1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.495 2008/12/23 23:56:22 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 pNew->addrOpenEphm[0] = -1; 87 pNew->addrOpenEphm[1] = -1; 88 pNew->addrOpenEphm[2] = -1; 89 if( db->mallocFailed ) { 90 clearSelect(db, pNew); 91 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 92 pNew = 0; 93 } 94 return pNew; 95 } 96 97 /* 98 ** Delete the given Select structure and all of its substructures. 99 */ 100 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 101 if( p ){ 102 clearSelect(db, p); 103 sqlite3DbFree(db, p); 104 } 105 } 106 107 /* 108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 109 ** type of join. Return an integer constant that expresses that type 110 ** in terms of the following bit values: 111 ** 112 ** JT_INNER 113 ** JT_CROSS 114 ** JT_OUTER 115 ** JT_NATURAL 116 ** JT_LEFT 117 ** JT_RIGHT 118 ** 119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 120 ** 121 ** If an illegal or unsupported join type is seen, then still return 122 ** a join type, but put an error in the pParse structure. 123 */ 124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 125 int jointype = 0; 126 Token *apAll[3]; 127 Token *p; 128 static const struct { 129 const char zKeyword[8]; 130 u8 nChar; 131 u8 code; 132 } keywords[] = { 133 { "natural", 7, JT_NATURAL }, 134 { "left", 4, JT_LEFT|JT_OUTER }, 135 { "right", 5, JT_RIGHT|JT_OUTER }, 136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 137 { "outer", 5, JT_OUTER }, 138 { "inner", 5, JT_INNER }, 139 { "cross", 5, JT_INNER|JT_CROSS }, 140 }; 141 int i, j; 142 apAll[0] = pA; 143 apAll[1] = pB; 144 apAll[2] = pC; 145 for(i=0; i<3 && apAll[i]; i++){ 146 p = apAll[i]; 147 for(j=0; j<ArraySize(keywords); j++){ 148 if( p->n==keywords[j].nChar 149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 150 jointype |= keywords[j].code; 151 break; 152 } 153 } 154 if( j>=ArraySize(keywords) ){ 155 jointype |= JT_ERROR; 156 break; 157 } 158 } 159 if( 160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 161 (jointype & JT_ERROR)!=0 162 ){ 163 const char *zSp = " "; 164 assert( pB!=0 ); 165 if( pC==0 ){ zSp++; } 166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 167 "%T %T%s%T", pA, pB, zSp, pC); 168 jointype = JT_INNER; 169 }else if( jointype & JT_RIGHT ){ 170 sqlite3ErrorMsg(pParse, 171 "RIGHT and FULL OUTER JOINs are not currently supported"); 172 jointype = JT_INNER; 173 } 174 return jointype; 175 } 176 177 /* 178 ** Return the index of a column in a table. Return -1 if the column 179 ** is not contained in the table. 180 */ 181 static int columnIndex(Table *pTab, const char *zCol){ 182 int i; 183 for(i=0; i<pTab->nCol; i++){ 184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 185 } 186 return -1; 187 } 188 189 /* 190 ** Set the value of a token to a '\000'-terminated string. 191 */ 192 static void setToken(Token *p, const char *z){ 193 p->z = (u8*)z; 194 p->n = z ? sqlite3Strlen30(z) : 0; 195 p->dyn = 0; 196 } 197 198 /* 199 ** Set the token to the double-quoted and escaped version of the string pointed 200 ** to by z. For example; 201 ** 202 ** {a"bc} -> {"a""bc"} 203 */ 204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 205 206 /* Check if the string appears to be quoted using "..." or `...` 207 ** or [...] or '...' or if the string contains any " characters. 208 ** If it does, then record a version of the string with the special 209 ** characters escaped. 210 */ 211 const char *z2 = z; 212 if( *z2!='[' && *z2!='`' && *z2!='\'' ){ 213 while( *z2 ){ 214 if( *z2=='"' ) break; 215 z2++; 216 } 217 } 218 219 if( *z2 ){ 220 /* String contains " characters - copy and quote the string. */ 221 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 222 if( p->z ){ 223 p->n = sqlite3Strlen30((char *)p->z); 224 p->dyn = 1; 225 } 226 }else{ 227 /* String contains no " characters - copy the pointer. */ 228 p->z = (u8*)z; 229 p->n = (int)(z2 - z); 230 p->dyn = 0; 231 } 232 } 233 234 /* 235 ** Create an expression node for an identifier with the name of zName 236 */ 237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 238 Token dummy; 239 setToken(&dummy, zName); 240 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 241 } 242 243 /* 244 ** Add a term to the WHERE expression in *ppExpr that requires the 245 ** zCol column to be equal in the two tables pTab1 and pTab2. 246 */ 247 static void addWhereTerm( 248 Parse *pParse, /* Parsing context */ 249 const char *zCol, /* Name of the column */ 250 const Table *pTab1, /* First table */ 251 const char *zAlias1, /* Alias for first table. May be NULL */ 252 const Table *pTab2, /* Second table */ 253 const char *zAlias2, /* Alias for second table. May be NULL */ 254 int iRightJoinTable, /* VDBE cursor for the right table */ 255 Expr **ppExpr, /* Add the equality term to this expression */ 256 int isOuterJoin /* True if dealing with an OUTER join */ 257 ){ 258 Expr *pE1a, *pE1b, *pE1c; 259 Expr *pE2a, *pE2b, *pE2c; 260 Expr *pE; 261 262 pE1a = sqlite3CreateIdExpr(pParse, zCol); 263 pE2a = sqlite3CreateIdExpr(pParse, zCol); 264 if( zAlias1==0 ){ 265 zAlias1 = pTab1->zName; 266 } 267 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 268 if( zAlias2==0 ){ 269 zAlias2 = pTab2->zName; 270 } 271 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 272 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 273 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 274 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 275 if( pE && isOuterJoin ){ 276 ExprSetProperty(pE, EP_FromJoin); 277 pE->iRightJoinTable = iRightJoinTable; 278 } 279 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 280 } 281 282 /* 283 ** Set the EP_FromJoin property on all terms of the given expression. 284 ** And set the Expr.iRightJoinTable to iTable for every term in the 285 ** expression. 286 ** 287 ** The EP_FromJoin property is used on terms of an expression to tell 288 ** the LEFT OUTER JOIN processing logic that this term is part of the 289 ** join restriction specified in the ON or USING clause and not a part 290 ** of the more general WHERE clause. These terms are moved over to the 291 ** WHERE clause during join processing but we need to remember that they 292 ** originated in the ON or USING clause. 293 ** 294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 295 ** expression depends on table iRightJoinTable even if that table is not 296 ** explicitly mentioned in the expression. That information is needed 297 ** for cases like this: 298 ** 299 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 300 ** 301 ** The where clause needs to defer the handling of the t1.x=5 302 ** term until after the t2 loop of the join. In that way, a 303 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 304 ** defer the handling of t1.x=5, it will be processed immediately 305 ** after the t1 loop and rows with t1.x!=5 will never appear in 306 ** the output, which is incorrect. 307 */ 308 static void setJoinExpr(Expr *p, int iTable){ 309 while( p ){ 310 ExprSetProperty(p, EP_FromJoin); 311 p->iRightJoinTable = iTable; 312 setJoinExpr(p->pLeft, iTable); 313 p = p->pRight; 314 } 315 } 316 317 /* 318 ** This routine processes the join information for a SELECT statement. 319 ** ON and USING clauses are converted into extra terms of the WHERE clause. 320 ** NATURAL joins also create extra WHERE clause terms. 321 ** 322 ** The terms of a FROM clause are contained in the Select.pSrc structure. 323 ** The left most table is the first entry in Select.pSrc. The right-most 324 ** table is the last entry. The join operator is held in the entry to 325 ** the left. Thus entry 0 contains the join operator for the join between 326 ** entries 0 and 1. Any ON or USING clauses associated with the join are 327 ** also attached to the left entry. 328 ** 329 ** This routine returns the number of errors encountered. 330 */ 331 static int sqliteProcessJoin(Parse *pParse, Select *p){ 332 SrcList *pSrc; /* All tables in the FROM clause */ 333 int i, j; /* Loop counters */ 334 struct SrcList_item *pLeft; /* Left table being joined */ 335 struct SrcList_item *pRight; /* Right table being joined */ 336 337 pSrc = p->pSrc; 338 pLeft = &pSrc->a[0]; 339 pRight = &pLeft[1]; 340 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 341 Table *pLeftTab = pLeft->pTab; 342 Table *pRightTab = pRight->pTab; 343 int isOuter; 344 345 if( pLeftTab==0 || pRightTab==0 ) continue; 346 isOuter = (pRight->jointype & JT_OUTER)!=0; 347 348 /* When the NATURAL keyword is present, add WHERE clause terms for 349 ** every column that the two tables have in common. 350 */ 351 if( pRight->jointype & JT_NATURAL ){ 352 if( pRight->pOn || pRight->pUsing ){ 353 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 354 "an ON or USING clause", 0); 355 return 1; 356 } 357 for(j=0; j<pLeftTab->nCol; j++){ 358 char *zName = pLeftTab->aCol[j].zName; 359 if( columnIndex(pRightTab, zName)>=0 ){ 360 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 361 pRightTab, pRight->zAlias, 362 pRight->iCursor, &p->pWhere, isOuter); 363 364 } 365 } 366 } 367 368 /* Disallow both ON and USING clauses in the same join 369 */ 370 if( pRight->pOn && pRight->pUsing ){ 371 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 372 "clauses in the same join"); 373 return 1; 374 } 375 376 /* Add the ON clause to the end of the WHERE clause, connected by 377 ** an AND operator. 378 */ 379 if( pRight->pOn ){ 380 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 381 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 382 pRight->pOn = 0; 383 } 384 385 /* Create extra terms on the WHERE clause for each column named 386 ** in the USING clause. Example: If the two tables to be joined are 387 ** A and B and the USING clause names X, Y, and Z, then add this 388 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 389 ** Report an error if any column mentioned in the USING clause is 390 ** not contained in both tables to be joined. 391 */ 392 if( pRight->pUsing ){ 393 IdList *pList = pRight->pUsing; 394 for(j=0; j<pList->nId; j++){ 395 char *zName = pList->a[j].zName; 396 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 397 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 398 "not present in both tables", zName); 399 return 1; 400 } 401 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 402 pRightTab, pRight->zAlias, 403 pRight->iCursor, &p->pWhere, isOuter); 404 } 405 } 406 } 407 return 0; 408 } 409 410 /* 411 ** Insert code into "v" that will push the record on the top of the 412 ** stack into the sorter. 413 */ 414 static void pushOntoSorter( 415 Parse *pParse, /* Parser context */ 416 ExprList *pOrderBy, /* The ORDER BY clause */ 417 Select *pSelect, /* The whole SELECT statement */ 418 int regData /* Register holding data to be sorted */ 419 ){ 420 Vdbe *v = pParse->pVdbe; 421 int nExpr = pOrderBy->nExpr; 422 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 423 int regRecord = sqlite3GetTempReg(pParse); 424 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 425 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 426 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 427 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 428 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 429 sqlite3ReleaseTempReg(pParse, regRecord); 430 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 431 if( pSelect->iLimit ){ 432 int addr1, addr2; 433 int iLimit; 434 if( pSelect->iOffset ){ 435 iLimit = pSelect->iOffset+1; 436 }else{ 437 iLimit = pSelect->iLimit; 438 } 439 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 440 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 441 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 442 sqlite3VdbeJumpHere(v, addr1); 443 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 444 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 445 sqlite3VdbeJumpHere(v, addr2); 446 pSelect->iLimit = 0; 447 } 448 } 449 450 /* 451 ** Add code to implement the OFFSET 452 */ 453 static void codeOffset( 454 Vdbe *v, /* Generate code into this VM */ 455 Select *p, /* The SELECT statement being coded */ 456 int iContinue /* Jump here to skip the current record */ 457 ){ 458 if( p->iOffset && iContinue!=0 ){ 459 int addr; 460 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 461 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 462 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 463 VdbeComment((v, "skip OFFSET records")); 464 sqlite3VdbeJumpHere(v, addr); 465 } 466 } 467 468 /* 469 ** Add code that will check to make sure the N registers starting at iMem 470 ** form a distinct entry. iTab is a sorting index that holds previously 471 ** seen combinations of the N values. A new entry is made in iTab 472 ** if the current N values are new. 473 ** 474 ** A jump to addrRepeat is made and the N+1 values are popped from the 475 ** stack if the top N elements are not distinct. 476 */ 477 static void codeDistinct( 478 Parse *pParse, /* Parsing and code generating context */ 479 int iTab, /* A sorting index used to test for distinctness */ 480 int addrRepeat, /* Jump to here if not distinct */ 481 int N, /* Number of elements */ 482 int iMem /* First element */ 483 ){ 484 Vdbe *v; 485 int r1; 486 487 v = pParse->pVdbe; 488 r1 = sqlite3GetTempReg(pParse); 489 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 490 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 491 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 492 sqlite3ReleaseTempReg(pParse, r1); 493 } 494 495 /* 496 ** Generate an error message when a SELECT is used within a subexpression 497 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 498 ** column. We do this in a subroutine because the error occurs in multiple 499 ** places. 500 */ 501 static int checkForMultiColumnSelectError( 502 Parse *pParse, /* Parse context. */ 503 SelectDest *pDest, /* Destination of SELECT results */ 504 int nExpr /* Number of result columns returned by SELECT */ 505 ){ 506 int eDest = pDest->eDest; 507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 508 sqlite3ErrorMsg(pParse, "only a single result allowed for " 509 "a SELECT that is part of an expression"); 510 return 1; 511 }else{ 512 return 0; 513 } 514 } 515 516 /* 517 ** This routine generates the code for the inside of the inner loop 518 ** of a SELECT. 519 ** 520 ** If srcTab and nColumn are both zero, then the pEList expressions 521 ** are evaluated in order to get the data for this row. If nColumn>0 522 ** then data is pulled from srcTab and pEList is used only to get the 523 ** datatypes for each column. 524 */ 525 static void selectInnerLoop( 526 Parse *pParse, /* The parser context */ 527 Select *p, /* The complete select statement being coded */ 528 ExprList *pEList, /* List of values being extracted */ 529 int srcTab, /* Pull data from this table */ 530 int nColumn, /* Number of columns in the source table */ 531 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 532 int distinct, /* If >=0, make sure results are distinct */ 533 SelectDest *pDest, /* How to dispose of the results */ 534 int iContinue, /* Jump here to continue with next row */ 535 int iBreak /* Jump here to break out of the inner loop */ 536 ){ 537 Vdbe *v = pParse->pVdbe; 538 int i; 539 int hasDistinct; /* True if the DISTINCT keyword is present */ 540 int regResult; /* Start of memory holding result set */ 541 int eDest = pDest->eDest; /* How to dispose of results */ 542 int iParm = pDest->iParm; /* First argument to disposal method */ 543 int nResultCol; /* Number of result columns */ 544 545 if( v==0 ) return; 546 assert( pEList!=0 ); 547 hasDistinct = distinct>=0; 548 if( pOrderBy==0 && !hasDistinct ){ 549 codeOffset(v, p, iContinue); 550 } 551 552 /* Pull the requested columns. 553 */ 554 if( nColumn>0 ){ 555 nResultCol = nColumn; 556 }else{ 557 nResultCol = pEList->nExpr; 558 } 559 if( pDest->iMem==0 ){ 560 pDest->iMem = pParse->nMem+1; 561 pDest->nMem = nResultCol; 562 pParse->nMem += nResultCol; 563 }else if( pDest->nMem!=nResultCol ){ 564 /* This happens when two SELECTs of a compound SELECT have differing 565 ** numbers of result columns. The error message will be generated by 566 ** a higher-level routine. */ 567 return; 568 } 569 regResult = pDest->iMem; 570 if( nColumn>0 ){ 571 for(i=0; i<nColumn; i++){ 572 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 573 } 574 }else if( eDest!=SRT_Exists ){ 575 /* If the destination is an EXISTS(...) expression, the actual 576 ** values returned by the SELECT are not required. 577 */ 578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 579 } 580 nColumn = nResultCol; 581 582 /* If the DISTINCT keyword was present on the SELECT statement 583 ** and this row has been seen before, then do not make this row 584 ** part of the result. 585 */ 586 if( hasDistinct ){ 587 assert( pEList!=0 ); 588 assert( pEList->nExpr==nColumn ); 589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 590 if( pOrderBy==0 ){ 591 codeOffset(v, p, iContinue); 592 } 593 } 594 595 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 596 return; 597 } 598 599 switch( eDest ){ 600 /* In this mode, write each query result to the key of the temporary 601 ** table iParm. 602 */ 603 #ifndef SQLITE_OMIT_COMPOUND_SELECT 604 case SRT_Union: { 605 int r1; 606 r1 = sqlite3GetTempReg(pParse); 607 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 608 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 609 sqlite3ReleaseTempReg(pParse, r1); 610 break; 611 } 612 613 /* Construct a record from the query result, but instead of 614 ** saving that record, use it as a key to delete elements from 615 ** the temporary table iParm. 616 */ 617 case SRT_Except: { 618 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 619 break; 620 } 621 #endif 622 623 /* Store the result as data using a unique key. 624 */ 625 case SRT_Table: 626 case SRT_EphemTab: { 627 int r1 = sqlite3GetTempReg(pParse); 628 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 629 if( pOrderBy ){ 630 pushOntoSorter(pParse, pOrderBy, p, r1); 631 }else{ 632 int r2 = sqlite3GetTempReg(pParse); 633 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 634 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 635 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 636 sqlite3ReleaseTempReg(pParse, r2); 637 } 638 sqlite3ReleaseTempReg(pParse, r1); 639 break; 640 } 641 642 #ifndef SQLITE_OMIT_SUBQUERY 643 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 644 ** then there should be a single item on the stack. Write this 645 ** item into the set table with bogus data. 646 */ 647 case SRT_Set: { 648 assert( nColumn==1 ); 649 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 650 if( pOrderBy ){ 651 /* At first glance you would think we could optimize out the 652 ** ORDER BY in this case since the order of entries in the set 653 ** does not matter. But there might be a LIMIT clause, in which 654 ** case the order does matter */ 655 pushOntoSorter(pParse, pOrderBy, p, regResult); 656 }else{ 657 int r1 = sqlite3GetTempReg(pParse); 658 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 659 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 660 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 661 sqlite3ReleaseTempReg(pParse, r1); 662 } 663 break; 664 } 665 666 /* If any row exist in the result set, record that fact and abort. 667 */ 668 case SRT_Exists: { 669 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 670 /* The LIMIT clause will terminate the loop for us */ 671 break; 672 } 673 674 /* If this is a scalar select that is part of an expression, then 675 ** store the results in the appropriate memory cell and break out 676 ** of the scan loop. 677 */ 678 case SRT_Mem: { 679 assert( nColumn==1 ); 680 if( pOrderBy ){ 681 pushOntoSorter(pParse, pOrderBy, p, regResult); 682 }else{ 683 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 684 /* The LIMIT clause will jump out of the loop for us */ 685 } 686 break; 687 } 688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 689 690 /* Send the data to the callback function or to a subroutine. In the 691 ** case of a subroutine, the subroutine itself is responsible for 692 ** popping the data from the stack. 693 */ 694 case SRT_Coroutine: 695 case SRT_Output: { 696 if( pOrderBy ){ 697 int r1 = sqlite3GetTempReg(pParse); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 pushOntoSorter(pParse, pOrderBy, p, r1); 700 sqlite3ReleaseTempReg(pParse, r1); 701 }else if( eDest==SRT_Coroutine ){ 702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 703 }else{ 704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 706 } 707 break; 708 } 709 710 #if !defined(SQLITE_OMIT_TRIGGER) 711 /* Discard the results. This is used for SELECT statements inside 712 ** the body of a TRIGGER. The purpose of such selects is to call 713 ** user-defined functions that have side effects. We do not care 714 ** about the actual results of the select. 715 */ 716 default: { 717 assert( eDest==SRT_Discard ); 718 break; 719 } 720 #endif 721 } 722 723 /* Jump to the end of the loop if the LIMIT is reached. 724 */ 725 if( p->iLimit ){ 726 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 727 ** pushOntoSorter() would have cleared p->iLimit */ 728 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 729 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 730 } 731 } 732 733 /* 734 ** Given an expression list, generate a KeyInfo structure that records 735 ** the collating sequence for each expression in that expression list. 736 ** 737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 738 ** KeyInfo structure is appropriate for initializing a virtual index to 739 ** implement that clause. If the ExprList is the result set of a SELECT 740 ** then the KeyInfo structure is appropriate for initializing a virtual 741 ** index to implement a DISTINCT test. 742 ** 743 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 744 ** function is responsible for seeing that this structure is eventually 745 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 747 */ 748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 749 sqlite3 *db = pParse->db; 750 int nExpr; 751 KeyInfo *pInfo; 752 struct ExprList_item *pItem; 753 int i; 754 755 nExpr = pList->nExpr; 756 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 757 if( pInfo ){ 758 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 759 pInfo->nField = (u16)nExpr; 760 pInfo->enc = ENC(db); 761 pInfo->db = db; 762 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 763 CollSeq *pColl; 764 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 765 if( !pColl ){ 766 pColl = db->pDfltColl; 767 } 768 pInfo->aColl[i] = pColl; 769 pInfo->aSortOrder[i] = pItem->sortOrder; 770 } 771 } 772 return pInfo; 773 } 774 775 776 /* 777 ** If the inner loop was generated using a non-null pOrderBy argument, 778 ** then the results were placed in a sorter. After the loop is terminated 779 ** we need to run the sorter and output the results. The following 780 ** routine generates the code needed to do that. 781 */ 782 static void generateSortTail( 783 Parse *pParse, /* Parsing context */ 784 Select *p, /* The SELECT statement */ 785 Vdbe *v, /* Generate code into this VDBE */ 786 int nColumn, /* Number of columns of data */ 787 SelectDest *pDest /* Write the sorted results here */ 788 ){ 789 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 790 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 791 int addr; 792 int iTab; 793 int pseudoTab = 0; 794 ExprList *pOrderBy = p->pOrderBy; 795 796 int eDest = pDest->eDest; 797 int iParm = pDest->iParm; 798 799 int regRow; 800 int regRowid; 801 802 iTab = pOrderBy->iECursor; 803 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 804 pseudoTab = pParse->nTab++; 805 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); 806 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output); 807 } 808 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 809 codeOffset(v, p, addrContinue); 810 regRow = sqlite3GetTempReg(pParse); 811 regRowid = sqlite3GetTempReg(pParse); 812 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 813 switch( eDest ){ 814 case SRT_Table: 815 case SRT_EphemTab: { 816 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 817 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 818 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 819 break; 820 } 821 #ifndef SQLITE_OMIT_SUBQUERY 822 case SRT_Set: { 823 assert( nColumn==1 ); 824 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 825 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 826 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 827 break; 828 } 829 case SRT_Mem: { 830 assert( nColumn==1 ); 831 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 832 /* The LIMIT clause will terminate the loop for us */ 833 break; 834 } 835 #endif 836 case SRT_Output: 837 case SRT_Coroutine: { 838 int i; 839 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 840 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 841 for(i=0; i<nColumn; i++){ 842 assert( regRow!=pDest->iMem+i ); 843 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 844 } 845 if( eDest==SRT_Output ){ 846 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 847 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 848 }else{ 849 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 850 } 851 break; 852 } 853 default: { 854 /* Do nothing */ 855 break; 856 } 857 } 858 sqlite3ReleaseTempReg(pParse, regRow); 859 sqlite3ReleaseTempReg(pParse, regRowid); 860 861 /* LIMIT has been implemented by the pushOntoSorter() routine. 862 */ 863 assert( p->iLimit==0 ); 864 865 /* The bottom of the loop 866 */ 867 sqlite3VdbeResolveLabel(v, addrContinue); 868 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 869 sqlite3VdbeResolveLabel(v, addrBreak); 870 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 871 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 872 } 873 } 874 875 /* 876 ** Return a pointer to a string containing the 'declaration type' of the 877 ** expression pExpr. The string may be treated as static by the caller. 878 ** 879 ** The declaration type is the exact datatype definition extracted from the 880 ** original CREATE TABLE statement if the expression is a column. The 881 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 882 ** is considered a column can be complex in the presence of subqueries. The 883 ** result-set expression in all of the following SELECT statements is 884 ** considered a column by this function. 885 ** 886 ** SELECT col FROM tbl; 887 ** SELECT (SELECT col FROM tbl; 888 ** SELECT (SELECT col FROM tbl); 889 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 890 ** 891 ** The declaration type for any expression other than a column is NULL. 892 */ 893 static const char *columnType( 894 NameContext *pNC, 895 Expr *pExpr, 896 const char **pzOriginDb, 897 const char **pzOriginTab, 898 const char **pzOriginCol 899 ){ 900 char const *zType = 0; 901 char const *zOriginDb = 0; 902 char const *zOriginTab = 0; 903 char const *zOriginCol = 0; 904 int j; 905 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 906 907 switch( pExpr->op ){ 908 case TK_AGG_COLUMN: 909 case TK_COLUMN: { 910 /* The expression is a column. Locate the table the column is being 911 ** extracted from in NameContext.pSrcList. This table may be real 912 ** database table or a subquery. 913 */ 914 Table *pTab = 0; /* Table structure column is extracted from */ 915 Select *pS = 0; /* Select the column is extracted from */ 916 int iCol = pExpr->iColumn; /* Index of column in pTab */ 917 while( pNC && !pTab ){ 918 SrcList *pTabList = pNC->pSrcList; 919 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 920 if( j<pTabList->nSrc ){ 921 pTab = pTabList->a[j].pTab; 922 pS = pTabList->a[j].pSelect; 923 }else{ 924 pNC = pNC->pNext; 925 } 926 } 927 928 if( pTab==0 ){ 929 /* FIX ME: 930 ** This can occurs if you have something like "SELECT new.x;" inside 931 ** a trigger. In other words, if you reference the special "new" 932 ** table in the result set of a select. We do not have a good way 933 ** to find the actual table type, so call it "TEXT". This is really 934 ** something of a bug, but I do not know how to fix it. 935 ** 936 ** This code does not produce the correct answer - it just prevents 937 ** a segfault. See ticket #1229. 938 */ 939 zType = "TEXT"; 940 break; 941 } 942 943 assert( pTab ); 944 if( pS ){ 945 /* The "table" is actually a sub-select or a view in the FROM clause 946 ** of the SELECT statement. Return the declaration type and origin 947 ** data for the result-set column of the sub-select. 948 */ 949 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 950 /* If iCol is less than zero, then the expression requests the 951 ** rowid of the sub-select or view. This expression is legal (see 952 ** test case misc2.2.2) - it always evaluates to NULL. 953 */ 954 NameContext sNC; 955 Expr *p = pS->pEList->a[iCol].pExpr; 956 sNC.pSrcList = pS->pSrc; 957 sNC.pNext = 0; 958 sNC.pParse = pNC->pParse; 959 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 960 } 961 }else if( pTab->pSchema ){ 962 /* A real table */ 963 assert( !pS ); 964 if( iCol<0 ) iCol = pTab->iPKey; 965 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 966 if( iCol<0 ){ 967 zType = "INTEGER"; 968 zOriginCol = "rowid"; 969 }else{ 970 zType = pTab->aCol[iCol].zType; 971 zOriginCol = pTab->aCol[iCol].zName; 972 } 973 zOriginTab = pTab->zName; 974 if( pNC->pParse ){ 975 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 976 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 977 } 978 } 979 break; 980 } 981 #ifndef SQLITE_OMIT_SUBQUERY 982 case TK_SELECT: { 983 /* The expression is a sub-select. Return the declaration type and 984 ** origin info for the single column in the result set of the SELECT 985 ** statement. 986 */ 987 NameContext sNC; 988 Select *pS = pExpr->pSelect; 989 Expr *p = pS->pEList->a[0].pExpr; 990 sNC.pSrcList = pS->pSrc; 991 sNC.pNext = pNC; 992 sNC.pParse = pNC->pParse; 993 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 994 break; 995 } 996 #endif 997 } 998 999 if( pzOriginDb ){ 1000 assert( pzOriginTab && pzOriginCol ); 1001 *pzOriginDb = zOriginDb; 1002 *pzOriginTab = zOriginTab; 1003 *pzOriginCol = zOriginCol; 1004 } 1005 return zType; 1006 } 1007 1008 /* 1009 ** Generate code that will tell the VDBE the declaration types of columns 1010 ** in the result set. 1011 */ 1012 static void generateColumnTypes( 1013 Parse *pParse, /* Parser context */ 1014 SrcList *pTabList, /* List of tables */ 1015 ExprList *pEList /* Expressions defining the result set */ 1016 ){ 1017 #ifndef SQLITE_OMIT_DECLTYPE 1018 Vdbe *v = pParse->pVdbe; 1019 int i; 1020 NameContext sNC; 1021 sNC.pSrcList = pTabList; 1022 sNC.pParse = pParse; 1023 for(i=0; i<pEList->nExpr; i++){ 1024 Expr *p = pEList->a[i].pExpr; 1025 const char *zType; 1026 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1027 const char *zOrigDb = 0; 1028 const char *zOrigTab = 0; 1029 const char *zOrigCol = 0; 1030 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1031 1032 /* The vdbe must make its own copy of the column-type and other 1033 ** column specific strings, in case the schema is reset before this 1034 ** virtual machine is deleted. 1035 */ 1036 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1037 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1038 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1039 #else 1040 zType = columnType(&sNC, p, 0, 0, 0); 1041 #endif 1042 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1043 } 1044 #endif /* SQLITE_OMIT_DECLTYPE */ 1045 } 1046 1047 /* 1048 ** Generate code that will tell the VDBE the names of columns 1049 ** in the result set. This information is used to provide the 1050 ** azCol[] values in the callback. 1051 */ 1052 static void generateColumnNames( 1053 Parse *pParse, /* Parser context */ 1054 SrcList *pTabList, /* List of tables */ 1055 ExprList *pEList /* Expressions defining the result set */ 1056 ){ 1057 Vdbe *v = pParse->pVdbe; 1058 int i, j; 1059 sqlite3 *db = pParse->db; 1060 int fullNames, shortNames; 1061 1062 #ifndef SQLITE_OMIT_EXPLAIN 1063 /* If this is an EXPLAIN, skip this step */ 1064 if( pParse->explain ){ 1065 return; 1066 } 1067 #endif 1068 1069 assert( v!=0 ); 1070 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 1071 pParse->colNamesSet = 1; 1072 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1073 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1074 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1075 for(i=0; i<pEList->nExpr; i++){ 1076 Expr *p; 1077 p = pEList->a[i].pExpr; 1078 if( p==0 ) continue; 1079 if( pEList->a[i].zName ){ 1080 char *zName = pEList->a[i].zName; 1081 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1082 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1083 Table *pTab; 1084 char *zCol; 1085 int iCol = p->iColumn; 1086 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1087 assert( j<pTabList->nSrc ); 1088 pTab = pTabList->a[j].pTab; 1089 if( iCol<0 ) iCol = pTab->iPKey; 1090 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1091 if( iCol<0 ){ 1092 zCol = "rowid"; 1093 }else{ 1094 zCol = pTab->aCol[iCol].zName; 1095 } 1096 if( !shortNames && !fullNames ){ 1097 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1098 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1099 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1100 char *zName = 0; 1101 char *zTab; 1102 1103 zTab = pTabList->a[j].zAlias; 1104 if( fullNames || zTab==0 ) zTab = pTab->zName; 1105 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); 1106 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1107 }else{ 1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1109 } 1110 }else{ 1111 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1112 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1113 } 1114 } 1115 generateColumnTypes(pParse, pTabList, pEList); 1116 } 1117 1118 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1119 /* 1120 ** Name of the connection operator, used for error messages. 1121 */ 1122 static const char *selectOpName(int id){ 1123 char *z; 1124 switch( id ){ 1125 case TK_ALL: z = "UNION ALL"; break; 1126 case TK_INTERSECT: z = "INTERSECT"; break; 1127 case TK_EXCEPT: z = "EXCEPT"; break; 1128 default: z = "UNION"; break; 1129 } 1130 return z; 1131 } 1132 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1133 1134 /* 1135 ** Given a an expression list (which is really the list of expressions 1136 ** that form the result set of a SELECT statement) compute appropriate 1137 ** column names for a table that would hold the expression list. 1138 ** 1139 ** All column names will be unique. 1140 ** 1141 ** Only the column names are computed. Column.zType, Column.zColl, 1142 ** and other fields of Column are zeroed. 1143 ** 1144 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1145 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1146 */ 1147 static int selectColumnsFromExprList( 1148 Parse *pParse, /* Parsing context */ 1149 ExprList *pEList, /* Expr list from which to derive column names */ 1150 int *pnCol, /* Write the number of columns here */ 1151 Column **paCol /* Write the new column list here */ 1152 ){ 1153 sqlite3 *db = pParse->db; /* Database connection */ 1154 int i, j; /* Loop counters */ 1155 int cnt; /* Index added to make the name unique */ 1156 Column *aCol, *pCol; /* For looping over result columns */ 1157 int nCol; /* Number of columns in the result set */ 1158 Expr *p; /* Expression for a single result column */ 1159 char *zName; /* Column name */ 1160 int nName; /* Size of name in zName[] */ 1161 1162 *pnCol = nCol = pEList->nExpr; 1163 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1164 if( aCol==0 ) return SQLITE_NOMEM; 1165 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1166 /* Get an appropriate name for the column 1167 */ 1168 p = pEList->a[i].pExpr; 1169 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1170 if( (zName = pEList->a[i].zName)!=0 ){ 1171 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1172 zName = sqlite3DbStrDup(db, zName); 1173 }else{ 1174 Expr *pColExpr = p; /* The expression that is the result column name */ 1175 Table *pTab; /* Table associated with this expression */ 1176 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1177 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){ 1178 /* For columns use the column name name */ 1179 int iCol = pColExpr->iColumn; 1180 if( iCol<0 ) iCol = pTab->iPKey; 1181 zName = sqlite3MPrintf(db, "%s", 1182 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1183 }else{ 1184 /* Use the original text of the column expression as its name */ 1185 Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token); 1186 zName = sqlite3MPrintf(db, "%T", pToken); 1187 } 1188 } 1189 if( db->mallocFailed ){ 1190 sqlite3DbFree(db, zName); 1191 break; 1192 } 1193 sqlite3Dequote(zName); 1194 1195 /* Make sure the column name is unique. If the name is not unique, 1196 ** append a integer to the name so that it becomes unique. 1197 */ 1198 nName = sqlite3Strlen30(zName); 1199 for(j=cnt=0; j<i; j++){ 1200 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1201 char *zNewName; 1202 zName[nName] = 0; 1203 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1204 sqlite3DbFree(db, zName); 1205 zName = zNewName; 1206 j = -1; 1207 if( zName==0 ) break; 1208 } 1209 } 1210 pCol->zName = zName; 1211 } 1212 if( db->mallocFailed ){ 1213 for(j=0; j<i; j++){ 1214 sqlite3DbFree(db, aCol[j].zName); 1215 } 1216 sqlite3DbFree(db, aCol); 1217 *paCol = 0; 1218 *pnCol = 0; 1219 return SQLITE_NOMEM; 1220 } 1221 return SQLITE_OK; 1222 } 1223 1224 /* 1225 ** Add type and collation information to a column list based on 1226 ** a SELECT statement. 1227 ** 1228 ** The column list presumably came from selectColumnNamesFromExprList(). 1229 ** The column list has only names, not types or collations. This 1230 ** routine goes through and adds the types and collations. 1231 ** 1232 ** This routine requires that all indentifiers in the SELECT 1233 ** statement be resolved. 1234 */ 1235 static void selectAddColumnTypeAndCollation( 1236 Parse *pParse, /* Parsing contexts */ 1237 int nCol, /* Number of columns */ 1238 Column *aCol, /* List of columns */ 1239 Select *pSelect /* SELECT used to determine types and collations */ 1240 ){ 1241 sqlite3 *db = pParse->db; 1242 NameContext sNC; 1243 Column *pCol; 1244 CollSeq *pColl; 1245 int i; 1246 Expr *p; 1247 struct ExprList_item *a; 1248 1249 assert( pSelect!=0 ); 1250 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1251 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1252 if( db->mallocFailed ) return; 1253 memset(&sNC, 0, sizeof(sNC)); 1254 sNC.pSrcList = pSelect->pSrc; 1255 a = pSelect->pEList->a; 1256 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1257 p = a[i].pExpr; 1258 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1259 pCol->affinity = sqlite3ExprAffinity(p); 1260 pColl = sqlite3ExprCollSeq(pParse, p); 1261 if( pColl ){ 1262 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1263 } 1264 } 1265 } 1266 1267 /* 1268 ** Given a SELECT statement, generate a Table structure that describes 1269 ** the result set of that SELECT. 1270 */ 1271 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1272 Table *pTab; 1273 sqlite3 *db = pParse->db; 1274 int savedFlags; 1275 1276 savedFlags = db->flags; 1277 db->flags &= ~SQLITE_FullColNames; 1278 db->flags |= SQLITE_ShortColNames; 1279 sqlite3SelectPrep(pParse, pSelect, 0); 1280 if( pParse->nErr ) return 0; 1281 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1282 db->flags = savedFlags; 1283 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1284 if( pTab==0 ){ 1285 return 0; 1286 } 1287 pTab->db = db; 1288 pTab->nRef = 1; 1289 pTab->zName = 0; 1290 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1291 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1292 pTab->iPKey = -1; 1293 if( db->mallocFailed ){ 1294 sqlite3DeleteTable(pTab); 1295 return 0; 1296 } 1297 return pTab; 1298 } 1299 1300 /* 1301 ** Get a VDBE for the given parser context. Create a new one if necessary. 1302 ** If an error occurs, return NULL and leave a message in pParse. 1303 */ 1304 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1305 Vdbe *v = pParse->pVdbe; 1306 if( v==0 ){ 1307 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1308 #ifndef SQLITE_OMIT_TRACE 1309 if( v ){ 1310 sqlite3VdbeAddOp0(v, OP_Trace); 1311 } 1312 #endif 1313 } 1314 return v; 1315 } 1316 1317 1318 /* 1319 ** Compute the iLimit and iOffset fields of the SELECT based on the 1320 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1321 ** that appear in the original SQL statement after the LIMIT and OFFSET 1322 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1323 ** are the integer memory register numbers for counters used to compute 1324 ** the limit and offset. If there is no limit and/or offset, then 1325 ** iLimit and iOffset are negative. 1326 ** 1327 ** This routine changes the values of iLimit and iOffset only if 1328 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1329 ** iOffset should have been preset to appropriate default values 1330 ** (usually but not always -1) prior to calling this routine. 1331 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1332 ** redefined. The UNION ALL operator uses this property to force 1333 ** the reuse of the same limit and offset registers across multiple 1334 ** SELECT statements. 1335 */ 1336 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1337 Vdbe *v = 0; 1338 int iLimit = 0; 1339 int iOffset; 1340 int addr1; 1341 if( p->iLimit ) return; 1342 1343 /* 1344 ** "LIMIT -1" always shows all rows. There is some 1345 ** contraversy about what the correct behavior should be. 1346 ** The current implementation interprets "LIMIT 0" to mean 1347 ** no rows. 1348 */ 1349 if( p->pLimit ){ 1350 p->iLimit = iLimit = ++pParse->nMem; 1351 v = sqlite3GetVdbe(pParse); 1352 if( v==0 ) return; 1353 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1354 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1355 VdbeComment((v, "LIMIT counter")); 1356 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1357 } 1358 if( p->pOffset ){ 1359 p->iOffset = iOffset = ++pParse->nMem; 1360 if( p->pLimit ){ 1361 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1362 } 1363 v = sqlite3GetVdbe(pParse); 1364 if( v==0 ) return; 1365 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1366 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1367 VdbeComment((v, "OFFSET counter")); 1368 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1369 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1370 sqlite3VdbeJumpHere(v, addr1); 1371 if( p->pLimit ){ 1372 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1373 VdbeComment((v, "LIMIT+OFFSET")); 1374 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1375 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1376 sqlite3VdbeJumpHere(v, addr1); 1377 } 1378 } 1379 } 1380 1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1382 /* 1383 ** Return the appropriate collating sequence for the iCol-th column of 1384 ** the result set for the compound-select statement "p". Return NULL if 1385 ** the column has no default collating sequence. 1386 ** 1387 ** The collating sequence for the compound select is taken from the 1388 ** left-most term of the select that has a collating sequence. 1389 */ 1390 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1391 CollSeq *pRet; 1392 if( p->pPrior ){ 1393 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1394 }else{ 1395 pRet = 0; 1396 } 1397 if( pRet==0 ){ 1398 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1399 } 1400 return pRet; 1401 } 1402 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1403 1404 /* Forward reference */ 1405 static int multiSelectOrderBy( 1406 Parse *pParse, /* Parsing context */ 1407 Select *p, /* The right-most of SELECTs to be coded */ 1408 SelectDest *pDest /* What to do with query results */ 1409 ); 1410 1411 1412 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1413 /* 1414 ** This routine is called to process a compound query form from 1415 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1416 ** INTERSECT 1417 ** 1418 ** "p" points to the right-most of the two queries. the query on the 1419 ** left is p->pPrior. The left query could also be a compound query 1420 ** in which case this routine will be called recursively. 1421 ** 1422 ** The results of the total query are to be written into a destination 1423 ** of type eDest with parameter iParm. 1424 ** 1425 ** Example 1: Consider a three-way compound SQL statement. 1426 ** 1427 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1428 ** 1429 ** This statement is parsed up as follows: 1430 ** 1431 ** SELECT c FROM t3 1432 ** | 1433 ** `-----> SELECT b FROM t2 1434 ** | 1435 ** `------> SELECT a FROM t1 1436 ** 1437 ** The arrows in the diagram above represent the Select.pPrior pointer. 1438 ** So if this routine is called with p equal to the t3 query, then 1439 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1440 ** 1441 ** Notice that because of the way SQLite parses compound SELECTs, the 1442 ** individual selects always group from left to right. 1443 */ 1444 static int multiSelect( 1445 Parse *pParse, /* Parsing context */ 1446 Select *p, /* The right-most of SELECTs to be coded */ 1447 SelectDest *pDest /* What to do with query results */ 1448 ){ 1449 int rc = SQLITE_OK; /* Success code from a subroutine */ 1450 Select *pPrior; /* Another SELECT immediately to our left */ 1451 Vdbe *v; /* Generate code to this VDBE */ 1452 SelectDest dest; /* Alternative data destination */ 1453 Select *pDelete = 0; /* Chain of simple selects to delete */ 1454 sqlite3 *db; /* Database connection */ 1455 1456 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1457 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1458 */ 1459 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1460 db = pParse->db; 1461 pPrior = p->pPrior; 1462 assert( pPrior->pRightmost!=pPrior ); 1463 assert( pPrior->pRightmost==p->pRightmost ); 1464 dest = *pDest; 1465 if( pPrior->pOrderBy ){ 1466 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1467 selectOpName(p->op)); 1468 rc = 1; 1469 goto multi_select_end; 1470 } 1471 if( pPrior->pLimit ){ 1472 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1473 selectOpName(p->op)); 1474 rc = 1; 1475 goto multi_select_end; 1476 } 1477 1478 v = sqlite3GetVdbe(pParse); 1479 assert( v!=0 ); /* The VDBE already created by calling function */ 1480 1481 /* Create the destination temporary table if necessary 1482 */ 1483 if( dest.eDest==SRT_EphemTab ){ 1484 assert( p->pEList ); 1485 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1486 dest.eDest = SRT_Table; 1487 } 1488 1489 /* Make sure all SELECTs in the statement have the same number of elements 1490 ** in their result sets. 1491 */ 1492 assert( p->pEList && pPrior->pEList ); 1493 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1494 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1495 " do not have the same number of result columns", selectOpName(p->op)); 1496 rc = 1; 1497 goto multi_select_end; 1498 } 1499 1500 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1501 */ 1502 if( p->pOrderBy ){ 1503 return multiSelectOrderBy(pParse, p, pDest); 1504 } 1505 1506 /* Generate code for the left and right SELECT statements. 1507 */ 1508 switch( p->op ){ 1509 case TK_ALL: { 1510 int addr = 0; 1511 assert( !pPrior->pLimit ); 1512 pPrior->pLimit = p->pLimit; 1513 pPrior->pOffset = p->pOffset; 1514 rc = sqlite3Select(pParse, pPrior, &dest); 1515 p->pLimit = 0; 1516 p->pOffset = 0; 1517 if( rc ){ 1518 goto multi_select_end; 1519 } 1520 p->pPrior = 0; 1521 p->iLimit = pPrior->iLimit; 1522 p->iOffset = pPrior->iOffset; 1523 if( p->iLimit ){ 1524 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1525 VdbeComment((v, "Jump ahead if LIMIT reached")); 1526 } 1527 rc = sqlite3Select(pParse, p, &dest); 1528 pDelete = p->pPrior; 1529 p->pPrior = pPrior; 1530 if( rc ){ 1531 goto multi_select_end; 1532 } 1533 if( addr ){ 1534 sqlite3VdbeJumpHere(v, addr); 1535 } 1536 break; 1537 } 1538 case TK_EXCEPT: 1539 case TK_UNION: { 1540 int unionTab; /* Cursor number of the temporary table holding result */ 1541 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1542 int priorOp; /* The SRT_ operation to apply to prior selects */ 1543 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1544 int addr; 1545 SelectDest uniondest; 1546 1547 priorOp = SRT_Union; 1548 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ 1549 /* We can reuse a temporary table generated by a SELECT to our 1550 ** right. 1551 */ 1552 unionTab = dest.iParm; 1553 }else{ 1554 /* We will need to create our own temporary table to hold the 1555 ** intermediate results. 1556 */ 1557 unionTab = pParse->nTab++; 1558 assert( p->pOrderBy==0 ); 1559 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1560 assert( p->addrOpenEphm[0] == -1 ); 1561 p->addrOpenEphm[0] = addr; 1562 p->pRightmost->selFlags |= SF_UsesEphemeral; 1563 assert( p->pEList ); 1564 } 1565 1566 /* Code the SELECT statements to our left 1567 */ 1568 assert( !pPrior->pOrderBy ); 1569 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1570 rc = sqlite3Select(pParse, pPrior, &uniondest); 1571 if( rc ){ 1572 goto multi_select_end; 1573 } 1574 1575 /* Code the current SELECT statement 1576 */ 1577 if( p->op==TK_EXCEPT ){ 1578 op = SRT_Except; 1579 }else{ 1580 assert( p->op==TK_UNION ); 1581 op = SRT_Union; 1582 } 1583 p->pPrior = 0; 1584 pLimit = p->pLimit; 1585 p->pLimit = 0; 1586 pOffset = p->pOffset; 1587 p->pOffset = 0; 1588 uniondest.eDest = op; 1589 rc = sqlite3Select(pParse, p, &uniondest); 1590 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1591 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1592 sqlite3ExprListDelete(db, p->pOrderBy); 1593 pDelete = p->pPrior; 1594 p->pPrior = pPrior; 1595 p->pOrderBy = 0; 1596 sqlite3ExprDelete(db, p->pLimit); 1597 p->pLimit = pLimit; 1598 p->pOffset = pOffset; 1599 p->iLimit = 0; 1600 p->iOffset = 0; 1601 if( rc ){ 1602 goto multi_select_end; 1603 } 1604 1605 1606 /* Convert the data in the temporary table into whatever form 1607 ** it is that we currently need. 1608 */ 1609 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 1610 int iCont, iBreak, iStart; 1611 assert( p->pEList ); 1612 if( dest.eDest==SRT_Output ){ 1613 Select *pFirst = p; 1614 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1615 generateColumnNames(pParse, 0, pFirst->pEList); 1616 } 1617 iBreak = sqlite3VdbeMakeLabel(v); 1618 iCont = sqlite3VdbeMakeLabel(v); 1619 computeLimitRegisters(pParse, p, iBreak); 1620 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1621 iStart = sqlite3VdbeCurrentAddr(v); 1622 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1623 0, -1, &dest, iCont, iBreak); 1624 sqlite3VdbeResolveLabel(v, iCont); 1625 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1626 sqlite3VdbeResolveLabel(v, iBreak); 1627 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1628 } 1629 break; 1630 } 1631 case TK_INTERSECT: { 1632 int tab1, tab2; 1633 int iCont, iBreak, iStart; 1634 Expr *pLimit, *pOffset; 1635 int addr; 1636 SelectDest intersectdest; 1637 int r1; 1638 1639 /* INTERSECT is different from the others since it requires 1640 ** two temporary tables. Hence it has its own case. Begin 1641 ** by allocating the tables we will need. 1642 */ 1643 tab1 = pParse->nTab++; 1644 tab2 = pParse->nTab++; 1645 assert( p->pOrderBy==0 ); 1646 1647 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1648 assert( p->addrOpenEphm[0] == -1 ); 1649 p->addrOpenEphm[0] = addr; 1650 p->pRightmost->selFlags |= SF_UsesEphemeral; 1651 assert( p->pEList ); 1652 1653 /* Code the SELECTs to our left into temporary table "tab1". 1654 */ 1655 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1656 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1657 if( rc ){ 1658 goto multi_select_end; 1659 } 1660 1661 /* Code the current SELECT into temporary table "tab2" 1662 */ 1663 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1664 assert( p->addrOpenEphm[1] == -1 ); 1665 p->addrOpenEphm[1] = addr; 1666 p->pPrior = 0; 1667 pLimit = p->pLimit; 1668 p->pLimit = 0; 1669 pOffset = p->pOffset; 1670 p->pOffset = 0; 1671 intersectdest.iParm = tab2; 1672 rc = sqlite3Select(pParse, p, &intersectdest); 1673 pDelete = p->pPrior; 1674 p->pPrior = pPrior; 1675 sqlite3ExprDelete(db, p->pLimit); 1676 p->pLimit = pLimit; 1677 p->pOffset = pOffset; 1678 if( rc ){ 1679 goto multi_select_end; 1680 } 1681 1682 /* Generate code to take the intersection of the two temporary 1683 ** tables. 1684 */ 1685 assert( p->pEList ); 1686 if( dest.eDest==SRT_Output ){ 1687 Select *pFirst = p; 1688 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1689 generateColumnNames(pParse, 0, pFirst->pEList); 1690 } 1691 iBreak = sqlite3VdbeMakeLabel(v); 1692 iCont = sqlite3VdbeMakeLabel(v); 1693 computeLimitRegisters(pParse, p, iBreak); 1694 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1695 r1 = sqlite3GetTempReg(pParse); 1696 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1697 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1698 sqlite3ReleaseTempReg(pParse, r1); 1699 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1700 0, -1, &dest, iCont, iBreak); 1701 sqlite3VdbeResolveLabel(v, iCont); 1702 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1703 sqlite3VdbeResolveLabel(v, iBreak); 1704 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1705 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1706 break; 1707 } 1708 } 1709 1710 /* Compute collating sequences used by 1711 ** temporary tables needed to implement the compound select. 1712 ** Attach the KeyInfo structure to all temporary tables. 1713 ** 1714 ** This section is run by the right-most SELECT statement only. 1715 ** SELECT statements to the left always skip this part. The right-most 1716 ** SELECT might also skip this part if it has no ORDER BY clause and 1717 ** no temp tables are required. 1718 */ 1719 if( p->selFlags & SF_UsesEphemeral ){ 1720 int i; /* Loop counter */ 1721 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1722 Select *pLoop; /* For looping through SELECT statements */ 1723 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1724 int nCol; /* Number of columns in result set */ 1725 1726 assert( p->pRightmost==p ); 1727 nCol = p->pEList->nExpr; 1728 pKeyInfo = sqlite3DbMallocZero(db, 1729 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1730 if( !pKeyInfo ){ 1731 rc = SQLITE_NOMEM; 1732 goto multi_select_end; 1733 } 1734 1735 pKeyInfo->enc = ENC(db); 1736 pKeyInfo->nField = (u16)nCol; 1737 1738 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1739 *apColl = multiSelectCollSeq(pParse, p, i); 1740 if( 0==*apColl ){ 1741 *apColl = db->pDfltColl; 1742 } 1743 } 1744 1745 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1746 for(i=0; i<2; i++){ 1747 int addr = pLoop->addrOpenEphm[i]; 1748 if( addr<0 ){ 1749 /* If [0] is unused then [1] is also unused. So we can 1750 ** always safely abort as soon as the first unused slot is found */ 1751 assert( pLoop->addrOpenEphm[1]<0 ); 1752 break; 1753 } 1754 sqlite3VdbeChangeP2(v, addr, nCol); 1755 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1756 pLoop->addrOpenEphm[i] = -1; 1757 } 1758 } 1759 sqlite3DbFree(db, pKeyInfo); 1760 } 1761 1762 multi_select_end: 1763 pDest->iMem = dest.iMem; 1764 pDest->nMem = dest.nMem; 1765 sqlite3SelectDelete(db, pDelete); 1766 return rc; 1767 } 1768 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1769 1770 /* 1771 ** Code an output subroutine for a coroutine implementation of a 1772 ** SELECT statment. 1773 ** 1774 ** The data to be output is contained in pIn->iMem. There are 1775 ** pIn->nMem columns to be output. pDest is where the output should 1776 ** be sent. 1777 ** 1778 ** regReturn is the number of the register holding the subroutine 1779 ** return address. 1780 ** 1781 ** If regPrev>0 then it is a the first register in a vector that 1782 ** records the previous output. mem[regPrev] is a flag that is false 1783 ** if there has been no previous output. If regPrev>0 then code is 1784 ** generated to suppress duplicates. pKeyInfo is used for comparing 1785 ** keys. 1786 ** 1787 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1788 ** iBreak. 1789 */ 1790 static int generateOutputSubroutine( 1791 Parse *pParse, /* Parsing context */ 1792 Select *p, /* The SELECT statement */ 1793 SelectDest *pIn, /* Coroutine supplying data */ 1794 SelectDest *pDest, /* Where to send the data */ 1795 int regReturn, /* The return address register */ 1796 int regPrev, /* Previous result register. No uniqueness if 0 */ 1797 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1798 int p4type, /* The p4 type for pKeyInfo */ 1799 int iBreak /* Jump here if we hit the LIMIT */ 1800 ){ 1801 Vdbe *v = pParse->pVdbe; 1802 int iContinue; 1803 int addr; 1804 1805 addr = sqlite3VdbeCurrentAddr(v); 1806 iContinue = sqlite3VdbeMakeLabel(v); 1807 1808 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1809 */ 1810 if( regPrev ){ 1811 int j1, j2; 1812 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1813 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1814 (char*)pKeyInfo, p4type); 1815 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1816 sqlite3VdbeJumpHere(v, j1); 1817 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1818 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1819 } 1820 if( pParse->db->mallocFailed ) return 0; 1821 1822 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1823 */ 1824 codeOffset(v, p, iContinue); 1825 1826 switch( pDest->eDest ){ 1827 /* Store the result as data using a unique key. 1828 */ 1829 case SRT_Table: 1830 case SRT_EphemTab: { 1831 int r1 = sqlite3GetTempReg(pParse); 1832 int r2 = sqlite3GetTempReg(pParse); 1833 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1834 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1835 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1836 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1837 sqlite3ReleaseTempReg(pParse, r2); 1838 sqlite3ReleaseTempReg(pParse, r1); 1839 break; 1840 } 1841 1842 #ifndef SQLITE_OMIT_SUBQUERY 1843 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1844 ** then there should be a single item on the stack. Write this 1845 ** item into the set table with bogus data. 1846 */ 1847 case SRT_Set: { 1848 int r1; 1849 assert( pIn->nMem==1 ); 1850 p->affinity = 1851 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1852 r1 = sqlite3GetTempReg(pParse); 1853 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1854 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1855 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1856 sqlite3ReleaseTempReg(pParse, r1); 1857 break; 1858 } 1859 1860 #if 0 /* Never occurs on an ORDER BY query */ 1861 /* If any row exist in the result set, record that fact and abort. 1862 */ 1863 case SRT_Exists: { 1864 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1865 /* The LIMIT clause will terminate the loop for us */ 1866 break; 1867 } 1868 #endif 1869 1870 /* If this is a scalar select that is part of an expression, then 1871 ** store the results in the appropriate memory cell and break out 1872 ** of the scan loop. 1873 */ 1874 case SRT_Mem: { 1875 assert( pIn->nMem==1 ); 1876 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1877 /* The LIMIT clause will jump out of the loop for us */ 1878 break; 1879 } 1880 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1881 1882 /* The results are stored in a sequence of registers 1883 ** starting at pDest->iMem. Then the co-routine yields. 1884 */ 1885 case SRT_Coroutine: { 1886 if( pDest->iMem==0 ){ 1887 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1888 pDest->nMem = pIn->nMem; 1889 } 1890 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1891 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1892 break; 1893 } 1894 1895 /* Results are stored in a sequence of registers. Then the 1896 ** OP_ResultRow opcode is used to cause sqlite3_step() to return 1897 ** the next row of result. 1898 */ 1899 case SRT_Output: { 1900 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1901 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1902 break; 1903 } 1904 1905 #if !defined(SQLITE_OMIT_TRIGGER) 1906 /* Discard the results. This is used for SELECT statements inside 1907 ** the body of a TRIGGER. The purpose of such selects is to call 1908 ** user-defined functions that have side effects. We do not care 1909 ** about the actual results of the select. 1910 */ 1911 default: { 1912 break; 1913 } 1914 #endif 1915 } 1916 1917 /* Jump to the end of the loop if the LIMIT is reached. 1918 */ 1919 if( p->iLimit ){ 1920 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1921 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1922 } 1923 1924 /* Generate the subroutine return 1925 */ 1926 sqlite3VdbeResolveLabel(v, iContinue); 1927 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1928 1929 return addr; 1930 } 1931 1932 /* 1933 ** Alternative compound select code generator for cases when there 1934 ** is an ORDER BY clause. 1935 ** 1936 ** We assume a query of the following form: 1937 ** 1938 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1939 ** 1940 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1941 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1942 ** co-routines. Then run the co-routines in parallel and merge the results 1943 ** into the output. In addition to the two coroutines (called selectA and 1944 ** selectB) there are 7 subroutines: 1945 ** 1946 ** outA: Move the output of the selectA coroutine into the output 1947 ** of the compound query. 1948 ** 1949 ** outB: Move the output of the selectB coroutine into the output 1950 ** of the compound query. (Only generated for UNION and 1951 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1952 ** appears only in B.) 1953 ** 1954 ** AltB: Called when there is data from both coroutines and A<B. 1955 ** 1956 ** AeqB: Called when there is data from both coroutines and A==B. 1957 ** 1958 ** AgtB: Called when there is data from both coroutines and A>B. 1959 ** 1960 ** EofA: Called when data is exhausted from selectA. 1961 ** 1962 ** EofB: Called when data is exhausted from selectB. 1963 ** 1964 ** The implementation of the latter five subroutines depend on which 1965 ** <operator> is used: 1966 ** 1967 ** 1968 ** UNION ALL UNION EXCEPT INTERSECT 1969 ** ------------- ----------------- -------------- ----------------- 1970 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1971 ** 1972 ** AeqB: outA, nextA nextA nextA outA, nextA 1973 ** 1974 ** AgtB: outB, nextB outB, nextB nextB nextB 1975 ** 1976 ** EofA: outB, nextB outB, nextB halt halt 1977 ** 1978 ** EofB: outA, nextA outA, nextA outA, nextA halt 1979 ** 1980 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1981 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1982 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1983 ** following nextX causes a jump to the end of the select processing. 1984 ** 1985 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1986 ** within the output subroutine. The regPrev register set holds the previously 1987 ** output value. A comparison is made against this value and the output 1988 ** is skipped if the next results would be the same as the previous. 1989 ** 1990 ** The implementation plan is to implement the two coroutines and seven 1991 ** subroutines first, then put the control logic at the bottom. Like this: 1992 ** 1993 ** goto Init 1994 ** coA: coroutine for left query (A) 1995 ** coB: coroutine for right query (B) 1996 ** outA: output one row of A 1997 ** outB: output one row of B (UNION and UNION ALL only) 1998 ** EofA: ... 1999 ** EofB: ... 2000 ** AltB: ... 2001 ** AeqB: ... 2002 ** AgtB: ... 2003 ** Init: initialize coroutine registers 2004 ** yield coA 2005 ** if eof(A) goto EofA 2006 ** yield coB 2007 ** if eof(B) goto EofB 2008 ** Cmpr: Compare A, B 2009 ** Jump AltB, AeqB, AgtB 2010 ** End: ... 2011 ** 2012 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2013 ** actually called using Gosub and they do not Return. EofA and EofB loop 2014 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2015 ** and AgtB jump to either L2 or to one of EofA or EofB. 2016 */ 2017 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2018 static int multiSelectOrderBy( 2019 Parse *pParse, /* Parsing context */ 2020 Select *p, /* The right-most of SELECTs to be coded */ 2021 SelectDest *pDest /* What to do with query results */ 2022 ){ 2023 int i, j; /* Loop counters */ 2024 Select *pPrior; /* Another SELECT immediately to our left */ 2025 Vdbe *v; /* Generate code to this VDBE */ 2026 SelectDest destA; /* Destination for coroutine A */ 2027 SelectDest destB; /* Destination for coroutine B */ 2028 int regAddrA; /* Address register for select-A coroutine */ 2029 int regEofA; /* Flag to indicate when select-A is complete */ 2030 int regAddrB; /* Address register for select-B coroutine */ 2031 int regEofB; /* Flag to indicate when select-B is complete */ 2032 int addrSelectA; /* Address of the select-A coroutine */ 2033 int addrSelectB; /* Address of the select-B coroutine */ 2034 int regOutA; /* Address register for the output-A subroutine */ 2035 int regOutB; /* Address register for the output-B subroutine */ 2036 int addrOutA; /* Address of the output-A subroutine */ 2037 int addrOutB = 0; /* Address of the output-B subroutine */ 2038 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2039 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2040 int addrAltB; /* Address of the A<B subroutine */ 2041 int addrAeqB; /* Address of the A==B subroutine */ 2042 int addrAgtB; /* Address of the A>B subroutine */ 2043 int regLimitA; /* Limit register for select-A */ 2044 int regLimitB; /* Limit register for select-A */ 2045 int regPrev; /* A range of registers to hold previous output */ 2046 int savedLimit; /* Saved value of p->iLimit */ 2047 int savedOffset; /* Saved value of p->iOffset */ 2048 int labelCmpr; /* Label for the start of the merge algorithm */ 2049 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2050 int j1; /* Jump instructions that get retargetted */ 2051 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2052 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2053 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2054 sqlite3 *db; /* Database connection */ 2055 ExprList *pOrderBy; /* The ORDER BY clause */ 2056 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2057 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2058 2059 assert( p->pOrderBy!=0 ); 2060 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2061 db = pParse->db; 2062 v = pParse->pVdbe; 2063 if( v==0 ) return SQLITE_NOMEM; 2064 labelEnd = sqlite3VdbeMakeLabel(v); 2065 labelCmpr = sqlite3VdbeMakeLabel(v); 2066 2067 2068 /* Patch up the ORDER BY clause 2069 */ 2070 op = p->op; 2071 pPrior = p->pPrior; 2072 assert( pPrior->pOrderBy==0 ); 2073 pOrderBy = p->pOrderBy; 2074 assert( pOrderBy ); 2075 nOrderBy = pOrderBy->nExpr; 2076 2077 /* For operators other than UNION ALL we have to make sure that 2078 ** the ORDER BY clause covers every term of the result set. Add 2079 ** terms to the ORDER BY clause as necessary. 2080 */ 2081 if( op!=TK_ALL ){ 2082 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2083 struct ExprList_item *pItem; 2084 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2085 assert( pItem->iCol>0 ); 2086 if( pItem->iCol==i ) break; 2087 } 2088 if( j==nOrderBy ){ 2089 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2090 if( pNew==0 ) return SQLITE_NOMEM; 2091 pNew->flags |= EP_IntValue; 2092 pNew->iTable = i; 2093 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2094 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2095 } 2096 } 2097 } 2098 2099 /* Compute the comparison permutation and keyinfo that is used with 2100 ** the permutation in order to comparisons to determine if the next 2101 ** row of results comes from selectA or selectB. Also add explicit 2102 ** collations to the ORDER BY clause terms so that when the subqueries 2103 ** to the right and the left are evaluated, they use the correct 2104 ** collation. 2105 */ 2106 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2107 if( aPermute ){ 2108 struct ExprList_item *pItem; 2109 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2110 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2111 aPermute[i] = pItem->iCol - 1; 2112 } 2113 pKeyMerge = 2114 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2115 if( pKeyMerge ){ 2116 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2117 pKeyMerge->nField = (u16)nOrderBy; 2118 pKeyMerge->enc = ENC(db); 2119 for(i=0; i<nOrderBy; i++){ 2120 CollSeq *pColl; 2121 Expr *pTerm = pOrderBy->a[i].pExpr; 2122 if( pTerm->flags & EP_ExpCollate ){ 2123 pColl = pTerm->pColl; 2124 }else{ 2125 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2126 pTerm->flags |= EP_ExpCollate; 2127 pTerm->pColl = pColl; 2128 } 2129 pKeyMerge->aColl[i] = pColl; 2130 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2131 } 2132 } 2133 }else{ 2134 pKeyMerge = 0; 2135 } 2136 2137 /* Reattach the ORDER BY clause to the query. 2138 */ 2139 p->pOrderBy = pOrderBy; 2140 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); 2141 2142 /* Allocate a range of temporary registers and the KeyInfo needed 2143 ** for the logic that removes duplicate result rows when the 2144 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2145 */ 2146 if( op==TK_ALL ){ 2147 regPrev = 0; 2148 }else{ 2149 int nExpr = p->pEList->nExpr; 2150 assert( nOrderBy>=nExpr || db->mallocFailed ); 2151 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2152 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2153 pKeyDup = sqlite3DbMallocZero(db, 2154 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2155 if( pKeyDup ){ 2156 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2157 pKeyDup->nField = (u16)nExpr; 2158 pKeyDup->enc = ENC(db); 2159 for(i=0; i<nExpr; i++){ 2160 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2161 pKeyDup->aSortOrder[i] = 0; 2162 } 2163 } 2164 } 2165 2166 /* Separate the left and the right query from one another 2167 */ 2168 p->pPrior = 0; 2169 pPrior->pRightmost = 0; 2170 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2171 if( pPrior->pPrior==0 ){ 2172 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2173 } 2174 2175 /* Compute the limit registers */ 2176 computeLimitRegisters(pParse, p, labelEnd); 2177 if( p->iLimit && op==TK_ALL ){ 2178 regLimitA = ++pParse->nMem; 2179 regLimitB = ++pParse->nMem; 2180 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2181 regLimitA); 2182 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2183 }else{ 2184 regLimitA = regLimitB = 0; 2185 } 2186 sqlite3ExprDelete(db, p->pLimit); 2187 p->pLimit = 0; 2188 sqlite3ExprDelete(db, p->pOffset); 2189 p->pOffset = 0; 2190 2191 regAddrA = ++pParse->nMem; 2192 regEofA = ++pParse->nMem; 2193 regAddrB = ++pParse->nMem; 2194 regEofB = ++pParse->nMem; 2195 regOutA = ++pParse->nMem; 2196 regOutB = ++pParse->nMem; 2197 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2198 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2199 2200 /* Jump past the various subroutines and coroutines to the main 2201 ** merge loop 2202 */ 2203 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2204 addrSelectA = sqlite3VdbeCurrentAddr(v); 2205 2206 2207 /* Generate a coroutine to evaluate the SELECT statement to the 2208 ** left of the compound operator - the "A" select. 2209 */ 2210 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2211 pPrior->iLimit = regLimitA; 2212 sqlite3Select(pParse, pPrior, &destA); 2213 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2214 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2215 VdbeNoopComment((v, "End coroutine for left SELECT")); 2216 2217 /* Generate a coroutine to evaluate the SELECT statement on 2218 ** the right - the "B" select 2219 */ 2220 addrSelectB = sqlite3VdbeCurrentAddr(v); 2221 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2222 savedLimit = p->iLimit; 2223 savedOffset = p->iOffset; 2224 p->iLimit = regLimitB; 2225 p->iOffset = 0; 2226 sqlite3Select(pParse, p, &destB); 2227 p->iLimit = savedLimit; 2228 p->iOffset = savedOffset; 2229 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2230 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2231 VdbeNoopComment((v, "End coroutine for right SELECT")); 2232 2233 /* Generate a subroutine that outputs the current row of the A 2234 ** select as the next output row of the compound select. 2235 */ 2236 VdbeNoopComment((v, "Output routine for A")); 2237 addrOutA = generateOutputSubroutine(pParse, 2238 p, &destA, pDest, regOutA, 2239 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2240 2241 /* Generate a subroutine that outputs the current row of the B 2242 ** select as the next output row of the compound select. 2243 */ 2244 if( op==TK_ALL || op==TK_UNION ){ 2245 VdbeNoopComment((v, "Output routine for B")); 2246 addrOutB = generateOutputSubroutine(pParse, 2247 p, &destB, pDest, regOutB, 2248 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2249 } 2250 2251 /* Generate a subroutine to run when the results from select A 2252 ** are exhausted and only data in select B remains. 2253 */ 2254 VdbeNoopComment((v, "eof-A subroutine")); 2255 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2256 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2257 }else{ 2258 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2259 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2260 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2261 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2262 } 2263 2264 /* Generate a subroutine to run when the results from select B 2265 ** are exhausted and only data in select A remains. 2266 */ 2267 if( op==TK_INTERSECT ){ 2268 addrEofB = addrEofA; 2269 }else{ 2270 VdbeNoopComment((v, "eof-B subroutine")); 2271 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2272 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2273 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2274 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2275 } 2276 2277 /* Generate code to handle the case of A<B 2278 */ 2279 VdbeNoopComment((v, "A-lt-B subroutine")); 2280 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2281 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2282 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2283 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2284 2285 /* Generate code to handle the case of A==B 2286 */ 2287 if( op==TK_ALL ){ 2288 addrAeqB = addrAltB; 2289 }else if( op==TK_INTERSECT ){ 2290 addrAeqB = addrAltB; 2291 addrAltB++; 2292 }else{ 2293 VdbeNoopComment((v, "A-eq-B subroutine")); 2294 addrAeqB = 2295 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2296 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2297 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2298 } 2299 2300 /* Generate code to handle the case of A>B 2301 */ 2302 VdbeNoopComment((v, "A-gt-B subroutine")); 2303 addrAgtB = sqlite3VdbeCurrentAddr(v); 2304 if( op==TK_ALL || op==TK_UNION ){ 2305 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2306 } 2307 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2308 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2309 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2310 2311 /* This code runs once to initialize everything. 2312 */ 2313 sqlite3VdbeJumpHere(v, j1); 2314 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2315 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2316 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2317 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2318 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2319 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2320 2321 /* Implement the main merge loop 2322 */ 2323 sqlite3VdbeResolveLabel(v, labelCmpr); 2324 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2325 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2326 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2327 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2328 2329 /* Release temporary registers 2330 */ 2331 if( regPrev ){ 2332 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2333 } 2334 2335 /* Jump to the this point in order to terminate the query. 2336 */ 2337 sqlite3VdbeResolveLabel(v, labelEnd); 2338 2339 /* Set the number of output columns 2340 */ 2341 if( pDest->eDest==SRT_Output ){ 2342 Select *pFirst = pPrior; 2343 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2344 generateColumnNames(pParse, 0, pFirst->pEList); 2345 } 2346 2347 /* Reassembly the compound query so that it will be freed correctly 2348 ** by the calling function */ 2349 if( p->pPrior ){ 2350 sqlite3SelectDelete(db, p->pPrior); 2351 } 2352 p->pPrior = pPrior; 2353 2354 /*** TBD: Insert subroutine calls to close cursors on incomplete 2355 **** subqueries ****/ 2356 return SQLITE_OK; 2357 } 2358 #endif 2359 2360 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2361 /* Forward Declarations */ 2362 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2363 static void substSelect(sqlite3*, Select *, int, ExprList *); 2364 2365 /* 2366 ** Scan through the expression pExpr. Replace every reference to 2367 ** a column in table number iTable with a copy of the iColumn-th 2368 ** entry in pEList. (But leave references to the ROWID column 2369 ** unchanged.) 2370 ** 2371 ** This routine is part of the flattening procedure. A subquery 2372 ** whose result set is defined by pEList appears as entry in the 2373 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2374 ** FORM clause entry is iTable. This routine make the necessary 2375 ** changes to pExpr so that it refers directly to the source table 2376 ** of the subquery rather the result set of the subquery. 2377 */ 2378 static void substExpr( 2379 sqlite3 *db, /* Report malloc errors to this connection */ 2380 Expr *pExpr, /* Expr in which substitution occurs */ 2381 int iTable, /* Table to be substituted */ 2382 ExprList *pEList /* Substitute expressions */ 2383 ){ 2384 if( pExpr==0 ) return; 2385 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2386 if( pExpr->iColumn<0 ){ 2387 pExpr->op = TK_NULL; 2388 }else{ 2389 Expr *pNew; 2390 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2391 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2392 pNew = pEList->a[pExpr->iColumn].pExpr; 2393 assert( pNew!=0 ); 2394 pExpr->op = pNew->op; 2395 assert( pExpr->pLeft==0 ); 2396 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2397 assert( pExpr->pRight==0 ); 2398 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2399 assert( pExpr->pList==0 ); 2400 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2401 pExpr->iTable = pNew->iTable; 2402 pExpr->pTab = pNew->pTab; 2403 pExpr->iColumn = pNew->iColumn; 2404 pExpr->iAgg = pNew->iAgg; 2405 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2406 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2407 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2408 pExpr->flags = pNew->flags; 2409 } 2410 }else{ 2411 substExpr(db, pExpr->pLeft, iTable, pEList); 2412 substExpr(db, pExpr->pRight, iTable, pEList); 2413 substSelect(db, pExpr->pSelect, iTable, pEList); 2414 substExprList(db, pExpr->pList, iTable, pEList); 2415 } 2416 } 2417 static void substExprList( 2418 sqlite3 *db, /* Report malloc errors here */ 2419 ExprList *pList, /* List to scan and in which to make substitutes */ 2420 int iTable, /* Table to be substituted */ 2421 ExprList *pEList /* Substitute values */ 2422 ){ 2423 int i; 2424 if( pList==0 ) return; 2425 for(i=0; i<pList->nExpr; i++){ 2426 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2427 } 2428 } 2429 static void substSelect( 2430 sqlite3 *db, /* Report malloc errors here */ 2431 Select *p, /* SELECT statement in which to make substitutions */ 2432 int iTable, /* Table to be replaced */ 2433 ExprList *pEList /* Substitute values */ 2434 ){ 2435 SrcList *pSrc; 2436 struct SrcList_item *pItem; 2437 int i; 2438 if( !p ) return; 2439 substExprList(db, p->pEList, iTable, pEList); 2440 substExprList(db, p->pGroupBy, iTable, pEList); 2441 substExprList(db, p->pOrderBy, iTable, pEList); 2442 substExpr(db, p->pHaving, iTable, pEList); 2443 substExpr(db, p->pWhere, iTable, pEList); 2444 substSelect(db, p->pPrior, iTable, pEList); 2445 pSrc = p->pSrc; 2446 if( pSrc ){ 2447 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2448 substSelect(db, pItem->pSelect, iTable, pEList); 2449 } 2450 } 2451 } 2452 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2453 2454 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2455 /* 2456 ** This routine attempts to flatten subqueries in order to speed 2457 ** execution. It returns 1 if it makes changes and 0 if no flattening 2458 ** occurs. 2459 ** 2460 ** To understand the concept of flattening, consider the following 2461 ** query: 2462 ** 2463 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2464 ** 2465 ** The default way of implementing this query is to execute the 2466 ** subquery first and store the results in a temporary table, then 2467 ** run the outer query on that temporary table. This requires two 2468 ** passes over the data. Furthermore, because the temporary table 2469 ** has no indices, the WHERE clause on the outer query cannot be 2470 ** optimized. 2471 ** 2472 ** This routine attempts to rewrite queries such as the above into 2473 ** a single flat select, like this: 2474 ** 2475 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2476 ** 2477 ** The code generated for this simpification gives the same result 2478 ** but only has to scan the data once. And because indices might 2479 ** exist on the table t1, a complete scan of the data might be 2480 ** avoided. 2481 ** 2482 ** Flattening is only attempted if all of the following are true: 2483 ** 2484 ** (1) The subquery and the outer query do not both use aggregates. 2485 ** 2486 ** (2) The subquery is not an aggregate or the outer query is not a join. 2487 ** 2488 ** (3) The subquery is not the right operand of a left outer join 2489 ** (Originally ticket #306. Strenghtened by ticket #3300) 2490 ** 2491 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2492 ** 2493 ** (5) The subquery is not DISTINCT or the outer query does not use 2494 ** aggregates. 2495 ** 2496 ** (6) The subquery does not use aggregates or the outer query is not 2497 ** DISTINCT. 2498 ** 2499 ** (7) The subquery has a FROM clause. 2500 ** 2501 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2502 ** 2503 ** (9) The subquery does not use LIMIT or the outer query does not use 2504 ** aggregates. 2505 ** 2506 ** (10) The subquery does not use aggregates or the outer query does not 2507 ** use LIMIT. 2508 ** 2509 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2510 ** 2511 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2512 ** a separate restriction deriving from ticket #350. 2513 ** 2514 ** (13) The subquery and outer query do not both use LIMIT 2515 ** 2516 ** (14) The subquery does not use OFFSET 2517 ** 2518 ** (15) The outer query is not part of a compound select or the 2519 ** subquery does not have both an ORDER BY and a LIMIT clause. 2520 ** (See ticket #2339) 2521 ** 2522 ** (16) The outer query is not an aggregate or the subquery does 2523 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2524 ** until we introduced the group_concat() function. 2525 ** 2526 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2527 ** compound clause made up entirely of non-aggregate queries, and 2528 ** the parent query: 2529 ** 2530 ** * is not itself part of a compound select, 2531 ** * is not an aggregate or DISTINCT query, and 2532 ** * has no other tables or sub-selects in the FROM clause. 2533 ** 2534 ** The parent and sub-query may contain WHERE clauses. Subject to 2535 ** rules (11), (13) and (14), they may also contain ORDER BY, 2536 ** LIMIT and OFFSET clauses. 2537 ** 2538 ** (18) If the sub-query is a compound select, then all terms of the 2539 ** ORDER by clause of the parent must be simple references to 2540 ** columns of the sub-query. 2541 ** 2542 ** (19) The subquery does not use LIMIT or the outer query does not 2543 ** have a WHERE clause. 2544 ** 2545 ** In this routine, the "p" parameter is a pointer to the outer query. 2546 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2547 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2548 ** 2549 ** If flattening is not attempted, this routine is a no-op and returns 0. 2550 ** If flattening is attempted this routine returns 1. 2551 ** 2552 ** All of the expression analysis must occur on both the outer query and 2553 ** the subquery before this routine runs. 2554 */ 2555 static int flattenSubquery( 2556 Parse *pParse, /* Parsing context */ 2557 Select *p, /* The parent or outer SELECT statement */ 2558 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2559 int isAgg, /* True if outer SELECT uses aggregate functions */ 2560 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2561 ){ 2562 const char *zSavedAuthContext = pParse->zAuthContext; 2563 Select *pParent; 2564 Select *pSub; /* The inner query or "subquery" */ 2565 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2566 SrcList *pSrc; /* The FROM clause of the outer query */ 2567 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2568 ExprList *pList; /* The result set of the outer query */ 2569 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2570 int i; /* Loop counter */ 2571 Expr *pWhere; /* The WHERE clause */ 2572 struct SrcList_item *pSubitem; /* The subquery */ 2573 sqlite3 *db = pParse->db; 2574 2575 /* Check to see if flattening is permitted. Return 0 if not. 2576 */ 2577 assert( p!=0 ); 2578 if( p==0 ) return 0; 2579 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2580 pSrc = p->pSrc; 2581 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2582 pSubitem = &pSrc->a[iFrom]; 2583 iParent = pSubitem->iCursor; 2584 pSub = pSubitem->pSelect; 2585 assert( pSub!=0 ); 2586 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2587 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2588 pSubSrc = pSub->pSrc; 2589 assert( pSubSrc ); 2590 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2591 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2592 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2593 ** became arbitrary expressions, we were forced to add restrictions (13) 2594 ** and (14). */ 2595 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2596 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2597 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2598 return 0; /* Restriction (15) */ 2599 } 2600 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2601 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2602 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2603 return 0; 2604 } 2605 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2606 return 0; /* Restriction (6) */ 2607 } 2608 if( p->pOrderBy && pSub->pOrderBy ){ 2609 return 0; /* Restriction (11) */ 2610 } 2611 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2612 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2613 2614 /* OBSOLETE COMMENT 1: 2615 ** Restriction 3: If the subquery is a join, make sure the subquery is 2616 ** not used as the right operand of an outer join. Examples of why this 2617 ** is not allowed: 2618 ** 2619 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2620 ** 2621 ** If we flatten the above, we would get 2622 ** 2623 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2624 ** 2625 ** which is not at all the same thing. 2626 ** 2627 ** OBSOLETE COMMENT 2: 2628 ** Restriction 12: If the subquery is the right operand of a left outer 2629 ** join, make sure the subquery has no WHERE clause. 2630 ** An examples of why this is not allowed: 2631 ** 2632 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2633 ** 2634 ** If we flatten the above, we would get 2635 ** 2636 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2637 ** 2638 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2639 ** effectively converts the OUTER JOIN into an INNER JOIN. 2640 ** 2641 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2642 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2643 ** is fraught with danger. Best to avoid the whole thing. If the 2644 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2645 */ 2646 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2647 return 0; 2648 } 2649 2650 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2651 ** use only the UNION ALL operator. And none of the simple select queries 2652 ** that make up the compound SELECT are allowed to be aggregate or distinct 2653 ** queries. 2654 */ 2655 if( pSub->pPrior ){ 2656 if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2657 return 0; 2658 } 2659 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2660 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2661 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2662 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 2663 ){ 2664 return 0; 2665 } 2666 } 2667 2668 /* Restriction 18. */ 2669 if( p->pOrderBy ){ 2670 int ii; 2671 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2672 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2673 } 2674 } 2675 } 2676 2677 /***** If we reach this point, flattening is permitted. *****/ 2678 2679 /* Authorize the subquery */ 2680 pParse->zAuthContext = pSubitem->zName; 2681 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2682 pParse->zAuthContext = zSavedAuthContext; 2683 2684 /* If the sub-query is a compound SELECT statement, then (by restrictions 2685 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2686 ** be of the form: 2687 ** 2688 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2689 ** 2690 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2691 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2692 ** OFFSET clauses and joins them to the left-hand-side of the original 2693 ** using UNION ALL operators. In this case N is the number of simple 2694 ** select statements in the compound sub-query. 2695 ** 2696 ** Example: 2697 ** 2698 ** SELECT a+1 FROM ( 2699 ** SELECT x FROM tab 2700 ** UNION ALL 2701 ** SELECT y FROM tab 2702 ** UNION ALL 2703 ** SELECT abs(z*2) FROM tab2 2704 ** ) WHERE a!=5 ORDER BY 1 2705 ** 2706 ** Transformed into: 2707 ** 2708 ** SELECT x+1 FROM tab WHERE x+1!=5 2709 ** UNION ALL 2710 ** SELECT y+1 FROM tab WHERE y+1!=5 2711 ** UNION ALL 2712 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2713 ** ORDER BY 1 2714 ** 2715 ** We call this the "compound-subquery flattening". 2716 */ 2717 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2718 Select *pNew; 2719 ExprList *pOrderBy = p->pOrderBy; 2720 Expr *pLimit = p->pLimit; 2721 Select *pPrior = p->pPrior; 2722 p->pOrderBy = 0; 2723 p->pSrc = 0; 2724 p->pPrior = 0; 2725 p->pLimit = 0; 2726 pNew = sqlite3SelectDup(db, p); 2727 p->pLimit = pLimit; 2728 p->pOrderBy = pOrderBy; 2729 p->pSrc = pSrc; 2730 p->op = TK_ALL; 2731 p->pRightmost = 0; 2732 if( pNew==0 ){ 2733 pNew = pPrior; 2734 }else{ 2735 pNew->pPrior = pPrior; 2736 pNew->pRightmost = 0; 2737 } 2738 p->pPrior = pNew; 2739 if( db->mallocFailed ) return 1; 2740 } 2741 2742 /* Begin flattening the iFrom-th entry of the FROM clause 2743 ** in the outer query. 2744 */ 2745 pSub = pSub1 = pSubitem->pSelect; 2746 2747 /* Delete the transient table structure associated with the 2748 ** subquery 2749 */ 2750 sqlite3DbFree(db, pSubitem->zDatabase); 2751 sqlite3DbFree(db, pSubitem->zName); 2752 sqlite3DbFree(db, pSubitem->zAlias); 2753 pSubitem->zDatabase = 0; 2754 pSubitem->zName = 0; 2755 pSubitem->zAlias = 0; 2756 pSubitem->pSelect = 0; 2757 2758 /* Defer deleting the Table object associated with the 2759 ** subquery until code generation is 2760 ** complete, since there may still exist Expr.pTab entries that 2761 ** refer to the subquery even after flattening. Ticket #3346. 2762 */ 2763 if( pSubitem->pTab!=0 ){ 2764 Table *pTabToDel = pSubitem->pTab; 2765 if( pTabToDel->nRef==1 ){ 2766 pTabToDel->pNextZombie = pParse->pZombieTab; 2767 pParse->pZombieTab = pTabToDel; 2768 }else{ 2769 pTabToDel->nRef--; 2770 } 2771 pSubitem->pTab = 0; 2772 } 2773 2774 /* The following loop runs once for each term in a compound-subquery 2775 ** flattening (as described above). If we are doing a different kind 2776 ** of flattening - a flattening other than a compound-subquery flattening - 2777 ** then this loop only runs once. 2778 ** 2779 ** This loop moves all of the FROM elements of the subquery into the 2780 ** the FROM clause of the outer query. Before doing this, remember 2781 ** the cursor number for the original outer query FROM element in 2782 ** iParent. The iParent cursor will never be used. Subsequent code 2783 ** will scan expressions looking for iParent references and replace 2784 ** those references with expressions that resolve to the subquery FROM 2785 ** elements we are now copying in. 2786 */ 2787 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2788 int nSubSrc; 2789 u8 jointype = 0; 2790 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2791 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2792 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2793 2794 if( pSrc ){ 2795 assert( pParent==p ); /* First time through the loop */ 2796 jointype = pSubitem->jointype; 2797 }else{ 2798 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2799 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2800 if( pSrc==0 ){ 2801 assert( db->mallocFailed ); 2802 break; 2803 } 2804 } 2805 2806 /* The subquery uses a single slot of the FROM clause of the outer 2807 ** query. If the subquery has more than one element in its FROM clause, 2808 ** then expand the outer query to make space for it to hold all elements 2809 ** of the subquery. 2810 ** 2811 ** Example: 2812 ** 2813 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2814 ** 2815 ** The outer query has 3 slots in its FROM clause. One slot of the 2816 ** outer query (the middle slot) is used by the subquery. The next 2817 ** block of code will expand the out query to 4 slots. The middle 2818 ** slot is expanded to two slots in order to make space for the 2819 ** two elements in the FROM clause of the subquery. 2820 */ 2821 if( nSubSrc>1 ){ 2822 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2823 if( db->mallocFailed ){ 2824 break; 2825 } 2826 } 2827 2828 /* Transfer the FROM clause terms from the subquery into the 2829 ** outer query. 2830 */ 2831 for(i=0; i<nSubSrc; i++){ 2832 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2833 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2834 } 2835 pSrc->a[iFrom].jointype = jointype; 2836 2837 /* Now begin substituting subquery result set expressions for 2838 ** references to the iParent in the outer query. 2839 ** 2840 ** Example: 2841 ** 2842 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2843 ** \ \_____________ subquery __________/ / 2844 ** \_____________________ outer query ______________________________/ 2845 ** 2846 ** We look at every expression in the outer query and every place we see 2847 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2848 */ 2849 pList = pParent->pEList; 2850 for(i=0; i<pList->nExpr; i++){ 2851 Expr *pExpr; 2852 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2853 pList->a[i].zName = 2854 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2855 } 2856 } 2857 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2858 if( isAgg ){ 2859 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2860 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2861 } 2862 if( pSub->pOrderBy ){ 2863 assert( pParent->pOrderBy==0 ); 2864 pParent->pOrderBy = pSub->pOrderBy; 2865 pSub->pOrderBy = 0; 2866 }else if( pParent->pOrderBy ){ 2867 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2868 } 2869 if( pSub->pWhere ){ 2870 pWhere = sqlite3ExprDup(db, pSub->pWhere); 2871 }else{ 2872 pWhere = 0; 2873 } 2874 if( subqueryIsAgg ){ 2875 assert( pParent->pHaving==0 ); 2876 pParent->pHaving = pParent->pWhere; 2877 pParent->pWhere = pWhere; 2878 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2879 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2880 sqlite3ExprDup(db, pSub->pHaving)); 2881 assert( pParent->pGroupBy==0 ); 2882 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 2883 }else{ 2884 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2885 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2886 } 2887 2888 /* The flattened query is distinct if either the inner or the 2889 ** outer query is distinct. 2890 */ 2891 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2892 2893 /* 2894 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2895 ** 2896 ** One is tempted to try to add a and b to combine the limits. But this 2897 ** does not work if either limit is negative. 2898 */ 2899 if( pSub->pLimit ){ 2900 pParent->pLimit = pSub->pLimit; 2901 pSub->pLimit = 0; 2902 } 2903 } 2904 2905 /* Finially, delete what is left of the subquery and return 2906 ** success. 2907 */ 2908 sqlite3SelectDelete(db, pSub1); 2909 2910 return 1; 2911 } 2912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2913 2914 /* 2915 ** Analyze the SELECT statement passed as an argument to see if it 2916 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2917 ** it is, or 0 otherwise. At present, a query is considered to be 2918 ** a min()/max() query if: 2919 ** 2920 ** 1. There is a single object in the FROM clause. 2921 ** 2922 ** 2. There is a single expression in the result set, and it is 2923 ** either min(x) or max(x), where x is a column reference. 2924 */ 2925 static u8 minMaxQuery(Select *p){ 2926 Expr *pExpr; 2927 ExprList *pEList = p->pEList; 2928 2929 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2930 pExpr = pEList->a[0].pExpr; 2931 pEList = pExpr->pList; 2932 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 2933 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2934 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 2935 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2936 return WHERE_ORDERBY_MIN; 2937 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2938 return WHERE_ORDERBY_MAX; 2939 } 2940 return WHERE_ORDERBY_NORMAL; 2941 } 2942 2943 /* 2944 ** If the source-list item passed as an argument was augmented with an 2945 ** INDEXED BY clause, then try to locate the specified index. If there 2946 ** was such a clause and the named index cannot be found, return 2947 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2948 ** pFrom->pIndex and return SQLITE_OK. 2949 */ 2950 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2951 if( pFrom->pTab && pFrom->zIndex ){ 2952 Table *pTab = pFrom->pTab; 2953 char *zIndex = pFrom->zIndex; 2954 Index *pIdx; 2955 for(pIdx=pTab->pIndex; 2956 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 2957 pIdx=pIdx->pNext 2958 ); 2959 if( !pIdx ){ 2960 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 2961 return SQLITE_ERROR; 2962 } 2963 pFrom->pIndex = pIdx; 2964 } 2965 return SQLITE_OK; 2966 } 2967 2968 /* 2969 ** This routine is a Walker callback for "expanding" a SELECT statement. 2970 ** "Expanding" means to do the following: 2971 ** 2972 ** (1) Make sure VDBE cursor numbers have been assigned to every 2973 ** element of the FROM clause. 2974 ** 2975 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 2976 ** defines FROM clause. When views appear in the FROM clause, 2977 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 2978 ** that implements the view. A copy is made of the view's SELECT 2979 ** statement so that we can freely modify or delete that statement 2980 ** without worrying about messing up the presistent representation 2981 ** of the view. 2982 ** 2983 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 2984 ** on joins and the ON and USING clause of joins. 2985 ** 2986 ** (4) Scan the list of columns in the result set (pEList) looking 2987 ** for instances of the "*" operator or the TABLE.* operator. 2988 ** If found, expand each "*" to be every column in every table 2989 ** and TABLE.* to be every column in TABLE. 2990 ** 2991 */ 2992 static int selectExpander(Walker *pWalker, Select *p){ 2993 Parse *pParse = pWalker->pParse; 2994 int i, j, k; 2995 SrcList *pTabList; 2996 ExprList *pEList; 2997 struct SrcList_item *pFrom; 2998 sqlite3 *db = pParse->db; 2999 3000 if( db->mallocFailed ){ 3001 return WRC_Abort; 3002 } 3003 if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){ 3004 return WRC_Prune; 3005 } 3006 p->selFlags |= SF_Expanded; 3007 pTabList = p->pSrc; 3008 pEList = p->pEList; 3009 3010 /* Make sure cursor numbers have been assigned to all entries in 3011 ** the FROM clause of the SELECT statement. 3012 */ 3013 sqlite3SrcListAssignCursors(pParse, pTabList); 3014 3015 /* Look up every table named in the FROM clause of the select. If 3016 ** an entry of the FROM clause is a subquery instead of a table or view, 3017 ** then create a transient table structure to describe the subquery. 3018 */ 3019 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3020 Table *pTab; 3021 if( pFrom->pTab!=0 ){ 3022 /* This statement has already been prepared. There is no need 3023 ** to go further. */ 3024 assert( i==0 ); 3025 return WRC_Prune; 3026 } 3027 if( pFrom->zName==0 ){ 3028 #ifndef SQLITE_OMIT_SUBQUERY 3029 Select *pSel = pFrom->pSelect; 3030 /* A sub-query in the FROM clause of a SELECT */ 3031 assert( pSel!=0 ); 3032 assert( pFrom->pTab==0 ); 3033 sqlite3WalkSelect(pWalker, pSel); 3034 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3035 if( pTab==0 ) return WRC_Abort; 3036 pTab->db = db; 3037 pTab->nRef = 1; 3038 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3039 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3040 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3041 pTab->iPKey = -1; 3042 pTab->tabFlags |= TF_Ephemeral; 3043 #endif 3044 }else{ 3045 /* An ordinary table or view name in the FROM clause */ 3046 assert( pFrom->pTab==0 ); 3047 pFrom->pTab = pTab = 3048 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3049 if( pTab==0 ) return WRC_Abort; 3050 pTab->nRef++; 3051 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3052 if( pTab->pSelect || IsVirtual(pTab) ){ 3053 /* We reach here if the named table is a really a view */ 3054 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3055 3056 /* If pFrom->pSelect!=0 it means we are dealing with a 3057 ** view within a view. The SELECT structure has already been 3058 ** copied by the outer view so we can skip the copy step here 3059 ** in the inner view. 3060 */ 3061 if( pFrom->pSelect==0 ){ 3062 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 3063 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3064 } 3065 } 3066 #endif 3067 } 3068 3069 /* Locate the index named by the INDEXED BY clause, if any. */ 3070 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3071 return WRC_Abort; 3072 } 3073 } 3074 3075 /* Process NATURAL keywords, and ON and USING clauses of joins. 3076 */ 3077 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3078 return WRC_Abort; 3079 } 3080 3081 /* For every "*" that occurs in the column list, insert the names of 3082 ** all columns in all tables. And for every TABLE.* insert the names 3083 ** of all columns in TABLE. The parser inserted a special expression 3084 ** with the TK_ALL operator for each "*" that it found in the column list. 3085 ** The following code just has to locate the TK_ALL expressions and expand 3086 ** each one to the list of all columns in all tables. 3087 ** 3088 ** The first loop just checks to see if there are any "*" operators 3089 ** that need expanding. 3090 */ 3091 for(k=0; k<pEList->nExpr; k++){ 3092 Expr *pE = pEList->a[k].pExpr; 3093 if( pE->op==TK_ALL ) break; 3094 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 3095 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 3096 } 3097 if( k<pEList->nExpr ){ 3098 /* 3099 ** If we get here it means the result set contains one or more "*" 3100 ** operators that need to be expanded. Loop through each expression 3101 ** in the result set and expand them one by one. 3102 */ 3103 struct ExprList_item *a = pEList->a; 3104 ExprList *pNew = 0; 3105 int flags = pParse->db->flags; 3106 int longNames = (flags & SQLITE_FullColNames)!=0 3107 && (flags & SQLITE_ShortColNames)==0; 3108 3109 for(k=0; k<pEList->nExpr; k++){ 3110 Expr *pE = a[k].pExpr; 3111 if( pE->op!=TK_ALL && 3112 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 3113 /* This particular expression does not need to be expanded. 3114 */ 3115 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 3116 if( pNew ){ 3117 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3118 } 3119 a[k].pExpr = 0; 3120 a[k].zName = 0; 3121 }else{ 3122 /* This expression is a "*" or a "TABLE.*" and needs to be 3123 ** expanded. */ 3124 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3125 char *zTName; /* text of name of TABLE */ 3126 if( pE->op==TK_DOT && pE->pLeft ){ 3127 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 3128 }else{ 3129 zTName = 0; 3130 } 3131 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3132 Table *pTab = pFrom->pTab; 3133 char *zTabName = pFrom->zAlias; 3134 if( zTabName==0 || zTabName[0]==0 ){ 3135 zTabName = pTab->zName; 3136 } 3137 if( db->mallocFailed ) break; 3138 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3139 continue; 3140 } 3141 tableSeen = 1; 3142 for(j=0; j<pTab->nCol; j++){ 3143 Expr *pExpr, *pRight; 3144 char *zName = pTab->aCol[j].zName; 3145 3146 /* If a column is marked as 'hidden' (currently only possible 3147 ** for virtual tables), do not include it in the expanded 3148 ** result-set list. 3149 */ 3150 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3151 assert(IsVirtual(pTab)); 3152 continue; 3153 } 3154 3155 if( i>0 && zTName==0 ){ 3156 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3157 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3158 columnIndex(pLeft->pTab, zName)>=0 ){ 3159 /* In a NATURAL join, omit the join columns from the 3160 ** table on the right */ 3161 continue; 3162 } 3163 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3164 /* In a join with a USING clause, omit columns in the 3165 ** using clause from the table on the right. */ 3166 continue; 3167 } 3168 } 3169 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3170 if( pRight==0 ) break; 3171 setQuotedToken(pParse, &pRight->token, zName); 3172 if( longNames || pTabList->nSrc>1 ){ 3173 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3174 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3175 if( pExpr==0 ) break; 3176 setQuotedToken(pParse, &pLeft->token, zTabName); 3177 setToken(&pExpr->span, 3178 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 3179 pExpr->span.dyn = 1; 3180 pExpr->token.z = 0; 3181 pExpr->token.n = 0; 3182 pExpr->token.dyn = 0; 3183 }else{ 3184 pExpr = pRight; 3185 pExpr->span = pExpr->token; 3186 pExpr->span.dyn = 0; 3187 } 3188 if( longNames ){ 3189 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 3190 }else{ 3191 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 3192 } 3193 } 3194 } 3195 if( !tableSeen ){ 3196 if( zTName ){ 3197 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3198 }else{ 3199 sqlite3ErrorMsg(pParse, "no tables specified"); 3200 } 3201 } 3202 sqlite3DbFree(db, zTName); 3203 } 3204 } 3205 sqlite3ExprListDelete(db, pEList); 3206 p->pEList = pNew; 3207 } 3208 #if SQLITE_MAX_COLUMN 3209 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3210 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3211 } 3212 #endif 3213 return WRC_Continue; 3214 } 3215 3216 /* 3217 ** No-op routine for the parse-tree walker. 3218 ** 3219 ** When this routine is the Walker.xExprCallback then expression trees 3220 ** are walked without any actions being taken at each node. Presumably, 3221 ** when this routine is used for Walker.xExprCallback then 3222 ** Walker.xSelectCallback is set to do something useful for every 3223 ** subquery in the parser tree. 3224 */ 3225 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3226 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3227 return WRC_Continue; 3228 } 3229 3230 /* 3231 ** This routine "expands" a SELECT statement and all of its subqueries. 3232 ** For additional information on what it means to "expand" a SELECT 3233 ** statement, see the comment on the selectExpand worker callback above. 3234 ** 3235 ** Expanding a SELECT statement is the first step in processing a 3236 ** SELECT statement. The SELECT statement must be expanded before 3237 ** name resolution is performed. 3238 ** 3239 ** If anything goes wrong, an error message is written into pParse. 3240 ** The calling function can detect the problem by looking at pParse->nErr 3241 ** and/or pParse->db->mallocFailed. 3242 */ 3243 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3244 Walker w; 3245 w.xSelectCallback = selectExpander; 3246 w.xExprCallback = exprWalkNoop; 3247 w.pParse = pParse; 3248 sqlite3WalkSelect(&w, pSelect); 3249 } 3250 3251 3252 #ifndef SQLITE_OMIT_SUBQUERY 3253 /* 3254 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3255 ** interface. 3256 ** 3257 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3258 ** information to the Table structure that represents the result set 3259 ** of that subquery. 3260 ** 3261 ** The Table structure that represents the result set was constructed 3262 ** by selectExpander() but the type and collation information was omitted 3263 ** at that point because identifiers had not yet been resolved. This 3264 ** routine is called after identifier resolution. 3265 */ 3266 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3267 Parse *pParse; 3268 int i; 3269 SrcList *pTabList; 3270 struct SrcList_item *pFrom; 3271 3272 assert( p->selFlags & SF_Resolved ); 3273 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3274 p->selFlags |= SF_HasTypeInfo; 3275 pParse = pWalker->pParse; 3276 pTabList = p->pSrc; 3277 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3278 Table *pTab = pFrom->pTab; 3279 if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3280 /* A sub-query in the FROM clause of a SELECT */ 3281 Select *pSel = pFrom->pSelect; 3282 assert( pSel ); 3283 while( pSel->pPrior ) pSel = pSel->pPrior; 3284 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3285 } 3286 } 3287 } 3288 return WRC_Continue; 3289 } 3290 #endif 3291 3292 3293 /* 3294 ** This routine adds datatype and collating sequence information to 3295 ** the Table structures of all FROM-clause subqueries in a 3296 ** SELECT statement. 3297 ** 3298 ** Use this routine after name resolution. 3299 */ 3300 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3301 #ifndef SQLITE_OMIT_SUBQUERY 3302 Walker w; 3303 w.xSelectCallback = selectAddSubqueryTypeInfo; 3304 w.xExprCallback = exprWalkNoop; 3305 w.pParse = pParse; 3306 sqlite3WalkSelect(&w, pSelect); 3307 #endif 3308 } 3309 3310 3311 /* 3312 ** This routine sets of a SELECT statement for processing. The 3313 ** following is accomplished: 3314 ** 3315 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3316 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3317 ** * ON and USING clauses are shifted into WHERE statements 3318 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3319 ** * Identifiers in expression are matched to tables. 3320 ** 3321 ** This routine acts recursively on all subqueries within the SELECT. 3322 */ 3323 void sqlite3SelectPrep( 3324 Parse *pParse, /* The parser context */ 3325 Select *p, /* The SELECT statement being coded. */ 3326 NameContext *pOuterNC /* Name context for container */ 3327 ){ 3328 sqlite3 *db; 3329 if( p==0 ) return; 3330 db = pParse->db; 3331 if( p->selFlags & SF_HasTypeInfo ) return; 3332 if( pParse->nErr || db->mallocFailed ) return; 3333 sqlite3SelectExpand(pParse, p); 3334 if( pParse->nErr || db->mallocFailed ) return; 3335 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3336 if( pParse->nErr || db->mallocFailed ) return; 3337 sqlite3SelectAddTypeInfo(pParse, p); 3338 } 3339 3340 /* 3341 ** Reset the aggregate accumulator. 3342 ** 3343 ** The aggregate accumulator is a set of memory cells that hold 3344 ** intermediate results while calculating an aggregate. This 3345 ** routine simply stores NULLs in all of those memory cells. 3346 */ 3347 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3348 Vdbe *v = pParse->pVdbe; 3349 int i; 3350 struct AggInfo_func *pFunc; 3351 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3352 return; 3353 } 3354 for(i=0; i<pAggInfo->nColumn; i++){ 3355 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3356 } 3357 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3358 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3359 if( pFunc->iDistinct>=0 ){ 3360 Expr *pE = pFunc->pExpr; 3361 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 3362 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 3363 "by an expression"); 3364 pFunc->iDistinct = -1; 3365 }else{ 3366 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 3367 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3368 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3369 } 3370 } 3371 } 3372 } 3373 3374 /* 3375 ** Invoke the OP_AggFinalize opcode for every aggregate function 3376 ** in the AggInfo structure. 3377 */ 3378 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3379 Vdbe *v = pParse->pVdbe; 3380 int i; 3381 struct AggInfo_func *pF; 3382 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3383 ExprList *pList = pF->pExpr->pList; 3384 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3385 (void*)pF->pFunc, P4_FUNCDEF); 3386 } 3387 } 3388 3389 /* 3390 ** Update the accumulator memory cells for an aggregate based on 3391 ** the current cursor position. 3392 */ 3393 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3394 Vdbe *v = pParse->pVdbe; 3395 int i; 3396 struct AggInfo_func *pF; 3397 struct AggInfo_col *pC; 3398 3399 pAggInfo->directMode = 1; 3400 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3401 int nArg; 3402 int addrNext = 0; 3403 int regAgg; 3404 ExprList *pList = pF->pExpr->pList; 3405 if( pList ){ 3406 nArg = pList->nExpr; 3407 regAgg = sqlite3GetTempRange(pParse, nArg); 3408 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3409 }else{ 3410 nArg = 0; 3411 regAgg = 0; 3412 } 3413 if( pF->iDistinct>=0 ){ 3414 addrNext = sqlite3VdbeMakeLabel(v); 3415 assert( nArg==1 ); 3416 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3417 } 3418 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3419 CollSeq *pColl = 0; 3420 struct ExprList_item *pItem; 3421 int j; 3422 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3423 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3424 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3425 } 3426 if( !pColl ){ 3427 pColl = pParse->db->pDfltColl; 3428 } 3429 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3430 } 3431 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3432 (void*)pF->pFunc, P4_FUNCDEF); 3433 sqlite3VdbeChangeP5(v, (u8)nArg); 3434 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3435 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3436 if( addrNext ){ 3437 sqlite3VdbeResolveLabel(v, addrNext); 3438 } 3439 } 3440 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3441 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3442 } 3443 pAggInfo->directMode = 0; 3444 } 3445 3446 /* 3447 ** Generate code for the SELECT statement given in the p argument. 3448 ** 3449 ** The results are distributed in various ways depending on the 3450 ** contents of the SelectDest structure pointed to by argument pDest 3451 ** as follows: 3452 ** 3453 ** pDest->eDest Result 3454 ** ------------ ------------------------------------------- 3455 ** SRT_Output Generate a row of output (using the OP_ResultRow 3456 ** opcode) for each row in the result set. 3457 ** 3458 ** SRT_Mem Only valid if the result is a single column. 3459 ** Store the first column of the first result row 3460 ** in register pDest->iParm then abandon the rest 3461 ** of the query. This destination implies "LIMIT 1". 3462 ** 3463 ** SRT_Set The result must be a single column. Store each 3464 ** row of result as the key in table pDest->iParm. 3465 ** Apply the affinity pDest->affinity before storing 3466 ** results. Used to implement "IN (SELECT ...)". 3467 ** 3468 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3469 ** 3470 ** SRT_Except Remove results from the temporary table pDest->iParm. 3471 ** 3472 ** SRT_Table Store results in temporary table pDest->iParm. 3473 ** This is like SRT_EphemTab except that the table 3474 ** is assumed to already be open. 3475 ** 3476 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3477 ** the result there. The cursor is left open after 3478 ** returning. This is like SRT_Table except that 3479 ** this destination uses OP_OpenEphemeral to create 3480 ** the table first. 3481 ** 3482 ** SRT_Coroutine Generate a co-routine that returns a new row of 3483 ** results each time it is invoked. The entry point 3484 ** of the co-routine is stored in register pDest->iParm. 3485 ** 3486 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3487 ** set is not empty. 3488 ** 3489 ** SRT_Discard Throw the results away. This is used by SELECT 3490 ** statements within triggers whose only purpose is 3491 ** the side-effects of functions. 3492 ** 3493 ** This routine returns the number of errors. If any errors are 3494 ** encountered, then an appropriate error message is left in 3495 ** pParse->zErrMsg. 3496 ** 3497 ** This routine does NOT free the Select structure passed in. The 3498 ** calling function needs to do that. 3499 */ 3500 int sqlite3Select( 3501 Parse *pParse, /* The parser context */ 3502 Select *p, /* The SELECT statement being coded. */ 3503 SelectDest *pDest /* What to do with the query results */ 3504 ){ 3505 int i, j; /* Loop counters */ 3506 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3507 Vdbe *v; /* The virtual machine under construction */ 3508 int isAgg; /* True for select lists like "count(*)" */ 3509 ExprList *pEList; /* List of columns to extract. */ 3510 SrcList *pTabList; /* List of tables to select from */ 3511 Expr *pWhere; /* The WHERE clause. May be NULL */ 3512 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3513 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3514 Expr *pHaving; /* The HAVING clause. May be NULL */ 3515 int isDistinct; /* True if the DISTINCT keyword is present */ 3516 int distinct; /* Table to use for the distinct set */ 3517 int rc = 1; /* Value to return from this function */ 3518 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3519 AggInfo sAggInfo; /* Information used by aggregate queries */ 3520 int iEnd; /* Address of the end of the query */ 3521 sqlite3 *db; /* The database connection */ 3522 3523 db = pParse->db; 3524 if( p==0 || db->mallocFailed || pParse->nErr ){ 3525 return 1; 3526 } 3527 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3528 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3529 3530 pOrderBy = p->pOrderBy; 3531 if( IgnorableOrderby(pDest) ){ 3532 p->pOrderBy = 0; 3533 3534 /* In these cases the DISTINCT operator makes no difference to the 3535 ** results, so remove it if it were specified. 3536 */ 3537 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3538 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3539 p->selFlags &= ~SF_Distinct; 3540 } 3541 sqlite3SelectPrep(pParse, p, 0); 3542 pTabList = p->pSrc; 3543 pEList = p->pEList; 3544 if( pParse->nErr || db->mallocFailed ){ 3545 goto select_end; 3546 } 3547 p->pOrderBy = pOrderBy; 3548 isAgg = (p->selFlags & SF_Aggregate)!=0; 3549 if( pEList==0 ) goto select_end; 3550 3551 /* 3552 ** Do not even attempt to generate any code if we have already seen 3553 ** errors before this routine starts. 3554 */ 3555 if( pParse->nErr>0 ) goto select_end; 3556 3557 /* ORDER BY is ignored for some destinations. 3558 */ 3559 if( IgnorableOrderby(pDest) ){ 3560 pOrderBy = 0; 3561 } 3562 3563 /* Begin generating code. 3564 */ 3565 v = sqlite3GetVdbe(pParse); 3566 if( v==0 ) goto select_end; 3567 3568 /* Generate code for all sub-queries in the FROM clause 3569 */ 3570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3571 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3572 struct SrcList_item *pItem = &pTabList->a[i]; 3573 SelectDest dest; 3574 Select *pSub = pItem->pSelect; 3575 int isAggSub; 3576 3577 if( pSub==0 || pItem->isPopulated ) continue; 3578 3579 /* Increment Parse.nHeight by the height of the largest expression 3580 ** tree refered to by this, the parent select. The child select 3581 ** may contain expression trees of at most 3582 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3583 ** more conservative than necessary, but much easier than enforcing 3584 ** an exact limit. 3585 */ 3586 pParse->nHeight += sqlite3SelectExprHeight(p); 3587 3588 /* Check to see if the subquery can be absorbed into the parent. */ 3589 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3590 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3591 if( isAggSub ){ 3592 isAgg = 1; 3593 p->selFlags |= SF_Aggregate; 3594 } 3595 i = -1; 3596 }else{ 3597 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3598 assert( pItem->isPopulated==0 ); 3599 sqlite3Select(pParse, pSub, &dest); 3600 pItem->isPopulated = 1; 3601 } 3602 if( pParse->nErr || db->mallocFailed ){ 3603 goto select_end; 3604 } 3605 pParse->nHeight -= sqlite3SelectExprHeight(p); 3606 pTabList = p->pSrc; 3607 if( !IgnorableOrderby(pDest) ){ 3608 pOrderBy = p->pOrderBy; 3609 } 3610 } 3611 pEList = p->pEList; 3612 #endif 3613 pWhere = p->pWhere; 3614 pGroupBy = p->pGroupBy; 3615 pHaving = p->pHaving; 3616 isDistinct = (p->selFlags & SF_Distinct)!=0; 3617 3618 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3619 /* If there is are a sequence of queries, do the earlier ones first. 3620 */ 3621 if( p->pPrior ){ 3622 if( p->pRightmost==0 ){ 3623 Select *pLoop, *pRight = 0; 3624 int cnt = 0; 3625 int mxSelect; 3626 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3627 pLoop->pRightmost = p; 3628 pLoop->pNext = pRight; 3629 pRight = pLoop; 3630 } 3631 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3632 if( mxSelect && cnt>mxSelect ){ 3633 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3634 return 1; 3635 } 3636 } 3637 return multiSelect(pParse, p, pDest); 3638 } 3639 #endif 3640 3641 /* If writing to memory or generating a set 3642 ** only a single column may be output. 3643 */ 3644 #ifndef SQLITE_OMIT_SUBQUERY 3645 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3646 goto select_end; 3647 } 3648 #endif 3649 3650 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3651 ** GROUP BY might use an index, DISTINCT never does. 3652 */ 3653 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){ 3654 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3655 pGroupBy = p->pGroupBy; 3656 p->selFlags &= ~SF_Distinct; 3657 isDistinct = 0; 3658 } 3659 3660 /* If there is an ORDER BY clause, then this sorting 3661 ** index might end up being unused if the data can be 3662 ** extracted in pre-sorted order. If that is the case, then the 3663 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3664 ** we figure out that the sorting index is not needed. The addrSortIndex 3665 ** variable is used to facilitate that change. 3666 */ 3667 if( pOrderBy ){ 3668 KeyInfo *pKeyInfo; 3669 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3670 pOrderBy->iECursor = pParse->nTab++; 3671 p->addrOpenEphm[2] = addrSortIndex = 3672 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3673 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3674 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3675 }else{ 3676 addrSortIndex = -1; 3677 } 3678 3679 /* If the output is destined for a temporary table, open that table. 3680 */ 3681 if( pDest->eDest==SRT_EphemTab ){ 3682 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3683 } 3684 3685 /* Set the limiter. 3686 */ 3687 iEnd = sqlite3VdbeMakeLabel(v); 3688 computeLimitRegisters(pParse, p, iEnd); 3689 3690 /* Open a virtual index to use for the distinct set. 3691 */ 3692 if( isDistinct ){ 3693 KeyInfo *pKeyInfo; 3694 assert( isAgg || pGroupBy ); 3695 distinct = pParse->nTab++; 3696 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3697 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3698 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3699 }else{ 3700 distinct = -1; 3701 } 3702 3703 /* Aggregate and non-aggregate queries are handled differently */ 3704 if( !isAgg && pGroupBy==0 ){ 3705 /* This case is for non-aggregate queries 3706 ** Begin the database scan 3707 */ 3708 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0, 0); 3709 if( pWInfo==0 ) goto select_end; 3710 3711 /* If sorting index that was created by a prior OP_OpenEphemeral 3712 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3713 ** into an OP_Noop. 3714 */ 3715 if( addrSortIndex>=0 && pOrderBy==0 ){ 3716 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3717 p->addrOpenEphm[2] = -1; 3718 } 3719 3720 /* Use the standard inner loop 3721 */ 3722 assert(!isDistinct); 3723 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3724 pWInfo->iContinue, pWInfo->iBreak); 3725 3726 /* End the database scan loop. 3727 */ 3728 sqlite3WhereEnd(pWInfo); 3729 }else{ 3730 /* This is the processing for aggregate queries */ 3731 NameContext sNC; /* Name context for processing aggregate information */ 3732 int iAMem; /* First Mem address for storing current GROUP BY */ 3733 int iBMem; /* First Mem address for previous GROUP BY */ 3734 int iUseFlag; /* Mem address holding flag indicating that at least 3735 ** one row of the input to the aggregator has been 3736 ** processed */ 3737 int iAbortFlag; /* Mem address which causes query abort if positive */ 3738 int groupBySort; /* Rows come from source in GROUP BY order */ 3739 int addrEnd; /* End of processing for this SELECT */ 3740 3741 /* Remove any and all aliases between the result set and the 3742 ** GROUP BY clause. 3743 */ 3744 if( pGroupBy ){ 3745 int k; /* Loop counter */ 3746 struct ExprList_item *pItem; /* For looping over expression in a list */ 3747 3748 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3749 pItem->iAlias = 0; 3750 } 3751 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3752 pItem->iAlias = 0; 3753 } 3754 } 3755 3756 3757 /* Create a label to jump to when we want to abort the query */ 3758 addrEnd = sqlite3VdbeMakeLabel(v); 3759 3760 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3761 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3762 ** SELECT statement. 3763 */ 3764 memset(&sNC, 0, sizeof(sNC)); 3765 sNC.pParse = pParse; 3766 sNC.pSrcList = pTabList; 3767 sNC.pAggInfo = &sAggInfo; 3768 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3769 sAggInfo.pGroupBy = pGroupBy; 3770 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3771 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3772 if( pHaving ){ 3773 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3774 } 3775 sAggInfo.nAccumulator = sAggInfo.nColumn; 3776 for(i=0; i<sAggInfo.nFunc; i++){ 3777 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); 3778 } 3779 if( db->mallocFailed ) goto select_end; 3780 3781 /* Processing for aggregates with GROUP BY is very different and 3782 ** much more complex than aggregates without a GROUP BY. 3783 */ 3784 if( pGroupBy ){ 3785 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3786 int j1; /* A-vs-B comparision jump */ 3787 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3788 int regOutputRow; /* Return address register for output subroutine */ 3789 int addrSetAbort; /* Set the abort flag and return */ 3790 int addrTopOfLoop; /* Top of the input loop */ 3791 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3792 int addrReset; /* Subroutine for resetting the accumulator */ 3793 int regReset; /* Return address register for reset subroutine */ 3794 3795 /* If there is a GROUP BY clause we might need a sorting index to 3796 ** implement it. Allocate that sorting index now. If it turns out 3797 ** that we do not need it after all, the OpenEphemeral instruction 3798 ** will be converted into a Noop. 3799 */ 3800 sAggInfo.sortingIdx = pParse->nTab++; 3801 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3802 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3803 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3804 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3805 3806 /* Initialize memory locations used by GROUP BY aggregate processing 3807 */ 3808 iUseFlag = ++pParse->nMem; 3809 iAbortFlag = ++pParse->nMem; 3810 regOutputRow = ++pParse->nMem; 3811 addrOutputRow = sqlite3VdbeMakeLabel(v); 3812 regReset = ++pParse->nMem; 3813 addrReset = sqlite3VdbeMakeLabel(v); 3814 iAMem = pParse->nMem + 1; 3815 pParse->nMem += pGroupBy->nExpr; 3816 iBMem = pParse->nMem + 1; 3817 pParse->nMem += pGroupBy->nExpr; 3818 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3819 VdbeComment((v, "clear abort flag")); 3820 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3821 VdbeComment((v, "indicate accumulator empty")); 3822 3823 /* Begin a loop that will extract all source rows in GROUP BY order. 3824 ** This might involve two separate loops with an OP_Sort in between, or 3825 ** it might be a single loop that uses an index to extract information 3826 ** in the right order to begin with. 3827 */ 3828 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3829 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); 3830 if( pWInfo==0 ) goto select_end; 3831 if( pGroupBy==0 ){ 3832 /* The optimizer is able to deliver rows in group by order so 3833 ** we do not have to sort. The OP_OpenEphemeral table will be 3834 ** cancelled later because we still need to use the pKeyInfo 3835 */ 3836 pGroupBy = p->pGroupBy; 3837 groupBySort = 0; 3838 }else{ 3839 /* Rows are coming out in undetermined order. We have to push 3840 ** each row into a sorting index, terminate the first loop, 3841 ** then loop over the sorting index in order to get the output 3842 ** in sorted order 3843 */ 3844 int regBase; 3845 int regRecord; 3846 int nCol; 3847 int nGroupBy; 3848 3849 groupBySort = 1; 3850 nGroupBy = pGroupBy->nExpr; 3851 nCol = nGroupBy + 1; 3852 j = nGroupBy+1; 3853 for(i=0; i<sAggInfo.nColumn; i++){ 3854 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3855 nCol++; 3856 j++; 3857 } 3858 } 3859 regBase = sqlite3GetTempRange(pParse, nCol); 3860 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3861 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3862 j = nGroupBy+1; 3863 for(i=0; i<sAggInfo.nColumn; i++){ 3864 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3865 if( pCol->iSorterColumn>=j ){ 3866 int r1 = j + regBase; 3867 int r2; 3868 3869 r2 = sqlite3ExprCodeGetColumn(pParse, 3870 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3871 if( r1!=r2 ){ 3872 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3873 } 3874 j++; 3875 } 3876 } 3877 regRecord = sqlite3GetTempReg(pParse); 3878 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3879 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3880 sqlite3ReleaseTempReg(pParse, regRecord); 3881 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3882 sqlite3WhereEnd(pWInfo); 3883 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3884 VdbeComment((v, "GROUP BY sort")); 3885 sAggInfo.useSortingIdx = 1; 3886 } 3887 3888 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3889 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3890 ** Then compare the current GROUP BY terms against the GROUP BY terms 3891 ** from the previous row currently stored in a0, a1, a2... 3892 */ 3893 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3894 for(j=0; j<pGroupBy->nExpr; j++){ 3895 if( groupBySort ){ 3896 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3897 }else{ 3898 sAggInfo.directMode = 1; 3899 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3900 } 3901 } 3902 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3903 (char*)pKeyInfo, P4_KEYINFO); 3904 j1 = sqlite3VdbeCurrentAddr(v); 3905 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3906 3907 /* Generate code that runs whenever the GROUP BY changes. 3908 ** Changes in the GROUP BY are detected by the previous code 3909 ** block. If there were no changes, this block is skipped. 3910 ** 3911 ** This code copies current group by terms in b0,b1,b2,... 3912 ** over to a0,a1,a2. It then calls the output subroutine 3913 ** and resets the aggregate accumulator registers in preparation 3914 ** for the next GROUP BY batch. 3915 */ 3916 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3917 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3918 VdbeComment((v, "output one row")); 3919 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3920 VdbeComment((v, "check abort flag")); 3921 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3922 VdbeComment((v, "reset accumulator")); 3923 3924 /* Update the aggregate accumulators based on the content of 3925 ** the current row 3926 */ 3927 sqlite3VdbeJumpHere(v, j1); 3928 updateAccumulator(pParse, &sAggInfo); 3929 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3930 VdbeComment((v, "indicate data in accumulator")); 3931 3932 /* End of the loop 3933 */ 3934 if( groupBySort ){ 3935 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3936 }else{ 3937 sqlite3WhereEnd(pWInfo); 3938 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3939 } 3940 3941 /* Output the final row of result 3942 */ 3943 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3944 VdbeComment((v, "output final row")); 3945 3946 /* Jump over the subroutines 3947 */ 3948 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 3949 3950 /* Generate a subroutine that outputs a single row of the result 3951 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3952 ** is less than or equal to zero, the subroutine is a no-op. If 3953 ** the processing calls for the query to abort, this subroutine 3954 ** increments the iAbortFlag memory location before returning in 3955 ** order to signal the caller to abort. 3956 */ 3957 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3958 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3959 VdbeComment((v, "set abort flag")); 3960 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3961 sqlite3VdbeResolveLabel(v, addrOutputRow); 3962 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3963 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3964 VdbeComment((v, "Groupby result generator entry point")); 3965 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3966 finalizeAggFunctions(pParse, &sAggInfo); 3967 if( pHaving ){ 3968 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3969 } 3970 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3971 distinct, pDest, 3972 addrOutputRow+1, addrSetAbort); 3973 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3974 VdbeComment((v, "end groupby result generator")); 3975 3976 /* Generate a subroutine that will reset the group-by accumulator 3977 */ 3978 sqlite3VdbeResolveLabel(v, addrReset); 3979 resetAccumulator(pParse, &sAggInfo); 3980 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3981 3982 } /* endif pGroupBy */ 3983 else { 3984 ExprList *pMinMax = 0; 3985 ExprList *pDel = 0; 3986 u8 flag; 3987 3988 /* Check if the query is of one of the following forms: 3989 ** 3990 ** SELECT min(x) FROM ... 3991 ** SELECT max(x) FROM ... 3992 ** 3993 ** If it is, then ask the code in where.c to attempt to sort results 3994 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 3995 ** If where.c is able to produce results sorted in this order, then 3996 ** add vdbe code to break out of the processing loop after the 3997 ** first iteration (since the first iteration of the loop is 3998 ** guaranteed to operate on the row with the minimum or maximum 3999 ** value of x, the only row required). 4000 ** 4001 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4002 ** modify behaviour as follows: 4003 ** 4004 ** + If the query is a "SELECT min(x)", then the loop coded by 4005 ** where.c should not iterate over any values with a NULL value 4006 ** for x. 4007 ** 4008 ** + The optimizer code in where.c (the thing that decides which 4009 ** index or indices to use) should place a different priority on 4010 ** satisfying the 'ORDER BY' clause than it does in other cases. 4011 ** Refer to code and comments in where.c for details. 4012 */ 4013 flag = minMaxQuery(p); 4014 if( flag ){ 4015 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); 4016 if( pMinMax && !db->mallocFailed ){ 4017 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4018 pMinMax->a[0].pExpr->op = TK_COLUMN; 4019 } 4020 } 4021 4022 /* This case runs if the aggregate has no GROUP BY clause. The 4023 ** processing is much simpler since there is only a single row 4024 ** of output. 4025 */ 4026 resetAccumulator(pParse, &sAggInfo); 4027 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag, 0); 4028 if( pWInfo==0 ){ 4029 sqlite3ExprListDelete(db, pDel); 4030 goto select_end; 4031 } 4032 updateAccumulator(pParse, &sAggInfo); 4033 if( !pMinMax && flag ){ 4034 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4035 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); 4036 } 4037 sqlite3WhereEnd(pWInfo); 4038 finalizeAggFunctions(pParse, &sAggInfo); 4039 pOrderBy = 0; 4040 if( pHaving ){ 4041 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4042 } 4043 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4044 pDest, addrEnd, addrEnd); 4045 4046 sqlite3ExprListDelete(db, pDel); 4047 } 4048 sqlite3VdbeResolveLabel(v, addrEnd); 4049 4050 } /* endif aggregate query */ 4051 4052 /* If there is an ORDER BY clause, then we need to sort the results 4053 ** and send them to the callback one by one. 4054 */ 4055 if( pOrderBy ){ 4056 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4057 } 4058 4059 /* Jump here to skip this query 4060 */ 4061 sqlite3VdbeResolveLabel(v, iEnd); 4062 4063 /* The SELECT was successfully coded. Set the return code to 0 4064 ** to indicate no errors. 4065 */ 4066 rc = 0; 4067 4068 /* Control jumps to here if an error is encountered above, or upon 4069 ** successful coding of the SELECT. 4070 */ 4071 select_end: 4072 4073 /* Identify column names if results of the SELECT are to be output. 4074 */ 4075 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4076 generateColumnNames(pParse, pTabList, pEList); 4077 } 4078 4079 sqlite3DbFree(db, sAggInfo.aCol); 4080 sqlite3DbFree(db, sAggInfo.aFunc); 4081 return rc; 4082 } 4083 4084 #if defined(SQLITE_DEBUG) 4085 /* 4086 ******************************************************************************* 4087 ** The following code is used for testing and debugging only. The code 4088 ** that follows does not appear in normal builds. 4089 ** 4090 ** These routines are used to print out the content of all or part of a 4091 ** parse structures such as Select or Expr. Such printouts are useful 4092 ** for helping to understand what is happening inside the code generator 4093 ** during the execution of complex SELECT statements. 4094 ** 4095 ** These routine are not called anywhere from within the normal 4096 ** code base. Then are intended to be called from within the debugger 4097 ** or from temporary "printf" statements inserted for debugging. 4098 */ 4099 void sqlite3PrintExpr(Expr *p){ 4100 if( p->token.z && p->token.n>0 ){ 4101 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4102 }else{ 4103 sqlite3DebugPrintf("(%d", p->op); 4104 } 4105 if( p->pLeft ){ 4106 sqlite3DebugPrintf(" "); 4107 sqlite3PrintExpr(p->pLeft); 4108 } 4109 if( p->pRight ){ 4110 sqlite3DebugPrintf(" "); 4111 sqlite3PrintExpr(p->pRight); 4112 } 4113 sqlite3DebugPrintf(")"); 4114 } 4115 void sqlite3PrintExprList(ExprList *pList){ 4116 int i; 4117 for(i=0; i<pList->nExpr; i++){ 4118 sqlite3PrintExpr(pList->a[i].pExpr); 4119 if( i<pList->nExpr-1 ){ 4120 sqlite3DebugPrintf(", "); 4121 } 4122 } 4123 } 4124 void sqlite3PrintSelect(Select *p, int indent){ 4125 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4126 sqlite3PrintExprList(p->pEList); 4127 sqlite3DebugPrintf("\n"); 4128 if( p->pSrc ){ 4129 char *zPrefix; 4130 int i; 4131 zPrefix = "FROM"; 4132 for(i=0; i<p->pSrc->nSrc; i++){ 4133 struct SrcList_item *pItem = &p->pSrc->a[i]; 4134 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4135 zPrefix = ""; 4136 if( pItem->pSelect ){ 4137 sqlite3DebugPrintf("(\n"); 4138 sqlite3PrintSelect(pItem->pSelect, indent+10); 4139 sqlite3DebugPrintf("%*s)", indent+8, ""); 4140 }else if( pItem->zName ){ 4141 sqlite3DebugPrintf("%s", pItem->zName); 4142 } 4143 if( pItem->pTab ){ 4144 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4145 } 4146 if( pItem->zAlias ){ 4147 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4148 } 4149 if( i<p->pSrc->nSrc-1 ){ 4150 sqlite3DebugPrintf(","); 4151 } 4152 sqlite3DebugPrintf("\n"); 4153 } 4154 } 4155 if( p->pWhere ){ 4156 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4157 sqlite3PrintExpr(p->pWhere); 4158 sqlite3DebugPrintf("\n"); 4159 } 4160 if( p->pGroupBy ){ 4161 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4162 sqlite3PrintExprList(p->pGroupBy); 4163 sqlite3DebugPrintf("\n"); 4164 } 4165 if( p->pHaving ){ 4166 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4167 sqlite3PrintExpr(p->pHaving); 4168 sqlite3DebugPrintf("\n"); 4169 } 4170 if( p->pOrderBy ){ 4171 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4172 sqlite3PrintExprList(p->pOrderBy); 4173 sqlite3DebugPrintf("\n"); 4174 } 4175 } 4176 /* End of the structure debug printing code 4177 *****************************************************************************/ 4178 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4179