xref: /sqlite-3.40.0/src/select.c (revision a8e41eca)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself depending on the value of bFree
88 **
89 ** If bFree==1, call sqlite3DbFree() on the p object.
90 ** If bFree==0, Leave the first Select object unfreed
91 */
92 static void clearSelect(sqlite3 *db, Select *p, int bFree){
93   while( p ){
94     Select *pPrior = p->pPrior;
95     sqlite3ExprListDelete(db, p->pEList);
96     sqlite3SrcListDelete(db, p->pSrc);
97     sqlite3ExprDelete(db, p->pWhere);
98     sqlite3ExprListDelete(db, p->pGroupBy);
99     sqlite3ExprDelete(db, p->pHaving);
100     sqlite3ExprListDelete(db, p->pOrderBy);
101     sqlite3ExprDelete(db, p->pLimit);
102 #ifndef SQLITE_OMIT_WINDOWFUNC
103     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
104       sqlite3WindowListDelete(db, p->pWinDefn);
105     }
106 #endif
107     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
108     if( bFree ) sqlite3DbFreeNN(db, p);
109     p = pPrior;
110     bFree = 1;
111   }
112 }
113 
114 /*
115 ** Initialize a SelectDest structure.
116 */
117 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
118   pDest->eDest = (u8)eDest;
119   pDest->iSDParm = iParm;
120   pDest->zAffSdst = 0;
121   pDest->iSdst = 0;
122   pDest->nSdst = 0;
123 }
124 
125 
126 /*
127 ** Allocate a new Select structure and return a pointer to that
128 ** structure.
129 */
130 Select *sqlite3SelectNew(
131   Parse *pParse,        /* Parsing context */
132   ExprList *pEList,     /* which columns to include in the result */
133   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
134   Expr *pWhere,         /* the WHERE clause */
135   ExprList *pGroupBy,   /* the GROUP BY clause */
136   Expr *pHaving,        /* the HAVING clause */
137   ExprList *pOrderBy,   /* the ORDER BY clause */
138   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
139   Expr *pLimit          /* LIMIT value.  NULL means not used */
140 ){
141   Select *pNew;
142   Select standin;
143   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
144   if( pNew==0 ){
145     assert( pParse->db->mallocFailed );
146     pNew = &standin;
147   }
148   if( pEList==0 ){
149     pEList = sqlite3ExprListAppend(pParse, 0,
150                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
151   }
152   pNew->pEList = pEList;
153   pNew->op = TK_SELECT;
154   pNew->selFlags = selFlags;
155   pNew->iLimit = 0;
156   pNew->iOffset = 0;
157   pNew->selId = ++pParse->nSelect;
158   pNew->addrOpenEphm[0] = -1;
159   pNew->addrOpenEphm[1] = -1;
160   pNew->nSelectRow = 0;
161   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
162   pNew->pSrc = pSrc;
163   pNew->pWhere = pWhere;
164   pNew->pGroupBy = pGroupBy;
165   pNew->pHaving = pHaving;
166   pNew->pOrderBy = pOrderBy;
167   pNew->pPrior = 0;
168   pNew->pNext = 0;
169   pNew->pLimit = pLimit;
170   pNew->pWith = 0;
171 #ifndef SQLITE_OMIT_WINDOWFUNC
172   pNew->pWin = 0;
173   pNew->pWinDefn = 0;
174 #endif
175   if( pParse->db->mallocFailed ) {
176     clearSelect(pParse->db, pNew, pNew!=&standin);
177     pNew = 0;
178   }else{
179     assert( pNew->pSrc!=0 || pParse->nErr>0 );
180   }
181   assert( pNew!=&standin );
182   return pNew;
183 }
184 
185 
186 /*
187 ** Delete the given Select structure and all of its substructures.
188 */
189 void sqlite3SelectDelete(sqlite3 *db, Select *p){
190   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
191 }
192 
193 /*
194 ** Delete all the substructure for p, but keep p allocated.  Redefine
195 ** p to be a single SELECT where every column of the result set has a
196 ** value of NULL.
197 */
198 void sqlite3SelectReset(Parse *pParse, Select *p){
199   if( ALWAYS(p) ){
200     clearSelect(pParse->db, p, 0);
201     memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
202     p->pEList = sqlite3ExprListAppend(pParse, 0,
203                      sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
204     p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList));
205   }
206 }
207 
208 /*
209 ** Return a pointer to the right-most SELECT statement in a compound.
210 */
211 static Select *findRightmost(Select *p){
212   while( p->pNext ) p = p->pNext;
213   return p;
214 }
215 
216 /*
217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
218 ** type of join.  Return an integer constant that expresses that type
219 ** in terms of the following bit values:
220 **
221 **     JT_INNER
222 **     JT_CROSS
223 **     JT_OUTER
224 **     JT_NATURAL
225 **     JT_LEFT
226 **     JT_RIGHT
227 **
228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
229 **
230 ** If an illegal or unsupported join type is seen, then still return
231 ** a join type, but put an error in the pParse structure.
232 */
233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
234   int jointype = 0;
235   Token *apAll[3];
236   Token *p;
237                              /*   0123456789 123456789 123456789 123 */
238   static const char zKeyText[] = "naturaleftouterightfullinnercross";
239   static const struct {
240     u8 i;        /* Beginning of keyword text in zKeyText[] */
241     u8 nChar;    /* Length of the keyword in characters */
242     u8 code;     /* Join type mask */
243   } aKeyword[] = {
244     /* natural */ { 0,  7, JT_NATURAL                },
245     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
246     /* outer   */ { 10, 5, JT_OUTER                  },
247     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
248     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
249     /* inner   */ { 23, 5, JT_INNER                  },
250     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
251   };
252   int i, j;
253   apAll[0] = pA;
254   apAll[1] = pB;
255   apAll[2] = pC;
256   for(i=0; i<3 && apAll[i]; i++){
257     p = apAll[i];
258     for(j=0; j<ArraySize(aKeyword); j++){
259       if( p->n==aKeyword[j].nChar
260           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
261         jointype |= aKeyword[j].code;
262         break;
263       }
264     }
265     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
266     if( j>=ArraySize(aKeyword) ){
267       jointype |= JT_ERROR;
268       break;
269     }
270   }
271   if(
272      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
273      (jointype & JT_ERROR)!=0
274   ){
275     const char *zSp = " ";
276     assert( pB!=0 );
277     if( pC==0 ){ zSp++; }
278     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
279        "%T %T%s%T", pA, pB, zSp, pC);
280     jointype = JT_INNER;
281   }else if( (jointype & JT_OUTER)!=0
282          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
283     sqlite3ErrorMsg(pParse,
284       "RIGHT and FULL OUTER JOINs are not currently supported");
285     jointype = JT_INNER;
286   }
287   return jointype;
288 }
289 
290 /*
291 ** Return the index of a column in a table.  Return -1 if the column
292 ** is not contained in the table.
293 */
294 static int columnIndex(Table *pTab, const char *zCol){
295   int i;
296   for(i=0; i<pTab->nCol; i++){
297     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
298   }
299   return -1;
300 }
301 
302 /*
303 ** Search the first N tables in pSrc, from left to right, looking for a
304 ** table that has a column named zCol.
305 **
306 ** When found, set *piTab and *piCol to the table index and column index
307 ** of the matching column and return TRUE.
308 **
309 ** If not found, return FALSE.
310 */
311 static int tableAndColumnIndex(
312   SrcList *pSrc,       /* Array of tables to search */
313   int N,               /* Number of tables in pSrc->a[] to search */
314   const char *zCol,    /* Name of the column we are looking for */
315   int *piTab,          /* Write index of pSrc->a[] here */
316   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
317   int bIgnoreHidden    /* True to ignore hidden columns */
318 ){
319   int i;               /* For looping over tables in pSrc */
320   int iCol;            /* Index of column matching zCol */
321 
322   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
323   for(i=0; i<N; i++){
324     iCol = columnIndex(pSrc->a[i].pTab, zCol);
325     if( iCol>=0
326      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
327     ){
328       if( piTab ){
329         *piTab = i;
330         *piCol = iCol;
331       }
332       return 1;
333     }
334   }
335   return 0;
336 }
337 
338 /*
339 ** This function is used to add terms implied by JOIN syntax to the
340 ** WHERE clause expression of a SELECT statement. The new term, which
341 ** is ANDed with the existing WHERE clause, is of the form:
342 **
343 **    (tab1.col1 = tab2.col2)
344 **
345 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
346 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
347 ** column iColRight of tab2.
348 */
349 static void addWhereTerm(
350   Parse *pParse,                  /* Parsing context */
351   SrcList *pSrc,                  /* List of tables in FROM clause */
352   int iLeft,                      /* Index of first table to join in pSrc */
353   int iColLeft,                   /* Index of column in first table */
354   int iRight,                     /* Index of second table in pSrc */
355   int iColRight,                  /* Index of column in second table */
356   int isOuterJoin,                /* True if this is an OUTER join */
357   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
358 ){
359   sqlite3 *db = pParse->db;
360   Expr *pE1;
361   Expr *pE2;
362   Expr *pEq;
363 
364   assert( iLeft<iRight );
365   assert( pSrc->nSrc>iRight );
366   assert( pSrc->a[iLeft].pTab );
367   assert( pSrc->a[iRight].pTab );
368 
369   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
370   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
371 
372   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
373   if( pEq && isOuterJoin ){
374     ExprSetProperty(pEq, EP_FromJoin);
375     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(pEq, EP_NoReduce);
377     pEq->iRightJoinTable = (i16)pE2->iTable;
378   }
379   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
380 }
381 
382 /*
383 ** Set the EP_FromJoin property on all terms of the given expression.
384 ** And set the Expr.iRightJoinTable to iTable for every term in the
385 ** expression.
386 **
387 ** The EP_FromJoin property is used on terms of an expression to tell
388 ** the LEFT OUTER JOIN processing logic that this term is part of the
389 ** join restriction specified in the ON or USING clause and not a part
390 ** of the more general WHERE clause.  These terms are moved over to the
391 ** WHERE clause during join processing but we need to remember that they
392 ** originated in the ON or USING clause.
393 **
394 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
395 ** expression depends on table iRightJoinTable even if that table is not
396 ** explicitly mentioned in the expression.  That information is needed
397 ** for cases like this:
398 **
399 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
400 **
401 ** The where clause needs to defer the handling of the t1.x=5
402 ** term until after the t2 loop of the join.  In that way, a
403 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
404 ** defer the handling of t1.x=5, it will be processed immediately
405 ** after the t1 loop and rows with t1.x!=5 will never appear in
406 ** the output, which is incorrect.
407 */
408 void sqlite3SetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     ExprSetProperty(p, EP_FromJoin);
411     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
412     ExprSetVVAProperty(p, EP_NoReduce);
413     p->iRightJoinTable = (i16)iTable;
414     if( p->op==TK_FUNCTION && p->x.pList ){
415       int i;
416       for(i=0; i<p->x.pList->nExpr; i++){
417         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
418       }
419     }
420     sqlite3SetJoinExpr(p->pLeft, iTable);
421     p = p->pRight;
422   }
423 }
424 
425 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
426 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
427 ** an ordinary term that omits the EP_FromJoin mark.
428 **
429 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
430 */
431 static void unsetJoinExpr(Expr *p, int iTable){
432   while( p ){
433     if( ExprHasProperty(p, EP_FromJoin)
434      && (iTable<0 || p->iRightJoinTable==iTable) ){
435       ExprClearProperty(p, EP_FromJoin);
436     }
437     if( p->op==TK_FUNCTION && p->x.pList ){
438       int i;
439       for(i=0; i<p->x.pList->nExpr; i++){
440         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
441       }
442     }
443     unsetJoinExpr(p->pLeft, iTable);
444     p = p->pRight;
445   }
446 }
447 
448 /*
449 ** This routine processes the join information for a SELECT statement.
450 ** ON and USING clauses are converted into extra terms of the WHERE clause.
451 ** NATURAL joins also create extra WHERE clause terms.
452 **
453 ** The terms of a FROM clause are contained in the Select.pSrc structure.
454 ** The left most table is the first entry in Select.pSrc.  The right-most
455 ** table is the last entry.  The join operator is held in the entry to
456 ** the left.  Thus entry 0 contains the join operator for the join between
457 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
458 ** also attached to the left entry.
459 **
460 ** This routine returns the number of errors encountered.
461 */
462 static int sqliteProcessJoin(Parse *pParse, Select *p){
463   SrcList *pSrc;                  /* All tables in the FROM clause */
464   int i, j;                       /* Loop counters */
465   struct SrcList_item *pLeft;     /* Left table being joined */
466   struct SrcList_item *pRight;    /* Right table being joined */
467 
468   pSrc = p->pSrc;
469   pLeft = &pSrc->a[0];
470   pRight = &pLeft[1];
471   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
472     Table *pRightTab = pRight->pTab;
473     int isOuter;
474 
475     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
476     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
477 
478     /* When the NATURAL keyword is present, add WHERE clause terms for
479     ** every column that the two tables have in common.
480     */
481     if( pRight->fg.jointype & JT_NATURAL ){
482       if( pRight->pOn || pRight->pUsing ){
483         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
484            "an ON or USING clause", 0);
485         return 1;
486       }
487       for(j=0; j<pRightTab->nCol; j++){
488         char *zName;   /* Name of column in the right table */
489         int iLeft;     /* Matching left table */
490         int iLeftCol;  /* Matching column in the left table */
491 
492         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
493         zName = pRightTab->aCol[j].zName;
494         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
495           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
496                 isOuter, &p->pWhere);
497         }
498       }
499     }
500 
501     /* Disallow both ON and USING clauses in the same join
502     */
503     if( pRight->pOn && pRight->pUsing ){
504       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
505         "clauses in the same join");
506       return 1;
507     }
508 
509     /* Add the ON clause to the end of the WHERE clause, connected by
510     ** an AND operator.
511     */
512     if( pRight->pOn ){
513       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
514       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
515       pRight->pOn = 0;
516     }
517 
518     /* Create extra terms on the WHERE clause for each column named
519     ** in the USING clause.  Example: If the two tables to be joined are
520     ** A and B and the USING clause names X, Y, and Z, then add this
521     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
522     ** Report an error if any column mentioned in the USING clause is
523     ** not contained in both tables to be joined.
524     */
525     if( pRight->pUsing ){
526       IdList *pList = pRight->pUsing;
527       for(j=0; j<pList->nId; j++){
528         char *zName;     /* Name of the term in the USING clause */
529         int iLeft;       /* Table on the left with matching column name */
530         int iLeftCol;    /* Column number of matching column on the left */
531         int iRightCol;   /* Column number of matching column on the right */
532 
533         zName = pList->a[j].zName;
534         iRightCol = columnIndex(pRightTab, zName);
535         if( iRightCol<0
536          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
537         ){
538           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
539             "not present in both tables", zName);
540           return 1;
541         }
542         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
543                      isOuter, &p->pWhere);
544       }
545     }
546   }
547   return 0;
548 }
549 
550 /*
551 ** An instance of this object holds information (beyond pParse and pSelect)
552 ** needed to load the next result row that is to be added to the sorter.
553 */
554 typedef struct RowLoadInfo RowLoadInfo;
555 struct RowLoadInfo {
556   int regResult;               /* Store results in array of registers here */
557   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
559   ExprList *pExtra;            /* Extra columns needed by sorter refs */
560   int regExtraResult;          /* Where to load the extra columns */
561 #endif
562 };
563 
564 /*
565 ** This routine does the work of loading query data into an array of
566 ** registers so that it can be added to the sorter.
567 */
568 static void innerLoopLoadRow(
569   Parse *pParse,             /* Statement under construction */
570   Select *pSelect,           /* The query being coded */
571   RowLoadInfo *pInfo         /* Info needed to complete the row load */
572 ){
573   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
574                           0, pInfo->ecelFlags);
575 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
576   if( pInfo->pExtra ){
577     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
578     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
579   }
580 #endif
581 }
582 
583 /*
584 ** Code the OP_MakeRecord instruction that generates the entry to be
585 ** added into the sorter.
586 **
587 ** Return the register in which the result is stored.
588 */
589 static int makeSorterRecord(
590   Parse *pParse,
591   SortCtx *pSort,
592   Select *pSelect,
593   int regBase,
594   int nBase
595 ){
596   int nOBSat = pSort->nOBSat;
597   Vdbe *v = pParse->pVdbe;
598   int regOut = ++pParse->nMem;
599   if( pSort->pDeferredRowLoad ){
600     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
601   }
602   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
603   return regOut;
604 }
605 
606 /*
607 ** Generate code that will push the record in registers regData
608 ** through regData+nData-1 onto the sorter.
609 */
610 static void pushOntoSorter(
611   Parse *pParse,         /* Parser context */
612   SortCtx *pSort,        /* Information about the ORDER BY clause */
613   Select *pSelect,       /* The whole SELECT statement */
614   int regData,           /* First register holding data to be sorted */
615   int regOrigData,       /* First register holding data before packing */
616   int nData,             /* Number of elements in the regData data array */
617   int nPrefixReg         /* No. of reg prior to regData available for use */
618 ){
619   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
620   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
621   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
622   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
623   int regBase;                                     /* Regs for sorter record */
624   int regRecord = 0;                               /* Assembled sorter record */
625   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
626   int op;                            /* Opcode to add sorter record to sorter */
627   int iLimit;                        /* LIMIT counter */
628   int iSkip = 0;                     /* End of the sorter insert loop */
629 
630   assert( bSeq==0 || bSeq==1 );
631 
632   /* Three cases:
633   **   (1) The data to be sorted has already been packed into a Record
634   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
635   **       will be completely unrelated to regOrigData.
636   **   (2) All output columns are included in the sort record.  In that
637   **       case regData==regOrigData.
638   **   (3) Some output columns are omitted from the sort record due to
639   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
640   **       SQLITE_ECEL_OMITREF optimization, or due to the
641   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
642   **       regOrigData is 0 to prevent this routine from trying to copy
643   **       values that might not yet exist.
644   */
645   assert( nData==1 || regData==regOrigData || regOrigData==0 );
646 
647   if( nPrefixReg ){
648     assert( nPrefixReg==nExpr+bSeq );
649     regBase = regData - nPrefixReg;
650   }else{
651     regBase = pParse->nMem + 1;
652     pParse->nMem += nBase;
653   }
654   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
655   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
656   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
657   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
658                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
659   if( bSeq ){
660     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
661   }
662   if( nPrefixReg==0 && nData>0 ){
663     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
664   }
665   if( nOBSat>0 ){
666     int regPrevKey;   /* The first nOBSat columns of the previous row */
667     int addrFirst;    /* Address of the OP_IfNot opcode */
668     int addrJmp;      /* Address of the OP_Jump opcode */
669     VdbeOp *pOp;      /* Opcode that opens the sorter */
670     int nKey;         /* Number of sorting key columns, including OP_Sequence */
671     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
672 
673     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
674     regPrevKey = pParse->nMem+1;
675     pParse->nMem += pSort->nOBSat;
676     nKey = nExpr - pSort->nOBSat + bSeq;
677     if( bSeq ){
678       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
679     }else{
680       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
681     }
682     VdbeCoverage(v);
683     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
684     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
685     if( pParse->db->mallocFailed ) return;
686     pOp->p2 = nKey + nData;
687     pKI = pOp->p4.pKeyInfo;
688     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
689     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
690     testcase( pKI->nAllField > pKI->nKeyField+2 );
691     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
692                                            pKI->nAllField-pKI->nKeyField-1);
693     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
694     addrJmp = sqlite3VdbeCurrentAddr(v);
695     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
696     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
697     pSort->regReturn = ++pParse->nMem;
698     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
699     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
700     if( iLimit ){
701       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
702       VdbeCoverage(v);
703     }
704     sqlite3VdbeJumpHere(v, addrFirst);
705     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
706     sqlite3VdbeJumpHere(v, addrJmp);
707   }
708   if( iLimit ){
709     /* At this point the values for the new sorter entry are stored
710     ** in an array of registers. They need to be composed into a record
711     ** and inserted into the sorter if either (a) there are currently
712     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
713     ** the largest record currently in the sorter. If (b) is true and there
714     ** are already LIMIT+OFFSET items in the sorter, delete the largest
715     ** entry before inserting the new one. This way there are never more
716     ** than LIMIT+OFFSET items in the sorter.
717     **
718     ** If the new record does not need to be inserted into the sorter,
719     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
720     ** value is not zero, then it is a label of where to jump.  Otherwise,
721     ** just bypass the row insert logic.  See the header comment on the
722     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
723     */
724     int iCsr = pSort->iECursor;
725     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
726     VdbeCoverage(v);
727     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
728     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
729                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
730     VdbeCoverage(v);
731     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
732   }
733   if( regRecord==0 ){
734     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
735   }
736   if( pSort->sortFlags & SORTFLAG_UseSorter ){
737     op = OP_SorterInsert;
738   }else{
739     op = OP_IdxInsert;
740   }
741   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
742                        regBase+nOBSat, nBase-nOBSat);
743   if( iSkip ){
744     sqlite3VdbeChangeP2(v, iSkip,
745          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
746   }
747 }
748 
749 /*
750 ** Add code to implement the OFFSET
751 */
752 static void codeOffset(
753   Vdbe *v,          /* Generate code into this VM */
754   int iOffset,      /* Register holding the offset counter */
755   int iContinue     /* Jump here to skip the current record */
756 ){
757   if( iOffset>0 ){
758     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
759     VdbeComment((v, "OFFSET"));
760   }
761 }
762 
763 /*
764 ** Add code that will check to make sure the N registers starting at iMem
765 ** form a distinct entry.  iTab is a sorting index that holds previously
766 ** seen combinations of the N values.  A new entry is made in iTab
767 ** if the current N values are new.
768 **
769 ** A jump to addrRepeat is made and the N+1 values are popped from the
770 ** stack if the top N elements are not distinct.
771 */
772 static void codeDistinct(
773   Parse *pParse,     /* Parsing and code generating context */
774   int iTab,          /* A sorting index used to test for distinctness */
775   int addrRepeat,    /* Jump to here if not distinct */
776   int N,             /* Number of elements */
777   int iMem           /* First element */
778 ){
779   Vdbe *v;
780   int r1;
781 
782   v = pParse->pVdbe;
783   r1 = sqlite3GetTempReg(pParse);
784   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
785   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
786   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
787   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
788   sqlite3ReleaseTempReg(pParse, r1);
789 }
790 
791 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
792 /*
793 ** This function is called as part of inner-loop generation for a SELECT
794 ** statement with an ORDER BY that is not optimized by an index. It
795 ** determines the expressions, if any, that the sorter-reference
796 ** optimization should be used for. The sorter-reference optimization
797 ** is used for SELECT queries like:
798 **
799 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
800 **
801 ** If the optimization is used for expression "bigblob", then instead of
802 ** storing values read from that column in the sorter records, the PK of
803 ** the row from table t1 is stored instead. Then, as records are extracted from
804 ** the sorter to return to the user, the required value of bigblob is
805 ** retrieved directly from table t1. If the values are very large, this
806 ** can be more efficient than storing them directly in the sorter records.
807 **
808 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
809 ** for which the sorter-reference optimization should be enabled.
810 ** Additionally, the pSort->aDefer[] array is populated with entries
811 ** for all cursors required to evaluate all selected expressions. Finally.
812 ** output variable (*ppExtra) is set to an expression list containing
813 ** expressions for all extra PK values that should be stored in the
814 ** sorter records.
815 */
816 static void selectExprDefer(
817   Parse *pParse,                  /* Leave any error here */
818   SortCtx *pSort,                 /* Sorter context */
819   ExprList *pEList,               /* Expressions destined for sorter */
820   ExprList **ppExtra              /* Expressions to append to sorter record */
821 ){
822   int i;
823   int nDefer = 0;
824   ExprList *pExtra = 0;
825   for(i=0; i<pEList->nExpr; i++){
826     struct ExprList_item *pItem = &pEList->a[i];
827     if( pItem->u.x.iOrderByCol==0 ){
828       Expr *pExpr = pItem->pExpr;
829       Table *pTab = pExpr->y.pTab;
830       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
831        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
832       ){
833         int j;
834         for(j=0; j<nDefer; j++){
835           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
836         }
837         if( j==nDefer ){
838           if( nDefer==ArraySize(pSort->aDefer) ){
839             continue;
840           }else{
841             int nKey = 1;
842             int k;
843             Index *pPk = 0;
844             if( !HasRowid(pTab) ){
845               pPk = sqlite3PrimaryKeyIndex(pTab);
846               nKey = pPk->nKeyCol;
847             }
848             for(k=0; k<nKey; k++){
849               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
850               if( pNew ){
851                 pNew->iTable = pExpr->iTable;
852                 pNew->y.pTab = pExpr->y.pTab;
853                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
854                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
855               }
856             }
857             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
858             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
859             pSort->aDefer[nDefer].nKey = nKey;
860             nDefer++;
861           }
862         }
863         pItem->bSorterRef = 1;
864       }
865     }
866   }
867   pSort->nDefer = (u8)nDefer;
868   *ppExtra = pExtra;
869 }
870 #endif
871 
872 /*
873 ** This routine generates the code for the inside of the inner loop
874 ** of a SELECT.
875 **
876 ** If srcTab is negative, then the p->pEList expressions
877 ** are evaluated in order to get the data for this row.  If srcTab is
878 ** zero or more, then data is pulled from srcTab and p->pEList is used only
879 ** to get the number of columns and the collation sequence for each column.
880 */
881 static void selectInnerLoop(
882   Parse *pParse,          /* The parser context */
883   Select *p,              /* The complete select statement being coded */
884   int srcTab,             /* Pull data from this table if non-negative */
885   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
886   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
887   SelectDest *pDest,      /* How to dispose of the results */
888   int iContinue,          /* Jump here to continue with next row */
889   int iBreak              /* Jump here to break out of the inner loop */
890 ){
891   Vdbe *v = pParse->pVdbe;
892   int i;
893   int hasDistinct;            /* True if the DISTINCT keyword is present */
894   int eDest = pDest->eDest;   /* How to dispose of results */
895   int iParm = pDest->iSDParm; /* First argument to disposal method */
896   int nResultCol;             /* Number of result columns */
897   int nPrefixReg = 0;         /* Number of extra registers before regResult */
898   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
899 
900   /* Usually, regResult is the first cell in an array of memory cells
901   ** containing the current result row. In this case regOrig is set to the
902   ** same value. However, if the results are being sent to the sorter, the
903   ** values for any expressions that are also part of the sort-key are omitted
904   ** from this array. In this case regOrig is set to zero.  */
905   int regResult;              /* Start of memory holding current results */
906   int regOrig;                /* Start of memory holding full result (or 0) */
907 
908   assert( v );
909   assert( p->pEList!=0 );
910   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
911   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
912   if( pSort==0 && !hasDistinct ){
913     assert( iContinue!=0 );
914     codeOffset(v, p->iOffset, iContinue);
915   }
916 
917   /* Pull the requested columns.
918   */
919   nResultCol = p->pEList->nExpr;
920 
921   if( pDest->iSdst==0 ){
922     if( pSort ){
923       nPrefixReg = pSort->pOrderBy->nExpr;
924       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
925       pParse->nMem += nPrefixReg;
926     }
927     pDest->iSdst = pParse->nMem+1;
928     pParse->nMem += nResultCol;
929   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
930     /* This is an error condition that can result, for example, when a SELECT
931     ** on the right-hand side of an INSERT contains more result columns than
932     ** there are columns in the table on the left.  The error will be caught
933     ** and reported later.  But we need to make sure enough memory is allocated
934     ** to avoid other spurious errors in the meantime. */
935     pParse->nMem += nResultCol;
936   }
937   pDest->nSdst = nResultCol;
938   regOrig = regResult = pDest->iSdst;
939   if( srcTab>=0 ){
940     for(i=0; i<nResultCol; i++){
941       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
942       VdbeComment((v, "%s", p->pEList->a[i].zEName));
943     }
944   }else if( eDest!=SRT_Exists ){
945 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
946     ExprList *pExtra = 0;
947 #endif
948     /* If the destination is an EXISTS(...) expression, the actual
949     ** values returned by the SELECT are not required.
950     */
951     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
952     ExprList *pEList;
953     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
954       ecelFlags = SQLITE_ECEL_DUP;
955     }else{
956       ecelFlags = 0;
957     }
958     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
959       /* For each expression in p->pEList that is a copy of an expression in
960       ** the ORDER BY clause (pSort->pOrderBy), set the associated
961       ** iOrderByCol value to one more than the index of the ORDER BY
962       ** expression within the sort-key that pushOntoSorter() will generate.
963       ** This allows the p->pEList field to be omitted from the sorted record,
964       ** saving space and CPU cycles.  */
965       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
966 
967       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
968         int j;
969         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
970           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
971         }
972       }
973 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
974       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
975       if( pExtra && pParse->db->mallocFailed==0 ){
976         /* If there are any extra PK columns to add to the sorter records,
977         ** allocate extra memory cells and adjust the OpenEphemeral
978         ** instruction to account for the larger records. This is only
979         ** required if there are one or more WITHOUT ROWID tables with
980         ** composite primary keys in the SortCtx.aDefer[] array.  */
981         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
982         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
983         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
984         pParse->nMem += pExtra->nExpr;
985       }
986 #endif
987 
988       /* Adjust nResultCol to account for columns that are omitted
989       ** from the sorter by the optimizations in this branch */
990       pEList = p->pEList;
991       for(i=0; i<pEList->nExpr; i++){
992         if( pEList->a[i].u.x.iOrderByCol>0
993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
994          || pEList->a[i].bSorterRef
995 #endif
996         ){
997           nResultCol--;
998           regOrig = 0;
999         }
1000       }
1001 
1002       testcase( regOrig );
1003       testcase( eDest==SRT_Set );
1004       testcase( eDest==SRT_Mem );
1005       testcase( eDest==SRT_Coroutine );
1006       testcase( eDest==SRT_Output );
1007       assert( eDest==SRT_Set || eDest==SRT_Mem
1008            || eDest==SRT_Coroutine || eDest==SRT_Output );
1009     }
1010     sRowLoadInfo.regResult = regResult;
1011     sRowLoadInfo.ecelFlags = ecelFlags;
1012 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1013     sRowLoadInfo.pExtra = pExtra;
1014     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1015     if( pExtra ) nResultCol += pExtra->nExpr;
1016 #endif
1017     if( p->iLimit
1018      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1019      && nPrefixReg>0
1020     ){
1021       assert( pSort!=0 );
1022       assert( hasDistinct==0 );
1023       pSort->pDeferredRowLoad = &sRowLoadInfo;
1024       regOrig = 0;
1025     }else{
1026       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1027     }
1028   }
1029 
1030   /* If the DISTINCT keyword was present on the SELECT statement
1031   ** and this row has been seen before, then do not make this row
1032   ** part of the result.
1033   */
1034   if( hasDistinct ){
1035     switch( pDistinct->eTnctType ){
1036       case WHERE_DISTINCT_ORDERED: {
1037         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1038         int iJump;              /* Jump destination */
1039         int regPrev;            /* Previous row content */
1040 
1041         /* Allocate space for the previous row */
1042         regPrev = pParse->nMem+1;
1043         pParse->nMem += nResultCol;
1044 
1045         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1046         ** sets the MEM_Cleared bit on the first register of the
1047         ** previous value.  This will cause the OP_Ne below to always
1048         ** fail on the first iteration of the loop even if the first
1049         ** row is all NULLs.
1050         */
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1053         pOp->opcode = OP_Null;
1054         pOp->p1 = 1;
1055         pOp->p2 = regPrev;
1056         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1057 
1058         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1059         for(i=0; i<nResultCol; i++){
1060           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1061           if( i<nResultCol-1 ){
1062             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1063             VdbeCoverage(v);
1064           }else{
1065             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1066             VdbeCoverage(v);
1067            }
1068           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1069           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1070         }
1071         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1072         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1073         break;
1074       }
1075 
1076       case WHERE_DISTINCT_UNIQUE: {
1077         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1078         break;
1079       }
1080 
1081       default: {
1082         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1083         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1084                      regResult);
1085         break;
1086       }
1087     }
1088     if( pSort==0 ){
1089       codeOffset(v, p->iOffset, iContinue);
1090     }
1091   }
1092 
1093   switch( eDest ){
1094     /* In this mode, write each query result to the key of the temporary
1095     ** table iParm.
1096     */
1097 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1098     case SRT_Union: {
1099       int r1;
1100       r1 = sqlite3GetTempReg(pParse);
1101       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1102       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1103       sqlite3ReleaseTempReg(pParse, r1);
1104       break;
1105     }
1106 
1107     /* Construct a record from the query result, but instead of
1108     ** saving that record, use it as a key to delete elements from
1109     ** the temporary table iParm.
1110     */
1111     case SRT_Except: {
1112       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1113       break;
1114     }
1115 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1116 
1117     /* Store the result as data using a unique key.
1118     */
1119     case SRT_Fifo:
1120     case SRT_DistFifo:
1121     case SRT_Table:
1122     case SRT_EphemTab: {
1123       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1124       testcase( eDest==SRT_Table );
1125       testcase( eDest==SRT_EphemTab );
1126       testcase( eDest==SRT_Fifo );
1127       testcase( eDest==SRT_DistFifo );
1128       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1129 #ifndef SQLITE_OMIT_CTE
1130       if( eDest==SRT_DistFifo ){
1131         /* If the destination is DistFifo, then cursor (iParm+1) is open
1132         ** on an ephemeral index. If the current row is already present
1133         ** in the index, do not write it to the output. If not, add the
1134         ** current row to the index and proceed with writing it to the
1135         ** output table as well.  */
1136         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1137         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1138         VdbeCoverage(v);
1139         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1140         assert( pSort==0 );
1141       }
1142 #endif
1143       if( pSort ){
1144         assert( regResult==regOrig );
1145         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1146       }else{
1147         int r2 = sqlite3GetTempReg(pParse);
1148         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1149         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1150         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1151         sqlite3ReleaseTempReg(pParse, r2);
1152       }
1153       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1154       break;
1155     }
1156 
1157 #ifndef SQLITE_OMIT_SUBQUERY
1158     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1159     ** then there should be a single item on the stack.  Write this
1160     ** item into the set table with bogus data.
1161     */
1162     case SRT_Set: {
1163       if( pSort ){
1164         /* At first glance you would think we could optimize out the
1165         ** ORDER BY in this case since the order of entries in the set
1166         ** does not matter.  But there might be a LIMIT clause, in which
1167         ** case the order does matter */
1168         pushOntoSorter(
1169             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1170       }else{
1171         int r1 = sqlite3GetTempReg(pParse);
1172         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1173         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1174             r1, pDest->zAffSdst, nResultCol);
1175         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1176         sqlite3ReleaseTempReg(pParse, r1);
1177       }
1178       break;
1179     }
1180 
1181     /* If any row exist in the result set, record that fact and abort.
1182     */
1183     case SRT_Exists: {
1184       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1185       /* The LIMIT clause will terminate the loop for us */
1186       break;
1187     }
1188 
1189     /* If this is a scalar select that is part of an expression, then
1190     ** store the results in the appropriate memory cell or array of
1191     ** memory cells and break out of the scan loop.
1192     */
1193     case SRT_Mem: {
1194       if( pSort ){
1195         assert( nResultCol<=pDest->nSdst );
1196         pushOntoSorter(
1197             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1198       }else{
1199         assert( nResultCol==pDest->nSdst );
1200         assert( regResult==iParm );
1201         /* The LIMIT clause will jump out of the loop for us */
1202       }
1203       break;
1204     }
1205 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1206 
1207     case SRT_Coroutine:       /* Send data to a co-routine */
1208     case SRT_Output: {        /* Return the results */
1209       testcase( eDest==SRT_Coroutine );
1210       testcase( eDest==SRT_Output );
1211       if( pSort ){
1212         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1213                        nPrefixReg);
1214       }else if( eDest==SRT_Coroutine ){
1215         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1216       }else{
1217         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1218       }
1219       break;
1220     }
1221 
1222 #ifndef SQLITE_OMIT_CTE
1223     /* Write the results into a priority queue that is order according to
1224     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1225     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1226     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1227     ** final OP_Sequence column.  The last column is the record as a blob.
1228     */
1229     case SRT_DistQueue:
1230     case SRT_Queue: {
1231       int nKey;
1232       int r1, r2, r3;
1233       int addrTest = 0;
1234       ExprList *pSO;
1235       pSO = pDest->pOrderBy;
1236       assert( pSO );
1237       nKey = pSO->nExpr;
1238       r1 = sqlite3GetTempReg(pParse);
1239       r2 = sqlite3GetTempRange(pParse, nKey+2);
1240       r3 = r2+nKey+1;
1241       if( eDest==SRT_DistQueue ){
1242         /* If the destination is DistQueue, then cursor (iParm+1) is open
1243         ** on a second ephemeral index that holds all values every previously
1244         ** added to the queue. */
1245         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1246                                         regResult, nResultCol);
1247         VdbeCoverage(v);
1248       }
1249       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1250       if( eDest==SRT_DistQueue ){
1251         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1252         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1253       }
1254       for(i=0; i<nKey; i++){
1255         sqlite3VdbeAddOp2(v, OP_SCopy,
1256                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1257                           r2+i);
1258       }
1259       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1260       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1261       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1262       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1263       sqlite3ReleaseTempReg(pParse, r1);
1264       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1265       break;
1266     }
1267 #endif /* SQLITE_OMIT_CTE */
1268 
1269 
1270 
1271 #if !defined(SQLITE_OMIT_TRIGGER)
1272     /* Discard the results.  This is used for SELECT statements inside
1273     ** the body of a TRIGGER.  The purpose of such selects is to call
1274     ** user-defined functions that have side effects.  We do not care
1275     ** about the actual results of the select.
1276     */
1277     default: {
1278       assert( eDest==SRT_Discard );
1279       break;
1280     }
1281 #endif
1282   }
1283 
1284   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1285   ** there is a sorter, in which case the sorter has already limited
1286   ** the output for us.
1287   */
1288   if( pSort==0 && p->iLimit ){
1289     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1290   }
1291 }
1292 
1293 /*
1294 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1295 ** X extra columns.
1296 */
1297 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1298   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1299   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1300   if( p ){
1301     p->aSortFlags = (u8*)&p->aColl[N+X];
1302     p->nKeyField = (u16)N;
1303     p->nAllField = (u16)(N+X);
1304     p->enc = ENC(db);
1305     p->db = db;
1306     p->nRef = 1;
1307     memset(&p[1], 0, nExtra);
1308   }else{
1309     sqlite3OomFault(db);
1310   }
1311   return p;
1312 }
1313 
1314 /*
1315 ** Deallocate a KeyInfo object
1316 */
1317 void sqlite3KeyInfoUnref(KeyInfo *p){
1318   if( p ){
1319     assert( p->nRef>0 );
1320     p->nRef--;
1321     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1322   }
1323 }
1324 
1325 /*
1326 ** Make a new pointer to a KeyInfo object
1327 */
1328 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1329   if( p ){
1330     assert( p->nRef>0 );
1331     p->nRef++;
1332   }
1333   return p;
1334 }
1335 
1336 #ifdef SQLITE_DEBUG
1337 /*
1338 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1339 ** can only be changed if this is just a single reference to the object.
1340 **
1341 ** This routine is used only inside of assert() statements.
1342 */
1343 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1344 #endif /* SQLITE_DEBUG */
1345 
1346 /*
1347 ** Given an expression list, generate a KeyInfo structure that records
1348 ** the collating sequence for each expression in that expression list.
1349 **
1350 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1351 ** KeyInfo structure is appropriate for initializing a virtual index to
1352 ** implement that clause.  If the ExprList is the result set of a SELECT
1353 ** then the KeyInfo structure is appropriate for initializing a virtual
1354 ** index to implement a DISTINCT test.
1355 **
1356 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1357 ** function is responsible for seeing that this structure is eventually
1358 ** freed.
1359 */
1360 KeyInfo *sqlite3KeyInfoFromExprList(
1361   Parse *pParse,       /* Parsing context */
1362   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1363   int iStart,          /* Begin with this column of pList */
1364   int nExtra           /* Add this many extra columns to the end */
1365 ){
1366   int nExpr;
1367   KeyInfo *pInfo;
1368   struct ExprList_item *pItem;
1369   sqlite3 *db = pParse->db;
1370   int i;
1371 
1372   nExpr = pList->nExpr;
1373   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1374   if( pInfo ){
1375     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1376     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1377       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1378       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1379     }
1380   }
1381   return pInfo;
1382 }
1383 
1384 /*
1385 ** Name of the connection operator, used for error messages.
1386 */
1387 static const char *selectOpName(int id){
1388   char *z;
1389   switch( id ){
1390     case TK_ALL:       z = "UNION ALL";   break;
1391     case TK_INTERSECT: z = "INTERSECT";   break;
1392     case TK_EXCEPT:    z = "EXCEPT";      break;
1393     default:           z = "UNION";       break;
1394   }
1395   return z;
1396 }
1397 
1398 #ifndef SQLITE_OMIT_EXPLAIN
1399 /*
1400 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1401 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1402 ** where the caption is of the form:
1403 **
1404 **   "USE TEMP B-TREE FOR xxx"
1405 **
1406 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1407 ** is determined by the zUsage argument.
1408 */
1409 static void explainTempTable(Parse *pParse, const char *zUsage){
1410   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1411 }
1412 
1413 /*
1414 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1415 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1416 ** in sqlite3Select() to assign values to structure member variables that
1417 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1418 ** code with #ifndef directives.
1419 */
1420 # define explainSetInteger(a, b) a = b
1421 
1422 #else
1423 /* No-op versions of the explainXXX() functions and macros. */
1424 # define explainTempTable(y,z)
1425 # define explainSetInteger(y,z)
1426 #endif
1427 
1428 
1429 /*
1430 ** If the inner loop was generated using a non-null pOrderBy argument,
1431 ** then the results were placed in a sorter.  After the loop is terminated
1432 ** we need to run the sorter and output the results.  The following
1433 ** routine generates the code needed to do that.
1434 */
1435 static void generateSortTail(
1436   Parse *pParse,    /* Parsing context */
1437   Select *p,        /* The SELECT statement */
1438   SortCtx *pSort,   /* Information on the ORDER BY clause */
1439   int nColumn,      /* Number of columns of data */
1440   SelectDest *pDest /* Write the sorted results here */
1441 ){
1442   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1443   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1444   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1445   int addr;                       /* Top of output loop. Jump for Next. */
1446   int addrOnce = 0;
1447   int iTab;
1448   ExprList *pOrderBy = pSort->pOrderBy;
1449   int eDest = pDest->eDest;
1450   int iParm = pDest->iSDParm;
1451   int regRow;
1452   int regRowid;
1453   int iCol;
1454   int nKey;                       /* Number of key columns in sorter record */
1455   int iSortTab;                   /* Sorter cursor to read from */
1456   int i;
1457   int bSeq;                       /* True if sorter record includes seq. no. */
1458   int nRefKey = 0;
1459   struct ExprList_item *aOutEx = p->pEList->a;
1460 
1461   assert( addrBreak<0 );
1462   if( pSort->labelBkOut ){
1463     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1464     sqlite3VdbeGoto(v, addrBreak);
1465     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1466   }
1467 
1468 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1469   /* Open any cursors needed for sorter-reference expressions */
1470   for(i=0; i<pSort->nDefer; i++){
1471     Table *pTab = pSort->aDefer[i].pTab;
1472     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1473     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1474     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1475   }
1476 #endif
1477 
1478   iTab = pSort->iECursor;
1479   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1480     regRowid = 0;
1481     regRow = pDest->iSdst;
1482   }else{
1483     regRowid = sqlite3GetTempReg(pParse);
1484     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1485       regRow = sqlite3GetTempReg(pParse);
1486       nColumn = 0;
1487     }else{
1488       regRow = sqlite3GetTempRange(pParse, nColumn);
1489     }
1490   }
1491   nKey = pOrderBy->nExpr - pSort->nOBSat;
1492   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1493     int regSortOut = ++pParse->nMem;
1494     iSortTab = pParse->nTab++;
1495     if( pSort->labelBkOut ){
1496       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1497     }
1498     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1499         nKey+1+nColumn+nRefKey);
1500     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1501     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1502     VdbeCoverage(v);
1503     codeOffset(v, p->iOffset, addrContinue);
1504     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1505     bSeq = 0;
1506   }else{
1507     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1508     codeOffset(v, p->iOffset, addrContinue);
1509     iSortTab = iTab;
1510     bSeq = 1;
1511   }
1512   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1513 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1514     if( aOutEx[i].bSorterRef ) continue;
1515 #endif
1516     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1517   }
1518 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1519   if( pSort->nDefer ){
1520     int iKey = iCol+1;
1521     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1522 
1523     for(i=0; i<pSort->nDefer; i++){
1524       int iCsr = pSort->aDefer[i].iCsr;
1525       Table *pTab = pSort->aDefer[i].pTab;
1526       int nKey = pSort->aDefer[i].nKey;
1527 
1528       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1529       if( HasRowid(pTab) ){
1530         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1531         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1532             sqlite3VdbeCurrentAddr(v)+1, regKey);
1533       }else{
1534         int k;
1535         int iJmp;
1536         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1537         for(k=0; k<nKey; k++){
1538           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1539         }
1540         iJmp = sqlite3VdbeCurrentAddr(v);
1541         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1542         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1543         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1544       }
1545     }
1546     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1547   }
1548 #endif
1549   for(i=nColumn-1; i>=0; i--){
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551     if( aOutEx[i].bSorterRef ){
1552       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1553     }else
1554 #endif
1555     {
1556       int iRead;
1557       if( aOutEx[i].u.x.iOrderByCol ){
1558         iRead = aOutEx[i].u.x.iOrderByCol-1;
1559       }else{
1560         iRead = iCol--;
1561       }
1562       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1563       VdbeComment((v, "%s", aOutEx[i].zEName));
1564     }
1565   }
1566   switch( eDest ){
1567     case SRT_Table:
1568     case SRT_EphemTab: {
1569       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1570       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1571       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1572       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1573       break;
1574     }
1575 #ifndef SQLITE_OMIT_SUBQUERY
1576     case SRT_Set: {
1577       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1578       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1579                         pDest->zAffSdst, nColumn);
1580       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1581       break;
1582     }
1583     case SRT_Mem: {
1584       /* The LIMIT clause will terminate the loop for us */
1585       break;
1586     }
1587 #endif
1588     default: {
1589       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1590       testcase( eDest==SRT_Output );
1591       testcase( eDest==SRT_Coroutine );
1592       if( eDest==SRT_Output ){
1593         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1594       }else{
1595         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1596       }
1597       break;
1598     }
1599   }
1600   if( regRowid ){
1601     if( eDest==SRT_Set ){
1602       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1603     }else{
1604       sqlite3ReleaseTempReg(pParse, regRow);
1605     }
1606     sqlite3ReleaseTempReg(pParse, regRowid);
1607   }
1608   /* The bottom of the loop
1609   */
1610   sqlite3VdbeResolveLabel(v, addrContinue);
1611   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1612     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1613   }else{
1614     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1615   }
1616   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1617   sqlite3VdbeResolveLabel(v, addrBreak);
1618 }
1619 
1620 /*
1621 ** Return a pointer to a string containing the 'declaration type' of the
1622 ** expression pExpr. The string may be treated as static by the caller.
1623 **
1624 ** Also try to estimate the size of the returned value and return that
1625 ** result in *pEstWidth.
1626 **
1627 ** The declaration type is the exact datatype definition extracted from the
1628 ** original CREATE TABLE statement if the expression is a column. The
1629 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1630 ** is considered a column can be complex in the presence of subqueries. The
1631 ** result-set expression in all of the following SELECT statements is
1632 ** considered a column by this function.
1633 **
1634 **   SELECT col FROM tbl;
1635 **   SELECT (SELECT col FROM tbl;
1636 **   SELECT (SELECT col FROM tbl);
1637 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1638 **
1639 ** The declaration type for any expression other than a column is NULL.
1640 **
1641 ** This routine has either 3 or 6 parameters depending on whether or not
1642 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1643 */
1644 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1645 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1646 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1647 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1648 #endif
1649 static const char *columnTypeImpl(
1650   NameContext *pNC,
1651 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1652   Expr *pExpr
1653 #else
1654   Expr *pExpr,
1655   const char **pzOrigDb,
1656   const char **pzOrigTab,
1657   const char **pzOrigCol
1658 #endif
1659 ){
1660   char const *zType = 0;
1661   int j;
1662 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1663   char const *zOrigDb = 0;
1664   char const *zOrigTab = 0;
1665   char const *zOrigCol = 0;
1666 #endif
1667 
1668   assert( pExpr!=0 );
1669   assert( pNC->pSrcList!=0 );
1670   switch( pExpr->op ){
1671     case TK_COLUMN: {
1672       /* The expression is a column. Locate the table the column is being
1673       ** extracted from in NameContext.pSrcList. This table may be real
1674       ** database table or a subquery.
1675       */
1676       Table *pTab = 0;            /* Table structure column is extracted from */
1677       Select *pS = 0;             /* Select the column is extracted from */
1678       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1679       while( pNC && !pTab ){
1680         SrcList *pTabList = pNC->pSrcList;
1681         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1682         if( j<pTabList->nSrc ){
1683           pTab = pTabList->a[j].pTab;
1684           pS = pTabList->a[j].pSelect;
1685         }else{
1686           pNC = pNC->pNext;
1687         }
1688       }
1689 
1690       if( pTab==0 ){
1691         /* At one time, code such as "SELECT new.x" within a trigger would
1692         ** cause this condition to run.  Since then, we have restructured how
1693         ** trigger code is generated and so this condition is no longer
1694         ** possible. However, it can still be true for statements like
1695         ** the following:
1696         **
1697         **   CREATE TABLE t1(col INTEGER);
1698         **   SELECT (SELECT t1.col) FROM FROM t1;
1699         **
1700         ** when columnType() is called on the expression "t1.col" in the
1701         ** sub-select. In this case, set the column type to NULL, even
1702         ** though it should really be "INTEGER".
1703         **
1704         ** This is not a problem, as the column type of "t1.col" is never
1705         ** used. When columnType() is called on the expression
1706         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1707         ** branch below.  */
1708         break;
1709       }
1710 
1711       assert( pTab && pExpr->y.pTab==pTab );
1712       if( pS ){
1713         /* The "table" is actually a sub-select or a view in the FROM clause
1714         ** of the SELECT statement. Return the declaration type and origin
1715         ** data for the result-set column of the sub-select.
1716         */
1717         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1718           /* If iCol is less than zero, then the expression requests the
1719           ** rowid of the sub-select or view. This expression is legal (see
1720           ** test case misc2.2.2) - it always evaluates to NULL.
1721           */
1722           NameContext sNC;
1723           Expr *p = pS->pEList->a[iCol].pExpr;
1724           sNC.pSrcList = pS->pSrc;
1725           sNC.pNext = pNC;
1726           sNC.pParse = pNC->pParse;
1727           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1728         }
1729       }else{
1730         /* A real table or a CTE table */
1731         assert( !pS );
1732 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1733         if( iCol<0 ) iCol = pTab->iPKey;
1734         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1735         if( iCol<0 ){
1736           zType = "INTEGER";
1737           zOrigCol = "rowid";
1738         }else{
1739           zOrigCol = pTab->aCol[iCol].zName;
1740           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1741         }
1742         zOrigTab = pTab->zName;
1743         if( pNC->pParse && pTab->pSchema ){
1744           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1745           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1746         }
1747 #else
1748         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1749         if( iCol<0 ){
1750           zType = "INTEGER";
1751         }else{
1752           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1753         }
1754 #endif
1755       }
1756       break;
1757     }
1758 #ifndef SQLITE_OMIT_SUBQUERY
1759     case TK_SELECT: {
1760       /* The expression is a sub-select. Return the declaration type and
1761       ** origin info for the single column in the result set of the SELECT
1762       ** statement.
1763       */
1764       NameContext sNC;
1765       Select *pS = pExpr->x.pSelect;
1766       Expr *p = pS->pEList->a[0].pExpr;
1767       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1768       sNC.pSrcList = pS->pSrc;
1769       sNC.pNext = pNC;
1770       sNC.pParse = pNC->pParse;
1771       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1772       break;
1773     }
1774 #endif
1775   }
1776 
1777 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1778   if( pzOrigDb ){
1779     assert( pzOrigTab && pzOrigCol );
1780     *pzOrigDb = zOrigDb;
1781     *pzOrigTab = zOrigTab;
1782     *pzOrigCol = zOrigCol;
1783   }
1784 #endif
1785   return zType;
1786 }
1787 
1788 /*
1789 ** Generate code that will tell the VDBE the declaration types of columns
1790 ** in the result set.
1791 */
1792 static void generateColumnTypes(
1793   Parse *pParse,      /* Parser context */
1794   SrcList *pTabList,  /* List of tables */
1795   ExprList *pEList    /* Expressions defining the result set */
1796 ){
1797 #ifndef SQLITE_OMIT_DECLTYPE
1798   Vdbe *v = pParse->pVdbe;
1799   int i;
1800   NameContext sNC;
1801   sNC.pSrcList = pTabList;
1802   sNC.pParse = pParse;
1803   sNC.pNext = 0;
1804   for(i=0; i<pEList->nExpr; i++){
1805     Expr *p = pEList->a[i].pExpr;
1806     const char *zType;
1807 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1808     const char *zOrigDb = 0;
1809     const char *zOrigTab = 0;
1810     const char *zOrigCol = 0;
1811     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1812 
1813     /* The vdbe must make its own copy of the column-type and other
1814     ** column specific strings, in case the schema is reset before this
1815     ** virtual machine is deleted.
1816     */
1817     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1818     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1819     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1820 #else
1821     zType = columnType(&sNC, p, 0, 0, 0);
1822 #endif
1823     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1824   }
1825 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1826 }
1827 
1828 
1829 /*
1830 ** Compute the column names for a SELECT statement.
1831 **
1832 ** The only guarantee that SQLite makes about column names is that if the
1833 ** column has an AS clause assigning it a name, that will be the name used.
1834 ** That is the only documented guarantee.  However, countless applications
1835 ** developed over the years have made baseless assumptions about column names
1836 ** and will break if those assumptions changes.  Hence, use extreme caution
1837 ** when modifying this routine to avoid breaking legacy.
1838 **
1839 ** See Also: sqlite3ColumnsFromExprList()
1840 **
1841 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1842 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1843 ** applications should operate this way.  Nevertheless, we need to support the
1844 ** other modes for legacy:
1845 **
1846 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1847 **                              originally appears in the SELECT statement.  In
1848 **                              other words, the zSpan of the result expression.
1849 **
1850 **    short=ON, full=OFF:       (This is the default setting).  If the result
1851 **                              refers directly to a table column, then the
1852 **                              result column name is just the table column
1853 **                              name: COLUMN.  Otherwise use zSpan.
1854 **
1855 **    full=ON, short=ANY:       If the result refers directly to a table column,
1856 **                              then the result column name with the table name
1857 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1858 */
1859 static void generateColumnNames(
1860   Parse *pParse,      /* Parser context */
1861   Select *pSelect     /* Generate column names for this SELECT statement */
1862 ){
1863   Vdbe *v = pParse->pVdbe;
1864   int i;
1865   Table *pTab;
1866   SrcList *pTabList;
1867   ExprList *pEList;
1868   sqlite3 *db = pParse->db;
1869   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1870   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1871 
1872 #ifndef SQLITE_OMIT_EXPLAIN
1873   /* If this is an EXPLAIN, skip this step */
1874   if( pParse->explain ){
1875     return;
1876   }
1877 #endif
1878 
1879   if( pParse->colNamesSet ) return;
1880   /* Column names are determined by the left-most term of a compound select */
1881   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1882   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1883   pTabList = pSelect->pSrc;
1884   pEList = pSelect->pEList;
1885   assert( v!=0 );
1886   assert( pTabList!=0 );
1887   pParse->colNamesSet = 1;
1888   fullName = (db->flags & SQLITE_FullColNames)!=0;
1889   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1890   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1891   for(i=0; i<pEList->nExpr; i++){
1892     Expr *p = pEList->a[i].pExpr;
1893 
1894     assert( p!=0 );
1895     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1896     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1897     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1898       /* An AS clause always takes first priority */
1899       char *zName = pEList->a[i].zEName;
1900       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1901     }else if( srcName && p->op==TK_COLUMN ){
1902       char *zCol;
1903       int iCol = p->iColumn;
1904       pTab = p->y.pTab;
1905       assert( pTab!=0 );
1906       if( iCol<0 ) iCol = pTab->iPKey;
1907       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1908       if( iCol<0 ){
1909         zCol = "rowid";
1910       }else{
1911         zCol = pTab->aCol[iCol].zName;
1912       }
1913       if( fullName ){
1914         char *zName = 0;
1915         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1916         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1917       }else{
1918         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1919       }
1920     }else{
1921       const char *z = pEList->a[i].zEName;
1922       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1923       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1924     }
1925   }
1926   generateColumnTypes(pParse, pTabList, pEList);
1927 }
1928 
1929 /*
1930 ** Given an expression list (which is really the list of expressions
1931 ** that form the result set of a SELECT statement) compute appropriate
1932 ** column names for a table that would hold the expression list.
1933 **
1934 ** All column names will be unique.
1935 **
1936 ** Only the column names are computed.  Column.zType, Column.zColl,
1937 ** and other fields of Column are zeroed.
1938 **
1939 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1940 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1941 **
1942 ** The only guarantee that SQLite makes about column names is that if the
1943 ** column has an AS clause assigning it a name, that will be the name used.
1944 ** That is the only documented guarantee.  However, countless applications
1945 ** developed over the years have made baseless assumptions about column names
1946 ** and will break if those assumptions changes.  Hence, use extreme caution
1947 ** when modifying this routine to avoid breaking legacy.
1948 **
1949 ** See Also: generateColumnNames()
1950 */
1951 int sqlite3ColumnsFromExprList(
1952   Parse *pParse,          /* Parsing context */
1953   ExprList *pEList,       /* Expr list from which to derive column names */
1954   i16 *pnCol,             /* Write the number of columns here */
1955   Column **paCol          /* Write the new column list here */
1956 ){
1957   sqlite3 *db = pParse->db;   /* Database connection */
1958   int i, j;                   /* Loop counters */
1959   u32 cnt;                    /* Index added to make the name unique */
1960   Column *aCol, *pCol;        /* For looping over result columns */
1961   int nCol;                   /* Number of columns in the result set */
1962   char *zName;                /* Column name */
1963   int nName;                  /* Size of name in zName[] */
1964   Hash ht;                    /* Hash table of column names */
1965 
1966   sqlite3HashInit(&ht);
1967   if( pEList ){
1968     nCol = pEList->nExpr;
1969     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1970     testcase( aCol==0 );
1971     if( nCol>32767 ) nCol = 32767;
1972   }else{
1973     nCol = 0;
1974     aCol = 0;
1975   }
1976   assert( nCol==(i16)nCol );
1977   *pnCol = nCol;
1978   *paCol = aCol;
1979 
1980   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1981     /* Get an appropriate name for the column
1982     */
1983     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1984       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1985     }else{
1986       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1987       while( pColExpr->op==TK_DOT ){
1988         pColExpr = pColExpr->pRight;
1989         assert( pColExpr!=0 );
1990       }
1991       if( pColExpr->op==TK_COLUMN ){
1992         /* For columns use the column name name */
1993         int iCol = pColExpr->iColumn;
1994         Table *pTab = pColExpr->y.pTab;
1995         assert( pTab!=0 );
1996         if( iCol<0 ) iCol = pTab->iPKey;
1997         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1998       }else if( pColExpr->op==TK_ID ){
1999         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2000         zName = pColExpr->u.zToken;
2001       }else{
2002         /* Use the original text of the column expression as its name */
2003         zName = pEList->a[i].zEName;
2004       }
2005     }
2006     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2007       zName = sqlite3DbStrDup(db, zName);
2008     }else{
2009       zName = sqlite3MPrintf(db,"column%d",i+1);
2010     }
2011 
2012     /* Make sure the column name is unique.  If the name is not unique,
2013     ** append an integer to the name so that it becomes unique.
2014     */
2015     cnt = 0;
2016     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2017       nName = sqlite3Strlen30(zName);
2018       if( nName>0 ){
2019         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2020         if( zName[j]==':' ) nName = j;
2021       }
2022       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2023       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2024     }
2025     pCol->zName = zName;
2026     pCol->hName = sqlite3StrIHash(zName);
2027     sqlite3ColumnPropertiesFromName(0, pCol);
2028     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2029       sqlite3OomFault(db);
2030     }
2031   }
2032   sqlite3HashClear(&ht);
2033   if( db->mallocFailed ){
2034     for(j=0; j<i; j++){
2035       sqlite3DbFree(db, aCol[j].zName);
2036     }
2037     sqlite3DbFree(db, aCol);
2038     *paCol = 0;
2039     *pnCol = 0;
2040     return SQLITE_NOMEM_BKPT;
2041   }
2042   return SQLITE_OK;
2043 }
2044 
2045 /*
2046 ** Add type and collation information to a column list based on
2047 ** a SELECT statement.
2048 **
2049 ** The column list presumably came from selectColumnNamesFromExprList().
2050 ** The column list has only names, not types or collations.  This
2051 ** routine goes through and adds the types and collations.
2052 **
2053 ** This routine requires that all identifiers in the SELECT
2054 ** statement be resolved.
2055 */
2056 void sqlite3SelectAddColumnTypeAndCollation(
2057   Parse *pParse,        /* Parsing contexts */
2058   Table *pTab,          /* Add column type information to this table */
2059   Select *pSelect,      /* SELECT used to determine types and collations */
2060   char aff              /* Default affinity for columns */
2061 ){
2062   sqlite3 *db = pParse->db;
2063   NameContext sNC;
2064   Column *pCol;
2065   CollSeq *pColl;
2066   int i;
2067   Expr *p;
2068   struct ExprList_item *a;
2069 
2070   assert( pSelect!=0 );
2071   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2072   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2073   if( db->mallocFailed ) return;
2074   memset(&sNC, 0, sizeof(sNC));
2075   sNC.pSrcList = pSelect->pSrc;
2076   a = pSelect->pEList->a;
2077   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2078     const char *zType;
2079     int n, m;
2080     p = a[i].pExpr;
2081     zType = columnType(&sNC, p, 0, 0, 0);
2082     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2083     pCol->affinity = sqlite3ExprAffinity(p);
2084     if( zType ){
2085       m = sqlite3Strlen30(zType);
2086       n = sqlite3Strlen30(pCol->zName);
2087       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2088       if( pCol->zName ){
2089         memcpy(&pCol->zName[n+1], zType, m+1);
2090         pCol->colFlags |= COLFLAG_HASTYPE;
2091       }
2092     }
2093     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2094     pColl = sqlite3ExprCollSeq(pParse, p);
2095     if( pColl && pCol->zColl==0 ){
2096       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2097     }
2098   }
2099   pTab->szTabRow = 1; /* Any non-zero value works */
2100 }
2101 
2102 /*
2103 ** Given a SELECT statement, generate a Table structure that describes
2104 ** the result set of that SELECT.
2105 */
2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2107   Table *pTab;
2108   sqlite3 *db = pParse->db;
2109   u64 savedFlags;
2110 
2111   savedFlags = db->flags;
2112   db->flags &= ~(u64)SQLITE_FullColNames;
2113   db->flags |= SQLITE_ShortColNames;
2114   sqlite3SelectPrep(pParse, pSelect, 0);
2115   db->flags = savedFlags;
2116   if( pParse->nErr ) return 0;
2117   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2118   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2119   if( pTab==0 ){
2120     return 0;
2121   }
2122   pTab->nTabRef = 1;
2123   pTab->zName = 0;
2124   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2125   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2126   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2127   pTab->iPKey = -1;
2128   if( db->mallocFailed ){
2129     sqlite3DeleteTable(db, pTab);
2130     return 0;
2131   }
2132   return pTab;
2133 }
2134 
2135 /*
2136 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2137 ** If an error occurs, return NULL and leave a message in pParse.
2138 */
2139 Vdbe *sqlite3GetVdbe(Parse *pParse){
2140   if( pParse->pVdbe ){
2141     return pParse->pVdbe;
2142   }
2143   if( pParse->pToplevel==0
2144    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2145   ){
2146     pParse->okConstFactor = 1;
2147   }
2148   return sqlite3VdbeCreate(pParse);
2149 }
2150 
2151 
2152 /*
2153 ** Compute the iLimit and iOffset fields of the SELECT based on the
2154 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2155 ** that appear in the original SQL statement after the LIMIT and OFFSET
2156 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2157 ** are the integer memory register numbers for counters used to compute
2158 ** the limit and offset.  If there is no limit and/or offset, then
2159 ** iLimit and iOffset are negative.
2160 **
2161 ** This routine changes the values of iLimit and iOffset only if
2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2163 ** and iOffset should have been preset to appropriate default values (zero)
2164 ** prior to calling this routine.
2165 **
2166 ** The iOffset register (if it exists) is initialized to the value
2167 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2168 ** iOffset+1 is initialized to LIMIT+OFFSET.
2169 **
2170 ** Only if pLimit->pLeft!=0 do the limit registers get
2171 ** redefined.  The UNION ALL operator uses this property to force
2172 ** the reuse of the same limit and offset registers across multiple
2173 ** SELECT statements.
2174 */
2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2176   Vdbe *v = 0;
2177   int iLimit = 0;
2178   int iOffset;
2179   int n;
2180   Expr *pLimit = p->pLimit;
2181 
2182   if( p->iLimit ) return;
2183 
2184   /*
2185   ** "LIMIT -1" always shows all rows.  There is some
2186   ** controversy about what the correct behavior should be.
2187   ** The current implementation interprets "LIMIT 0" to mean
2188   ** no rows.
2189   */
2190   if( pLimit ){
2191     assert( pLimit->op==TK_LIMIT );
2192     assert( pLimit->pLeft!=0 );
2193     p->iLimit = iLimit = ++pParse->nMem;
2194     v = sqlite3GetVdbe(pParse);
2195     assert( v!=0 );
2196     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2197       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2198       VdbeComment((v, "LIMIT counter"));
2199       if( n==0 ){
2200         sqlite3VdbeGoto(v, iBreak);
2201       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2202         p->nSelectRow = sqlite3LogEst((u64)n);
2203         p->selFlags |= SF_FixedLimit;
2204       }
2205     }else{
2206       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2207       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2208       VdbeComment((v, "LIMIT counter"));
2209       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2210     }
2211     if( pLimit->pRight ){
2212       p->iOffset = iOffset = ++pParse->nMem;
2213       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2214       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2215       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2216       VdbeComment((v, "OFFSET counter"));
2217       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2218       VdbeComment((v, "LIMIT+OFFSET"));
2219     }
2220   }
2221 }
2222 
2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2224 /*
2225 ** Return the appropriate collating sequence for the iCol-th column of
2226 ** the result set for the compound-select statement "p".  Return NULL if
2227 ** the column has no default collating sequence.
2228 **
2229 ** The collating sequence for the compound select is taken from the
2230 ** left-most term of the select that has a collating sequence.
2231 */
2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2233   CollSeq *pRet;
2234   if( p->pPrior ){
2235     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2236   }else{
2237     pRet = 0;
2238   }
2239   assert( iCol>=0 );
2240   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2241   ** have been thrown during name resolution and we would not have gotten
2242   ** this far */
2243   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2244     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2245   }
2246   return pRet;
2247 }
2248 
2249 /*
2250 ** The select statement passed as the second parameter is a compound SELECT
2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2252 ** structure suitable for implementing the ORDER BY.
2253 **
2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2255 ** function is responsible for ensuring that this structure is eventually
2256 ** freed.
2257 */
2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2259   ExprList *pOrderBy = p->pOrderBy;
2260   int nOrderBy = p->pOrderBy->nExpr;
2261   sqlite3 *db = pParse->db;
2262   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2263   if( pRet ){
2264     int i;
2265     for(i=0; i<nOrderBy; i++){
2266       struct ExprList_item *pItem = &pOrderBy->a[i];
2267       Expr *pTerm = pItem->pExpr;
2268       CollSeq *pColl;
2269 
2270       if( pTerm->flags & EP_Collate ){
2271         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2272       }else{
2273         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2274         if( pColl==0 ) pColl = db->pDfltColl;
2275         pOrderBy->a[i].pExpr =
2276           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2277       }
2278       assert( sqlite3KeyInfoIsWriteable(pRet) );
2279       pRet->aColl[i] = pColl;
2280       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2281     }
2282   }
2283 
2284   return pRet;
2285 }
2286 
2287 #ifndef SQLITE_OMIT_CTE
2288 /*
2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2290 ** query of the form:
2291 **
2292 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2293 **                         \___________/             \_______________/
2294 **                           p->pPrior                      p
2295 **
2296 **
2297 ** There is exactly one reference to the recursive-table in the FROM clause
2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2299 **
2300 ** The setup-query runs once to generate an initial set of rows that go
2301 ** into a Queue table.  Rows are extracted from the Queue table one by
2302 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2303 ** extracted row (now in the iCurrent table) becomes the content of the
2304 ** recursive-table for a recursive-query run.  The output of the recursive-query
2305 ** is added back into the Queue table.  Then another row is extracted from Queue
2306 ** and the iteration continues until the Queue table is empty.
2307 **
2308 ** If the compound query operator is UNION then no duplicate rows are ever
2309 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2310 ** that have ever been inserted into Queue and causes duplicates to be
2311 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2312 **
2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2314 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2315 ** an ORDER BY, the Queue table is just a FIFO.
2316 **
2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2318 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2319 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2320 ** with a positive value, then the first OFFSET outputs are discarded rather
2321 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2322 ** rows have been skipped.
2323 */
2324 static void generateWithRecursiveQuery(
2325   Parse *pParse,        /* Parsing context */
2326   Select *p,            /* The recursive SELECT to be coded */
2327   SelectDest *pDest     /* What to do with query results */
2328 ){
2329   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2330   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2331   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2332   Select *pSetup = p->pPrior;   /* The setup query */
2333   int addrTop;                  /* Top of the loop */
2334   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2335   int iCurrent = 0;             /* The Current table */
2336   int regCurrent;               /* Register holding Current table */
2337   int iQueue;                   /* The Queue table */
2338   int iDistinct = 0;            /* To ensure unique results if UNION */
2339   int eDest = SRT_Fifo;         /* How to write to Queue */
2340   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2341   int i;                        /* Loop counter */
2342   int rc;                       /* Result code */
2343   ExprList *pOrderBy;           /* The ORDER BY clause */
2344   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2345   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2346 
2347 #ifndef SQLITE_OMIT_WINDOWFUNC
2348   if( p->pWin ){
2349     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2350     return;
2351   }
2352 #endif
2353 
2354   /* Obtain authorization to do a recursive query */
2355   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2356 
2357   /* Process the LIMIT and OFFSET clauses, if they exist */
2358   addrBreak = sqlite3VdbeMakeLabel(pParse);
2359   p->nSelectRow = 320;  /* 4 billion rows */
2360   computeLimitRegisters(pParse, p, addrBreak);
2361   pLimit = p->pLimit;
2362   regLimit = p->iLimit;
2363   regOffset = p->iOffset;
2364   p->pLimit = 0;
2365   p->iLimit = p->iOffset = 0;
2366   pOrderBy = p->pOrderBy;
2367 
2368   /* Locate the cursor number of the Current table */
2369   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2370     if( pSrc->a[i].fg.isRecursive ){
2371       iCurrent = pSrc->a[i].iCursor;
2372       break;
2373     }
2374   }
2375 
2376   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2377   ** the Distinct table must be exactly one greater than Queue in order
2378   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2379   iQueue = pParse->nTab++;
2380   if( p->op==TK_UNION ){
2381     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2382     iDistinct = pParse->nTab++;
2383   }else{
2384     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2385   }
2386   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2387 
2388   /* Allocate cursors for Current, Queue, and Distinct. */
2389   regCurrent = ++pParse->nMem;
2390   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2391   if( pOrderBy ){
2392     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2393     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2394                       (char*)pKeyInfo, P4_KEYINFO);
2395     destQueue.pOrderBy = pOrderBy;
2396   }else{
2397     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2398   }
2399   VdbeComment((v, "Queue table"));
2400   if( iDistinct ){
2401     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2402     p->selFlags |= SF_UsesEphemeral;
2403   }
2404 
2405   /* Detach the ORDER BY clause from the compound SELECT */
2406   p->pOrderBy = 0;
2407 
2408   /* Store the results of the setup-query in Queue. */
2409   pSetup->pNext = 0;
2410   ExplainQueryPlan((pParse, 1, "SETUP"));
2411   rc = sqlite3Select(pParse, pSetup, &destQueue);
2412   pSetup->pNext = p;
2413   if( rc ) goto end_of_recursive_query;
2414 
2415   /* Find the next row in the Queue and output that row */
2416   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2417 
2418   /* Transfer the next row in Queue over to Current */
2419   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2420   if( pOrderBy ){
2421     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2422   }else{
2423     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2424   }
2425   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2426 
2427   /* Output the single row in Current */
2428   addrCont = sqlite3VdbeMakeLabel(pParse);
2429   codeOffset(v, regOffset, addrCont);
2430   selectInnerLoop(pParse, p, iCurrent,
2431       0, 0, pDest, addrCont, addrBreak);
2432   if( regLimit ){
2433     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2434     VdbeCoverage(v);
2435   }
2436   sqlite3VdbeResolveLabel(v, addrCont);
2437 
2438   /* Execute the recursive SELECT taking the single row in Current as
2439   ** the value for the recursive-table. Store the results in the Queue.
2440   */
2441   if( p->selFlags & SF_Aggregate ){
2442     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2443   }else{
2444     p->pPrior = 0;
2445     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2446     sqlite3Select(pParse, p, &destQueue);
2447     assert( p->pPrior==0 );
2448     p->pPrior = pSetup;
2449   }
2450 
2451   /* Keep running the loop until the Queue is empty */
2452   sqlite3VdbeGoto(v, addrTop);
2453   sqlite3VdbeResolveLabel(v, addrBreak);
2454 
2455 end_of_recursive_query:
2456   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2457   p->pOrderBy = pOrderBy;
2458   p->pLimit = pLimit;
2459   return;
2460 }
2461 #endif /* SQLITE_OMIT_CTE */
2462 
2463 /* Forward references */
2464 static int multiSelectOrderBy(
2465   Parse *pParse,        /* Parsing context */
2466   Select *p,            /* The right-most of SELECTs to be coded */
2467   SelectDest *pDest     /* What to do with query results */
2468 );
2469 
2470 /*
2471 ** Handle the special case of a compound-select that originates from a
2472 ** VALUES clause.  By handling this as a special case, we avoid deep
2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2474 ** on a VALUES clause.
2475 **
2476 ** Because the Select object originates from a VALUES clause:
2477 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2478 **   (2) All terms are UNION ALL
2479 **   (3) There is no ORDER BY clause
2480 **
2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2485 */
2486 static int multiSelectValues(
2487   Parse *pParse,        /* Parsing context */
2488   Select *p,            /* The right-most of SELECTs to be coded */
2489   SelectDest *pDest     /* What to do with query results */
2490 ){
2491   int nRow = 1;
2492   int rc = 0;
2493   int bShowAll = p->pLimit==0;
2494   assert( p->selFlags & SF_MultiValue );
2495   do{
2496     assert( p->selFlags & SF_Values );
2497     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2498     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2499 #ifndef SQLITE_OMIT_WINDOWFUNC
2500     if( p->pWin ) return -1;
2501 #endif
2502     if( p->pPrior==0 ) break;
2503     assert( p->pPrior->pNext==p );
2504     p = p->pPrior;
2505     nRow += bShowAll;
2506   }while(1);
2507   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2508                     nRow==1 ? "" : "S"));
2509   while( p ){
2510     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2511     if( !bShowAll ) break;
2512     p->nSelectRow = nRow;
2513     p = p->pNext;
2514   }
2515   return rc;
2516 }
2517 
2518 /*
2519 ** This routine is called to process a compound query form from
2520 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2521 ** INTERSECT
2522 **
2523 ** "p" points to the right-most of the two queries.  the query on the
2524 ** left is p->pPrior.  The left query could also be a compound query
2525 ** in which case this routine will be called recursively.
2526 **
2527 ** The results of the total query are to be written into a destination
2528 ** of type eDest with parameter iParm.
2529 **
2530 ** Example 1:  Consider a three-way compound SQL statement.
2531 **
2532 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2533 **
2534 ** This statement is parsed up as follows:
2535 **
2536 **     SELECT c FROM t3
2537 **      |
2538 **      `----->  SELECT b FROM t2
2539 **                |
2540 **                `------>  SELECT a FROM t1
2541 **
2542 ** The arrows in the diagram above represent the Select.pPrior pointer.
2543 ** So if this routine is called with p equal to the t3 query, then
2544 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2545 **
2546 ** Notice that because of the way SQLite parses compound SELECTs, the
2547 ** individual selects always group from left to right.
2548 */
2549 static int multiSelect(
2550   Parse *pParse,        /* Parsing context */
2551   Select *p,            /* The right-most of SELECTs to be coded */
2552   SelectDest *pDest     /* What to do with query results */
2553 ){
2554   int rc = SQLITE_OK;   /* Success code from a subroutine */
2555   Select *pPrior;       /* Another SELECT immediately to our left */
2556   Vdbe *v;              /* Generate code to this VDBE */
2557   SelectDest dest;      /* Alternative data destination */
2558   Select *pDelete = 0;  /* Chain of simple selects to delete */
2559   sqlite3 *db;          /* Database connection */
2560 
2561   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2562   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2563   */
2564   assert( p && p->pPrior );  /* Calling function guarantees this much */
2565   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2566   assert( p->selFlags & SF_Compound );
2567   db = pParse->db;
2568   pPrior = p->pPrior;
2569   dest = *pDest;
2570   if( pPrior->pOrderBy || pPrior->pLimit ){
2571     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2572       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2573     rc = 1;
2574     goto multi_select_end;
2575   }
2576 
2577   v = sqlite3GetVdbe(pParse);
2578   assert( v!=0 );  /* The VDBE already created by calling function */
2579 
2580   /* Create the destination temporary table if necessary
2581   */
2582   if( dest.eDest==SRT_EphemTab ){
2583     assert( p->pEList );
2584     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2585     dest.eDest = SRT_Table;
2586   }
2587 
2588   /* Special handling for a compound-select that originates as a VALUES clause.
2589   */
2590   if( p->selFlags & SF_MultiValue ){
2591     rc = multiSelectValues(pParse, p, &dest);
2592     if( rc>=0 ) goto multi_select_end;
2593     rc = SQLITE_OK;
2594   }
2595 
2596   /* Make sure all SELECTs in the statement have the same number of elements
2597   ** in their result sets.
2598   */
2599   assert( p->pEList && pPrior->pEList );
2600   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2601 
2602 #ifndef SQLITE_OMIT_CTE
2603   if( p->selFlags & SF_Recursive ){
2604     generateWithRecursiveQuery(pParse, p, &dest);
2605   }else
2606 #endif
2607 
2608   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2609   */
2610   if( p->pOrderBy ){
2611     return multiSelectOrderBy(pParse, p, pDest);
2612   }else{
2613 
2614 #ifndef SQLITE_OMIT_EXPLAIN
2615     if( pPrior->pPrior==0 ){
2616       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2617       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2618     }
2619 #endif
2620 
2621     /* Generate code for the left and right SELECT statements.
2622     */
2623     switch( p->op ){
2624       case TK_ALL: {
2625         int addr = 0;
2626         int nLimit;
2627         assert( !pPrior->pLimit );
2628         pPrior->iLimit = p->iLimit;
2629         pPrior->iOffset = p->iOffset;
2630         pPrior->pLimit = p->pLimit;
2631         rc = sqlite3Select(pParse, pPrior, &dest);
2632         p->pLimit = 0;
2633         if( rc ){
2634           goto multi_select_end;
2635         }
2636         p->pPrior = 0;
2637         p->iLimit = pPrior->iLimit;
2638         p->iOffset = pPrior->iOffset;
2639         if( p->iLimit ){
2640           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2641           VdbeComment((v, "Jump ahead if LIMIT reached"));
2642           if( p->iOffset ){
2643             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2644                               p->iLimit, p->iOffset+1, p->iOffset);
2645           }
2646         }
2647         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2648         rc = sqlite3Select(pParse, p, &dest);
2649         testcase( rc!=SQLITE_OK );
2650         pDelete = p->pPrior;
2651         p->pPrior = pPrior;
2652         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2653         if( pPrior->pLimit
2654          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2655          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2656         ){
2657           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2658         }
2659         if( addr ){
2660           sqlite3VdbeJumpHere(v, addr);
2661         }
2662         break;
2663       }
2664       case TK_EXCEPT:
2665       case TK_UNION: {
2666         int unionTab;    /* Cursor number of the temp table holding result */
2667         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2668         int priorOp;     /* The SRT_ operation to apply to prior selects */
2669         Expr *pLimit;    /* Saved values of p->nLimit  */
2670         int addr;
2671         SelectDest uniondest;
2672 
2673         testcase( p->op==TK_EXCEPT );
2674         testcase( p->op==TK_UNION );
2675         priorOp = SRT_Union;
2676         if( dest.eDest==priorOp ){
2677           /* We can reuse a temporary table generated by a SELECT to our
2678           ** right.
2679           */
2680           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2681           unionTab = dest.iSDParm;
2682         }else{
2683           /* We will need to create our own temporary table to hold the
2684           ** intermediate results.
2685           */
2686           unionTab = pParse->nTab++;
2687           assert( p->pOrderBy==0 );
2688           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2689           assert( p->addrOpenEphm[0] == -1 );
2690           p->addrOpenEphm[0] = addr;
2691           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2692           assert( p->pEList );
2693         }
2694 
2695         /* Code the SELECT statements to our left
2696         */
2697         assert( !pPrior->pOrderBy );
2698         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2699         rc = sqlite3Select(pParse, pPrior, &uniondest);
2700         if( rc ){
2701           goto multi_select_end;
2702         }
2703 
2704         /* Code the current SELECT statement
2705         */
2706         if( p->op==TK_EXCEPT ){
2707           op = SRT_Except;
2708         }else{
2709           assert( p->op==TK_UNION );
2710           op = SRT_Union;
2711         }
2712         p->pPrior = 0;
2713         pLimit = p->pLimit;
2714         p->pLimit = 0;
2715         uniondest.eDest = op;
2716         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2717                           selectOpName(p->op)));
2718         rc = sqlite3Select(pParse, p, &uniondest);
2719         testcase( rc!=SQLITE_OK );
2720         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2721         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2722         sqlite3ExprListDelete(db, p->pOrderBy);
2723         pDelete = p->pPrior;
2724         p->pPrior = pPrior;
2725         p->pOrderBy = 0;
2726         if( p->op==TK_UNION ){
2727           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2728         }
2729         sqlite3ExprDelete(db, p->pLimit);
2730         p->pLimit = pLimit;
2731         p->iLimit = 0;
2732         p->iOffset = 0;
2733 
2734         /* Convert the data in the temporary table into whatever form
2735         ** it is that we currently need.
2736         */
2737         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2738         assert( p->pEList || db->mallocFailed );
2739         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2740           int iCont, iBreak, iStart;
2741           iBreak = sqlite3VdbeMakeLabel(pParse);
2742           iCont = sqlite3VdbeMakeLabel(pParse);
2743           computeLimitRegisters(pParse, p, iBreak);
2744           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2745           iStart = sqlite3VdbeCurrentAddr(v);
2746           selectInnerLoop(pParse, p, unionTab,
2747                           0, 0, &dest, iCont, iBreak);
2748           sqlite3VdbeResolveLabel(v, iCont);
2749           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2750           sqlite3VdbeResolveLabel(v, iBreak);
2751           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2752         }
2753         break;
2754       }
2755       default: assert( p->op==TK_INTERSECT ); {
2756         int tab1, tab2;
2757         int iCont, iBreak, iStart;
2758         Expr *pLimit;
2759         int addr;
2760         SelectDest intersectdest;
2761         int r1;
2762 
2763         /* INTERSECT is different from the others since it requires
2764         ** two temporary tables.  Hence it has its own case.  Begin
2765         ** by allocating the tables we will need.
2766         */
2767         tab1 = pParse->nTab++;
2768         tab2 = pParse->nTab++;
2769         assert( p->pOrderBy==0 );
2770 
2771         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2772         assert( p->addrOpenEphm[0] == -1 );
2773         p->addrOpenEphm[0] = addr;
2774         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2775         assert( p->pEList );
2776 
2777         /* Code the SELECTs to our left into temporary table "tab1".
2778         */
2779         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2780         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2781         if( rc ){
2782           goto multi_select_end;
2783         }
2784 
2785         /* Code the current SELECT into temporary table "tab2"
2786         */
2787         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2788         assert( p->addrOpenEphm[1] == -1 );
2789         p->addrOpenEphm[1] = addr;
2790         p->pPrior = 0;
2791         pLimit = p->pLimit;
2792         p->pLimit = 0;
2793         intersectdest.iSDParm = tab2;
2794         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2795                           selectOpName(p->op)));
2796         rc = sqlite3Select(pParse, p, &intersectdest);
2797         testcase( rc!=SQLITE_OK );
2798         pDelete = p->pPrior;
2799         p->pPrior = pPrior;
2800         if( p->nSelectRow>pPrior->nSelectRow ){
2801           p->nSelectRow = pPrior->nSelectRow;
2802         }
2803         sqlite3ExprDelete(db, p->pLimit);
2804         p->pLimit = pLimit;
2805 
2806         /* Generate code to take the intersection of the two temporary
2807         ** tables.
2808         */
2809         if( rc ) break;
2810         assert( p->pEList );
2811         iBreak = sqlite3VdbeMakeLabel(pParse);
2812         iCont = sqlite3VdbeMakeLabel(pParse);
2813         computeLimitRegisters(pParse, p, iBreak);
2814         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2815         r1 = sqlite3GetTempReg(pParse);
2816         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2817         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2818         VdbeCoverage(v);
2819         sqlite3ReleaseTempReg(pParse, r1);
2820         selectInnerLoop(pParse, p, tab1,
2821                         0, 0, &dest, iCont, iBreak);
2822         sqlite3VdbeResolveLabel(v, iCont);
2823         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2824         sqlite3VdbeResolveLabel(v, iBreak);
2825         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2826         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2827         break;
2828       }
2829     }
2830 
2831   #ifndef SQLITE_OMIT_EXPLAIN
2832     if( p->pNext==0 ){
2833       ExplainQueryPlanPop(pParse);
2834     }
2835   #endif
2836   }
2837   if( pParse->nErr ) goto multi_select_end;
2838 
2839   /* Compute collating sequences used by
2840   ** temporary tables needed to implement the compound select.
2841   ** Attach the KeyInfo structure to all temporary tables.
2842   **
2843   ** This section is run by the right-most SELECT statement only.
2844   ** SELECT statements to the left always skip this part.  The right-most
2845   ** SELECT might also skip this part if it has no ORDER BY clause and
2846   ** no temp tables are required.
2847   */
2848   if( p->selFlags & SF_UsesEphemeral ){
2849     int i;                        /* Loop counter */
2850     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2851     Select *pLoop;                /* For looping through SELECT statements */
2852     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2853     int nCol;                     /* Number of columns in result set */
2854 
2855     assert( p->pNext==0 );
2856     nCol = p->pEList->nExpr;
2857     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2858     if( !pKeyInfo ){
2859       rc = SQLITE_NOMEM_BKPT;
2860       goto multi_select_end;
2861     }
2862     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2863       *apColl = multiSelectCollSeq(pParse, p, i);
2864       if( 0==*apColl ){
2865         *apColl = db->pDfltColl;
2866       }
2867     }
2868 
2869     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2870       for(i=0; i<2; i++){
2871         int addr = pLoop->addrOpenEphm[i];
2872         if( addr<0 ){
2873           /* If [0] is unused then [1] is also unused.  So we can
2874           ** always safely abort as soon as the first unused slot is found */
2875           assert( pLoop->addrOpenEphm[1]<0 );
2876           break;
2877         }
2878         sqlite3VdbeChangeP2(v, addr, nCol);
2879         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2880                             P4_KEYINFO);
2881         pLoop->addrOpenEphm[i] = -1;
2882       }
2883     }
2884     sqlite3KeyInfoUnref(pKeyInfo);
2885   }
2886 
2887 multi_select_end:
2888   pDest->iSdst = dest.iSdst;
2889   pDest->nSdst = dest.nSdst;
2890   sqlite3SelectDelete(db, pDelete);
2891   return rc;
2892 }
2893 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2894 
2895 /*
2896 ** Error message for when two or more terms of a compound select have different
2897 ** size result sets.
2898 */
2899 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2900   if( p->selFlags & SF_Values ){
2901     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2902   }else{
2903     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2904       " do not have the same number of result columns", selectOpName(p->op));
2905   }
2906 }
2907 
2908 /*
2909 ** Code an output subroutine for a coroutine implementation of a
2910 ** SELECT statment.
2911 **
2912 ** The data to be output is contained in pIn->iSdst.  There are
2913 ** pIn->nSdst columns to be output.  pDest is where the output should
2914 ** be sent.
2915 **
2916 ** regReturn is the number of the register holding the subroutine
2917 ** return address.
2918 **
2919 ** If regPrev>0 then it is the first register in a vector that
2920 ** records the previous output.  mem[regPrev] is a flag that is false
2921 ** if there has been no previous output.  If regPrev>0 then code is
2922 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2923 ** keys.
2924 **
2925 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2926 ** iBreak.
2927 */
2928 static int generateOutputSubroutine(
2929   Parse *pParse,          /* Parsing context */
2930   Select *p,              /* The SELECT statement */
2931   SelectDest *pIn,        /* Coroutine supplying data */
2932   SelectDest *pDest,      /* Where to send the data */
2933   int regReturn,          /* The return address register */
2934   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2935   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2936   int iBreak              /* Jump here if we hit the LIMIT */
2937 ){
2938   Vdbe *v = pParse->pVdbe;
2939   int iContinue;
2940   int addr;
2941 
2942   addr = sqlite3VdbeCurrentAddr(v);
2943   iContinue = sqlite3VdbeMakeLabel(pParse);
2944 
2945   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2946   */
2947   if( regPrev ){
2948     int addr1, addr2;
2949     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2950     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2951                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2952     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2953     sqlite3VdbeJumpHere(v, addr1);
2954     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2955     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2956   }
2957   if( pParse->db->mallocFailed ) return 0;
2958 
2959   /* Suppress the first OFFSET entries if there is an OFFSET clause
2960   */
2961   codeOffset(v, p->iOffset, iContinue);
2962 
2963   assert( pDest->eDest!=SRT_Exists );
2964   assert( pDest->eDest!=SRT_Table );
2965   switch( pDest->eDest ){
2966     /* Store the result as data using a unique key.
2967     */
2968     case SRT_EphemTab: {
2969       int r1 = sqlite3GetTempReg(pParse);
2970       int r2 = sqlite3GetTempReg(pParse);
2971       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2972       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2973       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2974       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2975       sqlite3ReleaseTempReg(pParse, r2);
2976       sqlite3ReleaseTempReg(pParse, r1);
2977       break;
2978     }
2979 
2980 #ifndef SQLITE_OMIT_SUBQUERY
2981     /* If we are creating a set for an "expr IN (SELECT ...)".
2982     */
2983     case SRT_Set: {
2984       int r1;
2985       testcase( pIn->nSdst>1 );
2986       r1 = sqlite3GetTempReg(pParse);
2987       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2988           r1, pDest->zAffSdst, pIn->nSdst);
2989       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2990                            pIn->iSdst, pIn->nSdst);
2991       sqlite3ReleaseTempReg(pParse, r1);
2992       break;
2993     }
2994 
2995     /* If this is a scalar select that is part of an expression, then
2996     ** store the results in the appropriate memory cell and break out
2997     ** of the scan loop.  Note that the select might return multiple columns
2998     ** if it is the RHS of a row-value IN operator.
2999     */
3000     case SRT_Mem: {
3001       if( pParse->nErr==0 ){
3002         testcase( pIn->nSdst>1 );
3003         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3004       }
3005       /* The LIMIT clause will jump out of the loop for us */
3006       break;
3007     }
3008 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3009 
3010     /* The results are stored in a sequence of registers
3011     ** starting at pDest->iSdst.  Then the co-routine yields.
3012     */
3013     case SRT_Coroutine: {
3014       if( pDest->iSdst==0 ){
3015         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3016         pDest->nSdst = pIn->nSdst;
3017       }
3018       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3019       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3020       break;
3021     }
3022 
3023     /* If none of the above, then the result destination must be
3024     ** SRT_Output.  This routine is never called with any other
3025     ** destination other than the ones handled above or SRT_Output.
3026     **
3027     ** For SRT_Output, results are stored in a sequence of registers.
3028     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3029     ** return the next row of result.
3030     */
3031     default: {
3032       assert( pDest->eDest==SRT_Output );
3033       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3034       break;
3035     }
3036   }
3037 
3038   /* Jump to the end of the loop if the LIMIT is reached.
3039   */
3040   if( p->iLimit ){
3041     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3042   }
3043 
3044   /* Generate the subroutine return
3045   */
3046   sqlite3VdbeResolveLabel(v, iContinue);
3047   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3048 
3049   return addr;
3050 }
3051 
3052 /*
3053 ** Alternative compound select code generator for cases when there
3054 ** is an ORDER BY clause.
3055 **
3056 ** We assume a query of the following form:
3057 **
3058 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3059 **
3060 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3061 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3062 ** co-routines.  Then run the co-routines in parallel and merge the results
3063 ** into the output.  In addition to the two coroutines (called selectA and
3064 ** selectB) there are 7 subroutines:
3065 **
3066 **    outA:    Move the output of the selectA coroutine into the output
3067 **             of the compound query.
3068 **
3069 **    outB:    Move the output of the selectB coroutine into the output
3070 **             of the compound query.  (Only generated for UNION and
3071 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3072 **             appears only in B.)
3073 **
3074 **    AltB:    Called when there is data from both coroutines and A<B.
3075 **
3076 **    AeqB:    Called when there is data from both coroutines and A==B.
3077 **
3078 **    AgtB:    Called when there is data from both coroutines and A>B.
3079 **
3080 **    EofA:    Called when data is exhausted from selectA.
3081 **
3082 **    EofB:    Called when data is exhausted from selectB.
3083 **
3084 ** The implementation of the latter five subroutines depend on which
3085 ** <operator> is used:
3086 **
3087 **
3088 **             UNION ALL         UNION            EXCEPT          INTERSECT
3089 **          -------------  -----------------  --------------  -----------------
3090 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3091 **
3092 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3093 **
3094 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3095 **
3096 **   EofA:   outB, nextB      outB, nextB          halt             halt
3097 **
3098 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3099 **
3100 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3101 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3102 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3103 ** following nextX causes a jump to the end of the select processing.
3104 **
3105 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3106 ** within the output subroutine.  The regPrev register set holds the previously
3107 ** output value.  A comparison is made against this value and the output
3108 ** is skipped if the next results would be the same as the previous.
3109 **
3110 ** The implementation plan is to implement the two coroutines and seven
3111 ** subroutines first, then put the control logic at the bottom.  Like this:
3112 **
3113 **          goto Init
3114 **     coA: coroutine for left query (A)
3115 **     coB: coroutine for right query (B)
3116 **    outA: output one row of A
3117 **    outB: output one row of B (UNION and UNION ALL only)
3118 **    EofA: ...
3119 **    EofB: ...
3120 **    AltB: ...
3121 **    AeqB: ...
3122 **    AgtB: ...
3123 **    Init: initialize coroutine registers
3124 **          yield coA
3125 **          if eof(A) goto EofA
3126 **          yield coB
3127 **          if eof(B) goto EofB
3128 **    Cmpr: Compare A, B
3129 **          Jump AltB, AeqB, AgtB
3130 **     End: ...
3131 **
3132 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3133 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3134 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3135 ** and AgtB jump to either L2 or to one of EofA or EofB.
3136 */
3137 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3138 static int multiSelectOrderBy(
3139   Parse *pParse,        /* Parsing context */
3140   Select *p,            /* The right-most of SELECTs to be coded */
3141   SelectDest *pDest     /* What to do with query results */
3142 ){
3143   int i, j;             /* Loop counters */
3144   Select *pPrior;       /* Another SELECT immediately to our left */
3145   Vdbe *v;              /* Generate code to this VDBE */
3146   SelectDest destA;     /* Destination for coroutine A */
3147   SelectDest destB;     /* Destination for coroutine B */
3148   int regAddrA;         /* Address register for select-A coroutine */
3149   int regAddrB;         /* Address register for select-B coroutine */
3150   int addrSelectA;      /* Address of the select-A coroutine */
3151   int addrSelectB;      /* Address of the select-B coroutine */
3152   int regOutA;          /* Address register for the output-A subroutine */
3153   int regOutB;          /* Address register for the output-B subroutine */
3154   int addrOutA;         /* Address of the output-A subroutine */
3155   int addrOutB = 0;     /* Address of the output-B subroutine */
3156   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3157   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3158   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3159   int addrAltB;         /* Address of the A<B subroutine */
3160   int addrAeqB;         /* Address of the A==B subroutine */
3161   int addrAgtB;         /* Address of the A>B subroutine */
3162   int regLimitA;        /* Limit register for select-A */
3163   int regLimitB;        /* Limit register for select-A */
3164   int regPrev;          /* A range of registers to hold previous output */
3165   int savedLimit;       /* Saved value of p->iLimit */
3166   int savedOffset;      /* Saved value of p->iOffset */
3167   int labelCmpr;        /* Label for the start of the merge algorithm */
3168   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3169   int addr1;            /* Jump instructions that get retargetted */
3170   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3171   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3172   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3173   sqlite3 *db;          /* Database connection */
3174   ExprList *pOrderBy;   /* The ORDER BY clause */
3175   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3176   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3177 
3178   assert( p->pOrderBy!=0 );
3179   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3180   db = pParse->db;
3181   v = pParse->pVdbe;
3182   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3183   labelEnd = sqlite3VdbeMakeLabel(pParse);
3184   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3185 
3186 
3187   /* Patch up the ORDER BY clause
3188   */
3189   op = p->op;
3190   pPrior = p->pPrior;
3191   assert( pPrior->pOrderBy==0 );
3192   pOrderBy = p->pOrderBy;
3193   assert( pOrderBy );
3194   nOrderBy = pOrderBy->nExpr;
3195 
3196   /* For operators other than UNION ALL we have to make sure that
3197   ** the ORDER BY clause covers every term of the result set.  Add
3198   ** terms to the ORDER BY clause as necessary.
3199   */
3200   if( op!=TK_ALL ){
3201     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3202       struct ExprList_item *pItem;
3203       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3204         assert( pItem->u.x.iOrderByCol>0 );
3205         if( pItem->u.x.iOrderByCol==i ) break;
3206       }
3207       if( j==nOrderBy ){
3208         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3209         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3210         pNew->flags |= EP_IntValue;
3211         pNew->u.iValue = i;
3212         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3213         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3214       }
3215     }
3216   }
3217 
3218   /* Compute the comparison permutation and keyinfo that is used with
3219   ** the permutation used to determine if the next
3220   ** row of results comes from selectA or selectB.  Also add explicit
3221   ** collations to the ORDER BY clause terms so that when the subqueries
3222   ** to the right and the left are evaluated, they use the correct
3223   ** collation.
3224   */
3225   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3226   if( aPermute ){
3227     struct ExprList_item *pItem;
3228     aPermute[0] = nOrderBy;
3229     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3230       assert( pItem->u.x.iOrderByCol>0 );
3231       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3232       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3233     }
3234     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3235   }else{
3236     pKeyMerge = 0;
3237   }
3238 
3239   /* Reattach the ORDER BY clause to the query.
3240   */
3241   p->pOrderBy = pOrderBy;
3242   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3243 
3244   /* Allocate a range of temporary registers and the KeyInfo needed
3245   ** for the logic that removes duplicate result rows when the
3246   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3247   */
3248   if( op==TK_ALL ){
3249     regPrev = 0;
3250   }else{
3251     int nExpr = p->pEList->nExpr;
3252     assert( nOrderBy>=nExpr || db->mallocFailed );
3253     regPrev = pParse->nMem+1;
3254     pParse->nMem += nExpr+1;
3255     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3256     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3257     if( pKeyDup ){
3258       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3259       for(i=0; i<nExpr; i++){
3260         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3261         pKeyDup->aSortFlags[i] = 0;
3262       }
3263     }
3264   }
3265 
3266   /* Separate the left and the right query from one another
3267   */
3268   p->pPrior = 0;
3269   pPrior->pNext = 0;
3270   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3271   if( pPrior->pPrior==0 ){
3272     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3273   }
3274 
3275   /* Compute the limit registers */
3276   computeLimitRegisters(pParse, p, labelEnd);
3277   if( p->iLimit && op==TK_ALL ){
3278     regLimitA = ++pParse->nMem;
3279     regLimitB = ++pParse->nMem;
3280     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3281                                   regLimitA);
3282     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3283   }else{
3284     regLimitA = regLimitB = 0;
3285   }
3286   sqlite3ExprDelete(db, p->pLimit);
3287   p->pLimit = 0;
3288 
3289   regAddrA = ++pParse->nMem;
3290   regAddrB = ++pParse->nMem;
3291   regOutA = ++pParse->nMem;
3292   regOutB = ++pParse->nMem;
3293   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3294   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3295 
3296   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3297 
3298   /* Generate a coroutine to evaluate the SELECT statement to the
3299   ** left of the compound operator - the "A" select.
3300   */
3301   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3302   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3303   VdbeComment((v, "left SELECT"));
3304   pPrior->iLimit = regLimitA;
3305   ExplainQueryPlan((pParse, 1, "LEFT"));
3306   sqlite3Select(pParse, pPrior, &destA);
3307   sqlite3VdbeEndCoroutine(v, regAddrA);
3308   sqlite3VdbeJumpHere(v, addr1);
3309 
3310   /* Generate a coroutine to evaluate the SELECT statement on
3311   ** the right - the "B" select
3312   */
3313   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3314   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3315   VdbeComment((v, "right SELECT"));
3316   savedLimit = p->iLimit;
3317   savedOffset = p->iOffset;
3318   p->iLimit = regLimitB;
3319   p->iOffset = 0;
3320   ExplainQueryPlan((pParse, 1, "RIGHT"));
3321   sqlite3Select(pParse, p, &destB);
3322   p->iLimit = savedLimit;
3323   p->iOffset = savedOffset;
3324   sqlite3VdbeEndCoroutine(v, regAddrB);
3325 
3326   /* Generate a subroutine that outputs the current row of the A
3327   ** select as the next output row of the compound select.
3328   */
3329   VdbeNoopComment((v, "Output routine for A"));
3330   addrOutA = generateOutputSubroutine(pParse,
3331                  p, &destA, pDest, regOutA,
3332                  regPrev, pKeyDup, labelEnd);
3333 
3334   /* Generate a subroutine that outputs the current row of the B
3335   ** select as the next output row of the compound select.
3336   */
3337   if( op==TK_ALL || op==TK_UNION ){
3338     VdbeNoopComment((v, "Output routine for B"));
3339     addrOutB = generateOutputSubroutine(pParse,
3340                  p, &destB, pDest, regOutB,
3341                  regPrev, pKeyDup, labelEnd);
3342   }
3343   sqlite3KeyInfoUnref(pKeyDup);
3344 
3345   /* Generate a subroutine to run when the results from select A
3346   ** are exhausted and only data in select B remains.
3347   */
3348   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3349     addrEofA_noB = addrEofA = labelEnd;
3350   }else{
3351     VdbeNoopComment((v, "eof-A subroutine"));
3352     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3353     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3354                                      VdbeCoverage(v);
3355     sqlite3VdbeGoto(v, addrEofA);
3356     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3357   }
3358 
3359   /* Generate a subroutine to run when the results from select B
3360   ** are exhausted and only data in select A remains.
3361   */
3362   if( op==TK_INTERSECT ){
3363     addrEofB = addrEofA;
3364     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3365   }else{
3366     VdbeNoopComment((v, "eof-B subroutine"));
3367     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3368     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3369     sqlite3VdbeGoto(v, addrEofB);
3370   }
3371 
3372   /* Generate code to handle the case of A<B
3373   */
3374   VdbeNoopComment((v, "A-lt-B subroutine"));
3375   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3376   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3377   sqlite3VdbeGoto(v, labelCmpr);
3378 
3379   /* Generate code to handle the case of A==B
3380   */
3381   if( op==TK_ALL ){
3382     addrAeqB = addrAltB;
3383   }else if( op==TK_INTERSECT ){
3384     addrAeqB = addrAltB;
3385     addrAltB++;
3386   }else{
3387     VdbeNoopComment((v, "A-eq-B subroutine"));
3388     addrAeqB =
3389     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3390     sqlite3VdbeGoto(v, labelCmpr);
3391   }
3392 
3393   /* Generate code to handle the case of A>B
3394   */
3395   VdbeNoopComment((v, "A-gt-B subroutine"));
3396   addrAgtB = sqlite3VdbeCurrentAddr(v);
3397   if( op==TK_ALL || op==TK_UNION ){
3398     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3399   }
3400   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3401   sqlite3VdbeGoto(v, labelCmpr);
3402 
3403   /* This code runs once to initialize everything.
3404   */
3405   sqlite3VdbeJumpHere(v, addr1);
3406   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3407   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3408 
3409   /* Implement the main merge loop
3410   */
3411   sqlite3VdbeResolveLabel(v, labelCmpr);
3412   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3413   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3414                          (char*)pKeyMerge, P4_KEYINFO);
3415   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3416   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3417 
3418   /* Jump to the this point in order to terminate the query.
3419   */
3420   sqlite3VdbeResolveLabel(v, labelEnd);
3421 
3422   /* Reassembly the compound query so that it will be freed correctly
3423   ** by the calling function */
3424   if( p->pPrior ){
3425     sqlite3SelectDelete(db, p->pPrior);
3426   }
3427   p->pPrior = pPrior;
3428   pPrior->pNext = p;
3429 
3430   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3431   **** subqueries ****/
3432   ExplainQueryPlanPop(pParse);
3433   return pParse->nErr!=0;
3434 }
3435 #endif
3436 
3437 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3438 
3439 /* An instance of the SubstContext object describes an substitution edit
3440 ** to be performed on a parse tree.
3441 **
3442 ** All references to columns in table iTable are to be replaced by corresponding
3443 ** expressions in pEList.
3444 */
3445 typedef struct SubstContext {
3446   Parse *pParse;            /* The parsing context */
3447   int iTable;               /* Replace references to this table */
3448   int iNewTable;            /* New table number */
3449   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3450   ExprList *pEList;         /* Replacement expressions */
3451 } SubstContext;
3452 
3453 /* Forward Declarations */
3454 static void substExprList(SubstContext*, ExprList*);
3455 static void substSelect(SubstContext*, Select*, int);
3456 
3457 /*
3458 ** Scan through the expression pExpr.  Replace every reference to
3459 ** a column in table number iTable with a copy of the iColumn-th
3460 ** entry in pEList.  (But leave references to the ROWID column
3461 ** unchanged.)
3462 **
3463 ** This routine is part of the flattening procedure.  A subquery
3464 ** whose result set is defined by pEList appears as entry in the
3465 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3466 ** FORM clause entry is iTable.  This routine makes the necessary
3467 ** changes to pExpr so that it refers directly to the source table
3468 ** of the subquery rather the result set of the subquery.
3469 */
3470 static Expr *substExpr(
3471   SubstContext *pSubst,  /* Description of the substitution */
3472   Expr *pExpr            /* Expr in which substitution occurs */
3473 ){
3474   if( pExpr==0 ) return 0;
3475   if( ExprHasProperty(pExpr, EP_FromJoin)
3476    && pExpr->iRightJoinTable==pSubst->iTable
3477   ){
3478     pExpr->iRightJoinTable = pSubst->iNewTable;
3479   }
3480   if( pExpr->op==TK_COLUMN
3481    && pExpr->iTable==pSubst->iTable
3482    && !ExprHasProperty(pExpr, EP_FixedCol)
3483   ){
3484     if( pExpr->iColumn<0 ){
3485       pExpr->op = TK_NULL;
3486     }else{
3487       Expr *pNew;
3488       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3489       Expr ifNullRow;
3490       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3491       assert( pExpr->pRight==0 );
3492       if( sqlite3ExprIsVector(pCopy) ){
3493         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3494       }else{
3495         sqlite3 *db = pSubst->pParse->db;
3496         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3497           memset(&ifNullRow, 0, sizeof(ifNullRow));
3498           ifNullRow.op = TK_IF_NULL_ROW;
3499           ifNullRow.pLeft = pCopy;
3500           ifNullRow.iTable = pSubst->iNewTable;
3501           ifNullRow.flags = EP_Skip;
3502           pCopy = &ifNullRow;
3503         }
3504         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3505         pNew = sqlite3ExprDup(db, pCopy, 0);
3506         if( pNew && pSubst->isLeftJoin ){
3507           ExprSetProperty(pNew, EP_CanBeNull);
3508         }
3509         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3510           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3511           ExprSetProperty(pNew, EP_FromJoin);
3512         }
3513         sqlite3ExprDelete(db, pExpr);
3514         pExpr = pNew;
3515 
3516         /* Ensure that the expression now has an implicit collation sequence,
3517         ** just as it did when it was a column of a view or sub-query. */
3518         if( pExpr ){
3519           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3520             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3521             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3522                 (pColl ? pColl->zName : "BINARY")
3523             );
3524           }
3525           ExprClearProperty(pExpr, EP_Collate);
3526         }
3527       }
3528     }
3529   }else{
3530     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3531       pExpr->iTable = pSubst->iNewTable;
3532     }
3533     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3534     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3535     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3536       substSelect(pSubst, pExpr->x.pSelect, 1);
3537     }else{
3538       substExprList(pSubst, pExpr->x.pList);
3539     }
3540 #ifndef SQLITE_OMIT_WINDOWFUNC
3541     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3542       Window *pWin = pExpr->y.pWin;
3543       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3544       substExprList(pSubst, pWin->pPartition);
3545       substExprList(pSubst, pWin->pOrderBy);
3546     }
3547 #endif
3548   }
3549   return pExpr;
3550 }
3551 static void substExprList(
3552   SubstContext *pSubst, /* Description of the substitution */
3553   ExprList *pList       /* List to scan and in which to make substitutes */
3554 ){
3555   int i;
3556   if( pList==0 ) return;
3557   for(i=0; i<pList->nExpr; i++){
3558     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3559   }
3560 }
3561 static void substSelect(
3562   SubstContext *pSubst, /* Description of the substitution */
3563   Select *p,            /* SELECT statement in which to make substitutions */
3564   int doPrior           /* Do substitutes on p->pPrior too */
3565 ){
3566   SrcList *pSrc;
3567   struct SrcList_item *pItem;
3568   int i;
3569   if( !p ) return;
3570   do{
3571     substExprList(pSubst, p->pEList);
3572     substExprList(pSubst, p->pGroupBy);
3573     substExprList(pSubst, p->pOrderBy);
3574     p->pHaving = substExpr(pSubst, p->pHaving);
3575     p->pWhere = substExpr(pSubst, p->pWhere);
3576     pSrc = p->pSrc;
3577     assert( pSrc!=0 );
3578     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3579       substSelect(pSubst, pItem->pSelect, 1);
3580       if( pItem->fg.isTabFunc ){
3581         substExprList(pSubst, pItem->u1.pFuncArg);
3582       }
3583     }
3584   }while( doPrior && (p = p->pPrior)!=0 );
3585 }
3586 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3587 
3588 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3589 /*
3590 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3591 ** clause of that SELECT.
3592 **
3593 ** This routine scans the entire SELECT statement and recomputes the
3594 ** pSrcItem->colUsed mask.
3595 */
3596 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3597   struct SrcList_item *pItem;
3598   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3599   pItem = pWalker->u.pSrcItem;
3600   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3601   if( pExpr->iColumn<0 ) return WRC_Continue;
3602   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3603   return WRC_Continue;
3604 }
3605 static void recomputeColumnsUsed(
3606   Select *pSelect,                 /* The complete SELECT statement */
3607   struct SrcList_item *pSrcItem    /* Which FROM clause item to recompute */
3608 ){
3609   Walker w;
3610   if( NEVER(pSrcItem->pTab==0) ) return;
3611   memset(&w, 0, sizeof(w));
3612   w.xExprCallback = recomputeColumnsUsedExpr;
3613   w.xSelectCallback = sqlite3SelectWalkNoop;
3614   w.u.pSrcItem = pSrcItem;
3615   pSrcItem->colUsed = 0;
3616   sqlite3WalkSelect(&w, pSelect);
3617 }
3618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3619 
3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3621 /*
3622 ** This routine attempts to flatten subqueries as a performance optimization.
3623 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3624 **
3625 ** To understand the concept of flattening, consider the following
3626 ** query:
3627 **
3628 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3629 **
3630 ** The default way of implementing this query is to execute the
3631 ** subquery first and store the results in a temporary table, then
3632 ** run the outer query on that temporary table.  This requires two
3633 ** passes over the data.  Furthermore, because the temporary table
3634 ** has no indices, the WHERE clause on the outer query cannot be
3635 ** optimized.
3636 **
3637 ** This routine attempts to rewrite queries such as the above into
3638 ** a single flat select, like this:
3639 **
3640 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3641 **
3642 ** The code generated for this simplification gives the same result
3643 ** but only has to scan the data once.  And because indices might
3644 ** exist on the table t1, a complete scan of the data might be
3645 ** avoided.
3646 **
3647 ** Flattening is subject to the following constraints:
3648 **
3649 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3650 **        The subquery and the outer query cannot both be aggregates.
3651 **
3652 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3653 **        (2) If the subquery is an aggregate then
3654 **        (2a) the outer query must not be a join and
3655 **        (2b) the outer query must not use subqueries
3656 **             other than the one FROM-clause subquery that is a candidate
3657 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3658 **             from 2015-02-09.)
3659 **
3660 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3661 **        (3a) the subquery may not be a join and
3662 **        (3b) the FROM clause of the subquery may not contain a virtual
3663 **             table and
3664 **        (3c) the outer query may not be an aggregate.
3665 **        (3d) the outer query may not be DISTINCT.
3666 **
3667 **   (4)  The subquery can not be DISTINCT.
3668 **
3669 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3670 **        sub-queries that were excluded from this optimization. Restriction
3671 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3672 **
3673 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3674 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3675 **
3676 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3677 **        A FROM clause, consider adding a FROM clause with the special
3678 **        table sqlite_once that consists of a single row containing a
3679 **        single NULL.
3680 **
3681 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3682 **
3683 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3684 **
3685 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3686 **        accidently carried the comment forward until 2014-09-15.  Original
3687 **        constraint: "If the subquery is aggregate then the outer query
3688 **        may not use LIMIT."
3689 **
3690 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3691 **
3692 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3693 **        a separate restriction deriving from ticket #350.
3694 **
3695 **  (13)  The subquery and outer query may not both use LIMIT.
3696 **
3697 **  (14)  The subquery may not use OFFSET.
3698 **
3699 **  (15)  If the outer query is part of a compound select, then the
3700 **        subquery may not use LIMIT.
3701 **        (See ticket #2339 and ticket [02a8e81d44]).
3702 **
3703 **  (16)  If the outer query is aggregate, then the subquery may not
3704 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3705 **        until we introduced the group_concat() function.
3706 **
3707 **  (17)  If the subquery is a compound select, then
3708 **        (17a) all compound operators must be a UNION ALL, and
3709 **        (17b) no terms within the subquery compound may be aggregate
3710 **              or DISTINCT, and
3711 **        (17c) every term within the subquery compound must have a FROM clause
3712 **        (17d) the outer query may not be
3713 **              (17d1) aggregate, or
3714 **              (17d2) DISTINCT, or
3715 **              (17d3) a join.
3716 **        (17e) the subquery may not contain window functions
3717 **
3718 **        The parent and sub-query may contain WHERE clauses. Subject to
3719 **        rules (11), (13) and (14), they may also contain ORDER BY,
3720 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3721 **        operator other than UNION ALL because all the other compound
3722 **        operators have an implied DISTINCT which is disallowed by
3723 **        restriction (4).
3724 **
3725 **        Also, each component of the sub-query must return the same number
3726 **        of result columns. This is actually a requirement for any compound
3727 **        SELECT statement, but all the code here does is make sure that no
3728 **        such (illegal) sub-query is flattened. The caller will detect the
3729 **        syntax error and return a detailed message.
3730 **
3731 **  (18)  If the sub-query is a compound select, then all terms of the
3732 **        ORDER BY clause of the parent must be simple references to
3733 **        columns of the sub-query.
3734 **
3735 **  (19)  If the subquery uses LIMIT then the outer query may not
3736 **        have a WHERE clause.
3737 **
3738 **  (20)  If the sub-query is a compound select, then it must not use
3739 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3740 **        somewhat by saying that the terms of the ORDER BY clause must
3741 **        appear as unmodified result columns in the outer query.  But we
3742 **        have other optimizations in mind to deal with that case.
3743 **
3744 **  (21)  If the subquery uses LIMIT then the outer query may not be
3745 **        DISTINCT.  (See ticket [752e1646fc]).
3746 **
3747 **  (22)  The subquery may not be a recursive CTE.
3748 **
3749 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3750 **        a recursive CTE, then the sub-query may not be a compound query.
3751 **        This restriction is because transforming the
3752 **        parent to a compound query confuses the code that handles
3753 **        recursive queries in multiSelect().
3754 **
3755 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3756 **        The subquery may not be an aggregate that uses the built-in min() or
3757 **        or max() functions.  (Without this restriction, a query like:
3758 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3759 **        return the value X for which Y was maximal.)
3760 **
3761 **  (25)  If either the subquery or the parent query contains a window
3762 **        function in the select list or ORDER BY clause, flattening
3763 **        is not attempted.
3764 **
3765 **
3766 ** In this routine, the "p" parameter is a pointer to the outer query.
3767 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3768 ** uses aggregates.
3769 **
3770 ** If flattening is not attempted, this routine is a no-op and returns 0.
3771 ** If flattening is attempted this routine returns 1.
3772 **
3773 ** All of the expression analysis must occur on both the outer query and
3774 ** the subquery before this routine runs.
3775 */
3776 static int flattenSubquery(
3777   Parse *pParse,       /* Parsing context */
3778   Select *p,           /* The parent or outer SELECT statement */
3779   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3780   int isAgg            /* True if outer SELECT uses aggregate functions */
3781 ){
3782   const char *zSavedAuthContext = pParse->zAuthContext;
3783   Select *pParent;    /* Current UNION ALL term of the other query */
3784   Select *pSub;       /* The inner query or "subquery" */
3785   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3786   SrcList *pSrc;      /* The FROM clause of the outer query */
3787   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3788   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3789   int iNewParent = -1;/* Replacement table for iParent */
3790   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3791   int i;              /* Loop counter */
3792   Expr *pWhere;                    /* The WHERE clause */
3793   struct SrcList_item *pSubitem;   /* The subquery */
3794   sqlite3 *db = pParse->db;
3795 
3796   /* Check to see if flattening is permitted.  Return 0 if not.
3797   */
3798   assert( p!=0 );
3799   assert( p->pPrior==0 );
3800   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3801   pSrc = p->pSrc;
3802   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3803   pSubitem = &pSrc->a[iFrom];
3804   iParent = pSubitem->iCursor;
3805   pSub = pSubitem->pSelect;
3806   assert( pSub!=0 );
3807 
3808 #ifndef SQLITE_OMIT_WINDOWFUNC
3809   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3810 #endif
3811 
3812   pSubSrc = pSub->pSrc;
3813   assert( pSubSrc );
3814   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3815   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3816   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3817   ** became arbitrary expressions, we were forced to add restrictions (13)
3818   ** and (14). */
3819   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3820   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3821   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3822     return 0;                                            /* Restriction (15) */
3823   }
3824   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3825   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3826   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3827      return 0;         /* Restrictions (8)(9) */
3828   }
3829   if( p->pOrderBy && pSub->pOrderBy ){
3830      return 0;                                           /* Restriction (11) */
3831   }
3832   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3833   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3834   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3835      return 0;         /* Restriction (21) */
3836   }
3837   if( pSub->selFlags & (SF_Recursive) ){
3838     return 0; /* Restrictions (22) */
3839   }
3840 
3841   /*
3842   ** If the subquery is the right operand of a LEFT JOIN, then the
3843   ** subquery may not be a join itself (3a). Example of why this is not
3844   ** allowed:
3845   **
3846   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3847   **
3848   ** If we flatten the above, we would get
3849   **
3850   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3851   **
3852   ** which is not at all the same thing.
3853   **
3854   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3855   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3856   ** aggregates are processed - there is no mechanism to determine if
3857   ** the LEFT JOIN table should be all-NULL.
3858   **
3859   ** See also tickets #306, #350, and #3300.
3860   */
3861   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3862     isLeftJoin = 1;
3863     if( pSubSrc->nSrc>1                   /* (3a) */
3864      || isAgg                             /* (3b) */
3865      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3866      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3867     ){
3868       return 0;
3869     }
3870   }
3871 #ifdef SQLITE_EXTRA_IFNULLROW
3872   else if( iFrom>0 && !isAgg ){
3873     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3874     ** every reference to any result column from subquery in a join, even
3875     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3876     ** opcode. */
3877     isLeftJoin = -1;
3878   }
3879 #endif
3880 
3881   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3882   ** use only the UNION ALL operator. And none of the simple select queries
3883   ** that make up the compound SELECT are allowed to be aggregate or distinct
3884   ** queries.
3885   */
3886   if( pSub->pPrior ){
3887     if( pSub->pOrderBy ){
3888       return 0;  /* Restriction (20) */
3889     }
3890     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3891       return 0; /* (17d1), (17d2), or (17d3) */
3892     }
3893     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3894       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3895       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3896       assert( pSub->pSrc!=0 );
3897       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3898       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3899        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3900        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3901 #ifndef SQLITE_OMIT_WINDOWFUNC
3902        || pSub1->pWin                                          /* (17e) */
3903 #endif
3904       ){
3905         return 0;
3906       }
3907       testcase( pSub1->pSrc->nSrc>1 );
3908     }
3909 
3910     /* Restriction (18). */
3911     if( p->pOrderBy ){
3912       int ii;
3913       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3914         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3915       }
3916     }
3917   }
3918 
3919   /* Ex-restriction (23):
3920   ** The only way that the recursive part of a CTE can contain a compound
3921   ** subquery is for the subquery to be one term of a join.  But if the
3922   ** subquery is a join, then the flattening has already been stopped by
3923   ** restriction (17d3)
3924   */
3925   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3926 
3927   /***** If we reach this point, flattening is permitted. *****/
3928   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3929                    pSub->selId, pSub, iFrom));
3930 
3931   /* Authorize the subquery */
3932   pParse->zAuthContext = pSubitem->zName;
3933   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3934   testcase( i==SQLITE_DENY );
3935   pParse->zAuthContext = zSavedAuthContext;
3936 
3937   /* If the sub-query is a compound SELECT statement, then (by restrictions
3938   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3939   ** be of the form:
3940   **
3941   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3942   **
3943   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3944   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3945   ** OFFSET clauses and joins them to the left-hand-side of the original
3946   ** using UNION ALL operators. In this case N is the number of simple
3947   ** select statements in the compound sub-query.
3948   **
3949   ** Example:
3950   **
3951   **     SELECT a+1 FROM (
3952   **        SELECT x FROM tab
3953   **        UNION ALL
3954   **        SELECT y FROM tab
3955   **        UNION ALL
3956   **        SELECT abs(z*2) FROM tab2
3957   **     ) WHERE a!=5 ORDER BY 1
3958   **
3959   ** Transformed into:
3960   **
3961   **     SELECT x+1 FROM tab WHERE x+1!=5
3962   **     UNION ALL
3963   **     SELECT y+1 FROM tab WHERE y+1!=5
3964   **     UNION ALL
3965   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3966   **     ORDER BY 1
3967   **
3968   ** We call this the "compound-subquery flattening".
3969   */
3970   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3971     Select *pNew;
3972     ExprList *pOrderBy = p->pOrderBy;
3973     Expr *pLimit = p->pLimit;
3974     Select *pPrior = p->pPrior;
3975     p->pOrderBy = 0;
3976     p->pSrc = 0;
3977     p->pPrior = 0;
3978     p->pLimit = 0;
3979     pNew = sqlite3SelectDup(db, p, 0);
3980     p->pLimit = pLimit;
3981     p->pOrderBy = pOrderBy;
3982     p->pSrc = pSrc;
3983     p->op = TK_ALL;
3984     if( pNew==0 ){
3985       p->pPrior = pPrior;
3986     }else{
3987       pNew->pPrior = pPrior;
3988       if( pPrior ) pPrior->pNext = pNew;
3989       pNew->pNext = p;
3990       p->pPrior = pNew;
3991       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3992                               " creates %u as peer\n",pNew->selId));
3993     }
3994     if( db->mallocFailed ) return 1;
3995   }
3996 
3997   /* Begin flattening the iFrom-th entry of the FROM clause
3998   ** in the outer query.
3999   */
4000   pSub = pSub1 = pSubitem->pSelect;
4001 
4002   /* Delete the transient table structure associated with the
4003   ** subquery
4004   */
4005   sqlite3DbFree(db, pSubitem->zDatabase);
4006   sqlite3DbFree(db, pSubitem->zName);
4007   sqlite3DbFree(db, pSubitem->zAlias);
4008   pSubitem->zDatabase = 0;
4009   pSubitem->zName = 0;
4010   pSubitem->zAlias = 0;
4011   pSubitem->pSelect = 0;
4012 
4013   /* Defer deleting the Table object associated with the
4014   ** subquery until code generation is
4015   ** complete, since there may still exist Expr.pTab entries that
4016   ** refer to the subquery even after flattening.  Ticket #3346.
4017   **
4018   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4019   */
4020   if( ALWAYS(pSubitem->pTab!=0) ){
4021     Table *pTabToDel = pSubitem->pTab;
4022     if( pTabToDel->nTabRef==1 ){
4023       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4024       pTabToDel->pNextZombie = pToplevel->pZombieTab;
4025       pToplevel->pZombieTab = pTabToDel;
4026     }else{
4027       pTabToDel->nTabRef--;
4028     }
4029     pSubitem->pTab = 0;
4030   }
4031 
4032   /* The following loop runs once for each term in a compound-subquery
4033   ** flattening (as described above).  If we are doing a different kind
4034   ** of flattening - a flattening other than a compound-subquery flattening -
4035   ** then this loop only runs once.
4036   **
4037   ** This loop moves all of the FROM elements of the subquery into the
4038   ** the FROM clause of the outer query.  Before doing this, remember
4039   ** the cursor number for the original outer query FROM element in
4040   ** iParent.  The iParent cursor will never be used.  Subsequent code
4041   ** will scan expressions looking for iParent references and replace
4042   ** those references with expressions that resolve to the subquery FROM
4043   ** elements we are now copying in.
4044   */
4045   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4046     int nSubSrc;
4047     u8 jointype = 0;
4048     assert( pSub!=0 );
4049     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4050     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4051     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4052 
4053     if( pSrc ){
4054       assert( pParent==p );  /* First time through the loop */
4055       jointype = pSubitem->fg.jointype;
4056     }else{
4057       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4058       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4059       if( pSrc==0 ) break;
4060       pParent->pSrc = pSrc;
4061     }
4062 
4063     /* The subquery uses a single slot of the FROM clause of the outer
4064     ** query.  If the subquery has more than one element in its FROM clause,
4065     ** then expand the outer query to make space for it to hold all elements
4066     ** of the subquery.
4067     **
4068     ** Example:
4069     **
4070     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4071     **
4072     ** The outer query has 3 slots in its FROM clause.  One slot of the
4073     ** outer query (the middle slot) is used by the subquery.  The next
4074     ** block of code will expand the outer query FROM clause to 4 slots.
4075     ** The middle slot is expanded to two slots in order to make space
4076     ** for the two elements in the FROM clause of the subquery.
4077     */
4078     if( nSubSrc>1 ){
4079       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4080       if( pSrc==0 ) break;
4081       pParent->pSrc = pSrc;
4082     }
4083 
4084     /* Transfer the FROM clause terms from the subquery into the
4085     ** outer query.
4086     */
4087     for(i=0; i<nSubSrc; i++){
4088       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4089       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4090       pSrc->a[i+iFrom] = pSubSrc->a[i];
4091       iNewParent = pSubSrc->a[i].iCursor;
4092       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4093     }
4094     pSrc->a[iFrom].fg.jointype = jointype;
4095 
4096     /* Now begin substituting subquery result set expressions for
4097     ** references to the iParent in the outer query.
4098     **
4099     ** Example:
4100     **
4101     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4102     **   \                     \_____________ subquery __________/          /
4103     **    \_____________________ outer query ______________________________/
4104     **
4105     ** We look at every expression in the outer query and every place we see
4106     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4107     */
4108     if( pSub->pOrderBy ){
4109       /* At this point, any non-zero iOrderByCol values indicate that the
4110       ** ORDER BY column expression is identical to the iOrderByCol'th
4111       ** expression returned by SELECT statement pSub. Since these values
4112       ** do not necessarily correspond to columns in SELECT statement pParent,
4113       ** zero them before transfering the ORDER BY clause.
4114       **
4115       ** Not doing this may cause an error if a subsequent call to this
4116       ** function attempts to flatten a compound sub-query into pParent
4117       ** (the only way this can happen is if the compound sub-query is
4118       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4119       ExprList *pOrderBy = pSub->pOrderBy;
4120       for(i=0; i<pOrderBy->nExpr; i++){
4121         pOrderBy->a[i].u.x.iOrderByCol = 0;
4122       }
4123       assert( pParent->pOrderBy==0 );
4124       pParent->pOrderBy = pOrderBy;
4125       pSub->pOrderBy = 0;
4126     }
4127     pWhere = pSub->pWhere;
4128     pSub->pWhere = 0;
4129     if( isLeftJoin>0 ){
4130       sqlite3SetJoinExpr(pWhere, iNewParent);
4131     }
4132     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4133     if( db->mallocFailed==0 ){
4134       SubstContext x;
4135       x.pParse = pParse;
4136       x.iTable = iParent;
4137       x.iNewTable = iNewParent;
4138       x.isLeftJoin = isLeftJoin;
4139       x.pEList = pSub->pEList;
4140       substSelect(&x, pParent, 0);
4141     }
4142 
4143     /* The flattened query is a compound if either the inner or the
4144     ** outer query is a compound. */
4145     pParent->selFlags |= pSub->selFlags & SF_Compound;
4146     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4147 
4148     /*
4149     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4150     **
4151     ** One is tempted to try to add a and b to combine the limits.  But this
4152     ** does not work if either limit is negative.
4153     */
4154     if( pSub->pLimit ){
4155       pParent->pLimit = pSub->pLimit;
4156       pSub->pLimit = 0;
4157     }
4158 
4159     /* Recompute the SrcList_item.colUsed masks for the flattened
4160     ** tables. */
4161     for(i=0; i<nSubSrc; i++){
4162       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4163     }
4164   }
4165 
4166   /* Finially, delete what is left of the subquery and return
4167   ** success.
4168   */
4169   sqlite3SelectDelete(db, pSub1);
4170 
4171 #if SELECTTRACE_ENABLED
4172   if( sqlite3SelectTrace & 0x100 ){
4173     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4174     sqlite3TreeViewSelect(0, p, 0);
4175   }
4176 #endif
4177 
4178   return 1;
4179 }
4180 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4181 
4182 /*
4183 ** A structure to keep track of all of the column values that are fixed to
4184 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4185 */
4186 typedef struct WhereConst WhereConst;
4187 struct WhereConst {
4188   Parse *pParse;   /* Parsing context */
4189   int nConst;      /* Number for COLUMN=CONSTANT terms */
4190   int nChng;       /* Number of times a constant is propagated */
4191   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4192 };
4193 
4194 /*
4195 ** Add a new entry to the pConst object.  Except, do not add duplicate
4196 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4197 **
4198 ** The caller guarantees the pColumn is a column and pValue is a constant.
4199 ** This routine has to do some additional checks before completing the
4200 ** insert.
4201 */
4202 static void constInsert(
4203   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4204   Expr *pColumn,       /* The COLUMN part of the constraint */
4205   Expr *pValue,        /* The VALUE part of the constraint */
4206   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4207 ){
4208   int i;
4209   assert( pColumn->op==TK_COLUMN );
4210   assert( sqlite3ExprIsConstant(pValue) );
4211 
4212   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4213   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4214   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4215     return;
4216   }
4217 
4218   /* 2018-10-25 ticket [cf5ed20f]
4219   ** Make sure the same pColumn is not inserted more than once */
4220   for(i=0; i<pConst->nConst; i++){
4221     const Expr *pE2 = pConst->apExpr[i*2];
4222     assert( pE2->op==TK_COLUMN );
4223     if( pE2->iTable==pColumn->iTable
4224      && pE2->iColumn==pColumn->iColumn
4225     ){
4226       return;  /* Already present.  Return without doing anything. */
4227     }
4228   }
4229 
4230   pConst->nConst++;
4231   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4232                          pConst->nConst*2*sizeof(Expr*));
4233   if( pConst->apExpr==0 ){
4234     pConst->nConst = 0;
4235   }else{
4236     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4237     pConst->apExpr[pConst->nConst*2-1] = pValue;
4238   }
4239 }
4240 
4241 /*
4242 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4243 ** is a constant expression and where the term must be true because it
4244 ** is part of the AND-connected terms of the expression.  For each term
4245 ** found, add it to the pConst structure.
4246 */
4247 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4248   Expr *pRight, *pLeft;
4249   if( pExpr==0 ) return;
4250   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4251   if( pExpr->op==TK_AND ){
4252     findConstInWhere(pConst, pExpr->pRight);
4253     findConstInWhere(pConst, pExpr->pLeft);
4254     return;
4255   }
4256   if( pExpr->op!=TK_EQ ) return;
4257   pRight = pExpr->pRight;
4258   pLeft = pExpr->pLeft;
4259   assert( pRight!=0 );
4260   assert( pLeft!=0 );
4261   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4262     constInsert(pConst,pRight,pLeft,pExpr);
4263   }
4264   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4265     constInsert(pConst,pLeft,pRight,pExpr);
4266   }
4267 }
4268 
4269 /*
4270 ** This is a Walker expression callback.  pExpr is a candidate expression
4271 ** to be replaced by a value.  If pExpr is equivalent to one of the
4272 ** columns named in pWalker->u.pConst, then overwrite it with its
4273 ** corresponding value.
4274 */
4275 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4276   int i;
4277   WhereConst *pConst;
4278   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4279   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4280     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4281     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4282     return WRC_Continue;
4283   }
4284   pConst = pWalker->u.pConst;
4285   for(i=0; i<pConst->nConst; i++){
4286     Expr *pColumn = pConst->apExpr[i*2];
4287     if( pColumn==pExpr ) continue;
4288     if( pColumn->iTable!=pExpr->iTable ) continue;
4289     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4290     /* A match is found.  Add the EP_FixedCol property */
4291     pConst->nChng++;
4292     ExprClearProperty(pExpr, EP_Leaf);
4293     ExprSetProperty(pExpr, EP_FixedCol);
4294     assert( pExpr->pLeft==0 );
4295     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4296     break;
4297   }
4298   return WRC_Prune;
4299 }
4300 
4301 /*
4302 ** The WHERE-clause constant propagation optimization.
4303 **
4304 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4305 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4306 ** part of a ON clause from a LEFT JOIN, then throughout the query
4307 ** replace all other occurrences of COLUMN with CONSTANT.
4308 **
4309 ** For example, the query:
4310 **
4311 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4312 **
4313 ** Is transformed into
4314 **
4315 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4316 **
4317 ** Return true if any transformations where made and false if not.
4318 **
4319 ** Implementation note:  Constant propagation is tricky due to affinity
4320 ** and collating sequence interactions.  Consider this example:
4321 **
4322 **    CREATE TABLE t1(a INT,b TEXT);
4323 **    INSERT INTO t1 VALUES(123,'0123');
4324 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4325 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4326 **
4327 ** The two SELECT statements above should return different answers.  b=a
4328 ** is alway true because the comparison uses numeric affinity, but b=123
4329 ** is false because it uses text affinity and '0123' is not the same as '123'.
4330 ** To work around this, the expression tree is not actually changed from
4331 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4332 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4333 ** routines know to generate the constant "123" instead of looking up the
4334 ** column value.  Also, to avoid collation problems, this optimization is
4335 ** only attempted if the "a=123" term uses the default BINARY collation.
4336 */
4337 static int propagateConstants(
4338   Parse *pParse,   /* The parsing context */
4339   Select *p        /* The query in which to propagate constants */
4340 ){
4341   WhereConst x;
4342   Walker w;
4343   int nChng = 0;
4344   x.pParse = pParse;
4345   do{
4346     x.nConst = 0;
4347     x.nChng = 0;
4348     x.apExpr = 0;
4349     findConstInWhere(&x, p->pWhere);
4350     if( x.nConst ){
4351       memset(&w, 0, sizeof(w));
4352       w.pParse = pParse;
4353       w.xExprCallback = propagateConstantExprRewrite;
4354       w.xSelectCallback = sqlite3SelectWalkNoop;
4355       w.xSelectCallback2 = 0;
4356       w.walkerDepth = 0;
4357       w.u.pConst = &x;
4358       sqlite3WalkExpr(&w, p->pWhere);
4359       sqlite3DbFree(x.pParse->db, x.apExpr);
4360       nChng += x.nChng;
4361     }
4362   }while( x.nChng );
4363   return nChng;
4364 }
4365 
4366 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4367 /*
4368 ** Make copies of relevant WHERE clause terms of the outer query into
4369 ** the WHERE clause of subquery.  Example:
4370 **
4371 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4372 **
4373 ** Transformed into:
4374 **
4375 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4376 **     WHERE x=5 AND y=10;
4377 **
4378 ** The hope is that the terms added to the inner query will make it more
4379 ** efficient.
4380 **
4381 ** Do not attempt this optimization if:
4382 **
4383 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4384 **           disallow this optimization for aggregate subqueries, but now
4385 **           it is allowed by putting the extra terms on the HAVING clause.
4386 **           The added HAVING clause is pointless if the subquery lacks
4387 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4388 **           so there does not appear to be any reason to add extra logic
4389 **           to suppress it. **)
4390 **
4391 **   (2) The inner query is the recursive part of a common table expression.
4392 **
4393 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4394 **       clause would change the meaning of the LIMIT).
4395 **
4396 **   (4) The inner query is the right operand of a LEFT JOIN and the
4397 **       expression to be pushed down does not come from the ON clause
4398 **       on that LEFT JOIN.
4399 **
4400 **   (5) The WHERE clause expression originates in the ON or USING clause
4401 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4402 **       left join.  An example:
4403 **
4404 **           SELECT *
4405 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4406 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4407 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4408 **
4409 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4410 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4411 **       then the (1,1,NULL) row would be suppressed.
4412 **
4413 **   (6) The inner query features one or more window-functions (since
4414 **       changes to the WHERE clause of the inner query could change the
4415 **       window over which window functions are calculated).
4416 **
4417 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4418 ** terms are duplicated into the subquery.
4419 */
4420 static int pushDownWhereTerms(
4421   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4422   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4423   Expr *pWhere,         /* The WHERE clause of the outer query */
4424   int iCursor,          /* Cursor number of the subquery */
4425   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4426 ){
4427   Expr *pNew;
4428   int nChng = 0;
4429   if( pWhere==0 ) return 0;
4430   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4431 
4432 #ifndef SQLITE_OMIT_WINDOWFUNC
4433   if( pSubq->pWin ) return 0;    /* restriction (6) */
4434 #endif
4435 
4436 #ifdef SQLITE_DEBUG
4437   /* Only the first term of a compound can have a WITH clause.  But make
4438   ** sure no other terms are marked SF_Recursive in case something changes
4439   ** in the future.
4440   */
4441   {
4442     Select *pX;
4443     for(pX=pSubq; pX; pX=pX->pPrior){
4444       assert( (pX->selFlags & (SF_Recursive))==0 );
4445     }
4446   }
4447 #endif
4448 
4449   if( pSubq->pLimit!=0 ){
4450     return 0; /* restriction (3) */
4451   }
4452   while( pWhere->op==TK_AND ){
4453     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4454                                 iCursor, isLeftJoin);
4455     pWhere = pWhere->pLeft;
4456   }
4457   if( isLeftJoin
4458    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4459          || pWhere->iRightJoinTable!=iCursor)
4460   ){
4461     return 0; /* restriction (4) */
4462   }
4463   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4464     return 0; /* restriction (5) */
4465   }
4466   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4467     nChng++;
4468     while( pSubq ){
4469       SubstContext x;
4470       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4471       unsetJoinExpr(pNew, -1);
4472       x.pParse = pParse;
4473       x.iTable = iCursor;
4474       x.iNewTable = iCursor;
4475       x.isLeftJoin = 0;
4476       x.pEList = pSubq->pEList;
4477       pNew = substExpr(&x, pNew);
4478       if( pSubq->selFlags & SF_Aggregate ){
4479         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4480       }else{
4481         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4482       }
4483       pSubq = pSubq->pPrior;
4484     }
4485   }
4486   return nChng;
4487 }
4488 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4489 
4490 /*
4491 ** The pFunc is the only aggregate function in the query.  Check to see
4492 ** if the query is a candidate for the min/max optimization.
4493 **
4494 ** If the query is a candidate for the min/max optimization, then set
4495 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4496 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4497 ** whether pFunc is a min() or max() function.
4498 **
4499 ** If the query is not a candidate for the min/max optimization, return
4500 ** WHERE_ORDERBY_NORMAL (which must be zero).
4501 **
4502 ** This routine must be called after aggregate functions have been
4503 ** located but before their arguments have been subjected to aggregate
4504 ** analysis.
4505 */
4506 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4507   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4508   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4509   const char *zFunc;                    /* Name of aggregate function pFunc */
4510   ExprList *pOrderBy;
4511   u8 sortFlags = 0;
4512 
4513   assert( *ppMinMax==0 );
4514   assert( pFunc->op==TK_AGG_FUNCTION );
4515   assert( !IsWindowFunc(pFunc) );
4516   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4517     return eRet;
4518   }
4519   zFunc = pFunc->u.zToken;
4520   if( sqlite3StrICmp(zFunc, "min")==0 ){
4521     eRet = WHERE_ORDERBY_MIN;
4522     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4523       sortFlags = KEYINFO_ORDER_BIGNULL;
4524     }
4525   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4526     eRet = WHERE_ORDERBY_MAX;
4527     sortFlags = KEYINFO_ORDER_DESC;
4528   }else{
4529     return eRet;
4530   }
4531   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4532   assert( pOrderBy!=0 || db->mallocFailed );
4533   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4534   return eRet;
4535 }
4536 
4537 /*
4538 ** The select statement passed as the first argument is an aggregate query.
4539 ** The second argument is the associated aggregate-info object. This
4540 ** function tests if the SELECT is of the form:
4541 **
4542 **   SELECT count(*) FROM <tbl>
4543 **
4544 ** where table is a database table, not a sub-select or view. If the query
4545 ** does match this pattern, then a pointer to the Table object representing
4546 ** <tbl> is returned. Otherwise, 0 is returned.
4547 */
4548 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4549   Table *pTab;
4550   Expr *pExpr;
4551 
4552   assert( !p->pGroupBy );
4553 
4554   if( p->pWhere || p->pEList->nExpr!=1
4555    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4556   ){
4557     return 0;
4558   }
4559   pTab = p->pSrc->a[0].pTab;
4560   pExpr = p->pEList->a[0].pExpr;
4561   assert( pTab && !pTab->pSelect && pExpr );
4562 
4563   if( IsVirtual(pTab) ) return 0;
4564   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4565   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4566   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4567   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4568 
4569   return pTab;
4570 }
4571 
4572 /*
4573 ** If the source-list item passed as an argument was augmented with an
4574 ** INDEXED BY clause, then try to locate the specified index. If there
4575 ** was such a clause and the named index cannot be found, return
4576 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4577 ** pFrom->pIndex and return SQLITE_OK.
4578 */
4579 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4580   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4581     Table *pTab = pFrom->pTab;
4582     char *zIndexedBy = pFrom->u1.zIndexedBy;
4583     Index *pIdx;
4584     for(pIdx=pTab->pIndex;
4585         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4586         pIdx=pIdx->pNext
4587     );
4588     if( !pIdx ){
4589       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4590       pParse->checkSchema = 1;
4591       return SQLITE_ERROR;
4592     }
4593     pFrom->pIBIndex = pIdx;
4594   }
4595   return SQLITE_OK;
4596 }
4597 /*
4598 ** Detect compound SELECT statements that use an ORDER BY clause with
4599 ** an alternative collating sequence.
4600 **
4601 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4602 **
4603 ** These are rewritten as a subquery:
4604 **
4605 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4606 **     ORDER BY ... COLLATE ...
4607 **
4608 ** This transformation is necessary because the multiSelectOrderBy() routine
4609 ** above that generates the code for a compound SELECT with an ORDER BY clause
4610 ** uses a merge algorithm that requires the same collating sequence on the
4611 ** result columns as on the ORDER BY clause.  See ticket
4612 ** http://www.sqlite.org/src/info/6709574d2a
4613 **
4614 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4615 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4616 ** there are COLLATE terms in the ORDER BY.
4617 */
4618 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4619   int i;
4620   Select *pNew;
4621   Select *pX;
4622   sqlite3 *db;
4623   struct ExprList_item *a;
4624   SrcList *pNewSrc;
4625   Parse *pParse;
4626   Token dummy;
4627 
4628   if( p->pPrior==0 ) return WRC_Continue;
4629   if( p->pOrderBy==0 ) return WRC_Continue;
4630   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4631   if( pX==0 ) return WRC_Continue;
4632   a = p->pOrderBy->a;
4633   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4634     if( a[i].pExpr->flags & EP_Collate ) break;
4635   }
4636   if( i<0 ) return WRC_Continue;
4637 
4638   /* If we reach this point, that means the transformation is required. */
4639 
4640   pParse = pWalker->pParse;
4641   db = pParse->db;
4642   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4643   if( pNew==0 ) return WRC_Abort;
4644   memset(&dummy, 0, sizeof(dummy));
4645   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4646   if( pNewSrc==0 ) return WRC_Abort;
4647   *pNew = *p;
4648   p->pSrc = pNewSrc;
4649   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4650   p->op = TK_SELECT;
4651   p->pWhere = 0;
4652   pNew->pGroupBy = 0;
4653   pNew->pHaving = 0;
4654   pNew->pOrderBy = 0;
4655   p->pPrior = 0;
4656   p->pNext = 0;
4657   p->pWith = 0;
4658 #ifndef SQLITE_OMIT_WINDOWFUNC
4659   p->pWinDefn = 0;
4660 #endif
4661   p->selFlags &= ~SF_Compound;
4662   assert( (p->selFlags & SF_Converted)==0 );
4663   p->selFlags |= SF_Converted;
4664   assert( pNew->pPrior!=0 );
4665   pNew->pPrior->pNext = pNew;
4666   pNew->pLimit = 0;
4667   return WRC_Continue;
4668 }
4669 
4670 /*
4671 ** Check to see if the FROM clause term pFrom has table-valued function
4672 ** arguments.  If it does, leave an error message in pParse and return
4673 ** non-zero, since pFrom is not allowed to be a table-valued function.
4674 */
4675 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4676   if( pFrom->fg.isTabFunc ){
4677     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4678     return 1;
4679   }
4680   return 0;
4681 }
4682 
4683 #ifndef SQLITE_OMIT_CTE
4684 /*
4685 ** Argument pWith (which may be NULL) points to a linked list of nested
4686 ** WITH contexts, from inner to outermost. If the table identified by
4687 ** FROM clause element pItem is really a common-table-expression (CTE)
4688 ** then return a pointer to the CTE definition for that table. Otherwise
4689 ** return NULL.
4690 **
4691 ** If a non-NULL value is returned, set *ppContext to point to the With
4692 ** object that the returned CTE belongs to.
4693 */
4694 static struct Cte *searchWith(
4695   With *pWith,                    /* Current innermost WITH clause */
4696   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4697   With **ppContext                /* OUT: WITH clause return value belongs to */
4698 ){
4699   const char *zName;
4700   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4701     With *p;
4702     for(p=pWith; p; p=p->pOuter){
4703       int i;
4704       for(i=0; i<p->nCte; i++){
4705         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4706           *ppContext = p;
4707           return &p->a[i];
4708         }
4709       }
4710     }
4711   }
4712   return 0;
4713 }
4714 
4715 /* The code generator maintains a stack of active WITH clauses
4716 ** with the inner-most WITH clause being at the top of the stack.
4717 **
4718 ** This routine pushes the WITH clause passed as the second argument
4719 ** onto the top of the stack. If argument bFree is true, then this
4720 ** WITH clause will never be popped from the stack. In this case it
4721 ** should be freed along with the Parse object. In other cases, when
4722 ** bFree==0, the With object will be freed along with the SELECT
4723 ** statement with which it is associated.
4724 */
4725 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4726   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4727   if( pWith ){
4728     assert( pParse->pWith!=pWith );
4729     pWith->pOuter = pParse->pWith;
4730     pParse->pWith = pWith;
4731     if( bFree ) pParse->pWithToFree = pWith;
4732   }
4733 }
4734 
4735 /*
4736 ** This function checks if argument pFrom refers to a CTE declared by
4737 ** a WITH clause on the stack currently maintained by the parser. And,
4738 ** if currently processing a CTE expression, if it is a recursive
4739 ** reference to the current CTE.
4740 **
4741 ** If pFrom falls into either of the two categories above, pFrom->pTab
4742 ** and other fields are populated accordingly. The caller should check
4743 ** (pFrom->pTab!=0) to determine whether or not a successful match
4744 ** was found.
4745 **
4746 ** Whether or not a match is found, SQLITE_OK is returned if no error
4747 ** occurs. If an error does occur, an error message is stored in the
4748 ** parser and some error code other than SQLITE_OK returned.
4749 */
4750 static int withExpand(
4751   Walker *pWalker,
4752   struct SrcList_item *pFrom
4753 ){
4754   Parse *pParse = pWalker->pParse;
4755   sqlite3 *db = pParse->db;
4756   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4757   With *pWith;                    /* WITH clause that pCte belongs to */
4758 
4759   assert( pFrom->pTab==0 );
4760   if( pParse->nErr ){
4761     return SQLITE_ERROR;
4762   }
4763 
4764   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4765   if( pCte ){
4766     Table *pTab;
4767     ExprList *pEList;
4768     Select *pSel;
4769     Select *pLeft;                /* Left-most SELECT statement */
4770     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4771     With *pSavedWith;             /* Initial value of pParse->pWith */
4772 
4773     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4774     ** recursive reference to CTE pCte. Leave an error in pParse and return
4775     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4776     ** In this case, proceed.  */
4777     if( pCte->zCteErr ){
4778       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4779       return SQLITE_ERROR;
4780     }
4781     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4782 
4783     assert( pFrom->pTab==0 );
4784     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4785     if( pTab==0 ) return WRC_Abort;
4786     pTab->nTabRef = 1;
4787     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4788     pTab->iPKey = -1;
4789     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4790     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4791     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4792     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4793     assert( pFrom->pSelect );
4794 
4795     /* Check if this is a recursive CTE. */
4796     pSel = pFrom->pSelect;
4797     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4798     if( bMayRecursive ){
4799       int i;
4800       SrcList *pSrc = pFrom->pSelect->pSrc;
4801       for(i=0; i<pSrc->nSrc; i++){
4802         struct SrcList_item *pItem = &pSrc->a[i];
4803         if( pItem->zDatabase==0
4804          && pItem->zName!=0
4805          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4806           ){
4807           pItem->pTab = pTab;
4808           pItem->fg.isRecursive = 1;
4809           pTab->nTabRef++;
4810           pSel->selFlags |= SF_Recursive;
4811         }
4812       }
4813     }
4814 
4815     /* Only one recursive reference is permitted. */
4816     if( pTab->nTabRef>2 ){
4817       sqlite3ErrorMsg(
4818           pParse, "multiple references to recursive table: %s", pCte->zName
4819       );
4820       return SQLITE_ERROR;
4821     }
4822     assert( pTab->nTabRef==1 ||
4823             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4824 
4825     pCte->zCteErr = "circular reference: %s";
4826     pSavedWith = pParse->pWith;
4827     pParse->pWith = pWith;
4828     if( bMayRecursive ){
4829       Select *pPrior = pSel->pPrior;
4830       assert( pPrior->pWith==0 );
4831       pPrior->pWith = pSel->pWith;
4832       sqlite3WalkSelect(pWalker, pPrior);
4833       pPrior->pWith = 0;
4834     }else{
4835       sqlite3WalkSelect(pWalker, pSel);
4836     }
4837     pParse->pWith = pWith;
4838 
4839     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4840     pEList = pLeft->pEList;
4841     if( pCte->pCols ){
4842       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4843         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4844             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4845         );
4846         pParse->pWith = pSavedWith;
4847         return SQLITE_ERROR;
4848       }
4849       pEList = pCte->pCols;
4850     }
4851 
4852     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4853     if( bMayRecursive ){
4854       if( pSel->selFlags & SF_Recursive ){
4855         pCte->zCteErr = "multiple recursive references: %s";
4856       }else{
4857         pCte->zCteErr = "recursive reference in a subquery: %s";
4858       }
4859       sqlite3WalkSelect(pWalker, pSel);
4860     }
4861     pCte->zCteErr = 0;
4862     pParse->pWith = pSavedWith;
4863   }
4864 
4865   return SQLITE_OK;
4866 }
4867 #endif
4868 
4869 #ifndef SQLITE_OMIT_CTE
4870 /*
4871 ** If the SELECT passed as the second argument has an associated WITH
4872 ** clause, pop it from the stack stored as part of the Parse object.
4873 **
4874 ** This function is used as the xSelectCallback2() callback by
4875 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4876 ** names and other FROM clause elements.
4877 */
4878 static void selectPopWith(Walker *pWalker, Select *p){
4879   Parse *pParse = pWalker->pParse;
4880   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4881     With *pWith = findRightmost(p)->pWith;
4882     if( pWith!=0 ){
4883       assert( pParse->pWith==pWith || pParse->nErr );
4884       pParse->pWith = pWith->pOuter;
4885     }
4886   }
4887 }
4888 #else
4889 #define selectPopWith 0
4890 #endif
4891 
4892 /*
4893 ** The SrcList_item structure passed as the second argument represents a
4894 ** sub-query in the FROM clause of a SELECT statement. This function
4895 ** allocates and populates the SrcList_item.pTab object. If successful,
4896 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4897 ** SQLITE_NOMEM.
4898 */
4899 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4900   Select *pSel = pFrom->pSelect;
4901   Table *pTab;
4902 
4903   assert( pSel );
4904   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4905   if( pTab==0 ) return SQLITE_NOMEM;
4906   pTab->nTabRef = 1;
4907   if( pFrom->zAlias ){
4908     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4909   }else{
4910     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4911   }
4912   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4913   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4914   pTab->iPKey = -1;
4915   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4916   pTab->tabFlags |= TF_Ephemeral;
4917 
4918   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4919 }
4920 
4921 /*
4922 ** This routine is a Walker callback for "expanding" a SELECT statement.
4923 ** "Expanding" means to do the following:
4924 **
4925 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4926 **         element of the FROM clause.
4927 **
4928 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4929 **         defines FROM clause.  When views appear in the FROM clause,
4930 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4931 **         that implements the view.  A copy is made of the view's SELECT
4932 **         statement so that we can freely modify or delete that statement
4933 **         without worrying about messing up the persistent representation
4934 **         of the view.
4935 **
4936 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4937 **         on joins and the ON and USING clause of joins.
4938 **
4939 **    (4)  Scan the list of columns in the result set (pEList) looking
4940 **         for instances of the "*" operator or the TABLE.* operator.
4941 **         If found, expand each "*" to be every column in every table
4942 **         and TABLE.* to be every column in TABLE.
4943 **
4944 */
4945 static int selectExpander(Walker *pWalker, Select *p){
4946   Parse *pParse = pWalker->pParse;
4947   int i, j, k;
4948   SrcList *pTabList;
4949   ExprList *pEList;
4950   struct SrcList_item *pFrom;
4951   sqlite3 *db = pParse->db;
4952   Expr *pE, *pRight, *pExpr;
4953   u16 selFlags = p->selFlags;
4954   u32 elistFlags = 0;
4955 
4956   p->selFlags |= SF_Expanded;
4957   if( db->mallocFailed  ){
4958     return WRC_Abort;
4959   }
4960   assert( p->pSrc!=0 );
4961   if( (selFlags & SF_Expanded)!=0 ){
4962     return WRC_Prune;
4963   }
4964   if( pWalker->eCode ){
4965     /* Renumber selId because it has been copied from a view */
4966     p->selId = ++pParse->nSelect;
4967   }
4968   pTabList = p->pSrc;
4969   pEList = p->pEList;
4970   sqlite3WithPush(pParse, p->pWith, 0);
4971 
4972   /* Make sure cursor numbers have been assigned to all entries in
4973   ** the FROM clause of the SELECT statement.
4974   */
4975   sqlite3SrcListAssignCursors(pParse, pTabList);
4976 
4977   /* Look up every table named in the FROM clause of the select.  If
4978   ** an entry of the FROM clause is a subquery instead of a table or view,
4979   ** then create a transient table structure to describe the subquery.
4980   */
4981   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4982     Table *pTab;
4983     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4984     if( pFrom->fg.isRecursive ) continue;
4985     assert( pFrom->pTab==0 );
4986 #ifndef SQLITE_OMIT_CTE
4987     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4988     if( pFrom->pTab ) {} else
4989 #endif
4990     if( pFrom->zName==0 ){
4991 #ifndef SQLITE_OMIT_SUBQUERY
4992       Select *pSel = pFrom->pSelect;
4993       /* A sub-query in the FROM clause of a SELECT */
4994       assert( pSel!=0 );
4995       assert( pFrom->pTab==0 );
4996       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4997       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4998 #endif
4999     }else{
5000       /* An ordinary table or view name in the FROM clause */
5001       assert( pFrom->pTab==0 );
5002       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5003       if( pTab==0 ) return WRC_Abort;
5004       if( pTab->nTabRef>=0xffff ){
5005         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5006            pTab->zName);
5007         pFrom->pTab = 0;
5008         return WRC_Abort;
5009       }
5010       pTab->nTabRef++;
5011       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5012         return WRC_Abort;
5013       }
5014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5015       if( IsVirtual(pTab) || pTab->pSelect ){
5016         i16 nCol;
5017         u8 eCodeOrig = pWalker->eCode;
5018         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5019         assert( pFrom->pSelect==0 );
5020         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5021           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5022             pTab->zName);
5023         }
5024 #ifndef SQLITE_OMIT_VIRTUALTABLE
5025         if( IsVirtual(pTab)
5026          && pFrom->fg.fromDDL
5027          && ALWAYS(pTab->pVTable!=0)
5028          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5029         ){
5030           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5031                                   pTab->zName);
5032         }
5033 #endif
5034         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5035         nCol = pTab->nCol;
5036         pTab->nCol = -1;
5037         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5038         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5039         pWalker->eCode = eCodeOrig;
5040         pTab->nCol = nCol;
5041       }
5042 #endif
5043     }
5044 
5045     /* Locate the index named by the INDEXED BY clause, if any. */
5046     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5047       return WRC_Abort;
5048     }
5049   }
5050 
5051   /* Process NATURAL keywords, and ON and USING clauses of joins.
5052   */
5053   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5054     return WRC_Abort;
5055   }
5056 
5057   /* For every "*" that occurs in the column list, insert the names of
5058   ** all columns in all tables.  And for every TABLE.* insert the names
5059   ** of all columns in TABLE.  The parser inserted a special expression
5060   ** with the TK_ASTERISK operator for each "*" that it found in the column
5061   ** list.  The following code just has to locate the TK_ASTERISK
5062   ** expressions and expand each one to the list of all columns in
5063   ** all tables.
5064   **
5065   ** The first loop just checks to see if there are any "*" operators
5066   ** that need expanding.
5067   */
5068   for(k=0; k<pEList->nExpr; k++){
5069     pE = pEList->a[k].pExpr;
5070     if( pE->op==TK_ASTERISK ) break;
5071     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5072     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5073     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5074     elistFlags |= pE->flags;
5075   }
5076   if( k<pEList->nExpr ){
5077     /*
5078     ** If we get here it means the result set contains one or more "*"
5079     ** operators that need to be expanded.  Loop through each expression
5080     ** in the result set and expand them one by one.
5081     */
5082     struct ExprList_item *a = pEList->a;
5083     ExprList *pNew = 0;
5084     int flags = pParse->db->flags;
5085     int longNames = (flags & SQLITE_FullColNames)!=0
5086                       && (flags & SQLITE_ShortColNames)==0;
5087 
5088     for(k=0; k<pEList->nExpr; k++){
5089       pE = a[k].pExpr;
5090       elistFlags |= pE->flags;
5091       pRight = pE->pRight;
5092       assert( pE->op!=TK_DOT || pRight!=0 );
5093       if( pE->op!=TK_ASTERISK
5094        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5095       ){
5096         /* This particular expression does not need to be expanded.
5097         */
5098         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5099         if( pNew ){
5100           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5101           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5102           a[k].zEName = 0;
5103         }
5104         a[k].pExpr = 0;
5105       }else{
5106         /* This expression is a "*" or a "TABLE.*" and needs to be
5107         ** expanded. */
5108         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5109         char *zTName = 0;       /* text of name of TABLE */
5110         if( pE->op==TK_DOT ){
5111           assert( pE->pLeft!=0 );
5112           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5113           zTName = pE->pLeft->u.zToken;
5114         }
5115         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5116           Table *pTab = pFrom->pTab;
5117           Select *pSub = pFrom->pSelect;
5118           char *zTabName = pFrom->zAlias;
5119           const char *zSchemaName = 0;
5120           int iDb;
5121           if( zTabName==0 ){
5122             zTabName = pTab->zName;
5123           }
5124           if( db->mallocFailed ) break;
5125           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5126             pSub = 0;
5127             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5128               continue;
5129             }
5130             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5131             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5132           }
5133           for(j=0; j<pTab->nCol; j++){
5134             char *zName = pTab->aCol[j].zName;
5135             char *zColname;  /* The computed column name */
5136             char *zToFree;   /* Malloced string that needs to be freed */
5137             Token sColname;  /* Computed column name as a token */
5138 
5139             assert( zName );
5140             if( zTName && pSub
5141              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5142             ){
5143               continue;
5144             }
5145 
5146             /* If a column is marked as 'hidden', omit it from the expanded
5147             ** result-set list unless the SELECT has the SF_IncludeHidden
5148             ** bit set.
5149             */
5150             if( (p->selFlags & SF_IncludeHidden)==0
5151              && IsHiddenColumn(&pTab->aCol[j])
5152             ){
5153               continue;
5154             }
5155             tableSeen = 1;
5156 
5157             if( i>0 && zTName==0 ){
5158               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5159                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5160               ){
5161                 /* In a NATURAL join, omit the join columns from the
5162                 ** table to the right of the join */
5163                 continue;
5164               }
5165               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5166                 /* In a join with a USING clause, omit columns in the
5167                 ** using clause from the table on the right. */
5168                 continue;
5169               }
5170             }
5171             pRight = sqlite3Expr(db, TK_ID, zName);
5172             zColname = zName;
5173             zToFree = 0;
5174             if( longNames || pTabList->nSrc>1 ){
5175               Expr *pLeft;
5176               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5177               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5178               if( zSchemaName ){
5179                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5180                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5181               }
5182               if( longNames ){
5183                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5184                 zToFree = zColname;
5185               }
5186             }else{
5187               pExpr = pRight;
5188             }
5189             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5190             sqlite3TokenInit(&sColname, zColname);
5191             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5192             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5193               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5194               sqlite3DbFree(db, pX->zEName);
5195               if( pSub ){
5196                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5197                 testcase( pX->zEName==0 );
5198               }else{
5199                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5200                                            zSchemaName, zTabName, zColname);
5201                 testcase( pX->zEName==0 );
5202               }
5203               pX->eEName = ENAME_TAB;
5204             }
5205             sqlite3DbFree(db, zToFree);
5206           }
5207         }
5208         if( !tableSeen ){
5209           if( zTName ){
5210             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5211           }else{
5212             sqlite3ErrorMsg(pParse, "no tables specified");
5213           }
5214         }
5215       }
5216     }
5217     sqlite3ExprListDelete(db, pEList);
5218     p->pEList = pNew;
5219   }
5220   if( p->pEList ){
5221     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5222       sqlite3ErrorMsg(pParse, "too many columns in result set");
5223       return WRC_Abort;
5224     }
5225     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5226       p->selFlags |= SF_ComplexResult;
5227     }
5228   }
5229   return WRC_Continue;
5230 }
5231 
5232 /*
5233 ** No-op routine for the parse-tree walker.
5234 **
5235 ** When this routine is the Walker.xExprCallback then expression trees
5236 ** are walked without any actions being taken at each node.  Presumably,
5237 ** when this routine is used for Walker.xExprCallback then
5238 ** Walker.xSelectCallback is set to do something useful for every
5239 ** subquery in the parser tree.
5240 */
5241 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5242   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5243   return WRC_Continue;
5244 }
5245 
5246 /*
5247 ** No-op routine for the parse-tree walker for SELECT statements.
5248 ** subquery in the parser tree.
5249 */
5250 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5251   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5252   return WRC_Continue;
5253 }
5254 
5255 #if SQLITE_DEBUG
5256 /*
5257 ** Always assert.  This xSelectCallback2 implementation proves that the
5258 ** xSelectCallback2 is never invoked.
5259 */
5260 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5261   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5262   assert( 0 );
5263 }
5264 #endif
5265 /*
5266 ** This routine "expands" a SELECT statement and all of its subqueries.
5267 ** For additional information on what it means to "expand" a SELECT
5268 ** statement, see the comment on the selectExpand worker callback above.
5269 **
5270 ** Expanding a SELECT statement is the first step in processing a
5271 ** SELECT statement.  The SELECT statement must be expanded before
5272 ** name resolution is performed.
5273 **
5274 ** If anything goes wrong, an error message is written into pParse.
5275 ** The calling function can detect the problem by looking at pParse->nErr
5276 ** and/or pParse->db->mallocFailed.
5277 */
5278 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5279   Walker w;
5280   w.xExprCallback = sqlite3ExprWalkNoop;
5281   w.pParse = pParse;
5282   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5283     w.xSelectCallback = convertCompoundSelectToSubquery;
5284     w.xSelectCallback2 = 0;
5285     sqlite3WalkSelect(&w, pSelect);
5286   }
5287   w.xSelectCallback = selectExpander;
5288   w.xSelectCallback2 = selectPopWith;
5289   w.eCode = 0;
5290   sqlite3WalkSelect(&w, pSelect);
5291 }
5292 
5293 
5294 #ifndef SQLITE_OMIT_SUBQUERY
5295 /*
5296 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5297 ** interface.
5298 **
5299 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5300 ** information to the Table structure that represents the result set
5301 ** of that subquery.
5302 **
5303 ** The Table structure that represents the result set was constructed
5304 ** by selectExpander() but the type and collation information was omitted
5305 ** at that point because identifiers had not yet been resolved.  This
5306 ** routine is called after identifier resolution.
5307 */
5308 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5309   Parse *pParse;
5310   int i;
5311   SrcList *pTabList;
5312   struct SrcList_item *pFrom;
5313 
5314   assert( p->selFlags & SF_Resolved );
5315   if( p->selFlags & SF_HasTypeInfo ) return;
5316   p->selFlags |= SF_HasTypeInfo;
5317   pParse = pWalker->pParse;
5318   pTabList = p->pSrc;
5319   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5320     Table *pTab = pFrom->pTab;
5321     assert( pTab!=0 );
5322     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5323       /* A sub-query in the FROM clause of a SELECT */
5324       Select *pSel = pFrom->pSelect;
5325       if( pSel ){
5326         while( pSel->pPrior ) pSel = pSel->pPrior;
5327         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5328                                                SQLITE_AFF_NONE);
5329       }
5330     }
5331   }
5332 }
5333 #endif
5334 
5335 
5336 /*
5337 ** This routine adds datatype and collating sequence information to
5338 ** the Table structures of all FROM-clause subqueries in a
5339 ** SELECT statement.
5340 **
5341 ** Use this routine after name resolution.
5342 */
5343 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5344 #ifndef SQLITE_OMIT_SUBQUERY
5345   Walker w;
5346   w.xSelectCallback = sqlite3SelectWalkNoop;
5347   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5348   w.xExprCallback = sqlite3ExprWalkNoop;
5349   w.pParse = pParse;
5350   sqlite3WalkSelect(&w, pSelect);
5351 #endif
5352 }
5353 
5354 
5355 /*
5356 ** This routine sets up a SELECT statement for processing.  The
5357 ** following is accomplished:
5358 **
5359 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5360 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5361 **     *  ON and USING clauses are shifted into WHERE statements
5362 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5363 **     *  Identifiers in expression are matched to tables.
5364 **
5365 ** This routine acts recursively on all subqueries within the SELECT.
5366 */
5367 void sqlite3SelectPrep(
5368   Parse *pParse,         /* The parser context */
5369   Select *p,             /* The SELECT statement being coded. */
5370   NameContext *pOuterNC  /* Name context for container */
5371 ){
5372   assert( p!=0 || pParse->db->mallocFailed );
5373   if( pParse->db->mallocFailed ) return;
5374   if( p->selFlags & SF_HasTypeInfo ) return;
5375   sqlite3SelectExpand(pParse, p);
5376   if( pParse->nErr || pParse->db->mallocFailed ) return;
5377   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5378   if( pParse->nErr || pParse->db->mallocFailed ) return;
5379   sqlite3SelectAddTypeInfo(pParse, p);
5380 }
5381 
5382 /*
5383 ** Reset the aggregate accumulator.
5384 **
5385 ** The aggregate accumulator is a set of memory cells that hold
5386 ** intermediate results while calculating an aggregate.  This
5387 ** routine generates code that stores NULLs in all of those memory
5388 ** cells.
5389 */
5390 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5391   Vdbe *v = pParse->pVdbe;
5392   int i;
5393   struct AggInfo_func *pFunc;
5394   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5395   if( nReg==0 ) return;
5396   if( pParse->nErr ) return;
5397 #ifdef SQLITE_DEBUG
5398   /* Verify that all AggInfo registers are within the range specified by
5399   ** AggInfo.mnReg..AggInfo.mxReg */
5400   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5401   for(i=0; i<pAggInfo->nColumn; i++){
5402     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5403          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5404   }
5405   for(i=0; i<pAggInfo->nFunc; i++){
5406     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5407          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5408   }
5409 #endif
5410   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5411   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5412     if( pFunc->iDistinct>=0 ){
5413       Expr *pE = pFunc->pExpr;
5414       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5415       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5416         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5417            "argument");
5418         pFunc->iDistinct = -1;
5419       }else{
5420         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5421         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5422                           (char*)pKeyInfo, P4_KEYINFO);
5423       }
5424     }
5425   }
5426 }
5427 
5428 /*
5429 ** Invoke the OP_AggFinalize opcode for every aggregate function
5430 ** in the AggInfo structure.
5431 */
5432 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5433   Vdbe *v = pParse->pVdbe;
5434   int i;
5435   struct AggInfo_func *pF;
5436   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5437     ExprList *pList = pF->pExpr->x.pList;
5438     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5439     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5440     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5441   }
5442 }
5443 
5444 
5445 /*
5446 ** Update the accumulator memory cells for an aggregate based on
5447 ** the current cursor position.
5448 **
5449 ** If regAcc is non-zero and there are no min() or max() aggregates
5450 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5451 ** registers if register regAcc contains 0. The caller will take care
5452 ** of setting and clearing regAcc.
5453 */
5454 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5455   Vdbe *v = pParse->pVdbe;
5456   int i;
5457   int regHit = 0;
5458   int addrHitTest = 0;
5459   struct AggInfo_func *pF;
5460   struct AggInfo_col *pC;
5461 
5462   pAggInfo->directMode = 1;
5463   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5464     int nArg;
5465     int addrNext = 0;
5466     int regAgg;
5467     ExprList *pList = pF->pExpr->x.pList;
5468     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5469     assert( !IsWindowFunc(pF->pExpr) );
5470     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5471       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5472       if( pAggInfo->nAccumulator
5473        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5474       ){
5475         if( regHit==0 ) regHit = ++pParse->nMem;
5476         /* If this is the first row of the group (regAcc==0), clear the
5477         ** "magnet" register regHit so that the accumulator registers
5478         ** are populated if the FILTER clause jumps over the the
5479         ** invocation of min() or max() altogether. Or, if this is not
5480         ** the first row (regAcc==1), set the magnet register so that the
5481         ** accumulators are not populated unless the min()/max() is invoked and
5482         ** indicates that they should be.  */
5483         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5484       }
5485       addrNext = sqlite3VdbeMakeLabel(pParse);
5486       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5487     }
5488     if( pList ){
5489       nArg = pList->nExpr;
5490       regAgg = sqlite3GetTempRange(pParse, nArg);
5491       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5492     }else{
5493       nArg = 0;
5494       regAgg = 0;
5495     }
5496     if( pF->iDistinct>=0 ){
5497       if( addrNext==0 ){
5498         addrNext = sqlite3VdbeMakeLabel(pParse);
5499       }
5500       testcase( nArg==0 );  /* Error condition */
5501       testcase( nArg>1 );   /* Also an error */
5502       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5503     }
5504     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5505       CollSeq *pColl = 0;
5506       struct ExprList_item *pItem;
5507       int j;
5508       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5509       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5510         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5511       }
5512       if( !pColl ){
5513         pColl = pParse->db->pDfltColl;
5514       }
5515       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5516       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5517     }
5518     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5519     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5520     sqlite3VdbeChangeP5(v, (u8)nArg);
5521     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5522     if( addrNext ){
5523       sqlite3VdbeResolveLabel(v, addrNext);
5524     }
5525   }
5526   if( regHit==0 && pAggInfo->nAccumulator ){
5527     regHit = regAcc;
5528   }
5529   if( regHit ){
5530     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5531   }
5532   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5533     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5534   }
5535 
5536   pAggInfo->directMode = 0;
5537   if( addrHitTest ){
5538     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5539   }
5540 }
5541 
5542 /*
5543 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5544 ** count(*) query ("SELECT count(*) FROM pTab").
5545 */
5546 #ifndef SQLITE_OMIT_EXPLAIN
5547 static void explainSimpleCount(
5548   Parse *pParse,                  /* Parse context */
5549   Table *pTab,                    /* Table being queried */
5550   Index *pIdx                     /* Index used to optimize scan, or NULL */
5551 ){
5552   if( pParse->explain==2 ){
5553     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5554     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5555         pTab->zName,
5556         bCover ? " USING COVERING INDEX " : "",
5557         bCover ? pIdx->zName : ""
5558     );
5559   }
5560 }
5561 #else
5562 # define explainSimpleCount(a,b,c)
5563 #endif
5564 
5565 /*
5566 ** sqlite3WalkExpr() callback used by havingToWhere().
5567 **
5568 ** If the node passed to the callback is a TK_AND node, return
5569 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5570 **
5571 ** Otherwise, return WRC_Prune. In this case, also check if the
5572 ** sub-expression matches the criteria for being moved to the WHERE
5573 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5574 ** within the HAVING expression with a constant "1".
5575 */
5576 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5577   if( pExpr->op!=TK_AND ){
5578     Select *pS = pWalker->u.pSelect;
5579     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5580       sqlite3 *db = pWalker->pParse->db;
5581       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5582       if( pNew ){
5583         Expr *pWhere = pS->pWhere;
5584         SWAP(Expr, *pNew, *pExpr);
5585         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5586         pS->pWhere = pNew;
5587         pWalker->eCode = 1;
5588       }
5589     }
5590     return WRC_Prune;
5591   }
5592   return WRC_Continue;
5593 }
5594 
5595 /*
5596 ** Transfer eligible terms from the HAVING clause of a query, which is
5597 ** processed after grouping, to the WHERE clause, which is processed before
5598 ** grouping. For example, the query:
5599 **
5600 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5601 **
5602 ** can be rewritten as:
5603 **
5604 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5605 **
5606 ** A term of the HAVING expression is eligible for transfer if it consists
5607 ** entirely of constants and expressions that are also GROUP BY terms that
5608 ** use the "BINARY" collation sequence.
5609 */
5610 static void havingToWhere(Parse *pParse, Select *p){
5611   Walker sWalker;
5612   memset(&sWalker, 0, sizeof(sWalker));
5613   sWalker.pParse = pParse;
5614   sWalker.xExprCallback = havingToWhereExprCb;
5615   sWalker.u.pSelect = p;
5616   sqlite3WalkExpr(&sWalker, p->pHaving);
5617 #if SELECTTRACE_ENABLED
5618   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5619     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5620     sqlite3TreeViewSelect(0, p, 0);
5621   }
5622 #endif
5623 }
5624 
5625 /*
5626 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5627 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5628 ** then return 0.
5629 */
5630 static struct SrcList_item *isSelfJoinView(
5631   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5632   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5633 ){
5634   struct SrcList_item *pItem;
5635   for(pItem = pTabList->a; pItem<pThis; pItem++){
5636     Select *pS1;
5637     if( pItem->pSelect==0 ) continue;
5638     if( pItem->fg.viaCoroutine ) continue;
5639     if( pItem->zName==0 ) continue;
5640     assert( pItem->pTab!=0 );
5641     assert( pThis->pTab!=0 );
5642     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5643     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5644     pS1 = pItem->pSelect;
5645     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5646       /* The query flattener left two different CTE tables with identical
5647       ** names in the same FROM clause. */
5648       continue;
5649     }
5650     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5651      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5652     ){
5653       /* The view was modified by some other optimization such as
5654       ** pushDownWhereTerms() */
5655       continue;
5656     }
5657     return pItem;
5658   }
5659   return 0;
5660 }
5661 
5662 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5663 /*
5664 ** Attempt to transform a query of the form
5665 **
5666 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5667 **
5668 ** Into this:
5669 **
5670 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5671 **
5672 ** The transformation only works if all of the following are true:
5673 **
5674 **   *  The subquery is a UNION ALL of two or more terms
5675 **   *  The subquery does not have a LIMIT clause
5676 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5677 **   *  The outer query is a simple count(*) with no WHERE clause or other
5678 **      extraneous syntax.
5679 **
5680 ** Return TRUE if the optimization is undertaken.
5681 */
5682 static int countOfViewOptimization(Parse *pParse, Select *p){
5683   Select *pSub, *pPrior;
5684   Expr *pExpr;
5685   Expr *pCount;
5686   sqlite3 *db;
5687   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5688   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5689   if( p->pWhere ) return 0;
5690   if( p->pGroupBy ) return 0;
5691   pExpr = p->pEList->a[0].pExpr;
5692   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5693   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5694   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5695   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5696   pSub = p->pSrc->a[0].pSelect;
5697   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5698   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5699   do{
5700     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5701     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5702     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5703     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5704     pSub = pSub->pPrior;                              /* Repeat over compound */
5705   }while( pSub );
5706 
5707   /* If we reach this point then it is OK to perform the transformation */
5708 
5709   db = pParse->db;
5710   pCount = pExpr;
5711   pExpr = 0;
5712   pSub = p->pSrc->a[0].pSelect;
5713   p->pSrc->a[0].pSelect = 0;
5714   sqlite3SrcListDelete(db, p->pSrc);
5715   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5716   while( pSub ){
5717     Expr *pTerm;
5718     pPrior = pSub->pPrior;
5719     pSub->pPrior = 0;
5720     pSub->pNext = 0;
5721     pSub->selFlags |= SF_Aggregate;
5722     pSub->selFlags &= ~SF_Compound;
5723     pSub->nSelectRow = 0;
5724     sqlite3ExprListDelete(db, pSub->pEList);
5725     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5726     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5727     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5728     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5729     if( pExpr==0 ){
5730       pExpr = pTerm;
5731     }else{
5732       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5733     }
5734     pSub = pPrior;
5735   }
5736   p->pEList->a[0].pExpr = pExpr;
5737   p->selFlags &= ~SF_Aggregate;
5738 
5739 #if SELECTTRACE_ENABLED
5740   if( sqlite3SelectTrace & 0x400 ){
5741     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5742     sqlite3TreeViewSelect(0, p, 0);
5743   }
5744 #endif
5745   return 1;
5746 }
5747 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5748 
5749 /*
5750 ** Generate code for the SELECT statement given in the p argument.
5751 **
5752 ** The results are returned according to the SelectDest structure.
5753 ** See comments in sqliteInt.h for further information.
5754 **
5755 ** This routine returns the number of errors.  If any errors are
5756 ** encountered, then an appropriate error message is left in
5757 ** pParse->zErrMsg.
5758 **
5759 ** This routine does NOT free the Select structure passed in.  The
5760 ** calling function needs to do that.
5761 */
5762 int sqlite3Select(
5763   Parse *pParse,         /* The parser context */
5764   Select *p,             /* The SELECT statement being coded. */
5765   SelectDest *pDest      /* What to do with the query results */
5766 ){
5767   int i, j;              /* Loop counters */
5768   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5769   Vdbe *v;               /* The virtual machine under construction */
5770   int isAgg;             /* True for select lists like "count(*)" */
5771   ExprList *pEList = 0;  /* List of columns to extract. */
5772   SrcList *pTabList;     /* List of tables to select from */
5773   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5774   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5775   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5776   int rc = 1;            /* Value to return from this function */
5777   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5778   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5779   AggInfo sAggInfo;      /* Information used by aggregate queries */
5780   int iEnd;              /* Address of the end of the query */
5781   sqlite3 *db;           /* The database connection */
5782   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5783   u8 minMaxFlag;                 /* Flag for min/max queries */
5784 
5785   db = pParse->db;
5786   v = sqlite3GetVdbe(pParse);
5787   if( p==0 || db->mallocFailed || pParse->nErr ){
5788     return 1;
5789   }
5790   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5791   memset(&sAggInfo, 0, sizeof(sAggInfo));
5792 #if SELECTTRACE_ENABLED
5793   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5794   if( sqlite3SelectTrace & 0x100 ){
5795     sqlite3TreeViewSelect(0, p, 0);
5796   }
5797 #endif
5798 
5799   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5800   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5801   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5802   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5803   if( IgnorableOrderby(pDest) ){
5804     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5805            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5806            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5807            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5808     /* If ORDER BY makes no difference in the output then neither does
5809     ** DISTINCT so it can be removed too. */
5810     sqlite3ExprListDelete(db, p->pOrderBy);
5811     p->pOrderBy = 0;
5812     p->selFlags &= ~SF_Distinct;
5813   }
5814   sqlite3SelectPrep(pParse, p, 0);
5815   if( pParse->nErr || db->mallocFailed ){
5816     goto select_end;
5817   }
5818   assert( p->pEList!=0 );
5819 #if SELECTTRACE_ENABLED
5820   if( sqlite3SelectTrace & 0x104 ){
5821     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5822     sqlite3TreeViewSelect(0, p, 0);
5823   }
5824 #endif
5825 
5826   if( pDest->eDest==SRT_Output ){
5827     generateColumnNames(pParse, p);
5828   }
5829 
5830 #ifndef SQLITE_OMIT_WINDOWFUNC
5831   rc = sqlite3WindowRewrite(pParse, p);
5832   if( rc ){
5833     assert( db->mallocFailed || pParse->nErr>0 );
5834     goto select_end;
5835   }
5836 #if SELECTTRACE_ENABLED
5837   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5838     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5839     sqlite3TreeViewSelect(0, p, 0);
5840   }
5841 #endif
5842 #endif /* SQLITE_OMIT_WINDOWFUNC */
5843   pTabList = p->pSrc;
5844   isAgg = (p->selFlags & SF_Aggregate)!=0;
5845   memset(&sSort, 0, sizeof(sSort));
5846   sSort.pOrderBy = p->pOrderBy;
5847 
5848   /* Try to various optimizations (flattening subqueries, and strength
5849   ** reduction of join operators) in the FROM clause up into the main query
5850   */
5851 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5852   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5853     struct SrcList_item *pItem = &pTabList->a[i];
5854     Select *pSub = pItem->pSelect;
5855     Table *pTab = pItem->pTab;
5856 
5857     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5858     ** of the LEFT JOIN used in the WHERE clause.
5859     */
5860     if( (pItem->fg.jointype & JT_LEFT)!=0
5861      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5862      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5863     ){
5864       SELECTTRACE(0x100,pParse,p,
5865                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5866       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5867       unsetJoinExpr(p->pWhere, pItem->iCursor);
5868     }
5869 
5870     /* No futher action if this term of the FROM clause is no a subquery */
5871     if( pSub==0 ) continue;
5872 
5873     /* Catch mismatch in the declared columns of a view and the number of
5874     ** columns in the SELECT on the RHS */
5875     if( pTab->nCol!=pSub->pEList->nExpr ){
5876       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5877                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5878       goto select_end;
5879     }
5880 
5881     /* Do not try to flatten an aggregate subquery.
5882     **
5883     ** Flattening an aggregate subquery is only possible if the outer query
5884     ** is not a join.  But if the outer query is not a join, then the subquery
5885     ** will be implemented as a co-routine and there is no advantage to
5886     ** flattening in that case.
5887     */
5888     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5889     assert( pSub->pGroupBy==0 );
5890 
5891     /* If the outer query contains a "complex" result set (that is,
5892     ** if the result set of the outer query uses functions or subqueries)
5893     ** and if the subquery contains an ORDER BY clause and if
5894     ** it will be implemented as a co-routine, then do not flatten.  This
5895     ** restriction allows SQL constructs like this:
5896     **
5897     **  SELECT expensive_function(x)
5898     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5899     **
5900     ** The expensive_function() is only computed on the 10 rows that
5901     ** are output, rather than every row of the table.
5902     **
5903     ** The requirement that the outer query have a complex result set
5904     ** means that flattening does occur on simpler SQL constraints without
5905     ** the expensive_function() like:
5906     **
5907     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5908     */
5909     if( pSub->pOrderBy!=0
5910      && i==0
5911      && (p->selFlags & SF_ComplexResult)!=0
5912      && (pTabList->nSrc==1
5913          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5914     ){
5915       continue;
5916     }
5917 
5918     if( flattenSubquery(pParse, p, i, isAgg) ){
5919       if( pParse->nErr ) goto select_end;
5920       /* This subquery can be absorbed into its parent. */
5921       i = -1;
5922     }
5923     pTabList = p->pSrc;
5924     if( db->mallocFailed ) goto select_end;
5925     if( !IgnorableOrderby(pDest) ){
5926       sSort.pOrderBy = p->pOrderBy;
5927     }
5928   }
5929 #endif
5930 
5931 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5932   /* Handle compound SELECT statements using the separate multiSelect()
5933   ** procedure.
5934   */
5935   if( p->pPrior ){
5936     rc = multiSelect(pParse, p, pDest);
5937 #if SELECTTRACE_ENABLED
5938     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5939     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5940       sqlite3TreeViewSelect(0, p, 0);
5941     }
5942 #endif
5943     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5944     return rc;
5945   }
5946 #endif
5947 
5948   /* Do the WHERE-clause constant propagation optimization if this is
5949   ** a join.  No need to speed time on this operation for non-join queries
5950   ** as the equivalent optimization will be handled by query planner in
5951   ** sqlite3WhereBegin().
5952   */
5953   if( pTabList->nSrc>1
5954    && OptimizationEnabled(db, SQLITE_PropagateConst)
5955    && propagateConstants(pParse, p)
5956   ){
5957 #if SELECTTRACE_ENABLED
5958     if( sqlite3SelectTrace & 0x100 ){
5959       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5960       sqlite3TreeViewSelect(0, p, 0);
5961     }
5962 #endif
5963   }else{
5964     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5965   }
5966 
5967 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5968   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5969    && countOfViewOptimization(pParse, p)
5970   ){
5971     if( db->mallocFailed ) goto select_end;
5972     pEList = p->pEList;
5973     pTabList = p->pSrc;
5974   }
5975 #endif
5976 
5977   /* For each term in the FROM clause, do two things:
5978   ** (1) Authorized unreferenced tables
5979   ** (2) Generate code for all sub-queries
5980   */
5981   for(i=0; i<pTabList->nSrc; i++){
5982     struct SrcList_item *pItem = &pTabList->a[i];
5983     SelectDest dest;
5984     Select *pSub;
5985 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5986     const char *zSavedAuthContext;
5987 #endif
5988 
5989     /* Issue SQLITE_READ authorizations with a fake column name for any
5990     ** tables that are referenced but from which no values are extracted.
5991     ** Examples of where these kinds of null SQLITE_READ authorizations
5992     ** would occur:
5993     **
5994     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5995     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5996     **
5997     ** The fake column name is an empty string.  It is possible for a table to
5998     ** have a column named by the empty string, in which case there is no way to
5999     ** distinguish between an unreferenced table and an actual reference to the
6000     ** "" column. The original design was for the fake column name to be a NULL,
6001     ** which would be unambiguous.  But legacy authorization callbacks might
6002     ** assume the column name is non-NULL and segfault.  The use of an empty
6003     ** string for the fake column name seems safer.
6004     */
6005     if( pItem->colUsed==0 && pItem->zName!=0 ){
6006       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6007     }
6008 
6009 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6010     /* Generate code for all sub-queries in the FROM clause
6011     */
6012     pSub = pItem->pSelect;
6013     if( pSub==0 ) continue;
6014 
6015     /* The code for a subquery should only be generated once, though it is
6016     ** technically harmless for it to be generated multiple times. The
6017     ** following assert() will detect if something changes to cause
6018     ** the same subquery to be coded multiple times, as a signal to the
6019     ** developers to try to optimize the situation.
6020     **
6021     ** Update 2019-07-24:
6022     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6023     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6024     ** coded twice.  So this assert() now becomes a testcase().  It should
6025     ** be very rare, though.
6026     */
6027     testcase( pItem->addrFillSub!=0 );
6028 
6029     /* Increment Parse.nHeight by the height of the largest expression
6030     ** tree referred to by this, the parent select. The child select
6031     ** may contain expression trees of at most
6032     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6033     ** more conservative than necessary, but much easier than enforcing
6034     ** an exact limit.
6035     */
6036     pParse->nHeight += sqlite3SelectExprHeight(p);
6037 
6038     /* Make copies of constant WHERE-clause terms in the outer query down
6039     ** inside the subquery.  This can help the subquery to run more efficiently.
6040     */
6041     if( OptimizationEnabled(db, SQLITE_PushDown)
6042      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6043                            (pItem->fg.jointype & JT_OUTER)!=0)
6044     ){
6045 #if SELECTTRACE_ENABLED
6046       if( sqlite3SelectTrace & 0x100 ){
6047         SELECTTRACE(0x100,pParse,p,
6048             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6049         sqlite3TreeViewSelect(0, p, 0);
6050       }
6051 #endif
6052     }else{
6053       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6054     }
6055 
6056     zSavedAuthContext = pParse->zAuthContext;
6057     pParse->zAuthContext = pItem->zName;
6058 
6059     /* Generate code to implement the subquery
6060     **
6061     ** The subquery is implemented as a co-routine if the subquery is
6062     ** guaranteed to be the outer loop (so that it does not need to be
6063     ** computed more than once)
6064     **
6065     ** TODO: Are there other reasons beside (1) to use a co-routine
6066     ** implementation?
6067     */
6068     if( i==0
6069      && (pTabList->nSrc==1
6070             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6071     ){
6072       /* Implement a co-routine that will return a single row of the result
6073       ** set on each invocation.
6074       */
6075       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6076 
6077       pItem->regReturn = ++pParse->nMem;
6078       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6079       VdbeComment((v, "%s", pItem->pTab->zName));
6080       pItem->addrFillSub = addrTop;
6081       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6082       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6083       sqlite3Select(pParse, pSub, &dest);
6084       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6085       pItem->fg.viaCoroutine = 1;
6086       pItem->regResult = dest.iSdst;
6087       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6088       sqlite3VdbeJumpHere(v, addrTop-1);
6089       sqlite3ClearTempRegCache(pParse);
6090     }else{
6091       /* Generate a subroutine that will fill an ephemeral table with
6092       ** the content of this subquery.  pItem->addrFillSub will point
6093       ** to the address of the generated subroutine.  pItem->regReturn
6094       ** is a register allocated to hold the subroutine return address
6095       */
6096       int topAddr;
6097       int onceAddr = 0;
6098       int retAddr;
6099       struct SrcList_item *pPrior;
6100 
6101       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6102       pItem->regReturn = ++pParse->nMem;
6103       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6104       pItem->addrFillSub = topAddr+1;
6105       if( pItem->fg.isCorrelated==0 ){
6106         /* If the subquery is not correlated and if we are not inside of
6107         ** a trigger, then we only need to compute the value of the subquery
6108         ** once. */
6109         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6110         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6111       }else{
6112         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6113       }
6114       pPrior = isSelfJoinView(pTabList, pItem);
6115       if( pPrior ){
6116         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6117         assert( pPrior->pSelect!=0 );
6118         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6119       }else{
6120         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6121         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6122         sqlite3Select(pParse, pSub, &dest);
6123       }
6124       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6125       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6126       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6127       VdbeComment((v, "end %s", pItem->pTab->zName));
6128       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6129       sqlite3ClearTempRegCache(pParse);
6130     }
6131     if( db->mallocFailed ) goto select_end;
6132     pParse->nHeight -= sqlite3SelectExprHeight(p);
6133     pParse->zAuthContext = zSavedAuthContext;
6134 #endif
6135   }
6136 
6137   /* Various elements of the SELECT copied into local variables for
6138   ** convenience */
6139   pEList = p->pEList;
6140   pWhere = p->pWhere;
6141   pGroupBy = p->pGroupBy;
6142   pHaving = p->pHaving;
6143   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6144 
6145 #if SELECTTRACE_ENABLED
6146   if( sqlite3SelectTrace & 0x400 ){
6147     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6148     sqlite3TreeViewSelect(0, p, 0);
6149   }
6150 #endif
6151 
6152   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6153   ** if the select-list is the same as the ORDER BY list, then this query
6154   ** can be rewritten as a GROUP BY. In other words, this:
6155   **
6156   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6157   **
6158   ** is transformed to:
6159   **
6160   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6161   **
6162   ** The second form is preferred as a single index (or temp-table) may be
6163   ** used for both the ORDER BY and DISTINCT processing. As originally
6164   ** written the query must use a temp-table for at least one of the ORDER
6165   ** BY and DISTINCT, and an index or separate temp-table for the other.
6166   */
6167   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6168    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6169 #ifndef SQLITE_OMIT_WINDOWFUNC
6170    && p->pWin==0
6171 #endif
6172   ){
6173     p->selFlags &= ~SF_Distinct;
6174     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6175     p->selFlags |= SF_Aggregate;
6176     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6177     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6178     ** original setting of the SF_Distinct flag, not the current setting */
6179     assert( sDistinct.isTnct );
6180 
6181 #if SELECTTRACE_ENABLED
6182     if( sqlite3SelectTrace & 0x400 ){
6183       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6184       sqlite3TreeViewSelect(0, p, 0);
6185     }
6186 #endif
6187   }
6188 
6189   /* If there is an ORDER BY clause, then create an ephemeral index to
6190   ** do the sorting.  But this sorting ephemeral index might end up
6191   ** being unused if the data can be extracted in pre-sorted order.
6192   ** If that is the case, then the OP_OpenEphemeral instruction will be
6193   ** changed to an OP_Noop once we figure out that the sorting index is
6194   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6195   ** that change.
6196   */
6197   if( sSort.pOrderBy ){
6198     KeyInfo *pKeyInfo;
6199     pKeyInfo = sqlite3KeyInfoFromExprList(
6200         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6201     sSort.iECursor = pParse->nTab++;
6202     sSort.addrSortIndex =
6203       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6204           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6205           (char*)pKeyInfo, P4_KEYINFO
6206       );
6207   }else{
6208     sSort.addrSortIndex = -1;
6209   }
6210 
6211   /* If the output is destined for a temporary table, open that table.
6212   */
6213   if( pDest->eDest==SRT_EphemTab ){
6214     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6215   }
6216 
6217   /* Set the limiter.
6218   */
6219   iEnd = sqlite3VdbeMakeLabel(pParse);
6220   if( (p->selFlags & SF_FixedLimit)==0 ){
6221     p->nSelectRow = 320;  /* 4 billion rows */
6222   }
6223   computeLimitRegisters(pParse, p, iEnd);
6224   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6225     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6226     sSort.sortFlags |= SORTFLAG_UseSorter;
6227   }
6228 
6229   /* Open an ephemeral index to use for the distinct set.
6230   */
6231   if( p->selFlags & SF_Distinct ){
6232     sDistinct.tabTnct = pParse->nTab++;
6233     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6234                        sDistinct.tabTnct, 0, 0,
6235                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6236                        P4_KEYINFO);
6237     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6238     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6239   }else{
6240     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6241   }
6242 
6243   if( !isAgg && pGroupBy==0 ){
6244     /* No aggregate functions and no GROUP BY clause */
6245     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6246                    | (p->selFlags & SF_FixedLimit);
6247 #ifndef SQLITE_OMIT_WINDOWFUNC
6248     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6249     if( pWin ){
6250       sqlite3WindowCodeInit(pParse, p);
6251     }
6252 #endif
6253     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6254 
6255 
6256     /* Begin the database scan. */
6257     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6258     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6259                                p->pEList, wctrlFlags, p->nSelectRow);
6260     if( pWInfo==0 ) goto select_end;
6261     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6262       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6263     }
6264     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6265       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6266     }
6267     if( sSort.pOrderBy ){
6268       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6269       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6270       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6271         sSort.pOrderBy = 0;
6272       }
6273     }
6274 
6275     /* If sorting index that was created by a prior OP_OpenEphemeral
6276     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6277     ** into an OP_Noop.
6278     */
6279     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6280       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6281     }
6282 
6283     assert( p->pEList==pEList );
6284 #ifndef SQLITE_OMIT_WINDOWFUNC
6285     if( pWin ){
6286       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6287       int iCont = sqlite3VdbeMakeLabel(pParse);
6288       int iBreak = sqlite3VdbeMakeLabel(pParse);
6289       int regGosub = ++pParse->nMem;
6290 
6291       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6292 
6293       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6294       sqlite3VdbeResolveLabel(v, addrGosub);
6295       VdbeNoopComment((v, "inner-loop subroutine"));
6296       sSort.labelOBLopt = 0;
6297       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6298       sqlite3VdbeResolveLabel(v, iCont);
6299       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6300       VdbeComment((v, "end inner-loop subroutine"));
6301       sqlite3VdbeResolveLabel(v, iBreak);
6302     }else
6303 #endif /* SQLITE_OMIT_WINDOWFUNC */
6304     {
6305       /* Use the standard inner loop. */
6306       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6307           sqlite3WhereContinueLabel(pWInfo),
6308           sqlite3WhereBreakLabel(pWInfo));
6309 
6310       /* End the database scan loop.
6311       */
6312       sqlite3WhereEnd(pWInfo);
6313     }
6314   }else{
6315     /* This case when there exist aggregate functions or a GROUP BY clause
6316     ** or both */
6317     NameContext sNC;    /* Name context for processing aggregate information */
6318     int iAMem;          /* First Mem address for storing current GROUP BY */
6319     int iBMem;          /* First Mem address for previous GROUP BY */
6320     int iUseFlag;       /* Mem address holding flag indicating that at least
6321                         ** one row of the input to the aggregator has been
6322                         ** processed */
6323     int iAbortFlag;     /* Mem address which causes query abort if positive */
6324     int groupBySort;    /* Rows come from source in GROUP BY order */
6325     int addrEnd;        /* End of processing for this SELECT */
6326     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6327     int sortOut = 0;    /* Output register from the sorter */
6328     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6329 
6330     /* Remove any and all aliases between the result set and the
6331     ** GROUP BY clause.
6332     */
6333     if( pGroupBy ){
6334       int k;                        /* Loop counter */
6335       struct ExprList_item *pItem;  /* For looping over expression in a list */
6336 
6337       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6338         pItem->u.x.iAlias = 0;
6339       }
6340       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6341         pItem->u.x.iAlias = 0;
6342       }
6343       assert( 66==sqlite3LogEst(100) );
6344       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6345 
6346       /* If there is both a GROUP BY and an ORDER BY clause and they are
6347       ** identical, then it may be possible to disable the ORDER BY clause
6348       ** on the grounds that the GROUP BY will cause elements to come out
6349       ** in the correct order. It also may not - the GROUP BY might use a
6350       ** database index that causes rows to be grouped together as required
6351       ** but not actually sorted. Either way, record the fact that the
6352       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6353       ** variable.  */
6354       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6355         int ii;
6356         /* The GROUP BY processing doesn't care whether rows are delivered in
6357         ** ASC or DESC order - only that each group is returned contiguously.
6358         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6359         ** ORDER BY to maximize the chances of rows being delivered in an
6360         ** order that makes the ORDER BY redundant.  */
6361         for(ii=0; ii<pGroupBy->nExpr; ii++){
6362           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6363           pGroupBy->a[ii].sortFlags = sortFlags;
6364         }
6365         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6366           orderByGrp = 1;
6367         }
6368       }
6369     }else{
6370       assert( 0==sqlite3LogEst(1) );
6371       p->nSelectRow = 0;
6372     }
6373 
6374     /* Create a label to jump to when we want to abort the query */
6375     addrEnd = sqlite3VdbeMakeLabel(pParse);
6376 
6377     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6378     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6379     ** SELECT statement.
6380     */
6381     memset(&sNC, 0, sizeof(sNC));
6382     sNC.pParse = pParse;
6383     sNC.pSrcList = pTabList;
6384     sNC.uNC.pAggInfo = &sAggInfo;
6385     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6386     sAggInfo.mnReg = pParse->nMem+1;
6387     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6388     sAggInfo.pGroupBy = pGroupBy;
6389     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6390     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6391     if( pHaving ){
6392       if( pGroupBy ){
6393         assert( pWhere==p->pWhere );
6394         assert( pHaving==p->pHaving );
6395         assert( pGroupBy==p->pGroupBy );
6396         havingToWhere(pParse, p);
6397         pWhere = p->pWhere;
6398       }
6399       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6400     }
6401     sAggInfo.nAccumulator = sAggInfo.nColumn;
6402     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6403       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6404     }else{
6405       minMaxFlag = WHERE_ORDERBY_NORMAL;
6406     }
6407     for(i=0; i<sAggInfo.nFunc; i++){
6408       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6409       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6410       sNC.ncFlags |= NC_InAggFunc;
6411       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6412 #ifndef SQLITE_OMIT_WINDOWFUNC
6413       assert( !IsWindowFunc(pExpr) );
6414       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6415         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6416       }
6417 #endif
6418       sNC.ncFlags &= ~NC_InAggFunc;
6419     }
6420     sAggInfo.mxReg = pParse->nMem;
6421     if( db->mallocFailed ) goto select_end;
6422 #if SELECTTRACE_ENABLED
6423     if( sqlite3SelectTrace & 0x400 ){
6424       int ii;
6425       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6426       sqlite3TreeViewSelect(0, p, 0);
6427       for(ii=0; ii<sAggInfo.nColumn; ii++){
6428         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6429             ii, sAggInfo.aCol[ii].iMem);
6430         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6431       }
6432       for(ii=0; ii<sAggInfo.nFunc; ii++){
6433         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6434             ii, sAggInfo.aFunc[ii].iMem);
6435         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6436       }
6437     }
6438 #endif
6439 
6440 
6441     /* Processing for aggregates with GROUP BY is very different and
6442     ** much more complex than aggregates without a GROUP BY.
6443     */
6444     if( pGroupBy ){
6445       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6446       int addr1;          /* A-vs-B comparision jump */
6447       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6448       int regOutputRow;   /* Return address register for output subroutine */
6449       int addrSetAbort;   /* Set the abort flag and return */
6450       int addrTopOfLoop;  /* Top of the input loop */
6451       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6452       int addrReset;      /* Subroutine for resetting the accumulator */
6453       int regReset;       /* Return address register for reset subroutine */
6454 
6455       /* If there is a GROUP BY clause we might need a sorting index to
6456       ** implement it.  Allocate that sorting index now.  If it turns out
6457       ** that we do not need it after all, the OP_SorterOpen instruction
6458       ** will be converted into a Noop.
6459       */
6460       sAggInfo.sortingIdx = pParse->nTab++;
6461       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6462       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6463           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6464           0, (char*)pKeyInfo, P4_KEYINFO);
6465 
6466       /* Initialize memory locations used by GROUP BY aggregate processing
6467       */
6468       iUseFlag = ++pParse->nMem;
6469       iAbortFlag = ++pParse->nMem;
6470       regOutputRow = ++pParse->nMem;
6471       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6472       regReset = ++pParse->nMem;
6473       addrReset = sqlite3VdbeMakeLabel(pParse);
6474       iAMem = pParse->nMem + 1;
6475       pParse->nMem += pGroupBy->nExpr;
6476       iBMem = pParse->nMem + 1;
6477       pParse->nMem += pGroupBy->nExpr;
6478       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6479       VdbeComment((v, "clear abort flag"));
6480       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6481 
6482       /* Begin a loop that will extract all source rows in GROUP BY order.
6483       ** This might involve two separate loops with an OP_Sort in between, or
6484       ** it might be a single loop that uses an index to extract information
6485       ** in the right order to begin with.
6486       */
6487       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6488       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6489       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6490           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6491       );
6492       if( pWInfo==0 ) goto select_end;
6493       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6494         /* The optimizer is able to deliver rows in group by order so
6495         ** we do not have to sort.  The OP_OpenEphemeral table will be
6496         ** cancelled later because we still need to use the pKeyInfo
6497         */
6498         groupBySort = 0;
6499       }else{
6500         /* Rows are coming out in undetermined order.  We have to push
6501         ** each row into a sorting index, terminate the first loop,
6502         ** then loop over the sorting index in order to get the output
6503         ** in sorted order
6504         */
6505         int regBase;
6506         int regRecord;
6507         int nCol;
6508         int nGroupBy;
6509 
6510         explainTempTable(pParse,
6511             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6512                     "DISTINCT" : "GROUP BY");
6513 
6514         groupBySort = 1;
6515         nGroupBy = pGroupBy->nExpr;
6516         nCol = nGroupBy;
6517         j = nGroupBy;
6518         for(i=0; i<sAggInfo.nColumn; i++){
6519           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6520             nCol++;
6521             j++;
6522           }
6523         }
6524         regBase = sqlite3GetTempRange(pParse, nCol);
6525         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6526         j = nGroupBy;
6527         for(i=0; i<sAggInfo.nColumn; i++){
6528           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6529           if( pCol->iSorterColumn>=j ){
6530             int r1 = j + regBase;
6531             sqlite3ExprCodeGetColumnOfTable(v,
6532                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6533             j++;
6534           }
6535         }
6536         regRecord = sqlite3GetTempReg(pParse);
6537         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6538         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6539         sqlite3ReleaseTempReg(pParse, regRecord);
6540         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6541         sqlite3WhereEnd(pWInfo);
6542         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6543         sortOut = sqlite3GetTempReg(pParse);
6544         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6545         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6546         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6547         sAggInfo.useSortingIdx = 1;
6548       }
6549 
6550       /* If the index or temporary table used by the GROUP BY sort
6551       ** will naturally deliver rows in the order required by the ORDER BY
6552       ** clause, cancel the ephemeral table open coded earlier.
6553       **
6554       ** This is an optimization - the correct answer should result regardless.
6555       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6556       ** disable this optimization for testing purposes.  */
6557       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6558        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6559       ){
6560         sSort.pOrderBy = 0;
6561         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6562       }
6563 
6564       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6565       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6566       ** Then compare the current GROUP BY terms against the GROUP BY terms
6567       ** from the previous row currently stored in a0, a1, a2...
6568       */
6569       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6570       if( groupBySort ){
6571         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6572                           sortOut, sortPTab);
6573       }
6574       for(j=0; j<pGroupBy->nExpr; j++){
6575         if( groupBySort ){
6576           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6577         }else{
6578           sAggInfo.directMode = 1;
6579           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6580         }
6581       }
6582       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6583                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6584       addr1 = sqlite3VdbeCurrentAddr(v);
6585       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6586 
6587       /* Generate code that runs whenever the GROUP BY changes.
6588       ** Changes in the GROUP BY are detected by the previous code
6589       ** block.  If there were no changes, this block is skipped.
6590       **
6591       ** This code copies current group by terms in b0,b1,b2,...
6592       ** over to a0,a1,a2.  It then calls the output subroutine
6593       ** and resets the aggregate accumulator registers in preparation
6594       ** for the next GROUP BY batch.
6595       */
6596       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6597       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6598       VdbeComment((v, "output one row"));
6599       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6600       VdbeComment((v, "check abort flag"));
6601       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6602       VdbeComment((v, "reset accumulator"));
6603 
6604       /* Update the aggregate accumulators based on the content of
6605       ** the current row
6606       */
6607       sqlite3VdbeJumpHere(v, addr1);
6608       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6609       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6610       VdbeComment((v, "indicate data in accumulator"));
6611 
6612       /* End of the loop
6613       */
6614       if( groupBySort ){
6615         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6616         VdbeCoverage(v);
6617       }else{
6618         sqlite3WhereEnd(pWInfo);
6619         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6620       }
6621 
6622       /* Output the final row of result
6623       */
6624       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6625       VdbeComment((v, "output final row"));
6626 
6627       /* Jump over the subroutines
6628       */
6629       sqlite3VdbeGoto(v, addrEnd);
6630 
6631       /* Generate a subroutine that outputs a single row of the result
6632       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6633       ** is less than or equal to zero, the subroutine is a no-op.  If
6634       ** the processing calls for the query to abort, this subroutine
6635       ** increments the iAbortFlag memory location before returning in
6636       ** order to signal the caller to abort.
6637       */
6638       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6639       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6640       VdbeComment((v, "set abort flag"));
6641       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6642       sqlite3VdbeResolveLabel(v, addrOutputRow);
6643       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6644       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6645       VdbeCoverage(v);
6646       VdbeComment((v, "Groupby result generator entry point"));
6647       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6648       finalizeAggFunctions(pParse, &sAggInfo);
6649       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6650       selectInnerLoop(pParse, p, -1, &sSort,
6651                       &sDistinct, pDest,
6652                       addrOutputRow+1, addrSetAbort);
6653       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6654       VdbeComment((v, "end groupby result generator"));
6655 
6656       /* Generate a subroutine that will reset the group-by accumulator
6657       */
6658       sqlite3VdbeResolveLabel(v, addrReset);
6659       resetAccumulator(pParse, &sAggInfo);
6660       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6661       VdbeComment((v, "indicate accumulator empty"));
6662       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6663 
6664     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6665     else {
6666       Table *pTab;
6667       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6668         /* If isSimpleCount() returns a pointer to a Table structure, then
6669         ** the SQL statement is of the form:
6670         **
6671         **   SELECT count(*) FROM <tbl>
6672         **
6673         ** where the Table structure returned represents table <tbl>.
6674         **
6675         ** This statement is so common that it is optimized specially. The
6676         ** OP_Count instruction is executed either on the intkey table that
6677         ** contains the data for table <tbl> or on one of its indexes. It
6678         ** is better to execute the op on an index, as indexes are almost
6679         ** always spread across less pages than their corresponding tables.
6680         */
6681         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6682         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6683         Index *pIdx;                         /* Iterator variable */
6684         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6685         Index *pBest = 0;                    /* Best index found so far */
6686         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6687 
6688         sqlite3CodeVerifySchema(pParse, iDb);
6689         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6690 
6691         /* Search for the index that has the lowest scan cost.
6692         **
6693         ** (2011-04-15) Do not do a full scan of an unordered index.
6694         **
6695         ** (2013-10-03) Do not count the entries in a partial index.
6696         **
6697         ** In practice the KeyInfo structure will not be used. It is only
6698         ** passed to keep OP_OpenRead happy.
6699         */
6700         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6701         if( !p->pSrc->a[0].fg.notIndexed ){
6702           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6703             if( pIdx->bUnordered==0
6704              && pIdx->szIdxRow<pTab->szTabRow
6705              && pIdx->pPartIdxWhere==0
6706              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6707             ){
6708               pBest = pIdx;
6709             }
6710           }
6711         }
6712         if( pBest ){
6713           iRoot = pBest->tnum;
6714           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6715         }
6716 
6717         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6718         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6719         if( pKeyInfo ){
6720           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6721         }
6722         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6723         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6724         explainSimpleCount(pParse, pTab, pBest);
6725       }else{
6726         int regAcc = 0;           /* "populate accumulators" flag */
6727 
6728         /* If there are accumulator registers but no min() or max() functions
6729         ** without FILTER clauses, allocate register regAcc. Register regAcc
6730         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6731         ** The code generated by updateAccumulator() uses this to ensure
6732         ** that the accumulator registers are (a) updated only once if
6733         ** there are no min() or max functions or (b) always updated for the
6734         ** first row visited by the aggregate, so that they are updated at
6735         ** least once even if the FILTER clause means the min() or max()
6736         ** function visits zero rows.  */
6737         if( sAggInfo.nAccumulator ){
6738           for(i=0; i<sAggInfo.nFunc; i++){
6739             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6740             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6741           }
6742           if( i==sAggInfo.nFunc ){
6743             regAcc = ++pParse->nMem;
6744             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6745           }
6746         }
6747 
6748         /* This case runs if the aggregate has no GROUP BY clause.  The
6749         ** processing is much simpler since there is only a single row
6750         ** of output.
6751         */
6752         assert( p->pGroupBy==0 );
6753         resetAccumulator(pParse, &sAggInfo);
6754 
6755         /* If this query is a candidate for the min/max optimization, then
6756         ** minMaxFlag will have been previously set to either
6757         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6758         ** be an appropriate ORDER BY expression for the optimization.
6759         */
6760         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6761         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6762 
6763         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6764         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6765                                    0, minMaxFlag, 0);
6766         if( pWInfo==0 ){
6767           goto select_end;
6768         }
6769         updateAccumulator(pParse, regAcc, &sAggInfo);
6770         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6771         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6772           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6773           VdbeComment((v, "%s() by index",
6774                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6775         }
6776         sqlite3WhereEnd(pWInfo);
6777         finalizeAggFunctions(pParse, &sAggInfo);
6778       }
6779 
6780       sSort.pOrderBy = 0;
6781       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6782       selectInnerLoop(pParse, p, -1, 0, 0,
6783                       pDest, addrEnd, addrEnd);
6784     }
6785     sqlite3VdbeResolveLabel(v, addrEnd);
6786 
6787   } /* endif aggregate query */
6788 
6789   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6790     explainTempTable(pParse, "DISTINCT");
6791   }
6792 
6793   /* If there is an ORDER BY clause, then we need to sort the results
6794   ** and send them to the callback one by one.
6795   */
6796   if( sSort.pOrderBy ){
6797     explainTempTable(pParse,
6798                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6799     assert( p->pEList==pEList );
6800     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6801   }
6802 
6803   /* Jump here to skip this query
6804   */
6805   sqlite3VdbeResolveLabel(v, iEnd);
6806 
6807   /* The SELECT has been coded. If there is an error in the Parse structure,
6808   ** set the return code to 1. Otherwise 0. */
6809   rc = (pParse->nErr>0);
6810 
6811   /* Control jumps to here if an error is encountered above, or upon
6812   ** successful coding of the SELECT.
6813   */
6814 select_end:
6815   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6816   sqlite3DbFree(db, sAggInfo.aCol);
6817   sqlite3DbFree(db, sAggInfo.aFunc);
6818 #if SELECTTRACE_ENABLED
6819   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6820   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6821     sqlite3TreeViewSelect(0, p, 0);
6822   }
6823 #endif
6824   ExplainQueryPlanPop(pParse);
6825   return rc;
6826 }
6827