xref: /sqlite-3.40.0/src/select.c (revision b39187ae)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.495 2008/12/23 23:56:22 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = (u8)eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   pNew->addrOpenEphm[0] = -1;
87   pNew->addrOpenEphm[1] = -1;
88   pNew->addrOpenEphm[2] = -1;
89   if( db->mallocFailed ) {
90     clearSelect(db, pNew);
91     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
92     pNew = 0;
93   }
94   return pNew;
95 }
96 
97 /*
98 ** Delete the given Select structure and all of its substructures.
99 */
100 void sqlite3SelectDelete(sqlite3 *db, Select *p){
101   if( p ){
102     clearSelect(db, p);
103     sqlite3DbFree(db, p);
104   }
105 }
106 
107 /*
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
109 ** type of join.  Return an integer constant that expresses that type
110 ** in terms of the following bit values:
111 **
112 **     JT_INNER
113 **     JT_CROSS
114 **     JT_OUTER
115 **     JT_NATURAL
116 **     JT_LEFT
117 **     JT_RIGHT
118 **
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 **
121 ** If an illegal or unsupported join type is seen, then still return
122 ** a join type, but put an error in the pParse structure.
123 */
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
125   int jointype = 0;
126   Token *apAll[3];
127   Token *p;
128   static const struct {
129     const char zKeyword[8];
130     u8 nChar;
131     u8 code;
132   } keywords[] = {
133     { "natural", 7, JT_NATURAL },
134     { "left",    4, JT_LEFT|JT_OUTER },
135     { "right",   5, JT_RIGHT|JT_OUTER },
136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
137     { "outer",   5, JT_OUTER },
138     { "inner",   5, JT_INNER },
139     { "cross",   5, JT_INNER|JT_CROSS },
140   };
141   int i, j;
142   apAll[0] = pA;
143   apAll[1] = pB;
144   apAll[2] = pC;
145   for(i=0; i<3 && apAll[i]; i++){
146     p = apAll[i];
147     for(j=0; j<ArraySize(keywords); j++){
148       if( p->n==keywords[j].nChar
149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
150         jointype |= keywords[j].code;
151         break;
152       }
153     }
154     if( j>=ArraySize(keywords) ){
155       jointype |= JT_ERROR;
156       break;
157     }
158   }
159   if(
160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
161      (jointype & JT_ERROR)!=0
162   ){
163     const char *zSp = " ";
164     assert( pB!=0 );
165     if( pC==0 ){ zSp++; }
166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
167        "%T %T%s%T", pA, pB, zSp, pC);
168     jointype = JT_INNER;
169   }else if( jointype & JT_RIGHT ){
170     sqlite3ErrorMsg(pParse,
171       "RIGHT and FULL OUTER JOINs are not currently supported");
172     jointype = JT_INNER;
173   }
174   return jointype;
175 }
176 
177 /*
178 ** Return the index of a column in a table.  Return -1 if the column
179 ** is not contained in the table.
180 */
181 static int columnIndex(Table *pTab, const char *zCol){
182   int i;
183   for(i=0; i<pTab->nCol; i++){
184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
185   }
186   return -1;
187 }
188 
189 /*
190 ** Set the value of a token to a '\000'-terminated string.
191 */
192 static void setToken(Token *p, const char *z){
193   p->z = (u8*)z;
194   p->n = z ? sqlite3Strlen30(z) : 0;
195   p->dyn = 0;
196 }
197 
198 /*
199 ** Set the token to the double-quoted and escaped version of the string pointed
200 ** to by z. For example;
201 **
202 **    {a"bc}  ->  {"a""bc"}
203 */
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
205 
206   /* Check if the string appears to be quoted using "..." or `...`
207   ** or [...] or '...' or if the string contains any " characters.
208   ** If it does, then record a version of the string with the special
209   ** characters escaped.
210   */
211   const char *z2 = z;
212   if( *z2!='[' && *z2!='`' && *z2!='\'' ){
213     while( *z2 ){
214       if( *z2=='"' ) break;
215       z2++;
216     }
217   }
218 
219   if( *z2 ){
220     /* String contains " characters - copy and quote the string. */
221     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
222     if( p->z ){
223       p->n = sqlite3Strlen30((char *)p->z);
224       p->dyn = 1;
225     }
226   }else{
227     /* String contains no " characters - copy the pointer. */
228     p->z = (u8*)z;
229     p->n = (int)(z2 - z);
230     p->dyn = 0;
231   }
232 }
233 
234 /*
235 ** Create an expression node for an identifier with the name of zName
236 */
237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
238   Token dummy;
239   setToken(&dummy, zName);
240   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
241 }
242 
243 /*
244 ** Add a term to the WHERE expression in *ppExpr that requires the
245 ** zCol column to be equal in the two tables pTab1 and pTab2.
246 */
247 static void addWhereTerm(
248   Parse *pParse,           /* Parsing context */
249   const char *zCol,        /* Name of the column */
250   const Table *pTab1,      /* First table */
251   const char *zAlias1,     /* Alias for first table.  May be NULL */
252   const Table *pTab2,      /* Second table */
253   const char *zAlias2,     /* Alias for second table.  May be NULL */
254   int iRightJoinTable,     /* VDBE cursor for the right table */
255   Expr **ppExpr,           /* Add the equality term to this expression */
256   int isOuterJoin          /* True if dealing with an OUTER join */
257 ){
258   Expr *pE1a, *pE1b, *pE1c;
259   Expr *pE2a, *pE2b, *pE2c;
260   Expr *pE;
261 
262   pE1a = sqlite3CreateIdExpr(pParse, zCol);
263   pE2a = sqlite3CreateIdExpr(pParse, zCol);
264   if( zAlias1==0 ){
265     zAlias1 = pTab1->zName;
266   }
267   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
268   if( zAlias2==0 ){
269     zAlias2 = pTab2->zName;
270   }
271   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
272   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
273   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
274   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
275   if( pE && isOuterJoin ){
276     ExprSetProperty(pE, EP_FromJoin);
277     pE->iRightJoinTable = iRightJoinTable;
278   }
279   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
280 }
281 
282 /*
283 ** Set the EP_FromJoin property on all terms of the given expression.
284 ** And set the Expr.iRightJoinTable to iTable for every term in the
285 ** expression.
286 **
287 ** The EP_FromJoin property is used on terms of an expression to tell
288 ** the LEFT OUTER JOIN processing logic that this term is part of the
289 ** join restriction specified in the ON or USING clause and not a part
290 ** of the more general WHERE clause.  These terms are moved over to the
291 ** WHERE clause during join processing but we need to remember that they
292 ** originated in the ON or USING clause.
293 **
294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
295 ** expression depends on table iRightJoinTable even if that table is not
296 ** explicitly mentioned in the expression.  That information is needed
297 ** for cases like this:
298 **
299 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
300 **
301 ** The where clause needs to defer the handling of the t1.x=5
302 ** term until after the t2 loop of the join.  In that way, a
303 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
304 ** defer the handling of t1.x=5, it will be processed immediately
305 ** after the t1 loop and rows with t1.x!=5 will never appear in
306 ** the output, which is incorrect.
307 */
308 static void setJoinExpr(Expr *p, int iTable){
309   while( p ){
310     ExprSetProperty(p, EP_FromJoin);
311     p->iRightJoinTable = iTable;
312     setJoinExpr(p->pLeft, iTable);
313     p = p->pRight;
314   }
315 }
316 
317 /*
318 ** This routine processes the join information for a SELECT statement.
319 ** ON and USING clauses are converted into extra terms of the WHERE clause.
320 ** NATURAL joins also create extra WHERE clause terms.
321 **
322 ** The terms of a FROM clause are contained in the Select.pSrc structure.
323 ** The left most table is the first entry in Select.pSrc.  The right-most
324 ** table is the last entry.  The join operator is held in the entry to
325 ** the left.  Thus entry 0 contains the join operator for the join between
326 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
327 ** also attached to the left entry.
328 **
329 ** This routine returns the number of errors encountered.
330 */
331 static int sqliteProcessJoin(Parse *pParse, Select *p){
332   SrcList *pSrc;                  /* All tables in the FROM clause */
333   int i, j;                       /* Loop counters */
334   struct SrcList_item *pLeft;     /* Left table being joined */
335   struct SrcList_item *pRight;    /* Right table being joined */
336 
337   pSrc = p->pSrc;
338   pLeft = &pSrc->a[0];
339   pRight = &pLeft[1];
340   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
341     Table *pLeftTab = pLeft->pTab;
342     Table *pRightTab = pRight->pTab;
343     int isOuter;
344 
345     if( pLeftTab==0 || pRightTab==0 ) continue;
346     isOuter = (pRight->jointype & JT_OUTER)!=0;
347 
348     /* When the NATURAL keyword is present, add WHERE clause terms for
349     ** every column that the two tables have in common.
350     */
351     if( pRight->jointype & JT_NATURAL ){
352       if( pRight->pOn || pRight->pUsing ){
353         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
354            "an ON or USING clause", 0);
355         return 1;
356       }
357       for(j=0; j<pLeftTab->nCol; j++){
358         char *zName = pLeftTab->aCol[j].zName;
359         if( columnIndex(pRightTab, zName)>=0 ){
360           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
361                               pRightTab, pRight->zAlias,
362                               pRight->iCursor, &p->pWhere, isOuter);
363 
364         }
365       }
366     }
367 
368     /* Disallow both ON and USING clauses in the same join
369     */
370     if( pRight->pOn && pRight->pUsing ){
371       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
372         "clauses in the same join");
373       return 1;
374     }
375 
376     /* Add the ON clause to the end of the WHERE clause, connected by
377     ** an AND operator.
378     */
379     if( pRight->pOn ){
380       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
381       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
382       pRight->pOn = 0;
383     }
384 
385     /* Create extra terms on the WHERE clause for each column named
386     ** in the USING clause.  Example: If the two tables to be joined are
387     ** A and B and the USING clause names X, Y, and Z, then add this
388     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
389     ** Report an error if any column mentioned in the USING clause is
390     ** not contained in both tables to be joined.
391     */
392     if( pRight->pUsing ){
393       IdList *pList = pRight->pUsing;
394       for(j=0; j<pList->nId; j++){
395         char *zName = pList->a[j].zName;
396         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
397           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
398             "not present in both tables", zName);
399           return 1;
400         }
401         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
402                             pRightTab, pRight->zAlias,
403                             pRight->iCursor, &p->pWhere, isOuter);
404       }
405     }
406   }
407   return 0;
408 }
409 
410 /*
411 ** Insert code into "v" that will push the record on the top of the
412 ** stack into the sorter.
413 */
414 static void pushOntoSorter(
415   Parse *pParse,         /* Parser context */
416   ExprList *pOrderBy,    /* The ORDER BY clause */
417   Select *pSelect,       /* The whole SELECT statement */
418   int regData            /* Register holding data to be sorted */
419 ){
420   Vdbe *v = pParse->pVdbe;
421   int nExpr = pOrderBy->nExpr;
422   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
423   int regRecord = sqlite3GetTempReg(pParse);
424   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
425   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
426   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
427   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
428   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
429   sqlite3ReleaseTempReg(pParse, regRecord);
430   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
431   if( pSelect->iLimit ){
432     int addr1, addr2;
433     int iLimit;
434     if( pSelect->iOffset ){
435       iLimit = pSelect->iOffset+1;
436     }else{
437       iLimit = pSelect->iLimit;
438     }
439     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
440     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
441     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
442     sqlite3VdbeJumpHere(v, addr1);
443     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
444     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
445     sqlite3VdbeJumpHere(v, addr2);
446     pSelect->iLimit = 0;
447   }
448 }
449 
450 /*
451 ** Add code to implement the OFFSET
452 */
453 static void codeOffset(
454   Vdbe *v,          /* Generate code into this VM */
455   Select *p,        /* The SELECT statement being coded */
456   int iContinue     /* Jump here to skip the current record */
457 ){
458   if( p->iOffset && iContinue!=0 ){
459     int addr;
460     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
461     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
462     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
463     VdbeComment((v, "skip OFFSET records"));
464     sqlite3VdbeJumpHere(v, addr);
465   }
466 }
467 
468 /*
469 ** Add code that will check to make sure the N registers starting at iMem
470 ** form a distinct entry.  iTab is a sorting index that holds previously
471 ** seen combinations of the N values.  A new entry is made in iTab
472 ** if the current N values are new.
473 **
474 ** A jump to addrRepeat is made and the N+1 values are popped from the
475 ** stack if the top N elements are not distinct.
476 */
477 static void codeDistinct(
478   Parse *pParse,     /* Parsing and code generating context */
479   int iTab,          /* A sorting index used to test for distinctness */
480   int addrRepeat,    /* Jump to here if not distinct */
481   int N,             /* Number of elements */
482   int iMem           /* First element */
483 ){
484   Vdbe *v;
485   int r1;
486 
487   v = pParse->pVdbe;
488   r1 = sqlite3GetTempReg(pParse);
489   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
490   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
491   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
492   sqlite3ReleaseTempReg(pParse, r1);
493 }
494 
495 /*
496 ** Generate an error message when a SELECT is used within a subexpression
497 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
498 ** column.  We do this in a subroutine because the error occurs in multiple
499 ** places.
500 */
501 static int checkForMultiColumnSelectError(
502   Parse *pParse,       /* Parse context. */
503   SelectDest *pDest,   /* Destination of SELECT results */
504   int nExpr            /* Number of result columns returned by SELECT */
505 ){
506   int eDest = pDest->eDest;
507   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
508     sqlite3ErrorMsg(pParse, "only a single result allowed for "
509        "a SELECT that is part of an expression");
510     return 1;
511   }else{
512     return 0;
513   }
514 }
515 
516 /*
517 ** This routine generates the code for the inside of the inner loop
518 ** of a SELECT.
519 **
520 ** If srcTab and nColumn are both zero, then the pEList expressions
521 ** are evaluated in order to get the data for this row.  If nColumn>0
522 ** then data is pulled from srcTab and pEList is used only to get the
523 ** datatypes for each column.
524 */
525 static void selectInnerLoop(
526   Parse *pParse,          /* The parser context */
527   Select *p,              /* The complete select statement being coded */
528   ExprList *pEList,       /* List of values being extracted */
529   int srcTab,             /* Pull data from this table */
530   int nColumn,            /* Number of columns in the source table */
531   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
532   int distinct,           /* If >=0, make sure results are distinct */
533   SelectDest *pDest,      /* How to dispose of the results */
534   int iContinue,          /* Jump here to continue with next row */
535   int iBreak              /* Jump here to break out of the inner loop */
536 ){
537   Vdbe *v = pParse->pVdbe;
538   int i;
539   int hasDistinct;        /* True if the DISTINCT keyword is present */
540   int regResult;              /* Start of memory holding result set */
541   int eDest = pDest->eDest;   /* How to dispose of results */
542   int iParm = pDest->iParm;   /* First argument to disposal method */
543   int nResultCol;             /* Number of result columns */
544 
545   if( v==0 ) return;
546   assert( pEList!=0 );
547   hasDistinct = distinct>=0;
548   if( pOrderBy==0 && !hasDistinct ){
549     codeOffset(v, p, iContinue);
550   }
551 
552   /* Pull the requested columns.
553   */
554   if( nColumn>0 ){
555     nResultCol = nColumn;
556   }else{
557     nResultCol = pEList->nExpr;
558   }
559   if( pDest->iMem==0 ){
560     pDest->iMem = pParse->nMem+1;
561     pDest->nMem = nResultCol;
562     pParse->nMem += nResultCol;
563   }else if( pDest->nMem!=nResultCol ){
564     /* This happens when two SELECTs of a compound SELECT have differing
565     ** numbers of result columns.  The error message will be generated by
566     ** a higher-level routine. */
567     return;
568   }
569   regResult = pDest->iMem;
570   if( nColumn>0 ){
571     for(i=0; i<nColumn; i++){
572       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
573     }
574   }else if( eDest!=SRT_Exists ){
575     /* If the destination is an EXISTS(...) expression, the actual
576     ** values returned by the SELECT are not required.
577     */
578     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
579   }
580   nColumn = nResultCol;
581 
582   /* If the DISTINCT keyword was present on the SELECT statement
583   ** and this row has been seen before, then do not make this row
584   ** part of the result.
585   */
586   if( hasDistinct ){
587     assert( pEList!=0 );
588     assert( pEList->nExpr==nColumn );
589     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
590     if( pOrderBy==0 ){
591       codeOffset(v, p, iContinue);
592     }
593   }
594 
595   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
596     return;
597   }
598 
599   switch( eDest ){
600     /* In this mode, write each query result to the key of the temporary
601     ** table iParm.
602     */
603 #ifndef SQLITE_OMIT_COMPOUND_SELECT
604     case SRT_Union: {
605       int r1;
606       r1 = sqlite3GetTempReg(pParse);
607       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
608       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
609       sqlite3ReleaseTempReg(pParse, r1);
610       break;
611     }
612 
613     /* Construct a record from the query result, but instead of
614     ** saving that record, use it as a key to delete elements from
615     ** the temporary table iParm.
616     */
617     case SRT_Except: {
618       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
619       break;
620     }
621 #endif
622 
623     /* Store the result as data using a unique key.
624     */
625     case SRT_Table:
626     case SRT_EphemTab: {
627       int r1 = sqlite3GetTempReg(pParse);
628       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
629       if( pOrderBy ){
630         pushOntoSorter(pParse, pOrderBy, p, r1);
631       }else{
632         int r2 = sqlite3GetTempReg(pParse);
633         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
634         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
635         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
636         sqlite3ReleaseTempReg(pParse, r2);
637       }
638       sqlite3ReleaseTempReg(pParse, r1);
639       break;
640     }
641 
642 #ifndef SQLITE_OMIT_SUBQUERY
643     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
644     ** then there should be a single item on the stack.  Write this
645     ** item into the set table with bogus data.
646     */
647     case SRT_Set: {
648       assert( nColumn==1 );
649       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
650       if( pOrderBy ){
651         /* At first glance you would think we could optimize out the
652         ** ORDER BY in this case since the order of entries in the set
653         ** does not matter.  But there might be a LIMIT clause, in which
654         ** case the order does matter */
655         pushOntoSorter(pParse, pOrderBy, p, regResult);
656       }else{
657         int r1 = sqlite3GetTempReg(pParse);
658         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
659         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
660         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
661         sqlite3ReleaseTempReg(pParse, r1);
662       }
663       break;
664     }
665 
666     /* If any row exist in the result set, record that fact and abort.
667     */
668     case SRT_Exists: {
669       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
670       /* The LIMIT clause will terminate the loop for us */
671       break;
672     }
673 
674     /* If this is a scalar select that is part of an expression, then
675     ** store the results in the appropriate memory cell and break out
676     ** of the scan loop.
677     */
678     case SRT_Mem: {
679       assert( nColumn==1 );
680       if( pOrderBy ){
681         pushOntoSorter(pParse, pOrderBy, p, regResult);
682       }else{
683         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
684         /* The LIMIT clause will jump out of the loop for us */
685       }
686       break;
687     }
688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
689 
690     /* Send the data to the callback function or to a subroutine.  In the
691     ** case of a subroutine, the subroutine itself is responsible for
692     ** popping the data from the stack.
693     */
694     case SRT_Coroutine:
695     case SRT_Output: {
696       if( pOrderBy ){
697         int r1 = sqlite3GetTempReg(pParse);
698         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699         pushOntoSorter(pParse, pOrderBy, p, r1);
700         sqlite3ReleaseTempReg(pParse, r1);
701       }else if( eDest==SRT_Coroutine ){
702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
703       }else{
704         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
705         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
706       }
707       break;
708     }
709 
710 #if !defined(SQLITE_OMIT_TRIGGER)
711     /* Discard the results.  This is used for SELECT statements inside
712     ** the body of a TRIGGER.  The purpose of such selects is to call
713     ** user-defined functions that have side effects.  We do not care
714     ** about the actual results of the select.
715     */
716     default: {
717       assert( eDest==SRT_Discard );
718       break;
719     }
720 #endif
721   }
722 
723   /* Jump to the end of the loop if the LIMIT is reached.
724   */
725   if( p->iLimit ){
726     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
727                             ** pushOntoSorter() would have cleared p->iLimit */
728     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
729     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
730   }
731 }
732 
733 /*
734 ** Given an expression list, generate a KeyInfo structure that records
735 ** the collating sequence for each expression in that expression list.
736 **
737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
738 ** KeyInfo structure is appropriate for initializing a virtual index to
739 ** implement that clause.  If the ExprList is the result set of a SELECT
740 ** then the KeyInfo structure is appropriate for initializing a virtual
741 ** index to implement a DISTINCT test.
742 **
743 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
744 ** function is responsible for seeing that this structure is eventually
745 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
747 */
748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
749   sqlite3 *db = pParse->db;
750   int nExpr;
751   KeyInfo *pInfo;
752   struct ExprList_item *pItem;
753   int i;
754 
755   nExpr = pList->nExpr;
756   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
757   if( pInfo ){
758     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
759     pInfo->nField = (u16)nExpr;
760     pInfo->enc = ENC(db);
761     pInfo->db = db;
762     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
763       CollSeq *pColl;
764       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
765       if( !pColl ){
766         pColl = db->pDfltColl;
767       }
768       pInfo->aColl[i] = pColl;
769       pInfo->aSortOrder[i] = pItem->sortOrder;
770     }
771   }
772   return pInfo;
773 }
774 
775 
776 /*
777 ** If the inner loop was generated using a non-null pOrderBy argument,
778 ** then the results were placed in a sorter.  After the loop is terminated
779 ** we need to run the sorter and output the results.  The following
780 ** routine generates the code needed to do that.
781 */
782 static void generateSortTail(
783   Parse *pParse,    /* Parsing context */
784   Select *p,        /* The SELECT statement */
785   Vdbe *v,          /* Generate code into this VDBE */
786   int nColumn,      /* Number of columns of data */
787   SelectDest *pDest /* Write the sorted results here */
788 ){
789   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
790   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
791   int addr;
792   int iTab;
793   int pseudoTab = 0;
794   ExprList *pOrderBy = p->pOrderBy;
795 
796   int eDest = pDest->eDest;
797   int iParm = pDest->iParm;
798 
799   int regRow;
800   int regRowid;
801 
802   iTab = pOrderBy->iECursor;
803   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
804     pseudoTab = pParse->nTab++;
805     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
806     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
807   }
808   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
809   codeOffset(v, p, addrContinue);
810   regRow = sqlite3GetTempReg(pParse);
811   regRowid = sqlite3GetTempReg(pParse);
812   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
813   switch( eDest ){
814     case SRT_Table:
815     case SRT_EphemTab: {
816       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
817       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
818       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
819       break;
820     }
821 #ifndef SQLITE_OMIT_SUBQUERY
822     case SRT_Set: {
823       assert( nColumn==1 );
824       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
825       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
826       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
827       break;
828     }
829     case SRT_Mem: {
830       assert( nColumn==1 );
831       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
832       /* The LIMIT clause will terminate the loop for us */
833       break;
834     }
835 #endif
836     case SRT_Output:
837     case SRT_Coroutine: {
838       int i;
839       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
840       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
841       for(i=0; i<nColumn; i++){
842         assert( regRow!=pDest->iMem+i );
843         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
844       }
845       if( eDest==SRT_Output ){
846         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
847         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
848       }else{
849         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
850       }
851       break;
852     }
853     default: {
854       /* Do nothing */
855       break;
856     }
857   }
858   sqlite3ReleaseTempReg(pParse, regRow);
859   sqlite3ReleaseTempReg(pParse, regRowid);
860 
861   /* LIMIT has been implemented by the pushOntoSorter() routine.
862   */
863   assert( p->iLimit==0 );
864 
865   /* The bottom of the loop
866   */
867   sqlite3VdbeResolveLabel(v, addrContinue);
868   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
869   sqlite3VdbeResolveLabel(v, addrBreak);
870   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
871     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
872   }
873 }
874 
875 /*
876 ** Return a pointer to a string containing the 'declaration type' of the
877 ** expression pExpr. The string may be treated as static by the caller.
878 **
879 ** The declaration type is the exact datatype definition extracted from the
880 ** original CREATE TABLE statement if the expression is a column. The
881 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
882 ** is considered a column can be complex in the presence of subqueries. The
883 ** result-set expression in all of the following SELECT statements is
884 ** considered a column by this function.
885 **
886 **   SELECT col FROM tbl;
887 **   SELECT (SELECT col FROM tbl;
888 **   SELECT (SELECT col FROM tbl);
889 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
890 **
891 ** The declaration type for any expression other than a column is NULL.
892 */
893 static const char *columnType(
894   NameContext *pNC,
895   Expr *pExpr,
896   const char **pzOriginDb,
897   const char **pzOriginTab,
898   const char **pzOriginCol
899 ){
900   char const *zType = 0;
901   char const *zOriginDb = 0;
902   char const *zOriginTab = 0;
903   char const *zOriginCol = 0;
904   int j;
905   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
906 
907   switch( pExpr->op ){
908     case TK_AGG_COLUMN:
909     case TK_COLUMN: {
910       /* The expression is a column. Locate the table the column is being
911       ** extracted from in NameContext.pSrcList. This table may be real
912       ** database table or a subquery.
913       */
914       Table *pTab = 0;            /* Table structure column is extracted from */
915       Select *pS = 0;             /* Select the column is extracted from */
916       int iCol = pExpr->iColumn;  /* Index of column in pTab */
917       while( pNC && !pTab ){
918         SrcList *pTabList = pNC->pSrcList;
919         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
920         if( j<pTabList->nSrc ){
921           pTab = pTabList->a[j].pTab;
922           pS = pTabList->a[j].pSelect;
923         }else{
924           pNC = pNC->pNext;
925         }
926       }
927 
928       if( pTab==0 ){
929         /* FIX ME:
930         ** This can occurs if you have something like "SELECT new.x;" inside
931         ** a trigger.  In other words, if you reference the special "new"
932         ** table in the result set of a select.  We do not have a good way
933         ** to find the actual table type, so call it "TEXT".  This is really
934         ** something of a bug, but I do not know how to fix it.
935         **
936         ** This code does not produce the correct answer - it just prevents
937         ** a segfault.  See ticket #1229.
938         */
939         zType = "TEXT";
940         break;
941       }
942 
943       assert( pTab );
944       if( pS ){
945         /* The "table" is actually a sub-select or a view in the FROM clause
946         ** of the SELECT statement. Return the declaration type and origin
947         ** data for the result-set column of the sub-select.
948         */
949         if( iCol>=0 && iCol<pS->pEList->nExpr ){
950           /* If iCol is less than zero, then the expression requests the
951           ** rowid of the sub-select or view. This expression is legal (see
952           ** test case misc2.2.2) - it always evaluates to NULL.
953           */
954           NameContext sNC;
955           Expr *p = pS->pEList->a[iCol].pExpr;
956           sNC.pSrcList = pS->pSrc;
957           sNC.pNext = 0;
958           sNC.pParse = pNC->pParse;
959           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
960         }
961       }else if( pTab->pSchema ){
962         /* A real table */
963         assert( !pS );
964         if( iCol<0 ) iCol = pTab->iPKey;
965         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
966         if( iCol<0 ){
967           zType = "INTEGER";
968           zOriginCol = "rowid";
969         }else{
970           zType = pTab->aCol[iCol].zType;
971           zOriginCol = pTab->aCol[iCol].zName;
972         }
973         zOriginTab = pTab->zName;
974         if( pNC->pParse ){
975           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
976           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
977         }
978       }
979       break;
980     }
981 #ifndef SQLITE_OMIT_SUBQUERY
982     case TK_SELECT: {
983       /* The expression is a sub-select. Return the declaration type and
984       ** origin info for the single column in the result set of the SELECT
985       ** statement.
986       */
987       NameContext sNC;
988       Select *pS = pExpr->pSelect;
989       Expr *p = pS->pEList->a[0].pExpr;
990       sNC.pSrcList = pS->pSrc;
991       sNC.pNext = pNC;
992       sNC.pParse = pNC->pParse;
993       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
994       break;
995     }
996 #endif
997   }
998 
999   if( pzOriginDb ){
1000     assert( pzOriginTab && pzOriginCol );
1001     *pzOriginDb = zOriginDb;
1002     *pzOriginTab = zOriginTab;
1003     *pzOriginCol = zOriginCol;
1004   }
1005   return zType;
1006 }
1007 
1008 /*
1009 ** Generate code that will tell the VDBE the declaration types of columns
1010 ** in the result set.
1011 */
1012 static void generateColumnTypes(
1013   Parse *pParse,      /* Parser context */
1014   SrcList *pTabList,  /* List of tables */
1015   ExprList *pEList    /* Expressions defining the result set */
1016 ){
1017 #ifndef SQLITE_OMIT_DECLTYPE
1018   Vdbe *v = pParse->pVdbe;
1019   int i;
1020   NameContext sNC;
1021   sNC.pSrcList = pTabList;
1022   sNC.pParse = pParse;
1023   for(i=0; i<pEList->nExpr; i++){
1024     Expr *p = pEList->a[i].pExpr;
1025     const char *zType;
1026 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1027     const char *zOrigDb = 0;
1028     const char *zOrigTab = 0;
1029     const char *zOrigCol = 0;
1030     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1031 
1032     /* The vdbe must make its own copy of the column-type and other
1033     ** column specific strings, in case the schema is reset before this
1034     ** virtual machine is deleted.
1035     */
1036     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1037     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1038     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1039 #else
1040     zType = columnType(&sNC, p, 0, 0, 0);
1041 #endif
1042     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1043   }
1044 #endif /* SQLITE_OMIT_DECLTYPE */
1045 }
1046 
1047 /*
1048 ** Generate code that will tell the VDBE the names of columns
1049 ** in the result set.  This information is used to provide the
1050 ** azCol[] values in the callback.
1051 */
1052 static void generateColumnNames(
1053   Parse *pParse,      /* Parser context */
1054   SrcList *pTabList,  /* List of tables */
1055   ExprList *pEList    /* Expressions defining the result set */
1056 ){
1057   Vdbe *v = pParse->pVdbe;
1058   int i, j;
1059   sqlite3 *db = pParse->db;
1060   int fullNames, shortNames;
1061 
1062 #ifndef SQLITE_OMIT_EXPLAIN
1063   /* If this is an EXPLAIN, skip this step */
1064   if( pParse->explain ){
1065     return;
1066   }
1067 #endif
1068 
1069   assert( v!=0 );
1070   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1071   pParse->colNamesSet = 1;
1072   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1073   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1074   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1075   for(i=0; i<pEList->nExpr; i++){
1076     Expr *p;
1077     p = pEList->a[i].pExpr;
1078     if( p==0 ) continue;
1079     if( pEList->a[i].zName ){
1080       char *zName = pEList->a[i].zName;
1081       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1082     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1083       Table *pTab;
1084       char *zCol;
1085       int iCol = p->iColumn;
1086       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1087       assert( j<pTabList->nSrc );
1088       pTab = pTabList->a[j].pTab;
1089       if( iCol<0 ) iCol = pTab->iPKey;
1090       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1091       if( iCol<0 ){
1092         zCol = "rowid";
1093       }else{
1094         zCol = pTab->aCol[iCol].zName;
1095       }
1096       if( !shortNames && !fullNames ){
1097         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1098             sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1099       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1100         char *zName = 0;
1101         char *zTab;
1102 
1103         zTab = pTabList->a[j].zAlias;
1104         if( fullNames || zTab==0 ) zTab = pTab->zName;
1105         zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
1106         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1107       }else{
1108         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1109       }
1110     }else{
1111       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1112           sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1113     }
1114   }
1115   generateColumnTypes(pParse, pTabList, pEList);
1116 }
1117 
1118 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1119 /*
1120 ** Name of the connection operator, used for error messages.
1121 */
1122 static const char *selectOpName(int id){
1123   char *z;
1124   switch( id ){
1125     case TK_ALL:       z = "UNION ALL";   break;
1126     case TK_INTERSECT: z = "INTERSECT";   break;
1127     case TK_EXCEPT:    z = "EXCEPT";      break;
1128     default:           z = "UNION";       break;
1129   }
1130   return z;
1131 }
1132 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1133 
1134 /*
1135 ** Given a an expression list (which is really the list of expressions
1136 ** that form the result set of a SELECT statement) compute appropriate
1137 ** column names for a table that would hold the expression list.
1138 **
1139 ** All column names will be unique.
1140 **
1141 ** Only the column names are computed.  Column.zType, Column.zColl,
1142 ** and other fields of Column are zeroed.
1143 **
1144 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1146 */
1147 static int selectColumnsFromExprList(
1148   Parse *pParse,          /* Parsing context */
1149   ExprList *pEList,       /* Expr list from which to derive column names */
1150   int *pnCol,             /* Write the number of columns here */
1151   Column **paCol          /* Write the new column list here */
1152 ){
1153   sqlite3 *db = pParse->db;   /* Database connection */
1154   int i, j;                   /* Loop counters */
1155   int cnt;                    /* Index added to make the name unique */
1156   Column *aCol, *pCol;        /* For looping over result columns */
1157   int nCol;                   /* Number of columns in the result set */
1158   Expr *p;                    /* Expression for a single result column */
1159   char *zName;                /* Column name */
1160   int nName;                  /* Size of name in zName[] */
1161 
1162   *pnCol = nCol = pEList->nExpr;
1163   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1164   if( aCol==0 ) return SQLITE_NOMEM;
1165   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1166     /* Get an appropriate name for the column
1167     */
1168     p = pEList->a[i].pExpr;
1169     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1170     if( (zName = pEList->a[i].zName)!=0 ){
1171       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1172       zName = sqlite3DbStrDup(db, zName);
1173     }else{
1174       Expr *pColExpr = p;  /* The expression that is the result column name */
1175       Table *pTab;         /* Table associated with this expression */
1176       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1177       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){
1178         /* For columns use the column name name */
1179         int iCol = pColExpr->iColumn;
1180         if( iCol<0 ) iCol = pTab->iPKey;
1181         zName = sqlite3MPrintf(db, "%s",
1182                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1183       }else{
1184         /* Use the original text of the column expression as its name */
1185         Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token);
1186         zName = sqlite3MPrintf(db, "%T", pToken);
1187       }
1188     }
1189     if( db->mallocFailed ){
1190       sqlite3DbFree(db, zName);
1191       break;
1192     }
1193     sqlite3Dequote(zName);
1194 
1195     /* Make sure the column name is unique.  If the name is not unique,
1196     ** append a integer to the name so that it becomes unique.
1197     */
1198     nName = sqlite3Strlen30(zName);
1199     for(j=cnt=0; j<i; j++){
1200       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1201         char *zNewName;
1202         zName[nName] = 0;
1203         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1204         sqlite3DbFree(db, zName);
1205         zName = zNewName;
1206         j = -1;
1207         if( zName==0 ) break;
1208       }
1209     }
1210     pCol->zName = zName;
1211   }
1212   if( db->mallocFailed ){
1213     for(j=0; j<i; j++){
1214       sqlite3DbFree(db, aCol[j].zName);
1215     }
1216     sqlite3DbFree(db, aCol);
1217     *paCol = 0;
1218     *pnCol = 0;
1219     return SQLITE_NOMEM;
1220   }
1221   return SQLITE_OK;
1222 }
1223 
1224 /*
1225 ** Add type and collation information to a column list based on
1226 ** a SELECT statement.
1227 **
1228 ** The column list presumably came from selectColumnNamesFromExprList().
1229 ** The column list has only names, not types or collations.  This
1230 ** routine goes through and adds the types and collations.
1231 **
1232 ** This routine requires that all indentifiers in the SELECT
1233 ** statement be resolved.
1234 */
1235 static void selectAddColumnTypeAndCollation(
1236   Parse *pParse,        /* Parsing contexts */
1237   int nCol,             /* Number of columns */
1238   Column *aCol,         /* List of columns */
1239   Select *pSelect       /* SELECT used to determine types and collations */
1240 ){
1241   sqlite3 *db = pParse->db;
1242   NameContext sNC;
1243   Column *pCol;
1244   CollSeq *pColl;
1245   int i;
1246   Expr *p;
1247   struct ExprList_item *a;
1248 
1249   assert( pSelect!=0 );
1250   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1251   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1252   if( db->mallocFailed ) return;
1253   memset(&sNC, 0, sizeof(sNC));
1254   sNC.pSrcList = pSelect->pSrc;
1255   a = pSelect->pEList->a;
1256   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1257     p = a[i].pExpr;
1258     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1259     pCol->affinity = sqlite3ExprAffinity(p);
1260     pColl = sqlite3ExprCollSeq(pParse, p);
1261     if( pColl ){
1262       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1263     }
1264   }
1265 }
1266 
1267 /*
1268 ** Given a SELECT statement, generate a Table structure that describes
1269 ** the result set of that SELECT.
1270 */
1271 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1272   Table *pTab;
1273   sqlite3 *db = pParse->db;
1274   int savedFlags;
1275 
1276   savedFlags = db->flags;
1277   db->flags &= ~SQLITE_FullColNames;
1278   db->flags |= SQLITE_ShortColNames;
1279   sqlite3SelectPrep(pParse, pSelect, 0);
1280   if( pParse->nErr ) return 0;
1281   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1282   db->flags = savedFlags;
1283   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1284   if( pTab==0 ){
1285     return 0;
1286   }
1287   pTab->db = db;
1288   pTab->nRef = 1;
1289   pTab->zName = 0;
1290   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1291   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1292   pTab->iPKey = -1;
1293   if( db->mallocFailed ){
1294     sqlite3DeleteTable(pTab);
1295     return 0;
1296   }
1297   return pTab;
1298 }
1299 
1300 /*
1301 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1302 ** If an error occurs, return NULL and leave a message in pParse.
1303 */
1304 Vdbe *sqlite3GetVdbe(Parse *pParse){
1305   Vdbe *v = pParse->pVdbe;
1306   if( v==0 ){
1307     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1308 #ifndef SQLITE_OMIT_TRACE
1309     if( v ){
1310       sqlite3VdbeAddOp0(v, OP_Trace);
1311     }
1312 #endif
1313   }
1314   return v;
1315 }
1316 
1317 
1318 /*
1319 ** Compute the iLimit and iOffset fields of the SELECT based on the
1320 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1321 ** that appear in the original SQL statement after the LIMIT and OFFSET
1322 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1323 ** are the integer memory register numbers for counters used to compute
1324 ** the limit and offset.  If there is no limit and/or offset, then
1325 ** iLimit and iOffset are negative.
1326 **
1327 ** This routine changes the values of iLimit and iOffset only if
1328 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1329 ** iOffset should have been preset to appropriate default values
1330 ** (usually but not always -1) prior to calling this routine.
1331 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1332 ** redefined.  The UNION ALL operator uses this property to force
1333 ** the reuse of the same limit and offset registers across multiple
1334 ** SELECT statements.
1335 */
1336 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1337   Vdbe *v = 0;
1338   int iLimit = 0;
1339   int iOffset;
1340   int addr1;
1341   if( p->iLimit ) return;
1342 
1343   /*
1344   ** "LIMIT -1" always shows all rows.  There is some
1345   ** contraversy about what the correct behavior should be.
1346   ** The current implementation interprets "LIMIT 0" to mean
1347   ** no rows.
1348   */
1349   if( p->pLimit ){
1350     p->iLimit = iLimit = ++pParse->nMem;
1351     v = sqlite3GetVdbe(pParse);
1352     if( v==0 ) return;
1353     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1354     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1355     VdbeComment((v, "LIMIT counter"));
1356     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1357   }
1358   if( p->pOffset ){
1359     p->iOffset = iOffset = ++pParse->nMem;
1360     if( p->pLimit ){
1361       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1362     }
1363     v = sqlite3GetVdbe(pParse);
1364     if( v==0 ) return;
1365     sqlite3ExprCode(pParse, p->pOffset, iOffset);
1366     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1367     VdbeComment((v, "OFFSET counter"));
1368     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1369     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1370     sqlite3VdbeJumpHere(v, addr1);
1371     if( p->pLimit ){
1372       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1373       VdbeComment((v, "LIMIT+OFFSET"));
1374       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1375       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1376       sqlite3VdbeJumpHere(v, addr1);
1377     }
1378   }
1379 }
1380 
1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1382 /*
1383 ** Return the appropriate collating sequence for the iCol-th column of
1384 ** the result set for the compound-select statement "p".  Return NULL if
1385 ** the column has no default collating sequence.
1386 **
1387 ** The collating sequence for the compound select is taken from the
1388 ** left-most term of the select that has a collating sequence.
1389 */
1390 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1391   CollSeq *pRet;
1392   if( p->pPrior ){
1393     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1394   }else{
1395     pRet = 0;
1396   }
1397   if( pRet==0 ){
1398     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1399   }
1400   return pRet;
1401 }
1402 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1403 
1404 /* Forward reference */
1405 static int multiSelectOrderBy(
1406   Parse *pParse,        /* Parsing context */
1407   Select *p,            /* The right-most of SELECTs to be coded */
1408   SelectDest *pDest     /* What to do with query results */
1409 );
1410 
1411 
1412 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1413 /*
1414 ** This routine is called to process a compound query form from
1415 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1416 ** INTERSECT
1417 **
1418 ** "p" points to the right-most of the two queries.  the query on the
1419 ** left is p->pPrior.  The left query could also be a compound query
1420 ** in which case this routine will be called recursively.
1421 **
1422 ** The results of the total query are to be written into a destination
1423 ** of type eDest with parameter iParm.
1424 **
1425 ** Example 1:  Consider a three-way compound SQL statement.
1426 **
1427 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1428 **
1429 ** This statement is parsed up as follows:
1430 **
1431 **     SELECT c FROM t3
1432 **      |
1433 **      `----->  SELECT b FROM t2
1434 **                |
1435 **                `------>  SELECT a FROM t1
1436 **
1437 ** The arrows in the diagram above represent the Select.pPrior pointer.
1438 ** So if this routine is called with p equal to the t3 query, then
1439 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1440 **
1441 ** Notice that because of the way SQLite parses compound SELECTs, the
1442 ** individual selects always group from left to right.
1443 */
1444 static int multiSelect(
1445   Parse *pParse,        /* Parsing context */
1446   Select *p,            /* The right-most of SELECTs to be coded */
1447   SelectDest *pDest     /* What to do with query results */
1448 ){
1449   int rc = SQLITE_OK;   /* Success code from a subroutine */
1450   Select *pPrior;       /* Another SELECT immediately to our left */
1451   Vdbe *v;              /* Generate code to this VDBE */
1452   SelectDest dest;      /* Alternative data destination */
1453   Select *pDelete = 0;  /* Chain of simple selects to delete */
1454   sqlite3 *db;          /* Database connection */
1455 
1456   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1457   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1458   */
1459   assert( p && p->pPrior );  /* Calling function guarantees this much */
1460   db = pParse->db;
1461   pPrior = p->pPrior;
1462   assert( pPrior->pRightmost!=pPrior );
1463   assert( pPrior->pRightmost==p->pRightmost );
1464   dest = *pDest;
1465   if( pPrior->pOrderBy ){
1466     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1467       selectOpName(p->op));
1468     rc = 1;
1469     goto multi_select_end;
1470   }
1471   if( pPrior->pLimit ){
1472     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1473       selectOpName(p->op));
1474     rc = 1;
1475     goto multi_select_end;
1476   }
1477 
1478   v = sqlite3GetVdbe(pParse);
1479   assert( v!=0 );  /* The VDBE already created by calling function */
1480 
1481   /* Create the destination temporary table if necessary
1482   */
1483   if( dest.eDest==SRT_EphemTab ){
1484     assert( p->pEList );
1485     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1486     dest.eDest = SRT_Table;
1487   }
1488 
1489   /* Make sure all SELECTs in the statement have the same number of elements
1490   ** in their result sets.
1491   */
1492   assert( p->pEList && pPrior->pEList );
1493   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1494     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1495       " do not have the same number of result columns", selectOpName(p->op));
1496     rc = 1;
1497     goto multi_select_end;
1498   }
1499 
1500   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1501   */
1502   if( p->pOrderBy ){
1503     return multiSelectOrderBy(pParse, p, pDest);
1504   }
1505 
1506   /* Generate code for the left and right SELECT statements.
1507   */
1508   switch( p->op ){
1509     case TK_ALL: {
1510       int addr = 0;
1511       assert( !pPrior->pLimit );
1512       pPrior->pLimit = p->pLimit;
1513       pPrior->pOffset = p->pOffset;
1514       rc = sqlite3Select(pParse, pPrior, &dest);
1515       p->pLimit = 0;
1516       p->pOffset = 0;
1517       if( rc ){
1518         goto multi_select_end;
1519       }
1520       p->pPrior = 0;
1521       p->iLimit = pPrior->iLimit;
1522       p->iOffset = pPrior->iOffset;
1523       if( p->iLimit ){
1524         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1525         VdbeComment((v, "Jump ahead if LIMIT reached"));
1526       }
1527       rc = sqlite3Select(pParse, p, &dest);
1528       pDelete = p->pPrior;
1529       p->pPrior = pPrior;
1530       if( rc ){
1531         goto multi_select_end;
1532       }
1533       if( addr ){
1534         sqlite3VdbeJumpHere(v, addr);
1535       }
1536       break;
1537     }
1538     case TK_EXCEPT:
1539     case TK_UNION: {
1540       int unionTab;    /* Cursor number of the temporary table holding result */
1541       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1542       int priorOp;     /* The SRT_ operation to apply to prior selects */
1543       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1544       int addr;
1545       SelectDest uniondest;
1546 
1547       priorOp = SRT_Union;
1548       if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
1549         /* We can reuse a temporary table generated by a SELECT to our
1550         ** right.
1551         */
1552         unionTab = dest.iParm;
1553       }else{
1554         /* We will need to create our own temporary table to hold the
1555         ** intermediate results.
1556         */
1557         unionTab = pParse->nTab++;
1558         assert( p->pOrderBy==0 );
1559         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1560         assert( p->addrOpenEphm[0] == -1 );
1561         p->addrOpenEphm[0] = addr;
1562         p->pRightmost->selFlags |= SF_UsesEphemeral;
1563         assert( p->pEList );
1564       }
1565 
1566       /* Code the SELECT statements to our left
1567       */
1568       assert( !pPrior->pOrderBy );
1569       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1570       rc = sqlite3Select(pParse, pPrior, &uniondest);
1571       if( rc ){
1572         goto multi_select_end;
1573       }
1574 
1575       /* Code the current SELECT statement
1576       */
1577       if( p->op==TK_EXCEPT ){
1578         op = SRT_Except;
1579       }else{
1580         assert( p->op==TK_UNION );
1581         op = SRT_Union;
1582       }
1583       p->pPrior = 0;
1584       pLimit = p->pLimit;
1585       p->pLimit = 0;
1586       pOffset = p->pOffset;
1587       p->pOffset = 0;
1588       uniondest.eDest = op;
1589       rc = sqlite3Select(pParse, p, &uniondest);
1590       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1591       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1592       sqlite3ExprListDelete(db, p->pOrderBy);
1593       pDelete = p->pPrior;
1594       p->pPrior = pPrior;
1595       p->pOrderBy = 0;
1596       sqlite3ExprDelete(db, p->pLimit);
1597       p->pLimit = pLimit;
1598       p->pOffset = pOffset;
1599       p->iLimit = 0;
1600       p->iOffset = 0;
1601       if( rc ){
1602         goto multi_select_end;
1603       }
1604 
1605 
1606       /* Convert the data in the temporary table into whatever form
1607       ** it is that we currently need.
1608       */
1609       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
1610         int iCont, iBreak, iStart;
1611         assert( p->pEList );
1612         if( dest.eDest==SRT_Output ){
1613           Select *pFirst = p;
1614           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1615           generateColumnNames(pParse, 0, pFirst->pEList);
1616         }
1617         iBreak = sqlite3VdbeMakeLabel(v);
1618         iCont = sqlite3VdbeMakeLabel(v);
1619         computeLimitRegisters(pParse, p, iBreak);
1620         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1621         iStart = sqlite3VdbeCurrentAddr(v);
1622         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1623                         0, -1, &dest, iCont, iBreak);
1624         sqlite3VdbeResolveLabel(v, iCont);
1625         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1626         sqlite3VdbeResolveLabel(v, iBreak);
1627         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1628       }
1629       break;
1630     }
1631     case TK_INTERSECT: {
1632       int tab1, tab2;
1633       int iCont, iBreak, iStart;
1634       Expr *pLimit, *pOffset;
1635       int addr;
1636       SelectDest intersectdest;
1637       int r1;
1638 
1639       /* INTERSECT is different from the others since it requires
1640       ** two temporary tables.  Hence it has its own case.  Begin
1641       ** by allocating the tables we will need.
1642       */
1643       tab1 = pParse->nTab++;
1644       tab2 = pParse->nTab++;
1645       assert( p->pOrderBy==0 );
1646 
1647       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1648       assert( p->addrOpenEphm[0] == -1 );
1649       p->addrOpenEphm[0] = addr;
1650       p->pRightmost->selFlags |= SF_UsesEphemeral;
1651       assert( p->pEList );
1652 
1653       /* Code the SELECTs to our left into temporary table "tab1".
1654       */
1655       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1656       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1657       if( rc ){
1658         goto multi_select_end;
1659       }
1660 
1661       /* Code the current SELECT into temporary table "tab2"
1662       */
1663       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1664       assert( p->addrOpenEphm[1] == -1 );
1665       p->addrOpenEphm[1] = addr;
1666       p->pPrior = 0;
1667       pLimit = p->pLimit;
1668       p->pLimit = 0;
1669       pOffset = p->pOffset;
1670       p->pOffset = 0;
1671       intersectdest.iParm = tab2;
1672       rc = sqlite3Select(pParse, p, &intersectdest);
1673       pDelete = p->pPrior;
1674       p->pPrior = pPrior;
1675       sqlite3ExprDelete(db, p->pLimit);
1676       p->pLimit = pLimit;
1677       p->pOffset = pOffset;
1678       if( rc ){
1679         goto multi_select_end;
1680       }
1681 
1682       /* Generate code to take the intersection of the two temporary
1683       ** tables.
1684       */
1685       assert( p->pEList );
1686       if( dest.eDest==SRT_Output ){
1687         Select *pFirst = p;
1688         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1689         generateColumnNames(pParse, 0, pFirst->pEList);
1690       }
1691       iBreak = sqlite3VdbeMakeLabel(v);
1692       iCont = sqlite3VdbeMakeLabel(v);
1693       computeLimitRegisters(pParse, p, iBreak);
1694       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1695       r1 = sqlite3GetTempReg(pParse);
1696       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1697       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1698       sqlite3ReleaseTempReg(pParse, r1);
1699       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1700                       0, -1, &dest, iCont, iBreak);
1701       sqlite3VdbeResolveLabel(v, iCont);
1702       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1703       sqlite3VdbeResolveLabel(v, iBreak);
1704       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1705       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1706       break;
1707     }
1708   }
1709 
1710   /* Compute collating sequences used by
1711   ** temporary tables needed to implement the compound select.
1712   ** Attach the KeyInfo structure to all temporary tables.
1713   **
1714   ** This section is run by the right-most SELECT statement only.
1715   ** SELECT statements to the left always skip this part.  The right-most
1716   ** SELECT might also skip this part if it has no ORDER BY clause and
1717   ** no temp tables are required.
1718   */
1719   if( p->selFlags & SF_UsesEphemeral ){
1720     int i;                        /* Loop counter */
1721     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1722     Select *pLoop;                /* For looping through SELECT statements */
1723     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1724     int nCol;                     /* Number of columns in result set */
1725 
1726     assert( p->pRightmost==p );
1727     nCol = p->pEList->nExpr;
1728     pKeyInfo = sqlite3DbMallocZero(db,
1729                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1730     if( !pKeyInfo ){
1731       rc = SQLITE_NOMEM;
1732       goto multi_select_end;
1733     }
1734 
1735     pKeyInfo->enc = ENC(db);
1736     pKeyInfo->nField = (u16)nCol;
1737 
1738     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1739       *apColl = multiSelectCollSeq(pParse, p, i);
1740       if( 0==*apColl ){
1741         *apColl = db->pDfltColl;
1742       }
1743     }
1744 
1745     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1746       for(i=0; i<2; i++){
1747         int addr = pLoop->addrOpenEphm[i];
1748         if( addr<0 ){
1749           /* If [0] is unused then [1] is also unused.  So we can
1750           ** always safely abort as soon as the first unused slot is found */
1751           assert( pLoop->addrOpenEphm[1]<0 );
1752           break;
1753         }
1754         sqlite3VdbeChangeP2(v, addr, nCol);
1755         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1756         pLoop->addrOpenEphm[i] = -1;
1757       }
1758     }
1759     sqlite3DbFree(db, pKeyInfo);
1760   }
1761 
1762 multi_select_end:
1763   pDest->iMem = dest.iMem;
1764   pDest->nMem = dest.nMem;
1765   sqlite3SelectDelete(db, pDelete);
1766   return rc;
1767 }
1768 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1769 
1770 /*
1771 ** Code an output subroutine for a coroutine implementation of a
1772 ** SELECT statment.
1773 **
1774 ** The data to be output is contained in pIn->iMem.  There are
1775 ** pIn->nMem columns to be output.  pDest is where the output should
1776 ** be sent.
1777 **
1778 ** regReturn is the number of the register holding the subroutine
1779 ** return address.
1780 **
1781 ** If regPrev>0 then it is a the first register in a vector that
1782 ** records the previous output.  mem[regPrev] is a flag that is false
1783 ** if there has been no previous output.  If regPrev>0 then code is
1784 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1785 ** keys.
1786 **
1787 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1788 ** iBreak.
1789 */
1790 static int generateOutputSubroutine(
1791   Parse *pParse,          /* Parsing context */
1792   Select *p,              /* The SELECT statement */
1793   SelectDest *pIn,        /* Coroutine supplying data */
1794   SelectDest *pDest,      /* Where to send the data */
1795   int regReturn,          /* The return address register */
1796   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1797   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1798   int p4type,             /* The p4 type for pKeyInfo */
1799   int iBreak              /* Jump here if we hit the LIMIT */
1800 ){
1801   Vdbe *v = pParse->pVdbe;
1802   int iContinue;
1803   int addr;
1804 
1805   addr = sqlite3VdbeCurrentAddr(v);
1806   iContinue = sqlite3VdbeMakeLabel(v);
1807 
1808   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1809   */
1810   if( regPrev ){
1811     int j1, j2;
1812     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1813     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1814                               (char*)pKeyInfo, p4type);
1815     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1816     sqlite3VdbeJumpHere(v, j1);
1817     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1818     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1819   }
1820   if( pParse->db->mallocFailed ) return 0;
1821 
1822   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1823   */
1824   codeOffset(v, p, iContinue);
1825 
1826   switch( pDest->eDest ){
1827     /* Store the result as data using a unique key.
1828     */
1829     case SRT_Table:
1830     case SRT_EphemTab: {
1831       int r1 = sqlite3GetTempReg(pParse);
1832       int r2 = sqlite3GetTempReg(pParse);
1833       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1834       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1835       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1836       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1837       sqlite3ReleaseTempReg(pParse, r2);
1838       sqlite3ReleaseTempReg(pParse, r1);
1839       break;
1840     }
1841 
1842 #ifndef SQLITE_OMIT_SUBQUERY
1843     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1844     ** then there should be a single item on the stack.  Write this
1845     ** item into the set table with bogus data.
1846     */
1847     case SRT_Set: {
1848       int r1;
1849       assert( pIn->nMem==1 );
1850       p->affinity =
1851          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1852       r1 = sqlite3GetTempReg(pParse);
1853       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1854       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1855       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1856       sqlite3ReleaseTempReg(pParse, r1);
1857       break;
1858     }
1859 
1860 #if 0  /* Never occurs on an ORDER BY query */
1861     /* If any row exist in the result set, record that fact and abort.
1862     */
1863     case SRT_Exists: {
1864       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1865       /* The LIMIT clause will terminate the loop for us */
1866       break;
1867     }
1868 #endif
1869 
1870     /* If this is a scalar select that is part of an expression, then
1871     ** store the results in the appropriate memory cell and break out
1872     ** of the scan loop.
1873     */
1874     case SRT_Mem: {
1875       assert( pIn->nMem==1 );
1876       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1877       /* The LIMIT clause will jump out of the loop for us */
1878       break;
1879     }
1880 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1881 
1882     /* The results are stored in a sequence of registers
1883     ** starting at pDest->iMem.  Then the co-routine yields.
1884     */
1885     case SRT_Coroutine: {
1886       if( pDest->iMem==0 ){
1887         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1888         pDest->nMem = pIn->nMem;
1889       }
1890       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1891       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1892       break;
1893     }
1894 
1895     /* Results are stored in a sequence of registers.  Then the
1896     ** OP_ResultRow opcode is used to cause sqlite3_step() to return
1897     ** the next row of result.
1898     */
1899     case SRT_Output: {
1900       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1901       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1902       break;
1903     }
1904 
1905 #if !defined(SQLITE_OMIT_TRIGGER)
1906     /* Discard the results.  This is used for SELECT statements inside
1907     ** the body of a TRIGGER.  The purpose of such selects is to call
1908     ** user-defined functions that have side effects.  We do not care
1909     ** about the actual results of the select.
1910     */
1911     default: {
1912       break;
1913     }
1914 #endif
1915   }
1916 
1917   /* Jump to the end of the loop if the LIMIT is reached.
1918   */
1919   if( p->iLimit ){
1920     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1921     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1922   }
1923 
1924   /* Generate the subroutine return
1925   */
1926   sqlite3VdbeResolveLabel(v, iContinue);
1927   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1928 
1929   return addr;
1930 }
1931 
1932 /*
1933 ** Alternative compound select code generator for cases when there
1934 ** is an ORDER BY clause.
1935 **
1936 ** We assume a query of the following form:
1937 **
1938 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1939 **
1940 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1941 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1942 ** co-routines.  Then run the co-routines in parallel and merge the results
1943 ** into the output.  In addition to the two coroutines (called selectA and
1944 ** selectB) there are 7 subroutines:
1945 **
1946 **    outA:    Move the output of the selectA coroutine into the output
1947 **             of the compound query.
1948 **
1949 **    outB:    Move the output of the selectB coroutine into the output
1950 **             of the compound query.  (Only generated for UNION and
1951 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1952 **             appears only in B.)
1953 **
1954 **    AltB:    Called when there is data from both coroutines and A<B.
1955 **
1956 **    AeqB:    Called when there is data from both coroutines and A==B.
1957 **
1958 **    AgtB:    Called when there is data from both coroutines and A>B.
1959 **
1960 **    EofA:    Called when data is exhausted from selectA.
1961 **
1962 **    EofB:    Called when data is exhausted from selectB.
1963 **
1964 ** The implementation of the latter five subroutines depend on which
1965 ** <operator> is used:
1966 **
1967 **
1968 **             UNION ALL         UNION            EXCEPT          INTERSECT
1969 **          -------------  -----------------  --------------  -----------------
1970 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1971 **
1972 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1973 **
1974 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1975 **
1976 **   EofA:   outB, nextB      outB, nextB          halt             halt
1977 **
1978 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1979 **
1980 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1981 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1982 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1983 ** following nextX causes a jump to the end of the select processing.
1984 **
1985 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1986 ** within the output subroutine.  The regPrev register set holds the previously
1987 ** output value.  A comparison is made against this value and the output
1988 ** is skipped if the next results would be the same as the previous.
1989 **
1990 ** The implementation plan is to implement the two coroutines and seven
1991 ** subroutines first, then put the control logic at the bottom.  Like this:
1992 **
1993 **          goto Init
1994 **     coA: coroutine for left query (A)
1995 **     coB: coroutine for right query (B)
1996 **    outA: output one row of A
1997 **    outB: output one row of B (UNION and UNION ALL only)
1998 **    EofA: ...
1999 **    EofB: ...
2000 **    AltB: ...
2001 **    AeqB: ...
2002 **    AgtB: ...
2003 **    Init: initialize coroutine registers
2004 **          yield coA
2005 **          if eof(A) goto EofA
2006 **          yield coB
2007 **          if eof(B) goto EofB
2008 **    Cmpr: Compare A, B
2009 **          Jump AltB, AeqB, AgtB
2010 **     End: ...
2011 **
2012 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2013 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2014 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2015 ** and AgtB jump to either L2 or to one of EofA or EofB.
2016 */
2017 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2018 static int multiSelectOrderBy(
2019   Parse *pParse,        /* Parsing context */
2020   Select *p,            /* The right-most of SELECTs to be coded */
2021   SelectDest *pDest     /* What to do with query results */
2022 ){
2023   int i, j;             /* Loop counters */
2024   Select *pPrior;       /* Another SELECT immediately to our left */
2025   Vdbe *v;              /* Generate code to this VDBE */
2026   SelectDest destA;     /* Destination for coroutine A */
2027   SelectDest destB;     /* Destination for coroutine B */
2028   int regAddrA;         /* Address register for select-A coroutine */
2029   int regEofA;          /* Flag to indicate when select-A is complete */
2030   int regAddrB;         /* Address register for select-B coroutine */
2031   int regEofB;          /* Flag to indicate when select-B is complete */
2032   int addrSelectA;      /* Address of the select-A coroutine */
2033   int addrSelectB;      /* Address of the select-B coroutine */
2034   int regOutA;          /* Address register for the output-A subroutine */
2035   int regOutB;          /* Address register for the output-B subroutine */
2036   int addrOutA;         /* Address of the output-A subroutine */
2037   int addrOutB = 0;     /* Address of the output-B subroutine */
2038   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2039   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2040   int addrAltB;         /* Address of the A<B subroutine */
2041   int addrAeqB;         /* Address of the A==B subroutine */
2042   int addrAgtB;         /* Address of the A>B subroutine */
2043   int regLimitA;        /* Limit register for select-A */
2044   int regLimitB;        /* Limit register for select-A */
2045   int regPrev;          /* A range of registers to hold previous output */
2046   int savedLimit;       /* Saved value of p->iLimit */
2047   int savedOffset;      /* Saved value of p->iOffset */
2048   int labelCmpr;        /* Label for the start of the merge algorithm */
2049   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2050   int j1;               /* Jump instructions that get retargetted */
2051   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2052   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2053   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2054   sqlite3 *db;          /* Database connection */
2055   ExprList *pOrderBy;   /* The ORDER BY clause */
2056   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2057   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2058 
2059   assert( p->pOrderBy!=0 );
2060   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2061   db = pParse->db;
2062   v = pParse->pVdbe;
2063   if( v==0 ) return SQLITE_NOMEM;
2064   labelEnd = sqlite3VdbeMakeLabel(v);
2065   labelCmpr = sqlite3VdbeMakeLabel(v);
2066 
2067 
2068   /* Patch up the ORDER BY clause
2069   */
2070   op = p->op;
2071   pPrior = p->pPrior;
2072   assert( pPrior->pOrderBy==0 );
2073   pOrderBy = p->pOrderBy;
2074   assert( pOrderBy );
2075   nOrderBy = pOrderBy->nExpr;
2076 
2077   /* For operators other than UNION ALL we have to make sure that
2078   ** the ORDER BY clause covers every term of the result set.  Add
2079   ** terms to the ORDER BY clause as necessary.
2080   */
2081   if( op!=TK_ALL ){
2082     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2083       struct ExprList_item *pItem;
2084       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2085         assert( pItem->iCol>0 );
2086         if( pItem->iCol==i ) break;
2087       }
2088       if( j==nOrderBy ){
2089         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2090         if( pNew==0 ) return SQLITE_NOMEM;
2091         pNew->flags |= EP_IntValue;
2092         pNew->iTable = i;
2093         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2094         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2095       }
2096     }
2097   }
2098 
2099   /* Compute the comparison permutation and keyinfo that is used with
2100   ** the permutation in order to comparisons to determine if the next
2101   ** row of results comes from selectA or selectB.  Also add explicit
2102   ** collations to the ORDER BY clause terms so that when the subqueries
2103   ** to the right and the left are evaluated, they use the correct
2104   ** collation.
2105   */
2106   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2107   if( aPermute ){
2108     struct ExprList_item *pItem;
2109     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2110       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2111       aPermute[i] = pItem->iCol - 1;
2112     }
2113     pKeyMerge =
2114       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2115     if( pKeyMerge ){
2116       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2117       pKeyMerge->nField = (u16)nOrderBy;
2118       pKeyMerge->enc = ENC(db);
2119       for(i=0; i<nOrderBy; i++){
2120         CollSeq *pColl;
2121         Expr *pTerm = pOrderBy->a[i].pExpr;
2122         if( pTerm->flags & EP_ExpCollate ){
2123           pColl = pTerm->pColl;
2124         }else{
2125           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2126           pTerm->flags |= EP_ExpCollate;
2127           pTerm->pColl = pColl;
2128         }
2129         pKeyMerge->aColl[i] = pColl;
2130         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2131       }
2132     }
2133   }else{
2134     pKeyMerge = 0;
2135   }
2136 
2137   /* Reattach the ORDER BY clause to the query.
2138   */
2139   p->pOrderBy = pOrderBy;
2140   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
2141 
2142   /* Allocate a range of temporary registers and the KeyInfo needed
2143   ** for the logic that removes duplicate result rows when the
2144   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2145   */
2146   if( op==TK_ALL ){
2147     regPrev = 0;
2148   }else{
2149     int nExpr = p->pEList->nExpr;
2150     assert( nOrderBy>=nExpr || db->mallocFailed );
2151     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2152     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2153     pKeyDup = sqlite3DbMallocZero(db,
2154                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2155     if( pKeyDup ){
2156       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2157       pKeyDup->nField = (u16)nExpr;
2158       pKeyDup->enc = ENC(db);
2159       for(i=0; i<nExpr; i++){
2160         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2161         pKeyDup->aSortOrder[i] = 0;
2162       }
2163     }
2164   }
2165 
2166   /* Separate the left and the right query from one another
2167   */
2168   p->pPrior = 0;
2169   pPrior->pRightmost = 0;
2170   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2171   if( pPrior->pPrior==0 ){
2172     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2173   }
2174 
2175   /* Compute the limit registers */
2176   computeLimitRegisters(pParse, p, labelEnd);
2177   if( p->iLimit && op==TK_ALL ){
2178     regLimitA = ++pParse->nMem;
2179     regLimitB = ++pParse->nMem;
2180     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2181                                   regLimitA);
2182     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2183   }else{
2184     regLimitA = regLimitB = 0;
2185   }
2186   sqlite3ExprDelete(db, p->pLimit);
2187   p->pLimit = 0;
2188   sqlite3ExprDelete(db, p->pOffset);
2189   p->pOffset = 0;
2190 
2191   regAddrA = ++pParse->nMem;
2192   regEofA = ++pParse->nMem;
2193   regAddrB = ++pParse->nMem;
2194   regEofB = ++pParse->nMem;
2195   regOutA = ++pParse->nMem;
2196   regOutB = ++pParse->nMem;
2197   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2198   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2199 
2200   /* Jump past the various subroutines and coroutines to the main
2201   ** merge loop
2202   */
2203   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2204   addrSelectA = sqlite3VdbeCurrentAddr(v);
2205 
2206 
2207   /* Generate a coroutine to evaluate the SELECT statement to the
2208   ** left of the compound operator - the "A" select.
2209   */
2210   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2211   pPrior->iLimit = regLimitA;
2212   sqlite3Select(pParse, pPrior, &destA);
2213   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2214   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2215   VdbeNoopComment((v, "End coroutine for left SELECT"));
2216 
2217   /* Generate a coroutine to evaluate the SELECT statement on
2218   ** the right - the "B" select
2219   */
2220   addrSelectB = sqlite3VdbeCurrentAddr(v);
2221   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2222   savedLimit = p->iLimit;
2223   savedOffset = p->iOffset;
2224   p->iLimit = regLimitB;
2225   p->iOffset = 0;
2226   sqlite3Select(pParse, p, &destB);
2227   p->iLimit = savedLimit;
2228   p->iOffset = savedOffset;
2229   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2230   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2231   VdbeNoopComment((v, "End coroutine for right SELECT"));
2232 
2233   /* Generate a subroutine that outputs the current row of the A
2234   ** select as the next output row of the compound select.
2235   */
2236   VdbeNoopComment((v, "Output routine for A"));
2237   addrOutA = generateOutputSubroutine(pParse,
2238                  p, &destA, pDest, regOutA,
2239                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2240 
2241   /* Generate a subroutine that outputs the current row of the B
2242   ** select as the next output row of the compound select.
2243   */
2244   if( op==TK_ALL || op==TK_UNION ){
2245     VdbeNoopComment((v, "Output routine for B"));
2246     addrOutB = generateOutputSubroutine(pParse,
2247                  p, &destB, pDest, regOutB,
2248                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2249   }
2250 
2251   /* Generate a subroutine to run when the results from select A
2252   ** are exhausted and only data in select B remains.
2253   */
2254   VdbeNoopComment((v, "eof-A subroutine"));
2255   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2256     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2257   }else{
2258     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2259     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2260     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2261     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2262   }
2263 
2264   /* Generate a subroutine to run when the results from select B
2265   ** are exhausted and only data in select A remains.
2266   */
2267   if( op==TK_INTERSECT ){
2268     addrEofB = addrEofA;
2269   }else{
2270     VdbeNoopComment((v, "eof-B subroutine"));
2271     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2272     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2273     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2274     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2275   }
2276 
2277   /* Generate code to handle the case of A<B
2278   */
2279   VdbeNoopComment((v, "A-lt-B subroutine"));
2280   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2281   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2282   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2283   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2284 
2285   /* Generate code to handle the case of A==B
2286   */
2287   if( op==TK_ALL ){
2288     addrAeqB = addrAltB;
2289   }else if( op==TK_INTERSECT ){
2290     addrAeqB = addrAltB;
2291     addrAltB++;
2292   }else{
2293     VdbeNoopComment((v, "A-eq-B subroutine"));
2294     addrAeqB =
2295     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2296     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2297     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2298   }
2299 
2300   /* Generate code to handle the case of A>B
2301   */
2302   VdbeNoopComment((v, "A-gt-B subroutine"));
2303   addrAgtB = sqlite3VdbeCurrentAddr(v);
2304   if( op==TK_ALL || op==TK_UNION ){
2305     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2306   }
2307   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2308   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2309   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2310 
2311   /* This code runs once to initialize everything.
2312   */
2313   sqlite3VdbeJumpHere(v, j1);
2314   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2315   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2316   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2317   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2318   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2319   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2320 
2321   /* Implement the main merge loop
2322   */
2323   sqlite3VdbeResolveLabel(v, labelCmpr);
2324   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2325   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2326                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2327   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2328 
2329   /* Release temporary registers
2330   */
2331   if( regPrev ){
2332     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2333   }
2334 
2335   /* Jump to the this point in order to terminate the query.
2336   */
2337   sqlite3VdbeResolveLabel(v, labelEnd);
2338 
2339   /* Set the number of output columns
2340   */
2341   if( pDest->eDest==SRT_Output ){
2342     Select *pFirst = pPrior;
2343     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2344     generateColumnNames(pParse, 0, pFirst->pEList);
2345   }
2346 
2347   /* Reassembly the compound query so that it will be freed correctly
2348   ** by the calling function */
2349   if( p->pPrior ){
2350     sqlite3SelectDelete(db, p->pPrior);
2351   }
2352   p->pPrior = pPrior;
2353 
2354   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2355   **** subqueries ****/
2356   return SQLITE_OK;
2357 }
2358 #endif
2359 
2360 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2361 /* Forward Declarations */
2362 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2363 static void substSelect(sqlite3*, Select *, int, ExprList *);
2364 
2365 /*
2366 ** Scan through the expression pExpr.  Replace every reference to
2367 ** a column in table number iTable with a copy of the iColumn-th
2368 ** entry in pEList.  (But leave references to the ROWID column
2369 ** unchanged.)
2370 **
2371 ** This routine is part of the flattening procedure.  A subquery
2372 ** whose result set is defined by pEList appears as entry in the
2373 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2374 ** FORM clause entry is iTable.  This routine make the necessary
2375 ** changes to pExpr so that it refers directly to the source table
2376 ** of the subquery rather the result set of the subquery.
2377 */
2378 static void substExpr(
2379   sqlite3 *db,        /* Report malloc errors to this connection */
2380   Expr *pExpr,        /* Expr in which substitution occurs */
2381   int iTable,         /* Table to be substituted */
2382   ExprList *pEList    /* Substitute expressions */
2383 ){
2384   if( pExpr==0 ) return;
2385   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2386     if( pExpr->iColumn<0 ){
2387       pExpr->op = TK_NULL;
2388     }else{
2389       Expr *pNew;
2390       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2391       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2392       pNew = pEList->a[pExpr->iColumn].pExpr;
2393       assert( pNew!=0 );
2394       pExpr->op = pNew->op;
2395       assert( pExpr->pLeft==0 );
2396       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2397       assert( pExpr->pRight==0 );
2398       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2399       assert( pExpr->pList==0 );
2400       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2401       pExpr->iTable = pNew->iTable;
2402       pExpr->pTab = pNew->pTab;
2403       pExpr->iColumn = pNew->iColumn;
2404       pExpr->iAgg = pNew->iAgg;
2405       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2406       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2407       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2408       pExpr->flags = pNew->flags;
2409     }
2410   }else{
2411     substExpr(db, pExpr->pLeft, iTable, pEList);
2412     substExpr(db, pExpr->pRight, iTable, pEList);
2413     substSelect(db, pExpr->pSelect, iTable, pEList);
2414     substExprList(db, pExpr->pList, iTable, pEList);
2415   }
2416 }
2417 static void substExprList(
2418   sqlite3 *db,         /* Report malloc errors here */
2419   ExprList *pList,     /* List to scan and in which to make substitutes */
2420   int iTable,          /* Table to be substituted */
2421   ExprList *pEList     /* Substitute values */
2422 ){
2423   int i;
2424   if( pList==0 ) return;
2425   for(i=0; i<pList->nExpr; i++){
2426     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2427   }
2428 }
2429 static void substSelect(
2430   sqlite3 *db,         /* Report malloc errors here */
2431   Select *p,           /* SELECT statement in which to make substitutions */
2432   int iTable,          /* Table to be replaced */
2433   ExprList *pEList     /* Substitute values */
2434 ){
2435   SrcList *pSrc;
2436   struct SrcList_item *pItem;
2437   int i;
2438   if( !p ) return;
2439   substExprList(db, p->pEList, iTable, pEList);
2440   substExprList(db, p->pGroupBy, iTable, pEList);
2441   substExprList(db, p->pOrderBy, iTable, pEList);
2442   substExpr(db, p->pHaving, iTable, pEList);
2443   substExpr(db, p->pWhere, iTable, pEList);
2444   substSelect(db, p->pPrior, iTable, pEList);
2445   pSrc = p->pSrc;
2446   if( pSrc ){
2447     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2448       substSelect(db, pItem->pSelect, iTable, pEList);
2449     }
2450   }
2451 }
2452 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2453 
2454 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2455 /*
2456 ** This routine attempts to flatten subqueries in order to speed
2457 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2458 ** occurs.
2459 **
2460 ** To understand the concept of flattening, consider the following
2461 ** query:
2462 **
2463 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2464 **
2465 ** The default way of implementing this query is to execute the
2466 ** subquery first and store the results in a temporary table, then
2467 ** run the outer query on that temporary table.  This requires two
2468 ** passes over the data.  Furthermore, because the temporary table
2469 ** has no indices, the WHERE clause on the outer query cannot be
2470 ** optimized.
2471 **
2472 ** This routine attempts to rewrite queries such as the above into
2473 ** a single flat select, like this:
2474 **
2475 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2476 **
2477 ** The code generated for this simpification gives the same result
2478 ** but only has to scan the data once.  And because indices might
2479 ** exist on the table t1, a complete scan of the data might be
2480 ** avoided.
2481 **
2482 ** Flattening is only attempted if all of the following are true:
2483 **
2484 **   (1)  The subquery and the outer query do not both use aggregates.
2485 **
2486 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2487 **
2488 **   (3)  The subquery is not the right operand of a left outer join
2489 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2490 **
2491 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2492 **
2493 **   (5)  The subquery is not DISTINCT or the outer query does not use
2494 **        aggregates.
2495 **
2496 **   (6)  The subquery does not use aggregates or the outer query is not
2497 **        DISTINCT.
2498 **
2499 **   (7)  The subquery has a FROM clause.
2500 **
2501 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2502 **
2503 **   (9)  The subquery does not use LIMIT or the outer query does not use
2504 **        aggregates.
2505 **
2506 **  (10)  The subquery does not use aggregates or the outer query does not
2507 **        use LIMIT.
2508 **
2509 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2510 **
2511 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2512 **        a separate restriction deriving from ticket #350.
2513 **
2514 **  (13)  The subquery and outer query do not both use LIMIT
2515 **
2516 **  (14)  The subquery does not use OFFSET
2517 **
2518 **  (15)  The outer query is not part of a compound select or the
2519 **        subquery does not have both an ORDER BY and a LIMIT clause.
2520 **        (See ticket #2339)
2521 **
2522 **  (16)  The outer query is not an aggregate or the subquery does
2523 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2524 **        until we introduced the group_concat() function.
2525 **
2526 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2527 **        compound clause made up entirely of non-aggregate queries, and
2528 **        the parent query:
2529 **
2530 **          * is not itself part of a compound select,
2531 **          * is not an aggregate or DISTINCT query, and
2532 **          * has no other tables or sub-selects in the FROM clause.
2533 **
2534 **        The parent and sub-query may contain WHERE clauses. Subject to
2535 **        rules (11), (13) and (14), they may also contain ORDER BY,
2536 **        LIMIT and OFFSET clauses.
2537 **
2538 **  (18)  If the sub-query is a compound select, then all terms of the
2539 **        ORDER by clause of the parent must be simple references to
2540 **        columns of the sub-query.
2541 **
2542 **  (19)  The subquery does not use LIMIT or the outer query does not
2543 **        have a WHERE clause.
2544 **
2545 ** In this routine, the "p" parameter is a pointer to the outer query.
2546 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2547 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2548 **
2549 ** If flattening is not attempted, this routine is a no-op and returns 0.
2550 ** If flattening is attempted this routine returns 1.
2551 **
2552 ** All of the expression analysis must occur on both the outer query and
2553 ** the subquery before this routine runs.
2554 */
2555 static int flattenSubquery(
2556   Parse *pParse,       /* Parsing context */
2557   Select *p,           /* The parent or outer SELECT statement */
2558   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2559   int isAgg,           /* True if outer SELECT uses aggregate functions */
2560   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2561 ){
2562   const char *zSavedAuthContext = pParse->zAuthContext;
2563   Select *pParent;
2564   Select *pSub;       /* The inner query or "subquery" */
2565   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2566   SrcList *pSrc;      /* The FROM clause of the outer query */
2567   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2568   ExprList *pList;    /* The result set of the outer query */
2569   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2570   int i;              /* Loop counter */
2571   Expr *pWhere;                    /* The WHERE clause */
2572   struct SrcList_item *pSubitem;   /* The subquery */
2573   sqlite3 *db = pParse->db;
2574 
2575   /* Check to see if flattening is permitted.  Return 0 if not.
2576   */
2577   assert( p!=0 );
2578   if( p==0 ) return 0;
2579   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2580   pSrc = p->pSrc;
2581   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2582   pSubitem = &pSrc->a[iFrom];
2583   iParent = pSubitem->iCursor;
2584   pSub = pSubitem->pSelect;
2585   assert( pSub!=0 );
2586   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2587   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2588   pSubSrc = pSub->pSrc;
2589   assert( pSubSrc );
2590   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2591   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2592   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2593   ** became arbitrary expressions, we were forced to add restrictions (13)
2594   ** and (14). */
2595   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2596   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2597   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2598     return 0;                                            /* Restriction (15) */
2599   }
2600   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2601   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2602          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2603      return 0;
2604   }
2605   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2606      return 0;         /* Restriction (6)  */
2607   }
2608   if( p->pOrderBy && pSub->pOrderBy ){
2609      return 0;                                           /* Restriction (11) */
2610   }
2611   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2612   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2613 
2614   /* OBSOLETE COMMENT 1:
2615   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2616   ** not used as the right operand of an outer join.  Examples of why this
2617   ** is not allowed:
2618   **
2619   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2620   **
2621   ** If we flatten the above, we would get
2622   **
2623   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2624   **
2625   ** which is not at all the same thing.
2626   **
2627   ** OBSOLETE COMMENT 2:
2628   ** Restriction 12:  If the subquery is the right operand of a left outer
2629   ** join, make sure the subquery has no WHERE clause.
2630   ** An examples of why this is not allowed:
2631   **
2632   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2633   **
2634   ** If we flatten the above, we would get
2635   **
2636   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2637   **
2638   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2639   ** effectively converts the OUTER JOIN into an INNER JOIN.
2640   **
2641   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2642   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2643   ** is fraught with danger.  Best to avoid the whole thing.  If the
2644   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2645   */
2646   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2647     return 0;
2648   }
2649 
2650   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2651   ** use only the UNION ALL operator. And none of the simple select queries
2652   ** that make up the compound SELECT are allowed to be aggregate or distinct
2653   ** queries.
2654   */
2655   if( pSub->pPrior ){
2656     if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2657       return 0;
2658     }
2659     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2660       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2661        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2662        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
2663       ){
2664         return 0;
2665       }
2666     }
2667 
2668     /* Restriction 18. */
2669     if( p->pOrderBy ){
2670       int ii;
2671       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2672         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2673       }
2674     }
2675   }
2676 
2677   /***** If we reach this point, flattening is permitted. *****/
2678 
2679   /* Authorize the subquery */
2680   pParse->zAuthContext = pSubitem->zName;
2681   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2682   pParse->zAuthContext = zSavedAuthContext;
2683 
2684   /* If the sub-query is a compound SELECT statement, then (by restrictions
2685   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2686   ** be of the form:
2687   **
2688   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2689   **
2690   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2691   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2692   ** OFFSET clauses and joins them to the left-hand-side of the original
2693   ** using UNION ALL operators. In this case N is the number of simple
2694   ** select statements in the compound sub-query.
2695   **
2696   ** Example:
2697   **
2698   **     SELECT a+1 FROM (
2699   **        SELECT x FROM tab
2700   **        UNION ALL
2701   **        SELECT y FROM tab
2702   **        UNION ALL
2703   **        SELECT abs(z*2) FROM tab2
2704   **     ) WHERE a!=5 ORDER BY 1
2705   **
2706   ** Transformed into:
2707   **
2708   **     SELECT x+1 FROM tab WHERE x+1!=5
2709   **     UNION ALL
2710   **     SELECT y+1 FROM tab WHERE y+1!=5
2711   **     UNION ALL
2712   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2713   **     ORDER BY 1
2714   **
2715   ** We call this the "compound-subquery flattening".
2716   */
2717   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2718     Select *pNew;
2719     ExprList *pOrderBy = p->pOrderBy;
2720     Expr *pLimit = p->pLimit;
2721     Select *pPrior = p->pPrior;
2722     p->pOrderBy = 0;
2723     p->pSrc = 0;
2724     p->pPrior = 0;
2725     p->pLimit = 0;
2726     pNew = sqlite3SelectDup(db, p);
2727     p->pLimit = pLimit;
2728     p->pOrderBy = pOrderBy;
2729     p->pSrc = pSrc;
2730     p->op = TK_ALL;
2731     p->pRightmost = 0;
2732     if( pNew==0 ){
2733       pNew = pPrior;
2734     }else{
2735       pNew->pPrior = pPrior;
2736       pNew->pRightmost = 0;
2737     }
2738     p->pPrior = pNew;
2739     if( db->mallocFailed ) return 1;
2740   }
2741 
2742   /* Begin flattening the iFrom-th entry of the FROM clause
2743   ** in the outer query.
2744   */
2745   pSub = pSub1 = pSubitem->pSelect;
2746 
2747   /* Delete the transient table structure associated with the
2748   ** subquery
2749   */
2750   sqlite3DbFree(db, pSubitem->zDatabase);
2751   sqlite3DbFree(db, pSubitem->zName);
2752   sqlite3DbFree(db, pSubitem->zAlias);
2753   pSubitem->zDatabase = 0;
2754   pSubitem->zName = 0;
2755   pSubitem->zAlias = 0;
2756   pSubitem->pSelect = 0;
2757 
2758   /* Defer deleting the Table object associated with the
2759   ** subquery until code generation is
2760   ** complete, since there may still exist Expr.pTab entries that
2761   ** refer to the subquery even after flattening.  Ticket #3346.
2762   */
2763   if( pSubitem->pTab!=0 ){
2764     Table *pTabToDel = pSubitem->pTab;
2765     if( pTabToDel->nRef==1 ){
2766       pTabToDel->pNextZombie = pParse->pZombieTab;
2767       pParse->pZombieTab = pTabToDel;
2768     }else{
2769       pTabToDel->nRef--;
2770     }
2771     pSubitem->pTab = 0;
2772   }
2773 
2774   /* The following loop runs once for each term in a compound-subquery
2775   ** flattening (as described above).  If we are doing a different kind
2776   ** of flattening - a flattening other than a compound-subquery flattening -
2777   ** then this loop only runs once.
2778   **
2779   ** This loop moves all of the FROM elements of the subquery into the
2780   ** the FROM clause of the outer query.  Before doing this, remember
2781   ** the cursor number for the original outer query FROM element in
2782   ** iParent.  The iParent cursor will never be used.  Subsequent code
2783   ** will scan expressions looking for iParent references and replace
2784   ** those references with expressions that resolve to the subquery FROM
2785   ** elements we are now copying in.
2786   */
2787   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2788     int nSubSrc;
2789     u8 jointype = 0;
2790     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2791     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2792     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2793 
2794     if( pSrc ){
2795       assert( pParent==p );  /* First time through the loop */
2796       jointype = pSubitem->jointype;
2797     }else{
2798       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2799       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2800       if( pSrc==0 ){
2801         assert( db->mallocFailed );
2802         break;
2803       }
2804     }
2805 
2806     /* The subquery uses a single slot of the FROM clause of the outer
2807     ** query.  If the subquery has more than one element in its FROM clause,
2808     ** then expand the outer query to make space for it to hold all elements
2809     ** of the subquery.
2810     **
2811     ** Example:
2812     **
2813     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2814     **
2815     ** The outer query has 3 slots in its FROM clause.  One slot of the
2816     ** outer query (the middle slot) is used by the subquery.  The next
2817     ** block of code will expand the out query to 4 slots.  The middle
2818     ** slot is expanded to two slots in order to make space for the
2819     ** two elements in the FROM clause of the subquery.
2820     */
2821     if( nSubSrc>1 ){
2822       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2823       if( db->mallocFailed ){
2824         break;
2825       }
2826     }
2827 
2828     /* Transfer the FROM clause terms from the subquery into the
2829     ** outer query.
2830     */
2831     for(i=0; i<nSubSrc; i++){
2832       pSrc->a[i+iFrom] = pSubSrc->a[i];
2833       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2834     }
2835     pSrc->a[iFrom].jointype = jointype;
2836 
2837     /* Now begin substituting subquery result set expressions for
2838     ** references to the iParent in the outer query.
2839     **
2840     ** Example:
2841     **
2842     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2843     **   \                     \_____________ subquery __________/          /
2844     **    \_____________________ outer query ______________________________/
2845     **
2846     ** We look at every expression in the outer query and every place we see
2847     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2848     */
2849     pList = pParent->pEList;
2850     for(i=0; i<pList->nExpr; i++){
2851       Expr *pExpr;
2852       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2853         pList->a[i].zName =
2854                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2855       }
2856     }
2857     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2858     if( isAgg ){
2859       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2860       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2861     }
2862     if( pSub->pOrderBy ){
2863       assert( pParent->pOrderBy==0 );
2864       pParent->pOrderBy = pSub->pOrderBy;
2865       pSub->pOrderBy = 0;
2866     }else if( pParent->pOrderBy ){
2867       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2868     }
2869     if( pSub->pWhere ){
2870       pWhere = sqlite3ExprDup(db, pSub->pWhere);
2871     }else{
2872       pWhere = 0;
2873     }
2874     if( subqueryIsAgg ){
2875       assert( pParent->pHaving==0 );
2876       pParent->pHaving = pParent->pWhere;
2877       pParent->pWhere = pWhere;
2878       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2879       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2880                                   sqlite3ExprDup(db, pSub->pHaving));
2881       assert( pParent->pGroupBy==0 );
2882       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
2883     }else{
2884       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2885       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2886     }
2887 
2888     /* The flattened query is distinct if either the inner or the
2889     ** outer query is distinct.
2890     */
2891     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2892 
2893     /*
2894     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2895     **
2896     ** One is tempted to try to add a and b to combine the limits.  But this
2897     ** does not work if either limit is negative.
2898     */
2899     if( pSub->pLimit ){
2900       pParent->pLimit = pSub->pLimit;
2901       pSub->pLimit = 0;
2902     }
2903   }
2904 
2905   /* Finially, delete what is left of the subquery and return
2906   ** success.
2907   */
2908   sqlite3SelectDelete(db, pSub1);
2909 
2910   return 1;
2911 }
2912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2913 
2914 /*
2915 ** Analyze the SELECT statement passed as an argument to see if it
2916 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2917 ** it is, or 0 otherwise. At present, a query is considered to be
2918 ** a min()/max() query if:
2919 **
2920 **   1. There is a single object in the FROM clause.
2921 **
2922 **   2. There is a single expression in the result set, and it is
2923 **      either min(x) or max(x), where x is a column reference.
2924 */
2925 static u8 minMaxQuery(Select *p){
2926   Expr *pExpr;
2927   ExprList *pEList = p->pEList;
2928 
2929   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2930   pExpr = pEList->a[0].pExpr;
2931   pEList = pExpr->pList;
2932   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
2933   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2934   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
2935   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2936     return WHERE_ORDERBY_MIN;
2937   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2938     return WHERE_ORDERBY_MAX;
2939   }
2940   return WHERE_ORDERBY_NORMAL;
2941 }
2942 
2943 /*
2944 ** If the source-list item passed as an argument was augmented with an
2945 ** INDEXED BY clause, then try to locate the specified index. If there
2946 ** was such a clause and the named index cannot be found, return
2947 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
2948 ** pFrom->pIndex and return SQLITE_OK.
2949 */
2950 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
2951   if( pFrom->pTab && pFrom->zIndex ){
2952     Table *pTab = pFrom->pTab;
2953     char *zIndex = pFrom->zIndex;
2954     Index *pIdx;
2955     for(pIdx=pTab->pIndex;
2956         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
2957         pIdx=pIdx->pNext
2958     );
2959     if( !pIdx ){
2960       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
2961       return SQLITE_ERROR;
2962     }
2963     pFrom->pIndex = pIdx;
2964   }
2965   return SQLITE_OK;
2966 }
2967 
2968 /*
2969 ** This routine is a Walker callback for "expanding" a SELECT statement.
2970 ** "Expanding" means to do the following:
2971 **
2972 **    (1)  Make sure VDBE cursor numbers have been assigned to every
2973 **         element of the FROM clause.
2974 **
2975 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
2976 **         defines FROM clause.  When views appear in the FROM clause,
2977 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
2978 **         that implements the view.  A copy is made of the view's SELECT
2979 **         statement so that we can freely modify or delete that statement
2980 **         without worrying about messing up the presistent representation
2981 **         of the view.
2982 **
2983 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
2984 **         on joins and the ON and USING clause of joins.
2985 **
2986 **    (4)  Scan the list of columns in the result set (pEList) looking
2987 **         for instances of the "*" operator or the TABLE.* operator.
2988 **         If found, expand each "*" to be every column in every table
2989 **         and TABLE.* to be every column in TABLE.
2990 **
2991 */
2992 static int selectExpander(Walker *pWalker, Select *p){
2993   Parse *pParse = pWalker->pParse;
2994   int i, j, k;
2995   SrcList *pTabList;
2996   ExprList *pEList;
2997   struct SrcList_item *pFrom;
2998   sqlite3 *db = pParse->db;
2999 
3000   if( db->mallocFailed  ){
3001     return WRC_Abort;
3002   }
3003   if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
3004     return WRC_Prune;
3005   }
3006   p->selFlags |= SF_Expanded;
3007   pTabList = p->pSrc;
3008   pEList = p->pEList;
3009 
3010   /* Make sure cursor numbers have been assigned to all entries in
3011   ** the FROM clause of the SELECT statement.
3012   */
3013   sqlite3SrcListAssignCursors(pParse, pTabList);
3014 
3015   /* Look up every table named in the FROM clause of the select.  If
3016   ** an entry of the FROM clause is a subquery instead of a table or view,
3017   ** then create a transient table structure to describe the subquery.
3018   */
3019   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3020     Table *pTab;
3021     if( pFrom->pTab!=0 ){
3022       /* This statement has already been prepared.  There is no need
3023       ** to go further. */
3024       assert( i==0 );
3025       return WRC_Prune;
3026     }
3027     if( pFrom->zName==0 ){
3028 #ifndef SQLITE_OMIT_SUBQUERY
3029       Select *pSel = pFrom->pSelect;
3030       /* A sub-query in the FROM clause of a SELECT */
3031       assert( pSel!=0 );
3032       assert( pFrom->pTab==0 );
3033       sqlite3WalkSelect(pWalker, pSel);
3034       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3035       if( pTab==0 ) return WRC_Abort;
3036       pTab->db = db;
3037       pTab->nRef = 1;
3038       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3039       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3040       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3041       pTab->iPKey = -1;
3042       pTab->tabFlags |= TF_Ephemeral;
3043 #endif
3044     }else{
3045       /* An ordinary table or view name in the FROM clause */
3046       assert( pFrom->pTab==0 );
3047       pFrom->pTab = pTab =
3048         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3049       if( pTab==0 ) return WRC_Abort;
3050       pTab->nRef++;
3051 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3052       if( pTab->pSelect || IsVirtual(pTab) ){
3053         /* We reach here if the named table is a really a view */
3054         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3055 
3056         /* If pFrom->pSelect!=0 it means we are dealing with a
3057         ** view within a view.  The SELECT structure has already been
3058         ** copied by the outer view so we can skip the copy step here
3059         ** in the inner view.
3060         */
3061         if( pFrom->pSelect==0 ){
3062           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
3063           sqlite3WalkSelect(pWalker, pFrom->pSelect);
3064         }
3065       }
3066 #endif
3067     }
3068 
3069     /* Locate the index named by the INDEXED BY clause, if any. */
3070     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3071       return WRC_Abort;
3072     }
3073   }
3074 
3075   /* Process NATURAL keywords, and ON and USING clauses of joins.
3076   */
3077   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3078     return WRC_Abort;
3079   }
3080 
3081   /* For every "*" that occurs in the column list, insert the names of
3082   ** all columns in all tables.  And for every TABLE.* insert the names
3083   ** of all columns in TABLE.  The parser inserted a special expression
3084   ** with the TK_ALL operator for each "*" that it found in the column list.
3085   ** The following code just has to locate the TK_ALL expressions and expand
3086   ** each one to the list of all columns in all tables.
3087   **
3088   ** The first loop just checks to see if there are any "*" operators
3089   ** that need expanding.
3090   */
3091   for(k=0; k<pEList->nExpr; k++){
3092     Expr *pE = pEList->a[k].pExpr;
3093     if( pE->op==TK_ALL ) break;
3094     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
3095          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
3096   }
3097   if( k<pEList->nExpr ){
3098     /*
3099     ** If we get here it means the result set contains one or more "*"
3100     ** operators that need to be expanded.  Loop through each expression
3101     ** in the result set and expand them one by one.
3102     */
3103     struct ExprList_item *a = pEList->a;
3104     ExprList *pNew = 0;
3105     int flags = pParse->db->flags;
3106     int longNames = (flags & SQLITE_FullColNames)!=0
3107                       && (flags & SQLITE_ShortColNames)==0;
3108 
3109     for(k=0; k<pEList->nExpr; k++){
3110       Expr *pE = a[k].pExpr;
3111       if( pE->op!=TK_ALL &&
3112            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
3113         /* This particular expression does not need to be expanded.
3114         */
3115         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
3116         if( pNew ){
3117           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3118         }
3119         a[k].pExpr = 0;
3120         a[k].zName = 0;
3121       }else{
3122         /* This expression is a "*" or a "TABLE.*" and needs to be
3123         ** expanded. */
3124         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3125         char *zTName;            /* text of name of TABLE */
3126         if( pE->op==TK_DOT && pE->pLeft ){
3127           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
3128         }else{
3129           zTName = 0;
3130         }
3131         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3132           Table *pTab = pFrom->pTab;
3133           char *zTabName = pFrom->zAlias;
3134           if( zTabName==0 || zTabName[0]==0 ){
3135             zTabName = pTab->zName;
3136           }
3137           if( db->mallocFailed ) break;
3138           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3139             continue;
3140           }
3141           tableSeen = 1;
3142           for(j=0; j<pTab->nCol; j++){
3143             Expr *pExpr, *pRight;
3144             char *zName = pTab->aCol[j].zName;
3145 
3146             /* If a column is marked as 'hidden' (currently only possible
3147             ** for virtual tables), do not include it in the expanded
3148             ** result-set list.
3149             */
3150             if( IsHiddenColumn(&pTab->aCol[j]) ){
3151               assert(IsVirtual(pTab));
3152               continue;
3153             }
3154 
3155             if( i>0 && zTName==0 ){
3156               struct SrcList_item *pLeft = &pTabList->a[i-1];
3157               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3158                         columnIndex(pLeft->pTab, zName)>=0 ){
3159                 /* In a NATURAL join, omit the join columns from the
3160                 ** table on the right */
3161                 continue;
3162               }
3163               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3164                 /* In a join with a USING clause, omit columns in the
3165                 ** using clause from the table on the right. */
3166                 continue;
3167               }
3168             }
3169             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3170             if( pRight==0 ) break;
3171             setQuotedToken(pParse, &pRight->token, zName);
3172             if( longNames || pTabList->nSrc>1 ){
3173               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3174               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3175               if( pExpr==0 ) break;
3176               setQuotedToken(pParse, &pLeft->token, zTabName);
3177               setToken(&pExpr->span,
3178                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
3179               pExpr->span.dyn = 1;
3180               pExpr->token.z = 0;
3181               pExpr->token.n = 0;
3182               pExpr->token.dyn = 0;
3183             }else{
3184               pExpr = pRight;
3185               pExpr->span = pExpr->token;
3186               pExpr->span.dyn = 0;
3187             }
3188             if( longNames ){
3189               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
3190             }else{
3191               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
3192             }
3193           }
3194         }
3195         if( !tableSeen ){
3196           if( zTName ){
3197             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3198           }else{
3199             sqlite3ErrorMsg(pParse, "no tables specified");
3200           }
3201         }
3202         sqlite3DbFree(db, zTName);
3203       }
3204     }
3205     sqlite3ExprListDelete(db, pEList);
3206     p->pEList = pNew;
3207   }
3208 #if SQLITE_MAX_COLUMN
3209   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3210     sqlite3ErrorMsg(pParse, "too many columns in result set");
3211   }
3212 #endif
3213   return WRC_Continue;
3214 }
3215 
3216 /*
3217 ** No-op routine for the parse-tree walker.
3218 **
3219 ** When this routine is the Walker.xExprCallback then expression trees
3220 ** are walked without any actions being taken at each node.  Presumably,
3221 ** when this routine is used for Walker.xExprCallback then
3222 ** Walker.xSelectCallback is set to do something useful for every
3223 ** subquery in the parser tree.
3224 */
3225 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3226   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3227   return WRC_Continue;
3228 }
3229 
3230 /*
3231 ** This routine "expands" a SELECT statement and all of its subqueries.
3232 ** For additional information on what it means to "expand" a SELECT
3233 ** statement, see the comment on the selectExpand worker callback above.
3234 **
3235 ** Expanding a SELECT statement is the first step in processing a
3236 ** SELECT statement.  The SELECT statement must be expanded before
3237 ** name resolution is performed.
3238 **
3239 ** If anything goes wrong, an error message is written into pParse.
3240 ** The calling function can detect the problem by looking at pParse->nErr
3241 ** and/or pParse->db->mallocFailed.
3242 */
3243 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3244   Walker w;
3245   w.xSelectCallback = selectExpander;
3246   w.xExprCallback = exprWalkNoop;
3247   w.pParse = pParse;
3248   sqlite3WalkSelect(&w, pSelect);
3249 }
3250 
3251 
3252 #ifndef SQLITE_OMIT_SUBQUERY
3253 /*
3254 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3255 ** interface.
3256 **
3257 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3258 ** information to the Table structure that represents the result set
3259 ** of that subquery.
3260 **
3261 ** The Table structure that represents the result set was constructed
3262 ** by selectExpander() but the type and collation information was omitted
3263 ** at that point because identifiers had not yet been resolved.  This
3264 ** routine is called after identifier resolution.
3265 */
3266 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3267   Parse *pParse;
3268   int i;
3269   SrcList *pTabList;
3270   struct SrcList_item *pFrom;
3271 
3272   assert( p->selFlags & SF_Resolved );
3273   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3274     p->selFlags |= SF_HasTypeInfo;
3275     pParse = pWalker->pParse;
3276     pTabList = p->pSrc;
3277     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3278       Table *pTab = pFrom->pTab;
3279       if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3280         /* A sub-query in the FROM clause of a SELECT */
3281         Select *pSel = pFrom->pSelect;
3282         assert( pSel );
3283         while( pSel->pPrior ) pSel = pSel->pPrior;
3284         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3285       }
3286     }
3287   }
3288   return WRC_Continue;
3289 }
3290 #endif
3291 
3292 
3293 /*
3294 ** This routine adds datatype and collating sequence information to
3295 ** the Table structures of all FROM-clause subqueries in a
3296 ** SELECT statement.
3297 **
3298 ** Use this routine after name resolution.
3299 */
3300 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3301 #ifndef SQLITE_OMIT_SUBQUERY
3302   Walker w;
3303   w.xSelectCallback = selectAddSubqueryTypeInfo;
3304   w.xExprCallback = exprWalkNoop;
3305   w.pParse = pParse;
3306   sqlite3WalkSelect(&w, pSelect);
3307 #endif
3308 }
3309 
3310 
3311 /*
3312 ** This routine sets of a SELECT statement for processing.  The
3313 ** following is accomplished:
3314 **
3315 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3316 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3317 **     *  ON and USING clauses are shifted into WHERE statements
3318 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3319 **     *  Identifiers in expression are matched to tables.
3320 **
3321 ** This routine acts recursively on all subqueries within the SELECT.
3322 */
3323 void sqlite3SelectPrep(
3324   Parse *pParse,         /* The parser context */
3325   Select *p,             /* The SELECT statement being coded. */
3326   NameContext *pOuterNC  /* Name context for container */
3327 ){
3328   sqlite3 *db;
3329   if( p==0 ) return;
3330   db = pParse->db;
3331   if( p->selFlags & SF_HasTypeInfo ) return;
3332   if( pParse->nErr || db->mallocFailed ) return;
3333   sqlite3SelectExpand(pParse, p);
3334   if( pParse->nErr || db->mallocFailed ) return;
3335   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3336   if( pParse->nErr || db->mallocFailed ) return;
3337   sqlite3SelectAddTypeInfo(pParse, p);
3338 }
3339 
3340 /*
3341 ** Reset the aggregate accumulator.
3342 **
3343 ** The aggregate accumulator is a set of memory cells that hold
3344 ** intermediate results while calculating an aggregate.  This
3345 ** routine simply stores NULLs in all of those memory cells.
3346 */
3347 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3348   Vdbe *v = pParse->pVdbe;
3349   int i;
3350   struct AggInfo_func *pFunc;
3351   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3352     return;
3353   }
3354   for(i=0; i<pAggInfo->nColumn; i++){
3355     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3356   }
3357   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3358     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3359     if( pFunc->iDistinct>=0 ){
3360       Expr *pE = pFunc->pExpr;
3361       if( pE->pList==0 || pE->pList->nExpr!=1 ){
3362         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
3363            "by an expression");
3364         pFunc->iDistinct = -1;
3365       }else{
3366         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
3367         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3368                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3369       }
3370     }
3371   }
3372 }
3373 
3374 /*
3375 ** Invoke the OP_AggFinalize opcode for every aggregate function
3376 ** in the AggInfo structure.
3377 */
3378 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3379   Vdbe *v = pParse->pVdbe;
3380   int i;
3381   struct AggInfo_func *pF;
3382   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3383     ExprList *pList = pF->pExpr->pList;
3384     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3385                       (void*)pF->pFunc, P4_FUNCDEF);
3386   }
3387 }
3388 
3389 /*
3390 ** Update the accumulator memory cells for an aggregate based on
3391 ** the current cursor position.
3392 */
3393 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3394   Vdbe *v = pParse->pVdbe;
3395   int i;
3396   struct AggInfo_func *pF;
3397   struct AggInfo_col *pC;
3398 
3399   pAggInfo->directMode = 1;
3400   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3401     int nArg;
3402     int addrNext = 0;
3403     int regAgg;
3404     ExprList *pList = pF->pExpr->pList;
3405     if( pList ){
3406       nArg = pList->nExpr;
3407       regAgg = sqlite3GetTempRange(pParse, nArg);
3408       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3409     }else{
3410       nArg = 0;
3411       regAgg = 0;
3412     }
3413     if( pF->iDistinct>=0 ){
3414       addrNext = sqlite3VdbeMakeLabel(v);
3415       assert( nArg==1 );
3416       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3417     }
3418     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3419       CollSeq *pColl = 0;
3420       struct ExprList_item *pItem;
3421       int j;
3422       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3423       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3424         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3425       }
3426       if( !pColl ){
3427         pColl = pParse->db->pDfltColl;
3428       }
3429       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3430     }
3431     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3432                       (void*)pF->pFunc, P4_FUNCDEF);
3433     sqlite3VdbeChangeP5(v, (u8)nArg);
3434     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3435     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3436     if( addrNext ){
3437       sqlite3VdbeResolveLabel(v, addrNext);
3438     }
3439   }
3440   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3441     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3442   }
3443   pAggInfo->directMode = 0;
3444 }
3445 
3446 /*
3447 ** Generate code for the SELECT statement given in the p argument.
3448 **
3449 ** The results are distributed in various ways depending on the
3450 ** contents of the SelectDest structure pointed to by argument pDest
3451 ** as follows:
3452 **
3453 **     pDest->eDest    Result
3454 **     ------------    -------------------------------------------
3455 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3456 **                     opcode) for each row in the result set.
3457 **
3458 **     SRT_Mem         Only valid if the result is a single column.
3459 **                     Store the first column of the first result row
3460 **                     in register pDest->iParm then abandon the rest
3461 **                     of the query.  This destination implies "LIMIT 1".
3462 **
3463 **     SRT_Set         The result must be a single column.  Store each
3464 **                     row of result as the key in table pDest->iParm.
3465 **                     Apply the affinity pDest->affinity before storing
3466 **                     results.  Used to implement "IN (SELECT ...)".
3467 **
3468 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3469 **
3470 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3471 **
3472 **     SRT_Table       Store results in temporary table pDest->iParm.
3473 **                     This is like SRT_EphemTab except that the table
3474 **                     is assumed to already be open.
3475 **
3476 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3477 **                     the result there. The cursor is left open after
3478 **                     returning.  This is like SRT_Table except that
3479 **                     this destination uses OP_OpenEphemeral to create
3480 **                     the table first.
3481 **
3482 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3483 **                     results each time it is invoked.  The entry point
3484 **                     of the co-routine is stored in register pDest->iParm.
3485 **
3486 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3487 **                     set is not empty.
3488 **
3489 **     SRT_Discard     Throw the results away.  This is used by SELECT
3490 **                     statements within triggers whose only purpose is
3491 **                     the side-effects of functions.
3492 **
3493 ** This routine returns the number of errors.  If any errors are
3494 ** encountered, then an appropriate error message is left in
3495 ** pParse->zErrMsg.
3496 **
3497 ** This routine does NOT free the Select structure passed in.  The
3498 ** calling function needs to do that.
3499 */
3500 int sqlite3Select(
3501   Parse *pParse,         /* The parser context */
3502   Select *p,             /* The SELECT statement being coded. */
3503   SelectDest *pDest      /* What to do with the query results */
3504 ){
3505   int i, j;              /* Loop counters */
3506   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3507   Vdbe *v;               /* The virtual machine under construction */
3508   int isAgg;             /* True for select lists like "count(*)" */
3509   ExprList *pEList;      /* List of columns to extract. */
3510   SrcList *pTabList;     /* List of tables to select from */
3511   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3512   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3513   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3514   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3515   int isDistinct;        /* True if the DISTINCT keyword is present */
3516   int distinct;          /* Table to use for the distinct set */
3517   int rc = 1;            /* Value to return from this function */
3518   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3519   AggInfo sAggInfo;      /* Information used by aggregate queries */
3520   int iEnd;              /* Address of the end of the query */
3521   sqlite3 *db;           /* The database connection */
3522 
3523   db = pParse->db;
3524   if( p==0 || db->mallocFailed || pParse->nErr ){
3525     return 1;
3526   }
3527   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3528   memset(&sAggInfo, 0, sizeof(sAggInfo));
3529 
3530   pOrderBy = p->pOrderBy;
3531   if( IgnorableOrderby(pDest) ){
3532     p->pOrderBy = 0;
3533 
3534     /* In these cases the DISTINCT operator makes no difference to the
3535     ** results, so remove it if it were specified.
3536     */
3537     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3538            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3539     p->selFlags &= ~SF_Distinct;
3540   }
3541   sqlite3SelectPrep(pParse, p, 0);
3542   pTabList = p->pSrc;
3543   pEList = p->pEList;
3544   if( pParse->nErr || db->mallocFailed ){
3545     goto select_end;
3546   }
3547   p->pOrderBy = pOrderBy;
3548   isAgg = (p->selFlags & SF_Aggregate)!=0;
3549   if( pEList==0 ) goto select_end;
3550 
3551   /*
3552   ** Do not even attempt to generate any code if we have already seen
3553   ** errors before this routine starts.
3554   */
3555   if( pParse->nErr>0 ) goto select_end;
3556 
3557   /* ORDER BY is ignored for some destinations.
3558   */
3559   if( IgnorableOrderby(pDest) ){
3560     pOrderBy = 0;
3561   }
3562 
3563   /* Begin generating code.
3564   */
3565   v = sqlite3GetVdbe(pParse);
3566   if( v==0 ) goto select_end;
3567 
3568   /* Generate code for all sub-queries in the FROM clause
3569   */
3570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3571   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3572     struct SrcList_item *pItem = &pTabList->a[i];
3573     SelectDest dest;
3574     Select *pSub = pItem->pSelect;
3575     int isAggSub;
3576 
3577     if( pSub==0 || pItem->isPopulated ) continue;
3578 
3579     /* Increment Parse.nHeight by the height of the largest expression
3580     ** tree refered to by this, the parent select. The child select
3581     ** may contain expression trees of at most
3582     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3583     ** more conservative than necessary, but much easier than enforcing
3584     ** an exact limit.
3585     */
3586     pParse->nHeight += sqlite3SelectExprHeight(p);
3587 
3588     /* Check to see if the subquery can be absorbed into the parent. */
3589     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3590     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3591       if( isAggSub ){
3592         isAgg = 1;
3593         p->selFlags |= SF_Aggregate;
3594       }
3595       i = -1;
3596     }else{
3597       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3598       assert( pItem->isPopulated==0 );
3599       sqlite3Select(pParse, pSub, &dest);
3600       pItem->isPopulated = 1;
3601     }
3602     if( pParse->nErr || db->mallocFailed ){
3603       goto select_end;
3604     }
3605     pParse->nHeight -= sqlite3SelectExprHeight(p);
3606     pTabList = p->pSrc;
3607     if( !IgnorableOrderby(pDest) ){
3608       pOrderBy = p->pOrderBy;
3609     }
3610   }
3611   pEList = p->pEList;
3612 #endif
3613   pWhere = p->pWhere;
3614   pGroupBy = p->pGroupBy;
3615   pHaving = p->pHaving;
3616   isDistinct = (p->selFlags & SF_Distinct)!=0;
3617 
3618 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3619   /* If there is are a sequence of queries, do the earlier ones first.
3620   */
3621   if( p->pPrior ){
3622     if( p->pRightmost==0 ){
3623       Select *pLoop, *pRight = 0;
3624       int cnt = 0;
3625       int mxSelect;
3626       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3627         pLoop->pRightmost = p;
3628         pLoop->pNext = pRight;
3629         pRight = pLoop;
3630       }
3631       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3632       if( mxSelect && cnt>mxSelect ){
3633         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3634         return 1;
3635       }
3636     }
3637     return multiSelect(pParse, p, pDest);
3638   }
3639 #endif
3640 
3641   /* If writing to memory or generating a set
3642   ** only a single column may be output.
3643   */
3644 #ifndef SQLITE_OMIT_SUBQUERY
3645   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3646     goto select_end;
3647   }
3648 #endif
3649 
3650   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3651   ** GROUP BY might use an index, DISTINCT never does.
3652   */
3653   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
3654     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
3655     pGroupBy = p->pGroupBy;
3656     p->selFlags &= ~SF_Distinct;
3657     isDistinct = 0;
3658   }
3659 
3660   /* If there is an ORDER BY clause, then this sorting
3661   ** index might end up being unused if the data can be
3662   ** extracted in pre-sorted order.  If that is the case, then the
3663   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3664   ** we figure out that the sorting index is not needed.  The addrSortIndex
3665   ** variable is used to facilitate that change.
3666   */
3667   if( pOrderBy ){
3668     KeyInfo *pKeyInfo;
3669     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3670     pOrderBy->iECursor = pParse->nTab++;
3671     p->addrOpenEphm[2] = addrSortIndex =
3672       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3673                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3674                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3675   }else{
3676     addrSortIndex = -1;
3677   }
3678 
3679   /* If the output is destined for a temporary table, open that table.
3680   */
3681   if( pDest->eDest==SRT_EphemTab ){
3682     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3683   }
3684 
3685   /* Set the limiter.
3686   */
3687   iEnd = sqlite3VdbeMakeLabel(v);
3688   computeLimitRegisters(pParse, p, iEnd);
3689 
3690   /* Open a virtual index to use for the distinct set.
3691   */
3692   if( isDistinct ){
3693     KeyInfo *pKeyInfo;
3694     assert( isAgg || pGroupBy );
3695     distinct = pParse->nTab++;
3696     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3697     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3698                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3699   }else{
3700     distinct = -1;
3701   }
3702 
3703   /* Aggregate and non-aggregate queries are handled differently */
3704   if( !isAgg && pGroupBy==0 ){
3705     /* This case is for non-aggregate queries
3706     ** Begin the database scan
3707     */
3708     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0, 0);
3709     if( pWInfo==0 ) goto select_end;
3710 
3711     /* If sorting index that was created by a prior OP_OpenEphemeral
3712     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3713     ** into an OP_Noop.
3714     */
3715     if( addrSortIndex>=0 && pOrderBy==0 ){
3716       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3717       p->addrOpenEphm[2] = -1;
3718     }
3719 
3720     /* Use the standard inner loop
3721     */
3722     assert(!isDistinct);
3723     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3724                     pWInfo->iContinue, pWInfo->iBreak);
3725 
3726     /* End the database scan loop.
3727     */
3728     sqlite3WhereEnd(pWInfo);
3729   }else{
3730     /* This is the processing for aggregate queries */
3731     NameContext sNC;    /* Name context for processing aggregate information */
3732     int iAMem;          /* First Mem address for storing current GROUP BY */
3733     int iBMem;          /* First Mem address for previous GROUP BY */
3734     int iUseFlag;       /* Mem address holding flag indicating that at least
3735                         ** one row of the input to the aggregator has been
3736                         ** processed */
3737     int iAbortFlag;     /* Mem address which causes query abort if positive */
3738     int groupBySort;    /* Rows come from source in GROUP BY order */
3739     int addrEnd;        /* End of processing for this SELECT */
3740 
3741     /* Remove any and all aliases between the result set and the
3742     ** GROUP BY clause.
3743     */
3744     if( pGroupBy ){
3745       int k;                        /* Loop counter */
3746       struct ExprList_item *pItem;  /* For looping over expression in a list */
3747 
3748       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3749         pItem->iAlias = 0;
3750       }
3751       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3752         pItem->iAlias = 0;
3753       }
3754     }
3755 
3756 
3757     /* Create a label to jump to when we want to abort the query */
3758     addrEnd = sqlite3VdbeMakeLabel(v);
3759 
3760     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3761     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3762     ** SELECT statement.
3763     */
3764     memset(&sNC, 0, sizeof(sNC));
3765     sNC.pParse = pParse;
3766     sNC.pSrcList = pTabList;
3767     sNC.pAggInfo = &sAggInfo;
3768     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3769     sAggInfo.pGroupBy = pGroupBy;
3770     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3771     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3772     if( pHaving ){
3773       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3774     }
3775     sAggInfo.nAccumulator = sAggInfo.nColumn;
3776     for(i=0; i<sAggInfo.nFunc; i++){
3777       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
3778     }
3779     if( db->mallocFailed ) goto select_end;
3780 
3781     /* Processing for aggregates with GROUP BY is very different and
3782     ** much more complex than aggregates without a GROUP BY.
3783     */
3784     if( pGroupBy ){
3785       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3786       int j1;             /* A-vs-B comparision jump */
3787       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3788       int regOutputRow;   /* Return address register for output subroutine */
3789       int addrSetAbort;   /* Set the abort flag and return */
3790       int addrTopOfLoop;  /* Top of the input loop */
3791       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3792       int addrReset;      /* Subroutine for resetting the accumulator */
3793       int regReset;       /* Return address register for reset subroutine */
3794 
3795       /* If there is a GROUP BY clause we might need a sorting index to
3796       ** implement it.  Allocate that sorting index now.  If it turns out
3797       ** that we do not need it after all, the OpenEphemeral instruction
3798       ** will be converted into a Noop.
3799       */
3800       sAggInfo.sortingIdx = pParse->nTab++;
3801       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3802       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3803           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3804           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3805 
3806       /* Initialize memory locations used by GROUP BY aggregate processing
3807       */
3808       iUseFlag = ++pParse->nMem;
3809       iAbortFlag = ++pParse->nMem;
3810       regOutputRow = ++pParse->nMem;
3811       addrOutputRow = sqlite3VdbeMakeLabel(v);
3812       regReset = ++pParse->nMem;
3813       addrReset = sqlite3VdbeMakeLabel(v);
3814       iAMem = pParse->nMem + 1;
3815       pParse->nMem += pGroupBy->nExpr;
3816       iBMem = pParse->nMem + 1;
3817       pParse->nMem += pGroupBy->nExpr;
3818       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3819       VdbeComment((v, "clear abort flag"));
3820       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3821       VdbeComment((v, "indicate accumulator empty"));
3822 
3823       /* Begin a loop that will extract all source rows in GROUP BY order.
3824       ** This might involve two separate loops with an OP_Sort in between, or
3825       ** it might be a single loop that uses an index to extract information
3826       ** in the right order to begin with.
3827       */
3828       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3829       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
3830       if( pWInfo==0 ) goto select_end;
3831       if( pGroupBy==0 ){
3832         /* The optimizer is able to deliver rows in group by order so
3833         ** we do not have to sort.  The OP_OpenEphemeral table will be
3834         ** cancelled later because we still need to use the pKeyInfo
3835         */
3836         pGroupBy = p->pGroupBy;
3837         groupBySort = 0;
3838       }else{
3839         /* Rows are coming out in undetermined order.  We have to push
3840         ** each row into a sorting index, terminate the first loop,
3841         ** then loop over the sorting index in order to get the output
3842         ** in sorted order
3843         */
3844         int regBase;
3845         int regRecord;
3846         int nCol;
3847         int nGroupBy;
3848 
3849         groupBySort = 1;
3850         nGroupBy = pGroupBy->nExpr;
3851         nCol = nGroupBy + 1;
3852         j = nGroupBy+1;
3853         for(i=0; i<sAggInfo.nColumn; i++){
3854           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3855             nCol++;
3856             j++;
3857           }
3858         }
3859         regBase = sqlite3GetTempRange(pParse, nCol);
3860         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3861         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3862         j = nGroupBy+1;
3863         for(i=0; i<sAggInfo.nColumn; i++){
3864           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3865           if( pCol->iSorterColumn>=j ){
3866             int r1 = j + regBase;
3867             int r2;
3868 
3869             r2 = sqlite3ExprCodeGetColumn(pParse,
3870                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3871             if( r1!=r2 ){
3872               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3873             }
3874             j++;
3875           }
3876         }
3877         regRecord = sqlite3GetTempReg(pParse);
3878         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3879         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3880         sqlite3ReleaseTempReg(pParse, regRecord);
3881         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3882         sqlite3WhereEnd(pWInfo);
3883         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3884         VdbeComment((v, "GROUP BY sort"));
3885         sAggInfo.useSortingIdx = 1;
3886       }
3887 
3888       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3889       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3890       ** Then compare the current GROUP BY terms against the GROUP BY terms
3891       ** from the previous row currently stored in a0, a1, a2...
3892       */
3893       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3894       for(j=0; j<pGroupBy->nExpr; j++){
3895         if( groupBySort ){
3896           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3897         }else{
3898           sAggInfo.directMode = 1;
3899           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3900         }
3901       }
3902       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3903                           (char*)pKeyInfo, P4_KEYINFO);
3904       j1 = sqlite3VdbeCurrentAddr(v);
3905       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3906 
3907       /* Generate code that runs whenever the GROUP BY changes.
3908       ** Changes in the GROUP BY are detected by the previous code
3909       ** block.  If there were no changes, this block is skipped.
3910       **
3911       ** This code copies current group by terms in b0,b1,b2,...
3912       ** over to a0,a1,a2.  It then calls the output subroutine
3913       ** and resets the aggregate accumulator registers in preparation
3914       ** for the next GROUP BY batch.
3915       */
3916       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3917       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3918       VdbeComment((v, "output one row"));
3919       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3920       VdbeComment((v, "check abort flag"));
3921       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3922       VdbeComment((v, "reset accumulator"));
3923 
3924       /* Update the aggregate accumulators based on the content of
3925       ** the current row
3926       */
3927       sqlite3VdbeJumpHere(v, j1);
3928       updateAccumulator(pParse, &sAggInfo);
3929       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3930       VdbeComment((v, "indicate data in accumulator"));
3931 
3932       /* End of the loop
3933       */
3934       if( groupBySort ){
3935         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3936       }else{
3937         sqlite3WhereEnd(pWInfo);
3938         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3939       }
3940 
3941       /* Output the final row of result
3942       */
3943       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3944       VdbeComment((v, "output final row"));
3945 
3946       /* Jump over the subroutines
3947       */
3948       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
3949 
3950       /* Generate a subroutine that outputs a single row of the result
3951       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3952       ** is less than or equal to zero, the subroutine is a no-op.  If
3953       ** the processing calls for the query to abort, this subroutine
3954       ** increments the iAbortFlag memory location before returning in
3955       ** order to signal the caller to abort.
3956       */
3957       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3958       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3959       VdbeComment((v, "set abort flag"));
3960       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3961       sqlite3VdbeResolveLabel(v, addrOutputRow);
3962       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3963       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3964       VdbeComment((v, "Groupby result generator entry point"));
3965       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3966       finalizeAggFunctions(pParse, &sAggInfo);
3967       if( pHaving ){
3968         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3969       }
3970       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3971                       distinct, pDest,
3972                       addrOutputRow+1, addrSetAbort);
3973       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3974       VdbeComment((v, "end groupby result generator"));
3975 
3976       /* Generate a subroutine that will reset the group-by accumulator
3977       */
3978       sqlite3VdbeResolveLabel(v, addrReset);
3979       resetAccumulator(pParse, &sAggInfo);
3980       sqlite3VdbeAddOp1(v, OP_Return, regReset);
3981 
3982     } /* endif pGroupBy */
3983     else {
3984       ExprList *pMinMax = 0;
3985       ExprList *pDel = 0;
3986       u8 flag;
3987 
3988       /* Check if the query is of one of the following forms:
3989       **
3990       **   SELECT min(x) FROM ...
3991       **   SELECT max(x) FROM ...
3992       **
3993       ** If it is, then ask the code in where.c to attempt to sort results
3994       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
3995       ** If where.c is able to produce results sorted in this order, then
3996       ** add vdbe code to break out of the processing loop after the
3997       ** first iteration (since the first iteration of the loop is
3998       ** guaranteed to operate on the row with the minimum or maximum
3999       ** value of x, the only row required).
4000       **
4001       ** A special flag must be passed to sqlite3WhereBegin() to slightly
4002       ** modify behaviour as follows:
4003       **
4004       **   + If the query is a "SELECT min(x)", then the loop coded by
4005       **     where.c should not iterate over any values with a NULL value
4006       **     for x.
4007       **
4008       **   + The optimizer code in where.c (the thing that decides which
4009       **     index or indices to use) should place a different priority on
4010       **     satisfying the 'ORDER BY' clause than it does in other cases.
4011       **     Refer to code and comments in where.c for details.
4012       */
4013       flag = minMaxQuery(p);
4014       if( flag ){
4015         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
4016         if( pMinMax && !db->mallocFailed ){
4017           pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4018           pMinMax->a[0].pExpr->op = TK_COLUMN;
4019         }
4020       }
4021 
4022       /* This case runs if the aggregate has no GROUP BY clause.  The
4023       ** processing is much simpler since there is only a single row
4024       ** of output.
4025       */
4026       resetAccumulator(pParse, &sAggInfo);
4027       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag, 0);
4028       if( pWInfo==0 ){
4029         sqlite3ExprListDelete(db, pDel);
4030         goto select_end;
4031       }
4032       updateAccumulator(pParse, &sAggInfo);
4033       if( !pMinMax && flag ){
4034         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4035         VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
4036       }
4037       sqlite3WhereEnd(pWInfo);
4038       finalizeAggFunctions(pParse, &sAggInfo);
4039       pOrderBy = 0;
4040       if( pHaving ){
4041         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4042       }
4043       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4044                       pDest, addrEnd, addrEnd);
4045 
4046       sqlite3ExprListDelete(db, pDel);
4047     }
4048     sqlite3VdbeResolveLabel(v, addrEnd);
4049 
4050   } /* endif aggregate query */
4051 
4052   /* If there is an ORDER BY clause, then we need to sort the results
4053   ** and send them to the callback one by one.
4054   */
4055   if( pOrderBy ){
4056     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4057   }
4058 
4059   /* Jump here to skip this query
4060   */
4061   sqlite3VdbeResolveLabel(v, iEnd);
4062 
4063   /* The SELECT was successfully coded.   Set the return code to 0
4064   ** to indicate no errors.
4065   */
4066   rc = 0;
4067 
4068   /* Control jumps to here if an error is encountered above, or upon
4069   ** successful coding of the SELECT.
4070   */
4071 select_end:
4072 
4073   /* Identify column names if results of the SELECT are to be output.
4074   */
4075   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4076     generateColumnNames(pParse, pTabList, pEList);
4077   }
4078 
4079   sqlite3DbFree(db, sAggInfo.aCol);
4080   sqlite3DbFree(db, sAggInfo.aFunc);
4081   return rc;
4082 }
4083 
4084 #if defined(SQLITE_DEBUG)
4085 /*
4086 *******************************************************************************
4087 ** The following code is used for testing and debugging only.  The code
4088 ** that follows does not appear in normal builds.
4089 **
4090 ** These routines are used to print out the content of all or part of a
4091 ** parse structures such as Select or Expr.  Such printouts are useful
4092 ** for helping to understand what is happening inside the code generator
4093 ** during the execution of complex SELECT statements.
4094 **
4095 ** These routine are not called anywhere from within the normal
4096 ** code base.  Then are intended to be called from within the debugger
4097 ** or from temporary "printf" statements inserted for debugging.
4098 */
4099 void sqlite3PrintExpr(Expr *p){
4100   if( p->token.z && p->token.n>0 ){
4101     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4102   }else{
4103     sqlite3DebugPrintf("(%d", p->op);
4104   }
4105   if( p->pLeft ){
4106     sqlite3DebugPrintf(" ");
4107     sqlite3PrintExpr(p->pLeft);
4108   }
4109   if( p->pRight ){
4110     sqlite3DebugPrintf(" ");
4111     sqlite3PrintExpr(p->pRight);
4112   }
4113   sqlite3DebugPrintf(")");
4114 }
4115 void sqlite3PrintExprList(ExprList *pList){
4116   int i;
4117   for(i=0; i<pList->nExpr; i++){
4118     sqlite3PrintExpr(pList->a[i].pExpr);
4119     if( i<pList->nExpr-1 ){
4120       sqlite3DebugPrintf(", ");
4121     }
4122   }
4123 }
4124 void sqlite3PrintSelect(Select *p, int indent){
4125   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4126   sqlite3PrintExprList(p->pEList);
4127   sqlite3DebugPrintf("\n");
4128   if( p->pSrc ){
4129     char *zPrefix;
4130     int i;
4131     zPrefix = "FROM";
4132     for(i=0; i<p->pSrc->nSrc; i++){
4133       struct SrcList_item *pItem = &p->pSrc->a[i];
4134       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4135       zPrefix = "";
4136       if( pItem->pSelect ){
4137         sqlite3DebugPrintf("(\n");
4138         sqlite3PrintSelect(pItem->pSelect, indent+10);
4139         sqlite3DebugPrintf("%*s)", indent+8, "");
4140       }else if( pItem->zName ){
4141         sqlite3DebugPrintf("%s", pItem->zName);
4142       }
4143       if( pItem->pTab ){
4144         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4145       }
4146       if( pItem->zAlias ){
4147         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4148       }
4149       if( i<p->pSrc->nSrc-1 ){
4150         sqlite3DebugPrintf(",");
4151       }
4152       sqlite3DebugPrintf("\n");
4153     }
4154   }
4155   if( p->pWhere ){
4156     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4157     sqlite3PrintExpr(p->pWhere);
4158     sqlite3DebugPrintf("\n");
4159   }
4160   if( p->pGroupBy ){
4161     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4162     sqlite3PrintExprList(p->pGroupBy);
4163     sqlite3DebugPrintf("\n");
4164   }
4165   if( p->pHaving ){
4166     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4167     sqlite3PrintExpr(p->pHaving);
4168     sqlite3DebugPrintf("\n");
4169   }
4170   if( p->pOrderBy ){
4171     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4172     sqlite3PrintExprList(p->pOrderBy);
4173     sqlite3DebugPrintf("\n");
4174   }
4175 }
4176 /* End of the structure debug printing code
4177 *****************************************************************************/
4178 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4179