1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself depending on the value of bFree 88 ** 89 ** If bFree==1, call sqlite3DbFree() on the p object. 90 ** If bFree==0, Leave the first Select object unfreed 91 */ 92 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 93 while( p ){ 94 Select *pPrior = p->pPrior; 95 sqlite3ExprListDelete(db, p->pEList); 96 sqlite3SrcListDelete(db, p->pSrc); 97 sqlite3ExprDelete(db, p->pWhere); 98 sqlite3ExprListDelete(db, p->pGroupBy); 99 sqlite3ExprDelete(db, p->pHaving); 100 sqlite3ExprListDelete(db, p->pOrderBy); 101 sqlite3ExprDelete(db, p->pLimit); 102 #ifndef SQLITE_OMIT_WINDOWFUNC 103 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 104 sqlite3WindowListDelete(db, p->pWinDefn); 105 } 106 assert( p->pWin==0 ); 107 #endif 108 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 109 if( bFree ) sqlite3DbFreeNN(db, p); 110 p = pPrior; 111 bFree = 1; 112 } 113 } 114 115 /* 116 ** Initialize a SelectDest structure. 117 */ 118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 119 pDest->eDest = (u8)eDest; 120 pDest->iSDParm = iParm; 121 pDest->zAffSdst = 0; 122 pDest->iSdst = 0; 123 pDest->nSdst = 0; 124 } 125 126 127 /* 128 ** Allocate a new Select structure and return a pointer to that 129 ** structure. 130 */ 131 Select *sqlite3SelectNew( 132 Parse *pParse, /* Parsing context */ 133 ExprList *pEList, /* which columns to include in the result */ 134 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 135 Expr *pWhere, /* the WHERE clause */ 136 ExprList *pGroupBy, /* the GROUP BY clause */ 137 Expr *pHaving, /* the HAVING clause */ 138 ExprList *pOrderBy, /* the ORDER BY clause */ 139 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 140 Expr *pLimit /* LIMIT value. NULL means not used */ 141 ){ 142 Select *pNew; 143 Select standin; 144 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 145 if( pNew==0 ){ 146 assert( pParse->db->mallocFailed ); 147 pNew = &standin; 148 } 149 if( pEList==0 ){ 150 pEList = sqlite3ExprListAppend(pParse, 0, 151 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 152 } 153 pNew->pEList = pEList; 154 pNew->op = TK_SELECT; 155 pNew->selFlags = selFlags; 156 pNew->iLimit = 0; 157 pNew->iOffset = 0; 158 pNew->selId = ++pParse->nSelect; 159 pNew->addrOpenEphm[0] = -1; 160 pNew->addrOpenEphm[1] = -1; 161 pNew->nSelectRow = 0; 162 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 163 pNew->pSrc = pSrc; 164 pNew->pWhere = pWhere; 165 pNew->pGroupBy = pGroupBy; 166 pNew->pHaving = pHaving; 167 pNew->pOrderBy = pOrderBy; 168 pNew->pPrior = 0; 169 pNew->pNext = 0; 170 pNew->pLimit = pLimit; 171 pNew->pWith = 0; 172 #ifndef SQLITE_OMIT_WINDOWFUNC 173 pNew->pWin = 0; 174 pNew->pWinDefn = 0; 175 #endif 176 if( pParse->db->mallocFailed ) { 177 clearSelect(pParse->db, pNew, pNew!=&standin); 178 pNew = 0; 179 }else{ 180 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 181 } 182 assert( pNew!=&standin ); 183 return pNew; 184 } 185 186 187 /* 188 ** Delete the given Select structure and all of its substructures. 189 */ 190 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 192 } 193 194 /* 195 ** Delete all the substructure for p, but keep p allocated. Redefine 196 ** p to be a single SELECT where every column of the result set has a 197 ** value of NULL. 198 */ 199 void sqlite3SelectReset(Parse *pParse, Select *p){ 200 if( ALWAYS(p) ){ 201 clearSelect(pParse->db, p, 0); 202 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 203 p->pEList = sqlite3ExprListAppend(pParse, 0, 204 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 205 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList)); 206 } 207 } 208 209 /* 210 ** Return a pointer to the right-most SELECT statement in a compound. 211 */ 212 static Select *findRightmost(Select *p){ 213 while( p->pNext ) p = p->pNext; 214 return p; 215 } 216 217 /* 218 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 219 ** type of join. Return an integer constant that expresses that type 220 ** in terms of the following bit values: 221 ** 222 ** JT_INNER 223 ** JT_CROSS 224 ** JT_OUTER 225 ** JT_NATURAL 226 ** JT_LEFT 227 ** JT_RIGHT 228 ** 229 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 230 ** 231 ** If an illegal or unsupported join type is seen, then still return 232 ** a join type, but put an error in the pParse structure. 233 */ 234 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 235 int jointype = 0; 236 Token *apAll[3]; 237 Token *p; 238 /* 0123456789 123456789 123456789 123 */ 239 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 240 static const struct { 241 u8 i; /* Beginning of keyword text in zKeyText[] */ 242 u8 nChar; /* Length of the keyword in characters */ 243 u8 code; /* Join type mask */ 244 } aKeyword[] = { 245 /* natural */ { 0, 7, JT_NATURAL }, 246 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 247 /* outer */ { 10, 5, JT_OUTER }, 248 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 249 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 250 /* inner */ { 23, 5, JT_INNER }, 251 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 252 }; 253 int i, j; 254 apAll[0] = pA; 255 apAll[1] = pB; 256 apAll[2] = pC; 257 for(i=0; i<3 && apAll[i]; i++){ 258 p = apAll[i]; 259 for(j=0; j<ArraySize(aKeyword); j++){ 260 if( p->n==aKeyword[j].nChar 261 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 262 jointype |= aKeyword[j].code; 263 break; 264 } 265 } 266 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 267 if( j>=ArraySize(aKeyword) ){ 268 jointype |= JT_ERROR; 269 break; 270 } 271 } 272 if( 273 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 274 (jointype & JT_ERROR)!=0 275 ){ 276 const char *zSp = " "; 277 assert( pB!=0 ); 278 if( pC==0 ){ zSp++; } 279 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 280 "%T %T%s%T", pA, pB, zSp, pC); 281 jointype = JT_INNER; 282 }else if( (jointype & JT_OUTER)!=0 283 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 284 sqlite3ErrorMsg(pParse, 285 "RIGHT and FULL OUTER JOINs are not currently supported"); 286 jointype = JT_INNER; 287 } 288 return jointype; 289 } 290 291 /* 292 ** Return the index of a column in a table. Return -1 if the column 293 ** is not contained in the table. 294 */ 295 static int columnIndex(Table *pTab, const char *zCol){ 296 int i; 297 for(i=0; i<pTab->nCol; i++){ 298 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 299 } 300 return -1; 301 } 302 303 /* 304 ** Search the first N tables in pSrc, from left to right, looking for a 305 ** table that has a column named zCol. 306 ** 307 ** When found, set *piTab and *piCol to the table index and column index 308 ** of the matching column and return TRUE. 309 ** 310 ** If not found, return FALSE. 311 */ 312 static int tableAndColumnIndex( 313 SrcList *pSrc, /* Array of tables to search */ 314 int N, /* Number of tables in pSrc->a[] to search */ 315 const char *zCol, /* Name of the column we are looking for */ 316 int *piTab, /* Write index of pSrc->a[] here */ 317 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 318 int bIgnoreHidden /* True to ignore hidden columns */ 319 ){ 320 int i; /* For looping over tables in pSrc */ 321 int iCol; /* Index of column matching zCol */ 322 323 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 324 for(i=0; i<N; i++){ 325 iCol = columnIndex(pSrc->a[i].pTab, zCol); 326 if( iCol>=0 327 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 328 ){ 329 if( piTab ){ 330 *piTab = i; 331 *piCol = iCol; 332 } 333 return 1; 334 } 335 } 336 return 0; 337 } 338 339 /* 340 ** This function is used to add terms implied by JOIN syntax to the 341 ** WHERE clause expression of a SELECT statement. The new term, which 342 ** is ANDed with the existing WHERE clause, is of the form: 343 ** 344 ** (tab1.col1 = tab2.col2) 345 ** 346 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 347 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 348 ** column iColRight of tab2. 349 */ 350 static void addWhereTerm( 351 Parse *pParse, /* Parsing context */ 352 SrcList *pSrc, /* List of tables in FROM clause */ 353 int iLeft, /* Index of first table to join in pSrc */ 354 int iColLeft, /* Index of column in first table */ 355 int iRight, /* Index of second table in pSrc */ 356 int iColRight, /* Index of column in second table */ 357 int isOuterJoin, /* True if this is an OUTER join */ 358 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 359 ){ 360 sqlite3 *db = pParse->db; 361 Expr *pE1; 362 Expr *pE2; 363 Expr *pEq; 364 365 assert( iLeft<iRight ); 366 assert( pSrc->nSrc>iRight ); 367 assert( pSrc->a[iLeft].pTab ); 368 assert( pSrc->a[iRight].pTab ); 369 370 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 371 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 372 373 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 374 if( pEq && isOuterJoin ){ 375 ExprSetProperty(pEq, EP_FromJoin); 376 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 377 ExprSetVVAProperty(pEq, EP_NoReduce); 378 pEq->iRightJoinTable = (i16)pE2->iTable; 379 } 380 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 381 } 382 383 /* 384 ** Set the EP_FromJoin property on all terms of the given expression. 385 ** And set the Expr.iRightJoinTable to iTable for every term in the 386 ** expression. 387 ** 388 ** The EP_FromJoin property is used on terms of an expression to tell 389 ** the LEFT OUTER JOIN processing logic that this term is part of the 390 ** join restriction specified in the ON or USING clause and not a part 391 ** of the more general WHERE clause. These terms are moved over to the 392 ** WHERE clause during join processing but we need to remember that they 393 ** originated in the ON or USING clause. 394 ** 395 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 396 ** expression depends on table iRightJoinTable even if that table is not 397 ** explicitly mentioned in the expression. That information is needed 398 ** for cases like this: 399 ** 400 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 401 ** 402 ** The where clause needs to defer the handling of the t1.x=5 403 ** term until after the t2 loop of the join. In that way, a 404 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 405 ** defer the handling of t1.x=5, it will be processed immediately 406 ** after the t1 loop and rows with t1.x!=5 will never appear in 407 ** the output, which is incorrect. 408 */ 409 void sqlite3SetJoinExpr(Expr *p, int iTable){ 410 while( p ){ 411 ExprSetProperty(p, EP_FromJoin); 412 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 413 ExprSetVVAProperty(p, EP_NoReduce); 414 p->iRightJoinTable = (i16)iTable; 415 if( p->op==TK_FUNCTION && p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 419 } 420 } 421 sqlite3SetJoinExpr(p->pLeft, iTable); 422 p = p->pRight; 423 } 424 } 425 426 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 427 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 428 ** an ordinary term that omits the EP_FromJoin mark. 429 ** 430 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 431 */ 432 static void unsetJoinExpr(Expr *p, int iTable){ 433 while( p ){ 434 if( ExprHasProperty(p, EP_FromJoin) 435 && (iTable<0 || p->iRightJoinTable==iTable) ){ 436 ExprClearProperty(p, EP_FromJoin); 437 } 438 if( p->op==TK_FUNCTION && p->x.pList ){ 439 int i; 440 for(i=0; i<p->x.pList->nExpr; i++){ 441 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 442 } 443 } 444 unsetJoinExpr(p->pLeft, iTable); 445 p = p->pRight; 446 } 447 } 448 449 /* 450 ** This routine processes the join information for a SELECT statement. 451 ** ON and USING clauses are converted into extra terms of the WHERE clause. 452 ** NATURAL joins also create extra WHERE clause terms. 453 ** 454 ** The terms of a FROM clause are contained in the Select.pSrc structure. 455 ** The left most table is the first entry in Select.pSrc. The right-most 456 ** table is the last entry. The join operator is held in the entry to 457 ** the left. Thus entry 0 contains the join operator for the join between 458 ** entries 0 and 1. Any ON or USING clauses associated with the join are 459 ** also attached to the left entry. 460 ** 461 ** This routine returns the number of errors encountered. 462 */ 463 static int sqliteProcessJoin(Parse *pParse, Select *p){ 464 SrcList *pSrc; /* All tables in the FROM clause */ 465 int i, j; /* Loop counters */ 466 struct SrcList_item *pLeft; /* Left table being joined */ 467 struct SrcList_item *pRight; /* Right table being joined */ 468 469 pSrc = p->pSrc; 470 pLeft = &pSrc->a[0]; 471 pRight = &pLeft[1]; 472 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 473 Table *pRightTab = pRight->pTab; 474 int isOuter; 475 476 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 477 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 478 479 /* When the NATURAL keyword is present, add WHERE clause terms for 480 ** every column that the two tables have in common. 481 */ 482 if( pRight->fg.jointype & JT_NATURAL ){ 483 if( pRight->pOn || pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 485 "an ON or USING clause", 0); 486 return 1; 487 } 488 for(j=0; j<pRightTab->nCol; j++){ 489 char *zName; /* Name of column in the right table */ 490 int iLeft; /* Matching left table */ 491 int iLeftCol; /* Matching column in the left table */ 492 493 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 494 zName = pRightTab->aCol[j].zName; 495 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 496 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 497 isOuter, &p->pWhere); 498 } 499 } 500 } 501 502 /* Disallow both ON and USING clauses in the same join 503 */ 504 if( pRight->pOn && pRight->pUsing ){ 505 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 506 "clauses in the same join"); 507 return 1; 508 } 509 510 /* Add the ON clause to the end of the WHERE clause, connected by 511 ** an AND operator. 512 */ 513 if( pRight->pOn ){ 514 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 515 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 516 pRight->pOn = 0; 517 } 518 519 /* Create extra terms on the WHERE clause for each column named 520 ** in the USING clause. Example: If the two tables to be joined are 521 ** A and B and the USING clause names X, Y, and Z, then add this 522 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 523 ** Report an error if any column mentioned in the USING clause is 524 ** not contained in both tables to be joined. 525 */ 526 if( pRight->pUsing ){ 527 IdList *pList = pRight->pUsing; 528 for(j=0; j<pList->nId; j++){ 529 char *zName; /* Name of the term in the USING clause */ 530 int iLeft; /* Table on the left with matching column name */ 531 int iLeftCol; /* Column number of matching column on the left */ 532 int iRightCol; /* Column number of matching column on the right */ 533 534 zName = pList->a[j].zName; 535 iRightCol = columnIndex(pRightTab, zName); 536 if( iRightCol<0 537 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 538 ){ 539 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 540 "not present in both tables", zName); 541 return 1; 542 } 543 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 544 isOuter, &p->pWhere); 545 } 546 } 547 } 548 return 0; 549 } 550 551 /* 552 ** An instance of this object holds information (beyond pParse and pSelect) 553 ** needed to load the next result row that is to be added to the sorter. 554 */ 555 typedef struct RowLoadInfo RowLoadInfo; 556 struct RowLoadInfo { 557 int regResult; /* Store results in array of registers here */ 558 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 559 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 560 ExprList *pExtra; /* Extra columns needed by sorter refs */ 561 int regExtraResult; /* Where to load the extra columns */ 562 #endif 563 }; 564 565 /* 566 ** This routine does the work of loading query data into an array of 567 ** registers so that it can be added to the sorter. 568 */ 569 static void innerLoopLoadRow( 570 Parse *pParse, /* Statement under construction */ 571 Select *pSelect, /* The query being coded */ 572 RowLoadInfo *pInfo /* Info needed to complete the row load */ 573 ){ 574 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 575 0, pInfo->ecelFlags); 576 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 577 if( pInfo->pExtra ){ 578 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 579 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 580 } 581 #endif 582 } 583 584 /* 585 ** Code the OP_MakeRecord instruction that generates the entry to be 586 ** added into the sorter. 587 ** 588 ** Return the register in which the result is stored. 589 */ 590 static int makeSorterRecord( 591 Parse *pParse, 592 SortCtx *pSort, 593 Select *pSelect, 594 int regBase, 595 int nBase 596 ){ 597 int nOBSat = pSort->nOBSat; 598 Vdbe *v = pParse->pVdbe; 599 int regOut = ++pParse->nMem; 600 if( pSort->pDeferredRowLoad ){ 601 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 602 } 603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 604 return regOut; 605 } 606 607 /* 608 ** Generate code that will push the record in registers regData 609 ** through regData+nData-1 onto the sorter. 610 */ 611 static void pushOntoSorter( 612 Parse *pParse, /* Parser context */ 613 SortCtx *pSort, /* Information about the ORDER BY clause */ 614 Select *pSelect, /* The whole SELECT statement */ 615 int regData, /* First register holding data to be sorted */ 616 int regOrigData, /* First register holding data before packing */ 617 int nData, /* Number of elements in the regData data array */ 618 int nPrefixReg /* No. of reg prior to regData available for use */ 619 ){ 620 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 621 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 622 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 623 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 624 int regBase; /* Regs for sorter record */ 625 int regRecord = 0; /* Assembled sorter record */ 626 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 627 int op; /* Opcode to add sorter record to sorter */ 628 int iLimit; /* LIMIT counter */ 629 int iSkip = 0; /* End of the sorter insert loop */ 630 631 assert( bSeq==0 || bSeq==1 ); 632 633 /* Three cases: 634 ** (1) The data to be sorted has already been packed into a Record 635 ** by a prior OP_MakeRecord. In this case nData==1 and regData 636 ** will be completely unrelated to regOrigData. 637 ** (2) All output columns are included in the sort record. In that 638 ** case regData==regOrigData. 639 ** (3) Some output columns are omitted from the sort record due to 640 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 641 ** SQLITE_ECEL_OMITREF optimization, or due to the 642 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 643 ** regOrigData is 0 to prevent this routine from trying to copy 644 ** values that might not yet exist. 645 */ 646 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 647 648 if( nPrefixReg ){ 649 assert( nPrefixReg==nExpr+bSeq ); 650 regBase = regData - nPrefixReg; 651 }else{ 652 regBase = pParse->nMem + 1; 653 pParse->nMem += nBase; 654 } 655 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 656 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 657 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 658 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 659 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 660 if( bSeq ){ 661 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 662 } 663 if( nPrefixReg==0 && nData>0 ){ 664 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 665 } 666 if( nOBSat>0 ){ 667 int regPrevKey; /* The first nOBSat columns of the previous row */ 668 int addrFirst; /* Address of the OP_IfNot opcode */ 669 int addrJmp; /* Address of the OP_Jump opcode */ 670 VdbeOp *pOp; /* Opcode that opens the sorter */ 671 int nKey; /* Number of sorting key columns, including OP_Sequence */ 672 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 673 674 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 675 regPrevKey = pParse->nMem+1; 676 pParse->nMem += pSort->nOBSat; 677 nKey = nExpr - pSort->nOBSat + bSeq; 678 if( bSeq ){ 679 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 680 }else{ 681 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 682 } 683 VdbeCoverage(v); 684 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 685 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 686 if( pParse->db->mallocFailed ) return; 687 pOp->p2 = nKey + nData; 688 pKI = pOp->p4.pKeyInfo; 689 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 690 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 691 testcase( pKI->nAllField > pKI->nKeyField+2 ); 692 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 693 pKI->nAllField-pKI->nKeyField-1); 694 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 695 addrJmp = sqlite3VdbeCurrentAddr(v); 696 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 697 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 698 pSort->regReturn = ++pParse->nMem; 699 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 700 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 701 if( iLimit ){ 702 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 703 VdbeCoverage(v); 704 } 705 sqlite3VdbeJumpHere(v, addrFirst); 706 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 707 sqlite3VdbeJumpHere(v, addrJmp); 708 } 709 if( iLimit ){ 710 /* At this point the values for the new sorter entry are stored 711 ** in an array of registers. They need to be composed into a record 712 ** and inserted into the sorter if either (a) there are currently 713 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 714 ** the largest record currently in the sorter. If (b) is true and there 715 ** are already LIMIT+OFFSET items in the sorter, delete the largest 716 ** entry before inserting the new one. This way there are never more 717 ** than LIMIT+OFFSET items in the sorter. 718 ** 719 ** If the new record does not need to be inserted into the sorter, 720 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 721 ** value is not zero, then it is a label of where to jump. Otherwise, 722 ** just bypass the row insert logic. See the header comment on the 723 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 724 */ 725 int iCsr = pSort->iECursor; 726 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 727 VdbeCoverage(v); 728 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 729 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 730 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 731 VdbeCoverage(v); 732 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 733 } 734 if( regRecord==0 ){ 735 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 736 } 737 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 738 op = OP_SorterInsert; 739 }else{ 740 op = OP_IdxInsert; 741 } 742 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 743 regBase+nOBSat, nBase-nOBSat); 744 if( iSkip ){ 745 sqlite3VdbeChangeP2(v, iSkip, 746 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 747 } 748 } 749 750 /* 751 ** Add code to implement the OFFSET 752 */ 753 static void codeOffset( 754 Vdbe *v, /* Generate code into this VM */ 755 int iOffset, /* Register holding the offset counter */ 756 int iContinue /* Jump here to skip the current record */ 757 ){ 758 if( iOffset>0 ){ 759 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 760 VdbeComment((v, "OFFSET")); 761 } 762 } 763 764 /* 765 ** Add code that will check to make sure the N registers starting at iMem 766 ** form a distinct entry. iTab is a sorting index that holds previously 767 ** seen combinations of the N values. A new entry is made in iTab 768 ** if the current N values are new. 769 ** 770 ** A jump to addrRepeat is made and the N+1 values are popped from the 771 ** stack if the top N elements are not distinct. 772 */ 773 static void codeDistinct( 774 Parse *pParse, /* Parsing and code generating context */ 775 int iTab, /* A sorting index used to test for distinctness */ 776 int addrRepeat, /* Jump to here if not distinct */ 777 int N, /* Number of elements */ 778 int iMem /* First element */ 779 ){ 780 Vdbe *v; 781 int r1; 782 783 v = pParse->pVdbe; 784 r1 = sqlite3GetTempReg(pParse); 785 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 786 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 787 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 788 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 789 sqlite3ReleaseTempReg(pParse, r1); 790 } 791 792 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 793 /* 794 ** This function is called as part of inner-loop generation for a SELECT 795 ** statement with an ORDER BY that is not optimized by an index. It 796 ** determines the expressions, if any, that the sorter-reference 797 ** optimization should be used for. The sorter-reference optimization 798 ** is used for SELECT queries like: 799 ** 800 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 801 ** 802 ** If the optimization is used for expression "bigblob", then instead of 803 ** storing values read from that column in the sorter records, the PK of 804 ** the row from table t1 is stored instead. Then, as records are extracted from 805 ** the sorter to return to the user, the required value of bigblob is 806 ** retrieved directly from table t1. If the values are very large, this 807 ** can be more efficient than storing them directly in the sorter records. 808 ** 809 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 810 ** for which the sorter-reference optimization should be enabled. 811 ** Additionally, the pSort->aDefer[] array is populated with entries 812 ** for all cursors required to evaluate all selected expressions. Finally. 813 ** output variable (*ppExtra) is set to an expression list containing 814 ** expressions for all extra PK values that should be stored in the 815 ** sorter records. 816 */ 817 static void selectExprDefer( 818 Parse *pParse, /* Leave any error here */ 819 SortCtx *pSort, /* Sorter context */ 820 ExprList *pEList, /* Expressions destined for sorter */ 821 ExprList **ppExtra /* Expressions to append to sorter record */ 822 ){ 823 int i; 824 int nDefer = 0; 825 ExprList *pExtra = 0; 826 for(i=0; i<pEList->nExpr; i++){ 827 struct ExprList_item *pItem = &pEList->a[i]; 828 if( pItem->u.x.iOrderByCol==0 ){ 829 Expr *pExpr = pItem->pExpr; 830 Table *pTab = pExpr->y.pTab; 831 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 832 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 833 ){ 834 int j; 835 for(j=0; j<nDefer; j++){ 836 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 837 } 838 if( j==nDefer ){ 839 if( nDefer==ArraySize(pSort->aDefer) ){ 840 continue; 841 }else{ 842 int nKey = 1; 843 int k; 844 Index *pPk = 0; 845 if( !HasRowid(pTab) ){ 846 pPk = sqlite3PrimaryKeyIndex(pTab); 847 nKey = pPk->nKeyCol; 848 } 849 for(k=0; k<nKey; k++){ 850 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 851 if( pNew ){ 852 pNew->iTable = pExpr->iTable; 853 pNew->y.pTab = pExpr->y.pTab; 854 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 855 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 856 } 857 } 858 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 859 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 860 pSort->aDefer[nDefer].nKey = nKey; 861 nDefer++; 862 } 863 } 864 pItem->bSorterRef = 1; 865 } 866 } 867 } 868 pSort->nDefer = (u8)nDefer; 869 *ppExtra = pExtra; 870 } 871 #endif 872 873 /* 874 ** This routine generates the code for the inside of the inner loop 875 ** of a SELECT. 876 ** 877 ** If srcTab is negative, then the p->pEList expressions 878 ** are evaluated in order to get the data for this row. If srcTab is 879 ** zero or more, then data is pulled from srcTab and p->pEList is used only 880 ** to get the number of columns and the collation sequence for each column. 881 */ 882 static void selectInnerLoop( 883 Parse *pParse, /* The parser context */ 884 Select *p, /* The complete select statement being coded */ 885 int srcTab, /* Pull data from this table if non-negative */ 886 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 887 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 888 SelectDest *pDest, /* How to dispose of the results */ 889 int iContinue, /* Jump here to continue with next row */ 890 int iBreak /* Jump here to break out of the inner loop */ 891 ){ 892 Vdbe *v = pParse->pVdbe; 893 int i; 894 int hasDistinct; /* True if the DISTINCT keyword is present */ 895 int eDest = pDest->eDest; /* How to dispose of results */ 896 int iParm = pDest->iSDParm; /* First argument to disposal method */ 897 int nResultCol; /* Number of result columns */ 898 int nPrefixReg = 0; /* Number of extra registers before regResult */ 899 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 900 901 /* Usually, regResult is the first cell in an array of memory cells 902 ** containing the current result row. In this case regOrig is set to the 903 ** same value. However, if the results are being sent to the sorter, the 904 ** values for any expressions that are also part of the sort-key are omitted 905 ** from this array. In this case regOrig is set to zero. */ 906 int regResult; /* Start of memory holding current results */ 907 int regOrig; /* Start of memory holding full result (or 0) */ 908 909 assert( v ); 910 assert( p->pEList!=0 ); 911 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 912 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 913 if( pSort==0 && !hasDistinct ){ 914 assert( iContinue!=0 ); 915 codeOffset(v, p->iOffset, iContinue); 916 } 917 918 /* Pull the requested columns. 919 */ 920 nResultCol = p->pEList->nExpr; 921 922 if( pDest->iSdst==0 ){ 923 if( pSort ){ 924 nPrefixReg = pSort->pOrderBy->nExpr; 925 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 926 pParse->nMem += nPrefixReg; 927 } 928 pDest->iSdst = pParse->nMem+1; 929 pParse->nMem += nResultCol; 930 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 931 /* This is an error condition that can result, for example, when a SELECT 932 ** on the right-hand side of an INSERT contains more result columns than 933 ** there are columns in the table on the left. The error will be caught 934 ** and reported later. But we need to make sure enough memory is allocated 935 ** to avoid other spurious errors in the meantime. */ 936 pParse->nMem += nResultCol; 937 } 938 pDest->nSdst = nResultCol; 939 regOrig = regResult = pDest->iSdst; 940 if( srcTab>=0 ){ 941 for(i=0; i<nResultCol; i++){ 942 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 943 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 944 } 945 }else if( eDest!=SRT_Exists ){ 946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 947 ExprList *pExtra = 0; 948 #endif 949 /* If the destination is an EXISTS(...) expression, the actual 950 ** values returned by the SELECT are not required. 951 */ 952 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 953 ExprList *pEList; 954 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 955 ecelFlags = SQLITE_ECEL_DUP; 956 }else{ 957 ecelFlags = 0; 958 } 959 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 960 /* For each expression in p->pEList that is a copy of an expression in 961 ** the ORDER BY clause (pSort->pOrderBy), set the associated 962 ** iOrderByCol value to one more than the index of the ORDER BY 963 ** expression within the sort-key that pushOntoSorter() will generate. 964 ** This allows the p->pEList field to be omitted from the sorted record, 965 ** saving space and CPU cycles. */ 966 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 967 968 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 969 int j; 970 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 971 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 972 } 973 } 974 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 975 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 976 if( pExtra && pParse->db->mallocFailed==0 ){ 977 /* If there are any extra PK columns to add to the sorter records, 978 ** allocate extra memory cells and adjust the OpenEphemeral 979 ** instruction to account for the larger records. This is only 980 ** required if there are one or more WITHOUT ROWID tables with 981 ** composite primary keys in the SortCtx.aDefer[] array. */ 982 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 983 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 984 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 985 pParse->nMem += pExtra->nExpr; 986 } 987 #endif 988 989 /* Adjust nResultCol to account for columns that are omitted 990 ** from the sorter by the optimizations in this branch */ 991 pEList = p->pEList; 992 for(i=0; i<pEList->nExpr; i++){ 993 if( pEList->a[i].u.x.iOrderByCol>0 994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 995 || pEList->a[i].bSorterRef 996 #endif 997 ){ 998 nResultCol--; 999 regOrig = 0; 1000 } 1001 } 1002 1003 testcase( regOrig ); 1004 testcase( eDest==SRT_Set ); 1005 testcase( eDest==SRT_Mem ); 1006 testcase( eDest==SRT_Coroutine ); 1007 testcase( eDest==SRT_Output ); 1008 assert( eDest==SRT_Set || eDest==SRT_Mem 1009 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1010 } 1011 sRowLoadInfo.regResult = regResult; 1012 sRowLoadInfo.ecelFlags = ecelFlags; 1013 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1014 sRowLoadInfo.pExtra = pExtra; 1015 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1016 if( pExtra ) nResultCol += pExtra->nExpr; 1017 #endif 1018 if( p->iLimit 1019 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1020 && nPrefixReg>0 1021 ){ 1022 assert( pSort!=0 ); 1023 assert( hasDistinct==0 ); 1024 pSort->pDeferredRowLoad = &sRowLoadInfo; 1025 regOrig = 0; 1026 }else{ 1027 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1028 } 1029 } 1030 1031 /* If the DISTINCT keyword was present on the SELECT statement 1032 ** and this row has been seen before, then do not make this row 1033 ** part of the result. 1034 */ 1035 if( hasDistinct ){ 1036 switch( pDistinct->eTnctType ){ 1037 case WHERE_DISTINCT_ORDERED: { 1038 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1039 int iJump; /* Jump destination */ 1040 int regPrev; /* Previous row content */ 1041 1042 /* Allocate space for the previous row */ 1043 regPrev = pParse->nMem+1; 1044 pParse->nMem += nResultCol; 1045 1046 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1047 ** sets the MEM_Cleared bit on the first register of the 1048 ** previous value. This will cause the OP_Ne below to always 1049 ** fail on the first iteration of the loop even if the first 1050 ** row is all NULLs. 1051 */ 1052 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1053 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1054 pOp->opcode = OP_Null; 1055 pOp->p1 = 1; 1056 pOp->p2 = regPrev; 1057 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1058 1059 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1060 for(i=0; i<nResultCol; i++){ 1061 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1062 if( i<nResultCol-1 ){ 1063 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1064 VdbeCoverage(v); 1065 }else{ 1066 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1067 VdbeCoverage(v); 1068 } 1069 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1070 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1071 } 1072 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1073 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1074 break; 1075 } 1076 1077 case WHERE_DISTINCT_UNIQUE: { 1078 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1079 break; 1080 } 1081 1082 default: { 1083 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1084 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1085 regResult); 1086 break; 1087 } 1088 } 1089 if( pSort==0 ){ 1090 codeOffset(v, p->iOffset, iContinue); 1091 } 1092 } 1093 1094 switch( eDest ){ 1095 /* In this mode, write each query result to the key of the temporary 1096 ** table iParm. 1097 */ 1098 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1099 case SRT_Union: { 1100 int r1; 1101 r1 = sqlite3GetTempReg(pParse); 1102 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1103 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1104 sqlite3ReleaseTempReg(pParse, r1); 1105 break; 1106 } 1107 1108 /* Construct a record from the query result, but instead of 1109 ** saving that record, use it as a key to delete elements from 1110 ** the temporary table iParm. 1111 */ 1112 case SRT_Except: { 1113 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1114 break; 1115 } 1116 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1117 1118 /* Store the result as data using a unique key. 1119 */ 1120 case SRT_Fifo: 1121 case SRT_DistFifo: 1122 case SRT_Table: 1123 case SRT_EphemTab: { 1124 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1125 testcase( eDest==SRT_Table ); 1126 testcase( eDest==SRT_EphemTab ); 1127 testcase( eDest==SRT_Fifo ); 1128 testcase( eDest==SRT_DistFifo ); 1129 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1130 #ifndef SQLITE_OMIT_CTE 1131 if( eDest==SRT_DistFifo ){ 1132 /* If the destination is DistFifo, then cursor (iParm+1) is open 1133 ** on an ephemeral index. If the current row is already present 1134 ** in the index, do not write it to the output. If not, add the 1135 ** current row to the index and proceed with writing it to the 1136 ** output table as well. */ 1137 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1138 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1139 VdbeCoverage(v); 1140 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1141 assert( pSort==0 ); 1142 } 1143 #endif 1144 if( pSort ){ 1145 assert( regResult==regOrig ); 1146 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1147 }else{ 1148 int r2 = sqlite3GetTempReg(pParse); 1149 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1150 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1151 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1152 sqlite3ReleaseTempReg(pParse, r2); 1153 } 1154 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1155 break; 1156 } 1157 1158 #ifndef SQLITE_OMIT_SUBQUERY 1159 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1160 ** then there should be a single item on the stack. Write this 1161 ** item into the set table with bogus data. 1162 */ 1163 case SRT_Set: { 1164 if( pSort ){ 1165 /* At first glance you would think we could optimize out the 1166 ** ORDER BY in this case since the order of entries in the set 1167 ** does not matter. But there might be a LIMIT clause, in which 1168 ** case the order does matter */ 1169 pushOntoSorter( 1170 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1171 }else{ 1172 int r1 = sqlite3GetTempReg(pParse); 1173 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1174 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1175 r1, pDest->zAffSdst, nResultCol); 1176 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1177 sqlite3ReleaseTempReg(pParse, r1); 1178 } 1179 break; 1180 } 1181 1182 /* If any row exist in the result set, record that fact and abort. 1183 */ 1184 case SRT_Exists: { 1185 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1186 /* The LIMIT clause will terminate the loop for us */ 1187 break; 1188 } 1189 1190 /* If this is a scalar select that is part of an expression, then 1191 ** store the results in the appropriate memory cell or array of 1192 ** memory cells and break out of the scan loop. 1193 */ 1194 case SRT_Mem: { 1195 if( pSort ){ 1196 assert( nResultCol<=pDest->nSdst ); 1197 pushOntoSorter( 1198 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1199 }else{ 1200 assert( nResultCol==pDest->nSdst ); 1201 assert( regResult==iParm ); 1202 /* The LIMIT clause will jump out of the loop for us */ 1203 } 1204 break; 1205 } 1206 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1207 1208 case SRT_Coroutine: /* Send data to a co-routine */ 1209 case SRT_Output: { /* Return the results */ 1210 testcase( eDest==SRT_Coroutine ); 1211 testcase( eDest==SRT_Output ); 1212 if( pSort ){ 1213 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1214 nPrefixReg); 1215 }else if( eDest==SRT_Coroutine ){ 1216 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1217 }else{ 1218 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1219 } 1220 break; 1221 } 1222 1223 #ifndef SQLITE_OMIT_CTE 1224 /* Write the results into a priority queue that is order according to 1225 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1226 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1227 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1228 ** final OP_Sequence column. The last column is the record as a blob. 1229 */ 1230 case SRT_DistQueue: 1231 case SRT_Queue: { 1232 int nKey; 1233 int r1, r2, r3; 1234 int addrTest = 0; 1235 ExprList *pSO; 1236 pSO = pDest->pOrderBy; 1237 assert( pSO ); 1238 nKey = pSO->nExpr; 1239 r1 = sqlite3GetTempReg(pParse); 1240 r2 = sqlite3GetTempRange(pParse, nKey+2); 1241 r3 = r2+nKey+1; 1242 if( eDest==SRT_DistQueue ){ 1243 /* If the destination is DistQueue, then cursor (iParm+1) is open 1244 ** on a second ephemeral index that holds all values every previously 1245 ** added to the queue. */ 1246 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1247 regResult, nResultCol); 1248 VdbeCoverage(v); 1249 } 1250 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1251 if( eDest==SRT_DistQueue ){ 1252 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1253 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1254 } 1255 for(i=0; i<nKey; i++){ 1256 sqlite3VdbeAddOp2(v, OP_SCopy, 1257 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1258 r2+i); 1259 } 1260 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1261 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1262 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1263 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1264 sqlite3ReleaseTempReg(pParse, r1); 1265 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1266 break; 1267 } 1268 #endif /* SQLITE_OMIT_CTE */ 1269 1270 1271 1272 #if !defined(SQLITE_OMIT_TRIGGER) 1273 /* Discard the results. This is used for SELECT statements inside 1274 ** the body of a TRIGGER. The purpose of such selects is to call 1275 ** user-defined functions that have side effects. We do not care 1276 ** about the actual results of the select. 1277 */ 1278 default: { 1279 assert( eDest==SRT_Discard ); 1280 break; 1281 } 1282 #endif 1283 } 1284 1285 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1286 ** there is a sorter, in which case the sorter has already limited 1287 ** the output for us. 1288 */ 1289 if( pSort==0 && p->iLimit ){ 1290 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1291 } 1292 } 1293 1294 /* 1295 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1296 ** X extra columns. 1297 */ 1298 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1299 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1300 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1301 if( p ){ 1302 p->aSortFlags = (u8*)&p->aColl[N+X]; 1303 p->nKeyField = (u16)N; 1304 p->nAllField = (u16)(N+X); 1305 p->enc = ENC(db); 1306 p->db = db; 1307 p->nRef = 1; 1308 memset(&p[1], 0, nExtra); 1309 }else{ 1310 sqlite3OomFault(db); 1311 } 1312 return p; 1313 } 1314 1315 /* 1316 ** Deallocate a KeyInfo object 1317 */ 1318 void sqlite3KeyInfoUnref(KeyInfo *p){ 1319 if( p ){ 1320 assert( p->nRef>0 ); 1321 p->nRef--; 1322 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1323 } 1324 } 1325 1326 /* 1327 ** Make a new pointer to a KeyInfo object 1328 */ 1329 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1330 if( p ){ 1331 assert( p->nRef>0 ); 1332 p->nRef++; 1333 } 1334 return p; 1335 } 1336 1337 #ifdef SQLITE_DEBUG 1338 /* 1339 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1340 ** can only be changed if this is just a single reference to the object. 1341 ** 1342 ** This routine is used only inside of assert() statements. 1343 */ 1344 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1345 #endif /* SQLITE_DEBUG */ 1346 1347 /* 1348 ** Given an expression list, generate a KeyInfo structure that records 1349 ** the collating sequence for each expression in that expression list. 1350 ** 1351 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1352 ** KeyInfo structure is appropriate for initializing a virtual index to 1353 ** implement that clause. If the ExprList is the result set of a SELECT 1354 ** then the KeyInfo structure is appropriate for initializing a virtual 1355 ** index to implement a DISTINCT test. 1356 ** 1357 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1358 ** function is responsible for seeing that this structure is eventually 1359 ** freed. 1360 */ 1361 KeyInfo *sqlite3KeyInfoFromExprList( 1362 Parse *pParse, /* Parsing context */ 1363 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1364 int iStart, /* Begin with this column of pList */ 1365 int nExtra /* Add this many extra columns to the end */ 1366 ){ 1367 int nExpr; 1368 KeyInfo *pInfo; 1369 struct ExprList_item *pItem; 1370 sqlite3 *db = pParse->db; 1371 int i; 1372 1373 nExpr = pList->nExpr; 1374 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1375 if( pInfo ){ 1376 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1377 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1378 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1379 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1380 } 1381 } 1382 return pInfo; 1383 } 1384 1385 /* 1386 ** Name of the connection operator, used for error messages. 1387 */ 1388 static const char *selectOpName(int id){ 1389 char *z; 1390 switch( id ){ 1391 case TK_ALL: z = "UNION ALL"; break; 1392 case TK_INTERSECT: z = "INTERSECT"; break; 1393 case TK_EXCEPT: z = "EXCEPT"; break; 1394 default: z = "UNION"; break; 1395 } 1396 return z; 1397 } 1398 1399 #ifndef SQLITE_OMIT_EXPLAIN 1400 /* 1401 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1402 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1403 ** where the caption is of the form: 1404 ** 1405 ** "USE TEMP B-TREE FOR xxx" 1406 ** 1407 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1408 ** is determined by the zUsage argument. 1409 */ 1410 static void explainTempTable(Parse *pParse, const char *zUsage){ 1411 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1412 } 1413 1414 /* 1415 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1416 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1417 ** in sqlite3Select() to assign values to structure member variables that 1418 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1419 ** code with #ifndef directives. 1420 */ 1421 # define explainSetInteger(a, b) a = b 1422 1423 #else 1424 /* No-op versions of the explainXXX() functions and macros. */ 1425 # define explainTempTable(y,z) 1426 # define explainSetInteger(y,z) 1427 #endif 1428 1429 1430 /* 1431 ** If the inner loop was generated using a non-null pOrderBy argument, 1432 ** then the results were placed in a sorter. After the loop is terminated 1433 ** we need to run the sorter and output the results. The following 1434 ** routine generates the code needed to do that. 1435 */ 1436 static void generateSortTail( 1437 Parse *pParse, /* Parsing context */ 1438 Select *p, /* The SELECT statement */ 1439 SortCtx *pSort, /* Information on the ORDER BY clause */ 1440 int nColumn, /* Number of columns of data */ 1441 SelectDest *pDest /* Write the sorted results here */ 1442 ){ 1443 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1444 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1445 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1446 int addr; /* Top of output loop. Jump for Next. */ 1447 int addrOnce = 0; 1448 int iTab; 1449 ExprList *pOrderBy = pSort->pOrderBy; 1450 int eDest = pDest->eDest; 1451 int iParm = pDest->iSDParm; 1452 int regRow; 1453 int regRowid; 1454 int iCol; 1455 int nKey; /* Number of key columns in sorter record */ 1456 int iSortTab; /* Sorter cursor to read from */ 1457 int i; 1458 int bSeq; /* True if sorter record includes seq. no. */ 1459 int nRefKey = 0; 1460 struct ExprList_item *aOutEx = p->pEList->a; 1461 1462 assert( addrBreak<0 ); 1463 if( pSort->labelBkOut ){ 1464 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1465 sqlite3VdbeGoto(v, addrBreak); 1466 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1467 } 1468 1469 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1470 /* Open any cursors needed for sorter-reference expressions */ 1471 for(i=0; i<pSort->nDefer; i++){ 1472 Table *pTab = pSort->aDefer[i].pTab; 1473 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1474 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1475 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1476 } 1477 #endif 1478 1479 iTab = pSort->iECursor; 1480 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1481 regRowid = 0; 1482 regRow = pDest->iSdst; 1483 }else{ 1484 regRowid = sqlite3GetTempReg(pParse); 1485 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1486 regRow = sqlite3GetTempReg(pParse); 1487 nColumn = 0; 1488 }else{ 1489 regRow = sqlite3GetTempRange(pParse, nColumn); 1490 } 1491 } 1492 nKey = pOrderBy->nExpr - pSort->nOBSat; 1493 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1494 int regSortOut = ++pParse->nMem; 1495 iSortTab = pParse->nTab++; 1496 if( pSort->labelBkOut ){ 1497 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1498 } 1499 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1500 nKey+1+nColumn+nRefKey); 1501 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1502 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1503 VdbeCoverage(v); 1504 codeOffset(v, p->iOffset, addrContinue); 1505 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1506 bSeq = 0; 1507 }else{ 1508 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1509 codeOffset(v, p->iOffset, addrContinue); 1510 iSortTab = iTab; 1511 bSeq = 1; 1512 } 1513 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1515 if( aOutEx[i].bSorterRef ) continue; 1516 #endif 1517 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1518 } 1519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1520 if( pSort->nDefer ){ 1521 int iKey = iCol+1; 1522 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1523 1524 for(i=0; i<pSort->nDefer; i++){ 1525 int iCsr = pSort->aDefer[i].iCsr; 1526 Table *pTab = pSort->aDefer[i].pTab; 1527 int nKey = pSort->aDefer[i].nKey; 1528 1529 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1530 if( HasRowid(pTab) ){ 1531 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1532 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1533 sqlite3VdbeCurrentAddr(v)+1, regKey); 1534 }else{ 1535 int k; 1536 int iJmp; 1537 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1538 for(k=0; k<nKey; k++){ 1539 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1540 } 1541 iJmp = sqlite3VdbeCurrentAddr(v); 1542 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1543 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1544 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1545 } 1546 } 1547 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1548 } 1549 #endif 1550 for(i=nColumn-1; i>=0; i--){ 1551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1552 if( aOutEx[i].bSorterRef ){ 1553 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1554 }else 1555 #endif 1556 { 1557 int iRead; 1558 if( aOutEx[i].u.x.iOrderByCol ){ 1559 iRead = aOutEx[i].u.x.iOrderByCol-1; 1560 }else{ 1561 iRead = iCol--; 1562 } 1563 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1564 VdbeComment((v, "%s", aOutEx[i].zEName)); 1565 } 1566 } 1567 switch( eDest ){ 1568 case SRT_Table: 1569 case SRT_EphemTab: { 1570 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1571 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1572 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1573 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1574 break; 1575 } 1576 #ifndef SQLITE_OMIT_SUBQUERY 1577 case SRT_Set: { 1578 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1579 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1580 pDest->zAffSdst, nColumn); 1581 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1582 break; 1583 } 1584 case SRT_Mem: { 1585 /* The LIMIT clause will terminate the loop for us */ 1586 break; 1587 } 1588 #endif 1589 default: { 1590 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1591 testcase( eDest==SRT_Output ); 1592 testcase( eDest==SRT_Coroutine ); 1593 if( eDest==SRT_Output ){ 1594 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1595 }else{ 1596 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1597 } 1598 break; 1599 } 1600 } 1601 if( regRowid ){ 1602 if( eDest==SRT_Set ){ 1603 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1604 }else{ 1605 sqlite3ReleaseTempReg(pParse, regRow); 1606 } 1607 sqlite3ReleaseTempReg(pParse, regRowid); 1608 } 1609 /* The bottom of the loop 1610 */ 1611 sqlite3VdbeResolveLabel(v, addrContinue); 1612 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1613 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1614 }else{ 1615 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1616 } 1617 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1618 sqlite3VdbeResolveLabel(v, addrBreak); 1619 } 1620 1621 /* 1622 ** Return a pointer to a string containing the 'declaration type' of the 1623 ** expression pExpr. The string may be treated as static by the caller. 1624 ** 1625 ** Also try to estimate the size of the returned value and return that 1626 ** result in *pEstWidth. 1627 ** 1628 ** The declaration type is the exact datatype definition extracted from the 1629 ** original CREATE TABLE statement if the expression is a column. The 1630 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1631 ** is considered a column can be complex in the presence of subqueries. The 1632 ** result-set expression in all of the following SELECT statements is 1633 ** considered a column by this function. 1634 ** 1635 ** SELECT col FROM tbl; 1636 ** SELECT (SELECT col FROM tbl; 1637 ** SELECT (SELECT col FROM tbl); 1638 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1639 ** 1640 ** The declaration type for any expression other than a column is NULL. 1641 ** 1642 ** This routine has either 3 or 6 parameters depending on whether or not 1643 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1644 */ 1645 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1646 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1647 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1648 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1649 #endif 1650 static const char *columnTypeImpl( 1651 NameContext *pNC, 1652 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1653 Expr *pExpr 1654 #else 1655 Expr *pExpr, 1656 const char **pzOrigDb, 1657 const char **pzOrigTab, 1658 const char **pzOrigCol 1659 #endif 1660 ){ 1661 char const *zType = 0; 1662 int j; 1663 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1664 char const *zOrigDb = 0; 1665 char const *zOrigTab = 0; 1666 char const *zOrigCol = 0; 1667 #endif 1668 1669 assert( pExpr!=0 ); 1670 assert( pNC->pSrcList!=0 ); 1671 switch( pExpr->op ){ 1672 case TK_COLUMN: { 1673 /* The expression is a column. Locate the table the column is being 1674 ** extracted from in NameContext.pSrcList. This table may be real 1675 ** database table or a subquery. 1676 */ 1677 Table *pTab = 0; /* Table structure column is extracted from */ 1678 Select *pS = 0; /* Select the column is extracted from */ 1679 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1680 while( pNC && !pTab ){ 1681 SrcList *pTabList = pNC->pSrcList; 1682 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1683 if( j<pTabList->nSrc ){ 1684 pTab = pTabList->a[j].pTab; 1685 pS = pTabList->a[j].pSelect; 1686 }else{ 1687 pNC = pNC->pNext; 1688 } 1689 } 1690 1691 if( pTab==0 ){ 1692 /* At one time, code such as "SELECT new.x" within a trigger would 1693 ** cause this condition to run. Since then, we have restructured how 1694 ** trigger code is generated and so this condition is no longer 1695 ** possible. However, it can still be true for statements like 1696 ** the following: 1697 ** 1698 ** CREATE TABLE t1(col INTEGER); 1699 ** SELECT (SELECT t1.col) FROM FROM t1; 1700 ** 1701 ** when columnType() is called on the expression "t1.col" in the 1702 ** sub-select. In this case, set the column type to NULL, even 1703 ** though it should really be "INTEGER". 1704 ** 1705 ** This is not a problem, as the column type of "t1.col" is never 1706 ** used. When columnType() is called on the expression 1707 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1708 ** branch below. */ 1709 break; 1710 } 1711 1712 assert( pTab && pExpr->y.pTab==pTab ); 1713 if( pS ){ 1714 /* The "table" is actually a sub-select or a view in the FROM clause 1715 ** of the SELECT statement. Return the declaration type and origin 1716 ** data for the result-set column of the sub-select. 1717 */ 1718 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1719 /* If iCol is less than zero, then the expression requests the 1720 ** rowid of the sub-select or view. This expression is legal (see 1721 ** test case misc2.2.2) - it always evaluates to NULL. 1722 */ 1723 NameContext sNC; 1724 Expr *p = pS->pEList->a[iCol].pExpr; 1725 sNC.pSrcList = pS->pSrc; 1726 sNC.pNext = pNC; 1727 sNC.pParse = pNC->pParse; 1728 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1729 } 1730 }else{ 1731 /* A real table or a CTE table */ 1732 assert( !pS ); 1733 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1734 if( iCol<0 ) iCol = pTab->iPKey; 1735 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1736 if( iCol<0 ){ 1737 zType = "INTEGER"; 1738 zOrigCol = "rowid"; 1739 }else{ 1740 zOrigCol = pTab->aCol[iCol].zName; 1741 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1742 } 1743 zOrigTab = pTab->zName; 1744 if( pNC->pParse && pTab->pSchema ){ 1745 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1746 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1747 } 1748 #else 1749 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1750 if( iCol<0 ){ 1751 zType = "INTEGER"; 1752 }else{ 1753 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1754 } 1755 #endif 1756 } 1757 break; 1758 } 1759 #ifndef SQLITE_OMIT_SUBQUERY 1760 case TK_SELECT: { 1761 /* The expression is a sub-select. Return the declaration type and 1762 ** origin info for the single column in the result set of the SELECT 1763 ** statement. 1764 */ 1765 NameContext sNC; 1766 Select *pS = pExpr->x.pSelect; 1767 Expr *p = pS->pEList->a[0].pExpr; 1768 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1769 sNC.pSrcList = pS->pSrc; 1770 sNC.pNext = pNC; 1771 sNC.pParse = pNC->pParse; 1772 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1773 break; 1774 } 1775 #endif 1776 } 1777 1778 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1779 if( pzOrigDb ){ 1780 assert( pzOrigTab && pzOrigCol ); 1781 *pzOrigDb = zOrigDb; 1782 *pzOrigTab = zOrigTab; 1783 *pzOrigCol = zOrigCol; 1784 } 1785 #endif 1786 return zType; 1787 } 1788 1789 /* 1790 ** Generate code that will tell the VDBE the declaration types of columns 1791 ** in the result set. 1792 */ 1793 static void generateColumnTypes( 1794 Parse *pParse, /* Parser context */ 1795 SrcList *pTabList, /* List of tables */ 1796 ExprList *pEList /* Expressions defining the result set */ 1797 ){ 1798 #ifndef SQLITE_OMIT_DECLTYPE 1799 Vdbe *v = pParse->pVdbe; 1800 int i; 1801 NameContext sNC; 1802 sNC.pSrcList = pTabList; 1803 sNC.pParse = pParse; 1804 sNC.pNext = 0; 1805 for(i=0; i<pEList->nExpr; i++){ 1806 Expr *p = pEList->a[i].pExpr; 1807 const char *zType; 1808 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1809 const char *zOrigDb = 0; 1810 const char *zOrigTab = 0; 1811 const char *zOrigCol = 0; 1812 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1813 1814 /* The vdbe must make its own copy of the column-type and other 1815 ** column specific strings, in case the schema is reset before this 1816 ** virtual machine is deleted. 1817 */ 1818 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1819 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1820 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1821 #else 1822 zType = columnType(&sNC, p, 0, 0, 0); 1823 #endif 1824 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1825 } 1826 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1827 } 1828 1829 1830 /* 1831 ** Compute the column names for a SELECT statement. 1832 ** 1833 ** The only guarantee that SQLite makes about column names is that if the 1834 ** column has an AS clause assigning it a name, that will be the name used. 1835 ** That is the only documented guarantee. However, countless applications 1836 ** developed over the years have made baseless assumptions about column names 1837 ** and will break if those assumptions changes. Hence, use extreme caution 1838 ** when modifying this routine to avoid breaking legacy. 1839 ** 1840 ** See Also: sqlite3ColumnsFromExprList() 1841 ** 1842 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1843 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1844 ** applications should operate this way. Nevertheless, we need to support the 1845 ** other modes for legacy: 1846 ** 1847 ** short=OFF, full=OFF: Column name is the text of the expression has it 1848 ** originally appears in the SELECT statement. In 1849 ** other words, the zSpan of the result expression. 1850 ** 1851 ** short=ON, full=OFF: (This is the default setting). If the result 1852 ** refers directly to a table column, then the 1853 ** result column name is just the table column 1854 ** name: COLUMN. Otherwise use zSpan. 1855 ** 1856 ** full=ON, short=ANY: If the result refers directly to a table column, 1857 ** then the result column name with the table name 1858 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1859 */ 1860 static void generateColumnNames( 1861 Parse *pParse, /* Parser context */ 1862 Select *pSelect /* Generate column names for this SELECT statement */ 1863 ){ 1864 Vdbe *v = pParse->pVdbe; 1865 int i; 1866 Table *pTab; 1867 SrcList *pTabList; 1868 ExprList *pEList; 1869 sqlite3 *db = pParse->db; 1870 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1871 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1872 1873 #ifndef SQLITE_OMIT_EXPLAIN 1874 /* If this is an EXPLAIN, skip this step */ 1875 if( pParse->explain ){ 1876 return; 1877 } 1878 #endif 1879 1880 if( pParse->colNamesSet ) return; 1881 /* Column names are determined by the left-most term of a compound select */ 1882 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1883 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1884 pTabList = pSelect->pSrc; 1885 pEList = pSelect->pEList; 1886 assert( v!=0 ); 1887 assert( pTabList!=0 ); 1888 pParse->colNamesSet = 1; 1889 fullName = (db->flags & SQLITE_FullColNames)!=0; 1890 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1891 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1892 for(i=0; i<pEList->nExpr; i++){ 1893 Expr *p = pEList->a[i].pExpr; 1894 1895 assert( p!=0 ); 1896 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1897 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1898 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1899 /* An AS clause always takes first priority */ 1900 char *zName = pEList->a[i].zEName; 1901 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1902 }else if( srcName && p->op==TK_COLUMN ){ 1903 char *zCol; 1904 int iCol = p->iColumn; 1905 pTab = p->y.pTab; 1906 assert( pTab!=0 ); 1907 if( iCol<0 ) iCol = pTab->iPKey; 1908 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1909 if( iCol<0 ){ 1910 zCol = "rowid"; 1911 }else{ 1912 zCol = pTab->aCol[iCol].zName; 1913 } 1914 if( fullName ){ 1915 char *zName = 0; 1916 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1917 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1918 }else{ 1919 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1920 } 1921 }else{ 1922 const char *z = pEList->a[i].zEName; 1923 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1924 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1925 } 1926 } 1927 generateColumnTypes(pParse, pTabList, pEList); 1928 } 1929 1930 /* 1931 ** Given an expression list (which is really the list of expressions 1932 ** that form the result set of a SELECT statement) compute appropriate 1933 ** column names for a table that would hold the expression list. 1934 ** 1935 ** All column names will be unique. 1936 ** 1937 ** Only the column names are computed. Column.zType, Column.zColl, 1938 ** and other fields of Column are zeroed. 1939 ** 1940 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1941 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1942 ** 1943 ** The only guarantee that SQLite makes about column names is that if the 1944 ** column has an AS clause assigning it a name, that will be the name used. 1945 ** That is the only documented guarantee. However, countless applications 1946 ** developed over the years have made baseless assumptions about column names 1947 ** and will break if those assumptions changes. Hence, use extreme caution 1948 ** when modifying this routine to avoid breaking legacy. 1949 ** 1950 ** See Also: generateColumnNames() 1951 */ 1952 int sqlite3ColumnsFromExprList( 1953 Parse *pParse, /* Parsing context */ 1954 ExprList *pEList, /* Expr list from which to derive column names */ 1955 i16 *pnCol, /* Write the number of columns here */ 1956 Column **paCol /* Write the new column list here */ 1957 ){ 1958 sqlite3 *db = pParse->db; /* Database connection */ 1959 int i, j; /* Loop counters */ 1960 u32 cnt; /* Index added to make the name unique */ 1961 Column *aCol, *pCol; /* For looping over result columns */ 1962 int nCol; /* Number of columns in the result set */ 1963 char *zName; /* Column name */ 1964 int nName; /* Size of name in zName[] */ 1965 Hash ht; /* Hash table of column names */ 1966 1967 sqlite3HashInit(&ht); 1968 if( pEList ){ 1969 nCol = pEList->nExpr; 1970 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1971 testcase( aCol==0 ); 1972 if( nCol>32767 ) nCol = 32767; 1973 }else{ 1974 nCol = 0; 1975 aCol = 0; 1976 } 1977 assert( nCol==(i16)nCol ); 1978 *pnCol = nCol; 1979 *paCol = aCol; 1980 1981 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1982 /* Get an appropriate name for the column 1983 */ 1984 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1985 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1986 }else{ 1987 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1988 while( pColExpr->op==TK_DOT ){ 1989 pColExpr = pColExpr->pRight; 1990 assert( pColExpr!=0 ); 1991 } 1992 if( pColExpr->op==TK_COLUMN ){ 1993 /* For columns use the column name name */ 1994 int iCol = pColExpr->iColumn; 1995 Table *pTab = pColExpr->y.pTab; 1996 assert( pTab!=0 ); 1997 if( iCol<0 ) iCol = pTab->iPKey; 1998 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1999 }else if( pColExpr->op==TK_ID ){ 2000 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2001 zName = pColExpr->u.zToken; 2002 }else{ 2003 /* Use the original text of the column expression as its name */ 2004 zName = pEList->a[i].zEName; 2005 } 2006 } 2007 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2008 zName = sqlite3DbStrDup(db, zName); 2009 }else{ 2010 zName = sqlite3MPrintf(db,"column%d",i+1); 2011 } 2012 2013 /* Make sure the column name is unique. If the name is not unique, 2014 ** append an integer to the name so that it becomes unique. 2015 */ 2016 cnt = 0; 2017 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2018 nName = sqlite3Strlen30(zName); 2019 if( nName>0 ){ 2020 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2021 if( zName[j]==':' ) nName = j; 2022 } 2023 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2024 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2025 } 2026 pCol->zName = zName; 2027 sqlite3ColumnPropertiesFromName(0, pCol); 2028 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2029 sqlite3OomFault(db); 2030 } 2031 } 2032 sqlite3HashClear(&ht); 2033 if( db->mallocFailed ){ 2034 for(j=0; j<i; j++){ 2035 sqlite3DbFree(db, aCol[j].zName); 2036 } 2037 sqlite3DbFree(db, aCol); 2038 *paCol = 0; 2039 *pnCol = 0; 2040 return SQLITE_NOMEM_BKPT; 2041 } 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Add type and collation information to a column list based on 2047 ** a SELECT statement. 2048 ** 2049 ** The column list presumably came from selectColumnNamesFromExprList(). 2050 ** The column list has only names, not types or collations. This 2051 ** routine goes through and adds the types and collations. 2052 ** 2053 ** This routine requires that all identifiers in the SELECT 2054 ** statement be resolved. 2055 */ 2056 void sqlite3SelectAddColumnTypeAndCollation( 2057 Parse *pParse, /* Parsing contexts */ 2058 Table *pTab, /* Add column type information to this table */ 2059 Select *pSelect, /* SELECT used to determine types and collations */ 2060 char aff /* Default affinity for columns */ 2061 ){ 2062 sqlite3 *db = pParse->db; 2063 NameContext sNC; 2064 Column *pCol; 2065 CollSeq *pColl; 2066 int i; 2067 Expr *p; 2068 struct ExprList_item *a; 2069 2070 assert( pSelect!=0 ); 2071 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2072 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2073 if( db->mallocFailed ) return; 2074 memset(&sNC, 0, sizeof(sNC)); 2075 sNC.pSrcList = pSelect->pSrc; 2076 a = pSelect->pEList->a; 2077 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2078 const char *zType; 2079 int n, m; 2080 p = a[i].pExpr; 2081 zType = columnType(&sNC, p, 0, 0, 0); 2082 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2083 pCol->affinity = sqlite3ExprAffinity(p); 2084 if( zType ){ 2085 m = sqlite3Strlen30(zType); 2086 n = sqlite3Strlen30(pCol->zName); 2087 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2088 if( pCol->zName ){ 2089 memcpy(&pCol->zName[n+1], zType, m+1); 2090 pCol->colFlags |= COLFLAG_HASTYPE; 2091 } 2092 } 2093 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2094 pColl = sqlite3ExprCollSeq(pParse, p); 2095 if( pColl && pCol->zColl==0 ){ 2096 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2097 } 2098 } 2099 pTab->szTabRow = 1; /* Any non-zero value works */ 2100 } 2101 2102 /* 2103 ** Given a SELECT statement, generate a Table structure that describes 2104 ** the result set of that SELECT. 2105 */ 2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2107 Table *pTab; 2108 sqlite3 *db = pParse->db; 2109 u64 savedFlags; 2110 2111 savedFlags = db->flags; 2112 db->flags &= ~(u64)SQLITE_FullColNames; 2113 db->flags |= SQLITE_ShortColNames; 2114 sqlite3SelectPrep(pParse, pSelect, 0); 2115 db->flags = savedFlags; 2116 if( pParse->nErr ) return 0; 2117 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2118 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2119 if( pTab==0 ){ 2120 return 0; 2121 } 2122 pTab->nTabRef = 1; 2123 pTab->zName = 0; 2124 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2125 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2126 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2127 pTab->iPKey = -1; 2128 if( db->mallocFailed ){ 2129 sqlite3DeleteTable(db, pTab); 2130 return 0; 2131 } 2132 return pTab; 2133 } 2134 2135 /* 2136 ** Get a VDBE for the given parser context. Create a new one if necessary. 2137 ** If an error occurs, return NULL and leave a message in pParse. 2138 */ 2139 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2140 if( pParse->pVdbe ){ 2141 return pParse->pVdbe; 2142 } 2143 if( pParse->pToplevel==0 2144 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2145 ){ 2146 pParse->okConstFactor = 1; 2147 } 2148 return sqlite3VdbeCreate(pParse); 2149 } 2150 2151 2152 /* 2153 ** Compute the iLimit and iOffset fields of the SELECT based on the 2154 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2155 ** that appear in the original SQL statement after the LIMIT and OFFSET 2156 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2157 ** are the integer memory register numbers for counters used to compute 2158 ** the limit and offset. If there is no limit and/or offset, then 2159 ** iLimit and iOffset are negative. 2160 ** 2161 ** This routine changes the values of iLimit and iOffset only if 2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2163 ** and iOffset should have been preset to appropriate default values (zero) 2164 ** prior to calling this routine. 2165 ** 2166 ** The iOffset register (if it exists) is initialized to the value 2167 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2168 ** iOffset+1 is initialized to LIMIT+OFFSET. 2169 ** 2170 ** Only if pLimit->pLeft!=0 do the limit registers get 2171 ** redefined. The UNION ALL operator uses this property to force 2172 ** the reuse of the same limit and offset registers across multiple 2173 ** SELECT statements. 2174 */ 2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2176 Vdbe *v = 0; 2177 int iLimit = 0; 2178 int iOffset; 2179 int n; 2180 Expr *pLimit = p->pLimit; 2181 2182 if( p->iLimit ) return; 2183 2184 /* 2185 ** "LIMIT -1" always shows all rows. There is some 2186 ** controversy about what the correct behavior should be. 2187 ** The current implementation interprets "LIMIT 0" to mean 2188 ** no rows. 2189 */ 2190 if( pLimit ){ 2191 assert( pLimit->op==TK_LIMIT ); 2192 assert( pLimit->pLeft!=0 ); 2193 p->iLimit = iLimit = ++pParse->nMem; 2194 v = sqlite3GetVdbe(pParse); 2195 assert( v!=0 ); 2196 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2197 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2198 VdbeComment((v, "LIMIT counter")); 2199 if( n==0 ){ 2200 sqlite3VdbeGoto(v, iBreak); 2201 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2202 p->nSelectRow = sqlite3LogEst((u64)n); 2203 p->selFlags |= SF_FixedLimit; 2204 } 2205 }else{ 2206 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2207 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2208 VdbeComment((v, "LIMIT counter")); 2209 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2210 } 2211 if( pLimit->pRight ){ 2212 p->iOffset = iOffset = ++pParse->nMem; 2213 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2214 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2215 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2216 VdbeComment((v, "OFFSET counter")); 2217 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2218 VdbeComment((v, "LIMIT+OFFSET")); 2219 } 2220 } 2221 } 2222 2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2224 /* 2225 ** Return the appropriate collating sequence for the iCol-th column of 2226 ** the result set for the compound-select statement "p". Return NULL if 2227 ** the column has no default collating sequence. 2228 ** 2229 ** The collating sequence for the compound select is taken from the 2230 ** left-most term of the select that has a collating sequence. 2231 */ 2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2233 CollSeq *pRet; 2234 if( p->pPrior ){ 2235 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2236 }else{ 2237 pRet = 0; 2238 } 2239 assert( iCol>=0 ); 2240 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2241 ** have been thrown during name resolution and we would not have gotten 2242 ** this far */ 2243 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2244 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2245 } 2246 return pRet; 2247 } 2248 2249 /* 2250 ** The select statement passed as the second parameter is a compound SELECT 2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2252 ** structure suitable for implementing the ORDER BY. 2253 ** 2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2255 ** function is responsible for ensuring that this structure is eventually 2256 ** freed. 2257 */ 2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2259 ExprList *pOrderBy = p->pOrderBy; 2260 int nOrderBy = p->pOrderBy->nExpr; 2261 sqlite3 *db = pParse->db; 2262 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2263 if( pRet ){ 2264 int i; 2265 for(i=0; i<nOrderBy; i++){ 2266 struct ExprList_item *pItem = &pOrderBy->a[i]; 2267 Expr *pTerm = pItem->pExpr; 2268 CollSeq *pColl; 2269 2270 if( pTerm->flags & EP_Collate ){ 2271 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2272 }else{ 2273 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2274 if( pColl==0 ) pColl = db->pDfltColl; 2275 pOrderBy->a[i].pExpr = 2276 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2277 } 2278 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2279 pRet->aColl[i] = pColl; 2280 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2281 } 2282 } 2283 2284 return pRet; 2285 } 2286 2287 #ifndef SQLITE_OMIT_CTE 2288 /* 2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2290 ** query of the form: 2291 ** 2292 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2293 ** \___________/ \_______________/ 2294 ** p->pPrior p 2295 ** 2296 ** 2297 ** There is exactly one reference to the recursive-table in the FROM clause 2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2299 ** 2300 ** The setup-query runs once to generate an initial set of rows that go 2301 ** into a Queue table. Rows are extracted from the Queue table one by 2302 ** one. Each row extracted from Queue is output to pDest. Then the single 2303 ** extracted row (now in the iCurrent table) becomes the content of the 2304 ** recursive-table for a recursive-query run. The output of the recursive-query 2305 ** is added back into the Queue table. Then another row is extracted from Queue 2306 ** and the iteration continues until the Queue table is empty. 2307 ** 2308 ** If the compound query operator is UNION then no duplicate rows are ever 2309 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2310 ** that have ever been inserted into Queue and causes duplicates to be 2311 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2312 ** 2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2314 ** ORDER BY order and the first entry is extracted for each cycle. Without 2315 ** an ORDER BY, the Queue table is just a FIFO. 2316 ** 2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2318 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2319 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2320 ** with a positive value, then the first OFFSET outputs are discarded rather 2321 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2322 ** rows have been skipped. 2323 */ 2324 static void generateWithRecursiveQuery( 2325 Parse *pParse, /* Parsing context */ 2326 Select *p, /* The recursive SELECT to be coded */ 2327 SelectDest *pDest /* What to do with query results */ 2328 ){ 2329 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2330 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2331 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2332 Select *pSetup = p->pPrior; /* The setup query */ 2333 int addrTop; /* Top of the loop */ 2334 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2335 int iCurrent = 0; /* The Current table */ 2336 int regCurrent; /* Register holding Current table */ 2337 int iQueue; /* The Queue table */ 2338 int iDistinct = 0; /* To ensure unique results if UNION */ 2339 int eDest = SRT_Fifo; /* How to write to Queue */ 2340 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2341 int i; /* Loop counter */ 2342 int rc; /* Result code */ 2343 ExprList *pOrderBy; /* The ORDER BY clause */ 2344 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2345 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2346 2347 #ifndef SQLITE_OMIT_WINDOWFUNC 2348 if( p->pWin ){ 2349 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2350 return; 2351 } 2352 #endif 2353 2354 /* Obtain authorization to do a recursive query */ 2355 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2356 2357 /* Process the LIMIT and OFFSET clauses, if they exist */ 2358 addrBreak = sqlite3VdbeMakeLabel(pParse); 2359 p->nSelectRow = 320; /* 4 billion rows */ 2360 computeLimitRegisters(pParse, p, addrBreak); 2361 pLimit = p->pLimit; 2362 regLimit = p->iLimit; 2363 regOffset = p->iOffset; 2364 p->pLimit = 0; 2365 p->iLimit = p->iOffset = 0; 2366 pOrderBy = p->pOrderBy; 2367 2368 /* Locate the cursor number of the Current table */ 2369 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2370 if( pSrc->a[i].fg.isRecursive ){ 2371 iCurrent = pSrc->a[i].iCursor; 2372 break; 2373 } 2374 } 2375 2376 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2377 ** the Distinct table must be exactly one greater than Queue in order 2378 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2379 iQueue = pParse->nTab++; 2380 if( p->op==TK_UNION ){ 2381 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2382 iDistinct = pParse->nTab++; 2383 }else{ 2384 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2385 } 2386 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2387 2388 /* Allocate cursors for Current, Queue, and Distinct. */ 2389 regCurrent = ++pParse->nMem; 2390 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2391 if( pOrderBy ){ 2392 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2393 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2394 (char*)pKeyInfo, P4_KEYINFO); 2395 destQueue.pOrderBy = pOrderBy; 2396 }else{ 2397 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2398 } 2399 VdbeComment((v, "Queue table")); 2400 if( iDistinct ){ 2401 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2402 p->selFlags |= SF_UsesEphemeral; 2403 } 2404 2405 /* Detach the ORDER BY clause from the compound SELECT */ 2406 p->pOrderBy = 0; 2407 2408 /* Store the results of the setup-query in Queue. */ 2409 pSetup->pNext = 0; 2410 ExplainQueryPlan((pParse, 1, "SETUP")); 2411 rc = sqlite3Select(pParse, pSetup, &destQueue); 2412 pSetup->pNext = p; 2413 if( rc ) goto end_of_recursive_query; 2414 2415 /* Find the next row in the Queue and output that row */ 2416 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2417 2418 /* Transfer the next row in Queue over to Current */ 2419 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2420 if( pOrderBy ){ 2421 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2422 }else{ 2423 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2424 } 2425 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2426 2427 /* Output the single row in Current */ 2428 addrCont = sqlite3VdbeMakeLabel(pParse); 2429 codeOffset(v, regOffset, addrCont); 2430 selectInnerLoop(pParse, p, iCurrent, 2431 0, 0, pDest, addrCont, addrBreak); 2432 if( regLimit ){ 2433 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2434 VdbeCoverage(v); 2435 } 2436 sqlite3VdbeResolveLabel(v, addrCont); 2437 2438 /* Execute the recursive SELECT taking the single row in Current as 2439 ** the value for the recursive-table. Store the results in the Queue. 2440 */ 2441 if( p->selFlags & SF_Aggregate ){ 2442 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2443 }else{ 2444 p->pPrior = 0; 2445 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2446 sqlite3Select(pParse, p, &destQueue); 2447 assert( p->pPrior==0 ); 2448 p->pPrior = pSetup; 2449 } 2450 2451 /* Keep running the loop until the Queue is empty */ 2452 sqlite3VdbeGoto(v, addrTop); 2453 sqlite3VdbeResolveLabel(v, addrBreak); 2454 2455 end_of_recursive_query: 2456 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2457 p->pOrderBy = pOrderBy; 2458 p->pLimit = pLimit; 2459 return; 2460 } 2461 #endif /* SQLITE_OMIT_CTE */ 2462 2463 /* Forward references */ 2464 static int multiSelectOrderBy( 2465 Parse *pParse, /* Parsing context */ 2466 Select *p, /* The right-most of SELECTs to be coded */ 2467 SelectDest *pDest /* What to do with query results */ 2468 ); 2469 2470 /* 2471 ** Handle the special case of a compound-select that originates from a 2472 ** VALUES clause. By handling this as a special case, we avoid deep 2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2474 ** on a VALUES clause. 2475 ** 2476 ** Because the Select object originates from a VALUES clause: 2477 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2478 ** (2) All terms are UNION ALL 2479 ** (3) There is no ORDER BY clause 2480 ** 2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2485 */ 2486 static int multiSelectValues( 2487 Parse *pParse, /* Parsing context */ 2488 Select *p, /* The right-most of SELECTs to be coded */ 2489 SelectDest *pDest /* What to do with query results */ 2490 ){ 2491 int nRow = 1; 2492 int rc = 0; 2493 int bShowAll = p->pLimit==0; 2494 assert( p->selFlags & SF_MultiValue ); 2495 do{ 2496 assert( p->selFlags & SF_Values ); 2497 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2498 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2499 if( p->pWin ) return -1; 2500 if( p->pPrior==0 ) break; 2501 assert( p->pPrior->pNext==p ); 2502 p = p->pPrior; 2503 nRow += bShowAll; 2504 }while(1); 2505 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2506 nRow==1 ? "" : "S")); 2507 while( p ){ 2508 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2509 if( !bShowAll ) break; 2510 p->nSelectRow = nRow; 2511 p = p->pNext; 2512 } 2513 return rc; 2514 } 2515 2516 /* 2517 ** This routine is called to process a compound query form from 2518 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2519 ** INTERSECT 2520 ** 2521 ** "p" points to the right-most of the two queries. the query on the 2522 ** left is p->pPrior. The left query could also be a compound query 2523 ** in which case this routine will be called recursively. 2524 ** 2525 ** The results of the total query are to be written into a destination 2526 ** of type eDest with parameter iParm. 2527 ** 2528 ** Example 1: Consider a three-way compound SQL statement. 2529 ** 2530 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2531 ** 2532 ** This statement is parsed up as follows: 2533 ** 2534 ** SELECT c FROM t3 2535 ** | 2536 ** `-----> SELECT b FROM t2 2537 ** | 2538 ** `------> SELECT a FROM t1 2539 ** 2540 ** The arrows in the diagram above represent the Select.pPrior pointer. 2541 ** So if this routine is called with p equal to the t3 query, then 2542 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2543 ** 2544 ** Notice that because of the way SQLite parses compound SELECTs, the 2545 ** individual selects always group from left to right. 2546 */ 2547 static int multiSelect( 2548 Parse *pParse, /* Parsing context */ 2549 Select *p, /* The right-most of SELECTs to be coded */ 2550 SelectDest *pDest /* What to do with query results */ 2551 ){ 2552 int rc = SQLITE_OK; /* Success code from a subroutine */ 2553 Select *pPrior; /* Another SELECT immediately to our left */ 2554 Vdbe *v; /* Generate code to this VDBE */ 2555 SelectDest dest; /* Alternative data destination */ 2556 Select *pDelete = 0; /* Chain of simple selects to delete */ 2557 sqlite3 *db; /* Database connection */ 2558 2559 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2560 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2561 */ 2562 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2563 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2564 assert( p->selFlags & SF_Compound ); 2565 db = pParse->db; 2566 pPrior = p->pPrior; 2567 dest = *pDest; 2568 if( pPrior->pOrderBy || pPrior->pLimit ){ 2569 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2570 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2571 rc = 1; 2572 goto multi_select_end; 2573 } 2574 2575 v = sqlite3GetVdbe(pParse); 2576 assert( v!=0 ); /* The VDBE already created by calling function */ 2577 2578 /* Create the destination temporary table if necessary 2579 */ 2580 if( dest.eDest==SRT_EphemTab ){ 2581 assert( p->pEList ); 2582 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2583 dest.eDest = SRT_Table; 2584 } 2585 2586 /* Special handling for a compound-select that originates as a VALUES clause. 2587 */ 2588 if( p->selFlags & SF_MultiValue ){ 2589 rc = multiSelectValues(pParse, p, &dest); 2590 if( rc>=0 ) goto multi_select_end; 2591 rc = SQLITE_OK; 2592 } 2593 2594 /* Make sure all SELECTs in the statement have the same number of elements 2595 ** in their result sets. 2596 */ 2597 assert( p->pEList && pPrior->pEList ); 2598 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2599 2600 #ifndef SQLITE_OMIT_CTE 2601 if( p->selFlags & SF_Recursive ){ 2602 generateWithRecursiveQuery(pParse, p, &dest); 2603 }else 2604 #endif 2605 2606 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2607 */ 2608 if( p->pOrderBy ){ 2609 return multiSelectOrderBy(pParse, p, pDest); 2610 }else{ 2611 2612 #ifndef SQLITE_OMIT_EXPLAIN 2613 if( pPrior->pPrior==0 ){ 2614 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2615 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2616 } 2617 #endif 2618 2619 /* Generate code for the left and right SELECT statements. 2620 */ 2621 switch( p->op ){ 2622 case TK_ALL: { 2623 int addr = 0; 2624 int nLimit; 2625 assert( !pPrior->pLimit ); 2626 pPrior->iLimit = p->iLimit; 2627 pPrior->iOffset = p->iOffset; 2628 pPrior->pLimit = p->pLimit; 2629 rc = sqlite3Select(pParse, pPrior, &dest); 2630 p->pLimit = 0; 2631 if( rc ){ 2632 goto multi_select_end; 2633 } 2634 p->pPrior = 0; 2635 p->iLimit = pPrior->iLimit; 2636 p->iOffset = pPrior->iOffset; 2637 if( p->iLimit ){ 2638 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2639 VdbeComment((v, "Jump ahead if LIMIT reached")); 2640 if( p->iOffset ){ 2641 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2642 p->iLimit, p->iOffset+1, p->iOffset); 2643 } 2644 } 2645 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2646 rc = sqlite3Select(pParse, p, &dest); 2647 testcase( rc!=SQLITE_OK ); 2648 pDelete = p->pPrior; 2649 p->pPrior = pPrior; 2650 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2651 if( pPrior->pLimit 2652 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2653 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2654 ){ 2655 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2656 } 2657 if( addr ){ 2658 sqlite3VdbeJumpHere(v, addr); 2659 } 2660 break; 2661 } 2662 case TK_EXCEPT: 2663 case TK_UNION: { 2664 int unionTab; /* Cursor number of the temp table holding result */ 2665 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2666 int priorOp; /* The SRT_ operation to apply to prior selects */ 2667 Expr *pLimit; /* Saved values of p->nLimit */ 2668 int addr; 2669 SelectDest uniondest; 2670 2671 testcase( p->op==TK_EXCEPT ); 2672 testcase( p->op==TK_UNION ); 2673 priorOp = SRT_Union; 2674 if( dest.eDest==priorOp ){ 2675 /* We can reuse a temporary table generated by a SELECT to our 2676 ** right. 2677 */ 2678 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2679 unionTab = dest.iSDParm; 2680 }else{ 2681 /* We will need to create our own temporary table to hold the 2682 ** intermediate results. 2683 */ 2684 unionTab = pParse->nTab++; 2685 assert( p->pOrderBy==0 ); 2686 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2687 assert( p->addrOpenEphm[0] == -1 ); 2688 p->addrOpenEphm[0] = addr; 2689 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2690 assert( p->pEList ); 2691 } 2692 2693 /* Code the SELECT statements to our left 2694 */ 2695 assert( !pPrior->pOrderBy ); 2696 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2697 rc = sqlite3Select(pParse, pPrior, &uniondest); 2698 if( rc ){ 2699 goto multi_select_end; 2700 } 2701 2702 /* Code the current SELECT statement 2703 */ 2704 if( p->op==TK_EXCEPT ){ 2705 op = SRT_Except; 2706 }else{ 2707 assert( p->op==TK_UNION ); 2708 op = SRT_Union; 2709 } 2710 p->pPrior = 0; 2711 pLimit = p->pLimit; 2712 p->pLimit = 0; 2713 uniondest.eDest = op; 2714 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2715 selectOpName(p->op))); 2716 rc = sqlite3Select(pParse, p, &uniondest); 2717 testcase( rc!=SQLITE_OK ); 2718 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2719 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2720 sqlite3ExprListDelete(db, p->pOrderBy); 2721 pDelete = p->pPrior; 2722 p->pPrior = pPrior; 2723 p->pOrderBy = 0; 2724 if( p->op==TK_UNION ){ 2725 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2726 } 2727 sqlite3ExprDelete(db, p->pLimit); 2728 p->pLimit = pLimit; 2729 p->iLimit = 0; 2730 p->iOffset = 0; 2731 2732 /* Convert the data in the temporary table into whatever form 2733 ** it is that we currently need. 2734 */ 2735 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2736 assert( p->pEList || db->mallocFailed ); 2737 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2738 int iCont, iBreak, iStart; 2739 iBreak = sqlite3VdbeMakeLabel(pParse); 2740 iCont = sqlite3VdbeMakeLabel(pParse); 2741 computeLimitRegisters(pParse, p, iBreak); 2742 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2743 iStart = sqlite3VdbeCurrentAddr(v); 2744 selectInnerLoop(pParse, p, unionTab, 2745 0, 0, &dest, iCont, iBreak); 2746 sqlite3VdbeResolveLabel(v, iCont); 2747 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2748 sqlite3VdbeResolveLabel(v, iBreak); 2749 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2750 } 2751 break; 2752 } 2753 default: assert( p->op==TK_INTERSECT ); { 2754 int tab1, tab2; 2755 int iCont, iBreak, iStart; 2756 Expr *pLimit; 2757 int addr; 2758 SelectDest intersectdest; 2759 int r1; 2760 2761 /* INTERSECT is different from the others since it requires 2762 ** two temporary tables. Hence it has its own case. Begin 2763 ** by allocating the tables we will need. 2764 */ 2765 tab1 = pParse->nTab++; 2766 tab2 = pParse->nTab++; 2767 assert( p->pOrderBy==0 ); 2768 2769 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2770 assert( p->addrOpenEphm[0] == -1 ); 2771 p->addrOpenEphm[0] = addr; 2772 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2773 assert( p->pEList ); 2774 2775 /* Code the SELECTs to our left into temporary table "tab1". 2776 */ 2777 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2778 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2779 if( rc ){ 2780 goto multi_select_end; 2781 } 2782 2783 /* Code the current SELECT into temporary table "tab2" 2784 */ 2785 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2786 assert( p->addrOpenEphm[1] == -1 ); 2787 p->addrOpenEphm[1] = addr; 2788 p->pPrior = 0; 2789 pLimit = p->pLimit; 2790 p->pLimit = 0; 2791 intersectdest.iSDParm = tab2; 2792 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2793 selectOpName(p->op))); 2794 rc = sqlite3Select(pParse, p, &intersectdest); 2795 testcase( rc!=SQLITE_OK ); 2796 pDelete = p->pPrior; 2797 p->pPrior = pPrior; 2798 if( p->nSelectRow>pPrior->nSelectRow ){ 2799 p->nSelectRow = pPrior->nSelectRow; 2800 } 2801 sqlite3ExprDelete(db, p->pLimit); 2802 p->pLimit = pLimit; 2803 2804 /* Generate code to take the intersection of the two temporary 2805 ** tables. 2806 */ 2807 assert( p->pEList ); 2808 iBreak = sqlite3VdbeMakeLabel(pParse); 2809 iCont = sqlite3VdbeMakeLabel(pParse); 2810 computeLimitRegisters(pParse, p, iBreak); 2811 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2812 r1 = sqlite3GetTempReg(pParse); 2813 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2814 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2815 VdbeCoverage(v); 2816 sqlite3ReleaseTempReg(pParse, r1); 2817 selectInnerLoop(pParse, p, tab1, 2818 0, 0, &dest, iCont, iBreak); 2819 sqlite3VdbeResolveLabel(v, iCont); 2820 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2821 sqlite3VdbeResolveLabel(v, iBreak); 2822 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2823 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2824 break; 2825 } 2826 } 2827 2828 #ifndef SQLITE_OMIT_EXPLAIN 2829 if( p->pNext==0 ){ 2830 ExplainQueryPlanPop(pParse); 2831 } 2832 #endif 2833 } 2834 if( pParse->nErr ) goto multi_select_end; 2835 2836 /* Compute collating sequences used by 2837 ** temporary tables needed to implement the compound select. 2838 ** Attach the KeyInfo structure to all temporary tables. 2839 ** 2840 ** This section is run by the right-most SELECT statement only. 2841 ** SELECT statements to the left always skip this part. The right-most 2842 ** SELECT might also skip this part if it has no ORDER BY clause and 2843 ** no temp tables are required. 2844 */ 2845 if( p->selFlags & SF_UsesEphemeral ){ 2846 int i; /* Loop counter */ 2847 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2848 Select *pLoop; /* For looping through SELECT statements */ 2849 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2850 int nCol; /* Number of columns in result set */ 2851 2852 assert( p->pNext==0 ); 2853 nCol = p->pEList->nExpr; 2854 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2855 if( !pKeyInfo ){ 2856 rc = SQLITE_NOMEM_BKPT; 2857 goto multi_select_end; 2858 } 2859 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2860 *apColl = multiSelectCollSeq(pParse, p, i); 2861 if( 0==*apColl ){ 2862 *apColl = db->pDfltColl; 2863 } 2864 } 2865 2866 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2867 for(i=0; i<2; i++){ 2868 int addr = pLoop->addrOpenEphm[i]; 2869 if( addr<0 ){ 2870 /* If [0] is unused then [1] is also unused. So we can 2871 ** always safely abort as soon as the first unused slot is found */ 2872 assert( pLoop->addrOpenEphm[1]<0 ); 2873 break; 2874 } 2875 sqlite3VdbeChangeP2(v, addr, nCol); 2876 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2877 P4_KEYINFO); 2878 pLoop->addrOpenEphm[i] = -1; 2879 } 2880 } 2881 sqlite3KeyInfoUnref(pKeyInfo); 2882 } 2883 2884 multi_select_end: 2885 pDest->iSdst = dest.iSdst; 2886 pDest->nSdst = dest.nSdst; 2887 sqlite3SelectDelete(db, pDelete); 2888 return rc; 2889 } 2890 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2891 2892 /* 2893 ** Error message for when two or more terms of a compound select have different 2894 ** size result sets. 2895 */ 2896 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2897 if( p->selFlags & SF_Values ){ 2898 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2899 }else{ 2900 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2901 " do not have the same number of result columns", selectOpName(p->op)); 2902 } 2903 } 2904 2905 /* 2906 ** Code an output subroutine for a coroutine implementation of a 2907 ** SELECT statment. 2908 ** 2909 ** The data to be output is contained in pIn->iSdst. There are 2910 ** pIn->nSdst columns to be output. pDest is where the output should 2911 ** be sent. 2912 ** 2913 ** regReturn is the number of the register holding the subroutine 2914 ** return address. 2915 ** 2916 ** If regPrev>0 then it is the first register in a vector that 2917 ** records the previous output. mem[regPrev] is a flag that is false 2918 ** if there has been no previous output. If regPrev>0 then code is 2919 ** generated to suppress duplicates. pKeyInfo is used for comparing 2920 ** keys. 2921 ** 2922 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2923 ** iBreak. 2924 */ 2925 static int generateOutputSubroutine( 2926 Parse *pParse, /* Parsing context */ 2927 Select *p, /* The SELECT statement */ 2928 SelectDest *pIn, /* Coroutine supplying data */ 2929 SelectDest *pDest, /* Where to send the data */ 2930 int regReturn, /* The return address register */ 2931 int regPrev, /* Previous result register. No uniqueness if 0 */ 2932 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2933 int iBreak /* Jump here if we hit the LIMIT */ 2934 ){ 2935 Vdbe *v = pParse->pVdbe; 2936 int iContinue; 2937 int addr; 2938 2939 addr = sqlite3VdbeCurrentAddr(v); 2940 iContinue = sqlite3VdbeMakeLabel(pParse); 2941 2942 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2943 */ 2944 if( regPrev ){ 2945 int addr1, addr2; 2946 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2947 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2948 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2949 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2950 sqlite3VdbeJumpHere(v, addr1); 2951 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2952 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2953 } 2954 if( pParse->db->mallocFailed ) return 0; 2955 2956 /* Suppress the first OFFSET entries if there is an OFFSET clause 2957 */ 2958 codeOffset(v, p->iOffset, iContinue); 2959 2960 assert( pDest->eDest!=SRT_Exists ); 2961 assert( pDest->eDest!=SRT_Table ); 2962 switch( pDest->eDest ){ 2963 /* Store the result as data using a unique key. 2964 */ 2965 case SRT_EphemTab: { 2966 int r1 = sqlite3GetTempReg(pParse); 2967 int r2 = sqlite3GetTempReg(pParse); 2968 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2969 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2970 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2971 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2972 sqlite3ReleaseTempReg(pParse, r2); 2973 sqlite3ReleaseTempReg(pParse, r1); 2974 break; 2975 } 2976 2977 #ifndef SQLITE_OMIT_SUBQUERY 2978 /* If we are creating a set for an "expr IN (SELECT ...)". 2979 */ 2980 case SRT_Set: { 2981 int r1; 2982 testcase( pIn->nSdst>1 ); 2983 r1 = sqlite3GetTempReg(pParse); 2984 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2985 r1, pDest->zAffSdst, pIn->nSdst); 2986 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2987 pIn->iSdst, pIn->nSdst); 2988 sqlite3ReleaseTempReg(pParse, r1); 2989 break; 2990 } 2991 2992 /* If this is a scalar select that is part of an expression, then 2993 ** store the results in the appropriate memory cell and break out 2994 ** of the scan loop. Note that the select might return multiple columns 2995 ** if it is the RHS of a row-value IN operator. 2996 */ 2997 case SRT_Mem: { 2998 if( pParse->nErr==0 ){ 2999 testcase( pIn->nSdst>1 ); 3000 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3001 } 3002 /* The LIMIT clause will jump out of the loop for us */ 3003 break; 3004 } 3005 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3006 3007 /* The results are stored in a sequence of registers 3008 ** starting at pDest->iSdst. Then the co-routine yields. 3009 */ 3010 case SRT_Coroutine: { 3011 if( pDest->iSdst==0 ){ 3012 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3013 pDest->nSdst = pIn->nSdst; 3014 } 3015 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3016 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3017 break; 3018 } 3019 3020 /* If none of the above, then the result destination must be 3021 ** SRT_Output. This routine is never called with any other 3022 ** destination other than the ones handled above or SRT_Output. 3023 ** 3024 ** For SRT_Output, results are stored in a sequence of registers. 3025 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3026 ** return the next row of result. 3027 */ 3028 default: { 3029 assert( pDest->eDest==SRT_Output ); 3030 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3031 break; 3032 } 3033 } 3034 3035 /* Jump to the end of the loop if the LIMIT is reached. 3036 */ 3037 if( p->iLimit ){ 3038 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3039 } 3040 3041 /* Generate the subroutine return 3042 */ 3043 sqlite3VdbeResolveLabel(v, iContinue); 3044 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3045 3046 return addr; 3047 } 3048 3049 /* 3050 ** Alternative compound select code generator for cases when there 3051 ** is an ORDER BY clause. 3052 ** 3053 ** We assume a query of the following form: 3054 ** 3055 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3056 ** 3057 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3058 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3059 ** co-routines. Then run the co-routines in parallel and merge the results 3060 ** into the output. In addition to the two coroutines (called selectA and 3061 ** selectB) there are 7 subroutines: 3062 ** 3063 ** outA: Move the output of the selectA coroutine into the output 3064 ** of the compound query. 3065 ** 3066 ** outB: Move the output of the selectB coroutine into the output 3067 ** of the compound query. (Only generated for UNION and 3068 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3069 ** appears only in B.) 3070 ** 3071 ** AltB: Called when there is data from both coroutines and A<B. 3072 ** 3073 ** AeqB: Called when there is data from both coroutines and A==B. 3074 ** 3075 ** AgtB: Called when there is data from both coroutines and A>B. 3076 ** 3077 ** EofA: Called when data is exhausted from selectA. 3078 ** 3079 ** EofB: Called when data is exhausted from selectB. 3080 ** 3081 ** The implementation of the latter five subroutines depend on which 3082 ** <operator> is used: 3083 ** 3084 ** 3085 ** UNION ALL UNION EXCEPT INTERSECT 3086 ** ------------- ----------------- -------------- ----------------- 3087 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3088 ** 3089 ** AeqB: outA, nextA nextA nextA outA, nextA 3090 ** 3091 ** AgtB: outB, nextB outB, nextB nextB nextB 3092 ** 3093 ** EofA: outB, nextB outB, nextB halt halt 3094 ** 3095 ** EofB: outA, nextA outA, nextA outA, nextA halt 3096 ** 3097 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3098 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3099 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3100 ** following nextX causes a jump to the end of the select processing. 3101 ** 3102 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3103 ** within the output subroutine. The regPrev register set holds the previously 3104 ** output value. A comparison is made against this value and the output 3105 ** is skipped if the next results would be the same as the previous. 3106 ** 3107 ** The implementation plan is to implement the two coroutines and seven 3108 ** subroutines first, then put the control logic at the bottom. Like this: 3109 ** 3110 ** goto Init 3111 ** coA: coroutine for left query (A) 3112 ** coB: coroutine for right query (B) 3113 ** outA: output one row of A 3114 ** outB: output one row of B (UNION and UNION ALL only) 3115 ** EofA: ... 3116 ** EofB: ... 3117 ** AltB: ... 3118 ** AeqB: ... 3119 ** AgtB: ... 3120 ** Init: initialize coroutine registers 3121 ** yield coA 3122 ** if eof(A) goto EofA 3123 ** yield coB 3124 ** if eof(B) goto EofB 3125 ** Cmpr: Compare A, B 3126 ** Jump AltB, AeqB, AgtB 3127 ** End: ... 3128 ** 3129 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3130 ** actually called using Gosub and they do not Return. EofA and EofB loop 3131 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3132 ** and AgtB jump to either L2 or to one of EofA or EofB. 3133 */ 3134 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3135 static int multiSelectOrderBy( 3136 Parse *pParse, /* Parsing context */ 3137 Select *p, /* The right-most of SELECTs to be coded */ 3138 SelectDest *pDest /* What to do with query results */ 3139 ){ 3140 int i, j; /* Loop counters */ 3141 Select *pPrior; /* Another SELECT immediately to our left */ 3142 Vdbe *v; /* Generate code to this VDBE */ 3143 SelectDest destA; /* Destination for coroutine A */ 3144 SelectDest destB; /* Destination for coroutine B */ 3145 int regAddrA; /* Address register for select-A coroutine */ 3146 int regAddrB; /* Address register for select-B coroutine */ 3147 int addrSelectA; /* Address of the select-A coroutine */ 3148 int addrSelectB; /* Address of the select-B coroutine */ 3149 int regOutA; /* Address register for the output-A subroutine */ 3150 int regOutB; /* Address register for the output-B subroutine */ 3151 int addrOutA; /* Address of the output-A subroutine */ 3152 int addrOutB = 0; /* Address of the output-B subroutine */ 3153 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3154 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3155 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3156 int addrAltB; /* Address of the A<B subroutine */ 3157 int addrAeqB; /* Address of the A==B subroutine */ 3158 int addrAgtB; /* Address of the A>B subroutine */ 3159 int regLimitA; /* Limit register for select-A */ 3160 int regLimitB; /* Limit register for select-A */ 3161 int regPrev; /* A range of registers to hold previous output */ 3162 int savedLimit; /* Saved value of p->iLimit */ 3163 int savedOffset; /* Saved value of p->iOffset */ 3164 int labelCmpr; /* Label for the start of the merge algorithm */ 3165 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3166 int addr1; /* Jump instructions that get retargetted */ 3167 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3168 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3169 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3170 sqlite3 *db; /* Database connection */ 3171 ExprList *pOrderBy; /* The ORDER BY clause */ 3172 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3173 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3174 3175 assert( p->pOrderBy!=0 ); 3176 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3177 db = pParse->db; 3178 v = pParse->pVdbe; 3179 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3180 labelEnd = sqlite3VdbeMakeLabel(pParse); 3181 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3182 3183 3184 /* Patch up the ORDER BY clause 3185 */ 3186 op = p->op; 3187 pPrior = p->pPrior; 3188 assert( pPrior->pOrderBy==0 ); 3189 pOrderBy = p->pOrderBy; 3190 assert( pOrderBy ); 3191 nOrderBy = pOrderBy->nExpr; 3192 3193 /* For operators other than UNION ALL we have to make sure that 3194 ** the ORDER BY clause covers every term of the result set. Add 3195 ** terms to the ORDER BY clause as necessary. 3196 */ 3197 if( op!=TK_ALL ){ 3198 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3199 struct ExprList_item *pItem; 3200 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3201 assert( pItem->u.x.iOrderByCol>0 ); 3202 if( pItem->u.x.iOrderByCol==i ) break; 3203 } 3204 if( j==nOrderBy ){ 3205 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3206 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3207 pNew->flags |= EP_IntValue; 3208 pNew->u.iValue = i; 3209 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3210 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3211 } 3212 } 3213 } 3214 3215 /* Compute the comparison permutation and keyinfo that is used with 3216 ** the permutation used to determine if the next 3217 ** row of results comes from selectA or selectB. Also add explicit 3218 ** collations to the ORDER BY clause terms so that when the subqueries 3219 ** to the right and the left are evaluated, they use the correct 3220 ** collation. 3221 */ 3222 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3223 if( aPermute ){ 3224 struct ExprList_item *pItem; 3225 aPermute[0] = nOrderBy; 3226 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3227 assert( pItem->u.x.iOrderByCol>0 ); 3228 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3229 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3230 } 3231 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3232 }else{ 3233 pKeyMerge = 0; 3234 } 3235 3236 /* Reattach the ORDER BY clause to the query. 3237 */ 3238 p->pOrderBy = pOrderBy; 3239 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3240 3241 /* Allocate a range of temporary registers and the KeyInfo needed 3242 ** for the logic that removes duplicate result rows when the 3243 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3244 */ 3245 if( op==TK_ALL ){ 3246 regPrev = 0; 3247 }else{ 3248 int nExpr = p->pEList->nExpr; 3249 assert( nOrderBy>=nExpr || db->mallocFailed ); 3250 regPrev = pParse->nMem+1; 3251 pParse->nMem += nExpr+1; 3252 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3253 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3254 if( pKeyDup ){ 3255 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3256 for(i=0; i<nExpr; i++){ 3257 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3258 pKeyDup->aSortFlags[i] = 0; 3259 } 3260 } 3261 } 3262 3263 /* Separate the left and the right query from one another 3264 */ 3265 p->pPrior = 0; 3266 pPrior->pNext = 0; 3267 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3268 if( pPrior->pPrior==0 ){ 3269 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3270 } 3271 3272 /* Compute the limit registers */ 3273 computeLimitRegisters(pParse, p, labelEnd); 3274 if( p->iLimit && op==TK_ALL ){ 3275 regLimitA = ++pParse->nMem; 3276 regLimitB = ++pParse->nMem; 3277 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3278 regLimitA); 3279 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3280 }else{ 3281 regLimitA = regLimitB = 0; 3282 } 3283 sqlite3ExprDelete(db, p->pLimit); 3284 p->pLimit = 0; 3285 3286 regAddrA = ++pParse->nMem; 3287 regAddrB = ++pParse->nMem; 3288 regOutA = ++pParse->nMem; 3289 regOutB = ++pParse->nMem; 3290 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3291 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3292 3293 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3294 3295 /* Generate a coroutine to evaluate the SELECT statement to the 3296 ** left of the compound operator - the "A" select. 3297 */ 3298 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3299 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3300 VdbeComment((v, "left SELECT")); 3301 pPrior->iLimit = regLimitA; 3302 ExplainQueryPlan((pParse, 1, "LEFT")); 3303 sqlite3Select(pParse, pPrior, &destA); 3304 sqlite3VdbeEndCoroutine(v, regAddrA); 3305 sqlite3VdbeJumpHere(v, addr1); 3306 3307 /* Generate a coroutine to evaluate the SELECT statement on 3308 ** the right - the "B" select 3309 */ 3310 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3311 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3312 VdbeComment((v, "right SELECT")); 3313 savedLimit = p->iLimit; 3314 savedOffset = p->iOffset; 3315 p->iLimit = regLimitB; 3316 p->iOffset = 0; 3317 ExplainQueryPlan((pParse, 1, "RIGHT")); 3318 sqlite3Select(pParse, p, &destB); 3319 p->iLimit = savedLimit; 3320 p->iOffset = savedOffset; 3321 sqlite3VdbeEndCoroutine(v, regAddrB); 3322 3323 /* Generate a subroutine that outputs the current row of the A 3324 ** select as the next output row of the compound select. 3325 */ 3326 VdbeNoopComment((v, "Output routine for A")); 3327 addrOutA = generateOutputSubroutine(pParse, 3328 p, &destA, pDest, regOutA, 3329 regPrev, pKeyDup, labelEnd); 3330 3331 /* Generate a subroutine that outputs the current row of the B 3332 ** select as the next output row of the compound select. 3333 */ 3334 if( op==TK_ALL || op==TK_UNION ){ 3335 VdbeNoopComment((v, "Output routine for B")); 3336 addrOutB = generateOutputSubroutine(pParse, 3337 p, &destB, pDest, regOutB, 3338 regPrev, pKeyDup, labelEnd); 3339 } 3340 sqlite3KeyInfoUnref(pKeyDup); 3341 3342 /* Generate a subroutine to run when the results from select A 3343 ** are exhausted and only data in select B remains. 3344 */ 3345 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3346 addrEofA_noB = addrEofA = labelEnd; 3347 }else{ 3348 VdbeNoopComment((v, "eof-A subroutine")); 3349 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3350 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3351 VdbeCoverage(v); 3352 sqlite3VdbeGoto(v, addrEofA); 3353 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3354 } 3355 3356 /* Generate a subroutine to run when the results from select B 3357 ** are exhausted and only data in select A remains. 3358 */ 3359 if( op==TK_INTERSECT ){ 3360 addrEofB = addrEofA; 3361 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3362 }else{ 3363 VdbeNoopComment((v, "eof-B subroutine")); 3364 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3365 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3366 sqlite3VdbeGoto(v, addrEofB); 3367 } 3368 3369 /* Generate code to handle the case of A<B 3370 */ 3371 VdbeNoopComment((v, "A-lt-B subroutine")); 3372 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3373 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3374 sqlite3VdbeGoto(v, labelCmpr); 3375 3376 /* Generate code to handle the case of A==B 3377 */ 3378 if( op==TK_ALL ){ 3379 addrAeqB = addrAltB; 3380 }else if( op==TK_INTERSECT ){ 3381 addrAeqB = addrAltB; 3382 addrAltB++; 3383 }else{ 3384 VdbeNoopComment((v, "A-eq-B subroutine")); 3385 addrAeqB = 3386 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3387 sqlite3VdbeGoto(v, labelCmpr); 3388 } 3389 3390 /* Generate code to handle the case of A>B 3391 */ 3392 VdbeNoopComment((v, "A-gt-B subroutine")); 3393 addrAgtB = sqlite3VdbeCurrentAddr(v); 3394 if( op==TK_ALL || op==TK_UNION ){ 3395 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3396 } 3397 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3398 sqlite3VdbeGoto(v, labelCmpr); 3399 3400 /* This code runs once to initialize everything. 3401 */ 3402 sqlite3VdbeJumpHere(v, addr1); 3403 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3404 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3405 3406 /* Implement the main merge loop 3407 */ 3408 sqlite3VdbeResolveLabel(v, labelCmpr); 3409 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3410 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3411 (char*)pKeyMerge, P4_KEYINFO); 3412 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3413 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3414 3415 /* Jump to the this point in order to terminate the query. 3416 */ 3417 sqlite3VdbeResolveLabel(v, labelEnd); 3418 3419 /* Reassembly the compound query so that it will be freed correctly 3420 ** by the calling function */ 3421 if( p->pPrior ){ 3422 sqlite3SelectDelete(db, p->pPrior); 3423 } 3424 p->pPrior = pPrior; 3425 pPrior->pNext = p; 3426 3427 /*** TBD: Insert subroutine calls to close cursors on incomplete 3428 **** subqueries ****/ 3429 ExplainQueryPlanPop(pParse); 3430 return pParse->nErr!=0; 3431 } 3432 #endif 3433 3434 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3435 3436 /* An instance of the SubstContext object describes an substitution edit 3437 ** to be performed on a parse tree. 3438 ** 3439 ** All references to columns in table iTable are to be replaced by corresponding 3440 ** expressions in pEList. 3441 */ 3442 typedef struct SubstContext { 3443 Parse *pParse; /* The parsing context */ 3444 int iTable; /* Replace references to this table */ 3445 int iNewTable; /* New table number */ 3446 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3447 ExprList *pEList; /* Replacement expressions */ 3448 } SubstContext; 3449 3450 /* Forward Declarations */ 3451 static void substExprList(SubstContext*, ExprList*); 3452 static void substSelect(SubstContext*, Select*, int); 3453 3454 /* 3455 ** Scan through the expression pExpr. Replace every reference to 3456 ** a column in table number iTable with a copy of the iColumn-th 3457 ** entry in pEList. (But leave references to the ROWID column 3458 ** unchanged.) 3459 ** 3460 ** This routine is part of the flattening procedure. A subquery 3461 ** whose result set is defined by pEList appears as entry in the 3462 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3463 ** FORM clause entry is iTable. This routine makes the necessary 3464 ** changes to pExpr so that it refers directly to the source table 3465 ** of the subquery rather the result set of the subquery. 3466 */ 3467 static Expr *substExpr( 3468 SubstContext *pSubst, /* Description of the substitution */ 3469 Expr *pExpr /* Expr in which substitution occurs */ 3470 ){ 3471 if( pExpr==0 ) return 0; 3472 if( ExprHasProperty(pExpr, EP_FromJoin) 3473 && pExpr->iRightJoinTable==pSubst->iTable 3474 ){ 3475 pExpr->iRightJoinTable = pSubst->iNewTable; 3476 } 3477 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3478 if( pExpr->iColumn<0 ){ 3479 pExpr->op = TK_NULL; 3480 }else{ 3481 Expr *pNew; 3482 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3483 Expr ifNullRow; 3484 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3485 assert( pExpr->pRight==0 ); 3486 if( sqlite3ExprIsVector(pCopy) ){ 3487 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3488 }else{ 3489 sqlite3 *db = pSubst->pParse->db; 3490 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3491 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3492 ifNullRow.op = TK_IF_NULL_ROW; 3493 ifNullRow.pLeft = pCopy; 3494 ifNullRow.iTable = pSubst->iNewTable; 3495 pCopy = &ifNullRow; 3496 } 3497 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3498 pNew = sqlite3ExprDup(db, pCopy, 0); 3499 if( pNew && pSubst->isLeftJoin ){ 3500 ExprSetProperty(pNew, EP_CanBeNull); 3501 } 3502 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3503 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3504 ExprSetProperty(pNew, EP_FromJoin); 3505 } 3506 sqlite3ExprDelete(db, pExpr); 3507 pExpr = pNew; 3508 3509 /* Ensure that the expression now has an implicit collation sequence, 3510 ** just as it did when it was a column of a view or sub-query. */ 3511 if( pExpr ){ 3512 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3513 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3514 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3515 (pColl ? pColl->zName : "BINARY") 3516 ); 3517 } 3518 ExprClearProperty(pExpr, EP_Collate); 3519 } 3520 } 3521 } 3522 }else{ 3523 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3524 pExpr->iTable = pSubst->iNewTable; 3525 } 3526 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3527 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3528 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3529 substSelect(pSubst, pExpr->x.pSelect, 1); 3530 }else{ 3531 substExprList(pSubst, pExpr->x.pList); 3532 } 3533 #ifndef SQLITE_OMIT_WINDOWFUNC 3534 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3535 Window *pWin = pExpr->y.pWin; 3536 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3537 substExprList(pSubst, pWin->pPartition); 3538 substExprList(pSubst, pWin->pOrderBy); 3539 } 3540 #endif 3541 } 3542 return pExpr; 3543 } 3544 static void substExprList( 3545 SubstContext *pSubst, /* Description of the substitution */ 3546 ExprList *pList /* List to scan and in which to make substitutes */ 3547 ){ 3548 int i; 3549 if( pList==0 ) return; 3550 for(i=0; i<pList->nExpr; i++){ 3551 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3552 } 3553 } 3554 static void substSelect( 3555 SubstContext *pSubst, /* Description of the substitution */ 3556 Select *p, /* SELECT statement in which to make substitutions */ 3557 int doPrior /* Do substitutes on p->pPrior too */ 3558 ){ 3559 SrcList *pSrc; 3560 struct SrcList_item *pItem; 3561 int i; 3562 if( !p ) return; 3563 do{ 3564 substExprList(pSubst, p->pEList); 3565 substExprList(pSubst, p->pGroupBy); 3566 substExprList(pSubst, p->pOrderBy); 3567 p->pHaving = substExpr(pSubst, p->pHaving); 3568 p->pWhere = substExpr(pSubst, p->pWhere); 3569 pSrc = p->pSrc; 3570 assert( pSrc!=0 ); 3571 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3572 substSelect(pSubst, pItem->pSelect, 1); 3573 if( pItem->fg.isTabFunc ){ 3574 substExprList(pSubst, pItem->u1.pFuncArg); 3575 } 3576 } 3577 }while( doPrior && (p = p->pPrior)!=0 ); 3578 } 3579 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3580 3581 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3582 /* 3583 ** This routine attempts to flatten subqueries as a performance optimization. 3584 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3585 ** 3586 ** To understand the concept of flattening, consider the following 3587 ** query: 3588 ** 3589 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3590 ** 3591 ** The default way of implementing this query is to execute the 3592 ** subquery first and store the results in a temporary table, then 3593 ** run the outer query on that temporary table. This requires two 3594 ** passes over the data. Furthermore, because the temporary table 3595 ** has no indices, the WHERE clause on the outer query cannot be 3596 ** optimized. 3597 ** 3598 ** This routine attempts to rewrite queries such as the above into 3599 ** a single flat select, like this: 3600 ** 3601 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3602 ** 3603 ** The code generated for this simplification gives the same result 3604 ** but only has to scan the data once. And because indices might 3605 ** exist on the table t1, a complete scan of the data might be 3606 ** avoided. 3607 ** 3608 ** Flattening is subject to the following constraints: 3609 ** 3610 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3611 ** The subquery and the outer query cannot both be aggregates. 3612 ** 3613 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3614 ** (2) If the subquery is an aggregate then 3615 ** (2a) the outer query must not be a join and 3616 ** (2b) the outer query must not use subqueries 3617 ** other than the one FROM-clause subquery that is a candidate 3618 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3619 ** from 2015-02-09.) 3620 ** 3621 ** (3) If the subquery is the right operand of a LEFT JOIN then 3622 ** (3a) the subquery may not be a join and 3623 ** (3b) the FROM clause of the subquery may not contain a virtual 3624 ** table and 3625 ** (3c) the outer query may not be an aggregate. 3626 ** (3d) the outer query may not be DISTINCT. 3627 ** 3628 ** (4) The subquery can not be DISTINCT. 3629 ** 3630 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3631 ** sub-queries that were excluded from this optimization. Restriction 3632 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3633 ** 3634 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3635 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3636 ** 3637 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3638 ** A FROM clause, consider adding a FROM clause with the special 3639 ** table sqlite_once that consists of a single row containing a 3640 ** single NULL. 3641 ** 3642 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3643 ** 3644 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3645 ** 3646 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3647 ** accidently carried the comment forward until 2014-09-15. Original 3648 ** constraint: "If the subquery is aggregate then the outer query 3649 ** may not use LIMIT." 3650 ** 3651 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3652 ** 3653 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3654 ** a separate restriction deriving from ticket #350. 3655 ** 3656 ** (13) The subquery and outer query may not both use LIMIT. 3657 ** 3658 ** (14) The subquery may not use OFFSET. 3659 ** 3660 ** (15) If the outer query is part of a compound select, then the 3661 ** subquery may not use LIMIT. 3662 ** (See ticket #2339 and ticket [02a8e81d44]). 3663 ** 3664 ** (16) If the outer query is aggregate, then the subquery may not 3665 ** use ORDER BY. (Ticket #2942) This used to not matter 3666 ** until we introduced the group_concat() function. 3667 ** 3668 ** (17) If the subquery is a compound select, then 3669 ** (17a) all compound operators must be a UNION ALL, and 3670 ** (17b) no terms within the subquery compound may be aggregate 3671 ** or DISTINCT, and 3672 ** (17c) every term within the subquery compound must have a FROM clause 3673 ** (17d) the outer query may not be 3674 ** (17d1) aggregate, or 3675 ** (17d2) DISTINCT, or 3676 ** (17d3) a join. 3677 ** (17e) the subquery may not contain window functions 3678 ** 3679 ** The parent and sub-query may contain WHERE clauses. Subject to 3680 ** rules (11), (13) and (14), they may also contain ORDER BY, 3681 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3682 ** operator other than UNION ALL because all the other compound 3683 ** operators have an implied DISTINCT which is disallowed by 3684 ** restriction (4). 3685 ** 3686 ** Also, each component of the sub-query must return the same number 3687 ** of result columns. This is actually a requirement for any compound 3688 ** SELECT statement, but all the code here does is make sure that no 3689 ** such (illegal) sub-query is flattened. The caller will detect the 3690 ** syntax error and return a detailed message. 3691 ** 3692 ** (18) If the sub-query is a compound select, then all terms of the 3693 ** ORDER BY clause of the parent must be simple references to 3694 ** columns of the sub-query. 3695 ** 3696 ** (19) If the subquery uses LIMIT then the outer query may not 3697 ** have a WHERE clause. 3698 ** 3699 ** (20) If the sub-query is a compound select, then it must not use 3700 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3701 ** somewhat by saying that the terms of the ORDER BY clause must 3702 ** appear as unmodified result columns in the outer query. But we 3703 ** have other optimizations in mind to deal with that case. 3704 ** 3705 ** (21) If the subquery uses LIMIT then the outer query may not be 3706 ** DISTINCT. (See ticket [752e1646fc]). 3707 ** 3708 ** (22) The subquery may not be a recursive CTE. 3709 ** 3710 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3711 ** a recursive CTE, then the sub-query may not be a compound query. 3712 ** This restriction is because transforming the 3713 ** parent to a compound query confuses the code that handles 3714 ** recursive queries in multiSelect(). 3715 ** 3716 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3717 ** The subquery may not be an aggregate that uses the built-in min() or 3718 ** or max() functions. (Without this restriction, a query like: 3719 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3720 ** return the value X for which Y was maximal.) 3721 ** 3722 ** (25) If either the subquery or the parent query contains a window 3723 ** function in the select list or ORDER BY clause, flattening 3724 ** is not attempted. 3725 ** 3726 ** 3727 ** In this routine, the "p" parameter is a pointer to the outer query. 3728 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3729 ** uses aggregates. 3730 ** 3731 ** If flattening is not attempted, this routine is a no-op and returns 0. 3732 ** If flattening is attempted this routine returns 1. 3733 ** 3734 ** All of the expression analysis must occur on both the outer query and 3735 ** the subquery before this routine runs. 3736 */ 3737 static int flattenSubquery( 3738 Parse *pParse, /* Parsing context */ 3739 Select *p, /* The parent or outer SELECT statement */ 3740 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3741 int isAgg /* True if outer SELECT uses aggregate functions */ 3742 ){ 3743 const char *zSavedAuthContext = pParse->zAuthContext; 3744 Select *pParent; /* Current UNION ALL term of the other query */ 3745 Select *pSub; /* The inner query or "subquery" */ 3746 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3747 SrcList *pSrc; /* The FROM clause of the outer query */ 3748 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3749 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3750 int iNewParent = -1;/* Replacement table for iParent */ 3751 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3752 int i; /* Loop counter */ 3753 Expr *pWhere; /* The WHERE clause */ 3754 struct SrcList_item *pSubitem; /* The subquery */ 3755 sqlite3 *db = pParse->db; 3756 3757 /* Check to see if flattening is permitted. Return 0 if not. 3758 */ 3759 assert( p!=0 ); 3760 assert( p->pPrior==0 ); 3761 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3762 pSrc = p->pSrc; 3763 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3764 pSubitem = &pSrc->a[iFrom]; 3765 iParent = pSubitem->iCursor; 3766 pSub = pSubitem->pSelect; 3767 assert( pSub!=0 ); 3768 3769 #ifndef SQLITE_OMIT_WINDOWFUNC 3770 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3771 #endif 3772 3773 pSubSrc = pSub->pSrc; 3774 assert( pSubSrc ); 3775 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3776 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3777 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3778 ** became arbitrary expressions, we were forced to add restrictions (13) 3779 ** and (14). */ 3780 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3781 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3782 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3783 return 0; /* Restriction (15) */ 3784 } 3785 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3786 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3787 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3788 return 0; /* Restrictions (8)(9) */ 3789 } 3790 if( p->pOrderBy && pSub->pOrderBy ){ 3791 return 0; /* Restriction (11) */ 3792 } 3793 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3794 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3795 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3796 return 0; /* Restriction (21) */ 3797 } 3798 if( pSub->selFlags & (SF_Recursive) ){ 3799 return 0; /* Restrictions (22) */ 3800 } 3801 3802 /* 3803 ** If the subquery is the right operand of a LEFT JOIN, then the 3804 ** subquery may not be a join itself (3a). Example of why this is not 3805 ** allowed: 3806 ** 3807 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3808 ** 3809 ** If we flatten the above, we would get 3810 ** 3811 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3812 ** 3813 ** which is not at all the same thing. 3814 ** 3815 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3816 ** query cannot be an aggregate. (3c) This is an artifact of the way 3817 ** aggregates are processed - there is no mechanism to determine if 3818 ** the LEFT JOIN table should be all-NULL. 3819 ** 3820 ** See also tickets #306, #350, and #3300. 3821 */ 3822 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3823 isLeftJoin = 1; 3824 if( pSubSrc->nSrc>1 /* (3a) */ 3825 || isAgg /* (3b) */ 3826 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3827 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3828 ){ 3829 return 0; 3830 } 3831 } 3832 #ifdef SQLITE_EXTRA_IFNULLROW 3833 else if( iFrom>0 && !isAgg ){ 3834 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3835 ** every reference to any result column from subquery in a join, even 3836 ** though they are not necessary. This will stress-test the OP_IfNullRow 3837 ** opcode. */ 3838 isLeftJoin = -1; 3839 } 3840 #endif 3841 3842 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3843 ** use only the UNION ALL operator. And none of the simple select queries 3844 ** that make up the compound SELECT are allowed to be aggregate or distinct 3845 ** queries. 3846 */ 3847 if( pSub->pPrior ){ 3848 if( pSub->pOrderBy ){ 3849 return 0; /* Restriction (20) */ 3850 } 3851 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3852 return 0; /* (17d1), (17d2), or (17d3) */ 3853 } 3854 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3855 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3856 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3857 assert( pSub->pSrc!=0 ); 3858 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3859 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3860 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3861 || pSub1->pSrc->nSrc<1 /* (17c) */ 3862 || pSub1->pWin /* (17e) */ 3863 ){ 3864 return 0; 3865 } 3866 testcase( pSub1->pSrc->nSrc>1 ); 3867 } 3868 3869 /* Restriction (18). */ 3870 if( p->pOrderBy ){ 3871 int ii; 3872 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3873 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3874 } 3875 } 3876 } 3877 3878 /* Ex-restriction (23): 3879 ** The only way that the recursive part of a CTE can contain a compound 3880 ** subquery is for the subquery to be one term of a join. But if the 3881 ** subquery is a join, then the flattening has already been stopped by 3882 ** restriction (17d3) 3883 */ 3884 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3885 3886 /***** If we reach this point, flattening is permitted. *****/ 3887 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3888 pSub->selId, pSub, iFrom)); 3889 3890 /* Authorize the subquery */ 3891 pParse->zAuthContext = pSubitem->zName; 3892 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3893 testcase( i==SQLITE_DENY ); 3894 pParse->zAuthContext = zSavedAuthContext; 3895 3896 /* If the sub-query is a compound SELECT statement, then (by restrictions 3897 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3898 ** be of the form: 3899 ** 3900 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3901 ** 3902 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3903 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3904 ** OFFSET clauses and joins them to the left-hand-side of the original 3905 ** using UNION ALL operators. In this case N is the number of simple 3906 ** select statements in the compound sub-query. 3907 ** 3908 ** Example: 3909 ** 3910 ** SELECT a+1 FROM ( 3911 ** SELECT x FROM tab 3912 ** UNION ALL 3913 ** SELECT y FROM tab 3914 ** UNION ALL 3915 ** SELECT abs(z*2) FROM tab2 3916 ** ) WHERE a!=5 ORDER BY 1 3917 ** 3918 ** Transformed into: 3919 ** 3920 ** SELECT x+1 FROM tab WHERE x+1!=5 3921 ** UNION ALL 3922 ** SELECT y+1 FROM tab WHERE y+1!=5 3923 ** UNION ALL 3924 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3925 ** ORDER BY 1 3926 ** 3927 ** We call this the "compound-subquery flattening". 3928 */ 3929 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3930 Select *pNew; 3931 ExprList *pOrderBy = p->pOrderBy; 3932 Expr *pLimit = p->pLimit; 3933 Select *pPrior = p->pPrior; 3934 p->pOrderBy = 0; 3935 p->pSrc = 0; 3936 p->pPrior = 0; 3937 p->pLimit = 0; 3938 pNew = sqlite3SelectDup(db, p, 0); 3939 p->pLimit = pLimit; 3940 p->pOrderBy = pOrderBy; 3941 p->pSrc = pSrc; 3942 p->op = TK_ALL; 3943 if( pNew==0 ){ 3944 p->pPrior = pPrior; 3945 }else{ 3946 pNew->pPrior = pPrior; 3947 if( pPrior ) pPrior->pNext = pNew; 3948 pNew->pNext = p; 3949 p->pPrior = pNew; 3950 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3951 " creates %u as peer\n",pNew->selId)); 3952 } 3953 if( db->mallocFailed ) return 1; 3954 } 3955 3956 /* Begin flattening the iFrom-th entry of the FROM clause 3957 ** in the outer query. 3958 */ 3959 pSub = pSub1 = pSubitem->pSelect; 3960 3961 /* Delete the transient table structure associated with the 3962 ** subquery 3963 */ 3964 sqlite3DbFree(db, pSubitem->zDatabase); 3965 sqlite3DbFree(db, pSubitem->zName); 3966 sqlite3DbFree(db, pSubitem->zAlias); 3967 pSubitem->zDatabase = 0; 3968 pSubitem->zName = 0; 3969 pSubitem->zAlias = 0; 3970 pSubitem->pSelect = 0; 3971 3972 /* Defer deleting the Table object associated with the 3973 ** subquery until code generation is 3974 ** complete, since there may still exist Expr.pTab entries that 3975 ** refer to the subquery even after flattening. Ticket #3346. 3976 ** 3977 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3978 */ 3979 if( ALWAYS(pSubitem->pTab!=0) ){ 3980 Table *pTabToDel = pSubitem->pTab; 3981 if( pTabToDel->nTabRef==1 ){ 3982 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3983 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3984 pToplevel->pZombieTab = pTabToDel; 3985 }else{ 3986 pTabToDel->nTabRef--; 3987 } 3988 pSubitem->pTab = 0; 3989 } 3990 3991 /* The following loop runs once for each term in a compound-subquery 3992 ** flattening (as described above). If we are doing a different kind 3993 ** of flattening - a flattening other than a compound-subquery flattening - 3994 ** then this loop only runs once. 3995 ** 3996 ** This loop moves all of the FROM elements of the subquery into the 3997 ** the FROM clause of the outer query. Before doing this, remember 3998 ** the cursor number for the original outer query FROM element in 3999 ** iParent. The iParent cursor will never be used. Subsequent code 4000 ** will scan expressions looking for iParent references and replace 4001 ** those references with expressions that resolve to the subquery FROM 4002 ** elements we are now copying in. 4003 */ 4004 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4005 int nSubSrc; 4006 u8 jointype = 0; 4007 assert( pSub!=0 ); 4008 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4009 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4010 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4011 4012 if( pSrc ){ 4013 assert( pParent==p ); /* First time through the loop */ 4014 jointype = pSubitem->fg.jointype; 4015 }else{ 4016 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4017 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4018 if( pSrc==0 ) break; 4019 pParent->pSrc = pSrc; 4020 } 4021 4022 /* The subquery uses a single slot of the FROM clause of the outer 4023 ** query. If the subquery has more than one element in its FROM clause, 4024 ** then expand the outer query to make space for it to hold all elements 4025 ** of the subquery. 4026 ** 4027 ** Example: 4028 ** 4029 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4030 ** 4031 ** The outer query has 3 slots in its FROM clause. One slot of the 4032 ** outer query (the middle slot) is used by the subquery. The next 4033 ** block of code will expand the outer query FROM clause to 4 slots. 4034 ** The middle slot is expanded to two slots in order to make space 4035 ** for the two elements in the FROM clause of the subquery. 4036 */ 4037 if( nSubSrc>1 ){ 4038 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4039 if( pSrc==0 ) break; 4040 pParent->pSrc = pSrc; 4041 } 4042 4043 /* Transfer the FROM clause terms from the subquery into the 4044 ** outer query. 4045 */ 4046 for(i=0; i<nSubSrc; i++){ 4047 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4048 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4049 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4050 iNewParent = pSubSrc->a[i].iCursor; 4051 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4052 } 4053 pSrc->a[iFrom].fg.jointype = jointype; 4054 4055 /* Now begin substituting subquery result set expressions for 4056 ** references to the iParent in the outer query. 4057 ** 4058 ** Example: 4059 ** 4060 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4061 ** \ \_____________ subquery __________/ / 4062 ** \_____________________ outer query ______________________________/ 4063 ** 4064 ** We look at every expression in the outer query and every place we see 4065 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4066 */ 4067 if( pSub->pOrderBy ){ 4068 /* At this point, any non-zero iOrderByCol values indicate that the 4069 ** ORDER BY column expression is identical to the iOrderByCol'th 4070 ** expression returned by SELECT statement pSub. Since these values 4071 ** do not necessarily correspond to columns in SELECT statement pParent, 4072 ** zero them before transfering the ORDER BY clause. 4073 ** 4074 ** Not doing this may cause an error if a subsequent call to this 4075 ** function attempts to flatten a compound sub-query into pParent 4076 ** (the only way this can happen is if the compound sub-query is 4077 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4078 ExprList *pOrderBy = pSub->pOrderBy; 4079 for(i=0; i<pOrderBy->nExpr; i++){ 4080 pOrderBy->a[i].u.x.iOrderByCol = 0; 4081 } 4082 assert( pParent->pOrderBy==0 ); 4083 pParent->pOrderBy = pOrderBy; 4084 pSub->pOrderBy = 0; 4085 } 4086 pWhere = pSub->pWhere; 4087 pSub->pWhere = 0; 4088 if( isLeftJoin>0 ){ 4089 sqlite3SetJoinExpr(pWhere, iNewParent); 4090 } 4091 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4092 if( db->mallocFailed==0 ){ 4093 SubstContext x; 4094 x.pParse = pParse; 4095 x.iTable = iParent; 4096 x.iNewTable = iNewParent; 4097 x.isLeftJoin = isLeftJoin; 4098 x.pEList = pSub->pEList; 4099 substSelect(&x, pParent, 0); 4100 } 4101 4102 /* The flattened query is a compound if either the inner or the 4103 ** outer query is a compound. */ 4104 pParent->selFlags |= pSub->selFlags & SF_Compound; 4105 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4106 4107 /* 4108 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4109 ** 4110 ** One is tempted to try to add a and b to combine the limits. But this 4111 ** does not work if either limit is negative. 4112 */ 4113 if( pSub->pLimit ){ 4114 pParent->pLimit = pSub->pLimit; 4115 pSub->pLimit = 0; 4116 } 4117 } 4118 4119 /* Finially, delete what is left of the subquery and return 4120 ** success. 4121 */ 4122 sqlite3SelectDelete(db, pSub1); 4123 4124 #if SELECTTRACE_ENABLED 4125 if( sqlite3SelectTrace & 0x100 ){ 4126 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4127 sqlite3TreeViewSelect(0, p, 0); 4128 } 4129 #endif 4130 4131 return 1; 4132 } 4133 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4134 4135 /* 4136 ** A structure to keep track of all of the column values that are fixed to 4137 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4138 */ 4139 typedef struct WhereConst WhereConst; 4140 struct WhereConst { 4141 Parse *pParse; /* Parsing context */ 4142 int nConst; /* Number for COLUMN=CONSTANT terms */ 4143 int nChng; /* Number of times a constant is propagated */ 4144 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4145 }; 4146 4147 /* 4148 ** Add a new entry to the pConst object. Except, do not add duplicate 4149 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4150 ** 4151 ** The caller guarantees the pColumn is a column and pValue is a constant. 4152 ** This routine has to do some additional checks before completing the 4153 ** insert. 4154 */ 4155 static void constInsert( 4156 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4157 Expr *pColumn, /* The COLUMN part of the constraint */ 4158 Expr *pValue, /* The VALUE part of the constraint */ 4159 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4160 ){ 4161 int i; 4162 assert( pColumn->op==TK_COLUMN ); 4163 assert( sqlite3ExprIsConstant(pValue) ); 4164 4165 if( !ExprHasProperty(pValue, EP_FixedCol) && sqlite3ExprAffinity(pValue)!=0 ){ 4166 return; 4167 } 4168 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4169 return; 4170 } 4171 4172 /* 2018-10-25 ticket [cf5ed20f] 4173 ** Make sure the same pColumn is not inserted more than once */ 4174 for(i=0; i<pConst->nConst; i++){ 4175 const Expr *pExpr = pConst->apExpr[i*2]; 4176 assert( pExpr->op==TK_COLUMN ); 4177 if( pExpr->iTable==pColumn->iTable 4178 && pExpr->iColumn==pColumn->iColumn 4179 ){ 4180 return; /* Already present. Return without doing anything. */ 4181 } 4182 } 4183 4184 pConst->nConst++; 4185 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4186 pConst->nConst*2*sizeof(Expr*)); 4187 if( pConst->apExpr==0 ){ 4188 pConst->nConst = 0; 4189 }else{ 4190 if( ExprHasProperty(pValue, EP_FixedCol) ){ 4191 pValue = pValue->pLeft; 4192 } 4193 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4194 pConst->apExpr[pConst->nConst*2-1] = pValue; 4195 } 4196 } 4197 4198 /* 4199 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4200 ** is a constant expression and where the term must be true because it 4201 ** is part of the AND-connected terms of the expression. For each term 4202 ** found, add it to the pConst structure. 4203 */ 4204 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4205 Expr *pRight, *pLeft; 4206 if( pExpr==0 ) return; 4207 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4208 if( pExpr->op==TK_AND ){ 4209 findConstInWhere(pConst, pExpr->pRight); 4210 findConstInWhere(pConst, pExpr->pLeft); 4211 return; 4212 } 4213 if( pExpr->op!=TK_EQ ) return; 4214 pRight = pExpr->pRight; 4215 pLeft = pExpr->pLeft; 4216 assert( pRight!=0 ); 4217 assert( pLeft!=0 ); 4218 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4219 constInsert(pConst,pRight,pLeft,pExpr); 4220 } 4221 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4222 constInsert(pConst,pLeft,pRight,pExpr); 4223 } 4224 } 4225 4226 /* 4227 ** This is a Walker expression callback. pExpr is a candidate expression 4228 ** to be replaced by a value. If pExpr is equivalent to one of the 4229 ** columns named in pWalker->u.pConst, then overwrite it with its 4230 ** corresponding value. 4231 */ 4232 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4233 int i; 4234 WhereConst *pConst; 4235 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4236 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4237 pConst = pWalker->u.pConst; 4238 for(i=0; i<pConst->nConst; i++){ 4239 Expr *pColumn = pConst->apExpr[i*2]; 4240 if( pColumn==pExpr ) continue; 4241 if( pColumn->iTable!=pExpr->iTable ) continue; 4242 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4243 /* A match is found. Add the EP_FixedCol property */ 4244 pConst->nChng++; 4245 ExprClearProperty(pExpr, EP_Leaf); 4246 ExprSetProperty(pExpr, EP_FixedCol); 4247 assert( pExpr->pLeft==0 ); 4248 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4249 break; 4250 } 4251 return WRC_Prune; 4252 } 4253 4254 /* 4255 ** The WHERE-clause constant propagation optimization. 4256 ** 4257 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4258 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4259 ** part of a ON clause from a LEFT JOIN, then throughout the query 4260 ** replace all other occurrences of COLUMN with CONSTANT. 4261 ** 4262 ** For example, the query: 4263 ** 4264 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4265 ** 4266 ** Is transformed into 4267 ** 4268 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4269 ** 4270 ** Return true if any transformations where made and false if not. 4271 ** 4272 ** Implementation note: Constant propagation is tricky due to affinity 4273 ** and collating sequence interactions. Consider this example: 4274 ** 4275 ** CREATE TABLE t1(a INT,b TEXT); 4276 ** INSERT INTO t1 VALUES(123,'0123'); 4277 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4278 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4279 ** 4280 ** The two SELECT statements above should return different answers. b=a 4281 ** is alway true because the comparison uses numeric affinity, but b=123 4282 ** is false because it uses text affinity and '0123' is not the same as '123'. 4283 ** To work around this, the expression tree is not actually changed from 4284 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4285 ** and the "123" value is hung off of the pLeft pointer. Code generator 4286 ** routines know to generate the constant "123" instead of looking up the 4287 ** column value. Also, to avoid collation problems, this optimization is 4288 ** only attempted if the "a=123" term uses the default BINARY collation. 4289 */ 4290 static int propagateConstants( 4291 Parse *pParse, /* The parsing context */ 4292 Select *p /* The query in which to propagate constants */ 4293 ){ 4294 WhereConst x; 4295 Walker w; 4296 int nChng = 0; 4297 x.pParse = pParse; 4298 do{ 4299 x.nConst = 0; 4300 x.nChng = 0; 4301 x.apExpr = 0; 4302 findConstInWhere(&x, p->pWhere); 4303 if( x.nConst ){ 4304 memset(&w, 0, sizeof(w)); 4305 w.pParse = pParse; 4306 w.xExprCallback = propagateConstantExprRewrite; 4307 w.xSelectCallback = sqlite3SelectWalkNoop; 4308 w.xSelectCallback2 = 0; 4309 w.walkerDepth = 0; 4310 w.u.pConst = &x; 4311 sqlite3WalkExpr(&w, p->pWhere); 4312 sqlite3DbFree(x.pParse->db, x.apExpr); 4313 nChng += x.nChng; 4314 } 4315 }while( x.nChng ); 4316 return nChng; 4317 } 4318 4319 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4320 /* 4321 ** Make copies of relevant WHERE clause terms of the outer query into 4322 ** the WHERE clause of subquery. Example: 4323 ** 4324 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4325 ** 4326 ** Transformed into: 4327 ** 4328 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4329 ** WHERE x=5 AND y=10; 4330 ** 4331 ** The hope is that the terms added to the inner query will make it more 4332 ** efficient. 4333 ** 4334 ** Do not attempt this optimization if: 4335 ** 4336 ** (1) (** This restriction was removed on 2017-09-29. We used to 4337 ** disallow this optimization for aggregate subqueries, but now 4338 ** it is allowed by putting the extra terms on the HAVING clause. 4339 ** The added HAVING clause is pointless if the subquery lacks 4340 ** a GROUP BY clause. But such a HAVING clause is also harmless 4341 ** so there does not appear to be any reason to add extra logic 4342 ** to suppress it. **) 4343 ** 4344 ** (2) The inner query is the recursive part of a common table expression. 4345 ** 4346 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4347 ** clause would change the meaning of the LIMIT). 4348 ** 4349 ** (4) The inner query is the right operand of a LEFT JOIN and the 4350 ** expression to be pushed down does not come from the ON clause 4351 ** on that LEFT JOIN. 4352 ** 4353 ** (5) The WHERE clause expression originates in the ON or USING clause 4354 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4355 ** left join. An example: 4356 ** 4357 ** SELECT * 4358 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4359 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4360 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4361 ** 4362 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4363 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4364 ** then the (1,1,NULL) row would be suppressed. 4365 ** 4366 ** (6) The inner query features one or more window-functions (since 4367 ** changes to the WHERE clause of the inner query could change the 4368 ** window over which window functions are calculated). 4369 ** 4370 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4371 ** terms are duplicated into the subquery. 4372 */ 4373 static int pushDownWhereTerms( 4374 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4375 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4376 Expr *pWhere, /* The WHERE clause of the outer query */ 4377 int iCursor, /* Cursor number of the subquery */ 4378 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4379 ){ 4380 Expr *pNew; 4381 int nChng = 0; 4382 if( pWhere==0 ) return 0; 4383 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4384 4385 #ifndef SQLITE_OMIT_WINDOWFUNC 4386 if( pSubq->pWin ) return 0; /* restriction (6) */ 4387 #endif 4388 4389 #ifdef SQLITE_DEBUG 4390 /* Only the first term of a compound can have a WITH clause. But make 4391 ** sure no other terms are marked SF_Recursive in case something changes 4392 ** in the future. 4393 */ 4394 { 4395 Select *pX; 4396 for(pX=pSubq; pX; pX=pX->pPrior){ 4397 assert( (pX->selFlags & (SF_Recursive))==0 ); 4398 } 4399 } 4400 #endif 4401 4402 if( pSubq->pLimit!=0 ){ 4403 return 0; /* restriction (3) */ 4404 } 4405 while( pWhere->op==TK_AND ){ 4406 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4407 iCursor, isLeftJoin); 4408 pWhere = pWhere->pLeft; 4409 } 4410 if( isLeftJoin 4411 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4412 || pWhere->iRightJoinTable!=iCursor) 4413 ){ 4414 return 0; /* restriction (4) */ 4415 } 4416 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4417 return 0; /* restriction (5) */ 4418 } 4419 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4420 nChng++; 4421 while( pSubq ){ 4422 SubstContext x; 4423 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4424 unsetJoinExpr(pNew, -1); 4425 x.pParse = pParse; 4426 x.iTable = iCursor; 4427 x.iNewTable = iCursor; 4428 x.isLeftJoin = 0; 4429 x.pEList = pSubq->pEList; 4430 pNew = substExpr(&x, pNew); 4431 if( pSubq->selFlags & SF_Aggregate ){ 4432 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4433 }else{ 4434 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4435 } 4436 pSubq = pSubq->pPrior; 4437 } 4438 } 4439 return nChng; 4440 } 4441 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4442 4443 /* 4444 ** The pFunc is the only aggregate function in the query. Check to see 4445 ** if the query is a candidate for the min/max optimization. 4446 ** 4447 ** If the query is a candidate for the min/max optimization, then set 4448 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4449 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4450 ** whether pFunc is a min() or max() function. 4451 ** 4452 ** If the query is not a candidate for the min/max optimization, return 4453 ** WHERE_ORDERBY_NORMAL (which must be zero). 4454 ** 4455 ** This routine must be called after aggregate functions have been 4456 ** located but before their arguments have been subjected to aggregate 4457 ** analysis. 4458 */ 4459 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4460 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4461 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4462 const char *zFunc; /* Name of aggregate function pFunc */ 4463 ExprList *pOrderBy; 4464 u8 sortFlags; 4465 4466 assert( *ppMinMax==0 ); 4467 assert( pFunc->op==TK_AGG_FUNCTION ); 4468 assert( !IsWindowFunc(pFunc) ); 4469 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4470 return eRet; 4471 } 4472 zFunc = pFunc->u.zToken; 4473 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4474 eRet = WHERE_ORDERBY_MIN; 4475 sortFlags = KEYINFO_ORDER_BIGNULL; 4476 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4477 eRet = WHERE_ORDERBY_MAX; 4478 sortFlags = KEYINFO_ORDER_DESC; 4479 }else{ 4480 return eRet; 4481 } 4482 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4483 assert( pOrderBy!=0 || db->mallocFailed ); 4484 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4485 return eRet; 4486 } 4487 4488 /* 4489 ** The select statement passed as the first argument is an aggregate query. 4490 ** The second argument is the associated aggregate-info object. This 4491 ** function tests if the SELECT is of the form: 4492 ** 4493 ** SELECT count(*) FROM <tbl> 4494 ** 4495 ** where table is a database table, not a sub-select or view. If the query 4496 ** does match this pattern, then a pointer to the Table object representing 4497 ** <tbl> is returned. Otherwise, 0 is returned. 4498 */ 4499 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4500 Table *pTab; 4501 Expr *pExpr; 4502 4503 assert( !p->pGroupBy ); 4504 4505 if( p->pWhere || p->pEList->nExpr!=1 4506 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4507 ){ 4508 return 0; 4509 } 4510 pTab = p->pSrc->a[0].pTab; 4511 pExpr = p->pEList->a[0].pExpr; 4512 assert( pTab && !pTab->pSelect && pExpr ); 4513 4514 if( IsVirtual(pTab) ) return 0; 4515 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4516 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4517 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4518 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4519 4520 return pTab; 4521 } 4522 4523 /* 4524 ** If the source-list item passed as an argument was augmented with an 4525 ** INDEXED BY clause, then try to locate the specified index. If there 4526 ** was such a clause and the named index cannot be found, return 4527 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4528 ** pFrom->pIndex and return SQLITE_OK. 4529 */ 4530 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4531 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4532 Table *pTab = pFrom->pTab; 4533 char *zIndexedBy = pFrom->u1.zIndexedBy; 4534 Index *pIdx; 4535 for(pIdx=pTab->pIndex; 4536 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4537 pIdx=pIdx->pNext 4538 ); 4539 if( !pIdx ){ 4540 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4541 pParse->checkSchema = 1; 4542 return SQLITE_ERROR; 4543 } 4544 pFrom->pIBIndex = pIdx; 4545 } 4546 return SQLITE_OK; 4547 } 4548 /* 4549 ** Detect compound SELECT statements that use an ORDER BY clause with 4550 ** an alternative collating sequence. 4551 ** 4552 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4553 ** 4554 ** These are rewritten as a subquery: 4555 ** 4556 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4557 ** ORDER BY ... COLLATE ... 4558 ** 4559 ** This transformation is necessary because the multiSelectOrderBy() routine 4560 ** above that generates the code for a compound SELECT with an ORDER BY clause 4561 ** uses a merge algorithm that requires the same collating sequence on the 4562 ** result columns as on the ORDER BY clause. See ticket 4563 ** http://www.sqlite.org/src/info/6709574d2a 4564 ** 4565 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4566 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4567 ** there are COLLATE terms in the ORDER BY. 4568 */ 4569 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4570 int i; 4571 Select *pNew; 4572 Select *pX; 4573 sqlite3 *db; 4574 struct ExprList_item *a; 4575 SrcList *pNewSrc; 4576 Parse *pParse; 4577 Token dummy; 4578 4579 if( p->pPrior==0 ) return WRC_Continue; 4580 if( p->pOrderBy==0 ) return WRC_Continue; 4581 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4582 if( pX==0 ) return WRC_Continue; 4583 a = p->pOrderBy->a; 4584 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4585 if( a[i].pExpr->flags & EP_Collate ) break; 4586 } 4587 if( i<0 ) return WRC_Continue; 4588 4589 /* If we reach this point, that means the transformation is required. */ 4590 4591 pParse = pWalker->pParse; 4592 db = pParse->db; 4593 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4594 if( pNew==0 ) return WRC_Abort; 4595 memset(&dummy, 0, sizeof(dummy)); 4596 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4597 if( pNewSrc==0 ) return WRC_Abort; 4598 *pNew = *p; 4599 p->pSrc = pNewSrc; 4600 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4601 p->op = TK_SELECT; 4602 p->pWhere = 0; 4603 pNew->pGroupBy = 0; 4604 pNew->pHaving = 0; 4605 pNew->pOrderBy = 0; 4606 p->pPrior = 0; 4607 p->pNext = 0; 4608 p->pWith = 0; 4609 #ifndef SQLITE_OMIT_WINDOWFUNC 4610 p->pWinDefn = 0; 4611 #endif 4612 p->selFlags &= ~SF_Compound; 4613 assert( (p->selFlags & SF_Converted)==0 ); 4614 p->selFlags |= SF_Converted; 4615 assert( pNew->pPrior!=0 ); 4616 pNew->pPrior->pNext = pNew; 4617 pNew->pLimit = 0; 4618 return WRC_Continue; 4619 } 4620 4621 /* 4622 ** Check to see if the FROM clause term pFrom has table-valued function 4623 ** arguments. If it does, leave an error message in pParse and return 4624 ** non-zero, since pFrom is not allowed to be a table-valued function. 4625 */ 4626 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4627 if( pFrom->fg.isTabFunc ){ 4628 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4629 return 1; 4630 } 4631 return 0; 4632 } 4633 4634 #ifndef SQLITE_OMIT_CTE 4635 /* 4636 ** Argument pWith (which may be NULL) points to a linked list of nested 4637 ** WITH contexts, from inner to outermost. If the table identified by 4638 ** FROM clause element pItem is really a common-table-expression (CTE) 4639 ** then return a pointer to the CTE definition for that table. Otherwise 4640 ** return NULL. 4641 ** 4642 ** If a non-NULL value is returned, set *ppContext to point to the With 4643 ** object that the returned CTE belongs to. 4644 */ 4645 static struct Cte *searchWith( 4646 With *pWith, /* Current innermost WITH clause */ 4647 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4648 With **ppContext /* OUT: WITH clause return value belongs to */ 4649 ){ 4650 const char *zName; 4651 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4652 With *p; 4653 for(p=pWith; p; p=p->pOuter){ 4654 int i; 4655 for(i=0; i<p->nCte; i++){ 4656 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4657 *ppContext = p; 4658 return &p->a[i]; 4659 } 4660 } 4661 } 4662 } 4663 return 0; 4664 } 4665 4666 /* The code generator maintains a stack of active WITH clauses 4667 ** with the inner-most WITH clause being at the top of the stack. 4668 ** 4669 ** This routine pushes the WITH clause passed as the second argument 4670 ** onto the top of the stack. If argument bFree is true, then this 4671 ** WITH clause will never be popped from the stack. In this case it 4672 ** should be freed along with the Parse object. In other cases, when 4673 ** bFree==0, the With object will be freed along with the SELECT 4674 ** statement with which it is associated. 4675 */ 4676 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4677 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4678 if( pWith ){ 4679 assert( pParse->pWith!=pWith ); 4680 pWith->pOuter = pParse->pWith; 4681 pParse->pWith = pWith; 4682 if( bFree ) pParse->pWithToFree = pWith; 4683 } 4684 } 4685 4686 /* 4687 ** This function checks if argument pFrom refers to a CTE declared by 4688 ** a WITH clause on the stack currently maintained by the parser. And, 4689 ** if currently processing a CTE expression, if it is a recursive 4690 ** reference to the current CTE. 4691 ** 4692 ** If pFrom falls into either of the two categories above, pFrom->pTab 4693 ** and other fields are populated accordingly. The caller should check 4694 ** (pFrom->pTab!=0) to determine whether or not a successful match 4695 ** was found. 4696 ** 4697 ** Whether or not a match is found, SQLITE_OK is returned if no error 4698 ** occurs. If an error does occur, an error message is stored in the 4699 ** parser and some error code other than SQLITE_OK returned. 4700 */ 4701 static int withExpand( 4702 Walker *pWalker, 4703 struct SrcList_item *pFrom 4704 ){ 4705 Parse *pParse = pWalker->pParse; 4706 sqlite3 *db = pParse->db; 4707 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4708 With *pWith; /* WITH clause that pCte belongs to */ 4709 4710 assert( pFrom->pTab==0 ); 4711 if( pParse->nErr ){ 4712 return SQLITE_ERROR; 4713 } 4714 4715 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4716 if( pCte ){ 4717 Table *pTab; 4718 ExprList *pEList; 4719 Select *pSel; 4720 Select *pLeft; /* Left-most SELECT statement */ 4721 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4722 With *pSavedWith; /* Initial value of pParse->pWith */ 4723 4724 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4725 ** recursive reference to CTE pCte. Leave an error in pParse and return 4726 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4727 ** In this case, proceed. */ 4728 if( pCte->zCteErr ){ 4729 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4730 return SQLITE_ERROR; 4731 } 4732 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4733 4734 assert( pFrom->pTab==0 ); 4735 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4736 if( pTab==0 ) return WRC_Abort; 4737 pTab->nTabRef = 1; 4738 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4739 pTab->iPKey = -1; 4740 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4741 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4742 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4743 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4744 assert( pFrom->pSelect ); 4745 4746 /* Check if this is a recursive CTE. */ 4747 pSel = pFrom->pSelect; 4748 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4749 if( bMayRecursive ){ 4750 int i; 4751 SrcList *pSrc = pFrom->pSelect->pSrc; 4752 for(i=0; i<pSrc->nSrc; i++){ 4753 struct SrcList_item *pItem = &pSrc->a[i]; 4754 if( pItem->zDatabase==0 4755 && pItem->zName!=0 4756 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4757 ){ 4758 pItem->pTab = pTab; 4759 pItem->fg.isRecursive = 1; 4760 pTab->nTabRef++; 4761 pSel->selFlags |= SF_Recursive; 4762 } 4763 } 4764 } 4765 4766 /* Only one recursive reference is permitted. */ 4767 if( pTab->nTabRef>2 ){ 4768 sqlite3ErrorMsg( 4769 pParse, "multiple references to recursive table: %s", pCte->zName 4770 ); 4771 return SQLITE_ERROR; 4772 } 4773 assert( pTab->nTabRef==1 || 4774 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4775 4776 pCte->zCteErr = "circular reference: %s"; 4777 pSavedWith = pParse->pWith; 4778 pParse->pWith = pWith; 4779 if( bMayRecursive ){ 4780 Select *pPrior = pSel->pPrior; 4781 assert( pPrior->pWith==0 ); 4782 pPrior->pWith = pSel->pWith; 4783 sqlite3WalkSelect(pWalker, pPrior); 4784 pPrior->pWith = 0; 4785 }else{ 4786 sqlite3WalkSelect(pWalker, pSel); 4787 } 4788 pParse->pWith = pWith; 4789 4790 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4791 pEList = pLeft->pEList; 4792 if( pCte->pCols ){ 4793 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4794 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4795 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4796 ); 4797 pParse->pWith = pSavedWith; 4798 return SQLITE_ERROR; 4799 } 4800 pEList = pCte->pCols; 4801 } 4802 4803 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4804 if( bMayRecursive ){ 4805 if( pSel->selFlags & SF_Recursive ){ 4806 pCte->zCteErr = "multiple recursive references: %s"; 4807 }else{ 4808 pCte->zCteErr = "recursive reference in a subquery: %s"; 4809 } 4810 sqlite3WalkSelect(pWalker, pSel); 4811 } 4812 pCte->zCteErr = 0; 4813 pParse->pWith = pSavedWith; 4814 } 4815 4816 return SQLITE_OK; 4817 } 4818 #endif 4819 4820 #ifndef SQLITE_OMIT_CTE 4821 /* 4822 ** If the SELECT passed as the second argument has an associated WITH 4823 ** clause, pop it from the stack stored as part of the Parse object. 4824 ** 4825 ** This function is used as the xSelectCallback2() callback by 4826 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4827 ** names and other FROM clause elements. 4828 */ 4829 static void selectPopWith(Walker *pWalker, Select *p){ 4830 Parse *pParse = pWalker->pParse; 4831 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4832 With *pWith = findRightmost(p)->pWith; 4833 if( pWith!=0 ){ 4834 assert( pParse->pWith==pWith ); 4835 pParse->pWith = pWith->pOuter; 4836 } 4837 } 4838 } 4839 #else 4840 #define selectPopWith 0 4841 #endif 4842 4843 /* 4844 ** The SrcList_item structure passed as the second argument represents a 4845 ** sub-query in the FROM clause of a SELECT statement. This function 4846 ** allocates and populates the SrcList_item.pTab object. If successful, 4847 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4848 ** SQLITE_NOMEM. 4849 */ 4850 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4851 Select *pSel = pFrom->pSelect; 4852 Table *pTab; 4853 4854 assert( pSel ); 4855 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4856 if( pTab==0 ) return SQLITE_NOMEM; 4857 pTab->nTabRef = 1; 4858 if( pFrom->zAlias ){ 4859 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4860 }else{ 4861 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4862 } 4863 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4864 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4865 pTab->iPKey = -1; 4866 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4867 pTab->tabFlags |= TF_Ephemeral; 4868 4869 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4870 } 4871 4872 /* 4873 ** This routine is a Walker callback for "expanding" a SELECT statement. 4874 ** "Expanding" means to do the following: 4875 ** 4876 ** (1) Make sure VDBE cursor numbers have been assigned to every 4877 ** element of the FROM clause. 4878 ** 4879 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4880 ** defines FROM clause. When views appear in the FROM clause, 4881 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4882 ** that implements the view. A copy is made of the view's SELECT 4883 ** statement so that we can freely modify or delete that statement 4884 ** without worrying about messing up the persistent representation 4885 ** of the view. 4886 ** 4887 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4888 ** on joins and the ON and USING clause of joins. 4889 ** 4890 ** (4) Scan the list of columns in the result set (pEList) looking 4891 ** for instances of the "*" operator or the TABLE.* operator. 4892 ** If found, expand each "*" to be every column in every table 4893 ** and TABLE.* to be every column in TABLE. 4894 ** 4895 */ 4896 static int selectExpander(Walker *pWalker, Select *p){ 4897 Parse *pParse = pWalker->pParse; 4898 int i, j, k; 4899 SrcList *pTabList; 4900 ExprList *pEList; 4901 struct SrcList_item *pFrom; 4902 sqlite3 *db = pParse->db; 4903 Expr *pE, *pRight, *pExpr; 4904 u16 selFlags = p->selFlags; 4905 u32 elistFlags = 0; 4906 4907 p->selFlags |= SF_Expanded; 4908 if( db->mallocFailed ){ 4909 return WRC_Abort; 4910 } 4911 assert( p->pSrc!=0 ); 4912 if( (selFlags & SF_Expanded)!=0 ){ 4913 return WRC_Prune; 4914 } 4915 if( pWalker->eCode ){ 4916 /* Renumber selId because it has been copied from a view */ 4917 p->selId = ++pParse->nSelect; 4918 } 4919 pTabList = p->pSrc; 4920 pEList = p->pEList; 4921 sqlite3WithPush(pParse, p->pWith, 0); 4922 4923 /* Make sure cursor numbers have been assigned to all entries in 4924 ** the FROM clause of the SELECT statement. 4925 */ 4926 sqlite3SrcListAssignCursors(pParse, pTabList); 4927 4928 /* Look up every table named in the FROM clause of the select. If 4929 ** an entry of the FROM clause is a subquery instead of a table or view, 4930 ** then create a transient table structure to describe the subquery. 4931 */ 4932 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4933 Table *pTab; 4934 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4935 if( pFrom->fg.isRecursive ) continue; 4936 assert( pFrom->pTab==0 ); 4937 #ifndef SQLITE_OMIT_CTE 4938 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4939 if( pFrom->pTab ) {} else 4940 #endif 4941 if( pFrom->zName==0 ){ 4942 #ifndef SQLITE_OMIT_SUBQUERY 4943 Select *pSel = pFrom->pSelect; 4944 /* A sub-query in the FROM clause of a SELECT */ 4945 assert( pSel!=0 ); 4946 assert( pFrom->pTab==0 ); 4947 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4948 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4949 #endif 4950 }else{ 4951 /* An ordinary table or view name in the FROM clause */ 4952 assert( pFrom->pTab==0 ); 4953 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4954 if( pTab==0 ) return WRC_Abort; 4955 if( pTab->nTabRef>=0xffff ){ 4956 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4957 pTab->zName); 4958 pFrom->pTab = 0; 4959 return WRC_Abort; 4960 } 4961 pTab->nTabRef++; 4962 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4963 return WRC_Abort; 4964 } 4965 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4966 if( IsVirtual(pTab) || pTab->pSelect ){ 4967 i16 nCol; 4968 u8 eCodeOrig = pWalker->eCode; 4969 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4970 assert( pFrom->pSelect==0 ); 4971 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 4972 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 4973 pTab->zName); 4974 } 4975 if( IsVirtual(pTab) 4976 && pFrom->fg.fromDDL 4977 && ALWAYS(pTab->pVTable!=0) 4978 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 4979 ){ 4980 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 4981 pTab->zName); 4982 } 4983 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4984 nCol = pTab->nCol; 4985 pTab->nCol = -1; 4986 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4987 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4988 pWalker->eCode = eCodeOrig; 4989 pTab->nCol = nCol; 4990 } 4991 #endif 4992 } 4993 4994 /* Locate the index named by the INDEXED BY clause, if any. */ 4995 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4996 return WRC_Abort; 4997 } 4998 } 4999 5000 /* Process NATURAL keywords, and ON and USING clauses of joins. 5001 */ 5002 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5003 return WRC_Abort; 5004 } 5005 5006 /* For every "*" that occurs in the column list, insert the names of 5007 ** all columns in all tables. And for every TABLE.* insert the names 5008 ** of all columns in TABLE. The parser inserted a special expression 5009 ** with the TK_ASTERISK operator for each "*" that it found in the column 5010 ** list. The following code just has to locate the TK_ASTERISK 5011 ** expressions and expand each one to the list of all columns in 5012 ** all tables. 5013 ** 5014 ** The first loop just checks to see if there are any "*" operators 5015 ** that need expanding. 5016 */ 5017 for(k=0; k<pEList->nExpr; k++){ 5018 pE = pEList->a[k].pExpr; 5019 if( pE->op==TK_ASTERISK ) break; 5020 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5021 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5022 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5023 elistFlags |= pE->flags; 5024 } 5025 if( k<pEList->nExpr ){ 5026 /* 5027 ** If we get here it means the result set contains one or more "*" 5028 ** operators that need to be expanded. Loop through each expression 5029 ** in the result set and expand them one by one. 5030 */ 5031 struct ExprList_item *a = pEList->a; 5032 ExprList *pNew = 0; 5033 int flags = pParse->db->flags; 5034 int longNames = (flags & SQLITE_FullColNames)!=0 5035 && (flags & SQLITE_ShortColNames)==0; 5036 5037 for(k=0; k<pEList->nExpr; k++){ 5038 pE = a[k].pExpr; 5039 elistFlags |= pE->flags; 5040 pRight = pE->pRight; 5041 assert( pE->op!=TK_DOT || pRight!=0 ); 5042 if( pE->op!=TK_ASTERISK 5043 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5044 ){ 5045 /* This particular expression does not need to be expanded. 5046 */ 5047 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5048 if( pNew ){ 5049 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5050 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5051 a[k].zEName = 0; 5052 } 5053 a[k].pExpr = 0; 5054 }else{ 5055 /* This expression is a "*" or a "TABLE.*" and needs to be 5056 ** expanded. */ 5057 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5058 char *zTName = 0; /* text of name of TABLE */ 5059 if( pE->op==TK_DOT ){ 5060 assert( pE->pLeft!=0 ); 5061 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5062 zTName = pE->pLeft->u.zToken; 5063 } 5064 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5065 Table *pTab = pFrom->pTab; 5066 Select *pSub = pFrom->pSelect; 5067 char *zTabName = pFrom->zAlias; 5068 const char *zSchemaName = 0; 5069 int iDb; 5070 if( zTabName==0 ){ 5071 zTabName = pTab->zName; 5072 } 5073 if( db->mallocFailed ) break; 5074 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5075 pSub = 0; 5076 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5077 continue; 5078 } 5079 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5080 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5081 } 5082 for(j=0; j<pTab->nCol; j++){ 5083 char *zName = pTab->aCol[j].zName; 5084 char *zColname; /* The computed column name */ 5085 char *zToFree; /* Malloced string that needs to be freed */ 5086 Token sColname; /* Computed column name as a token */ 5087 5088 assert( zName ); 5089 if( zTName && pSub 5090 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5091 ){ 5092 continue; 5093 } 5094 5095 /* If a column is marked as 'hidden', omit it from the expanded 5096 ** result-set list unless the SELECT has the SF_IncludeHidden 5097 ** bit set. 5098 */ 5099 if( (p->selFlags & SF_IncludeHidden)==0 5100 && IsHiddenColumn(&pTab->aCol[j]) 5101 ){ 5102 continue; 5103 } 5104 tableSeen = 1; 5105 5106 if( i>0 && zTName==0 ){ 5107 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5108 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5109 ){ 5110 /* In a NATURAL join, omit the join columns from the 5111 ** table to the right of the join */ 5112 continue; 5113 } 5114 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5115 /* In a join with a USING clause, omit columns in the 5116 ** using clause from the table on the right. */ 5117 continue; 5118 } 5119 } 5120 pRight = sqlite3Expr(db, TK_ID, zName); 5121 zColname = zName; 5122 zToFree = 0; 5123 if( longNames || pTabList->nSrc>1 ){ 5124 Expr *pLeft; 5125 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5126 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5127 if( zSchemaName ){ 5128 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5129 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5130 } 5131 if( longNames ){ 5132 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5133 zToFree = zColname; 5134 } 5135 }else{ 5136 pExpr = pRight; 5137 } 5138 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5139 sqlite3TokenInit(&sColname, zColname); 5140 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5141 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5142 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5143 sqlite3DbFree(db, pX->zEName); 5144 if( pSub ){ 5145 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5146 testcase( pX->zEName==0 ); 5147 }else{ 5148 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5149 zSchemaName, zTabName, zColname); 5150 testcase( pX->zEName==0 ); 5151 } 5152 pX->eEName = ENAME_TAB; 5153 } 5154 sqlite3DbFree(db, zToFree); 5155 } 5156 } 5157 if( !tableSeen ){ 5158 if( zTName ){ 5159 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5160 }else{ 5161 sqlite3ErrorMsg(pParse, "no tables specified"); 5162 } 5163 } 5164 } 5165 } 5166 sqlite3ExprListDelete(db, pEList); 5167 p->pEList = pNew; 5168 } 5169 if( p->pEList ){ 5170 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5171 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5172 return WRC_Abort; 5173 } 5174 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5175 p->selFlags |= SF_ComplexResult; 5176 } 5177 } 5178 return WRC_Continue; 5179 } 5180 5181 /* 5182 ** No-op routine for the parse-tree walker. 5183 ** 5184 ** When this routine is the Walker.xExprCallback then expression trees 5185 ** are walked without any actions being taken at each node. Presumably, 5186 ** when this routine is used for Walker.xExprCallback then 5187 ** Walker.xSelectCallback is set to do something useful for every 5188 ** subquery in the parser tree. 5189 */ 5190 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5191 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5192 return WRC_Continue; 5193 } 5194 5195 /* 5196 ** No-op routine for the parse-tree walker for SELECT statements. 5197 ** subquery in the parser tree. 5198 */ 5199 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5200 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5201 return WRC_Continue; 5202 } 5203 5204 #if SQLITE_DEBUG 5205 /* 5206 ** Always assert. This xSelectCallback2 implementation proves that the 5207 ** xSelectCallback2 is never invoked. 5208 */ 5209 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5210 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5211 assert( 0 ); 5212 } 5213 #endif 5214 /* 5215 ** This routine "expands" a SELECT statement and all of its subqueries. 5216 ** For additional information on what it means to "expand" a SELECT 5217 ** statement, see the comment on the selectExpand worker callback above. 5218 ** 5219 ** Expanding a SELECT statement is the first step in processing a 5220 ** SELECT statement. The SELECT statement must be expanded before 5221 ** name resolution is performed. 5222 ** 5223 ** If anything goes wrong, an error message is written into pParse. 5224 ** The calling function can detect the problem by looking at pParse->nErr 5225 ** and/or pParse->db->mallocFailed. 5226 */ 5227 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5228 Walker w; 5229 w.xExprCallback = sqlite3ExprWalkNoop; 5230 w.pParse = pParse; 5231 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5232 w.xSelectCallback = convertCompoundSelectToSubquery; 5233 w.xSelectCallback2 = 0; 5234 sqlite3WalkSelect(&w, pSelect); 5235 } 5236 w.xSelectCallback = selectExpander; 5237 w.xSelectCallback2 = selectPopWith; 5238 w.eCode = 0; 5239 sqlite3WalkSelect(&w, pSelect); 5240 } 5241 5242 5243 #ifndef SQLITE_OMIT_SUBQUERY 5244 /* 5245 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5246 ** interface. 5247 ** 5248 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5249 ** information to the Table structure that represents the result set 5250 ** of that subquery. 5251 ** 5252 ** The Table structure that represents the result set was constructed 5253 ** by selectExpander() but the type and collation information was omitted 5254 ** at that point because identifiers had not yet been resolved. This 5255 ** routine is called after identifier resolution. 5256 */ 5257 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5258 Parse *pParse; 5259 int i; 5260 SrcList *pTabList; 5261 struct SrcList_item *pFrom; 5262 5263 assert( p->selFlags & SF_Resolved ); 5264 if( p->selFlags & SF_HasTypeInfo ) return; 5265 p->selFlags |= SF_HasTypeInfo; 5266 pParse = pWalker->pParse; 5267 pTabList = p->pSrc; 5268 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5269 Table *pTab = pFrom->pTab; 5270 assert( pTab!=0 ); 5271 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5272 /* A sub-query in the FROM clause of a SELECT */ 5273 Select *pSel = pFrom->pSelect; 5274 if( pSel ){ 5275 while( pSel->pPrior ) pSel = pSel->pPrior; 5276 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5277 SQLITE_AFF_NONE); 5278 } 5279 } 5280 } 5281 } 5282 #endif 5283 5284 5285 /* 5286 ** This routine adds datatype and collating sequence information to 5287 ** the Table structures of all FROM-clause subqueries in a 5288 ** SELECT statement. 5289 ** 5290 ** Use this routine after name resolution. 5291 */ 5292 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5293 #ifndef SQLITE_OMIT_SUBQUERY 5294 Walker w; 5295 w.xSelectCallback = sqlite3SelectWalkNoop; 5296 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5297 w.xExprCallback = sqlite3ExprWalkNoop; 5298 w.pParse = pParse; 5299 sqlite3WalkSelect(&w, pSelect); 5300 #endif 5301 } 5302 5303 5304 /* 5305 ** This routine sets up a SELECT statement for processing. The 5306 ** following is accomplished: 5307 ** 5308 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5309 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5310 ** * ON and USING clauses are shifted into WHERE statements 5311 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5312 ** * Identifiers in expression are matched to tables. 5313 ** 5314 ** This routine acts recursively on all subqueries within the SELECT. 5315 */ 5316 void sqlite3SelectPrep( 5317 Parse *pParse, /* The parser context */ 5318 Select *p, /* The SELECT statement being coded. */ 5319 NameContext *pOuterNC /* Name context for container */ 5320 ){ 5321 assert( p!=0 || pParse->db->mallocFailed ); 5322 if( pParse->db->mallocFailed ) return; 5323 if( p->selFlags & SF_HasTypeInfo ) return; 5324 sqlite3SelectExpand(pParse, p); 5325 if( pParse->nErr || pParse->db->mallocFailed ) return; 5326 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5327 if( pParse->nErr || pParse->db->mallocFailed ) return; 5328 sqlite3SelectAddTypeInfo(pParse, p); 5329 } 5330 5331 /* 5332 ** Reset the aggregate accumulator. 5333 ** 5334 ** The aggregate accumulator is a set of memory cells that hold 5335 ** intermediate results while calculating an aggregate. This 5336 ** routine generates code that stores NULLs in all of those memory 5337 ** cells. 5338 */ 5339 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5340 Vdbe *v = pParse->pVdbe; 5341 int i; 5342 struct AggInfo_func *pFunc; 5343 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5344 if( nReg==0 ) return; 5345 #ifdef SQLITE_DEBUG 5346 /* Verify that all AggInfo registers are within the range specified by 5347 ** AggInfo.mnReg..AggInfo.mxReg */ 5348 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5349 for(i=0; i<pAggInfo->nColumn; i++){ 5350 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5351 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5352 } 5353 for(i=0; i<pAggInfo->nFunc; i++){ 5354 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5355 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5356 } 5357 #endif 5358 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5359 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5360 if( pFunc->iDistinct>=0 ){ 5361 Expr *pE = pFunc->pExpr; 5362 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5363 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5364 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5365 "argument"); 5366 pFunc->iDistinct = -1; 5367 }else{ 5368 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5369 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5370 (char*)pKeyInfo, P4_KEYINFO); 5371 } 5372 } 5373 } 5374 } 5375 5376 /* 5377 ** Invoke the OP_AggFinalize opcode for every aggregate function 5378 ** in the AggInfo structure. 5379 */ 5380 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5381 Vdbe *v = pParse->pVdbe; 5382 int i; 5383 struct AggInfo_func *pF; 5384 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5385 ExprList *pList = pF->pExpr->x.pList; 5386 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5387 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5388 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5389 } 5390 } 5391 5392 5393 /* 5394 ** Update the accumulator memory cells for an aggregate based on 5395 ** the current cursor position. 5396 ** 5397 ** If regAcc is non-zero and there are no min() or max() aggregates 5398 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5399 ** registers if register regAcc contains 0. The caller will take care 5400 ** of setting and clearing regAcc. 5401 */ 5402 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5403 Vdbe *v = pParse->pVdbe; 5404 int i; 5405 int regHit = 0; 5406 int addrHitTest = 0; 5407 struct AggInfo_func *pF; 5408 struct AggInfo_col *pC; 5409 5410 pAggInfo->directMode = 1; 5411 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5412 int nArg; 5413 int addrNext = 0; 5414 int regAgg; 5415 ExprList *pList = pF->pExpr->x.pList; 5416 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5417 assert( !IsWindowFunc(pF->pExpr) ); 5418 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5419 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5420 if( pAggInfo->nAccumulator 5421 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5422 ){ 5423 if( regHit==0 ) regHit = ++pParse->nMem; 5424 /* If this is the first row of the group (regAcc==0), clear the 5425 ** "magnet" register regHit so that the accumulator registers 5426 ** are populated if the FILTER clause jumps over the the 5427 ** invocation of min() or max() altogether. Or, if this is not 5428 ** the first row (regAcc==1), set the magnet register so that the 5429 ** accumulators are not populated unless the min()/max() is invoked and 5430 ** indicates that they should be. */ 5431 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5432 } 5433 addrNext = sqlite3VdbeMakeLabel(pParse); 5434 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5435 } 5436 if( pList ){ 5437 nArg = pList->nExpr; 5438 regAgg = sqlite3GetTempRange(pParse, nArg); 5439 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5440 }else{ 5441 nArg = 0; 5442 regAgg = 0; 5443 } 5444 if( pF->iDistinct>=0 ){ 5445 if( addrNext==0 ){ 5446 addrNext = sqlite3VdbeMakeLabel(pParse); 5447 } 5448 testcase( nArg==0 ); /* Error condition */ 5449 testcase( nArg>1 ); /* Also an error */ 5450 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5451 } 5452 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5453 CollSeq *pColl = 0; 5454 struct ExprList_item *pItem; 5455 int j; 5456 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5457 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5458 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5459 } 5460 if( !pColl ){ 5461 pColl = pParse->db->pDfltColl; 5462 } 5463 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5464 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5465 } 5466 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5467 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5468 sqlite3VdbeChangeP5(v, (u8)nArg); 5469 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5470 if( addrNext ){ 5471 sqlite3VdbeResolveLabel(v, addrNext); 5472 } 5473 } 5474 if( regHit==0 && pAggInfo->nAccumulator ){ 5475 regHit = regAcc; 5476 } 5477 if( regHit ){ 5478 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5479 } 5480 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5481 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5482 } 5483 5484 pAggInfo->directMode = 0; 5485 if( addrHitTest ){ 5486 sqlite3VdbeJumpHere(v, addrHitTest); 5487 } 5488 } 5489 5490 /* 5491 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5492 ** count(*) query ("SELECT count(*) FROM pTab"). 5493 */ 5494 #ifndef SQLITE_OMIT_EXPLAIN 5495 static void explainSimpleCount( 5496 Parse *pParse, /* Parse context */ 5497 Table *pTab, /* Table being queried */ 5498 Index *pIdx /* Index used to optimize scan, or NULL */ 5499 ){ 5500 if( pParse->explain==2 ){ 5501 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5502 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5503 pTab->zName, 5504 bCover ? " USING COVERING INDEX " : "", 5505 bCover ? pIdx->zName : "" 5506 ); 5507 } 5508 } 5509 #else 5510 # define explainSimpleCount(a,b,c) 5511 #endif 5512 5513 /* 5514 ** sqlite3WalkExpr() callback used by havingToWhere(). 5515 ** 5516 ** If the node passed to the callback is a TK_AND node, return 5517 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5518 ** 5519 ** Otherwise, return WRC_Prune. In this case, also check if the 5520 ** sub-expression matches the criteria for being moved to the WHERE 5521 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5522 ** within the HAVING expression with a constant "1". 5523 */ 5524 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5525 if( pExpr->op!=TK_AND ){ 5526 Select *pS = pWalker->u.pSelect; 5527 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5528 sqlite3 *db = pWalker->pParse->db; 5529 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5530 if( pNew ){ 5531 Expr *pWhere = pS->pWhere; 5532 SWAP(Expr, *pNew, *pExpr); 5533 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5534 pS->pWhere = pNew; 5535 pWalker->eCode = 1; 5536 } 5537 } 5538 return WRC_Prune; 5539 } 5540 return WRC_Continue; 5541 } 5542 5543 /* 5544 ** Transfer eligible terms from the HAVING clause of a query, which is 5545 ** processed after grouping, to the WHERE clause, which is processed before 5546 ** grouping. For example, the query: 5547 ** 5548 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5549 ** 5550 ** can be rewritten as: 5551 ** 5552 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5553 ** 5554 ** A term of the HAVING expression is eligible for transfer if it consists 5555 ** entirely of constants and expressions that are also GROUP BY terms that 5556 ** use the "BINARY" collation sequence. 5557 */ 5558 static void havingToWhere(Parse *pParse, Select *p){ 5559 Walker sWalker; 5560 memset(&sWalker, 0, sizeof(sWalker)); 5561 sWalker.pParse = pParse; 5562 sWalker.xExprCallback = havingToWhereExprCb; 5563 sWalker.u.pSelect = p; 5564 sqlite3WalkExpr(&sWalker, p->pHaving); 5565 #if SELECTTRACE_ENABLED 5566 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5567 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5568 sqlite3TreeViewSelect(0, p, 0); 5569 } 5570 #endif 5571 } 5572 5573 /* 5574 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5575 ** If it is, then return the SrcList_item for the prior view. If it is not, 5576 ** then return 0. 5577 */ 5578 static struct SrcList_item *isSelfJoinView( 5579 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5580 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5581 ){ 5582 struct SrcList_item *pItem; 5583 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5584 Select *pS1; 5585 if( pItem->pSelect==0 ) continue; 5586 if( pItem->fg.viaCoroutine ) continue; 5587 if( pItem->zName==0 ) continue; 5588 assert( pItem->pTab!=0 ); 5589 assert( pThis->pTab!=0 ); 5590 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5591 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5592 pS1 = pItem->pSelect; 5593 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5594 /* The query flattener left two different CTE tables with identical 5595 ** names in the same FROM clause. */ 5596 continue; 5597 } 5598 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5599 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5600 ){ 5601 /* The view was modified by some other optimization such as 5602 ** pushDownWhereTerms() */ 5603 continue; 5604 } 5605 return pItem; 5606 } 5607 return 0; 5608 } 5609 5610 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5611 /* 5612 ** Attempt to transform a query of the form 5613 ** 5614 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5615 ** 5616 ** Into this: 5617 ** 5618 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5619 ** 5620 ** The transformation only works if all of the following are true: 5621 ** 5622 ** * The subquery is a UNION ALL of two or more terms 5623 ** * The subquery does not have a LIMIT clause 5624 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5625 ** * The outer query is a simple count(*) with no WHERE clause or other 5626 ** extraneous syntax. 5627 ** 5628 ** Return TRUE if the optimization is undertaken. 5629 */ 5630 static int countOfViewOptimization(Parse *pParse, Select *p){ 5631 Select *pSub, *pPrior; 5632 Expr *pExpr; 5633 Expr *pCount; 5634 sqlite3 *db; 5635 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5636 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5637 if( p->pWhere ) return 0; 5638 if( p->pGroupBy ) return 0; 5639 pExpr = p->pEList->a[0].pExpr; 5640 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5641 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5642 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5643 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5644 pSub = p->pSrc->a[0].pSelect; 5645 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5646 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5647 do{ 5648 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5649 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5650 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5651 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5652 pSub = pSub->pPrior; /* Repeat over compound */ 5653 }while( pSub ); 5654 5655 /* If we reach this point then it is OK to perform the transformation */ 5656 5657 db = pParse->db; 5658 pCount = pExpr; 5659 pExpr = 0; 5660 pSub = p->pSrc->a[0].pSelect; 5661 p->pSrc->a[0].pSelect = 0; 5662 sqlite3SrcListDelete(db, p->pSrc); 5663 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5664 while( pSub ){ 5665 Expr *pTerm; 5666 pPrior = pSub->pPrior; 5667 pSub->pPrior = 0; 5668 pSub->pNext = 0; 5669 pSub->selFlags |= SF_Aggregate; 5670 pSub->selFlags &= ~SF_Compound; 5671 pSub->nSelectRow = 0; 5672 sqlite3ExprListDelete(db, pSub->pEList); 5673 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5674 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5675 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5676 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5677 if( pExpr==0 ){ 5678 pExpr = pTerm; 5679 }else{ 5680 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5681 } 5682 pSub = pPrior; 5683 } 5684 p->pEList->a[0].pExpr = pExpr; 5685 p->selFlags &= ~SF_Aggregate; 5686 5687 #if SELECTTRACE_ENABLED 5688 if( sqlite3SelectTrace & 0x400 ){ 5689 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5690 sqlite3TreeViewSelect(0, p, 0); 5691 } 5692 #endif 5693 return 1; 5694 } 5695 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5696 5697 /* 5698 ** Generate code for the SELECT statement given in the p argument. 5699 ** 5700 ** The results are returned according to the SelectDest structure. 5701 ** See comments in sqliteInt.h for further information. 5702 ** 5703 ** This routine returns the number of errors. If any errors are 5704 ** encountered, then an appropriate error message is left in 5705 ** pParse->zErrMsg. 5706 ** 5707 ** This routine does NOT free the Select structure passed in. The 5708 ** calling function needs to do that. 5709 */ 5710 int sqlite3Select( 5711 Parse *pParse, /* The parser context */ 5712 Select *p, /* The SELECT statement being coded. */ 5713 SelectDest *pDest /* What to do with the query results */ 5714 ){ 5715 int i, j; /* Loop counters */ 5716 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5717 Vdbe *v; /* The virtual machine under construction */ 5718 int isAgg; /* True for select lists like "count(*)" */ 5719 ExprList *pEList = 0; /* List of columns to extract. */ 5720 SrcList *pTabList; /* List of tables to select from */ 5721 Expr *pWhere; /* The WHERE clause. May be NULL */ 5722 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5723 Expr *pHaving; /* The HAVING clause. May be NULL */ 5724 int rc = 1; /* Value to return from this function */ 5725 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5726 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5727 AggInfo sAggInfo; /* Information used by aggregate queries */ 5728 int iEnd; /* Address of the end of the query */ 5729 sqlite3 *db; /* The database connection */ 5730 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5731 u8 minMaxFlag; /* Flag for min/max queries */ 5732 5733 db = pParse->db; 5734 v = sqlite3GetVdbe(pParse); 5735 if( p==0 || db->mallocFailed || pParse->nErr ){ 5736 return 1; 5737 } 5738 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5739 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5740 #if SELECTTRACE_ENABLED 5741 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5742 if( sqlite3SelectTrace & 0x100 ){ 5743 sqlite3TreeViewSelect(0, p, 0); 5744 } 5745 #endif 5746 5747 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5748 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5749 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5750 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5751 if( IgnorableOrderby(pDest) ){ 5752 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5753 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5754 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5755 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5756 /* If ORDER BY makes no difference in the output then neither does 5757 ** DISTINCT so it can be removed too. */ 5758 sqlite3ExprListDelete(db, p->pOrderBy); 5759 p->pOrderBy = 0; 5760 p->selFlags &= ~SF_Distinct; 5761 } 5762 sqlite3SelectPrep(pParse, p, 0); 5763 if( pParse->nErr || db->mallocFailed ){ 5764 goto select_end; 5765 } 5766 assert( p->pEList!=0 ); 5767 #if SELECTTRACE_ENABLED 5768 if( sqlite3SelectTrace & 0x104 ){ 5769 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5770 sqlite3TreeViewSelect(0, p, 0); 5771 } 5772 #endif 5773 5774 if( pDest->eDest==SRT_Output ){ 5775 generateColumnNames(pParse, p); 5776 } 5777 5778 #ifndef SQLITE_OMIT_WINDOWFUNC 5779 rc = sqlite3WindowRewrite(pParse, p); 5780 if( rc ){ 5781 assert( db->mallocFailed || pParse->nErr>0 ); 5782 goto select_end; 5783 } 5784 #if SELECTTRACE_ENABLED 5785 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5786 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5787 sqlite3TreeViewSelect(0, p, 0); 5788 } 5789 #endif 5790 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5791 pTabList = p->pSrc; 5792 isAgg = (p->selFlags & SF_Aggregate)!=0; 5793 memset(&sSort, 0, sizeof(sSort)); 5794 sSort.pOrderBy = p->pOrderBy; 5795 5796 /* Try to various optimizations (flattening subqueries, and strength 5797 ** reduction of join operators) in the FROM clause up into the main query 5798 */ 5799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5800 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5801 struct SrcList_item *pItem = &pTabList->a[i]; 5802 Select *pSub = pItem->pSelect; 5803 Table *pTab = pItem->pTab; 5804 5805 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5806 ** of the LEFT JOIN used in the WHERE clause. 5807 */ 5808 if( (pItem->fg.jointype & JT_LEFT)!=0 5809 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5810 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5811 ){ 5812 SELECTTRACE(0x100,pParse,p, 5813 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5814 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5815 unsetJoinExpr(p->pWhere, pItem->iCursor); 5816 } 5817 5818 /* No futher action if this term of the FROM clause is no a subquery */ 5819 if( pSub==0 ) continue; 5820 5821 /* Catch mismatch in the declared columns of a view and the number of 5822 ** columns in the SELECT on the RHS */ 5823 if( pTab->nCol!=pSub->pEList->nExpr ){ 5824 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5825 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5826 goto select_end; 5827 } 5828 5829 /* Do not try to flatten an aggregate subquery. 5830 ** 5831 ** Flattening an aggregate subquery is only possible if the outer query 5832 ** is not a join. But if the outer query is not a join, then the subquery 5833 ** will be implemented as a co-routine and there is no advantage to 5834 ** flattening in that case. 5835 */ 5836 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5837 assert( pSub->pGroupBy==0 ); 5838 5839 /* If the outer query contains a "complex" result set (that is, 5840 ** if the result set of the outer query uses functions or subqueries) 5841 ** and if the subquery contains an ORDER BY clause and if 5842 ** it will be implemented as a co-routine, then do not flatten. This 5843 ** restriction allows SQL constructs like this: 5844 ** 5845 ** SELECT expensive_function(x) 5846 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5847 ** 5848 ** The expensive_function() is only computed on the 10 rows that 5849 ** are output, rather than every row of the table. 5850 ** 5851 ** The requirement that the outer query have a complex result set 5852 ** means that flattening does occur on simpler SQL constraints without 5853 ** the expensive_function() like: 5854 ** 5855 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5856 */ 5857 if( pSub->pOrderBy!=0 5858 && i==0 5859 && (p->selFlags & SF_ComplexResult)!=0 5860 && (pTabList->nSrc==1 5861 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5862 ){ 5863 continue; 5864 } 5865 5866 if( flattenSubquery(pParse, p, i, isAgg) ){ 5867 if( pParse->nErr ) goto select_end; 5868 /* This subquery can be absorbed into its parent. */ 5869 i = -1; 5870 } 5871 pTabList = p->pSrc; 5872 if( db->mallocFailed ) goto select_end; 5873 if( !IgnorableOrderby(pDest) ){ 5874 sSort.pOrderBy = p->pOrderBy; 5875 } 5876 } 5877 #endif 5878 5879 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5880 /* Handle compound SELECT statements using the separate multiSelect() 5881 ** procedure. 5882 */ 5883 if( p->pPrior ){ 5884 rc = multiSelect(pParse, p, pDest); 5885 #if SELECTTRACE_ENABLED 5886 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5887 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5888 sqlite3TreeViewSelect(0, p, 0); 5889 } 5890 #endif 5891 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5892 return rc; 5893 } 5894 #endif 5895 5896 /* Do the WHERE-clause constant propagation optimization if this is 5897 ** a join. No need to speed time on this operation for non-join queries 5898 ** as the equivalent optimization will be handled by query planner in 5899 ** sqlite3WhereBegin(). 5900 */ 5901 if( pTabList->nSrc>1 5902 && OptimizationEnabled(db, SQLITE_PropagateConst) 5903 && propagateConstants(pParse, p) 5904 ){ 5905 #if SELECTTRACE_ENABLED 5906 if( sqlite3SelectTrace & 0x100 ){ 5907 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5908 sqlite3TreeViewSelect(0, p, 0); 5909 } 5910 #endif 5911 }else{ 5912 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5913 } 5914 5915 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5916 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5917 && countOfViewOptimization(pParse, p) 5918 ){ 5919 if( db->mallocFailed ) goto select_end; 5920 pEList = p->pEList; 5921 pTabList = p->pSrc; 5922 } 5923 #endif 5924 5925 /* For each term in the FROM clause, do two things: 5926 ** (1) Authorized unreferenced tables 5927 ** (2) Generate code for all sub-queries 5928 */ 5929 for(i=0; i<pTabList->nSrc; i++){ 5930 struct SrcList_item *pItem = &pTabList->a[i]; 5931 SelectDest dest; 5932 Select *pSub; 5933 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5934 const char *zSavedAuthContext; 5935 #endif 5936 5937 /* Issue SQLITE_READ authorizations with a fake column name for any 5938 ** tables that are referenced but from which no values are extracted. 5939 ** Examples of where these kinds of null SQLITE_READ authorizations 5940 ** would occur: 5941 ** 5942 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5943 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5944 ** 5945 ** The fake column name is an empty string. It is possible for a table to 5946 ** have a column named by the empty string, in which case there is no way to 5947 ** distinguish between an unreferenced table and an actual reference to the 5948 ** "" column. The original design was for the fake column name to be a NULL, 5949 ** which would be unambiguous. But legacy authorization callbacks might 5950 ** assume the column name is non-NULL and segfault. The use of an empty 5951 ** string for the fake column name seems safer. 5952 */ 5953 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5954 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5955 } 5956 5957 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5958 /* Generate code for all sub-queries in the FROM clause 5959 */ 5960 pSub = pItem->pSelect; 5961 if( pSub==0 ) continue; 5962 5963 /* The code for a subquery should only be generated once, though it is 5964 ** technically harmless for it to be generated multiple times. The 5965 ** following assert() will detect if something changes to cause 5966 ** the same subquery to be coded multiple times, as a signal to the 5967 ** developers to try to optimize the situation. 5968 ** 5969 ** Update 2019-07-24: 5970 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5971 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5972 ** coded twice. So this assert() now becomes a testcase(). It should 5973 ** be very rare, though. 5974 */ 5975 testcase( pItem->addrFillSub!=0 ); 5976 5977 /* Increment Parse.nHeight by the height of the largest expression 5978 ** tree referred to by this, the parent select. The child select 5979 ** may contain expression trees of at most 5980 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5981 ** more conservative than necessary, but much easier than enforcing 5982 ** an exact limit. 5983 */ 5984 pParse->nHeight += sqlite3SelectExprHeight(p); 5985 5986 /* Make copies of constant WHERE-clause terms in the outer query down 5987 ** inside the subquery. This can help the subquery to run more efficiently. 5988 */ 5989 if( OptimizationEnabled(db, SQLITE_PushDown) 5990 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5991 (pItem->fg.jointype & JT_OUTER)!=0) 5992 ){ 5993 #if SELECTTRACE_ENABLED 5994 if( sqlite3SelectTrace & 0x100 ){ 5995 SELECTTRACE(0x100,pParse,p, 5996 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5997 sqlite3TreeViewSelect(0, p, 0); 5998 } 5999 #endif 6000 }else{ 6001 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6002 } 6003 6004 zSavedAuthContext = pParse->zAuthContext; 6005 pParse->zAuthContext = pItem->zName; 6006 6007 /* Generate code to implement the subquery 6008 ** 6009 ** The subquery is implemented as a co-routine if the subquery is 6010 ** guaranteed to be the outer loop (so that it does not need to be 6011 ** computed more than once) 6012 ** 6013 ** TODO: Are there other reasons beside (1) to use a co-routine 6014 ** implementation? 6015 */ 6016 if( i==0 6017 && (pTabList->nSrc==1 6018 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6019 ){ 6020 /* Implement a co-routine that will return a single row of the result 6021 ** set on each invocation. 6022 */ 6023 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6024 6025 pItem->regReturn = ++pParse->nMem; 6026 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6027 VdbeComment((v, "%s", pItem->pTab->zName)); 6028 pItem->addrFillSub = addrTop; 6029 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6030 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6031 sqlite3Select(pParse, pSub, &dest); 6032 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6033 pItem->fg.viaCoroutine = 1; 6034 pItem->regResult = dest.iSdst; 6035 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6036 sqlite3VdbeJumpHere(v, addrTop-1); 6037 sqlite3ClearTempRegCache(pParse); 6038 }else{ 6039 /* Generate a subroutine that will fill an ephemeral table with 6040 ** the content of this subquery. pItem->addrFillSub will point 6041 ** to the address of the generated subroutine. pItem->regReturn 6042 ** is a register allocated to hold the subroutine return address 6043 */ 6044 int topAddr; 6045 int onceAddr = 0; 6046 int retAddr; 6047 struct SrcList_item *pPrior; 6048 6049 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6050 pItem->regReturn = ++pParse->nMem; 6051 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6052 pItem->addrFillSub = topAddr+1; 6053 if( pItem->fg.isCorrelated==0 ){ 6054 /* If the subquery is not correlated and if we are not inside of 6055 ** a trigger, then we only need to compute the value of the subquery 6056 ** once. */ 6057 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6058 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6059 }else{ 6060 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6061 } 6062 pPrior = isSelfJoinView(pTabList, pItem); 6063 if( pPrior ){ 6064 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6065 assert( pPrior->pSelect!=0 ); 6066 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6067 }else{ 6068 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6069 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6070 sqlite3Select(pParse, pSub, &dest); 6071 } 6072 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6073 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6074 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6075 VdbeComment((v, "end %s", pItem->pTab->zName)); 6076 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6077 sqlite3ClearTempRegCache(pParse); 6078 } 6079 if( db->mallocFailed ) goto select_end; 6080 pParse->nHeight -= sqlite3SelectExprHeight(p); 6081 pParse->zAuthContext = zSavedAuthContext; 6082 #endif 6083 } 6084 6085 /* Various elements of the SELECT copied into local variables for 6086 ** convenience */ 6087 pEList = p->pEList; 6088 pWhere = p->pWhere; 6089 pGroupBy = p->pGroupBy; 6090 pHaving = p->pHaving; 6091 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6092 6093 #if SELECTTRACE_ENABLED 6094 if( sqlite3SelectTrace & 0x400 ){ 6095 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6096 sqlite3TreeViewSelect(0, p, 0); 6097 } 6098 #endif 6099 6100 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6101 ** if the select-list is the same as the ORDER BY list, then this query 6102 ** can be rewritten as a GROUP BY. In other words, this: 6103 ** 6104 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6105 ** 6106 ** is transformed to: 6107 ** 6108 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6109 ** 6110 ** The second form is preferred as a single index (or temp-table) may be 6111 ** used for both the ORDER BY and DISTINCT processing. As originally 6112 ** written the query must use a temp-table for at least one of the ORDER 6113 ** BY and DISTINCT, and an index or separate temp-table for the other. 6114 */ 6115 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6116 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6117 && p->pWin==0 6118 ){ 6119 p->selFlags &= ~SF_Distinct; 6120 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6121 p->selFlags |= SF_Aggregate; 6122 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6123 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6124 ** original setting of the SF_Distinct flag, not the current setting */ 6125 assert( sDistinct.isTnct ); 6126 6127 #if SELECTTRACE_ENABLED 6128 if( sqlite3SelectTrace & 0x400 ){ 6129 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6130 sqlite3TreeViewSelect(0, p, 0); 6131 } 6132 #endif 6133 } 6134 6135 /* If there is an ORDER BY clause, then create an ephemeral index to 6136 ** do the sorting. But this sorting ephemeral index might end up 6137 ** being unused if the data can be extracted in pre-sorted order. 6138 ** If that is the case, then the OP_OpenEphemeral instruction will be 6139 ** changed to an OP_Noop once we figure out that the sorting index is 6140 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6141 ** that change. 6142 */ 6143 if( sSort.pOrderBy ){ 6144 KeyInfo *pKeyInfo; 6145 pKeyInfo = sqlite3KeyInfoFromExprList( 6146 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6147 sSort.iECursor = pParse->nTab++; 6148 sSort.addrSortIndex = 6149 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6150 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6151 (char*)pKeyInfo, P4_KEYINFO 6152 ); 6153 }else{ 6154 sSort.addrSortIndex = -1; 6155 } 6156 6157 /* If the output is destined for a temporary table, open that table. 6158 */ 6159 if( pDest->eDest==SRT_EphemTab ){ 6160 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6161 } 6162 6163 /* Set the limiter. 6164 */ 6165 iEnd = sqlite3VdbeMakeLabel(pParse); 6166 if( (p->selFlags & SF_FixedLimit)==0 ){ 6167 p->nSelectRow = 320; /* 4 billion rows */ 6168 } 6169 computeLimitRegisters(pParse, p, iEnd); 6170 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6171 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6172 sSort.sortFlags |= SORTFLAG_UseSorter; 6173 } 6174 6175 /* Open an ephemeral index to use for the distinct set. 6176 */ 6177 if( p->selFlags & SF_Distinct ){ 6178 sDistinct.tabTnct = pParse->nTab++; 6179 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6180 sDistinct.tabTnct, 0, 0, 6181 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6182 P4_KEYINFO); 6183 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6184 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6185 }else{ 6186 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6187 } 6188 6189 if( !isAgg && pGroupBy==0 ){ 6190 /* No aggregate functions and no GROUP BY clause */ 6191 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6192 | (p->selFlags & SF_FixedLimit); 6193 #ifndef SQLITE_OMIT_WINDOWFUNC 6194 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6195 if( pWin ){ 6196 sqlite3WindowCodeInit(pParse, p); 6197 } 6198 #endif 6199 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6200 6201 6202 /* Begin the database scan. */ 6203 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6204 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6205 p->pEList, wctrlFlags, p->nSelectRow); 6206 if( pWInfo==0 ) goto select_end; 6207 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6208 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6209 } 6210 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6211 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6212 } 6213 if( sSort.pOrderBy ){ 6214 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6215 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6216 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6217 sSort.pOrderBy = 0; 6218 } 6219 } 6220 6221 /* If sorting index that was created by a prior OP_OpenEphemeral 6222 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6223 ** into an OP_Noop. 6224 */ 6225 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6226 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6227 } 6228 6229 assert( p->pEList==pEList ); 6230 #ifndef SQLITE_OMIT_WINDOWFUNC 6231 if( pWin ){ 6232 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6233 int iCont = sqlite3VdbeMakeLabel(pParse); 6234 int iBreak = sqlite3VdbeMakeLabel(pParse); 6235 int regGosub = ++pParse->nMem; 6236 6237 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6238 6239 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6240 sqlite3VdbeResolveLabel(v, addrGosub); 6241 VdbeNoopComment((v, "inner-loop subroutine")); 6242 sSort.labelOBLopt = 0; 6243 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6244 sqlite3VdbeResolveLabel(v, iCont); 6245 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6246 VdbeComment((v, "end inner-loop subroutine")); 6247 sqlite3VdbeResolveLabel(v, iBreak); 6248 }else 6249 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6250 { 6251 /* Use the standard inner loop. */ 6252 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6253 sqlite3WhereContinueLabel(pWInfo), 6254 sqlite3WhereBreakLabel(pWInfo)); 6255 6256 /* End the database scan loop. 6257 */ 6258 sqlite3WhereEnd(pWInfo); 6259 } 6260 }else{ 6261 /* This case when there exist aggregate functions or a GROUP BY clause 6262 ** or both */ 6263 NameContext sNC; /* Name context for processing aggregate information */ 6264 int iAMem; /* First Mem address for storing current GROUP BY */ 6265 int iBMem; /* First Mem address for previous GROUP BY */ 6266 int iUseFlag; /* Mem address holding flag indicating that at least 6267 ** one row of the input to the aggregator has been 6268 ** processed */ 6269 int iAbortFlag; /* Mem address which causes query abort if positive */ 6270 int groupBySort; /* Rows come from source in GROUP BY order */ 6271 int addrEnd; /* End of processing for this SELECT */ 6272 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6273 int sortOut = 0; /* Output register from the sorter */ 6274 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6275 6276 /* Remove any and all aliases between the result set and the 6277 ** GROUP BY clause. 6278 */ 6279 if( pGroupBy ){ 6280 int k; /* Loop counter */ 6281 struct ExprList_item *pItem; /* For looping over expression in a list */ 6282 6283 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6284 pItem->u.x.iAlias = 0; 6285 } 6286 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6287 pItem->u.x.iAlias = 0; 6288 } 6289 assert( 66==sqlite3LogEst(100) ); 6290 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6291 6292 /* If there is both a GROUP BY and an ORDER BY clause and they are 6293 ** identical, then it may be possible to disable the ORDER BY clause 6294 ** on the grounds that the GROUP BY will cause elements to come out 6295 ** in the correct order. It also may not - the GROUP BY might use a 6296 ** database index that causes rows to be grouped together as required 6297 ** but not actually sorted. Either way, record the fact that the 6298 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6299 ** variable. */ 6300 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6301 int ii; 6302 /* The GROUP BY processing doesn't care whether rows are delivered in 6303 ** ASC or DESC order - only that each group is returned contiguously. 6304 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6305 ** ORDER BY to maximize the chances of rows being delivered in an 6306 ** order that makes the ORDER BY redundant. */ 6307 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6308 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6309 pGroupBy->a[ii].sortFlags = sortFlags; 6310 } 6311 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6312 orderByGrp = 1; 6313 } 6314 } 6315 }else{ 6316 assert( 0==sqlite3LogEst(1) ); 6317 p->nSelectRow = 0; 6318 } 6319 6320 /* Create a label to jump to when we want to abort the query */ 6321 addrEnd = sqlite3VdbeMakeLabel(pParse); 6322 6323 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6324 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6325 ** SELECT statement. 6326 */ 6327 memset(&sNC, 0, sizeof(sNC)); 6328 sNC.pParse = pParse; 6329 sNC.pSrcList = pTabList; 6330 sNC.uNC.pAggInfo = &sAggInfo; 6331 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6332 sAggInfo.mnReg = pParse->nMem+1; 6333 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6334 sAggInfo.pGroupBy = pGroupBy; 6335 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6336 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6337 if( pHaving ){ 6338 if( pGroupBy ){ 6339 assert( pWhere==p->pWhere ); 6340 assert( pHaving==p->pHaving ); 6341 assert( pGroupBy==p->pGroupBy ); 6342 havingToWhere(pParse, p); 6343 pWhere = p->pWhere; 6344 } 6345 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6346 } 6347 sAggInfo.nAccumulator = sAggInfo.nColumn; 6348 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6349 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6350 }else{ 6351 minMaxFlag = WHERE_ORDERBY_NORMAL; 6352 } 6353 for(i=0; i<sAggInfo.nFunc; i++){ 6354 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6355 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6356 sNC.ncFlags |= NC_InAggFunc; 6357 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6358 #ifndef SQLITE_OMIT_WINDOWFUNC 6359 assert( !IsWindowFunc(pExpr) ); 6360 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6361 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6362 } 6363 #endif 6364 sNC.ncFlags &= ~NC_InAggFunc; 6365 } 6366 sAggInfo.mxReg = pParse->nMem; 6367 if( db->mallocFailed ) goto select_end; 6368 #if SELECTTRACE_ENABLED 6369 if( sqlite3SelectTrace & 0x400 ){ 6370 int ii; 6371 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6372 sqlite3TreeViewSelect(0, p, 0); 6373 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6374 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6375 ii, sAggInfo.aCol[ii].iMem); 6376 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6377 } 6378 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6379 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6380 ii, sAggInfo.aFunc[ii].iMem); 6381 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6382 } 6383 } 6384 #endif 6385 6386 6387 /* Processing for aggregates with GROUP BY is very different and 6388 ** much more complex than aggregates without a GROUP BY. 6389 */ 6390 if( pGroupBy ){ 6391 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6392 int addr1; /* A-vs-B comparision jump */ 6393 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6394 int regOutputRow; /* Return address register for output subroutine */ 6395 int addrSetAbort; /* Set the abort flag and return */ 6396 int addrTopOfLoop; /* Top of the input loop */ 6397 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6398 int addrReset; /* Subroutine for resetting the accumulator */ 6399 int regReset; /* Return address register for reset subroutine */ 6400 6401 /* If there is a GROUP BY clause we might need a sorting index to 6402 ** implement it. Allocate that sorting index now. If it turns out 6403 ** that we do not need it after all, the OP_SorterOpen instruction 6404 ** will be converted into a Noop. 6405 */ 6406 sAggInfo.sortingIdx = pParse->nTab++; 6407 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6408 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6409 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6410 0, (char*)pKeyInfo, P4_KEYINFO); 6411 6412 /* Initialize memory locations used by GROUP BY aggregate processing 6413 */ 6414 iUseFlag = ++pParse->nMem; 6415 iAbortFlag = ++pParse->nMem; 6416 regOutputRow = ++pParse->nMem; 6417 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6418 regReset = ++pParse->nMem; 6419 addrReset = sqlite3VdbeMakeLabel(pParse); 6420 iAMem = pParse->nMem + 1; 6421 pParse->nMem += pGroupBy->nExpr; 6422 iBMem = pParse->nMem + 1; 6423 pParse->nMem += pGroupBy->nExpr; 6424 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6425 VdbeComment((v, "clear abort flag")); 6426 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6427 6428 /* Begin a loop that will extract all source rows in GROUP BY order. 6429 ** This might involve two separate loops with an OP_Sort in between, or 6430 ** it might be a single loop that uses an index to extract information 6431 ** in the right order to begin with. 6432 */ 6433 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6434 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6435 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6436 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6437 ); 6438 if( pWInfo==0 ) goto select_end; 6439 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6440 /* The optimizer is able to deliver rows in group by order so 6441 ** we do not have to sort. The OP_OpenEphemeral table will be 6442 ** cancelled later because we still need to use the pKeyInfo 6443 */ 6444 groupBySort = 0; 6445 }else{ 6446 /* Rows are coming out in undetermined order. We have to push 6447 ** each row into a sorting index, terminate the first loop, 6448 ** then loop over the sorting index in order to get the output 6449 ** in sorted order 6450 */ 6451 int regBase; 6452 int regRecord; 6453 int nCol; 6454 int nGroupBy; 6455 6456 explainTempTable(pParse, 6457 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6458 "DISTINCT" : "GROUP BY"); 6459 6460 groupBySort = 1; 6461 nGroupBy = pGroupBy->nExpr; 6462 nCol = nGroupBy; 6463 j = nGroupBy; 6464 for(i=0; i<sAggInfo.nColumn; i++){ 6465 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6466 nCol++; 6467 j++; 6468 } 6469 } 6470 regBase = sqlite3GetTempRange(pParse, nCol); 6471 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6472 j = nGroupBy; 6473 for(i=0; i<sAggInfo.nColumn; i++){ 6474 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6475 if( pCol->iSorterColumn>=j ){ 6476 int r1 = j + regBase; 6477 sqlite3ExprCodeGetColumnOfTable(v, 6478 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6479 j++; 6480 } 6481 } 6482 regRecord = sqlite3GetTempReg(pParse); 6483 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6484 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6485 sqlite3ReleaseTempReg(pParse, regRecord); 6486 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6487 sqlite3WhereEnd(pWInfo); 6488 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6489 sortOut = sqlite3GetTempReg(pParse); 6490 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6491 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6492 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6493 sAggInfo.useSortingIdx = 1; 6494 } 6495 6496 /* If the index or temporary table used by the GROUP BY sort 6497 ** will naturally deliver rows in the order required by the ORDER BY 6498 ** clause, cancel the ephemeral table open coded earlier. 6499 ** 6500 ** This is an optimization - the correct answer should result regardless. 6501 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6502 ** disable this optimization for testing purposes. */ 6503 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6504 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6505 ){ 6506 sSort.pOrderBy = 0; 6507 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6508 } 6509 6510 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6511 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6512 ** Then compare the current GROUP BY terms against the GROUP BY terms 6513 ** from the previous row currently stored in a0, a1, a2... 6514 */ 6515 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6516 if( groupBySort ){ 6517 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6518 sortOut, sortPTab); 6519 } 6520 for(j=0; j<pGroupBy->nExpr; j++){ 6521 if( groupBySort ){ 6522 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6523 }else{ 6524 sAggInfo.directMode = 1; 6525 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6526 } 6527 } 6528 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6529 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6530 addr1 = sqlite3VdbeCurrentAddr(v); 6531 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6532 6533 /* Generate code that runs whenever the GROUP BY changes. 6534 ** Changes in the GROUP BY are detected by the previous code 6535 ** block. If there were no changes, this block is skipped. 6536 ** 6537 ** This code copies current group by terms in b0,b1,b2,... 6538 ** over to a0,a1,a2. It then calls the output subroutine 6539 ** and resets the aggregate accumulator registers in preparation 6540 ** for the next GROUP BY batch. 6541 */ 6542 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6543 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6544 VdbeComment((v, "output one row")); 6545 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6546 VdbeComment((v, "check abort flag")); 6547 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6548 VdbeComment((v, "reset accumulator")); 6549 6550 /* Update the aggregate accumulators based on the content of 6551 ** the current row 6552 */ 6553 sqlite3VdbeJumpHere(v, addr1); 6554 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6555 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6556 VdbeComment((v, "indicate data in accumulator")); 6557 6558 /* End of the loop 6559 */ 6560 if( groupBySort ){ 6561 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6562 VdbeCoverage(v); 6563 }else{ 6564 sqlite3WhereEnd(pWInfo); 6565 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6566 } 6567 6568 /* Output the final row of result 6569 */ 6570 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6571 VdbeComment((v, "output final row")); 6572 6573 /* Jump over the subroutines 6574 */ 6575 sqlite3VdbeGoto(v, addrEnd); 6576 6577 /* Generate a subroutine that outputs a single row of the result 6578 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6579 ** is less than or equal to zero, the subroutine is a no-op. If 6580 ** the processing calls for the query to abort, this subroutine 6581 ** increments the iAbortFlag memory location before returning in 6582 ** order to signal the caller to abort. 6583 */ 6584 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6585 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6586 VdbeComment((v, "set abort flag")); 6587 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6588 sqlite3VdbeResolveLabel(v, addrOutputRow); 6589 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6590 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6591 VdbeCoverage(v); 6592 VdbeComment((v, "Groupby result generator entry point")); 6593 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6594 finalizeAggFunctions(pParse, &sAggInfo); 6595 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6596 selectInnerLoop(pParse, p, -1, &sSort, 6597 &sDistinct, pDest, 6598 addrOutputRow+1, addrSetAbort); 6599 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6600 VdbeComment((v, "end groupby result generator")); 6601 6602 /* Generate a subroutine that will reset the group-by accumulator 6603 */ 6604 sqlite3VdbeResolveLabel(v, addrReset); 6605 resetAccumulator(pParse, &sAggInfo); 6606 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6607 VdbeComment((v, "indicate accumulator empty")); 6608 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6609 6610 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6611 else { 6612 #ifndef SQLITE_OMIT_BTREECOUNT 6613 Table *pTab; 6614 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6615 /* If isSimpleCount() returns a pointer to a Table structure, then 6616 ** the SQL statement is of the form: 6617 ** 6618 ** SELECT count(*) FROM <tbl> 6619 ** 6620 ** where the Table structure returned represents table <tbl>. 6621 ** 6622 ** This statement is so common that it is optimized specially. The 6623 ** OP_Count instruction is executed either on the intkey table that 6624 ** contains the data for table <tbl> or on one of its indexes. It 6625 ** is better to execute the op on an index, as indexes are almost 6626 ** always spread across less pages than their corresponding tables. 6627 */ 6628 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6629 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6630 Index *pIdx; /* Iterator variable */ 6631 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6632 Index *pBest = 0; /* Best index found so far */ 6633 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6634 6635 sqlite3CodeVerifySchema(pParse, iDb); 6636 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6637 6638 /* Search for the index that has the lowest scan cost. 6639 ** 6640 ** (2011-04-15) Do not do a full scan of an unordered index. 6641 ** 6642 ** (2013-10-03) Do not count the entries in a partial index. 6643 ** 6644 ** In practice the KeyInfo structure will not be used. It is only 6645 ** passed to keep OP_OpenRead happy. 6646 */ 6647 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6648 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6649 if( pIdx->bUnordered==0 6650 && pIdx->szIdxRow<pTab->szTabRow 6651 && pIdx->pPartIdxWhere==0 6652 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6653 ){ 6654 pBest = pIdx; 6655 } 6656 } 6657 if( pBest ){ 6658 iRoot = pBest->tnum; 6659 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6660 } 6661 6662 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6663 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6664 if( pKeyInfo ){ 6665 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6666 } 6667 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6668 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6669 explainSimpleCount(pParse, pTab, pBest); 6670 }else 6671 #endif /* SQLITE_OMIT_BTREECOUNT */ 6672 { 6673 int regAcc = 0; /* "populate accumulators" flag */ 6674 6675 /* If there are accumulator registers but no min() or max() functions 6676 ** without FILTER clauses, allocate register regAcc. Register regAcc 6677 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6678 ** The code generated by updateAccumulator() uses this to ensure 6679 ** that the accumulator registers are (a) updated only once if 6680 ** there are no min() or max functions or (b) always updated for the 6681 ** first row visited by the aggregate, so that they are updated at 6682 ** least once even if the FILTER clause means the min() or max() 6683 ** function visits zero rows. */ 6684 if( sAggInfo.nAccumulator ){ 6685 for(i=0; i<sAggInfo.nFunc; i++){ 6686 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6687 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6688 } 6689 if( i==sAggInfo.nFunc ){ 6690 regAcc = ++pParse->nMem; 6691 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6692 } 6693 } 6694 6695 /* This case runs if the aggregate has no GROUP BY clause. The 6696 ** processing is much simpler since there is only a single row 6697 ** of output. 6698 */ 6699 assert( p->pGroupBy==0 ); 6700 resetAccumulator(pParse, &sAggInfo); 6701 6702 /* If this query is a candidate for the min/max optimization, then 6703 ** minMaxFlag will have been previously set to either 6704 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6705 ** be an appropriate ORDER BY expression for the optimization. 6706 */ 6707 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6708 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6709 6710 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6711 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6712 0, minMaxFlag, 0); 6713 if( pWInfo==0 ){ 6714 goto select_end; 6715 } 6716 updateAccumulator(pParse, regAcc, &sAggInfo); 6717 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6718 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6719 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6720 VdbeComment((v, "%s() by index", 6721 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6722 } 6723 sqlite3WhereEnd(pWInfo); 6724 finalizeAggFunctions(pParse, &sAggInfo); 6725 } 6726 6727 sSort.pOrderBy = 0; 6728 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6729 selectInnerLoop(pParse, p, -1, 0, 0, 6730 pDest, addrEnd, addrEnd); 6731 } 6732 sqlite3VdbeResolveLabel(v, addrEnd); 6733 6734 } /* endif aggregate query */ 6735 6736 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6737 explainTempTable(pParse, "DISTINCT"); 6738 } 6739 6740 /* If there is an ORDER BY clause, then we need to sort the results 6741 ** and send them to the callback one by one. 6742 */ 6743 if( sSort.pOrderBy ){ 6744 explainTempTable(pParse, 6745 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6746 assert( p->pEList==pEList ); 6747 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6748 } 6749 6750 /* Jump here to skip this query 6751 */ 6752 sqlite3VdbeResolveLabel(v, iEnd); 6753 6754 /* The SELECT has been coded. If there is an error in the Parse structure, 6755 ** set the return code to 1. Otherwise 0. */ 6756 rc = (pParse->nErr>0); 6757 6758 /* Control jumps to here if an error is encountered above, or upon 6759 ** successful coding of the SELECT. 6760 */ 6761 select_end: 6762 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6763 sqlite3DbFree(db, sAggInfo.aCol); 6764 sqlite3DbFree(db, sAggInfo.aFunc); 6765 #if SELECTTRACE_ENABLED 6766 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6767 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6768 sqlite3TreeViewSelect(0, p, 0); 6769 } 6770 #endif 6771 ExplainQueryPlanPop(pParse); 6772 return rc; 6773 } 6774