1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 ** 208 ** These are the valid join types: 209 ** 210 ** 211 ** pA pB pC Return Value 212 ** ------- ----- ----- ------------ 213 ** CROSS - - JT_CROSS 214 ** INNER - - JT_INNER 215 ** LEFT - - JT_LEFT|JT_OUTER 216 ** LEFT OUTER - JT_LEFT|JT_OUTER 217 ** RIGHT - - JT_RIGHT|JT_OUTER 218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** NATURAL INNER - JT_NATURAL|JT_INNER 222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 228 ** 229 ** To preserve historical compatibly, SQLite also accepts a variety 230 ** of other non-standard and in many cases non-sensical join types. 231 ** This routine makes as much sense at it can from the nonsense join 232 ** type and returns a result. Examples of accepted nonsense join types 233 ** include but are not limited to: 234 ** 235 ** INNER CROSS JOIN -> same as JOIN 236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 237 ** OUTER LEFT JOIN -> same as LEFT JOIN 238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 239 ** LEFT RIGHT JOIN -> same as FULL JOIN 240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 241 ** CROSS CROSS CROSS JOIN -> same as JOIN 242 ** 243 ** The only restrictions on the join type name are: 244 ** 245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 246 ** or "FULL". 247 ** 248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 249 ** or "FULL". 250 ** 251 ** * If "OUTER" is present then there must also be one of 252 ** "LEFT", "RIGHT", or "FULL" 253 */ 254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 255 int jointype = 0; 256 Token *apAll[3]; 257 Token *p; 258 /* 0123456789 123456789 123456789 123 */ 259 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 260 static const struct { 261 u8 i; /* Beginning of keyword text in zKeyText[] */ 262 u8 nChar; /* Length of the keyword in characters */ 263 u8 code; /* Join type mask */ 264 } aKeyword[] = { 265 /* (0) natural */ { 0, 7, JT_NATURAL }, 266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 267 /* (2) outer */ { 10, 5, JT_OUTER }, 268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 270 /* (5) inner */ { 23, 5, JT_INNER }, 271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 272 }; 273 int i, j; 274 apAll[0] = pA; 275 apAll[1] = pB; 276 apAll[2] = pC; 277 for(i=0; i<3 && apAll[i]; i++){ 278 p = apAll[i]; 279 for(j=0; j<ArraySize(aKeyword); j++){ 280 if( p->n==aKeyword[j].nChar 281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 282 jointype |= aKeyword[j].code; 283 break; 284 } 285 } 286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 287 if( j>=ArraySize(aKeyword) ){ 288 jointype |= JT_ERROR; 289 break; 290 } 291 } 292 if( 293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 294 (jointype & JT_ERROR)!=0 || 295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 296 ){ 297 const char *zSp1 = " "; 298 const char *zSp2 = " "; 299 if( pB==0 ){ zSp1++; } 300 if( pC==0 ){ zSp2++; } 301 sqlite3ErrorMsg(pParse, "unknown join type: " 302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 303 jointype = JT_INNER; 304 } 305 return jointype; 306 } 307 308 /* 309 ** Return the index of a column in a table. Return -1 if the column 310 ** is not contained in the table. 311 */ 312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 313 int i; 314 u8 h = sqlite3StrIHash(zCol); 315 Column *pCol; 316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 318 } 319 return -1; 320 } 321 322 /* 323 ** Mark a subquery result column as having been used. 324 */ 325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 326 assert( pItem!=0 ); 327 assert( pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 328 if( pItem->fg.isNestedFrom ){ 329 ExprList *pResults; 330 assert( pItem->pSelect!=0 ); 331 pResults = pItem->pSelect->pEList; 332 assert( pResults!=0 ); 333 assert( iCol>=0 && iCol<pResults->nExpr ); 334 pResults->a[iCol].fg.bUsed = 1; 335 } 336 } 337 338 /* 339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 340 ** table that has a column named zCol. The search is left-to-right. 341 ** The first match found is returned. 342 ** 343 ** When found, set *piTab and *piCol to the table index and column index 344 ** of the matching column and return TRUE. 345 ** 346 ** If not found, return FALSE. 347 */ 348 static int tableAndColumnIndex( 349 SrcList *pSrc, /* Array of tables to search */ 350 int iStart, /* First member of pSrc->a[] to check */ 351 int iEnd, /* Last member of pSrc->a[] to check */ 352 const char *zCol, /* Name of the column we are looking for */ 353 int *piTab, /* Write index of pSrc->a[] here */ 354 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 355 int bIgnoreHidden /* Ignore hidden columns */ 356 ){ 357 int i; /* For looping over tables in pSrc */ 358 int iCol; /* Index of column matching zCol */ 359 360 assert( iEnd<pSrc->nSrc ); 361 assert( iStart>=0 ); 362 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 363 364 for(i=iStart; i<=iEnd; i++){ 365 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 366 if( iCol>=0 367 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 368 ){ 369 if( piTab ){ 370 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 371 *piTab = i; 372 *piCol = iCol; 373 } 374 return 1; 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Set the EP_OuterON property on all terms of the given expression. 382 ** And set the Expr.w.iJoin to iTable for every term in the 383 ** expression. 384 ** 385 ** The EP_OuterON property is used on terms of an expression to tell 386 ** the OUTER JOIN processing logic that this term is part of the 387 ** join restriction specified in the ON or USING clause and not a part 388 ** of the more general WHERE clause. These terms are moved over to the 389 ** WHERE clause during join processing but we need to remember that they 390 ** originated in the ON or USING clause. 391 ** 392 ** The Expr.w.iJoin tells the WHERE clause processing that the 393 ** expression depends on table w.iJoin even if that table is not 394 ** explicitly mentioned in the expression. That information is needed 395 ** for cases like this: 396 ** 397 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 398 ** 399 ** The where clause needs to defer the handling of the t1.x=5 400 ** term until after the t2 loop of the join. In that way, a 401 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 402 ** defer the handling of t1.x=5, it will be processed immediately 403 ** after the t1 loop and rows with t1.x!=5 will never appear in 404 ** the output, which is incorrect. 405 */ 406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 407 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); 408 while( p ){ 409 ExprSetProperty(p, joinFlag); 410 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 411 ExprSetVVAProperty(p, EP_NoReduce); 412 p->w.iJoin = iTable; 413 if( p->op==TK_FUNCTION ){ 414 assert( ExprUseXList(p) ); 415 if( p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 419 } 420 } 421 } 422 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 423 p = p->pRight; 424 } 425 } 426 427 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 428 ** term that is marked with EP_OuterON and w.iJoin==iTable into 429 ** an ordinary term that omits the EP_OuterON mark. 430 ** 431 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 432 ** 433 ** If nullable is true, that means that Expr p might evaluate to NULL even 434 ** if it is a reference to a NOT NULL column. This can happen, for example, 435 ** if the table that p references is on the left side of a RIGHT JOIN. 436 ** If nullable is true, then take care to not remove the EP_CanBeNull bit. 437 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c 438 */ 439 static void unsetJoinExpr(Expr *p, int iTable, int nullable){ 440 while( p ){ 441 if( ExprHasProperty(p, EP_OuterON) 442 && (iTable<0 || p->w.iJoin==iTable) ){ 443 ExprClearProperty(p, EP_OuterON); 444 ExprSetProperty(p, EP_InnerON); 445 } 446 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ 447 ExprClearProperty(p, EP_CanBeNull); 448 } 449 if( p->op==TK_FUNCTION ){ 450 assert( ExprUseXList(p) ); 451 if( p->x.pList ){ 452 int i; 453 for(i=0; i<p->x.pList->nExpr; i++){ 454 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); 455 } 456 } 457 } 458 unsetJoinExpr(p->pLeft, iTable, nullable); 459 p = p->pRight; 460 } 461 } 462 463 /* 464 ** This routine processes the join information for a SELECT statement. 465 ** 466 ** * A NATURAL join is converted into a USING join. After that, we 467 ** do not need to be concerned with NATURAL joins and we only have 468 ** think about USING joins. 469 ** 470 ** * ON and USING clauses result in extra terms being added to the 471 ** WHERE clause to enforce the specified constraints. The extra 472 ** WHERE clause terms will be tagged with EP_OuterON or 473 ** EP_InnerON so that we know that they originated in ON/USING. 474 ** 475 ** The terms of a FROM clause are contained in the Select.pSrc structure. 476 ** The left most table is the first entry in Select.pSrc. The right-most 477 ** table is the last entry. The join operator is held in the entry to 478 ** the right. Thus entry 1 contains the join operator for the join between 479 ** entries 0 and 1. Any ON or USING clauses associated with the join are 480 ** also attached to the right entry. 481 ** 482 ** This routine returns the number of errors encountered. 483 */ 484 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 485 SrcList *pSrc; /* All tables in the FROM clause */ 486 int i, j; /* Loop counters */ 487 SrcItem *pLeft; /* Left table being joined */ 488 SrcItem *pRight; /* Right table being joined */ 489 490 pSrc = p->pSrc; 491 pLeft = &pSrc->a[0]; 492 pRight = &pLeft[1]; 493 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 494 Table *pRightTab = pRight->pTab; 495 u32 joinType; 496 497 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 498 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; 499 500 /* If this is a NATURAL join, synthesize an approprate USING clause 501 ** to specify which columns should be joined. 502 */ 503 if( pRight->fg.jointype & JT_NATURAL ){ 504 IdList *pUsing = 0; 505 if( pRight->fg.isUsing || pRight->u3.pOn ){ 506 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 507 "an ON or USING clause", 0); 508 return 1; 509 } 510 for(j=0; j<pRightTab->nCol; j++){ 511 char *zName; /* Name of column in the right table */ 512 513 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 514 zName = pRightTab->aCol[j].zCnName; 515 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 516 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 517 if( pUsing ){ 518 assert( pUsing->nId>0 ); 519 assert( pUsing->a[pUsing->nId-1].zName==0 ); 520 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 521 } 522 } 523 } 524 if( pUsing ){ 525 pRight->fg.isUsing = 1; 526 pRight->fg.isSynthUsing = 1; 527 pRight->u3.pUsing = pUsing; 528 } 529 if( pParse->nErr ) return 1; 530 } 531 532 /* Create extra terms on the WHERE clause for each column named 533 ** in the USING clause. Example: If the two tables to be joined are 534 ** A and B and the USING clause names X, Y, and Z, then add this 535 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 536 ** Report an error if any column mentioned in the USING clause is 537 ** not contained in both tables to be joined. 538 */ 539 if( pRight->fg.isUsing ){ 540 IdList *pList = pRight->u3.pUsing; 541 sqlite3 *db = pParse->db; 542 assert( pList!=0 ); 543 for(j=0; j<pList->nId; j++){ 544 char *zName; /* Name of the term in the USING clause */ 545 int iLeft; /* Table on the left with matching column name */ 546 int iLeftCol; /* Column number of matching column on the left */ 547 int iRightCol; /* Column number of matching column on the right */ 548 Expr *pE1; /* Reference to the column on the LEFT of the join */ 549 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 550 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 551 552 zName = pList->a[j].zName; 553 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 554 if( iRightCol<0 555 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 556 pRight->fg.isSynthUsing)==0 557 ){ 558 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 559 "not present in both tables", zName); 560 return 1; 561 } 562 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 563 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 564 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 565 /* This branch runs if the query contains one or more RIGHT or FULL 566 ** JOINs. If only a single table on the left side of this join 567 ** contains the zName column, then this branch is a no-op. 568 ** But if there are two or more tables on the left side 569 ** of the join, construct a coalesce() function that gathers all 570 ** such tables. Raise an error if more than one of those references 571 ** to zName is not also within a prior USING clause. 572 ** 573 ** We really ought to raise an error if there are two or more 574 ** non-USING references to zName on the left of an INNER or LEFT 575 ** JOIN. But older versions of SQLite do not do that, so we avoid 576 ** adding a new error so as to not break legacy applications. 577 */ 578 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 579 static const Token tkCoalesce = { "coalesce", 8 }; 580 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 581 pRight->fg.isSynthUsing)!=0 ){ 582 if( pSrc->a[iLeft].fg.isUsing==0 583 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 584 ){ 585 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 586 zName); 587 break; 588 } 589 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 590 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 591 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 592 } 593 if( pFuncArgs ){ 594 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 595 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 596 } 597 } 598 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 599 sqlite3SrcItemColumnUsed(pRight, iRightCol); 600 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 601 assert( pE2!=0 || pEq==0 ); 602 if( pEq ){ 603 ExprSetProperty(pEq, joinType); 604 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 605 ExprSetVVAProperty(pEq, EP_NoReduce); 606 pEq->w.iJoin = pE2->iTable; 607 } 608 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 609 } 610 } 611 612 /* Add the ON clause to the end of the WHERE clause, connected by 613 ** an AND operator. 614 */ 615 else if( pRight->u3.pOn ){ 616 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 617 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 618 pRight->u3.pOn = 0; 619 pRight->fg.isOn = 1; 620 } 621 } 622 return 0; 623 } 624 625 /* 626 ** An instance of this object holds information (beyond pParse and pSelect) 627 ** needed to load the next result row that is to be added to the sorter. 628 */ 629 typedef struct RowLoadInfo RowLoadInfo; 630 struct RowLoadInfo { 631 int regResult; /* Store results in array of registers here */ 632 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 633 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 634 ExprList *pExtra; /* Extra columns needed by sorter refs */ 635 int regExtraResult; /* Where to load the extra columns */ 636 #endif 637 }; 638 639 /* 640 ** This routine does the work of loading query data into an array of 641 ** registers so that it can be added to the sorter. 642 */ 643 static void innerLoopLoadRow( 644 Parse *pParse, /* Statement under construction */ 645 Select *pSelect, /* The query being coded */ 646 RowLoadInfo *pInfo /* Info needed to complete the row load */ 647 ){ 648 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 649 0, pInfo->ecelFlags); 650 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 651 if( pInfo->pExtra ){ 652 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 653 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 654 } 655 #endif 656 } 657 658 /* 659 ** Code the OP_MakeRecord instruction that generates the entry to be 660 ** added into the sorter. 661 ** 662 ** Return the register in which the result is stored. 663 */ 664 static int makeSorterRecord( 665 Parse *pParse, 666 SortCtx *pSort, 667 Select *pSelect, 668 int regBase, 669 int nBase 670 ){ 671 int nOBSat = pSort->nOBSat; 672 Vdbe *v = pParse->pVdbe; 673 int regOut = ++pParse->nMem; 674 if( pSort->pDeferredRowLoad ){ 675 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 676 } 677 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 678 return regOut; 679 } 680 681 /* 682 ** Generate code that will push the record in registers regData 683 ** through regData+nData-1 onto the sorter. 684 */ 685 static void pushOntoSorter( 686 Parse *pParse, /* Parser context */ 687 SortCtx *pSort, /* Information about the ORDER BY clause */ 688 Select *pSelect, /* The whole SELECT statement */ 689 int regData, /* First register holding data to be sorted */ 690 int regOrigData, /* First register holding data before packing */ 691 int nData, /* Number of elements in the regData data array */ 692 int nPrefixReg /* No. of reg prior to regData available for use */ 693 ){ 694 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 695 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 696 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 697 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 698 int regBase; /* Regs for sorter record */ 699 int regRecord = 0; /* Assembled sorter record */ 700 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 701 int op; /* Opcode to add sorter record to sorter */ 702 int iLimit; /* LIMIT counter */ 703 int iSkip = 0; /* End of the sorter insert loop */ 704 705 assert( bSeq==0 || bSeq==1 ); 706 707 /* Three cases: 708 ** (1) The data to be sorted has already been packed into a Record 709 ** by a prior OP_MakeRecord. In this case nData==1 and regData 710 ** will be completely unrelated to regOrigData. 711 ** (2) All output columns are included in the sort record. In that 712 ** case regData==regOrigData. 713 ** (3) Some output columns are omitted from the sort record due to 714 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 715 ** SQLITE_ECEL_OMITREF optimization, or due to the 716 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 717 ** regOrigData is 0 to prevent this routine from trying to copy 718 ** values that might not yet exist. 719 */ 720 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 721 722 if( nPrefixReg ){ 723 assert( nPrefixReg==nExpr+bSeq ); 724 regBase = regData - nPrefixReg; 725 }else{ 726 regBase = pParse->nMem + 1; 727 pParse->nMem += nBase; 728 } 729 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 730 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 731 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 732 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 733 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 734 if( bSeq ){ 735 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 736 } 737 if( nPrefixReg==0 && nData>0 ){ 738 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 739 } 740 if( nOBSat>0 ){ 741 int regPrevKey; /* The first nOBSat columns of the previous row */ 742 int addrFirst; /* Address of the OP_IfNot opcode */ 743 int addrJmp; /* Address of the OP_Jump opcode */ 744 VdbeOp *pOp; /* Opcode that opens the sorter */ 745 int nKey; /* Number of sorting key columns, including OP_Sequence */ 746 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 747 748 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 749 regPrevKey = pParse->nMem+1; 750 pParse->nMem += pSort->nOBSat; 751 nKey = nExpr - pSort->nOBSat + bSeq; 752 if( bSeq ){ 753 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 754 }else{ 755 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 756 } 757 VdbeCoverage(v); 758 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 759 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 760 if( pParse->db->mallocFailed ) return; 761 pOp->p2 = nKey + nData; 762 pKI = pOp->p4.pKeyInfo; 763 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 764 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 765 testcase( pKI->nAllField > pKI->nKeyField+2 ); 766 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 767 pKI->nAllField-pKI->nKeyField-1); 768 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 769 addrJmp = sqlite3VdbeCurrentAddr(v); 770 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 771 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 772 pSort->regReturn = ++pParse->nMem; 773 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 774 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 775 if( iLimit ){ 776 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 777 VdbeCoverage(v); 778 } 779 sqlite3VdbeJumpHere(v, addrFirst); 780 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 781 sqlite3VdbeJumpHere(v, addrJmp); 782 } 783 if( iLimit ){ 784 /* At this point the values for the new sorter entry are stored 785 ** in an array of registers. They need to be composed into a record 786 ** and inserted into the sorter if either (a) there are currently 787 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 788 ** the largest record currently in the sorter. If (b) is true and there 789 ** are already LIMIT+OFFSET items in the sorter, delete the largest 790 ** entry before inserting the new one. This way there are never more 791 ** than LIMIT+OFFSET items in the sorter. 792 ** 793 ** If the new record does not need to be inserted into the sorter, 794 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 795 ** value is not zero, then it is a label of where to jump. Otherwise, 796 ** just bypass the row insert logic. See the header comment on the 797 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 798 */ 799 int iCsr = pSort->iECursor; 800 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 801 VdbeCoverage(v); 802 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 803 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 804 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 805 VdbeCoverage(v); 806 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 807 } 808 if( regRecord==0 ){ 809 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 810 } 811 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 812 op = OP_SorterInsert; 813 }else{ 814 op = OP_IdxInsert; 815 } 816 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 817 regBase+nOBSat, nBase-nOBSat); 818 if( iSkip ){ 819 sqlite3VdbeChangeP2(v, iSkip, 820 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 821 } 822 } 823 824 /* 825 ** Add code to implement the OFFSET 826 */ 827 static void codeOffset( 828 Vdbe *v, /* Generate code into this VM */ 829 int iOffset, /* Register holding the offset counter */ 830 int iContinue /* Jump here to skip the current record */ 831 ){ 832 if( iOffset>0 ){ 833 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 834 VdbeComment((v, "OFFSET")); 835 } 836 } 837 838 /* 839 ** Add code that will check to make sure the array of registers starting at 840 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 841 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 842 ** are available. Which is used depends on the value of parameter eTnctType, 843 ** as follows: 844 ** 845 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 846 ** Build an ephemeral table that contains all entries seen before and 847 ** skip entries which have been seen before. 848 ** 849 ** Parameter iTab is the cursor number of an ephemeral table that must 850 ** be opened before the VM code generated by this routine is executed. 851 ** The ephemeral cursor table is queried for a record identical to the 852 ** record formed by the current array of registers. If one is found, 853 ** jump to VM address addrRepeat. Otherwise, insert a new record into 854 ** the ephemeral cursor and proceed. 855 ** 856 ** The returned value in this case is a copy of parameter iTab. 857 ** 858 ** WHERE_DISTINCT_ORDERED: 859 ** In this case rows are being delivered sorted order. The ephermal 860 ** table is not required. Instead, the current set of values 861 ** is compared against previous row. If they match, the new row 862 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 863 ** the VM program proceeds with processing the new row. 864 ** 865 ** The returned value in this case is the register number of the first 866 ** in an array of registers used to store the previous result row so that 867 ** it can be compared to the next. The caller must ensure that this 868 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 869 ** will take care of this initialization.) 870 ** 871 ** WHERE_DISTINCT_UNIQUE: 872 ** In this case it has already been determined that the rows are distinct. 873 ** No special action is required. The return value is zero. 874 ** 875 ** Parameter pEList is the list of expressions used to generated the 876 ** contents of each row. It is used by this routine to determine (a) 877 ** how many elements there are in the array of registers and (b) the 878 ** collation sequences that should be used for the comparisons if 879 ** eTnctType is WHERE_DISTINCT_ORDERED. 880 */ 881 static int codeDistinct( 882 Parse *pParse, /* Parsing and code generating context */ 883 int eTnctType, /* WHERE_DISTINCT_* value */ 884 int iTab, /* A sorting index used to test for distinctness */ 885 int addrRepeat, /* Jump to here if not distinct */ 886 ExprList *pEList, /* Expression for each element */ 887 int regElem /* First element */ 888 ){ 889 int iRet = 0; 890 int nResultCol = pEList->nExpr; 891 Vdbe *v = pParse->pVdbe; 892 893 switch( eTnctType ){ 894 case WHERE_DISTINCT_ORDERED: { 895 int i; 896 int iJump; /* Jump destination */ 897 int regPrev; /* Previous row content */ 898 899 /* Allocate space for the previous row */ 900 iRet = regPrev = pParse->nMem+1; 901 pParse->nMem += nResultCol; 902 903 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 904 for(i=0; i<nResultCol; i++){ 905 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 906 if( i<nResultCol-1 ){ 907 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 908 VdbeCoverage(v); 909 }else{ 910 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 911 VdbeCoverage(v); 912 } 913 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 914 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 915 } 916 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 917 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 918 break; 919 } 920 921 case WHERE_DISTINCT_UNIQUE: { 922 /* nothing to do */ 923 break; 924 } 925 926 default: { 927 int r1 = sqlite3GetTempReg(pParse); 928 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 929 VdbeCoverage(v); 930 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 931 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 932 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 933 sqlite3ReleaseTempReg(pParse, r1); 934 iRet = iTab; 935 break; 936 } 937 } 938 939 return iRet; 940 } 941 942 /* 943 ** This routine runs after codeDistinct(). It makes necessary 944 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 945 ** routine made use of. This processing must be done separately since 946 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 947 ** laid down. 948 ** 949 ** WHERE_DISTINCT_NOOP: 950 ** WHERE_DISTINCT_UNORDERED: 951 ** 952 ** No adjustments necessary. This function is a no-op. 953 ** 954 ** WHERE_DISTINCT_UNIQUE: 955 ** 956 ** The ephemeral table is not needed. So change the 957 ** OP_OpenEphemeral opcode into an OP_Noop. 958 ** 959 ** WHERE_DISTINCT_ORDERED: 960 ** 961 ** The ephemeral table is not needed. But we do need register 962 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 963 ** into an OP_Null on the iVal register. 964 */ 965 static void fixDistinctOpenEph( 966 Parse *pParse, /* Parsing and code generating context */ 967 int eTnctType, /* WHERE_DISTINCT_* value */ 968 int iVal, /* Value returned by codeDistinct() */ 969 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 970 ){ 971 if( pParse->nErr==0 972 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 973 ){ 974 Vdbe *v = pParse->pVdbe; 975 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 976 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 977 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 978 } 979 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 980 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 981 ** bit on the first register of the previous value. This will cause the 982 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 983 ** the loop even if the first row is all NULLs. */ 984 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 985 pOp->opcode = OP_Null; 986 pOp->p1 = 1; 987 pOp->p2 = iVal; 988 } 989 } 990 } 991 992 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 993 /* 994 ** This function is called as part of inner-loop generation for a SELECT 995 ** statement with an ORDER BY that is not optimized by an index. It 996 ** determines the expressions, if any, that the sorter-reference 997 ** optimization should be used for. The sorter-reference optimization 998 ** is used for SELECT queries like: 999 ** 1000 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 1001 ** 1002 ** If the optimization is used for expression "bigblob", then instead of 1003 ** storing values read from that column in the sorter records, the PK of 1004 ** the row from table t1 is stored instead. Then, as records are extracted from 1005 ** the sorter to return to the user, the required value of bigblob is 1006 ** retrieved directly from table t1. If the values are very large, this 1007 ** can be more efficient than storing them directly in the sorter records. 1008 ** 1009 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList 1010 ** for which the sorter-reference optimization should be enabled. 1011 ** Additionally, the pSort->aDefer[] array is populated with entries 1012 ** for all cursors required to evaluate all selected expressions. Finally. 1013 ** output variable (*ppExtra) is set to an expression list containing 1014 ** expressions for all extra PK values that should be stored in the 1015 ** sorter records. 1016 */ 1017 static void selectExprDefer( 1018 Parse *pParse, /* Leave any error here */ 1019 SortCtx *pSort, /* Sorter context */ 1020 ExprList *pEList, /* Expressions destined for sorter */ 1021 ExprList **ppExtra /* Expressions to append to sorter record */ 1022 ){ 1023 int i; 1024 int nDefer = 0; 1025 ExprList *pExtra = 0; 1026 for(i=0; i<pEList->nExpr; i++){ 1027 struct ExprList_item *pItem = &pEList->a[i]; 1028 if( pItem->u.x.iOrderByCol==0 ){ 1029 Expr *pExpr = pItem->pExpr; 1030 Table *pTab; 1031 if( pExpr->op==TK_COLUMN 1032 && pExpr->iColumn>=0 1033 && ALWAYS( ExprUseYTab(pExpr) ) 1034 && (pTab = pExpr->y.pTab)!=0 1035 && IsOrdinaryTable(pTab) 1036 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1037 ){ 1038 int j; 1039 for(j=0; j<nDefer; j++){ 1040 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1041 } 1042 if( j==nDefer ){ 1043 if( nDefer==ArraySize(pSort->aDefer) ){ 1044 continue; 1045 }else{ 1046 int nKey = 1; 1047 int k; 1048 Index *pPk = 0; 1049 if( !HasRowid(pTab) ){ 1050 pPk = sqlite3PrimaryKeyIndex(pTab); 1051 nKey = pPk->nKeyCol; 1052 } 1053 for(k=0; k<nKey; k++){ 1054 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1055 if( pNew ){ 1056 pNew->iTable = pExpr->iTable; 1057 assert( ExprUseYTab(pNew) ); 1058 pNew->y.pTab = pExpr->y.pTab; 1059 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1060 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1061 } 1062 } 1063 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1064 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1065 pSort->aDefer[nDefer].nKey = nKey; 1066 nDefer++; 1067 } 1068 } 1069 pItem->fg.bSorterRef = 1; 1070 } 1071 } 1072 } 1073 pSort->nDefer = (u8)nDefer; 1074 *ppExtra = pExtra; 1075 } 1076 #endif 1077 1078 /* 1079 ** This routine generates the code for the inside of the inner loop 1080 ** of a SELECT. 1081 ** 1082 ** If srcTab is negative, then the p->pEList expressions 1083 ** are evaluated in order to get the data for this row. If srcTab is 1084 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1085 ** to get the number of columns and the collation sequence for each column. 1086 */ 1087 static void selectInnerLoop( 1088 Parse *pParse, /* The parser context */ 1089 Select *p, /* The complete select statement being coded */ 1090 int srcTab, /* Pull data from this table if non-negative */ 1091 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1092 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1093 SelectDest *pDest, /* How to dispose of the results */ 1094 int iContinue, /* Jump here to continue with next row */ 1095 int iBreak /* Jump here to break out of the inner loop */ 1096 ){ 1097 Vdbe *v = pParse->pVdbe; 1098 int i; 1099 int hasDistinct; /* True if the DISTINCT keyword is present */ 1100 int eDest = pDest->eDest; /* How to dispose of results */ 1101 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1102 int nResultCol; /* Number of result columns */ 1103 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1104 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1105 1106 /* Usually, regResult is the first cell in an array of memory cells 1107 ** containing the current result row. In this case regOrig is set to the 1108 ** same value. However, if the results are being sent to the sorter, the 1109 ** values for any expressions that are also part of the sort-key are omitted 1110 ** from this array. In this case regOrig is set to zero. */ 1111 int regResult; /* Start of memory holding current results */ 1112 int regOrig; /* Start of memory holding full result (or 0) */ 1113 1114 assert( v ); 1115 assert( p->pEList!=0 ); 1116 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1117 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1118 if( pSort==0 && !hasDistinct ){ 1119 assert( iContinue!=0 ); 1120 codeOffset(v, p->iOffset, iContinue); 1121 } 1122 1123 /* Pull the requested columns. 1124 */ 1125 nResultCol = p->pEList->nExpr; 1126 1127 if( pDest->iSdst==0 ){ 1128 if( pSort ){ 1129 nPrefixReg = pSort->pOrderBy->nExpr; 1130 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1131 pParse->nMem += nPrefixReg; 1132 } 1133 pDest->iSdst = pParse->nMem+1; 1134 pParse->nMem += nResultCol; 1135 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1136 /* This is an error condition that can result, for example, when a SELECT 1137 ** on the right-hand side of an INSERT contains more result columns than 1138 ** there are columns in the table on the left. The error will be caught 1139 ** and reported later. But we need to make sure enough memory is allocated 1140 ** to avoid other spurious errors in the meantime. */ 1141 pParse->nMem += nResultCol; 1142 } 1143 pDest->nSdst = nResultCol; 1144 regOrig = regResult = pDest->iSdst; 1145 if( srcTab>=0 ){ 1146 for(i=0; i<nResultCol; i++){ 1147 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1148 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1149 } 1150 }else if( eDest!=SRT_Exists ){ 1151 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1152 ExprList *pExtra = 0; 1153 #endif 1154 /* If the destination is an EXISTS(...) expression, the actual 1155 ** values returned by the SELECT are not required. 1156 */ 1157 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1158 ExprList *pEList; 1159 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1160 ecelFlags = SQLITE_ECEL_DUP; 1161 }else{ 1162 ecelFlags = 0; 1163 } 1164 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1165 /* For each expression in p->pEList that is a copy of an expression in 1166 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1167 ** iOrderByCol value to one more than the index of the ORDER BY 1168 ** expression within the sort-key that pushOntoSorter() will generate. 1169 ** This allows the p->pEList field to be omitted from the sorted record, 1170 ** saving space and CPU cycles. */ 1171 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1172 1173 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1174 int j; 1175 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1176 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1177 } 1178 } 1179 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1180 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1181 if( pExtra && pParse->db->mallocFailed==0 ){ 1182 /* If there are any extra PK columns to add to the sorter records, 1183 ** allocate extra memory cells and adjust the OpenEphemeral 1184 ** instruction to account for the larger records. This is only 1185 ** required if there are one or more WITHOUT ROWID tables with 1186 ** composite primary keys in the SortCtx.aDefer[] array. */ 1187 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1188 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1189 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1190 pParse->nMem += pExtra->nExpr; 1191 } 1192 #endif 1193 1194 /* Adjust nResultCol to account for columns that are omitted 1195 ** from the sorter by the optimizations in this branch */ 1196 pEList = p->pEList; 1197 for(i=0; i<pEList->nExpr; i++){ 1198 if( pEList->a[i].u.x.iOrderByCol>0 1199 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1200 || pEList->a[i].fg.bSorterRef 1201 #endif 1202 ){ 1203 nResultCol--; 1204 regOrig = 0; 1205 } 1206 } 1207 1208 testcase( regOrig ); 1209 testcase( eDest==SRT_Set ); 1210 testcase( eDest==SRT_Mem ); 1211 testcase( eDest==SRT_Coroutine ); 1212 testcase( eDest==SRT_Output ); 1213 assert( eDest==SRT_Set || eDest==SRT_Mem 1214 || eDest==SRT_Coroutine || eDest==SRT_Output 1215 || eDest==SRT_Upfrom ); 1216 } 1217 sRowLoadInfo.regResult = regResult; 1218 sRowLoadInfo.ecelFlags = ecelFlags; 1219 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1220 sRowLoadInfo.pExtra = pExtra; 1221 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1222 if( pExtra ) nResultCol += pExtra->nExpr; 1223 #endif 1224 if( p->iLimit 1225 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1226 && nPrefixReg>0 1227 ){ 1228 assert( pSort!=0 ); 1229 assert( hasDistinct==0 ); 1230 pSort->pDeferredRowLoad = &sRowLoadInfo; 1231 regOrig = 0; 1232 }else{ 1233 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1234 } 1235 } 1236 1237 /* If the DISTINCT keyword was present on the SELECT statement 1238 ** and this row has been seen before, then do not make this row 1239 ** part of the result. 1240 */ 1241 if( hasDistinct ){ 1242 int eType = pDistinct->eTnctType; 1243 int iTab = pDistinct->tabTnct; 1244 assert( nResultCol==p->pEList->nExpr ); 1245 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1246 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1247 if( pSort==0 ){ 1248 codeOffset(v, p->iOffset, iContinue); 1249 } 1250 } 1251 1252 switch( eDest ){ 1253 /* In this mode, write each query result to the key of the temporary 1254 ** table iParm. 1255 */ 1256 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1257 case SRT_Union: { 1258 int r1; 1259 r1 = sqlite3GetTempReg(pParse); 1260 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1261 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1262 sqlite3ReleaseTempReg(pParse, r1); 1263 break; 1264 } 1265 1266 /* Construct a record from the query result, but instead of 1267 ** saving that record, use it as a key to delete elements from 1268 ** the temporary table iParm. 1269 */ 1270 case SRT_Except: { 1271 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1272 break; 1273 } 1274 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1275 1276 /* Store the result as data using a unique key. 1277 */ 1278 case SRT_Fifo: 1279 case SRT_DistFifo: 1280 case SRT_Table: 1281 case SRT_EphemTab: { 1282 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1283 testcase( eDest==SRT_Table ); 1284 testcase( eDest==SRT_EphemTab ); 1285 testcase( eDest==SRT_Fifo ); 1286 testcase( eDest==SRT_DistFifo ); 1287 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1288 #ifndef SQLITE_OMIT_CTE 1289 if( eDest==SRT_DistFifo ){ 1290 /* If the destination is DistFifo, then cursor (iParm+1) is open 1291 ** on an ephemeral index. If the current row is already present 1292 ** in the index, do not write it to the output. If not, add the 1293 ** current row to the index and proceed with writing it to the 1294 ** output table as well. */ 1295 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1296 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1297 VdbeCoverage(v); 1298 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1299 assert( pSort==0 ); 1300 } 1301 #endif 1302 if( pSort ){ 1303 assert( regResult==regOrig ); 1304 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1305 }else{ 1306 int r2 = sqlite3GetTempReg(pParse); 1307 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1308 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1309 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1310 sqlite3ReleaseTempReg(pParse, r2); 1311 } 1312 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1313 break; 1314 } 1315 1316 case SRT_Upfrom: { 1317 if( pSort ){ 1318 pushOntoSorter( 1319 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1320 }else{ 1321 int i2 = pDest->iSDParm2; 1322 int r1 = sqlite3GetTempReg(pParse); 1323 1324 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1325 ** might still be trying to return one row, because that is what 1326 ** aggregates do. Don't record that empty row in the output table. */ 1327 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1328 1329 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1330 regResult+(i2<0), nResultCol-(i2<0), r1); 1331 if( i2<0 ){ 1332 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1333 }else{ 1334 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1335 } 1336 } 1337 break; 1338 } 1339 1340 #ifndef SQLITE_OMIT_SUBQUERY 1341 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1342 ** then there should be a single item on the stack. Write this 1343 ** item into the set table with bogus data. 1344 */ 1345 case SRT_Set: { 1346 if( pSort ){ 1347 /* At first glance you would think we could optimize out the 1348 ** ORDER BY in this case since the order of entries in the set 1349 ** does not matter. But there might be a LIMIT clause, in which 1350 ** case the order does matter */ 1351 pushOntoSorter( 1352 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1353 }else{ 1354 int r1 = sqlite3GetTempReg(pParse); 1355 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1356 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1357 r1, pDest->zAffSdst, nResultCol); 1358 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1359 sqlite3ReleaseTempReg(pParse, r1); 1360 } 1361 break; 1362 } 1363 1364 1365 /* If any row exist in the result set, record that fact and abort. 1366 */ 1367 case SRT_Exists: { 1368 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1369 /* The LIMIT clause will terminate the loop for us */ 1370 break; 1371 } 1372 1373 /* If this is a scalar select that is part of an expression, then 1374 ** store the results in the appropriate memory cell or array of 1375 ** memory cells and break out of the scan loop. 1376 */ 1377 case SRT_Mem: { 1378 if( pSort ){ 1379 assert( nResultCol<=pDest->nSdst ); 1380 pushOntoSorter( 1381 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1382 }else{ 1383 assert( nResultCol==pDest->nSdst ); 1384 assert( regResult==iParm ); 1385 /* The LIMIT clause will jump out of the loop for us */ 1386 } 1387 break; 1388 } 1389 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1390 1391 case SRT_Coroutine: /* Send data to a co-routine */ 1392 case SRT_Output: { /* Return the results */ 1393 testcase( eDest==SRT_Coroutine ); 1394 testcase( eDest==SRT_Output ); 1395 if( pSort ){ 1396 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1397 nPrefixReg); 1398 }else if( eDest==SRT_Coroutine ){ 1399 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1400 }else{ 1401 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1402 } 1403 break; 1404 } 1405 1406 #ifndef SQLITE_OMIT_CTE 1407 /* Write the results into a priority queue that is order according to 1408 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1409 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1410 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1411 ** final OP_Sequence column. The last column is the record as a blob. 1412 */ 1413 case SRT_DistQueue: 1414 case SRT_Queue: { 1415 int nKey; 1416 int r1, r2, r3; 1417 int addrTest = 0; 1418 ExprList *pSO; 1419 pSO = pDest->pOrderBy; 1420 assert( pSO ); 1421 nKey = pSO->nExpr; 1422 r1 = sqlite3GetTempReg(pParse); 1423 r2 = sqlite3GetTempRange(pParse, nKey+2); 1424 r3 = r2+nKey+1; 1425 if( eDest==SRT_DistQueue ){ 1426 /* If the destination is DistQueue, then cursor (iParm+1) is open 1427 ** on a second ephemeral index that holds all values every previously 1428 ** added to the queue. */ 1429 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1430 regResult, nResultCol); 1431 VdbeCoverage(v); 1432 } 1433 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1434 if( eDest==SRT_DistQueue ){ 1435 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1436 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1437 } 1438 for(i=0; i<nKey; i++){ 1439 sqlite3VdbeAddOp2(v, OP_SCopy, 1440 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1441 r2+i); 1442 } 1443 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1444 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1445 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1446 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1447 sqlite3ReleaseTempReg(pParse, r1); 1448 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1449 break; 1450 } 1451 #endif /* SQLITE_OMIT_CTE */ 1452 1453 1454 1455 #if !defined(SQLITE_OMIT_TRIGGER) 1456 /* Discard the results. This is used for SELECT statements inside 1457 ** the body of a TRIGGER. The purpose of such selects is to call 1458 ** user-defined functions that have side effects. We do not care 1459 ** about the actual results of the select. 1460 */ 1461 default: { 1462 assert( eDest==SRT_Discard ); 1463 break; 1464 } 1465 #endif 1466 } 1467 1468 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1469 ** there is a sorter, in which case the sorter has already limited 1470 ** the output for us. 1471 */ 1472 if( pSort==0 && p->iLimit ){ 1473 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1474 } 1475 } 1476 1477 /* 1478 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1479 ** X extra columns. 1480 */ 1481 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1482 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1483 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1484 if( p ){ 1485 p->aSortFlags = (u8*)&p->aColl[N+X]; 1486 p->nKeyField = (u16)N; 1487 p->nAllField = (u16)(N+X); 1488 p->enc = ENC(db); 1489 p->db = db; 1490 p->nRef = 1; 1491 memset(&p[1], 0, nExtra); 1492 }else{ 1493 return (KeyInfo*)sqlite3OomFault(db); 1494 } 1495 return p; 1496 } 1497 1498 /* 1499 ** Deallocate a KeyInfo object 1500 */ 1501 void sqlite3KeyInfoUnref(KeyInfo *p){ 1502 if( p ){ 1503 assert( p->nRef>0 ); 1504 p->nRef--; 1505 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1506 } 1507 } 1508 1509 /* 1510 ** Make a new pointer to a KeyInfo object 1511 */ 1512 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1513 if( p ){ 1514 assert( p->nRef>0 ); 1515 p->nRef++; 1516 } 1517 return p; 1518 } 1519 1520 #ifdef SQLITE_DEBUG 1521 /* 1522 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1523 ** can only be changed if this is just a single reference to the object. 1524 ** 1525 ** This routine is used only inside of assert() statements. 1526 */ 1527 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1528 #endif /* SQLITE_DEBUG */ 1529 1530 /* 1531 ** Given an expression list, generate a KeyInfo structure that records 1532 ** the collating sequence for each expression in that expression list. 1533 ** 1534 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1535 ** KeyInfo structure is appropriate for initializing a virtual index to 1536 ** implement that clause. If the ExprList is the result set of a SELECT 1537 ** then the KeyInfo structure is appropriate for initializing a virtual 1538 ** index to implement a DISTINCT test. 1539 ** 1540 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1541 ** function is responsible for seeing that this structure is eventually 1542 ** freed. 1543 */ 1544 KeyInfo *sqlite3KeyInfoFromExprList( 1545 Parse *pParse, /* Parsing context */ 1546 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1547 int iStart, /* Begin with this column of pList */ 1548 int nExtra /* Add this many extra columns to the end */ 1549 ){ 1550 int nExpr; 1551 KeyInfo *pInfo; 1552 struct ExprList_item *pItem; 1553 sqlite3 *db = pParse->db; 1554 int i; 1555 1556 nExpr = pList->nExpr; 1557 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1558 if( pInfo ){ 1559 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1560 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1561 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1562 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; 1563 } 1564 } 1565 return pInfo; 1566 } 1567 1568 /* 1569 ** Name of the connection operator, used for error messages. 1570 */ 1571 const char *sqlite3SelectOpName(int id){ 1572 char *z; 1573 switch( id ){ 1574 case TK_ALL: z = "UNION ALL"; break; 1575 case TK_INTERSECT: z = "INTERSECT"; break; 1576 case TK_EXCEPT: z = "EXCEPT"; break; 1577 default: z = "UNION"; break; 1578 } 1579 return z; 1580 } 1581 1582 #ifndef SQLITE_OMIT_EXPLAIN 1583 /* 1584 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1585 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1586 ** where the caption is of the form: 1587 ** 1588 ** "USE TEMP B-TREE FOR xxx" 1589 ** 1590 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1591 ** is determined by the zUsage argument. 1592 */ 1593 static void explainTempTable(Parse *pParse, const char *zUsage){ 1594 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1595 } 1596 1597 /* 1598 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1599 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1600 ** in sqlite3Select() to assign values to structure member variables that 1601 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1602 ** code with #ifndef directives. 1603 */ 1604 # define explainSetInteger(a, b) a = b 1605 1606 #else 1607 /* No-op versions of the explainXXX() functions and macros. */ 1608 # define explainTempTable(y,z) 1609 # define explainSetInteger(y,z) 1610 #endif 1611 1612 1613 /* 1614 ** If the inner loop was generated using a non-null pOrderBy argument, 1615 ** then the results were placed in a sorter. After the loop is terminated 1616 ** we need to run the sorter and output the results. The following 1617 ** routine generates the code needed to do that. 1618 */ 1619 static void generateSortTail( 1620 Parse *pParse, /* Parsing context */ 1621 Select *p, /* The SELECT statement */ 1622 SortCtx *pSort, /* Information on the ORDER BY clause */ 1623 int nColumn, /* Number of columns of data */ 1624 SelectDest *pDest /* Write the sorted results here */ 1625 ){ 1626 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1627 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1628 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1629 int addr; /* Top of output loop. Jump for Next. */ 1630 int addrOnce = 0; 1631 int iTab; 1632 ExprList *pOrderBy = pSort->pOrderBy; 1633 int eDest = pDest->eDest; 1634 int iParm = pDest->iSDParm; 1635 int regRow; 1636 int regRowid; 1637 int iCol; 1638 int nKey; /* Number of key columns in sorter record */ 1639 int iSortTab; /* Sorter cursor to read from */ 1640 int i; 1641 int bSeq; /* True if sorter record includes seq. no. */ 1642 int nRefKey = 0; 1643 struct ExprList_item *aOutEx = p->pEList->a; 1644 1645 assert( addrBreak<0 ); 1646 if( pSort->labelBkOut ){ 1647 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1648 sqlite3VdbeGoto(v, addrBreak); 1649 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1650 } 1651 1652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1653 /* Open any cursors needed for sorter-reference expressions */ 1654 for(i=0; i<pSort->nDefer; i++){ 1655 Table *pTab = pSort->aDefer[i].pTab; 1656 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1657 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1658 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1659 } 1660 #endif 1661 1662 iTab = pSort->iECursor; 1663 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1664 if( eDest==SRT_Mem && p->iOffset ){ 1665 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1666 } 1667 regRowid = 0; 1668 regRow = pDest->iSdst; 1669 }else{ 1670 regRowid = sqlite3GetTempReg(pParse); 1671 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1672 regRow = sqlite3GetTempReg(pParse); 1673 nColumn = 0; 1674 }else{ 1675 regRow = sqlite3GetTempRange(pParse, nColumn); 1676 } 1677 } 1678 nKey = pOrderBy->nExpr - pSort->nOBSat; 1679 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1680 int regSortOut = ++pParse->nMem; 1681 iSortTab = pParse->nTab++; 1682 if( pSort->labelBkOut ){ 1683 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1684 } 1685 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1686 nKey+1+nColumn+nRefKey); 1687 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1688 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1689 VdbeCoverage(v); 1690 codeOffset(v, p->iOffset, addrContinue); 1691 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1692 bSeq = 0; 1693 }else{ 1694 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1695 codeOffset(v, p->iOffset, addrContinue); 1696 iSortTab = iTab; 1697 bSeq = 1; 1698 } 1699 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1700 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1701 if( aOutEx[i].fg.bSorterRef ) continue; 1702 #endif 1703 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1704 } 1705 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1706 if( pSort->nDefer ){ 1707 int iKey = iCol+1; 1708 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1709 1710 for(i=0; i<pSort->nDefer; i++){ 1711 int iCsr = pSort->aDefer[i].iCsr; 1712 Table *pTab = pSort->aDefer[i].pTab; 1713 int nKey = pSort->aDefer[i].nKey; 1714 1715 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1716 if( HasRowid(pTab) ){ 1717 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1718 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1719 sqlite3VdbeCurrentAddr(v)+1, regKey); 1720 }else{ 1721 int k; 1722 int iJmp; 1723 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1724 for(k=0; k<nKey; k++){ 1725 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1726 } 1727 iJmp = sqlite3VdbeCurrentAddr(v); 1728 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1729 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1730 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1731 } 1732 } 1733 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1734 } 1735 #endif 1736 for(i=nColumn-1; i>=0; i--){ 1737 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1738 if( aOutEx[i].fg.bSorterRef ){ 1739 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1740 }else 1741 #endif 1742 { 1743 int iRead; 1744 if( aOutEx[i].u.x.iOrderByCol ){ 1745 iRead = aOutEx[i].u.x.iOrderByCol-1; 1746 }else{ 1747 iRead = iCol--; 1748 } 1749 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1750 VdbeComment((v, "%s", aOutEx[i].zEName)); 1751 } 1752 } 1753 switch( eDest ){ 1754 case SRT_Table: 1755 case SRT_EphemTab: { 1756 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1757 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1758 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1759 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1760 break; 1761 } 1762 #ifndef SQLITE_OMIT_SUBQUERY 1763 case SRT_Set: { 1764 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1765 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1766 pDest->zAffSdst, nColumn); 1767 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1768 break; 1769 } 1770 case SRT_Mem: { 1771 /* The LIMIT clause will terminate the loop for us */ 1772 break; 1773 } 1774 #endif 1775 case SRT_Upfrom: { 1776 int i2 = pDest->iSDParm2; 1777 int r1 = sqlite3GetTempReg(pParse); 1778 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1779 if( i2<0 ){ 1780 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1781 }else{ 1782 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1783 } 1784 break; 1785 } 1786 default: { 1787 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1788 testcase( eDest==SRT_Output ); 1789 testcase( eDest==SRT_Coroutine ); 1790 if( eDest==SRT_Output ){ 1791 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1792 }else{ 1793 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1794 } 1795 break; 1796 } 1797 } 1798 if( regRowid ){ 1799 if( eDest==SRT_Set ){ 1800 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1801 }else{ 1802 sqlite3ReleaseTempReg(pParse, regRow); 1803 } 1804 sqlite3ReleaseTempReg(pParse, regRowid); 1805 } 1806 /* The bottom of the loop 1807 */ 1808 sqlite3VdbeResolveLabel(v, addrContinue); 1809 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1810 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1811 }else{ 1812 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1813 } 1814 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1815 sqlite3VdbeResolveLabel(v, addrBreak); 1816 } 1817 1818 /* 1819 ** Return a pointer to a string containing the 'declaration type' of the 1820 ** expression pExpr. The string may be treated as static by the caller. 1821 ** 1822 ** Also try to estimate the size of the returned value and return that 1823 ** result in *pEstWidth. 1824 ** 1825 ** The declaration type is the exact datatype definition extracted from the 1826 ** original CREATE TABLE statement if the expression is a column. The 1827 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1828 ** is considered a column can be complex in the presence of subqueries. The 1829 ** result-set expression in all of the following SELECT statements is 1830 ** considered a column by this function. 1831 ** 1832 ** SELECT col FROM tbl; 1833 ** SELECT (SELECT col FROM tbl; 1834 ** SELECT (SELECT col FROM tbl); 1835 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1836 ** 1837 ** The declaration type for any expression other than a column is NULL. 1838 ** 1839 ** This routine has either 3 or 6 parameters depending on whether or not 1840 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1841 */ 1842 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1843 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1844 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1845 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1846 #endif 1847 static const char *columnTypeImpl( 1848 NameContext *pNC, 1849 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1850 Expr *pExpr 1851 #else 1852 Expr *pExpr, 1853 const char **pzOrigDb, 1854 const char **pzOrigTab, 1855 const char **pzOrigCol 1856 #endif 1857 ){ 1858 char const *zType = 0; 1859 int j; 1860 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1861 char const *zOrigDb = 0; 1862 char const *zOrigTab = 0; 1863 char const *zOrigCol = 0; 1864 #endif 1865 1866 assert( pExpr!=0 ); 1867 assert( pNC->pSrcList!=0 ); 1868 switch( pExpr->op ){ 1869 case TK_COLUMN: { 1870 /* The expression is a column. Locate the table the column is being 1871 ** extracted from in NameContext.pSrcList. This table may be real 1872 ** database table or a subquery. 1873 */ 1874 Table *pTab = 0; /* Table structure column is extracted from */ 1875 Select *pS = 0; /* Select the column is extracted from */ 1876 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1877 while( pNC && !pTab ){ 1878 SrcList *pTabList = pNC->pSrcList; 1879 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1880 if( j<pTabList->nSrc ){ 1881 pTab = pTabList->a[j].pTab; 1882 pS = pTabList->a[j].pSelect; 1883 }else{ 1884 pNC = pNC->pNext; 1885 } 1886 } 1887 1888 if( pTab==0 ){ 1889 /* At one time, code such as "SELECT new.x" within a trigger would 1890 ** cause this condition to run. Since then, we have restructured how 1891 ** trigger code is generated and so this condition is no longer 1892 ** possible. However, it can still be true for statements like 1893 ** the following: 1894 ** 1895 ** CREATE TABLE t1(col INTEGER); 1896 ** SELECT (SELECT t1.col) FROM FROM t1; 1897 ** 1898 ** when columnType() is called on the expression "t1.col" in the 1899 ** sub-select. In this case, set the column type to NULL, even 1900 ** though it should really be "INTEGER". 1901 ** 1902 ** This is not a problem, as the column type of "t1.col" is never 1903 ** used. When columnType() is called on the expression 1904 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1905 ** branch below. */ 1906 break; 1907 } 1908 1909 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1910 if( pS ){ 1911 /* The "table" is actually a sub-select or a view in the FROM clause 1912 ** of the SELECT statement. Return the declaration type and origin 1913 ** data for the result-set column of the sub-select. 1914 */ 1915 if( iCol<pS->pEList->nExpr 1916 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1917 && iCol>=0 1918 #else 1919 && ALWAYS(iCol>=0) 1920 #endif 1921 ){ 1922 /* If iCol is less than zero, then the expression requests the 1923 ** rowid of the sub-select or view. This expression is legal (see 1924 ** test case misc2.2.2) - it always evaluates to NULL. 1925 */ 1926 NameContext sNC; 1927 Expr *p = pS->pEList->a[iCol].pExpr; 1928 sNC.pSrcList = pS->pSrc; 1929 sNC.pNext = pNC; 1930 sNC.pParse = pNC->pParse; 1931 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1932 } 1933 }else{ 1934 /* A real table or a CTE table */ 1935 assert( !pS ); 1936 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1937 if( iCol<0 ) iCol = pTab->iPKey; 1938 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1939 if( iCol<0 ){ 1940 zType = "INTEGER"; 1941 zOrigCol = "rowid"; 1942 }else{ 1943 zOrigCol = pTab->aCol[iCol].zCnName; 1944 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1945 } 1946 zOrigTab = pTab->zName; 1947 if( pNC->pParse && pTab->pSchema ){ 1948 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1949 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1950 } 1951 #else 1952 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1953 if( iCol<0 ){ 1954 zType = "INTEGER"; 1955 }else{ 1956 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1957 } 1958 #endif 1959 } 1960 break; 1961 } 1962 #ifndef SQLITE_OMIT_SUBQUERY 1963 case TK_SELECT: { 1964 /* The expression is a sub-select. Return the declaration type and 1965 ** origin info for the single column in the result set of the SELECT 1966 ** statement. 1967 */ 1968 NameContext sNC; 1969 Select *pS; 1970 Expr *p; 1971 assert( ExprUseXSelect(pExpr) ); 1972 pS = pExpr->x.pSelect; 1973 p = pS->pEList->a[0].pExpr; 1974 sNC.pSrcList = pS->pSrc; 1975 sNC.pNext = pNC; 1976 sNC.pParse = pNC->pParse; 1977 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1978 break; 1979 } 1980 #endif 1981 } 1982 1983 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1984 if( pzOrigDb ){ 1985 assert( pzOrigTab && pzOrigCol ); 1986 *pzOrigDb = zOrigDb; 1987 *pzOrigTab = zOrigTab; 1988 *pzOrigCol = zOrigCol; 1989 } 1990 #endif 1991 return zType; 1992 } 1993 1994 /* 1995 ** Generate code that will tell the VDBE the declaration types of columns 1996 ** in the result set. 1997 */ 1998 static void generateColumnTypes( 1999 Parse *pParse, /* Parser context */ 2000 SrcList *pTabList, /* List of tables */ 2001 ExprList *pEList /* Expressions defining the result set */ 2002 ){ 2003 #ifndef SQLITE_OMIT_DECLTYPE 2004 Vdbe *v = pParse->pVdbe; 2005 int i; 2006 NameContext sNC; 2007 sNC.pSrcList = pTabList; 2008 sNC.pParse = pParse; 2009 sNC.pNext = 0; 2010 for(i=0; i<pEList->nExpr; i++){ 2011 Expr *p = pEList->a[i].pExpr; 2012 const char *zType; 2013 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2014 const char *zOrigDb = 0; 2015 const char *zOrigTab = 0; 2016 const char *zOrigCol = 0; 2017 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2018 2019 /* The vdbe must make its own copy of the column-type and other 2020 ** column specific strings, in case the schema is reset before this 2021 ** virtual machine is deleted. 2022 */ 2023 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2024 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2025 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2026 #else 2027 zType = columnType(&sNC, p, 0, 0, 0); 2028 #endif 2029 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2030 } 2031 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2032 } 2033 2034 2035 /* 2036 ** Compute the column names for a SELECT statement. 2037 ** 2038 ** The only guarantee that SQLite makes about column names is that if the 2039 ** column has an AS clause assigning it a name, that will be the name used. 2040 ** That is the only documented guarantee. However, countless applications 2041 ** developed over the years have made baseless assumptions about column names 2042 ** and will break if those assumptions changes. Hence, use extreme caution 2043 ** when modifying this routine to avoid breaking legacy. 2044 ** 2045 ** See Also: sqlite3ColumnsFromExprList() 2046 ** 2047 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2048 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2049 ** applications should operate this way. Nevertheless, we need to support the 2050 ** other modes for legacy: 2051 ** 2052 ** short=OFF, full=OFF: Column name is the text of the expression has it 2053 ** originally appears in the SELECT statement. In 2054 ** other words, the zSpan of the result expression. 2055 ** 2056 ** short=ON, full=OFF: (This is the default setting). If the result 2057 ** refers directly to a table column, then the 2058 ** result column name is just the table column 2059 ** name: COLUMN. Otherwise use zSpan. 2060 ** 2061 ** full=ON, short=ANY: If the result refers directly to a table column, 2062 ** then the result column name with the table name 2063 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2064 */ 2065 void sqlite3GenerateColumnNames( 2066 Parse *pParse, /* Parser context */ 2067 Select *pSelect /* Generate column names for this SELECT statement */ 2068 ){ 2069 Vdbe *v = pParse->pVdbe; 2070 int i; 2071 Table *pTab; 2072 SrcList *pTabList; 2073 ExprList *pEList; 2074 sqlite3 *db = pParse->db; 2075 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2076 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2077 2078 #ifndef SQLITE_OMIT_EXPLAIN 2079 /* If this is an EXPLAIN, skip this step */ 2080 if( pParse->explain ){ 2081 return; 2082 } 2083 #endif 2084 2085 if( pParse->colNamesSet ) return; 2086 /* Column names are determined by the left-most term of a compound select */ 2087 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2088 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2089 pTabList = pSelect->pSrc; 2090 pEList = pSelect->pEList; 2091 assert( v!=0 ); 2092 assert( pTabList!=0 ); 2093 pParse->colNamesSet = 1; 2094 fullName = (db->flags & SQLITE_FullColNames)!=0; 2095 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2096 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2097 for(i=0; i<pEList->nExpr; i++){ 2098 Expr *p = pEList->a[i].pExpr; 2099 2100 assert( p!=0 ); 2101 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2102 assert( p->op!=TK_COLUMN 2103 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2104 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ 2105 /* An AS clause always takes first priority */ 2106 char *zName = pEList->a[i].zEName; 2107 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2108 }else if( srcName && p->op==TK_COLUMN ){ 2109 char *zCol; 2110 int iCol = p->iColumn; 2111 pTab = p->y.pTab; 2112 assert( pTab!=0 ); 2113 if( iCol<0 ) iCol = pTab->iPKey; 2114 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2115 if( iCol<0 ){ 2116 zCol = "rowid"; 2117 }else{ 2118 zCol = pTab->aCol[iCol].zCnName; 2119 } 2120 if( fullName ){ 2121 char *zName = 0; 2122 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2123 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2124 }else{ 2125 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2126 } 2127 }else{ 2128 const char *z = pEList->a[i].zEName; 2129 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2130 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2131 } 2132 } 2133 generateColumnTypes(pParse, pTabList, pEList); 2134 } 2135 2136 /* 2137 ** Given an expression list (which is really the list of expressions 2138 ** that form the result set of a SELECT statement) compute appropriate 2139 ** column names for a table that would hold the expression list. 2140 ** 2141 ** All column names will be unique. 2142 ** 2143 ** Only the column names are computed. Column.zType, Column.zColl, 2144 ** and other fields of Column are zeroed. 2145 ** 2146 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2147 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2148 ** 2149 ** The only guarantee that SQLite makes about column names is that if the 2150 ** column has an AS clause assigning it a name, that will be the name used. 2151 ** That is the only documented guarantee. However, countless applications 2152 ** developed over the years have made baseless assumptions about column names 2153 ** and will break if those assumptions changes. Hence, use extreme caution 2154 ** when modifying this routine to avoid breaking legacy. 2155 ** 2156 ** See Also: sqlite3GenerateColumnNames() 2157 */ 2158 int sqlite3ColumnsFromExprList( 2159 Parse *pParse, /* Parsing context */ 2160 ExprList *pEList, /* Expr list from which to derive column names */ 2161 i16 *pnCol, /* Write the number of columns here */ 2162 Column **paCol /* Write the new column list here */ 2163 ){ 2164 sqlite3 *db = pParse->db; /* Database connection */ 2165 int i, j; /* Loop counters */ 2166 u32 cnt; /* Index added to make the name unique */ 2167 Column *aCol, *pCol; /* For looping over result columns */ 2168 int nCol; /* Number of columns in the result set */ 2169 char *zName; /* Column name */ 2170 int nName; /* Size of name in zName[] */ 2171 Hash ht; /* Hash table of column names */ 2172 Table *pTab; 2173 2174 sqlite3HashInit(&ht); 2175 if( pEList ){ 2176 nCol = pEList->nExpr; 2177 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2178 testcase( aCol==0 ); 2179 if( NEVER(nCol>32767) ) nCol = 32767; 2180 }else{ 2181 nCol = 0; 2182 aCol = 0; 2183 } 2184 assert( nCol==(i16)nCol ); 2185 *pnCol = nCol; 2186 *paCol = aCol; 2187 2188 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2189 struct ExprList_item *pX = &pEList->a[i]; 2190 struct ExprList_item *pCollide; 2191 /* Get an appropriate name for the column 2192 */ 2193 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ 2194 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2195 }else{ 2196 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2197 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2198 pColExpr = pColExpr->pRight; 2199 assert( pColExpr!=0 ); 2200 } 2201 if( pColExpr->op==TK_COLUMN 2202 && ALWAYS( ExprUseYTab(pColExpr) ) 2203 && ALWAYS( pColExpr->y.pTab!=0 ) 2204 ){ 2205 /* For columns use the column name name */ 2206 int iCol = pColExpr->iColumn; 2207 pTab = pColExpr->y.pTab; 2208 if( iCol<0 ) iCol = pTab->iPKey; 2209 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2210 }else if( pColExpr->op==TK_ID ){ 2211 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2212 zName = pColExpr->u.zToken; 2213 }else{ 2214 /* Use the original text of the column expression as its name */ 2215 assert( zName==pX->zEName ); /* pointer comparison intended */ 2216 } 2217 } 2218 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2219 zName = sqlite3DbStrDup(db, zName); 2220 }else{ 2221 zName = sqlite3MPrintf(db,"column%d",i+1); 2222 } 2223 2224 /* Make sure the column name is unique. If the name is not unique, 2225 ** append an integer to the name so that it becomes unique. 2226 */ 2227 cnt = 0; 2228 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ 2229 if( pCollide->fg.bUsingTerm ){ 2230 pCol->colFlags |= COLFLAG_NOEXPAND; 2231 } 2232 nName = sqlite3Strlen30(zName); 2233 if( nName>0 ){ 2234 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2235 if( zName[j]==':' ) nName = j; 2236 } 2237 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2238 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2239 } 2240 pCol->zCnName = zName; 2241 pCol->hName = sqlite3StrIHash(zName); 2242 if( pX->fg.bNoExpand ){ 2243 pCol->colFlags |= COLFLAG_NOEXPAND; 2244 } 2245 sqlite3ColumnPropertiesFromName(0, pCol); 2246 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ 2247 sqlite3OomFault(db); 2248 } 2249 } 2250 sqlite3HashClear(&ht); 2251 if( db->mallocFailed ){ 2252 for(j=0; j<i; j++){ 2253 sqlite3DbFree(db, aCol[j].zCnName); 2254 } 2255 sqlite3DbFree(db, aCol); 2256 *paCol = 0; 2257 *pnCol = 0; 2258 return SQLITE_NOMEM_BKPT; 2259 } 2260 return SQLITE_OK; 2261 } 2262 2263 /* 2264 ** Add type and collation information to a column list based on 2265 ** a SELECT statement. 2266 ** 2267 ** The column list presumably came from selectColumnNamesFromExprList(). 2268 ** The column list has only names, not types or collations. This 2269 ** routine goes through and adds the types and collations. 2270 ** 2271 ** This routine requires that all identifiers in the SELECT 2272 ** statement be resolved. 2273 */ 2274 void sqlite3SelectAddColumnTypeAndCollation( 2275 Parse *pParse, /* Parsing contexts */ 2276 Table *pTab, /* Add column type information to this table */ 2277 Select *pSelect, /* SELECT used to determine types and collations */ 2278 char aff /* Default affinity for columns */ 2279 ){ 2280 sqlite3 *db = pParse->db; 2281 NameContext sNC; 2282 Column *pCol; 2283 CollSeq *pColl; 2284 int i; 2285 Expr *p; 2286 struct ExprList_item *a; 2287 2288 assert( pSelect!=0 ); 2289 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2290 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2291 if( db->mallocFailed ) return; 2292 memset(&sNC, 0, sizeof(sNC)); 2293 sNC.pSrcList = pSelect->pSrc; 2294 a = pSelect->pEList->a; 2295 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2296 const char *zType; 2297 i64 n, m; 2298 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2299 p = a[i].pExpr; 2300 zType = columnType(&sNC, p, 0, 0, 0); 2301 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2302 pCol->affinity = sqlite3ExprAffinity(p); 2303 if( zType ){ 2304 m = sqlite3Strlen30(zType); 2305 n = sqlite3Strlen30(pCol->zCnName); 2306 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2307 if( pCol->zCnName ){ 2308 memcpy(&pCol->zCnName[n+1], zType, m+1); 2309 pCol->colFlags |= COLFLAG_HASTYPE; 2310 }else{ 2311 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2312 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2313 } 2314 } 2315 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2316 pColl = sqlite3ExprCollSeq(pParse, p); 2317 if( pColl ){ 2318 assert( pTab->pIndex==0 ); 2319 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2320 } 2321 } 2322 pTab->szTabRow = 1; /* Any non-zero value works */ 2323 } 2324 2325 /* 2326 ** Given a SELECT statement, generate a Table structure that describes 2327 ** the result set of that SELECT. 2328 */ 2329 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2330 Table *pTab; 2331 sqlite3 *db = pParse->db; 2332 u64 savedFlags; 2333 2334 savedFlags = db->flags; 2335 db->flags &= ~(u64)SQLITE_FullColNames; 2336 db->flags |= SQLITE_ShortColNames; 2337 sqlite3SelectPrep(pParse, pSelect, 0); 2338 db->flags = savedFlags; 2339 if( pParse->nErr ) return 0; 2340 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2341 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2342 if( pTab==0 ){ 2343 return 0; 2344 } 2345 pTab->nTabRef = 1; 2346 pTab->zName = 0; 2347 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2348 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2349 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2350 pTab->iPKey = -1; 2351 if( db->mallocFailed ){ 2352 sqlite3DeleteTable(db, pTab); 2353 return 0; 2354 } 2355 return pTab; 2356 } 2357 2358 /* 2359 ** Get a VDBE for the given parser context. Create a new one if necessary. 2360 ** If an error occurs, return NULL and leave a message in pParse. 2361 */ 2362 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2363 if( pParse->pVdbe ){ 2364 return pParse->pVdbe; 2365 } 2366 if( pParse->pToplevel==0 2367 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2368 ){ 2369 pParse->okConstFactor = 1; 2370 } 2371 return sqlite3VdbeCreate(pParse); 2372 } 2373 2374 2375 /* 2376 ** Compute the iLimit and iOffset fields of the SELECT based on the 2377 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2378 ** that appear in the original SQL statement after the LIMIT and OFFSET 2379 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2380 ** are the integer memory register numbers for counters used to compute 2381 ** the limit and offset. If there is no limit and/or offset, then 2382 ** iLimit and iOffset are negative. 2383 ** 2384 ** This routine changes the values of iLimit and iOffset only if 2385 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2386 ** and iOffset should have been preset to appropriate default values (zero) 2387 ** prior to calling this routine. 2388 ** 2389 ** The iOffset register (if it exists) is initialized to the value 2390 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2391 ** iOffset+1 is initialized to LIMIT+OFFSET. 2392 ** 2393 ** Only if pLimit->pLeft!=0 do the limit registers get 2394 ** redefined. The UNION ALL operator uses this property to force 2395 ** the reuse of the same limit and offset registers across multiple 2396 ** SELECT statements. 2397 */ 2398 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2399 Vdbe *v = 0; 2400 int iLimit = 0; 2401 int iOffset; 2402 int n; 2403 Expr *pLimit = p->pLimit; 2404 2405 if( p->iLimit ) return; 2406 2407 /* 2408 ** "LIMIT -1" always shows all rows. There is some 2409 ** controversy about what the correct behavior should be. 2410 ** The current implementation interprets "LIMIT 0" to mean 2411 ** no rows. 2412 */ 2413 if( pLimit ){ 2414 assert( pLimit->op==TK_LIMIT ); 2415 assert( pLimit->pLeft!=0 ); 2416 p->iLimit = iLimit = ++pParse->nMem; 2417 v = sqlite3GetVdbe(pParse); 2418 assert( v!=0 ); 2419 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2420 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2421 VdbeComment((v, "LIMIT counter")); 2422 if( n==0 ){ 2423 sqlite3VdbeGoto(v, iBreak); 2424 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2425 p->nSelectRow = sqlite3LogEst((u64)n); 2426 p->selFlags |= SF_FixedLimit; 2427 } 2428 }else{ 2429 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2430 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2431 VdbeComment((v, "LIMIT counter")); 2432 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2433 } 2434 if( pLimit->pRight ){ 2435 p->iOffset = iOffset = ++pParse->nMem; 2436 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2437 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2438 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2439 VdbeComment((v, "OFFSET counter")); 2440 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2441 VdbeComment((v, "LIMIT+OFFSET")); 2442 } 2443 } 2444 } 2445 2446 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2447 /* 2448 ** Return the appropriate collating sequence for the iCol-th column of 2449 ** the result set for the compound-select statement "p". Return NULL if 2450 ** the column has no default collating sequence. 2451 ** 2452 ** The collating sequence for the compound select is taken from the 2453 ** left-most term of the select that has a collating sequence. 2454 */ 2455 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2456 CollSeq *pRet; 2457 if( p->pPrior ){ 2458 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2459 }else{ 2460 pRet = 0; 2461 } 2462 assert( iCol>=0 ); 2463 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2464 ** have been thrown during name resolution and we would not have gotten 2465 ** this far */ 2466 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2467 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2468 } 2469 return pRet; 2470 } 2471 2472 /* 2473 ** The select statement passed as the second parameter is a compound SELECT 2474 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2475 ** structure suitable for implementing the ORDER BY. 2476 ** 2477 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2478 ** function is responsible for ensuring that this structure is eventually 2479 ** freed. 2480 */ 2481 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2482 ExprList *pOrderBy = p->pOrderBy; 2483 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2484 sqlite3 *db = pParse->db; 2485 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2486 if( pRet ){ 2487 int i; 2488 for(i=0; i<nOrderBy; i++){ 2489 struct ExprList_item *pItem = &pOrderBy->a[i]; 2490 Expr *pTerm = pItem->pExpr; 2491 CollSeq *pColl; 2492 2493 if( pTerm->flags & EP_Collate ){ 2494 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2495 }else{ 2496 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2497 if( pColl==0 ) pColl = db->pDfltColl; 2498 pOrderBy->a[i].pExpr = 2499 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2500 } 2501 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2502 pRet->aColl[i] = pColl; 2503 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; 2504 } 2505 } 2506 2507 return pRet; 2508 } 2509 2510 #ifndef SQLITE_OMIT_CTE 2511 /* 2512 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2513 ** query of the form: 2514 ** 2515 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2516 ** \___________/ \_______________/ 2517 ** p->pPrior p 2518 ** 2519 ** 2520 ** There is exactly one reference to the recursive-table in the FROM clause 2521 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2522 ** 2523 ** The setup-query runs once to generate an initial set of rows that go 2524 ** into a Queue table. Rows are extracted from the Queue table one by 2525 ** one. Each row extracted from Queue is output to pDest. Then the single 2526 ** extracted row (now in the iCurrent table) becomes the content of the 2527 ** recursive-table for a recursive-query run. The output of the recursive-query 2528 ** is added back into the Queue table. Then another row is extracted from Queue 2529 ** and the iteration continues until the Queue table is empty. 2530 ** 2531 ** If the compound query operator is UNION then no duplicate rows are ever 2532 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2533 ** that have ever been inserted into Queue and causes duplicates to be 2534 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2535 ** 2536 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2537 ** ORDER BY order and the first entry is extracted for each cycle. Without 2538 ** an ORDER BY, the Queue table is just a FIFO. 2539 ** 2540 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2541 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2542 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2543 ** with a positive value, then the first OFFSET outputs are discarded rather 2544 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2545 ** rows have been skipped. 2546 */ 2547 static void generateWithRecursiveQuery( 2548 Parse *pParse, /* Parsing context */ 2549 Select *p, /* The recursive SELECT to be coded */ 2550 SelectDest *pDest /* What to do with query results */ 2551 ){ 2552 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2553 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2554 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2555 Select *pSetup; /* The setup query */ 2556 Select *pFirstRec; /* Left-most recursive term */ 2557 int addrTop; /* Top of the loop */ 2558 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2559 int iCurrent = 0; /* The Current table */ 2560 int regCurrent; /* Register holding Current table */ 2561 int iQueue; /* The Queue table */ 2562 int iDistinct = 0; /* To ensure unique results if UNION */ 2563 int eDest = SRT_Fifo; /* How to write to Queue */ 2564 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2565 int i; /* Loop counter */ 2566 int rc; /* Result code */ 2567 ExprList *pOrderBy; /* The ORDER BY clause */ 2568 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2569 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2570 2571 #ifndef SQLITE_OMIT_WINDOWFUNC 2572 if( p->pWin ){ 2573 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2574 return; 2575 } 2576 #endif 2577 2578 /* Obtain authorization to do a recursive query */ 2579 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2580 2581 /* Process the LIMIT and OFFSET clauses, if they exist */ 2582 addrBreak = sqlite3VdbeMakeLabel(pParse); 2583 p->nSelectRow = 320; /* 4 billion rows */ 2584 computeLimitRegisters(pParse, p, addrBreak); 2585 pLimit = p->pLimit; 2586 regLimit = p->iLimit; 2587 regOffset = p->iOffset; 2588 p->pLimit = 0; 2589 p->iLimit = p->iOffset = 0; 2590 pOrderBy = p->pOrderBy; 2591 2592 /* Locate the cursor number of the Current table */ 2593 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2594 if( pSrc->a[i].fg.isRecursive ){ 2595 iCurrent = pSrc->a[i].iCursor; 2596 break; 2597 } 2598 } 2599 2600 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2601 ** the Distinct table must be exactly one greater than Queue in order 2602 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2603 iQueue = pParse->nTab++; 2604 if( p->op==TK_UNION ){ 2605 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2606 iDistinct = pParse->nTab++; 2607 }else{ 2608 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2609 } 2610 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2611 2612 /* Allocate cursors for Current, Queue, and Distinct. */ 2613 regCurrent = ++pParse->nMem; 2614 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2615 if( pOrderBy ){ 2616 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2617 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2618 (char*)pKeyInfo, P4_KEYINFO); 2619 destQueue.pOrderBy = pOrderBy; 2620 }else{ 2621 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2622 } 2623 VdbeComment((v, "Queue table")); 2624 if( iDistinct ){ 2625 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2626 p->selFlags |= SF_UsesEphemeral; 2627 } 2628 2629 /* Detach the ORDER BY clause from the compound SELECT */ 2630 p->pOrderBy = 0; 2631 2632 /* Figure out how many elements of the compound SELECT are part of the 2633 ** recursive query. Make sure no recursive elements use aggregate 2634 ** functions. Mark the recursive elements as UNION ALL even if they 2635 ** are really UNION because the distinctness will be enforced by the 2636 ** iDistinct table. pFirstRec is left pointing to the left-most 2637 ** recursive term of the CTE. 2638 */ 2639 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2640 if( pFirstRec->selFlags & SF_Aggregate ){ 2641 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2642 goto end_of_recursive_query; 2643 } 2644 pFirstRec->op = TK_ALL; 2645 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2646 } 2647 2648 /* Store the results of the setup-query in Queue. */ 2649 pSetup = pFirstRec->pPrior; 2650 pSetup->pNext = 0; 2651 ExplainQueryPlan((pParse, 1, "SETUP")); 2652 rc = sqlite3Select(pParse, pSetup, &destQueue); 2653 pSetup->pNext = p; 2654 if( rc ) goto end_of_recursive_query; 2655 2656 /* Find the next row in the Queue and output that row */ 2657 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2658 2659 /* Transfer the next row in Queue over to Current */ 2660 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2661 if( pOrderBy ){ 2662 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2663 }else{ 2664 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2665 } 2666 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2667 2668 /* Output the single row in Current */ 2669 addrCont = sqlite3VdbeMakeLabel(pParse); 2670 codeOffset(v, regOffset, addrCont); 2671 selectInnerLoop(pParse, p, iCurrent, 2672 0, 0, pDest, addrCont, addrBreak); 2673 if( regLimit ){ 2674 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2675 VdbeCoverage(v); 2676 } 2677 sqlite3VdbeResolveLabel(v, addrCont); 2678 2679 /* Execute the recursive SELECT taking the single row in Current as 2680 ** the value for the recursive-table. Store the results in the Queue. 2681 */ 2682 pFirstRec->pPrior = 0; 2683 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2684 sqlite3Select(pParse, p, &destQueue); 2685 assert( pFirstRec->pPrior==0 ); 2686 pFirstRec->pPrior = pSetup; 2687 2688 /* Keep running the loop until the Queue is empty */ 2689 sqlite3VdbeGoto(v, addrTop); 2690 sqlite3VdbeResolveLabel(v, addrBreak); 2691 2692 end_of_recursive_query: 2693 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2694 p->pOrderBy = pOrderBy; 2695 p->pLimit = pLimit; 2696 return; 2697 } 2698 #endif /* SQLITE_OMIT_CTE */ 2699 2700 /* Forward references */ 2701 static int multiSelectOrderBy( 2702 Parse *pParse, /* Parsing context */ 2703 Select *p, /* The right-most of SELECTs to be coded */ 2704 SelectDest *pDest /* What to do with query results */ 2705 ); 2706 2707 /* 2708 ** Handle the special case of a compound-select that originates from a 2709 ** VALUES clause. By handling this as a special case, we avoid deep 2710 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2711 ** on a VALUES clause. 2712 ** 2713 ** Because the Select object originates from a VALUES clause: 2714 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2715 ** (2) All terms are UNION ALL 2716 ** (3) There is no ORDER BY clause 2717 ** 2718 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2719 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2720 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2721 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2722 */ 2723 static int multiSelectValues( 2724 Parse *pParse, /* Parsing context */ 2725 Select *p, /* The right-most of SELECTs to be coded */ 2726 SelectDest *pDest /* What to do with query results */ 2727 ){ 2728 int nRow = 1; 2729 int rc = 0; 2730 int bShowAll = p->pLimit==0; 2731 assert( p->selFlags & SF_MultiValue ); 2732 do{ 2733 assert( p->selFlags & SF_Values ); 2734 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2735 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2736 #ifndef SQLITE_OMIT_WINDOWFUNC 2737 if( p->pWin ) return -1; 2738 #endif 2739 if( p->pPrior==0 ) break; 2740 assert( p->pPrior->pNext==p ); 2741 p = p->pPrior; 2742 nRow += bShowAll; 2743 }while(1); 2744 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2745 nRow==1 ? "" : "S")); 2746 while( p ){ 2747 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2748 if( !bShowAll ) break; 2749 p->nSelectRow = nRow; 2750 p = p->pNext; 2751 } 2752 return rc; 2753 } 2754 2755 /* 2756 ** Return true if the SELECT statement which is known to be the recursive 2757 ** part of a recursive CTE still has its anchor terms attached. If the 2758 ** anchor terms have already been removed, then return false. 2759 */ 2760 static int hasAnchor(Select *p){ 2761 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2762 return p!=0; 2763 } 2764 2765 /* 2766 ** This routine is called to process a compound query form from 2767 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2768 ** INTERSECT 2769 ** 2770 ** "p" points to the right-most of the two queries. the query on the 2771 ** left is p->pPrior. The left query could also be a compound query 2772 ** in which case this routine will be called recursively. 2773 ** 2774 ** The results of the total query are to be written into a destination 2775 ** of type eDest with parameter iParm. 2776 ** 2777 ** Example 1: Consider a three-way compound SQL statement. 2778 ** 2779 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2780 ** 2781 ** This statement is parsed up as follows: 2782 ** 2783 ** SELECT c FROM t3 2784 ** | 2785 ** `-----> SELECT b FROM t2 2786 ** | 2787 ** `------> SELECT a FROM t1 2788 ** 2789 ** The arrows in the diagram above represent the Select.pPrior pointer. 2790 ** So if this routine is called with p equal to the t3 query, then 2791 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2792 ** 2793 ** Notice that because of the way SQLite parses compound SELECTs, the 2794 ** individual selects always group from left to right. 2795 */ 2796 static int multiSelect( 2797 Parse *pParse, /* Parsing context */ 2798 Select *p, /* The right-most of SELECTs to be coded */ 2799 SelectDest *pDest /* What to do with query results */ 2800 ){ 2801 int rc = SQLITE_OK; /* Success code from a subroutine */ 2802 Select *pPrior; /* Another SELECT immediately to our left */ 2803 Vdbe *v; /* Generate code to this VDBE */ 2804 SelectDest dest; /* Alternative data destination */ 2805 Select *pDelete = 0; /* Chain of simple selects to delete */ 2806 sqlite3 *db; /* Database connection */ 2807 2808 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2809 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2810 */ 2811 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2812 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2813 assert( p->selFlags & SF_Compound ); 2814 db = pParse->db; 2815 pPrior = p->pPrior; 2816 dest = *pDest; 2817 assert( pPrior->pOrderBy==0 ); 2818 assert( pPrior->pLimit==0 ); 2819 2820 v = sqlite3GetVdbe(pParse); 2821 assert( v!=0 ); /* The VDBE already created by calling function */ 2822 2823 /* Create the destination temporary table if necessary 2824 */ 2825 if( dest.eDest==SRT_EphemTab ){ 2826 assert( p->pEList ); 2827 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2828 dest.eDest = SRT_Table; 2829 } 2830 2831 /* Special handling for a compound-select that originates as a VALUES clause. 2832 */ 2833 if( p->selFlags & SF_MultiValue ){ 2834 rc = multiSelectValues(pParse, p, &dest); 2835 if( rc>=0 ) goto multi_select_end; 2836 rc = SQLITE_OK; 2837 } 2838 2839 /* Make sure all SELECTs in the statement have the same number of elements 2840 ** in their result sets. 2841 */ 2842 assert( p->pEList && pPrior->pEList ); 2843 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2844 2845 #ifndef SQLITE_OMIT_CTE 2846 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2847 generateWithRecursiveQuery(pParse, p, &dest); 2848 }else 2849 #endif 2850 2851 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2852 */ 2853 if( p->pOrderBy ){ 2854 return multiSelectOrderBy(pParse, p, pDest); 2855 }else{ 2856 2857 #ifndef SQLITE_OMIT_EXPLAIN 2858 if( pPrior->pPrior==0 ){ 2859 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2860 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2861 } 2862 #endif 2863 2864 /* Generate code for the left and right SELECT statements. 2865 */ 2866 switch( p->op ){ 2867 case TK_ALL: { 2868 int addr = 0; 2869 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2870 assert( !pPrior->pLimit ); 2871 pPrior->iLimit = p->iLimit; 2872 pPrior->iOffset = p->iOffset; 2873 pPrior->pLimit = p->pLimit; 2874 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2875 rc = sqlite3Select(pParse, pPrior, &dest); 2876 pPrior->pLimit = 0; 2877 if( rc ){ 2878 goto multi_select_end; 2879 } 2880 p->pPrior = 0; 2881 p->iLimit = pPrior->iLimit; 2882 p->iOffset = pPrior->iOffset; 2883 if( p->iLimit ){ 2884 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2885 VdbeComment((v, "Jump ahead if LIMIT reached")); 2886 if( p->iOffset ){ 2887 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2888 p->iLimit, p->iOffset+1, p->iOffset); 2889 } 2890 } 2891 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2892 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2893 rc = sqlite3Select(pParse, p, &dest); 2894 testcase( rc!=SQLITE_OK ); 2895 pDelete = p->pPrior; 2896 p->pPrior = pPrior; 2897 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2898 if( p->pLimit 2899 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2900 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2901 ){ 2902 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2903 } 2904 if( addr ){ 2905 sqlite3VdbeJumpHere(v, addr); 2906 } 2907 break; 2908 } 2909 case TK_EXCEPT: 2910 case TK_UNION: { 2911 int unionTab; /* Cursor number of the temp table holding result */ 2912 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2913 int priorOp; /* The SRT_ operation to apply to prior selects */ 2914 Expr *pLimit; /* Saved values of p->nLimit */ 2915 int addr; 2916 SelectDest uniondest; 2917 2918 testcase( p->op==TK_EXCEPT ); 2919 testcase( p->op==TK_UNION ); 2920 priorOp = SRT_Union; 2921 if( dest.eDest==priorOp ){ 2922 /* We can reuse a temporary table generated by a SELECT to our 2923 ** right. 2924 */ 2925 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2926 unionTab = dest.iSDParm; 2927 }else{ 2928 /* We will need to create our own temporary table to hold the 2929 ** intermediate results. 2930 */ 2931 unionTab = pParse->nTab++; 2932 assert( p->pOrderBy==0 ); 2933 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2934 assert( p->addrOpenEphm[0] == -1 ); 2935 p->addrOpenEphm[0] = addr; 2936 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2937 assert( p->pEList ); 2938 } 2939 2940 2941 /* Code the SELECT statements to our left 2942 */ 2943 assert( !pPrior->pOrderBy ); 2944 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2945 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2946 rc = sqlite3Select(pParse, pPrior, &uniondest); 2947 if( rc ){ 2948 goto multi_select_end; 2949 } 2950 2951 /* Code the current SELECT statement 2952 */ 2953 if( p->op==TK_EXCEPT ){ 2954 op = SRT_Except; 2955 }else{ 2956 assert( p->op==TK_UNION ); 2957 op = SRT_Union; 2958 } 2959 p->pPrior = 0; 2960 pLimit = p->pLimit; 2961 p->pLimit = 0; 2962 uniondest.eDest = op; 2963 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2964 sqlite3SelectOpName(p->op))); 2965 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2966 rc = sqlite3Select(pParse, p, &uniondest); 2967 testcase( rc!=SQLITE_OK ); 2968 assert( p->pOrderBy==0 ); 2969 pDelete = p->pPrior; 2970 p->pPrior = pPrior; 2971 p->pOrderBy = 0; 2972 if( p->op==TK_UNION ){ 2973 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2974 } 2975 sqlite3ExprDelete(db, p->pLimit); 2976 p->pLimit = pLimit; 2977 p->iLimit = 0; 2978 p->iOffset = 0; 2979 2980 /* Convert the data in the temporary table into whatever form 2981 ** it is that we currently need. 2982 */ 2983 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2984 assert( p->pEList || db->mallocFailed ); 2985 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2986 int iCont, iBreak, iStart; 2987 iBreak = sqlite3VdbeMakeLabel(pParse); 2988 iCont = sqlite3VdbeMakeLabel(pParse); 2989 computeLimitRegisters(pParse, p, iBreak); 2990 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2991 iStart = sqlite3VdbeCurrentAddr(v); 2992 selectInnerLoop(pParse, p, unionTab, 2993 0, 0, &dest, iCont, iBreak); 2994 sqlite3VdbeResolveLabel(v, iCont); 2995 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2996 sqlite3VdbeResolveLabel(v, iBreak); 2997 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2998 } 2999 break; 3000 } 3001 default: assert( p->op==TK_INTERSECT ); { 3002 int tab1, tab2; 3003 int iCont, iBreak, iStart; 3004 Expr *pLimit; 3005 int addr; 3006 SelectDest intersectdest; 3007 int r1; 3008 3009 /* INTERSECT is different from the others since it requires 3010 ** two temporary tables. Hence it has its own case. Begin 3011 ** by allocating the tables we will need. 3012 */ 3013 tab1 = pParse->nTab++; 3014 tab2 = pParse->nTab++; 3015 assert( p->pOrderBy==0 ); 3016 3017 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3018 assert( p->addrOpenEphm[0] == -1 ); 3019 p->addrOpenEphm[0] = addr; 3020 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3021 assert( p->pEList ); 3022 3023 /* Code the SELECTs to our left into temporary table "tab1". 3024 */ 3025 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3026 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3027 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3028 if( rc ){ 3029 goto multi_select_end; 3030 } 3031 3032 /* Code the current SELECT into temporary table "tab2" 3033 */ 3034 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3035 assert( p->addrOpenEphm[1] == -1 ); 3036 p->addrOpenEphm[1] = addr; 3037 p->pPrior = 0; 3038 pLimit = p->pLimit; 3039 p->pLimit = 0; 3040 intersectdest.iSDParm = tab2; 3041 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3042 sqlite3SelectOpName(p->op))); 3043 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3044 rc = sqlite3Select(pParse, p, &intersectdest); 3045 testcase( rc!=SQLITE_OK ); 3046 pDelete = p->pPrior; 3047 p->pPrior = pPrior; 3048 if( p->nSelectRow>pPrior->nSelectRow ){ 3049 p->nSelectRow = pPrior->nSelectRow; 3050 } 3051 sqlite3ExprDelete(db, p->pLimit); 3052 p->pLimit = pLimit; 3053 3054 /* Generate code to take the intersection of the two temporary 3055 ** tables. 3056 */ 3057 if( rc ) break; 3058 assert( p->pEList ); 3059 iBreak = sqlite3VdbeMakeLabel(pParse); 3060 iCont = sqlite3VdbeMakeLabel(pParse); 3061 computeLimitRegisters(pParse, p, iBreak); 3062 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3063 r1 = sqlite3GetTempReg(pParse); 3064 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3065 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3066 VdbeCoverage(v); 3067 sqlite3ReleaseTempReg(pParse, r1); 3068 selectInnerLoop(pParse, p, tab1, 3069 0, 0, &dest, iCont, iBreak); 3070 sqlite3VdbeResolveLabel(v, iCont); 3071 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3072 sqlite3VdbeResolveLabel(v, iBreak); 3073 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3074 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3075 break; 3076 } 3077 } 3078 3079 #ifndef SQLITE_OMIT_EXPLAIN 3080 if( p->pNext==0 ){ 3081 ExplainQueryPlanPop(pParse); 3082 } 3083 #endif 3084 } 3085 if( pParse->nErr ) goto multi_select_end; 3086 3087 /* Compute collating sequences used by 3088 ** temporary tables needed to implement the compound select. 3089 ** Attach the KeyInfo structure to all temporary tables. 3090 ** 3091 ** This section is run by the right-most SELECT statement only. 3092 ** SELECT statements to the left always skip this part. The right-most 3093 ** SELECT might also skip this part if it has no ORDER BY clause and 3094 ** no temp tables are required. 3095 */ 3096 if( p->selFlags & SF_UsesEphemeral ){ 3097 int i; /* Loop counter */ 3098 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3099 Select *pLoop; /* For looping through SELECT statements */ 3100 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3101 int nCol; /* Number of columns in result set */ 3102 3103 assert( p->pNext==0 ); 3104 assert( p->pEList!=0 ); 3105 nCol = p->pEList->nExpr; 3106 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3107 if( !pKeyInfo ){ 3108 rc = SQLITE_NOMEM_BKPT; 3109 goto multi_select_end; 3110 } 3111 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3112 *apColl = multiSelectCollSeq(pParse, p, i); 3113 if( 0==*apColl ){ 3114 *apColl = db->pDfltColl; 3115 } 3116 } 3117 3118 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3119 for(i=0; i<2; i++){ 3120 int addr = pLoop->addrOpenEphm[i]; 3121 if( addr<0 ){ 3122 /* If [0] is unused then [1] is also unused. So we can 3123 ** always safely abort as soon as the first unused slot is found */ 3124 assert( pLoop->addrOpenEphm[1]<0 ); 3125 break; 3126 } 3127 sqlite3VdbeChangeP2(v, addr, nCol); 3128 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3129 P4_KEYINFO); 3130 pLoop->addrOpenEphm[i] = -1; 3131 } 3132 } 3133 sqlite3KeyInfoUnref(pKeyInfo); 3134 } 3135 3136 multi_select_end: 3137 pDest->iSdst = dest.iSdst; 3138 pDest->nSdst = dest.nSdst; 3139 if( pDelete ){ 3140 sqlite3ParserAddCleanup(pParse, 3141 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3142 pDelete); 3143 } 3144 return rc; 3145 } 3146 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3147 3148 /* 3149 ** Error message for when two or more terms of a compound select have different 3150 ** size result sets. 3151 */ 3152 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3153 if( p->selFlags & SF_Values ){ 3154 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3155 }else{ 3156 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3157 " do not have the same number of result columns", 3158 sqlite3SelectOpName(p->op)); 3159 } 3160 } 3161 3162 /* 3163 ** Code an output subroutine for a coroutine implementation of a 3164 ** SELECT statment. 3165 ** 3166 ** The data to be output is contained in pIn->iSdst. There are 3167 ** pIn->nSdst columns to be output. pDest is where the output should 3168 ** be sent. 3169 ** 3170 ** regReturn is the number of the register holding the subroutine 3171 ** return address. 3172 ** 3173 ** If regPrev>0 then it is the first register in a vector that 3174 ** records the previous output. mem[regPrev] is a flag that is false 3175 ** if there has been no previous output. If regPrev>0 then code is 3176 ** generated to suppress duplicates. pKeyInfo is used for comparing 3177 ** keys. 3178 ** 3179 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3180 ** iBreak. 3181 */ 3182 static int generateOutputSubroutine( 3183 Parse *pParse, /* Parsing context */ 3184 Select *p, /* The SELECT statement */ 3185 SelectDest *pIn, /* Coroutine supplying data */ 3186 SelectDest *pDest, /* Where to send the data */ 3187 int regReturn, /* The return address register */ 3188 int regPrev, /* Previous result register. No uniqueness if 0 */ 3189 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3190 int iBreak /* Jump here if we hit the LIMIT */ 3191 ){ 3192 Vdbe *v = pParse->pVdbe; 3193 int iContinue; 3194 int addr; 3195 3196 addr = sqlite3VdbeCurrentAddr(v); 3197 iContinue = sqlite3VdbeMakeLabel(pParse); 3198 3199 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3200 */ 3201 if( regPrev ){ 3202 int addr1, addr2; 3203 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3204 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3205 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3206 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3207 sqlite3VdbeJumpHere(v, addr1); 3208 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3209 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3210 } 3211 if( pParse->db->mallocFailed ) return 0; 3212 3213 /* Suppress the first OFFSET entries if there is an OFFSET clause 3214 */ 3215 codeOffset(v, p->iOffset, iContinue); 3216 3217 assert( pDest->eDest!=SRT_Exists ); 3218 assert( pDest->eDest!=SRT_Table ); 3219 switch( pDest->eDest ){ 3220 /* Store the result as data using a unique key. 3221 */ 3222 case SRT_EphemTab: { 3223 int r1 = sqlite3GetTempReg(pParse); 3224 int r2 = sqlite3GetTempReg(pParse); 3225 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3226 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3227 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3228 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3229 sqlite3ReleaseTempReg(pParse, r2); 3230 sqlite3ReleaseTempReg(pParse, r1); 3231 break; 3232 } 3233 3234 #ifndef SQLITE_OMIT_SUBQUERY 3235 /* If we are creating a set for an "expr IN (SELECT ...)". 3236 */ 3237 case SRT_Set: { 3238 int r1; 3239 testcase( pIn->nSdst>1 ); 3240 r1 = sqlite3GetTempReg(pParse); 3241 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3242 r1, pDest->zAffSdst, pIn->nSdst); 3243 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3244 pIn->iSdst, pIn->nSdst); 3245 sqlite3ReleaseTempReg(pParse, r1); 3246 break; 3247 } 3248 3249 /* If this is a scalar select that is part of an expression, then 3250 ** store the results in the appropriate memory cell and break out 3251 ** of the scan loop. Note that the select might return multiple columns 3252 ** if it is the RHS of a row-value IN operator. 3253 */ 3254 case SRT_Mem: { 3255 testcase( pIn->nSdst>1 ); 3256 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3257 /* The LIMIT clause will jump out of the loop for us */ 3258 break; 3259 } 3260 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3261 3262 /* The results are stored in a sequence of registers 3263 ** starting at pDest->iSdst. Then the co-routine yields. 3264 */ 3265 case SRT_Coroutine: { 3266 if( pDest->iSdst==0 ){ 3267 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3268 pDest->nSdst = pIn->nSdst; 3269 } 3270 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3271 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3272 break; 3273 } 3274 3275 /* If none of the above, then the result destination must be 3276 ** SRT_Output. This routine is never called with any other 3277 ** destination other than the ones handled above or SRT_Output. 3278 ** 3279 ** For SRT_Output, results are stored in a sequence of registers. 3280 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3281 ** return the next row of result. 3282 */ 3283 default: { 3284 assert( pDest->eDest==SRT_Output ); 3285 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3286 break; 3287 } 3288 } 3289 3290 /* Jump to the end of the loop if the LIMIT is reached. 3291 */ 3292 if( p->iLimit ){ 3293 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3294 } 3295 3296 /* Generate the subroutine return 3297 */ 3298 sqlite3VdbeResolveLabel(v, iContinue); 3299 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3300 3301 return addr; 3302 } 3303 3304 /* 3305 ** Alternative compound select code generator for cases when there 3306 ** is an ORDER BY clause. 3307 ** 3308 ** We assume a query of the following form: 3309 ** 3310 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3311 ** 3312 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3313 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3314 ** co-routines. Then run the co-routines in parallel and merge the results 3315 ** into the output. In addition to the two coroutines (called selectA and 3316 ** selectB) there are 7 subroutines: 3317 ** 3318 ** outA: Move the output of the selectA coroutine into the output 3319 ** of the compound query. 3320 ** 3321 ** outB: Move the output of the selectB coroutine into the output 3322 ** of the compound query. (Only generated for UNION and 3323 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3324 ** appears only in B.) 3325 ** 3326 ** AltB: Called when there is data from both coroutines and A<B. 3327 ** 3328 ** AeqB: Called when there is data from both coroutines and A==B. 3329 ** 3330 ** AgtB: Called when there is data from both coroutines and A>B. 3331 ** 3332 ** EofA: Called when data is exhausted from selectA. 3333 ** 3334 ** EofB: Called when data is exhausted from selectB. 3335 ** 3336 ** The implementation of the latter five subroutines depend on which 3337 ** <operator> is used: 3338 ** 3339 ** 3340 ** UNION ALL UNION EXCEPT INTERSECT 3341 ** ------------- ----------------- -------------- ----------------- 3342 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3343 ** 3344 ** AeqB: outA, nextA nextA nextA outA, nextA 3345 ** 3346 ** AgtB: outB, nextB outB, nextB nextB nextB 3347 ** 3348 ** EofA: outB, nextB outB, nextB halt halt 3349 ** 3350 ** EofB: outA, nextA outA, nextA outA, nextA halt 3351 ** 3352 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3353 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3354 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3355 ** following nextX causes a jump to the end of the select processing. 3356 ** 3357 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3358 ** within the output subroutine. The regPrev register set holds the previously 3359 ** output value. A comparison is made against this value and the output 3360 ** is skipped if the next results would be the same as the previous. 3361 ** 3362 ** The implementation plan is to implement the two coroutines and seven 3363 ** subroutines first, then put the control logic at the bottom. Like this: 3364 ** 3365 ** goto Init 3366 ** coA: coroutine for left query (A) 3367 ** coB: coroutine for right query (B) 3368 ** outA: output one row of A 3369 ** outB: output one row of B (UNION and UNION ALL only) 3370 ** EofA: ... 3371 ** EofB: ... 3372 ** AltB: ... 3373 ** AeqB: ... 3374 ** AgtB: ... 3375 ** Init: initialize coroutine registers 3376 ** yield coA 3377 ** if eof(A) goto EofA 3378 ** yield coB 3379 ** if eof(B) goto EofB 3380 ** Cmpr: Compare A, B 3381 ** Jump AltB, AeqB, AgtB 3382 ** End: ... 3383 ** 3384 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3385 ** actually called using Gosub and they do not Return. EofA and EofB loop 3386 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3387 ** and AgtB jump to either L2 or to one of EofA or EofB. 3388 */ 3389 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3390 static int multiSelectOrderBy( 3391 Parse *pParse, /* Parsing context */ 3392 Select *p, /* The right-most of SELECTs to be coded */ 3393 SelectDest *pDest /* What to do with query results */ 3394 ){ 3395 int i, j; /* Loop counters */ 3396 Select *pPrior; /* Another SELECT immediately to our left */ 3397 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3398 int nSelect; /* Number of SELECT statements in the compound */ 3399 Vdbe *v; /* Generate code to this VDBE */ 3400 SelectDest destA; /* Destination for coroutine A */ 3401 SelectDest destB; /* Destination for coroutine B */ 3402 int regAddrA; /* Address register for select-A coroutine */ 3403 int regAddrB; /* Address register for select-B coroutine */ 3404 int addrSelectA; /* Address of the select-A coroutine */ 3405 int addrSelectB; /* Address of the select-B coroutine */ 3406 int regOutA; /* Address register for the output-A subroutine */ 3407 int regOutB; /* Address register for the output-B subroutine */ 3408 int addrOutA; /* Address of the output-A subroutine */ 3409 int addrOutB = 0; /* Address of the output-B subroutine */ 3410 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3411 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3412 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3413 int addrAltB; /* Address of the A<B subroutine */ 3414 int addrAeqB; /* Address of the A==B subroutine */ 3415 int addrAgtB; /* Address of the A>B subroutine */ 3416 int regLimitA; /* Limit register for select-A */ 3417 int regLimitB; /* Limit register for select-A */ 3418 int regPrev; /* A range of registers to hold previous output */ 3419 int savedLimit; /* Saved value of p->iLimit */ 3420 int savedOffset; /* Saved value of p->iOffset */ 3421 int labelCmpr; /* Label for the start of the merge algorithm */ 3422 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3423 int addr1; /* Jump instructions that get retargetted */ 3424 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3425 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3426 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3427 sqlite3 *db; /* Database connection */ 3428 ExprList *pOrderBy; /* The ORDER BY clause */ 3429 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3430 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3431 3432 assert( p->pOrderBy!=0 ); 3433 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3434 db = pParse->db; 3435 v = pParse->pVdbe; 3436 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3437 labelEnd = sqlite3VdbeMakeLabel(pParse); 3438 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3439 3440 3441 /* Patch up the ORDER BY clause 3442 */ 3443 op = p->op; 3444 assert( p->pPrior->pOrderBy==0 ); 3445 pOrderBy = p->pOrderBy; 3446 assert( pOrderBy ); 3447 nOrderBy = pOrderBy->nExpr; 3448 3449 /* For operators other than UNION ALL we have to make sure that 3450 ** the ORDER BY clause covers every term of the result set. Add 3451 ** terms to the ORDER BY clause as necessary. 3452 */ 3453 if( op!=TK_ALL ){ 3454 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3455 struct ExprList_item *pItem; 3456 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3457 assert( pItem!=0 ); 3458 assert( pItem->u.x.iOrderByCol>0 ); 3459 if( pItem->u.x.iOrderByCol==i ) break; 3460 } 3461 if( j==nOrderBy ){ 3462 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3463 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3464 pNew->flags |= EP_IntValue; 3465 pNew->u.iValue = i; 3466 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3467 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3468 } 3469 } 3470 } 3471 3472 /* Compute the comparison permutation and keyinfo that is used with 3473 ** the permutation used to determine if the next 3474 ** row of results comes from selectA or selectB. Also add explicit 3475 ** collations to the ORDER BY clause terms so that when the subqueries 3476 ** to the right and the left are evaluated, they use the correct 3477 ** collation. 3478 */ 3479 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3480 if( aPermute ){ 3481 struct ExprList_item *pItem; 3482 aPermute[0] = nOrderBy; 3483 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3484 assert( pItem!=0 ); 3485 assert( pItem->u.x.iOrderByCol>0 ); 3486 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3487 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3488 } 3489 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3490 }else{ 3491 pKeyMerge = 0; 3492 } 3493 3494 /* Allocate a range of temporary registers and the KeyInfo needed 3495 ** for the logic that removes duplicate result rows when the 3496 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3497 */ 3498 if( op==TK_ALL ){ 3499 regPrev = 0; 3500 }else{ 3501 int nExpr = p->pEList->nExpr; 3502 assert( nOrderBy>=nExpr || db->mallocFailed ); 3503 regPrev = pParse->nMem+1; 3504 pParse->nMem += nExpr+1; 3505 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3506 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3507 if( pKeyDup ){ 3508 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3509 for(i=0; i<nExpr; i++){ 3510 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3511 pKeyDup->aSortFlags[i] = 0; 3512 } 3513 } 3514 } 3515 3516 /* Separate the left and the right query from one another 3517 */ 3518 nSelect = 1; 3519 if( (op==TK_ALL || op==TK_UNION) 3520 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3521 ){ 3522 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3523 nSelect++; 3524 assert( pSplit->pPrior->pNext==pSplit ); 3525 } 3526 } 3527 if( nSelect<=3 ){ 3528 pSplit = p; 3529 }else{ 3530 pSplit = p; 3531 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3532 } 3533 pPrior = pSplit->pPrior; 3534 assert( pPrior!=0 ); 3535 pSplit->pPrior = 0; 3536 pPrior->pNext = 0; 3537 assert( p->pOrderBy == pOrderBy ); 3538 assert( pOrderBy!=0 || db->mallocFailed ); 3539 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3540 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3541 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3542 3543 /* Compute the limit registers */ 3544 computeLimitRegisters(pParse, p, labelEnd); 3545 if( p->iLimit && op==TK_ALL ){ 3546 regLimitA = ++pParse->nMem; 3547 regLimitB = ++pParse->nMem; 3548 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3549 regLimitA); 3550 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3551 }else{ 3552 regLimitA = regLimitB = 0; 3553 } 3554 sqlite3ExprDelete(db, p->pLimit); 3555 p->pLimit = 0; 3556 3557 regAddrA = ++pParse->nMem; 3558 regAddrB = ++pParse->nMem; 3559 regOutA = ++pParse->nMem; 3560 regOutB = ++pParse->nMem; 3561 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3562 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3563 3564 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3565 3566 /* Generate a coroutine to evaluate the SELECT statement to the 3567 ** left of the compound operator - the "A" select. 3568 */ 3569 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3570 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3571 VdbeComment((v, "left SELECT")); 3572 pPrior->iLimit = regLimitA; 3573 ExplainQueryPlan((pParse, 1, "LEFT")); 3574 sqlite3Select(pParse, pPrior, &destA); 3575 sqlite3VdbeEndCoroutine(v, regAddrA); 3576 sqlite3VdbeJumpHere(v, addr1); 3577 3578 /* Generate a coroutine to evaluate the SELECT statement on 3579 ** the right - the "B" select 3580 */ 3581 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3582 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3583 VdbeComment((v, "right SELECT")); 3584 savedLimit = p->iLimit; 3585 savedOffset = p->iOffset; 3586 p->iLimit = regLimitB; 3587 p->iOffset = 0; 3588 ExplainQueryPlan((pParse, 1, "RIGHT")); 3589 sqlite3Select(pParse, p, &destB); 3590 p->iLimit = savedLimit; 3591 p->iOffset = savedOffset; 3592 sqlite3VdbeEndCoroutine(v, regAddrB); 3593 3594 /* Generate a subroutine that outputs the current row of the A 3595 ** select as the next output row of the compound select. 3596 */ 3597 VdbeNoopComment((v, "Output routine for A")); 3598 addrOutA = generateOutputSubroutine(pParse, 3599 p, &destA, pDest, regOutA, 3600 regPrev, pKeyDup, labelEnd); 3601 3602 /* Generate a subroutine that outputs the current row of the B 3603 ** select as the next output row of the compound select. 3604 */ 3605 if( op==TK_ALL || op==TK_UNION ){ 3606 VdbeNoopComment((v, "Output routine for B")); 3607 addrOutB = generateOutputSubroutine(pParse, 3608 p, &destB, pDest, regOutB, 3609 regPrev, pKeyDup, labelEnd); 3610 } 3611 sqlite3KeyInfoUnref(pKeyDup); 3612 3613 /* Generate a subroutine to run when the results from select A 3614 ** are exhausted and only data in select B remains. 3615 */ 3616 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3617 addrEofA_noB = addrEofA = labelEnd; 3618 }else{ 3619 VdbeNoopComment((v, "eof-A subroutine")); 3620 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3621 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3622 VdbeCoverage(v); 3623 sqlite3VdbeGoto(v, addrEofA); 3624 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3625 } 3626 3627 /* Generate a subroutine to run when the results from select B 3628 ** are exhausted and only data in select A remains. 3629 */ 3630 if( op==TK_INTERSECT ){ 3631 addrEofB = addrEofA; 3632 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3633 }else{ 3634 VdbeNoopComment((v, "eof-B subroutine")); 3635 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3636 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3637 sqlite3VdbeGoto(v, addrEofB); 3638 } 3639 3640 /* Generate code to handle the case of A<B 3641 */ 3642 VdbeNoopComment((v, "A-lt-B subroutine")); 3643 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3644 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3645 sqlite3VdbeGoto(v, labelCmpr); 3646 3647 /* Generate code to handle the case of A==B 3648 */ 3649 if( op==TK_ALL ){ 3650 addrAeqB = addrAltB; 3651 }else if( op==TK_INTERSECT ){ 3652 addrAeqB = addrAltB; 3653 addrAltB++; 3654 }else{ 3655 VdbeNoopComment((v, "A-eq-B subroutine")); 3656 addrAeqB = 3657 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3658 sqlite3VdbeGoto(v, labelCmpr); 3659 } 3660 3661 /* Generate code to handle the case of A>B 3662 */ 3663 VdbeNoopComment((v, "A-gt-B subroutine")); 3664 addrAgtB = sqlite3VdbeCurrentAddr(v); 3665 if( op==TK_ALL || op==TK_UNION ){ 3666 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3667 } 3668 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3669 sqlite3VdbeGoto(v, labelCmpr); 3670 3671 /* This code runs once to initialize everything. 3672 */ 3673 sqlite3VdbeJumpHere(v, addr1); 3674 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3675 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3676 3677 /* Implement the main merge loop 3678 */ 3679 sqlite3VdbeResolveLabel(v, labelCmpr); 3680 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3681 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3682 (char*)pKeyMerge, P4_KEYINFO); 3683 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3684 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3685 3686 /* Jump to the this point in order to terminate the query. 3687 */ 3688 sqlite3VdbeResolveLabel(v, labelEnd); 3689 3690 /* Reassembly the compound query so that it will be freed correctly 3691 ** by the calling function */ 3692 if( pSplit->pPrior ){ 3693 sqlite3SelectDelete(db, pSplit->pPrior); 3694 } 3695 pSplit->pPrior = pPrior; 3696 pPrior->pNext = pSplit; 3697 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3698 pPrior->pOrderBy = 0; 3699 3700 /*** TBD: Insert subroutine calls to close cursors on incomplete 3701 **** subqueries ****/ 3702 ExplainQueryPlanPop(pParse); 3703 return pParse->nErr!=0; 3704 } 3705 #endif 3706 3707 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3708 3709 /* An instance of the SubstContext object describes an substitution edit 3710 ** to be performed on a parse tree. 3711 ** 3712 ** All references to columns in table iTable are to be replaced by corresponding 3713 ** expressions in pEList. 3714 ** 3715 ** ## About "isOuterJoin": 3716 ** 3717 ** The isOuterJoin column indicates that the replacement will occur into a 3718 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3719 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3720 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3721 ** bypass the substituted expression with OP_IfNullRow. 3722 ** 3723 ** Suppose the original expression integer constant. Even though the table 3724 ** has the nullRow flag set, because the expression is an integer constant, 3725 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3726 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3727 ** flag is set, then the value in the register is set to NULL and the original 3728 ** expression is bypassed. If the nullRow flag is not set, then the original 3729 ** expression runs to populate the register. 3730 ** 3731 ** Example where this is needed: 3732 ** 3733 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3734 ** CREATE TABLE t2(x INT UNIQUE); 3735 ** 3736 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3737 ** 3738 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3739 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3740 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3741 ** when processing a non-matched row of the left. 3742 */ 3743 typedef struct SubstContext { 3744 Parse *pParse; /* The parsing context */ 3745 int iTable; /* Replace references to this table */ 3746 int iNewTable; /* New table number */ 3747 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3748 ExprList *pEList; /* Replacement expressions */ 3749 } SubstContext; 3750 3751 /* Forward Declarations */ 3752 static void substExprList(SubstContext*, ExprList*); 3753 static void substSelect(SubstContext*, Select*, int); 3754 3755 /* 3756 ** Scan through the expression pExpr. Replace every reference to 3757 ** a column in table number iTable with a copy of the iColumn-th 3758 ** entry in pEList. (But leave references to the ROWID column 3759 ** unchanged.) 3760 ** 3761 ** This routine is part of the flattening procedure. A subquery 3762 ** whose result set is defined by pEList appears as entry in the 3763 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3764 ** FORM clause entry is iTable. This routine makes the necessary 3765 ** changes to pExpr so that it refers directly to the source table 3766 ** of the subquery rather the result set of the subquery. 3767 */ 3768 static Expr *substExpr( 3769 SubstContext *pSubst, /* Description of the substitution */ 3770 Expr *pExpr /* Expr in which substitution occurs */ 3771 ){ 3772 if( pExpr==0 ) return 0; 3773 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) 3774 && pExpr->w.iJoin==pSubst->iTable 3775 ){ 3776 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 3777 pExpr->w.iJoin = pSubst->iNewTable; 3778 } 3779 if( pExpr->op==TK_COLUMN 3780 && pExpr->iTable==pSubst->iTable 3781 && !ExprHasProperty(pExpr, EP_FixedCol) 3782 ){ 3783 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3784 if( pExpr->iColumn<0 ){ 3785 pExpr->op = TK_NULL; 3786 }else 3787 #endif 3788 { 3789 Expr *pNew; 3790 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3791 Expr ifNullRow; 3792 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3793 assert( pExpr->pRight==0 ); 3794 if( sqlite3ExprIsVector(pCopy) ){ 3795 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3796 }else{ 3797 sqlite3 *db = pSubst->pParse->db; 3798 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3799 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3800 ifNullRow.op = TK_IF_NULL_ROW; 3801 ifNullRow.pLeft = pCopy; 3802 ifNullRow.iTable = pSubst->iNewTable; 3803 ifNullRow.flags = EP_IfNullRow; 3804 pCopy = &ifNullRow; 3805 } 3806 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3807 pNew = sqlite3ExprDup(db, pCopy, 0); 3808 if( db->mallocFailed ){ 3809 sqlite3ExprDelete(db, pNew); 3810 return pExpr; 3811 } 3812 if( pSubst->isOuterJoin ){ 3813 ExprSetProperty(pNew, EP_CanBeNull); 3814 } 3815 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ 3816 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3817 pExpr->flags & (EP_OuterON|EP_InnerON)); 3818 } 3819 sqlite3ExprDelete(db, pExpr); 3820 pExpr = pNew; 3821 if( pExpr->op==TK_TRUEFALSE ){ 3822 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); 3823 pExpr->op = TK_INTEGER; 3824 ExprSetProperty(pExpr, EP_IntValue); 3825 } 3826 3827 /* Ensure that the expression now has an implicit collation sequence, 3828 ** just as it did when it was a column of a view or sub-query. */ 3829 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3830 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3831 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3832 (pColl ? pColl->zName : "BINARY") 3833 ); 3834 } 3835 ExprClearProperty(pExpr, EP_Collate); 3836 } 3837 } 3838 }else{ 3839 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3840 pExpr->iTable = pSubst->iNewTable; 3841 } 3842 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3843 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3844 if( ExprUseXSelect(pExpr) ){ 3845 substSelect(pSubst, pExpr->x.pSelect, 1); 3846 }else{ 3847 substExprList(pSubst, pExpr->x.pList); 3848 } 3849 #ifndef SQLITE_OMIT_WINDOWFUNC 3850 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3851 Window *pWin = pExpr->y.pWin; 3852 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3853 substExprList(pSubst, pWin->pPartition); 3854 substExprList(pSubst, pWin->pOrderBy); 3855 } 3856 #endif 3857 } 3858 return pExpr; 3859 } 3860 static void substExprList( 3861 SubstContext *pSubst, /* Description of the substitution */ 3862 ExprList *pList /* List to scan and in which to make substitutes */ 3863 ){ 3864 int i; 3865 if( pList==0 ) return; 3866 for(i=0; i<pList->nExpr; i++){ 3867 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3868 } 3869 } 3870 static void substSelect( 3871 SubstContext *pSubst, /* Description of the substitution */ 3872 Select *p, /* SELECT statement in which to make substitutions */ 3873 int doPrior /* Do substitutes on p->pPrior too */ 3874 ){ 3875 SrcList *pSrc; 3876 SrcItem *pItem; 3877 int i; 3878 if( !p ) return; 3879 do{ 3880 substExprList(pSubst, p->pEList); 3881 substExprList(pSubst, p->pGroupBy); 3882 substExprList(pSubst, p->pOrderBy); 3883 p->pHaving = substExpr(pSubst, p->pHaving); 3884 p->pWhere = substExpr(pSubst, p->pWhere); 3885 pSrc = p->pSrc; 3886 assert( pSrc!=0 ); 3887 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3888 substSelect(pSubst, pItem->pSelect, 1); 3889 if( pItem->fg.isTabFunc ){ 3890 substExprList(pSubst, pItem->u1.pFuncArg); 3891 } 3892 } 3893 }while( doPrior && (p = p->pPrior)!=0 ); 3894 } 3895 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3896 3897 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3898 /* 3899 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3900 ** clause of that SELECT. 3901 ** 3902 ** This routine scans the entire SELECT statement and recomputes the 3903 ** pSrcItem->colUsed mask. 3904 */ 3905 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3906 SrcItem *pItem; 3907 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3908 pItem = pWalker->u.pSrcItem; 3909 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3910 if( pExpr->iColumn<0 ) return WRC_Continue; 3911 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3912 return WRC_Continue; 3913 } 3914 static void recomputeColumnsUsed( 3915 Select *pSelect, /* The complete SELECT statement */ 3916 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3917 ){ 3918 Walker w; 3919 if( NEVER(pSrcItem->pTab==0) ) return; 3920 memset(&w, 0, sizeof(w)); 3921 w.xExprCallback = recomputeColumnsUsedExpr; 3922 w.xSelectCallback = sqlite3SelectWalkNoop; 3923 w.u.pSrcItem = pSrcItem; 3924 pSrcItem->colUsed = 0; 3925 sqlite3WalkSelect(&w, pSelect); 3926 } 3927 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3928 3929 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3930 /* 3931 ** Assign new cursor numbers to each of the items in pSrc. For each 3932 ** new cursor number assigned, set an entry in the aCsrMap[] array 3933 ** to map the old cursor number to the new: 3934 ** 3935 ** aCsrMap[iOld+1] = iNew; 3936 ** 3937 ** The array is guaranteed by the caller to be large enough for all 3938 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3939 ** 3940 ** If pSrc contains any sub-selects, call this routine recursively 3941 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3942 */ 3943 static void srclistRenumberCursors( 3944 Parse *pParse, /* Parse context */ 3945 int *aCsrMap, /* Array to store cursor mappings in */ 3946 SrcList *pSrc, /* FROM clause to renumber */ 3947 int iExcept /* FROM clause item to skip */ 3948 ){ 3949 int i; 3950 SrcItem *pItem; 3951 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3952 if( i!=iExcept ){ 3953 Select *p; 3954 assert( pItem->iCursor < aCsrMap[0] ); 3955 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3956 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3957 } 3958 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3959 for(p=pItem->pSelect; p; p=p->pPrior){ 3960 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3961 } 3962 } 3963 } 3964 } 3965 3966 /* 3967 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3968 */ 3969 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3970 int *aCsrMap = pWalker->u.aiCol; 3971 int iCsr = *piCursor; 3972 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3973 *piCursor = aCsrMap[iCsr+1]; 3974 } 3975 } 3976 3977 /* 3978 ** Expression walker callback used by renumberCursors() to update 3979 ** Expr objects to match newly assigned cursor numbers. 3980 */ 3981 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3982 int op = pExpr->op; 3983 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3984 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3985 } 3986 if( ExprHasProperty(pExpr, EP_OuterON) ){ 3987 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3988 } 3989 return WRC_Continue; 3990 } 3991 3992 /* 3993 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3994 ** of the SELECT statement passed as the second argument, and to each 3995 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3996 ** Except, do not assign a new cursor number to the iExcept'th element in 3997 ** the FROM clause of (*p). Update all expressions and other references 3998 ** to refer to the new cursor numbers. 3999 ** 4000 ** Argument aCsrMap is an array that may be used for temporary working 4001 ** space. Two guarantees are made by the caller: 4002 ** 4003 ** * the array is larger than the largest cursor number used within the 4004 ** select statement passed as an argument, and 4005 ** 4006 ** * the array entries for all cursor numbers that do *not* appear in 4007 ** FROM clauses of the select statement as described above are 4008 ** initialized to zero. 4009 */ 4010 static void renumberCursors( 4011 Parse *pParse, /* Parse context */ 4012 Select *p, /* Select to renumber cursors within */ 4013 int iExcept, /* FROM clause item to skip */ 4014 int *aCsrMap /* Working space */ 4015 ){ 4016 Walker w; 4017 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 4018 memset(&w, 0, sizeof(w)); 4019 w.u.aiCol = aCsrMap; 4020 w.xExprCallback = renumberCursorsCb; 4021 w.xSelectCallback = sqlite3SelectWalkNoop; 4022 sqlite3WalkSelect(&w, p); 4023 } 4024 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4025 4026 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4027 /* 4028 ** This routine attempts to flatten subqueries as a performance optimization. 4029 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4030 ** 4031 ** To understand the concept of flattening, consider the following 4032 ** query: 4033 ** 4034 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4035 ** 4036 ** The default way of implementing this query is to execute the 4037 ** subquery first and store the results in a temporary table, then 4038 ** run the outer query on that temporary table. This requires two 4039 ** passes over the data. Furthermore, because the temporary table 4040 ** has no indices, the WHERE clause on the outer query cannot be 4041 ** optimized. 4042 ** 4043 ** This routine attempts to rewrite queries such as the above into 4044 ** a single flat select, like this: 4045 ** 4046 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4047 ** 4048 ** The code generated for this simplification gives the same result 4049 ** but only has to scan the data once. And because indices might 4050 ** exist on the table t1, a complete scan of the data might be 4051 ** avoided. 4052 ** 4053 ** Flattening is subject to the following constraints: 4054 ** 4055 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4056 ** The subquery and the outer query cannot both be aggregates. 4057 ** 4058 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4059 ** (2) If the subquery is an aggregate then 4060 ** (2a) the outer query must not be a join and 4061 ** (2b) the outer query must not use subqueries 4062 ** other than the one FROM-clause subquery that is a candidate 4063 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4064 ** from 2015-02-09.) 4065 ** 4066 ** (3) If the subquery is the right operand of a LEFT JOIN then 4067 ** (3a) the subquery may not be a join and 4068 ** (3b) the FROM clause of the subquery may not contain a virtual 4069 ** table and 4070 ** (3c) the outer query may not be an aggregate. 4071 ** (3d) the outer query may not be DISTINCT. 4072 ** See also (26) for restrictions on RIGHT JOIN. 4073 ** 4074 ** (4) The subquery can not be DISTINCT. 4075 ** 4076 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4077 ** sub-queries that were excluded from this optimization. Restriction 4078 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4079 ** 4080 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4081 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4082 ** 4083 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4084 ** A FROM clause, consider adding a FROM clause with the special 4085 ** table sqlite_once that consists of a single row containing a 4086 ** single NULL. 4087 ** 4088 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4089 ** 4090 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4091 ** 4092 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4093 ** accidently carried the comment forward until 2014-09-15. Original 4094 ** constraint: "If the subquery is aggregate then the outer query 4095 ** may not use LIMIT." 4096 ** 4097 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4098 ** 4099 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4100 ** a separate restriction deriving from ticket #350. 4101 ** 4102 ** (13) The subquery and outer query may not both use LIMIT. 4103 ** 4104 ** (14) The subquery may not use OFFSET. 4105 ** 4106 ** (15) If the outer query is part of a compound select, then the 4107 ** subquery may not use LIMIT. 4108 ** (See ticket #2339 and ticket [02a8e81d44]). 4109 ** 4110 ** (16) If the outer query is aggregate, then the subquery may not 4111 ** use ORDER BY. (Ticket #2942) This used to not matter 4112 ** until we introduced the group_concat() function. 4113 ** 4114 ** (17) If the subquery is a compound select, then 4115 ** (17a) all compound operators must be a UNION ALL, and 4116 ** (17b) no terms within the subquery compound may be aggregate 4117 ** or DISTINCT, and 4118 ** (17c) every term within the subquery compound must have a FROM clause 4119 ** (17d) the outer query may not be 4120 ** (17d1) aggregate, or 4121 ** (17d2) DISTINCT 4122 ** (17e) the subquery may not contain window functions, and 4123 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4124 ** 4125 ** The parent and sub-query may contain WHERE clauses. Subject to 4126 ** rules (11), (13) and (14), they may also contain ORDER BY, 4127 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4128 ** operator other than UNION ALL because all the other compound 4129 ** operators have an implied DISTINCT which is disallowed by 4130 ** restriction (4). 4131 ** 4132 ** Also, each component of the sub-query must return the same number 4133 ** of result columns. This is actually a requirement for any compound 4134 ** SELECT statement, but all the code here does is make sure that no 4135 ** such (illegal) sub-query is flattened. The caller will detect the 4136 ** syntax error and return a detailed message. 4137 ** 4138 ** (18) If the sub-query is a compound select, then all terms of the 4139 ** ORDER BY clause of the parent must be copies of a term returned 4140 ** by the parent query. 4141 ** 4142 ** (19) If the subquery uses LIMIT then the outer query may not 4143 ** have a WHERE clause. 4144 ** 4145 ** (20) If the sub-query is a compound select, then it must not use 4146 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4147 ** somewhat by saying that the terms of the ORDER BY clause must 4148 ** appear as unmodified result columns in the outer query. But we 4149 ** have other optimizations in mind to deal with that case. 4150 ** 4151 ** (21) If the subquery uses LIMIT then the outer query may not be 4152 ** DISTINCT. (See ticket [752e1646fc]). 4153 ** 4154 ** (22) The subquery may not be a recursive CTE. 4155 ** 4156 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4157 ** a compound query. This restriction is because transforming the 4158 ** parent to a compound query confuses the code that handles 4159 ** recursive queries in multiSelect(). 4160 ** 4161 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4162 ** The subquery may not be an aggregate that uses the built-in min() or 4163 ** or max() functions. (Without this restriction, a query like: 4164 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4165 ** return the value X for which Y was maximal.) 4166 ** 4167 ** (25) If either the subquery or the parent query contains a window 4168 ** function in the select list or ORDER BY clause, flattening 4169 ** is not attempted. 4170 ** 4171 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4172 ** See also (3) for restrictions on LEFT JOIN. 4173 ** 4174 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4175 ** is the first element of the parent query. 4176 ** 4177 ** (28) The subquery is not a MATERIALIZED CTE. 4178 ** 4179 ** (29) Either the subquery is not the right-hand operand of a join with an 4180 ** ON or USING clause nor the right-hand operand of a NATURAL JOIN, or 4181 ** the right-most table within the FROM clause of the subquery 4182 ** is not part of an outer join. 4183 ** 4184 ** 4185 ** In this routine, the "p" parameter is a pointer to the outer query. 4186 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4187 ** uses aggregates. 4188 ** 4189 ** If flattening is not attempted, this routine is a no-op and returns 0. 4190 ** If flattening is attempted this routine returns 1. 4191 ** 4192 ** All of the expression analysis must occur on both the outer query and 4193 ** the subquery before this routine runs. 4194 */ 4195 static int flattenSubquery( 4196 Parse *pParse, /* Parsing context */ 4197 Select *p, /* The parent or outer SELECT statement */ 4198 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4199 int isAgg /* True if outer SELECT uses aggregate functions */ 4200 ){ 4201 const char *zSavedAuthContext = pParse->zAuthContext; 4202 Select *pParent; /* Current UNION ALL term of the other query */ 4203 Select *pSub; /* The inner query or "subquery" */ 4204 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4205 SrcList *pSrc; /* The FROM clause of the outer query */ 4206 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4207 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4208 int iNewParent = -1;/* Replacement table for iParent */ 4209 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4210 int i; /* Loop counter */ 4211 Expr *pWhere; /* The WHERE clause */ 4212 SrcItem *pSubitem; /* The subquery */ 4213 sqlite3 *db = pParse->db; 4214 Walker w; /* Walker to persist agginfo data */ 4215 int *aCsrMap = 0; 4216 4217 /* Check to see if flattening is permitted. Return 0 if not. 4218 */ 4219 assert( p!=0 ); 4220 assert( p->pPrior==0 ); 4221 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4222 pSrc = p->pSrc; 4223 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4224 pSubitem = &pSrc->a[iFrom]; 4225 iParent = pSubitem->iCursor; 4226 pSub = pSubitem->pSelect; 4227 assert( pSub!=0 ); 4228 4229 #ifndef SQLITE_OMIT_WINDOWFUNC 4230 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4231 #endif 4232 4233 pSubSrc = pSub->pSrc; 4234 assert( pSubSrc ); 4235 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4236 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4237 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4238 ** became arbitrary expressions, we were forced to add restrictions (13) 4239 ** and (14). */ 4240 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4241 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4242 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4243 return 0; /* Restriction (15) */ 4244 } 4245 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4246 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4247 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4248 return 0; /* Restrictions (8)(9) */ 4249 } 4250 if( p->pOrderBy && pSub->pOrderBy ){ 4251 return 0; /* Restriction (11) */ 4252 } 4253 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4254 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4255 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4256 return 0; /* Restriction (21) */ 4257 } 4258 if( pSub->selFlags & (SF_Recursive) ){ 4259 return 0; /* Restrictions (22) */ 4260 } 4261 4262 /* 4263 ** If the subquery is the right operand of a LEFT JOIN, then the 4264 ** subquery may not be a join itself (3a). Example of why this is not 4265 ** allowed: 4266 ** 4267 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4268 ** 4269 ** If we flatten the above, we would get 4270 ** 4271 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4272 ** 4273 ** which is not at all the same thing. 4274 ** 4275 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4276 ** query cannot be an aggregate. (3c) This is an artifact of the way 4277 ** aggregates are processed - there is no mechanism to determine if 4278 ** the LEFT JOIN table should be all-NULL. 4279 ** 4280 ** See also tickets #306, #350, and #3300. 4281 */ 4282 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4283 if( pSubSrc->nSrc>1 /* (3a) */ 4284 || isAgg /* (3b) */ 4285 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4286 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4287 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4288 ){ 4289 return 0; 4290 } 4291 isOuterJoin = 1; 4292 } 4293 #ifdef SQLITE_EXTRA_IFNULLROW 4294 else if( iFrom>0 && !isAgg ){ 4295 /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for 4296 ** every reference to any result column from subquery in a join, even 4297 ** though they are not necessary. This will stress-test the OP_IfNullRow 4298 ** opcode. */ 4299 isOuterJoin = -1; 4300 } 4301 #endif 4302 4303 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4304 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4305 return 0; /* Restriction (27) */ 4306 } 4307 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4308 return 0; /* (28) */ 4309 } 4310 4311 /* Restriction (29): 4312 ** 4313 ** We do not want two constraints on the same term of the flattened 4314 ** query where one constraint has EP_InnerON and the other is EP_OuterON. 4315 ** To prevent this, one or the other of the following conditions must be 4316 ** false: 4317 ** 4318 ** (29a) The right-most entry in the FROM clause of the subquery 4319 ** must not be part of an outer join. 4320 ** 4321 ** (29b) The subquery itself must not be the right operand of a 4322 ** NATURAL join or a join that as an ON or USING clause. 4323 ** 4324 ** These conditions are sufficient to keep an EP_OuterON from being 4325 ** flattened into an EP_InnerON. Restrictions (3a) and (27) prevent 4326 ** an EP_InnerON from being flattened into an EP_OuterON. 4327 */ 4328 if( pSubSrc->nSrc>=2 4329 && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0 4330 ){ 4331 if( (pSubitem->fg.jointype & JT_NATURAL)!=0 4332 || pSubitem->fg.isUsing 4333 || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */ 4334 || pSubitem->fg.isOn 4335 ){ 4336 return 0; 4337 } 4338 } 4339 4340 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4341 ** use only the UNION ALL operator. And none of the simple select queries 4342 ** that make up the compound SELECT are allowed to be aggregate or distinct 4343 ** queries. 4344 */ 4345 if( pSub->pPrior ){ 4346 if( pSub->pOrderBy ){ 4347 return 0; /* Restriction (20) */ 4348 } 4349 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4350 return 0; /* (17d1), (17d2), or (17f) */ 4351 } 4352 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4353 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4354 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4355 assert( pSub->pSrc!=0 ); 4356 assert( (pSub->selFlags & SF_Recursive)==0 ); 4357 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4358 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4359 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4360 || pSub1->pSrc->nSrc<1 /* (17c) */ 4361 #ifndef SQLITE_OMIT_WINDOWFUNC 4362 || pSub1->pWin /* (17e) */ 4363 #endif 4364 ){ 4365 return 0; 4366 } 4367 testcase( pSub1->pSrc->nSrc>1 ); 4368 } 4369 4370 /* Restriction (18). */ 4371 if( p->pOrderBy ){ 4372 int ii; 4373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4375 } 4376 } 4377 4378 /* Restriction (23) */ 4379 if( (p->selFlags & SF_Recursive) ) return 0; 4380 4381 if( pSrc->nSrc>1 ){ 4382 if( pParse->nSelect>500 ) return 0; 4383 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4384 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4385 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4386 } 4387 } 4388 4389 /***** If we reach this point, flattening is permitted. *****/ 4390 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4391 pSub->selId, pSub, iFrom)); 4392 4393 /* Authorize the subquery */ 4394 pParse->zAuthContext = pSubitem->zName; 4395 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4396 testcase( i==SQLITE_DENY ); 4397 pParse->zAuthContext = zSavedAuthContext; 4398 4399 /* Delete the transient structures associated with thesubquery */ 4400 pSub1 = pSubitem->pSelect; 4401 sqlite3DbFree(db, pSubitem->zDatabase); 4402 sqlite3DbFree(db, pSubitem->zName); 4403 sqlite3DbFree(db, pSubitem->zAlias); 4404 pSubitem->zDatabase = 0; 4405 pSubitem->zName = 0; 4406 pSubitem->zAlias = 0; 4407 pSubitem->pSelect = 0; 4408 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4409 4410 /* If the sub-query is a compound SELECT statement, then (by restrictions 4411 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4412 ** be of the form: 4413 ** 4414 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4415 ** 4416 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4417 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4418 ** OFFSET clauses and joins them to the left-hand-side of the original 4419 ** using UNION ALL operators. In this case N is the number of simple 4420 ** select statements in the compound sub-query. 4421 ** 4422 ** Example: 4423 ** 4424 ** SELECT a+1 FROM ( 4425 ** SELECT x FROM tab 4426 ** UNION ALL 4427 ** SELECT y FROM tab 4428 ** UNION ALL 4429 ** SELECT abs(z*2) FROM tab2 4430 ** ) WHERE a!=5 ORDER BY 1 4431 ** 4432 ** Transformed into: 4433 ** 4434 ** SELECT x+1 FROM tab WHERE x+1!=5 4435 ** UNION ALL 4436 ** SELECT y+1 FROM tab WHERE y+1!=5 4437 ** UNION ALL 4438 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4439 ** ORDER BY 1 4440 ** 4441 ** We call this the "compound-subquery flattening". 4442 */ 4443 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4444 Select *pNew; 4445 ExprList *pOrderBy = p->pOrderBy; 4446 Expr *pLimit = p->pLimit; 4447 Select *pPrior = p->pPrior; 4448 Table *pItemTab = pSubitem->pTab; 4449 pSubitem->pTab = 0; 4450 p->pOrderBy = 0; 4451 p->pPrior = 0; 4452 p->pLimit = 0; 4453 pNew = sqlite3SelectDup(db, p, 0); 4454 p->pLimit = pLimit; 4455 p->pOrderBy = pOrderBy; 4456 p->op = TK_ALL; 4457 pSubitem->pTab = pItemTab; 4458 if( pNew==0 ){ 4459 p->pPrior = pPrior; 4460 }else{ 4461 pNew->selId = ++pParse->nSelect; 4462 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4463 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4464 } 4465 pNew->pPrior = pPrior; 4466 if( pPrior ) pPrior->pNext = pNew; 4467 pNew->pNext = p; 4468 p->pPrior = pNew; 4469 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4470 " creates %u as peer\n",pNew->selId)); 4471 } 4472 assert( pSubitem->pSelect==0 ); 4473 } 4474 sqlite3DbFree(db, aCsrMap); 4475 if( db->mallocFailed ){ 4476 pSubitem->pSelect = pSub1; 4477 return 1; 4478 } 4479 4480 /* Defer deleting the Table object associated with the 4481 ** subquery until code generation is 4482 ** complete, since there may still exist Expr.pTab entries that 4483 ** refer to the subquery even after flattening. Ticket #3346. 4484 ** 4485 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4486 */ 4487 if( ALWAYS(pSubitem->pTab!=0) ){ 4488 Table *pTabToDel = pSubitem->pTab; 4489 if( pTabToDel->nTabRef==1 ){ 4490 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4491 sqlite3ParserAddCleanup(pToplevel, 4492 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4493 pTabToDel); 4494 testcase( pToplevel->earlyCleanup ); 4495 }else{ 4496 pTabToDel->nTabRef--; 4497 } 4498 pSubitem->pTab = 0; 4499 } 4500 4501 /* The following loop runs once for each term in a compound-subquery 4502 ** flattening (as described above). If we are doing a different kind 4503 ** of flattening - a flattening other than a compound-subquery flattening - 4504 ** then this loop only runs once. 4505 ** 4506 ** This loop moves all of the FROM elements of the subquery into the 4507 ** the FROM clause of the outer query. Before doing this, remember 4508 ** the cursor number for the original outer query FROM element in 4509 ** iParent. The iParent cursor will never be used. Subsequent code 4510 ** will scan expressions looking for iParent references and replace 4511 ** those references with expressions that resolve to the subquery FROM 4512 ** elements we are now copying in. 4513 */ 4514 pSub = pSub1; 4515 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4516 int nSubSrc; 4517 u8 jointype = 0; 4518 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4519 assert( pSub!=0 ); 4520 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4521 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4522 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4523 4524 if( pParent==p ){ 4525 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4526 } 4527 4528 /* The subquery uses a single slot of the FROM clause of the outer 4529 ** query. If the subquery has more than one element in its FROM clause, 4530 ** then expand the outer query to make space for it to hold all elements 4531 ** of the subquery. 4532 ** 4533 ** Example: 4534 ** 4535 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4536 ** 4537 ** The outer query has 3 slots in its FROM clause. One slot of the 4538 ** outer query (the middle slot) is used by the subquery. The next 4539 ** block of code will expand the outer query FROM clause to 4 slots. 4540 ** The middle slot is expanded to two slots in order to make space 4541 ** for the two elements in the FROM clause of the subquery. 4542 */ 4543 if( nSubSrc>1 ){ 4544 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4545 if( pSrc==0 ) break; 4546 pParent->pSrc = pSrc; 4547 } 4548 4549 /* Transfer the FROM clause terms from the subquery into the 4550 ** outer query. 4551 */ 4552 for(i=0; i<nSubSrc; i++){ 4553 SrcItem *pItem = &pSrc->a[i+iFrom]; 4554 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4555 assert( pItem->fg.isTabFunc==0 ); 4556 *pItem = pSubSrc->a[i]; 4557 pItem->fg.jointype |= ltorj; 4558 iNewParent = pSubSrc->a[i].iCursor; 4559 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4560 } 4561 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4562 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4563 4564 /* Now begin substituting subquery result set expressions for 4565 ** references to the iParent in the outer query. 4566 ** 4567 ** Example: 4568 ** 4569 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4570 ** \ \_____________ subquery __________/ / 4571 ** \_____________________ outer query ______________________________/ 4572 ** 4573 ** We look at every expression in the outer query and every place we see 4574 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4575 */ 4576 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4577 /* At this point, any non-zero iOrderByCol values indicate that the 4578 ** ORDER BY column expression is identical to the iOrderByCol'th 4579 ** expression returned by SELECT statement pSub. Since these values 4580 ** do not necessarily correspond to columns in SELECT statement pParent, 4581 ** zero them before transfering the ORDER BY clause. 4582 ** 4583 ** Not doing this may cause an error if a subsequent call to this 4584 ** function attempts to flatten a compound sub-query into pParent 4585 ** (the only way this can happen is if the compound sub-query is 4586 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4587 ExprList *pOrderBy = pSub->pOrderBy; 4588 for(i=0; i<pOrderBy->nExpr; i++){ 4589 pOrderBy->a[i].u.x.iOrderByCol = 0; 4590 } 4591 assert( pParent->pOrderBy==0 ); 4592 pParent->pOrderBy = pOrderBy; 4593 pSub->pOrderBy = 0; 4594 } 4595 pWhere = pSub->pWhere; 4596 pSub->pWhere = 0; 4597 if( isOuterJoin>0 ){ 4598 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); 4599 } 4600 if( pWhere ){ 4601 if( pParent->pWhere ){ 4602 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4603 }else{ 4604 pParent->pWhere = pWhere; 4605 } 4606 } 4607 if( db->mallocFailed==0 ){ 4608 SubstContext x; 4609 x.pParse = pParse; 4610 x.iTable = iParent; 4611 x.iNewTable = iNewParent; 4612 x.isOuterJoin = isOuterJoin; 4613 x.pEList = pSub->pEList; 4614 substSelect(&x, pParent, 0); 4615 } 4616 4617 /* The flattened query is a compound if either the inner or the 4618 ** outer query is a compound. */ 4619 pParent->selFlags |= pSub->selFlags & SF_Compound; 4620 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4621 4622 /* 4623 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4624 ** 4625 ** One is tempted to try to add a and b to combine the limits. But this 4626 ** does not work if either limit is negative. 4627 */ 4628 if( pSub->pLimit ){ 4629 pParent->pLimit = pSub->pLimit; 4630 pSub->pLimit = 0; 4631 } 4632 4633 /* Recompute the SrcList_item.colUsed masks for the flattened 4634 ** tables. */ 4635 for(i=0; i<nSubSrc; i++){ 4636 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4637 } 4638 } 4639 4640 /* Finially, delete what is left of the subquery and return 4641 ** success. 4642 */ 4643 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4644 sqlite3WalkSelect(&w,pSub1); 4645 sqlite3SelectDelete(db, pSub1); 4646 4647 #if TREETRACE_ENABLED 4648 if( sqlite3TreeTrace & 0x100 ){ 4649 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4650 sqlite3TreeViewSelect(0, p, 0); 4651 } 4652 #endif 4653 4654 return 1; 4655 } 4656 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4657 4658 /* 4659 ** A structure to keep track of all of the column values that are fixed to 4660 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4661 */ 4662 typedef struct WhereConst WhereConst; 4663 struct WhereConst { 4664 Parse *pParse; /* Parsing context */ 4665 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4666 int nConst; /* Number for COLUMN=CONSTANT terms */ 4667 int nChng; /* Number of times a constant is propagated */ 4668 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4669 u32 mExcludeOn; /* Which ON expressions to exclude from considertion. 4670 ** Either EP_OuterON or EP_InnerON|EP_OuterON */ 4671 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4672 }; 4673 4674 /* 4675 ** Add a new entry to the pConst object. Except, do not add duplicate 4676 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4677 ** 4678 ** The caller guarantees the pColumn is a column and pValue is a constant. 4679 ** This routine has to do some additional checks before completing the 4680 ** insert. 4681 */ 4682 static void constInsert( 4683 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4684 Expr *pColumn, /* The COLUMN part of the constraint */ 4685 Expr *pValue, /* The VALUE part of the constraint */ 4686 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4687 ){ 4688 int i; 4689 assert( pColumn->op==TK_COLUMN ); 4690 assert( sqlite3ExprIsConstant(pValue) ); 4691 4692 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4693 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4694 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4695 return; 4696 } 4697 4698 /* 2018-10-25 ticket [cf5ed20f] 4699 ** Make sure the same pColumn is not inserted more than once */ 4700 for(i=0; i<pConst->nConst; i++){ 4701 const Expr *pE2 = pConst->apExpr[i*2]; 4702 assert( pE2->op==TK_COLUMN ); 4703 if( pE2->iTable==pColumn->iTable 4704 && pE2->iColumn==pColumn->iColumn 4705 ){ 4706 return; /* Already present. Return without doing anything. */ 4707 } 4708 } 4709 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4710 pConst->bHasAffBlob = 1; 4711 } 4712 4713 pConst->nConst++; 4714 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4715 pConst->nConst*2*sizeof(Expr*)); 4716 if( pConst->apExpr==0 ){ 4717 pConst->nConst = 0; 4718 }else{ 4719 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4720 pConst->apExpr[pConst->nConst*2-1] = pValue; 4721 } 4722 } 4723 4724 /* 4725 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4726 ** is a constant expression and where the term must be true because it 4727 ** is part of the AND-connected terms of the expression. For each term 4728 ** found, add it to the pConst structure. 4729 */ 4730 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4731 Expr *pRight, *pLeft; 4732 if( NEVER(pExpr==0) ) return; 4733 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ 4734 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4735 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4736 return; 4737 } 4738 if( pExpr->op==TK_AND ){ 4739 findConstInWhere(pConst, pExpr->pRight); 4740 findConstInWhere(pConst, pExpr->pLeft); 4741 return; 4742 } 4743 if( pExpr->op!=TK_EQ ) return; 4744 pRight = pExpr->pRight; 4745 pLeft = pExpr->pLeft; 4746 assert( pRight!=0 ); 4747 assert( pLeft!=0 ); 4748 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4749 constInsert(pConst,pRight,pLeft,pExpr); 4750 } 4751 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4752 constInsert(pConst,pLeft,pRight,pExpr); 4753 } 4754 } 4755 4756 /* 4757 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4758 ** 4759 ** Argument pExpr is a candidate expression to be replaced by a value. If 4760 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4761 ** then overwrite it with the corresponding value. Except, do not do so 4762 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4763 ** is SQLITE_AFF_BLOB. 4764 */ 4765 static int propagateConstantExprRewriteOne( 4766 WhereConst *pConst, 4767 Expr *pExpr, 4768 int bIgnoreAffBlob 4769 ){ 4770 int i; 4771 if( pConst->pOomFault[0] ) return WRC_Prune; 4772 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4773 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ 4774 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4775 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4776 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4777 return WRC_Continue; 4778 } 4779 for(i=0; i<pConst->nConst; i++){ 4780 Expr *pColumn = pConst->apExpr[i*2]; 4781 if( pColumn==pExpr ) continue; 4782 if( pColumn->iTable!=pExpr->iTable ) continue; 4783 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4784 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4785 break; 4786 } 4787 /* A match is found. Add the EP_FixedCol property */ 4788 pConst->nChng++; 4789 ExprClearProperty(pExpr, EP_Leaf); 4790 ExprSetProperty(pExpr, EP_FixedCol); 4791 assert( pExpr->pLeft==0 ); 4792 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4793 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4794 break; 4795 } 4796 return WRC_Prune; 4797 } 4798 4799 /* 4800 ** This is a Walker expression callback. pExpr is a node from the WHERE 4801 ** clause of a SELECT statement. This function examines pExpr to see if 4802 ** any substitutions based on the contents of pWalker->u.pConst should 4803 ** be made to pExpr or its immediate children. 4804 ** 4805 ** A substitution is made if: 4806 ** 4807 ** + pExpr is a column with an affinity other than BLOB that matches 4808 ** one of the columns in pWalker->u.pConst, or 4809 ** 4810 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4811 ** uses an affinity other than TEXT and one of its immediate 4812 ** children is a column that matches one of the columns in 4813 ** pWalker->u.pConst. 4814 */ 4815 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4816 WhereConst *pConst = pWalker->u.pConst; 4817 assert( TK_GT==TK_EQ+1 ); 4818 assert( TK_LE==TK_EQ+2 ); 4819 assert( TK_LT==TK_EQ+3 ); 4820 assert( TK_GE==TK_EQ+4 ); 4821 if( pConst->bHasAffBlob ){ 4822 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4823 || pExpr->op==TK_IS 4824 ){ 4825 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4826 if( pConst->pOomFault[0] ) return WRC_Prune; 4827 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4828 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4829 } 4830 } 4831 } 4832 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4833 } 4834 4835 /* 4836 ** The WHERE-clause constant propagation optimization. 4837 ** 4838 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4839 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4840 ** part of a ON clause from a LEFT JOIN, then throughout the query 4841 ** replace all other occurrences of COLUMN with CONSTANT. 4842 ** 4843 ** For example, the query: 4844 ** 4845 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4846 ** 4847 ** Is transformed into 4848 ** 4849 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4850 ** 4851 ** Return true if any transformations where made and false if not. 4852 ** 4853 ** Implementation note: Constant propagation is tricky due to affinity 4854 ** and collating sequence interactions. Consider this example: 4855 ** 4856 ** CREATE TABLE t1(a INT,b TEXT); 4857 ** INSERT INTO t1 VALUES(123,'0123'); 4858 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4859 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4860 ** 4861 ** The two SELECT statements above should return different answers. b=a 4862 ** is alway true because the comparison uses numeric affinity, but b=123 4863 ** is false because it uses text affinity and '0123' is not the same as '123'. 4864 ** To work around this, the expression tree is not actually changed from 4865 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4866 ** and the "123" value is hung off of the pLeft pointer. Code generator 4867 ** routines know to generate the constant "123" instead of looking up the 4868 ** column value. Also, to avoid collation problems, this optimization is 4869 ** only attempted if the "a=123" term uses the default BINARY collation. 4870 ** 4871 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4872 ** 4873 ** CREATE TABLE t1(x); 4874 ** INSERT INTO t1 VALUES(10.0); 4875 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4876 ** 4877 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4878 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4879 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4880 ** resulting in a false positive. To avoid this, constant propagation for 4881 ** columns with BLOB affinity is only allowed if the constant is used with 4882 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4883 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4884 ** for details. 4885 */ 4886 static int propagateConstants( 4887 Parse *pParse, /* The parsing context */ 4888 Select *p /* The query in which to propagate constants */ 4889 ){ 4890 WhereConst x; 4891 Walker w; 4892 int nChng = 0; 4893 x.pParse = pParse; 4894 x.pOomFault = &pParse->db->mallocFailed; 4895 do{ 4896 x.nConst = 0; 4897 x.nChng = 0; 4898 x.apExpr = 0; 4899 x.bHasAffBlob = 0; 4900 if( ALWAYS(p->pSrc!=0) 4901 && p->pSrc->nSrc>0 4902 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 4903 ){ 4904 /* Do not propagate constants on any ON clause if there is a 4905 ** RIGHT JOIN anywhere in the query */ 4906 x.mExcludeOn = EP_InnerON | EP_OuterON; 4907 }else{ 4908 /* Do not propagate constants through the ON clause of a LEFT JOIN */ 4909 x.mExcludeOn = EP_OuterON; 4910 } 4911 findConstInWhere(&x, p->pWhere); 4912 if( x.nConst ){ 4913 memset(&w, 0, sizeof(w)); 4914 w.pParse = pParse; 4915 w.xExprCallback = propagateConstantExprRewrite; 4916 w.xSelectCallback = sqlite3SelectWalkNoop; 4917 w.xSelectCallback2 = 0; 4918 w.walkerDepth = 0; 4919 w.u.pConst = &x; 4920 sqlite3WalkExpr(&w, p->pWhere); 4921 sqlite3DbFree(x.pParse->db, x.apExpr); 4922 nChng += x.nChng; 4923 } 4924 }while( x.nChng ); 4925 return nChng; 4926 } 4927 4928 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4929 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4930 /* 4931 ** This function is called to determine whether or not it is safe to 4932 ** push WHERE clause expression pExpr down to FROM clause sub-query 4933 ** pSubq, which contains at least one window function. Return 1 4934 ** if it is safe and the expression should be pushed down, or 0 4935 ** otherwise. 4936 ** 4937 ** It is only safe to push the expression down if it consists only 4938 ** of constants and copies of expressions that appear in the PARTITION 4939 ** BY clause of all window function used by the sub-query. It is safe 4940 ** to filter out entire partitions, but not rows within partitions, as 4941 ** this may change the results of the window functions. 4942 ** 4943 ** At the time this function is called it is guaranteed that 4944 ** 4945 ** * the sub-query uses only one distinct window frame, and 4946 ** * that the window frame has a PARTITION BY clase. 4947 */ 4948 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4949 assert( pSubq->pWin->pPartition ); 4950 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4951 assert( pSubq->pPrior==0 ); 4952 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4953 } 4954 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4955 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4956 4957 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4958 /* 4959 ** Make copies of relevant WHERE clause terms of the outer query into 4960 ** the WHERE clause of subquery. Example: 4961 ** 4962 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4963 ** 4964 ** Transformed into: 4965 ** 4966 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4967 ** WHERE x=5 AND y=10; 4968 ** 4969 ** The hope is that the terms added to the inner query will make it more 4970 ** efficient. 4971 ** 4972 ** Do not attempt this optimization if: 4973 ** 4974 ** (1) (** This restriction was removed on 2017-09-29. We used to 4975 ** disallow this optimization for aggregate subqueries, but now 4976 ** it is allowed by putting the extra terms on the HAVING clause. 4977 ** The added HAVING clause is pointless if the subquery lacks 4978 ** a GROUP BY clause. But such a HAVING clause is also harmless 4979 ** so there does not appear to be any reason to add extra logic 4980 ** to suppress it. **) 4981 ** 4982 ** (2) The inner query is the recursive part of a common table expression. 4983 ** 4984 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4985 ** clause would change the meaning of the LIMIT). 4986 ** 4987 ** (4) The inner query is the right operand of a LEFT JOIN and the 4988 ** expression to be pushed down does not come from the ON clause 4989 ** on that LEFT JOIN. 4990 ** 4991 ** (5) The WHERE clause expression originates in the ON or USING clause 4992 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4993 ** left join. An example: 4994 ** 4995 ** SELECT * 4996 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4997 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4998 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4999 ** 5000 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 5001 ** But if the (b2=2) term were to be pushed down into the bb subquery, 5002 ** then the (1,1,NULL) row would be suppressed. 5003 ** 5004 ** (6) Window functions make things tricky as changes to the WHERE clause 5005 ** of the inner query could change the window over which window 5006 ** functions are calculated. Therefore, do not attempt the optimization 5007 ** if: 5008 ** 5009 ** (6a) The inner query uses multiple incompatible window partitions. 5010 ** 5011 ** (6b) The inner query is a compound and uses window-functions. 5012 ** 5013 ** (6c) The WHERE clause does not consist entirely of constants and 5014 ** copies of expressions found in the PARTITION BY clause of 5015 ** all window-functions used by the sub-query. It is safe to 5016 ** filter out entire partitions, as this does not change the 5017 ** window over which any window-function is calculated. 5018 ** 5019 ** (7) The inner query is a Common Table Expression (CTE) that should 5020 ** be materialized. (This restriction is implemented in the calling 5021 ** routine.) 5022 ** 5023 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 5024 ** terms are duplicated into the subquery. 5025 */ 5026 static int pushDownWhereTerms( 5027 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 5028 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 5029 Expr *pWhere, /* The WHERE clause of the outer query */ 5030 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 5031 ){ 5032 Expr *pNew; 5033 int nChng = 0; 5034 if( pWhere==0 ) return 0; 5035 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 5036 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 5037 5038 #ifndef SQLITE_OMIT_WINDOWFUNC 5039 if( pSubq->pPrior ){ 5040 Select *pSel; 5041 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 5042 if( pSel->pWin ) return 0; /* restriction (6b) */ 5043 } 5044 }else{ 5045 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 5046 } 5047 #endif 5048 5049 #ifdef SQLITE_DEBUG 5050 /* Only the first term of a compound can have a WITH clause. But make 5051 ** sure no other terms are marked SF_Recursive in case something changes 5052 ** in the future. 5053 */ 5054 { 5055 Select *pX; 5056 for(pX=pSubq; pX; pX=pX->pPrior){ 5057 assert( (pX->selFlags & (SF_Recursive))==0 ); 5058 } 5059 } 5060 #endif 5061 5062 if( pSubq->pLimit!=0 ){ 5063 return 0; /* restriction (3) */ 5064 } 5065 while( pWhere->op==TK_AND ){ 5066 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 5067 pWhere = pWhere->pLeft; 5068 } 5069 5070 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 5071 if( isLeftJoin 5072 && (ExprHasProperty(pWhere,EP_OuterON)==0 5073 || pWhere->w.iJoin!=iCursor) 5074 ){ 5075 return 0; /* restriction (4) */ 5076 } 5077 if( ExprHasProperty(pWhere,EP_OuterON) 5078 && pWhere->w.iJoin!=iCursor 5079 ){ 5080 return 0; /* restriction (5) */ 5081 } 5082 #endif 5083 5084 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5085 nChng++; 5086 pSubq->selFlags |= SF_PushDown; 5087 while( pSubq ){ 5088 SubstContext x; 5089 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5090 unsetJoinExpr(pNew, -1, 1); 5091 x.pParse = pParse; 5092 x.iTable = pSrc->iCursor; 5093 x.iNewTable = pSrc->iCursor; 5094 x.isOuterJoin = 0; 5095 x.pEList = pSubq->pEList; 5096 pNew = substExpr(&x, pNew); 5097 #ifndef SQLITE_OMIT_WINDOWFUNC 5098 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5099 /* Restriction 6c has prevented push-down in this case */ 5100 sqlite3ExprDelete(pParse->db, pNew); 5101 nChng--; 5102 break; 5103 } 5104 #endif 5105 if( pSubq->selFlags & SF_Aggregate ){ 5106 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5107 }else{ 5108 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5109 } 5110 pSubq = pSubq->pPrior; 5111 } 5112 } 5113 return nChng; 5114 } 5115 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5116 5117 /* 5118 ** The pFunc is the only aggregate function in the query. Check to see 5119 ** if the query is a candidate for the min/max optimization. 5120 ** 5121 ** If the query is a candidate for the min/max optimization, then set 5122 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5123 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5124 ** whether pFunc is a min() or max() function. 5125 ** 5126 ** If the query is not a candidate for the min/max optimization, return 5127 ** WHERE_ORDERBY_NORMAL (which must be zero). 5128 ** 5129 ** This routine must be called after aggregate functions have been 5130 ** located but before their arguments have been subjected to aggregate 5131 ** analysis. 5132 */ 5133 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5134 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5135 ExprList *pEList; /* Arguments to agg function */ 5136 const char *zFunc; /* Name of aggregate function pFunc */ 5137 ExprList *pOrderBy; 5138 u8 sortFlags = 0; 5139 5140 assert( *ppMinMax==0 ); 5141 assert( pFunc->op==TK_AGG_FUNCTION ); 5142 assert( !IsWindowFunc(pFunc) ); 5143 assert( ExprUseXList(pFunc) ); 5144 pEList = pFunc->x.pList; 5145 if( pEList==0 5146 || pEList->nExpr!=1 5147 || ExprHasProperty(pFunc, EP_WinFunc) 5148 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5149 ){ 5150 return eRet; 5151 } 5152 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5153 zFunc = pFunc->u.zToken; 5154 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5155 eRet = WHERE_ORDERBY_MIN; 5156 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5157 sortFlags = KEYINFO_ORDER_BIGNULL; 5158 } 5159 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5160 eRet = WHERE_ORDERBY_MAX; 5161 sortFlags = KEYINFO_ORDER_DESC; 5162 }else{ 5163 return eRet; 5164 } 5165 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5166 assert( pOrderBy!=0 || db->mallocFailed ); 5167 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; 5168 return eRet; 5169 } 5170 5171 /* 5172 ** The select statement passed as the first argument is an aggregate query. 5173 ** The second argument is the associated aggregate-info object. This 5174 ** function tests if the SELECT is of the form: 5175 ** 5176 ** SELECT count(*) FROM <tbl> 5177 ** 5178 ** where table is a database table, not a sub-select or view. If the query 5179 ** does match this pattern, then a pointer to the Table object representing 5180 ** <tbl> is returned. Otherwise, NULL is returned. 5181 ** 5182 ** This routine checks to see if it is safe to use the count optimization. 5183 ** A correct answer is still obtained (though perhaps more slowly) if 5184 ** this routine returns NULL when it could have returned a table pointer. 5185 ** But returning the pointer when NULL should have been returned can 5186 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5187 */ 5188 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5189 Table *pTab; 5190 Expr *pExpr; 5191 5192 assert( !p->pGroupBy ); 5193 5194 if( p->pWhere 5195 || p->pEList->nExpr!=1 5196 || p->pSrc->nSrc!=1 5197 || p->pSrc->a[0].pSelect 5198 || pAggInfo->nFunc!=1 5199 ){ 5200 return 0; 5201 } 5202 pTab = p->pSrc->a[0].pTab; 5203 assert( pTab!=0 ); 5204 assert( !IsView(pTab) ); 5205 if( !IsOrdinaryTable(pTab) ) return 0; 5206 pExpr = p->pEList->a[0].pExpr; 5207 assert( pExpr!=0 ); 5208 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5209 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5210 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5211 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5212 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5213 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5214 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5215 5216 return pTab; 5217 } 5218 5219 /* 5220 ** If the source-list item passed as an argument was augmented with an 5221 ** INDEXED BY clause, then try to locate the specified index. If there 5222 ** was such a clause and the named index cannot be found, return 5223 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5224 ** pFrom->pIndex and return SQLITE_OK. 5225 */ 5226 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5227 Table *pTab = pFrom->pTab; 5228 char *zIndexedBy = pFrom->u1.zIndexedBy; 5229 Index *pIdx; 5230 assert( pTab!=0 ); 5231 assert( pFrom->fg.isIndexedBy!=0 ); 5232 5233 for(pIdx=pTab->pIndex; 5234 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5235 pIdx=pIdx->pNext 5236 ); 5237 if( !pIdx ){ 5238 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5239 pParse->checkSchema = 1; 5240 return SQLITE_ERROR; 5241 } 5242 assert( pFrom->fg.isCte==0 ); 5243 pFrom->u2.pIBIndex = pIdx; 5244 return SQLITE_OK; 5245 } 5246 5247 /* 5248 ** Detect compound SELECT statements that use an ORDER BY clause with 5249 ** an alternative collating sequence. 5250 ** 5251 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5252 ** 5253 ** These are rewritten as a subquery: 5254 ** 5255 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5256 ** ORDER BY ... COLLATE ... 5257 ** 5258 ** This transformation is necessary because the multiSelectOrderBy() routine 5259 ** above that generates the code for a compound SELECT with an ORDER BY clause 5260 ** uses a merge algorithm that requires the same collating sequence on the 5261 ** result columns as on the ORDER BY clause. See ticket 5262 ** http://www.sqlite.org/src/info/6709574d2a 5263 ** 5264 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5265 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5266 ** there are COLLATE terms in the ORDER BY. 5267 */ 5268 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5269 int i; 5270 Select *pNew; 5271 Select *pX; 5272 sqlite3 *db; 5273 struct ExprList_item *a; 5274 SrcList *pNewSrc; 5275 Parse *pParse; 5276 Token dummy; 5277 5278 if( p->pPrior==0 ) return WRC_Continue; 5279 if( p->pOrderBy==0 ) return WRC_Continue; 5280 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5281 if( pX==0 ) return WRC_Continue; 5282 a = p->pOrderBy->a; 5283 #ifndef SQLITE_OMIT_WINDOWFUNC 5284 /* If iOrderByCol is already non-zero, then it has already been matched 5285 ** to a result column of the SELECT statement. This occurs when the 5286 ** SELECT is rewritten for window-functions processing and then passed 5287 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5288 ** by this function is not required in this case. */ 5289 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5290 #endif 5291 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5292 if( a[i].pExpr->flags & EP_Collate ) break; 5293 } 5294 if( i<0 ) return WRC_Continue; 5295 5296 /* If we reach this point, that means the transformation is required. */ 5297 5298 pParse = pWalker->pParse; 5299 db = pParse->db; 5300 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5301 if( pNew==0 ) return WRC_Abort; 5302 memset(&dummy, 0, sizeof(dummy)); 5303 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5304 if( pNewSrc==0 ) return WRC_Abort; 5305 *pNew = *p; 5306 p->pSrc = pNewSrc; 5307 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5308 p->op = TK_SELECT; 5309 p->pWhere = 0; 5310 pNew->pGroupBy = 0; 5311 pNew->pHaving = 0; 5312 pNew->pOrderBy = 0; 5313 p->pPrior = 0; 5314 p->pNext = 0; 5315 p->pWith = 0; 5316 #ifndef SQLITE_OMIT_WINDOWFUNC 5317 p->pWinDefn = 0; 5318 #endif 5319 p->selFlags &= ~SF_Compound; 5320 assert( (p->selFlags & SF_Converted)==0 ); 5321 p->selFlags |= SF_Converted; 5322 assert( pNew->pPrior!=0 ); 5323 pNew->pPrior->pNext = pNew; 5324 pNew->pLimit = 0; 5325 return WRC_Continue; 5326 } 5327 5328 /* 5329 ** Check to see if the FROM clause term pFrom has table-valued function 5330 ** arguments. If it does, leave an error message in pParse and return 5331 ** non-zero, since pFrom is not allowed to be a table-valued function. 5332 */ 5333 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5334 if( pFrom->fg.isTabFunc ){ 5335 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5336 return 1; 5337 } 5338 return 0; 5339 } 5340 5341 #ifndef SQLITE_OMIT_CTE 5342 /* 5343 ** Argument pWith (which may be NULL) points to a linked list of nested 5344 ** WITH contexts, from inner to outermost. If the table identified by 5345 ** FROM clause element pItem is really a common-table-expression (CTE) 5346 ** then return a pointer to the CTE definition for that table. Otherwise 5347 ** return NULL. 5348 ** 5349 ** If a non-NULL value is returned, set *ppContext to point to the With 5350 ** object that the returned CTE belongs to. 5351 */ 5352 static struct Cte *searchWith( 5353 With *pWith, /* Current innermost WITH clause */ 5354 SrcItem *pItem, /* FROM clause element to resolve */ 5355 With **ppContext /* OUT: WITH clause return value belongs to */ 5356 ){ 5357 const char *zName = pItem->zName; 5358 With *p; 5359 assert( pItem->zDatabase==0 ); 5360 assert( zName!=0 ); 5361 for(p=pWith; p; p=p->pOuter){ 5362 int i; 5363 for(i=0; i<p->nCte; i++){ 5364 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5365 *ppContext = p; 5366 return &p->a[i]; 5367 } 5368 } 5369 if( p->bView ) break; 5370 } 5371 return 0; 5372 } 5373 5374 /* The code generator maintains a stack of active WITH clauses 5375 ** with the inner-most WITH clause being at the top of the stack. 5376 ** 5377 ** This routine pushes the WITH clause passed as the second argument 5378 ** onto the top of the stack. If argument bFree is true, then this 5379 ** WITH clause will never be popped from the stack but should instead 5380 ** be freed along with the Parse object. In other cases, when 5381 ** bFree==0, the With object will be freed along with the SELECT 5382 ** statement with which it is associated. 5383 ** 5384 ** This routine returns a copy of pWith. Or, if bFree is true and 5385 ** the pWith object is destroyed immediately due to an OOM condition, 5386 ** then this routine return NULL. 5387 ** 5388 ** If bFree is true, do not continue to use the pWith pointer after 5389 ** calling this routine, Instead, use only the return value. 5390 */ 5391 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5392 if( pWith ){ 5393 if( bFree ){ 5394 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5395 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5396 pWith); 5397 if( pWith==0 ) return 0; 5398 } 5399 if( pParse->nErr==0 ){ 5400 assert( pParse->pWith!=pWith ); 5401 pWith->pOuter = pParse->pWith; 5402 pParse->pWith = pWith; 5403 } 5404 } 5405 return pWith; 5406 } 5407 5408 /* 5409 ** This function checks if argument pFrom refers to a CTE declared by 5410 ** a WITH clause on the stack currently maintained by the parser (on the 5411 ** pParse->pWith linked list). And if currently processing a CTE 5412 ** CTE expression, through routine checks to see if the reference is 5413 ** a recursive reference to the CTE. 5414 ** 5415 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5416 ** and other fields are populated accordingly. 5417 ** 5418 ** Return 0 if no match is found. 5419 ** Return 1 if a match is found. 5420 ** Return 2 if an error condition is detected. 5421 */ 5422 static int resolveFromTermToCte( 5423 Parse *pParse, /* The parsing context */ 5424 Walker *pWalker, /* Current tree walker */ 5425 SrcItem *pFrom /* The FROM clause term to check */ 5426 ){ 5427 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5428 With *pWith; /* The matching WITH */ 5429 5430 assert( pFrom->pTab==0 ); 5431 if( pParse->pWith==0 ){ 5432 /* There are no WITH clauses in the stack. No match is possible */ 5433 return 0; 5434 } 5435 if( pParse->nErr ){ 5436 /* Prior errors might have left pParse->pWith in a goofy state, so 5437 ** go no further. */ 5438 return 0; 5439 } 5440 if( pFrom->zDatabase!=0 ){ 5441 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5442 ** it cannot possibly be a CTE reference. */ 5443 return 0; 5444 } 5445 if( pFrom->fg.notCte ){ 5446 /* The FROM term is specifically excluded from matching a CTE. 5447 ** (1) It is part of a trigger that used to have zDatabase but had 5448 ** zDatabase removed by sqlite3FixTriggerStep(). 5449 ** (2) This is the first term in the FROM clause of an UPDATE. 5450 */ 5451 return 0; 5452 } 5453 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5454 if( pCte ){ 5455 sqlite3 *db = pParse->db; 5456 Table *pTab; 5457 ExprList *pEList; 5458 Select *pSel; 5459 Select *pLeft; /* Left-most SELECT statement */ 5460 Select *pRecTerm; /* Left-most recursive term */ 5461 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5462 With *pSavedWith; /* Initial value of pParse->pWith */ 5463 int iRecTab = -1; /* Cursor for recursive table */ 5464 CteUse *pCteUse; 5465 5466 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5467 ** recursive reference to CTE pCte. Leave an error in pParse and return 5468 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5469 ** In this case, proceed. */ 5470 if( pCte->zCteErr ){ 5471 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5472 return 2; 5473 } 5474 if( cannotBeFunction(pParse, pFrom) ) return 2; 5475 5476 assert( pFrom->pTab==0 ); 5477 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5478 if( pTab==0 ) return 2; 5479 pCteUse = pCte->pUse; 5480 if( pCteUse==0 ){ 5481 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5482 if( pCteUse==0 5483 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5484 ){ 5485 sqlite3DbFree(db, pTab); 5486 return 2; 5487 } 5488 pCteUse->eM10d = pCte->eM10d; 5489 } 5490 pFrom->pTab = pTab; 5491 pTab->nTabRef = 1; 5492 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5493 pTab->iPKey = -1; 5494 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5495 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5496 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5497 if( db->mallocFailed ) return 2; 5498 pFrom->pSelect->selFlags |= SF_CopyCte; 5499 assert( pFrom->pSelect ); 5500 if( pFrom->fg.isIndexedBy ){ 5501 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5502 return 2; 5503 } 5504 pFrom->fg.isCte = 1; 5505 pFrom->u2.pCteUse = pCteUse; 5506 pCteUse->nUse++; 5507 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5508 pCteUse->eM10d = M10d_Yes; 5509 } 5510 5511 /* Check if this is a recursive CTE. */ 5512 pRecTerm = pSel = pFrom->pSelect; 5513 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5514 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5515 int i; 5516 SrcList *pSrc = pRecTerm->pSrc; 5517 assert( pRecTerm->pPrior!=0 ); 5518 for(i=0; i<pSrc->nSrc; i++){ 5519 SrcItem *pItem = &pSrc->a[i]; 5520 if( pItem->zDatabase==0 5521 && pItem->zName!=0 5522 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5523 ){ 5524 pItem->pTab = pTab; 5525 pTab->nTabRef++; 5526 pItem->fg.isRecursive = 1; 5527 if( pRecTerm->selFlags & SF_Recursive ){ 5528 sqlite3ErrorMsg(pParse, 5529 "multiple references to recursive table: %s", pCte->zName 5530 ); 5531 return 2; 5532 } 5533 pRecTerm->selFlags |= SF_Recursive; 5534 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5535 pItem->iCursor = iRecTab; 5536 } 5537 } 5538 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5539 pRecTerm = pRecTerm->pPrior; 5540 } 5541 5542 pCte->zCteErr = "circular reference: %s"; 5543 pSavedWith = pParse->pWith; 5544 pParse->pWith = pWith; 5545 if( pSel->selFlags & SF_Recursive ){ 5546 int rc; 5547 assert( pRecTerm!=0 ); 5548 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5549 assert( pRecTerm->pNext!=0 ); 5550 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5551 assert( pRecTerm->pWith==0 ); 5552 pRecTerm->pWith = pSel->pWith; 5553 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5554 pRecTerm->pWith = 0; 5555 if( rc ){ 5556 pParse->pWith = pSavedWith; 5557 return 2; 5558 } 5559 }else{ 5560 if( sqlite3WalkSelect(pWalker, pSel) ){ 5561 pParse->pWith = pSavedWith; 5562 return 2; 5563 } 5564 } 5565 pParse->pWith = pWith; 5566 5567 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5568 pEList = pLeft->pEList; 5569 if( pCte->pCols ){ 5570 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5571 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5572 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5573 ); 5574 pParse->pWith = pSavedWith; 5575 return 2; 5576 } 5577 pEList = pCte->pCols; 5578 } 5579 5580 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5581 if( bMayRecursive ){ 5582 if( pSel->selFlags & SF_Recursive ){ 5583 pCte->zCteErr = "multiple recursive references: %s"; 5584 }else{ 5585 pCte->zCteErr = "recursive reference in a subquery: %s"; 5586 } 5587 sqlite3WalkSelect(pWalker, pSel); 5588 } 5589 pCte->zCteErr = 0; 5590 pParse->pWith = pSavedWith; 5591 return 1; /* Success */ 5592 } 5593 return 0; /* No match */ 5594 } 5595 #endif 5596 5597 #ifndef SQLITE_OMIT_CTE 5598 /* 5599 ** If the SELECT passed as the second argument has an associated WITH 5600 ** clause, pop it from the stack stored as part of the Parse object. 5601 ** 5602 ** This function is used as the xSelectCallback2() callback by 5603 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5604 ** names and other FROM clause elements. 5605 */ 5606 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5607 Parse *pParse = pWalker->pParse; 5608 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5609 With *pWith = findRightmost(p)->pWith; 5610 if( pWith!=0 ){ 5611 assert( pParse->pWith==pWith || pParse->nErr ); 5612 pParse->pWith = pWith->pOuter; 5613 } 5614 } 5615 } 5616 #endif 5617 5618 /* 5619 ** The SrcList_item structure passed as the second argument represents a 5620 ** sub-query in the FROM clause of a SELECT statement. This function 5621 ** allocates and populates the SrcList_item.pTab object. If successful, 5622 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5623 ** SQLITE_NOMEM. 5624 */ 5625 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5626 Select *pSel = pFrom->pSelect; 5627 Table *pTab; 5628 5629 assert( pSel ); 5630 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5631 if( pTab==0 ) return SQLITE_NOMEM; 5632 pTab->nTabRef = 1; 5633 if( pFrom->zAlias ){ 5634 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5635 }else{ 5636 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5637 } 5638 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5639 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5640 pTab->iPKey = -1; 5641 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5642 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5643 /* The usual case - do not allow ROWID on a subquery */ 5644 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5645 #else 5646 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5647 #endif 5648 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5649 } 5650 5651 5652 /* 5653 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5654 ** If any of those SrcItem objects have a USING clause containing zName 5655 ** then return true. 5656 ** 5657 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5658 ** contains a USING clause, or if none of the USING clauses contain zName, 5659 ** then return false. 5660 */ 5661 static int inAnyUsingClause( 5662 const char *zName, /* Name we are looking for */ 5663 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5664 int N /* How many SrcItems to check */ 5665 ){ 5666 while( N>0 ){ 5667 N--; 5668 pBase++; 5669 if( pBase->fg.isUsing==0 ) continue; 5670 if( NEVER(pBase->u3.pUsing==0) ) continue; 5671 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5672 } 5673 return 0; 5674 } 5675 5676 5677 /* 5678 ** This routine is a Walker callback for "expanding" a SELECT statement. 5679 ** "Expanding" means to do the following: 5680 ** 5681 ** (1) Make sure VDBE cursor numbers have been assigned to every 5682 ** element of the FROM clause. 5683 ** 5684 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5685 ** defines FROM clause. When views appear in the FROM clause, 5686 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5687 ** that implements the view. A copy is made of the view's SELECT 5688 ** statement so that we can freely modify or delete that statement 5689 ** without worrying about messing up the persistent representation 5690 ** of the view. 5691 ** 5692 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5693 ** on joins and the ON and USING clause of joins. 5694 ** 5695 ** (4) Scan the list of columns in the result set (pEList) looking 5696 ** for instances of the "*" operator or the TABLE.* operator. 5697 ** If found, expand each "*" to be every column in every table 5698 ** and TABLE.* to be every column in TABLE. 5699 ** 5700 */ 5701 static int selectExpander(Walker *pWalker, Select *p){ 5702 Parse *pParse = pWalker->pParse; 5703 int i, j, k, rc; 5704 SrcList *pTabList; 5705 ExprList *pEList; 5706 SrcItem *pFrom; 5707 sqlite3 *db = pParse->db; 5708 Expr *pE, *pRight, *pExpr; 5709 u16 selFlags = p->selFlags; 5710 u32 elistFlags = 0; 5711 5712 p->selFlags |= SF_Expanded; 5713 if( db->mallocFailed ){ 5714 return WRC_Abort; 5715 } 5716 assert( p->pSrc!=0 ); 5717 if( (selFlags & SF_Expanded)!=0 ){ 5718 return WRC_Prune; 5719 } 5720 if( pWalker->eCode ){ 5721 /* Renumber selId because it has been copied from a view */ 5722 p->selId = ++pParse->nSelect; 5723 } 5724 pTabList = p->pSrc; 5725 pEList = p->pEList; 5726 if( pParse->pWith && (p->selFlags & SF_View) ){ 5727 if( p->pWith==0 ){ 5728 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5729 if( p->pWith==0 ){ 5730 return WRC_Abort; 5731 } 5732 } 5733 p->pWith->bView = 1; 5734 } 5735 sqlite3WithPush(pParse, p->pWith, 0); 5736 5737 /* Make sure cursor numbers have been assigned to all entries in 5738 ** the FROM clause of the SELECT statement. 5739 */ 5740 sqlite3SrcListAssignCursors(pParse, pTabList); 5741 5742 /* Look up every table named in the FROM clause of the select. If 5743 ** an entry of the FROM clause is a subquery instead of a table or view, 5744 ** then create a transient table structure to describe the subquery. 5745 */ 5746 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5747 Table *pTab; 5748 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5749 if( pFrom->pTab ) continue; 5750 assert( pFrom->fg.isRecursive==0 ); 5751 if( pFrom->zName==0 ){ 5752 #ifndef SQLITE_OMIT_SUBQUERY 5753 Select *pSel = pFrom->pSelect; 5754 /* A sub-query in the FROM clause of a SELECT */ 5755 assert( pSel!=0 ); 5756 assert( pFrom->pTab==0 ); 5757 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5758 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5759 #endif 5760 #ifndef SQLITE_OMIT_CTE 5761 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5762 if( rc>1 ) return WRC_Abort; 5763 pTab = pFrom->pTab; 5764 assert( pTab!=0 ); 5765 #endif 5766 }else{ 5767 /* An ordinary table or view name in the FROM clause */ 5768 assert( pFrom->pTab==0 ); 5769 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5770 if( pTab==0 ) return WRC_Abort; 5771 if( pTab->nTabRef>=0xffff ){ 5772 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5773 pTab->zName); 5774 pFrom->pTab = 0; 5775 return WRC_Abort; 5776 } 5777 pTab->nTabRef++; 5778 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5779 return WRC_Abort; 5780 } 5781 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5782 if( !IsOrdinaryTable(pTab) ){ 5783 i16 nCol; 5784 u8 eCodeOrig = pWalker->eCode; 5785 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5786 assert( pFrom->pSelect==0 ); 5787 if( IsView(pTab) ){ 5788 if( (db->flags & SQLITE_EnableView)==0 5789 && pTab->pSchema!=db->aDb[1].pSchema 5790 ){ 5791 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5792 pTab->zName); 5793 } 5794 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5795 } 5796 #ifndef SQLITE_OMIT_VIRTUALTABLE 5797 else if( ALWAYS(IsVirtual(pTab)) 5798 && pFrom->fg.fromDDL 5799 && ALWAYS(pTab->u.vtab.p!=0) 5800 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5801 ){ 5802 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5803 pTab->zName); 5804 } 5805 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5806 #endif 5807 nCol = pTab->nCol; 5808 pTab->nCol = -1; 5809 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5810 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5811 pWalker->eCode = eCodeOrig; 5812 pTab->nCol = nCol; 5813 } 5814 #endif 5815 } 5816 5817 /* Locate the index named by the INDEXED BY clause, if any. */ 5818 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5819 return WRC_Abort; 5820 } 5821 } 5822 5823 /* Process NATURAL keywords, and ON and USING clauses of joins. 5824 */ 5825 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5826 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5827 return WRC_Abort; 5828 } 5829 5830 /* For every "*" that occurs in the column list, insert the names of 5831 ** all columns in all tables. And for every TABLE.* insert the names 5832 ** of all columns in TABLE. The parser inserted a special expression 5833 ** with the TK_ASTERISK operator for each "*" that it found in the column 5834 ** list. The following code just has to locate the TK_ASTERISK 5835 ** expressions and expand each one to the list of all columns in 5836 ** all tables. 5837 ** 5838 ** The first loop just checks to see if there are any "*" operators 5839 ** that need expanding. 5840 */ 5841 for(k=0; k<pEList->nExpr; k++){ 5842 pE = pEList->a[k].pExpr; 5843 if( pE->op==TK_ASTERISK ) break; 5844 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5845 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5846 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5847 elistFlags |= pE->flags; 5848 } 5849 if( k<pEList->nExpr ){ 5850 /* 5851 ** If we get here it means the result set contains one or more "*" 5852 ** operators that need to be expanded. Loop through each expression 5853 ** in the result set and expand them one by one. 5854 */ 5855 struct ExprList_item *a = pEList->a; 5856 ExprList *pNew = 0; 5857 int flags = pParse->db->flags; 5858 int longNames = (flags & SQLITE_FullColNames)!=0 5859 && (flags & SQLITE_ShortColNames)==0; 5860 5861 for(k=0; k<pEList->nExpr; k++){ 5862 pE = a[k].pExpr; 5863 elistFlags |= pE->flags; 5864 pRight = pE->pRight; 5865 assert( pE->op!=TK_DOT || pRight!=0 ); 5866 if( pE->op!=TK_ASTERISK 5867 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5868 ){ 5869 /* This particular expression does not need to be expanded. 5870 */ 5871 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5872 if( pNew ){ 5873 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5874 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; 5875 a[k].zEName = 0; 5876 } 5877 a[k].pExpr = 0; 5878 }else{ 5879 /* This expression is a "*" or a "TABLE.*" and needs to be 5880 ** expanded. */ 5881 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5882 char *zTName = 0; /* text of name of TABLE */ 5883 if( pE->op==TK_DOT ){ 5884 assert( pE->pLeft!=0 ); 5885 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5886 zTName = pE->pLeft->u.zToken; 5887 } 5888 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5889 Table *pTab = pFrom->pTab; /* Table for this data source */ 5890 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5891 char *zTabName; /* AS name for this data source */ 5892 const char *zSchemaName = 0; /* Schema name for this data source */ 5893 int iDb; /* Schema index for this data src */ 5894 IdList *pUsing; /* USING clause for pFrom[1] */ 5895 5896 if( (zTabName = pFrom->zAlias)==0 ){ 5897 zTabName = pTab->zName; 5898 } 5899 if( db->mallocFailed ) break; 5900 assert( pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5901 if( pFrom->fg.isNestedFrom ){ 5902 assert( pFrom->pSelect!=0 ); 5903 pNestedFrom = pFrom->pSelect->pEList; 5904 assert( pNestedFrom!=0 ); 5905 assert( pNestedFrom->nExpr==pTab->nCol ); 5906 }else{ 5907 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5908 continue; 5909 } 5910 pNestedFrom = 0; 5911 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5912 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5913 } 5914 if( i+1<pTabList->nSrc 5915 && pFrom[1].fg.isUsing 5916 && (selFlags & SF_NestedFrom)!=0 5917 ){ 5918 int ii; 5919 pUsing = pFrom[1].u3.pUsing; 5920 for(ii=0; ii<pUsing->nId; ii++){ 5921 const char *zUName = pUsing->a[ii].zName; 5922 pRight = sqlite3Expr(db, TK_ID, zUName); 5923 pNew = sqlite3ExprListAppend(pParse, pNew, pRight); 5924 if( pNew ){ 5925 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5926 assert( pX->zEName==0 ); 5927 pX->zEName = sqlite3MPrintf(db,"..%s", zUName); 5928 pX->fg.eEName = ENAME_TAB; 5929 pX->fg.bUsingTerm = 1; 5930 } 5931 } 5932 }else{ 5933 pUsing = 0; 5934 } 5935 for(j=0; j<pTab->nCol; j++){ 5936 char *zName = pTab->aCol[j].zCnName; 5937 struct ExprList_item *pX; /* Newly added ExprList term */ 5938 5939 assert( zName ); 5940 if( zTName 5941 && pNestedFrom 5942 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5943 ){ 5944 continue; 5945 } 5946 5947 /* If a column is marked as 'hidden', omit it from the expanded 5948 ** result-set list unless the SELECT has the SF_IncludeHidden 5949 ** bit set. 5950 */ 5951 if( (p->selFlags & SF_IncludeHidden)==0 5952 && IsHiddenColumn(&pTab->aCol[j]) 5953 ){ 5954 continue; 5955 } 5956 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5957 && zTName==0 5958 && (selFlags & (SF_NestedFrom))==0 5959 ){ 5960 continue; 5961 } 5962 tableSeen = 1; 5963 5964 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ 5965 if( pFrom->fg.isUsing 5966 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5967 ){ 5968 /* In a join with a USING clause, omit columns in the 5969 ** using clause from the table on the right. */ 5970 continue; 5971 } 5972 } 5973 pRight = sqlite3Expr(db, TK_ID, zName); 5974 if( (pTabList->nSrc>1 5975 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5976 || (selFlags & SF_NestedFrom)!=0 5977 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5978 ) 5979 ) 5980 || IN_RENAME_OBJECT 5981 ){ 5982 Expr *pLeft; 5983 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5984 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5985 if( IN_RENAME_OBJECT && pE->pLeft ){ 5986 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5987 } 5988 if( zSchemaName ){ 5989 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5990 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5991 } 5992 }else{ 5993 pExpr = pRight; 5994 } 5995 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5996 if( pNew==0 ){ 5997 break; /* OOM */ 5998 } 5999 pX = &pNew->a[pNew->nExpr-1]; 6000 assert( pX->zEName==0 ); 6001 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 6002 if( pNestedFrom ){ 6003 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 6004 testcase( pX->zEName==0 ); 6005 }else{ 6006 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 6007 zSchemaName, zTabName, zName); 6008 testcase( pX->zEName==0 ); 6009 } 6010 pX->fg.eEName = ENAME_TAB; 6011 if( (pFrom->fg.isUsing 6012 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) 6013 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) 6014 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 6015 ){ 6016 pX->fg.bNoExpand = 1; 6017 } 6018 }else if( longNames ){ 6019 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 6020 pX->fg.eEName = ENAME_NAME; 6021 }else{ 6022 pX->zEName = sqlite3DbStrDup(db, zName); 6023 pX->fg.eEName = ENAME_NAME; 6024 } 6025 } 6026 } 6027 if( !tableSeen ){ 6028 if( zTName ){ 6029 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 6030 }else{ 6031 sqlite3ErrorMsg(pParse, "no tables specified"); 6032 } 6033 } 6034 } 6035 } 6036 sqlite3ExprListDelete(db, pEList); 6037 p->pEList = pNew; 6038 } 6039 if( p->pEList ){ 6040 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 6041 sqlite3ErrorMsg(pParse, "too many columns in result set"); 6042 return WRC_Abort; 6043 } 6044 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 6045 p->selFlags |= SF_ComplexResult; 6046 } 6047 } 6048 #if TREETRACE_ENABLED 6049 if( sqlite3TreeTrace & 0x100 ){ 6050 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 6051 sqlite3TreeViewSelect(0, p, 0); 6052 } 6053 #endif 6054 return WRC_Continue; 6055 } 6056 6057 #if SQLITE_DEBUG 6058 /* 6059 ** Always assert. This xSelectCallback2 implementation proves that the 6060 ** xSelectCallback2 is never invoked. 6061 */ 6062 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 6063 UNUSED_PARAMETER2(NotUsed, NotUsed2); 6064 assert( 0 ); 6065 } 6066 #endif 6067 /* 6068 ** This routine "expands" a SELECT statement and all of its subqueries. 6069 ** For additional information on what it means to "expand" a SELECT 6070 ** statement, see the comment on the selectExpand worker callback above. 6071 ** 6072 ** Expanding a SELECT statement is the first step in processing a 6073 ** SELECT statement. The SELECT statement must be expanded before 6074 ** name resolution is performed. 6075 ** 6076 ** If anything goes wrong, an error message is written into pParse. 6077 ** The calling function can detect the problem by looking at pParse->nErr 6078 ** and/or pParse->db->mallocFailed. 6079 */ 6080 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 6081 Walker w; 6082 w.xExprCallback = sqlite3ExprWalkNoop; 6083 w.pParse = pParse; 6084 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 6085 w.xSelectCallback = convertCompoundSelectToSubquery; 6086 w.xSelectCallback2 = 0; 6087 sqlite3WalkSelect(&w, pSelect); 6088 } 6089 w.xSelectCallback = selectExpander; 6090 w.xSelectCallback2 = sqlite3SelectPopWith; 6091 w.eCode = 0; 6092 sqlite3WalkSelect(&w, pSelect); 6093 } 6094 6095 6096 #ifndef SQLITE_OMIT_SUBQUERY 6097 /* 6098 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 6099 ** interface. 6100 ** 6101 ** For each FROM-clause subquery, add Column.zType and Column.zColl 6102 ** information to the Table structure that represents the result set 6103 ** of that subquery. 6104 ** 6105 ** The Table structure that represents the result set was constructed 6106 ** by selectExpander() but the type and collation information was omitted 6107 ** at that point because identifiers had not yet been resolved. This 6108 ** routine is called after identifier resolution. 6109 */ 6110 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6111 Parse *pParse; 6112 int i; 6113 SrcList *pTabList; 6114 SrcItem *pFrom; 6115 6116 assert( p->selFlags & SF_Resolved ); 6117 if( p->selFlags & SF_HasTypeInfo ) return; 6118 p->selFlags |= SF_HasTypeInfo; 6119 pParse = pWalker->pParse; 6120 pTabList = p->pSrc; 6121 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6122 Table *pTab = pFrom->pTab; 6123 assert( pTab!=0 ); 6124 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6125 /* A sub-query in the FROM clause of a SELECT */ 6126 Select *pSel = pFrom->pSelect; 6127 if( pSel ){ 6128 while( pSel->pPrior ) pSel = pSel->pPrior; 6129 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6130 SQLITE_AFF_NONE); 6131 } 6132 } 6133 } 6134 } 6135 #endif 6136 6137 6138 /* 6139 ** This routine adds datatype and collating sequence information to 6140 ** the Table structures of all FROM-clause subqueries in a 6141 ** SELECT statement. 6142 ** 6143 ** Use this routine after name resolution. 6144 */ 6145 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6146 #ifndef SQLITE_OMIT_SUBQUERY 6147 Walker w; 6148 w.xSelectCallback = sqlite3SelectWalkNoop; 6149 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6150 w.xExprCallback = sqlite3ExprWalkNoop; 6151 w.pParse = pParse; 6152 sqlite3WalkSelect(&w, pSelect); 6153 #endif 6154 } 6155 6156 6157 /* 6158 ** This routine sets up a SELECT statement for processing. The 6159 ** following is accomplished: 6160 ** 6161 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6162 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6163 ** * ON and USING clauses are shifted into WHERE statements 6164 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6165 ** * Identifiers in expression are matched to tables. 6166 ** 6167 ** This routine acts recursively on all subqueries within the SELECT. 6168 */ 6169 void sqlite3SelectPrep( 6170 Parse *pParse, /* The parser context */ 6171 Select *p, /* The SELECT statement being coded. */ 6172 NameContext *pOuterNC /* Name context for container */ 6173 ){ 6174 assert( p!=0 || pParse->db->mallocFailed ); 6175 assert( pParse->db->pParse==pParse ); 6176 if( pParse->db->mallocFailed ) return; 6177 if( p->selFlags & SF_HasTypeInfo ) return; 6178 sqlite3SelectExpand(pParse, p); 6179 if( pParse->nErr ) return; 6180 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6181 if( pParse->nErr ) return; 6182 sqlite3SelectAddTypeInfo(pParse, p); 6183 } 6184 6185 /* 6186 ** Reset the aggregate accumulator. 6187 ** 6188 ** The aggregate accumulator is a set of memory cells that hold 6189 ** intermediate results while calculating an aggregate. This 6190 ** routine generates code that stores NULLs in all of those memory 6191 ** cells. 6192 */ 6193 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6194 Vdbe *v = pParse->pVdbe; 6195 int i; 6196 struct AggInfo_func *pFunc; 6197 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6198 assert( pParse->db->pParse==pParse ); 6199 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6200 if( nReg==0 ) return; 6201 if( pParse->nErr ) return; 6202 #ifdef SQLITE_DEBUG 6203 /* Verify that all AggInfo registers are within the range specified by 6204 ** AggInfo.mnReg..AggInfo.mxReg */ 6205 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6206 for(i=0; i<pAggInfo->nColumn; i++){ 6207 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6208 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6209 } 6210 for(i=0; i<pAggInfo->nFunc; i++){ 6211 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6212 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6213 } 6214 #endif 6215 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6216 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6217 if( pFunc->iDistinct>=0 ){ 6218 Expr *pE = pFunc->pFExpr; 6219 assert( ExprUseXList(pE) ); 6220 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6221 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6222 "argument"); 6223 pFunc->iDistinct = -1; 6224 }else{ 6225 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6226 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6227 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6228 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6229 pFunc->pFunc->zName)); 6230 } 6231 } 6232 } 6233 } 6234 6235 /* 6236 ** Invoke the OP_AggFinalize opcode for every aggregate function 6237 ** in the AggInfo structure. 6238 */ 6239 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6240 Vdbe *v = pParse->pVdbe; 6241 int i; 6242 struct AggInfo_func *pF; 6243 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6244 ExprList *pList; 6245 assert( ExprUseXList(pF->pFExpr) ); 6246 pList = pF->pFExpr->x.pList; 6247 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6248 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6249 } 6250 } 6251 6252 6253 /* 6254 ** Update the accumulator memory cells for an aggregate based on 6255 ** the current cursor position. 6256 ** 6257 ** If regAcc is non-zero and there are no min() or max() aggregates 6258 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6259 ** registers if register regAcc contains 0. The caller will take care 6260 ** of setting and clearing regAcc. 6261 */ 6262 static void updateAccumulator( 6263 Parse *pParse, 6264 int regAcc, 6265 AggInfo *pAggInfo, 6266 int eDistinctType 6267 ){ 6268 Vdbe *v = pParse->pVdbe; 6269 int i; 6270 int regHit = 0; 6271 int addrHitTest = 0; 6272 struct AggInfo_func *pF; 6273 struct AggInfo_col *pC; 6274 6275 pAggInfo->directMode = 1; 6276 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6277 int nArg; 6278 int addrNext = 0; 6279 int regAgg; 6280 ExprList *pList; 6281 assert( ExprUseXList(pF->pFExpr) ); 6282 assert( !IsWindowFunc(pF->pFExpr) ); 6283 pList = pF->pFExpr->x.pList; 6284 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6285 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6286 if( pAggInfo->nAccumulator 6287 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6288 && regAcc 6289 ){ 6290 /* If regAcc==0, there there exists some min() or max() function 6291 ** without a FILTER clause that will ensure the magnet registers 6292 ** are populated. */ 6293 if( regHit==0 ) regHit = ++pParse->nMem; 6294 /* If this is the first row of the group (regAcc contains 0), clear the 6295 ** "magnet" register regHit so that the accumulator registers 6296 ** are populated if the FILTER clause jumps over the the 6297 ** invocation of min() or max() altogether. Or, if this is not 6298 ** the first row (regAcc contains 1), set the magnet register so that 6299 ** the accumulators are not populated unless the min()/max() is invoked 6300 ** and indicates that they should be. */ 6301 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6302 } 6303 addrNext = sqlite3VdbeMakeLabel(pParse); 6304 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6305 } 6306 if( pList ){ 6307 nArg = pList->nExpr; 6308 regAgg = sqlite3GetTempRange(pParse, nArg); 6309 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6310 }else{ 6311 nArg = 0; 6312 regAgg = 0; 6313 } 6314 if( pF->iDistinct>=0 && pList ){ 6315 if( addrNext==0 ){ 6316 addrNext = sqlite3VdbeMakeLabel(pParse); 6317 } 6318 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6319 pF->iDistinct, addrNext, pList, regAgg); 6320 } 6321 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6322 CollSeq *pColl = 0; 6323 struct ExprList_item *pItem; 6324 int j; 6325 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6326 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6327 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6328 } 6329 if( !pColl ){ 6330 pColl = pParse->db->pDfltColl; 6331 } 6332 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6333 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6334 } 6335 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6336 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6337 sqlite3VdbeChangeP5(v, (u8)nArg); 6338 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6339 if( addrNext ){ 6340 sqlite3VdbeResolveLabel(v, addrNext); 6341 } 6342 } 6343 if( regHit==0 && pAggInfo->nAccumulator ){ 6344 regHit = regAcc; 6345 } 6346 if( regHit ){ 6347 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6348 } 6349 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6350 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6351 } 6352 6353 pAggInfo->directMode = 0; 6354 if( addrHitTest ){ 6355 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6356 } 6357 } 6358 6359 /* 6360 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6361 ** count(*) query ("SELECT count(*) FROM pTab"). 6362 */ 6363 #ifndef SQLITE_OMIT_EXPLAIN 6364 static void explainSimpleCount( 6365 Parse *pParse, /* Parse context */ 6366 Table *pTab, /* Table being queried */ 6367 Index *pIdx /* Index used to optimize scan, or NULL */ 6368 ){ 6369 if( pParse->explain==2 ){ 6370 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6371 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6372 pTab->zName, 6373 bCover ? " USING COVERING INDEX " : "", 6374 bCover ? pIdx->zName : "" 6375 ); 6376 } 6377 } 6378 #else 6379 # define explainSimpleCount(a,b,c) 6380 #endif 6381 6382 /* 6383 ** sqlite3WalkExpr() callback used by havingToWhere(). 6384 ** 6385 ** If the node passed to the callback is a TK_AND node, return 6386 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6387 ** 6388 ** Otherwise, return WRC_Prune. In this case, also check if the 6389 ** sub-expression matches the criteria for being moved to the WHERE 6390 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6391 ** within the HAVING expression with a constant "1". 6392 */ 6393 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6394 if( pExpr->op!=TK_AND ){ 6395 Select *pS = pWalker->u.pSelect; 6396 /* This routine is called before the HAVING clause of the current 6397 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6398 ** here, it indicates that the expression is a correlated reference to a 6399 ** column from an outer aggregate query, or an aggregate function that 6400 ** belongs to an outer query. Do not move the expression to the WHERE 6401 ** clause in this obscure case, as doing so may corrupt the outer Select 6402 ** statements AggInfo structure. */ 6403 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6404 && ExprAlwaysFalse(pExpr)==0 6405 && pExpr->pAggInfo==0 6406 ){ 6407 sqlite3 *db = pWalker->pParse->db; 6408 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6409 if( pNew ){ 6410 Expr *pWhere = pS->pWhere; 6411 SWAP(Expr, *pNew, *pExpr); 6412 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6413 pS->pWhere = pNew; 6414 pWalker->eCode = 1; 6415 } 6416 } 6417 return WRC_Prune; 6418 } 6419 return WRC_Continue; 6420 } 6421 6422 /* 6423 ** Transfer eligible terms from the HAVING clause of a query, which is 6424 ** processed after grouping, to the WHERE clause, which is processed before 6425 ** grouping. For example, the query: 6426 ** 6427 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6428 ** 6429 ** can be rewritten as: 6430 ** 6431 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6432 ** 6433 ** A term of the HAVING expression is eligible for transfer if it consists 6434 ** entirely of constants and expressions that are also GROUP BY terms that 6435 ** use the "BINARY" collation sequence. 6436 */ 6437 static void havingToWhere(Parse *pParse, Select *p){ 6438 Walker sWalker; 6439 memset(&sWalker, 0, sizeof(sWalker)); 6440 sWalker.pParse = pParse; 6441 sWalker.xExprCallback = havingToWhereExprCb; 6442 sWalker.u.pSelect = p; 6443 sqlite3WalkExpr(&sWalker, p->pHaving); 6444 #if TREETRACE_ENABLED 6445 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6446 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6447 sqlite3TreeViewSelect(0, p, 0); 6448 } 6449 #endif 6450 } 6451 6452 /* 6453 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6454 ** If it is, then return the SrcList_item for the prior view. If it is not, 6455 ** then return 0. 6456 */ 6457 static SrcItem *isSelfJoinView( 6458 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6459 SrcItem *pThis /* Search for prior reference to this subquery */ 6460 ){ 6461 SrcItem *pItem; 6462 assert( pThis->pSelect!=0 ); 6463 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6464 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6465 Select *pS1; 6466 if( pItem->pSelect==0 ) continue; 6467 if( pItem->fg.viaCoroutine ) continue; 6468 if( pItem->zName==0 ) continue; 6469 assert( pItem->pTab!=0 ); 6470 assert( pThis->pTab!=0 ); 6471 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6472 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6473 pS1 = pItem->pSelect; 6474 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6475 /* The query flattener left two different CTE tables with identical 6476 ** names in the same FROM clause. */ 6477 continue; 6478 } 6479 if( pItem->pSelect->selFlags & SF_PushDown ){ 6480 /* The view was modified by some other optimization such as 6481 ** pushDownWhereTerms() */ 6482 continue; 6483 } 6484 return pItem; 6485 } 6486 return 0; 6487 } 6488 6489 /* 6490 ** Deallocate a single AggInfo object 6491 */ 6492 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6493 sqlite3DbFree(db, p->aCol); 6494 sqlite3DbFree(db, p->aFunc); 6495 sqlite3DbFreeNN(db, p); 6496 } 6497 6498 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6499 /* 6500 ** Attempt to transform a query of the form 6501 ** 6502 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6503 ** 6504 ** Into this: 6505 ** 6506 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6507 ** 6508 ** The transformation only works if all of the following are true: 6509 ** 6510 ** * The subquery is a UNION ALL of two or more terms 6511 ** * The subquery does not have a LIMIT clause 6512 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6513 ** * The outer query is a simple count(*) with no WHERE clause or other 6514 ** extraneous syntax. 6515 ** 6516 ** Return TRUE if the optimization is undertaken. 6517 */ 6518 static int countOfViewOptimization(Parse *pParse, Select *p){ 6519 Select *pSub, *pPrior; 6520 Expr *pExpr; 6521 Expr *pCount; 6522 sqlite3 *db; 6523 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6524 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6525 if( p->pWhere ) return 0; 6526 if( p->pGroupBy ) return 0; 6527 pExpr = p->pEList->a[0].pExpr; 6528 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6529 assert( ExprUseUToken(pExpr) ); 6530 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6531 assert( ExprUseXList(pExpr) ); 6532 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6533 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6534 pSub = p->pSrc->a[0].pSelect; 6535 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6536 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6537 do{ 6538 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6539 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6540 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6541 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6542 pSub = pSub->pPrior; /* Repeat over compound */ 6543 }while( pSub ); 6544 6545 /* If we reach this point then it is OK to perform the transformation */ 6546 6547 db = pParse->db; 6548 pCount = pExpr; 6549 pExpr = 0; 6550 pSub = p->pSrc->a[0].pSelect; 6551 p->pSrc->a[0].pSelect = 0; 6552 sqlite3SrcListDelete(db, p->pSrc); 6553 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6554 while( pSub ){ 6555 Expr *pTerm; 6556 pPrior = pSub->pPrior; 6557 pSub->pPrior = 0; 6558 pSub->pNext = 0; 6559 pSub->selFlags |= SF_Aggregate; 6560 pSub->selFlags &= ~SF_Compound; 6561 pSub->nSelectRow = 0; 6562 sqlite3ExprListDelete(db, pSub->pEList); 6563 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6564 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6565 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6566 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6567 if( pExpr==0 ){ 6568 pExpr = pTerm; 6569 }else{ 6570 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6571 } 6572 pSub = pPrior; 6573 } 6574 p->pEList->a[0].pExpr = pExpr; 6575 p->selFlags &= ~SF_Aggregate; 6576 6577 #if TREETRACE_ENABLED 6578 if( sqlite3TreeTrace & 0x400 ){ 6579 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6580 sqlite3TreeViewSelect(0, p, 0); 6581 } 6582 #endif 6583 return 1; 6584 } 6585 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6586 6587 /* 6588 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same 6589 ** as pSrcItem but has the same alias as p0, then return true. 6590 ** Otherwise return false. 6591 */ 6592 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ 6593 int i; 6594 for(i=0; i<pSrc->nSrc; i++){ 6595 SrcItem *p1 = &pSrc->a[i]; 6596 if( p1==p0 ) continue; 6597 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6598 return 1; 6599 } 6600 if( p1->pSelect 6601 && (p1->pSelect->selFlags & SF_NestedFrom)!=0 6602 && sameSrcAlias(p0, p1->pSelect->pSrc) 6603 ){ 6604 return 1; 6605 } 6606 } 6607 return 0; 6608 } 6609 6610 /* 6611 ** Generate code for the SELECT statement given in the p argument. 6612 ** 6613 ** The results are returned according to the SelectDest structure. 6614 ** See comments in sqliteInt.h for further information. 6615 ** 6616 ** This routine returns the number of errors. If any errors are 6617 ** encountered, then an appropriate error message is left in 6618 ** pParse->zErrMsg. 6619 ** 6620 ** This routine does NOT free the Select structure passed in. The 6621 ** calling function needs to do that. 6622 */ 6623 int sqlite3Select( 6624 Parse *pParse, /* The parser context */ 6625 Select *p, /* The SELECT statement being coded. */ 6626 SelectDest *pDest /* What to do with the query results */ 6627 ){ 6628 int i, j; /* Loop counters */ 6629 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6630 Vdbe *v; /* The virtual machine under construction */ 6631 int isAgg; /* True for select lists like "count(*)" */ 6632 ExprList *pEList = 0; /* List of columns to extract. */ 6633 SrcList *pTabList; /* List of tables to select from */ 6634 Expr *pWhere; /* The WHERE clause. May be NULL */ 6635 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6636 Expr *pHaving; /* The HAVING clause. May be NULL */ 6637 AggInfo *pAggInfo = 0; /* Aggregate information */ 6638 int rc = 1; /* Value to return from this function */ 6639 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6640 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6641 int iEnd; /* Address of the end of the query */ 6642 sqlite3 *db; /* The database connection */ 6643 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6644 u8 minMaxFlag; /* Flag for min/max queries */ 6645 6646 db = pParse->db; 6647 assert( pParse==db->pParse ); 6648 v = sqlite3GetVdbe(pParse); 6649 if( p==0 || pParse->nErr ){ 6650 return 1; 6651 } 6652 assert( db->mallocFailed==0 ); 6653 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6654 #if TREETRACE_ENABLED 6655 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6656 if( sqlite3TreeTrace & 0x10100 ){ 6657 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6658 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6659 __FILE__, __LINE__); 6660 } 6661 sqlite3ShowSelect(p); 6662 } 6663 #endif 6664 6665 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6666 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6667 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6668 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6669 if( IgnorableDistinct(pDest) ){ 6670 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6671 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6672 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6673 /* All of these destinations are also able to ignore the ORDER BY clause */ 6674 if( p->pOrderBy ){ 6675 #if TREETRACE_ENABLED 6676 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6677 if( sqlite3TreeTrace & 0x100 ){ 6678 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6679 } 6680 #endif 6681 sqlite3ParserAddCleanup(pParse, 6682 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6683 p->pOrderBy); 6684 testcase( pParse->earlyCleanup ); 6685 p->pOrderBy = 0; 6686 } 6687 p->selFlags &= ~SF_Distinct; 6688 p->selFlags |= SF_NoopOrderBy; 6689 } 6690 sqlite3SelectPrep(pParse, p, 0); 6691 if( pParse->nErr ){ 6692 goto select_end; 6693 } 6694 assert( db->mallocFailed==0 ); 6695 assert( p->pEList!=0 ); 6696 #if TREETRACE_ENABLED 6697 if( sqlite3TreeTrace & 0x104 ){ 6698 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6699 sqlite3TreeViewSelect(0, p, 0); 6700 } 6701 #endif 6702 6703 /* If the SF_UFSrcCheck flag is set, then this function is being called 6704 ** as part of populating the temp table for an UPDATE...FROM statement. 6705 ** In this case, it is an error if the target object (pSrc->a[0]) name 6706 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6707 ** 6708 ** Postgres disallows this case too. The reason is that some other 6709 ** systems handle this case differently, and not all the same way, 6710 ** which is just confusing. To avoid this, we follow PG's lead and 6711 ** disallow it altogether. */ 6712 if( p->selFlags & SF_UFSrcCheck ){ 6713 SrcItem *p0 = &p->pSrc->a[0]; 6714 if( sameSrcAlias(p0, p->pSrc) ){ 6715 sqlite3ErrorMsg(pParse, 6716 "target object/alias may not appear in FROM clause: %s", 6717 p0->zAlias ? p0->zAlias : p0->pTab->zName 6718 ); 6719 goto select_end; 6720 } 6721 6722 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6723 ** and leaving this flag set can cause errors if a compound sub-query 6724 ** in p->pSrc is flattened into this query and this function called 6725 ** again as part of compound SELECT processing. */ 6726 p->selFlags &= ~SF_UFSrcCheck; 6727 } 6728 6729 if( pDest->eDest==SRT_Output ){ 6730 sqlite3GenerateColumnNames(pParse, p); 6731 } 6732 6733 #ifndef SQLITE_OMIT_WINDOWFUNC 6734 if( sqlite3WindowRewrite(pParse, p) ){ 6735 assert( pParse->nErr ); 6736 goto select_end; 6737 } 6738 #if TREETRACE_ENABLED 6739 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6740 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6741 sqlite3TreeViewSelect(0, p, 0); 6742 } 6743 #endif 6744 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6745 pTabList = p->pSrc; 6746 isAgg = (p->selFlags & SF_Aggregate)!=0; 6747 memset(&sSort, 0, sizeof(sSort)); 6748 sSort.pOrderBy = p->pOrderBy; 6749 6750 /* Try to do various optimizations (flattening subqueries, and strength 6751 ** reduction of join operators) in the FROM clause up into the main query 6752 */ 6753 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6754 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6755 SrcItem *pItem = &pTabList->a[i]; 6756 Select *pSub = pItem->pSelect; 6757 Table *pTab = pItem->pTab; 6758 6759 /* The expander should have already created transient Table objects 6760 ** even for FROM clause elements such as subqueries that do not correspond 6761 ** to a real table */ 6762 assert( pTab!=0 ); 6763 6764 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6765 ** of the LEFT JOIN used in the WHERE clause. 6766 */ 6767 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6768 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6769 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6770 ){ 6771 SELECTTRACE(0x100,pParse,p, 6772 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6773 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6774 unsetJoinExpr(p->pWhere, pItem->iCursor, 6775 pTabList->a[0].fg.jointype & JT_LTORJ); 6776 } 6777 6778 /* No futher action if this term of the FROM clause is no a subquery */ 6779 if( pSub==0 ) continue; 6780 6781 /* Catch mismatch in the declared columns of a view and the number of 6782 ** columns in the SELECT on the RHS */ 6783 if( pTab->nCol!=pSub->pEList->nExpr ){ 6784 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6785 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6786 goto select_end; 6787 } 6788 6789 /* Do not try to flatten an aggregate subquery. 6790 ** 6791 ** Flattening an aggregate subquery is only possible if the outer query 6792 ** is not a join. But if the outer query is not a join, then the subquery 6793 ** will be implemented as a co-routine and there is no advantage to 6794 ** flattening in that case. 6795 */ 6796 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6797 assert( pSub->pGroupBy==0 ); 6798 6799 /* If a FROM-clause subquery has an ORDER BY clause that is not 6800 ** really doing anything, then delete it now so that it does not 6801 ** interfere with query flattening. See the discussion at 6802 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6803 ** 6804 ** Beware of these cases where the ORDER BY clause may not be safely 6805 ** omitted: 6806 ** 6807 ** (1) There is also a LIMIT clause 6808 ** (2) The subquery was added to help with window-function 6809 ** processing 6810 ** (3) The subquery is in the FROM clause of an UPDATE 6811 ** (4) The outer query uses an aggregate function other than 6812 ** the built-in count(), min(), or max(). 6813 ** (5) The ORDER BY isn't going to accomplish anything because 6814 ** one of: 6815 ** (a) The outer query has a different ORDER BY clause 6816 ** (b) The subquery is part of a join 6817 ** See forum post 062d576715d277c8 6818 */ 6819 if( pSub->pOrderBy!=0 6820 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6821 && pSub->pLimit==0 /* Condition (1) */ 6822 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6823 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6824 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6825 ){ 6826 SELECTTRACE(0x100,pParse,p, 6827 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6828 sqlite3ExprListDelete(db, pSub->pOrderBy); 6829 pSub->pOrderBy = 0; 6830 } 6831 6832 /* If the outer query contains a "complex" result set (that is, 6833 ** if the result set of the outer query uses functions or subqueries) 6834 ** and if the subquery contains an ORDER BY clause and if 6835 ** it will be implemented as a co-routine, then do not flatten. This 6836 ** restriction allows SQL constructs like this: 6837 ** 6838 ** SELECT expensive_function(x) 6839 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6840 ** 6841 ** The expensive_function() is only computed on the 10 rows that 6842 ** are output, rather than every row of the table. 6843 ** 6844 ** The requirement that the outer query have a complex result set 6845 ** means that flattening does occur on simpler SQL constraints without 6846 ** the expensive_function() like: 6847 ** 6848 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6849 */ 6850 if( pSub->pOrderBy!=0 6851 && i==0 6852 && (p->selFlags & SF_ComplexResult)!=0 6853 && (pTabList->nSrc==1 6854 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6855 ){ 6856 continue; 6857 } 6858 6859 if( flattenSubquery(pParse, p, i, isAgg) ){ 6860 if( pParse->nErr ) goto select_end; 6861 /* This subquery can be absorbed into its parent. */ 6862 i = -1; 6863 } 6864 pTabList = p->pSrc; 6865 if( db->mallocFailed ) goto select_end; 6866 if( !IgnorableOrderby(pDest) ){ 6867 sSort.pOrderBy = p->pOrderBy; 6868 } 6869 } 6870 #endif 6871 6872 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6873 /* Handle compound SELECT statements using the separate multiSelect() 6874 ** procedure. 6875 */ 6876 if( p->pPrior ){ 6877 rc = multiSelect(pParse, p, pDest); 6878 #if TREETRACE_ENABLED 6879 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6880 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6881 sqlite3TreeViewSelect(0, p, 0); 6882 } 6883 #endif 6884 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6885 return rc; 6886 } 6887 #endif 6888 6889 /* Do the WHERE-clause constant propagation optimization if this is 6890 ** a join. No need to speed time on this operation for non-join queries 6891 ** as the equivalent optimization will be handled by query planner in 6892 ** sqlite3WhereBegin(). 6893 */ 6894 if( p->pWhere!=0 6895 && p->pWhere->op==TK_AND 6896 && OptimizationEnabled(db, SQLITE_PropagateConst) 6897 && propagateConstants(pParse, p) 6898 ){ 6899 #if TREETRACE_ENABLED 6900 if( sqlite3TreeTrace & 0x100 ){ 6901 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6902 sqlite3TreeViewSelect(0, p, 0); 6903 } 6904 #endif 6905 }else{ 6906 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6907 } 6908 6909 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6910 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6911 && countOfViewOptimization(pParse, p) 6912 ){ 6913 if( db->mallocFailed ) goto select_end; 6914 pEList = p->pEList; 6915 pTabList = p->pSrc; 6916 } 6917 #endif 6918 6919 /* For each term in the FROM clause, do two things: 6920 ** (1) Authorized unreferenced tables 6921 ** (2) Generate code for all sub-queries 6922 */ 6923 for(i=0; i<pTabList->nSrc; i++){ 6924 SrcItem *pItem = &pTabList->a[i]; 6925 SrcItem *pPrior; 6926 SelectDest dest; 6927 Select *pSub; 6928 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6929 const char *zSavedAuthContext; 6930 #endif 6931 6932 /* Issue SQLITE_READ authorizations with a fake column name for any 6933 ** tables that are referenced but from which no values are extracted. 6934 ** Examples of where these kinds of null SQLITE_READ authorizations 6935 ** would occur: 6936 ** 6937 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6938 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6939 ** 6940 ** The fake column name is an empty string. It is possible for a table to 6941 ** have a column named by the empty string, in which case there is no way to 6942 ** distinguish between an unreferenced table and an actual reference to the 6943 ** "" column. The original design was for the fake column name to be a NULL, 6944 ** which would be unambiguous. But legacy authorization callbacks might 6945 ** assume the column name is non-NULL and segfault. The use of an empty 6946 ** string for the fake column name seems safer. 6947 */ 6948 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6949 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6950 } 6951 6952 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6953 /* Generate code for all sub-queries in the FROM clause 6954 */ 6955 pSub = pItem->pSelect; 6956 if( pSub==0 ) continue; 6957 6958 /* The code for a subquery should only be generated once. */ 6959 assert( pItem->addrFillSub==0 ); 6960 6961 /* Increment Parse.nHeight by the height of the largest expression 6962 ** tree referred to by this, the parent select. The child select 6963 ** may contain expression trees of at most 6964 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6965 ** more conservative than necessary, but much easier than enforcing 6966 ** an exact limit. 6967 */ 6968 pParse->nHeight += sqlite3SelectExprHeight(p); 6969 6970 /* Make copies of constant WHERE-clause terms in the outer query down 6971 ** inside the subquery. This can help the subquery to run more efficiently. 6972 */ 6973 if( OptimizationEnabled(db, SQLITE_PushDown) 6974 && (pItem->fg.isCte==0 6975 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6976 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6977 ){ 6978 #if TREETRACE_ENABLED 6979 if( sqlite3TreeTrace & 0x100 ){ 6980 SELECTTRACE(0x100,pParse,p, 6981 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6982 sqlite3TreeViewSelect(0, p, 0); 6983 } 6984 #endif 6985 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6986 }else{ 6987 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6988 } 6989 6990 zSavedAuthContext = pParse->zAuthContext; 6991 pParse->zAuthContext = pItem->zName; 6992 6993 /* Generate code to implement the subquery 6994 ** 6995 ** The subquery is implemented as a co-routine all if the following are 6996 ** true: 6997 ** 6998 ** (1) the subquery is guaranteed to be the outer loop (so that 6999 ** it does not need to be computed more than once), and 7000 ** (2) the subquery is not a CTE that should be materialized 7001 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 7002 */ 7003 if( i==0 7004 && (pTabList->nSrc==1 7005 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 7006 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 7007 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 7008 ){ 7009 /* Implement a co-routine that will return a single row of the result 7010 ** set on each invocation. 7011 */ 7012 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 7013 7014 pItem->regReturn = ++pParse->nMem; 7015 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 7016 VdbeComment((v, "%!S", pItem)); 7017 pItem->addrFillSub = addrTop; 7018 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 7019 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 7020 sqlite3Select(pParse, pSub, &dest); 7021 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7022 pItem->fg.viaCoroutine = 1; 7023 pItem->regResult = dest.iSdst; 7024 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 7025 sqlite3VdbeJumpHere(v, addrTop-1); 7026 sqlite3ClearTempRegCache(pParse); 7027 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 7028 /* This is a CTE for which materialization code has already been 7029 ** generated. Invoke the subroutine to compute the materialization, 7030 ** the make the pItem->iCursor be a copy of the ephemerial table that 7031 ** holds the result of the materialization. */ 7032 CteUse *pCteUse = pItem->u2.pCteUse; 7033 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 7034 if( pItem->iCursor!=pCteUse->iCur ){ 7035 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 7036 VdbeComment((v, "%!S", pItem)); 7037 } 7038 pSub->nSelectRow = pCteUse->nRowEst; 7039 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 7040 /* This view has already been materialized by a prior entry in 7041 ** this same FROM clause. Reuse it. */ 7042 if( pPrior->addrFillSub ){ 7043 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 7044 } 7045 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 7046 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 7047 }else{ 7048 /* Materialize the view. If the view is not correlated, generate a 7049 ** subroutine to do the materialization so that subsequent uses of 7050 ** the same view can reuse the materialization. */ 7051 int topAddr; 7052 int onceAddr = 0; 7053 7054 pItem->regReturn = ++pParse->nMem; 7055 topAddr = sqlite3VdbeAddOp0(v, OP_Goto); 7056 pItem->addrFillSub = topAddr+1; 7057 pItem->fg.isMaterialized = 1; 7058 if( pItem->fg.isCorrelated==0 ){ 7059 /* If the subquery is not correlated and if we are not inside of 7060 ** a trigger, then we only need to compute the value of the subquery 7061 ** once. */ 7062 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 7063 VdbeComment((v, "materialize %!S", pItem)); 7064 }else{ 7065 VdbeNoopComment((v, "materialize %!S", pItem)); 7066 } 7067 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 7068 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 7069 sqlite3Select(pParse, pSub, &dest); 7070 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7071 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 7072 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); 7073 VdbeComment((v, "end %!S", pItem)); 7074 sqlite3VdbeJumpHere(v, topAddr); 7075 sqlite3ClearTempRegCache(pParse); 7076 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 7077 CteUse *pCteUse = pItem->u2.pCteUse; 7078 pCteUse->addrM9e = pItem->addrFillSub; 7079 pCteUse->regRtn = pItem->regReturn; 7080 pCteUse->iCur = pItem->iCursor; 7081 pCteUse->nRowEst = pSub->nSelectRow; 7082 } 7083 } 7084 if( db->mallocFailed ) goto select_end; 7085 pParse->nHeight -= sqlite3SelectExprHeight(p); 7086 pParse->zAuthContext = zSavedAuthContext; 7087 #endif 7088 } 7089 7090 /* Various elements of the SELECT copied into local variables for 7091 ** convenience */ 7092 pEList = p->pEList; 7093 pWhere = p->pWhere; 7094 pGroupBy = p->pGroupBy; 7095 pHaving = p->pHaving; 7096 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 7097 7098 #if TREETRACE_ENABLED 7099 if( sqlite3TreeTrace & 0x400 ){ 7100 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 7101 sqlite3TreeViewSelect(0, p, 0); 7102 } 7103 #endif 7104 7105 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 7106 ** if the select-list is the same as the ORDER BY list, then this query 7107 ** can be rewritten as a GROUP BY. In other words, this: 7108 ** 7109 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 7110 ** 7111 ** is transformed to: 7112 ** 7113 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 7114 ** 7115 ** The second form is preferred as a single index (or temp-table) may be 7116 ** used for both the ORDER BY and DISTINCT processing. As originally 7117 ** written the query must use a temp-table for at least one of the ORDER 7118 ** BY and DISTINCT, and an index or separate temp-table for the other. 7119 */ 7120 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 7121 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 7122 #ifndef SQLITE_OMIT_WINDOWFUNC 7123 && p->pWin==0 7124 #endif 7125 ){ 7126 p->selFlags &= ~SF_Distinct; 7127 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 7128 p->selFlags |= SF_Aggregate; 7129 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7130 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7131 ** original setting of the SF_Distinct flag, not the current setting */ 7132 assert( sDistinct.isTnct ); 7133 sDistinct.isTnct = 2; 7134 7135 #if TREETRACE_ENABLED 7136 if( sqlite3TreeTrace & 0x400 ){ 7137 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7138 sqlite3TreeViewSelect(0, p, 0); 7139 } 7140 #endif 7141 } 7142 7143 /* If there is an ORDER BY clause, then create an ephemeral index to 7144 ** do the sorting. But this sorting ephemeral index might end up 7145 ** being unused if the data can be extracted in pre-sorted order. 7146 ** If that is the case, then the OP_OpenEphemeral instruction will be 7147 ** changed to an OP_Noop once we figure out that the sorting index is 7148 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7149 ** that change. 7150 */ 7151 if( sSort.pOrderBy ){ 7152 KeyInfo *pKeyInfo; 7153 pKeyInfo = sqlite3KeyInfoFromExprList( 7154 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7155 sSort.iECursor = pParse->nTab++; 7156 sSort.addrSortIndex = 7157 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7158 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7159 (char*)pKeyInfo, P4_KEYINFO 7160 ); 7161 }else{ 7162 sSort.addrSortIndex = -1; 7163 } 7164 7165 /* If the output is destined for a temporary table, open that table. 7166 */ 7167 if( pDest->eDest==SRT_EphemTab ){ 7168 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7169 if( p->selFlags & SF_NestedFrom ){ 7170 /* Delete or NULL-out result columns that will never be used */ 7171 int ii; 7172 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ 7173 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7174 sqlite3DbFree(db, pEList->a[ii].zEName); 7175 pEList->nExpr--; 7176 } 7177 for(ii=0; ii<pEList->nExpr; ii++){ 7178 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7179 } 7180 } 7181 } 7182 7183 /* Set the limiter. 7184 */ 7185 iEnd = sqlite3VdbeMakeLabel(pParse); 7186 if( (p->selFlags & SF_FixedLimit)==0 ){ 7187 p->nSelectRow = 320; /* 4 billion rows */ 7188 } 7189 computeLimitRegisters(pParse, p, iEnd); 7190 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7191 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7192 sSort.sortFlags |= SORTFLAG_UseSorter; 7193 } 7194 7195 /* Open an ephemeral index to use for the distinct set. 7196 */ 7197 if( p->selFlags & SF_Distinct ){ 7198 sDistinct.tabTnct = pParse->nTab++; 7199 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7200 sDistinct.tabTnct, 0, 0, 7201 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7202 P4_KEYINFO); 7203 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7204 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7205 }else{ 7206 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7207 } 7208 7209 if( !isAgg && pGroupBy==0 ){ 7210 /* No aggregate functions and no GROUP BY clause */ 7211 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7212 | (p->selFlags & SF_FixedLimit); 7213 #ifndef SQLITE_OMIT_WINDOWFUNC 7214 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7215 if( pWin ){ 7216 sqlite3WindowCodeInit(pParse, p); 7217 } 7218 #endif 7219 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7220 7221 7222 /* Begin the database scan. */ 7223 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7224 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7225 p->pEList, p, wctrlFlags, p->nSelectRow); 7226 if( pWInfo==0 ) goto select_end; 7227 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7228 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7229 } 7230 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7231 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7232 } 7233 if( sSort.pOrderBy ){ 7234 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7235 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7236 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7237 sSort.pOrderBy = 0; 7238 } 7239 } 7240 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7241 7242 /* If sorting index that was created by a prior OP_OpenEphemeral 7243 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7244 ** into an OP_Noop. 7245 */ 7246 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7247 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7248 } 7249 7250 assert( p->pEList==pEList ); 7251 #ifndef SQLITE_OMIT_WINDOWFUNC 7252 if( pWin ){ 7253 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7254 int iCont = sqlite3VdbeMakeLabel(pParse); 7255 int iBreak = sqlite3VdbeMakeLabel(pParse); 7256 int regGosub = ++pParse->nMem; 7257 7258 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7259 7260 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7261 sqlite3VdbeResolveLabel(v, addrGosub); 7262 VdbeNoopComment((v, "inner-loop subroutine")); 7263 sSort.labelOBLopt = 0; 7264 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7265 sqlite3VdbeResolveLabel(v, iCont); 7266 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7267 VdbeComment((v, "end inner-loop subroutine")); 7268 sqlite3VdbeResolveLabel(v, iBreak); 7269 }else 7270 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7271 { 7272 /* Use the standard inner loop. */ 7273 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7274 sqlite3WhereContinueLabel(pWInfo), 7275 sqlite3WhereBreakLabel(pWInfo)); 7276 7277 /* End the database scan loop. 7278 */ 7279 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7280 sqlite3WhereEnd(pWInfo); 7281 } 7282 }else{ 7283 /* This case when there exist aggregate functions or a GROUP BY clause 7284 ** or both */ 7285 NameContext sNC; /* Name context for processing aggregate information */ 7286 int iAMem; /* First Mem address for storing current GROUP BY */ 7287 int iBMem; /* First Mem address for previous GROUP BY */ 7288 int iUseFlag; /* Mem address holding flag indicating that at least 7289 ** one row of the input to the aggregator has been 7290 ** processed */ 7291 int iAbortFlag; /* Mem address which causes query abort if positive */ 7292 int groupBySort; /* Rows come from source in GROUP BY order */ 7293 int addrEnd; /* End of processing for this SELECT */ 7294 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7295 int sortOut = 0; /* Output register from the sorter */ 7296 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7297 7298 /* Remove any and all aliases between the result set and the 7299 ** GROUP BY clause. 7300 */ 7301 if( pGroupBy ){ 7302 int k; /* Loop counter */ 7303 struct ExprList_item *pItem; /* For looping over expression in a list */ 7304 7305 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7306 pItem->u.x.iAlias = 0; 7307 } 7308 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7309 pItem->u.x.iAlias = 0; 7310 } 7311 assert( 66==sqlite3LogEst(100) ); 7312 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7313 7314 /* If there is both a GROUP BY and an ORDER BY clause and they are 7315 ** identical, then it may be possible to disable the ORDER BY clause 7316 ** on the grounds that the GROUP BY will cause elements to come out 7317 ** in the correct order. It also may not - the GROUP BY might use a 7318 ** database index that causes rows to be grouped together as required 7319 ** but not actually sorted. Either way, record the fact that the 7320 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7321 ** variable. */ 7322 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7323 int ii; 7324 /* The GROUP BY processing doesn't care whether rows are delivered in 7325 ** ASC or DESC order - only that each group is returned contiguously. 7326 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7327 ** ORDER BY to maximize the chances of rows being delivered in an 7328 ** order that makes the ORDER BY redundant. */ 7329 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7330 u8 sortFlags; 7331 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; 7332 pGroupBy->a[ii].fg.sortFlags = sortFlags; 7333 } 7334 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7335 orderByGrp = 1; 7336 } 7337 } 7338 }else{ 7339 assert( 0==sqlite3LogEst(1) ); 7340 p->nSelectRow = 0; 7341 } 7342 7343 /* Create a label to jump to when we want to abort the query */ 7344 addrEnd = sqlite3VdbeMakeLabel(pParse); 7345 7346 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7347 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7348 ** SELECT statement. 7349 */ 7350 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7351 if( pAggInfo ){ 7352 sqlite3ParserAddCleanup(pParse, 7353 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7354 testcase( pParse->earlyCleanup ); 7355 } 7356 if( db->mallocFailed ){ 7357 goto select_end; 7358 } 7359 pAggInfo->selId = p->selId; 7360 memset(&sNC, 0, sizeof(sNC)); 7361 sNC.pParse = pParse; 7362 sNC.pSrcList = pTabList; 7363 sNC.uNC.pAggInfo = pAggInfo; 7364 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7365 pAggInfo->mnReg = pParse->nMem+1; 7366 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7367 pAggInfo->pGroupBy = pGroupBy; 7368 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7369 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7370 if( pHaving ){ 7371 if( pGroupBy ){ 7372 assert( pWhere==p->pWhere ); 7373 assert( pHaving==p->pHaving ); 7374 assert( pGroupBy==p->pGroupBy ); 7375 havingToWhere(pParse, p); 7376 pWhere = p->pWhere; 7377 } 7378 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7379 } 7380 pAggInfo->nAccumulator = pAggInfo->nColumn; 7381 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7382 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7383 }else{ 7384 minMaxFlag = WHERE_ORDERBY_NORMAL; 7385 } 7386 for(i=0; i<pAggInfo->nFunc; i++){ 7387 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7388 assert( ExprUseXList(pExpr) ); 7389 sNC.ncFlags |= NC_InAggFunc; 7390 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7391 #ifndef SQLITE_OMIT_WINDOWFUNC 7392 assert( !IsWindowFunc(pExpr) ); 7393 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7394 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7395 } 7396 #endif 7397 sNC.ncFlags &= ~NC_InAggFunc; 7398 } 7399 pAggInfo->mxReg = pParse->nMem; 7400 if( db->mallocFailed ) goto select_end; 7401 #if TREETRACE_ENABLED 7402 if( sqlite3TreeTrace & 0x400 ){ 7403 int ii; 7404 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7405 sqlite3TreeViewSelect(0, p, 0); 7406 if( minMaxFlag ){ 7407 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7408 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7409 } 7410 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7411 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7412 ii, pAggInfo->aCol[ii].iMem); 7413 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7414 } 7415 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7416 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7417 ii, pAggInfo->aFunc[ii].iMem); 7418 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7419 } 7420 } 7421 #endif 7422 7423 7424 /* Processing for aggregates with GROUP BY is very different and 7425 ** much more complex than aggregates without a GROUP BY. 7426 */ 7427 if( pGroupBy ){ 7428 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7429 int addr1; /* A-vs-B comparision jump */ 7430 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7431 int regOutputRow; /* Return address register for output subroutine */ 7432 int addrSetAbort; /* Set the abort flag and return */ 7433 int addrTopOfLoop; /* Top of the input loop */ 7434 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7435 int addrReset; /* Subroutine for resetting the accumulator */ 7436 int regReset; /* Return address register for reset subroutine */ 7437 ExprList *pDistinct = 0; 7438 u16 distFlag = 0; 7439 int eDist = WHERE_DISTINCT_NOOP; 7440 7441 if( pAggInfo->nFunc==1 7442 && pAggInfo->aFunc[0].iDistinct>=0 7443 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7444 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7445 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7446 ){ 7447 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7448 pExpr = sqlite3ExprDup(db, pExpr, 0); 7449 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7450 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7451 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7452 } 7453 7454 /* If there is a GROUP BY clause we might need a sorting index to 7455 ** implement it. Allocate that sorting index now. If it turns out 7456 ** that we do not need it after all, the OP_SorterOpen instruction 7457 ** will be converted into a Noop. 7458 */ 7459 pAggInfo->sortingIdx = pParse->nTab++; 7460 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7461 0, pAggInfo->nColumn); 7462 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7463 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7464 0, (char*)pKeyInfo, P4_KEYINFO); 7465 7466 /* Initialize memory locations used by GROUP BY aggregate processing 7467 */ 7468 iUseFlag = ++pParse->nMem; 7469 iAbortFlag = ++pParse->nMem; 7470 regOutputRow = ++pParse->nMem; 7471 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7472 regReset = ++pParse->nMem; 7473 addrReset = sqlite3VdbeMakeLabel(pParse); 7474 iAMem = pParse->nMem + 1; 7475 pParse->nMem += pGroupBy->nExpr; 7476 iBMem = pParse->nMem + 1; 7477 pParse->nMem += pGroupBy->nExpr; 7478 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7479 VdbeComment((v, "clear abort flag")); 7480 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7481 7482 /* Begin a loop that will extract all source rows in GROUP BY order. 7483 ** This might involve two separate loops with an OP_Sort in between, or 7484 ** it might be a single loop that uses an index to extract information 7485 ** in the right order to begin with. 7486 */ 7487 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7488 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7489 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7490 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7491 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7492 ); 7493 if( pWInfo==0 ){ 7494 sqlite3ExprListDelete(db, pDistinct); 7495 goto select_end; 7496 } 7497 eDist = sqlite3WhereIsDistinct(pWInfo); 7498 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7499 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7500 /* The optimizer is able to deliver rows in group by order so 7501 ** we do not have to sort. The OP_OpenEphemeral table will be 7502 ** cancelled later because we still need to use the pKeyInfo 7503 */ 7504 groupBySort = 0; 7505 }else{ 7506 /* Rows are coming out in undetermined order. We have to push 7507 ** each row into a sorting index, terminate the first loop, 7508 ** then loop over the sorting index in order to get the output 7509 ** in sorted order 7510 */ 7511 int regBase; 7512 int regRecord; 7513 int nCol; 7514 int nGroupBy; 7515 7516 explainTempTable(pParse, 7517 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7518 "DISTINCT" : "GROUP BY"); 7519 7520 groupBySort = 1; 7521 nGroupBy = pGroupBy->nExpr; 7522 nCol = nGroupBy; 7523 j = nGroupBy; 7524 for(i=0; i<pAggInfo->nColumn; i++){ 7525 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7526 nCol++; 7527 j++; 7528 } 7529 } 7530 regBase = sqlite3GetTempRange(pParse, nCol); 7531 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7532 j = nGroupBy; 7533 for(i=0; i<pAggInfo->nColumn; i++){ 7534 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7535 if( pCol->iSorterColumn>=j ){ 7536 int r1 = j + regBase; 7537 sqlite3ExprCodeGetColumnOfTable(v, 7538 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7539 j++; 7540 } 7541 } 7542 regRecord = sqlite3GetTempReg(pParse); 7543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7544 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7545 sqlite3ReleaseTempReg(pParse, regRecord); 7546 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7547 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7548 sqlite3WhereEnd(pWInfo); 7549 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7550 sortOut = sqlite3GetTempReg(pParse); 7551 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7552 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7553 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7554 pAggInfo->useSortingIdx = 1; 7555 } 7556 7557 /* If the index or temporary table used by the GROUP BY sort 7558 ** will naturally deliver rows in the order required by the ORDER BY 7559 ** clause, cancel the ephemeral table open coded earlier. 7560 ** 7561 ** This is an optimization - the correct answer should result regardless. 7562 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7563 ** disable this optimization for testing purposes. */ 7564 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7565 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7566 ){ 7567 sSort.pOrderBy = 0; 7568 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7569 } 7570 7571 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7572 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7573 ** Then compare the current GROUP BY terms against the GROUP BY terms 7574 ** from the previous row currently stored in a0, a1, a2... 7575 */ 7576 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7577 if( groupBySort ){ 7578 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7579 sortOut, sortPTab); 7580 } 7581 for(j=0; j<pGroupBy->nExpr; j++){ 7582 if( groupBySort ){ 7583 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7584 }else{ 7585 pAggInfo->directMode = 1; 7586 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7587 } 7588 } 7589 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7590 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7591 addr1 = sqlite3VdbeCurrentAddr(v); 7592 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7593 7594 /* Generate code that runs whenever the GROUP BY changes. 7595 ** Changes in the GROUP BY are detected by the previous code 7596 ** block. If there were no changes, this block is skipped. 7597 ** 7598 ** This code copies current group by terms in b0,b1,b2,... 7599 ** over to a0,a1,a2. It then calls the output subroutine 7600 ** and resets the aggregate accumulator registers in preparation 7601 ** for the next GROUP BY batch. 7602 */ 7603 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7604 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7605 VdbeComment((v, "output one row")); 7606 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7607 VdbeComment((v, "check abort flag")); 7608 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7609 VdbeComment((v, "reset accumulator")); 7610 7611 /* Update the aggregate accumulators based on the content of 7612 ** the current row 7613 */ 7614 sqlite3VdbeJumpHere(v, addr1); 7615 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7616 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7617 VdbeComment((v, "indicate data in accumulator")); 7618 7619 /* End of the loop 7620 */ 7621 if( groupBySort ){ 7622 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7623 VdbeCoverage(v); 7624 }else{ 7625 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7626 sqlite3WhereEnd(pWInfo); 7627 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7628 } 7629 sqlite3ExprListDelete(db, pDistinct); 7630 7631 /* Output the final row of result 7632 */ 7633 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7634 VdbeComment((v, "output final row")); 7635 7636 /* Jump over the subroutines 7637 */ 7638 sqlite3VdbeGoto(v, addrEnd); 7639 7640 /* Generate a subroutine that outputs a single row of the result 7641 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7642 ** is less than or equal to zero, the subroutine is a no-op. If 7643 ** the processing calls for the query to abort, this subroutine 7644 ** increments the iAbortFlag memory location before returning in 7645 ** order to signal the caller to abort. 7646 */ 7647 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7648 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7649 VdbeComment((v, "set abort flag")); 7650 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7651 sqlite3VdbeResolveLabel(v, addrOutputRow); 7652 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7653 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7654 VdbeCoverage(v); 7655 VdbeComment((v, "Groupby result generator entry point")); 7656 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7657 finalizeAggFunctions(pParse, pAggInfo); 7658 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7659 selectInnerLoop(pParse, p, -1, &sSort, 7660 &sDistinct, pDest, 7661 addrOutputRow+1, addrSetAbort); 7662 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7663 VdbeComment((v, "end groupby result generator")); 7664 7665 /* Generate a subroutine that will reset the group-by accumulator 7666 */ 7667 sqlite3VdbeResolveLabel(v, addrReset); 7668 resetAccumulator(pParse, pAggInfo); 7669 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7670 VdbeComment((v, "indicate accumulator empty")); 7671 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7672 7673 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7674 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7675 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7676 } 7677 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7678 else { 7679 Table *pTab; 7680 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7681 /* If isSimpleCount() returns a pointer to a Table structure, then 7682 ** the SQL statement is of the form: 7683 ** 7684 ** SELECT count(*) FROM <tbl> 7685 ** 7686 ** where the Table structure returned represents table <tbl>. 7687 ** 7688 ** This statement is so common that it is optimized specially. The 7689 ** OP_Count instruction is executed either on the intkey table that 7690 ** contains the data for table <tbl> or on one of its indexes. It 7691 ** is better to execute the op on an index, as indexes are almost 7692 ** always spread across less pages than their corresponding tables. 7693 */ 7694 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7695 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7696 Index *pIdx; /* Iterator variable */ 7697 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7698 Index *pBest = 0; /* Best index found so far */ 7699 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7700 7701 sqlite3CodeVerifySchema(pParse, iDb); 7702 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7703 7704 /* Search for the index that has the lowest scan cost. 7705 ** 7706 ** (2011-04-15) Do not do a full scan of an unordered index. 7707 ** 7708 ** (2013-10-03) Do not count the entries in a partial index. 7709 ** 7710 ** In practice the KeyInfo structure will not be used. It is only 7711 ** passed to keep OP_OpenRead happy. 7712 */ 7713 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7714 if( !p->pSrc->a[0].fg.notIndexed ){ 7715 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7716 if( pIdx->bUnordered==0 7717 && pIdx->szIdxRow<pTab->szTabRow 7718 && pIdx->pPartIdxWhere==0 7719 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7720 ){ 7721 pBest = pIdx; 7722 } 7723 } 7724 } 7725 if( pBest ){ 7726 iRoot = pBest->tnum; 7727 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7728 } 7729 7730 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7731 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7732 if( pKeyInfo ){ 7733 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7734 } 7735 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7736 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7737 explainSimpleCount(pParse, pTab, pBest); 7738 }else{ 7739 int regAcc = 0; /* "populate accumulators" flag */ 7740 ExprList *pDistinct = 0; 7741 u16 distFlag = 0; 7742 int eDist; 7743 7744 /* If there are accumulator registers but no min() or max() functions 7745 ** without FILTER clauses, allocate register regAcc. Register regAcc 7746 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7747 ** The code generated by updateAccumulator() uses this to ensure 7748 ** that the accumulator registers are (a) updated only once if 7749 ** there are no min() or max functions or (b) always updated for the 7750 ** first row visited by the aggregate, so that they are updated at 7751 ** least once even if the FILTER clause means the min() or max() 7752 ** function visits zero rows. */ 7753 if( pAggInfo->nAccumulator ){ 7754 for(i=0; i<pAggInfo->nFunc; i++){ 7755 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7756 continue; 7757 } 7758 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7759 break; 7760 } 7761 } 7762 if( i==pAggInfo->nFunc ){ 7763 regAcc = ++pParse->nMem; 7764 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7765 } 7766 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7767 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7768 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7769 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7770 } 7771 7772 /* This case runs if the aggregate has no GROUP BY clause. The 7773 ** processing is much simpler since there is only a single row 7774 ** of output. 7775 */ 7776 assert( p->pGroupBy==0 ); 7777 resetAccumulator(pParse, pAggInfo); 7778 7779 /* If this query is a candidate for the min/max optimization, then 7780 ** minMaxFlag will have been previously set to either 7781 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7782 ** be an appropriate ORDER BY expression for the optimization. 7783 */ 7784 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7785 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7786 7787 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7788 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7789 pDistinct, 0, minMaxFlag|distFlag, 0); 7790 if( pWInfo==0 ){ 7791 goto select_end; 7792 } 7793 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7794 eDist = sqlite3WhereIsDistinct(pWInfo); 7795 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7796 if( eDist!=WHERE_DISTINCT_NOOP ){ 7797 struct AggInfo_func *pF = pAggInfo->aFunc; 7798 if( pF ){ 7799 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7800 } 7801 } 7802 7803 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7804 if( minMaxFlag ){ 7805 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7806 } 7807 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7808 sqlite3WhereEnd(pWInfo); 7809 finalizeAggFunctions(pParse, pAggInfo); 7810 } 7811 7812 sSort.pOrderBy = 0; 7813 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7814 selectInnerLoop(pParse, p, -1, 0, 0, 7815 pDest, addrEnd, addrEnd); 7816 } 7817 sqlite3VdbeResolveLabel(v, addrEnd); 7818 7819 } /* endif aggregate query */ 7820 7821 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7822 explainTempTable(pParse, "DISTINCT"); 7823 } 7824 7825 /* If there is an ORDER BY clause, then we need to sort the results 7826 ** and send them to the callback one by one. 7827 */ 7828 if( sSort.pOrderBy ){ 7829 explainTempTable(pParse, 7830 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7831 assert( p->pEList==pEList ); 7832 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7833 } 7834 7835 /* Jump here to skip this query 7836 */ 7837 sqlite3VdbeResolveLabel(v, iEnd); 7838 7839 /* The SELECT has been coded. If there is an error in the Parse structure, 7840 ** set the return code to 1. Otherwise 0. */ 7841 rc = (pParse->nErr>0); 7842 7843 /* Control jumps to here if an error is encountered above, or upon 7844 ** successful coding of the SELECT. 7845 */ 7846 select_end: 7847 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7848 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7849 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7850 #ifdef SQLITE_DEBUG 7851 if( pAggInfo && !db->mallocFailed ){ 7852 for(i=0; i<pAggInfo->nColumn; i++){ 7853 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7854 assert( pExpr!=0 ); 7855 assert( pExpr->pAggInfo==pAggInfo ); 7856 assert( pExpr->iAgg==i ); 7857 } 7858 for(i=0; i<pAggInfo->nFunc; i++){ 7859 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7860 assert( pExpr!=0 ); 7861 assert( pExpr->pAggInfo==pAggInfo ); 7862 assert( pExpr->iAgg==i ); 7863 } 7864 } 7865 #endif 7866 7867 #if TREETRACE_ENABLED 7868 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7869 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7870 sqlite3TreeViewSelect(0, p, 0); 7871 } 7872 #endif 7873 ExplainQueryPlanPop(pParse); 7874 return rc; 7875 } 7876