1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself depending on the value of bFree 88 ** 89 ** If bFree==1, call sqlite3DbFree() on the p object. 90 ** If bFree==0, Leave the first Select object unfreed 91 */ 92 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 93 while( p ){ 94 Select *pPrior = p->pPrior; 95 sqlite3ExprListDelete(db, p->pEList); 96 sqlite3SrcListDelete(db, p->pSrc); 97 sqlite3ExprDelete(db, p->pWhere); 98 sqlite3ExprListDelete(db, p->pGroupBy); 99 sqlite3ExprDelete(db, p->pHaving); 100 sqlite3ExprListDelete(db, p->pOrderBy); 101 sqlite3ExprDelete(db, p->pLimit); 102 #ifndef SQLITE_OMIT_WINDOWFUNC 103 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 104 sqlite3WindowListDelete(db, p->pWinDefn); 105 } 106 #endif 107 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 108 if( bFree ) sqlite3DbFreeNN(db, p); 109 p = pPrior; 110 bFree = 1; 111 } 112 } 113 114 /* 115 ** Initialize a SelectDest structure. 116 */ 117 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 118 pDest->eDest = (u8)eDest; 119 pDest->iSDParm = iParm; 120 pDest->zAffSdst = 0; 121 pDest->iSdst = 0; 122 pDest->nSdst = 0; 123 } 124 125 126 /* 127 ** Allocate a new Select structure and return a pointer to that 128 ** structure. 129 */ 130 Select *sqlite3SelectNew( 131 Parse *pParse, /* Parsing context */ 132 ExprList *pEList, /* which columns to include in the result */ 133 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 134 Expr *pWhere, /* the WHERE clause */ 135 ExprList *pGroupBy, /* the GROUP BY clause */ 136 Expr *pHaving, /* the HAVING clause */ 137 ExprList *pOrderBy, /* the ORDER BY clause */ 138 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 139 Expr *pLimit /* LIMIT value. NULL means not used */ 140 ){ 141 Select *pNew; 142 Select standin; 143 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 144 if( pNew==0 ){ 145 assert( pParse->db->mallocFailed ); 146 pNew = &standin; 147 } 148 if( pEList==0 ){ 149 pEList = sqlite3ExprListAppend(pParse, 0, 150 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 151 } 152 pNew->pEList = pEList; 153 pNew->op = TK_SELECT; 154 pNew->selFlags = selFlags; 155 pNew->iLimit = 0; 156 pNew->iOffset = 0; 157 pNew->selId = ++pParse->nSelect; 158 pNew->addrOpenEphm[0] = -1; 159 pNew->addrOpenEphm[1] = -1; 160 pNew->nSelectRow = 0; 161 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 162 pNew->pSrc = pSrc; 163 pNew->pWhere = pWhere; 164 pNew->pGroupBy = pGroupBy; 165 pNew->pHaving = pHaving; 166 pNew->pOrderBy = pOrderBy; 167 pNew->pPrior = 0; 168 pNew->pNext = 0; 169 pNew->pLimit = pLimit; 170 pNew->pWith = 0; 171 #ifndef SQLITE_OMIT_WINDOWFUNC 172 pNew->pWin = 0; 173 pNew->pWinDefn = 0; 174 #endif 175 if( pParse->db->mallocFailed ) { 176 clearSelect(pParse->db, pNew, pNew!=&standin); 177 pNew = 0; 178 }else{ 179 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 180 } 181 assert( pNew!=&standin ); 182 return pNew; 183 } 184 185 186 /* 187 ** Delete the given Select structure and all of its substructures. 188 */ 189 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 190 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 191 } 192 193 /* 194 ** Delete all the substructure for p, but keep p allocated. Redefine 195 ** p to be a single SELECT where every column of the result set has a 196 ** value of NULL. 197 */ 198 void sqlite3SelectReset(Parse *pParse, Select *p){ 199 if( ALWAYS(p) ){ 200 clearSelect(pParse->db, p, 0); 201 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 202 p->pEList = sqlite3ExprListAppend(pParse, 0, 203 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 204 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList)); 205 } 206 } 207 208 /* 209 ** Return a pointer to the right-most SELECT statement in a compound. 210 */ 211 static Select *findRightmost(Select *p){ 212 while( p->pNext ) p = p->pNext; 213 return p; 214 } 215 216 /* 217 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 218 ** type of join. Return an integer constant that expresses that type 219 ** in terms of the following bit values: 220 ** 221 ** JT_INNER 222 ** JT_CROSS 223 ** JT_OUTER 224 ** JT_NATURAL 225 ** JT_LEFT 226 ** JT_RIGHT 227 ** 228 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 229 ** 230 ** If an illegal or unsupported join type is seen, then still return 231 ** a join type, but put an error in the pParse structure. 232 */ 233 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 234 int jointype = 0; 235 Token *apAll[3]; 236 Token *p; 237 /* 0123456789 123456789 123456789 123 */ 238 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 239 static const struct { 240 u8 i; /* Beginning of keyword text in zKeyText[] */ 241 u8 nChar; /* Length of the keyword in characters */ 242 u8 code; /* Join type mask */ 243 } aKeyword[] = { 244 /* natural */ { 0, 7, JT_NATURAL }, 245 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 246 /* outer */ { 10, 5, JT_OUTER }, 247 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 248 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 249 /* inner */ { 23, 5, JT_INNER }, 250 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 251 }; 252 int i, j; 253 apAll[0] = pA; 254 apAll[1] = pB; 255 apAll[2] = pC; 256 for(i=0; i<3 && apAll[i]; i++){ 257 p = apAll[i]; 258 for(j=0; j<ArraySize(aKeyword); j++){ 259 if( p->n==aKeyword[j].nChar 260 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 261 jointype |= aKeyword[j].code; 262 break; 263 } 264 } 265 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 266 if( j>=ArraySize(aKeyword) ){ 267 jointype |= JT_ERROR; 268 break; 269 } 270 } 271 if( 272 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 273 (jointype & JT_ERROR)!=0 274 ){ 275 const char *zSp = " "; 276 assert( pB!=0 ); 277 if( pC==0 ){ zSp++; } 278 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 279 "%T %T%s%T", pA, pB, zSp, pC); 280 jointype = JT_INNER; 281 }else if( (jointype & JT_OUTER)!=0 282 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 283 sqlite3ErrorMsg(pParse, 284 "RIGHT and FULL OUTER JOINs are not currently supported"); 285 jointype = JT_INNER; 286 } 287 return jointype; 288 } 289 290 /* 291 ** Return the index of a column in a table. Return -1 if the column 292 ** is not contained in the table. 293 */ 294 static int columnIndex(Table *pTab, const char *zCol){ 295 int i; 296 for(i=0; i<pTab->nCol; i++){ 297 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 298 } 299 return -1; 300 } 301 302 /* 303 ** Search the first N tables in pSrc, from left to right, looking for a 304 ** table that has a column named zCol. 305 ** 306 ** When found, set *piTab and *piCol to the table index and column index 307 ** of the matching column and return TRUE. 308 ** 309 ** If not found, return FALSE. 310 */ 311 static int tableAndColumnIndex( 312 SrcList *pSrc, /* Array of tables to search */ 313 int N, /* Number of tables in pSrc->a[] to search */ 314 const char *zCol, /* Name of the column we are looking for */ 315 int *piTab, /* Write index of pSrc->a[] here */ 316 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 317 int bIgnoreHidden /* True to ignore hidden columns */ 318 ){ 319 int i; /* For looping over tables in pSrc */ 320 int iCol; /* Index of column matching zCol */ 321 322 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 323 for(i=0; i<N; i++){ 324 iCol = columnIndex(pSrc->a[i].pTab, zCol); 325 if( iCol>=0 326 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 327 ){ 328 if( piTab ){ 329 *piTab = i; 330 *piCol = iCol; 331 } 332 return 1; 333 } 334 } 335 return 0; 336 } 337 338 /* 339 ** This function is used to add terms implied by JOIN syntax to the 340 ** WHERE clause expression of a SELECT statement. The new term, which 341 ** is ANDed with the existing WHERE clause, is of the form: 342 ** 343 ** (tab1.col1 = tab2.col2) 344 ** 345 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 346 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 347 ** column iColRight of tab2. 348 */ 349 static void addWhereTerm( 350 Parse *pParse, /* Parsing context */ 351 SrcList *pSrc, /* List of tables in FROM clause */ 352 int iLeft, /* Index of first table to join in pSrc */ 353 int iColLeft, /* Index of column in first table */ 354 int iRight, /* Index of second table in pSrc */ 355 int iColRight, /* Index of column in second table */ 356 int isOuterJoin, /* True if this is an OUTER join */ 357 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 358 ){ 359 sqlite3 *db = pParse->db; 360 Expr *pE1; 361 Expr *pE2; 362 Expr *pEq; 363 364 assert( iLeft<iRight ); 365 assert( pSrc->nSrc>iRight ); 366 assert( pSrc->a[iLeft].pTab ); 367 assert( pSrc->a[iRight].pTab ); 368 369 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 370 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 371 372 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 373 if( pEq && isOuterJoin ){ 374 ExprSetProperty(pEq, EP_FromJoin); 375 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(pEq, EP_NoReduce); 377 pEq->iRightJoinTable = (i16)pE2->iTable; 378 } 379 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 380 } 381 382 /* 383 ** Set the EP_FromJoin property on all terms of the given expression. 384 ** And set the Expr.iRightJoinTable to iTable for every term in the 385 ** expression. 386 ** 387 ** The EP_FromJoin property is used on terms of an expression to tell 388 ** the LEFT OUTER JOIN processing logic that this term is part of the 389 ** join restriction specified in the ON or USING clause and not a part 390 ** of the more general WHERE clause. These terms are moved over to the 391 ** WHERE clause during join processing but we need to remember that they 392 ** originated in the ON or USING clause. 393 ** 394 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 395 ** expression depends on table iRightJoinTable even if that table is not 396 ** explicitly mentioned in the expression. That information is needed 397 ** for cases like this: 398 ** 399 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 400 ** 401 ** The where clause needs to defer the handling of the t1.x=5 402 ** term until after the t2 loop of the join. In that way, a 403 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 404 ** defer the handling of t1.x=5, it will be processed immediately 405 ** after the t1 loop and rows with t1.x!=5 will never appear in 406 ** the output, which is incorrect. 407 */ 408 void sqlite3SetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 ExprSetProperty(p, EP_FromJoin); 411 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 412 ExprSetVVAProperty(p, EP_NoReduce); 413 p->iRightJoinTable = (i16)iTable; 414 if( p->op==TK_FUNCTION && p->x.pList ){ 415 int i; 416 for(i=0; i<p->x.pList->nExpr; i++){ 417 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 418 } 419 } 420 sqlite3SetJoinExpr(p->pLeft, iTable); 421 p = p->pRight; 422 } 423 } 424 425 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 426 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 427 ** an ordinary term that omits the EP_FromJoin mark. 428 ** 429 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 430 */ 431 static void unsetJoinExpr(Expr *p, int iTable){ 432 while( p ){ 433 if( ExprHasProperty(p, EP_FromJoin) 434 && (iTable<0 || p->iRightJoinTable==iTable) ){ 435 ExprClearProperty(p, EP_FromJoin); 436 } 437 if( p->op==TK_FUNCTION && p->x.pList ){ 438 int i; 439 for(i=0; i<p->x.pList->nExpr; i++){ 440 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 441 } 442 } 443 unsetJoinExpr(p->pLeft, iTable); 444 p = p->pRight; 445 } 446 } 447 448 /* 449 ** This routine processes the join information for a SELECT statement. 450 ** ON and USING clauses are converted into extra terms of the WHERE clause. 451 ** NATURAL joins also create extra WHERE clause terms. 452 ** 453 ** The terms of a FROM clause are contained in the Select.pSrc structure. 454 ** The left most table is the first entry in Select.pSrc. The right-most 455 ** table is the last entry. The join operator is held in the entry to 456 ** the left. Thus entry 0 contains the join operator for the join between 457 ** entries 0 and 1. Any ON or USING clauses associated with the join are 458 ** also attached to the left entry. 459 ** 460 ** This routine returns the number of errors encountered. 461 */ 462 static int sqliteProcessJoin(Parse *pParse, Select *p){ 463 SrcList *pSrc; /* All tables in the FROM clause */ 464 int i, j; /* Loop counters */ 465 struct SrcList_item *pLeft; /* Left table being joined */ 466 struct SrcList_item *pRight; /* Right table being joined */ 467 468 pSrc = p->pSrc; 469 pLeft = &pSrc->a[0]; 470 pRight = &pLeft[1]; 471 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 472 Table *pRightTab = pRight->pTab; 473 int isOuter; 474 475 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 476 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 477 478 /* When the NATURAL keyword is present, add WHERE clause terms for 479 ** every column that the two tables have in common. 480 */ 481 if( pRight->fg.jointype & JT_NATURAL ){ 482 if( pRight->pOn || pRight->pUsing ){ 483 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 484 "an ON or USING clause", 0); 485 return 1; 486 } 487 for(j=0; j<pRightTab->nCol; j++){ 488 char *zName; /* Name of column in the right table */ 489 int iLeft; /* Matching left table */ 490 int iLeftCol; /* Matching column in the left table */ 491 492 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 493 zName = pRightTab->aCol[j].zName; 494 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 495 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 496 isOuter, &p->pWhere); 497 } 498 } 499 } 500 501 /* Disallow both ON and USING clauses in the same join 502 */ 503 if( pRight->pOn && pRight->pUsing ){ 504 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 505 "clauses in the same join"); 506 return 1; 507 } 508 509 /* Add the ON clause to the end of the WHERE clause, connected by 510 ** an AND operator. 511 */ 512 if( pRight->pOn ){ 513 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 514 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 515 pRight->pOn = 0; 516 } 517 518 /* Create extra terms on the WHERE clause for each column named 519 ** in the USING clause. Example: If the two tables to be joined are 520 ** A and B and the USING clause names X, Y, and Z, then add this 521 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 522 ** Report an error if any column mentioned in the USING clause is 523 ** not contained in both tables to be joined. 524 */ 525 if( pRight->pUsing ){ 526 IdList *pList = pRight->pUsing; 527 for(j=0; j<pList->nId; j++){ 528 char *zName; /* Name of the term in the USING clause */ 529 int iLeft; /* Table on the left with matching column name */ 530 int iLeftCol; /* Column number of matching column on the left */ 531 int iRightCol; /* Column number of matching column on the right */ 532 533 zName = pList->a[j].zName; 534 iRightCol = columnIndex(pRightTab, zName); 535 if( iRightCol<0 536 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 537 ){ 538 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 539 "not present in both tables", zName); 540 return 1; 541 } 542 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 543 isOuter, &p->pWhere); 544 } 545 } 546 } 547 return 0; 548 } 549 550 /* 551 ** An instance of this object holds information (beyond pParse and pSelect) 552 ** needed to load the next result row that is to be added to the sorter. 553 */ 554 typedef struct RowLoadInfo RowLoadInfo; 555 struct RowLoadInfo { 556 int regResult; /* Store results in array of registers here */ 557 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 559 ExprList *pExtra; /* Extra columns needed by sorter refs */ 560 int regExtraResult; /* Where to load the extra columns */ 561 #endif 562 }; 563 564 /* 565 ** This routine does the work of loading query data into an array of 566 ** registers so that it can be added to the sorter. 567 */ 568 static void innerLoopLoadRow( 569 Parse *pParse, /* Statement under construction */ 570 Select *pSelect, /* The query being coded */ 571 RowLoadInfo *pInfo /* Info needed to complete the row load */ 572 ){ 573 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 574 0, pInfo->ecelFlags); 575 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 576 if( pInfo->pExtra ){ 577 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 578 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 579 } 580 #endif 581 } 582 583 /* 584 ** Code the OP_MakeRecord instruction that generates the entry to be 585 ** added into the sorter. 586 ** 587 ** Return the register in which the result is stored. 588 */ 589 static int makeSorterRecord( 590 Parse *pParse, 591 SortCtx *pSort, 592 Select *pSelect, 593 int regBase, 594 int nBase 595 ){ 596 int nOBSat = pSort->nOBSat; 597 Vdbe *v = pParse->pVdbe; 598 int regOut = ++pParse->nMem; 599 if( pSort->pDeferredRowLoad ){ 600 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 601 } 602 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 603 return regOut; 604 } 605 606 /* 607 ** Generate code that will push the record in registers regData 608 ** through regData+nData-1 onto the sorter. 609 */ 610 static void pushOntoSorter( 611 Parse *pParse, /* Parser context */ 612 SortCtx *pSort, /* Information about the ORDER BY clause */ 613 Select *pSelect, /* The whole SELECT statement */ 614 int regData, /* First register holding data to be sorted */ 615 int regOrigData, /* First register holding data before packing */ 616 int nData, /* Number of elements in the regData data array */ 617 int nPrefixReg /* No. of reg prior to regData available for use */ 618 ){ 619 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 620 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 621 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 622 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 623 int regBase; /* Regs for sorter record */ 624 int regRecord = 0; /* Assembled sorter record */ 625 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 626 int op; /* Opcode to add sorter record to sorter */ 627 int iLimit; /* LIMIT counter */ 628 int iSkip = 0; /* End of the sorter insert loop */ 629 630 assert( bSeq==0 || bSeq==1 ); 631 632 /* Three cases: 633 ** (1) The data to be sorted has already been packed into a Record 634 ** by a prior OP_MakeRecord. In this case nData==1 and regData 635 ** will be completely unrelated to regOrigData. 636 ** (2) All output columns are included in the sort record. In that 637 ** case regData==regOrigData. 638 ** (3) Some output columns are omitted from the sort record due to 639 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 640 ** SQLITE_ECEL_OMITREF optimization, or due to the 641 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 642 ** regOrigData is 0 to prevent this routine from trying to copy 643 ** values that might not yet exist. 644 */ 645 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 646 647 if( nPrefixReg ){ 648 assert( nPrefixReg==nExpr+bSeq ); 649 regBase = regData - nPrefixReg; 650 }else{ 651 regBase = pParse->nMem + 1; 652 pParse->nMem += nBase; 653 } 654 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 655 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 656 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 657 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 658 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 659 if( bSeq ){ 660 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 661 } 662 if( nPrefixReg==0 && nData>0 ){ 663 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 664 } 665 if( nOBSat>0 ){ 666 int regPrevKey; /* The first nOBSat columns of the previous row */ 667 int addrFirst; /* Address of the OP_IfNot opcode */ 668 int addrJmp; /* Address of the OP_Jump opcode */ 669 VdbeOp *pOp; /* Opcode that opens the sorter */ 670 int nKey; /* Number of sorting key columns, including OP_Sequence */ 671 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 672 673 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 674 regPrevKey = pParse->nMem+1; 675 pParse->nMem += pSort->nOBSat; 676 nKey = nExpr - pSort->nOBSat + bSeq; 677 if( bSeq ){ 678 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 679 }else{ 680 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 681 } 682 VdbeCoverage(v); 683 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 684 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 685 if( pParse->db->mallocFailed ) return; 686 pOp->p2 = nKey + nData; 687 pKI = pOp->p4.pKeyInfo; 688 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 689 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 690 testcase( pKI->nAllField > pKI->nKeyField+2 ); 691 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 692 pKI->nAllField-pKI->nKeyField-1); 693 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 694 addrJmp = sqlite3VdbeCurrentAddr(v); 695 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 696 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 697 pSort->regReturn = ++pParse->nMem; 698 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 699 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 700 if( iLimit ){ 701 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 702 VdbeCoverage(v); 703 } 704 sqlite3VdbeJumpHere(v, addrFirst); 705 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 706 sqlite3VdbeJumpHere(v, addrJmp); 707 } 708 if( iLimit ){ 709 /* At this point the values for the new sorter entry are stored 710 ** in an array of registers. They need to be composed into a record 711 ** and inserted into the sorter if either (a) there are currently 712 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 713 ** the largest record currently in the sorter. If (b) is true and there 714 ** are already LIMIT+OFFSET items in the sorter, delete the largest 715 ** entry before inserting the new one. This way there are never more 716 ** than LIMIT+OFFSET items in the sorter. 717 ** 718 ** If the new record does not need to be inserted into the sorter, 719 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 720 ** value is not zero, then it is a label of where to jump. Otherwise, 721 ** just bypass the row insert logic. See the header comment on the 722 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 723 */ 724 int iCsr = pSort->iECursor; 725 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 726 VdbeCoverage(v); 727 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 728 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 729 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 730 VdbeCoverage(v); 731 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 732 } 733 if( regRecord==0 ){ 734 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 735 } 736 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 737 op = OP_SorterInsert; 738 }else{ 739 op = OP_IdxInsert; 740 } 741 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 742 regBase+nOBSat, nBase-nOBSat); 743 if( iSkip ){ 744 sqlite3VdbeChangeP2(v, iSkip, 745 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 746 } 747 } 748 749 /* 750 ** Add code to implement the OFFSET 751 */ 752 static void codeOffset( 753 Vdbe *v, /* Generate code into this VM */ 754 int iOffset, /* Register holding the offset counter */ 755 int iContinue /* Jump here to skip the current record */ 756 ){ 757 if( iOffset>0 ){ 758 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 759 VdbeComment((v, "OFFSET")); 760 } 761 } 762 763 /* 764 ** Add code that will check to make sure the N registers starting at iMem 765 ** form a distinct entry. iTab is a sorting index that holds previously 766 ** seen combinations of the N values. A new entry is made in iTab 767 ** if the current N values are new. 768 ** 769 ** A jump to addrRepeat is made and the N+1 values are popped from the 770 ** stack if the top N elements are not distinct. 771 */ 772 static void codeDistinct( 773 Parse *pParse, /* Parsing and code generating context */ 774 int iTab, /* A sorting index used to test for distinctness */ 775 int addrRepeat, /* Jump to here if not distinct */ 776 int N, /* Number of elements */ 777 int iMem /* First element */ 778 ){ 779 Vdbe *v; 780 int r1; 781 782 v = pParse->pVdbe; 783 r1 = sqlite3GetTempReg(pParse); 784 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 785 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 786 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 787 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 788 sqlite3ReleaseTempReg(pParse, r1); 789 } 790 791 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 792 /* 793 ** This function is called as part of inner-loop generation for a SELECT 794 ** statement with an ORDER BY that is not optimized by an index. It 795 ** determines the expressions, if any, that the sorter-reference 796 ** optimization should be used for. The sorter-reference optimization 797 ** is used for SELECT queries like: 798 ** 799 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 800 ** 801 ** If the optimization is used for expression "bigblob", then instead of 802 ** storing values read from that column in the sorter records, the PK of 803 ** the row from table t1 is stored instead. Then, as records are extracted from 804 ** the sorter to return to the user, the required value of bigblob is 805 ** retrieved directly from table t1. If the values are very large, this 806 ** can be more efficient than storing them directly in the sorter records. 807 ** 808 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 809 ** for which the sorter-reference optimization should be enabled. 810 ** Additionally, the pSort->aDefer[] array is populated with entries 811 ** for all cursors required to evaluate all selected expressions. Finally. 812 ** output variable (*ppExtra) is set to an expression list containing 813 ** expressions for all extra PK values that should be stored in the 814 ** sorter records. 815 */ 816 static void selectExprDefer( 817 Parse *pParse, /* Leave any error here */ 818 SortCtx *pSort, /* Sorter context */ 819 ExprList *pEList, /* Expressions destined for sorter */ 820 ExprList **ppExtra /* Expressions to append to sorter record */ 821 ){ 822 int i; 823 int nDefer = 0; 824 ExprList *pExtra = 0; 825 for(i=0; i<pEList->nExpr; i++){ 826 struct ExprList_item *pItem = &pEList->a[i]; 827 if( pItem->u.x.iOrderByCol==0 ){ 828 Expr *pExpr = pItem->pExpr; 829 Table *pTab = pExpr->y.pTab; 830 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 831 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 832 ){ 833 int j; 834 for(j=0; j<nDefer; j++){ 835 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 836 } 837 if( j==nDefer ){ 838 if( nDefer==ArraySize(pSort->aDefer) ){ 839 continue; 840 }else{ 841 int nKey = 1; 842 int k; 843 Index *pPk = 0; 844 if( !HasRowid(pTab) ){ 845 pPk = sqlite3PrimaryKeyIndex(pTab); 846 nKey = pPk->nKeyCol; 847 } 848 for(k=0; k<nKey; k++){ 849 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 850 if( pNew ){ 851 pNew->iTable = pExpr->iTable; 852 pNew->y.pTab = pExpr->y.pTab; 853 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 854 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 855 } 856 } 857 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 858 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 859 pSort->aDefer[nDefer].nKey = nKey; 860 nDefer++; 861 } 862 } 863 pItem->bSorterRef = 1; 864 } 865 } 866 } 867 pSort->nDefer = (u8)nDefer; 868 *ppExtra = pExtra; 869 } 870 #endif 871 872 /* 873 ** This routine generates the code for the inside of the inner loop 874 ** of a SELECT. 875 ** 876 ** If srcTab is negative, then the p->pEList expressions 877 ** are evaluated in order to get the data for this row. If srcTab is 878 ** zero or more, then data is pulled from srcTab and p->pEList is used only 879 ** to get the number of columns and the collation sequence for each column. 880 */ 881 static void selectInnerLoop( 882 Parse *pParse, /* The parser context */ 883 Select *p, /* The complete select statement being coded */ 884 int srcTab, /* Pull data from this table if non-negative */ 885 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 886 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 887 SelectDest *pDest, /* How to dispose of the results */ 888 int iContinue, /* Jump here to continue with next row */ 889 int iBreak /* Jump here to break out of the inner loop */ 890 ){ 891 Vdbe *v = pParse->pVdbe; 892 int i; 893 int hasDistinct; /* True if the DISTINCT keyword is present */ 894 int eDest = pDest->eDest; /* How to dispose of results */ 895 int iParm = pDest->iSDParm; /* First argument to disposal method */ 896 int nResultCol; /* Number of result columns */ 897 int nPrefixReg = 0; /* Number of extra registers before regResult */ 898 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 899 900 /* Usually, regResult is the first cell in an array of memory cells 901 ** containing the current result row. In this case regOrig is set to the 902 ** same value. However, if the results are being sent to the sorter, the 903 ** values for any expressions that are also part of the sort-key are omitted 904 ** from this array. In this case regOrig is set to zero. */ 905 int regResult; /* Start of memory holding current results */ 906 int regOrig; /* Start of memory holding full result (or 0) */ 907 908 assert( v ); 909 assert( p->pEList!=0 ); 910 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 911 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 912 if( pSort==0 && !hasDistinct ){ 913 assert( iContinue!=0 ); 914 codeOffset(v, p->iOffset, iContinue); 915 } 916 917 /* Pull the requested columns. 918 */ 919 nResultCol = p->pEList->nExpr; 920 921 if( pDest->iSdst==0 ){ 922 if( pSort ){ 923 nPrefixReg = pSort->pOrderBy->nExpr; 924 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 925 pParse->nMem += nPrefixReg; 926 } 927 pDest->iSdst = pParse->nMem+1; 928 pParse->nMem += nResultCol; 929 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 930 /* This is an error condition that can result, for example, when a SELECT 931 ** on the right-hand side of an INSERT contains more result columns than 932 ** there are columns in the table on the left. The error will be caught 933 ** and reported later. But we need to make sure enough memory is allocated 934 ** to avoid other spurious errors in the meantime. */ 935 pParse->nMem += nResultCol; 936 } 937 pDest->nSdst = nResultCol; 938 regOrig = regResult = pDest->iSdst; 939 if( srcTab>=0 ){ 940 for(i=0; i<nResultCol; i++){ 941 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 942 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 943 } 944 }else if( eDest!=SRT_Exists ){ 945 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 946 ExprList *pExtra = 0; 947 #endif 948 /* If the destination is an EXISTS(...) expression, the actual 949 ** values returned by the SELECT are not required. 950 */ 951 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 952 ExprList *pEList; 953 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 954 ecelFlags = SQLITE_ECEL_DUP; 955 }else{ 956 ecelFlags = 0; 957 } 958 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 959 /* For each expression in p->pEList that is a copy of an expression in 960 ** the ORDER BY clause (pSort->pOrderBy), set the associated 961 ** iOrderByCol value to one more than the index of the ORDER BY 962 ** expression within the sort-key that pushOntoSorter() will generate. 963 ** This allows the p->pEList field to be omitted from the sorted record, 964 ** saving space and CPU cycles. */ 965 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 966 967 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 968 int j; 969 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 970 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 971 } 972 } 973 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 974 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 975 if( pExtra && pParse->db->mallocFailed==0 ){ 976 /* If there are any extra PK columns to add to the sorter records, 977 ** allocate extra memory cells and adjust the OpenEphemeral 978 ** instruction to account for the larger records. This is only 979 ** required if there are one or more WITHOUT ROWID tables with 980 ** composite primary keys in the SortCtx.aDefer[] array. */ 981 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 982 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 983 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 984 pParse->nMem += pExtra->nExpr; 985 } 986 #endif 987 988 /* Adjust nResultCol to account for columns that are omitted 989 ** from the sorter by the optimizations in this branch */ 990 pEList = p->pEList; 991 for(i=0; i<pEList->nExpr; i++){ 992 if( pEList->a[i].u.x.iOrderByCol>0 993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 994 || pEList->a[i].bSorterRef 995 #endif 996 ){ 997 nResultCol--; 998 regOrig = 0; 999 } 1000 } 1001 1002 testcase( regOrig ); 1003 testcase( eDest==SRT_Set ); 1004 testcase( eDest==SRT_Mem ); 1005 testcase( eDest==SRT_Coroutine ); 1006 testcase( eDest==SRT_Output ); 1007 assert( eDest==SRT_Set || eDest==SRT_Mem 1008 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1009 } 1010 sRowLoadInfo.regResult = regResult; 1011 sRowLoadInfo.ecelFlags = ecelFlags; 1012 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1013 sRowLoadInfo.pExtra = pExtra; 1014 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1015 if( pExtra ) nResultCol += pExtra->nExpr; 1016 #endif 1017 if( p->iLimit 1018 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1019 && nPrefixReg>0 1020 ){ 1021 assert( pSort!=0 ); 1022 assert( hasDistinct==0 ); 1023 pSort->pDeferredRowLoad = &sRowLoadInfo; 1024 regOrig = 0; 1025 }else{ 1026 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1027 } 1028 } 1029 1030 /* If the DISTINCT keyword was present on the SELECT statement 1031 ** and this row has been seen before, then do not make this row 1032 ** part of the result. 1033 */ 1034 if( hasDistinct ){ 1035 switch( pDistinct->eTnctType ){ 1036 case WHERE_DISTINCT_ORDERED: { 1037 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1038 int iJump; /* Jump destination */ 1039 int regPrev; /* Previous row content */ 1040 1041 /* Allocate space for the previous row */ 1042 regPrev = pParse->nMem+1; 1043 pParse->nMem += nResultCol; 1044 1045 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1046 ** sets the MEM_Cleared bit on the first register of the 1047 ** previous value. This will cause the OP_Ne below to always 1048 ** fail on the first iteration of the loop even if the first 1049 ** row is all NULLs. 1050 */ 1051 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1052 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1053 pOp->opcode = OP_Null; 1054 pOp->p1 = 1; 1055 pOp->p2 = regPrev; 1056 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1057 1058 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1059 for(i=0; i<nResultCol; i++){ 1060 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1061 if( i<nResultCol-1 ){ 1062 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1063 VdbeCoverage(v); 1064 }else{ 1065 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1066 VdbeCoverage(v); 1067 } 1068 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1069 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1070 } 1071 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1072 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1073 break; 1074 } 1075 1076 case WHERE_DISTINCT_UNIQUE: { 1077 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1078 break; 1079 } 1080 1081 default: { 1082 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1083 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1084 regResult); 1085 break; 1086 } 1087 } 1088 if( pSort==0 ){ 1089 codeOffset(v, p->iOffset, iContinue); 1090 } 1091 } 1092 1093 switch( eDest ){ 1094 /* In this mode, write each query result to the key of the temporary 1095 ** table iParm. 1096 */ 1097 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1098 case SRT_Union: { 1099 int r1; 1100 r1 = sqlite3GetTempReg(pParse); 1101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1102 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1103 sqlite3ReleaseTempReg(pParse, r1); 1104 break; 1105 } 1106 1107 /* Construct a record from the query result, but instead of 1108 ** saving that record, use it as a key to delete elements from 1109 ** the temporary table iParm. 1110 */ 1111 case SRT_Except: { 1112 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1113 break; 1114 } 1115 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1116 1117 /* Store the result as data using a unique key. 1118 */ 1119 case SRT_Fifo: 1120 case SRT_DistFifo: 1121 case SRT_Table: 1122 case SRT_EphemTab: { 1123 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1124 testcase( eDest==SRT_Table ); 1125 testcase( eDest==SRT_EphemTab ); 1126 testcase( eDest==SRT_Fifo ); 1127 testcase( eDest==SRT_DistFifo ); 1128 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1129 #ifndef SQLITE_OMIT_CTE 1130 if( eDest==SRT_DistFifo ){ 1131 /* If the destination is DistFifo, then cursor (iParm+1) is open 1132 ** on an ephemeral index. If the current row is already present 1133 ** in the index, do not write it to the output. If not, add the 1134 ** current row to the index and proceed with writing it to the 1135 ** output table as well. */ 1136 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1137 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1138 VdbeCoverage(v); 1139 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1140 assert( pSort==0 ); 1141 } 1142 #endif 1143 if( pSort ){ 1144 assert( regResult==regOrig ); 1145 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1146 }else{ 1147 int r2 = sqlite3GetTempReg(pParse); 1148 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1149 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1150 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1151 sqlite3ReleaseTempReg(pParse, r2); 1152 } 1153 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1154 break; 1155 } 1156 1157 #ifndef SQLITE_OMIT_SUBQUERY 1158 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1159 ** then there should be a single item on the stack. Write this 1160 ** item into the set table with bogus data. 1161 */ 1162 case SRT_Set: { 1163 if( pSort ){ 1164 /* At first glance you would think we could optimize out the 1165 ** ORDER BY in this case since the order of entries in the set 1166 ** does not matter. But there might be a LIMIT clause, in which 1167 ** case the order does matter */ 1168 pushOntoSorter( 1169 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1170 }else{ 1171 int r1 = sqlite3GetTempReg(pParse); 1172 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1173 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1174 r1, pDest->zAffSdst, nResultCol); 1175 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1176 sqlite3ReleaseTempReg(pParse, r1); 1177 } 1178 break; 1179 } 1180 1181 /* If any row exist in the result set, record that fact and abort. 1182 */ 1183 case SRT_Exists: { 1184 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1185 /* The LIMIT clause will terminate the loop for us */ 1186 break; 1187 } 1188 1189 /* If this is a scalar select that is part of an expression, then 1190 ** store the results in the appropriate memory cell or array of 1191 ** memory cells and break out of the scan loop. 1192 */ 1193 case SRT_Mem: { 1194 if( pSort ){ 1195 assert( nResultCol<=pDest->nSdst ); 1196 pushOntoSorter( 1197 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1198 }else{ 1199 assert( nResultCol==pDest->nSdst ); 1200 assert( regResult==iParm ); 1201 /* The LIMIT clause will jump out of the loop for us */ 1202 } 1203 break; 1204 } 1205 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1206 1207 case SRT_Coroutine: /* Send data to a co-routine */ 1208 case SRT_Output: { /* Return the results */ 1209 testcase( eDest==SRT_Coroutine ); 1210 testcase( eDest==SRT_Output ); 1211 if( pSort ){ 1212 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1213 nPrefixReg); 1214 }else if( eDest==SRT_Coroutine ){ 1215 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1216 }else{ 1217 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1218 } 1219 break; 1220 } 1221 1222 #ifndef SQLITE_OMIT_CTE 1223 /* Write the results into a priority queue that is order according to 1224 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1225 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1226 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1227 ** final OP_Sequence column. The last column is the record as a blob. 1228 */ 1229 case SRT_DistQueue: 1230 case SRT_Queue: { 1231 int nKey; 1232 int r1, r2, r3; 1233 int addrTest = 0; 1234 ExprList *pSO; 1235 pSO = pDest->pOrderBy; 1236 assert( pSO ); 1237 nKey = pSO->nExpr; 1238 r1 = sqlite3GetTempReg(pParse); 1239 r2 = sqlite3GetTempRange(pParse, nKey+2); 1240 r3 = r2+nKey+1; 1241 if( eDest==SRT_DistQueue ){ 1242 /* If the destination is DistQueue, then cursor (iParm+1) is open 1243 ** on a second ephemeral index that holds all values every previously 1244 ** added to the queue. */ 1245 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1246 regResult, nResultCol); 1247 VdbeCoverage(v); 1248 } 1249 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1250 if( eDest==SRT_DistQueue ){ 1251 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1252 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1253 } 1254 for(i=0; i<nKey; i++){ 1255 sqlite3VdbeAddOp2(v, OP_SCopy, 1256 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1257 r2+i); 1258 } 1259 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1260 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1261 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1262 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1263 sqlite3ReleaseTempReg(pParse, r1); 1264 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1265 break; 1266 } 1267 #endif /* SQLITE_OMIT_CTE */ 1268 1269 1270 1271 #if !defined(SQLITE_OMIT_TRIGGER) 1272 /* Discard the results. This is used for SELECT statements inside 1273 ** the body of a TRIGGER. The purpose of such selects is to call 1274 ** user-defined functions that have side effects. We do not care 1275 ** about the actual results of the select. 1276 */ 1277 default: { 1278 assert( eDest==SRT_Discard ); 1279 break; 1280 } 1281 #endif 1282 } 1283 1284 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1285 ** there is a sorter, in which case the sorter has already limited 1286 ** the output for us. 1287 */ 1288 if( pSort==0 && p->iLimit ){ 1289 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1290 } 1291 } 1292 1293 /* 1294 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1295 ** X extra columns. 1296 */ 1297 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1298 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1299 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1300 if( p ){ 1301 p->aSortFlags = (u8*)&p->aColl[N+X]; 1302 p->nKeyField = (u16)N; 1303 p->nAllField = (u16)(N+X); 1304 p->enc = ENC(db); 1305 p->db = db; 1306 p->nRef = 1; 1307 memset(&p[1], 0, nExtra); 1308 }else{ 1309 sqlite3OomFault(db); 1310 } 1311 return p; 1312 } 1313 1314 /* 1315 ** Deallocate a KeyInfo object 1316 */ 1317 void sqlite3KeyInfoUnref(KeyInfo *p){ 1318 if( p ){ 1319 assert( p->nRef>0 ); 1320 p->nRef--; 1321 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1322 } 1323 } 1324 1325 /* 1326 ** Make a new pointer to a KeyInfo object 1327 */ 1328 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1329 if( p ){ 1330 assert( p->nRef>0 ); 1331 p->nRef++; 1332 } 1333 return p; 1334 } 1335 1336 #ifdef SQLITE_DEBUG 1337 /* 1338 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1339 ** can only be changed if this is just a single reference to the object. 1340 ** 1341 ** This routine is used only inside of assert() statements. 1342 */ 1343 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1344 #endif /* SQLITE_DEBUG */ 1345 1346 /* 1347 ** Given an expression list, generate a KeyInfo structure that records 1348 ** the collating sequence for each expression in that expression list. 1349 ** 1350 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1351 ** KeyInfo structure is appropriate for initializing a virtual index to 1352 ** implement that clause. If the ExprList is the result set of a SELECT 1353 ** then the KeyInfo structure is appropriate for initializing a virtual 1354 ** index to implement a DISTINCT test. 1355 ** 1356 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1357 ** function is responsible for seeing that this structure is eventually 1358 ** freed. 1359 */ 1360 KeyInfo *sqlite3KeyInfoFromExprList( 1361 Parse *pParse, /* Parsing context */ 1362 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1363 int iStart, /* Begin with this column of pList */ 1364 int nExtra /* Add this many extra columns to the end */ 1365 ){ 1366 int nExpr; 1367 KeyInfo *pInfo; 1368 struct ExprList_item *pItem; 1369 sqlite3 *db = pParse->db; 1370 int i; 1371 1372 nExpr = pList->nExpr; 1373 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1374 if( pInfo ){ 1375 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1376 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1377 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1378 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1379 } 1380 } 1381 return pInfo; 1382 } 1383 1384 /* 1385 ** Name of the connection operator, used for error messages. 1386 */ 1387 static const char *selectOpName(int id){ 1388 char *z; 1389 switch( id ){ 1390 case TK_ALL: z = "UNION ALL"; break; 1391 case TK_INTERSECT: z = "INTERSECT"; break; 1392 case TK_EXCEPT: z = "EXCEPT"; break; 1393 default: z = "UNION"; break; 1394 } 1395 return z; 1396 } 1397 1398 #ifndef SQLITE_OMIT_EXPLAIN 1399 /* 1400 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1401 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1402 ** where the caption is of the form: 1403 ** 1404 ** "USE TEMP B-TREE FOR xxx" 1405 ** 1406 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1407 ** is determined by the zUsage argument. 1408 */ 1409 static void explainTempTable(Parse *pParse, const char *zUsage){ 1410 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1411 } 1412 1413 /* 1414 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1415 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1416 ** in sqlite3Select() to assign values to structure member variables that 1417 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1418 ** code with #ifndef directives. 1419 */ 1420 # define explainSetInteger(a, b) a = b 1421 1422 #else 1423 /* No-op versions of the explainXXX() functions and macros. */ 1424 # define explainTempTable(y,z) 1425 # define explainSetInteger(y,z) 1426 #endif 1427 1428 1429 /* 1430 ** If the inner loop was generated using a non-null pOrderBy argument, 1431 ** then the results were placed in a sorter. After the loop is terminated 1432 ** we need to run the sorter and output the results. The following 1433 ** routine generates the code needed to do that. 1434 */ 1435 static void generateSortTail( 1436 Parse *pParse, /* Parsing context */ 1437 Select *p, /* The SELECT statement */ 1438 SortCtx *pSort, /* Information on the ORDER BY clause */ 1439 int nColumn, /* Number of columns of data */ 1440 SelectDest *pDest /* Write the sorted results here */ 1441 ){ 1442 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1443 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1444 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1445 int addr; /* Top of output loop. Jump for Next. */ 1446 int addrOnce = 0; 1447 int iTab; 1448 ExprList *pOrderBy = pSort->pOrderBy; 1449 int eDest = pDest->eDest; 1450 int iParm = pDest->iSDParm; 1451 int regRow; 1452 int regRowid; 1453 int iCol; 1454 int nKey; /* Number of key columns in sorter record */ 1455 int iSortTab; /* Sorter cursor to read from */ 1456 int i; 1457 int bSeq; /* True if sorter record includes seq. no. */ 1458 int nRefKey = 0; 1459 struct ExprList_item *aOutEx = p->pEList->a; 1460 1461 assert( addrBreak<0 ); 1462 if( pSort->labelBkOut ){ 1463 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1464 sqlite3VdbeGoto(v, addrBreak); 1465 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1466 } 1467 1468 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1469 /* Open any cursors needed for sorter-reference expressions */ 1470 for(i=0; i<pSort->nDefer; i++){ 1471 Table *pTab = pSort->aDefer[i].pTab; 1472 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1473 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1474 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1475 } 1476 #endif 1477 1478 iTab = pSort->iECursor; 1479 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1480 regRowid = 0; 1481 regRow = pDest->iSdst; 1482 }else{ 1483 regRowid = sqlite3GetTempReg(pParse); 1484 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1485 regRow = sqlite3GetTempReg(pParse); 1486 nColumn = 0; 1487 }else{ 1488 regRow = sqlite3GetTempRange(pParse, nColumn); 1489 } 1490 } 1491 nKey = pOrderBy->nExpr - pSort->nOBSat; 1492 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1493 int regSortOut = ++pParse->nMem; 1494 iSortTab = pParse->nTab++; 1495 if( pSort->labelBkOut ){ 1496 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1497 } 1498 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1499 nKey+1+nColumn+nRefKey); 1500 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1501 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1502 VdbeCoverage(v); 1503 codeOffset(v, p->iOffset, addrContinue); 1504 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1505 bSeq = 0; 1506 }else{ 1507 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1508 codeOffset(v, p->iOffset, addrContinue); 1509 iSortTab = iTab; 1510 bSeq = 1; 1511 } 1512 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1513 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1514 if( aOutEx[i].bSorterRef ) continue; 1515 #endif 1516 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1517 } 1518 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1519 if( pSort->nDefer ){ 1520 int iKey = iCol+1; 1521 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1522 1523 for(i=0; i<pSort->nDefer; i++){ 1524 int iCsr = pSort->aDefer[i].iCsr; 1525 Table *pTab = pSort->aDefer[i].pTab; 1526 int nKey = pSort->aDefer[i].nKey; 1527 1528 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1529 if( HasRowid(pTab) ){ 1530 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1531 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1532 sqlite3VdbeCurrentAddr(v)+1, regKey); 1533 }else{ 1534 int k; 1535 int iJmp; 1536 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1537 for(k=0; k<nKey; k++){ 1538 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1539 } 1540 iJmp = sqlite3VdbeCurrentAddr(v); 1541 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1542 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1543 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1544 } 1545 } 1546 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1547 } 1548 #endif 1549 for(i=nColumn-1; i>=0; i--){ 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 if( aOutEx[i].bSorterRef ){ 1552 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1553 }else 1554 #endif 1555 { 1556 int iRead; 1557 if( aOutEx[i].u.x.iOrderByCol ){ 1558 iRead = aOutEx[i].u.x.iOrderByCol-1; 1559 }else{ 1560 iRead = iCol--; 1561 } 1562 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1563 VdbeComment((v, "%s", aOutEx[i].zEName)); 1564 } 1565 } 1566 switch( eDest ){ 1567 case SRT_Table: 1568 case SRT_EphemTab: { 1569 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1570 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1571 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1572 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1573 break; 1574 } 1575 #ifndef SQLITE_OMIT_SUBQUERY 1576 case SRT_Set: { 1577 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1578 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1579 pDest->zAffSdst, nColumn); 1580 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1581 break; 1582 } 1583 case SRT_Mem: { 1584 /* The LIMIT clause will terminate the loop for us */ 1585 break; 1586 } 1587 #endif 1588 default: { 1589 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1590 testcase( eDest==SRT_Output ); 1591 testcase( eDest==SRT_Coroutine ); 1592 if( eDest==SRT_Output ){ 1593 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1594 }else{ 1595 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1596 } 1597 break; 1598 } 1599 } 1600 if( regRowid ){ 1601 if( eDest==SRT_Set ){ 1602 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1603 }else{ 1604 sqlite3ReleaseTempReg(pParse, regRow); 1605 } 1606 sqlite3ReleaseTempReg(pParse, regRowid); 1607 } 1608 /* The bottom of the loop 1609 */ 1610 sqlite3VdbeResolveLabel(v, addrContinue); 1611 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1612 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1613 }else{ 1614 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1615 } 1616 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1617 sqlite3VdbeResolveLabel(v, addrBreak); 1618 } 1619 1620 /* 1621 ** Return a pointer to a string containing the 'declaration type' of the 1622 ** expression pExpr. The string may be treated as static by the caller. 1623 ** 1624 ** Also try to estimate the size of the returned value and return that 1625 ** result in *pEstWidth. 1626 ** 1627 ** The declaration type is the exact datatype definition extracted from the 1628 ** original CREATE TABLE statement if the expression is a column. The 1629 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1630 ** is considered a column can be complex in the presence of subqueries. The 1631 ** result-set expression in all of the following SELECT statements is 1632 ** considered a column by this function. 1633 ** 1634 ** SELECT col FROM tbl; 1635 ** SELECT (SELECT col FROM tbl; 1636 ** SELECT (SELECT col FROM tbl); 1637 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1638 ** 1639 ** The declaration type for any expression other than a column is NULL. 1640 ** 1641 ** This routine has either 3 or 6 parameters depending on whether or not 1642 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1643 */ 1644 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1645 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1646 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1647 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1648 #endif 1649 static const char *columnTypeImpl( 1650 NameContext *pNC, 1651 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1652 Expr *pExpr 1653 #else 1654 Expr *pExpr, 1655 const char **pzOrigDb, 1656 const char **pzOrigTab, 1657 const char **pzOrigCol 1658 #endif 1659 ){ 1660 char const *zType = 0; 1661 int j; 1662 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1663 char const *zOrigDb = 0; 1664 char const *zOrigTab = 0; 1665 char const *zOrigCol = 0; 1666 #endif 1667 1668 assert( pExpr!=0 ); 1669 assert( pNC->pSrcList!=0 ); 1670 switch( pExpr->op ){ 1671 case TK_COLUMN: { 1672 /* The expression is a column. Locate the table the column is being 1673 ** extracted from in NameContext.pSrcList. This table may be real 1674 ** database table or a subquery. 1675 */ 1676 Table *pTab = 0; /* Table structure column is extracted from */ 1677 Select *pS = 0; /* Select the column is extracted from */ 1678 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1679 while( pNC && !pTab ){ 1680 SrcList *pTabList = pNC->pSrcList; 1681 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1682 if( j<pTabList->nSrc ){ 1683 pTab = pTabList->a[j].pTab; 1684 pS = pTabList->a[j].pSelect; 1685 }else{ 1686 pNC = pNC->pNext; 1687 } 1688 } 1689 1690 if( pTab==0 ){ 1691 /* At one time, code such as "SELECT new.x" within a trigger would 1692 ** cause this condition to run. Since then, we have restructured how 1693 ** trigger code is generated and so this condition is no longer 1694 ** possible. However, it can still be true for statements like 1695 ** the following: 1696 ** 1697 ** CREATE TABLE t1(col INTEGER); 1698 ** SELECT (SELECT t1.col) FROM FROM t1; 1699 ** 1700 ** when columnType() is called on the expression "t1.col" in the 1701 ** sub-select. In this case, set the column type to NULL, even 1702 ** though it should really be "INTEGER". 1703 ** 1704 ** This is not a problem, as the column type of "t1.col" is never 1705 ** used. When columnType() is called on the expression 1706 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1707 ** branch below. */ 1708 break; 1709 } 1710 1711 assert( pTab && pExpr->y.pTab==pTab ); 1712 if( pS ){ 1713 /* The "table" is actually a sub-select or a view in the FROM clause 1714 ** of the SELECT statement. Return the declaration type and origin 1715 ** data for the result-set column of the sub-select. 1716 */ 1717 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1718 /* If iCol is less than zero, then the expression requests the 1719 ** rowid of the sub-select or view. This expression is legal (see 1720 ** test case misc2.2.2) - it always evaluates to NULL. 1721 */ 1722 NameContext sNC; 1723 Expr *p = pS->pEList->a[iCol].pExpr; 1724 sNC.pSrcList = pS->pSrc; 1725 sNC.pNext = pNC; 1726 sNC.pParse = pNC->pParse; 1727 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1728 } 1729 }else{ 1730 /* A real table or a CTE table */ 1731 assert( !pS ); 1732 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1733 if( iCol<0 ) iCol = pTab->iPKey; 1734 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1735 if( iCol<0 ){ 1736 zType = "INTEGER"; 1737 zOrigCol = "rowid"; 1738 }else{ 1739 zOrigCol = pTab->aCol[iCol].zName; 1740 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1741 } 1742 zOrigTab = pTab->zName; 1743 if( pNC->pParse && pTab->pSchema ){ 1744 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1745 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1746 } 1747 #else 1748 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1749 if( iCol<0 ){ 1750 zType = "INTEGER"; 1751 }else{ 1752 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1753 } 1754 #endif 1755 } 1756 break; 1757 } 1758 #ifndef SQLITE_OMIT_SUBQUERY 1759 case TK_SELECT: { 1760 /* The expression is a sub-select. Return the declaration type and 1761 ** origin info for the single column in the result set of the SELECT 1762 ** statement. 1763 */ 1764 NameContext sNC; 1765 Select *pS = pExpr->x.pSelect; 1766 Expr *p = pS->pEList->a[0].pExpr; 1767 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1768 sNC.pSrcList = pS->pSrc; 1769 sNC.pNext = pNC; 1770 sNC.pParse = pNC->pParse; 1771 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1772 break; 1773 } 1774 #endif 1775 } 1776 1777 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1778 if( pzOrigDb ){ 1779 assert( pzOrigTab && pzOrigCol ); 1780 *pzOrigDb = zOrigDb; 1781 *pzOrigTab = zOrigTab; 1782 *pzOrigCol = zOrigCol; 1783 } 1784 #endif 1785 return zType; 1786 } 1787 1788 /* 1789 ** Generate code that will tell the VDBE the declaration types of columns 1790 ** in the result set. 1791 */ 1792 static void generateColumnTypes( 1793 Parse *pParse, /* Parser context */ 1794 SrcList *pTabList, /* List of tables */ 1795 ExprList *pEList /* Expressions defining the result set */ 1796 ){ 1797 #ifndef SQLITE_OMIT_DECLTYPE 1798 Vdbe *v = pParse->pVdbe; 1799 int i; 1800 NameContext sNC; 1801 sNC.pSrcList = pTabList; 1802 sNC.pParse = pParse; 1803 sNC.pNext = 0; 1804 for(i=0; i<pEList->nExpr; i++){ 1805 Expr *p = pEList->a[i].pExpr; 1806 const char *zType; 1807 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1808 const char *zOrigDb = 0; 1809 const char *zOrigTab = 0; 1810 const char *zOrigCol = 0; 1811 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1812 1813 /* The vdbe must make its own copy of the column-type and other 1814 ** column specific strings, in case the schema is reset before this 1815 ** virtual machine is deleted. 1816 */ 1817 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1818 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1819 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1820 #else 1821 zType = columnType(&sNC, p, 0, 0, 0); 1822 #endif 1823 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1824 } 1825 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1826 } 1827 1828 1829 /* 1830 ** Compute the column names for a SELECT statement. 1831 ** 1832 ** The only guarantee that SQLite makes about column names is that if the 1833 ** column has an AS clause assigning it a name, that will be the name used. 1834 ** That is the only documented guarantee. However, countless applications 1835 ** developed over the years have made baseless assumptions about column names 1836 ** and will break if those assumptions changes. Hence, use extreme caution 1837 ** when modifying this routine to avoid breaking legacy. 1838 ** 1839 ** See Also: sqlite3ColumnsFromExprList() 1840 ** 1841 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1842 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1843 ** applications should operate this way. Nevertheless, we need to support the 1844 ** other modes for legacy: 1845 ** 1846 ** short=OFF, full=OFF: Column name is the text of the expression has it 1847 ** originally appears in the SELECT statement. In 1848 ** other words, the zSpan of the result expression. 1849 ** 1850 ** short=ON, full=OFF: (This is the default setting). If the result 1851 ** refers directly to a table column, then the 1852 ** result column name is just the table column 1853 ** name: COLUMN. Otherwise use zSpan. 1854 ** 1855 ** full=ON, short=ANY: If the result refers directly to a table column, 1856 ** then the result column name with the table name 1857 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1858 */ 1859 static void generateColumnNames( 1860 Parse *pParse, /* Parser context */ 1861 Select *pSelect /* Generate column names for this SELECT statement */ 1862 ){ 1863 Vdbe *v = pParse->pVdbe; 1864 int i; 1865 Table *pTab; 1866 SrcList *pTabList; 1867 ExprList *pEList; 1868 sqlite3 *db = pParse->db; 1869 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1870 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1871 1872 #ifndef SQLITE_OMIT_EXPLAIN 1873 /* If this is an EXPLAIN, skip this step */ 1874 if( pParse->explain ){ 1875 return; 1876 } 1877 #endif 1878 1879 if( pParse->colNamesSet ) return; 1880 /* Column names are determined by the left-most term of a compound select */ 1881 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1882 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1883 pTabList = pSelect->pSrc; 1884 pEList = pSelect->pEList; 1885 assert( v!=0 ); 1886 assert( pTabList!=0 ); 1887 pParse->colNamesSet = 1; 1888 fullName = (db->flags & SQLITE_FullColNames)!=0; 1889 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1890 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1891 for(i=0; i<pEList->nExpr; i++){ 1892 Expr *p = pEList->a[i].pExpr; 1893 1894 assert( p!=0 ); 1895 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1896 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1897 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1898 /* An AS clause always takes first priority */ 1899 char *zName = pEList->a[i].zEName; 1900 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1901 }else if( srcName && p->op==TK_COLUMN ){ 1902 char *zCol; 1903 int iCol = p->iColumn; 1904 pTab = p->y.pTab; 1905 assert( pTab!=0 ); 1906 if( iCol<0 ) iCol = pTab->iPKey; 1907 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1908 if( iCol<0 ){ 1909 zCol = "rowid"; 1910 }else{ 1911 zCol = pTab->aCol[iCol].zName; 1912 } 1913 if( fullName ){ 1914 char *zName = 0; 1915 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1916 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1917 }else{ 1918 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1919 } 1920 }else{ 1921 const char *z = pEList->a[i].zEName; 1922 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1923 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1924 } 1925 } 1926 generateColumnTypes(pParse, pTabList, pEList); 1927 } 1928 1929 /* 1930 ** Given an expression list (which is really the list of expressions 1931 ** that form the result set of a SELECT statement) compute appropriate 1932 ** column names for a table that would hold the expression list. 1933 ** 1934 ** All column names will be unique. 1935 ** 1936 ** Only the column names are computed. Column.zType, Column.zColl, 1937 ** and other fields of Column are zeroed. 1938 ** 1939 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1940 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1941 ** 1942 ** The only guarantee that SQLite makes about column names is that if the 1943 ** column has an AS clause assigning it a name, that will be the name used. 1944 ** That is the only documented guarantee. However, countless applications 1945 ** developed over the years have made baseless assumptions about column names 1946 ** and will break if those assumptions changes. Hence, use extreme caution 1947 ** when modifying this routine to avoid breaking legacy. 1948 ** 1949 ** See Also: generateColumnNames() 1950 */ 1951 int sqlite3ColumnsFromExprList( 1952 Parse *pParse, /* Parsing context */ 1953 ExprList *pEList, /* Expr list from which to derive column names */ 1954 i16 *pnCol, /* Write the number of columns here */ 1955 Column **paCol /* Write the new column list here */ 1956 ){ 1957 sqlite3 *db = pParse->db; /* Database connection */ 1958 int i, j; /* Loop counters */ 1959 u32 cnt; /* Index added to make the name unique */ 1960 Column *aCol, *pCol; /* For looping over result columns */ 1961 int nCol; /* Number of columns in the result set */ 1962 char *zName; /* Column name */ 1963 int nName; /* Size of name in zName[] */ 1964 Hash ht; /* Hash table of column names */ 1965 1966 sqlite3HashInit(&ht); 1967 if( pEList ){ 1968 nCol = pEList->nExpr; 1969 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1970 testcase( aCol==0 ); 1971 if( nCol>32767 ) nCol = 32767; 1972 }else{ 1973 nCol = 0; 1974 aCol = 0; 1975 } 1976 assert( nCol==(i16)nCol ); 1977 *pnCol = nCol; 1978 *paCol = aCol; 1979 1980 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1981 /* Get an appropriate name for the column 1982 */ 1983 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1984 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1985 }else{ 1986 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1987 while( pColExpr->op==TK_DOT ){ 1988 pColExpr = pColExpr->pRight; 1989 assert( pColExpr!=0 ); 1990 } 1991 if( pColExpr->op==TK_COLUMN ){ 1992 /* For columns use the column name name */ 1993 int iCol = pColExpr->iColumn; 1994 Table *pTab = pColExpr->y.pTab; 1995 assert( pTab!=0 ); 1996 if( iCol<0 ) iCol = pTab->iPKey; 1997 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1998 }else if( pColExpr->op==TK_ID ){ 1999 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2000 zName = pColExpr->u.zToken; 2001 }else{ 2002 /* Use the original text of the column expression as its name */ 2003 zName = pEList->a[i].zEName; 2004 } 2005 } 2006 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2007 zName = sqlite3DbStrDup(db, zName); 2008 }else{ 2009 zName = sqlite3MPrintf(db,"column%d",i+1); 2010 } 2011 2012 /* Make sure the column name is unique. If the name is not unique, 2013 ** append an integer to the name so that it becomes unique. 2014 */ 2015 cnt = 0; 2016 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2017 nName = sqlite3Strlen30(zName); 2018 if( nName>0 ){ 2019 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2020 if( zName[j]==':' ) nName = j; 2021 } 2022 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2023 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2024 } 2025 pCol->zName = zName; 2026 pCol->hName = sqlite3StrIHash(zName); 2027 sqlite3ColumnPropertiesFromName(0, pCol); 2028 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2029 sqlite3OomFault(db); 2030 } 2031 } 2032 sqlite3HashClear(&ht); 2033 if( db->mallocFailed ){ 2034 for(j=0; j<i; j++){ 2035 sqlite3DbFree(db, aCol[j].zName); 2036 } 2037 sqlite3DbFree(db, aCol); 2038 *paCol = 0; 2039 *pnCol = 0; 2040 return SQLITE_NOMEM_BKPT; 2041 } 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Add type and collation information to a column list based on 2047 ** a SELECT statement. 2048 ** 2049 ** The column list presumably came from selectColumnNamesFromExprList(). 2050 ** The column list has only names, not types or collations. This 2051 ** routine goes through and adds the types and collations. 2052 ** 2053 ** This routine requires that all identifiers in the SELECT 2054 ** statement be resolved. 2055 */ 2056 void sqlite3SelectAddColumnTypeAndCollation( 2057 Parse *pParse, /* Parsing contexts */ 2058 Table *pTab, /* Add column type information to this table */ 2059 Select *pSelect, /* SELECT used to determine types and collations */ 2060 char aff /* Default affinity for columns */ 2061 ){ 2062 sqlite3 *db = pParse->db; 2063 NameContext sNC; 2064 Column *pCol; 2065 CollSeq *pColl; 2066 int i; 2067 Expr *p; 2068 struct ExprList_item *a; 2069 2070 assert( pSelect!=0 ); 2071 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2072 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2073 if( db->mallocFailed ) return; 2074 memset(&sNC, 0, sizeof(sNC)); 2075 sNC.pSrcList = pSelect->pSrc; 2076 a = pSelect->pEList->a; 2077 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2078 const char *zType; 2079 int n, m; 2080 p = a[i].pExpr; 2081 zType = columnType(&sNC, p, 0, 0, 0); 2082 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2083 pCol->affinity = sqlite3ExprAffinity(p); 2084 if( zType ){ 2085 m = sqlite3Strlen30(zType); 2086 n = sqlite3Strlen30(pCol->zName); 2087 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2088 if( pCol->zName ){ 2089 memcpy(&pCol->zName[n+1], zType, m+1); 2090 pCol->colFlags |= COLFLAG_HASTYPE; 2091 } 2092 } 2093 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2094 pColl = sqlite3ExprCollSeq(pParse, p); 2095 if( pColl && pCol->zColl==0 ){ 2096 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2097 } 2098 } 2099 pTab->szTabRow = 1; /* Any non-zero value works */ 2100 } 2101 2102 /* 2103 ** Given a SELECT statement, generate a Table structure that describes 2104 ** the result set of that SELECT. 2105 */ 2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2107 Table *pTab; 2108 sqlite3 *db = pParse->db; 2109 u64 savedFlags; 2110 2111 savedFlags = db->flags; 2112 db->flags &= ~(u64)SQLITE_FullColNames; 2113 db->flags |= SQLITE_ShortColNames; 2114 sqlite3SelectPrep(pParse, pSelect, 0); 2115 db->flags = savedFlags; 2116 if( pParse->nErr ) return 0; 2117 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2118 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2119 if( pTab==0 ){ 2120 return 0; 2121 } 2122 pTab->nTabRef = 1; 2123 pTab->zName = 0; 2124 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2125 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2126 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2127 pTab->iPKey = -1; 2128 if( db->mallocFailed ){ 2129 sqlite3DeleteTable(db, pTab); 2130 return 0; 2131 } 2132 return pTab; 2133 } 2134 2135 /* 2136 ** Get a VDBE for the given parser context. Create a new one if necessary. 2137 ** If an error occurs, return NULL and leave a message in pParse. 2138 */ 2139 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2140 if( pParse->pVdbe ){ 2141 return pParse->pVdbe; 2142 } 2143 if( pParse->pToplevel==0 2144 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2145 ){ 2146 pParse->okConstFactor = 1; 2147 } 2148 return sqlite3VdbeCreate(pParse); 2149 } 2150 2151 2152 /* 2153 ** Compute the iLimit and iOffset fields of the SELECT based on the 2154 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2155 ** that appear in the original SQL statement after the LIMIT and OFFSET 2156 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2157 ** are the integer memory register numbers for counters used to compute 2158 ** the limit and offset. If there is no limit and/or offset, then 2159 ** iLimit and iOffset are negative. 2160 ** 2161 ** This routine changes the values of iLimit and iOffset only if 2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2163 ** and iOffset should have been preset to appropriate default values (zero) 2164 ** prior to calling this routine. 2165 ** 2166 ** The iOffset register (if it exists) is initialized to the value 2167 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2168 ** iOffset+1 is initialized to LIMIT+OFFSET. 2169 ** 2170 ** Only if pLimit->pLeft!=0 do the limit registers get 2171 ** redefined. The UNION ALL operator uses this property to force 2172 ** the reuse of the same limit and offset registers across multiple 2173 ** SELECT statements. 2174 */ 2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2176 Vdbe *v = 0; 2177 int iLimit = 0; 2178 int iOffset; 2179 int n; 2180 Expr *pLimit = p->pLimit; 2181 2182 if( p->iLimit ) return; 2183 2184 /* 2185 ** "LIMIT -1" always shows all rows. There is some 2186 ** controversy about what the correct behavior should be. 2187 ** The current implementation interprets "LIMIT 0" to mean 2188 ** no rows. 2189 */ 2190 if( pLimit ){ 2191 assert( pLimit->op==TK_LIMIT ); 2192 assert( pLimit->pLeft!=0 ); 2193 p->iLimit = iLimit = ++pParse->nMem; 2194 v = sqlite3GetVdbe(pParse); 2195 assert( v!=0 ); 2196 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2197 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2198 VdbeComment((v, "LIMIT counter")); 2199 if( n==0 ){ 2200 sqlite3VdbeGoto(v, iBreak); 2201 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2202 p->nSelectRow = sqlite3LogEst((u64)n); 2203 p->selFlags |= SF_FixedLimit; 2204 } 2205 }else{ 2206 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2207 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2208 VdbeComment((v, "LIMIT counter")); 2209 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2210 } 2211 if( pLimit->pRight ){ 2212 p->iOffset = iOffset = ++pParse->nMem; 2213 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2214 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2215 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2216 VdbeComment((v, "OFFSET counter")); 2217 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2218 VdbeComment((v, "LIMIT+OFFSET")); 2219 } 2220 } 2221 } 2222 2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2224 /* 2225 ** Return the appropriate collating sequence for the iCol-th column of 2226 ** the result set for the compound-select statement "p". Return NULL if 2227 ** the column has no default collating sequence. 2228 ** 2229 ** The collating sequence for the compound select is taken from the 2230 ** left-most term of the select that has a collating sequence. 2231 */ 2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2233 CollSeq *pRet; 2234 if( p->pPrior ){ 2235 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2236 }else{ 2237 pRet = 0; 2238 } 2239 assert( iCol>=0 ); 2240 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2241 ** have been thrown during name resolution and we would not have gotten 2242 ** this far */ 2243 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2244 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2245 } 2246 return pRet; 2247 } 2248 2249 /* 2250 ** The select statement passed as the second parameter is a compound SELECT 2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2252 ** structure suitable for implementing the ORDER BY. 2253 ** 2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2255 ** function is responsible for ensuring that this structure is eventually 2256 ** freed. 2257 */ 2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2259 ExprList *pOrderBy = p->pOrderBy; 2260 int nOrderBy = p->pOrderBy->nExpr; 2261 sqlite3 *db = pParse->db; 2262 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2263 if( pRet ){ 2264 int i; 2265 for(i=0; i<nOrderBy; i++){ 2266 struct ExprList_item *pItem = &pOrderBy->a[i]; 2267 Expr *pTerm = pItem->pExpr; 2268 CollSeq *pColl; 2269 2270 if( pTerm->flags & EP_Collate ){ 2271 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2272 }else{ 2273 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2274 if( pColl==0 ) pColl = db->pDfltColl; 2275 pOrderBy->a[i].pExpr = 2276 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2277 } 2278 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2279 pRet->aColl[i] = pColl; 2280 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2281 } 2282 } 2283 2284 return pRet; 2285 } 2286 2287 #ifndef SQLITE_OMIT_CTE 2288 /* 2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2290 ** query of the form: 2291 ** 2292 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2293 ** \___________/ \_______________/ 2294 ** p->pPrior p 2295 ** 2296 ** 2297 ** There is exactly one reference to the recursive-table in the FROM clause 2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2299 ** 2300 ** The setup-query runs once to generate an initial set of rows that go 2301 ** into a Queue table. Rows are extracted from the Queue table one by 2302 ** one. Each row extracted from Queue is output to pDest. Then the single 2303 ** extracted row (now in the iCurrent table) becomes the content of the 2304 ** recursive-table for a recursive-query run. The output of the recursive-query 2305 ** is added back into the Queue table. Then another row is extracted from Queue 2306 ** and the iteration continues until the Queue table is empty. 2307 ** 2308 ** If the compound query operator is UNION then no duplicate rows are ever 2309 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2310 ** that have ever been inserted into Queue and causes duplicates to be 2311 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2312 ** 2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2314 ** ORDER BY order and the first entry is extracted for each cycle. Without 2315 ** an ORDER BY, the Queue table is just a FIFO. 2316 ** 2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2318 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2319 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2320 ** with a positive value, then the first OFFSET outputs are discarded rather 2321 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2322 ** rows have been skipped. 2323 */ 2324 static void generateWithRecursiveQuery( 2325 Parse *pParse, /* Parsing context */ 2326 Select *p, /* The recursive SELECT to be coded */ 2327 SelectDest *pDest /* What to do with query results */ 2328 ){ 2329 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2330 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2331 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2332 Select *pSetup = p->pPrior; /* The setup query */ 2333 int addrTop; /* Top of the loop */ 2334 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2335 int iCurrent = 0; /* The Current table */ 2336 int regCurrent; /* Register holding Current table */ 2337 int iQueue; /* The Queue table */ 2338 int iDistinct = 0; /* To ensure unique results if UNION */ 2339 int eDest = SRT_Fifo; /* How to write to Queue */ 2340 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2341 int i; /* Loop counter */ 2342 int rc; /* Result code */ 2343 ExprList *pOrderBy; /* The ORDER BY clause */ 2344 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2345 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2346 2347 #ifndef SQLITE_OMIT_WINDOWFUNC 2348 if( p->pWin ){ 2349 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2350 return; 2351 } 2352 #endif 2353 2354 /* Obtain authorization to do a recursive query */ 2355 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2356 2357 /* Process the LIMIT and OFFSET clauses, if they exist */ 2358 addrBreak = sqlite3VdbeMakeLabel(pParse); 2359 p->nSelectRow = 320; /* 4 billion rows */ 2360 computeLimitRegisters(pParse, p, addrBreak); 2361 pLimit = p->pLimit; 2362 regLimit = p->iLimit; 2363 regOffset = p->iOffset; 2364 p->pLimit = 0; 2365 p->iLimit = p->iOffset = 0; 2366 pOrderBy = p->pOrderBy; 2367 2368 /* Locate the cursor number of the Current table */ 2369 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2370 if( pSrc->a[i].fg.isRecursive ){ 2371 iCurrent = pSrc->a[i].iCursor; 2372 break; 2373 } 2374 } 2375 2376 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2377 ** the Distinct table must be exactly one greater than Queue in order 2378 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2379 iQueue = pParse->nTab++; 2380 if( p->op==TK_UNION ){ 2381 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2382 iDistinct = pParse->nTab++; 2383 }else{ 2384 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2385 } 2386 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2387 2388 /* Allocate cursors for Current, Queue, and Distinct. */ 2389 regCurrent = ++pParse->nMem; 2390 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2391 if( pOrderBy ){ 2392 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2393 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2394 (char*)pKeyInfo, P4_KEYINFO); 2395 destQueue.pOrderBy = pOrderBy; 2396 }else{ 2397 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2398 } 2399 VdbeComment((v, "Queue table")); 2400 if( iDistinct ){ 2401 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2402 p->selFlags |= SF_UsesEphemeral; 2403 } 2404 2405 /* Detach the ORDER BY clause from the compound SELECT */ 2406 p->pOrderBy = 0; 2407 2408 /* Store the results of the setup-query in Queue. */ 2409 pSetup->pNext = 0; 2410 ExplainQueryPlan((pParse, 1, "SETUP")); 2411 rc = sqlite3Select(pParse, pSetup, &destQueue); 2412 pSetup->pNext = p; 2413 if( rc ) goto end_of_recursive_query; 2414 2415 /* Find the next row in the Queue and output that row */ 2416 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2417 2418 /* Transfer the next row in Queue over to Current */ 2419 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2420 if( pOrderBy ){ 2421 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2422 }else{ 2423 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2424 } 2425 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2426 2427 /* Output the single row in Current */ 2428 addrCont = sqlite3VdbeMakeLabel(pParse); 2429 codeOffset(v, regOffset, addrCont); 2430 selectInnerLoop(pParse, p, iCurrent, 2431 0, 0, pDest, addrCont, addrBreak); 2432 if( regLimit ){ 2433 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2434 VdbeCoverage(v); 2435 } 2436 sqlite3VdbeResolveLabel(v, addrCont); 2437 2438 /* Execute the recursive SELECT taking the single row in Current as 2439 ** the value for the recursive-table. Store the results in the Queue. 2440 */ 2441 if( p->selFlags & SF_Aggregate ){ 2442 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2443 }else{ 2444 p->pPrior = 0; 2445 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2446 sqlite3Select(pParse, p, &destQueue); 2447 assert( p->pPrior==0 ); 2448 p->pPrior = pSetup; 2449 } 2450 2451 /* Keep running the loop until the Queue is empty */ 2452 sqlite3VdbeGoto(v, addrTop); 2453 sqlite3VdbeResolveLabel(v, addrBreak); 2454 2455 end_of_recursive_query: 2456 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2457 p->pOrderBy = pOrderBy; 2458 p->pLimit = pLimit; 2459 return; 2460 } 2461 #endif /* SQLITE_OMIT_CTE */ 2462 2463 /* Forward references */ 2464 static int multiSelectOrderBy( 2465 Parse *pParse, /* Parsing context */ 2466 Select *p, /* The right-most of SELECTs to be coded */ 2467 SelectDest *pDest /* What to do with query results */ 2468 ); 2469 2470 /* 2471 ** Handle the special case of a compound-select that originates from a 2472 ** VALUES clause. By handling this as a special case, we avoid deep 2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2474 ** on a VALUES clause. 2475 ** 2476 ** Because the Select object originates from a VALUES clause: 2477 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2478 ** (2) All terms are UNION ALL 2479 ** (3) There is no ORDER BY clause 2480 ** 2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2485 */ 2486 static int multiSelectValues( 2487 Parse *pParse, /* Parsing context */ 2488 Select *p, /* The right-most of SELECTs to be coded */ 2489 SelectDest *pDest /* What to do with query results */ 2490 ){ 2491 int nRow = 1; 2492 int rc = 0; 2493 int bShowAll = p->pLimit==0; 2494 assert( p->selFlags & SF_MultiValue ); 2495 do{ 2496 assert( p->selFlags & SF_Values ); 2497 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2498 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2499 #ifndef SQLITE_OMIT_WINDOWFUNC 2500 if( p->pWin ) return -1; 2501 #endif 2502 if( p->pPrior==0 ) break; 2503 assert( p->pPrior->pNext==p ); 2504 p = p->pPrior; 2505 nRow += bShowAll; 2506 }while(1); 2507 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2508 nRow==1 ? "" : "S")); 2509 while( p ){ 2510 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2511 if( !bShowAll ) break; 2512 p->nSelectRow = nRow; 2513 p = p->pNext; 2514 } 2515 return rc; 2516 } 2517 2518 /* 2519 ** This routine is called to process a compound query form from 2520 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2521 ** INTERSECT 2522 ** 2523 ** "p" points to the right-most of the two queries. the query on the 2524 ** left is p->pPrior. The left query could also be a compound query 2525 ** in which case this routine will be called recursively. 2526 ** 2527 ** The results of the total query are to be written into a destination 2528 ** of type eDest with parameter iParm. 2529 ** 2530 ** Example 1: Consider a three-way compound SQL statement. 2531 ** 2532 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2533 ** 2534 ** This statement is parsed up as follows: 2535 ** 2536 ** SELECT c FROM t3 2537 ** | 2538 ** `-----> SELECT b FROM t2 2539 ** | 2540 ** `------> SELECT a FROM t1 2541 ** 2542 ** The arrows in the diagram above represent the Select.pPrior pointer. 2543 ** So if this routine is called with p equal to the t3 query, then 2544 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2545 ** 2546 ** Notice that because of the way SQLite parses compound SELECTs, the 2547 ** individual selects always group from left to right. 2548 */ 2549 static int multiSelect( 2550 Parse *pParse, /* Parsing context */ 2551 Select *p, /* The right-most of SELECTs to be coded */ 2552 SelectDest *pDest /* What to do with query results */ 2553 ){ 2554 int rc = SQLITE_OK; /* Success code from a subroutine */ 2555 Select *pPrior; /* Another SELECT immediately to our left */ 2556 Vdbe *v; /* Generate code to this VDBE */ 2557 SelectDest dest; /* Alternative data destination */ 2558 Select *pDelete = 0; /* Chain of simple selects to delete */ 2559 sqlite3 *db; /* Database connection */ 2560 2561 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2562 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2563 */ 2564 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2565 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2566 assert( p->selFlags & SF_Compound ); 2567 db = pParse->db; 2568 pPrior = p->pPrior; 2569 dest = *pDest; 2570 if( pPrior->pOrderBy || pPrior->pLimit ){ 2571 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2572 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2573 rc = 1; 2574 goto multi_select_end; 2575 } 2576 2577 v = sqlite3GetVdbe(pParse); 2578 assert( v!=0 ); /* The VDBE already created by calling function */ 2579 2580 /* Create the destination temporary table if necessary 2581 */ 2582 if( dest.eDest==SRT_EphemTab ){ 2583 assert( p->pEList ); 2584 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2585 dest.eDest = SRT_Table; 2586 } 2587 2588 /* Special handling for a compound-select that originates as a VALUES clause. 2589 */ 2590 if( p->selFlags & SF_MultiValue ){ 2591 rc = multiSelectValues(pParse, p, &dest); 2592 if( rc>=0 ) goto multi_select_end; 2593 rc = SQLITE_OK; 2594 } 2595 2596 /* Make sure all SELECTs in the statement have the same number of elements 2597 ** in their result sets. 2598 */ 2599 assert( p->pEList && pPrior->pEList ); 2600 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2601 2602 #ifndef SQLITE_OMIT_CTE 2603 if( p->selFlags & SF_Recursive ){ 2604 generateWithRecursiveQuery(pParse, p, &dest); 2605 }else 2606 #endif 2607 2608 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2609 */ 2610 if( p->pOrderBy ){ 2611 return multiSelectOrderBy(pParse, p, pDest); 2612 }else{ 2613 2614 #ifndef SQLITE_OMIT_EXPLAIN 2615 if( pPrior->pPrior==0 ){ 2616 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2617 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2618 } 2619 #endif 2620 2621 /* Generate code for the left and right SELECT statements. 2622 */ 2623 switch( p->op ){ 2624 case TK_ALL: { 2625 int addr = 0; 2626 int nLimit; 2627 assert( !pPrior->pLimit ); 2628 pPrior->iLimit = p->iLimit; 2629 pPrior->iOffset = p->iOffset; 2630 pPrior->pLimit = p->pLimit; 2631 rc = sqlite3Select(pParse, pPrior, &dest); 2632 p->pLimit = 0; 2633 if( rc ){ 2634 goto multi_select_end; 2635 } 2636 p->pPrior = 0; 2637 p->iLimit = pPrior->iLimit; 2638 p->iOffset = pPrior->iOffset; 2639 if( p->iLimit ){ 2640 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2641 VdbeComment((v, "Jump ahead if LIMIT reached")); 2642 if( p->iOffset ){ 2643 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2644 p->iLimit, p->iOffset+1, p->iOffset); 2645 } 2646 } 2647 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2648 rc = sqlite3Select(pParse, p, &dest); 2649 testcase( rc!=SQLITE_OK ); 2650 pDelete = p->pPrior; 2651 p->pPrior = pPrior; 2652 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2653 if( pPrior->pLimit 2654 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2655 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2656 ){ 2657 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2658 } 2659 if( addr ){ 2660 sqlite3VdbeJumpHere(v, addr); 2661 } 2662 break; 2663 } 2664 case TK_EXCEPT: 2665 case TK_UNION: { 2666 int unionTab; /* Cursor number of the temp table holding result */ 2667 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2668 int priorOp; /* The SRT_ operation to apply to prior selects */ 2669 Expr *pLimit; /* Saved values of p->nLimit */ 2670 int addr; 2671 SelectDest uniondest; 2672 2673 testcase( p->op==TK_EXCEPT ); 2674 testcase( p->op==TK_UNION ); 2675 priorOp = SRT_Union; 2676 if( dest.eDest==priorOp ){ 2677 /* We can reuse a temporary table generated by a SELECT to our 2678 ** right. 2679 */ 2680 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2681 unionTab = dest.iSDParm; 2682 }else{ 2683 /* We will need to create our own temporary table to hold the 2684 ** intermediate results. 2685 */ 2686 unionTab = pParse->nTab++; 2687 assert( p->pOrderBy==0 ); 2688 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2689 assert( p->addrOpenEphm[0] == -1 ); 2690 p->addrOpenEphm[0] = addr; 2691 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2692 assert( p->pEList ); 2693 } 2694 2695 /* Code the SELECT statements to our left 2696 */ 2697 assert( !pPrior->pOrderBy ); 2698 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2699 rc = sqlite3Select(pParse, pPrior, &uniondest); 2700 if( rc ){ 2701 goto multi_select_end; 2702 } 2703 2704 /* Code the current SELECT statement 2705 */ 2706 if( p->op==TK_EXCEPT ){ 2707 op = SRT_Except; 2708 }else{ 2709 assert( p->op==TK_UNION ); 2710 op = SRT_Union; 2711 } 2712 p->pPrior = 0; 2713 pLimit = p->pLimit; 2714 p->pLimit = 0; 2715 uniondest.eDest = op; 2716 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2717 selectOpName(p->op))); 2718 rc = sqlite3Select(pParse, p, &uniondest); 2719 testcase( rc!=SQLITE_OK ); 2720 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2721 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2722 sqlite3ExprListDelete(db, p->pOrderBy); 2723 pDelete = p->pPrior; 2724 p->pPrior = pPrior; 2725 p->pOrderBy = 0; 2726 if( p->op==TK_UNION ){ 2727 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2728 } 2729 sqlite3ExprDelete(db, p->pLimit); 2730 p->pLimit = pLimit; 2731 p->iLimit = 0; 2732 p->iOffset = 0; 2733 2734 /* Convert the data in the temporary table into whatever form 2735 ** it is that we currently need. 2736 */ 2737 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2738 assert( p->pEList || db->mallocFailed ); 2739 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2740 int iCont, iBreak, iStart; 2741 iBreak = sqlite3VdbeMakeLabel(pParse); 2742 iCont = sqlite3VdbeMakeLabel(pParse); 2743 computeLimitRegisters(pParse, p, iBreak); 2744 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2745 iStart = sqlite3VdbeCurrentAddr(v); 2746 selectInnerLoop(pParse, p, unionTab, 2747 0, 0, &dest, iCont, iBreak); 2748 sqlite3VdbeResolveLabel(v, iCont); 2749 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2750 sqlite3VdbeResolveLabel(v, iBreak); 2751 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2752 } 2753 break; 2754 } 2755 default: assert( p->op==TK_INTERSECT ); { 2756 int tab1, tab2; 2757 int iCont, iBreak, iStart; 2758 Expr *pLimit; 2759 int addr; 2760 SelectDest intersectdest; 2761 int r1; 2762 2763 /* INTERSECT is different from the others since it requires 2764 ** two temporary tables. Hence it has its own case. Begin 2765 ** by allocating the tables we will need. 2766 */ 2767 tab1 = pParse->nTab++; 2768 tab2 = pParse->nTab++; 2769 assert( p->pOrderBy==0 ); 2770 2771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2772 assert( p->addrOpenEphm[0] == -1 ); 2773 p->addrOpenEphm[0] = addr; 2774 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2775 assert( p->pEList ); 2776 2777 /* Code the SELECTs to our left into temporary table "tab1". 2778 */ 2779 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2780 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2781 if( rc ){ 2782 goto multi_select_end; 2783 } 2784 2785 /* Code the current SELECT into temporary table "tab2" 2786 */ 2787 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2788 assert( p->addrOpenEphm[1] == -1 ); 2789 p->addrOpenEphm[1] = addr; 2790 p->pPrior = 0; 2791 pLimit = p->pLimit; 2792 p->pLimit = 0; 2793 intersectdest.iSDParm = tab2; 2794 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2795 selectOpName(p->op))); 2796 rc = sqlite3Select(pParse, p, &intersectdest); 2797 testcase( rc!=SQLITE_OK ); 2798 pDelete = p->pPrior; 2799 p->pPrior = pPrior; 2800 if( p->nSelectRow>pPrior->nSelectRow ){ 2801 p->nSelectRow = pPrior->nSelectRow; 2802 } 2803 sqlite3ExprDelete(db, p->pLimit); 2804 p->pLimit = pLimit; 2805 2806 /* Generate code to take the intersection of the two temporary 2807 ** tables. 2808 */ 2809 if( rc ) break; 2810 assert( p->pEList ); 2811 iBreak = sqlite3VdbeMakeLabel(pParse); 2812 iCont = sqlite3VdbeMakeLabel(pParse); 2813 computeLimitRegisters(pParse, p, iBreak); 2814 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2815 r1 = sqlite3GetTempReg(pParse); 2816 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2817 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2818 VdbeCoverage(v); 2819 sqlite3ReleaseTempReg(pParse, r1); 2820 selectInnerLoop(pParse, p, tab1, 2821 0, 0, &dest, iCont, iBreak); 2822 sqlite3VdbeResolveLabel(v, iCont); 2823 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2824 sqlite3VdbeResolveLabel(v, iBreak); 2825 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2826 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2827 break; 2828 } 2829 } 2830 2831 #ifndef SQLITE_OMIT_EXPLAIN 2832 if( p->pNext==0 ){ 2833 ExplainQueryPlanPop(pParse); 2834 } 2835 #endif 2836 } 2837 if( pParse->nErr ) goto multi_select_end; 2838 2839 /* Compute collating sequences used by 2840 ** temporary tables needed to implement the compound select. 2841 ** Attach the KeyInfo structure to all temporary tables. 2842 ** 2843 ** This section is run by the right-most SELECT statement only. 2844 ** SELECT statements to the left always skip this part. The right-most 2845 ** SELECT might also skip this part if it has no ORDER BY clause and 2846 ** no temp tables are required. 2847 */ 2848 if( p->selFlags & SF_UsesEphemeral ){ 2849 int i; /* Loop counter */ 2850 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2851 Select *pLoop; /* For looping through SELECT statements */ 2852 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2853 int nCol; /* Number of columns in result set */ 2854 2855 assert( p->pNext==0 ); 2856 nCol = p->pEList->nExpr; 2857 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2858 if( !pKeyInfo ){ 2859 rc = SQLITE_NOMEM_BKPT; 2860 goto multi_select_end; 2861 } 2862 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2863 *apColl = multiSelectCollSeq(pParse, p, i); 2864 if( 0==*apColl ){ 2865 *apColl = db->pDfltColl; 2866 } 2867 } 2868 2869 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2870 for(i=0; i<2; i++){ 2871 int addr = pLoop->addrOpenEphm[i]; 2872 if( addr<0 ){ 2873 /* If [0] is unused then [1] is also unused. So we can 2874 ** always safely abort as soon as the first unused slot is found */ 2875 assert( pLoop->addrOpenEphm[1]<0 ); 2876 break; 2877 } 2878 sqlite3VdbeChangeP2(v, addr, nCol); 2879 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2880 P4_KEYINFO); 2881 pLoop->addrOpenEphm[i] = -1; 2882 } 2883 } 2884 sqlite3KeyInfoUnref(pKeyInfo); 2885 } 2886 2887 multi_select_end: 2888 pDest->iSdst = dest.iSdst; 2889 pDest->nSdst = dest.nSdst; 2890 sqlite3SelectDelete(db, pDelete); 2891 return rc; 2892 } 2893 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2894 2895 /* 2896 ** Error message for when two or more terms of a compound select have different 2897 ** size result sets. 2898 */ 2899 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2900 if( p->selFlags & SF_Values ){ 2901 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2902 }else{ 2903 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2904 " do not have the same number of result columns", selectOpName(p->op)); 2905 } 2906 } 2907 2908 /* 2909 ** Code an output subroutine for a coroutine implementation of a 2910 ** SELECT statment. 2911 ** 2912 ** The data to be output is contained in pIn->iSdst. There are 2913 ** pIn->nSdst columns to be output. pDest is where the output should 2914 ** be sent. 2915 ** 2916 ** regReturn is the number of the register holding the subroutine 2917 ** return address. 2918 ** 2919 ** If regPrev>0 then it is the first register in a vector that 2920 ** records the previous output. mem[regPrev] is a flag that is false 2921 ** if there has been no previous output. If regPrev>0 then code is 2922 ** generated to suppress duplicates. pKeyInfo is used for comparing 2923 ** keys. 2924 ** 2925 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2926 ** iBreak. 2927 */ 2928 static int generateOutputSubroutine( 2929 Parse *pParse, /* Parsing context */ 2930 Select *p, /* The SELECT statement */ 2931 SelectDest *pIn, /* Coroutine supplying data */ 2932 SelectDest *pDest, /* Where to send the data */ 2933 int regReturn, /* The return address register */ 2934 int regPrev, /* Previous result register. No uniqueness if 0 */ 2935 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2936 int iBreak /* Jump here if we hit the LIMIT */ 2937 ){ 2938 Vdbe *v = pParse->pVdbe; 2939 int iContinue; 2940 int addr; 2941 2942 addr = sqlite3VdbeCurrentAddr(v); 2943 iContinue = sqlite3VdbeMakeLabel(pParse); 2944 2945 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2946 */ 2947 if( regPrev ){ 2948 int addr1, addr2; 2949 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2950 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2951 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2952 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2953 sqlite3VdbeJumpHere(v, addr1); 2954 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2955 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2956 } 2957 if( pParse->db->mallocFailed ) return 0; 2958 2959 /* Suppress the first OFFSET entries if there is an OFFSET clause 2960 */ 2961 codeOffset(v, p->iOffset, iContinue); 2962 2963 assert( pDest->eDest!=SRT_Exists ); 2964 assert( pDest->eDest!=SRT_Table ); 2965 switch( pDest->eDest ){ 2966 /* Store the result as data using a unique key. 2967 */ 2968 case SRT_EphemTab: { 2969 int r1 = sqlite3GetTempReg(pParse); 2970 int r2 = sqlite3GetTempReg(pParse); 2971 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2972 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2973 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2974 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2975 sqlite3ReleaseTempReg(pParse, r2); 2976 sqlite3ReleaseTempReg(pParse, r1); 2977 break; 2978 } 2979 2980 #ifndef SQLITE_OMIT_SUBQUERY 2981 /* If we are creating a set for an "expr IN (SELECT ...)". 2982 */ 2983 case SRT_Set: { 2984 int r1; 2985 testcase( pIn->nSdst>1 ); 2986 r1 = sqlite3GetTempReg(pParse); 2987 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2988 r1, pDest->zAffSdst, pIn->nSdst); 2989 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2990 pIn->iSdst, pIn->nSdst); 2991 sqlite3ReleaseTempReg(pParse, r1); 2992 break; 2993 } 2994 2995 /* If this is a scalar select that is part of an expression, then 2996 ** store the results in the appropriate memory cell and break out 2997 ** of the scan loop. Note that the select might return multiple columns 2998 ** if it is the RHS of a row-value IN operator. 2999 */ 3000 case SRT_Mem: { 3001 if( pParse->nErr==0 ){ 3002 testcase( pIn->nSdst>1 ); 3003 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3004 } 3005 /* The LIMIT clause will jump out of the loop for us */ 3006 break; 3007 } 3008 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3009 3010 /* The results are stored in a sequence of registers 3011 ** starting at pDest->iSdst. Then the co-routine yields. 3012 */ 3013 case SRT_Coroutine: { 3014 if( pDest->iSdst==0 ){ 3015 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3016 pDest->nSdst = pIn->nSdst; 3017 } 3018 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3019 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3020 break; 3021 } 3022 3023 /* If none of the above, then the result destination must be 3024 ** SRT_Output. This routine is never called with any other 3025 ** destination other than the ones handled above or SRT_Output. 3026 ** 3027 ** For SRT_Output, results are stored in a sequence of registers. 3028 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3029 ** return the next row of result. 3030 */ 3031 default: { 3032 assert( pDest->eDest==SRT_Output ); 3033 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3034 break; 3035 } 3036 } 3037 3038 /* Jump to the end of the loop if the LIMIT is reached. 3039 */ 3040 if( p->iLimit ){ 3041 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3042 } 3043 3044 /* Generate the subroutine return 3045 */ 3046 sqlite3VdbeResolveLabel(v, iContinue); 3047 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3048 3049 return addr; 3050 } 3051 3052 /* 3053 ** Alternative compound select code generator for cases when there 3054 ** is an ORDER BY clause. 3055 ** 3056 ** We assume a query of the following form: 3057 ** 3058 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3059 ** 3060 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3061 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3062 ** co-routines. Then run the co-routines in parallel and merge the results 3063 ** into the output. In addition to the two coroutines (called selectA and 3064 ** selectB) there are 7 subroutines: 3065 ** 3066 ** outA: Move the output of the selectA coroutine into the output 3067 ** of the compound query. 3068 ** 3069 ** outB: Move the output of the selectB coroutine into the output 3070 ** of the compound query. (Only generated for UNION and 3071 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3072 ** appears only in B.) 3073 ** 3074 ** AltB: Called when there is data from both coroutines and A<B. 3075 ** 3076 ** AeqB: Called when there is data from both coroutines and A==B. 3077 ** 3078 ** AgtB: Called when there is data from both coroutines and A>B. 3079 ** 3080 ** EofA: Called when data is exhausted from selectA. 3081 ** 3082 ** EofB: Called when data is exhausted from selectB. 3083 ** 3084 ** The implementation of the latter five subroutines depend on which 3085 ** <operator> is used: 3086 ** 3087 ** 3088 ** UNION ALL UNION EXCEPT INTERSECT 3089 ** ------------- ----------------- -------------- ----------------- 3090 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3091 ** 3092 ** AeqB: outA, nextA nextA nextA outA, nextA 3093 ** 3094 ** AgtB: outB, nextB outB, nextB nextB nextB 3095 ** 3096 ** EofA: outB, nextB outB, nextB halt halt 3097 ** 3098 ** EofB: outA, nextA outA, nextA outA, nextA halt 3099 ** 3100 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3101 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3102 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3103 ** following nextX causes a jump to the end of the select processing. 3104 ** 3105 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3106 ** within the output subroutine. The regPrev register set holds the previously 3107 ** output value. A comparison is made against this value and the output 3108 ** is skipped if the next results would be the same as the previous. 3109 ** 3110 ** The implementation plan is to implement the two coroutines and seven 3111 ** subroutines first, then put the control logic at the bottom. Like this: 3112 ** 3113 ** goto Init 3114 ** coA: coroutine for left query (A) 3115 ** coB: coroutine for right query (B) 3116 ** outA: output one row of A 3117 ** outB: output one row of B (UNION and UNION ALL only) 3118 ** EofA: ... 3119 ** EofB: ... 3120 ** AltB: ... 3121 ** AeqB: ... 3122 ** AgtB: ... 3123 ** Init: initialize coroutine registers 3124 ** yield coA 3125 ** if eof(A) goto EofA 3126 ** yield coB 3127 ** if eof(B) goto EofB 3128 ** Cmpr: Compare A, B 3129 ** Jump AltB, AeqB, AgtB 3130 ** End: ... 3131 ** 3132 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3133 ** actually called using Gosub and they do not Return. EofA and EofB loop 3134 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3135 ** and AgtB jump to either L2 or to one of EofA or EofB. 3136 */ 3137 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3138 static int multiSelectOrderBy( 3139 Parse *pParse, /* Parsing context */ 3140 Select *p, /* The right-most of SELECTs to be coded */ 3141 SelectDest *pDest /* What to do with query results */ 3142 ){ 3143 int i, j; /* Loop counters */ 3144 Select *pPrior; /* Another SELECT immediately to our left */ 3145 Vdbe *v; /* Generate code to this VDBE */ 3146 SelectDest destA; /* Destination for coroutine A */ 3147 SelectDest destB; /* Destination for coroutine B */ 3148 int regAddrA; /* Address register for select-A coroutine */ 3149 int regAddrB; /* Address register for select-B coroutine */ 3150 int addrSelectA; /* Address of the select-A coroutine */ 3151 int addrSelectB; /* Address of the select-B coroutine */ 3152 int regOutA; /* Address register for the output-A subroutine */ 3153 int regOutB; /* Address register for the output-B subroutine */ 3154 int addrOutA; /* Address of the output-A subroutine */ 3155 int addrOutB = 0; /* Address of the output-B subroutine */ 3156 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3157 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3158 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3159 int addrAltB; /* Address of the A<B subroutine */ 3160 int addrAeqB; /* Address of the A==B subroutine */ 3161 int addrAgtB; /* Address of the A>B subroutine */ 3162 int regLimitA; /* Limit register for select-A */ 3163 int regLimitB; /* Limit register for select-A */ 3164 int regPrev; /* A range of registers to hold previous output */ 3165 int savedLimit; /* Saved value of p->iLimit */ 3166 int savedOffset; /* Saved value of p->iOffset */ 3167 int labelCmpr; /* Label for the start of the merge algorithm */ 3168 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3169 int addr1; /* Jump instructions that get retargetted */ 3170 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3171 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3172 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3173 sqlite3 *db; /* Database connection */ 3174 ExprList *pOrderBy; /* The ORDER BY clause */ 3175 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3176 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3177 3178 assert( p->pOrderBy!=0 ); 3179 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3180 db = pParse->db; 3181 v = pParse->pVdbe; 3182 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3183 labelEnd = sqlite3VdbeMakeLabel(pParse); 3184 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3185 3186 3187 /* Patch up the ORDER BY clause 3188 */ 3189 op = p->op; 3190 pPrior = p->pPrior; 3191 assert( pPrior->pOrderBy==0 ); 3192 pOrderBy = p->pOrderBy; 3193 assert( pOrderBy ); 3194 nOrderBy = pOrderBy->nExpr; 3195 3196 /* For operators other than UNION ALL we have to make sure that 3197 ** the ORDER BY clause covers every term of the result set. Add 3198 ** terms to the ORDER BY clause as necessary. 3199 */ 3200 if( op!=TK_ALL ){ 3201 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3202 struct ExprList_item *pItem; 3203 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3204 assert( pItem->u.x.iOrderByCol>0 ); 3205 if( pItem->u.x.iOrderByCol==i ) break; 3206 } 3207 if( j==nOrderBy ){ 3208 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3209 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3210 pNew->flags |= EP_IntValue; 3211 pNew->u.iValue = i; 3212 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3213 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3214 } 3215 } 3216 } 3217 3218 /* Compute the comparison permutation and keyinfo that is used with 3219 ** the permutation used to determine if the next 3220 ** row of results comes from selectA or selectB. Also add explicit 3221 ** collations to the ORDER BY clause terms so that when the subqueries 3222 ** to the right and the left are evaluated, they use the correct 3223 ** collation. 3224 */ 3225 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3226 if( aPermute ){ 3227 struct ExprList_item *pItem; 3228 aPermute[0] = nOrderBy; 3229 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3230 assert( pItem->u.x.iOrderByCol>0 ); 3231 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3232 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3233 } 3234 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3235 }else{ 3236 pKeyMerge = 0; 3237 } 3238 3239 /* Reattach the ORDER BY clause to the query. 3240 */ 3241 p->pOrderBy = pOrderBy; 3242 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3243 3244 /* Allocate a range of temporary registers and the KeyInfo needed 3245 ** for the logic that removes duplicate result rows when the 3246 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3247 */ 3248 if( op==TK_ALL ){ 3249 regPrev = 0; 3250 }else{ 3251 int nExpr = p->pEList->nExpr; 3252 assert( nOrderBy>=nExpr || db->mallocFailed ); 3253 regPrev = pParse->nMem+1; 3254 pParse->nMem += nExpr+1; 3255 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3256 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3257 if( pKeyDup ){ 3258 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3259 for(i=0; i<nExpr; i++){ 3260 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3261 pKeyDup->aSortFlags[i] = 0; 3262 } 3263 } 3264 } 3265 3266 /* Separate the left and the right query from one another 3267 */ 3268 p->pPrior = 0; 3269 pPrior->pNext = 0; 3270 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3271 if( pPrior->pPrior==0 ){ 3272 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3273 } 3274 3275 /* Compute the limit registers */ 3276 computeLimitRegisters(pParse, p, labelEnd); 3277 if( p->iLimit && op==TK_ALL ){ 3278 regLimitA = ++pParse->nMem; 3279 regLimitB = ++pParse->nMem; 3280 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3281 regLimitA); 3282 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3283 }else{ 3284 regLimitA = regLimitB = 0; 3285 } 3286 sqlite3ExprDelete(db, p->pLimit); 3287 p->pLimit = 0; 3288 3289 regAddrA = ++pParse->nMem; 3290 regAddrB = ++pParse->nMem; 3291 regOutA = ++pParse->nMem; 3292 regOutB = ++pParse->nMem; 3293 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3294 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3295 3296 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3297 3298 /* Generate a coroutine to evaluate the SELECT statement to the 3299 ** left of the compound operator - the "A" select. 3300 */ 3301 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3302 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3303 VdbeComment((v, "left SELECT")); 3304 pPrior->iLimit = regLimitA; 3305 ExplainQueryPlan((pParse, 1, "LEFT")); 3306 sqlite3Select(pParse, pPrior, &destA); 3307 sqlite3VdbeEndCoroutine(v, regAddrA); 3308 sqlite3VdbeJumpHere(v, addr1); 3309 3310 /* Generate a coroutine to evaluate the SELECT statement on 3311 ** the right - the "B" select 3312 */ 3313 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3314 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3315 VdbeComment((v, "right SELECT")); 3316 savedLimit = p->iLimit; 3317 savedOffset = p->iOffset; 3318 p->iLimit = regLimitB; 3319 p->iOffset = 0; 3320 ExplainQueryPlan((pParse, 1, "RIGHT")); 3321 sqlite3Select(pParse, p, &destB); 3322 p->iLimit = savedLimit; 3323 p->iOffset = savedOffset; 3324 sqlite3VdbeEndCoroutine(v, regAddrB); 3325 3326 /* Generate a subroutine that outputs the current row of the A 3327 ** select as the next output row of the compound select. 3328 */ 3329 VdbeNoopComment((v, "Output routine for A")); 3330 addrOutA = generateOutputSubroutine(pParse, 3331 p, &destA, pDest, regOutA, 3332 regPrev, pKeyDup, labelEnd); 3333 3334 /* Generate a subroutine that outputs the current row of the B 3335 ** select as the next output row of the compound select. 3336 */ 3337 if( op==TK_ALL || op==TK_UNION ){ 3338 VdbeNoopComment((v, "Output routine for B")); 3339 addrOutB = generateOutputSubroutine(pParse, 3340 p, &destB, pDest, regOutB, 3341 regPrev, pKeyDup, labelEnd); 3342 } 3343 sqlite3KeyInfoUnref(pKeyDup); 3344 3345 /* Generate a subroutine to run when the results from select A 3346 ** are exhausted and only data in select B remains. 3347 */ 3348 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3349 addrEofA_noB = addrEofA = labelEnd; 3350 }else{ 3351 VdbeNoopComment((v, "eof-A subroutine")); 3352 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3353 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3354 VdbeCoverage(v); 3355 sqlite3VdbeGoto(v, addrEofA); 3356 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3357 } 3358 3359 /* Generate a subroutine to run when the results from select B 3360 ** are exhausted and only data in select A remains. 3361 */ 3362 if( op==TK_INTERSECT ){ 3363 addrEofB = addrEofA; 3364 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3365 }else{ 3366 VdbeNoopComment((v, "eof-B subroutine")); 3367 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3368 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3369 sqlite3VdbeGoto(v, addrEofB); 3370 } 3371 3372 /* Generate code to handle the case of A<B 3373 */ 3374 VdbeNoopComment((v, "A-lt-B subroutine")); 3375 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3377 sqlite3VdbeGoto(v, labelCmpr); 3378 3379 /* Generate code to handle the case of A==B 3380 */ 3381 if( op==TK_ALL ){ 3382 addrAeqB = addrAltB; 3383 }else if( op==TK_INTERSECT ){ 3384 addrAeqB = addrAltB; 3385 addrAltB++; 3386 }else{ 3387 VdbeNoopComment((v, "A-eq-B subroutine")); 3388 addrAeqB = 3389 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3390 sqlite3VdbeGoto(v, labelCmpr); 3391 } 3392 3393 /* Generate code to handle the case of A>B 3394 */ 3395 VdbeNoopComment((v, "A-gt-B subroutine")); 3396 addrAgtB = sqlite3VdbeCurrentAddr(v); 3397 if( op==TK_ALL || op==TK_UNION ){ 3398 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3399 } 3400 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3401 sqlite3VdbeGoto(v, labelCmpr); 3402 3403 /* This code runs once to initialize everything. 3404 */ 3405 sqlite3VdbeJumpHere(v, addr1); 3406 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3407 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3408 3409 /* Implement the main merge loop 3410 */ 3411 sqlite3VdbeResolveLabel(v, labelCmpr); 3412 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3413 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3414 (char*)pKeyMerge, P4_KEYINFO); 3415 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3416 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3417 3418 /* Jump to the this point in order to terminate the query. 3419 */ 3420 sqlite3VdbeResolveLabel(v, labelEnd); 3421 3422 /* Reassembly the compound query so that it will be freed correctly 3423 ** by the calling function */ 3424 if( p->pPrior ){ 3425 sqlite3SelectDelete(db, p->pPrior); 3426 } 3427 p->pPrior = pPrior; 3428 pPrior->pNext = p; 3429 3430 /*** TBD: Insert subroutine calls to close cursors on incomplete 3431 **** subqueries ****/ 3432 ExplainQueryPlanPop(pParse); 3433 return pParse->nErr!=0; 3434 } 3435 #endif 3436 3437 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3438 3439 /* An instance of the SubstContext object describes an substitution edit 3440 ** to be performed on a parse tree. 3441 ** 3442 ** All references to columns in table iTable are to be replaced by corresponding 3443 ** expressions in pEList. 3444 */ 3445 typedef struct SubstContext { 3446 Parse *pParse; /* The parsing context */ 3447 int iTable; /* Replace references to this table */ 3448 int iNewTable; /* New table number */ 3449 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3450 ExprList *pEList; /* Replacement expressions */ 3451 } SubstContext; 3452 3453 /* Forward Declarations */ 3454 static void substExprList(SubstContext*, ExprList*); 3455 static void substSelect(SubstContext*, Select*, int); 3456 3457 /* 3458 ** Scan through the expression pExpr. Replace every reference to 3459 ** a column in table number iTable with a copy of the iColumn-th 3460 ** entry in pEList. (But leave references to the ROWID column 3461 ** unchanged.) 3462 ** 3463 ** This routine is part of the flattening procedure. A subquery 3464 ** whose result set is defined by pEList appears as entry in the 3465 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3466 ** FORM clause entry is iTable. This routine makes the necessary 3467 ** changes to pExpr so that it refers directly to the source table 3468 ** of the subquery rather the result set of the subquery. 3469 */ 3470 static Expr *substExpr( 3471 SubstContext *pSubst, /* Description of the substitution */ 3472 Expr *pExpr /* Expr in which substitution occurs */ 3473 ){ 3474 if( pExpr==0 ) return 0; 3475 if( ExprHasProperty(pExpr, EP_FromJoin) 3476 && pExpr->iRightJoinTable==pSubst->iTable 3477 ){ 3478 pExpr->iRightJoinTable = pSubst->iNewTable; 3479 } 3480 if( pExpr->op==TK_COLUMN 3481 && pExpr->iTable==pSubst->iTable 3482 && !ExprHasProperty(pExpr, EP_FixedCol) 3483 ){ 3484 if( pExpr->iColumn<0 ){ 3485 pExpr->op = TK_NULL; 3486 }else{ 3487 Expr *pNew; 3488 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3489 Expr ifNullRow; 3490 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3491 assert( pExpr->pRight==0 ); 3492 if( sqlite3ExprIsVector(pCopy) ){ 3493 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3494 }else{ 3495 sqlite3 *db = pSubst->pParse->db; 3496 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3497 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3498 ifNullRow.op = TK_IF_NULL_ROW; 3499 ifNullRow.pLeft = pCopy; 3500 ifNullRow.iTable = pSubst->iNewTable; 3501 ifNullRow.flags = EP_Skip; 3502 pCopy = &ifNullRow; 3503 } 3504 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3505 pNew = sqlite3ExprDup(db, pCopy, 0); 3506 if( pNew && pSubst->isLeftJoin ){ 3507 ExprSetProperty(pNew, EP_CanBeNull); 3508 } 3509 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3510 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3511 ExprSetProperty(pNew, EP_FromJoin); 3512 } 3513 sqlite3ExprDelete(db, pExpr); 3514 pExpr = pNew; 3515 3516 /* Ensure that the expression now has an implicit collation sequence, 3517 ** just as it did when it was a column of a view or sub-query. */ 3518 if( pExpr ){ 3519 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3520 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3521 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3522 (pColl ? pColl->zName : "BINARY") 3523 ); 3524 } 3525 ExprClearProperty(pExpr, EP_Collate); 3526 } 3527 } 3528 } 3529 }else{ 3530 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3531 pExpr->iTable = pSubst->iNewTable; 3532 } 3533 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3534 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3535 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3536 substSelect(pSubst, pExpr->x.pSelect, 1); 3537 }else{ 3538 substExprList(pSubst, pExpr->x.pList); 3539 } 3540 #ifndef SQLITE_OMIT_WINDOWFUNC 3541 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3542 Window *pWin = pExpr->y.pWin; 3543 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3544 substExprList(pSubst, pWin->pPartition); 3545 substExprList(pSubst, pWin->pOrderBy); 3546 } 3547 #endif 3548 } 3549 return pExpr; 3550 } 3551 static void substExprList( 3552 SubstContext *pSubst, /* Description of the substitution */ 3553 ExprList *pList /* List to scan and in which to make substitutes */ 3554 ){ 3555 int i; 3556 if( pList==0 ) return; 3557 for(i=0; i<pList->nExpr; i++){ 3558 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3559 } 3560 } 3561 static void substSelect( 3562 SubstContext *pSubst, /* Description of the substitution */ 3563 Select *p, /* SELECT statement in which to make substitutions */ 3564 int doPrior /* Do substitutes on p->pPrior too */ 3565 ){ 3566 SrcList *pSrc; 3567 struct SrcList_item *pItem; 3568 int i; 3569 if( !p ) return; 3570 do{ 3571 substExprList(pSubst, p->pEList); 3572 substExprList(pSubst, p->pGroupBy); 3573 substExprList(pSubst, p->pOrderBy); 3574 p->pHaving = substExpr(pSubst, p->pHaving); 3575 p->pWhere = substExpr(pSubst, p->pWhere); 3576 pSrc = p->pSrc; 3577 assert( pSrc!=0 ); 3578 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3579 substSelect(pSubst, pItem->pSelect, 1); 3580 if( pItem->fg.isTabFunc ){ 3581 substExprList(pSubst, pItem->u1.pFuncArg); 3582 } 3583 } 3584 }while( doPrior && (p = p->pPrior)!=0 ); 3585 } 3586 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3587 3588 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3589 /* 3590 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3591 ** clause of that SELECT. 3592 ** 3593 ** This routine scans the entire SELECT statement and recomputes the 3594 ** pSrcItem->colUsed mask. 3595 */ 3596 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3597 struct SrcList_item *pItem; 3598 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3599 pItem = pWalker->u.pSrcItem; 3600 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3601 if( pExpr->iColumn<0 ) return WRC_Continue; 3602 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3603 return WRC_Continue; 3604 } 3605 static void recomputeColumnsUsed( 3606 Select *pSelect, /* The complete SELECT statement */ 3607 struct SrcList_item *pSrcItem /* Which FROM clause item to recompute */ 3608 ){ 3609 Walker w; 3610 if( NEVER(pSrcItem->pTab==0) ) return; 3611 memset(&w, 0, sizeof(w)); 3612 w.xExprCallback = recomputeColumnsUsedExpr; 3613 w.xSelectCallback = sqlite3SelectWalkNoop; 3614 w.u.pSrcItem = pSrcItem; 3615 pSrcItem->colUsed = 0; 3616 sqlite3WalkSelect(&w, pSelect); 3617 } 3618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3619 3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3621 /* 3622 ** This routine attempts to flatten subqueries as a performance optimization. 3623 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3624 ** 3625 ** To understand the concept of flattening, consider the following 3626 ** query: 3627 ** 3628 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3629 ** 3630 ** The default way of implementing this query is to execute the 3631 ** subquery first and store the results in a temporary table, then 3632 ** run the outer query on that temporary table. This requires two 3633 ** passes over the data. Furthermore, because the temporary table 3634 ** has no indices, the WHERE clause on the outer query cannot be 3635 ** optimized. 3636 ** 3637 ** This routine attempts to rewrite queries such as the above into 3638 ** a single flat select, like this: 3639 ** 3640 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3641 ** 3642 ** The code generated for this simplification gives the same result 3643 ** but only has to scan the data once. And because indices might 3644 ** exist on the table t1, a complete scan of the data might be 3645 ** avoided. 3646 ** 3647 ** Flattening is subject to the following constraints: 3648 ** 3649 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3650 ** The subquery and the outer query cannot both be aggregates. 3651 ** 3652 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3653 ** (2) If the subquery is an aggregate then 3654 ** (2a) the outer query must not be a join and 3655 ** (2b) the outer query must not use subqueries 3656 ** other than the one FROM-clause subquery that is a candidate 3657 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3658 ** from 2015-02-09.) 3659 ** 3660 ** (3) If the subquery is the right operand of a LEFT JOIN then 3661 ** (3a) the subquery may not be a join and 3662 ** (3b) the FROM clause of the subquery may not contain a virtual 3663 ** table and 3664 ** (3c) the outer query may not be an aggregate. 3665 ** (3d) the outer query may not be DISTINCT. 3666 ** 3667 ** (4) The subquery can not be DISTINCT. 3668 ** 3669 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3670 ** sub-queries that were excluded from this optimization. Restriction 3671 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3672 ** 3673 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3674 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3675 ** 3676 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3677 ** A FROM clause, consider adding a FROM clause with the special 3678 ** table sqlite_once that consists of a single row containing a 3679 ** single NULL. 3680 ** 3681 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3682 ** 3683 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3684 ** 3685 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3686 ** accidently carried the comment forward until 2014-09-15. Original 3687 ** constraint: "If the subquery is aggregate then the outer query 3688 ** may not use LIMIT." 3689 ** 3690 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3691 ** 3692 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3693 ** a separate restriction deriving from ticket #350. 3694 ** 3695 ** (13) The subquery and outer query may not both use LIMIT. 3696 ** 3697 ** (14) The subquery may not use OFFSET. 3698 ** 3699 ** (15) If the outer query is part of a compound select, then the 3700 ** subquery may not use LIMIT. 3701 ** (See ticket #2339 and ticket [02a8e81d44]). 3702 ** 3703 ** (16) If the outer query is aggregate, then the subquery may not 3704 ** use ORDER BY. (Ticket #2942) This used to not matter 3705 ** until we introduced the group_concat() function. 3706 ** 3707 ** (17) If the subquery is a compound select, then 3708 ** (17a) all compound operators must be a UNION ALL, and 3709 ** (17b) no terms within the subquery compound may be aggregate 3710 ** or DISTINCT, and 3711 ** (17c) every term within the subquery compound must have a FROM clause 3712 ** (17d) the outer query may not be 3713 ** (17d1) aggregate, or 3714 ** (17d2) DISTINCT, or 3715 ** (17d3) a join. 3716 ** (17e) the subquery may not contain window functions 3717 ** 3718 ** The parent and sub-query may contain WHERE clauses. Subject to 3719 ** rules (11), (13) and (14), they may also contain ORDER BY, 3720 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3721 ** operator other than UNION ALL because all the other compound 3722 ** operators have an implied DISTINCT which is disallowed by 3723 ** restriction (4). 3724 ** 3725 ** Also, each component of the sub-query must return the same number 3726 ** of result columns. This is actually a requirement for any compound 3727 ** SELECT statement, but all the code here does is make sure that no 3728 ** such (illegal) sub-query is flattened. The caller will detect the 3729 ** syntax error and return a detailed message. 3730 ** 3731 ** (18) If the sub-query is a compound select, then all terms of the 3732 ** ORDER BY clause of the parent must be simple references to 3733 ** columns of the sub-query. 3734 ** 3735 ** (19) If the subquery uses LIMIT then the outer query may not 3736 ** have a WHERE clause. 3737 ** 3738 ** (20) If the sub-query is a compound select, then it must not use 3739 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3740 ** somewhat by saying that the terms of the ORDER BY clause must 3741 ** appear as unmodified result columns in the outer query. But we 3742 ** have other optimizations in mind to deal with that case. 3743 ** 3744 ** (21) If the subquery uses LIMIT then the outer query may not be 3745 ** DISTINCT. (See ticket [752e1646fc]). 3746 ** 3747 ** (22) The subquery may not be a recursive CTE. 3748 ** 3749 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3750 ** a recursive CTE, then the sub-query may not be a compound query. 3751 ** This restriction is because transforming the 3752 ** parent to a compound query confuses the code that handles 3753 ** recursive queries in multiSelect(). 3754 ** 3755 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3756 ** The subquery may not be an aggregate that uses the built-in min() or 3757 ** or max() functions. (Without this restriction, a query like: 3758 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3759 ** return the value X for which Y was maximal.) 3760 ** 3761 ** (25) If either the subquery or the parent query contains a window 3762 ** function in the select list or ORDER BY clause, flattening 3763 ** is not attempted. 3764 ** 3765 ** 3766 ** In this routine, the "p" parameter is a pointer to the outer query. 3767 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3768 ** uses aggregates. 3769 ** 3770 ** If flattening is not attempted, this routine is a no-op and returns 0. 3771 ** If flattening is attempted this routine returns 1. 3772 ** 3773 ** All of the expression analysis must occur on both the outer query and 3774 ** the subquery before this routine runs. 3775 */ 3776 static int flattenSubquery( 3777 Parse *pParse, /* Parsing context */ 3778 Select *p, /* The parent or outer SELECT statement */ 3779 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3780 int isAgg /* True if outer SELECT uses aggregate functions */ 3781 ){ 3782 const char *zSavedAuthContext = pParse->zAuthContext; 3783 Select *pParent; /* Current UNION ALL term of the other query */ 3784 Select *pSub; /* The inner query or "subquery" */ 3785 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3786 SrcList *pSrc; /* The FROM clause of the outer query */ 3787 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3788 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3789 int iNewParent = -1;/* Replacement table for iParent */ 3790 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3791 int i; /* Loop counter */ 3792 Expr *pWhere; /* The WHERE clause */ 3793 struct SrcList_item *pSubitem; /* The subquery */ 3794 sqlite3 *db = pParse->db; 3795 3796 /* Check to see if flattening is permitted. Return 0 if not. 3797 */ 3798 assert( p!=0 ); 3799 assert( p->pPrior==0 ); 3800 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3801 pSrc = p->pSrc; 3802 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3803 pSubitem = &pSrc->a[iFrom]; 3804 iParent = pSubitem->iCursor; 3805 pSub = pSubitem->pSelect; 3806 assert( pSub!=0 ); 3807 3808 #ifndef SQLITE_OMIT_WINDOWFUNC 3809 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3810 #endif 3811 3812 pSubSrc = pSub->pSrc; 3813 assert( pSubSrc ); 3814 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3815 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3816 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3817 ** became arbitrary expressions, we were forced to add restrictions (13) 3818 ** and (14). */ 3819 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3820 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3821 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3822 return 0; /* Restriction (15) */ 3823 } 3824 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3825 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3826 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3827 return 0; /* Restrictions (8)(9) */ 3828 } 3829 if( p->pOrderBy && pSub->pOrderBy ){ 3830 return 0; /* Restriction (11) */ 3831 } 3832 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3833 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3834 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3835 return 0; /* Restriction (21) */ 3836 } 3837 if( pSub->selFlags & (SF_Recursive) ){ 3838 return 0; /* Restrictions (22) */ 3839 } 3840 3841 /* 3842 ** If the subquery is the right operand of a LEFT JOIN, then the 3843 ** subquery may not be a join itself (3a). Example of why this is not 3844 ** allowed: 3845 ** 3846 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3847 ** 3848 ** If we flatten the above, we would get 3849 ** 3850 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3851 ** 3852 ** which is not at all the same thing. 3853 ** 3854 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3855 ** query cannot be an aggregate. (3c) This is an artifact of the way 3856 ** aggregates are processed - there is no mechanism to determine if 3857 ** the LEFT JOIN table should be all-NULL. 3858 ** 3859 ** See also tickets #306, #350, and #3300. 3860 */ 3861 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3862 isLeftJoin = 1; 3863 if( pSubSrc->nSrc>1 /* (3a) */ 3864 || isAgg /* (3b) */ 3865 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3866 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3867 ){ 3868 return 0; 3869 } 3870 } 3871 #ifdef SQLITE_EXTRA_IFNULLROW 3872 else if( iFrom>0 && !isAgg ){ 3873 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3874 ** every reference to any result column from subquery in a join, even 3875 ** though they are not necessary. This will stress-test the OP_IfNullRow 3876 ** opcode. */ 3877 isLeftJoin = -1; 3878 } 3879 #endif 3880 3881 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3882 ** use only the UNION ALL operator. And none of the simple select queries 3883 ** that make up the compound SELECT are allowed to be aggregate or distinct 3884 ** queries. 3885 */ 3886 if( pSub->pPrior ){ 3887 if( pSub->pOrderBy ){ 3888 return 0; /* Restriction (20) */ 3889 } 3890 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3891 return 0; /* (17d1), (17d2), or (17d3) */ 3892 } 3893 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3894 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3895 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3896 assert( pSub->pSrc!=0 ); 3897 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3898 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3899 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3900 || pSub1->pSrc->nSrc<1 /* (17c) */ 3901 #ifndef SQLITE_OMIT_WINDOWFUNC 3902 || pSub1->pWin /* (17e) */ 3903 #endif 3904 ){ 3905 return 0; 3906 } 3907 testcase( pSub1->pSrc->nSrc>1 ); 3908 } 3909 3910 /* Restriction (18). */ 3911 if( p->pOrderBy ){ 3912 int ii; 3913 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3914 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3915 } 3916 } 3917 } 3918 3919 /* Ex-restriction (23): 3920 ** The only way that the recursive part of a CTE can contain a compound 3921 ** subquery is for the subquery to be one term of a join. But if the 3922 ** subquery is a join, then the flattening has already been stopped by 3923 ** restriction (17d3) 3924 */ 3925 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3926 3927 /***** If we reach this point, flattening is permitted. *****/ 3928 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3929 pSub->selId, pSub, iFrom)); 3930 3931 /* Authorize the subquery */ 3932 pParse->zAuthContext = pSubitem->zName; 3933 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3934 testcase( i==SQLITE_DENY ); 3935 pParse->zAuthContext = zSavedAuthContext; 3936 3937 /* If the sub-query is a compound SELECT statement, then (by restrictions 3938 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3939 ** be of the form: 3940 ** 3941 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3942 ** 3943 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3944 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3945 ** OFFSET clauses and joins them to the left-hand-side of the original 3946 ** using UNION ALL operators. In this case N is the number of simple 3947 ** select statements in the compound sub-query. 3948 ** 3949 ** Example: 3950 ** 3951 ** SELECT a+1 FROM ( 3952 ** SELECT x FROM tab 3953 ** UNION ALL 3954 ** SELECT y FROM tab 3955 ** UNION ALL 3956 ** SELECT abs(z*2) FROM tab2 3957 ** ) WHERE a!=5 ORDER BY 1 3958 ** 3959 ** Transformed into: 3960 ** 3961 ** SELECT x+1 FROM tab WHERE x+1!=5 3962 ** UNION ALL 3963 ** SELECT y+1 FROM tab WHERE y+1!=5 3964 ** UNION ALL 3965 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3966 ** ORDER BY 1 3967 ** 3968 ** We call this the "compound-subquery flattening". 3969 */ 3970 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3971 Select *pNew; 3972 ExprList *pOrderBy = p->pOrderBy; 3973 Expr *pLimit = p->pLimit; 3974 Select *pPrior = p->pPrior; 3975 p->pOrderBy = 0; 3976 p->pSrc = 0; 3977 p->pPrior = 0; 3978 p->pLimit = 0; 3979 pNew = sqlite3SelectDup(db, p, 0); 3980 p->pLimit = pLimit; 3981 p->pOrderBy = pOrderBy; 3982 p->pSrc = pSrc; 3983 p->op = TK_ALL; 3984 if( pNew==0 ){ 3985 p->pPrior = pPrior; 3986 }else{ 3987 pNew->pPrior = pPrior; 3988 if( pPrior ) pPrior->pNext = pNew; 3989 pNew->pNext = p; 3990 p->pPrior = pNew; 3991 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3992 " creates %u as peer\n",pNew->selId)); 3993 } 3994 if( db->mallocFailed ) return 1; 3995 } 3996 3997 /* Begin flattening the iFrom-th entry of the FROM clause 3998 ** in the outer query. 3999 */ 4000 pSub = pSub1 = pSubitem->pSelect; 4001 4002 /* Delete the transient table structure associated with the 4003 ** subquery 4004 */ 4005 sqlite3DbFree(db, pSubitem->zDatabase); 4006 sqlite3DbFree(db, pSubitem->zName); 4007 sqlite3DbFree(db, pSubitem->zAlias); 4008 pSubitem->zDatabase = 0; 4009 pSubitem->zName = 0; 4010 pSubitem->zAlias = 0; 4011 pSubitem->pSelect = 0; 4012 4013 /* Defer deleting the Table object associated with the 4014 ** subquery until code generation is 4015 ** complete, since there may still exist Expr.pTab entries that 4016 ** refer to the subquery even after flattening. Ticket #3346. 4017 ** 4018 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4019 */ 4020 if( ALWAYS(pSubitem->pTab!=0) ){ 4021 Table *pTabToDel = pSubitem->pTab; 4022 if( pTabToDel->nTabRef==1 ){ 4023 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4024 pTabToDel->pNextZombie = pToplevel->pZombieTab; 4025 pToplevel->pZombieTab = pTabToDel; 4026 }else{ 4027 pTabToDel->nTabRef--; 4028 } 4029 pSubitem->pTab = 0; 4030 } 4031 4032 /* The following loop runs once for each term in a compound-subquery 4033 ** flattening (as described above). If we are doing a different kind 4034 ** of flattening - a flattening other than a compound-subquery flattening - 4035 ** then this loop only runs once. 4036 ** 4037 ** This loop moves all of the FROM elements of the subquery into the 4038 ** the FROM clause of the outer query. Before doing this, remember 4039 ** the cursor number for the original outer query FROM element in 4040 ** iParent. The iParent cursor will never be used. Subsequent code 4041 ** will scan expressions looking for iParent references and replace 4042 ** those references with expressions that resolve to the subquery FROM 4043 ** elements we are now copying in. 4044 */ 4045 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4046 int nSubSrc; 4047 u8 jointype = 0; 4048 assert( pSub!=0 ); 4049 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4050 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4051 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4052 4053 if( pSrc ){ 4054 assert( pParent==p ); /* First time through the loop */ 4055 jointype = pSubitem->fg.jointype; 4056 }else{ 4057 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4058 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4059 if( pSrc==0 ) break; 4060 pParent->pSrc = pSrc; 4061 } 4062 4063 /* The subquery uses a single slot of the FROM clause of the outer 4064 ** query. If the subquery has more than one element in its FROM clause, 4065 ** then expand the outer query to make space for it to hold all elements 4066 ** of the subquery. 4067 ** 4068 ** Example: 4069 ** 4070 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4071 ** 4072 ** The outer query has 3 slots in its FROM clause. One slot of the 4073 ** outer query (the middle slot) is used by the subquery. The next 4074 ** block of code will expand the outer query FROM clause to 4 slots. 4075 ** The middle slot is expanded to two slots in order to make space 4076 ** for the two elements in the FROM clause of the subquery. 4077 */ 4078 if( nSubSrc>1 ){ 4079 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4080 if( pSrc==0 ) break; 4081 pParent->pSrc = pSrc; 4082 } 4083 4084 /* Transfer the FROM clause terms from the subquery into the 4085 ** outer query. 4086 */ 4087 for(i=0; i<nSubSrc; i++){ 4088 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4089 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4090 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4091 iNewParent = pSubSrc->a[i].iCursor; 4092 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4093 } 4094 pSrc->a[iFrom].fg.jointype = jointype; 4095 4096 /* Now begin substituting subquery result set expressions for 4097 ** references to the iParent in the outer query. 4098 ** 4099 ** Example: 4100 ** 4101 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4102 ** \ \_____________ subquery __________/ / 4103 ** \_____________________ outer query ______________________________/ 4104 ** 4105 ** We look at every expression in the outer query and every place we see 4106 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4107 */ 4108 if( pSub->pOrderBy ){ 4109 /* At this point, any non-zero iOrderByCol values indicate that the 4110 ** ORDER BY column expression is identical to the iOrderByCol'th 4111 ** expression returned by SELECT statement pSub. Since these values 4112 ** do not necessarily correspond to columns in SELECT statement pParent, 4113 ** zero them before transfering the ORDER BY clause. 4114 ** 4115 ** Not doing this may cause an error if a subsequent call to this 4116 ** function attempts to flatten a compound sub-query into pParent 4117 ** (the only way this can happen is if the compound sub-query is 4118 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4119 ExprList *pOrderBy = pSub->pOrderBy; 4120 for(i=0; i<pOrderBy->nExpr; i++){ 4121 pOrderBy->a[i].u.x.iOrderByCol = 0; 4122 } 4123 assert( pParent->pOrderBy==0 ); 4124 pParent->pOrderBy = pOrderBy; 4125 pSub->pOrderBy = 0; 4126 } 4127 pWhere = pSub->pWhere; 4128 pSub->pWhere = 0; 4129 if( isLeftJoin>0 ){ 4130 sqlite3SetJoinExpr(pWhere, iNewParent); 4131 } 4132 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4133 if( db->mallocFailed==0 ){ 4134 SubstContext x; 4135 x.pParse = pParse; 4136 x.iTable = iParent; 4137 x.iNewTable = iNewParent; 4138 x.isLeftJoin = isLeftJoin; 4139 x.pEList = pSub->pEList; 4140 substSelect(&x, pParent, 0); 4141 } 4142 4143 /* The flattened query is a compound if either the inner or the 4144 ** outer query is a compound. */ 4145 pParent->selFlags |= pSub->selFlags & SF_Compound; 4146 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4147 4148 /* 4149 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4150 ** 4151 ** One is tempted to try to add a and b to combine the limits. But this 4152 ** does not work if either limit is negative. 4153 */ 4154 if( pSub->pLimit ){ 4155 pParent->pLimit = pSub->pLimit; 4156 pSub->pLimit = 0; 4157 } 4158 4159 /* Recompute the SrcList_item.colUsed masks for the flattened 4160 ** tables. */ 4161 for(i=0; i<nSubSrc; i++){ 4162 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4163 } 4164 } 4165 4166 /* Finially, delete what is left of the subquery and return 4167 ** success. 4168 */ 4169 sqlite3SelectDelete(db, pSub1); 4170 4171 #if SELECTTRACE_ENABLED 4172 if( sqlite3SelectTrace & 0x100 ){ 4173 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4174 sqlite3TreeViewSelect(0, p, 0); 4175 } 4176 #endif 4177 4178 return 1; 4179 } 4180 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4181 4182 /* 4183 ** A structure to keep track of all of the column values that are fixed to 4184 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4185 */ 4186 typedef struct WhereConst WhereConst; 4187 struct WhereConst { 4188 Parse *pParse; /* Parsing context */ 4189 int nConst; /* Number for COLUMN=CONSTANT terms */ 4190 int nChng; /* Number of times a constant is propagated */ 4191 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4192 }; 4193 4194 /* 4195 ** Add a new entry to the pConst object. Except, do not add duplicate 4196 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4197 ** 4198 ** The caller guarantees the pColumn is a column and pValue is a constant. 4199 ** This routine has to do some additional checks before completing the 4200 ** insert. 4201 */ 4202 static void constInsert( 4203 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4204 Expr *pColumn, /* The COLUMN part of the constraint */ 4205 Expr *pValue, /* The VALUE part of the constraint */ 4206 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4207 ){ 4208 int i; 4209 assert( pColumn->op==TK_COLUMN ); 4210 assert( sqlite3ExprIsConstant(pValue) ); 4211 4212 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4213 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4214 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4215 return; 4216 } 4217 4218 /* 2018-10-25 ticket [cf5ed20f] 4219 ** Make sure the same pColumn is not inserted more than once */ 4220 for(i=0; i<pConst->nConst; i++){ 4221 const Expr *pE2 = pConst->apExpr[i*2]; 4222 assert( pE2->op==TK_COLUMN ); 4223 if( pE2->iTable==pColumn->iTable 4224 && pE2->iColumn==pColumn->iColumn 4225 ){ 4226 return; /* Already present. Return without doing anything. */ 4227 } 4228 } 4229 4230 pConst->nConst++; 4231 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4232 pConst->nConst*2*sizeof(Expr*)); 4233 if( pConst->apExpr==0 ){ 4234 pConst->nConst = 0; 4235 }else{ 4236 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4237 pConst->apExpr[pConst->nConst*2-1] = pValue; 4238 } 4239 } 4240 4241 /* 4242 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4243 ** is a constant expression and where the term must be true because it 4244 ** is part of the AND-connected terms of the expression. For each term 4245 ** found, add it to the pConst structure. 4246 */ 4247 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4248 Expr *pRight, *pLeft; 4249 if( pExpr==0 ) return; 4250 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4251 if( pExpr->op==TK_AND ){ 4252 findConstInWhere(pConst, pExpr->pRight); 4253 findConstInWhere(pConst, pExpr->pLeft); 4254 return; 4255 } 4256 if( pExpr->op!=TK_EQ ) return; 4257 pRight = pExpr->pRight; 4258 pLeft = pExpr->pLeft; 4259 assert( pRight!=0 ); 4260 assert( pLeft!=0 ); 4261 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4262 constInsert(pConst,pRight,pLeft,pExpr); 4263 } 4264 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4265 constInsert(pConst,pLeft,pRight,pExpr); 4266 } 4267 } 4268 4269 /* 4270 ** This is a Walker expression callback. pExpr is a candidate expression 4271 ** to be replaced by a value. If pExpr is equivalent to one of the 4272 ** columns named in pWalker->u.pConst, then overwrite it with its 4273 ** corresponding value. 4274 */ 4275 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4276 int i; 4277 WhereConst *pConst; 4278 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4279 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4280 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4281 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4282 return WRC_Continue; 4283 } 4284 pConst = pWalker->u.pConst; 4285 for(i=0; i<pConst->nConst; i++){ 4286 Expr *pColumn = pConst->apExpr[i*2]; 4287 if( pColumn==pExpr ) continue; 4288 if( pColumn->iTable!=pExpr->iTable ) continue; 4289 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4290 /* A match is found. Add the EP_FixedCol property */ 4291 pConst->nChng++; 4292 ExprClearProperty(pExpr, EP_Leaf); 4293 ExprSetProperty(pExpr, EP_FixedCol); 4294 assert( pExpr->pLeft==0 ); 4295 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4296 break; 4297 } 4298 return WRC_Prune; 4299 } 4300 4301 /* 4302 ** The WHERE-clause constant propagation optimization. 4303 ** 4304 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4305 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4306 ** part of a ON clause from a LEFT JOIN, then throughout the query 4307 ** replace all other occurrences of COLUMN with CONSTANT. 4308 ** 4309 ** For example, the query: 4310 ** 4311 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4312 ** 4313 ** Is transformed into 4314 ** 4315 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4316 ** 4317 ** Return true if any transformations where made and false if not. 4318 ** 4319 ** Implementation note: Constant propagation is tricky due to affinity 4320 ** and collating sequence interactions. Consider this example: 4321 ** 4322 ** CREATE TABLE t1(a INT,b TEXT); 4323 ** INSERT INTO t1 VALUES(123,'0123'); 4324 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4325 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4326 ** 4327 ** The two SELECT statements above should return different answers. b=a 4328 ** is alway true because the comparison uses numeric affinity, but b=123 4329 ** is false because it uses text affinity and '0123' is not the same as '123'. 4330 ** To work around this, the expression tree is not actually changed from 4331 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4332 ** and the "123" value is hung off of the pLeft pointer. Code generator 4333 ** routines know to generate the constant "123" instead of looking up the 4334 ** column value. Also, to avoid collation problems, this optimization is 4335 ** only attempted if the "a=123" term uses the default BINARY collation. 4336 */ 4337 static int propagateConstants( 4338 Parse *pParse, /* The parsing context */ 4339 Select *p /* The query in which to propagate constants */ 4340 ){ 4341 WhereConst x; 4342 Walker w; 4343 int nChng = 0; 4344 x.pParse = pParse; 4345 do{ 4346 x.nConst = 0; 4347 x.nChng = 0; 4348 x.apExpr = 0; 4349 findConstInWhere(&x, p->pWhere); 4350 if( x.nConst ){ 4351 memset(&w, 0, sizeof(w)); 4352 w.pParse = pParse; 4353 w.xExprCallback = propagateConstantExprRewrite; 4354 w.xSelectCallback = sqlite3SelectWalkNoop; 4355 w.xSelectCallback2 = 0; 4356 w.walkerDepth = 0; 4357 w.u.pConst = &x; 4358 sqlite3WalkExpr(&w, p->pWhere); 4359 sqlite3DbFree(x.pParse->db, x.apExpr); 4360 nChng += x.nChng; 4361 } 4362 }while( x.nChng ); 4363 return nChng; 4364 } 4365 4366 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4367 /* 4368 ** Make copies of relevant WHERE clause terms of the outer query into 4369 ** the WHERE clause of subquery. Example: 4370 ** 4371 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4372 ** 4373 ** Transformed into: 4374 ** 4375 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4376 ** WHERE x=5 AND y=10; 4377 ** 4378 ** The hope is that the terms added to the inner query will make it more 4379 ** efficient. 4380 ** 4381 ** Do not attempt this optimization if: 4382 ** 4383 ** (1) (** This restriction was removed on 2017-09-29. We used to 4384 ** disallow this optimization for aggregate subqueries, but now 4385 ** it is allowed by putting the extra terms on the HAVING clause. 4386 ** The added HAVING clause is pointless if the subquery lacks 4387 ** a GROUP BY clause. But such a HAVING clause is also harmless 4388 ** so there does not appear to be any reason to add extra logic 4389 ** to suppress it. **) 4390 ** 4391 ** (2) The inner query is the recursive part of a common table expression. 4392 ** 4393 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4394 ** clause would change the meaning of the LIMIT). 4395 ** 4396 ** (4) The inner query is the right operand of a LEFT JOIN and the 4397 ** expression to be pushed down does not come from the ON clause 4398 ** on that LEFT JOIN. 4399 ** 4400 ** (5) The WHERE clause expression originates in the ON or USING clause 4401 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4402 ** left join. An example: 4403 ** 4404 ** SELECT * 4405 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4406 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4407 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4408 ** 4409 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4410 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4411 ** then the (1,1,NULL) row would be suppressed. 4412 ** 4413 ** (6) The inner query features one or more window-functions (since 4414 ** changes to the WHERE clause of the inner query could change the 4415 ** window over which window functions are calculated). 4416 ** 4417 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4418 ** terms are duplicated into the subquery. 4419 */ 4420 static int pushDownWhereTerms( 4421 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4422 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4423 Expr *pWhere, /* The WHERE clause of the outer query */ 4424 int iCursor, /* Cursor number of the subquery */ 4425 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4426 ){ 4427 Expr *pNew; 4428 int nChng = 0; 4429 if( pWhere==0 ) return 0; 4430 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4431 4432 #ifndef SQLITE_OMIT_WINDOWFUNC 4433 if( pSubq->pWin ) return 0; /* restriction (6) */ 4434 #endif 4435 4436 #ifdef SQLITE_DEBUG 4437 /* Only the first term of a compound can have a WITH clause. But make 4438 ** sure no other terms are marked SF_Recursive in case something changes 4439 ** in the future. 4440 */ 4441 { 4442 Select *pX; 4443 for(pX=pSubq; pX; pX=pX->pPrior){ 4444 assert( (pX->selFlags & (SF_Recursive))==0 ); 4445 } 4446 } 4447 #endif 4448 4449 if( pSubq->pLimit!=0 ){ 4450 return 0; /* restriction (3) */ 4451 } 4452 while( pWhere->op==TK_AND ){ 4453 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4454 iCursor, isLeftJoin); 4455 pWhere = pWhere->pLeft; 4456 } 4457 if( isLeftJoin 4458 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4459 || pWhere->iRightJoinTable!=iCursor) 4460 ){ 4461 return 0; /* restriction (4) */ 4462 } 4463 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4464 return 0; /* restriction (5) */ 4465 } 4466 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4467 nChng++; 4468 while( pSubq ){ 4469 SubstContext x; 4470 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4471 unsetJoinExpr(pNew, -1); 4472 x.pParse = pParse; 4473 x.iTable = iCursor; 4474 x.iNewTable = iCursor; 4475 x.isLeftJoin = 0; 4476 x.pEList = pSubq->pEList; 4477 pNew = substExpr(&x, pNew); 4478 if( pSubq->selFlags & SF_Aggregate ){ 4479 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4480 }else{ 4481 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4482 } 4483 pSubq = pSubq->pPrior; 4484 } 4485 } 4486 return nChng; 4487 } 4488 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4489 4490 /* 4491 ** The pFunc is the only aggregate function in the query. Check to see 4492 ** if the query is a candidate for the min/max optimization. 4493 ** 4494 ** If the query is a candidate for the min/max optimization, then set 4495 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4496 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4497 ** whether pFunc is a min() or max() function. 4498 ** 4499 ** If the query is not a candidate for the min/max optimization, return 4500 ** WHERE_ORDERBY_NORMAL (which must be zero). 4501 ** 4502 ** This routine must be called after aggregate functions have been 4503 ** located but before their arguments have been subjected to aggregate 4504 ** analysis. 4505 */ 4506 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4507 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4508 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4509 const char *zFunc; /* Name of aggregate function pFunc */ 4510 ExprList *pOrderBy; 4511 u8 sortFlags = 0; 4512 4513 assert( *ppMinMax==0 ); 4514 assert( pFunc->op==TK_AGG_FUNCTION ); 4515 assert( !IsWindowFunc(pFunc) ); 4516 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4517 return eRet; 4518 } 4519 zFunc = pFunc->u.zToken; 4520 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4521 eRet = WHERE_ORDERBY_MIN; 4522 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4523 sortFlags = KEYINFO_ORDER_BIGNULL; 4524 } 4525 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4526 eRet = WHERE_ORDERBY_MAX; 4527 sortFlags = KEYINFO_ORDER_DESC; 4528 }else{ 4529 return eRet; 4530 } 4531 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4532 assert( pOrderBy!=0 || db->mallocFailed ); 4533 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4534 return eRet; 4535 } 4536 4537 /* 4538 ** The select statement passed as the first argument is an aggregate query. 4539 ** The second argument is the associated aggregate-info object. This 4540 ** function tests if the SELECT is of the form: 4541 ** 4542 ** SELECT count(*) FROM <tbl> 4543 ** 4544 ** where table is a database table, not a sub-select or view. If the query 4545 ** does match this pattern, then a pointer to the Table object representing 4546 ** <tbl> is returned. Otherwise, 0 is returned. 4547 */ 4548 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4549 Table *pTab; 4550 Expr *pExpr; 4551 4552 assert( !p->pGroupBy ); 4553 4554 if( p->pWhere || p->pEList->nExpr!=1 4555 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4556 ){ 4557 return 0; 4558 } 4559 pTab = p->pSrc->a[0].pTab; 4560 pExpr = p->pEList->a[0].pExpr; 4561 assert( pTab && !pTab->pSelect && pExpr ); 4562 4563 if( IsVirtual(pTab) ) return 0; 4564 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4565 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4566 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4567 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4568 4569 return pTab; 4570 } 4571 4572 /* 4573 ** If the source-list item passed as an argument was augmented with an 4574 ** INDEXED BY clause, then try to locate the specified index. If there 4575 ** was such a clause and the named index cannot be found, return 4576 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4577 ** pFrom->pIndex and return SQLITE_OK. 4578 */ 4579 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4580 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4581 Table *pTab = pFrom->pTab; 4582 char *zIndexedBy = pFrom->u1.zIndexedBy; 4583 Index *pIdx; 4584 for(pIdx=pTab->pIndex; 4585 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4586 pIdx=pIdx->pNext 4587 ); 4588 if( !pIdx ){ 4589 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4590 pParse->checkSchema = 1; 4591 return SQLITE_ERROR; 4592 } 4593 pFrom->pIBIndex = pIdx; 4594 } 4595 return SQLITE_OK; 4596 } 4597 /* 4598 ** Detect compound SELECT statements that use an ORDER BY clause with 4599 ** an alternative collating sequence. 4600 ** 4601 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4602 ** 4603 ** These are rewritten as a subquery: 4604 ** 4605 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4606 ** ORDER BY ... COLLATE ... 4607 ** 4608 ** This transformation is necessary because the multiSelectOrderBy() routine 4609 ** above that generates the code for a compound SELECT with an ORDER BY clause 4610 ** uses a merge algorithm that requires the same collating sequence on the 4611 ** result columns as on the ORDER BY clause. See ticket 4612 ** http://www.sqlite.org/src/info/6709574d2a 4613 ** 4614 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4615 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4616 ** there are COLLATE terms in the ORDER BY. 4617 */ 4618 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4619 int i; 4620 Select *pNew; 4621 Select *pX; 4622 sqlite3 *db; 4623 struct ExprList_item *a; 4624 SrcList *pNewSrc; 4625 Parse *pParse; 4626 Token dummy; 4627 4628 if( p->pPrior==0 ) return WRC_Continue; 4629 if( p->pOrderBy==0 ) return WRC_Continue; 4630 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4631 if( pX==0 ) return WRC_Continue; 4632 a = p->pOrderBy->a; 4633 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4634 if( a[i].pExpr->flags & EP_Collate ) break; 4635 } 4636 if( i<0 ) return WRC_Continue; 4637 4638 /* If we reach this point, that means the transformation is required. */ 4639 4640 pParse = pWalker->pParse; 4641 db = pParse->db; 4642 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4643 if( pNew==0 ) return WRC_Abort; 4644 memset(&dummy, 0, sizeof(dummy)); 4645 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4646 if( pNewSrc==0 ) return WRC_Abort; 4647 *pNew = *p; 4648 p->pSrc = pNewSrc; 4649 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4650 p->op = TK_SELECT; 4651 p->pWhere = 0; 4652 pNew->pGroupBy = 0; 4653 pNew->pHaving = 0; 4654 pNew->pOrderBy = 0; 4655 p->pPrior = 0; 4656 p->pNext = 0; 4657 p->pWith = 0; 4658 #ifndef SQLITE_OMIT_WINDOWFUNC 4659 p->pWinDefn = 0; 4660 #endif 4661 p->selFlags &= ~SF_Compound; 4662 assert( (p->selFlags & SF_Converted)==0 ); 4663 p->selFlags |= SF_Converted; 4664 assert( pNew->pPrior!=0 ); 4665 pNew->pPrior->pNext = pNew; 4666 pNew->pLimit = 0; 4667 return WRC_Continue; 4668 } 4669 4670 /* 4671 ** Check to see if the FROM clause term pFrom has table-valued function 4672 ** arguments. If it does, leave an error message in pParse and return 4673 ** non-zero, since pFrom is not allowed to be a table-valued function. 4674 */ 4675 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4676 if( pFrom->fg.isTabFunc ){ 4677 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4678 return 1; 4679 } 4680 return 0; 4681 } 4682 4683 #ifndef SQLITE_OMIT_CTE 4684 /* 4685 ** Argument pWith (which may be NULL) points to a linked list of nested 4686 ** WITH contexts, from inner to outermost. If the table identified by 4687 ** FROM clause element pItem is really a common-table-expression (CTE) 4688 ** then return a pointer to the CTE definition for that table. Otherwise 4689 ** return NULL. 4690 ** 4691 ** If a non-NULL value is returned, set *ppContext to point to the With 4692 ** object that the returned CTE belongs to. 4693 */ 4694 static struct Cte *searchWith( 4695 With *pWith, /* Current innermost WITH clause */ 4696 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4697 With **ppContext /* OUT: WITH clause return value belongs to */ 4698 ){ 4699 const char *zName; 4700 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4701 With *p; 4702 for(p=pWith; p; p=p->pOuter){ 4703 int i; 4704 for(i=0; i<p->nCte; i++){ 4705 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4706 *ppContext = p; 4707 return &p->a[i]; 4708 } 4709 } 4710 } 4711 } 4712 return 0; 4713 } 4714 4715 /* The code generator maintains a stack of active WITH clauses 4716 ** with the inner-most WITH clause being at the top of the stack. 4717 ** 4718 ** This routine pushes the WITH clause passed as the second argument 4719 ** onto the top of the stack. If argument bFree is true, then this 4720 ** WITH clause will never be popped from the stack. In this case it 4721 ** should be freed along with the Parse object. In other cases, when 4722 ** bFree==0, the With object will be freed along with the SELECT 4723 ** statement with which it is associated. 4724 */ 4725 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4726 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4727 if( pWith ){ 4728 assert( pParse->pWith!=pWith ); 4729 pWith->pOuter = pParse->pWith; 4730 pParse->pWith = pWith; 4731 if( bFree ) pParse->pWithToFree = pWith; 4732 } 4733 } 4734 4735 /* 4736 ** This function checks if argument pFrom refers to a CTE declared by 4737 ** a WITH clause on the stack currently maintained by the parser. And, 4738 ** if currently processing a CTE expression, if it is a recursive 4739 ** reference to the current CTE. 4740 ** 4741 ** If pFrom falls into either of the two categories above, pFrom->pTab 4742 ** and other fields are populated accordingly. The caller should check 4743 ** (pFrom->pTab!=0) to determine whether or not a successful match 4744 ** was found. 4745 ** 4746 ** Whether or not a match is found, SQLITE_OK is returned if no error 4747 ** occurs. If an error does occur, an error message is stored in the 4748 ** parser and some error code other than SQLITE_OK returned. 4749 */ 4750 static int withExpand( 4751 Walker *pWalker, 4752 struct SrcList_item *pFrom 4753 ){ 4754 Parse *pParse = pWalker->pParse; 4755 sqlite3 *db = pParse->db; 4756 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4757 With *pWith; /* WITH clause that pCte belongs to */ 4758 4759 assert( pFrom->pTab==0 ); 4760 if( pParse->nErr ){ 4761 return SQLITE_ERROR; 4762 } 4763 4764 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4765 if( pCte ){ 4766 Table *pTab; 4767 ExprList *pEList; 4768 Select *pSel; 4769 Select *pLeft; /* Left-most SELECT statement */ 4770 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4771 With *pSavedWith; /* Initial value of pParse->pWith */ 4772 4773 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4774 ** recursive reference to CTE pCte. Leave an error in pParse and return 4775 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4776 ** In this case, proceed. */ 4777 if( pCte->zCteErr ){ 4778 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4779 return SQLITE_ERROR; 4780 } 4781 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4782 4783 assert( pFrom->pTab==0 ); 4784 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4785 if( pTab==0 ) return WRC_Abort; 4786 pTab->nTabRef = 1; 4787 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4788 pTab->iPKey = -1; 4789 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4790 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4791 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4792 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4793 assert( pFrom->pSelect ); 4794 4795 /* Check if this is a recursive CTE. */ 4796 pSel = pFrom->pSelect; 4797 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4798 if( bMayRecursive ){ 4799 int i; 4800 SrcList *pSrc = pFrom->pSelect->pSrc; 4801 for(i=0; i<pSrc->nSrc; i++){ 4802 struct SrcList_item *pItem = &pSrc->a[i]; 4803 if( pItem->zDatabase==0 4804 && pItem->zName!=0 4805 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4806 ){ 4807 pItem->pTab = pTab; 4808 pItem->fg.isRecursive = 1; 4809 pTab->nTabRef++; 4810 pSel->selFlags |= SF_Recursive; 4811 } 4812 } 4813 } 4814 4815 /* Only one recursive reference is permitted. */ 4816 if( pTab->nTabRef>2 ){ 4817 sqlite3ErrorMsg( 4818 pParse, "multiple references to recursive table: %s", pCte->zName 4819 ); 4820 return SQLITE_ERROR; 4821 } 4822 assert( pTab->nTabRef==1 || 4823 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4824 4825 pCte->zCteErr = "circular reference: %s"; 4826 pSavedWith = pParse->pWith; 4827 pParse->pWith = pWith; 4828 if( bMayRecursive ){ 4829 Select *pPrior = pSel->pPrior; 4830 assert( pPrior->pWith==0 ); 4831 pPrior->pWith = pSel->pWith; 4832 sqlite3WalkSelect(pWalker, pPrior); 4833 pPrior->pWith = 0; 4834 }else{ 4835 sqlite3WalkSelect(pWalker, pSel); 4836 } 4837 pParse->pWith = pWith; 4838 4839 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4840 pEList = pLeft->pEList; 4841 if( pCte->pCols ){ 4842 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4843 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4844 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4845 ); 4846 pParse->pWith = pSavedWith; 4847 return SQLITE_ERROR; 4848 } 4849 pEList = pCte->pCols; 4850 } 4851 4852 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4853 if( bMayRecursive ){ 4854 if( pSel->selFlags & SF_Recursive ){ 4855 pCte->zCteErr = "multiple recursive references: %s"; 4856 }else{ 4857 pCte->zCteErr = "recursive reference in a subquery: %s"; 4858 } 4859 sqlite3WalkSelect(pWalker, pSel); 4860 } 4861 pCte->zCteErr = 0; 4862 pParse->pWith = pSavedWith; 4863 } 4864 4865 return SQLITE_OK; 4866 } 4867 #endif 4868 4869 #ifndef SQLITE_OMIT_CTE 4870 /* 4871 ** If the SELECT passed as the second argument has an associated WITH 4872 ** clause, pop it from the stack stored as part of the Parse object. 4873 ** 4874 ** This function is used as the xSelectCallback2() callback by 4875 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4876 ** names and other FROM clause elements. 4877 */ 4878 static void selectPopWith(Walker *pWalker, Select *p){ 4879 Parse *pParse = pWalker->pParse; 4880 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4881 With *pWith = findRightmost(p)->pWith; 4882 if( pWith!=0 ){ 4883 assert( pParse->pWith==pWith || pParse->nErr ); 4884 pParse->pWith = pWith->pOuter; 4885 } 4886 } 4887 } 4888 #else 4889 #define selectPopWith 0 4890 #endif 4891 4892 /* 4893 ** The SrcList_item structure passed as the second argument represents a 4894 ** sub-query in the FROM clause of a SELECT statement. This function 4895 ** allocates and populates the SrcList_item.pTab object. If successful, 4896 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4897 ** SQLITE_NOMEM. 4898 */ 4899 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4900 Select *pSel = pFrom->pSelect; 4901 Table *pTab; 4902 4903 assert( pSel ); 4904 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4905 if( pTab==0 ) return SQLITE_NOMEM; 4906 pTab->nTabRef = 1; 4907 if( pFrom->zAlias ){ 4908 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4909 }else{ 4910 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4911 } 4912 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4913 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4914 pTab->iPKey = -1; 4915 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4916 pTab->tabFlags |= TF_Ephemeral; 4917 4918 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4919 } 4920 4921 /* 4922 ** This routine is a Walker callback for "expanding" a SELECT statement. 4923 ** "Expanding" means to do the following: 4924 ** 4925 ** (1) Make sure VDBE cursor numbers have been assigned to every 4926 ** element of the FROM clause. 4927 ** 4928 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4929 ** defines FROM clause. When views appear in the FROM clause, 4930 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4931 ** that implements the view. A copy is made of the view's SELECT 4932 ** statement so that we can freely modify or delete that statement 4933 ** without worrying about messing up the persistent representation 4934 ** of the view. 4935 ** 4936 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4937 ** on joins and the ON and USING clause of joins. 4938 ** 4939 ** (4) Scan the list of columns in the result set (pEList) looking 4940 ** for instances of the "*" operator or the TABLE.* operator. 4941 ** If found, expand each "*" to be every column in every table 4942 ** and TABLE.* to be every column in TABLE. 4943 ** 4944 */ 4945 static int selectExpander(Walker *pWalker, Select *p){ 4946 Parse *pParse = pWalker->pParse; 4947 int i, j, k; 4948 SrcList *pTabList; 4949 ExprList *pEList; 4950 struct SrcList_item *pFrom; 4951 sqlite3 *db = pParse->db; 4952 Expr *pE, *pRight, *pExpr; 4953 u16 selFlags = p->selFlags; 4954 u32 elistFlags = 0; 4955 4956 p->selFlags |= SF_Expanded; 4957 if( db->mallocFailed ){ 4958 return WRC_Abort; 4959 } 4960 assert( p->pSrc!=0 ); 4961 if( (selFlags & SF_Expanded)!=0 ){ 4962 return WRC_Prune; 4963 } 4964 if( pWalker->eCode ){ 4965 /* Renumber selId because it has been copied from a view */ 4966 p->selId = ++pParse->nSelect; 4967 } 4968 pTabList = p->pSrc; 4969 pEList = p->pEList; 4970 sqlite3WithPush(pParse, p->pWith, 0); 4971 4972 /* Make sure cursor numbers have been assigned to all entries in 4973 ** the FROM clause of the SELECT statement. 4974 */ 4975 sqlite3SrcListAssignCursors(pParse, pTabList); 4976 4977 /* Look up every table named in the FROM clause of the select. If 4978 ** an entry of the FROM clause is a subquery instead of a table or view, 4979 ** then create a transient table structure to describe the subquery. 4980 */ 4981 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4982 Table *pTab; 4983 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4984 if( pFrom->fg.isRecursive ) continue; 4985 assert( pFrom->pTab==0 ); 4986 #ifndef SQLITE_OMIT_CTE 4987 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4988 if( pFrom->pTab ) {} else 4989 #endif 4990 if( pFrom->zName==0 ){ 4991 #ifndef SQLITE_OMIT_SUBQUERY 4992 Select *pSel = pFrom->pSelect; 4993 /* A sub-query in the FROM clause of a SELECT */ 4994 assert( pSel!=0 ); 4995 assert( pFrom->pTab==0 ); 4996 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4997 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4998 #endif 4999 }else{ 5000 /* An ordinary table or view name in the FROM clause */ 5001 assert( pFrom->pTab==0 ); 5002 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5003 if( pTab==0 ) return WRC_Abort; 5004 if( pTab->nTabRef>=0xffff ){ 5005 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5006 pTab->zName); 5007 pFrom->pTab = 0; 5008 return WRC_Abort; 5009 } 5010 pTab->nTabRef++; 5011 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5012 return WRC_Abort; 5013 } 5014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5015 if( IsVirtual(pTab) || pTab->pSelect ){ 5016 i16 nCol; 5017 u8 eCodeOrig = pWalker->eCode; 5018 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5019 assert( pFrom->pSelect==0 ); 5020 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 5021 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5022 pTab->zName); 5023 } 5024 #ifndef SQLITE_OMIT_VIRTUALTABLE 5025 if( IsVirtual(pTab) 5026 && pFrom->fg.fromDDL 5027 && ALWAYS(pTab->pVTable!=0) 5028 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5029 ){ 5030 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5031 pTab->zName); 5032 } 5033 #endif 5034 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5035 nCol = pTab->nCol; 5036 pTab->nCol = -1; 5037 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5038 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5039 pWalker->eCode = eCodeOrig; 5040 pTab->nCol = nCol; 5041 } 5042 #endif 5043 } 5044 5045 /* Locate the index named by the INDEXED BY clause, if any. */ 5046 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5047 return WRC_Abort; 5048 } 5049 } 5050 5051 /* Process NATURAL keywords, and ON and USING clauses of joins. 5052 */ 5053 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5054 return WRC_Abort; 5055 } 5056 5057 /* For every "*" that occurs in the column list, insert the names of 5058 ** all columns in all tables. And for every TABLE.* insert the names 5059 ** of all columns in TABLE. The parser inserted a special expression 5060 ** with the TK_ASTERISK operator for each "*" that it found in the column 5061 ** list. The following code just has to locate the TK_ASTERISK 5062 ** expressions and expand each one to the list of all columns in 5063 ** all tables. 5064 ** 5065 ** The first loop just checks to see if there are any "*" operators 5066 ** that need expanding. 5067 */ 5068 for(k=0; k<pEList->nExpr; k++){ 5069 pE = pEList->a[k].pExpr; 5070 if( pE->op==TK_ASTERISK ) break; 5071 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5072 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5073 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5074 elistFlags |= pE->flags; 5075 } 5076 if( k<pEList->nExpr ){ 5077 /* 5078 ** If we get here it means the result set contains one or more "*" 5079 ** operators that need to be expanded. Loop through each expression 5080 ** in the result set and expand them one by one. 5081 */ 5082 struct ExprList_item *a = pEList->a; 5083 ExprList *pNew = 0; 5084 int flags = pParse->db->flags; 5085 int longNames = (flags & SQLITE_FullColNames)!=0 5086 && (flags & SQLITE_ShortColNames)==0; 5087 5088 for(k=0; k<pEList->nExpr; k++){ 5089 pE = a[k].pExpr; 5090 elistFlags |= pE->flags; 5091 pRight = pE->pRight; 5092 assert( pE->op!=TK_DOT || pRight!=0 ); 5093 if( pE->op!=TK_ASTERISK 5094 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5095 ){ 5096 /* This particular expression does not need to be expanded. 5097 */ 5098 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5099 if( pNew ){ 5100 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5101 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5102 a[k].zEName = 0; 5103 } 5104 a[k].pExpr = 0; 5105 }else{ 5106 /* This expression is a "*" or a "TABLE.*" and needs to be 5107 ** expanded. */ 5108 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5109 char *zTName = 0; /* text of name of TABLE */ 5110 if( pE->op==TK_DOT ){ 5111 assert( pE->pLeft!=0 ); 5112 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5113 zTName = pE->pLeft->u.zToken; 5114 } 5115 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5116 Table *pTab = pFrom->pTab; 5117 Select *pSub = pFrom->pSelect; 5118 char *zTabName = pFrom->zAlias; 5119 const char *zSchemaName = 0; 5120 int iDb; 5121 if( zTabName==0 ){ 5122 zTabName = pTab->zName; 5123 } 5124 if( db->mallocFailed ) break; 5125 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5126 pSub = 0; 5127 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5128 continue; 5129 } 5130 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5131 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5132 } 5133 for(j=0; j<pTab->nCol; j++){ 5134 char *zName = pTab->aCol[j].zName; 5135 char *zColname; /* The computed column name */ 5136 char *zToFree; /* Malloced string that needs to be freed */ 5137 Token sColname; /* Computed column name as a token */ 5138 5139 assert( zName ); 5140 if( zTName && pSub 5141 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5142 ){ 5143 continue; 5144 } 5145 5146 /* If a column is marked as 'hidden', omit it from the expanded 5147 ** result-set list unless the SELECT has the SF_IncludeHidden 5148 ** bit set. 5149 */ 5150 if( (p->selFlags & SF_IncludeHidden)==0 5151 && IsHiddenColumn(&pTab->aCol[j]) 5152 ){ 5153 continue; 5154 } 5155 tableSeen = 1; 5156 5157 if( i>0 && zTName==0 ){ 5158 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5159 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5160 ){ 5161 /* In a NATURAL join, omit the join columns from the 5162 ** table to the right of the join */ 5163 continue; 5164 } 5165 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5166 /* In a join with a USING clause, omit columns in the 5167 ** using clause from the table on the right. */ 5168 continue; 5169 } 5170 } 5171 pRight = sqlite3Expr(db, TK_ID, zName); 5172 zColname = zName; 5173 zToFree = 0; 5174 if( longNames || pTabList->nSrc>1 ){ 5175 Expr *pLeft; 5176 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5177 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5178 if( zSchemaName ){ 5179 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5180 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5181 } 5182 if( longNames ){ 5183 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5184 zToFree = zColname; 5185 } 5186 }else{ 5187 pExpr = pRight; 5188 } 5189 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5190 sqlite3TokenInit(&sColname, zColname); 5191 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5192 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5193 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5194 sqlite3DbFree(db, pX->zEName); 5195 if( pSub ){ 5196 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5197 testcase( pX->zEName==0 ); 5198 }else{ 5199 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5200 zSchemaName, zTabName, zColname); 5201 testcase( pX->zEName==0 ); 5202 } 5203 pX->eEName = ENAME_TAB; 5204 } 5205 sqlite3DbFree(db, zToFree); 5206 } 5207 } 5208 if( !tableSeen ){ 5209 if( zTName ){ 5210 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5211 }else{ 5212 sqlite3ErrorMsg(pParse, "no tables specified"); 5213 } 5214 } 5215 } 5216 } 5217 sqlite3ExprListDelete(db, pEList); 5218 p->pEList = pNew; 5219 } 5220 if( p->pEList ){ 5221 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5222 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5223 return WRC_Abort; 5224 } 5225 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5226 p->selFlags |= SF_ComplexResult; 5227 } 5228 } 5229 return WRC_Continue; 5230 } 5231 5232 /* 5233 ** No-op routine for the parse-tree walker. 5234 ** 5235 ** When this routine is the Walker.xExprCallback then expression trees 5236 ** are walked without any actions being taken at each node. Presumably, 5237 ** when this routine is used for Walker.xExprCallback then 5238 ** Walker.xSelectCallback is set to do something useful for every 5239 ** subquery in the parser tree. 5240 */ 5241 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5242 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5243 return WRC_Continue; 5244 } 5245 5246 /* 5247 ** No-op routine for the parse-tree walker for SELECT statements. 5248 ** subquery in the parser tree. 5249 */ 5250 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5251 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5252 return WRC_Continue; 5253 } 5254 5255 #if SQLITE_DEBUG 5256 /* 5257 ** Always assert. This xSelectCallback2 implementation proves that the 5258 ** xSelectCallback2 is never invoked. 5259 */ 5260 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5261 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5262 assert( 0 ); 5263 } 5264 #endif 5265 /* 5266 ** This routine "expands" a SELECT statement and all of its subqueries. 5267 ** For additional information on what it means to "expand" a SELECT 5268 ** statement, see the comment on the selectExpand worker callback above. 5269 ** 5270 ** Expanding a SELECT statement is the first step in processing a 5271 ** SELECT statement. The SELECT statement must be expanded before 5272 ** name resolution is performed. 5273 ** 5274 ** If anything goes wrong, an error message is written into pParse. 5275 ** The calling function can detect the problem by looking at pParse->nErr 5276 ** and/or pParse->db->mallocFailed. 5277 */ 5278 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5279 Walker w; 5280 w.xExprCallback = sqlite3ExprWalkNoop; 5281 w.pParse = pParse; 5282 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5283 w.xSelectCallback = convertCompoundSelectToSubquery; 5284 w.xSelectCallback2 = 0; 5285 sqlite3WalkSelect(&w, pSelect); 5286 } 5287 w.xSelectCallback = selectExpander; 5288 w.xSelectCallback2 = selectPopWith; 5289 w.eCode = 0; 5290 sqlite3WalkSelect(&w, pSelect); 5291 } 5292 5293 5294 #ifndef SQLITE_OMIT_SUBQUERY 5295 /* 5296 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5297 ** interface. 5298 ** 5299 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5300 ** information to the Table structure that represents the result set 5301 ** of that subquery. 5302 ** 5303 ** The Table structure that represents the result set was constructed 5304 ** by selectExpander() but the type and collation information was omitted 5305 ** at that point because identifiers had not yet been resolved. This 5306 ** routine is called after identifier resolution. 5307 */ 5308 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5309 Parse *pParse; 5310 int i; 5311 SrcList *pTabList; 5312 struct SrcList_item *pFrom; 5313 5314 assert( p->selFlags & SF_Resolved ); 5315 if( p->selFlags & SF_HasTypeInfo ) return; 5316 p->selFlags |= SF_HasTypeInfo; 5317 pParse = pWalker->pParse; 5318 pTabList = p->pSrc; 5319 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5320 Table *pTab = pFrom->pTab; 5321 assert( pTab!=0 ); 5322 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5323 /* A sub-query in the FROM clause of a SELECT */ 5324 Select *pSel = pFrom->pSelect; 5325 if( pSel ){ 5326 while( pSel->pPrior ) pSel = pSel->pPrior; 5327 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5328 SQLITE_AFF_NONE); 5329 } 5330 } 5331 } 5332 } 5333 #endif 5334 5335 5336 /* 5337 ** This routine adds datatype and collating sequence information to 5338 ** the Table structures of all FROM-clause subqueries in a 5339 ** SELECT statement. 5340 ** 5341 ** Use this routine after name resolution. 5342 */ 5343 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5344 #ifndef SQLITE_OMIT_SUBQUERY 5345 Walker w; 5346 w.xSelectCallback = sqlite3SelectWalkNoop; 5347 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5348 w.xExprCallback = sqlite3ExprWalkNoop; 5349 w.pParse = pParse; 5350 sqlite3WalkSelect(&w, pSelect); 5351 #endif 5352 } 5353 5354 5355 /* 5356 ** This routine sets up a SELECT statement for processing. The 5357 ** following is accomplished: 5358 ** 5359 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5360 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5361 ** * ON and USING clauses are shifted into WHERE statements 5362 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5363 ** * Identifiers in expression are matched to tables. 5364 ** 5365 ** This routine acts recursively on all subqueries within the SELECT. 5366 */ 5367 void sqlite3SelectPrep( 5368 Parse *pParse, /* The parser context */ 5369 Select *p, /* The SELECT statement being coded. */ 5370 NameContext *pOuterNC /* Name context for container */ 5371 ){ 5372 assert( p!=0 || pParse->db->mallocFailed ); 5373 if( pParse->db->mallocFailed ) return; 5374 if( p->selFlags & SF_HasTypeInfo ) return; 5375 sqlite3SelectExpand(pParse, p); 5376 if( pParse->nErr || pParse->db->mallocFailed ) return; 5377 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5378 if( pParse->nErr || pParse->db->mallocFailed ) return; 5379 sqlite3SelectAddTypeInfo(pParse, p); 5380 } 5381 5382 /* 5383 ** Reset the aggregate accumulator. 5384 ** 5385 ** The aggregate accumulator is a set of memory cells that hold 5386 ** intermediate results while calculating an aggregate. This 5387 ** routine generates code that stores NULLs in all of those memory 5388 ** cells. 5389 */ 5390 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5391 Vdbe *v = pParse->pVdbe; 5392 int i; 5393 struct AggInfo_func *pFunc; 5394 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5395 if( nReg==0 ) return; 5396 if( pParse->nErr ) return; 5397 #ifdef SQLITE_DEBUG 5398 /* Verify that all AggInfo registers are within the range specified by 5399 ** AggInfo.mnReg..AggInfo.mxReg */ 5400 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5401 for(i=0; i<pAggInfo->nColumn; i++){ 5402 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5403 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5404 } 5405 for(i=0; i<pAggInfo->nFunc; i++){ 5406 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5407 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5408 } 5409 #endif 5410 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5411 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5412 if( pFunc->iDistinct>=0 ){ 5413 Expr *pE = pFunc->pExpr; 5414 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5415 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5416 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5417 "argument"); 5418 pFunc->iDistinct = -1; 5419 }else{ 5420 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5421 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5422 (char*)pKeyInfo, P4_KEYINFO); 5423 } 5424 } 5425 } 5426 } 5427 5428 /* 5429 ** Invoke the OP_AggFinalize opcode for every aggregate function 5430 ** in the AggInfo structure. 5431 */ 5432 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5433 Vdbe *v = pParse->pVdbe; 5434 int i; 5435 struct AggInfo_func *pF; 5436 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5437 ExprList *pList = pF->pExpr->x.pList; 5438 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5439 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5440 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5441 } 5442 } 5443 5444 5445 /* 5446 ** Update the accumulator memory cells for an aggregate based on 5447 ** the current cursor position. 5448 ** 5449 ** If regAcc is non-zero and there are no min() or max() aggregates 5450 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5451 ** registers if register regAcc contains 0. The caller will take care 5452 ** of setting and clearing regAcc. 5453 */ 5454 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5455 Vdbe *v = pParse->pVdbe; 5456 int i; 5457 int regHit = 0; 5458 int addrHitTest = 0; 5459 struct AggInfo_func *pF; 5460 struct AggInfo_col *pC; 5461 5462 pAggInfo->directMode = 1; 5463 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5464 int nArg; 5465 int addrNext = 0; 5466 int regAgg; 5467 ExprList *pList = pF->pExpr->x.pList; 5468 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5469 assert( !IsWindowFunc(pF->pExpr) ); 5470 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5471 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5472 if( pAggInfo->nAccumulator 5473 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5474 ){ 5475 if( regHit==0 ) regHit = ++pParse->nMem; 5476 /* If this is the first row of the group (regAcc==0), clear the 5477 ** "magnet" register regHit so that the accumulator registers 5478 ** are populated if the FILTER clause jumps over the the 5479 ** invocation of min() or max() altogether. Or, if this is not 5480 ** the first row (regAcc==1), set the magnet register so that the 5481 ** accumulators are not populated unless the min()/max() is invoked and 5482 ** indicates that they should be. */ 5483 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5484 } 5485 addrNext = sqlite3VdbeMakeLabel(pParse); 5486 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5487 } 5488 if( pList ){ 5489 nArg = pList->nExpr; 5490 regAgg = sqlite3GetTempRange(pParse, nArg); 5491 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5492 }else{ 5493 nArg = 0; 5494 regAgg = 0; 5495 } 5496 if( pF->iDistinct>=0 ){ 5497 if( addrNext==0 ){ 5498 addrNext = sqlite3VdbeMakeLabel(pParse); 5499 } 5500 testcase( nArg==0 ); /* Error condition */ 5501 testcase( nArg>1 ); /* Also an error */ 5502 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5503 } 5504 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5505 CollSeq *pColl = 0; 5506 struct ExprList_item *pItem; 5507 int j; 5508 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5509 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5510 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5511 } 5512 if( !pColl ){ 5513 pColl = pParse->db->pDfltColl; 5514 } 5515 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5516 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5517 } 5518 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5519 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5520 sqlite3VdbeChangeP5(v, (u8)nArg); 5521 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5522 if( addrNext ){ 5523 sqlite3VdbeResolveLabel(v, addrNext); 5524 } 5525 } 5526 if( regHit==0 && pAggInfo->nAccumulator ){ 5527 regHit = regAcc; 5528 } 5529 if( regHit ){ 5530 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5531 } 5532 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5533 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5534 } 5535 5536 pAggInfo->directMode = 0; 5537 if( addrHitTest ){ 5538 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5539 } 5540 } 5541 5542 /* 5543 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5544 ** count(*) query ("SELECT count(*) FROM pTab"). 5545 */ 5546 #ifndef SQLITE_OMIT_EXPLAIN 5547 static void explainSimpleCount( 5548 Parse *pParse, /* Parse context */ 5549 Table *pTab, /* Table being queried */ 5550 Index *pIdx /* Index used to optimize scan, or NULL */ 5551 ){ 5552 if( pParse->explain==2 ){ 5553 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5554 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5555 pTab->zName, 5556 bCover ? " USING COVERING INDEX " : "", 5557 bCover ? pIdx->zName : "" 5558 ); 5559 } 5560 } 5561 #else 5562 # define explainSimpleCount(a,b,c) 5563 #endif 5564 5565 /* 5566 ** sqlite3WalkExpr() callback used by havingToWhere(). 5567 ** 5568 ** If the node passed to the callback is a TK_AND node, return 5569 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5570 ** 5571 ** Otherwise, return WRC_Prune. In this case, also check if the 5572 ** sub-expression matches the criteria for being moved to the WHERE 5573 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5574 ** within the HAVING expression with a constant "1". 5575 */ 5576 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5577 if( pExpr->op!=TK_AND ){ 5578 Select *pS = pWalker->u.pSelect; 5579 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5580 sqlite3 *db = pWalker->pParse->db; 5581 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5582 if( pNew ){ 5583 Expr *pWhere = pS->pWhere; 5584 SWAP(Expr, *pNew, *pExpr); 5585 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5586 pS->pWhere = pNew; 5587 pWalker->eCode = 1; 5588 } 5589 } 5590 return WRC_Prune; 5591 } 5592 return WRC_Continue; 5593 } 5594 5595 /* 5596 ** Transfer eligible terms from the HAVING clause of a query, which is 5597 ** processed after grouping, to the WHERE clause, which is processed before 5598 ** grouping. For example, the query: 5599 ** 5600 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5601 ** 5602 ** can be rewritten as: 5603 ** 5604 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5605 ** 5606 ** A term of the HAVING expression is eligible for transfer if it consists 5607 ** entirely of constants and expressions that are also GROUP BY terms that 5608 ** use the "BINARY" collation sequence. 5609 */ 5610 static void havingToWhere(Parse *pParse, Select *p){ 5611 Walker sWalker; 5612 memset(&sWalker, 0, sizeof(sWalker)); 5613 sWalker.pParse = pParse; 5614 sWalker.xExprCallback = havingToWhereExprCb; 5615 sWalker.u.pSelect = p; 5616 sqlite3WalkExpr(&sWalker, p->pHaving); 5617 #if SELECTTRACE_ENABLED 5618 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5619 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5620 sqlite3TreeViewSelect(0, p, 0); 5621 } 5622 #endif 5623 } 5624 5625 /* 5626 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5627 ** If it is, then return the SrcList_item for the prior view. If it is not, 5628 ** then return 0. 5629 */ 5630 static struct SrcList_item *isSelfJoinView( 5631 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5632 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5633 ){ 5634 struct SrcList_item *pItem; 5635 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5636 Select *pS1; 5637 if( pItem->pSelect==0 ) continue; 5638 if( pItem->fg.viaCoroutine ) continue; 5639 if( pItem->zName==0 ) continue; 5640 assert( pItem->pTab!=0 ); 5641 assert( pThis->pTab!=0 ); 5642 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5643 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5644 pS1 = pItem->pSelect; 5645 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5646 /* The query flattener left two different CTE tables with identical 5647 ** names in the same FROM clause. */ 5648 continue; 5649 } 5650 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5651 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5652 ){ 5653 /* The view was modified by some other optimization such as 5654 ** pushDownWhereTerms() */ 5655 continue; 5656 } 5657 return pItem; 5658 } 5659 return 0; 5660 } 5661 5662 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5663 /* 5664 ** Attempt to transform a query of the form 5665 ** 5666 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5667 ** 5668 ** Into this: 5669 ** 5670 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5671 ** 5672 ** The transformation only works if all of the following are true: 5673 ** 5674 ** * The subquery is a UNION ALL of two or more terms 5675 ** * The subquery does not have a LIMIT clause 5676 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5677 ** * The outer query is a simple count(*) with no WHERE clause or other 5678 ** extraneous syntax. 5679 ** 5680 ** Return TRUE if the optimization is undertaken. 5681 */ 5682 static int countOfViewOptimization(Parse *pParse, Select *p){ 5683 Select *pSub, *pPrior; 5684 Expr *pExpr; 5685 Expr *pCount; 5686 sqlite3 *db; 5687 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5688 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5689 if( p->pWhere ) return 0; 5690 if( p->pGroupBy ) return 0; 5691 pExpr = p->pEList->a[0].pExpr; 5692 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5693 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5694 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5695 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5696 pSub = p->pSrc->a[0].pSelect; 5697 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5698 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5699 do{ 5700 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5701 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5702 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5703 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5704 pSub = pSub->pPrior; /* Repeat over compound */ 5705 }while( pSub ); 5706 5707 /* If we reach this point then it is OK to perform the transformation */ 5708 5709 db = pParse->db; 5710 pCount = pExpr; 5711 pExpr = 0; 5712 pSub = p->pSrc->a[0].pSelect; 5713 p->pSrc->a[0].pSelect = 0; 5714 sqlite3SrcListDelete(db, p->pSrc); 5715 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5716 while( pSub ){ 5717 Expr *pTerm; 5718 pPrior = pSub->pPrior; 5719 pSub->pPrior = 0; 5720 pSub->pNext = 0; 5721 pSub->selFlags |= SF_Aggregate; 5722 pSub->selFlags &= ~SF_Compound; 5723 pSub->nSelectRow = 0; 5724 sqlite3ExprListDelete(db, pSub->pEList); 5725 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5726 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5727 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5728 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5729 if( pExpr==0 ){ 5730 pExpr = pTerm; 5731 }else{ 5732 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5733 } 5734 pSub = pPrior; 5735 } 5736 p->pEList->a[0].pExpr = pExpr; 5737 p->selFlags &= ~SF_Aggregate; 5738 5739 #if SELECTTRACE_ENABLED 5740 if( sqlite3SelectTrace & 0x400 ){ 5741 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5742 sqlite3TreeViewSelect(0, p, 0); 5743 } 5744 #endif 5745 return 1; 5746 } 5747 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5748 5749 /* 5750 ** Generate code for the SELECT statement given in the p argument. 5751 ** 5752 ** The results are returned according to the SelectDest structure. 5753 ** See comments in sqliteInt.h for further information. 5754 ** 5755 ** This routine returns the number of errors. If any errors are 5756 ** encountered, then an appropriate error message is left in 5757 ** pParse->zErrMsg. 5758 ** 5759 ** This routine does NOT free the Select structure passed in. The 5760 ** calling function needs to do that. 5761 */ 5762 int sqlite3Select( 5763 Parse *pParse, /* The parser context */ 5764 Select *p, /* The SELECT statement being coded. */ 5765 SelectDest *pDest /* What to do with the query results */ 5766 ){ 5767 int i, j; /* Loop counters */ 5768 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5769 Vdbe *v; /* The virtual machine under construction */ 5770 int isAgg; /* True for select lists like "count(*)" */ 5771 ExprList *pEList = 0; /* List of columns to extract. */ 5772 SrcList *pTabList; /* List of tables to select from */ 5773 Expr *pWhere; /* The WHERE clause. May be NULL */ 5774 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5775 Expr *pHaving; /* The HAVING clause. May be NULL */ 5776 int rc = 1; /* Value to return from this function */ 5777 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5778 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5779 AggInfo sAggInfo; /* Information used by aggregate queries */ 5780 int iEnd; /* Address of the end of the query */ 5781 sqlite3 *db; /* The database connection */ 5782 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5783 u8 minMaxFlag; /* Flag for min/max queries */ 5784 5785 db = pParse->db; 5786 v = sqlite3GetVdbe(pParse); 5787 if( p==0 || db->mallocFailed || pParse->nErr ){ 5788 return 1; 5789 } 5790 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5791 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5792 #if SELECTTRACE_ENABLED 5793 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5794 if( sqlite3SelectTrace & 0x100 ){ 5795 sqlite3TreeViewSelect(0, p, 0); 5796 } 5797 #endif 5798 5799 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5800 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5801 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5802 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5803 if( IgnorableOrderby(pDest) ){ 5804 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5805 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5806 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5807 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5808 /* If ORDER BY makes no difference in the output then neither does 5809 ** DISTINCT so it can be removed too. */ 5810 sqlite3ExprListDelete(db, p->pOrderBy); 5811 p->pOrderBy = 0; 5812 p->selFlags &= ~SF_Distinct; 5813 } 5814 sqlite3SelectPrep(pParse, p, 0); 5815 if( pParse->nErr || db->mallocFailed ){ 5816 goto select_end; 5817 } 5818 assert( p->pEList!=0 ); 5819 #if SELECTTRACE_ENABLED 5820 if( sqlite3SelectTrace & 0x104 ){ 5821 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5822 sqlite3TreeViewSelect(0, p, 0); 5823 } 5824 #endif 5825 5826 if( pDest->eDest==SRT_Output ){ 5827 generateColumnNames(pParse, p); 5828 } 5829 5830 #ifndef SQLITE_OMIT_WINDOWFUNC 5831 rc = sqlite3WindowRewrite(pParse, p); 5832 if( rc ){ 5833 assert( db->mallocFailed || pParse->nErr>0 ); 5834 goto select_end; 5835 } 5836 #if SELECTTRACE_ENABLED 5837 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5838 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5839 sqlite3TreeViewSelect(0, p, 0); 5840 } 5841 #endif 5842 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5843 pTabList = p->pSrc; 5844 isAgg = (p->selFlags & SF_Aggregate)!=0; 5845 memset(&sSort, 0, sizeof(sSort)); 5846 sSort.pOrderBy = p->pOrderBy; 5847 5848 /* Try to various optimizations (flattening subqueries, and strength 5849 ** reduction of join operators) in the FROM clause up into the main query 5850 */ 5851 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5852 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5853 struct SrcList_item *pItem = &pTabList->a[i]; 5854 Select *pSub = pItem->pSelect; 5855 Table *pTab = pItem->pTab; 5856 5857 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5858 ** of the LEFT JOIN used in the WHERE clause. 5859 */ 5860 if( (pItem->fg.jointype & JT_LEFT)!=0 5861 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5862 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5863 ){ 5864 SELECTTRACE(0x100,pParse,p, 5865 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5866 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5867 unsetJoinExpr(p->pWhere, pItem->iCursor); 5868 } 5869 5870 /* No futher action if this term of the FROM clause is no a subquery */ 5871 if( pSub==0 ) continue; 5872 5873 /* Catch mismatch in the declared columns of a view and the number of 5874 ** columns in the SELECT on the RHS */ 5875 if( pTab->nCol!=pSub->pEList->nExpr ){ 5876 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5877 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5878 goto select_end; 5879 } 5880 5881 /* Do not try to flatten an aggregate subquery. 5882 ** 5883 ** Flattening an aggregate subquery is only possible if the outer query 5884 ** is not a join. But if the outer query is not a join, then the subquery 5885 ** will be implemented as a co-routine and there is no advantage to 5886 ** flattening in that case. 5887 */ 5888 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5889 assert( pSub->pGroupBy==0 ); 5890 5891 /* If the outer query contains a "complex" result set (that is, 5892 ** if the result set of the outer query uses functions or subqueries) 5893 ** and if the subquery contains an ORDER BY clause and if 5894 ** it will be implemented as a co-routine, then do not flatten. This 5895 ** restriction allows SQL constructs like this: 5896 ** 5897 ** SELECT expensive_function(x) 5898 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5899 ** 5900 ** The expensive_function() is only computed on the 10 rows that 5901 ** are output, rather than every row of the table. 5902 ** 5903 ** The requirement that the outer query have a complex result set 5904 ** means that flattening does occur on simpler SQL constraints without 5905 ** the expensive_function() like: 5906 ** 5907 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5908 */ 5909 if( pSub->pOrderBy!=0 5910 && i==0 5911 && (p->selFlags & SF_ComplexResult)!=0 5912 && (pTabList->nSrc==1 5913 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5914 ){ 5915 continue; 5916 } 5917 5918 if( flattenSubquery(pParse, p, i, isAgg) ){ 5919 if( pParse->nErr ) goto select_end; 5920 /* This subquery can be absorbed into its parent. */ 5921 i = -1; 5922 } 5923 pTabList = p->pSrc; 5924 if( db->mallocFailed ) goto select_end; 5925 if( !IgnorableOrderby(pDest) ){ 5926 sSort.pOrderBy = p->pOrderBy; 5927 } 5928 } 5929 #endif 5930 5931 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5932 /* Handle compound SELECT statements using the separate multiSelect() 5933 ** procedure. 5934 */ 5935 if( p->pPrior ){ 5936 rc = multiSelect(pParse, p, pDest); 5937 #if SELECTTRACE_ENABLED 5938 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5939 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5940 sqlite3TreeViewSelect(0, p, 0); 5941 } 5942 #endif 5943 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5944 return rc; 5945 } 5946 #endif 5947 5948 /* Do the WHERE-clause constant propagation optimization if this is 5949 ** a join. No need to speed time on this operation for non-join queries 5950 ** as the equivalent optimization will be handled by query planner in 5951 ** sqlite3WhereBegin(). 5952 */ 5953 if( pTabList->nSrc>1 5954 && OptimizationEnabled(db, SQLITE_PropagateConst) 5955 && propagateConstants(pParse, p) 5956 ){ 5957 #if SELECTTRACE_ENABLED 5958 if( sqlite3SelectTrace & 0x100 ){ 5959 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5960 sqlite3TreeViewSelect(0, p, 0); 5961 } 5962 #endif 5963 }else{ 5964 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5965 } 5966 5967 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5968 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5969 && countOfViewOptimization(pParse, p) 5970 ){ 5971 if( db->mallocFailed ) goto select_end; 5972 pEList = p->pEList; 5973 pTabList = p->pSrc; 5974 } 5975 #endif 5976 5977 /* For each term in the FROM clause, do two things: 5978 ** (1) Authorized unreferenced tables 5979 ** (2) Generate code for all sub-queries 5980 */ 5981 for(i=0; i<pTabList->nSrc; i++){ 5982 struct SrcList_item *pItem = &pTabList->a[i]; 5983 SelectDest dest; 5984 Select *pSub; 5985 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5986 const char *zSavedAuthContext; 5987 #endif 5988 5989 /* Issue SQLITE_READ authorizations with a fake column name for any 5990 ** tables that are referenced but from which no values are extracted. 5991 ** Examples of where these kinds of null SQLITE_READ authorizations 5992 ** would occur: 5993 ** 5994 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5995 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5996 ** 5997 ** The fake column name is an empty string. It is possible for a table to 5998 ** have a column named by the empty string, in which case there is no way to 5999 ** distinguish between an unreferenced table and an actual reference to the 6000 ** "" column. The original design was for the fake column name to be a NULL, 6001 ** which would be unambiguous. But legacy authorization callbacks might 6002 ** assume the column name is non-NULL and segfault. The use of an empty 6003 ** string for the fake column name seems safer. 6004 */ 6005 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6006 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6007 } 6008 6009 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6010 /* Generate code for all sub-queries in the FROM clause 6011 */ 6012 pSub = pItem->pSelect; 6013 if( pSub==0 ) continue; 6014 6015 /* The code for a subquery should only be generated once, though it is 6016 ** technically harmless for it to be generated multiple times. The 6017 ** following assert() will detect if something changes to cause 6018 ** the same subquery to be coded multiple times, as a signal to the 6019 ** developers to try to optimize the situation. 6020 ** 6021 ** Update 2019-07-24: 6022 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6023 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6024 ** coded twice. So this assert() now becomes a testcase(). It should 6025 ** be very rare, though. 6026 */ 6027 testcase( pItem->addrFillSub!=0 ); 6028 6029 /* Increment Parse.nHeight by the height of the largest expression 6030 ** tree referred to by this, the parent select. The child select 6031 ** may contain expression trees of at most 6032 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6033 ** more conservative than necessary, but much easier than enforcing 6034 ** an exact limit. 6035 */ 6036 pParse->nHeight += sqlite3SelectExprHeight(p); 6037 6038 /* Make copies of constant WHERE-clause terms in the outer query down 6039 ** inside the subquery. This can help the subquery to run more efficiently. 6040 */ 6041 if( OptimizationEnabled(db, SQLITE_PushDown) 6042 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6043 (pItem->fg.jointype & JT_OUTER)!=0) 6044 ){ 6045 #if SELECTTRACE_ENABLED 6046 if( sqlite3SelectTrace & 0x100 ){ 6047 SELECTTRACE(0x100,pParse,p, 6048 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6049 sqlite3TreeViewSelect(0, p, 0); 6050 } 6051 #endif 6052 }else{ 6053 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6054 } 6055 6056 zSavedAuthContext = pParse->zAuthContext; 6057 pParse->zAuthContext = pItem->zName; 6058 6059 /* Generate code to implement the subquery 6060 ** 6061 ** The subquery is implemented as a co-routine if the subquery is 6062 ** guaranteed to be the outer loop (so that it does not need to be 6063 ** computed more than once) 6064 ** 6065 ** TODO: Are there other reasons beside (1) to use a co-routine 6066 ** implementation? 6067 */ 6068 if( i==0 6069 && (pTabList->nSrc==1 6070 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6071 ){ 6072 /* Implement a co-routine that will return a single row of the result 6073 ** set on each invocation. 6074 */ 6075 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6076 6077 pItem->regReturn = ++pParse->nMem; 6078 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6079 VdbeComment((v, "%s", pItem->pTab->zName)); 6080 pItem->addrFillSub = addrTop; 6081 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6082 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6083 sqlite3Select(pParse, pSub, &dest); 6084 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6085 pItem->fg.viaCoroutine = 1; 6086 pItem->regResult = dest.iSdst; 6087 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6088 sqlite3VdbeJumpHere(v, addrTop-1); 6089 sqlite3ClearTempRegCache(pParse); 6090 }else{ 6091 /* Generate a subroutine that will fill an ephemeral table with 6092 ** the content of this subquery. pItem->addrFillSub will point 6093 ** to the address of the generated subroutine. pItem->regReturn 6094 ** is a register allocated to hold the subroutine return address 6095 */ 6096 int topAddr; 6097 int onceAddr = 0; 6098 int retAddr; 6099 struct SrcList_item *pPrior; 6100 6101 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6102 pItem->regReturn = ++pParse->nMem; 6103 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6104 pItem->addrFillSub = topAddr+1; 6105 if( pItem->fg.isCorrelated==0 ){ 6106 /* If the subquery is not correlated and if we are not inside of 6107 ** a trigger, then we only need to compute the value of the subquery 6108 ** once. */ 6109 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6110 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6111 }else{ 6112 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6113 } 6114 pPrior = isSelfJoinView(pTabList, pItem); 6115 if( pPrior ){ 6116 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6117 assert( pPrior->pSelect!=0 ); 6118 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6119 }else{ 6120 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6121 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6122 sqlite3Select(pParse, pSub, &dest); 6123 } 6124 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6125 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6126 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6127 VdbeComment((v, "end %s", pItem->pTab->zName)); 6128 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6129 sqlite3ClearTempRegCache(pParse); 6130 } 6131 if( db->mallocFailed ) goto select_end; 6132 pParse->nHeight -= sqlite3SelectExprHeight(p); 6133 pParse->zAuthContext = zSavedAuthContext; 6134 #endif 6135 } 6136 6137 /* Various elements of the SELECT copied into local variables for 6138 ** convenience */ 6139 pEList = p->pEList; 6140 pWhere = p->pWhere; 6141 pGroupBy = p->pGroupBy; 6142 pHaving = p->pHaving; 6143 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6144 6145 #if SELECTTRACE_ENABLED 6146 if( sqlite3SelectTrace & 0x400 ){ 6147 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6148 sqlite3TreeViewSelect(0, p, 0); 6149 } 6150 #endif 6151 6152 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6153 ** if the select-list is the same as the ORDER BY list, then this query 6154 ** can be rewritten as a GROUP BY. In other words, this: 6155 ** 6156 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6157 ** 6158 ** is transformed to: 6159 ** 6160 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6161 ** 6162 ** The second form is preferred as a single index (or temp-table) may be 6163 ** used for both the ORDER BY and DISTINCT processing. As originally 6164 ** written the query must use a temp-table for at least one of the ORDER 6165 ** BY and DISTINCT, and an index or separate temp-table for the other. 6166 */ 6167 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6168 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6169 #ifndef SQLITE_OMIT_WINDOWFUNC 6170 && p->pWin==0 6171 #endif 6172 ){ 6173 p->selFlags &= ~SF_Distinct; 6174 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6175 p->selFlags |= SF_Aggregate; 6176 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6177 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6178 ** original setting of the SF_Distinct flag, not the current setting */ 6179 assert( sDistinct.isTnct ); 6180 6181 #if SELECTTRACE_ENABLED 6182 if( sqlite3SelectTrace & 0x400 ){ 6183 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6184 sqlite3TreeViewSelect(0, p, 0); 6185 } 6186 #endif 6187 } 6188 6189 /* If there is an ORDER BY clause, then create an ephemeral index to 6190 ** do the sorting. But this sorting ephemeral index might end up 6191 ** being unused if the data can be extracted in pre-sorted order. 6192 ** If that is the case, then the OP_OpenEphemeral instruction will be 6193 ** changed to an OP_Noop once we figure out that the sorting index is 6194 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6195 ** that change. 6196 */ 6197 if( sSort.pOrderBy ){ 6198 KeyInfo *pKeyInfo; 6199 pKeyInfo = sqlite3KeyInfoFromExprList( 6200 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6201 sSort.iECursor = pParse->nTab++; 6202 sSort.addrSortIndex = 6203 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6204 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6205 (char*)pKeyInfo, P4_KEYINFO 6206 ); 6207 }else{ 6208 sSort.addrSortIndex = -1; 6209 } 6210 6211 /* If the output is destined for a temporary table, open that table. 6212 */ 6213 if( pDest->eDest==SRT_EphemTab ){ 6214 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6215 } 6216 6217 /* Set the limiter. 6218 */ 6219 iEnd = sqlite3VdbeMakeLabel(pParse); 6220 if( (p->selFlags & SF_FixedLimit)==0 ){ 6221 p->nSelectRow = 320; /* 4 billion rows */ 6222 } 6223 computeLimitRegisters(pParse, p, iEnd); 6224 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6225 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6226 sSort.sortFlags |= SORTFLAG_UseSorter; 6227 } 6228 6229 /* Open an ephemeral index to use for the distinct set. 6230 */ 6231 if( p->selFlags & SF_Distinct ){ 6232 sDistinct.tabTnct = pParse->nTab++; 6233 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6234 sDistinct.tabTnct, 0, 0, 6235 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6236 P4_KEYINFO); 6237 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6238 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6239 }else{ 6240 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6241 } 6242 6243 if( !isAgg && pGroupBy==0 ){ 6244 /* No aggregate functions and no GROUP BY clause */ 6245 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6246 | (p->selFlags & SF_FixedLimit); 6247 #ifndef SQLITE_OMIT_WINDOWFUNC 6248 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6249 if( pWin ){ 6250 sqlite3WindowCodeInit(pParse, p); 6251 } 6252 #endif 6253 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6254 6255 6256 /* Begin the database scan. */ 6257 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6258 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6259 p->pEList, wctrlFlags, p->nSelectRow); 6260 if( pWInfo==0 ) goto select_end; 6261 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6262 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6263 } 6264 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6265 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6266 } 6267 if( sSort.pOrderBy ){ 6268 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6269 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6270 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6271 sSort.pOrderBy = 0; 6272 } 6273 } 6274 6275 /* If sorting index that was created by a prior OP_OpenEphemeral 6276 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6277 ** into an OP_Noop. 6278 */ 6279 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6280 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6281 } 6282 6283 assert( p->pEList==pEList ); 6284 #ifndef SQLITE_OMIT_WINDOWFUNC 6285 if( pWin ){ 6286 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6287 int iCont = sqlite3VdbeMakeLabel(pParse); 6288 int iBreak = sqlite3VdbeMakeLabel(pParse); 6289 int regGosub = ++pParse->nMem; 6290 6291 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6292 6293 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6294 sqlite3VdbeResolveLabel(v, addrGosub); 6295 VdbeNoopComment((v, "inner-loop subroutine")); 6296 sSort.labelOBLopt = 0; 6297 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6298 sqlite3VdbeResolveLabel(v, iCont); 6299 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6300 VdbeComment((v, "end inner-loop subroutine")); 6301 sqlite3VdbeResolveLabel(v, iBreak); 6302 }else 6303 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6304 { 6305 /* Use the standard inner loop. */ 6306 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6307 sqlite3WhereContinueLabel(pWInfo), 6308 sqlite3WhereBreakLabel(pWInfo)); 6309 6310 /* End the database scan loop. 6311 */ 6312 sqlite3WhereEnd(pWInfo); 6313 } 6314 }else{ 6315 /* This case when there exist aggregate functions or a GROUP BY clause 6316 ** or both */ 6317 NameContext sNC; /* Name context for processing aggregate information */ 6318 int iAMem; /* First Mem address for storing current GROUP BY */ 6319 int iBMem; /* First Mem address for previous GROUP BY */ 6320 int iUseFlag; /* Mem address holding flag indicating that at least 6321 ** one row of the input to the aggregator has been 6322 ** processed */ 6323 int iAbortFlag; /* Mem address which causes query abort if positive */ 6324 int groupBySort; /* Rows come from source in GROUP BY order */ 6325 int addrEnd; /* End of processing for this SELECT */ 6326 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6327 int sortOut = 0; /* Output register from the sorter */ 6328 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6329 6330 /* Remove any and all aliases between the result set and the 6331 ** GROUP BY clause. 6332 */ 6333 if( pGroupBy ){ 6334 int k; /* Loop counter */ 6335 struct ExprList_item *pItem; /* For looping over expression in a list */ 6336 6337 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6338 pItem->u.x.iAlias = 0; 6339 } 6340 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6341 pItem->u.x.iAlias = 0; 6342 } 6343 assert( 66==sqlite3LogEst(100) ); 6344 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6345 6346 /* If there is both a GROUP BY and an ORDER BY clause and they are 6347 ** identical, then it may be possible to disable the ORDER BY clause 6348 ** on the grounds that the GROUP BY will cause elements to come out 6349 ** in the correct order. It also may not - the GROUP BY might use a 6350 ** database index that causes rows to be grouped together as required 6351 ** but not actually sorted. Either way, record the fact that the 6352 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6353 ** variable. */ 6354 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6355 int ii; 6356 /* The GROUP BY processing doesn't care whether rows are delivered in 6357 ** ASC or DESC order - only that each group is returned contiguously. 6358 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6359 ** ORDER BY to maximize the chances of rows being delivered in an 6360 ** order that makes the ORDER BY redundant. */ 6361 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6362 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6363 pGroupBy->a[ii].sortFlags = sortFlags; 6364 } 6365 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6366 orderByGrp = 1; 6367 } 6368 } 6369 }else{ 6370 assert( 0==sqlite3LogEst(1) ); 6371 p->nSelectRow = 0; 6372 } 6373 6374 /* Create a label to jump to when we want to abort the query */ 6375 addrEnd = sqlite3VdbeMakeLabel(pParse); 6376 6377 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6378 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6379 ** SELECT statement. 6380 */ 6381 memset(&sNC, 0, sizeof(sNC)); 6382 sNC.pParse = pParse; 6383 sNC.pSrcList = pTabList; 6384 sNC.uNC.pAggInfo = &sAggInfo; 6385 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6386 sAggInfo.mnReg = pParse->nMem+1; 6387 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6388 sAggInfo.pGroupBy = pGroupBy; 6389 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6390 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6391 if( pHaving ){ 6392 if( pGroupBy ){ 6393 assert( pWhere==p->pWhere ); 6394 assert( pHaving==p->pHaving ); 6395 assert( pGroupBy==p->pGroupBy ); 6396 havingToWhere(pParse, p); 6397 pWhere = p->pWhere; 6398 } 6399 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6400 } 6401 sAggInfo.nAccumulator = sAggInfo.nColumn; 6402 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6403 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6404 }else{ 6405 minMaxFlag = WHERE_ORDERBY_NORMAL; 6406 } 6407 for(i=0; i<sAggInfo.nFunc; i++){ 6408 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6409 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6410 sNC.ncFlags |= NC_InAggFunc; 6411 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6412 #ifndef SQLITE_OMIT_WINDOWFUNC 6413 assert( !IsWindowFunc(pExpr) ); 6414 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6415 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6416 } 6417 #endif 6418 sNC.ncFlags &= ~NC_InAggFunc; 6419 } 6420 sAggInfo.mxReg = pParse->nMem; 6421 if( db->mallocFailed ) goto select_end; 6422 #if SELECTTRACE_ENABLED 6423 if( sqlite3SelectTrace & 0x400 ){ 6424 int ii; 6425 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6426 sqlite3TreeViewSelect(0, p, 0); 6427 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6428 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6429 ii, sAggInfo.aCol[ii].iMem); 6430 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6431 } 6432 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6433 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6434 ii, sAggInfo.aFunc[ii].iMem); 6435 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6436 } 6437 } 6438 #endif 6439 6440 6441 /* Processing for aggregates with GROUP BY is very different and 6442 ** much more complex than aggregates without a GROUP BY. 6443 */ 6444 if( pGroupBy ){ 6445 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6446 int addr1; /* A-vs-B comparision jump */ 6447 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6448 int regOutputRow; /* Return address register for output subroutine */ 6449 int addrSetAbort; /* Set the abort flag and return */ 6450 int addrTopOfLoop; /* Top of the input loop */ 6451 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6452 int addrReset; /* Subroutine for resetting the accumulator */ 6453 int regReset; /* Return address register for reset subroutine */ 6454 6455 /* If there is a GROUP BY clause we might need a sorting index to 6456 ** implement it. Allocate that sorting index now. If it turns out 6457 ** that we do not need it after all, the OP_SorterOpen instruction 6458 ** will be converted into a Noop. 6459 */ 6460 sAggInfo.sortingIdx = pParse->nTab++; 6461 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6462 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6463 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6464 0, (char*)pKeyInfo, P4_KEYINFO); 6465 6466 /* Initialize memory locations used by GROUP BY aggregate processing 6467 */ 6468 iUseFlag = ++pParse->nMem; 6469 iAbortFlag = ++pParse->nMem; 6470 regOutputRow = ++pParse->nMem; 6471 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6472 regReset = ++pParse->nMem; 6473 addrReset = sqlite3VdbeMakeLabel(pParse); 6474 iAMem = pParse->nMem + 1; 6475 pParse->nMem += pGroupBy->nExpr; 6476 iBMem = pParse->nMem + 1; 6477 pParse->nMem += pGroupBy->nExpr; 6478 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6479 VdbeComment((v, "clear abort flag")); 6480 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6481 6482 /* Begin a loop that will extract all source rows in GROUP BY order. 6483 ** This might involve two separate loops with an OP_Sort in between, or 6484 ** it might be a single loop that uses an index to extract information 6485 ** in the right order to begin with. 6486 */ 6487 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6488 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6489 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6490 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6491 ); 6492 if( pWInfo==0 ) goto select_end; 6493 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6494 /* The optimizer is able to deliver rows in group by order so 6495 ** we do not have to sort. The OP_OpenEphemeral table will be 6496 ** cancelled later because we still need to use the pKeyInfo 6497 */ 6498 groupBySort = 0; 6499 }else{ 6500 /* Rows are coming out in undetermined order. We have to push 6501 ** each row into a sorting index, terminate the first loop, 6502 ** then loop over the sorting index in order to get the output 6503 ** in sorted order 6504 */ 6505 int regBase; 6506 int regRecord; 6507 int nCol; 6508 int nGroupBy; 6509 6510 explainTempTable(pParse, 6511 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6512 "DISTINCT" : "GROUP BY"); 6513 6514 groupBySort = 1; 6515 nGroupBy = pGroupBy->nExpr; 6516 nCol = nGroupBy; 6517 j = nGroupBy; 6518 for(i=0; i<sAggInfo.nColumn; i++){ 6519 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6520 nCol++; 6521 j++; 6522 } 6523 } 6524 regBase = sqlite3GetTempRange(pParse, nCol); 6525 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6526 j = nGroupBy; 6527 for(i=0; i<sAggInfo.nColumn; i++){ 6528 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6529 if( pCol->iSorterColumn>=j ){ 6530 int r1 = j + regBase; 6531 sqlite3ExprCodeGetColumnOfTable(v, 6532 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6533 j++; 6534 } 6535 } 6536 regRecord = sqlite3GetTempReg(pParse); 6537 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6538 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6539 sqlite3ReleaseTempReg(pParse, regRecord); 6540 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6541 sqlite3WhereEnd(pWInfo); 6542 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6543 sortOut = sqlite3GetTempReg(pParse); 6544 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6545 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6546 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6547 sAggInfo.useSortingIdx = 1; 6548 } 6549 6550 /* If the index or temporary table used by the GROUP BY sort 6551 ** will naturally deliver rows in the order required by the ORDER BY 6552 ** clause, cancel the ephemeral table open coded earlier. 6553 ** 6554 ** This is an optimization - the correct answer should result regardless. 6555 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6556 ** disable this optimization for testing purposes. */ 6557 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6558 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6559 ){ 6560 sSort.pOrderBy = 0; 6561 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6562 } 6563 6564 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6565 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6566 ** Then compare the current GROUP BY terms against the GROUP BY terms 6567 ** from the previous row currently stored in a0, a1, a2... 6568 */ 6569 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6570 if( groupBySort ){ 6571 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6572 sortOut, sortPTab); 6573 } 6574 for(j=0; j<pGroupBy->nExpr; j++){ 6575 if( groupBySort ){ 6576 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6577 }else{ 6578 sAggInfo.directMode = 1; 6579 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6580 } 6581 } 6582 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6583 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6584 addr1 = sqlite3VdbeCurrentAddr(v); 6585 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6586 6587 /* Generate code that runs whenever the GROUP BY changes. 6588 ** Changes in the GROUP BY are detected by the previous code 6589 ** block. If there were no changes, this block is skipped. 6590 ** 6591 ** This code copies current group by terms in b0,b1,b2,... 6592 ** over to a0,a1,a2. It then calls the output subroutine 6593 ** and resets the aggregate accumulator registers in preparation 6594 ** for the next GROUP BY batch. 6595 */ 6596 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6597 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6598 VdbeComment((v, "output one row")); 6599 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6600 VdbeComment((v, "check abort flag")); 6601 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6602 VdbeComment((v, "reset accumulator")); 6603 6604 /* Update the aggregate accumulators based on the content of 6605 ** the current row 6606 */ 6607 sqlite3VdbeJumpHere(v, addr1); 6608 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6609 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6610 VdbeComment((v, "indicate data in accumulator")); 6611 6612 /* End of the loop 6613 */ 6614 if( groupBySort ){ 6615 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6616 VdbeCoverage(v); 6617 }else{ 6618 sqlite3WhereEnd(pWInfo); 6619 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6620 } 6621 6622 /* Output the final row of result 6623 */ 6624 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6625 VdbeComment((v, "output final row")); 6626 6627 /* Jump over the subroutines 6628 */ 6629 sqlite3VdbeGoto(v, addrEnd); 6630 6631 /* Generate a subroutine that outputs a single row of the result 6632 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6633 ** is less than or equal to zero, the subroutine is a no-op. If 6634 ** the processing calls for the query to abort, this subroutine 6635 ** increments the iAbortFlag memory location before returning in 6636 ** order to signal the caller to abort. 6637 */ 6638 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6639 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6640 VdbeComment((v, "set abort flag")); 6641 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6642 sqlite3VdbeResolveLabel(v, addrOutputRow); 6643 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6644 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6645 VdbeCoverage(v); 6646 VdbeComment((v, "Groupby result generator entry point")); 6647 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6648 finalizeAggFunctions(pParse, &sAggInfo); 6649 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6650 selectInnerLoop(pParse, p, -1, &sSort, 6651 &sDistinct, pDest, 6652 addrOutputRow+1, addrSetAbort); 6653 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6654 VdbeComment((v, "end groupby result generator")); 6655 6656 /* Generate a subroutine that will reset the group-by accumulator 6657 */ 6658 sqlite3VdbeResolveLabel(v, addrReset); 6659 resetAccumulator(pParse, &sAggInfo); 6660 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6661 VdbeComment((v, "indicate accumulator empty")); 6662 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6663 6664 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6665 else { 6666 Table *pTab; 6667 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6668 /* If isSimpleCount() returns a pointer to a Table structure, then 6669 ** the SQL statement is of the form: 6670 ** 6671 ** SELECT count(*) FROM <tbl> 6672 ** 6673 ** where the Table structure returned represents table <tbl>. 6674 ** 6675 ** This statement is so common that it is optimized specially. The 6676 ** OP_Count instruction is executed either on the intkey table that 6677 ** contains the data for table <tbl> or on one of its indexes. It 6678 ** is better to execute the op on an index, as indexes are almost 6679 ** always spread across less pages than their corresponding tables. 6680 */ 6681 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6682 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6683 Index *pIdx; /* Iterator variable */ 6684 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6685 Index *pBest = 0; /* Best index found so far */ 6686 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6687 6688 sqlite3CodeVerifySchema(pParse, iDb); 6689 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6690 6691 /* Search for the index that has the lowest scan cost. 6692 ** 6693 ** (2011-04-15) Do not do a full scan of an unordered index. 6694 ** 6695 ** (2013-10-03) Do not count the entries in a partial index. 6696 ** 6697 ** In practice the KeyInfo structure will not be used. It is only 6698 ** passed to keep OP_OpenRead happy. 6699 */ 6700 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6701 if( !p->pSrc->a[0].fg.notIndexed ){ 6702 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6703 if( pIdx->bUnordered==0 6704 && pIdx->szIdxRow<pTab->szTabRow 6705 && pIdx->pPartIdxWhere==0 6706 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6707 ){ 6708 pBest = pIdx; 6709 } 6710 } 6711 } 6712 if( pBest ){ 6713 iRoot = pBest->tnum; 6714 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6715 } 6716 6717 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6718 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6719 if( pKeyInfo ){ 6720 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6721 } 6722 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6723 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6724 explainSimpleCount(pParse, pTab, pBest); 6725 }else{ 6726 int regAcc = 0; /* "populate accumulators" flag */ 6727 6728 /* If there are accumulator registers but no min() or max() functions 6729 ** without FILTER clauses, allocate register regAcc. Register regAcc 6730 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6731 ** The code generated by updateAccumulator() uses this to ensure 6732 ** that the accumulator registers are (a) updated only once if 6733 ** there are no min() or max functions or (b) always updated for the 6734 ** first row visited by the aggregate, so that they are updated at 6735 ** least once even if the FILTER clause means the min() or max() 6736 ** function visits zero rows. */ 6737 if( sAggInfo.nAccumulator ){ 6738 for(i=0; i<sAggInfo.nFunc; i++){ 6739 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6740 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6741 } 6742 if( i==sAggInfo.nFunc ){ 6743 regAcc = ++pParse->nMem; 6744 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6745 } 6746 } 6747 6748 /* This case runs if the aggregate has no GROUP BY clause. The 6749 ** processing is much simpler since there is only a single row 6750 ** of output. 6751 */ 6752 assert( p->pGroupBy==0 ); 6753 resetAccumulator(pParse, &sAggInfo); 6754 6755 /* If this query is a candidate for the min/max optimization, then 6756 ** minMaxFlag will have been previously set to either 6757 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6758 ** be an appropriate ORDER BY expression for the optimization. 6759 */ 6760 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6761 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6762 6763 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6764 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6765 0, minMaxFlag, 0); 6766 if( pWInfo==0 ){ 6767 goto select_end; 6768 } 6769 updateAccumulator(pParse, regAcc, &sAggInfo); 6770 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6771 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6772 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6773 VdbeComment((v, "%s() by index", 6774 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6775 } 6776 sqlite3WhereEnd(pWInfo); 6777 finalizeAggFunctions(pParse, &sAggInfo); 6778 } 6779 6780 sSort.pOrderBy = 0; 6781 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6782 selectInnerLoop(pParse, p, -1, 0, 0, 6783 pDest, addrEnd, addrEnd); 6784 } 6785 sqlite3VdbeResolveLabel(v, addrEnd); 6786 6787 } /* endif aggregate query */ 6788 6789 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6790 explainTempTable(pParse, "DISTINCT"); 6791 } 6792 6793 /* If there is an ORDER BY clause, then we need to sort the results 6794 ** and send them to the callback one by one. 6795 */ 6796 if( sSort.pOrderBy ){ 6797 explainTempTable(pParse, 6798 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6799 assert( p->pEList==pEList ); 6800 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6801 } 6802 6803 /* Jump here to skip this query 6804 */ 6805 sqlite3VdbeResolveLabel(v, iEnd); 6806 6807 /* The SELECT has been coded. If there is an error in the Parse structure, 6808 ** set the return code to 1. Otherwise 0. */ 6809 rc = (pParse->nErr>0); 6810 6811 /* Control jumps to here if an error is encountered above, or upon 6812 ** successful coding of the SELECT. 6813 */ 6814 select_end: 6815 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6816 sqlite3DbFree(db, sAggInfo.aCol); 6817 sqlite3DbFree(db, sAggInfo.aFunc); 6818 #if SELECTTRACE_ENABLED 6819 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6820 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6821 sqlite3TreeViewSelect(0, p, 0); 6822 } 6823 #endif 6824 ExplainQueryPlanPop(pParse); 6825 return rc; 6826 } 6827