->pOffset==0 || p->pLimit!=0 );
1811   if( p->pLimit ){
1812     p->iLimit = iLimit = ++pParse->nMem;
1813     v = sqlite3GetVdbe(pParse);
1814     assert( v!=0 );
1815     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1816       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1817       VdbeComment((v, "LIMIT counter"));
1818       if( n==0 ){
1819         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1820       }else if( n>=0 && p->nSelectRow>(u64)n ){
1821         p->nSelectRow = n;
1822       }
1823     }else{
1824       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1825       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1826       VdbeComment((v, "LIMIT counter"));
1827       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1828     }
1829     if( p->pOffset ){
1830       p->iOffset = iOffset = ++pParse->nMem;
1831       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1832       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1833       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1834       VdbeComment((v, "OFFSET counter"));
1835       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1836       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1837       sqlite3VdbeJumpHere(v, addr1);
1838       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1839       VdbeComment((v, "LIMIT+OFFSET"));
1840       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1841       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1842       sqlite3VdbeJumpHere(v, addr1);
1843     }
1844   }
1845 }
1846 
1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1848 /*
1849 ** Return the appropriate collating sequence for the iCol-th column of
1850 ** the result set for the compound-select statement "p".  Return NULL if
1851 ** the column has no default collating sequence.
1852 **
1853 ** The collating sequence for the compound select is taken from the
1854 ** left-most term of the select that has a collating sequence.
1855 */
1856 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1857   CollSeq *pRet;
1858   if( p->pPrior ){
1859     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1860   }else{
1861     pRet = 0;
1862   }
1863   assert( iCol>=0 );
1864   if( pRet==0 && iCol<p->pEList->nExpr ){
1865     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1866   }
1867   return pRet;
1868 }
1869 
1870 /*
1871 ** The select statement passed as the second parameter is a compound SELECT
1872 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1873 ** structure suitable for implementing the ORDER BY.
1874 **
1875 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1876 ** function is responsible for ensuring that this structure is eventually
1877 ** freed.
1878 */
1879 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1880   ExprList *pOrderBy = p->pOrderBy;
1881   int nOrderBy = p->pOrderBy->nExpr;
1882   sqlite3 *db = pParse->db;
1883   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1884   if( pRet ){
1885     int i;
1886     for(i=0; i<nOrderBy; i++){
1887       struct ExprList_item *pItem = &pOrderBy->a[i];
1888       Expr *pTerm = pItem->pExpr;
1889       CollSeq *pColl;
1890 
1891       if( pTerm->flags & EP_Collate ){
1892         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1893       }else{
1894         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1895         if( pColl==0 ) pColl = db->pDfltColl;
1896         pOrderBy->a[i].pExpr =
1897           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1898       }
1899       assert( sqlite3KeyInfoIsWriteable(pRet) );
1900       pRet->aColl[i] = pColl;
1901       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1902     }
1903   }
1904 
1905   return pRet;
1906 }
1907 
1908 #ifndef SQLITE_OMIT_CTE
1909 /*
1910 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1911 ** query of the form:
1912 **
1913 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1914 **                         \___________/             \_______________/
1915 **                           p->pPrior                      p
1916 **
1917 **
1918 ** There is exactly one reference to the recursive-table in the FROM clause
1919 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1920 **
1921 ** The setup-query runs once to generate an initial set of rows that go
1922 ** into a Queue table.  Rows are extracted from the Queue table one by
1923 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1924 ** extracted row (now in the iCurrent table) becomes the content of the
1925 ** recursive-table for a recursive-query run.  The output of the recursive-query
1926 ** is added back into the Queue table.  Then another row is extracted from Queue
1927 ** and the iteration continues until the Queue table is empty.
1928 **
1929 ** If the compound query operator is UNION then no duplicate rows are ever
1930 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1931 ** that have ever been inserted into Queue and causes duplicates to be
1932 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1933 **
1934 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1935 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1936 ** an ORDER BY, the Queue table is just a FIFO.
1937 **
1938 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1939 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1940 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1941 ** with a positive value, then the first OFFSET outputs are discarded rather
1942 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1943 ** rows have been skipped.
1944 */
1945 static void generateWithRecursiveQuery(
1946   Parse *pParse,        /* Parsing context */
1947   Select *p,            /* The recursive SELECT to be coded */
1948   SelectDest *pDest     /* What to do with query results */
1949 ){
1950   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1951   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1952   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1953   Select *pSetup = p->pPrior;   /* The setup query */
1954   int addrTop;                  /* Top of the loop */
1955   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1956   int iCurrent = 0;             /* The Current table */
1957   int regCurrent;               /* Register holding Current table */
1958   int iQueue;                   /* The Queue table */
1959   int iDistinct = 0;            /* To ensure unique results if UNION */
1960   int eDest = SRT_Fifo;         /* How to write to Queue */
1961   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1962   int i;                        /* Loop counter */
1963   int rc;                       /* Result code */
1964   ExprList *pOrderBy;           /* The ORDER BY clause */
1965   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1966   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1967 
1968   /* Obtain authorization to do a recursive query */
1969   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1970 
1971   /* Process the LIMIT and OFFSET clauses, if they exist */
1972   addrBreak = sqlite3VdbeMakeLabel(v);
1973   computeLimitRegisters(pParse, p, addrBreak);
1974   pLimit = p->pLimit;
1975   pOffset = p->pOffset;
1976   regLimit = p->iLimit;
1977   regOffset = p->iOffset;
1978   p->pLimit = p->pOffset = 0;
1979   p->iLimit = p->iOffset = 0;
1980   pOrderBy = p->pOrderBy;
1981 
1982   /* Locate the cursor number of the Current table */
1983   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1984     if( pSrc->a[i].isRecursive ){
1985       iCurrent = pSrc->a[i].iCursor;
1986       break;
1987     }
1988   }
1989 
1990   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1991   ** the Distinct table must be exactly one greater than Queue in order
1992   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1993   iQueue = pParse->nTab++;
1994   if( p->op==TK_UNION ){
1995     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1996     iDistinct = pParse->nTab++;
1997   }else{
1998     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1999   }
2000   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2001 
2002   /* Allocate cursors for Current, Queue, and Distinct. */
2003   regCurrent = ++pParse->nMem;
2004   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2005   if( pOrderBy ){
2006     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2007     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2008                       (char*)pKeyInfo, P4_KEYINFO);
2009     destQueue.pOrderBy = pOrderBy;
2010   }else{
2011     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2012   }
2013   VdbeComment((v, "Queue table"));
2014   if( iDistinct ){
2015     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2016     p->selFlags |= SF_UsesEphemeral;
2017   }
2018 
2019   /* Detach the ORDER BY clause from the compound SELECT */
2020   p->pOrderBy = 0;
2021 
2022   /* Store the results of the setup-query in Queue. */
2023   pSetup->pNext = 0;
2024   rc = sqlite3Select(pParse, pSetup, &destQueue);
2025   pSetup->pNext = p;
2026   if( rc ) goto end_of_recursive_query;
2027 
2028   /* Find the next row in the Queue and output that row */
2029   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2030 
2031   /* Transfer the next row in Queue over to Current */
2032   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2033   if( pOrderBy ){
2034     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2035   }else{
2036     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2037   }
2038   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2039 
2040   /* Output the single row in Current */
2041   addrCont = sqlite3VdbeMakeLabel(v);
2042   codeOffset(v, regOffset, addrCont);
2043   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2044       0, 0, pDest, addrCont, addrBreak);
2045   if( regLimit ){
2046     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2047     VdbeCoverage(v);
2048   }
2049   sqlite3VdbeResolveLabel(v, addrCont);
2050 
2051   /* Execute the recursive SELECT taking the single row in Current as
2052   ** the value for the recursive-table. Store the results in the Queue.
2053   */
2054   p->pPrior = 0;
2055   sqlite3Select(pParse, p, &destQueue);
2056   assert( p->pPrior==0 );
2057   p->pPrior = pSetup;
2058 
2059   /* Keep running the loop until the Queue is empty */
2060   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2061   sqlite3VdbeResolveLabel(v, addrBreak);
2062 
2063 end_of_recursive_query:
2064   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2065   p->pOrderBy = pOrderBy;
2066   p->pLimit = pLimit;
2067   p->pOffset = pOffset;
2068   return;
2069 }
2070 #endif /* SQLITE_OMIT_CTE */
2071 
2072 /* Forward references */
2073 static int multiSelectOrderBy(
2074   Parse *pParse,        /* Parsing context */
2075   Select *p,            /* The right-most of SELECTs to be coded */
2076   SelectDest *pDest     /* What to do with query results */
2077 );
2078 
2079 /*
2080 ** Error message for when two or more terms of a compound select have different
2081 ** size result sets.
2082 */
2083 static void selectWrongNumTermsError(Parse *pParse, Select *p){
2084   if( p->selFlags & SF_Values ){
2085     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2086   }else{
2087     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2088       " do not have the same number of result columns", selectOpName(p->op));
2089   }
2090 }
2091 
2092 /*
2093 ** Handle the special case of a compound-select that originates from a
2094 ** VALUES clause.  By handling this as a special case, we avoid deep
2095 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2096 ** on a VALUES clause.
2097 **
2098 ** Because the Select object originates from a VALUES clause:
2099 **   (1) It has no LIMIT or OFFSET
2100 **   (2) All terms are UNION ALL
2101 **   (3) There is no ORDER BY clause
2102 */
2103 static int multiSelectValues(
2104   Parse *pParse,        /* Parsing context */
2105   Select *p,            /* The right-most of SELECTs to be coded */
2106   SelectDest *pDest     /* What to do with query results */
2107 ){
2108   Select *pPrior;
2109   int nExpr = p->pEList->nExpr;
2110   int nRow = 1;
2111   int rc = 0;
2112   assert( p->pNext==0 );
2113   assert( p->selFlags & SF_AllValues );
2114   do{
2115     assert( p->selFlags & SF_Values );
2116     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2117     assert( p->pLimit==0 );
2118     assert( p->pOffset==0 );
2119     if( p->pEList->nExpr!=nExpr ){
2120       selectWrongNumTermsError(pParse, p);
2121       return 1;
2122     }
2123     if( p->pPrior==0 ) break;
2124     assert( p->pPrior->pNext==p );
2125     p = p->pPrior;
2126     nRow++;
2127   }while(1);
2128   while( p ){
2129     pPrior = p->pPrior;
2130     p->pPrior = 0;
2131     rc = sqlite3Select(pParse, p, pDest);
2132     p->pPrior = pPrior;
2133     if( rc ) break;
2134     p->nSelectRow = nRow;
2135     p = p->pNext;
2136   }
2137   return rc;
2138 }
2139 
2140 /*
2141 ** This routine is called to process a compound query form from
2142 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2143 ** INTERSECT
2144 **
2145 ** "p" points to the right-most of the two queries.  the query on the
2146 ** left is p->pPrior.  The left query could also be a compound query
2147 ** in which case this routine will be called recursively.
2148 **
2149 ** The results of the total query are to be written into a destination
2150 ** of type eDest with parameter iParm.
2151 **
2152 ** Example 1:  Consider a three-way compound SQL statement.
2153 **
2154 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2155 **
2156 ** This statement is parsed up as follows:
2157 **
2158 **     SELECT c FROM t3
2159 **      |
2160 **      `----->  SELECT b FROM t2
2161 **                |
2162 **                `------>  SELECT a FROM t1
2163 **
2164 ** The arrows in the diagram above represent the Select.pPrior pointer.
2165 ** So if this routine is called with p equal to the t3 query, then
2166 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2167 **
2168 ** Notice that because of the way SQLite parses compound SELECTs, the
2169 ** individual selects always group from left to right.
2170 */
2171 static int multiSelect(
2172   Parse *pParse,        /* Parsing context */
2173   Select *p,            /* The right-most of SELECTs to be coded */
2174   SelectDest *pDest     /* What to do with query results */
2175 ){
2176   int rc = SQLITE_OK;   /* Success code from a subroutine */
2177   Select *pPrior;       /* Another SELECT immediately to our left */
2178   Vdbe *v;              /* Generate code to this VDBE */
2179   SelectDest dest;      /* Alternative data destination */
2180   Select *pDelete = 0;  /* Chain of simple selects to delete */
2181   sqlite3 *db;          /* Database connection */
2182 #ifndef SQLITE_OMIT_EXPLAIN
2183   int iSub1 = 0;        /* EQP id of left-hand query */
2184   int iSub2 = 0;        /* EQP id of right-hand query */
2185 #endif
2186 
2187   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2188   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2189   */
2190   assert( p && p->pPrior );  /* Calling function guarantees this much */
2191   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2192   db = pParse->db;
2193   pPrior = p->pPrior;
2194   dest = *pDest;
2195   if( pPrior->pOrderBy ){
2196     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2197       selectOpName(p->op));
2198     rc = 1;
2199     goto multi_select_end;
2200   }
2201   if( pPrior->pLimit ){
2202     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2203       selectOpName(p->op));
2204     rc = 1;
2205     goto multi_select_end;
2206   }
2207 
2208   v = sqlite3GetVdbe(pParse);
2209   assert( v!=0 );  /* The VDBE already created by calling function */
2210 
2211   /* Create the destination temporary table if necessary
2212   */
2213   if( dest.eDest==SRT_EphemTab ){
2214     assert( p->pEList );
2215     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2216     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2217     dest.eDest = SRT_Table;
2218   }
2219 
2220   /* Special handling for a compound-select that originates as a VALUES clause.
2221   */
2222   if( p->selFlags & SF_AllValues ){
2223     rc = multiSelectValues(pParse, p, &dest);
2224     goto multi_select_end;
2225   }
2226 
2227   /* Make sure all SELECTs in the statement have the same number of elements
2228   ** in their result sets.
2229   */
2230   assert( p->pEList && pPrior->pEList );
2231   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2232     selectWrongNumTermsError(pParse, p);
2233     rc = 1;
2234     goto multi_select_end;
2235   }
2236 
2237 #ifndef SQLITE_OMIT_CTE
2238   if( p->selFlags & SF_Recursive ){
2239     generateWithRecursiveQuery(pParse, p, &dest);
2240   }else
2241 #endif
2242 
2243   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2244   */
2245   if( p->pOrderBy ){
2246     return multiSelectOrderBy(pParse, p, pDest);
2247   }else
2248 
2249   /* Generate code for the left and right SELECT statements.
2250   */
2251   switch( p->op ){
2252     case TK_ALL: {
2253       int addr = 0;
2254       int nLimit;
2255       assert( !pPrior->pLimit );
2256       pPrior->iLimit = p->iLimit;
2257       pPrior->iOffset = p->iOffset;
2258       pPrior->pLimit = p->pLimit;
2259       pPrior->pOffset = p->pOffset;
2260       explainSetInteger(iSub1, pParse->iNextSelectId);
2261       rc = sqlite3Select(pParse, pPrior, &dest);
2262       p->pLimit = 0;
2263       p->pOffset = 0;
2264       if( rc ){
2265         goto multi_select_end;
2266       }
2267       p->pPrior = 0;
2268       p->iLimit = pPrior->iLimit;
2269       p->iOffset = pPrior->iOffset;
2270       if( p->iLimit ){
2271         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2272         VdbeComment((v, "Jump ahead if LIMIT reached"));
2273       }
2274       explainSetInteger(iSub2, pParse->iNextSelectId);
2275       rc = sqlite3Select(pParse, p, &dest);
2276       testcase( rc!=SQLITE_OK );
2277       pDelete = p->pPrior;
2278       p->pPrior = pPrior;
2279       p->nSelectRow += pPrior->nSelectRow;
2280       if( pPrior->pLimit
2281        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2282        && nLimit>0 && p->nSelectRow > (u64)nLimit
2283       ){
2284         p->nSelectRow = nLimit;
2285       }
2286       if( addr ){
2287         sqlite3VdbeJumpHere(v, addr);
2288       }
2289       break;
2290     }
2291     case TK_EXCEPT:
2292     case TK_UNION: {
2293       int unionTab;    /* Cursor number of the temporary table holding result */
2294       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2295       int priorOp;     /* The SRT_ operation to apply to prior selects */
2296       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2297       int addr;
2298       SelectDest uniondest;
2299 
2300       testcase( p->op==TK_EXCEPT );
2301       testcase( p->op==TK_UNION );
2302       priorOp = SRT_Union;
2303       if( dest.eDest==priorOp ){
2304         /* We can reuse a temporary table generated by a SELECT to our
2305         ** right.
2306         */
2307         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2308         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2309         unionTab = dest.iSDParm;
2310       }else{
2311         /* We will need to create our own temporary table to hold the
2312         ** intermediate results.
2313         */
2314         unionTab = pParse->nTab++;
2315         assert( p->pOrderBy==0 );
2316         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2317         assert( p->addrOpenEphm[0] == -1 );
2318         p->addrOpenEphm[0] = addr;
2319         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2320         assert( p->pEList );
2321       }
2322 
2323       /* Code the SELECT statements to our left
2324       */
2325       assert( !pPrior->pOrderBy );
2326       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2327       explainSetInteger(iSub1, pParse->iNextSelectId);
2328       rc = sqlite3Select(pParse, pPrior, &uniondest);
2329       if( rc ){
2330         goto multi_select_end;
2331       }
2332 
2333       /* Code the current SELECT statement
2334       */
2335       if( p->op==TK_EXCEPT ){
2336         op = SRT_Except;
2337       }else{
2338         assert( p->op==TK_UNION );
2339         op = SRT_Union;
2340       }
2341       p->pPrior = 0;
2342       pLimit = p->pLimit;
2343       p->pLimit = 0;
2344       pOffset = p->pOffset;
2345       p->pOffset = 0;
2346       uniondest.eDest = op;
2347       explainSetInteger(iSub2, pParse->iNextSelectId);
2348       rc = sqlite3Select(pParse, p, &uniondest);
2349       testcase( rc!=SQLITE_OK );
2350       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2351       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2352       sqlite3ExprListDelete(db, p->pOrderBy);
2353       pDelete = p->pPrior;
2354       p->pPrior = pPrior;
2355       p->pOrderBy = 0;
2356       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2357       sqlite3ExprDelete(db, p->pLimit);
2358       p->pLimit = pLimit;
2359       p->pOffset = pOffset;
2360       p->iLimit = 0;
2361       p->iOffset = 0;
2362 
2363       /* Convert the data in the temporary table into whatever form
2364       ** it is that we currently need.
2365       */
2366       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2367       if( dest.eDest!=priorOp ){
2368         int iCont, iBreak, iStart;
2369         assert( p->pEList );
2370         if( dest.eDest==SRT_Output ){
2371           Select *pFirst = p;
2372           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2373           generateColumnNames(pParse, 0, pFirst->pEList);
2374         }
2375         iBreak = sqlite3VdbeMakeLabel(v);
2376         iCont = sqlite3VdbeMakeLabel(v);
2377         computeLimitRegisters(pParse, p, iBreak);
2378         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2379         iStart = sqlite3VdbeCurrentAddr(v);
2380         selectInnerLoop(pParse, p, p->pEList, unionTab,
2381                         0, 0, &dest, iCont, iBreak);
2382         sqlite3VdbeResolveLabel(v, iCont);
2383         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2384         sqlite3VdbeResolveLabel(v, iBreak);
2385         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2386       }
2387       break;
2388     }
2389     default: assert( p->op==TK_INTERSECT ); {
2390       int tab1, tab2;
2391       int iCont, iBreak, iStart;
2392       Expr *pLimit, *pOffset;
2393       int addr;
2394       SelectDest intersectdest;
2395       int r1;
2396 
2397       /* INTERSECT is different from the others since it requires
2398       ** two temporary tables.  Hence it has its own case.  Begin
2399       ** by allocating the tables we will need.
2400       */
2401       tab1 = pParse->nTab++;
2402       tab2 = pParse->nTab++;
2403       assert( p->pOrderBy==0 );
2404 
2405       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2406       assert( p->addrOpenEphm[0] == -1 );
2407       p->addrOpenEphm[0] = addr;
2408       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2409       assert( p->pEList );
2410 
2411       /* Code the SELECTs to our left into temporary table "tab1".
2412       */
2413       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2414       explainSetInteger(iSub1, pParse->iNextSelectId);
2415       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2416       if( rc ){
2417         goto multi_select_end;
2418       }
2419 
2420       /* Code the current SELECT into temporary table "tab2"
2421       */
2422       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2423       assert( p->addrOpenEphm[1] == -1 );
2424       p->addrOpenEphm[1] = addr;
2425       p->pPrior = 0;
2426       pLimit = p->pLimit;
2427       p->pLimit = 0;
2428       pOffset = p->pOffset;
2429       p->pOffset = 0;
2430       intersectdest.iSDParm = tab2;
2431       explainSetInteger(iSub2, pParse->iNextSelectId);
2432       rc = sqlite3Select(pParse, p, &intersectdest);
2433       testcase( rc!=SQLITE_OK );
2434       pDelete = p->pPrior;
2435       p->pPrior = pPrior;
2436       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2437       sqlite3ExprDelete(db, p->pLimit);
2438       p->pLimit = pLimit;
2439       p->pOffset = pOffset;
2440 
2441       /* Generate code to take the intersection of the two temporary
2442       ** tables.
2443       */
2444       assert( p->pEList );
2445       if( dest.eDest==SRT_Output ){
2446         Select *pFirst = p;
2447         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2448         generateColumnNames(pParse, 0, pFirst->pEList);
2449       }
2450       iBreak = sqlite3VdbeMakeLabel(v);
2451       iCont = sqlite3VdbeMakeLabel(v);
2452       computeLimitRegisters(pParse, p, iBreak);
2453       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2454       r1 = sqlite3GetTempReg(pParse);
2455       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2456       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2457       sqlite3ReleaseTempReg(pParse, r1);
2458       selectInnerLoop(pParse, p, p->pEList, tab1,
2459                       0, 0, &dest, iCont, iBreak);
2460       sqlite3VdbeResolveLabel(v, iCont);
2461       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2462       sqlite3VdbeResolveLabel(v, iBreak);
2463       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2464       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2465       break;
2466     }
2467   }
2468 
2469   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2470 
2471   /* Compute collating sequences used by
2472   ** temporary tables needed to implement the compound select.
2473   ** Attach the KeyInfo structure to all temporary tables.
2474   **
2475   ** This section is run by the right-most SELECT statement only.
2476   ** SELECT statements to the left always skip this part.  The right-most
2477   ** SELECT might also skip this part if it has no ORDER BY clause and
2478   ** no temp tables are required.
2479   */
2480   if( p->selFlags & SF_UsesEphemeral ){
2481     int i;                        /* Loop counter */
2482     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2483     Select *pLoop;                /* For looping through SELECT statements */
2484     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2485     int nCol;                     /* Number of columns in result set */
2486 
2487     assert( p->pNext==0 );
2488     nCol = p->pEList->nExpr;
2489     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2490     if( !pKeyInfo ){
2491       rc = SQLITE_NOMEM;
2492       goto multi_select_end;
2493     }
2494     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2495       *apColl = multiSelectCollSeq(pParse, p, i);
2496       if( 0==*apColl ){
2497         *apColl = db->pDfltColl;
2498       }
2499     }
2500 
2501     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2502       for(i=0; i<2; i++){
2503         int addr = pLoop->addrOpenEphm[i];
2504         if( addr<0 ){
2505           /* If [0] is unused then [1] is also unused.  So we can
2506           ** always safely abort as soon as the first unused slot is found */
2507           assert( pLoop->addrOpenEphm[1]<0 );
2508           break;
2509         }
2510         sqlite3VdbeChangeP2(v, addr, nCol);
2511         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2512                             P4_KEYINFO);
2513         pLoop->addrOpenEphm[i] = -1;
2514       }
2515     }
2516     sqlite3KeyInfoUnref(pKeyInfo);
2517   }
2518 
2519 multi_select_end:
2520   pDest->iSdst = dest.iSdst;
2521   pDest->nSdst = dest.nSdst;
2522   sqlite3SelectDelete(db, pDelete);
2523   return rc;
2524 }
2525 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2526 
2527 /*
2528 ** Code an output subroutine for a coroutine implementation of a
2529 ** SELECT statment.
2530 **
2531 ** The data to be output is contained in pIn->iSdst.  There are
2532 ** pIn->nSdst columns to be output.  pDest is where the output should
2533 ** be sent.
2534 **
2535 ** regReturn is the number of the register holding the subroutine
2536 ** return address.
2537 **
2538 ** If regPrev>0 then it is the first register in a vector that
2539 ** records the previous output.  mem[regPrev] is a flag that is false
2540 ** if there has been no previous output.  If regPrev>0 then code is
2541 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2542 ** keys.
2543 **
2544 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2545 ** iBreak.
2546 */
2547 static int generateOutputSubroutine(
2548   Parse *pParse,          /* Parsing context */
2549   Select *p,              /* The SELECT statement */
2550   SelectDest *pIn,        /* Coroutine supplying data */
2551   SelectDest *pDest,      /* Where to send the data */
2552   int regReturn,          /* The return address register */
2553   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2554   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2555   int iBreak              /* Jump here if we hit the LIMIT */
2556 ){
2557   Vdbe *v = pParse->pVdbe;
2558   int iContinue;
2559   int addr;
2560 
2561   addr = sqlite3VdbeCurrentAddr(v);
2562   iContinue = sqlite3VdbeMakeLabel(v);
2563 
2564   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2565   */
2566   if( regPrev ){
2567     int j1, j2;
2568     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2569     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2570                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2571     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2572     sqlite3VdbeJumpHere(v, j1);
2573     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2574     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2575   }
2576   if( pParse->db->mallocFailed ) return 0;
2577 
2578   /* Suppress the first OFFSET entries if there is an OFFSET clause
2579   */
2580   codeOffset(v, p->iOffset, iContinue);
2581 
2582   switch( pDest->eDest ){
2583     /* Store the result as data using a unique key.
2584     */
2585     case SRT_Table:
2586     case SRT_EphemTab: {
2587       int r1 = sqlite3GetTempReg(pParse);
2588       int r2 = sqlite3GetTempReg(pParse);
2589       testcase( pDest->eDest==SRT_Table );
2590       testcase( pDest->eDest==SRT_EphemTab );
2591       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2592       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2593       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2594       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2595       sqlite3ReleaseTempReg(pParse, r2);
2596       sqlite3ReleaseTempReg(pParse, r1);
2597       break;
2598     }
2599 
2600 #ifndef SQLITE_OMIT_SUBQUERY
2601     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2602     ** then there should be a single item on the stack.  Write this
2603     ** item into the set table with bogus data.
2604     */
2605     case SRT_Set: {
2606       int r1;
2607       assert( pIn->nSdst==1 );
2608       pDest->affSdst =
2609          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2610       r1 = sqlite3GetTempReg(pParse);
2611       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2612       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2613       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2614       sqlite3ReleaseTempReg(pParse, r1);
2615       break;
2616     }
2617 
2618 #if 0  /* Never occurs on an ORDER BY query */
2619     /* If any row exist in the result set, record that fact and abort.
2620     */
2621     case SRT_Exists: {
2622       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2623       /* The LIMIT clause will terminate the loop for us */
2624       break;
2625     }
2626 #endif
2627 
2628     /* If this is a scalar select that is part of an expression, then
2629     ** store the results in the appropriate memory cell and break out
2630     ** of the scan loop.
2631     */
2632     case SRT_Mem: {
2633       assert( pIn->nSdst==1 );
2634       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2635       /* The LIMIT clause will jump out of the loop for us */
2636       break;
2637     }
2638 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2639 
2640     /* The results are stored in a sequence of registers
2641     ** starting at pDest->iSdst.  Then the co-routine yields.
2642     */
2643     case SRT_Coroutine: {
2644       if( pDest->iSdst==0 ){
2645         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2646         pDest->nSdst = pIn->nSdst;
2647       }
2648       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2649       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2650       break;
2651     }
2652 
2653     /* If none of the above, then the result destination must be
2654     ** SRT_Output.  This routine is never called with any other
2655     ** destination other than the ones handled above or SRT_Output.
2656     **
2657     ** For SRT_Output, results are stored in a sequence of registers.
2658     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2659     ** return the next row of result.
2660     */
2661     default: {
2662       assert( pDest->eDest==SRT_Output );
2663       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2664       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2665       break;
2666     }
2667   }
2668 
2669   /* Jump to the end of the loop if the LIMIT is reached.
2670   */
2671   if( p->iLimit ){
2672     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2673   }
2674 
2675   /* Generate the subroutine return
2676   */
2677   sqlite3VdbeResolveLabel(v, iContinue);
2678   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2679 
2680   return addr;
2681 }
2682 
2683 /*
2684 ** Alternative compound select code generator for cases when there
2685 ** is an ORDER BY clause.
2686 **
2687 ** We assume a query of the following form:
2688 **
2689 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2690 **
2691 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2692 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2693 ** co-routines.  Then run the co-routines in parallel and merge the results
2694 ** into the output.  In addition to the two coroutines (called selectA and
2695 ** selectB) there are 7 subroutines:
2696 **
2697 **    outA:    Move the output of the selectA coroutine into the output
2698 **             of the compound query.
2699 **
2700 **    outB:    Move the output of the selectB coroutine into the output
2701 **             of the compound query.  (Only generated for UNION and
2702 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2703 **             appears only in B.)
2704 **
2705 **    AltB:    Called when there is data from both coroutines and A<B.
2706 **
2707 **    AeqB:    Called when there is data from both coroutines and A==B.
2708 **
2709 **    AgtB:    Called when there is data from both coroutines and A>B.
2710 **
2711 **    EofA:    Called when data is exhausted from selectA.
2712 **
2713 **    EofB:    Called when data is exhausted from selectB.
2714 **
2715 ** The implementation of the latter five subroutines depend on which
2716 ** <operator> is used:
2717 **
2718 **
2719 **             UNION ALL         UNION            EXCEPT          INTERSECT
2720 **          -------------  -----------------  --------------  -----------------
2721 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2722 **
2723 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2724 **
2725 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2726 **
2727 **   EofA:   outB, nextB      outB, nextB          halt             halt
2728 **
2729 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2730 **
2731 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2732 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2733 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2734 ** following nextX causes a jump to the end of the select processing.
2735 **
2736 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2737 ** within the output subroutine.  The regPrev register set holds the previously
2738 ** output value.  A comparison is made against this value and the output
2739 ** is skipped if the next results would be the same as the previous.
2740 **
2741 ** The implementation plan is to implement the two coroutines and seven
2742 ** subroutines first, then put the control logic at the bottom.  Like this:
2743 **
2744 **          goto Init
2745 **     coA: coroutine for left query (A)
2746 **     coB: coroutine for right query (B)
2747 **    outA: output one row of A
2748 **    outB: output one row of B (UNION and UNION ALL only)
2749 **    EofA: ...
2750 **    EofB: ...
2751 **    AltB: ...
2752 **    AeqB: ...
2753 **    AgtB: ...
2754 **    Init: initialize coroutine registers
2755 **          yield coA
2756 **          if eof(A) goto EofA
2757 **          yield coB
2758 **          if eof(B) goto EofB
2759 **    Cmpr: Compare A, B
2760 **          Jump AltB, AeqB, AgtB
2761 **     End: ...
2762 **
2763 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2764 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2765 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2766 ** and AgtB jump to either L2 or to one of EofA or EofB.
2767 */
2768 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2769 static int multiSelectOrderBy(
2770   Parse *pParse,        /* Parsing context */
2771   Select *p,            /* The right-most of SELECTs to be coded */
2772   SelectDest *pDest     /* What to do with query results */
2773 ){
2774   int i, j;             /* Loop counters */
2775   Select *pPrior;       /* Another SELECT immediately to our left */
2776   Vdbe *v;              /* Generate code to this VDBE */
2777   SelectDest destA;     /* Destination for coroutine A */
2778   SelectDest destB;     /* Destination for coroutine B */
2779   int regAddrA;         /* Address register for select-A coroutine */
2780   int regAddrB;         /* Address register for select-B coroutine */
2781   int addrSelectA;      /* Address of the select-A coroutine */
2782   int addrSelectB;      /* Address of the select-B coroutine */
2783   int regOutA;          /* Address register for the output-A subroutine */
2784   int regOutB;          /* Address register for the output-B subroutine */
2785   int addrOutA;         /* Address of the output-A subroutine */
2786   int addrOutB = 0;     /* Address of the output-B subroutine */
2787   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2788   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2789   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2790   int addrAltB;         /* Address of the A<B subroutine */
2791   int addrAeqB;         /* Address of the A==B subroutine */
2792   int addrAgtB;         /* Address of the A>B subroutine */
2793   int regLimitA;        /* Limit register for select-A */
2794   int regLimitB;        /* Limit register for select-A */
2795   int regPrev;          /* A range of registers to hold previous output */
2796   int savedLimit;       /* Saved value of p->iLimit */
2797   int savedOffset;      /* Saved value of p->iOffset */
2798   int labelCmpr;        /* Label for the start of the merge algorithm */
2799   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2800   int j1;               /* Jump instructions that get retargetted */
2801   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2802   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2803   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2804   sqlite3 *db;          /* Database connection */
2805   ExprList *pOrderBy;   /* The ORDER BY clause */
2806   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2807   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2808 #ifndef SQLITE_OMIT_EXPLAIN
2809   int iSub1;            /* EQP id of left-hand query */
2810   int iSub2;            /* EQP id of right-hand query */
2811 #endif
2812 
2813   assert( p->pOrderBy!=0 );
2814   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2815   db = pParse->db;
2816   v = pParse->pVdbe;
2817   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2818   labelEnd = sqlite3VdbeMakeLabel(v);
2819   labelCmpr = sqlite3VdbeMakeLabel(v);
2820 
2821 
2822   /* Patch up the ORDER BY clause
2823   */
2824   op = p->op;
2825   pPrior = p->pPrior;
2826   assert( pPrior->pOrderBy==0 );
2827   pOrderBy = p->pOrderBy;
2828   assert( pOrderBy );
2829   nOrderBy = pOrderBy->nExpr;
2830 
2831   /* For operators other than UNION ALL we have to make sure that
2832   ** the ORDER BY clause covers every term of the result set.  Add
2833   ** terms to the ORDER BY clause as necessary.
2834   */
2835   if( op!=TK_ALL ){
2836     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2837       struct ExprList_item *pItem;
2838       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2839         assert( pItem->u.x.iOrderByCol>0 );
2840         if( pItem->u.x.iOrderByCol==i ) break;
2841       }
2842       if( j==nOrderBy ){
2843         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2844         if( pNew==0 ) return SQLITE_NOMEM;
2845         pNew->flags |= EP_IntValue;
2846         pNew->u.iValue = i;
2847         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2848         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2849       }
2850     }
2851   }
2852 
2853   /* Compute the comparison permutation and keyinfo that is used with
2854   ** the permutation used to determine if the next
2855   ** row of results comes from selectA or selectB.  Also add explicit
2856   ** collations to the ORDER BY clause terms so that when the subqueries
2857   ** to the right and the left are evaluated, they use the correct
2858   ** collation.
2859   */
2860   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2861   if( aPermute ){
2862     struct ExprList_item *pItem;
2863     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2864       assert( pItem->u.x.iOrderByCol>0
2865           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2866       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2867     }
2868     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2869   }else{
2870     pKeyMerge = 0;
2871   }
2872 
2873   /* Reattach the ORDER BY clause to the query.
2874   */
2875   p->pOrderBy = pOrderBy;
2876   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2877 
2878   /* Allocate a range of temporary registers and the KeyInfo needed
2879   ** for the logic that removes duplicate result rows when the
2880   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2881   */
2882   if( op==TK_ALL ){
2883     regPrev = 0;
2884   }else{
2885     int nExpr = p->pEList->nExpr;
2886     assert( nOrderBy>=nExpr || db->mallocFailed );
2887     regPrev = pParse->nMem+1;
2888     pParse->nMem += nExpr+1;
2889     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2890     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2891     if( pKeyDup ){
2892       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2893       for(i=0; i<nExpr; i++){
2894         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2895         pKeyDup->aSortOrder[i] = 0;
2896       }
2897     }
2898   }
2899 
2900   /* Separate the left and the right query from one another
2901   */
2902   p->pPrior = 0;
2903   pPrior->pNext = 0;
2904   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2905   if( pPrior->pPrior==0 ){
2906     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2907   }
2908 
2909   /* Compute the limit registers */
2910   computeLimitRegisters(pParse, p, labelEnd);
2911   if( p->iLimit && op==TK_ALL ){
2912     regLimitA = ++pParse->nMem;
2913     regLimitB = ++pParse->nMem;
2914     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2915                                   regLimitA);
2916     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2917   }else{
2918     regLimitA = regLimitB = 0;
2919   }
2920   sqlite3ExprDelete(db, p->pLimit);
2921   p->pLimit = 0;
2922   sqlite3ExprDelete(db, p->pOffset);
2923   p->pOffset = 0;
2924 
2925   regAddrA = ++pParse->nMem;
2926   regAddrB = ++pParse->nMem;
2927   regOutA = ++pParse->nMem;
2928   regOutB = ++pParse->nMem;
2929   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2930   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2931 
2932   /* Generate a coroutine to evaluate the SELECT statement to the
2933   ** left of the compound operator - the "A" select.
2934   */
2935   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2936   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2937   VdbeComment((v, "left SELECT"));
2938   pPrior->iLimit = regLimitA;
2939   explainSetInteger(iSub1, pParse->iNextSelectId);
2940   sqlite3Select(pParse, pPrior, &destA);
2941   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2942   sqlite3VdbeJumpHere(v, j1);
2943 
2944   /* Generate a coroutine to evaluate the SELECT statement on
2945   ** the right - the "B" select
2946   */
2947   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2948   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2949   VdbeComment((v, "right SELECT"));
2950   savedLimit = p->iLimit;
2951   savedOffset = p->iOffset;
2952   p->iLimit = regLimitB;
2953   p->iOffset = 0;
2954   explainSetInteger(iSub2, pParse->iNextSelectId);
2955   sqlite3Select(pParse, p, &destB);
2956   p->iLimit = savedLimit;
2957   p->iOffset = savedOffset;
2958   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2959 
2960   /* Generate a subroutine that outputs the current row of the A
2961   ** select as the next output row of the compound select.
2962   */
2963   VdbeNoopComment((v, "Output routine for A"));
2964   addrOutA = generateOutputSubroutine(pParse,
2965                  p, &destA, pDest, regOutA,
2966                  regPrev, pKeyDup, labelEnd);
2967 
2968   /* Generate a subroutine that outputs the current row of the B
2969   ** select as the next output row of the compound select.
2970   */
2971   if( op==TK_ALL || op==TK_UNION ){
2972     VdbeNoopComment((v, "Output routine for B"));
2973     addrOutB = generateOutputSubroutine(pParse,
2974                  p, &destB, pDest, regOutB,
2975                  regPrev, pKeyDup, labelEnd);
2976   }
2977   sqlite3KeyInfoUnref(pKeyDup);
2978 
2979   /* Generate a subroutine to run when the results from select A
2980   ** are exhausted and only data in select B remains.
2981   */
2982   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2983     addrEofA_noB = addrEofA = labelEnd;
2984   }else{
2985     VdbeNoopComment((v, "eof-A subroutine"));
2986     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2987     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2988                                      VdbeCoverage(v);
2989     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2990     p->nSelectRow += pPrior->nSelectRow;
2991   }
2992 
2993   /* Generate a subroutine to run when the results from select B
2994   ** are exhausted and only data in select A remains.
2995   */
2996   if( op==TK_INTERSECT ){
2997     addrEofB = addrEofA;
2998     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2999   }else{
3000     VdbeNoopComment((v, "eof-B subroutine"));
3001     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3002     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3003     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3004   }
3005 
3006   /* Generate code to handle the case of A<B
3007   */
3008   VdbeNoopComment((v, "A-lt-B subroutine"));
3009   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3010   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3011   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3012 
3013   /* Generate code to handle the case of A==B
3014   */
3015   if( op==TK_ALL ){
3016     addrAeqB = addrAltB;
3017   }else if( op==TK_INTERSECT ){
3018     addrAeqB = addrAltB;
3019     addrAltB++;
3020   }else{
3021     VdbeNoopComment((v, "A-eq-B subroutine"));
3022     addrAeqB =
3023     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3024     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3025   }
3026 
3027   /* Generate code to handle the case of A>B
3028   */
3029   VdbeNoopComment((v, "A-gt-B subroutine"));
3030   addrAgtB = sqlite3VdbeCurrentAddr(v);
3031   if( op==TK_ALL || op==TK_UNION ){
3032     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3033   }
3034   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3035   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3036 
3037   /* This code runs once to initialize everything.
3038   */
3039   sqlite3VdbeJumpHere(v, j1);
3040   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3041   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3042 
3043   /* Implement the main merge loop
3044   */
3045   sqlite3VdbeResolveLabel(v, labelCmpr);
3046   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3047   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3048                          (char*)pKeyMerge, P4_KEYINFO);
3049   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3050   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3051 
3052   /* Jump to the this point in order to terminate the query.
3053   */
3054   sqlite3VdbeResolveLabel(v, labelEnd);
3055 
3056   /* Set the number of output columns
3057   */
3058   if( pDest->eDest==SRT_Output ){
3059     Select *pFirst = pPrior;
3060     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3061     generateColumnNames(pParse, 0, pFirst->pEList);
3062   }
3063 
3064   /* Reassembly the compound query so that it will be freed correctly
3065   ** by the calling function */
3066   if( p->pPrior ){
3067     sqlite3SelectDelete(db, p->pPrior);
3068   }
3069   p->pPrior = pPrior;
3070   pPrior->pNext = p;
3071 
3072   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3073   **** subqueries ****/
3074   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3075   return SQLITE_OK;
3076 }
3077 #endif
3078 
3079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3080 /* Forward Declarations */
3081 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3082 static void substSelect(sqlite3*, Select *, int, ExprList *);
3083 
3084 /*
3085 ** Scan through the expression pExpr.  Replace every reference to
3086 ** a column in table number iTable with a copy of the iColumn-th
3087 ** entry in pEList.  (But leave references to the ROWID column
3088 ** unchanged.)
3089 **
3090 ** This routine is part of the flattening procedure.  A subquery
3091 ** whose result set is defined by pEList appears as entry in the
3092 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3093 ** FORM clause entry is iTable.  This routine make the necessary
3094 ** changes to pExpr so that it refers directly to the source table
3095 ** of the subquery rather the result set of the subquery.
3096 */
3097 static Expr *substExpr(
3098   sqlite3 *db,        /* Report malloc errors to this connection */
3099   Expr *pExpr,        /* Expr in which substitution occurs */
3100   int iTable,         /* Table to be substituted */
3101   ExprList *pEList    /* Substitute expressions */
3102 ){
3103   if( pExpr==0 ) return 0;
3104   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3105     if( pExpr->iColumn<0 ){
3106       pExpr->op = TK_NULL;
3107     }else{
3108       Expr *pNew;
3109       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3110       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3111       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3112       sqlite3ExprDelete(db, pExpr);
3113       pExpr = pNew;
3114     }
3115   }else{
3116     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3117     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3118     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3119       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3120     }else{
3121       substExprList(db, pExpr->x.pList, iTable, pEList);
3122     }
3123   }
3124   return pExpr;
3125 }
3126 static void substExprList(
3127   sqlite3 *db,         /* Report malloc errors here */
3128   ExprList *pList,     /* List to scan and in which to make substitutes */
3129   int iTable,          /* Table to be substituted */
3130   ExprList *pEList     /* Substitute values */
3131 ){
3132   int i;
3133   if( pList==0 ) return;
3134   for(i=0; i<pList->nExpr; i++){
3135     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3136   }
3137 }
3138 static void substSelect(
3139   sqlite3 *db,         /* Report malloc errors here */
3140   Select *p,           /* SELECT statement in which to make substitutions */
3141   int iTable,          /* Table to be replaced */
3142   ExprList *pEList     /* Substitute values */
3143 ){
3144   SrcList *pSrc;
3145   struct SrcList_item *pItem;
3146   int i;
3147   if( !p ) return;
3148   substExprList(db, p->pEList, iTable, pEList);
3149   substExprList(db, p->pGroupBy, iTable, pEList);
3150   substExprList(db, p->pOrderBy, iTable, pEList);
3151   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3152   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3153   substSelect(db, p->pPrior, iTable, pEList);
3154   pSrc = p->pSrc;
3155   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3156   if( ALWAYS(pSrc) ){
3157     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3158       substSelect(db, pItem->pSelect, iTable, pEList);
3159     }
3160   }
3161 }
3162 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3163 
3164 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3165 /*
3166 ** This routine attempts to flatten subqueries as a performance optimization.
3167 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3168 **
3169 ** To understand the concept of flattening, consider the following
3170 ** query:
3171 **
3172 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3173 **
3174 ** The default way of implementing this query is to execute the
3175 ** subquery first and store the results in a temporary table, then
3176 ** run the outer query on that temporary table.  This requires two
3177 ** passes over the data.  Furthermore, because the temporary table
3178 ** has no indices, the WHERE clause on the outer query cannot be
3179 ** optimized.
3180 **
3181 ** This routine attempts to rewrite queries such as the above into
3182 ** a single flat select, like this:
3183 **
3184 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3185 **
3186 ** The code generated for this simplification gives the same result
3187 ** but only has to scan the data once.  And because indices might
3188 ** exist on the table t1, a complete scan of the data might be
3189 ** avoided.
3190 **
3191 ** Flattening is only attempted if all of the following are true:
3192 **
3193 **   (1)  The subquery and the outer query do not both use aggregates.
3194 **
3195 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3196 **
3197 **   (3)  The subquery is not the right operand of a left outer join
3198 **        (Originally ticket #306.  Strengthened by ticket #3300)
3199 **
3200 **   (4)  The subquery is not DISTINCT.
3201 **
3202 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3203 **        sub-queries that were excluded from this optimization. Restriction
3204 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3205 **
3206 **   (6)  The subquery does not use aggregates or the outer query is not
3207 **        DISTINCT.
3208 **
3209 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3210 **        A FROM clause, consider adding a FROM close with the special
3211 **        table sqlite_once that consists of a single row containing a
3212 **        single NULL.
3213 **
3214 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3215 **
3216 **   (9)  The subquery does not use LIMIT or the outer query does not use
3217 **        aggregates.
3218 **
3219 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3220 **        accidently carried the comment forward until 2014-09-15.  Original
3221 **        text: "The subquery does not use aggregates or the outer query does not
3222 **        use LIMIT."
3223 **
3224 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3225 **
3226 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3227 **        a separate restriction deriving from ticket #350.
3228 **
3229 **  (13)  The subquery and outer query do not both use LIMIT.
3230 **
3231 **  (14)  The subquery does not use OFFSET.
3232 **
3233 **  (15)  The outer query is not part of a compound select or the
3234 **        subquery does not have a LIMIT clause.
3235 **        (See ticket #2339 and ticket [02a8e81d44]).
3236 **
3237 **  (16)  The outer query is not an aggregate or the subquery does
3238 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3239 **        until we introduced the group_concat() function.
3240 **
3241 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3242 **        compound clause made up entirely of non-aggregate queries, and
3243 **        the parent query:
3244 **
3245 **          * is not itself part of a compound select,
3246 **          * is not an aggregate or DISTINCT query, and
3247 **          * is not a join
3248 **
3249 **        The parent and sub-query may contain WHERE clauses. Subject to
3250 **        rules (11), (13) and (14), they may also contain ORDER BY,
3251 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3252 **        operator other than UNION ALL because all the other compound
3253 **        operators have an implied DISTINCT which is disallowed by
3254 **        restriction (4).
3255 **
3256 **        Also, each component of the sub-query must return the same number
3257 **        of result columns. This is actually a requirement for any compound
3258 **        SELECT statement, but all the code here does is make sure that no
3259 **        such (illegal) sub-query is flattened. The caller will detect the
3260 **        syntax error and return a detailed message.
3261 **
3262 **  (18)  If the sub-query is a compound select, then all terms of the
3263 **        ORDER by clause of the parent must be simple references to
3264 **        columns of the sub-query.
3265 **
3266 **  (19)  The subquery does not use LIMIT or the outer query does not
3267 **        have a WHERE clause.
3268 **
3269 **  (20)  If the sub-query is a compound select, then it must not use
3270 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3271 **        somewhat by saying that the terms of the ORDER BY clause must
3272 **        appear as unmodified result columns in the outer query.  But we
3273 **        have other optimizations in mind to deal with that case.
3274 **
3275 **  (21)  The subquery does not use LIMIT or the outer query is not
3276 **        DISTINCT.  (See ticket [752e1646fc]).
3277 **
3278 **  (22)  The subquery is not a recursive CTE.
3279 **
3280 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3281 **        compound query. This restriction is because transforming the
3282 **        parent to a compound query confuses the code that handles
3283 **        recursive queries in multiSelect().
3284 **
3285 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3286 **        or max() functions.  (Without this restriction, a query like:
3287 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3288 **        return the value X for which Y was maximal.)
3289 **
3290 **
3291 ** In this routine, the "p" parameter is a pointer to the outer query.
3292 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3293 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3294 **
3295 ** If flattening is not attempted, this routine is a no-op and returns 0.
3296 ** If flattening is attempted this routine returns 1.
3297 **
3298 ** All of the expression analysis must occur on both the outer query and
3299 ** the subquery before this routine runs.
3300 */
3301 static int flattenSubquery(
3302   Parse *pParse,       /* Parsing context */
3303   Select *p,           /* The parent or outer SELECT statement */
3304   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3305   int isAgg,           /* True if outer SELECT uses aggregate functions */
3306   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3307 ){
3308   const char *zSavedAuthContext = pParse->zAuthContext;
3309   Select *pParent;
3310   Select *pSub;       /* The inner query or "subquery" */
3311   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3312   SrcList *pSrc;      /* The FROM clause of the outer query */
3313   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3314   ExprList *pList;    /* The result set of the outer query */
3315   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3316   int i;              /* Loop counter */
3317   Expr *pWhere;                    /* The WHERE clause */
3318   struct SrcList_item *pSubitem;   /* The subquery */
3319   sqlite3 *db = pParse->db;
3320 
3321   /* Check to see if flattening is permitted.  Return 0 if not.
3322   */
3323   assert( p!=0 );
3324   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3325   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3326   pSrc = p->pSrc;
3327   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3328   pSubitem = &pSrc->a[iFrom];
3329   iParent = pSubitem->iCursor;
3330   pSub = pSubitem->pSelect;
3331   assert( pSub!=0 );
3332   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3333   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3334   pSubSrc = pSub->pSrc;
3335   assert( pSubSrc );
3336   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3337   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3338   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3339   ** became arbitrary expressions, we were forced to add restrictions (13)
3340   ** and (14). */
3341   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3342   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3343   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3344     return 0;                                            /* Restriction (15) */
3345   }
3346   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3347   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3348   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3349      return 0;         /* Restrictions (8)(9) */
3350   }
3351   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3352      return 0;         /* Restriction (6)  */
3353   }
3354   if( p->pOrderBy && pSub->pOrderBy ){
3355      return 0;                                           /* Restriction (11) */
3356   }
3357   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3358   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3359   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3360      return 0;         /* Restriction (21) */
3361   }
3362   testcase( pSub->selFlags & SF_Recursive );
3363   testcase( pSub->selFlags & SF_MinMaxAgg );
3364   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3365     return 0; /* Restrictions (22) and (24) */
3366   }
3367   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3368     return 0; /* Restriction (23) */
3369   }
3370 
3371   /* OBSOLETE COMMENT 1:
3372   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3373   ** not used as the right operand of an outer join.  Examples of why this
3374   ** is not allowed:
3375   **
3376   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3377   **
3378   ** If we flatten the above, we would get
3379   **
3380   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3381   **
3382   ** which is not at all the same thing.
3383   **
3384   ** OBSOLETE COMMENT 2:
3385   ** Restriction 12:  If the subquery is the right operand of a left outer
3386   ** join, make sure the subquery has no WHERE clause.
3387   ** An examples of why this is not allowed:
3388   **
3389   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3390   **
3391   ** If we flatten the above, we would get
3392   **
3393   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3394   **
3395   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3396   ** effectively converts the OUTER JOIN into an INNER JOIN.
3397   **
3398   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3399   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3400   ** is fraught with danger.  Best to avoid the whole thing.  If the
3401   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3402   */
3403   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3404     return 0;
3405   }
3406 
3407   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3408   ** use only the UNION ALL operator. And none of the simple select queries
3409   ** that make up the compound SELECT are allowed to be aggregate or distinct
3410   ** queries.
3411   */
3412   if( pSub->pPrior ){
3413     if( pSub->pOrderBy ){
3414       return 0;  /* Restriction 20 */
3415     }
3416     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3417       return 0;
3418     }
3419     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3420       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3421       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3422       assert( pSub->pSrc!=0 );
3423       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3424        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3425        || pSub1->pSrc->nSrc<1
3426        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3427       ){
3428         return 0;
3429       }
3430       testcase( pSub1->pSrc->nSrc>1 );
3431     }
3432 
3433     /* Restriction 18. */
3434     if( p->pOrderBy ){
3435       int ii;
3436       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3437         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3438       }
3439     }
3440   }
3441 
3442   /***** If we reach this point, flattening is permitted. *****/
3443   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3444                    pSub->zSelName, pSub, iFrom));
3445 
3446   /* Authorize the subquery */
3447   pParse->zAuthContext = pSubitem->zName;
3448   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3449   testcase( i==SQLITE_DENY );
3450   pParse->zAuthContext = zSavedAuthContext;
3451 
3452   /* If the sub-query is a compound SELECT statement, then (by restrictions
3453   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3454   ** be of the form:
3455   **
3456   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3457   **
3458   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3459   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3460   ** OFFSET clauses and joins them to the left-hand-side of the original
3461   ** using UNION ALL operators. In this case N is the number of simple
3462   ** select statements in the compound sub-query.
3463   **
3464   ** Example:
3465   **
3466   **     SELECT a+1 FROM (
3467   **        SELECT x FROM tab
3468   **        UNION ALL
3469   **        SELECT y FROM tab
3470   **        UNION ALL
3471   **        SELECT abs(z*2) FROM tab2
3472   **     ) WHERE a!=5 ORDER BY 1
3473   **
3474   ** Transformed into:
3475   **
3476   **     SELECT x+1 FROM tab WHERE x+1!=5
3477   **     UNION ALL
3478   **     SELECT y+1 FROM tab WHERE y+1!=5
3479   **     UNION ALL
3480   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3481   **     ORDER BY 1
3482   **
3483   ** We call this the "compound-subquery flattening".
3484   */
3485   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3486     Select *pNew;
3487     ExprList *pOrderBy = p->pOrderBy;
3488     Expr *pLimit = p->pLimit;
3489     Expr *pOffset = p->pOffset;
3490     Select *pPrior = p->pPrior;
3491     p->pOrderBy = 0;
3492     p->pSrc = 0;
3493     p->pPrior = 0;
3494     p->pLimit = 0;
3495     p->pOffset = 0;
3496     pNew = sqlite3SelectDup(db, p, 0);
3497     sqlite3SelectSetName(pNew, pSub->zSelName);
3498     p->pOffset = pOffset;
3499     p->pLimit = pLimit;
3500     p->pOrderBy = pOrderBy;
3501     p->pSrc = pSrc;
3502     p->op = TK_ALL;
3503     if( pNew==0 ){
3504       p->pPrior = pPrior;
3505     }else{
3506       pNew->pPrior = pPrior;
3507       if( pPrior ) pPrior->pNext = pNew;
3508       pNew->pNext = p;
3509       p->pPrior = pNew;
3510       SELECTTRACE(2,pParse,p,
3511          ("compound-subquery flattener creates %s.%p as peer\n",
3512          pNew->zSelName, pNew));
3513     }
3514     if( db->mallocFailed ) return 1;
3515   }
3516 
3517   /* Begin flattening the iFrom-th entry of the FROM clause
3518   ** in the outer query.
3519   */
3520   pSub = pSub1 = pSubitem->pSelect;
3521 
3522   /* Delete the transient table structure associated with the
3523   ** subquery
3524   */
3525   sqlite3DbFree(db, pSubitem->zDatabase);
3526   sqlite3DbFree(db, pSubitem->zName);
3527   sqlite3DbFree(db, pSubitem->zAlias);
3528   pSubitem->zDatabase = 0;
3529   pSubitem->zName = 0;
3530   pSubitem->zAlias = 0;
3531   pSubitem->pSelect = 0;
3532 
3533   /* Defer deleting the Table object associated with the
3534   ** subquery until code generation is
3535   ** complete, since there may still exist Expr.pTab entries that
3536   ** refer to the subquery even after flattening.  Ticket #3346.
3537   **
3538   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3539   */
3540   if( ALWAYS(pSubitem->pTab!=0) ){
3541     Table *pTabToDel = pSubitem->pTab;
3542     if( pTabToDel->nRef==1 ){
3543       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3544       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3545       pToplevel->pZombieTab = pTabToDel;
3546     }else{
3547       pTabToDel->nRef--;
3548     }
3549     pSubitem->pTab = 0;
3550   }
3551 
3552   /* The following loop runs once for each term in a compound-subquery
3553   ** flattening (as described above).  If we are doing a different kind
3554   ** of flattening - a flattening other than a compound-subquery flattening -
3555   ** then this loop only runs once.
3556   **
3557   ** This loop moves all of the FROM elements of the subquery into the
3558   ** the FROM clause of the outer query.  Before doing this, remember
3559   ** the cursor number for the original outer query FROM element in
3560   ** iParent.  The iParent cursor will never be used.  Subsequent code
3561   ** will scan expressions looking for iParent references and replace
3562   ** those references with expressions that resolve to the subquery FROM
3563   ** elements we are now copying in.
3564   */
3565   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3566     int nSubSrc;
3567     u8 jointype = 0;
3568     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3569     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3570     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3571 
3572     if( pSrc ){
3573       assert( pParent==p );  /* First time through the loop */
3574       jointype = pSubitem->jointype;
3575     }else{
3576       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3577       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3578       if( pSrc==0 ){
3579         assert( db->mallocFailed );
3580         break;
3581       }
3582     }
3583 
3584     /* The subquery uses a single slot of the FROM clause of the outer
3585     ** query.  If the subquery has more than one element in its FROM clause,
3586     ** then expand the outer query to make space for it to hold all elements
3587     ** of the subquery.
3588     **
3589     ** Example:
3590     **
3591     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3592     **
3593     ** The outer query has 3 slots in its FROM clause.  One slot of the
3594     ** outer query (the middle slot) is used by the subquery.  The next
3595     ** block of code will expand the out query to 4 slots.  The middle
3596     ** slot is expanded to two slots in order to make space for the
3597     ** two elements in the FROM clause of the subquery.
3598     */
3599     if( nSubSrc>1 ){
3600       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3601       if( db->mallocFailed ){
3602         break;
3603       }
3604     }
3605 
3606     /* Transfer the FROM clause terms from the subquery into the
3607     ** outer query.
3608     */
3609     for(i=0; i<nSubSrc; i++){
3610       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3611       pSrc->a[i+iFrom] = pSubSrc->a[i];
3612       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3613     }
3614     pSrc->a[iFrom].jointype = jointype;
3615 
3616     /* Now begin substituting subquery result set expressions for
3617     ** references to the iParent in the outer query.
3618     **
3619     ** Example:
3620     **
3621     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3622     **   \                     \_____________ subquery __________/          /
3623     **    \_____________________ outer query ______________________________/
3624     **
3625     ** We look at every expression in the outer query and every place we see
3626     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3627     */
3628     pList = pParent->pEList;
3629     for(i=0; i<pList->nExpr; i++){
3630       if( pList->a[i].zName==0 ){
3631         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3632         sqlite3Dequote(zName);
3633         pList->a[i].zName = zName;
3634       }
3635     }
3636     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3637     if( isAgg ){
3638       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3639       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3640     }
3641     if( pSub->pOrderBy ){
3642       /* At this point, any non-zero iOrderByCol values indicate that the
3643       ** ORDER BY column expression is identical to the iOrderByCol'th
3644       ** expression returned by SELECT statement pSub. Since these values
3645       ** do not necessarily correspond to columns in SELECT statement pParent,
3646       ** zero them before transfering the ORDER BY clause.
3647       **
3648       ** Not doing this may cause an error if a subsequent call to this
3649       ** function attempts to flatten a compound sub-query into pParent
3650       ** (the only way this can happen is if the compound sub-query is
3651       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3652       ExprList *pOrderBy = pSub->pOrderBy;
3653       for(i=0; i<pOrderBy->nExpr; i++){
3654         pOrderBy->a[i].u.x.iOrderByCol = 0;
3655       }
3656       assert( pParent->pOrderBy==0 );
3657       assert( pSub->pPrior==0 );
3658       pParent->pOrderBy = pOrderBy;
3659       pSub->pOrderBy = 0;
3660     }else if( pParent->pOrderBy ){
3661       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3662     }
3663     if( pSub->pWhere ){
3664       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3665     }else{
3666       pWhere = 0;
3667     }
3668     if( subqueryIsAgg ){
3669       assert( pParent->pHaving==0 );
3670       pParent->pHaving = pParent->pWhere;
3671       pParent->pWhere = pWhere;
3672       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3673       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3674                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3675       assert( pParent->pGroupBy==0 );
3676       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3677     }else{
3678       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3679       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3680     }
3681 
3682     /* The flattened query is distinct if either the inner or the
3683     ** outer query is distinct.
3684     */
3685     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3686 
3687     /*
3688     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3689     **
3690     ** One is tempted to try to add a and b to combine the limits.  But this
3691     ** does not work if either limit is negative.
3692     */
3693     if( pSub->pLimit ){
3694       pParent->pLimit = pSub->pLimit;
3695       pSub->pLimit = 0;
3696     }
3697   }
3698 
3699   /* Finially, delete what is left of the subquery and return
3700   ** success.
3701   */
3702   sqlite3SelectDelete(db, pSub1);
3703 
3704 #if SELECTTRACE_ENABLED
3705   if( sqlite3SelectTrace & 0x100 ){
3706     sqlite3DebugPrintf("After flattening:\n");
3707     sqlite3TreeViewSelect(0, p, 0);
3708   }
3709 #endif
3710 
3711   return 1;
3712 }
3713 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3714 
3715 /*
3716 ** Based on the contents of the AggInfo structure indicated by the first
3717 ** argument, this function checks if the following are true:
3718 **
3719 **    * the query contains just a single aggregate function,
3720 **    * the aggregate function is either min() or max(), and
3721 **    * the argument to the aggregate function is a column value.
3722 **
3723 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3724 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3725 ** list of arguments passed to the aggregate before returning.
3726 **
3727 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3728 ** WHERE_ORDERBY_NORMAL is returned.
3729 */
3730 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3731   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3732 
3733   *ppMinMax = 0;
3734   if( pAggInfo->nFunc==1 ){
3735     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3736     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3737 
3738     assert( pExpr->op==TK_AGG_FUNCTION );
3739     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3740       const char *zFunc = pExpr->u.zToken;
3741       if( sqlite3StrICmp(zFunc, "min")==0 ){
3742         eRet = WHERE_ORDERBY_MIN;
3743         *ppMinMax = pEList;
3744       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3745         eRet = WHERE_ORDERBY_MAX;
3746         *ppMinMax = pEList;
3747       }
3748     }
3749   }
3750 
3751   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3752   return eRet;
3753 }
3754 
3755 /*
3756 ** The select statement passed as the first argument is an aggregate query.
3757 ** The second argument is the associated aggregate-info object. This
3758 ** function tests if the SELECT is of the form:
3759 **
3760 **   SELECT count(*) FROM <tbl>
3761 **
3762 ** where table is a database table, not a sub-select or view. If the query
3763 ** does match this pattern, then a pointer to the Table object representing
3764 ** <tbl> is returned. Otherwise, 0 is returned.
3765 */
3766 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3767   Table *pTab;
3768   Expr *pExpr;
3769 
3770   assert( !p->pGroupBy );
3771 
3772   if( p->pWhere || p->pEList->nExpr!=1
3773    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3774   ){
3775     return 0;
3776   }
3777   pTab = p->pSrc->a[0].pTab;
3778   pExpr = p->pEList->a[0].pExpr;
3779   assert( pTab && !pTab->pSelect && pExpr );
3780 
3781   if( IsVirtual(pTab) ) return 0;
3782   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3783   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3784   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3785   if( pExpr->flags&EP_Distinct ) return 0;
3786 
3787   return pTab;
3788 }
3789 
3790 /*
3791 ** If the source-list item passed as an argument was augmented with an
3792 ** INDEXED BY clause, then try to locate the specified index. If there
3793 ** was such a clause and the named index cannot be found, return
3794 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3795 ** pFrom->pIndex and return SQLITE_OK.
3796 */
3797 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3798   if( pFrom->pTab && pFrom->zIndex ){
3799     Table *pTab = pFrom->pTab;
3800     char *zIndex = pFrom->zIndex;
3801     Index *pIdx;
3802     for(pIdx=pTab->pIndex;
3803         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3804         pIdx=pIdx->pNext
3805     );
3806     if( !pIdx ){
3807       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3808       pParse->checkSchema = 1;
3809       return SQLITE_ERROR;
3810     }
3811     pFrom->pIndex = pIdx;
3812   }
3813   return SQLITE_OK;
3814 }
3815 /*
3816 ** Detect compound SELECT statements that use an ORDER BY clause with
3817 ** an alternative collating sequence.
3818 **
3819 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3820 **
3821 ** These are rewritten as a subquery:
3822 **
3823 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3824 **     ORDER BY ... COLLATE ...
3825 **
3826 ** This transformation is necessary because the multiSelectOrderBy() routine
3827 ** above that generates the code for a compound SELECT with an ORDER BY clause
3828 ** uses a merge algorithm that requires the same collating sequence on the
3829 ** result columns as on the ORDER BY clause.  See ticket
3830 ** http://www.sqlite.org/src/info/6709574d2a
3831 **
3832 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3833 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3834 ** there are COLLATE terms in the ORDER BY.
3835 */
3836 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3837   int i;
3838   Select *pNew;
3839   Select *pX;
3840   sqlite3 *db;
3841   struct ExprList_item *a;
3842   SrcList *pNewSrc;
3843   Parse *pParse;
3844   Token dummy;
3845 
3846   if( p->pPrior==0 ) return WRC_Continue;
3847   if( p->pOrderBy==0 ) return WRC_Continue;
3848   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3849   if( pX==0 ) return WRC_Continue;
3850   a = p->pOrderBy->a;
3851   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3852     if( a[i].pExpr->flags & EP_Collate ) break;
3853   }
3854   if( i<0 ) return WRC_Continue;
3855 
3856   /* If we reach this point, that means the transformation is required. */
3857 
3858   pParse = pWalker->pParse;
3859   db = pParse->db;
3860   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3861   if( pNew==0 ) return WRC_Abort;
3862   memset(&dummy, 0, sizeof(dummy));
3863   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3864   if( pNewSrc==0 ) return WRC_Abort;
3865   *pNew = *p;
3866   p->pSrc = pNewSrc;
3867   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3868   p->op = TK_SELECT;
3869   p->pWhere = 0;
3870   pNew->pGroupBy = 0;
3871   pNew->pHaving = 0;
3872   pNew->pOrderBy = 0;
3873   p->pPrior = 0;
3874   p->pNext = 0;
3875   p->selFlags &= ~SF_Compound;
3876   assert( pNew->pPrior!=0 );
3877   pNew->pPrior->pNext = pNew;
3878   pNew->pLimit = 0;
3879   pNew->pOffset = 0;
3880   return WRC_Continue;
3881 }
3882 
3883 #ifndef SQLITE_OMIT_CTE
3884 /*
3885 ** Argument pWith (which may be NULL) points to a linked list of nested
3886 ** WITH contexts, from inner to outermost. If the table identified by
3887 ** FROM clause element pItem is really a common-table-expression (CTE)
3888 ** then return a pointer to the CTE definition for that table. Otherwise
3889 ** return NULL.
3890 **
3891 ** If a non-NULL value is returned, set *ppContext to point to the With
3892 ** object that the returned CTE belongs to.
3893 */
3894 static struct Cte *searchWith(
3895   With *pWith,                    /* Current outermost WITH clause */
3896   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3897   With **ppContext                /* OUT: WITH clause return value belongs to */
3898 ){
3899   const char *zName;
3900   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3901     With *p;
3902     for(p=pWith; p; p=p->pOuter){
3903       int i;
3904       for(i=0; i<p->nCte; i++){
3905         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3906           *ppContext = p;
3907           return &p->a[i];
3908         }
3909       }
3910     }
3911   }
3912   return 0;
3913 }
3914 
3915 /* The code generator maintains a stack of active WITH clauses
3916 ** with the inner-most WITH clause being at the top of the stack.
3917 **
3918 ** This routine pushes the WITH clause passed as the second argument
3919 ** onto the top of the stack. If argument bFree is true, then this
3920 ** WITH clause will never be popped from the stack. In this case it
3921 ** should be freed along with the Parse object. In other cases, when
3922 ** bFree==0, the With object will be freed along with the SELECT
3923 ** statement with which it is associated.
3924 */
3925 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3926   assert( bFree==0 || pParse->pWith==0 );
3927   if( pWith ){
3928     pWith->pOuter = pParse->pWith;
3929     pParse->pWith = pWith;
3930     pParse->bFreeWith = bFree;
3931   }
3932 }
3933 
3934 /*
3935 ** This function checks if argument pFrom refers to a CTE declared by
3936 ** a WITH clause on the stack currently maintained by the parser. And,
3937 ** if currently processing a CTE expression, if it is a recursive
3938 ** reference to the current CTE.
3939 **
3940 ** If pFrom falls into either of the two categories above, pFrom->pTab
3941 ** and other fields are populated accordingly. The caller should check
3942 ** (pFrom->pTab!=0) to determine whether or not a successful match
3943 ** was found.
3944 **
3945 ** Whether or not a match is found, SQLITE_OK is returned if no error
3946 ** occurs. If an error does occur, an error message is stored in the
3947 ** parser and some error code other than SQLITE_OK returned.
3948 */
3949 static int withExpand(
3950   Walker *pWalker,
3951   struct SrcList_item *pFrom
3952 ){
3953   Parse *pParse = pWalker->pParse;
3954   sqlite3 *db = pParse->db;
3955   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3956   With *pWith;                    /* WITH clause that pCte belongs to */
3957 
3958   assert( pFrom->pTab==0 );
3959 
3960   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3961   if( pCte ){
3962     Table *pTab;
3963     ExprList *pEList;
3964     Select *pSel;
3965     Select *pLeft;                /* Left-most SELECT statement */
3966     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3967     With *pSavedWith;             /* Initial value of pParse->pWith */
3968 
3969     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3970     ** recursive reference to CTE pCte. Leave an error in pParse and return
3971     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3972     ** In this case, proceed.  */
3973     if( pCte->zErr ){
3974       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3975       return SQLITE_ERROR;
3976     }
3977 
3978     assert( pFrom->pTab==0 );
3979     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3980     if( pTab==0 ) return WRC_Abort;
3981     pTab->nRef = 1;
3982     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3983     pTab->iPKey = -1;
3984     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3985     pTab->tabFlags |= TF_Ephemeral;
3986     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3987     if( db->mallocFailed ) return SQLITE_NOMEM;
3988     assert( pFrom->pSelect );
3989 
3990     /* Check if this is a recursive CTE. */
3991     pSel = pFrom->pSelect;
3992     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3993     if( bMayRecursive ){
3994       int i;
3995       SrcList *pSrc = pFrom->pSelect->pSrc;
3996       for(i=0; i<pSrc->nSrc; i++){
3997         struct SrcList_item *pItem = &pSrc->a[i];
3998         if( pItem->zDatabase==0
3999          && pItem->zName!=0
4000          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4001           ){
4002           pItem->pTab = pTab;
4003           pItem->isRecursive = 1;
4004           pTab->nRef++;
4005           pSel->selFlags |= SF_Recursive;
4006         }
4007       }
4008     }
4009 
4010     /* Only one recursive reference is permitted. */
4011     if( pTab->nRef>2 ){
4012       sqlite3ErrorMsg(
4013           pParse, "multiple references to recursive table: %s", pCte->zName
4014       );
4015       return SQLITE_ERROR;
4016     }
4017     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4018 
4019     pCte->zErr = "circular reference: %s";
4020     pSavedWith = pParse->pWith;
4021     pParse->pWith = pWith;
4022     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4023 
4024     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4025     pEList = pLeft->pEList;
4026     if( pCte->pCols ){
4027       if( pEList->nExpr!=pCte->pCols->nExpr ){
4028         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4029             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4030         );
4031         pParse->pWith = pSavedWith;
4032         return SQLITE_ERROR;
4033       }
4034       pEList = pCte->pCols;
4035     }
4036 
4037     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4038     if( bMayRecursive ){
4039       if( pSel->selFlags & SF_Recursive ){
4040         pCte->zErr = "multiple recursive references: %s";
4041       }else{
4042         pCte->zErr = "recursive reference in a subquery: %s";
4043       }
4044       sqlite3WalkSelect(pWalker, pSel);
4045     }
4046     pCte->zErr = 0;
4047     pParse->pWith = pSavedWith;
4048   }
4049 
4050   return SQLITE_OK;
4051 }
4052 #endif
4053 
4054 #ifndef SQLITE_OMIT_CTE
4055 /*
4056 ** If the SELECT passed as the second argument has an associated WITH
4057 ** clause, pop it from the stack stored as part of the Parse object.
4058 **
4059 ** This function is used as the xSelectCallback2() callback by
4060 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4061 ** names and other FROM clause elements.
4062 */
4063 static void selectPopWith(Walker *pWalker, Select *p){
4064   Parse *pParse = pWalker->pParse;
4065   With *pWith = findRightmost(p)->pWith;
4066   if( pWith!=0 ){
4067     assert( pParse->pWith==pWith );
4068     pParse->pWith = pWith->pOuter;
4069   }
4070 }
4071 #else
4072 #define selectPopWith 0
4073 #endif
4074 
4075 /*
4076 ** This routine is a Walker callback for "expanding" a SELECT statement.
4077 ** "Expanding" means to do the following:
4078 **
4079 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4080 **         element of the FROM clause.
4081 **
4082 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4083 **         defines FROM clause.  When views appear in the FROM clause,
4084 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4085 **         that implements the view.  A copy is made of the view's SELECT
4086 **         statement so that we can freely modify or delete that statement
4087 **         without worrying about messing up the persistent representation
4088 **         of the view.
4089 **
4090 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4091 **         on joins and the ON and USING clause of joins.
4092 **
4093 **    (4)  Scan the list of columns in the result set (pEList) looking
4094 **         for instances of the "*" operator or the TABLE.* operator.
4095 **         If found, expand each "*" to be every column in every table
4096 **         and TABLE.* to be every column in TABLE.
4097 **
4098 */
4099 static int selectExpander(Walker *pWalker, Select *p){
4100   Parse *pParse = pWalker->pParse;
4101   int i, j, k;
4102   SrcList *pTabList;
4103   ExprList *pEList;
4104   struct SrcList_item *pFrom;
4105   sqlite3 *db = pParse->db;
4106   Expr *pE, *pRight, *pExpr;
4107   u16 selFlags = p->selFlags;
4108 
4109   p->selFlags |= SF_Expanded;
4110   if( db->mallocFailed  ){
4111     return WRC_Abort;
4112   }
4113   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4114     return WRC_Prune;
4115   }
4116   pTabList = p->pSrc;
4117   pEList = p->pEList;
4118   if( pWalker->xSelectCallback2==selectPopWith ){
4119     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4120   }
4121 
4122   /* Make sure cursor numbers have been assigned to all entries in
4123   ** the FROM clause of the SELECT statement.
4124   */
4125   sqlite3SrcListAssignCursors(pParse, pTabList);
4126 
4127   /* Look up every table named in the FROM clause of the select.  If
4128   ** an entry of the FROM clause is a subquery instead of a table or view,
4129   ** then create a transient table structure to describe the subquery.
4130   */
4131   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4132     Table *pTab;
4133     assert( pFrom->isRecursive==0 || pFrom->pTab );
4134     if( pFrom->isRecursive ) continue;
4135     if( pFrom->pTab!=0 ){
4136       /* This statement has already been prepared.  There is no need
4137       ** to go further. */
4138       assert( i==0 );
4139 #ifndef SQLITE_OMIT_CTE
4140       selectPopWith(pWalker, p);
4141 #endif
4142       return WRC_Prune;
4143     }
4144 #ifndef SQLITE_OMIT_CTE
4145     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4146     if( pFrom->pTab ) {} else
4147 #endif
4148     if( pFrom->zName==0 ){
4149 #ifndef SQLITE_OMIT_SUBQUERY
4150       Select *pSel = pFrom->pSelect;
4151       /* A sub-query in the FROM clause of a SELECT */
4152       assert( pSel!=0 );
4153       assert( pFrom->pTab==0 );
4154       sqlite3WalkSelect(pWalker, pSel);
4155       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4156       if( pTab==0 ) return WRC_Abort;
4157       pTab->nRef = 1;
4158       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4159       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4160       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4161       pTab->iPKey = -1;
4162       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4163       pTab->tabFlags |= TF_Ephemeral;
4164 #endif
4165     }else{
4166       /* An ordinary table or view name in the FROM clause */
4167       assert( pFrom->pTab==0 );
4168       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4169       if( pTab==0 ) return WRC_Abort;
4170       if( pTab->nRef==0xffff ){
4171         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4172            pTab->zName);
4173         pFrom->pTab = 0;
4174         return WRC_Abort;
4175       }
4176       pTab->nRef++;
4177 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4178       if( pTab->pSelect || IsVirtual(pTab) ){
4179         /* We reach here if the named table is a really a view */
4180         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4181         assert( pFrom->pSelect==0 );
4182         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4183         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4184         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4185       }
4186 #endif
4187     }
4188 
4189     /* Locate the index named by the INDEXED BY clause, if any. */
4190     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4191       return WRC_Abort;
4192     }
4193   }
4194 
4195   /* Process NATURAL keywords, and ON and USING clauses of joins.
4196   */
4197   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4198     return WRC_Abort;
4199   }
4200 
4201   /* For every "*" that occurs in the column list, insert the names of
4202   ** all columns in all tables.  And for every TABLE.* insert the names
4203   ** of all columns in TABLE.  The parser inserted a special expression
4204   ** with the TK_ALL operator for each "*" that it found in the column list.
4205   ** The following code just has to locate the TK_ALL expressions and expand
4206   ** each one to the list of all columns in all tables.
4207   **
4208   ** The first loop just checks to see if there are any "*" operators
4209   ** that need expanding.
4210   */
4211   for(k=0; k<pEList->nExpr; k++){
4212     pE = pEList->a[k].pExpr;
4213     if( pE->op==TK_ALL ) break;
4214     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4215     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4216     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4217   }
4218   if( k<pEList->nExpr ){
4219     /*
4220     ** If we get here it means the result set contains one or more "*"
4221     ** operators that need to be expanded.  Loop through each expression
4222     ** in the result set and expand them one by one.
4223     */
4224     struct ExprList_item *a = pEList->a;
4225     ExprList *pNew = 0;
4226     int flags = pParse->db->flags;
4227     int longNames = (flags & SQLITE_FullColNames)!=0
4228                       && (flags & SQLITE_ShortColNames)==0;
4229 
4230     /* When processing FROM-clause subqueries, it is always the case
4231     ** that full_column_names=OFF and short_column_names=ON.  The
4232     ** sqlite3ResultSetOfSelect() routine makes it so. */
4233     assert( (p->selFlags & SF_NestedFrom)==0
4234           || ((flags & SQLITE_FullColNames)==0 &&
4235               (flags & SQLITE_ShortColNames)!=0) );
4236 
4237     for(k=0; k<pEList->nExpr; k++){
4238       pE = a[k].pExpr;
4239       pRight = pE->pRight;
4240       assert( pE->op!=TK_DOT || pRight!=0 );
4241       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4242         /* This particular expression does not need to be expanded.
4243         */
4244         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4245         if( pNew ){
4246           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4247           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4248           a[k].zName = 0;
4249           a[k].zSpan = 0;
4250         }
4251         a[k].pExpr = 0;
4252       }else{
4253         /* This expression is a "*" or a "TABLE.*" and needs to be
4254         ** expanded. */
4255         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4256         char *zTName = 0;       /* text of name of TABLE */
4257         if( pE->op==TK_DOT ){
4258           assert( pE->pLeft!=0 );
4259           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4260           zTName = pE->pLeft->u.zToken;
4261         }
4262         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4263           Table *pTab = pFrom->pTab;
4264           Select *pSub = pFrom->pSelect;
4265           char *zTabName = pFrom->zAlias;
4266           const char *zSchemaName = 0;
4267           int iDb;
4268           if( zTabName==0 ){
4269             zTabName = pTab->zName;
4270           }
4271           if( db->mallocFailed ) break;
4272           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4273             pSub = 0;
4274             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4275               continue;
4276             }
4277             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4278             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4279           }
4280           for(j=0; j<pTab->nCol; j++){
4281             char *zName = pTab->aCol[j].zName;
4282             char *zColname;  /* The computed column name */
4283             char *zToFree;   /* Malloced string that needs to be freed */
4284             Token sColname;  /* Computed column name as a token */
4285 
4286             assert( zName );
4287             if( zTName && pSub
4288              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4289             ){
4290               continue;
4291             }
4292 
4293             /* If a column is marked as 'hidden' (currently only possible
4294             ** for virtual tables), do not include it in the expanded
4295             ** result-set list.
4296             */
4297             if( IsHiddenColumn(&pTab->aCol[j]) ){
4298               assert(IsVirtual(pTab));
4299               continue;
4300             }
4301             tableSeen = 1;
4302 
4303             if( i>0 && zTName==0 ){
4304               if( (pFrom->jointype & JT_NATURAL)!=0
4305                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4306               ){
4307                 /* In a NATURAL join, omit the join columns from the
4308                 ** table to the right of the join */
4309                 continue;
4310               }
4311               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4312                 /* In a join with a USING clause, omit columns in the
4313                 ** using clause from the table on the right. */
4314                 continue;
4315               }
4316             }
4317             pRight = sqlite3Expr(db, TK_ID, zName);
4318             zColname = zName;
4319             zToFree = 0;
4320             if( longNames || pTabList->nSrc>1 ){
4321               Expr *pLeft;
4322               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4323               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4324               if( zSchemaName ){
4325                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4326                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4327               }
4328               if( longNames ){
4329                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4330                 zToFree = zColname;
4331               }
4332             }else{
4333               pExpr = pRight;
4334             }
4335             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4336             sColname.z = zColname;
4337             sColname.n = sqlite3Strlen30(zColname);
4338             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4339             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4340               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4341               if( pSub ){
4342                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4343                 testcase( pX->zSpan==0 );
4344               }else{
4345                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4346                                            zSchemaName, zTabName, zColname);
4347                 testcase( pX->zSpan==0 );
4348               }
4349               pX->bSpanIsTab = 1;
4350             }
4351             sqlite3DbFree(db, zToFree);
4352           }
4353         }
4354         if( !tableSeen ){
4355           if( zTName ){
4356             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4357           }else{
4358             sqlite3ErrorMsg(pParse, "no tables specified");
4359           }
4360         }
4361       }
4362     }
4363     sqlite3ExprListDelete(db, pEList);
4364     p->pEList = pNew;
4365   }
4366 #if SQLITE_MAX_COLUMN
4367   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4368     sqlite3ErrorMsg(pParse, "too many columns in result set");
4369   }
4370 #endif
4371   return WRC_Continue;
4372 }
4373 
4374 /*
4375 ** No-op routine for the parse-tree walker.
4376 **
4377 ** When this routine is the Walker.xExprCallback then expression trees
4378 ** are walked without any actions being taken at each node.  Presumably,
4379 ** when this routine is used for Walker.xExprCallback then
4380 ** Walker.xSelectCallback is set to do something useful for every
4381 ** subquery in the parser tree.
4382 */
4383 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4384   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4385   return WRC_Continue;
4386 }
4387 
4388 /*
4389 ** This routine "expands" a SELECT statement and all of its subqueries.
4390 ** For additional information on what it means to "expand" a SELECT
4391 ** statement, see the comment on the selectExpand worker callback above.
4392 **
4393 ** Expanding a SELECT statement is the first step in processing a
4394 ** SELECT statement.  The SELECT statement must be expanded before
4395 ** name resolution is performed.
4396 **
4397 ** If anything goes wrong, an error message is written into pParse.
4398 ** The calling function can detect the problem by looking at pParse->nErr
4399 ** and/or pParse->db->mallocFailed.
4400 */
4401 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4402   Walker w;
4403   memset(&w, 0, sizeof(w));
4404   w.xExprCallback = exprWalkNoop;
4405   w.pParse = pParse;
4406   if( pParse->hasCompound ){
4407     w.xSelectCallback = convertCompoundSelectToSubquery;
4408     sqlite3WalkSelect(&w, pSelect);
4409   }
4410   w.xSelectCallback = selectExpander;
4411   if( (pSelect->selFlags & SF_AllValues)==0 ){
4412     w.xSelectCallback2 = selectPopWith;
4413   }
4414   sqlite3WalkSelect(&w, pSelect);
4415 }
4416 
4417 
4418 #ifndef SQLITE_OMIT_SUBQUERY
4419 /*
4420 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4421 ** interface.
4422 **
4423 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4424 ** information to the Table structure that represents the result set
4425 ** of that subquery.
4426 **
4427 ** The Table structure that represents the result set was constructed
4428 ** by selectExpander() but the type and collation information was omitted
4429 ** at that point because identifiers had not yet been resolved.  This
4430 ** routine is called after identifier resolution.
4431 */
4432 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4433   Parse *pParse;
4434   int i;
4435   SrcList *pTabList;
4436   struct SrcList_item *pFrom;
4437 
4438   assert( p->selFlags & SF_Resolved );
4439   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4440     p->selFlags |= SF_HasTypeInfo;
4441     pParse = pWalker->pParse;
4442     pTabList = p->pSrc;
4443     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4444       Table *pTab = pFrom->pTab;
4445       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4446         /* A sub-query in the FROM clause of a SELECT */
4447         Select *pSel = pFrom->pSelect;
4448         if( pSel ){
4449           while( pSel->pPrior ) pSel = pSel->pPrior;
4450           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4451         }
4452       }
4453     }
4454   }
4455 }
4456 #endif
4457 
4458 
4459 /*
4460 ** This routine adds datatype and collating sequence information to
4461 ** the Table structures of all FROM-clause subqueries in a
4462 ** SELECT statement.
4463 **
4464 ** Use this routine after name resolution.
4465 */
4466 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4467 #ifndef SQLITE_OMIT_SUBQUERY
4468   Walker w;
4469   memset(&w, 0, sizeof(w));
4470   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4471   w.xExprCallback = exprWalkNoop;
4472   w.pParse = pParse;
4473   sqlite3WalkSelect(&w, pSelect);
4474 #endif
4475 }
4476 
4477 
4478 /*
4479 ** This routine sets up a SELECT statement for processing.  The
4480 ** following is accomplished:
4481 **
4482 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4483 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4484 **     *  ON and USING clauses are shifted into WHERE statements
4485 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4486 **     *  Identifiers in expression are matched to tables.
4487 **
4488 ** This routine acts recursively on all subqueries within the SELECT.
4489 */
4490 void sqlite3SelectPrep(
4491   Parse *pParse,         /* The parser context */
4492   Select *p,             /* The SELECT statement being coded. */
4493   NameContext *pOuterNC  /* Name context for container */
4494 ){
4495   sqlite3 *db;
4496   if( NEVER(p==0) ) return;
4497   db = pParse->db;
4498   if( db->mallocFailed ) return;
4499   if( p->selFlags & SF_HasTypeInfo ) return;
4500   sqlite3SelectExpand(pParse, p);
4501   if( pParse->nErr || db->mallocFailed ) return;
4502   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4503   if( pParse->nErr || db->mallocFailed ) return;
4504   sqlite3SelectAddTypeInfo(pParse, p);
4505 }
4506 
4507 /*
4508 ** Reset the aggregate accumulator.
4509 **
4510 ** The aggregate accumulator is a set of memory cells that hold
4511 ** intermediate results while calculating an aggregate.  This
4512 ** routine generates code that stores NULLs in all of those memory
4513 ** cells.
4514 */
4515 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4516   Vdbe *v = pParse->pVdbe;
4517   int i;
4518   struct AggInfo_func *pFunc;
4519   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4520   if( nReg==0 ) return;
4521 #ifdef SQLITE_DEBUG
4522   /* Verify that all AggInfo registers are within the range specified by
4523   ** AggInfo.mnReg..AggInfo.mxReg */
4524   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4525   for(i=0; i<pAggInfo->nColumn; i++){
4526     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4527          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4528   }
4529   for(i=0; i<pAggInfo->nFunc; i++){
4530     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4531          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4532   }
4533 #endif
4534   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4535   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4536     if( pFunc->iDistinct>=0 ){
4537       Expr *pE = pFunc->pExpr;
4538       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4539       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4540         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4541            "argument");
4542         pFunc->iDistinct = -1;
4543       }else{
4544         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4545         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4546                           (char*)pKeyInfo, P4_KEYINFO);
4547       }
4548     }
4549   }
4550 }
4551 
4552 /*
4553 ** Invoke the OP_AggFinalize opcode for every aggregate function
4554 ** in the AggInfo structure.
4555 */
4556 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4557   Vdbe *v = pParse->pVdbe;
4558   int i;
4559   struct AggInfo_func *pF;
4560   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4561     ExprList *pList = pF->pExpr->x.pList;
4562     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4563     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4564                       (void*)pF->pFunc, P4_FUNCDEF);
4565   }
4566 }
4567 
4568 /*
4569 ** Update the accumulator memory cells for an aggregate based on
4570 ** the current cursor position.
4571 */
4572 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4573   Vdbe *v = pParse->pVdbe;
4574   int i;
4575   int regHit = 0;
4576   int addrHitTest = 0;
4577   struct AggInfo_func *pF;
4578   struct AggInfo_col *pC;
4579 
4580   pAggInfo->directMode = 1;
4581   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4582     int nArg;
4583     int addrNext = 0;
4584     int regAgg;
4585     ExprList *pList = pF->pExpr->x.pList;
4586     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4587     if( pList ){
4588       nArg = pList->nExpr;
4589       regAgg = sqlite3GetTempRange(pParse, nArg);
4590       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4591     }else{
4592       nArg = 0;
4593       regAgg = 0;
4594     }
4595     if( pF->iDistinct>=0 ){
4596       addrNext = sqlite3VdbeMakeLabel(v);
4597       assert( nArg==1 );
4598       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4599     }
4600     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4601       CollSeq *pColl = 0;
4602       struct ExprList_item *pItem;
4603       int j;
4604       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4605       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4606         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4607       }
4608       if( !pColl ){
4609         pColl = pParse->db->pDfltColl;
4610       }
4611       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4612       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4613     }
4614     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4615                       (void*)pF->pFunc, P4_FUNCDEF);
4616     sqlite3VdbeChangeP5(v, (u8)nArg);
4617     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4618     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4619     if( addrNext ){
4620       sqlite3VdbeResolveLabel(v, addrNext);
4621       sqlite3ExprCacheClear(pParse);
4622     }
4623   }
4624 
4625   /* Before populating the accumulator registers, clear the column cache.
4626   ** Otherwise, if any of the required column values are already present
4627   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4628   ** to pC->iMem. But by the time the value is used, the original register
4629   ** may have been used, invalidating the underlying buffer holding the
4630   ** text or blob value. See ticket [883034dcb5].
4631   **
4632   ** Another solution would be to change the OP_SCopy used to copy cached
4633   ** values to an OP_Copy.
4634   */
4635   if( regHit ){
4636     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4637   }
4638   sqlite3ExprCacheClear(pParse);
4639   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4640     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4641   }
4642   pAggInfo->directMode = 0;
4643   sqlite3ExprCacheClear(pParse);
4644   if( addrHitTest ){
4645     sqlite3VdbeJumpHere(v, addrHitTest);
4646   }
4647 }
4648 
4649 /*
4650 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4651 ** count(*) query ("SELECT count(*) FROM pTab").
4652 */
4653 #ifndef SQLITE_OMIT_EXPLAIN
4654 static void explainSimpleCount(
4655   Parse *pParse,                  /* Parse context */
4656   Table *pTab,                    /* Table being queried */
4657   Index *pIdx                     /* Index used to optimize scan, or NULL */
4658 ){
4659   if( pParse->explain==2 ){
4660     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4661     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4662         pTab->zName,
4663         bCover ? " USING COVERING INDEX " : "",
4664         bCover ? pIdx->zName : ""
4665     );
4666     sqlite3VdbeAddOp4(
4667         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4668     );
4669   }
4670 }
4671 #else
4672 # define explainSimpleCount(a,b,c)
4673 #endif
4674 
4675 /*
4676 ** Generate code for the SELECT statement given in the p argument.
4677 **
4678 ** The results are returned according to the SelectDest structure.
4679 ** See comments in sqliteInt.h for further information.
4680 **
4681 ** This routine returns the number of errors.  If any errors are
4682 ** encountered, then an appropriate error message is left in
4683 ** pParse->zErrMsg.
4684 **
4685 ** This routine does NOT free the Select structure passed in.  The
4686 ** calling function needs to do that.
4687 */
4688 int sqlite3Select(
4689   Parse *pParse,         /* The parser context */
4690   Select *p,             /* The SELECT statement being coded. */
4691   SelectDest *pDest      /* What to do with the query results */
4692 ){
4693   int i, j;              /* Loop counters */
4694   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4695   Vdbe *v;               /* The virtual machine under construction */
4696   int isAgg;             /* True for select lists like "count(*)" */
4697   ExprList *pEList;      /* List of columns to extract. */
4698   SrcList *pTabList;     /* List of tables to select from */
4699   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4700   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4701   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4702   int rc = 1;            /* Value to return from this function */
4703   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4704   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4705   AggInfo sAggInfo;      /* Information used by aggregate queries */
4706   int iEnd;              /* Address of the end of the query */
4707   sqlite3 *db;           /* The database connection */
4708 
4709 #ifndef SQLITE_OMIT_EXPLAIN
4710   int iRestoreSelectId = pParse->iSelectId;
4711   pParse->iSelectId = pParse->iNextSelectId++;
4712 #endif
4713 
4714   db = pParse->db;
4715   if( p==0 || db->mallocFailed || pParse->nErr ){
4716     return 1;
4717   }
4718   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4719   memset(&sAggInfo, 0, sizeof(sAggInfo));
4720 #if SELECTTRACE_ENABLED
4721   pParse->nSelectIndent++;
4722   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4723   if( sqlite3SelectTrace & 0x100 ){
4724     sqlite3TreeViewSelect(0, p, 0);
4725   }
4726 #endif
4727 
4728   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4729   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4730   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4731   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4732   if( IgnorableOrderby(pDest) ){
4733     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4734            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4735            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4736            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4737     /* If ORDER BY makes no difference in the output then neither does
4738     ** DISTINCT so it can be removed too. */
4739     sqlite3ExprListDelete(db, p->pOrderBy);
4740     p->pOrderBy = 0;
4741     p->selFlags &= ~SF_Distinct;
4742   }
4743   sqlite3SelectPrep(pParse, p, 0);
4744   memset(&sSort, 0, sizeof(sSort));
4745   sSort.pOrderBy = p->pOrderBy;
4746   pTabList = p->pSrc;
4747   pEList = p->pEList;
4748   if( pParse->nErr || db->mallocFailed ){
4749     goto select_end;
4750   }
4751   isAgg = (p->selFlags & SF_Aggregate)!=0;
4752   assert( pEList!=0 );
4753 
4754   /* Begin generating code.
4755   */
4756   v = sqlite3GetVdbe(pParse);
4757   if( v==0 ) goto select_end;
4758 
4759   /* If writing to memory or generating a set
4760   ** only a single column may be output.
4761   */
4762 #ifndef SQLITE_OMIT_SUBQUERY
4763   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4764     goto select_end;
4765   }
4766 #endif
4767 
4768   /* Generate code for all sub-queries in the FROM clause
4769   */
4770 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4771   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4772     struct SrcList_item *pItem = &pTabList->a[i];
4773     SelectDest dest;
4774     Select *pSub = pItem->pSelect;
4775     int isAggSub;
4776 
4777     if( pSub==0 ) continue;
4778 
4779     /* Sometimes the code for a subquery will be generated more than
4780     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4781     ** for example.  In that case, do not regenerate the code to manifest
4782     ** a view or the co-routine to implement a view.  The first instance
4783     ** is sufficient, though the subroutine to manifest the view does need
4784     ** to be invoked again. */
4785     if( pItem->addrFillSub ){
4786       if( pItem->viaCoroutine==0 ){
4787         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4788       }
4789       continue;
4790     }
4791 
4792     /* Increment Parse.nHeight by the height of the largest expression
4793     ** tree referred to by this, the parent select. The child select
4794     ** may contain expression trees of at most
4795     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4796     ** more conservative than necessary, but much easier than enforcing
4797     ** an exact limit.
4798     */
4799     pParse->nHeight += sqlite3SelectExprHeight(p);
4800 
4801     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4802     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4803       /* This subquery can be absorbed into its parent. */
4804       if( isAggSub ){
4805         isAgg = 1;
4806         p->selFlags |= SF_Aggregate;
4807       }
4808       i = -1;
4809     }else if( pTabList->nSrc==1
4810            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4811     ){
4812       /* Implement a co-routine that will return a single row of the result
4813       ** set on each invocation.
4814       */
4815       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4816       pItem->regReturn = ++pParse->nMem;
4817       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4818       VdbeComment((v, "%s", pItem->pTab->zName));
4819       pItem->addrFillSub = addrTop;
4820       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4821       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4822       sqlite3Select(pParse, pSub, &dest);
4823       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4824       pItem->viaCoroutine = 1;
4825       pItem->regResult = dest.iSdst;
4826       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4827       sqlite3VdbeJumpHere(v, addrTop-1);
4828       sqlite3ClearTempRegCache(pParse);
4829     }else{
4830       /* Generate a subroutine that will fill an ephemeral table with
4831       ** the content of this subquery.  pItem->addrFillSub will point
4832       ** to the address of the generated subroutine.  pItem->regReturn
4833       ** is a register allocated to hold the subroutine return address
4834       */
4835       int topAddr;
4836       int onceAddr = 0;
4837       int retAddr;
4838       assert( pItem->addrFillSub==0 );
4839       pItem->regReturn = ++pParse->nMem;
4840       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4841       pItem->addrFillSub = topAddr+1;
4842       if( pItem->isCorrelated==0 ){
4843         /* If the subquery is not correlated and if we are not inside of
4844         ** a trigger, then we only need to compute the value of the subquery
4845         ** once. */
4846         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4847         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4848       }else{
4849         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4850       }
4851       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4852       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4853       sqlite3Select(pParse, pSub, &dest);
4854       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4855       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4856       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4857       VdbeComment((v, "end %s", pItem->pTab->zName));
4858       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4859       sqlite3ClearTempRegCache(pParse);
4860     }
4861     if( /*pParse->nErr ||*/ db->mallocFailed ){
4862       goto select_end;
4863     }
4864     pParse->nHeight -= sqlite3SelectExprHeight(p);
4865     pTabList = p->pSrc;
4866     if( !IgnorableOrderby(pDest) ){
4867       sSort.pOrderBy = p->pOrderBy;
4868     }
4869   }
4870   pEList = p->pEList;
4871 #endif
4872   pWhere = p->pWhere;
4873   pGroupBy = p->pGroupBy;
4874   pHaving = p->pHaving;
4875   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4876 
4877 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4878   /* If there is are a sequence of queries, do the earlier ones first.
4879   */
4880   if( p->pPrior ){
4881     rc = multiSelect(pParse, p, pDest);
4882     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4883 #if SELECTTRACE_ENABLED
4884     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4885     pParse->nSelectIndent--;
4886 #endif
4887     return rc;
4888   }
4889 #endif
4890 
4891   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4892   ** if the select-list is the same as the ORDER BY list, then this query
4893   ** can be rewritten as a GROUP BY. In other words, this:
4894   **
4895   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4896   **
4897   ** is transformed to:
4898   **
4899   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
4900   **
4901   ** The second form is preferred as a single index (or temp-table) may be
4902   ** used for both the ORDER BY and DISTINCT processing. As originally
4903   ** written the query must use a temp-table for at least one of the ORDER
4904   ** BY and DISTINCT, and an index or separate temp-table for the other.
4905   */
4906   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4907    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4908   ){
4909     p->selFlags &= ~SF_Distinct;
4910     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4911     pGroupBy = p->pGroupBy;
4912     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4913     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4914     ** original setting of the SF_Distinct flag, not the current setting */
4915     assert( sDistinct.isTnct );
4916   }
4917 
4918   /* If there is an ORDER BY clause, then this sorting
4919   ** index might end up being unused if the data can be
4920   ** extracted in pre-sorted order.  If that is the case, then the
4921   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4922   ** we figure out that the sorting index is not needed.  The addrSortIndex
4923   ** variable is used to facilitate that change.
4924   */
4925   if( sSort.pOrderBy ){
4926     KeyInfo *pKeyInfo;
4927     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4928     sSort.iECursor = pParse->nTab++;
4929     sSort.addrSortIndex =
4930       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4931           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4932           (char*)pKeyInfo, P4_KEYINFO
4933       );
4934   }else{
4935     sSort.addrSortIndex = -1;
4936   }
4937 
4938   /* If the output is destined for a temporary table, open that table.
4939   */
4940   if( pDest->eDest==SRT_EphemTab ){
4941     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4942   }
4943 
4944   /* Set the limiter.
4945   */
4946   iEnd = sqlite3VdbeMakeLabel(v);
4947   p->nSelectRow = LARGEST_INT64;
4948   computeLimitRegisters(pParse, p, iEnd);
4949   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4950     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4951     sSort.sortFlags |= SORTFLAG_UseSorter;
4952   }
4953 
4954   /* Open a virtual index to use for the distinct set.
4955   */
4956   if( p->selFlags & SF_Distinct ){
4957     sDistinct.tabTnct = pParse->nTab++;
4958     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4959                                 sDistinct.tabTnct, 0, 0,
4960                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4961                                 P4_KEYINFO);
4962     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4963     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4964   }else{
4965     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4966   }
4967 
4968   if( !isAgg && pGroupBy==0 ){
4969     /* No aggregate functions and no GROUP BY clause */
4970     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4971 
4972     /* Begin the database scan. */
4973     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4974                                p->pEList, wctrlFlags, 0);
4975     if( pWInfo==0 ) goto select_end;
4976     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4977       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4978     }
4979     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4980       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4981     }
4982     if( sSort.pOrderBy ){
4983       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4984       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4985         sSort.pOrderBy = 0;
4986       }
4987     }
4988 
4989     /* If sorting index that was created by a prior OP_OpenEphemeral
4990     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4991     ** into an OP_Noop.
4992     */
4993     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4994       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4995     }
4996 
4997     /* Use the standard inner loop. */
4998     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4999                     sqlite3WhereContinueLabel(pWInfo),
5000                     sqlite3WhereBreakLabel(pWInfo));
5001 
5002     /* End the database scan loop.
5003     */
5004     sqlite3WhereEnd(pWInfo);
5005   }else{
5006     /* This case when there exist aggregate functions or a GROUP BY clause
5007     ** or both */
5008     NameContext sNC;    /* Name context for processing aggregate information */
5009     int iAMem;          /* First Mem address for storing current GROUP BY */
5010     int iBMem;          /* First Mem address for previous GROUP BY */
5011     int iUseFlag;       /* Mem address holding flag indicating that at least
5012                         ** one row of the input to the aggregator has been
5013                         ** processed */
5014     int iAbortFlag;     /* Mem address which causes query abort if positive */
5015     int groupBySort;    /* Rows come from source in GROUP BY order */
5016     int addrEnd;        /* End of processing for this SELECT */
5017     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5018     int sortOut = 0;    /* Output register from the sorter */
5019     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5020 
5021     /* Remove any and all aliases between the result set and the
5022     ** GROUP BY clause.
5023     */
5024     if( pGroupBy ){
5025       int k;                        /* Loop counter */
5026       struct ExprList_item *pItem;  /* For looping over expression in a list */
5027 
5028       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5029         pItem->u.x.iAlias = 0;
5030       }
5031       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5032         pItem->u.x.iAlias = 0;
5033       }
5034       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5035     }else{
5036       p->nSelectRow = 1;
5037     }
5038 
5039 
5040     /* If there is both a GROUP BY and an ORDER BY clause and they are
5041     ** identical, then it may be possible to disable the ORDER BY clause
5042     ** on the grounds that the GROUP BY will cause elements to come out
5043     ** in the correct order. It also may not - the GROUP BY may use a
5044     ** database index that causes rows to be grouped together as required
5045     ** but not actually sorted. Either way, record the fact that the
5046     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5047     ** variable.  */
5048     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5049       orderByGrp = 1;
5050     }
5051 
5052     /* Create a label to jump to when we want to abort the query */
5053     addrEnd = sqlite3VdbeMakeLabel(v);
5054 
5055     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5056     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5057     ** SELECT statement.
5058     */
5059     memset(&sNC, 0, sizeof(sNC));
5060     sNC.pParse = pParse;
5061     sNC.pSrcList = pTabList;
5062     sNC.pAggInfo = &sAggInfo;
5063     sAggInfo.mnReg = pParse->nMem+1;
5064     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5065     sAggInfo.pGroupBy = pGroupBy;
5066     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5067     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5068     if( pHaving ){
5069       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5070     }
5071     sAggInfo.nAccumulator = sAggInfo.nColumn;
5072     for(i=0; i<sAggInfo.nFunc; i++){
5073       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5074       sNC.ncFlags |= NC_InAggFunc;
5075       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5076       sNC.ncFlags &= ~NC_InAggFunc;
5077     }
5078     sAggInfo.mxReg = pParse->nMem;
5079     if( db->mallocFailed ) goto select_end;
5080 
5081     /* Processing for aggregates with GROUP BY is very different and
5082     ** much more complex than aggregates without a GROUP BY.
5083     */
5084     if( pGroupBy ){
5085       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5086       int j1;             /* A-vs-B comparision jump */
5087       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5088       int regOutputRow;   /* Return address register for output subroutine */
5089       int addrSetAbort;   /* Set the abort flag and return */
5090       int addrTopOfLoop;  /* Top of the input loop */
5091       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5092       int addrReset;      /* Subroutine for resetting the accumulator */
5093       int regReset;       /* Return address register for reset subroutine */
5094 
5095       /* If there is a GROUP BY clause we might need a sorting index to
5096       ** implement it.  Allocate that sorting index now.  If it turns out
5097       ** that we do not need it after all, the OP_SorterOpen instruction
5098       ** will be converted into a Noop.
5099       */
5100       sAggInfo.sortingIdx = pParse->nTab++;
5101       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
5102       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5103           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5104           0, (char*)pKeyInfo, P4_KEYINFO);
5105 
5106       /* Initialize memory locations used by GROUP BY aggregate processing
5107       */
5108       iUseFlag = ++pParse->nMem;
5109       iAbortFlag = ++pParse->nMem;
5110       regOutputRow = ++pParse->nMem;
5111       addrOutputRow = sqlite3VdbeMakeLabel(v);
5112       regReset = ++pParse->nMem;
5113       addrReset = sqlite3VdbeMakeLabel(v);
5114       iAMem = pParse->nMem + 1;
5115       pParse->nMem += pGroupBy->nExpr;
5116       iBMem = pParse->nMem + 1;
5117       pParse->nMem += pGroupBy->nExpr;
5118       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5119       VdbeComment((v, "clear abort flag"));
5120       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5121       VdbeComment((v, "indicate accumulator empty"));
5122       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5123 
5124       /* Begin a loop that will extract all source rows in GROUP BY order.
5125       ** This might involve two separate loops with an OP_Sort in between, or
5126       ** it might be a single loop that uses an index to extract information
5127       ** in the right order to begin with.
5128       */
5129       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5130       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5131           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5132       );
5133       if( pWInfo==0 ) goto select_end;
5134       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5135         /* The optimizer is able to deliver rows in group by order so
5136         ** we do not have to sort.  The OP_OpenEphemeral table will be
5137         ** cancelled later because we still need to use the pKeyInfo
5138         */
5139         groupBySort = 0;
5140       }else{
5141         /* Rows are coming out in undetermined order.  We have to push
5142         ** each row into a sorting index, terminate the first loop,
5143         ** then loop over the sorting index in order to get the output
5144         ** in sorted order
5145         */
5146         int regBase;
5147         int regRecord;
5148         int nCol;
5149         int nGroupBy;
5150 
5151         explainTempTable(pParse,
5152             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5153                     "DISTINCT" : "GROUP BY");
5154 
5155         groupBySort = 1;
5156         nGroupBy = pGroupBy->nExpr;
5157         nCol = nGroupBy;
5158         j = nGroupBy;
5159         for(i=0; i<sAggInfo.nColumn; i++){
5160           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5161             nCol++;
5162             j++;
5163           }
5164         }
5165         regBase = sqlite3GetTempRange(pParse, nCol);
5166         sqlite3ExprCacheClear(pParse);
5167         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5168         j = nGroupBy;
5169         for(i=0; i<sAggInfo.nColumn; i++){
5170           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5171           if( pCol->iSorterColumn>=j ){
5172             int r1 = j + regBase;
5173             int r2;
5174 
5175             r2 = sqlite3ExprCodeGetColumn(pParse,
5176                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5177             if( r1!=r2 ){
5178               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5179             }
5180             j++;
5181           }
5182         }
5183         regRecord = sqlite3GetTempReg(pParse);
5184         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5185         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5186         sqlite3ReleaseTempReg(pParse, regRecord);
5187         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5188         sqlite3WhereEnd(pWInfo);
5189         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5190         sortOut = sqlite3GetTempReg(pParse);
5191         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5192         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5193         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5194         sAggInfo.useSortingIdx = 1;
5195         sqlite3ExprCacheClear(pParse);
5196 
5197       }
5198 
5199       /* If the index or temporary table used by the GROUP BY sort
5200       ** will naturally deliver rows in the order required by the ORDER BY
5201       ** clause, cancel the ephemeral table open coded earlier.
5202       **
5203       ** This is an optimization - the correct answer should result regardless.
5204       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5205       ** disable this optimization for testing purposes.  */
5206       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5207        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5208       ){
5209         sSort.pOrderBy = 0;
5210         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5211       }
5212 
5213       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5214       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5215       ** Then compare the current GROUP BY terms against the GROUP BY terms
5216       ** from the previous row currently stored in a0, a1, a2...
5217       */
5218       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5219       sqlite3ExprCacheClear(pParse);
5220       if( groupBySort ){
5221         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5222       }
5223       for(j=0; j<pGroupBy->nExpr; j++){
5224         if( groupBySort ){
5225           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5226         }else{
5227           sAggInfo.directMode = 1;
5228           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5229         }
5230       }
5231       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5232                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5233       j1 = sqlite3VdbeCurrentAddr(v);
5234       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5235 
5236       /* Generate code that runs whenever the GROUP BY changes.
5237       ** Changes in the GROUP BY are detected by the previous code
5238       ** block.  If there were no changes, this block is skipped.
5239       **
5240       ** This code copies current group by terms in b0,b1,b2,...
5241       ** over to a0,a1,a2.  It then calls the output subroutine
5242       ** and resets the aggregate accumulator registers in preparation
5243       ** for the next GROUP BY batch.
5244       */
5245       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5246       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5247       VdbeComment((v, "output one row"));
5248       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5249       VdbeComment((v, "check abort flag"));
5250       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5251       VdbeComment((v, "reset accumulator"));
5252 
5253       /* Update the aggregate accumulators based on the content of
5254       ** the current row
5255       */
5256       sqlite3VdbeJumpHere(v, j1);
5257       updateAccumulator(pParse, &sAggInfo);
5258       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5259       VdbeComment((v, "indicate data in accumulator"));
5260 
5261       /* End of the loop
5262       */
5263       if( groupBySort ){
5264         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5265         VdbeCoverage(v);
5266       }else{
5267         sqlite3WhereEnd(pWInfo);
5268         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5269       }
5270 
5271       /* Output the final row of result
5272       */
5273       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5274       VdbeComment((v, "output final row"));
5275 
5276       /* Jump over the subroutines
5277       */
5278       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5279 
5280       /* Generate a subroutine that outputs a single row of the result
5281       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5282       ** is less than or equal to zero, the subroutine is a no-op.  If
5283       ** the processing calls for the query to abort, this subroutine
5284       ** increments the iAbortFlag memory location before returning in
5285       ** order to signal the caller to abort.
5286       */
5287       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5288       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5289       VdbeComment((v, "set abort flag"));
5290       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5291       sqlite3VdbeResolveLabel(v, addrOutputRow);
5292       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5293       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5294       VdbeComment((v, "Groupby result generator entry point"));
5295       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5296       finalizeAggFunctions(pParse, &sAggInfo);
5297       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5298       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5299                       &sDistinct, pDest,
5300                       addrOutputRow+1, addrSetAbort);
5301       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5302       VdbeComment((v, "end groupby result generator"));
5303 
5304       /* Generate a subroutine that will reset the group-by accumulator
5305       */
5306       sqlite3VdbeResolveLabel(v, addrReset);
5307       resetAccumulator(pParse, &sAggInfo);
5308       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5309 
5310     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5311     else {
5312       ExprList *pDel = 0;
5313 #ifndef SQLITE_OMIT_BTREECOUNT
5314       Table *pTab;
5315       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5316         /* If isSimpleCount() returns a pointer to a Table structure, then
5317         ** the SQL statement is of the form:
5318         **
5319         **   SELECT count(*) FROM <tbl>
5320         **
5321         ** where the Table structure returned represents table <tbl>.
5322         **
5323         ** This statement is so common that it is optimized specially. The
5324         ** OP_Count instruction is executed either on the intkey table that
5325         ** contains the data for table <tbl> or on one of its indexes. It
5326         ** is better to execute the op on an index, as indexes are almost
5327         ** always spread across less pages than their corresponding tables.
5328         */
5329         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5330         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5331         Index *pIdx;                         /* Iterator variable */
5332         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5333         Index *pBest = 0;                    /* Best index found so far */
5334         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5335 
5336         sqlite3CodeVerifySchema(pParse, iDb);
5337         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5338 
5339         /* Search for the index that has the lowest scan cost.
5340         **
5341         ** (2011-04-15) Do not do a full scan of an unordered index.
5342         **
5343         ** (2013-10-03) Do not count the entries in a partial index.
5344         **
5345         ** In practice the KeyInfo structure will not be used. It is only
5346         ** passed to keep OP_OpenRead happy.
5347         */
5348         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5349         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5350           if( pIdx->bUnordered==0
5351            && pIdx->szIdxRow<pTab->szTabRow
5352            && pIdx->pPartIdxWhere==0
5353            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5354           ){
5355             pBest = pIdx;
5356           }
5357         }
5358         if( pBest ){
5359           iRoot = pBest->tnum;
5360           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5361         }
5362 
5363         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5364         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5365         if( pKeyInfo ){
5366           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5367         }
5368         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5369         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5370         explainSimpleCount(pParse, pTab, pBest);
5371       }else
5372 #endif /* SQLITE_OMIT_BTREECOUNT */
5373       {
5374         /* Check if the query is of one of the following forms:
5375         **
5376         **   SELECT min(x) FROM ...
5377         **   SELECT max(x) FROM ...
5378         **
5379         ** If it is, then ask the code in where.c to attempt to sort results
5380         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5381         ** If where.c is able to produce results sorted in this order, then
5382         ** add vdbe code to break out of the processing loop after the
5383         ** first iteration (since the first iteration of the loop is
5384         ** guaranteed to operate on the row with the minimum or maximum
5385         ** value of x, the only row required).
5386         **
5387         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5388         ** modify behavior as follows:
5389         **
5390         **   + If the query is a "SELECT min(x)", then the loop coded by
5391         **     where.c should not iterate over any values with a NULL value
5392         **     for x.
5393         **
5394         **   + The optimizer code in where.c (the thing that decides which
5395         **     index or indices to use) should place a different priority on
5396         **     satisfying the 'ORDER BY' clause than it does in other cases.
5397         **     Refer to code and comments in where.c for details.
5398         */
5399         ExprList *pMinMax = 0;
5400         u8 flag = WHERE_ORDERBY_NORMAL;
5401 
5402         assert( p->pGroupBy==0 );
5403         assert( flag==0 );
5404         if( p->pHaving==0 ){
5405           flag = minMaxQuery(&sAggInfo, &pMinMax);
5406         }
5407         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5408 
5409         if( flag ){
5410           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5411           pDel = pMinMax;
5412           if( pMinMax && !db->mallocFailed ){
5413             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5414             pMinMax->a[0].pExpr->op = TK_COLUMN;
5415           }
5416         }
5417 
5418         /* This case runs if the aggregate has no GROUP BY clause.  The
5419         ** processing is much simpler since there is only a single row
5420         ** of output.
5421         */
5422         resetAccumulator(pParse, &sAggInfo);
5423         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5424         if( pWInfo==0 ){
5425           sqlite3ExprListDelete(db, pDel);
5426           goto select_end;
5427         }
5428         updateAccumulator(pParse, &sAggInfo);
5429         assert( pMinMax==0 || pMinMax->nExpr==1 );
5430         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5431           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5432           VdbeComment((v, "%s() by index",
5433                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5434         }
5435         sqlite3WhereEnd(pWInfo);
5436         finalizeAggFunctions(pParse, &sAggInfo);
5437       }
5438 
5439       sSort.pOrderBy = 0;
5440       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5441       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5442                       pDest, addrEnd, addrEnd);
5443       sqlite3ExprListDelete(db, pDel);
5444     }
5445     sqlite3VdbeResolveLabel(v, addrEnd);
5446 
5447   } /* endif aggregate query */
5448 
5449   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5450     explainTempTable(pParse, "DISTINCT");
5451   }
5452 
5453   /* If there is an ORDER BY clause, then we need to sort the results
5454   ** and send them to the callback one by one.
5455   */
5456   if( sSort.pOrderBy ){
5457     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5458     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5459   }
5460 
5461   /* Jump here to skip this query
5462   */
5463   sqlite3VdbeResolveLabel(v, iEnd);
5464 
5465   /* The SELECT was successfully coded.   Set the return code to 0
5466   ** to indicate no errors.
5467   */
5468   rc = 0;
5469 
5470   /* Control jumps to here if an error is encountered above, or upon
5471   ** successful coding of the SELECT.
5472   */
5473 select_end:
5474   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5475 
5476   /* Identify column names if results of the SELECT are to be output.
5477   */
5478   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5479     generateColumnNames(pParse, pTabList, pEList);
5480   }
5481 
5482   sqlite3DbFree(db, sAggInfo.aCol);
5483   sqlite3DbFree(db, sAggInfo.aFunc);
5484 #if SELECTTRACE_ENABLED
5485   SELECTTRACE(1,pParse,p,("end processing\n"));
5486   pParse->nSelectIndent--;
5487 #endif
5488   return rc;
5489 }
5490 
5491 #ifdef SQLITE_DEBUG
5492 /*
5493 ** Generate a human-readable description of a the Select object.
5494 */
5495 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5496   int n = 0;
5497   pView = sqlite3TreeViewPush(pView, moreToFollow);
5498   sqlite3TreeViewLine(pView, "SELECT%s%s",
5499     ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5500     ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
5501   );
5502   if( p->pSrc && p->pSrc->nSrc ) n++;
5503   if( p->pWhere ) n++;
5504   if( p->pGroupBy ) n++;
5505   if( p->pHaving ) n++;
5506   if( p->pOrderBy ) n++;
5507   if( p->pLimit ) n++;
5508   if( p->pOffset ) n++;
5509   if( p->pPrior ) n++;
5510   sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5511   if( p->pSrc && p->pSrc->nSrc ){
5512     int i;
5513     pView = sqlite3TreeViewPush(pView, (n--)>0);
5514     sqlite3TreeViewLine(pView, "FROM");
5515     for(i=0; i<p->pSrc->nSrc; i++){
5516       struct SrcList_item *pItem = &p->pSrc->a[i];
5517       StrAccum x;
5518       char zLine[100];
5519       sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
5520       sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5521       if( pItem->zDatabase ){
5522         sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5523       }else if( pItem->zName ){
5524         sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5525       }
5526       if( pItem->pTab ){
5527         sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5528       }
5529       if( pItem->zAlias ){
5530         sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5531       }
5532       if( pItem->jointype & JT_LEFT ){
5533         sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5534       }
5535       sqlite3StrAccumFinish(&x);
5536       sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5537       if( pItem->pSelect ){
5538         sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5539       }
5540       sqlite3TreeViewPop(pView);
5541     }
5542     sqlite3TreeViewPop(pView);
5543   }
5544   if( p->pWhere ){
5545     sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5546     sqlite3TreeViewExpr(pView, p->pWhere, 0);
5547     sqlite3TreeViewPop(pView);
5548   }
5549   if( p->pGroupBy ){
5550     sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5551   }
5552   if( p->pHaving ){
5553     sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5554     sqlite3TreeViewExpr(pView, p->pHaving, 0);
5555     sqlite3TreeViewPop(pView);
5556   }
5557   if( p->pOrderBy ){
5558     sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5559   }
5560   if( p->pLimit ){
5561     sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5562     sqlite3TreeViewExpr(pView, p->pLimit, 0);
5563     sqlite3TreeViewPop(pView);
5564   }
5565   if( p->pOffset ){
5566     sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5567     sqlite3TreeViewExpr(pView, p->pOffset, 0);
5568     sqlite3TreeViewPop(pView);
5569   }
5570   if( p->pPrior ){
5571     const char *zOp = "UNION";
5572     switch( p->op ){
5573       case TK_ALL:         zOp = "UNION ALL";  break;
5574       case TK_INTERSECT:   zOp = "INTERSECT";  break;
5575       case TK_EXCEPT:      zOp = "EXCEPT";     break;
5576     }
5577     sqlite3TreeViewItem(pView, zOp, (n--)>0);
5578     sqlite3TreeViewSelect(pView, p->pPrior, 0);
5579     sqlite3TreeViewPop(pView);
5580   }
5581   sqlite3TreeViewPop(pView);
5582 }
5583 #endif /* SQLITE_DEBUG */
5584