xref: /sqlite-3.40.0/src/select.c (revision af94adf0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103     assert( p->pWin==0 );
104 #endif
105     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
106     if( bFree ) sqlite3DbFreeNN(db, p);
107     p = pPrior;
108     bFree = 1;
109   }
110 }
111 
112 /*
113 ** Initialize a SelectDest structure.
114 */
115 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
116   pDest->eDest = (u8)eDest;
117   pDest->iSDParm = iParm;
118   pDest->zAffSdst = 0;
119   pDest->iSdst = 0;
120   pDest->nSdst = 0;
121 }
122 
123 
124 /*
125 ** Allocate a new Select structure and return a pointer to that
126 ** structure.
127 */
128 Select *sqlite3SelectNew(
129   Parse *pParse,        /* Parsing context */
130   ExprList *pEList,     /* which columns to include in the result */
131   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
132   Expr *pWhere,         /* the WHERE clause */
133   ExprList *pGroupBy,   /* the GROUP BY clause */
134   Expr *pHaving,        /* the HAVING clause */
135   ExprList *pOrderBy,   /* the ORDER BY clause */
136   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
137   Expr *pLimit          /* LIMIT value.  NULL means not used */
138 ){
139   Select *pNew;
140   Select standin;
141   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
142   if( pNew==0 ){
143     assert( pParse->db->mallocFailed );
144     pNew = &standin;
145   }
146   if( pEList==0 ){
147     pEList = sqlite3ExprListAppend(pParse, 0,
148                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
149   }
150   pNew->pEList = pEList;
151   pNew->op = TK_SELECT;
152   pNew->selFlags = selFlags;
153   pNew->iLimit = 0;
154   pNew->iOffset = 0;
155   pNew->selId = ++pParse->nSelect;
156   pNew->addrOpenEphm[0] = -1;
157   pNew->addrOpenEphm[1] = -1;
158   pNew->nSelectRow = 0;
159   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
160   pNew->pSrc = pSrc;
161   pNew->pWhere = pWhere;
162   pNew->pGroupBy = pGroupBy;
163   pNew->pHaving = pHaving;
164   pNew->pOrderBy = pOrderBy;
165   pNew->pPrior = 0;
166   pNew->pNext = 0;
167   pNew->pLimit = pLimit;
168   pNew->pWith = 0;
169 #ifndef SQLITE_OMIT_WINDOWFUNC
170   pNew->pWin = 0;
171   pNew->pWinDefn = 0;
172 #endif
173   if( pParse->db->mallocFailed ) {
174     clearSelect(pParse->db, pNew, pNew!=&standin);
175     pNew = 0;
176   }else{
177     assert( pNew->pSrc!=0 || pParse->nErr>0 );
178   }
179   assert( pNew!=&standin );
180   return pNew;
181 }
182 
183 
184 /*
185 ** Delete the given Select structure and all of its substructures.
186 */
187 void sqlite3SelectDelete(sqlite3 *db, Select *p){
188   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
189 }
190 
191 /*
192 ** Return a pointer to the right-most SELECT statement in a compound.
193 */
194 static Select *findRightmost(Select *p){
195   while( p->pNext ) p = p->pNext;
196   return p;
197 }
198 
199 /*
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join.  Return an integer constant that expresses that type
202 ** in terms of the following bit values:
203 **
204 **     JT_INNER
205 **     JT_CROSS
206 **     JT_OUTER
207 **     JT_NATURAL
208 **     JT_LEFT
209 **     JT_RIGHT
210 **
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
212 **
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
215 */
216 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
217   int jointype = 0;
218   Token *apAll[3];
219   Token *p;
220                              /*   0123456789 123456789 123456789 123 */
221   static const char zKeyText[] = "naturaleftouterightfullinnercross";
222   static const struct {
223     u8 i;        /* Beginning of keyword text in zKeyText[] */
224     u8 nChar;    /* Length of the keyword in characters */
225     u8 code;     /* Join type mask */
226   } aKeyword[] = {
227     /* natural */ { 0,  7, JT_NATURAL                },
228     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
229     /* outer   */ { 10, 5, JT_OUTER                  },
230     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
231     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
232     /* inner   */ { 23, 5, JT_INNER                  },
233     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
234   };
235   int i, j;
236   apAll[0] = pA;
237   apAll[1] = pB;
238   apAll[2] = pC;
239   for(i=0; i<3 && apAll[i]; i++){
240     p = apAll[i];
241     for(j=0; j<ArraySize(aKeyword); j++){
242       if( p->n==aKeyword[j].nChar
243           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
244         jointype |= aKeyword[j].code;
245         break;
246       }
247     }
248     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
249     if( j>=ArraySize(aKeyword) ){
250       jointype |= JT_ERROR;
251       break;
252     }
253   }
254   if(
255      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
256      (jointype & JT_ERROR)!=0
257   ){
258     const char *zSp = " ";
259     assert( pB!=0 );
260     if( pC==0 ){ zSp++; }
261     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
262        "%T %T%s%T", pA, pB, zSp, pC);
263     jointype = JT_INNER;
264   }else if( (jointype & JT_OUTER)!=0
265          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
266     sqlite3ErrorMsg(pParse,
267       "RIGHT and FULL OUTER JOINs are not currently supported");
268     jointype = JT_INNER;
269   }
270   return jointype;
271 }
272 
273 /*
274 ** Return the index of a column in a table.  Return -1 if the column
275 ** is not contained in the table.
276 */
277 static int columnIndex(Table *pTab, const char *zCol){
278   int i;
279   for(i=0; i<pTab->nCol; i++){
280     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
281   }
282   return -1;
283 }
284 
285 /*
286 ** Search the first N tables in pSrc, from left to right, looking for a
287 ** table that has a column named zCol.
288 **
289 ** When found, set *piTab and *piCol to the table index and column index
290 ** of the matching column and return TRUE.
291 **
292 ** If not found, return FALSE.
293 */
294 static int tableAndColumnIndex(
295   SrcList *pSrc,       /* Array of tables to search */
296   int N,               /* Number of tables in pSrc->a[] to search */
297   const char *zCol,    /* Name of the column we are looking for */
298   int *piTab,          /* Write index of pSrc->a[] here */
299   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
300 ){
301   int i;               /* For looping over tables in pSrc */
302   int iCol;            /* Index of column matching zCol */
303 
304   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
305   for(i=0; i<N; i++){
306     iCol = columnIndex(pSrc->a[i].pTab, zCol);
307     if( iCol>=0 ){
308       if( piTab ){
309         *piTab = i;
310         *piCol = iCol;
311       }
312       return 1;
313     }
314   }
315   return 0;
316 }
317 
318 /*
319 ** This function is used to add terms implied by JOIN syntax to the
320 ** WHERE clause expression of a SELECT statement. The new term, which
321 ** is ANDed with the existing WHERE clause, is of the form:
322 **
323 **    (tab1.col1 = tab2.col2)
324 **
325 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
326 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
327 ** column iColRight of tab2.
328 */
329 static void addWhereTerm(
330   Parse *pParse,                  /* Parsing context */
331   SrcList *pSrc,                  /* List of tables in FROM clause */
332   int iLeft,                      /* Index of first table to join in pSrc */
333   int iColLeft,                   /* Index of column in first table */
334   int iRight,                     /* Index of second table in pSrc */
335   int iColRight,                  /* Index of column in second table */
336   int isOuterJoin,                /* True if this is an OUTER join */
337   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
338 ){
339   sqlite3 *db = pParse->db;
340   Expr *pE1;
341   Expr *pE2;
342   Expr *pEq;
343 
344   assert( iLeft<iRight );
345   assert( pSrc->nSrc>iRight );
346   assert( pSrc->a[iLeft].pTab );
347   assert( pSrc->a[iRight].pTab );
348 
349   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
350   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
351 
352   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->iRightJoinTable = (i16)pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 static void setJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->iRightJoinTable = (i16)iTable;
394     if( p->op==TK_FUNCTION && p->x.pList ){
395       int i;
396       for(i=0; i<p->x.pList->nExpr; i++){
397         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
398       }
399     }
400     setJoinExpr(p->pLeft, iTable);
401     p = p->pRight;
402   }
403 }
404 
405 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
407 ** an ordinary term that omits the EP_FromJoin mark.
408 **
409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
410 */
411 static void unsetJoinExpr(Expr *p, int iTable){
412   while( p ){
413     if( ExprHasProperty(p, EP_FromJoin)
414      && (iTable<0 || p->iRightJoinTable==iTable) ){
415       ExprClearProperty(p, EP_FromJoin);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   struct SrcList_item *pLeft;     /* Left table being joined */
446   struct SrcList_item *pRight;    /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         zName = pRightTab->aCol[j].zName;
473         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
474           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
475                        isOuter, &p->pWhere);
476         }
477       }
478     }
479 
480     /* Disallow both ON and USING clauses in the same join
481     */
482     if( pRight->pOn && pRight->pUsing ){
483       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
484         "clauses in the same join");
485       return 1;
486     }
487 
488     /* Add the ON clause to the end of the WHERE clause, connected by
489     ** an AND operator.
490     */
491     if( pRight->pOn ){
492       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
493       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
494       pRight->pOn = 0;
495     }
496 
497     /* Create extra terms on the WHERE clause for each column named
498     ** in the USING clause.  Example: If the two tables to be joined are
499     ** A and B and the USING clause names X, Y, and Z, then add this
500     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
501     ** Report an error if any column mentioned in the USING clause is
502     ** not contained in both tables to be joined.
503     */
504     if( pRight->pUsing ){
505       IdList *pList = pRight->pUsing;
506       for(j=0; j<pList->nId; j++){
507         char *zName;     /* Name of the term in the USING clause */
508         int iLeft;       /* Table on the left with matching column name */
509         int iLeftCol;    /* Column number of matching column on the left */
510         int iRightCol;   /* Column number of matching column on the right */
511 
512         zName = pList->a[j].zName;
513         iRightCol = columnIndex(pRightTab, zName);
514         if( iRightCol<0
515          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
516         ){
517           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
518             "not present in both tables", zName);
519           return 1;
520         }
521         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
522                      isOuter, &p->pWhere);
523       }
524     }
525   }
526   return 0;
527 }
528 
529 /*
530 ** An instance of this object holds information (beyond pParse and pSelect)
531 ** needed to load the next result row that is to be added to the sorter.
532 */
533 typedef struct RowLoadInfo RowLoadInfo;
534 struct RowLoadInfo {
535   int regResult;               /* Store results in array of registers here */
536   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
538   ExprList *pExtra;            /* Extra columns needed by sorter refs */
539   int regExtraResult;          /* Where to load the extra columns */
540 #endif
541 };
542 
543 /*
544 ** This routine does the work of loading query data into an array of
545 ** registers so that it can be added to the sorter.
546 */
547 static void innerLoopLoadRow(
548   Parse *pParse,             /* Statement under construction */
549   Select *pSelect,           /* The query being coded */
550   RowLoadInfo *pInfo         /* Info needed to complete the row load */
551 ){
552   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
553                           0, pInfo->ecelFlags);
554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
555   if( pInfo->pExtra ){
556     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
557     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
558   }
559 #endif
560 }
561 
562 /*
563 ** Code the OP_MakeRecord instruction that generates the entry to be
564 ** added into the sorter.
565 **
566 ** Return the register in which the result is stored.
567 */
568 static int makeSorterRecord(
569   Parse *pParse,
570   SortCtx *pSort,
571   Select *pSelect,
572   int regBase,
573   int nBase
574 ){
575   int nOBSat = pSort->nOBSat;
576   Vdbe *v = pParse->pVdbe;
577   int regOut = ++pParse->nMem;
578   if( pSort->pDeferredRowLoad ){
579     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
580   }
581   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
582   return regOut;
583 }
584 
585 /*
586 ** Generate code that will push the record in registers regData
587 ** through regData+nData-1 onto the sorter.
588 */
589 static void pushOntoSorter(
590   Parse *pParse,         /* Parser context */
591   SortCtx *pSort,        /* Information about the ORDER BY clause */
592   Select *pSelect,       /* The whole SELECT statement */
593   int regData,           /* First register holding data to be sorted */
594   int regOrigData,       /* First register holding data before packing */
595   int nData,             /* Number of elements in the regData data array */
596   int nPrefixReg         /* No. of reg prior to regData available for use */
597 ){
598   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
599   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
600   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
601   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
602   int regBase;                                     /* Regs for sorter record */
603   int regRecord = 0;                               /* Assembled sorter record */
604   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
605   int op;                            /* Opcode to add sorter record to sorter */
606   int iLimit;                        /* LIMIT counter */
607   int iSkip = 0;                     /* End of the sorter insert loop */
608 
609   assert( bSeq==0 || bSeq==1 );
610 
611   /* Three cases:
612   **   (1) The data to be sorted has already been packed into a Record
613   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
614   **       will be completely unrelated to regOrigData.
615   **   (2) All output columns are included in the sort record.  In that
616   **       case regData==regOrigData.
617   **   (3) Some output columns are omitted from the sort record due to
618   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
619   **       SQLITE_ECEL_OMITREF optimization, or due to the
620   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
621   **       regOrigData is 0 to prevent this routine from trying to copy
622   **       values that might not yet exist.
623   */
624   assert( nData==1 || regData==regOrigData || regOrigData==0 );
625 
626   if( nPrefixReg ){
627     assert( nPrefixReg==nExpr+bSeq );
628     regBase = regData - nPrefixReg;
629   }else{
630     regBase = pParse->nMem + 1;
631     pParse->nMem += nBase;
632   }
633   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
634   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
635   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
636   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
637                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
638   if( bSeq ){
639     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
640   }
641   if( nPrefixReg==0 && nData>0 ){
642     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
643   }
644   if( nOBSat>0 ){
645     int regPrevKey;   /* The first nOBSat columns of the previous row */
646     int addrFirst;    /* Address of the OP_IfNot opcode */
647     int addrJmp;      /* Address of the OP_Jump opcode */
648     VdbeOp *pOp;      /* Opcode that opens the sorter */
649     int nKey;         /* Number of sorting key columns, including OP_Sequence */
650     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
651 
652     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
653     regPrevKey = pParse->nMem+1;
654     pParse->nMem += pSort->nOBSat;
655     nKey = nExpr - pSort->nOBSat + bSeq;
656     if( bSeq ){
657       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
658     }else{
659       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
660     }
661     VdbeCoverage(v);
662     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
663     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
664     if( pParse->db->mallocFailed ) return;
665     pOp->p2 = nKey + nData;
666     pKI = pOp->p4.pKeyInfo;
667     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
668     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
669     testcase( pKI->nAllField > pKI->nKeyField+2 );
670     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
671                                            pKI->nAllField-pKI->nKeyField-1);
672     addrJmp = sqlite3VdbeCurrentAddr(v);
673     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
674     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
675     pSort->regReturn = ++pParse->nMem;
676     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
677     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
678     if( iLimit ){
679       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
680       VdbeCoverage(v);
681     }
682     sqlite3VdbeJumpHere(v, addrFirst);
683     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
684     sqlite3VdbeJumpHere(v, addrJmp);
685   }
686   if( iLimit ){
687     /* At this point the values for the new sorter entry are stored
688     ** in an array of registers. They need to be composed into a record
689     ** and inserted into the sorter if either (a) there are currently
690     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
691     ** the largest record currently in the sorter. If (b) is true and there
692     ** are already LIMIT+OFFSET items in the sorter, delete the largest
693     ** entry before inserting the new one. This way there are never more
694     ** than LIMIT+OFFSET items in the sorter.
695     **
696     ** If the new record does not need to be inserted into the sorter,
697     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
698     ** value is not zero, then it is a label of where to jump.  Otherwise,
699     ** just bypass the row insert logic.  See the header comment on the
700     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
701     */
702     int iCsr = pSort->iECursor;
703     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
704     VdbeCoverage(v);
705     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
706     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
707                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
708     VdbeCoverage(v);
709     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
710   }
711   if( regRecord==0 ){
712     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
713   }
714   if( pSort->sortFlags & SORTFLAG_UseSorter ){
715     op = OP_SorterInsert;
716   }else{
717     op = OP_IdxInsert;
718   }
719   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
720                        regBase+nOBSat, nBase-nOBSat);
721   if( iSkip ){
722     sqlite3VdbeChangeP2(v, iSkip,
723          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
724   }
725 }
726 
727 /*
728 ** Add code to implement the OFFSET
729 */
730 static void codeOffset(
731   Vdbe *v,          /* Generate code into this VM */
732   int iOffset,      /* Register holding the offset counter */
733   int iContinue     /* Jump here to skip the current record */
734 ){
735   if( iOffset>0 ){
736     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
737     VdbeComment((v, "OFFSET"));
738   }
739 }
740 
741 /*
742 ** Add code that will check to make sure the N registers starting at iMem
743 ** form a distinct entry.  iTab is a sorting index that holds previously
744 ** seen combinations of the N values.  A new entry is made in iTab
745 ** if the current N values are new.
746 **
747 ** A jump to addrRepeat is made and the N+1 values are popped from the
748 ** stack if the top N elements are not distinct.
749 */
750 static void codeDistinct(
751   Parse *pParse,     /* Parsing and code generating context */
752   int iTab,          /* A sorting index used to test for distinctness */
753   int addrRepeat,    /* Jump to here if not distinct */
754   int N,             /* Number of elements */
755   int iMem           /* First element */
756 ){
757   Vdbe *v;
758   int r1;
759 
760   v = pParse->pVdbe;
761   r1 = sqlite3GetTempReg(pParse);
762   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
763   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
764   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
765   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
766   sqlite3ReleaseTempReg(pParse, r1);
767 }
768 
769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
770 /*
771 ** This function is called as part of inner-loop generation for a SELECT
772 ** statement with an ORDER BY that is not optimized by an index. It
773 ** determines the expressions, if any, that the sorter-reference
774 ** optimization should be used for. The sorter-reference optimization
775 ** is used for SELECT queries like:
776 **
777 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
778 **
779 ** If the optimization is used for expression "bigblob", then instead of
780 ** storing values read from that column in the sorter records, the PK of
781 ** the row from table t1 is stored instead. Then, as records are extracted from
782 ** the sorter to return to the user, the required value of bigblob is
783 ** retrieved directly from table t1. If the values are very large, this
784 ** can be more efficient than storing them directly in the sorter records.
785 **
786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
787 ** for which the sorter-reference optimization should be enabled.
788 ** Additionally, the pSort->aDefer[] array is populated with entries
789 ** for all cursors required to evaluate all selected expressions. Finally.
790 ** output variable (*ppExtra) is set to an expression list containing
791 ** expressions for all extra PK values that should be stored in the
792 ** sorter records.
793 */
794 static void selectExprDefer(
795   Parse *pParse,                  /* Leave any error here */
796   SortCtx *pSort,                 /* Sorter context */
797   ExprList *pEList,               /* Expressions destined for sorter */
798   ExprList **ppExtra              /* Expressions to append to sorter record */
799 ){
800   int i;
801   int nDefer = 0;
802   ExprList *pExtra = 0;
803   for(i=0; i<pEList->nExpr; i++){
804     struct ExprList_item *pItem = &pEList->a[i];
805     if( pItem->u.x.iOrderByCol==0 ){
806       Expr *pExpr = pItem->pExpr;
807       Table *pTab = pExpr->y.pTab;
808       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
809        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
810       ){
811         int j;
812         for(j=0; j<nDefer; j++){
813           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
814         }
815         if( j==nDefer ){
816           if( nDefer==ArraySize(pSort->aDefer) ){
817             continue;
818           }else{
819             int nKey = 1;
820             int k;
821             Index *pPk = 0;
822             if( !HasRowid(pTab) ){
823               pPk = sqlite3PrimaryKeyIndex(pTab);
824               nKey = pPk->nKeyCol;
825             }
826             for(k=0; k<nKey; k++){
827               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
828               if( pNew ){
829                 pNew->iTable = pExpr->iTable;
830                 pNew->y.pTab = pExpr->y.pTab;
831                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
832                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
833               }
834             }
835             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
836             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
837             pSort->aDefer[nDefer].nKey = nKey;
838             nDefer++;
839           }
840         }
841         pItem->bSorterRef = 1;
842       }
843     }
844   }
845   pSort->nDefer = (u8)nDefer;
846   *ppExtra = pExtra;
847 }
848 #endif
849 
850 /*
851 ** This routine generates the code for the inside of the inner loop
852 ** of a SELECT.
853 **
854 ** If srcTab is negative, then the p->pEList expressions
855 ** are evaluated in order to get the data for this row.  If srcTab is
856 ** zero or more, then data is pulled from srcTab and p->pEList is used only
857 ** to get the number of columns and the collation sequence for each column.
858 */
859 static void selectInnerLoop(
860   Parse *pParse,          /* The parser context */
861   Select *p,              /* The complete select statement being coded */
862   int srcTab,             /* Pull data from this table if non-negative */
863   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
864   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
865   SelectDest *pDest,      /* How to dispose of the results */
866   int iContinue,          /* Jump here to continue with next row */
867   int iBreak              /* Jump here to break out of the inner loop */
868 ){
869   Vdbe *v = pParse->pVdbe;
870   int i;
871   int hasDistinct;            /* True if the DISTINCT keyword is present */
872   int eDest = pDest->eDest;   /* How to dispose of results */
873   int iParm = pDest->iSDParm; /* First argument to disposal method */
874   int nResultCol;             /* Number of result columns */
875   int nPrefixReg = 0;         /* Number of extra registers before regResult */
876   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
877 
878   /* Usually, regResult is the first cell in an array of memory cells
879   ** containing the current result row. In this case regOrig is set to the
880   ** same value. However, if the results are being sent to the sorter, the
881   ** values for any expressions that are also part of the sort-key are omitted
882   ** from this array. In this case regOrig is set to zero.  */
883   int regResult;              /* Start of memory holding current results */
884   int regOrig;                /* Start of memory holding full result (or 0) */
885 
886   assert( v );
887   assert( p->pEList!=0 );
888   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
889   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
890   if( pSort==0 && !hasDistinct ){
891     assert( iContinue!=0 );
892     codeOffset(v, p->iOffset, iContinue);
893   }
894 
895   /* Pull the requested columns.
896   */
897   nResultCol = p->pEList->nExpr;
898 
899   if( pDest->iSdst==0 ){
900     if( pSort ){
901       nPrefixReg = pSort->pOrderBy->nExpr;
902       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
903       pParse->nMem += nPrefixReg;
904     }
905     pDest->iSdst = pParse->nMem+1;
906     pParse->nMem += nResultCol;
907   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
908     /* This is an error condition that can result, for example, when a SELECT
909     ** on the right-hand side of an INSERT contains more result columns than
910     ** there are columns in the table on the left.  The error will be caught
911     ** and reported later.  But we need to make sure enough memory is allocated
912     ** to avoid other spurious errors in the meantime. */
913     pParse->nMem += nResultCol;
914   }
915   pDest->nSdst = nResultCol;
916   regOrig = regResult = pDest->iSdst;
917   if( srcTab>=0 ){
918     for(i=0; i<nResultCol; i++){
919       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
920       VdbeComment((v, "%s", p->pEList->a[i].zName));
921     }
922   }else if( eDest!=SRT_Exists ){
923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
924     ExprList *pExtra = 0;
925 #endif
926     /* If the destination is an EXISTS(...) expression, the actual
927     ** values returned by the SELECT are not required.
928     */
929     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
930     ExprList *pEList;
931     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
932       ecelFlags = SQLITE_ECEL_DUP;
933     }else{
934       ecelFlags = 0;
935     }
936     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
937       /* For each expression in p->pEList that is a copy of an expression in
938       ** the ORDER BY clause (pSort->pOrderBy), set the associated
939       ** iOrderByCol value to one more than the index of the ORDER BY
940       ** expression within the sort-key that pushOntoSorter() will generate.
941       ** This allows the p->pEList field to be omitted from the sorted record,
942       ** saving space and CPU cycles.  */
943       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
944 
945       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
946         int j;
947         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
948           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
949         }
950       }
951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
952       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
953       if( pExtra && pParse->db->mallocFailed==0 ){
954         /* If there are any extra PK columns to add to the sorter records,
955         ** allocate extra memory cells and adjust the OpenEphemeral
956         ** instruction to account for the larger records. This is only
957         ** required if there are one or more WITHOUT ROWID tables with
958         ** composite primary keys in the SortCtx.aDefer[] array.  */
959         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
960         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
961         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
962         pParse->nMem += pExtra->nExpr;
963       }
964 #endif
965 
966       /* Adjust nResultCol to account for columns that are omitted
967       ** from the sorter by the optimizations in this branch */
968       pEList = p->pEList;
969       for(i=0; i<pEList->nExpr; i++){
970         if( pEList->a[i].u.x.iOrderByCol>0
971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
972          || pEList->a[i].bSorterRef
973 #endif
974         ){
975           nResultCol--;
976           regOrig = 0;
977         }
978       }
979 
980       testcase( regOrig );
981       testcase( eDest==SRT_Set );
982       testcase( eDest==SRT_Mem );
983       testcase( eDest==SRT_Coroutine );
984       testcase( eDest==SRT_Output );
985       assert( eDest==SRT_Set || eDest==SRT_Mem
986            || eDest==SRT_Coroutine || eDest==SRT_Output );
987     }
988     sRowLoadInfo.regResult = regResult;
989     sRowLoadInfo.ecelFlags = ecelFlags;
990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
991     sRowLoadInfo.pExtra = pExtra;
992     sRowLoadInfo.regExtraResult = regResult + nResultCol;
993     if( pExtra ) nResultCol += pExtra->nExpr;
994 #endif
995     if( p->iLimit
996      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
997      && nPrefixReg>0
998     ){
999       assert( pSort!=0 );
1000       assert( hasDistinct==0 );
1001       pSort->pDeferredRowLoad = &sRowLoadInfo;
1002       regOrig = 0;
1003     }else{
1004       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1005     }
1006   }
1007 
1008   /* If the DISTINCT keyword was present on the SELECT statement
1009   ** and this row has been seen before, then do not make this row
1010   ** part of the result.
1011   */
1012   if( hasDistinct ){
1013     switch( pDistinct->eTnctType ){
1014       case WHERE_DISTINCT_ORDERED: {
1015         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1016         int iJump;              /* Jump destination */
1017         int regPrev;            /* Previous row content */
1018 
1019         /* Allocate space for the previous row */
1020         regPrev = pParse->nMem+1;
1021         pParse->nMem += nResultCol;
1022 
1023         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1024         ** sets the MEM_Cleared bit on the first register of the
1025         ** previous value.  This will cause the OP_Ne below to always
1026         ** fail on the first iteration of the loop even if the first
1027         ** row is all NULLs.
1028         */
1029         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1030         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1031         pOp->opcode = OP_Null;
1032         pOp->p1 = 1;
1033         pOp->p2 = regPrev;
1034 
1035         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036         for(i=0; i<nResultCol; i++){
1037           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038           if( i<nResultCol-1 ){
1039             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040             VdbeCoverage(v);
1041           }else{
1042             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043             VdbeCoverage(v);
1044            }
1045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047         }
1048         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050         break;
1051       }
1052 
1053       case WHERE_DISTINCT_UNIQUE: {
1054         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055         break;
1056       }
1057 
1058       default: {
1059         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061                      regResult);
1062         break;
1063       }
1064     }
1065     if( pSort==0 ){
1066       codeOffset(v, p->iOffset, iContinue);
1067     }
1068   }
1069 
1070   switch( eDest ){
1071     /* In this mode, write each query result to the key of the temporary
1072     ** table iParm.
1073     */
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075     case SRT_Union: {
1076       int r1;
1077       r1 = sqlite3GetTempReg(pParse);
1078       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080       sqlite3ReleaseTempReg(pParse, r1);
1081       break;
1082     }
1083 
1084     /* Construct a record from the query result, but instead of
1085     ** saving that record, use it as a key to delete elements from
1086     ** the temporary table iParm.
1087     */
1088     case SRT_Except: {
1089       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090       break;
1091     }
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 
1094     /* Store the result as data using a unique key.
1095     */
1096     case SRT_Fifo:
1097     case SRT_DistFifo:
1098     case SRT_Table:
1099     case SRT_EphemTab: {
1100       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101       testcase( eDest==SRT_Table );
1102       testcase( eDest==SRT_EphemTab );
1103       testcase( eDest==SRT_Fifo );
1104       testcase( eDest==SRT_DistFifo );
1105       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107       if( eDest==SRT_DistFifo ){
1108         /* If the destination is DistFifo, then cursor (iParm+1) is open
1109         ** on an ephemeral index. If the current row is already present
1110         ** in the index, do not write it to the output. If not, add the
1111         ** current row to the index and proceed with writing it to the
1112         ** output table as well.  */
1113         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115         VdbeCoverage(v);
1116         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117         assert( pSort==0 );
1118       }
1119 #endif
1120       if( pSort ){
1121         assert( regResult==regOrig );
1122         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123       }else{
1124         int r2 = sqlite3GetTempReg(pParse);
1125         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128         sqlite3ReleaseTempReg(pParse, r2);
1129       }
1130       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131       break;
1132     }
1133 
1134 #ifndef SQLITE_OMIT_SUBQUERY
1135     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1136     ** then there should be a single item on the stack.  Write this
1137     ** item into the set table with bogus data.
1138     */
1139     case SRT_Set: {
1140       if( pSort ){
1141         /* At first glance you would think we could optimize out the
1142         ** ORDER BY in this case since the order of entries in the set
1143         ** does not matter.  But there might be a LIMIT clause, in which
1144         ** case the order does matter */
1145         pushOntoSorter(
1146             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1147       }else{
1148         int r1 = sqlite3GetTempReg(pParse);
1149         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1150         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1151             r1, pDest->zAffSdst, nResultCol);
1152         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1153         sqlite3ReleaseTempReg(pParse, r1);
1154       }
1155       break;
1156     }
1157 
1158     /* If any row exist in the result set, record that fact and abort.
1159     */
1160     case SRT_Exists: {
1161       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1162       /* The LIMIT clause will terminate the loop for us */
1163       break;
1164     }
1165 
1166     /* If this is a scalar select that is part of an expression, then
1167     ** store the results in the appropriate memory cell or array of
1168     ** memory cells and break out of the scan loop.
1169     */
1170     case SRT_Mem: {
1171       if( pSort ){
1172         assert( nResultCol<=pDest->nSdst );
1173         pushOntoSorter(
1174             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1175       }else{
1176         assert( nResultCol==pDest->nSdst );
1177         assert( regResult==iParm );
1178         /* The LIMIT clause will jump out of the loop for us */
1179       }
1180       break;
1181     }
1182 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1183 
1184     case SRT_Coroutine:       /* Send data to a co-routine */
1185     case SRT_Output: {        /* Return the results */
1186       testcase( eDest==SRT_Coroutine );
1187       testcase( eDest==SRT_Output );
1188       if( pSort ){
1189         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1190                        nPrefixReg);
1191       }else if( eDest==SRT_Coroutine ){
1192         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1193       }else{
1194         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1195       }
1196       break;
1197     }
1198 
1199 #ifndef SQLITE_OMIT_CTE
1200     /* Write the results into a priority queue that is order according to
1201     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1202     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1203     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1204     ** final OP_Sequence column.  The last column is the record as a blob.
1205     */
1206     case SRT_DistQueue:
1207     case SRT_Queue: {
1208       int nKey;
1209       int r1, r2, r3;
1210       int addrTest = 0;
1211       ExprList *pSO;
1212       pSO = pDest->pOrderBy;
1213       assert( pSO );
1214       nKey = pSO->nExpr;
1215       r1 = sqlite3GetTempReg(pParse);
1216       r2 = sqlite3GetTempRange(pParse, nKey+2);
1217       r3 = r2+nKey+1;
1218       if( eDest==SRT_DistQueue ){
1219         /* If the destination is DistQueue, then cursor (iParm+1) is open
1220         ** on a second ephemeral index that holds all values every previously
1221         ** added to the queue. */
1222         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1223                                         regResult, nResultCol);
1224         VdbeCoverage(v);
1225       }
1226       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1227       if( eDest==SRT_DistQueue ){
1228         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1229         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1230       }
1231       for(i=0; i<nKey; i++){
1232         sqlite3VdbeAddOp2(v, OP_SCopy,
1233                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1234                           r2+i);
1235       }
1236       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1237       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1238       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1239       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1240       sqlite3ReleaseTempReg(pParse, r1);
1241       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1242       break;
1243     }
1244 #endif /* SQLITE_OMIT_CTE */
1245 
1246 
1247 
1248 #if !defined(SQLITE_OMIT_TRIGGER)
1249     /* Discard the results.  This is used for SELECT statements inside
1250     ** the body of a TRIGGER.  The purpose of such selects is to call
1251     ** user-defined functions that have side effects.  We do not care
1252     ** about the actual results of the select.
1253     */
1254     default: {
1255       assert( eDest==SRT_Discard );
1256       break;
1257     }
1258 #endif
1259   }
1260 
1261   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1262   ** there is a sorter, in which case the sorter has already limited
1263   ** the output for us.
1264   */
1265   if( pSort==0 && p->iLimit ){
1266     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1267   }
1268 }
1269 
1270 /*
1271 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1272 ** X extra columns.
1273 */
1274 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1275   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1276   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1277   if( p ){
1278     p->aSortFlags = (u8*)&p->aColl[N+X];
1279     p->nKeyField = (u16)N;
1280     p->nAllField = (u16)(N+X);
1281     p->enc = ENC(db);
1282     p->db = db;
1283     p->nRef = 1;
1284     memset(&p[1], 0, nExtra);
1285   }else{
1286     sqlite3OomFault(db);
1287   }
1288   return p;
1289 }
1290 
1291 /*
1292 ** Deallocate a KeyInfo object
1293 */
1294 void sqlite3KeyInfoUnref(KeyInfo *p){
1295   if( p ){
1296     assert( p->nRef>0 );
1297     p->nRef--;
1298     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1299   }
1300 }
1301 
1302 /*
1303 ** Make a new pointer to a KeyInfo object
1304 */
1305 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1306   if( p ){
1307     assert( p->nRef>0 );
1308     p->nRef++;
1309   }
1310   return p;
1311 }
1312 
1313 #ifdef SQLITE_DEBUG
1314 /*
1315 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1316 ** can only be changed if this is just a single reference to the object.
1317 **
1318 ** This routine is used only inside of assert() statements.
1319 */
1320 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1321 #endif /* SQLITE_DEBUG */
1322 
1323 /*
1324 ** Given an expression list, generate a KeyInfo structure that records
1325 ** the collating sequence for each expression in that expression list.
1326 **
1327 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1328 ** KeyInfo structure is appropriate for initializing a virtual index to
1329 ** implement that clause.  If the ExprList is the result set of a SELECT
1330 ** then the KeyInfo structure is appropriate for initializing a virtual
1331 ** index to implement a DISTINCT test.
1332 **
1333 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1334 ** function is responsible for seeing that this structure is eventually
1335 ** freed.
1336 */
1337 KeyInfo *sqlite3KeyInfoFromExprList(
1338   Parse *pParse,       /* Parsing context */
1339   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1340   int iStart,          /* Begin with this column of pList */
1341   int nExtra           /* Add this many extra columns to the end */
1342 ){
1343   int nExpr;
1344   KeyInfo *pInfo;
1345   struct ExprList_item *pItem;
1346   sqlite3 *db = pParse->db;
1347   int i;
1348 
1349   nExpr = pList->nExpr;
1350   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1351   if( pInfo ){
1352     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1353     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1354       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1355       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1356     }
1357   }
1358   return pInfo;
1359 }
1360 
1361 /*
1362 ** Name of the connection operator, used for error messages.
1363 */
1364 static const char *selectOpName(int id){
1365   char *z;
1366   switch( id ){
1367     case TK_ALL:       z = "UNION ALL";   break;
1368     case TK_INTERSECT: z = "INTERSECT";   break;
1369     case TK_EXCEPT:    z = "EXCEPT";      break;
1370     default:           z = "UNION";       break;
1371   }
1372   return z;
1373 }
1374 
1375 #ifndef SQLITE_OMIT_EXPLAIN
1376 /*
1377 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1378 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1379 ** where the caption is of the form:
1380 **
1381 **   "USE TEMP B-TREE FOR xxx"
1382 **
1383 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1384 ** is determined by the zUsage argument.
1385 */
1386 static void explainTempTable(Parse *pParse, const char *zUsage){
1387   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1388 }
1389 
1390 /*
1391 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1392 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1393 ** in sqlite3Select() to assign values to structure member variables that
1394 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1395 ** code with #ifndef directives.
1396 */
1397 # define explainSetInteger(a, b) a = b
1398 
1399 #else
1400 /* No-op versions of the explainXXX() functions and macros. */
1401 # define explainTempTable(y,z)
1402 # define explainSetInteger(y,z)
1403 #endif
1404 
1405 
1406 /*
1407 ** If the inner loop was generated using a non-null pOrderBy argument,
1408 ** then the results were placed in a sorter.  After the loop is terminated
1409 ** we need to run the sorter and output the results.  The following
1410 ** routine generates the code needed to do that.
1411 */
1412 static void generateSortTail(
1413   Parse *pParse,    /* Parsing context */
1414   Select *p,        /* The SELECT statement */
1415   SortCtx *pSort,   /* Information on the ORDER BY clause */
1416   int nColumn,      /* Number of columns of data */
1417   SelectDest *pDest /* Write the sorted results here */
1418 ){
1419   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1420   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1421   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1422   int addr;                       /* Top of output loop. Jump for Next. */
1423   int addrOnce = 0;
1424   int iTab;
1425   ExprList *pOrderBy = pSort->pOrderBy;
1426   int eDest = pDest->eDest;
1427   int iParm = pDest->iSDParm;
1428   int regRow;
1429   int regRowid;
1430   int iCol;
1431   int nKey;                       /* Number of key columns in sorter record */
1432   int iSortTab;                   /* Sorter cursor to read from */
1433   int i;
1434   int bSeq;                       /* True if sorter record includes seq. no. */
1435   int nRefKey = 0;
1436   struct ExprList_item *aOutEx = p->pEList->a;
1437 
1438   assert( addrBreak<0 );
1439   if( pSort->labelBkOut ){
1440     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1441     sqlite3VdbeGoto(v, addrBreak);
1442     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1443   }
1444 
1445 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1446   /* Open any cursors needed for sorter-reference expressions */
1447   for(i=0; i<pSort->nDefer; i++){
1448     Table *pTab = pSort->aDefer[i].pTab;
1449     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1450     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1451     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1452   }
1453 #endif
1454 
1455   iTab = pSort->iECursor;
1456   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1457     regRowid = 0;
1458     regRow = pDest->iSdst;
1459   }else{
1460     regRowid = sqlite3GetTempReg(pParse);
1461     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1462       regRow = sqlite3GetTempReg(pParse);
1463       nColumn = 0;
1464     }else{
1465       regRow = sqlite3GetTempRange(pParse, nColumn);
1466     }
1467   }
1468   nKey = pOrderBy->nExpr - pSort->nOBSat;
1469   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1470     int regSortOut = ++pParse->nMem;
1471     iSortTab = pParse->nTab++;
1472     if( pSort->labelBkOut ){
1473       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1474     }
1475     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1476         nKey+1+nColumn+nRefKey);
1477     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1478     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1479     VdbeCoverage(v);
1480     codeOffset(v, p->iOffset, addrContinue);
1481     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1482     bSeq = 0;
1483   }else{
1484     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1485     codeOffset(v, p->iOffset, addrContinue);
1486     iSortTab = iTab;
1487     bSeq = 1;
1488   }
1489   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1490 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1491     if( aOutEx[i].bSorterRef ) continue;
1492 #endif
1493     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1494   }
1495 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1496   if( pSort->nDefer ){
1497     int iKey = iCol+1;
1498     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1499 
1500     for(i=0; i<pSort->nDefer; i++){
1501       int iCsr = pSort->aDefer[i].iCsr;
1502       Table *pTab = pSort->aDefer[i].pTab;
1503       int nKey = pSort->aDefer[i].nKey;
1504 
1505       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1506       if( HasRowid(pTab) ){
1507         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1508         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1509             sqlite3VdbeCurrentAddr(v)+1, regKey);
1510       }else{
1511         int k;
1512         int iJmp;
1513         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1514         for(k=0; k<nKey; k++){
1515           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1516         }
1517         iJmp = sqlite3VdbeCurrentAddr(v);
1518         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1519         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1520         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1521       }
1522     }
1523     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1524   }
1525 #endif
1526   for(i=nColumn-1; i>=0; i--){
1527 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1528     if( aOutEx[i].bSorterRef ){
1529       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1530     }else
1531 #endif
1532     {
1533       int iRead;
1534       if( aOutEx[i].u.x.iOrderByCol ){
1535         iRead = aOutEx[i].u.x.iOrderByCol-1;
1536       }else{
1537         iRead = iCol--;
1538       }
1539       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1540       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1541     }
1542   }
1543   switch( eDest ){
1544     case SRT_Table:
1545     case SRT_EphemTab: {
1546       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1547       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1548       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1549       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1550       break;
1551     }
1552 #ifndef SQLITE_OMIT_SUBQUERY
1553     case SRT_Set: {
1554       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1555       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1556                         pDest->zAffSdst, nColumn);
1557       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1558       break;
1559     }
1560     case SRT_Mem: {
1561       /* The LIMIT clause will terminate the loop for us */
1562       break;
1563     }
1564 #endif
1565     default: {
1566       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1567       testcase( eDest==SRT_Output );
1568       testcase( eDest==SRT_Coroutine );
1569       if( eDest==SRT_Output ){
1570         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1571       }else{
1572         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1573       }
1574       break;
1575     }
1576   }
1577   if( regRowid ){
1578     if( eDest==SRT_Set ){
1579       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1580     }else{
1581       sqlite3ReleaseTempReg(pParse, regRow);
1582     }
1583     sqlite3ReleaseTempReg(pParse, regRowid);
1584   }
1585   /* The bottom of the loop
1586   */
1587   sqlite3VdbeResolveLabel(v, addrContinue);
1588   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1589     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1590   }else{
1591     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1592   }
1593   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1594   sqlite3VdbeResolveLabel(v, addrBreak);
1595 }
1596 
1597 /*
1598 ** Return a pointer to a string containing the 'declaration type' of the
1599 ** expression pExpr. The string may be treated as static by the caller.
1600 **
1601 ** Also try to estimate the size of the returned value and return that
1602 ** result in *pEstWidth.
1603 **
1604 ** The declaration type is the exact datatype definition extracted from the
1605 ** original CREATE TABLE statement if the expression is a column. The
1606 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1607 ** is considered a column can be complex in the presence of subqueries. The
1608 ** result-set expression in all of the following SELECT statements is
1609 ** considered a column by this function.
1610 **
1611 **   SELECT col FROM tbl;
1612 **   SELECT (SELECT col FROM tbl;
1613 **   SELECT (SELECT col FROM tbl);
1614 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1615 **
1616 ** The declaration type for any expression other than a column is NULL.
1617 **
1618 ** This routine has either 3 or 6 parameters depending on whether or not
1619 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1620 */
1621 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1623 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1624 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1625 #endif
1626 static const char *columnTypeImpl(
1627   NameContext *pNC,
1628 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1629   Expr *pExpr
1630 #else
1631   Expr *pExpr,
1632   const char **pzOrigDb,
1633   const char **pzOrigTab,
1634   const char **pzOrigCol
1635 #endif
1636 ){
1637   char const *zType = 0;
1638   int j;
1639 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1640   char const *zOrigDb = 0;
1641   char const *zOrigTab = 0;
1642   char const *zOrigCol = 0;
1643 #endif
1644 
1645   assert( pExpr!=0 );
1646   assert( pNC->pSrcList!=0 );
1647   switch( pExpr->op ){
1648     case TK_COLUMN: {
1649       /* The expression is a column. Locate the table the column is being
1650       ** extracted from in NameContext.pSrcList. This table may be real
1651       ** database table or a subquery.
1652       */
1653       Table *pTab = 0;            /* Table structure column is extracted from */
1654       Select *pS = 0;             /* Select the column is extracted from */
1655       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1656       while( pNC && !pTab ){
1657         SrcList *pTabList = pNC->pSrcList;
1658         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1659         if( j<pTabList->nSrc ){
1660           pTab = pTabList->a[j].pTab;
1661           pS = pTabList->a[j].pSelect;
1662         }else{
1663           pNC = pNC->pNext;
1664         }
1665       }
1666 
1667       if( pTab==0 ){
1668         /* At one time, code such as "SELECT new.x" within a trigger would
1669         ** cause this condition to run.  Since then, we have restructured how
1670         ** trigger code is generated and so this condition is no longer
1671         ** possible. However, it can still be true for statements like
1672         ** the following:
1673         **
1674         **   CREATE TABLE t1(col INTEGER);
1675         **   SELECT (SELECT t1.col) FROM FROM t1;
1676         **
1677         ** when columnType() is called on the expression "t1.col" in the
1678         ** sub-select. In this case, set the column type to NULL, even
1679         ** though it should really be "INTEGER".
1680         **
1681         ** This is not a problem, as the column type of "t1.col" is never
1682         ** used. When columnType() is called on the expression
1683         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1684         ** branch below.  */
1685         break;
1686       }
1687 
1688       assert( pTab && pExpr->y.pTab==pTab );
1689       if( pS ){
1690         /* The "table" is actually a sub-select or a view in the FROM clause
1691         ** of the SELECT statement. Return the declaration type and origin
1692         ** data for the result-set column of the sub-select.
1693         */
1694         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1695           /* If iCol is less than zero, then the expression requests the
1696           ** rowid of the sub-select or view. This expression is legal (see
1697           ** test case misc2.2.2) - it always evaluates to NULL.
1698           */
1699           NameContext sNC;
1700           Expr *p = pS->pEList->a[iCol].pExpr;
1701           sNC.pSrcList = pS->pSrc;
1702           sNC.pNext = pNC;
1703           sNC.pParse = pNC->pParse;
1704           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1705         }
1706       }else{
1707         /* A real table or a CTE table */
1708         assert( !pS );
1709 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1710         if( iCol<0 ) iCol = pTab->iPKey;
1711         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1712         if( iCol<0 ){
1713           zType = "INTEGER";
1714           zOrigCol = "rowid";
1715         }else{
1716           zOrigCol = pTab->aCol[iCol].zName;
1717           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1718         }
1719         zOrigTab = pTab->zName;
1720         if( pNC->pParse && pTab->pSchema ){
1721           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1722           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1723         }
1724 #else
1725         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1726         if( iCol<0 ){
1727           zType = "INTEGER";
1728         }else{
1729           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1730         }
1731 #endif
1732       }
1733       break;
1734     }
1735 #ifndef SQLITE_OMIT_SUBQUERY
1736     case TK_SELECT: {
1737       /* The expression is a sub-select. Return the declaration type and
1738       ** origin info for the single column in the result set of the SELECT
1739       ** statement.
1740       */
1741       NameContext sNC;
1742       Select *pS = pExpr->x.pSelect;
1743       Expr *p = pS->pEList->a[0].pExpr;
1744       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1745       sNC.pSrcList = pS->pSrc;
1746       sNC.pNext = pNC;
1747       sNC.pParse = pNC->pParse;
1748       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1749       break;
1750     }
1751 #endif
1752   }
1753 
1754 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1755   if( pzOrigDb ){
1756     assert( pzOrigTab && pzOrigCol );
1757     *pzOrigDb = zOrigDb;
1758     *pzOrigTab = zOrigTab;
1759     *pzOrigCol = zOrigCol;
1760   }
1761 #endif
1762   return zType;
1763 }
1764 
1765 /*
1766 ** Generate code that will tell the VDBE the declaration types of columns
1767 ** in the result set.
1768 */
1769 static void generateColumnTypes(
1770   Parse *pParse,      /* Parser context */
1771   SrcList *pTabList,  /* List of tables */
1772   ExprList *pEList    /* Expressions defining the result set */
1773 ){
1774 #ifndef SQLITE_OMIT_DECLTYPE
1775   Vdbe *v = pParse->pVdbe;
1776   int i;
1777   NameContext sNC;
1778   sNC.pSrcList = pTabList;
1779   sNC.pParse = pParse;
1780   sNC.pNext = 0;
1781   for(i=0; i<pEList->nExpr; i++){
1782     Expr *p = pEList->a[i].pExpr;
1783     const char *zType;
1784 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1785     const char *zOrigDb = 0;
1786     const char *zOrigTab = 0;
1787     const char *zOrigCol = 0;
1788     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1789 
1790     /* The vdbe must make its own copy of the column-type and other
1791     ** column specific strings, in case the schema is reset before this
1792     ** virtual machine is deleted.
1793     */
1794     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1795     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1796     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1797 #else
1798     zType = columnType(&sNC, p, 0, 0, 0);
1799 #endif
1800     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1801   }
1802 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1803 }
1804 
1805 
1806 /*
1807 ** Compute the column names for a SELECT statement.
1808 **
1809 ** The only guarantee that SQLite makes about column names is that if the
1810 ** column has an AS clause assigning it a name, that will be the name used.
1811 ** That is the only documented guarantee.  However, countless applications
1812 ** developed over the years have made baseless assumptions about column names
1813 ** and will break if those assumptions changes.  Hence, use extreme caution
1814 ** when modifying this routine to avoid breaking legacy.
1815 **
1816 ** See Also: sqlite3ColumnsFromExprList()
1817 **
1818 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1819 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1820 ** applications should operate this way.  Nevertheless, we need to support the
1821 ** other modes for legacy:
1822 **
1823 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1824 **                              originally appears in the SELECT statement.  In
1825 **                              other words, the zSpan of the result expression.
1826 **
1827 **    short=ON, full=OFF:       (This is the default setting).  If the result
1828 **                              refers directly to a table column, then the
1829 **                              result column name is just the table column
1830 **                              name: COLUMN.  Otherwise use zSpan.
1831 **
1832 **    full=ON, short=ANY:       If the result refers directly to a table column,
1833 **                              then the result column name with the table name
1834 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1835 */
1836 static void generateColumnNames(
1837   Parse *pParse,      /* Parser context */
1838   Select *pSelect     /* Generate column names for this SELECT statement */
1839 ){
1840   Vdbe *v = pParse->pVdbe;
1841   int i;
1842   Table *pTab;
1843   SrcList *pTabList;
1844   ExprList *pEList;
1845   sqlite3 *db = pParse->db;
1846   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1847   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1848 
1849 #ifndef SQLITE_OMIT_EXPLAIN
1850   /* If this is an EXPLAIN, skip this step */
1851   if( pParse->explain ){
1852     return;
1853   }
1854 #endif
1855 
1856   if( pParse->colNamesSet ) return;
1857   /* Column names are determined by the left-most term of a compound select */
1858   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1859   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1860   pTabList = pSelect->pSrc;
1861   pEList = pSelect->pEList;
1862   assert( v!=0 );
1863   assert( pTabList!=0 );
1864   pParse->colNamesSet = 1;
1865   fullName = (db->flags & SQLITE_FullColNames)!=0;
1866   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1867   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1868   for(i=0; i<pEList->nExpr; i++){
1869     Expr *p = pEList->a[i].pExpr;
1870 
1871     assert( p!=0 );
1872     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1873     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1874     if( pEList->a[i].zName ){
1875       /* An AS clause always takes first priority */
1876       char *zName = pEList->a[i].zName;
1877       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1878     }else if( srcName && p->op==TK_COLUMN ){
1879       char *zCol;
1880       int iCol = p->iColumn;
1881       pTab = p->y.pTab;
1882       assert( pTab!=0 );
1883       if( iCol<0 ) iCol = pTab->iPKey;
1884       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1885       if( iCol<0 ){
1886         zCol = "rowid";
1887       }else{
1888         zCol = pTab->aCol[iCol].zName;
1889       }
1890       if( fullName ){
1891         char *zName = 0;
1892         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1893         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1894       }else{
1895         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1896       }
1897     }else{
1898       const char *z = pEList->a[i].zSpan;
1899       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1900       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1901     }
1902   }
1903   generateColumnTypes(pParse, pTabList, pEList);
1904 }
1905 
1906 /*
1907 ** Given an expression list (which is really the list of expressions
1908 ** that form the result set of a SELECT statement) compute appropriate
1909 ** column names for a table that would hold the expression list.
1910 **
1911 ** All column names will be unique.
1912 **
1913 ** Only the column names are computed.  Column.zType, Column.zColl,
1914 ** and other fields of Column are zeroed.
1915 **
1916 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1917 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1918 **
1919 ** The only guarantee that SQLite makes about column names is that if the
1920 ** column has an AS clause assigning it a name, that will be the name used.
1921 ** That is the only documented guarantee.  However, countless applications
1922 ** developed over the years have made baseless assumptions about column names
1923 ** and will break if those assumptions changes.  Hence, use extreme caution
1924 ** when modifying this routine to avoid breaking legacy.
1925 **
1926 ** See Also: generateColumnNames()
1927 */
1928 int sqlite3ColumnsFromExprList(
1929   Parse *pParse,          /* Parsing context */
1930   ExprList *pEList,       /* Expr list from which to derive column names */
1931   i16 *pnCol,             /* Write the number of columns here */
1932   Column **paCol          /* Write the new column list here */
1933 ){
1934   sqlite3 *db = pParse->db;   /* Database connection */
1935   int i, j;                   /* Loop counters */
1936   u32 cnt;                    /* Index added to make the name unique */
1937   Column *aCol, *pCol;        /* For looping over result columns */
1938   int nCol;                   /* Number of columns in the result set */
1939   char *zName;                /* Column name */
1940   int nName;                  /* Size of name in zName[] */
1941   Hash ht;                    /* Hash table of column names */
1942 
1943   sqlite3HashInit(&ht);
1944   if( pEList ){
1945     nCol = pEList->nExpr;
1946     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1947     testcase( aCol==0 );
1948     if( nCol>32767 ) nCol = 32767;
1949   }else{
1950     nCol = 0;
1951     aCol = 0;
1952   }
1953   assert( nCol==(i16)nCol );
1954   *pnCol = nCol;
1955   *paCol = aCol;
1956 
1957   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1958     /* Get an appropriate name for the column
1959     */
1960     if( (zName = pEList->a[i].zName)!=0 ){
1961       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1962     }else{
1963       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1964       while( pColExpr->op==TK_DOT ){
1965         pColExpr = pColExpr->pRight;
1966         assert( pColExpr!=0 );
1967       }
1968       if( pColExpr->op==TK_COLUMN ){
1969         /* For columns use the column name name */
1970         int iCol = pColExpr->iColumn;
1971         Table *pTab = pColExpr->y.pTab;
1972         assert( pTab!=0 );
1973         if( iCol<0 ) iCol = pTab->iPKey;
1974         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1975       }else if( pColExpr->op==TK_ID ){
1976         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1977         zName = pColExpr->u.zToken;
1978       }else{
1979         /* Use the original text of the column expression as its name */
1980         zName = pEList->a[i].zSpan;
1981       }
1982     }
1983     if( zName ){
1984       zName = sqlite3DbStrDup(db, zName);
1985     }else{
1986       zName = sqlite3MPrintf(db,"column%d",i+1);
1987     }
1988 
1989     /* Make sure the column name is unique.  If the name is not unique,
1990     ** append an integer to the name so that it becomes unique.
1991     */
1992     cnt = 0;
1993     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1994       nName = sqlite3Strlen30(zName);
1995       if( nName>0 ){
1996         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1997         if( zName[j]==':' ) nName = j;
1998       }
1999       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2000       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2001     }
2002     pCol->zName = zName;
2003     sqlite3ColumnPropertiesFromName(0, pCol);
2004     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2005       sqlite3OomFault(db);
2006     }
2007   }
2008   sqlite3HashClear(&ht);
2009   if( db->mallocFailed ){
2010     for(j=0; j<i; j++){
2011       sqlite3DbFree(db, aCol[j].zName);
2012     }
2013     sqlite3DbFree(db, aCol);
2014     *paCol = 0;
2015     *pnCol = 0;
2016     return SQLITE_NOMEM_BKPT;
2017   }
2018   return SQLITE_OK;
2019 }
2020 
2021 /*
2022 ** Add type and collation information to a column list based on
2023 ** a SELECT statement.
2024 **
2025 ** The column list presumably came from selectColumnNamesFromExprList().
2026 ** The column list has only names, not types or collations.  This
2027 ** routine goes through and adds the types and collations.
2028 **
2029 ** This routine requires that all identifiers in the SELECT
2030 ** statement be resolved.
2031 */
2032 void sqlite3SelectAddColumnTypeAndCollation(
2033   Parse *pParse,        /* Parsing contexts */
2034   Table *pTab,          /* Add column type information to this table */
2035   Select *pSelect,      /* SELECT used to determine types and collations */
2036   char aff              /* Default affinity for columns */
2037 ){
2038   sqlite3 *db = pParse->db;
2039   NameContext sNC;
2040   Column *pCol;
2041   CollSeq *pColl;
2042   int i;
2043   Expr *p;
2044   struct ExprList_item *a;
2045 
2046   assert( pSelect!=0 );
2047   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2048   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2049   if( db->mallocFailed ) return;
2050   memset(&sNC, 0, sizeof(sNC));
2051   sNC.pSrcList = pSelect->pSrc;
2052   a = pSelect->pEList->a;
2053   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2054     const char *zType;
2055     int n, m;
2056     p = a[i].pExpr;
2057     zType = columnType(&sNC, p, 0, 0, 0);
2058     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2059     pCol->affinity = sqlite3ExprAffinity(p);
2060     if( zType ){
2061       m = sqlite3Strlen30(zType);
2062       n = sqlite3Strlen30(pCol->zName);
2063       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2064       if( pCol->zName ){
2065         memcpy(&pCol->zName[n+1], zType, m+1);
2066         pCol->colFlags |= COLFLAG_HASTYPE;
2067       }
2068     }
2069     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2070     pColl = sqlite3ExprCollSeq(pParse, p);
2071     if( pColl && pCol->zColl==0 ){
2072       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2073     }
2074   }
2075   pTab->szTabRow = 1; /* Any non-zero value works */
2076 }
2077 
2078 /*
2079 ** Given a SELECT statement, generate a Table structure that describes
2080 ** the result set of that SELECT.
2081 */
2082 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2083   Table *pTab;
2084   sqlite3 *db = pParse->db;
2085   u64 savedFlags;
2086 
2087   savedFlags = db->flags;
2088   db->flags &= ~(u64)SQLITE_FullColNames;
2089   db->flags |= SQLITE_ShortColNames;
2090   sqlite3SelectPrep(pParse, pSelect, 0);
2091   db->flags = savedFlags;
2092   if( pParse->nErr ) return 0;
2093   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2094   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2095   if( pTab==0 ){
2096     return 0;
2097   }
2098   pTab->nTabRef = 1;
2099   pTab->zName = 0;
2100   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2101   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2102   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2103   pTab->iPKey = -1;
2104   if( db->mallocFailed ){
2105     sqlite3DeleteTable(db, pTab);
2106     return 0;
2107   }
2108   return pTab;
2109 }
2110 
2111 /*
2112 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2113 ** If an error occurs, return NULL and leave a message in pParse.
2114 */
2115 Vdbe *sqlite3GetVdbe(Parse *pParse){
2116   if( pParse->pVdbe ){
2117     return pParse->pVdbe;
2118   }
2119   if( pParse->pToplevel==0
2120    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2121   ){
2122     pParse->okConstFactor = 1;
2123   }
2124   return sqlite3VdbeCreate(pParse);
2125 }
2126 
2127 
2128 /*
2129 ** Compute the iLimit and iOffset fields of the SELECT based on the
2130 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2131 ** that appear in the original SQL statement after the LIMIT and OFFSET
2132 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2133 ** are the integer memory register numbers for counters used to compute
2134 ** the limit and offset.  If there is no limit and/or offset, then
2135 ** iLimit and iOffset are negative.
2136 **
2137 ** This routine changes the values of iLimit and iOffset only if
2138 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2139 ** and iOffset should have been preset to appropriate default values (zero)
2140 ** prior to calling this routine.
2141 **
2142 ** The iOffset register (if it exists) is initialized to the value
2143 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2144 ** iOffset+1 is initialized to LIMIT+OFFSET.
2145 **
2146 ** Only if pLimit->pLeft!=0 do the limit registers get
2147 ** redefined.  The UNION ALL operator uses this property to force
2148 ** the reuse of the same limit and offset registers across multiple
2149 ** SELECT statements.
2150 */
2151 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2152   Vdbe *v = 0;
2153   int iLimit = 0;
2154   int iOffset;
2155   int n;
2156   Expr *pLimit = p->pLimit;
2157 
2158   if( p->iLimit ) return;
2159 
2160   /*
2161   ** "LIMIT -1" always shows all rows.  There is some
2162   ** controversy about what the correct behavior should be.
2163   ** The current implementation interprets "LIMIT 0" to mean
2164   ** no rows.
2165   */
2166   if( pLimit ){
2167     assert( pLimit->op==TK_LIMIT );
2168     assert( pLimit->pLeft!=0 );
2169     p->iLimit = iLimit = ++pParse->nMem;
2170     v = sqlite3GetVdbe(pParse);
2171     assert( v!=0 );
2172     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2173       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2174       VdbeComment((v, "LIMIT counter"));
2175       if( n==0 ){
2176         sqlite3VdbeGoto(v, iBreak);
2177       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2178         p->nSelectRow = sqlite3LogEst((u64)n);
2179         p->selFlags |= SF_FixedLimit;
2180       }
2181     }else{
2182       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2183       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2184       VdbeComment((v, "LIMIT counter"));
2185       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2186     }
2187     if( pLimit->pRight ){
2188       p->iOffset = iOffset = ++pParse->nMem;
2189       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2190       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2191       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2192       VdbeComment((v, "OFFSET counter"));
2193       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2194       VdbeComment((v, "LIMIT+OFFSET"));
2195     }
2196   }
2197 }
2198 
2199 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2200 /*
2201 ** Return the appropriate collating sequence for the iCol-th column of
2202 ** the result set for the compound-select statement "p".  Return NULL if
2203 ** the column has no default collating sequence.
2204 **
2205 ** The collating sequence for the compound select is taken from the
2206 ** left-most term of the select that has a collating sequence.
2207 */
2208 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2209   CollSeq *pRet;
2210   if( p->pPrior ){
2211     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2212   }else{
2213     pRet = 0;
2214   }
2215   assert( iCol>=0 );
2216   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2217   ** have been thrown during name resolution and we would not have gotten
2218   ** this far */
2219   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2220     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2221   }
2222   return pRet;
2223 }
2224 
2225 /*
2226 ** The select statement passed as the second parameter is a compound SELECT
2227 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2228 ** structure suitable for implementing the ORDER BY.
2229 **
2230 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2231 ** function is responsible for ensuring that this structure is eventually
2232 ** freed.
2233 */
2234 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2235   ExprList *pOrderBy = p->pOrderBy;
2236   int nOrderBy = p->pOrderBy->nExpr;
2237   sqlite3 *db = pParse->db;
2238   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2239   if( pRet ){
2240     int i;
2241     for(i=0; i<nOrderBy; i++){
2242       struct ExprList_item *pItem = &pOrderBy->a[i];
2243       Expr *pTerm = pItem->pExpr;
2244       CollSeq *pColl;
2245 
2246       if( pTerm->flags & EP_Collate ){
2247         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2248       }else{
2249         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2250         if( pColl==0 ) pColl = db->pDfltColl;
2251         pOrderBy->a[i].pExpr =
2252           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2253       }
2254       assert( sqlite3KeyInfoIsWriteable(pRet) );
2255       pRet->aColl[i] = pColl;
2256       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2257     }
2258   }
2259 
2260   return pRet;
2261 }
2262 
2263 #ifndef SQLITE_OMIT_CTE
2264 /*
2265 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2266 ** query of the form:
2267 **
2268 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2269 **                         \___________/             \_______________/
2270 **                           p->pPrior                      p
2271 **
2272 **
2273 ** There is exactly one reference to the recursive-table in the FROM clause
2274 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2275 **
2276 ** The setup-query runs once to generate an initial set of rows that go
2277 ** into a Queue table.  Rows are extracted from the Queue table one by
2278 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2279 ** extracted row (now in the iCurrent table) becomes the content of the
2280 ** recursive-table for a recursive-query run.  The output of the recursive-query
2281 ** is added back into the Queue table.  Then another row is extracted from Queue
2282 ** and the iteration continues until the Queue table is empty.
2283 **
2284 ** If the compound query operator is UNION then no duplicate rows are ever
2285 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2286 ** that have ever been inserted into Queue and causes duplicates to be
2287 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2288 **
2289 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2290 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2291 ** an ORDER BY, the Queue table is just a FIFO.
2292 **
2293 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2294 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2295 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2296 ** with a positive value, then the first OFFSET outputs are discarded rather
2297 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2298 ** rows have been skipped.
2299 */
2300 static void generateWithRecursiveQuery(
2301   Parse *pParse,        /* Parsing context */
2302   Select *p,            /* The recursive SELECT to be coded */
2303   SelectDest *pDest     /* What to do with query results */
2304 ){
2305   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2306   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2307   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2308   Select *pSetup = p->pPrior;   /* The setup query */
2309   int addrTop;                  /* Top of the loop */
2310   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2311   int iCurrent = 0;             /* The Current table */
2312   int regCurrent;               /* Register holding Current table */
2313   int iQueue;                   /* The Queue table */
2314   int iDistinct = 0;            /* To ensure unique results if UNION */
2315   int eDest = SRT_Fifo;         /* How to write to Queue */
2316   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2317   int i;                        /* Loop counter */
2318   int rc;                       /* Result code */
2319   ExprList *pOrderBy;           /* The ORDER BY clause */
2320   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2321   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2322 
2323 #ifndef SQLITE_OMIT_WINDOWFUNC
2324   if( p->pWin ){
2325     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2326     return;
2327   }
2328 #endif
2329 
2330   /* Obtain authorization to do a recursive query */
2331   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2332 
2333   /* Process the LIMIT and OFFSET clauses, if they exist */
2334   addrBreak = sqlite3VdbeMakeLabel(pParse);
2335   p->nSelectRow = 320;  /* 4 billion rows */
2336   computeLimitRegisters(pParse, p, addrBreak);
2337   pLimit = p->pLimit;
2338   regLimit = p->iLimit;
2339   regOffset = p->iOffset;
2340   p->pLimit = 0;
2341   p->iLimit = p->iOffset = 0;
2342   pOrderBy = p->pOrderBy;
2343 
2344   /* Locate the cursor number of the Current table */
2345   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2346     if( pSrc->a[i].fg.isRecursive ){
2347       iCurrent = pSrc->a[i].iCursor;
2348       break;
2349     }
2350   }
2351 
2352   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2353   ** the Distinct table must be exactly one greater than Queue in order
2354   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2355   iQueue = pParse->nTab++;
2356   if( p->op==TK_UNION ){
2357     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2358     iDistinct = pParse->nTab++;
2359   }else{
2360     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2361   }
2362   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2363 
2364   /* Allocate cursors for Current, Queue, and Distinct. */
2365   regCurrent = ++pParse->nMem;
2366   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2367   if( pOrderBy ){
2368     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2369     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2370                       (char*)pKeyInfo, P4_KEYINFO);
2371     destQueue.pOrderBy = pOrderBy;
2372   }else{
2373     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2374   }
2375   VdbeComment((v, "Queue table"));
2376   if( iDistinct ){
2377     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2378     p->selFlags |= SF_UsesEphemeral;
2379   }
2380 
2381   /* Detach the ORDER BY clause from the compound SELECT */
2382   p->pOrderBy = 0;
2383 
2384   /* Store the results of the setup-query in Queue. */
2385   pSetup->pNext = 0;
2386   ExplainQueryPlan((pParse, 1, "SETUP"));
2387   rc = sqlite3Select(pParse, pSetup, &destQueue);
2388   pSetup->pNext = p;
2389   if( rc ) goto end_of_recursive_query;
2390 
2391   /* Find the next row in the Queue and output that row */
2392   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2393 
2394   /* Transfer the next row in Queue over to Current */
2395   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2396   if( pOrderBy ){
2397     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2398   }else{
2399     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2400   }
2401   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2402 
2403   /* Output the single row in Current */
2404   addrCont = sqlite3VdbeMakeLabel(pParse);
2405   codeOffset(v, regOffset, addrCont);
2406   selectInnerLoop(pParse, p, iCurrent,
2407       0, 0, pDest, addrCont, addrBreak);
2408   if( regLimit ){
2409     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2410     VdbeCoverage(v);
2411   }
2412   sqlite3VdbeResolveLabel(v, addrCont);
2413 
2414   /* Execute the recursive SELECT taking the single row in Current as
2415   ** the value for the recursive-table. Store the results in the Queue.
2416   */
2417   if( p->selFlags & SF_Aggregate ){
2418     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2419   }else{
2420     p->pPrior = 0;
2421     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2422     sqlite3Select(pParse, p, &destQueue);
2423     assert( p->pPrior==0 );
2424     p->pPrior = pSetup;
2425   }
2426 
2427   /* Keep running the loop until the Queue is empty */
2428   sqlite3VdbeGoto(v, addrTop);
2429   sqlite3VdbeResolveLabel(v, addrBreak);
2430 
2431 end_of_recursive_query:
2432   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2433   p->pOrderBy = pOrderBy;
2434   p->pLimit = pLimit;
2435   return;
2436 }
2437 #endif /* SQLITE_OMIT_CTE */
2438 
2439 /* Forward references */
2440 static int multiSelectOrderBy(
2441   Parse *pParse,        /* Parsing context */
2442   Select *p,            /* The right-most of SELECTs to be coded */
2443   SelectDest *pDest     /* What to do with query results */
2444 );
2445 
2446 /*
2447 ** Handle the special case of a compound-select that originates from a
2448 ** VALUES clause.  By handling this as a special case, we avoid deep
2449 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2450 ** on a VALUES clause.
2451 **
2452 ** Because the Select object originates from a VALUES clause:
2453 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2454 **   (2) All terms are UNION ALL
2455 **   (3) There is no ORDER BY clause
2456 **
2457 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2458 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2459 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2460 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2461 */
2462 static int multiSelectValues(
2463   Parse *pParse,        /* Parsing context */
2464   Select *p,            /* The right-most of SELECTs to be coded */
2465   SelectDest *pDest     /* What to do with query results */
2466 ){
2467   int nRow = 1;
2468   int rc = 0;
2469   int bShowAll = p->pLimit==0;
2470   assert( p->selFlags & SF_MultiValue );
2471   do{
2472     assert( p->selFlags & SF_Values );
2473     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2474     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2475     if( p->pPrior==0 ) break;
2476     assert( p->pPrior->pNext==p );
2477     p = p->pPrior;
2478     nRow += bShowAll;
2479   }while(1);
2480   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2481                     nRow==1 ? "" : "S"));
2482   while( p ){
2483     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2484     if( !bShowAll ) break;
2485     p->nSelectRow = nRow;
2486     p = p->pNext;
2487   }
2488   return rc;
2489 }
2490 
2491 /*
2492 ** This routine is called to process a compound query form from
2493 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2494 ** INTERSECT
2495 **
2496 ** "p" points to the right-most of the two queries.  the query on the
2497 ** left is p->pPrior.  The left query could also be a compound query
2498 ** in which case this routine will be called recursively.
2499 **
2500 ** The results of the total query are to be written into a destination
2501 ** of type eDest with parameter iParm.
2502 **
2503 ** Example 1:  Consider a three-way compound SQL statement.
2504 **
2505 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2506 **
2507 ** This statement is parsed up as follows:
2508 **
2509 **     SELECT c FROM t3
2510 **      |
2511 **      `----->  SELECT b FROM t2
2512 **                |
2513 **                `------>  SELECT a FROM t1
2514 **
2515 ** The arrows in the diagram above represent the Select.pPrior pointer.
2516 ** So if this routine is called with p equal to the t3 query, then
2517 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2518 **
2519 ** Notice that because of the way SQLite parses compound SELECTs, the
2520 ** individual selects always group from left to right.
2521 */
2522 static int multiSelect(
2523   Parse *pParse,        /* Parsing context */
2524   Select *p,            /* The right-most of SELECTs to be coded */
2525   SelectDest *pDest     /* What to do with query results */
2526 ){
2527   int rc = SQLITE_OK;   /* Success code from a subroutine */
2528   Select *pPrior;       /* Another SELECT immediately to our left */
2529   Vdbe *v;              /* Generate code to this VDBE */
2530   SelectDest dest;      /* Alternative data destination */
2531   Select *pDelete = 0;  /* Chain of simple selects to delete */
2532   sqlite3 *db;          /* Database connection */
2533 
2534   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2535   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2536   */
2537   assert( p && p->pPrior );  /* Calling function guarantees this much */
2538   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2539   assert( p->selFlags & SF_Compound );
2540   db = pParse->db;
2541   pPrior = p->pPrior;
2542   dest = *pDest;
2543   if( pPrior->pOrderBy || pPrior->pLimit ){
2544     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2545       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2546     rc = 1;
2547     goto multi_select_end;
2548   }
2549 
2550   v = sqlite3GetVdbe(pParse);
2551   assert( v!=0 );  /* The VDBE already created by calling function */
2552 
2553   /* Create the destination temporary table if necessary
2554   */
2555   if( dest.eDest==SRT_EphemTab ){
2556     assert( p->pEList );
2557     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2558     dest.eDest = SRT_Table;
2559   }
2560 
2561   /* Special handling for a compound-select that originates as a VALUES clause.
2562   */
2563   if( p->selFlags & SF_MultiValue ){
2564     rc = multiSelectValues(pParse, p, &dest);
2565     goto multi_select_end;
2566   }
2567 
2568   /* Make sure all SELECTs in the statement have the same number of elements
2569   ** in their result sets.
2570   */
2571   assert( p->pEList && pPrior->pEList );
2572   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2573 
2574 #ifndef SQLITE_OMIT_CTE
2575   if( p->selFlags & SF_Recursive ){
2576     generateWithRecursiveQuery(pParse, p, &dest);
2577   }else
2578 #endif
2579 
2580   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2581   */
2582   if( p->pOrderBy ){
2583     return multiSelectOrderBy(pParse, p, pDest);
2584   }else{
2585 
2586 #ifndef SQLITE_OMIT_EXPLAIN
2587     if( pPrior->pPrior==0 ){
2588       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2589       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2590     }
2591 #endif
2592 
2593     /* Generate code for the left and right SELECT statements.
2594     */
2595     switch( p->op ){
2596       case TK_ALL: {
2597         int addr = 0;
2598         int nLimit;
2599         assert( !pPrior->pLimit );
2600         pPrior->iLimit = p->iLimit;
2601         pPrior->iOffset = p->iOffset;
2602         pPrior->pLimit = p->pLimit;
2603         rc = sqlite3Select(pParse, pPrior, &dest);
2604         p->pLimit = 0;
2605         if( rc ){
2606           goto multi_select_end;
2607         }
2608         p->pPrior = 0;
2609         p->iLimit = pPrior->iLimit;
2610         p->iOffset = pPrior->iOffset;
2611         if( p->iLimit ){
2612           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2613           VdbeComment((v, "Jump ahead if LIMIT reached"));
2614           if( p->iOffset ){
2615             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2616                               p->iLimit, p->iOffset+1, p->iOffset);
2617           }
2618         }
2619         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2620         rc = sqlite3Select(pParse, p, &dest);
2621         testcase( rc!=SQLITE_OK );
2622         pDelete = p->pPrior;
2623         p->pPrior = pPrior;
2624         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2625         if( pPrior->pLimit
2626          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2627          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2628         ){
2629           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2630         }
2631         if( addr ){
2632           sqlite3VdbeJumpHere(v, addr);
2633         }
2634         break;
2635       }
2636       case TK_EXCEPT:
2637       case TK_UNION: {
2638         int unionTab;    /* Cursor number of the temp table holding result */
2639         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2640         int priorOp;     /* The SRT_ operation to apply to prior selects */
2641         Expr *pLimit;    /* Saved values of p->nLimit  */
2642         int addr;
2643         SelectDest uniondest;
2644 
2645         testcase( p->op==TK_EXCEPT );
2646         testcase( p->op==TK_UNION );
2647         priorOp = SRT_Union;
2648         if( dest.eDest==priorOp ){
2649           /* We can reuse a temporary table generated by a SELECT to our
2650           ** right.
2651           */
2652           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2653           unionTab = dest.iSDParm;
2654         }else{
2655           /* We will need to create our own temporary table to hold the
2656           ** intermediate results.
2657           */
2658           unionTab = pParse->nTab++;
2659           assert( p->pOrderBy==0 );
2660           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2661           assert( p->addrOpenEphm[0] == -1 );
2662           p->addrOpenEphm[0] = addr;
2663           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2664           assert( p->pEList );
2665         }
2666 
2667         /* Code the SELECT statements to our left
2668         */
2669         assert( !pPrior->pOrderBy );
2670         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2671         rc = sqlite3Select(pParse, pPrior, &uniondest);
2672         if( rc ){
2673           goto multi_select_end;
2674         }
2675 
2676         /* Code the current SELECT statement
2677         */
2678         if( p->op==TK_EXCEPT ){
2679           op = SRT_Except;
2680         }else{
2681           assert( p->op==TK_UNION );
2682           op = SRT_Union;
2683         }
2684         p->pPrior = 0;
2685         pLimit = p->pLimit;
2686         p->pLimit = 0;
2687         uniondest.eDest = op;
2688         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2689                           selectOpName(p->op)));
2690         rc = sqlite3Select(pParse, p, &uniondest);
2691         testcase( rc!=SQLITE_OK );
2692         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2693         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2694         sqlite3ExprListDelete(db, p->pOrderBy);
2695         pDelete = p->pPrior;
2696         p->pPrior = pPrior;
2697         p->pOrderBy = 0;
2698         if( p->op==TK_UNION ){
2699           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2700         }
2701         sqlite3ExprDelete(db, p->pLimit);
2702         p->pLimit = pLimit;
2703         p->iLimit = 0;
2704         p->iOffset = 0;
2705 
2706         /* Convert the data in the temporary table into whatever form
2707         ** it is that we currently need.
2708         */
2709         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2710         if( dest.eDest!=priorOp ){
2711           int iCont, iBreak, iStart;
2712           assert( p->pEList );
2713           iBreak = sqlite3VdbeMakeLabel(pParse);
2714           iCont = sqlite3VdbeMakeLabel(pParse);
2715           computeLimitRegisters(pParse, p, iBreak);
2716           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2717           iStart = sqlite3VdbeCurrentAddr(v);
2718           selectInnerLoop(pParse, p, unionTab,
2719                           0, 0, &dest, iCont, iBreak);
2720           sqlite3VdbeResolveLabel(v, iCont);
2721           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2722           sqlite3VdbeResolveLabel(v, iBreak);
2723           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2724         }
2725         break;
2726       }
2727       default: assert( p->op==TK_INTERSECT ); {
2728         int tab1, tab2;
2729         int iCont, iBreak, iStart;
2730         Expr *pLimit;
2731         int addr;
2732         SelectDest intersectdest;
2733         int r1;
2734 
2735         /* INTERSECT is different from the others since it requires
2736         ** two temporary tables.  Hence it has its own case.  Begin
2737         ** by allocating the tables we will need.
2738         */
2739         tab1 = pParse->nTab++;
2740         tab2 = pParse->nTab++;
2741         assert( p->pOrderBy==0 );
2742 
2743         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2744         assert( p->addrOpenEphm[0] == -1 );
2745         p->addrOpenEphm[0] = addr;
2746         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2747         assert( p->pEList );
2748 
2749         /* Code the SELECTs to our left into temporary table "tab1".
2750         */
2751         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2752         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2753         if( rc ){
2754           goto multi_select_end;
2755         }
2756 
2757         /* Code the current SELECT into temporary table "tab2"
2758         */
2759         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2760         assert( p->addrOpenEphm[1] == -1 );
2761         p->addrOpenEphm[1] = addr;
2762         p->pPrior = 0;
2763         pLimit = p->pLimit;
2764         p->pLimit = 0;
2765         intersectdest.iSDParm = tab2;
2766         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2767                           selectOpName(p->op)));
2768         rc = sqlite3Select(pParse, p, &intersectdest);
2769         testcase( rc!=SQLITE_OK );
2770         pDelete = p->pPrior;
2771         p->pPrior = pPrior;
2772         if( p->nSelectRow>pPrior->nSelectRow ){
2773           p->nSelectRow = pPrior->nSelectRow;
2774         }
2775         sqlite3ExprDelete(db, p->pLimit);
2776         p->pLimit = pLimit;
2777 
2778         /* Generate code to take the intersection of the two temporary
2779         ** tables.
2780         */
2781         assert( p->pEList );
2782         iBreak = sqlite3VdbeMakeLabel(pParse);
2783         iCont = sqlite3VdbeMakeLabel(pParse);
2784         computeLimitRegisters(pParse, p, iBreak);
2785         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2786         r1 = sqlite3GetTempReg(pParse);
2787         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2788         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2789         VdbeCoverage(v);
2790         sqlite3ReleaseTempReg(pParse, r1);
2791         selectInnerLoop(pParse, p, tab1,
2792                         0, 0, &dest, iCont, iBreak);
2793         sqlite3VdbeResolveLabel(v, iCont);
2794         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2795         sqlite3VdbeResolveLabel(v, iBreak);
2796         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2797         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2798         break;
2799       }
2800     }
2801 
2802   #ifndef SQLITE_OMIT_EXPLAIN
2803     if( p->pNext==0 ){
2804       ExplainQueryPlanPop(pParse);
2805     }
2806   #endif
2807   }
2808 
2809   /* Compute collating sequences used by
2810   ** temporary tables needed to implement the compound select.
2811   ** Attach the KeyInfo structure to all temporary tables.
2812   **
2813   ** This section is run by the right-most SELECT statement only.
2814   ** SELECT statements to the left always skip this part.  The right-most
2815   ** SELECT might also skip this part if it has no ORDER BY clause and
2816   ** no temp tables are required.
2817   */
2818   if( p->selFlags & SF_UsesEphemeral ){
2819     int i;                        /* Loop counter */
2820     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2821     Select *pLoop;                /* For looping through SELECT statements */
2822     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2823     int nCol;                     /* Number of columns in result set */
2824 
2825     assert( p->pNext==0 );
2826     nCol = p->pEList->nExpr;
2827     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2828     if( !pKeyInfo ){
2829       rc = SQLITE_NOMEM_BKPT;
2830       goto multi_select_end;
2831     }
2832     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2833       *apColl = multiSelectCollSeq(pParse, p, i);
2834       if( 0==*apColl ){
2835         *apColl = db->pDfltColl;
2836       }
2837     }
2838 
2839     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2840       for(i=0; i<2; i++){
2841         int addr = pLoop->addrOpenEphm[i];
2842         if( addr<0 ){
2843           /* If [0] is unused then [1] is also unused.  So we can
2844           ** always safely abort as soon as the first unused slot is found */
2845           assert( pLoop->addrOpenEphm[1]<0 );
2846           break;
2847         }
2848         sqlite3VdbeChangeP2(v, addr, nCol);
2849         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2850                             P4_KEYINFO);
2851         pLoop->addrOpenEphm[i] = -1;
2852       }
2853     }
2854     sqlite3KeyInfoUnref(pKeyInfo);
2855   }
2856 
2857 multi_select_end:
2858   pDest->iSdst = dest.iSdst;
2859   pDest->nSdst = dest.nSdst;
2860   sqlite3SelectDelete(db, pDelete);
2861   return rc;
2862 }
2863 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2864 
2865 /*
2866 ** Error message for when two or more terms of a compound select have different
2867 ** size result sets.
2868 */
2869 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2870   if( p->selFlags & SF_Values ){
2871     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2872   }else{
2873     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2874       " do not have the same number of result columns", selectOpName(p->op));
2875   }
2876 }
2877 
2878 /*
2879 ** Code an output subroutine for a coroutine implementation of a
2880 ** SELECT statment.
2881 **
2882 ** The data to be output is contained in pIn->iSdst.  There are
2883 ** pIn->nSdst columns to be output.  pDest is where the output should
2884 ** be sent.
2885 **
2886 ** regReturn is the number of the register holding the subroutine
2887 ** return address.
2888 **
2889 ** If regPrev>0 then it is the first register in a vector that
2890 ** records the previous output.  mem[regPrev] is a flag that is false
2891 ** if there has been no previous output.  If regPrev>0 then code is
2892 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2893 ** keys.
2894 **
2895 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2896 ** iBreak.
2897 */
2898 static int generateOutputSubroutine(
2899   Parse *pParse,          /* Parsing context */
2900   Select *p,              /* The SELECT statement */
2901   SelectDest *pIn,        /* Coroutine supplying data */
2902   SelectDest *pDest,      /* Where to send the data */
2903   int regReturn,          /* The return address register */
2904   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2905   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2906   int iBreak              /* Jump here if we hit the LIMIT */
2907 ){
2908   Vdbe *v = pParse->pVdbe;
2909   int iContinue;
2910   int addr;
2911 
2912   addr = sqlite3VdbeCurrentAddr(v);
2913   iContinue = sqlite3VdbeMakeLabel(pParse);
2914 
2915   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2916   */
2917   if( regPrev ){
2918     int addr1, addr2;
2919     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2920     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2921                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2922     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2923     sqlite3VdbeJumpHere(v, addr1);
2924     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2925     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2926   }
2927   if( pParse->db->mallocFailed ) return 0;
2928 
2929   /* Suppress the first OFFSET entries if there is an OFFSET clause
2930   */
2931   codeOffset(v, p->iOffset, iContinue);
2932 
2933   assert( pDest->eDest!=SRT_Exists );
2934   assert( pDest->eDest!=SRT_Table );
2935   switch( pDest->eDest ){
2936     /* Store the result as data using a unique key.
2937     */
2938     case SRT_EphemTab: {
2939       int r1 = sqlite3GetTempReg(pParse);
2940       int r2 = sqlite3GetTempReg(pParse);
2941       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2942       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2943       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2944       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2945       sqlite3ReleaseTempReg(pParse, r2);
2946       sqlite3ReleaseTempReg(pParse, r1);
2947       break;
2948     }
2949 
2950 #ifndef SQLITE_OMIT_SUBQUERY
2951     /* If we are creating a set for an "expr IN (SELECT ...)".
2952     */
2953     case SRT_Set: {
2954       int r1;
2955       testcase( pIn->nSdst>1 );
2956       r1 = sqlite3GetTempReg(pParse);
2957       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2958           r1, pDest->zAffSdst, pIn->nSdst);
2959       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2960                            pIn->iSdst, pIn->nSdst);
2961       sqlite3ReleaseTempReg(pParse, r1);
2962       break;
2963     }
2964 
2965     /* If this is a scalar select that is part of an expression, then
2966     ** store the results in the appropriate memory cell and break out
2967     ** of the scan loop.  Note that the select might return multiple columns
2968     ** if it is the RHS of a row-value IN operator.
2969     */
2970     case SRT_Mem: {
2971       if( pParse->nErr==0 ){
2972         testcase( pIn->nSdst>1 );
2973         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
2974       }
2975       /* The LIMIT clause will jump out of the loop for us */
2976       break;
2977     }
2978 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2979 
2980     /* The results are stored in a sequence of registers
2981     ** starting at pDest->iSdst.  Then the co-routine yields.
2982     */
2983     case SRT_Coroutine: {
2984       if( pDest->iSdst==0 ){
2985         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2986         pDest->nSdst = pIn->nSdst;
2987       }
2988       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2989       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2990       break;
2991     }
2992 
2993     /* If none of the above, then the result destination must be
2994     ** SRT_Output.  This routine is never called with any other
2995     ** destination other than the ones handled above or SRT_Output.
2996     **
2997     ** For SRT_Output, results are stored in a sequence of registers.
2998     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2999     ** return the next row of result.
3000     */
3001     default: {
3002       assert( pDest->eDest==SRT_Output );
3003       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3004       break;
3005     }
3006   }
3007 
3008   /* Jump to the end of the loop if the LIMIT is reached.
3009   */
3010   if( p->iLimit ){
3011     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3012   }
3013 
3014   /* Generate the subroutine return
3015   */
3016   sqlite3VdbeResolveLabel(v, iContinue);
3017   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3018 
3019   return addr;
3020 }
3021 
3022 /*
3023 ** Alternative compound select code generator for cases when there
3024 ** is an ORDER BY clause.
3025 **
3026 ** We assume a query of the following form:
3027 **
3028 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3029 **
3030 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3031 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3032 ** co-routines.  Then run the co-routines in parallel and merge the results
3033 ** into the output.  In addition to the two coroutines (called selectA and
3034 ** selectB) there are 7 subroutines:
3035 **
3036 **    outA:    Move the output of the selectA coroutine into the output
3037 **             of the compound query.
3038 **
3039 **    outB:    Move the output of the selectB coroutine into the output
3040 **             of the compound query.  (Only generated for UNION and
3041 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3042 **             appears only in B.)
3043 **
3044 **    AltB:    Called when there is data from both coroutines and A<B.
3045 **
3046 **    AeqB:    Called when there is data from both coroutines and A==B.
3047 **
3048 **    AgtB:    Called when there is data from both coroutines and A>B.
3049 **
3050 **    EofA:    Called when data is exhausted from selectA.
3051 **
3052 **    EofB:    Called when data is exhausted from selectB.
3053 **
3054 ** The implementation of the latter five subroutines depend on which
3055 ** <operator> is used:
3056 **
3057 **
3058 **             UNION ALL         UNION            EXCEPT          INTERSECT
3059 **          -------------  -----------------  --------------  -----------------
3060 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3061 **
3062 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3063 **
3064 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3065 **
3066 **   EofA:   outB, nextB      outB, nextB          halt             halt
3067 **
3068 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3069 **
3070 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3071 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3072 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3073 ** following nextX causes a jump to the end of the select processing.
3074 **
3075 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3076 ** within the output subroutine.  The regPrev register set holds the previously
3077 ** output value.  A comparison is made against this value and the output
3078 ** is skipped if the next results would be the same as the previous.
3079 **
3080 ** The implementation plan is to implement the two coroutines and seven
3081 ** subroutines first, then put the control logic at the bottom.  Like this:
3082 **
3083 **          goto Init
3084 **     coA: coroutine for left query (A)
3085 **     coB: coroutine for right query (B)
3086 **    outA: output one row of A
3087 **    outB: output one row of B (UNION and UNION ALL only)
3088 **    EofA: ...
3089 **    EofB: ...
3090 **    AltB: ...
3091 **    AeqB: ...
3092 **    AgtB: ...
3093 **    Init: initialize coroutine registers
3094 **          yield coA
3095 **          if eof(A) goto EofA
3096 **          yield coB
3097 **          if eof(B) goto EofB
3098 **    Cmpr: Compare A, B
3099 **          Jump AltB, AeqB, AgtB
3100 **     End: ...
3101 **
3102 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3103 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3104 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3105 ** and AgtB jump to either L2 or to one of EofA or EofB.
3106 */
3107 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3108 static int multiSelectOrderBy(
3109   Parse *pParse,        /* Parsing context */
3110   Select *p,            /* The right-most of SELECTs to be coded */
3111   SelectDest *pDest     /* What to do with query results */
3112 ){
3113   int i, j;             /* Loop counters */
3114   Select *pPrior;       /* Another SELECT immediately to our left */
3115   Vdbe *v;              /* Generate code to this VDBE */
3116   SelectDest destA;     /* Destination for coroutine A */
3117   SelectDest destB;     /* Destination for coroutine B */
3118   int regAddrA;         /* Address register for select-A coroutine */
3119   int regAddrB;         /* Address register for select-B coroutine */
3120   int addrSelectA;      /* Address of the select-A coroutine */
3121   int addrSelectB;      /* Address of the select-B coroutine */
3122   int regOutA;          /* Address register for the output-A subroutine */
3123   int regOutB;          /* Address register for the output-B subroutine */
3124   int addrOutA;         /* Address of the output-A subroutine */
3125   int addrOutB = 0;     /* Address of the output-B subroutine */
3126   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3127   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3128   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3129   int addrAltB;         /* Address of the A<B subroutine */
3130   int addrAeqB;         /* Address of the A==B subroutine */
3131   int addrAgtB;         /* Address of the A>B subroutine */
3132   int regLimitA;        /* Limit register for select-A */
3133   int regLimitB;        /* Limit register for select-A */
3134   int regPrev;          /* A range of registers to hold previous output */
3135   int savedLimit;       /* Saved value of p->iLimit */
3136   int savedOffset;      /* Saved value of p->iOffset */
3137   int labelCmpr;        /* Label for the start of the merge algorithm */
3138   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3139   int addr1;            /* Jump instructions that get retargetted */
3140   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3141   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3142   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3143   sqlite3 *db;          /* Database connection */
3144   ExprList *pOrderBy;   /* The ORDER BY clause */
3145   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3146   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3147 
3148   assert( p->pOrderBy!=0 );
3149   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3150   db = pParse->db;
3151   v = pParse->pVdbe;
3152   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3153   labelEnd = sqlite3VdbeMakeLabel(pParse);
3154   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3155 
3156 
3157   /* Patch up the ORDER BY clause
3158   */
3159   op = p->op;
3160   pPrior = p->pPrior;
3161   assert( pPrior->pOrderBy==0 );
3162   pOrderBy = p->pOrderBy;
3163   assert( pOrderBy );
3164   nOrderBy = pOrderBy->nExpr;
3165 
3166   /* For operators other than UNION ALL we have to make sure that
3167   ** the ORDER BY clause covers every term of the result set.  Add
3168   ** terms to the ORDER BY clause as necessary.
3169   */
3170   if( op!=TK_ALL ){
3171     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3172       struct ExprList_item *pItem;
3173       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3174         assert( pItem->u.x.iOrderByCol>0 );
3175         if( pItem->u.x.iOrderByCol==i ) break;
3176       }
3177       if( j==nOrderBy ){
3178         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3179         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3180         pNew->flags |= EP_IntValue;
3181         pNew->u.iValue = i;
3182         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3183         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3184       }
3185     }
3186   }
3187 
3188   /* Compute the comparison permutation and keyinfo that is used with
3189   ** the permutation used to determine if the next
3190   ** row of results comes from selectA or selectB.  Also add explicit
3191   ** collations to the ORDER BY clause terms so that when the subqueries
3192   ** to the right and the left are evaluated, they use the correct
3193   ** collation.
3194   */
3195   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3196   if( aPermute ){
3197     struct ExprList_item *pItem;
3198     aPermute[0] = nOrderBy;
3199     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3200       assert( pItem->u.x.iOrderByCol>0 );
3201       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3202       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3203     }
3204     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3205   }else{
3206     pKeyMerge = 0;
3207   }
3208 
3209   /* Reattach the ORDER BY clause to the query.
3210   */
3211   p->pOrderBy = pOrderBy;
3212   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3213 
3214   /* Allocate a range of temporary registers and the KeyInfo needed
3215   ** for the logic that removes duplicate result rows when the
3216   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3217   */
3218   if( op==TK_ALL ){
3219     regPrev = 0;
3220   }else{
3221     int nExpr = p->pEList->nExpr;
3222     assert( nOrderBy>=nExpr || db->mallocFailed );
3223     regPrev = pParse->nMem+1;
3224     pParse->nMem += nExpr+1;
3225     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3226     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3227     if( pKeyDup ){
3228       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3229       for(i=0; i<nExpr; i++){
3230         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3231         pKeyDup->aSortFlags[i] = 0;
3232       }
3233     }
3234   }
3235 
3236   /* Separate the left and the right query from one another
3237   */
3238   p->pPrior = 0;
3239   pPrior->pNext = 0;
3240   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3241   if( pPrior->pPrior==0 ){
3242     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3243   }
3244 
3245   /* Compute the limit registers */
3246   computeLimitRegisters(pParse, p, labelEnd);
3247   if( p->iLimit && op==TK_ALL ){
3248     regLimitA = ++pParse->nMem;
3249     regLimitB = ++pParse->nMem;
3250     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3251                                   regLimitA);
3252     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3253   }else{
3254     regLimitA = regLimitB = 0;
3255   }
3256   sqlite3ExprDelete(db, p->pLimit);
3257   p->pLimit = 0;
3258 
3259   regAddrA = ++pParse->nMem;
3260   regAddrB = ++pParse->nMem;
3261   regOutA = ++pParse->nMem;
3262   regOutB = ++pParse->nMem;
3263   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3264   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3265 
3266   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3267 
3268   /* Generate a coroutine to evaluate the SELECT statement to the
3269   ** left of the compound operator - the "A" select.
3270   */
3271   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3272   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3273   VdbeComment((v, "left SELECT"));
3274   pPrior->iLimit = regLimitA;
3275   ExplainQueryPlan((pParse, 1, "LEFT"));
3276   sqlite3Select(pParse, pPrior, &destA);
3277   sqlite3VdbeEndCoroutine(v, regAddrA);
3278   sqlite3VdbeJumpHere(v, addr1);
3279 
3280   /* Generate a coroutine to evaluate the SELECT statement on
3281   ** the right - the "B" select
3282   */
3283   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3284   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3285   VdbeComment((v, "right SELECT"));
3286   savedLimit = p->iLimit;
3287   savedOffset = p->iOffset;
3288   p->iLimit = regLimitB;
3289   p->iOffset = 0;
3290   ExplainQueryPlan((pParse, 1, "RIGHT"));
3291   sqlite3Select(pParse, p, &destB);
3292   p->iLimit = savedLimit;
3293   p->iOffset = savedOffset;
3294   sqlite3VdbeEndCoroutine(v, regAddrB);
3295 
3296   /* Generate a subroutine that outputs the current row of the A
3297   ** select as the next output row of the compound select.
3298   */
3299   VdbeNoopComment((v, "Output routine for A"));
3300   addrOutA = generateOutputSubroutine(pParse,
3301                  p, &destA, pDest, regOutA,
3302                  regPrev, pKeyDup, labelEnd);
3303 
3304   /* Generate a subroutine that outputs the current row of the B
3305   ** select as the next output row of the compound select.
3306   */
3307   if( op==TK_ALL || op==TK_UNION ){
3308     VdbeNoopComment((v, "Output routine for B"));
3309     addrOutB = generateOutputSubroutine(pParse,
3310                  p, &destB, pDest, regOutB,
3311                  regPrev, pKeyDup, labelEnd);
3312   }
3313   sqlite3KeyInfoUnref(pKeyDup);
3314 
3315   /* Generate a subroutine to run when the results from select A
3316   ** are exhausted and only data in select B remains.
3317   */
3318   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3319     addrEofA_noB = addrEofA = labelEnd;
3320   }else{
3321     VdbeNoopComment((v, "eof-A subroutine"));
3322     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3323     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3324                                      VdbeCoverage(v);
3325     sqlite3VdbeGoto(v, addrEofA);
3326     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3327   }
3328 
3329   /* Generate a subroutine to run when the results from select B
3330   ** are exhausted and only data in select A remains.
3331   */
3332   if( op==TK_INTERSECT ){
3333     addrEofB = addrEofA;
3334     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3335   }else{
3336     VdbeNoopComment((v, "eof-B subroutine"));
3337     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3338     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3339     sqlite3VdbeGoto(v, addrEofB);
3340   }
3341 
3342   /* Generate code to handle the case of A<B
3343   */
3344   VdbeNoopComment((v, "A-lt-B subroutine"));
3345   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3346   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3347   sqlite3VdbeGoto(v, labelCmpr);
3348 
3349   /* Generate code to handle the case of A==B
3350   */
3351   if( op==TK_ALL ){
3352     addrAeqB = addrAltB;
3353   }else if( op==TK_INTERSECT ){
3354     addrAeqB = addrAltB;
3355     addrAltB++;
3356   }else{
3357     VdbeNoopComment((v, "A-eq-B subroutine"));
3358     addrAeqB =
3359     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3360     sqlite3VdbeGoto(v, labelCmpr);
3361   }
3362 
3363   /* Generate code to handle the case of A>B
3364   */
3365   VdbeNoopComment((v, "A-gt-B subroutine"));
3366   addrAgtB = sqlite3VdbeCurrentAddr(v);
3367   if( op==TK_ALL || op==TK_UNION ){
3368     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3369   }
3370   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3371   sqlite3VdbeGoto(v, labelCmpr);
3372 
3373   /* This code runs once to initialize everything.
3374   */
3375   sqlite3VdbeJumpHere(v, addr1);
3376   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3377   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3378 
3379   /* Implement the main merge loop
3380   */
3381   sqlite3VdbeResolveLabel(v, labelCmpr);
3382   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3383   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3384                          (char*)pKeyMerge, P4_KEYINFO);
3385   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3386   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3387 
3388   /* Jump to the this point in order to terminate the query.
3389   */
3390   sqlite3VdbeResolveLabel(v, labelEnd);
3391 
3392   /* Reassembly the compound query so that it will be freed correctly
3393   ** by the calling function */
3394   if( p->pPrior ){
3395     sqlite3SelectDelete(db, p->pPrior);
3396   }
3397   p->pPrior = pPrior;
3398   pPrior->pNext = p;
3399 
3400   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3401   **** subqueries ****/
3402   ExplainQueryPlanPop(pParse);
3403   return pParse->nErr!=0;
3404 }
3405 #endif
3406 
3407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3408 
3409 /* An instance of the SubstContext object describes an substitution edit
3410 ** to be performed on a parse tree.
3411 **
3412 ** All references to columns in table iTable are to be replaced by corresponding
3413 ** expressions in pEList.
3414 */
3415 typedef struct SubstContext {
3416   Parse *pParse;            /* The parsing context */
3417   int iTable;               /* Replace references to this table */
3418   int iNewTable;            /* New table number */
3419   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3420   ExprList *pEList;         /* Replacement expressions */
3421 } SubstContext;
3422 
3423 /* Forward Declarations */
3424 static void substExprList(SubstContext*, ExprList*);
3425 static void substSelect(SubstContext*, Select*, int);
3426 
3427 /*
3428 ** Scan through the expression pExpr.  Replace every reference to
3429 ** a column in table number iTable with a copy of the iColumn-th
3430 ** entry in pEList.  (But leave references to the ROWID column
3431 ** unchanged.)
3432 **
3433 ** This routine is part of the flattening procedure.  A subquery
3434 ** whose result set is defined by pEList appears as entry in the
3435 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3436 ** FORM clause entry is iTable.  This routine makes the necessary
3437 ** changes to pExpr so that it refers directly to the source table
3438 ** of the subquery rather the result set of the subquery.
3439 */
3440 static Expr *substExpr(
3441   SubstContext *pSubst,  /* Description of the substitution */
3442   Expr *pExpr            /* Expr in which substitution occurs */
3443 ){
3444   if( pExpr==0 ) return 0;
3445   if( ExprHasProperty(pExpr, EP_FromJoin)
3446    && pExpr->iRightJoinTable==pSubst->iTable
3447   ){
3448     pExpr->iRightJoinTable = pSubst->iNewTable;
3449   }
3450   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3451     if( pExpr->iColumn<0 ){
3452       pExpr->op = TK_NULL;
3453     }else{
3454       Expr *pNew;
3455       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3456       Expr ifNullRow;
3457       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3458       assert( pExpr->pRight==0 );
3459       if( sqlite3ExprIsVector(pCopy) ){
3460         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3461       }else{
3462         sqlite3 *db = pSubst->pParse->db;
3463         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3464           memset(&ifNullRow, 0, sizeof(ifNullRow));
3465           ifNullRow.op = TK_IF_NULL_ROW;
3466           ifNullRow.pLeft = pCopy;
3467           ifNullRow.iTable = pSubst->iNewTable;
3468           pCopy = &ifNullRow;
3469         }
3470         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3471         pNew = sqlite3ExprDup(db, pCopy, 0);
3472         if( pNew && pSubst->isLeftJoin ){
3473           ExprSetProperty(pNew, EP_CanBeNull);
3474         }
3475         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3476           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3477           ExprSetProperty(pNew, EP_FromJoin);
3478         }
3479         sqlite3ExprDelete(db, pExpr);
3480         pExpr = pNew;
3481 
3482         /* Ensure that the expression now has an implicit collation sequence,
3483         ** just as it did when it was a column of a view or sub-query. */
3484         if( pExpr ){
3485           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3486             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3487             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3488                 (pColl ? pColl->zName : "BINARY")
3489             );
3490           }
3491           ExprClearProperty(pExpr, EP_Collate);
3492         }
3493       }
3494     }
3495   }else{
3496     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3497       pExpr->iTable = pSubst->iNewTable;
3498     }
3499     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3500     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3501     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3502       substSelect(pSubst, pExpr->x.pSelect, 1);
3503     }else{
3504       substExprList(pSubst, pExpr->x.pList);
3505     }
3506 #ifndef SQLITE_OMIT_WINDOWFUNC
3507     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3508       Window *pWin = pExpr->y.pWin;
3509       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3510       substExprList(pSubst, pWin->pPartition);
3511       substExprList(pSubst, pWin->pOrderBy);
3512     }
3513 #endif
3514   }
3515   return pExpr;
3516 }
3517 static void substExprList(
3518   SubstContext *pSubst, /* Description of the substitution */
3519   ExprList *pList       /* List to scan and in which to make substitutes */
3520 ){
3521   int i;
3522   if( pList==0 ) return;
3523   for(i=0; i<pList->nExpr; i++){
3524     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3525   }
3526 }
3527 static void substSelect(
3528   SubstContext *pSubst, /* Description of the substitution */
3529   Select *p,            /* SELECT statement in which to make substitutions */
3530   int doPrior           /* Do substitutes on p->pPrior too */
3531 ){
3532   SrcList *pSrc;
3533   struct SrcList_item *pItem;
3534   int i;
3535   if( !p ) return;
3536   do{
3537     substExprList(pSubst, p->pEList);
3538     substExprList(pSubst, p->pGroupBy);
3539     substExprList(pSubst, p->pOrderBy);
3540     p->pHaving = substExpr(pSubst, p->pHaving);
3541     p->pWhere = substExpr(pSubst, p->pWhere);
3542     pSrc = p->pSrc;
3543     assert( pSrc!=0 );
3544     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3545       substSelect(pSubst, pItem->pSelect, 1);
3546       if( pItem->fg.isTabFunc ){
3547         substExprList(pSubst, pItem->u1.pFuncArg);
3548       }
3549     }
3550   }while( doPrior && (p = p->pPrior)!=0 );
3551 }
3552 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3553 
3554 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3555 /*
3556 ** This routine attempts to flatten subqueries as a performance optimization.
3557 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3558 **
3559 ** To understand the concept of flattening, consider the following
3560 ** query:
3561 **
3562 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3563 **
3564 ** The default way of implementing this query is to execute the
3565 ** subquery first and store the results in a temporary table, then
3566 ** run the outer query on that temporary table.  This requires two
3567 ** passes over the data.  Furthermore, because the temporary table
3568 ** has no indices, the WHERE clause on the outer query cannot be
3569 ** optimized.
3570 **
3571 ** This routine attempts to rewrite queries such as the above into
3572 ** a single flat select, like this:
3573 **
3574 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3575 **
3576 ** The code generated for this simplification gives the same result
3577 ** but only has to scan the data once.  And because indices might
3578 ** exist on the table t1, a complete scan of the data might be
3579 ** avoided.
3580 **
3581 ** Flattening is subject to the following constraints:
3582 **
3583 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3584 **        The subquery and the outer query cannot both be aggregates.
3585 **
3586 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3587 **        (2) If the subquery is an aggregate then
3588 **        (2a) the outer query must not be a join and
3589 **        (2b) the outer query must not use subqueries
3590 **             other than the one FROM-clause subquery that is a candidate
3591 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3592 **             from 2015-02-09.)
3593 **
3594 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3595 **        (3a) the subquery may not be a join and
3596 **        (3b) the FROM clause of the subquery may not contain a virtual
3597 **             table and
3598 **        (3c) the outer query may not be an aggregate.
3599 **
3600 **   (4)  The subquery can not be DISTINCT.
3601 **
3602 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3603 **        sub-queries that were excluded from this optimization. Restriction
3604 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3605 **
3606 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3607 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3608 **
3609 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3610 **        A FROM clause, consider adding a FROM clause with the special
3611 **        table sqlite_once that consists of a single row containing a
3612 **        single NULL.
3613 **
3614 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3615 **
3616 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3617 **
3618 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3619 **        accidently carried the comment forward until 2014-09-15.  Original
3620 **        constraint: "If the subquery is aggregate then the outer query
3621 **        may not use LIMIT."
3622 **
3623 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3624 **
3625 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3626 **        a separate restriction deriving from ticket #350.
3627 **
3628 **  (13)  The subquery and outer query may not both use LIMIT.
3629 **
3630 **  (14)  The subquery may not use OFFSET.
3631 **
3632 **  (15)  If the outer query is part of a compound select, then the
3633 **        subquery may not use LIMIT.
3634 **        (See ticket #2339 and ticket [02a8e81d44]).
3635 **
3636 **  (16)  If the outer query is aggregate, then the subquery may not
3637 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3638 **        until we introduced the group_concat() function.
3639 **
3640 **  (17)  If the subquery is a compound select, then
3641 **        (17a) all compound operators must be a UNION ALL, and
3642 **        (17b) no terms within the subquery compound may be aggregate
3643 **              or DISTINCT, and
3644 **        (17c) every term within the subquery compound must have a FROM clause
3645 **        (17d) the outer query may not be
3646 **              (17d1) aggregate, or
3647 **              (17d2) DISTINCT, or
3648 **              (17d3) a join.
3649 **
3650 **        The parent and sub-query may contain WHERE clauses. Subject to
3651 **        rules (11), (13) and (14), they may also contain ORDER BY,
3652 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3653 **        operator other than UNION ALL because all the other compound
3654 **        operators have an implied DISTINCT which is disallowed by
3655 **        restriction (4).
3656 **
3657 **        Also, each component of the sub-query must return the same number
3658 **        of result columns. This is actually a requirement for any compound
3659 **        SELECT statement, but all the code here does is make sure that no
3660 **        such (illegal) sub-query is flattened. The caller will detect the
3661 **        syntax error and return a detailed message.
3662 **
3663 **  (18)  If the sub-query is a compound select, then all terms of the
3664 **        ORDER BY clause of the parent must be simple references to
3665 **        columns of the sub-query.
3666 **
3667 **  (19)  If the subquery uses LIMIT then the outer query may not
3668 **        have a WHERE clause.
3669 **
3670 **  (20)  If the sub-query is a compound select, then it must not use
3671 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3672 **        somewhat by saying that the terms of the ORDER BY clause must
3673 **        appear as unmodified result columns in the outer query.  But we
3674 **        have other optimizations in mind to deal with that case.
3675 **
3676 **  (21)  If the subquery uses LIMIT then the outer query may not be
3677 **        DISTINCT.  (See ticket [752e1646fc]).
3678 **
3679 **  (22)  The subquery may not be a recursive CTE.
3680 **
3681 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3682 **        a recursive CTE, then the sub-query may not be a compound query.
3683 **        This restriction is because transforming the
3684 **        parent to a compound query confuses the code that handles
3685 **        recursive queries in multiSelect().
3686 **
3687 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3688 **        The subquery may not be an aggregate that uses the built-in min() or
3689 **        or max() functions.  (Without this restriction, a query like:
3690 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3691 **        return the value X for which Y was maximal.)
3692 **
3693 **  (25)  If either the subquery or the parent query contains a window
3694 **        function in the select list or ORDER BY clause, flattening
3695 **        is not attempted.
3696 **
3697 **
3698 ** In this routine, the "p" parameter is a pointer to the outer query.
3699 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3700 ** uses aggregates.
3701 **
3702 ** If flattening is not attempted, this routine is a no-op and returns 0.
3703 ** If flattening is attempted this routine returns 1.
3704 **
3705 ** All of the expression analysis must occur on both the outer query and
3706 ** the subquery before this routine runs.
3707 */
3708 static int flattenSubquery(
3709   Parse *pParse,       /* Parsing context */
3710   Select *p,           /* The parent or outer SELECT statement */
3711   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3712   int isAgg            /* True if outer SELECT uses aggregate functions */
3713 ){
3714   const char *zSavedAuthContext = pParse->zAuthContext;
3715   Select *pParent;    /* Current UNION ALL term of the other query */
3716   Select *pSub;       /* The inner query or "subquery" */
3717   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3718   SrcList *pSrc;      /* The FROM clause of the outer query */
3719   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3720   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3721   int iNewParent = -1;/* Replacement table for iParent */
3722   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3723   int i;              /* Loop counter */
3724   Expr *pWhere;                    /* The WHERE clause */
3725   struct SrcList_item *pSubitem;   /* The subquery */
3726   sqlite3 *db = pParse->db;
3727 
3728   /* Check to see if flattening is permitted.  Return 0 if not.
3729   */
3730   assert( p!=0 );
3731   assert( p->pPrior==0 );
3732   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3733   pSrc = p->pSrc;
3734   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3735   pSubitem = &pSrc->a[iFrom];
3736   iParent = pSubitem->iCursor;
3737   pSub = pSubitem->pSelect;
3738   assert( pSub!=0 );
3739 
3740 #ifndef SQLITE_OMIT_WINDOWFUNC
3741   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3742 #endif
3743 
3744   pSubSrc = pSub->pSrc;
3745   assert( pSubSrc );
3746   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3747   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3748   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3749   ** became arbitrary expressions, we were forced to add restrictions (13)
3750   ** and (14). */
3751   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3752   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3753   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3754     return 0;                                            /* Restriction (15) */
3755   }
3756   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3757   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3758   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3759      return 0;         /* Restrictions (8)(9) */
3760   }
3761   if( p->pOrderBy && pSub->pOrderBy ){
3762      return 0;                                           /* Restriction (11) */
3763   }
3764   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3765   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3766   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3767      return 0;         /* Restriction (21) */
3768   }
3769   if( pSub->selFlags & (SF_Recursive) ){
3770     return 0; /* Restrictions (22) */
3771   }
3772 
3773   /*
3774   ** If the subquery is the right operand of a LEFT JOIN, then the
3775   ** subquery may not be a join itself (3a). Example of why this is not
3776   ** allowed:
3777   **
3778   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3779   **
3780   ** If we flatten the above, we would get
3781   **
3782   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3783   **
3784   ** which is not at all the same thing.
3785   **
3786   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3787   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3788   ** aggregates are processed - there is no mechanism to determine if
3789   ** the LEFT JOIN table should be all-NULL.
3790   **
3791   ** See also tickets #306, #350, and #3300.
3792   */
3793   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3794     isLeftJoin = 1;
3795     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3796       /*  (3a)             (3c)     (3b) */
3797       return 0;
3798     }
3799   }
3800 #ifdef SQLITE_EXTRA_IFNULLROW
3801   else if( iFrom>0 && !isAgg ){
3802     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3803     ** every reference to any result column from subquery in a join, even
3804     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3805     ** opcode. */
3806     isLeftJoin = -1;
3807   }
3808 #endif
3809 
3810   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3811   ** use only the UNION ALL operator. And none of the simple select queries
3812   ** that make up the compound SELECT are allowed to be aggregate or distinct
3813   ** queries.
3814   */
3815   if( pSub->pPrior ){
3816     if( pSub->pOrderBy ){
3817       return 0;  /* Restriction (20) */
3818     }
3819     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3820       return 0; /* (17d1), (17d2), or (17d3) */
3821     }
3822     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3823       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3824       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3825       assert( pSub->pSrc!=0 );
3826       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3827       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3828        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3829        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3830       ){
3831         return 0;
3832       }
3833       testcase( pSub1->pSrc->nSrc>1 );
3834     }
3835 
3836     /* Restriction (18). */
3837     if( p->pOrderBy ){
3838       int ii;
3839       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3840         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3841       }
3842     }
3843   }
3844 
3845   /* Ex-restriction (23):
3846   ** The only way that the recursive part of a CTE can contain a compound
3847   ** subquery is for the subquery to be one term of a join.  But if the
3848   ** subquery is a join, then the flattening has already been stopped by
3849   ** restriction (17d3)
3850   */
3851   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3852 
3853   /***** If we reach this point, flattening is permitted. *****/
3854   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3855                    pSub->selId, pSub, iFrom));
3856 
3857   /* Authorize the subquery */
3858   pParse->zAuthContext = pSubitem->zName;
3859   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3860   testcase( i==SQLITE_DENY );
3861   pParse->zAuthContext = zSavedAuthContext;
3862 
3863   /* If the sub-query is a compound SELECT statement, then (by restrictions
3864   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3865   ** be of the form:
3866   **
3867   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3868   **
3869   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3870   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3871   ** OFFSET clauses and joins them to the left-hand-side of the original
3872   ** using UNION ALL operators. In this case N is the number of simple
3873   ** select statements in the compound sub-query.
3874   **
3875   ** Example:
3876   **
3877   **     SELECT a+1 FROM (
3878   **        SELECT x FROM tab
3879   **        UNION ALL
3880   **        SELECT y FROM tab
3881   **        UNION ALL
3882   **        SELECT abs(z*2) FROM tab2
3883   **     ) WHERE a!=5 ORDER BY 1
3884   **
3885   ** Transformed into:
3886   **
3887   **     SELECT x+1 FROM tab WHERE x+1!=5
3888   **     UNION ALL
3889   **     SELECT y+1 FROM tab WHERE y+1!=5
3890   **     UNION ALL
3891   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3892   **     ORDER BY 1
3893   **
3894   ** We call this the "compound-subquery flattening".
3895   */
3896   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3897     Select *pNew;
3898     ExprList *pOrderBy = p->pOrderBy;
3899     Expr *pLimit = p->pLimit;
3900     Select *pPrior = p->pPrior;
3901     p->pOrderBy = 0;
3902     p->pSrc = 0;
3903     p->pPrior = 0;
3904     p->pLimit = 0;
3905     pNew = sqlite3SelectDup(db, p, 0);
3906     p->pLimit = pLimit;
3907     p->pOrderBy = pOrderBy;
3908     p->pSrc = pSrc;
3909     p->op = TK_ALL;
3910     if( pNew==0 ){
3911       p->pPrior = pPrior;
3912     }else{
3913       pNew->pPrior = pPrior;
3914       if( pPrior ) pPrior->pNext = pNew;
3915       pNew->pNext = p;
3916       p->pPrior = pNew;
3917       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3918                               " creates %u as peer\n",pNew->selId));
3919     }
3920     if( db->mallocFailed ) return 1;
3921   }
3922 
3923   /* Begin flattening the iFrom-th entry of the FROM clause
3924   ** in the outer query.
3925   */
3926   pSub = pSub1 = pSubitem->pSelect;
3927 
3928   /* Delete the transient table structure associated with the
3929   ** subquery
3930   */
3931   sqlite3DbFree(db, pSubitem->zDatabase);
3932   sqlite3DbFree(db, pSubitem->zName);
3933   sqlite3DbFree(db, pSubitem->zAlias);
3934   pSubitem->zDatabase = 0;
3935   pSubitem->zName = 0;
3936   pSubitem->zAlias = 0;
3937   pSubitem->pSelect = 0;
3938 
3939   /* Defer deleting the Table object associated with the
3940   ** subquery until code generation is
3941   ** complete, since there may still exist Expr.pTab entries that
3942   ** refer to the subquery even after flattening.  Ticket #3346.
3943   **
3944   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3945   */
3946   if( ALWAYS(pSubitem->pTab!=0) ){
3947     Table *pTabToDel = pSubitem->pTab;
3948     if( pTabToDel->nTabRef==1 ){
3949       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3950       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3951       pToplevel->pZombieTab = pTabToDel;
3952     }else{
3953       pTabToDel->nTabRef--;
3954     }
3955     pSubitem->pTab = 0;
3956   }
3957 
3958   /* The following loop runs once for each term in a compound-subquery
3959   ** flattening (as described above).  If we are doing a different kind
3960   ** of flattening - a flattening other than a compound-subquery flattening -
3961   ** then this loop only runs once.
3962   **
3963   ** This loop moves all of the FROM elements of the subquery into the
3964   ** the FROM clause of the outer query.  Before doing this, remember
3965   ** the cursor number for the original outer query FROM element in
3966   ** iParent.  The iParent cursor will never be used.  Subsequent code
3967   ** will scan expressions looking for iParent references and replace
3968   ** those references with expressions that resolve to the subquery FROM
3969   ** elements we are now copying in.
3970   */
3971   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3972     int nSubSrc;
3973     u8 jointype = 0;
3974     assert( pSub!=0 );
3975     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3976     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3977     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3978 
3979     if( pSrc ){
3980       assert( pParent==p );  /* First time through the loop */
3981       jointype = pSubitem->fg.jointype;
3982     }else{
3983       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3984       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
3985       if( pSrc==0 ) break;
3986       pParent->pSrc = pSrc;
3987     }
3988 
3989     /* The subquery uses a single slot of the FROM clause of the outer
3990     ** query.  If the subquery has more than one element in its FROM clause,
3991     ** then expand the outer query to make space for it to hold all elements
3992     ** of the subquery.
3993     **
3994     ** Example:
3995     **
3996     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3997     **
3998     ** The outer query has 3 slots in its FROM clause.  One slot of the
3999     ** outer query (the middle slot) is used by the subquery.  The next
4000     ** block of code will expand the outer query FROM clause to 4 slots.
4001     ** The middle slot is expanded to two slots in order to make space
4002     ** for the two elements in the FROM clause of the subquery.
4003     */
4004     if( nSubSrc>1 ){
4005       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4006       if( pSrc==0 ) break;
4007       pParent->pSrc = pSrc;
4008     }
4009 
4010     /* Transfer the FROM clause terms from the subquery into the
4011     ** outer query.
4012     */
4013     for(i=0; i<nSubSrc; i++){
4014       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4015       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4016       pSrc->a[i+iFrom] = pSubSrc->a[i];
4017       iNewParent = pSubSrc->a[i].iCursor;
4018       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4019     }
4020     pSrc->a[iFrom].fg.jointype = jointype;
4021 
4022     /* Now begin substituting subquery result set expressions for
4023     ** references to the iParent in the outer query.
4024     **
4025     ** Example:
4026     **
4027     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4028     **   \                     \_____________ subquery __________/          /
4029     **    \_____________________ outer query ______________________________/
4030     **
4031     ** We look at every expression in the outer query and every place we see
4032     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4033     */
4034     if( pSub->pOrderBy ){
4035       /* At this point, any non-zero iOrderByCol values indicate that the
4036       ** ORDER BY column expression is identical to the iOrderByCol'th
4037       ** expression returned by SELECT statement pSub. Since these values
4038       ** do not necessarily correspond to columns in SELECT statement pParent,
4039       ** zero them before transfering the ORDER BY clause.
4040       **
4041       ** Not doing this may cause an error if a subsequent call to this
4042       ** function attempts to flatten a compound sub-query into pParent
4043       ** (the only way this can happen is if the compound sub-query is
4044       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4045       ExprList *pOrderBy = pSub->pOrderBy;
4046       for(i=0; i<pOrderBy->nExpr; i++){
4047         pOrderBy->a[i].u.x.iOrderByCol = 0;
4048       }
4049       assert( pParent->pOrderBy==0 );
4050       pParent->pOrderBy = pOrderBy;
4051       pSub->pOrderBy = 0;
4052     }
4053     pWhere = pSub->pWhere;
4054     pSub->pWhere = 0;
4055     if( isLeftJoin>0 ){
4056       setJoinExpr(pWhere, iNewParent);
4057     }
4058     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4059     if( db->mallocFailed==0 ){
4060       SubstContext x;
4061       x.pParse = pParse;
4062       x.iTable = iParent;
4063       x.iNewTable = iNewParent;
4064       x.isLeftJoin = isLeftJoin;
4065       x.pEList = pSub->pEList;
4066       substSelect(&x, pParent, 0);
4067     }
4068 
4069     /* The flattened query is a compound if either the inner or the
4070     ** outer query is a compound. */
4071     pParent->selFlags |= pSub->selFlags & SF_Compound;
4072     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4073 
4074     /*
4075     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4076     **
4077     ** One is tempted to try to add a and b to combine the limits.  But this
4078     ** does not work if either limit is negative.
4079     */
4080     if( pSub->pLimit ){
4081       pParent->pLimit = pSub->pLimit;
4082       pSub->pLimit = 0;
4083     }
4084   }
4085 
4086   /* Finially, delete what is left of the subquery and return
4087   ** success.
4088   */
4089   sqlite3SelectDelete(db, pSub1);
4090 
4091 #if SELECTTRACE_ENABLED
4092   if( sqlite3SelectTrace & 0x100 ){
4093     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4094     sqlite3TreeViewSelect(0, p, 0);
4095   }
4096 #endif
4097 
4098   return 1;
4099 }
4100 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4101 
4102 /*
4103 ** A structure to keep track of all of the column values that are fixed to
4104 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4105 */
4106 typedef struct WhereConst WhereConst;
4107 struct WhereConst {
4108   Parse *pParse;   /* Parsing context */
4109   int nConst;      /* Number for COLUMN=CONSTANT terms */
4110   int nChng;       /* Number of times a constant is propagated */
4111   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4112 };
4113 
4114 /*
4115 ** Add a new entry to the pConst object.  Except, do not add duplicate
4116 ** pColumn entires.
4117 */
4118 static void constInsert(
4119   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4120   Expr *pColumn,           /* The COLUMN part of the constraint */
4121   Expr *pValue             /* The VALUE part of the constraint */
4122 ){
4123   int i;
4124   assert( pColumn->op==TK_COLUMN );
4125 
4126   /* 2018-10-25 ticket [cf5ed20f]
4127   ** Make sure the same pColumn is not inserted more than once */
4128   for(i=0; i<pConst->nConst; i++){
4129     const Expr *pExpr = pConst->apExpr[i*2];
4130     assert( pExpr->op==TK_COLUMN );
4131     if( pExpr->iTable==pColumn->iTable
4132      && pExpr->iColumn==pColumn->iColumn
4133     ){
4134       return;  /* Already present.  Return without doing anything. */
4135     }
4136   }
4137 
4138   pConst->nConst++;
4139   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4140                          pConst->nConst*2*sizeof(Expr*));
4141   if( pConst->apExpr==0 ){
4142     pConst->nConst = 0;
4143   }else{
4144     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4145     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4146     pConst->apExpr[pConst->nConst*2-1] = pValue;
4147   }
4148 }
4149 
4150 /*
4151 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4152 ** is a constant expression and where the term must be true because it
4153 ** is part of the AND-connected terms of the expression.  For each term
4154 ** found, add it to the pConst structure.
4155 */
4156 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4157   Expr *pRight, *pLeft;
4158   if( pExpr==0 ) return;
4159   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4160   if( pExpr->op==TK_AND ){
4161     findConstInWhere(pConst, pExpr->pRight);
4162     findConstInWhere(pConst, pExpr->pLeft);
4163     return;
4164   }
4165   if( pExpr->op!=TK_EQ ) return;
4166   pRight = pExpr->pRight;
4167   pLeft = pExpr->pLeft;
4168   assert( pRight!=0 );
4169   assert( pLeft!=0 );
4170   if( pRight->op==TK_COLUMN
4171    && !ExprHasProperty(pRight, EP_FixedCol)
4172    && sqlite3ExprIsConstant(pLeft)
4173    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4174   ){
4175     constInsert(pConst, pRight, pLeft);
4176   }else
4177   if( pLeft->op==TK_COLUMN
4178    && !ExprHasProperty(pLeft, EP_FixedCol)
4179    && sqlite3ExprIsConstant(pRight)
4180    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4181   ){
4182     constInsert(pConst, pLeft, pRight);
4183   }
4184 }
4185 
4186 /*
4187 ** This is a Walker expression callback.  pExpr is a candidate expression
4188 ** to be replaced by a value.  If pExpr is equivalent to one of the
4189 ** columns named in pWalker->u.pConst, then overwrite it with its
4190 ** corresponding value.
4191 */
4192 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4193   int i;
4194   WhereConst *pConst;
4195   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4196   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4197   pConst = pWalker->u.pConst;
4198   for(i=0; i<pConst->nConst; i++){
4199     Expr *pColumn = pConst->apExpr[i*2];
4200     if( pColumn==pExpr ) continue;
4201     if( pColumn->iTable!=pExpr->iTable ) continue;
4202     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4203     /* A match is found.  Add the EP_FixedCol property */
4204     pConst->nChng++;
4205     ExprClearProperty(pExpr, EP_Leaf);
4206     ExprSetProperty(pExpr, EP_FixedCol);
4207     assert( pExpr->pLeft==0 );
4208     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4209     break;
4210   }
4211   return WRC_Prune;
4212 }
4213 
4214 /*
4215 ** The WHERE-clause constant propagation optimization.
4216 **
4217 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4218 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4219 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4220 ** then throughout the query replace all other occurrences of COLUMN
4221 ** with CONSTANT within the WHERE clause.
4222 **
4223 ** For example, the query:
4224 **
4225 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4226 **
4227 ** Is transformed into
4228 **
4229 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4230 **
4231 ** Return true if any transformations where made and false if not.
4232 **
4233 ** Implementation note:  Constant propagation is tricky due to affinity
4234 ** and collating sequence interactions.  Consider this example:
4235 **
4236 **    CREATE TABLE t1(a INT,b TEXT);
4237 **    INSERT INTO t1 VALUES(123,'0123');
4238 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4239 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4240 **
4241 ** The two SELECT statements above should return different answers.  b=a
4242 ** is alway true because the comparison uses numeric affinity, but b=123
4243 ** is false because it uses text affinity and '0123' is not the same as '123'.
4244 ** To work around this, the expression tree is not actually changed from
4245 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4246 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4247 ** routines know to generate the constant "123" instead of looking up the
4248 ** column value.  Also, to avoid collation problems, this optimization is
4249 ** only attempted if the "a=123" term uses the default BINARY collation.
4250 */
4251 static int propagateConstants(
4252   Parse *pParse,   /* The parsing context */
4253   Select *p        /* The query in which to propagate constants */
4254 ){
4255   WhereConst x;
4256   Walker w;
4257   int nChng = 0;
4258   x.pParse = pParse;
4259   do{
4260     x.nConst = 0;
4261     x.nChng = 0;
4262     x.apExpr = 0;
4263     findConstInWhere(&x, p->pWhere);
4264     if( x.nConst ){
4265       memset(&w, 0, sizeof(w));
4266       w.pParse = pParse;
4267       w.xExprCallback = propagateConstantExprRewrite;
4268       w.xSelectCallback = sqlite3SelectWalkNoop;
4269       w.xSelectCallback2 = 0;
4270       w.walkerDepth = 0;
4271       w.u.pConst = &x;
4272       sqlite3WalkExpr(&w, p->pWhere);
4273       sqlite3DbFree(x.pParse->db, x.apExpr);
4274       nChng += x.nChng;
4275     }
4276   }while( x.nChng );
4277   return nChng;
4278 }
4279 
4280 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4281 /*
4282 ** Make copies of relevant WHERE clause terms of the outer query into
4283 ** the WHERE clause of subquery.  Example:
4284 **
4285 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4286 **
4287 ** Transformed into:
4288 **
4289 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4290 **     WHERE x=5 AND y=10;
4291 **
4292 ** The hope is that the terms added to the inner query will make it more
4293 ** efficient.
4294 **
4295 ** Do not attempt this optimization if:
4296 **
4297 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4298 **           disallow this optimization for aggregate subqueries, but now
4299 **           it is allowed by putting the extra terms on the HAVING clause.
4300 **           The added HAVING clause is pointless if the subquery lacks
4301 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4302 **           so there does not appear to be any reason to add extra logic
4303 **           to suppress it. **)
4304 **
4305 **   (2) The inner query is the recursive part of a common table expression.
4306 **
4307 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4308 **       clause would change the meaning of the LIMIT).
4309 **
4310 **   (4) The inner query is the right operand of a LEFT JOIN and the
4311 **       expression to be pushed down does not come from the ON clause
4312 **       on that LEFT JOIN.
4313 **
4314 **   (5) The WHERE clause expression originates in the ON or USING clause
4315 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4316 **       left join.  An example:
4317 **
4318 **           SELECT *
4319 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4320 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4321 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4322 **
4323 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4324 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4325 **       then the (1,1,NULL) row would be suppressed.
4326 **
4327 **   (6) The inner query features one or more window-functions (since
4328 **       changes to the WHERE clause of the inner query could change the
4329 **       window over which window functions are calculated).
4330 **
4331 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4332 ** terms are duplicated into the subquery.
4333 */
4334 static int pushDownWhereTerms(
4335   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4336   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4337   Expr *pWhere,         /* The WHERE clause of the outer query */
4338   int iCursor,          /* Cursor number of the subquery */
4339   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4340 ){
4341   Expr *pNew;
4342   int nChng = 0;
4343   if( pWhere==0 ) return 0;
4344   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4345 
4346 #ifndef SQLITE_OMIT_WINDOWFUNC
4347   if( pSubq->pWin ) return 0;    /* restriction (6) */
4348 #endif
4349 
4350 #ifdef SQLITE_DEBUG
4351   /* Only the first term of a compound can have a WITH clause.  But make
4352   ** sure no other terms are marked SF_Recursive in case something changes
4353   ** in the future.
4354   */
4355   {
4356     Select *pX;
4357     for(pX=pSubq; pX; pX=pX->pPrior){
4358       assert( (pX->selFlags & (SF_Recursive))==0 );
4359     }
4360   }
4361 #endif
4362 
4363   if( pSubq->pLimit!=0 ){
4364     return 0; /* restriction (3) */
4365   }
4366   while( pWhere->op==TK_AND ){
4367     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4368                                 iCursor, isLeftJoin);
4369     pWhere = pWhere->pLeft;
4370   }
4371   if( isLeftJoin
4372    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4373          || pWhere->iRightJoinTable!=iCursor)
4374   ){
4375     return 0; /* restriction (4) */
4376   }
4377   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4378     return 0; /* restriction (5) */
4379   }
4380   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4381     nChng++;
4382     while( pSubq ){
4383       SubstContext x;
4384       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4385       unsetJoinExpr(pNew, -1);
4386       x.pParse = pParse;
4387       x.iTable = iCursor;
4388       x.iNewTable = iCursor;
4389       x.isLeftJoin = 0;
4390       x.pEList = pSubq->pEList;
4391       pNew = substExpr(&x, pNew);
4392       if( pSubq->selFlags & SF_Aggregate ){
4393         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4394       }else{
4395         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4396       }
4397       pSubq = pSubq->pPrior;
4398     }
4399   }
4400   return nChng;
4401 }
4402 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4403 
4404 /*
4405 ** The pFunc is the only aggregate function in the query.  Check to see
4406 ** if the query is a candidate for the min/max optimization.
4407 **
4408 ** If the query is a candidate for the min/max optimization, then set
4409 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4410 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4411 ** whether pFunc is a min() or max() function.
4412 **
4413 ** If the query is not a candidate for the min/max optimization, return
4414 ** WHERE_ORDERBY_NORMAL (which must be zero).
4415 **
4416 ** This routine must be called after aggregate functions have been
4417 ** located but before their arguments have been subjected to aggregate
4418 ** analysis.
4419 */
4420 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4421   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4422   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4423   const char *zFunc;                    /* Name of aggregate function pFunc */
4424   ExprList *pOrderBy;
4425   u8 sortFlags;
4426 
4427   assert( *ppMinMax==0 );
4428   assert( pFunc->op==TK_AGG_FUNCTION );
4429   assert( !IsWindowFunc(pFunc) );
4430   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4431     return eRet;
4432   }
4433   zFunc = pFunc->u.zToken;
4434   if( sqlite3StrICmp(zFunc, "min")==0 ){
4435     eRet = WHERE_ORDERBY_MIN;
4436     sortFlags = KEYINFO_ORDER_BIGNULL;
4437   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4438     eRet = WHERE_ORDERBY_MAX;
4439     sortFlags = KEYINFO_ORDER_DESC;
4440   }else{
4441     return eRet;
4442   }
4443   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4444   assert( pOrderBy!=0 || db->mallocFailed );
4445   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4446   return eRet;
4447 }
4448 
4449 /*
4450 ** The select statement passed as the first argument is an aggregate query.
4451 ** The second argument is the associated aggregate-info object. This
4452 ** function tests if the SELECT is of the form:
4453 **
4454 **   SELECT count(*) FROM <tbl>
4455 **
4456 ** where table is a database table, not a sub-select or view. If the query
4457 ** does match this pattern, then a pointer to the Table object representing
4458 ** <tbl> is returned. Otherwise, 0 is returned.
4459 */
4460 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4461   Table *pTab;
4462   Expr *pExpr;
4463 
4464   assert( !p->pGroupBy );
4465 
4466   if( p->pWhere || p->pEList->nExpr!=1
4467    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4468   ){
4469     return 0;
4470   }
4471   pTab = p->pSrc->a[0].pTab;
4472   pExpr = p->pEList->a[0].pExpr;
4473   assert( pTab && !pTab->pSelect && pExpr );
4474 
4475   if( IsVirtual(pTab) ) return 0;
4476   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4477   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4478   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4479   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4480 
4481   return pTab;
4482 }
4483 
4484 /*
4485 ** If the source-list item passed as an argument was augmented with an
4486 ** INDEXED BY clause, then try to locate the specified index. If there
4487 ** was such a clause and the named index cannot be found, return
4488 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4489 ** pFrom->pIndex and return SQLITE_OK.
4490 */
4491 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4492   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4493     Table *pTab = pFrom->pTab;
4494     char *zIndexedBy = pFrom->u1.zIndexedBy;
4495     Index *pIdx;
4496     for(pIdx=pTab->pIndex;
4497         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4498         pIdx=pIdx->pNext
4499     );
4500     if( !pIdx ){
4501       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4502       pParse->checkSchema = 1;
4503       return SQLITE_ERROR;
4504     }
4505     pFrom->pIBIndex = pIdx;
4506   }
4507   return SQLITE_OK;
4508 }
4509 /*
4510 ** Detect compound SELECT statements that use an ORDER BY clause with
4511 ** an alternative collating sequence.
4512 **
4513 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4514 **
4515 ** These are rewritten as a subquery:
4516 **
4517 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4518 **     ORDER BY ... COLLATE ...
4519 **
4520 ** This transformation is necessary because the multiSelectOrderBy() routine
4521 ** above that generates the code for a compound SELECT with an ORDER BY clause
4522 ** uses a merge algorithm that requires the same collating sequence on the
4523 ** result columns as on the ORDER BY clause.  See ticket
4524 ** http://www.sqlite.org/src/info/6709574d2a
4525 **
4526 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4527 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4528 ** there are COLLATE terms in the ORDER BY.
4529 */
4530 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4531   int i;
4532   Select *pNew;
4533   Select *pX;
4534   sqlite3 *db;
4535   struct ExprList_item *a;
4536   SrcList *pNewSrc;
4537   Parse *pParse;
4538   Token dummy;
4539 
4540   if( p->pPrior==0 ) return WRC_Continue;
4541   if( p->pOrderBy==0 ) return WRC_Continue;
4542   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4543   if( pX==0 ) return WRC_Continue;
4544   a = p->pOrderBy->a;
4545   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4546     if( a[i].pExpr->flags & EP_Collate ) break;
4547   }
4548   if( i<0 ) return WRC_Continue;
4549 
4550   /* If we reach this point, that means the transformation is required. */
4551 
4552   pParse = pWalker->pParse;
4553   db = pParse->db;
4554   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4555   if( pNew==0 ) return WRC_Abort;
4556   memset(&dummy, 0, sizeof(dummy));
4557   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4558   if( pNewSrc==0 ) return WRC_Abort;
4559   *pNew = *p;
4560   p->pSrc = pNewSrc;
4561   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4562   p->op = TK_SELECT;
4563   p->pWhere = 0;
4564   pNew->pGroupBy = 0;
4565   pNew->pHaving = 0;
4566   pNew->pOrderBy = 0;
4567   p->pPrior = 0;
4568   p->pNext = 0;
4569   p->pWith = 0;
4570   p->selFlags &= ~SF_Compound;
4571   assert( (p->selFlags & SF_Converted)==0 );
4572   p->selFlags |= SF_Converted;
4573   assert( pNew->pPrior!=0 );
4574   pNew->pPrior->pNext = pNew;
4575   pNew->pLimit = 0;
4576   return WRC_Continue;
4577 }
4578 
4579 /*
4580 ** Check to see if the FROM clause term pFrom has table-valued function
4581 ** arguments.  If it does, leave an error message in pParse and return
4582 ** non-zero, since pFrom is not allowed to be a table-valued function.
4583 */
4584 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4585   if( pFrom->fg.isTabFunc ){
4586     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4587     return 1;
4588   }
4589   return 0;
4590 }
4591 
4592 #ifndef SQLITE_OMIT_CTE
4593 /*
4594 ** Argument pWith (which may be NULL) points to a linked list of nested
4595 ** WITH contexts, from inner to outermost. If the table identified by
4596 ** FROM clause element pItem is really a common-table-expression (CTE)
4597 ** then return a pointer to the CTE definition for that table. Otherwise
4598 ** return NULL.
4599 **
4600 ** If a non-NULL value is returned, set *ppContext to point to the With
4601 ** object that the returned CTE belongs to.
4602 */
4603 static struct Cte *searchWith(
4604   With *pWith,                    /* Current innermost WITH clause */
4605   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4606   With **ppContext                /* OUT: WITH clause return value belongs to */
4607 ){
4608   const char *zName;
4609   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4610     With *p;
4611     for(p=pWith; p; p=p->pOuter){
4612       int i;
4613       for(i=0; i<p->nCte; i++){
4614         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4615           *ppContext = p;
4616           return &p->a[i];
4617         }
4618       }
4619     }
4620   }
4621   return 0;
4622 }
4623 
4624 /* The code generator maintains a stack of active WITH clauses
4625 ** with the inner-most WITH clause being at the top of the stack.
4626 **
4627 ** This routine pushes the WITH clause passed as the second argument
4628 ** onto the top of the stack. If argument bFree is true, then this
4629 ** WITH clause will never be popped from the stack. In this case it
4630 ** should be freed along with the Parse object. In other cases, when
4631 ** bFree==0, the With object will be freed along with the SELECT
4632 ** statement with which it is associated.
4633 */
4634 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4635   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4636   if( pWith ){
4637     assert( pParse->pWith!=pWith );
4638     pWith->pOuter = pParse->pWith;
4639     pParse->pWith = pWith;
4640     if( bFree ) pParse->pWithToFree = pWith;
4641   }
4642 }
4643 
4644 /*
4645 ** This function checks if argument pFrom refers to a CTE declared by
4646 ** a WITH clause on the stack currently maintained by the parser. And,
4647 ** if currently processing a CTE expression, if it is a recursive
4648 ** reference to the current CTE.
4649 **
4650 ** If pFrom falls into either of the two categories above, pFrom->pTab
4651 ** and other fields are populated accordingly. The caller should check
4652 ** (pFrom->pTab!=0) to determine whether or not a successful match
4653 ** was found.
4654 **
4655 ** Whether or not a match is found, SQLITE_OK is returned if no error
4656 ** occurs. If an error does occur, an error message is stored in the
4657 ** parser and some error code other than SQLITE_OK returned.
4658 */
4659 static int withExpand(
4660   Walker *pWalker,
4661   struct SrcList_item *pFrom
4662 ){
4663   Parse *pParse = pWalker->pParse;
4664   sqlite3 *db = pParse->db;
4665   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4666   With *pWith;                    /* WITH clause that pCte belongs to */
4667 
4668   assert( pFrom->pTab==0 );
4669 
4670   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4671   if( pCte ){
4672     Table *pTab;
4673     ExprList *pEList;
4674     Select *pSel;
4675     Select *pLeft;                /* Left-most SELECT statement */
4676     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4677     With *pSavedWith;             /* Initial value of pParse->pWith */
4678 
4679     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4680     ** recursive reference to CTE pCte. Leave an error in pParse and return
4681     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4682     ** In this case, proceed.  */
4683     if( pCte->zCteErr ){
4684       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4685       return SQLITE_ERROR;
4686     }
4687     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4688 
4689     assert( pFrom->pTab==0 );
4690     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4691     if( pTab==0 ) return WRC_Abort;
4692     pTab->nTabRef = 1;
4693     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4694     pTab->iPKey = -1;
4695     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4696     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4697     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4698     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4699     assert( pFrom->pSelect );
4700 
4701     /* Check if this is a recursive CTE. */
4702     pSel = pFrom->pSelect;
4703     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4704     if( bMayRecursive ){
4705       int i;
4706       SrcList *pSrc = pFrom->pSelect->pSrc;
4707       for(i=0; i<pSrc->nSrc; i++){
4708         struct SrcList_item *pItem = &pSrc->a[i];
4709         if( pItem->zDatabase==0
4710          && pItem->zName!=0
4711          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4712           ){
4713           pItem->pTab = pTab;
4714           pItem->fg.isRecursive = 1;
4715           pTab->nTabRef++;
4716           pSel->selFlags |= SF_Recursive;
4717         }
4718       }
4719     }
4720 
4721     /* Only one recursive reference is permitted. */
4722     if( pTab->nTabRef>2 ){
4723       sqlite3ErrorMsg(
4724           pParse, "multiple references to recursive table: %s", pCte->zName
4725       );
4726       return SQLITE_ERROR;
4727     }
4728     assert( pTab->nTabRef==1 ||
4729             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4730 
4731     pCte->zCteErr = "circular reference: %s";
4732     pSavedWith = pParse->pWith;
4733     pParse->pWith = pWith;
4734     if( bMayRecursive ){
4735       Select *pPrior = pSel->pPrior;
4736       assert( pPrior->pWith==0 );
4737       pPrior->pWith = pSel->pWith;
4738       sqlite3WalkSelect(pWalker, pPrior);
4739       pPrior->pWith = 0;
4740     }else{
4741       sqlite3WalkSelect(pWalker, pSel);
4742     }
4743     pParse->pWith = pWith;
4744 
4745     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4746     pEList = pLeft->pEList;
4747     if( pCte->pCols ){
4748       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4749         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4750             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4751         );
4752         pParse->pWith = pSavedWith;
4753         return SQLITE_ERROR;
4754       }
4755       pEList = pCte->pCols;
4756     }
4757 
4758     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4759     if( bMayRecursive ){
4760       if( pSel->selFlags & SF_Recursive ){
4761         pCte->zCteErr = "multiple recursive references: %s";
4762       }else{
4763         pCte->zCteErr = "recursive reference in a subquery: %s";
4764       }
4765       sqlite3WalkSelect(pWalker, pSel);
4766     }
4767     pCte->zCteErr = 0;
4768     pParse->pWith = pSavedWith;
4769   }
4770 
4771   return SQLITE_OK;
4772 }
4773 #endif
4774 
4775 #ifndef SQLITE_OMIT_CTE
4776 /*
4777 ** If the SELECT passed as the second argument has an associated WITH
4778 ** clause, pop it from the stack stored as part of the Parse object.
4779 **
4780 ** This function is used as the xSelectCallback2() callback by
4781 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4782 ** names and other FROM clause elements.
4783 */
4784 static void selectPopWith(Walker *pWalker, Select *p){
4785   Parse *pParse = pWalker->pParse;
4786   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4787     With *pWith = findRightmost(p)->pWith;
4788     if( pWith!=0 ){
4789       assert( pParse->pWith==pWith );
4790       pParse->pWith = pWith->pOuter;
4791     }
4792   }
4793 }
4794 #else
4795 #define selectPopWith 0
4796 #endif
4797 
4798 /*
4799 ** The SrcList_item structure passed as the second argument represents a
4800 ** sub-query in the FROM clause of a SELECT statement. This function
4801 ** allocates and populates the SrcList_item.pTab object. If successful,
4802 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4803 ** SQLITE_NOMEM.
4804 */
4805 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4806   Select *pSel = pFrom->pSelect;
4807   Table *pTab;
4808 
4809   assert( pSel );
4810   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4811   if( pTab==0 ) return SQLITE_NOMEM;
4812   pTab->nTabRef = 1;
4813   if( pFrom->zAlias ){
4814     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4815   }else{
4816     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4817   }
4818   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4819   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4820   pTab->iPKey = -1;
4821   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4822   pTab->tabFlags |= TF_Ephemeral;
4823 
4824   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4825 }
4826 
4827 /*
4828 ** This routine is a Walker callback for "expanding" a SELECT statement.
4829 ** "Expanding" means to do the following:
4830 **
4831 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4832 **         element of the FROM clause.
4833 **
4834 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4835 **         defines FROM clause.  When views appear in the FROM clause,
4836 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4837 **         that implements the view.  A copy is made of the view's SELECT
4838 **         statement so that we can freely modify or delete that statement
4839 **         without worrying about messing up the persistent representation
4840 **         of the view.
4841 **
4842 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4843 **         on joins and the ON and USING clause of joins.
4844 **
4845 **    (4)  Scan the list of columns in the result set (pEList) looking
4846 **         for instances of the "*" operator or the TABLE.* operator.
4847 **         If found, expand each "*" to be every column in every table
4848 **         and TABLE.* to be every column in TABLE.
4849 **
4850 */
4851 static int selectExpander(Walker *pWalker, Select *p){
4852   Parse *pParse = pWalker->pParse;
4853   int i, j, k;
4854   SrcList *pTabList;
4855   ExprList *pEList;
4856   struct SrcList_item *pFrom;
4857   sqlite3 *db = pParse->db;
4858   Expr *pE, *pRight, *pExpr;
4859   u16 selFlags = p->selFlags;
4860   u32 elistFlags = 0;
4861 
4862   p->selFlags |= SF_Expanded;
4863   if( db->mallocFailed  ){
4864     return WRC_Abort;
4865   }
4866   assert( p->pSrc!=0 );
4867   if( (selFlags & SF_Expanded)!=0 ){
4868     return WRC_Prune;
4869   }
4870   if( pWalker->eCode ){
4871     /* Renumber selId because it has been copied from a view */
4872     p->selId = ++pParse->nSelect;
4873   }
4874   pTabList = p->pSrc;
4875   pEList = p->pEList;
4876   sqlite3WithPush(pParse, p->pWith, 0);
4877 
4878   /* Make sure cursor numbers have been assigned to all entries in
4879   ** the FROM clause of the SELECT statement.
4880   */
4881   sqlite3SrcListAssignCursors(pParse, pTabList);
4882 
4883   /* Look up every table named in the FROM clause of the select.  If
4884   ** an entry of the FROM clause is a subquery instead of a table or view,
4885   ** then create a transient table structure to describe the subquery.
4886   */
4887   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4888     Table *pTab;
4889     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4890     if( pFrom->fg.isRecursive ) continue;
4891     assert( pFrom->pTab==0 );
4892 #ifndef SQLITE_OMIT_CTE
4893     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4894     if( pFrom->pTab ) {} else
4895 #endif
4896     if( pFrom->zName==0 ){
4897 #ifndef SQLITE_OMIT_SUBQUERY
4898       Select *pSel = pFrom->pSelect;
4899       /* A sub-query in the FROM clause of a SELECT */
4900       assert( pSel!=0 );
4901       assert( pFrom->pTab==0 );
4902       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4903       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4904 #endif
4905     }else{
4906       /* An ordinary table or view name in the FROM clause */
4907       assert( pFrom->pTab==0 );
4908       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4909       if( pTab==0 ) return WRC_Abort;
4910       if( pTab->nTabRef>=0xffff ){
4911         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4912            pTab->zName);
4913         pFrom->pTab = 0;
4914         return WRC_Abort;
4915       }
4916       pTab->nTabRef++;
4917       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4918         return WRC_Abort;
4919       }
4920 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4921       if( IsVirtual(pTab) || pTab->pSelect ){
4922         i16 nCol;
4923         u8 eCodeOrig = pWalker->eCode;
4924         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4925         assert( pFrom->pSelect==0 );
4926         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
4927           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
4928               pTab->zName);
4929         }
4930         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4931         nCol = pTab->nCol;
4932         pTab->nCol = -1;
4933         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4934         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4935         pWalker->eCode = eCodeOrig;
4936         pTab->nCol = nCol;
4937       }
4938 #endif
4939     }
4940 
4941     /* Locate the index named by the INDEXED BY clause, if any. */
4942     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4943       return WRC_Abort;
4944     }
4945   }
4946 
4947   /* Process NATURAL keywords, and ON and USING clauses of joins.
4948   */
4949   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4950     return WRC_Abort;
4951   }
4952 
4953   /* For every "*" that occurs in the column list, insert the names of
4954   ** all columns in all tables.  And for every TABLE.* insert the names
4955   ** of all columns in TABLE.  The parser inserted a special expression
4956   ** with the TK_ASTERISK operator for each "*" that it found in the column
4957   ** list.  The following code just has to locate the TK_ASTERISK
4958   ** expressions and expand each one to the list of all columns in
4959   ** all tables.
4960   **
4961   ** The first loop just checks to see if there are any "*" operators
4962   ** that need expanding.
4963   */
4964   for(k=0; k<pEList->nExpr; k++){
4965     pE = pEList->a[k].pExpr;
4966     if( pE->op==TK_ASTERISK ) break;
4967     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4968     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4969     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4970     elistFlags |= pE->flags;
4971   }
4972   if( k<pEList->nExpr ){
4973     /*
4974     ** If we get here it means the result set contains one or more "*"
4975     ** operators that need to be expanded.  Loop through each expression
4976     ** in the result set and expand them one by one.
4977     */
4978     struct ExprList_item *a = pEList->a;
4979     ExprList *pNew = 0;
4980     int flags = pParse->db->flags;
4981     int longNames = (flags & SQLITE_FullColNames)!=0
4982                       && (flags & SQLITE_ShortColNames)==0;
4983 
4984     for(k=0; k<pEList->nExpr; k++){
4985       pE = a[k].pExpr;
4986       elistFlags |= pE->flags;
4987       pRight = pE->pRight;
4988       assert( pE->op!=TK_DOT || pRight!=0 );
4989       if( pE->op!=TK_ASTERISK
4990        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4991       ){
4992         /* This particular expression does not need to be expanded.
4993         */
4994         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4995         if( pNew ){
4996           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4997           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4998           a[k].zName = 0;
4999           a[k].zSpan = 0;
5000         }
5001         a[k].pExpr = 0;
5002       }else{
5003         /* This expression is a "*" or a "TABLE.*" and needs to be
5004         ** expanded. */
5005         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5006         char *zTName = 0;       /* text of name of TABLE */
5007         if( pE->op==TK_DOT ){
5008           assert( pE->pLeft!=0 );
5009           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5010           zTName = pE->pLeft->u.zToken;
5011         }
5012         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5013           Table *pTab = pFrom->pTab;
5014           Select *pSub = pFrom->pSelect;
5015           char *zTabName = pFrom->zAlias;
5016           const char *zSchemaName = 0;
5017           int iDb;
5018           if( zTabName==0 ){
5019             zTabName = pTab->zName;
5020           }
5021           if( db->mallocFailed ) break;
5022           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5023             pSub = 0;
5024             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5025               continue;
5026             }
5027             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5028             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5029           }
5030           for(j=0; j<pTab->nCol; j++){
5031             char *zName = pTab->aCol[j].zName;
5032             char *zColname;  /* The computed column name */
5033             char *zToFree;   /* Malloced string that needs to be freed */
5034             Token sColname;  /* Computed column name as a token */
5035 
5036             assert( zName );
5037             if( zTName && pSub
5038              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
5039             ){
5040               continue;
5041             }
5042 
5043             /* If a column is marked as 'hidden', omit it from the expanded
5044             ** result-set list unless the SELECT has the SF_IncludeHidden
5045             ** bit set.
5046             */
5047             if( (p->selFlags & SF_IncludeHidden)==0
5048              && IsHiddenColumn(&pTab->aCol[j])
5049             ){
5050               continue;
5051             }
5052             tableSeen = 1;
5053 
5054             if( i>0 && zTName==0 ){
5055               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5056                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5057               ){
5058                 /* In a NATURAL join, omit the join columns from the
5059                 ** table to the right of the join */
5060                 continue;
5061               }
5062               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5063                 /* In a join with a USING clause, omit columns in the
5064                 ** using clause from the table on the right. */
5065                 continue;
5066               }
5067             }
5068             pRight = sqlite3Expr(db, TK_ID, zName);
5069             zColname = zName;
5070             zToFree = 0;
5071             if( longNames || pTabList->nSrc>1 ){
5072               Expr *pLeft;
5073               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5074               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5075               if( zSchemaName ){
5076                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5077                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5078               }
5079               if( longNames ){
5080                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5081                 zToFree = zColname;
5082               }
5083             }else{
5084               pExpr = pRight;
5085             }
5086             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5087             sqlite3TokenInit(&sColname, zColname);
5088             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5089             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5090               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5091               if( pSub ){
5092                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5093                 testcase( pX->zSpan==0 );
5094               }else{
5095                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5096                                            zSchemaName, zTabName, zColname);
5097                 testcase( pX->zSpan==0 );
5098               }
5099               pX->bSpanIsTab = 1;
5100             }
5101             sqlite3DbFree(db, zToFree);
5102           }
5103         }
5104         if( !tableSeen ){
5105           if( zTName ){
5106             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5107           }else{
5108             sqlite3ErrorMsg(pParse, "no tables specified");
5109           }
5110         }
5111       }
5112     }
5113     sqlite3ExprListDelete(db, pEList);
5114     p->pEList = pNew;
5115   }
5116   if( p->pEList ){
5117     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5118       sqlite3ErrorMsg(pParse, "too many columns in result set");
5119       return WRC_Abort;
5120     }
5121     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5122       p->selFlags |= SF_ComplexResult;
5123     }
5124   }
5125   return WRC_Continue;
5126 }
5127 
5128 /*
5129 ** No-op routine for the parse-tree walker.
5130 **
5131 ** When this routine is the Walker.xExprCallback then expression trees
5132 ** are walked without any actions being taken at each node.  Presumably,
5133 ** when this routine is used for Walker.xExprCallback then
5134 ** Walker.xSelectCallback is set to do something useful for every
5135 ** subquery in the parser tree.
5136 */
5137 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5138   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5139   return WRC_Continue;
5140 }
5141 
5142 /*
5143 ** No-op routine for the parse-tree walker for SELECT statements.
5144 ** subquery in the parser tree.
5145 */
5146 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5147   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5148   return WRC_Continue;
5149 }
5150 
5151 #if SQLITE_DEBUG
5152 /*
5153 ** Always assert.  This xSelectCallback2 implementation proves that the
5154 ** xSelectCallback2 is never invoked.
5155 */
5156 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5157   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5158   assert( 0 );
5159 }
5160 #endif
5161 /*
5162 ** This routine "expands" a SELECT statement and all of its subqueries.
5163 ** For additional information on what it means to "expand" a SELECT
5164 ** statement, see the comment on the selectExpand worker callback above.
5165 **
5166 ** Expanding a SELECT statement is the first step in processing a
5167 ** SELECT statement.  The SELECT statement must be expanded before
5168 ** name resolution is performed.
5169 **
5170 ** If anything goes wrong, an error message is written into pParse.
5171 ** The calling function can detect the problem by looking at pParse->nErr
5172 ** and/or pParse->db->mallocFailed.
5173 */
5174 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5175   Walker w;
5176   w.xExprCallback = sqlite3ExprWalkNoop;
5177   w.pParse = pParse;
5178   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5179     w.xSelectCallback = convertCompoundSelectToSubquery;
5180     w.xSelectCallback2 = 0;
5181     sqlite3WalkSelect(&w, pSelect);
5182   }
5183   w.xSelectCallback = selectExpander;
5184   w.xSelectCallback2 = selectPopWith;
5185   w.eCode = 0;
5186   sqlite3WalkSelect(&w, pSelect);
5187 }
5188 
5189 
5190 #ifndef SQLITE_OMIT_SUBQUERY
5191 /*
5192 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5193 ** interface.
5194 **
5195 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5196 ** information to the Table structure that represents the result set
5197 ** of that subquery.
5198 **
5199 ** The Table structure that represents the result set was constructed
5200 ** by selectExpander() but the type and collation information was omitted
5201 ** at that point because identifiers had not yet been resolved.  This
5202 ** routine is called after identifier resolution.
5203 */
5204 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5205   Parse *pParse;
5206   int i;
5207   SrcList *pTabList;
5208   struct SrcList_item *pFrom;
5209 
5210   assert( p->selFlags & SF_Resolved );
5211   if( p->selFlags & SF_HasTypeInfo ) return;
5212   p->selFlags |= SF_HasTypeInfo;
5213   pParse = pWalker->pParse;
5214   pTabList = p->pSrc;
5215   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5216     Table *pTab = pFrom->pTab;
5217     assert( pTab!=0 );
5218     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5219       /* A sub-query in the FROM clause of a SELECT */
5220       Select *pSel = pFrom->pSelect;
5221       if( pSel ){
5222         while( pSel->pPrior ) pSel = pSel->pPrior;
5223         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5224                                                SQLITE_AFF_NONE);
5225       }
5226     }
5227   }
5228 }
5229 #endif
5230 
5231 
5232 /*
5233 ** This routine adds datatype and collating sequence information to
5234 ** the Table structures of all FROM-clause subqueries in a
5235 ** SELECT statement.
5236 **
5237 ** Use this routine after name resolution.
5238 */
5239 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5240 #ifndef SQLITE_OMIT_SUBQUERY
5241   Walker w;
5242   w.xSelectCallback = sqlite3SelectWalkNoop;
5243   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5244   w.xExprCallback = sqlite3ExprWalkNoop;
5245   w.pParse = pParse;
5246   sqlite3WalkSelect(&w, pSelect);
5247 #endif
5248 }
5249 
5250 
5251 /*
5252 ** This routine sets up a SELECT statement for processing.  The
5253 ** following is accomplished:
5254 **
5255 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5256 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5257 **     *  ON and USING clauses are shifted into WHERE statements
5258 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5259 **     *  Identifiers in expression are matched to tables.
5260 **
5261 ** This routine acts recursively on all subqueries within the SELECT.
5262 */
5263 void sqlite3SelectPrep(
5264   Parse *pParse,         /* The parser context */
5265   Select *p,             /* The SELECT statement being coded. */
5266   NameContext *pOuterNC  /* Name context for container */
5267 ){
5268   assert( p!=0 || pParse->db->mallocFailed );
5269   if( pParse->db->mallocFailed ) return;
5270   if( p->selFlags & SF_HasTypeInfo ) return;
5271   sqlite3SelectExpand(pParse, p);
5272   if( pParse->nErr || pParse->db->mallocFailed ) return;
5273   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5274   if( pParse->nErr || pParse->db->mallocFailed ) return;
5275   sqlite3SelectAddTypeInfo(pParse, p);
5276 }
5277 
5278 /*
5279 ** Reset the aggregate accumulator.
5280 **
5281 ** The aggregate accumulator is a set of memory cells that hold
5282 ** intermediate results while calculating an aggregate.  This
5283 ** routine generates code that stores NULLs in all of those memory
5284 ** cells.
5285 */
5286 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5287   Vdbe *v = pParse->pVdbe;
5288   int i;
5289   struct AggInfo_func *pFunc;
5290   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5291   if( nReg==0 ) return;
5292 #ifdef SQLITE_DEBUG
5293   /* Verify that all AggInfo registers are within the range specified by
5294   ** AggInfo.mnReg..AggInfo.mxReg */
5295   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5296   for(i=0; i<pAggInfo->nColumn; i++){
5297     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5298          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5299   }
5300   for(i=0; i<pAggInfo->nFunc; i++){
5301     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5302          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5303   }
5304 #endif
5305   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5306   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5307     if( pFunc->iDistinct>=0 ){
5308       Expr *pE = pFunc->pExpr;
5309       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5310       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5311         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5312            "argument");
5313         pFunc->iDistinct = -1;
5314       }else{
5315         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5316         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5317                           (char*)pKeyInfo, P4_KEYINFO);
5318       }
5319     }
5320   }
5321 }
5322 
5323 /*
5324 ** Invoke the OP_AggFinalize opcode for every aggregate function
5325 ** in the AggInfo structure.
5326 */
5327 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5328   Vdbe *v = pParse->pVdbe;
5329   int i;
5330   struct AggInfo_func *pF;
5331   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5332     ExprList *pList = pF->pExpr->x.pList;
5333     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5334     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5335     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5336   }
5337 }
5338 
5339 
5340 /*
5341 ** Update the accumulator memory cells for an aggregate based on
5342 ** the current cursor position.
5343 **
5344 ** If regAcc is non-zero and there are no min() or max() aggregates
5345 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5346 ** registers if register regAcc contains 0. The caller will take care
5347 ** of setting and clearing regAcc.
5348 */
5349 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5350   Vdbe *v = pParse->pVdbe;
5351   int i;
5352   int regHit = 0;
5353   int addrHitTest = 0;
5354   struct AggInfo_func *pF;
5355   struct AggInfo_col *pC;
5356 
5357   pAggInfo->directMode = 1;
5358   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5359     int nArg;
5360     int addrNext = 0;
5361     int regAgg;
5362     ExprList *pList = pF->pExpr->x.pList;
5363     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5364     assert( !IsWindowFunc(pF->pExpr) );
5365     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5366       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5367       if( pAggInfo->nAccumulator
5368        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5369       ){
5370         if( regHit==0 ) regHit = ++pParse->nMem;
5371         /* If this is the first row of the group (regAcc==0), clear the
5372         ** "magnet" register regHit so that the accumulator registers
5373         ** are populated if the FILTER clause jumps over the the
5374         ** invocation of min() or max() altogether. Or, if this is not
5375         ** the first row (regAcc==1), set the magnet register so that the
5376         ** accumulators are not populated unless the min()/max() is invoked and
5377         ** indicates that they should be.  */
5378         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5379       }
5380       addrNext = sqlite3VdbeMakeLabel(pParse);
5381       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5382     }
5383     if( pList ){
5384       nArg = pList->nExpr;
5385       regAgg = sqlite3GetTempRange(pParse, nArg);
5386       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5387     }else{
5388       nArg = 0;
5389       regAgg = 0;
5390     }
5391     if( pF->iDistinct>=0 ){
5392       if( addrNext==0 ){
5393         addrNext = sqlite3VdbeMakeLabel(pParse);
5394       }
5395       testcase( nArg==0 );  /* Error condition */
5396       testcase( nArg>1 );   /* Also an error */
5397       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5398     }
5399     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5400       CollSeq *pColl = 0;
5401       struct ExprList_item *pItem;
5402       int j;
5403       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5404       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5405         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5406       }
5407       if( !pColl ){
5408         pColl = pParse->db->pDfltColl;
5409       }
5410       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5411       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5412     }
5413     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5414     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5415     sqlite3VdbeChangeP5(v, (u8)nArg);
5416     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5417     if( addrNext ){
5418       sqlite3VdbeResolveLabel(v, addrNext);
5419     }
5420   }
5421   if( regHit==0 && pAggInfo->nAccumulator ){
5422     regHit = regAcc;
5423   }
5424   if( regHit ){
5425     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5426   }
5427   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5428     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5429   }
5430 
5431   pAggInfo->directMode = 0;
5432   if( addrHitTest ){
5433     sqlite3VdbeJumpHere(v, addrHitTest);
5434   }
5435 }
5436 
5437 /*
5438 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5439 ** count(*) query ("SELECT count(*) FROM pTab").
5440 */
5441 #ifndef SQLITE_OMIT_EXPLAIN
5442 static void explainSimpleCount(
5443   Parse *pParse,                  /* Parse context */
5444   Table *pTab,                    /* Table being queried */
5445   Index *pIdx                     /* Index used to optimize scan, or NULL */
5446 ){
5447   if( pParse->explain==2 ){
5448     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5449     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5450         pTab->zName,
5451         bCover ? " USING COVERING INDEX " : "",
5452         bCover ? pIdx->zName : ""
5453     );
5454   }
5455 }
5456 #else
5457 # define explainSimpleCount(a,b,c)
5458 #endif
5459 
5460 /*
5461 ** sqlite3WalkExpr() callback used by havingToWhere().
5462 **
5463 ** If the node passed to the callback is a TK_AND node, return
5464 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5465 **
5466 ** Otherwise, return WRC_Prune. In this case, also check if the
5467 ** sub-expression matches the criteria for being moved to the WHERE
5468 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5469 ** within the HAVING expression with a constant "1".
5470 */
5471 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5472   if( pExpr->op!=TK_AND ){
5473     Select *pS = pWalker->u.pSelect;
5474     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5475       sqlite3 *db = pWalker->pParse->db;
5476       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5477       if( pNew ){
5478         Expr *pWhere = pS->pWhere;
5479         SWAP(Expr, *pNew, *pExpr);
5480         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5481         pS->pWhere = pNew;
5482         pWalker->eCode = 1;
5483       }
5484     }
5485     return WRC_Prune;
5486   }
5487   return WRC_Continue;
5488 }
5489 
5490 /*
5491 ** Transfer eligible terms from the HAVING clause of a query, which is
5492 ** processed after grouping, to the WHERE clause, which is processed before
5493 ** grouping. For example, the query:
5494 **
5495 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5496 **
5497 ** can be rewritten as:
5498 **
5499 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5500 **
5501 ** A term of the HAVING expression is eligible for transfer if it consists
5502 ** entirely of constants and expressions that are also GROUP BY terms that
5503 ** use the "BINARY" collation sequence.
5504 */
5505 static void havingToWhere(Parse *pParse, Select *p){
5506   Walker sWalker;
5507   memset(&sWalker, 0, sizeof(sWalker));
5508   sWalker.pParse = pParse;
5509   sWalker.xExprCallback = havingToWhereExprCb;
5510   sWalker.u.pSelect = p;
5511   sqlite3WalkExpr(&sWalker, p->pHaving);
5512 #if SELECTTRACE_ENABLED
5513   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5514     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5515     sqlite3TreeViewSelect(0, p, 0);
5516   }
5517 #endif
5518 }
5519 
5520 /*
5521 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5522 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5523 ** then return 0.
5524 */
5525 static struct SrcList_item *isSelfJoinView(
5526   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5527   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5528 ){
5529   struct SrcList_item *pItem;
5530   for(pItem = pTabList->a; pItem<pThis; pItem++){
5531     Select *pS1;
5532     if( pItem->pSelect==0 ) continue;
5533     if( pItem->fg.viaCoroutine ) continue;
5534     if( pItem->zName==0 ) continue;
5535     assert( pItem->pTab!=0 );
5536     assert( pThis->pTab!=0 );
5537     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5538     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5539     pS1 = pItem->pSelect;
5540     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5541       /* The query flattener left two different CTE tables with identical
5542       ** names in the same FROM clause. */
5543       continue;
5544     }
5545     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5546      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5547     ){
5548       /* The view was modified by some other optimization such as
5549       ** pushDownWhereTerms() */
5550       continue;
5551     }
5552     return pItem;
5553   }
5554   return 0;
5555 }
5556 
5557 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5558 /*
5559 ** Attempt to transform a query of the form
5560 **
5561 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5562 **
5563 ** Into this:
5564 **
5565 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5566 **
5567 ** The transformation only works if all of the following are true:
5568 **
5569 **   *  The subquery is a UNION ALL of two or more terms
5570 **   *  The subquery does not have a LIMIT clause
5571 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5572 **   *  The outer query is a simple count(*) with no WHERE clause or other
5573 **      extraneous syntax.
5574 **
5575 ** Return TRUE if the optimization is undertaken.
5576 */
5577 static int countOfViewOptimization(Parse *pParse, Select *p){
5578   Select *pSub, *pPrior;
5579   Expr *pExpr;
5580   Expr *pCount;
5581   sqlite3 *db;
5582   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5583   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5584   if( p->pWhere ) return 0;
5585   if( p->pGroupBy ) return 0;
5586   pExpr = p->pEList->a[0].pExpr;
5587   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5588   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5589   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5590   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5591   pSub = p->pSrc->a[0].pSelect;
5592   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5593   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5594   do{
5595     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5596     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5597     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5598     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5599     pSub = pSub->pPrior;                              /* Repeat over compound */
5600   }while( pSub );
5601 
5602   /* If we reach this point then it is OK to perform the transformation */
5603 
5604   db = pParse->db;
5605   pCount = pExpr;
5606   pExpr = 0;
5607   pSub = p->pSrc->a[0].pSelect;
5608   p->pSrc->a[0].pSelect = 0;
5609   sqlite3SrcListDelete(db, p->pSrc);
5610   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5611   while( pSub ){
5612     Expr *pTerm;
5613     pPrior = pSub->pPrior;
5614     pSub->pPrior = 0;
5615     pSub->pNext = 0;
5616     pSub->selFlags |= SF_Aggregate;
5617     pSub->selFlags &= ~SF_Compound;
5618     pSub->nSelectRow = 0;
5619     sqlite3ExprListDelete(db, pSub->pEList);
5620     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5621     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5622     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5623     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5624     if( pExpr==0 ){
5625       pExpr = pTerm;
5626     }else{
5627       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5628     }
5629     pSub = pPrior;
5630   }
5631   p->pEList->a[0].pExpr = pExpr;
5632   p->selFlags &= ~SF_Aggregate;
5633 
5634 #if SELECTTRACE_ENABLED
5635   if( sqlite3SelectTrace & 0x400 ){
5636     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5637     sqlite3TreeViewSelect(0, p, 0);
5638   }
5639 #endif
5640   return 1;
5641 }
5642 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5643 
5644 /*
5645 ** Generate code for the SELECT statement given in the p argument.
5646 **
5647 ** The results are returned according to the SelectDest structure.
5648 ** See comments in sqliteInt.h for further information.
5649 **
5650 ** This routine returns the number of errors.  If any errors are
5651 ** encountered, then an appropriate error message is left in
5652 ** pParse->zErrMsg.
5653 **
5654 ** This routine does NOT free the Select structure passed in.  The
5655 ** calling function needs to do that.
5656 */
5657 int sqlite3Select(
5658   Parse *pParse,         /* The parser context */
5659   Select *p,             /* The SELECT statement being coded. */
5660   SelectDest *pDest      /* What to do with the query results */
5661 ){
5662   int i, j;              /* Loop counters */
5663   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5664   Vdbe *v;               /* The virtual machine under construction */
5665   int isAgg;             /* True for select lists like "count(*)" */
5666   ExprList *pEList = 0;  /* List of columns to extract. */
5667   SrcList *pTabList;     /* List of tables to select from */
5668   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5669   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5670   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5671   int rc = 1;            /* Value to return from this function */
5672   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5673   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5674   AggInfo sAggInfo;      /* Information used by aggregate queries */
5675   int iEnd;              /* Address of the end of the query */
5676   sqlite3 *db;           /* The database connection */
5677   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5678   u8 minMaxFlag;                 /* Flag for min/max queries */
5679 
5680   db = pParse->db;
5681   v = sqlite3GetVdbe(pParse);
5682   if( p==0 || db->mallocFailed || pParse->nErr ){
5683     return 1;
5684   }
5685   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5686   memset(&sAggInfo, 0, sizeof(sAggInfo));
5687 #if SELECTTRACE_ENABLED
5688   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5689   if( sqlite3SelectTrace & 0x100 ){
5690     sqlite3TreeViewSelect(0, p, 0);
5691   }
5692 #endif
5693 
5694   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5695   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5696   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5697   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5698   if( IgnorableOrderby(pDest) ){
5699     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5700            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5701            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5702            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5703     /* If ORDER BY makes no difference in the output then neither does
5704     ** DISTINCT so it can be removed too. */
5705     sqlite3ExprListDelete(db, p->pOrderBy);
5706     p->pOrderBy = 0;
5707     p->selFlags &= ~SF_Distinct;
5708   }
5709   sqlite3SelectPrep(pParse, p, 0);
5710   if( pParse->nErr || db->mallocFailed ){
5711     goto select_end;
5712   }
5713   assert( p->pEList!=0 );
5714 #if SELECTTRACE_ENABLED
5715   if( sqlite3SelectTrace & 0x104 ){
5716     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5717     sqlite3TreeViewSelect(0, p, 0);
5718   }
5719 #endif
5720 
5721   if( pDest->eDest==SRT_Output ){
5722     generateColumnNames(pParse, p);
5723   }
5724 
5725 #ifndef SQLITE_OMIT_WINDOWFUNC
5726   if( sqlite3WindowRewrite(pParse, p) ){
5727     goto select_end;
5728   }
5729 #if SELECTTRACE_ENABLED
5730   if( sqlite3SelectTrace & 0x108 ){
5731     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5732     sqlite3TreeViewSelect(0, p, 0);
5733   }
5734 #endif
5735 #endif /* SQLITE_OMIT_WINDOWFUNC */
5736   pTabList = p->pSrc;
5737   isAgg = (p->selFlags & SF_Aggregate)!=0;
5738   memset(&sSort, 0, sizeof(sSort));
5739   sSort.pOrderBy = p->pOrderBy;
5740 
5741   /* Try to various optimizations (flattening subqueries, and strength
5742   ** reduction of join operators) in the FROM clause up into the main query
5743   */
5744 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5745   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5746     struct SrcList_item *pItem = &pTabList->a[i];
5747     Select *pSub = pItem->pSelect;
5748     Table *pTab = pItem->pTab;
5749 
5750     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5751     ** of the LEFT JOIN used in the WHERE clause.
5752     */
5753     if( (pItem->fg.jointype & JT_LEFT)!=0
5754      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5755      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5756     ){
5757       SELECTTRACE(0x100,pParse,p,
5758                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5759       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5760       unsetJoinExpr(p->pWhere, pItem->iCursor);
5761     }
5762 
5763     /* No futher action if this term of the FROM clause is no a subquery */
5764     if( pSub==0 ) continue;
5765 
5766     /* Catch mismatch in the declared columns of a view and the number of
5767     ** columns in the SELECT on the RHS */
5768     if( pTab->nCol!=pSub->pEList->nExpr ){
5769       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5770                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5771       goto select_end;
5772     }
5773 
5774     /* Do not try to flatten an aggregate subquery.
5775     **
5776     ** Flattening an aggregate subquery is only possible if the outer query
5777     ** is not a join.  But if the outer query is not a join, then the subquery
5778     ** will be implemented as a co-routine and there is no advantage to
5779     ** flattening in that case.
5780     */
5781     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5782     assert( pSub->pGroupBy==0 );
5783 
5784     /* If the outer query contains a "complex" result set (that is,
5785     ** if the result set of the outer query uses functions or subqueries)
5786     ** and if the subquery contains an ORDER BY clause and if
5787     ** it will be implemented as a co-routine, then do not flatten.  This
5788     ** restriction allows SQL constructs like this:
5789     **
5790     **  SELECT expensive_function(x)
5791     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5792     **
5793     ** The expensive_function() is only computed on the 10 rows that
5794     ** are output, rather than every row of the table.
5795     **
5796     ** The requirement that the outer query have a complex result set
5797     ** means that flattening does occur on simpler SQL constraints without
5798     ** the expensive_function() like:
5799     **
5800     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5801     */
5802     if( pSub->pOrderBy!=0
5803      && i==0
5804      && (p->selFlags & SF_ComplexResult)!=0
5805      && (pTabList->nSrc==1
5806          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5807     ){
5808       continue;
5809     }
5810 
5811     if( flattenSubquery(pParse, p, i, isAgg) ){
5812       if( pParse->nErr ) goto select_end;
5813       /* This subquery can be absorbed into its parent. */
5814       i = -1;
5815     }
5816     pTabList = p->pSrc;
5817     if( db->mallocFailed ) goto select_end;
5818     if( !IgnorableOrderby(pDest) ){
5819       sSort.pOrderBy = p->pOrderBy;
5820     }
5821   }
5822 #endif
5823 
5824 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5825   /* Handle compound SELECT statements using the separate multiSelect()
5826   ** procedure.
5827   */
5828   if( p->pPrior ){
5829     rc = multiSelect(pParse, p, pDest);
5830 #if SELECTTRACE_ENABLED
5831     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5832     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5833       sqlite3TreeViewSelect(0, p, 0);
5834     }
5835 #endif
5836     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5837     return rc;
5838   }
5839 #endif
5840 
5841   /* Do the WHERE-clause constant propagation optimization if this is
5842   ** a join.  No need to speed time on this operation for non-join queries
5843   ** as the equivalent optimization will be handled by query planner in
5844   ** sqlite3WhereBegin().
5845   */
5846   if( pTabList->nSrc>1
5847    && OptimizationEnabled(db, SQLITE_PropagateConst)
5848    && propagateConstants(pParse, p)
5849   ){
5850 #if SELECTTRACE_ENABLED
5851     if( sqlite3SelectTrace & 0x100 ){
5852       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5853       sqlite3TreeViewSelect(0, p, 0);
5854     }
5855 #endif
5856   }else{
5857     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5858   }
5859 
5860 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5861   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5862    && countOfViewOptimization(pParse, p)
5863   ){
5864     if( db->mallocFailed ) goto select_end;
5865     pEList = p->pEList;
5866     pTabList = p->pSrc;
5867   }
5868 #endif
5869 
5870   /* For each term in the FROM clause, do two things:
5871   ** (1) Authorized unreferenced tables
5872   ** (2) Generate code for all sub-queries
5873   */
5874   for(i=0; i<pTabList->nSrc; i++){
5875     struct SrcList_item *pItem = &pTabList->a[i];
5876     SelectDest dest;
5877     Select *pSub;
5878 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5879     const char *zSavedAuthContext;
5880 #endif
5881 
5882     /* Issue SQLITE_READ authorizations with a fake column name for any
5883     ** tables that are referenced but from which no values are extracted.
5884     ** Examples of where these kinds of null SQLITE_READ authorizations
5885     ** would occur:
5886     **
5887     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5888     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5889     **
5890     ** The fake column name is an empty string.  It is possible for a table to
5891     ** have a column named by the empty string, in which case there is no way to
5892     ** distinguish between an unreferenced table and an actual reference to the
5893     ** "" column. The original design was for the fake column name to be a NULL,
5894     ** which would be unambiguous.  But legacy authorization callbacks might
5895     ** assume the column name is non-NULL and segfault.  The use of an empty
5896     ** string for the fake column name seems safer.
5897     */
5898     if( pItem->colUsed==0 && pItem->zName!=0 ){
5899       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5900     }
5901 
5902 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5903     /* Generate code for all sub-queries in the FROM clause
5904     */
5905     pSub = pItem->pSelect;
5906     if( pSub==0 ) continue;
5907 
5908     /* The code for a subquery should only be generated once, though it is
5909     ** technically harmless for it to be generated multiple times. The
5910     ** following assert() will detect if something changes to cause
5911     ** the same subquery to be coded multiple times, as a signal to the
5912     ** developers to try to optimize the situation.
5913     **
5914     ** Update 2019-07-24:
5915     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5916     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5917     ** coded twice.  So this assert() now becomes a testcase().  It should
5918     ** be very rare, though.
5919     */
5920     testcase( pItem->addrFillSub!=0 );
5921 
5922     /* Increment Parse.nHeight by the height of the largest expression
5923     ** tree referred to by this, the parent select. The child select
5924     ** may contain expression trees of at most
5925     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5926     ** more conservative than necessary, but much easier than enforcing
5927     ** an exact limit.
5928     */
5929     pParse->nHeight += sqlite3SelectExprHeight(p);
5930 
5931     /* Make copies of constant WHERE-clause terms in the outer query down
5932     ** inside the subquery.  This can help the subquery to run more efficiently.
5933     */
5934     if( OptimizationEnabled(db, SQLITE_PushDown)
5935      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5936                            (pItem->fg.jointype & JT_OUTER)!=0)
5937     ){
5938 #if SELECTTRACE_ENABLED
5939       if( sqlite3SelectTrace & 0x100 ){
5940         SELECTTRACE(0x100,pParse,p,
5941             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5942         sqlite3TreeViewSelect(0, p, 0);
5943       }
5944 #endif
5945     }else{
5946       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5947     }
5948 
5949     zSavedAuthContext = pParse->zAuthContext;
5950     pParse->zAuthContext = pItem->zName;
5951 
5952     /* Generate code to implement the subquery
5953     **
5954     ** The subquery is implemented as a co-routine if the subquery is
5955     ** guaranteed to be the outer loop (so that it does not need to be
5956     ** computed more than once)
5957     **
5958     ** TODO: Are there other reasons beside (1) to use a co-routine
5959     ** implementation?
5960     */
5961     if( i==0
5962      && (pTabList->nSrc==1
5963             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5964     ){
5965       /* Implement a co-routine that will return a single row of the result
5966       ** set on each invocation.
5967       */
5968       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5969 
5970       pItem->regReturn = ++pParse->nMem;
5971       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5972       VdbeComment((v, "%s", pItem->pTab->zName));
5973       pItem->addrFillSub = addrTop;
5974       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5975       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5976       sqlite3Select(pParse, pSub, &dest);
5977       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5978       pItem->fg.viaCoroutine = 1;
5979       pItem->regResult = dest.iSdst;
5980       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5981       sqlite3VdbeJumpHere(v, addrTop-1);
5982       sqlite3ClearTempRegCache(pParse);
5983     }else{
5984       /* Generate a subroutine that will fill an ephemeral table with
5985       ** the content of this subquery.  pItem->addrFillSub will point
5986       ** to the address of the generated subroutine.  pItem->regReturn
5987       ** is a register allocated to hold the subroutine return address
5988       */
5989       int topAddr;
5990       int onceAddr = 0;
5991       int retAddr;
5992       struct SrcList_item *pPrior;
5993 
5994       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
5995       pItem->regReturn = ++pParse->nMem;
5996       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5997       pItem->addrFillSub = topAddr+1;
5998       if( pItem->fg.isCorrelated==0 ){
5999         /* If the subquery is not correlated and if we are not inside of
6000         ** a trigger, then we only need to compute the value of the subquery
6001         ** once. */
6002         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6003         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6004       }else{
6005         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6006       }
6007       pPrior = isSelfJoinView(pTabList, pItem);
6008       if( pPrior ){
6009         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6010         assert( pPrior->pSelect!=0 );
6011         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6012       }else{
6013         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6014         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6015         sqlite3Select(pParse, pSub, &dest);
6016       }
6017       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6018       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6019       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6020       VdbeComment((v, "end %s", pItem->pTab->zName));
6021       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6022       sqlite3ClearTempRegCache(pParse);
6023     }
6024     if( db->mallocFailed ) goto select_end;
6025     pParse->nHeight -= sqlite3SelectExprHeight(p);
6026     pParse->zAuthContext = zSavedAuthContext;
6027 #endif
6028   }
6029 
6030   /* Various elements of the SELECT copied into local variables for
6031   ** convenience */
6032   pEList = p->pEList;
6033   pWhere = p->pWhere;
6034   pGroupBy = p->pGroupBy;
6035   pHaving = p->pHaving;
6036   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6037 
6038 #if SELECTTRACE_ENABLED
6039   if( sqlite3SelectTrace & 0x400 ){
6040     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6041     sqlite3TreeViewSelect(0, p, 0);
6042   }
6043 #endif
6044 
6045   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6046   ** if the select-list is the same as the ORDER BY list, then this query
6047   ** can be rewritten as a GROUP BY. In other words, this:
6048   **
6049   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6050   **
6051   ** is transformed to:
6052   **
6053   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6054   **
6055   ** The second form is preferred as a single index (or temp-table) may be
6056   ** used for both the ORDER BY and DISTINCT processing. As originally
6057   ** written the query must use a temp-table for at least one of the ORDER
6058   ** BY and DISTINCT, and an index or separate temp-table for the other.
6059   */
6060   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6061    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6062   ){
6063     p->selFlags &= ~SF_Distinct;
6064     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6065     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6066     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6067     ** original setting of the SF_Distinct flag, not the current setting */
6068     assert( sDistinct.isTnct );
6069 
6070 #if SELECTTRACE_ENABLED
6071     if( sqlite3SelectTrace & 0x400 ){
6072       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6073       sqlite3TreeViewSelect(0, p, 0);
6074     }
6075 #endif
6076   }
6077 
6078   /* If there is an ORDER BY clause, then create an ephemeral index to
6079   ** do the sorting.  But this sorting ephemeral index might end up
6080   ** being unused if the data can be extracted in pre-sorted order.
6081   ** If that is the case, then the OP_OpenEphemeral instruction will be
6082   ** changed to an OP_Noop once we figure out that the sorting index is
6083   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6084   ** that change.
6085   */
6086   if( sSort.pOrderBy ){
6087     KeyInfo *pKeyInfo;
6088     pKeyInfo = sqlite3KeyInfoFromExprList(
6089         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6090     sSort.iECursor = pParse->nTab++;
6091     sSort.addrSortIndex =
6092       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6093           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6094           (char*)pKeyInfo, P4_KEYINFO
6095       );
6096   }else{
6097     sSort.addrSortIndex = -1;
6098   }
6099 
6100   /* If the output is destined for a temporary table, open that table.
6101   */
6102   if( pDest->eDest==SRT_EphemTab ){
6103     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6104   }
6105 
6106   /* Set the limiter.
6107   */
6108   iEnd = sqlite3VdbeMakeLabel(pParse);
6109   if( (p->selFlags & SF_FixedLimit)==0 ){
6110     p->nSelectRow = 320;  /* 4 billion rows */
6111   }
6112   computeLimitRegisters(pParse, p, iEnd);
6113   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6114     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6115     sSort.sortFlags |= SORTFLAG_UseSorter;
6116   }
6117 
6118   /* Open an ephemeral index to use for the distinct set.
6119   */
6120   if( p->selFlags & SF_Distinct ){
6121     sDistinct.tabTnct = pParse->nTab++;
6122     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6123                        sDistinct.tabTnct, 0, 0,
6124                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6125                        P4_KEYINFO);
6126     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6127     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6128   }else{
6129     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6130   }
6131 
6132   if( !isAgg && pGroupBy==0 ){
6133     /* No aggregate functions and no GROUP BY clause */
6134     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6135                    | (p->selFlags & SF_FixedLimit);
6136 #ifndef SQLITE_OMIT_WINDOWFUNC
6137     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6138     if( pWin ){
6139       sqlite3WindowCodeInit(pParse, pWin);
6140     }
6141 #endif
6142     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6143 
6144 
6145     /* Begin the database scan. */
6146     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6147     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6148                                p->pEList, wctrlFlags, p->nSelectRow);
6149     if( pWInfo==0 ) goto select_end;
6150     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6151       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6152     }
6153     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6154       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6155     }
6156     if( sSort.pOrderBy ){
6157       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6158       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6159       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6160         sSort.pOrderBy = 0;
6161       }
6162     }
6163 
6164     /* If sorting index that was created by a prior OP_OpenEphemeral
6165     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6166     ** into an OP_Noop.
6167     */
6168     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6169       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6170     }
6171 
6172     assert( p->pEList==pEList );
6173 #ifndef SQLITE_OMIT_WINDOWFUNC
6174     if( pWin ){
6175       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6176       int iCont = sqlite3VdbeMakeLabel(pParse);
6177       int iBreak = sqlite3VdbeMakeLabel(pParse);
6178       int regGosub = ++pParse->nMem;
6179 
6180       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6181 
6182       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6183       sqlite3VdbeResolveLabel(v, addrGosub);
6184       VdbeNoopComment((v, "inner-loop subroutine"));
6185       sSort.labelOBLopt = 0;
6186       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6187       sqlite3VdbeResolveLabel(v, iCont);
6188       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6189       VdbeComment((v, "end inner-loop subroutine"));
6190       sqlite3VdbeResolveLabel(v, iBreak);
6191     }else
6192 #endif /* SQLITE_OMIT_WINDOWFUNC */
6193     {
6194       /* Use the standard inner loop. */
6195       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6196           sqlite3WhereContinueLabel(pWInfo),
6197           sqlite3WhereBreakLabel(pWInfo));
6198 
6199       /* End the database scan loop.
6200       */
6201       sqlite3WhereEnd(pWInfo);
6202     }
6203   }else{
6204     /* This case when there exist aggregate functions or a GROUP BY clause
6205     ** or both */
6206     NameContext sNC;    /* Name context for processing aggregate information */
6207     int iAMem;          /* First Mem address for storing current GROUP BY */
6208     int iBMem;          /* First Mem address for previous GROUP BY */
6209     int iUseFlag;       /* Mem address holding flag indicating that at least
6210                         ** one row of the input to the aggregator has been
6211                         ** processed */
6212     int iAbortFlag;     /* Mem address which causes query abort if positive */
6213     int groupBySort;    /* Rows come from source in GROUP BY order */
6214     int addrEnd;        /* End of processing for this SELECT */
6215     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6216     int sortOut = 0;    /* Output register from the sorter */
6217     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6218 
6219     /* Remove any and all aliases between the result set and the
6220     ** GROUP BY clause.
6221     */
6222     if( pGroupBy ){
6223       int k;                        /* Loop counter */
6224       struct ExprList_item *pItem;  /* For looping over expression in a list */
6225 
6226       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6227         pItem->u.x.iAlias = 0;
6228       }
6229       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6230         pItem->u.x.iAlias = 0;
6231       }
6232       assert( 66==sqlite3LogEst(100) );
6233       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6234 
6235       /* If there is both a GROUP BY and an ORDER BY clause and they are
6236       ** identical, then it may be possible to disable the ORDER BY clause
6237       ** on the grounds that the GROUP BY will cause elements to come out
6238       ** in the correct order. It also may not - the GROUP BY might use a
6239       ** database index that causes rows to be grouped together as required
6240       ** but not actually sorted. Either way, record the fact that the
6241       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6242       ** variable.  */
6243       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6244         int ii;
6245         /* The GROUP BY processing doesn't care whether rows are delivered in
6246         ** ASC or DESC order - only that each group is returned contiguously.
6247         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6248         ** ORDER BY to maximize the chances of rows being delivered in an
6249         ** order that makes the ORDER BY redundant.  */
6250         for(ii=0; ii<pGroupBy->nExpr; ii++){
6251           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6252           pGroupBy->a[ii].sortFlags = sortFlags;
6253         }
6254         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6255           orderByGrp = 1;
6256         }
6257       }
6258     }else{
6259       assert( 0==sqlite3LogEst(1) );
6260       p->nSelectRow = 0;
6261     }
6262 
6263     /* Create a label to jump to when we want to abort the query */
6264     addrEnd = sqlite3VdbeMakeLabel(pParse);
6265 
6266     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6267     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6268     ** SELECT statement.
6269     */
6270     memset(&sNC, 0, sizeof(sNC));
6271     sNC.pParse = pParse;
6272     sNC.pSrcList = pTabList;
6273     sNC.uNC.pAggInfo = &sAggInfo;
6274     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6275     sAggInfo.mnReg = pParse->nMem+1;
6276     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6277     sAggInfo.pGroupBy = pGroupBy;
6278     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6279     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6280     if( pHaving ){
6281       if( pGroupBy ){
6282         assert( pWhere==p->pWhere );
6283         assert( pHaving==p->pHaving );
6284         assert( pGroupBy==p->pGroupBy );
6285         havingToWhere(pParse, p);
6286         pWhere = p->pWhere;
6287       }
6288       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6289     }
6290     sAggInfo.nAccumulator = sAggInfo.nColumn;
6291     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6292       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6293     }else{
6294       minMaxFlag = WHERE_ORDERBY_NORMAL;
6295     }
6296     for(i=0; i<sAggInfo.nFunc; i++){
6297       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6298       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6299       sNC.ncFlags |= NC_InAggFunc;
6300       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6301 #ifndef SQLITE_OMIT_WINDOWFUNC
6302       assert( !IsWindowFunc(pExpr) );
6303       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6304         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6305       }
6306 #endif
6307       sNC.ncFlags &= ~NC_InAggFunc;
6308     }
6309     sAggInfo.mxReg = pParse->nMem;
6310     if( db->mallocFailed ) goto select_end;
6311 #if SELECTTRACE_ENABLED
6312     if( sqlite3SelectTrace & 0x400 ){
6313       int ii;
6314       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6315       sqlite3TreeViewSelect(0, p, 0);
6316       for(ii=0; ii<sAggInfo.nColumn; ii++){
6317         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6318             ii, sAggInfo.aCol[ii].iMem);
6319         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6320       }
6321       for(ii=0; ii<sAggInfo.nFunc; ii++){
6322         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6323             ii, sAggInfo.aFunc[ii].iMem);
6324         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6325       }
6326     }
6327 #endif
6328 
6329 
6330     /* Processing for aggregates with GROUP BY is very different and
6331     ** much more complex than aggregates without a GROUP BY.
6332     */
6333     if( pGroupBy ){
6334       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6335       int addr1;          /* A-vs-B comparision jump */
6336       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6337       int regOutputRow;   /* Return address register for output subroutine */
6338       int addrSetAbort;   /* Set the abort flag and return */
6339       int addrTopOfLoop;  /* Top of the input loop */
6340       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6341       int addrReset;      /* Subroutine for resetting the accumulator */
6342       int regReset;       /* Return address register for reset subroutine */
6343 
6344       /* If there is a GROUP BY clause we might need a sorting index to
6345       ** implement it.  Allocate that sorting index now.  If it turns out
6346       ** that we do not need it after all, the OP_SorterOpen instruction
6347       ** will be converted into a Noop.
6348       */
6349       sAggInfo.sortingIdx = pParse->nTab++;
6350       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6351       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6352           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6353           0, (char*)pKeyInfo, P4_KEYINFO);
6354 
6355       /* Initialize memory locations used by GROUP BY aggregate processing
6356       */
6357       iUseFlag = ++pParse->nMem;
6358       iAbortFlag = ++pParse->nMem;
6359       regOutputRow = ++pParse->nMem;
6360       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6361       regReset = ++pParse->nMem;
6362       addrReset = sqlite3VdbeMakeLabel(pParse);
6363       iAMem = pParse->nMem + 1;
6364       pParse->nMem += pGroupBy->nExpr;
6365       iBMem = pParse->nMem + 1;
6366       pParse->nMem += pGroupBy->nExpr;
6367       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6368       VdbeComment((v, "clear abort flag"));
6369       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6370 
6371       /* Begin a loop that will extract all source rows in GROUP BY order.
6372       ** This might involve two separate loops with an OP_Sort in between, or
6373       ** it might be a single loop that uses an index to extract information
6374       ** in the right order to begin with.
6375       */
6376       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6377       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6378       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6379           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6380       );
6381       if( pWInfo==0 ) goto select_end;
6382       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6383         /* The optimizer is able to deliver rows in group by order so
6384         ** we do not have to sort.  The OP_OpenEphemeral table will be
6385         ** cancelled later because we still need to use the pKeyInfo
6386         */
6387         groupBySort = 0;
6388       }else{
6389         /* Rows are coming out in undetermined order.  We have to push
6390         ** each row into a sorting index, terminate the first loop,
6391         ** then loop over the sorting index in order to get the output
6392         ** in sorted order
6393         */
6394         int regBase;
6395         int regRecord;
6396         int nCol;
6397         int nGroupBy;
6398 
6399         explainTempTable(pParse,
6400             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6401                     "DISTINCT" : "GROUP BY");
6402 
6403         groupBySort = 1;
6404         nGroupBy = pGroupBy->nExpr;
6405         nCol = nGroupBy;
6406         j = nGroupBy;
6407         for(i=0; i<sAggInfo.nColumn; i++){
6408           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6409             nCol++;
6410             j++;
6411           }
6412         }
6413         regBase = sqlite3GetTempRange(pParse, nCol);
6414         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6415         j = nGroupBy;
6416         for(i=0; i<sAggInfo.nColumn; i++){
6417           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6418           if( pCol->iSorterColumn>=j ){
6419             int r1 = j + regBase;
6420             sqlite3ExprCodeGetColumnOfTable(v,
6421                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6422             j++;
6423           }
6424         }
6425         regRecord = sqlite3GetTempReg(pParse);
6426         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6427         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6428         sqlite3ReleaseTempReg(pParse, regRecord);
6429         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6430         sqlite3WhereEnd(pWInfo);
6431         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6432         sortOut = sqlite3GetTempReg(pParse);
6433         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6434         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6435         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6436         sAggInfo.useSortingIdx = 1;
6437       }
6438 
6439       /* If the index or temporary table used by the GROUP BY sort
6440       ** will naturally deliver rows in the order required by the ORDER BY
6441       ** clause, cancel the ephemeral table open coded earlier.
6442       **
6443       ** This is an optimization - the correct answer should result regardless.
6444       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6445       ** disable this optimization for testing purposes.  */
6446       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6447        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6448       ){
6449         sSort.pOrderBy = 0;
6450         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6451       }
6452 
6453       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6454       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6455       ** Then compare the current GROUP BY terms against the GROUP BY terms
6456       ** from the previous row currently stored in a0, a1, a2...
6457       */
6458       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6459       if( groupBySort ){
6460         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6461                           sortOut, sortPTab);
6462       }
6463       for(j=0; j<pGroupBy->nExpr; j++){
6464         if( groupBySort ){
6465           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6466         }else{
6467           sAggInfo.directMode = 1;
6468           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6469         }
6470       }
6471       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6472                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6473       addr1 = sqlite3VdbeCurrentAddr(v);
6474       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6475 
6476       /* Generate code that runs whenever the GROUP BY changes.
6477       ** Changes in the GROUP BY are detected by the previous code
6478       ** block.  If there were no changes, this block is skipped.
6479       **
6480       ** This code copies current group by terms in b0,b1,b2,...
6481       ** over to a0,a1,a2.  It then calls the output subroutine
6482       ** and resets the aggregate accumulator registers in preparation
6483       ** for the next GROUP BY batch.
6484       */
6485       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6486       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6487       VdbeComment((v, "output one row"));
6488       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6489       VdbeComment((v, "check abort flag"));
6490       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6491       VdbeComment((v, "reset accumulator"));
6492 
6493       /* Update the aggregate accumulators based on the content of
6494       ** the current row
6495       */
6496       sqlite3VdbeJumpHere(v, addr1);
6497       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6498       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6499       VdbeComment((v, "indicate data in accumulator"));
6500 
6501       /* End of the loop
6502       */
6503       if( groupBySort ){
6504         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6505         VdbeCoverage(v);
6506       }else{
6507         sqlite3WhereEnd(pWInfo);
6508         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6509       }
6510 
6511       /* Output the final row of result
6512       */
6513       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6514       VdbeComment((v, "output final row"));
6515 
6516       /* Jump over the subroutines
6517       */
6518       sqlite3VdbeGoto(v, addrEnd);
6519 
6520       /* Generate a subroutine that outputs a single row of the result
6521       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6522       ** is less than or equal to zero, the subroutine is a no-op.  If
6523       ** the processing calls for the query to abort, this subroutine
6524       ** increments the iAbortFlag memory location before returning in
6525       ** order to signal the caller to abort.
6526       */
6527       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6528       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6529       VdbeComment((v, "set abort flag"));
6530       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6531       sqlite3VdbeResolveLabel(v, addrOutputRow);
6532       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6533       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6534       VdbeCoverage(v);
6535       VdbeComment((v, "Groupby result generator entry point"));
6536       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6537       finalizeAggFunctions(pParse, &sAggInfo);
6538       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6539       selectInnerLoop(pParse, p, -1, &sSort,
6540                       &sDistinct, pDest,
6541                       addrOutputRow+1, addrSetAbort);
6542       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6543       VdbeComment((v, "end groupby result generator"));
6544 
6545       /* Generate a subroutine that will reset the group-by accumulator
6546       */
6547       sqlite3VdbeResolveLabel(v, addrReset);
6548       resetAccumulator(pParse, &sAggInfo);
6549       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6550       VdbeComment((v, "indicate accumulator empty"));
6551       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6552 
6553     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6554     else {
6555 #ifndef SQLITE_OMIT_BTREECOUNT
6556       Table *pTab;
6557       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6558         /* If isSimpleCount() returns a pointer to a Table structure, then
6559         ** the SQL statement is of the form:
6560         **
6561         **   SELECT count(*) FROM <tbl>
6562         **
6563         ** where the Table structure returned represents table <tbl>.
6564         **
6565         ** This statement is so common that it is optimized specially. The
6566         ** OP_Count instruction is executed either on the intkey table that
6567         ** contains the data for table <tbl> or on one of its indexes. It
6568         ** is better to execute the op on an index, as indexes are almost
6569         ** always spread across less pages than their corresponding tables.
6570         */
6571         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6572         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6573         Index *pIdx;                         /* Iterator variable */
6574         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6575         Index *pBest = 0;                    /* Best index found so far */
6576         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6577 
6578         sqlite3CodeVerifySchema(pParse, iDb);
6579         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6580 
6581         /* Search for the index that has the lowest scan cost.
6582         **
6583         ** (2011-04-15) Do not do a full scan of an unordered index.
6584         **
6585         ** (2013-10-03) Do not count the entries in a partial index.
6586         **
6587         ** In practice the KeyInfo structure will not be used. It is only
6588         ** passed to keep OP_OpenRead happy.
6589         */
6590         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6591         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6592           if( pIdx->bUnordered==0
6593            && pIdx->szIdxRow<pTab->szTabRow
6594            && pIdx->pPartIdxWhere==0
6595            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6596           ){
6597             pBest = pIdx;
6598           }
6599         }
6600         if( pBest ){
6601           iRoot = pBest->tnum;
6602           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6603         }
6604 
6605         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6606         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6607         if( pKeyInfo ){
6608           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6609         }
6610         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6611         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6612         explainSimpleCount(pParse, pTab, pBest);
6613       }else
6614 #endif /* SQLITE_OMIT_BTREECOUNT */
6615       {
6616         int regAcc = 0;           /* "populate accumulators" flag */
6617 
6618         /* If there are accumulator registers but no min() or max() functions
6619         ** without FILTER clauses, allocate register regAcc. Register regAcc
6620         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6621         ** The code generated by updateAccumulator() uses this to ensure
6622         ** that the accumulator registers are (a) updated only once if
6623         ** there are no min() or max functions or (b) always updated for the
6624         ** first row visited by the aggregate, so that they are updated at
6625         ** least once even if the FILTER clause means the min() or max()
6626         ** function visits zero rows.  */
6627         if( sAggInfo.nAccumulator ){
6628           for(i=0; i<sAggInfo.nFunc; i++){
6629             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6630             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6631           }
6632           if( i==sAggInfo.nFunc ){
6633             regAcc = ++pParse->nMem;
6634             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6635           }
6636         }
6637 
6638         /* This case runs if the aggregate has no GROUP BY clause.  The
6639         ** processing is much simpler since there is only a single row
6640         ** of output.
6641         */
6642         assert( p->pGroupBy==0 );
6643         resetAccumulator(pParse, &sAggInfo);
6644 
6645         /* If this query is a candidate for the min/max optimization, then
6646         ** minMaxFlag will have been previously set to either
6647         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6648         ** be an appropriate ORDER BY expression for the optimization.
6649         */
6650         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6651         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6652 
6653         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6654         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6655                                    0, minMaxFlag, 0);
6656         if( pWInfo==0 ){
6657           goto select_end;
6658         }
6659         updateAccumulator(pParse, regAcc, &sAggInfo);
6660         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6661         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6662           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6663           VdbeComment((v, "%s() by index",
6664                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6665         }
6666         sqlite3WhereEnd(pWInfo);
6667         finalizeAggFunctions(pParse, &sAggInfo);
6668       }
6669 
6670       sSort.pOrderBy = 0;
6671       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6672       selectInnerLoop(pParse, p, -1, 0, 0,
6673                       pDest, addrEnd, addrEnd);
6674     }
6675     sqlite3VdbeResolveLabel(v, addrEnd);
6676 
6677   } /* endif aggregate query */
6678 
6679   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6680     explainTempTable(pParse, "DISTINCT");
6681   }
6682 
6683   /* If there is an ORDER BY clause, then we need to sort the results
6684   ** and send them to the callback one by one.
6685   */
6686   if( sSort.pOrderBy ){
6687     explainTempTable(pParse,
6688                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6689     assert( p->pEList==pEList );
6690     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6691   }
6692 
6693   /* Jump here to skip this query
6694   */
6695   sqlite3VdbeResolveLabel(v, iEnd);
6696 
6697   /* The SELECT has been coded. If there is an error in the Parse structure,
6698   ** set the return code to 1. Otherwise 0. */
6699   rc = (pParse->nErr>0);
6700 
6701   /* Control jumps to here if an error is encountered above, or upon
6702   ** successful coding of the SELECT.
6703   */
6704 select_end:
6705   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6706   sqlite3DbFree(db, sAggInfo.aCol);
6707   sqlite3DbFree(db, sAggInfo.aFunc);
6708 #if SELECTTRACE_ENABLED
6709   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6710   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6711     sqlite3TreeViewSelect(0, p, 0);
6712   }
6713 #endif
6714   ExplainQueryPlanPop(pParse);
6715   return rc;
6716 }
6717