xref: /sqlite-3.40.0/src/select.c (revision a408adc5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.348 2007/05/14 16:50:49 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   assert( pOffset==0 || pLimit!=0 );
72   pNew->pLimit = pLimit;
73   pNew->pOffset = pOffset;
74   pNew->iLimit = -1;
75   pNew->iOffset = -1;
76   pNew->addrOpenEphm[0] = -1;
77   pNew->addrOpenEphm[1] = -1;
78   pNew->addrOpenEphm[2] = -1;
79   if( pNew==&standin) {
80     clearSelect(pNew);
81     pNew = 0;
82   }
83   return pNew;
84 }
85 
86 /*
87 ** Delete the given Select structure and all of its substructures.
88 */
89 void sqlite3SelectDelete(Select *p){
90   if( p ){
91     clearSelect(p);
92     sqliteFree(p);
93   }
94 }
95 
96 /*
97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
98 ** type of join.  Return an integer constant that expresses that type
99 ** in terms of the following bit values:
100 **
101 **     JT_INNER
102 **     JT_CROSS
103 **     JT_OUTER
104 **     JT_NATURAL
105 **     JT_LEFT
106 **     JT_RIGHT
107 **
108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
109 **
110 ** If an illegal or unsupported join type is seen, then still return
111 ** a join type, but put an error in the pParse structure.
112 */
113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
114   int jointype = 0;
115   Token *apAll[3];
116   Token *p;
117   static const struct {
118     const char zKeyword[8];
119     u8 nChar;
120     u8 code;
121   } keywords[] = {
122     { "natural", 7, JT_NATURAL },
123     { "left",    4, JT_LEFT|JT_OUTER },
124     { "right",   5, JT_RIGHT|JT_OUTER },
125     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
126     { "outer",   5, JT_OUTER },
127     { "inner",   5, JT_INNER },
128     { "cross",   5, JT_INNER|JT_CROSS },
129   };
130   int i, j;
131   apAll[0] = pA;
132   apAll[1] = pB;
133   apAll[2] = pC;
134   for(i=0; i<3 && apAll[i]; i++){
135     p = apAll[i];
136     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
137       if( p->n==keywords[j].nChar
138           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
139         jointype |= keywords[j].code;
140         break;
141       }
142     }
143     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
144       jointype |= JT_ERROR;
145       break;
146     }
147   }
148   if(
149      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
150      (jointype & JT_ERROR)!=0
151   ){
152     const char *zSp1 = " ";
153     const char *zSp2 = " ";
154     if( pB==0 ){ zSp1++; }
155     if( pC==0 ){ zSp2++; }
156     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
157        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
158     jointype = JT_INNER;
159   }else if( jointype & JT_RIGHT ){
160     sqlite3ErrorMsg(pParse,
161       "RIGHT and FULL OUTER JOINs are not currently supported");
162     jointype = JT_INNER;
163   }
164   return jointype;
165 }
166 
167 /*
168 ** Return the index of a column in a table.  Return -1 if the column
169 ** is not contained in the table.
170 */
171 static int columnIndex(Table *pTab, const char *zCol){
172   int i;
173   for(i=0; i<pTab->nCol; i++){
174     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
175   }
176   return -1;
177 }
178 
179 /*
180 ** Set the value of a token to a '\000'-terminated string.
181 */
182 static void setToken(Token *p, const char *z){
183   p->z = (u8*)z;
184   p->n = z ? strlen(z) : 0;
185   p->dyn = 0;
186 }
187 
188 /*
189 ** Create an expression node for an identifier with the name of zName
190 */
191 Expr *sqlite3CreateIdExpr(const char *zName){
192   Token dummy;
193   setToken(&dummy, zName);
194   return sqlite3Expr(TK_ID, 0, 0, &dummy);
195 }
196 
197 
198 /*
199 ** Add a term to the WHERE expression in *ppExpr that requires the
200 ** zCol column to be equal in the two tables pTab1 and pTab2.
201 */
202 static void addWhereTerm(
203   const char *zCol,        /* Name of the column */
204   const Table *pTab1,      /* First table */
205   const char *zAlias1,     /* Alias for first table.  May be NULL */
206   const Table *pTab2,      /* Second table */
207   const char *zAlias2,     /* Alias for second table.  May be NULL */
208   int iRightJoinTable,     /* VDBE cursor for the right table */
209   Expr **ppExpr            /* Add the equality term to this expression */
210 ){
211   Expr *pE1a, *pE1b, *pE1c;
212   Expr *pE2a, *pE2b, *pE2c;
213   Expr *pE;
214 
215   pE1a = sqlite3CreateIdExpr(zCol);
216   pE2a = sqlite3CreateIdExpr(zCol);
217   if( zAlias1==0 ){
218     zAlias1 = pTab1->zName;
219   }
220   pE1b = sqlite3CreateIdExpr(zAlias1);
221   if( zAlias2==0 ){
222     zAlias2 = pTab2->zName;
223   }
224   pE2b = sqlite3CreateIdExpr(zAlias2);
225   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
226   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
227   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
228   if( pE ){
229     ExprSetProperty(pE, EP_FromJoin);
230     pE->iRightJoinTable = iRightJoinTable;
231   }
232   pE = sqlite3ExprAnd(*ppExpr, pE);
233   if( pE ){
234     *ppExpr = pE;
235   }
236 }
237 
238 /*
239 ** Set the EP_FromJoin property on all terms of the given expression.
240 ** And set the Expr.iRightJoinTable to iTable for every term in the
241 ** expression.
242 **
243 ** The EP_FromJoin property is used on terms of an expression to tell
244 ** the LEFT OUTER JOIN processing logic that this term is part of the
245 ** join restriction specified in the ON or USING clause and not a part
246 ** of the more general WHERE clause.  These terms are moved over to the
247 ** WHERE clause during join processing but we need to remember that they
248 ** originated in the ON or USING clause.
249 **
250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
251 ** expression depends on table iRightJoinTable even if that table is not
252 ** explicitly mentioned in the expression.  That information is needed
253 ** for cases like this:
254 **
255 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
256 **
257 ** The where clause needs to defer the handling of the t1.x=5
258 ** term until after the t2 loop of the join.  In that way, a
259 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
260 ** defer the handling of t1.x=5, it will be processed immediately
261 ** after the t1 loop and rows with t1.x!=5 will never appear in
262 ** the output, which is incorrect.
263 */
264 static void setJoinExpr(Expr *p, int iTable){
265   while( p ){
266     ExprSetProperty(p, EP_FromJoin);
267     p->iRightJoinTable = iTable;
268     setJoinExpr(p->pLeft, iTable);
269     p = p->pRight;
270   }
271 }
272 
273 /*
274 ** This routine processes the join information for a SELECT statement.
275 ** ON and USING clauses are converted into extra terms of the WHERE clause.
276 ** NATURAL joins also create extra WHERE clause terms.
277 **
278 ** The terms of a FROM clause are contained in the Select.pSrc structure.
279 ** The left most table is the first entry in Select.pSrc.  The right-most
280 ** table is the last entry.  The join operator is held in the entry to
281 ** the left.  Thus entry 0 contains the join operator for the join between
282 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
283 ** also attached to the left entry.
284 **
285 ** This routine returns the number of errors encountered.
286 */
287 static int sqliteProcessJoin(Parse *pParse, Select *p){
288   SrcList *pSrc;                  /* All tables in the FROM clause */
289   int i, j;                       /* Loop counters */
290   struct SrcList_item *pLeft;     /* Left table being joined */
291   struct SrcList_item *pRight;    /* Right table being joined */
292 
293   pSrc = p->pSrc;
294   pLeft = &pSrc->a[0];
295   pRight = &pLeft[1];
296   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
297     Table *pLeftTab = pLeft->pTab;
298     Table *pRightTab = pRight->pTab;
299 
300     if( pLeftTab==0 || pRightTab==0 ) continue;
301 
302     /* When the NATURAL keyword is present, add WHERE clause terms for
303     ** every column that the two tables have in common.
304     */
305     if( pRight->jointype & JT_NATURAL ){
306       if( pRight->pOn || pRight->pUsing ){
307         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
308            "an ON or USING clause", 0);
309         return 1;
310       }
311       for(j=0; j<pLeftTab->nCol; j++){
312         char *zName = pLeftTab->aCol[j].zName;
313         if( columnIndex(pRightTab, zName)>=0 ){
314           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
315                               pRightTab, pRight->zAlias,
316                               pRight->iCursor, &p->pWhere);
317 
318         }
319       }
320     }
321 
322     /* Disallow both ON and USING clauses in the same join
323     */
324     if( pRight->pOn && pRight->pUsing ){
325       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
326         "clauses in the same join");
327       return 1;
328     }
329 
330     /* Add the ON clause to the end of the WHERE clause, connected by
331     ** an AND operator.
332     */
333     if( pRight->pOn ){
334       setJoinExpr(pRight->pOn, pRight->iCursor);
335       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
336       pRight->pOn = 0;
337     }
338 
339     /* Create extra terms on the WHERE clause for each column named
340     ** in the USING clause.  Example: If the two tables to be joined are
341     ** A and B and the USING clause names X, Y, and Z, then add this
342     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
343     ** Report an error if any column mentioned in the USING clause is
344     ** not contained in both tables to be joined.
345     */
346     if( pRight->pUsing ){
347       IdList *pList = pRight->pUsing;
348       for(j=0; j<pList->nId; j++){
349         char *zName = pList->a[j].zName;
350         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
351           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
352             "not present in both tables", zName);
353           return 1;
354         }
355         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
356                             pRightTab, pRight->zAlias,
357                             pRight->iCursor, &p->pWhere);
358       }
359     }
360   }
361   return 0;
362 }
363 
364 /*
365 ** Insert code into "v" that will push the record on the top of the
366 ** stack into the sorter.
367 */
368 static void pushOntoSorter(
369   Parse *pParse,         /* Parser context */
370   ExprList *pOrderBy,    /* The ORDER BY clause */
371   Select *pSelect        /* The whole SELECT statement */
372 ){
373   Vdbe *v = pParse->pVdbe;
374   sqlite3ExprCodeExprList(pParse, pOrderBy);
375   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
376   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
377   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
378   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
379   if( pSelect->iLimit>=0 ){
380     int addr1, addr2;
381     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
382     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
383     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
384     sqlite3VdbeJumpHere(v, addr1);
385     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
386     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
387     sqlite3VdbeJumpHere(v, addr2);
388     pSelect->iLimit = -1;
389   }
390 }
391 
392 /*
393 ** Add code to implement the OFFSET
394 */
395 static void codeOffset(
396   Vdbe *v,          /* Generate code into this VM */
397   Select *p,        /* The SELECT statement being coded */
398   int iContinue,    /* Jump here to skip the current record */
399   int nPop          /* Number of times to pop stack when jumping */
400 ){
401   if( p->iOffset>=0 && iContinue!=0 ){
402     int addr;
403     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
404     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
405     if( nPop>0 ){
406       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
407     }
408     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
409     VdbeComment((v, "# skip OFFSET records"));
410     sqlite3VdbeJumpHere(v, addr);
411   }
412 }
413 
414 /*
415 ** Add code that will check to make sure the top N elements of the
416 ** stack are distinct.  iTab is a sorting index that holds previously
417 ** seen combinations of the N values.  A new entry is made in iTab
418 ** if the current N values are new.
419 **
420 ** A jump to addrRepeat is made and the N+1 values are popped from the
421 ** stack if the top N elements are not distinct.
422 */
423 static void codeDistinct(
424   Vdbe *v,           /* Generate code into this VM */
425   int iTab,          /* A sorting index used to test for distinctness */
426   int addrRepeat,    /* Jump to here if not distinct */
427   int N              /* The top N elements of the stack must be distinct */
428 ){
429   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
430   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
431   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
432   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
433   VdbeComment((v, "# skip indistinct records"));
434   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
435 }
436 
437 /*
438 ** Generate an error message when a SELECT is used within a subexpression
439 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
440 ** column.  We do this in a subroutine because the error occurs in multiple
441 ** places.
442 */
443 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
444   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
445     sqlite3ErrorMsg(pParse, "only a single result allowed for "
446        "a SELECT that is part of an expression");
447     return 1;
448   }else{
449     return 0;
450   }
451 }
452 
453 /*
454 ** This routine generates the code for the inside of the inner loop
455 ** of a SELECT.
456 **
457 ** If srcTab and nColumn are both zero, then the pEList expressions
458 ** are evaluated in order to get the data for this row.  If nColumn>0
459 ** then data is pulled from srcTab and pEList is used only to get the
460 ** datatypes for each column.
461 */
462 static int selectInnerLoop(
463   Parse *pParse,          /* The parser context */
464   Select *p,              /* The complete select statement being coded */
465   ExprList *pEList,       /* List of values being extracted */
466   int srcTab,             /* Pull data from this table */
467   int nColumn,            /* Number of columns in the source table */
468   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
469   int distinct,           /* If >=0, make sure results are distinct */
470   int eDest,              /* How to dispose of the results */
471   int iParm,              /* An argument to the disposal method */
472   int iContinue,          /* Jump here to continue with next row */
473   int iBreak,             /* Jump here to break out of the inner loop */
474   char *aff               /* affinity string if eDest is SRT_Union */
475 ){
476   Vdbe *v = pParse->pVdbe;
477   int i;
478   int hasDistinct;        /* True if the DISTINCT keyword is present */
479 
480   if( v==0 ) return 0;
481   assert( pEList!=0 );
482 
483   /* If there was a LIMIT clause on the SELECT statement, then do the check
484   ** to see if this row should be output.
485   */
486   hasDistinct = distinct>=0 && pEList->nExpr>0;
487   if( pOrderBy==0 && !hasDistinct ){
488     codeOffset(v, p, iContinue, 0);
489   }
490 
491   /* Pull the requested columns.
492   */
493   if( nColumn>0 ){
494     for(i=0; i<nColumn; i++){
495       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
496     }
497   }else{
498     nColumn = pEList->nExpr;
499     sqlite3ExprCodeExprList(pParse, pEList);
500   }
501 
502   /* If the DISTINCT keyword was present on the SELECT statement
503   ** and this row has been seen before, then do not make this row
504   ** part of the result.
505   */
506   if( hasDistinct ){
507     assert( pEList!=0 );
508     assert( pEList->nExpr==nColumn );
509     codeDistinct(v, distinct, iContinue, nColumn);
510     if( pOrderBy==0 ){
511       codeOffset(v, p, iContinue, nColumn);
512     }
513   }
514 
515   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
516     return 0;
517   }
518 
519   switch( eDest ){
520     /* In this mode, write each query result to the key of the temporary
521     ** table iParm.
522     */
523 #ifndef SQLITE_OMIT_COMPOUND_SELECT
524     case SRT_Union: {
525       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
526       if( aff ){
527         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
528       }
529       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
530       break;
531     }
532 
533     /* Construct a record from the query result, but instead of
534     ** saving that record, use it as a key to delete elements from
535     ** the temporary table iParm.
536     */
537     case SRT_Except: {
538       int addr;
539       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
540       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
541       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
542       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
543       break;
544     }
545 #endif
546 
547     /* Store the result as data using a unique key.
548     */
549     case SRT_Table:
550     case SRT_EphemTab: {
551       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
552       if( pOrderBy ){
553         pushOntoSorter(pParse, pOrderBy, p);
554       }else{
555         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
556         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
557         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
558       }
559       break;
560     }
561 
562 #ifndef SQLITE_OMIT_SUBQUERY
563     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
564     ** then there should be a single item on the stack.  Write this
565     ** item into the set table with bogus data.
566     */
567     case SRT_Set: {
568       int addr1 = sqlite3VdbeCurrentAddr(v);
569       int addr2;
570 
571       assert( nColumn==1 );
572       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
573       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
574       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
575       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
576       if( pOrderBy ){
577         /* At first glance you would think we could optimize out the
578         ** ORDER BY in this case since the order of entries in the set
579         ** does not matter.  But there might be a LIMIT clause, in which
580         ** case the order does matter */
581         pushOntoSorter(pParse, pOrderBy, p);
582       }else{
583         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
584         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
585       }
586       sqlite3VdbeJumpHere(v, addr2);
587       break;
588     }
589 
590     /* If any row exist in the result set, record that fact and abort.
591     */
592     case SRT_Exists: {
593       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
594       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
595       /* The LIMIT clause will terminate the loop for us */
596       break;
597     }
598 
599     /* If this is a scalar select that is part of an expression, then
600     ** store the results in the appropriate memory cell and break out
601     ** of the scan loop.
602     */
603     case SRT_Mem: {
604       assert( nColumn==1 );
605       if( pOrderBy ){
606         pushOntoSorter(pParse, pOrderBy, p);
607       }else{
608         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
609         /* The LIMIT clause will jump out of the loop for us */
610       }
611       break;
612     }
613 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
614 
615     /* Send the data to the callback function or to a subroutine.  In the
616     ** case of a subroutine, the subroutine itself is responsible for
617     ** popping the data from the stack.
618     */
619     case SRT_Subroutine:
620     case SRT_Callback: {
621       if( pOrderBy ){
622         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
623         pushOntoSorter(pParse, pOrderBy, p);
624       }else if( eDest==SRT_Subroutine ){
625         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
626       }else{
627         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
628       }
629       break;
630     }
631 
632 #if !defined(SQLITE_OMIT_TRIGGER)
633     /* Discard the results.  This is used for SELECT statements inside
634     ** the body of a TRIGGER.  The purpose of such selects is to call
635     ** user-defined functions that have side effects.  We do not care
636     ** about the actual results of the select.
637     */
638     default: {
639       assert( eDest==SRT_Discard );
640       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
641       break;
642     }
643 #endif
644   }
645 
646   /* Jump to the end of the loop if the LIMIT is reached.
647   */
648   if( p->iLimit>=0 && pOrderBy==0 ){
649     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
650     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
651   }
652   return 0;
653 }
654 
655 /*
656 ** Given an expression list, generate a KeyInfo structure that records
657 ** the collating sequence for each expression in that expression list.
658 **
659 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
660 ** KeyInfo structure is appropriate for initializing a virtual index to
661 ** implement that clause.  If the ExprList is the result set of a SELECT
662 ** then the KeyInfo structure is appropriate for initializing a virtual
663 ** index to implement a DISTINCT test.
664 **
665 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
666 ** function is responsible for seeing that this structure is eventually
667 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
668 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
669 */
670 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
671   sqlite3 *db = pParse->db;
672   int nExpr;
673   KeyInfo *pInfo;
674   struct ExprList_item *pItem;
675   int i;
676 
677   nExpr = pList->nExpr;
678   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
679   if( pInfo ){
680     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
681     pInfo->nField = nExpr;
682     pInfo->enc = ENC(db);
683     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
684       CollSeq *pColl;
685       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
686       if( !pColl ){
687         pColl = db->pDfltColl;
688       }
689       pInfo->aColl[i] = pColl;
690       pInfo->aSortOrder[i] = pItem->sortOrder;
691     }
692   }
693   return pInfo;
694 }
695 
696 
697 /*
698 ** If the inner loop was generated using a non-null pOrderBy argument,
699 ** then the results were placed in a sorter.  After the loop is terminated
700 ** we need to run the sorter and output the results.  The following
701 ** routine generates the code needed to do that.
702 */
703 static void generateSortTail(
704   Parse *pParse,   /* Parsing context */
705   Select *p,       /* The SELECT statement */
706   Vdbe *v,         /* Generate code into this VDBE */
707   int nColumn,     /* Number of columns of data */
708   int eDest,       /* Write the sorted results here */
709   int iParm        /* Optional parameter associated with eDest */
710 ){
711   int brk = sqlite3VdbeMakeLabel(v);
712   int cont = sqlite3VdbeMakeLabel(v);
713   int addr;
714   int iTab;
715   int pseudoTab = 0;
716   ExprList *pOrderBy = p->pOrderBy;
717 
718   iTab = pOrderBy->iECursor;
719   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
720     pseudoTab = pParse->nTab++;
721     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
722     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
723   }
724   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
725   codeOffset(v, p, cont, 0);
726   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
727     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
728   }
729   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
730   switch( eDest ){
731     case SRT_Table:
732     case SRT_EphemTab: {
733       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
734       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
735       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
736       break;
737     }
738 #ifndef SQLITE_OMIT_SUBQUERY
739     case SRT_Set: {
740       assert( nColumn==1 );
741       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
742       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
743       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
744       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
745       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
746       break;
747     }
748     case SRT_Mem: {
749       assert( nColumn==1 );
750       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
751       /* The LIMIT clause will terminate the loop for us */
752       break;
753     }
754 #endif
755     case SRT_Callback:
756     case SRT_Subroutine: {
757       int i;
758       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
759       for(i=0; i<nColumn; i++){
760         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
761       }
762       if( eDest==SRT_Callback ){
763         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
764       }else{
765         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
766       }
767       break;
768     }
769     default: {
770       /* Do nothing */
771       break;
772     }
773   }
774 
775   /* Jump to the end of the loop when the LIMIT is reached
776   */
777   if( p->iLimit>=0 ){
778     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
779     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
780   }
781 
782   /* The bottom of the loop
783   */
784   sqlite3VdbeResolveLabel(v, cont);
785   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
786   sqlite3VdbeResolveLabel(v, brk);
787   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
788     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
789   }
790 
791 }
792 
793 /*
794 ** Return a pointer to a string containing the 'declaration type' of the
795 ** expression pExpr. The string may be treated as static by the caller.
796 **
797 ** The declaration type is the exact datatype definition extracted from the
798 ** original CREATE TABLE statement if the expression is a column. The
799 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
800 ** is considered a column can be complex in the presence of subqueries. The
801 ** result-set expression in all of the following SELECT statements is
802 ** considered a column by this function.
803 **
804 **   SELECT col FROM tbl;
805 **   SELECT (SELECT col FROM tbl;
806 **   SELECT (SELECT col FROM tbl);
807 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
808 **
809 ** The declaration type for any expression other than a column is NULL.
810 */
811 static const char *columnType(
812   NameContext *pNC,
813   Expr *pExpr,
814   const char **pzOriginDb,
815   const char **pzOriginTab,
816   const char **pzOriginCol
817 ){
818   char const *zType = 0;
819   char const *zOriginDb = 0;
820   char const *zOriginTab = 0;
821   char const *zOriginCol = 0;
822   int j;
823   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
824 
825   switch( pExpr->op ){
826     case TK_AGG_COLUMN:
827     case TK_COLUMN: {
828       /* The expression is a column. Locate the table the column is being
829       ** extracted from in NameContext.pSrcList. This table may be real
830       ** database table or a subquery.
831       */
832       Table *pTab = 0;            /* Table structure column is extracted from */
833       Select *pS = 0;             /* Select the column is extracted from */
834       int iCol = pExpr->iColumn;  /* Index of column in pTab */
835       while( pNC && !pTab ){
836         SrcList *pTabList = pNC->pSrcList;
837         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
838         if( j<pTabList->nSrc ){
839           pTab = pTabList->a[j].pTab;
840           pS = pTabList->a[j].pSelect;
841         }else{
842           pNC = pNC->pNext;
843         }
844       }
845 
846       if( pTab==0 ){
847         /* FIX ME:
848         ** This can occurs if you have something like "SELECT new.x;" inside
849         ** a trigger.  In other words, if you reference the special "new"
850         ** table in the result set of a select.  We do not have a good way
851         ** to find the actual table type, so call it "TEXT".  This is really
852         ** something of a bug, but I do not know how to fix it.
853         **
854         ** This code does not produce the correct answer - it just prevents
855         ** a segfault.  See ticket #1229.
856         */
857         zType = "TEXT";
858         break;
859       }
860 
861       assert( pTab );
862       if( pS ){
863         /* The "table" is actually a sub-select or a view in the FROM clause
864         ** of the SELECT statement. Return the declaration type and origin
865         ** data for the result-set column of the sub-select.
866         */
867         if( iCol>=0 && iCol<pS->pEList->nExpr ){
868           /* If iCol is less than zero, then the expression requests the
869           ** rowid of the sub-select or view. This expression is legal (see
870           ** test case misc2.2.2) - it always evaluates to NULL.
871           */
872           NameContext sNC;
873           Expr *p = pS->pEList->a[iCol].pExpr;
874           sNC.pSrcList = pS->pSrc;
875           sNC.pNext = 0;
876           sNC.pParse = pNC->pParse;
877           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
878         }
879       }else if( pTab->pSchema ){
880         /* A real table */
881         assert( !pS );
882         if( iCol<0 ) iCol = pTab->iPKey;
883         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
884         if( iCol<0 ){
885           zType = "INTEGER";
886           zOriginCol = "rowid";
887         }else{
888           zType = pTab->aCol[iCol].zType;
889           zOriginCol = pTab->aCol[iCol].zName;
890         }
891         zOriginTab = pTab->zName;
892         if( pNC->pParse ){
893           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
894           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
895         }
896       }
897       break;
898     }
899 #ifndef SQLITE_OMIT_SUBQUERY
900     case TK_SELECT: {
901       /* The expression is a sub-select. Return the declaration type and
902       ** origin info for the single column in the result set of the SELECT
903       ** statement.
904       */
905       NameContext sNC;
906       Select *pS = pExpr->pSelect;
907       Expr *p = pS->pEList->a[0].pExpr;
908       sNC.pSrcList = pS->pSrc;
909       sNC.pNext = pNC;
910       sNC.pParse = pNC->pParse;
911       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
912       break;
913     }
914 #endif
915   }
916 
917   if( pzOriginDb ){
918     assert( pzOriginTab && pzOriginCol );
919     *pzOriginDb = zOriginDb;
920     *pzOriginTab = zOriginTab;
921     *pzOriginCol = zOriginCol;
922   }
923   return zType;
924 }
925 
926 /*
927 ** Generate code that will tell the VDBE the declaration types of columns
928 ** in the result set.
929 */
930 static void generateColumnTypes(
931   Parse *pParse,      /* Parser context */
932   SrcList *pTabList,  /* List of tables */
933   ExprList *pEList    /* Expressions defining the result set */
934 ){
935   Vdbe *v = pParse->pVdbe;
936   int i;
937   NameContext sNC;
938   sNC.pSrcList = pTabList;
939   sNC.pParse = pParse;
940   for(i=0; i<pEList->nExpr; i++){
941     Expr *p = pEList->a[i].pExpr;
942     const char *zOrigDb = 0;
943     const char *zOrigTab = 0;
944     const char *zOrigCol = 0;
945     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
946 
947     /* The vdbe must make it's own copy of the column-type and other
948     ** column specific strings, in case the schema is reset before this
949     ** virtual machine is deleted.
950     */
951     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
952     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
953     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
954     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
955   }
956 }
957 
958 /*
959 ** Generate code that will tell the VDBE the names of columns
960 ** in the result set.  This information is used to provide the
961 ** azCol[] values in the callback.
962 */
963 static void generateColumnNames(
964   Parse *pParse,      /* Parser context */
965   SrcList *pTabList,  /* List of tables */
966   ExprList *pEList    /* Expressions defining the result set */
967 ){
968   Vdbe *v = pParse->pVdbe;
969   int i, j;
970   sqlite3 *db = pParse->db;
971   int fullNames, shortNames;
972 
973 #ifndef SQLITE_OMIT_EXPLAIN
974   /* If this is an EXPLAIN, skip this step */
975   if( pParse->explain ){
976     return;
977   }
978 #endif
979 
980   assert( v!=0 );
981   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
982   pParse->colNamesSet = 1;
983   fullNames = (db->flags & SQLITE_FullColNames)!=0;
984   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
985   sqlite3VdbeSetNumCols(v, pEList->nExpr);
986   for(i=0; i<pEList->nExpr; i++){
987     Expr *p;
988     p = pEList->a[i].pExpr;
989     if( p==0 ) continue;
990     if( pEList->a[i].zName ){
991       char *zName = pEList->a[i].zName;
992       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
993       continue;
994     }
995     if( p->op==TK_COLUMN && pTabList ){
996       Table *pTab;
997       char *zCol;
998       int iCol = p->iColumn;
999       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1000       assert( j<pTabList->nSrc );
1001       pTab = pTabList->a[j].pTab;
1002       if( iCol<0 ) iCol = pTab->iPKey;
1003       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1004       if( iCol<0 ){
1005         zCol = "rowid";
1006       }else{
1007         zCol = pTab->aCol[iCol].zName;
1008       }
1009       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
1010         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1011       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1012         char *zName = 0;
1013         char *zTab;
1014 
1015         zTab = pTabList->a[j].zAlias;
1016         if( fullNames || zTab==0 ) zTab = pTab->zName;
1017         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1018         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1019       }else{
1020         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1021       }
1022     }else if( p->span.z && p->span.z[0] ){
1023       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1024       /* sqlite3VdbeCompressSpace(v, addr); */
1025     }else{
1026       char zName[30];
1027       assert( p->op!=TK_COLUMN || pTabList==0 );
1028       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1029       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1030     }
1031   }
1032   generateColumnTypes(pParse, pTabList, pEList);
1033 }
1034 
1035 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1036 /*
1037 ** Name of the connection operator, used for error messages.
1038 */
1039 static const char *selectOpName(int id){
1040   char *z;
1041   switch( id ){
1042     case TK_ALL:       z = "UNION ALL";   break;
1043     case TK_INTERSECT: z = "INTERSECT";   break;
1044     case TK_EXCEPT:    z = "EXCEPT";      break;
1045     default:           z = "UNION";       break;
1046   }
1047   return z;
1048 }
1049 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1050 
1051 /*
1052 ** Forward declaration
1053 */
1054 static int prepSelectStmt(Parse*, Select*);
1055 
1056 /*
1057 ** Given a SELECT statement, generate a Table structure that describes
1058 ** the result set of that SELECT.
1059 */
1060 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1061   Table *pTab;
1062   int i, j;
1063   ExprList *pEList;
1064   Column *aCol, *pCol;
1065 
1066   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1067   if( prepSelectStmt(pParse, pSelect) ){
1068     return 0;
1069   }
1070   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1071     return 0;
1072   }
1073   pTab = sqliteMalloc( sizeof(Table) );
1074   if( pTab==0 ){
1075     return 0;
1076   }
1077   pTab->nRef = 1;
1078   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1079   pEList = pSelect->pEList;
1080   pTab->nCol = pEList->nExpr;
1081   assert( pTab->nCol>0 );
1082   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1083   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1084     Expr *p, *pR;
1085     char *zType;
1086     char *zName;
1087     int nName;
1088     CollSeq *pColl;
1089     int cnt;
1090     NameContext sNC;
1091 
1092     /* Get an appropriate name for the column
1093     */
1094     p = pEList->a[i].pExpr;
1095     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1096     if( (zName = pEList->a[i].zName)!=0 ){
1097       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1098       zName = sqliteStrDup(zName);
1099     }else if( p->op==TK_DOT
1100               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1101       /* For columns of the from A.B use B as the name */
1102       zName = sqlite3MPrintf("%T", &pR->token);
1103     }else if( p->span.z && p->span.z[0] ){
1104       /* Use the original text of the column expression as its name */
1105       zName = sqlite3MPrintf("%T", &p->span);
1106     }else{
1107       /* If all else fails, make up a name */
1108       zName = sqlite3MPrintf("column%d", i+1);
1109     }
1110     sqlite3Dequote(zName);
1111     if( sqlite3MallocFailed() ){
1112       sqliteFree(zName);
1113       sqlite3DeleteTable(pTab);
1114       return 0;
1115     }
1116 
1117     /* Make sure the column name is unique.  If the name is not unique,
1118     ** append a integer to the name so that it becomes unique.
1119     */
1120     nName = strlen(zName);
1121     for(j=cnt=0; j<i; j++){
1122       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1123         zName[nName] = 0;
1124         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1125         j = -1;
1126         if( zName==0 ) break;
1127       }
1128     }
1129     pCol->zName = zName;
1130 
1131     /* Get the typename, type affinity, and collating sequence for the
1132     ** column.
1133     */
1134     memset(&sNC, 0, sizeof(sNC));
1135     sNC.pSrcList = pSelect->pSrc;
1136     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1137     pCol->zType = zType;
1138     pCol->affinity = sqlite3ExprAffinity(p);
1139     pColl = sqlite3ExprCollSeq(pParse, p);
1140     if( pColl ){
1141       pCol->zColl = sqliteStrDup(pColl->zName);
1142     }
1143   }
1144   pTab->iPKey = -1;
1145   return pTab;
1146 }
1147 
1148 /*
1149 ** Prepare a SELECT statement for processing by doing the following
1150 ** things:
1151 **
1152 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1153 **         element of the FROM clause.
1154 **
1155 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1156 **         defines FROM clause.  When views appear in the FROM clause,
1157 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1158 **         that implements the view.  A copy is made of the view's SELECT
1159 **         statement so that we can freely modify or delete that statement
1160 **         without worrying about messing up the presistent representation
1161 **         of the view.
1162 **
1163 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1164 **         on joins and the ON and USING clause of joins.
1165 **
1166 **    (4)  Scan the list of columns in the result set (pEList) looking
1167 **         for instances of the "*" operator or the TABLE.* operator.
1168 **         If found, expand each "*" to be every column in every table
1169 **         and TABLE.* to be every column in TABLE.
1170 **
1171 ** Return 0 on success.  If there are problems, leave an error message
1172 ** in pParse and return non-zero.
1173 */
1174 static int prepSelectStmt(Parse *pParse, Select *p){
1175   int i, j, k, rc;
1176   SrcList *pTabList;
1177   ExprList *pEList;
1178   struct SrcList_item *pFrom;
1179 
1180   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1181     return 1;
1182   }
1183   pTabList = p->pSrc;
1184   pEList = p->pEList;
1185 
1186   /* Make sure cursor numbers have been assigned to all entries in
1187   ** the FROM clause of the SELECT statement.
1188   */
1189   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1190 
1191   /* Look up every table named in the FROM clause of the select.  If
1192   ** an entry of the FROM clause is a subquery instead of a table or view,
1193   ** then create a transient table structure to describe the subquery.
1194   */
1195   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1196     Table *pTab;
1197     if( pFrom->pTab!=0 ){
1198       /* This statement has already been prepared.  There is no need
1199       ** to go further. */
1200       assert( i==0 );
1201       return 0;
1202     }
1203     if( pFrom->zName==0 ){
1204 #ifndef SQLITE_OMIT_SUBQUERY
1205       /* A sub-query in the FROM clause of a SELECT */
1206       assert( pFrom->pSelect!=0 );
1207       if( pFrom->zAlias==0 ){
1208         pFrom->zAlias =
1209           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1210       }
1211       assert( pFrom->pTab==0 );
1212       pFrom->pTab = pTab =
1213         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1214       if( pTab==0 ){
1215         return 1;
1216       }
1217       /* The isEphem flag indicates that the Table structure has been
1218       ** dynamically allocated and may be freed at any time.  In other words,
1219       ** pTab is not pointing to a persistent table structure that defines
1220       ** part of the schema. */
1221       pTab->isEphem = 1;
1222 #endif
1223     }else{
1224       /* An ordinary table or view name in the FROM clause */
1225       assert( pFrom->pTab==0 );
1226       pFrom->pTab = pTab =
1227         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1228       if( pTab==0 ){
1229         return 1;
1230       }
1231       pTab->nRef++;
1232 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1233       if( pTab->pSelect || IsVirtual(pTab) ){
1234         /* We reach here if the named table is a really a view */
1235         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1236           return 1;
1237         }
1238         /* If pFrom->pSelect!=0 it means we are dealing with a
1239         ** view within a view.  The SELECT structure has already been
1240         ** copied by the outer view so we can skip the copy step here
1241         ** in the inner view.
1242         */
1243         if( pFrom->pSelect==0 ){
1244           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1245         }
1246       }
1247 #endif
1248     }
1249   }
1250 
1251   /* Process NATURAL keywords, and ON and USING clauses of joins.
1252   */
1253   if( sqliteProcessJoin(pParse, p) ) return 1;
1254 
1255   /* For every "*" that occurs in the column list, insert the names of
1256   ** all columns in all tables.  And for every TABLE.* insert the names
1257   ** of all columns in TABLE.  The parser inserted a special expression
1258   ** with the TK_ALL operator for each "*" that it found in the column list.
1259   ** The following code just has to locate the TK_ALL expressions and expand
1260   ** each one to the list of all columns in all tables.
1261   **
1262   ** The first loop just checks to see if there are any "*" operators
1263   ** that need expanding.
1264   */
1265   for(k=0; k<pEList->nExpr; k++){
1266     Expr *pE = pEList->a[k].pExpr;
1267     if( pE->op==TK_ALL ) break;
1268     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1269          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1270   }
1271   rc = 0;
1272   if( k<pEList->nExpr ){
1273     /*
1274     ** If we get here it means the result set contains one or more "*"
1275     ** operators that need to be expanded.  Loop through each expression
1276     ** in the result set and expand them one by one.
1277     */
1278     struct ExprList_item *a = pEList->a;
1279     ExprList *pNew = 0;
1280     int flags = pParse->db->flags;
1281     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1282                       (flags & SQLITE_ShortColNames)==0;
1283 
1284     for(k=0; k<pEList->nExpr; k++){
1285       Expr *pE = a[k].pExpr;
1286       if( pE->op!=TK_ALL &&
1287            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1288         /* This particular expression does not need to be expanded.
1289         */
1290         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1291         if( pNew ){
1292           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1293         }else{
1294           rc = 1;
1295         }
1296         a[k].pExpr = 0;
1297         a[k].zName = 0;
1298       }else{
1299         /* This expression is a "*" or a "TABLE.*" and needs to be
1300         ** expanded. */
1301         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1302         char *zTName;            /* text of name of TABLE */
1303         if( pE->op==TK_DOT && pE->pLeft ){
1304           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1305         }else{
1306           zTName = 0;
1307         }
1308         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1309           Table *pTab = pFrom->pTab;
1310           char *zTabName = pFrom->zAlias;
1311           if( zTabName==0 || zTabName[0]==0 ){
1312             zTabName = pTab->zName;
1313           }
1314           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1315                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1316             continue;
1317           }
1318           tableSeen = 1;
1319           for(j=0; j<pTab->nCol; j++){
1320             Expr *pExpr, *pRight;
1321             char *zName = pTab->aCol[j].zName;
1322 
1323             if( i>0 ){
1324               struct SrcList_item *pLeft = &pTabList->a[i-1];
1325               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1326                         columnIndex(pLeft->pTab, zName)>=0 ){
1327                 /* In a NATURAL join, omit the join columns from the
1328                 ** table on the right */
1329                 continue;
1330               }
1331               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1332                 /* In a join with a USING clause, omit columns in the
1333                 ** using clause from the table on the right. */
1334                 continue;
1335               }
1336             }
1337             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1338             if( pRight==0 ) break;
1339             setToken(&pRight->token, zName);
1340             if( zTabName && (longNames || pTabList->nSrc>1) ){
1341               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1342               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1343               if( pExpr==0 ) break;
1344               setToken(&pLeft->token, zTabName);
1345               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1346               pExpr->span.dyn = 1;
1347               pExpr->token.z = 0;
1348               pExpr->token.n = 0;
1349               pExpr->token.dyn = 0;
1350             }else{
1351               pExpr = pRight;
1352               pExpr->span = pExpr->token;
1353             }
1354             if( longNames ){
1355               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1356             }else{
1357               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1358             }
1359           }
1360         }
1361         if( !tableSeen ){
1362           if( zTName ){
1363             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1364           }else{
1365             sqlite3ErrorMsg(pParse, "no tables specified");
1366           }
1367           rc = 1;
1368         }
1369         sqliteFree(zTName);
1370       }
1371     }
1372     sqlite3ExprListDelete(pEList);
1373     p->pEList = pNew;
1374   }
1375   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
1376     sqlite3ErrorMsg(pParse, "too many columns in result set");
1377     rc = SQLITE_ERROR;
1378   }
1379   return rc;
1380 }
1381 
1382 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1383 /*
1384 ** This routine associates entries in an ORDER BY expression list with
1385 ** columns in a result.  For each ORDER BY expression, the opcode of
1386 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1387 ** the top-level node is filled in with column number and the iTable
1388 ** value of the top-level node is filled with iTable parameter.
1389 **
1390 ** If there are prior SELECT clauses, they are processed first.  A match
1391 ** in an earlier SELECT takes precedence over a later SELECT.
1392 **
1393 ** Any entry that does not match is flagged as an error.  The number
1394 ** of errors is returned.
1395 */
1396 static int matchOrderbyToColumn(
1397   Parse *pParse,          /* A place to leave error messages */
1398   Select *pSelect,        /* Match to result columns of this SELECT */
1399   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1400   int iTable,             /* Insert this value in iTable */
1401   int mustComplete        /* If TRUE all ORDER BYs must match */
1402 ){
1403   int nErr = 0;
1404   int i, j;
1405   ExprList *pEList;
1406 
1407   if( pSelect==0 || pOrderBy==0 ) return 1;
1408   if( mustComplete ){
1409     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1410   }
1411   if( prepSelectStmt(pParse, pSelect) ){
1412     return 1;
1413   }
1414   if( pSelect->pPrior ){
1415     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1416       return 1;
1417     }
1418   }
1419   pEList = pSelect->pEList;
1420   for(i=0; i<pOrderBy->nExpr; i++){
1421     struct ExprList_item *pItem;
1422     Expr *pE = pOrderBy->a[i].pExpr;
1423     int iCol = -1;
1424     char *zLabel;
1425 
1426     if( pOrderBy->a[i].done ) continue;
1427     if( sqlite3ExprIsInteger(pE, &iCol) ){
1428       if( iCol<=0 || iCol>pEList->nExpr ){
1429         sqlite3ErrorMsg(pParse,
1430           "ORDER BY position %d should be between 1 and %d",
1431           iCol, pEList->nExpr);
1432         nErr++;
1433         break;
1434       }
1435       if( !mustComplete ) continue;
1436       iCol--;
1437     }
1438     if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
1439       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1440         char *zName;
1441         int isMatch;
1442         if( pItem->zName ){
1443           zName = sqlite3StrDup(pItem->zName);
1444         }else{
1445           zName = sqlite3NameFromToken(&pItem->pExpr->token);
1446         }
1447         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1448         sqliteFree(zName);
1449         if( isMatch ){
1450           iCol = j;
1451           break;
1452         }
1453       }
1454       sqliteFree(zLabel);
1455     }
1456     if( iCol>=0 ){
1457       pE->op = TK_COLUMN;
1458       pE->iColumn = iCol;
1459       pE->iTable = iTable;
1460       pE->iAgg = -1;
1461       pOrderBy->a[i].done = 1;
1462     }else if( mustComplete ){
1463       sqlite3ErrorMsg(pParse,
1464         "ORDER BY term number %d does not match any result column", i+1);
1465       nErr++;
1466       break;
1467     }
1468   }
1469   return nErr;
1470 }
1471 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1472 
1473 /*
1474 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1475 ** If an error occurs, return NULL and leave a message in pParse.
1476 */
1477 Vdbe *sqlite3GetVdbe(Parse *pParse){
1478   Vdbe *v = pParse->pVdbe;
1479   if( v==0 ){
1480     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1481   }
1482   return v;
1483 }
1484 
1485 
1486 /*
1487 ** Compute the iLimit and iOffset fields of the SELECT based on the
1488 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1489 ** that appear in the original SQL statement after the LIMIT and OFFSET
1490 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1491 ** are the integer memory register numbers for counters used to compute
1492 ** the limit and offset.  If there is no limit and/or offset, then
1493 ** iLimit and iOffset are negative.
1494 **
1495 ** This routine changes the values of iLimit and iOffset only if
1496 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1497 ** iOffset should have been preset to appropriate default values
1498 ** (usually but not always -1) prior to calling this routine.
1499 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1500 ** redefined.  The UNION ALL operator uses this property to force
1501 ** the reuse of the same limit and offset registers across multiple
1502 ** SELECT statements.
1503 */
1504 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1505   Vdbe *v = 0;
1506   int iLimit = 0;
1507   int iOffset;
1508   int addr1, addr2;
1509 
1510   /*
1511   ** "LIMIT -1" always shows all rows.  There is some
1512   ** contraversy about what the correct behavior should be.
1513   ** The current implementation interprets "LIMIT 0" to mean
1514   ** no rows.
1515   */
1516   if( p->pLimit ){
1517     p->iLimit = iLimit = pParse->nMem;
1518     pParse->nMem += 2;
1519     v = sqlite3GetVdbe(pParse);
1520     if( v==0 ) return;
1521     sqlite3ExprCode(pParse, p->pLimit);
1522     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1523     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
1524     VdbeComment((v, "# LIMIT counter"));
1525     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1526     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
1527   }
1528   if( p->pOffset ){
1529     p->iOffset = iOffset = pParse->nMem++;
1530     v = sqlite3GetVdbe(pParse);
1531     if( v==0 ) return;
1532     sqlite3ExprCode(pParse, p->pOffset);
1533     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1534     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1535     VdbeComment((v, "# OFFSET counter"));
1536     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1537     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1538     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1539     sqlite3VdbeJumpHere(v, addr1);
1540     if( p->pLimit ){
1541       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1542     }
1543   }
1544   if( p->pLimit ){
1545     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1546     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1547     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1548     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1549     sqlite3VdbeJumpHere(v, addr1);
1550     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1551     VdbeComment((v, "# LIMIT+OFFSET"));
1552     sqlite3VdbeJumpHere(v, addr2);
1553   }
1554 }
1555 
1556 /*
1557 ** Allocate a virtual index to use for sorting.
1558 */
1559 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1560   if( pOrderBy ){
1561     int addr;
1562     assert( pOrderBy->iECursor==0 );
1563     pOrderBy->iECursor = pParse->nTab++;
1564     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1565                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1566     assert( p->addrOpenEphm[2] == -1 );
1567     p->addrOpenEphm[2] = addr;
1568   }
1569 }
1570 
1571 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1572 /*
1573 ** Return the appropriate collating sequence for the iCol-th column of
1574 ** the result set for the compound-select statement "p".  Return NULL if
1575 ** the column has no default collating sequence.
1576 **
1577 ** The collating sequence for the compound select is taken from the
1578 ** left-most term of the select that has a collating sequence.
1579 */
1580 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1581   CollSeq *pRet;
1582   if( p->pPrior ){
1583     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1584   }else{
1585     pRet = 0;
1586   }
1587   if( pRet==0 ){
1588     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1589   }
1590   return pRet;
1591 }
1592 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1593 
1594 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1595 /*
1596 ** This routine is called to process a query that is really the union
1597 ** or intersection of two or more separate queries.
1598 **
1599 ** "p" points to the right-most of the two queries.  the query on the
1600 ** left is p->pPrior.  The left query could also be a compound query
1601 ** in which case this routine will be called recursively.
1602 **
1603 ** The results of the total query are to be written into a destination
1604 ** of type eDest with parameter iParm.
1605 **
1606 ** Example 1:  Consider a three-way compound SQL statement.
1607 **
1608 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1609 **
1610 ** This statement is parsed up as follows:
1611 **
1612 **     SELECT c FROM t3
1613 **      |
1614 **      `----->  SELECT b FROM t2
1615 **                |
1616 **                `------>  SELECT a FROM t1
1617 **
1618 ** The arrows in the diagram above represent the Select.pPrior pointer.
1619 ** So if this routine is called with p equal to the t3 query, then
1620 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1621 **
1622 ** Notice that because of the way SQLite parses compound SELECTs, the
1623 ** individual selects always group from left to right.
1624 */
1625 static int multiSelect(
1626   Parse *pParse,        /* Parsing context */
1627   Select *p,            /* The right-most of SELECTs to be coded */
1628   int eDest,            /* \___  Store query results as specified */
1629   int iParm,            /* /     by these two parameters.         */
1630   char *aff             /* If eDest is SRT_Union, the affinity string */
1631 ){
1632   int rc = SQLITE_OK;   /* Success code from a subroutine */
1633   Select *pPrior;       /* Another SELECT immediately to our left */
1634   Vdbe *v;              /* Generate code to this VDBE */
1635   int nCol;             /* Number of columns in the result set */
1636   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1637   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1638   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1639 
1640   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1641   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1642   */
1643   if( p==0 || p->pPrior==0 ){
1644     rc = 1;
1645     goto multi_select_end;
1646   }
1647   pPrior = p->pPrior;
1648   assert( pPrior->pRightmost!=pPrior );
1649   assert( pPrior->pRightmost==p->pRightmost );
1650   if( pPrior->pOrderBy ){
1651     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1652       selectOpName(p->op));
1653     rc = 1;
1654     goto multi_select_end;
1655   }
1656   if( pPrior->pLimit ){
1657     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1658       selectOpName(p->op));
1659     rc = 1;
1660     goto multi_select_end;
1661   }
1662 
1663   /* Make sure we have a valid query engine.  If not, create a new one.
1664   */
1665   v = sqlite3GetVdbe(pParse);
1666   if( v==0 ){
1667     rc = 1;
1668     goto multi_select_end;
1669   }
1670 
1671   /* Create the destination temporary table if necessary
1672   */
1673   if( eDest==SRT_EphemTab ){
1674     assert( p->pEList );
1675     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1676     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1677     eDest = SRT_Table;
1678   }
1679 
1680   /* Generate code for the left and right SELECT statements.
1681   */
1682   pOrderBy = p->pOrderBy;
1683   switch( p->op ){
1684     case TK_ALL: {
1685       if( pOrderBy==0 ){
1686         int addr = 0;
1687         assert( !pPrior->pLimit );
1688         pPrior->pLimit = p->pLimit;
1689         pPrior->pOffset = p->pOffset;
1690         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1691         p->pLimit = 0;
1692         p->pOffset = 0;
1693         if( rc ){
1694           goto multi_select_end;
1695         }
1696         p->pPrior = 0;
1697         p->iLimit = pPrior->iLimit;
1698         p->iOffset = pPrior->iOffset;
1699         if( p->iLimit>=0 ){
1700           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1701           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1702         }
1703         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1704         p->pPrior = pPrior;
1705         if( rc ){
1706           goto multi_select_end;
1707         }
1708         if( addr ){
1709           sqlite3VdbeJumpHere(v, addr);
1710         }
1711         break;
1712       }
1713       /* For UNION ALL ... ORDER BY fall through to the next case */
1714     }
1715     case TK_EXCEPT:
1716     case TK_UNION: {
1717       int unionTab;    /* Cursor number of the temporary table holding result */
1718       int op = 0;      /* One of the SRT_ operations to apply to self */
1719       int priorOp;     /* The SRT_ operation to apply to prior selects */
1720       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1721       int addr;
1722 
1723       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1724       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1725         /* We can reuse a temporary table generated by a SELECT to our
1726         ** right.
1727         */
1728         unionTab = iParm;
1729       }else{
1730         /* We will need to create our own temporary table to hold the
1731         ** intermediate results.
1732         */
1733         unionTab = pParse->nTab++;
1734         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1735           rc = 1;
1736           goto multi_select_end;
1737         }
1738         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1739         if( priorOp==SRT_Table ){
1740           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1741           aSetP2[nSetP2++] = addr;
1742         }else{
1743           assert( p->addrOpenEphm[0] == -1 );
1744           p->addrOpenEphm[0] = addr;
1745           p->pRightmost->usesEphm = 1;
1746         }
1747         createSortingIndex(pParse, p, pOrderBy);
1748         assert( p->pEList );
1749       }
1750 
1751       /* Code the SELECT statements to our left
1752       */
1753       assert( !pPrior->pOrderBy );
1754       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1755       if( rc ){
1756         goto multi_select_end;
1757       }
1758 
1759       /* Code the current SELECT statement
1760       */
1761       switch( p->op ){
1762          case TK_EXCEPT:  op = SRT_Except;   break;
1763          case TK_UNION:   op = SRT_Union;    break;
1764          case TK_ALL:     op = SRT_Table;    break;
1765       }
1766       p->pPrior = 0;
1767       p->pOrderBy = 0;
1768       p->disallowOrderBy = pOrderBy!=0;
1769       pLimit = p->pLimit;
1770       p->pLimit = 0;
1771       pOffset = p->pOffset;
1772       p->pOffset = 0;
1773       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1774       p->pPrior = pPrior;
1775       p->pOrderBy = pOrderBy;
1776       sqlite3ExprDelete(p->pLimit);
1777       p->pLimit = pLimit;
1778       p->pOffset = pOffset;
1779       p->iLimit = -1;
1780       p->iOffset = -1;
1781       if( rc ){
1782         goto multi_select_end;
1783       }
1784 
1785 
1786       /* Convert the data in the temporary table into whatever form
1787       ** it is that we currently need.
1788       */
1789       if( eDest!=priorOp || unionTab!=iParm ){
1790         int iCont, iBreak, iStart;
1791         assert( p->pEList );
1792         if( eDest==SRT_Callback ){
1793           Select *pFirst = p;
1794           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1795           generateColumnNames(pParse, 0, pFirst->pEList);
1796         }
1797         iBreak = sqlite3VdbeMakeLabel(v);
1798         iCont = sqlite3VdbeMakeLabel(v);
1799         computeLimitRegisters(pParse, p, iBreak);
1800         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1801         iStart = sqlite3VdbeCurrentAddr(v);
1802         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1803                              pOrderBy, -1, eDest, iParm,
1804                              iCont, iBreak, 0);
1805         if( rc ){
1806           rc = 1;
1807           goto multi_select_end;
1808         }
1809         sqlite3VdbeResolveLabel(v, iCont);
1810         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1811         sqlite3VdbeResolveLabel(v, iBreak);
1812         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1813       }
1814       break;
1815     }
1816     case TK_INTERSECT: {
1817       int tab1, tab2;
1818       int iCont, iBreak, iStart;
1819       Expr *pLimit, *pOffset;
1820       int addr;
1821 
1822       /* INTERSECT is different from the others since it requires
1823       ** two temporary tables.  Hence it has its own case.  Begin
1824       ** by allocating the tables we will need.
1825       */
1826       tab1 = pParse->nTab++;
1827       tab2 = pParse->nTab++;
1828       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1829         rc = 1;
1830         goto multi_select_end;
1831       }
1832       createSortingIndex(pParse, p, pOrderBy);
1833 
1834       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1835       assert( p->addrOpenEphm[0] == -1 );
1836       p->addrOpenEphm[0] = addr;
1837       p->pRightmost->usesEphm = 1;
1838       assert( p->pEList );
1839 
1840       /* Code the SELECTs to our left into temporary table "tab1".
1841       */
1842       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1843       if( rc ){
1844         goto multi_select_end;
1845       }
1846 
1847       /* Code the current SELECT into temporary table "tab2"
1848       */
1849       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1850       assert( p->addrOpenEphm[1] == -1 );
1851       p->addrOpenEphm[1] = addr;
1852       p->pPrior = 0;
1853       pLimit = p->pLimit;
1854       p->pLimit = 0;
1855       pOffset = p->pOffset;
1856       p->pOffset = 0;
1857       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1858       p->pPrior = pPrior;
1859       sqlite3ExprDelete(p->pLimit);
1860       p->pLimit = pLimit;
1861       p->pOffset = pOffset;
1862       if( rc ){
1863         goto multi_select_end;
1864       }
1865 
1866       /* Generate code to take the intersection of the two temporary
1867       ** tables.
1868       */
1869       assert( p->pEList );
1870       if( eDest==SRT_Callback ){
1871         Select *pFirst = p;
1872         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1873         generateColumnNames(pParse, 0, pFirst->pEList);
1874       }
1875       iBreak = sqlite3VdbeMakeLabel(v);
1876       iCont = sqlite3VdbeMakeLabel(v);
1877       computeLimitRegisters(pParse, p, iBreak);
1878       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1879       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1880       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1881       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1882                              pOrderBy, -1, eDest, iParm,
1883                              iCont, iBreak, 0);
1884       if( rc ){
1885         rc = 1;
1886         goto multi_select_end;
1887       }
1888       sqlite3VdbeResolveLabel(v, iCont);
1889       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1890       sqlite3VdbeResolveLabel(v, iBreak);
1891       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1892       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1893       break;
1894     }
1895   }
1896 
1897   /* Make sure all SELECTs in the statement have the same number of elements
1898   ** in their result sets.
1899   */
1900   assert( p->pEList && pPrior->pEList );
1901   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1902     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1903       " do not have the same number of result columns", selectOpName(p->op));
1904     rc = 1;
1905     goto multi_select_end;
1906   }
1907 
1908   /* Set the number of columns in temporary tables
1909   */
1910   nCol = p->pEList->nExpr;
1911   while( nSetP2 ){
1912     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1913   }
1914 
1915   /* Compute collating sequences used by either the ORDER BY clause or
1916   ** by any temporary tables needed to implement the compound select.
1917   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1918   ** ORDER BY processing if there is an ORDER BY clause.
1919   **
1920   ** This section is run by the right-most SELECT statement only.
1921   ** SELECT statements to the left always skip this part.  The right-most
1922   ** SELECT might also skip this part if it has no ORDER BY clause and
1923   ** no temp tables are required.
1924   */
1925   if( pOrderBy || p->usesEphm ){
1926     int i;                        /* Loop counter */
1927     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1928     Select *pLoop;                /* For looping through SELECT statements */
1929     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1930     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1931     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1932 
1933     assert( p->pRightmost==p );
1934     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1935     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1936     if( !pKeyInfo ){
1937       rc = SQLITE_NOMEM;
1938       goto multi_select_end;
1939     }
1940 
1941     pKeyInfo->enc = ENC(pParse->db);
1942     pKeyInfo->nField = nCol;
1943 
1944     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1945       *apColl = multiSelectCollSeq(pParse, p, i);
1946       if( 0==*apColl ){
1947         *apColl = pParse->db->pDfltColl;
1948       }
1949     }
1950 
1951     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1952       for(i=0; i<2; i++){
1953         int addr = pLoop->addrOpenEphm[i];
1954         if( addr<0 ){
1955           /* If [0] is unused then [1] is also unused.  So we can
1956           ** always safely abort as soon as the first unused slot is found */
1957           assert( pLoop->addrOpenEphm[1]<0 );
1958           break;
1959         }
1960         sqlite3VdbeChangeP2(v, addr, nCol);
1961         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1962         pLoop->addrOpenEphm[i] = -1;
1963       }
1964     }
1965 
1966     if( pOrderBy ){
1967       struct ExprList_item *pOTerm = pOrderBy->a;
1968       int nOrderByExpr = pOrderBy->nExpr;
1969       int addr;
1970       u8 *pSortOrder;
1971 
1972       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
1973       ** the compound select statements.  Except we have to change out the
1974       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
1975       ** reused when constructing the pKeyInfo for the ORDER BY, so make
1976       ** a copy.  Sufficient space to hold both the nCol entries for
1977       ** the compound select and the nOrderbyExpr entries for the ORDER BY
1978       ** was allocated above.  But we need to move the compound select
1979       ** entries out of the way before constructing the ORDER BY entries.
1980       ** Move the compound select entries into aCopy[] where they can be
1981       ** accessed and reused when constructing the ORDER BY entries.
1982       ** Because nCol might be greater than or less than nOrderByExpr
1983       ** we have to use memmove() when doing the copy.
1984       */
1985       aCopy = &pKeyInfo->aColl[nOrderByExpr];
1986       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
1987       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
1988 
1989       apColl = pKeyInfo->aColl;
1990       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
1991         Expr *pExpr = pOTerm->pExpr;
1992         if( (pExpr->flags & EP_ExpCollate) ){
1993           assert( pExpr->pColl!=0 );
1994           *apColl = pExpr->pColl;
1995         }else{
1996           *apColl = aCopy[pExpr->iColumn];
1997         }
1998         *pSortOrder = pOTerm->sortOrder;
1999       }
2000       assert( p->pRightmost==p );
2001       assert( p->addrOpenEphm[2]>=0 );
2002       addr = p->addrOpenEphm[2];
2003       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
2004       pKeyInfo->nField = nOrderByExpr;
2005       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2006       pKeyInfo = 0;
2007       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
2008     }
2009 
2010     sqliteFree(pKeyInfo);
2011   }
2012 
2013 multi_select_end:
2014   return rc;
2015 }
2016 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2017 
2018 #ifndef SQLITE_OMIT_VIEW
2019 /*
2020 ** Scan through the expression pExpr.  Replace every reference to
2021 ** a column in table number iTable with a copy of the iColumn-th
2022 ** entry in pEList.  (But leave references to the ROWID column
2023 ** unchanged.)
2024 **
2025 ** This routine is part of the flattening procedure.  A subquery
2026 ** whose result set is defined by pEList appears as entry in the
2027 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2028 ** FORM clause entry is iTable.  This routine make the necessary
2029 ** changes to pExpr so that it refers directly to the source table
2030 ** of the subquery rather the result set of the subquery.
2031 */
2032 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
2033 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
2034 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
2035   if( pExpr==0 ) return;
2036   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2037     if( pExpr->iColumn<0 ){
2038       pExpr->op = TK_NULL;
2039     }else{
2040       Expr *pNew;
2041       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2042       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2043       pNew = pEList->a[pExpr->iColumn].pExpr;
2044       assert( pNew!=0 );
2045       pExpr->op = pNew->op;
2046       assert( pExpr->pLeft==0 );
2047       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2048       assert( pExpr->pRight==0 );
2049       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2050       assert( pExpr->pList==0 );
2051       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2052       pExpr->iTable = pNew->iTable;
2053       pExpr->pTab = pNew->pTab;
2054       pExpr->iColumn = pNew->iColumn;
2055       pExpr->iAgg = pNew->iAgg;
2056       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2057       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2058       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2059       pExpr->flags = pNew->flags;
2060     }
2061   }else{
2062     substExpr(pExpr->pLeft, iTable, pEList);
2063     substExpr(pExpr->pRight, iTable, pEList);
2064     substSelect(pExpr->pSelect, iTable, pEList);
2065     substExprList(pExpr->pList, iTable, pEList);
2066   }
2067 }
2068 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2069   int i;
2070   if( pList==0 ) return;
2071   for(i=0; i<pList->nExpr; i++){
2072     substExpr(pList->a[i].pExpr, iTable, pEList);
2073   }
2074 }
2075 static void substSelect(Select *p, int iTable, ExprList *pEList){
2076   if( !p ) return;
2077   substExprList(p->pEList, iTable, pEList);
2078   substExprList(p->pGroupBy, iTable, pEList);
2079   substExprList(p->pOrderBy, iTable, pEList);
2080   substExpr(p->pHaving, iTable, pEList);
2081   substExpr(p->pWhere, iTable, pEList);
2082   substSelect(p->pPrior, iTable, pEList);
2083 }
2084 #endif /* !defined(SQLITE_OMIT_VIEW) */
2085 
2086 #ifndef SQLITE_OMIT_VIEW
2087 /*
2088 ** This routine attempts to flatten subqueries in order to speed
2089 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2090 ** occurs.
2091 **
2092 ** To understand the concept of flattening, consider the following
2093 ** query:
2094 **
2095 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2096 **
2097 ** The default way of implementing this query is to execute the
2098 ** subquery first and store the results in a temporary table, then
2099 ** run the outer query on that temporary table.  This requires two
2100 ** passes over the data.  Furthermore, because the temporary table
2101 ** has no indices, the WHERE clause on the outer query cannot be
2102 ** optimized.
2103 **
2104 ** This routine attempts to rewrite queries such as the above into
2105 ** a single flat select, like this:
2106 **
2107 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2108 **
2109 ** The code generated for this simpification gives the same result
2110 ** but only has to scan the data once.  And because indices might
2111 ** exist on the table t1, a complete scan of the data might be
2112 ** avoided.
2113 **
2114 ** Flattening is only attempted if all of the following are true:
2115 **
2116 **   (1)  The subquery and the outer query do not both use aggregates.
2117 **
2118 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2119 **
2120 **   (3)  The subquery is not the right operand of a left outer join, or
2121 **        the subquery is not itself a join.  (Ticket #306)
2122 **
2123 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2124 **
2125 **   (5)  The subquery is not DISTINCT or the outer query does not use
2126 **        aggregates.
2127 **
2128 **   (6)  The subquery does not use aggregates or the outer query is not
2129 **        DISTINCT.
2130 **
2131 **   (7)  The subquery has a FROM clause.
2132 **
2133 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2134 **
2135 **   (9)  The subquery does not use LIMIT or the outer query does not use
2136 **        aggregates.
2137 **
2138 **  (10)  The subquery does not use aggregates or the outer query does not
2139 **        use LIMIT.
2140 **
2141 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2142 **
2143 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2144 **        subquery has no WHERE clause.  (added by ticket #350)
2145 **
2146 **  (13)  The subquery and outer query do not both use LIMIT
2147 **
2148 **  (14)  The subquery does not use OFFSET
2149 **
2150 **  (15)  The outer query is not part of a compound select or the
2151 **        subquery does not have both an ORDER BY and a LIMIT clause.
2152 **        (See ticket #2339)
2153 **
2154 ** In this routine, the "p" parameter is a pointer to the outer query.
2155 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2156 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2157 **
2158 ** If flattening is not attempted, this routine is a no-op and returns 0.
2159 ** If flattening is attempted this routine returns 1.
2160 **
2161 ** All of the expression analysis must occur on both the outer query and
2162 ** the subquery before this routine runs.
2163 */
2164 static int flattenSubquery(
2165   Select *p,           /* The parent or outer SELECT statement */
2166   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2167   int isAgg,           /* True if outer SELECT uses aggregate functions */
2168   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2169 ){
2170   Select *pSub;       /* The inner query or "subquery" */
2171   SrcList *pSrc;      /* The FROM clause of the outer query */
2172   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2173   ExprList *pList;    /* The result set of the outer query */
2174   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2175   int i;              /* Loop counter */
2176   Expr *pWhere;                    /* The WHERE clause */
2177   struct SrcList_item *pSubitem;   /* The subquery */
2178 
2179   /* Check to see if flattening is permitted.  Return 0 if not.
2180   */
2181   if( p==0 ) return 0;
2182   pSrc = p->pSrc;
2183   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2184   pSubitem = &pSrc->a[iFrom];
2185   pSub = pSubitem->pSelect;
2186   assert( pSub!=0 );
2187   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2188   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2189   pSubSrc = pSub->pSrc;
2190   assert( pSubSrc );
2191   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2192   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2193   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2194   ** became arbitrary expressions, we were forced to add restrictions (13)
2195   ** and (14). */
2196   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2197   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2198   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2199     return 0;                                            /* Restriction (15) */
2200   }
2201   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2202   if( (pSub->isDistinct || pSub->pLimit)
2203          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2204      return 0;
2205   }
2206   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2207   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2208      return 0;                                           /* Restriction (11) */
2209   }
2210 
2211   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2212   ** not used as the right operand of an outer join.  Examples of why this
2213   ** is not allowed:
2214   **
2215   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2216   **
2217   ** If we flatten the above, we would get
2218   **
2219   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2220   **
2221   ** which is not at all the same thing.
2222   */
2223   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2224     return 0;
2225   }
2226 
2227   /* Restriction 12:  If the subquery is the right operand of a left outer
2228   ** join, make sure the subquery has no WHERE clause.
2229   ** An examples of why this is not allowed:
2230   **
2231   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2232   **
2233   ** If we flatten the above, we would get
2234   **
2235   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2236   **
2237   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2238   ** effectively converts the OUTER JOIN into an INNER JOIN.
2239   */
2240   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2241     return 0;
2242   }
2243 
2244   /* If we reach this point, it means flattening is permitted for the
2245   ** iFrom-th entry of the FROM clause in the outer query.
2246   */
2247 
2248   /* Move all of the FROM elements of the subquery into the
2249   ** the FROM clause of the outer query.  Before doing this, remember
2250   ** the cursor number for the original outer query FROM element in
2251   ** iParent.  The iParent cursor will never be used.  Subsequent code
2252   ** will scan expressions looking for iParent references and replace
2253   ** those references with expressions that resolve to the subquery FROM
2254   ** elements we are now copying in.
2255   */
2256   iParent = pSubitem->iCursor;
2257   {
2258     int nSubSrc = pSubSrc->nSrc;
2259     int jointype = pSubitem->jointype;
2260 
2261     sqlite3DeleteTable(pSubitem->pTab);
2262     sqliteFree(pSubitem->zDatabase);
2263     sqliteFree(pSubitem->zName);
2264     sqliteFree(pSubitem->zAlias);
2265     if( nSubSrc>1 ){
2266       int extra = nSubSrc - 1;
2267       for(i=1; i<nSubSrc; i++){
2268         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2269       }
2270       p->pSrc = pSrc;
2271       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2272         pSrc->a[i] = pSrc->a[i-extra];
2273       }
2274     }
2275     for(i=0; i<nSubSrc; i++){
2276       pSrc->a[i+iFrom] = pSubSrc->a[i];
2277       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2278     }
2279     pSrc->a[iFrom].jointype = jointype;
2280   }
2281 
2282   /* Now begin substituting subquery result set expressions for
2283   ** references to the iParent in the outer query.
2284   **
2285   ** Example:
2286   **
2287   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2288   **   \                     \_____________ subquery __________/          /
2289   **    \_____________________ outer query ______________________________/
2290   **
2291   ** We look at every expression in the outer query and every place we see
2292   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2293   */
2294   pList = p->pEList;
2295   for(i=0; i<pList->nExpr; i++){
2296     Expr *pExpr;
2297     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2298       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2299     }
2300   }
2301   substExprList(p->pEList, iParent, pSub->pEList);
2302   if( isAgg ){
2303     substExprList(p->pGroupBy, iParent, pSub->pEList);
2304     substExpr(p->pHaving, iParent, pSub->pEList);
2305   }
2306   if( pSub->pOrderBy ){
2307     assert( p->pOrderBy==0 );
2308     p->pOrderBy = pSub->pOrderBy;
2309     pSub->pOrderBy = 0;
2310   }else if( p->pOrderBy ){
2311     substExprList(p->pOrderBy, iParent, pSub->pEList);
2312   }
2313   if( pSub->pWhere ){
2314     pWhere = sqlite3ExprDup(pSub->pWhere);
2315   }else{
2316     pWhere = 0;
2317   }
2318   if( subqueryIsAgg ){
2319     assert( p->pHaving==0 );
2320     p->pHaving = p->pWhere;
2321     p->pWhere = pWhere;
2322     substExpr(p->pHaving, iParent, pSub->pEList);
2323     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2324     assert( p->pGroupBy==0 );
2325     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2326   }else{
2327     substExpr(p->pWhere, iParent, pSub->pEList);
2328     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2329   }
2330 
2331   /* The flattened query is distinct if either the inner or the
2332   ** outer query is distinct.
2333   */
2334   p->isDistinct = p->isDistinct || pSub->isDistinct;
2335 
2336   /*
2337   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2338   **
2339   ** One is tempted to try to add a and b to combine the limits.  But this
2340   ** does not work if either limit is negative.
2341   */
2342   if( pSub->pLimit ){
2343     p->pLimit = pSub->pLimit;
2344     pSub->pLimit = 0;
2345   }
2346 
2347   /* Finially, delete what is left of the subquery and return
2348   ** success.
2349   */
2350   sqlite3SelectDelete(pSub);
2351   return 1;
2352 }
2353 #endif /* SQLITE_OMIT_VIEW */
2354 
2355 /*
2356 ** Analyze the SELECT statement passed in as an argument to see if it
2357 ** is a simple min() or max() query.  If it is and this query can be
2358 ** satisfied using a single seek to the beginning or end of an index,
2359 ** then generate the code for this SELECT and return 1.  If this is not a
2360 ** simple min() or max() query, then return 0;
2361 **
2362 ** A simply min() or max() query looks like this:
2363 **
2364 **    SELECT min(a) FROM table;
2365 **    SELECT max(a) FROM table;
2366 **
2367 ** The query may have only a single table in its FROM argument.  There
2368 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2369 ** be the min() or max() of a single column of the table.  The column
2370 ** in the min() or max() function must be indexed.
2371 **
2372 ** The parameters to this routine are the same as for sqlite3Select().
2373 ** See the header comment on that routine for additional information.
2374 */
2375 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2376   Expr *pExpr;
2377   int iCol;
2378   Table *pTab;
2379   Index *pIdx;
2380   int base;
2381   Vdbe *v;
2382   int seekOp;
2383   ExprList *pEList, *pList, eList;
2384   struct ExprList_item eListItem;
2385   SrcList *pSrc;
2386   int brk;
2387   int iDb;
2388 
2389   /* Check to see if this query is a simple min() or max() query.  Return
2390   ** zero if it is  not.
2391   */
2392   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2393   pSrc = p->pSrc;
2394   if( pSrc->nSrc!=1 ) return 0;
2395   pEList = p->pEList;
2396   if( pEList->nExpr!=1 ) return 0;
2397   pExpr = pEList->a[0].pExpr;
2398   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2399   pList = pExpr->pList;
2400   if( pList==0 || pList->nExpr!=1 ) return 0;
2401   if( pExpr->token.n!=3 ) return 0;
2402   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2403     seekOp = OP_Rewind;
2404   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2405     seekOp = OP_Last;
2406   }else{
2407     return 0;
2408   }
2409   pExpr = pList->a[0].pExpr;
2410   if( pExpr->op!=TK_COLUMN ) return 0;
2411   iCol = pExpr->iColumn;
2412   pTab = pSrc->a[0].pTab;
2413 
2414   /* This optimization cannot be used with virtual tables. */
2415   if( IsVirtual(pTab) ) return 0;
2416 
2417   /* If we get to here, it means the query is of the correct form.
2418   ** Check to make sure we have an index and make pIdx point to the
2419   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2420   ** key column, no index is necessary so set pIdx to NULL.  If no
2421   ** usable index is found, return 0.
2422   */
2423   if( iCol<0 ){
2424     pIdx = 0;
2425   }else{
2426     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2427     if( pColl==0 ) return 0;
2428     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2429       assert( pIdx->nColumn>=1 );
2430       if( pIdx->aiColumn[0]==iCol &&
2431           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2432         break;
2433       }
2434     }
2435     if( pIdx==0 ) return 0;
2436   }
2437 
2438   /* Identify column types if we will be using the callback.  This
2439   ** step is skipped if the output is going to a table or a memory cell.
2440   ** The column names have already been generated in the calling function.
2441   */
2442   v = sqlite3GetVdbe(pParse);
2443   if( v==0 ) return 0;
2444 
2445   /* If the output is destined for a temporary table, open that table.
2446   */
2447   if( eDest==SRT_EphemTab ){
2448     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2449   }
2450 
2451   /* Generating code to find the min or the max.  Basically all we have
2452   ** to do is find the first or the last entry in the chosen index.  If
2453   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2454   ** or last entry in the main table.
2455   */
2456   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2457   assert( iDb>=0 || pTab->isEphem );
2458   sqlite3CodeVerifySchema(pParse, iDb);
2459   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2460   base = pSrc->a[0].iCursor;
2461   brk = sqlite3VdbeMakeLabel(v);
2462   computeLimitRegisters(pParse, p, brk);
2463   if( pSrc->a[0].pSelect==0 ){
2464     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2465   }
2466   if( pIdx==0 ){
2467     sqlite3VdbeAddOp(v, seekOp, base, 0);
2468   }else{
2469     /* Even though the cursor used to open the index here is closed
2470     ** as soon as a single value has been read from it, allocate it
2471     ** using (pParse->nTab++) to prevent the cursor id from being
2472     ** reused. This is important for statements of the form
2473     ** "INSERT INTO x SELECT max() FROM x".
2474     */
2475     int iIdx;
2476     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2477     iIdx = pParse->nTab++;
2478     assert( pIdx->pSchema==pTab->pSchema );
2479     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2480     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2481         (char*)pKey, P3_KEYINFO_HANDOFF);
2482     if( seekOp==OP_Rewind ){
2483       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2484       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2485       seekOp = OP_MoveGt;
2486     }
2487     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2488     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2489     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2490     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2491   }
2492   eList.nExpr = 1;
2493   memset(&eListItem, 0, sizeof(eListItem));
2494   eList.a = &eListItem;
2495   eList.a[0].pExpr = pExpr;
2496   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2497   sqlite3VdbeResolveLabel(v, brk);
2498   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2499 
2500   return 1;
2501 }
2502 
2503 /*
2504 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2505 ** the number of errors seen.
2506 **
2507 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2508 ** is an integer constant, then that expression is replaced by the
2509 ** corresponding entry in the result set.
2510 */
2511 static int processOrderGroupBy(
2512   NameContext *pNC,     /* Name context of the SELECT statement. */
2513   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2514   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2515 ){
2516   int i;
2517   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2518   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2519   assert( pEList );
2520 
2521   if( pOrderBy==0 ) return 0;
2522   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
2523     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
2524     return 1;
2525   }
2526   for(i=0; i<pOrderBy->nExpr; i++){
2527     int iCol;
2528     Expr *pE = pOrderBy->a[i].pExpr;
2529     if( sqlite3ExprIsInteger(pE, &iCol) ){
2530       if( iCol>0 && iCol<=pEList->nExpr ){
2531         CollSeq *pColl = pE->pColl;
2532         int flags = pE->flags & EP_ExpCollate;
2533         sqlite3ExprDelete(pE);
2534         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2535         if( pColl && flags ){
2536           pE->pColl = pColl;
2537           pE->flags |= flags;
2538         }
2539       }else{
2540         sqlite3ErrorMsg(pParse,
2541            "%s BY column number %d out of range - should be "
2542            "between 1 and %d", zType, iCol, pEList->nExpr);
2543         return 1;
2544       }
2545     }
2546     if( sqlite3ExprResolveNames(pNC, pE) ){
2547       return 1;
2548     }
2549   }
2550   return 0;
2551 }
2552 
2553 /*
2554 ** This routine resolves any names used in the result set of the
2555 ** supplied SELECT statement. If the SELECT statement being resolved
2556 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2557 ** of the parent SELECT.
2558 */
2559 int sqlite3SelectResolve(
2560   Parse *pParse,         /* The parser context */
2561   Select *p,             /* The SELECT statement being coded. */
2562   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2563 ){
2564   ExprList *pEList;          /* Result set. */
2565   int i;                     /* For-loop variable used in multiple places */
2566   NameContext sNC;           /* Local name-context */
2567   ExprList *pGroupBy;        /* The group by clause */
2568 
2569   /* If this routine has run before, return immediately. */
2570   if( p->isResolved ){
2571     assert( !pOuterNC );
2572     return SQLITE_OK;
2573   }
2574   p->isResolved = 1;
2575 
2576   /* If there have already been errors, do nothing. */
2577   if( pParse->nErr>0 ){
2578     return SQLITE_ERROR;
2579   }
2580 
2581   /* Prepare the select statement. This call will allocate all cursors
2582   ** required to handle the tables and subqueries in the FROM clause.
2583   */
2584   if( prepSelectStmt(pParse, p) ){
2585     return SQLITE_ERROR;
2586   }
2587 
2588   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2589   ** are not allowed to refer to any names, so pass an empty NameContext.
2590   */
2591   memset(&sNC, 0, sizeof(sNC));
2592   sNC.pParse = pParse;
2593   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2594       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2595     return SQLITE_ERROR;
2596   }
2597 
2598   /* Set up the local name-context to pass to ExprResolveNames() to
2599   ** resolve the expression-list.
2600   */
2601   sNC.allowAgg = 1;
2602   sNC.pSrcList = p->pSrc;
2603   sNC.pNext = pOuterNC;
2604 
2605   /* Resolve names in the result set. */
2606   pEList = p->pEList;
2607   if( !pEList ) return SQLITE_ERROR;
2608   for(i=0; i<pEList->nExpr; i++){
2609     Expr *pX = pEList->a[i].pExpr;
2610     if( sqlite3ExprResolveNames(&sNC, pX) ){
2611       return SQLITE_ERROR;
2612     }
2613   }
2614 
2615   /* If there are no aggregate functions in the result-set, and no GROUP BY
2616   ** expression, do not allow aggregates in any of the other expressions.
2617   */
2618   assert( !p->isAgg );
2619   pGroupBy = p->pGroupBy;
2620   if( pGroupBy || sNC.hasAgg ){
2621     p->isAgg = 1;
2622   }else{
2623     sNC.allowAgg = 0;
2624   }
2625 
2626   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2627   */
2628   if( p->pHaving && !pGroupBy ){
2629     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2630     return SQLITE_ERROR;
2631   }
2632 
2633   /* Add the expression list to the name-context before parsing the
2634   ** other expressions in the SELECT statement. This is so that
2635   ** expressions in the WHERE clause (etc.) can refer to expressions by
2636   ** aliases in the result set.
2637   **
2638   ** Minor point: If this is the case, then the expression will be
2639   ** re-evaluated for each reference to it.
2640   */
2641   sNC.pEList = p->pEList;
2642   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2643      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2644     return SQLITE_ERROR;
2645   }
2646   if( p->pPrior==0 ){
2647     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2648         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2649       return SQLITE_ERROR;
2650     }
2651   }
2652 
2653   /* Make sure the GROUP BY clause does not contain aggregate functions.
2654   */
2655   if( pGroupBy ){
2656     struct ExprList_item *pItem;
2657 
2658     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2659       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2660         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2661             "the GROUP BY clause");
2662         return SQLITE_ERROR;
2663       }
2664     }
2665   }
2666 
2667   /* If this is one SELECT of a compound, be sure to resolve names
2668   ** in the other SELECTs.
2669   */
2670   if( p->pPrior ){
2671     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2672   }else{
2673     return SQLITE_OK;
2674   }
2675 }
2676 
2677 /*
2678 ** Reset the aggregate accumulator.
2679 **
2680 ** The aggregate accumulator is a set of memory cells that hold
2681 ** intermediate results while calculating an aggregate.  This
2682 ** routine simply stores NULLs in all of those memory cells.
2683 */
2684 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2685   Vdbe *v = pParse->pVdbe;
2686   int i;
2687   struct AggInfo_func *pFunc;
2688   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2689     return;
2690   }
2691   for(i=0; i<pAggInfo->nColumn; i++){
2692     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2693   }
2694   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2695     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2696     if( pFunc->iDistinct>=0 ){
2697       Expr *pE = pFunc->pExpr;
2698       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2699         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2700            "by an expression");
2701         pFunc->iDistinct = -1;
2702       }else{
2703         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2704         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2705                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2706       }
2707     }
2708   }
2709 }
2710 
2711 /*
2712 ** Invoke the OP_AggFinalize opcode for every aggregate function
2713 ** in the AggInfo structure.
2714 */
2715 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2716   Vdbe *v = pParse->pVdbe;
2717   int i;
2718   struct AggInfo_func *pF;
2719   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2720     ExprList *pList = pF->pExpr->pList;
2721     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2722                       (void*)pF->pFunc, P3_FUNCDEF);
2723   }
2724 }
2725 
2726 /*
2727 ** Update the accumulator memory cells for an aggregate based on
2728 ** the current cursor position.
2729 */
2730 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2731   Vdbe *v = pParse->pVdbe;
2732   int i;
2733   struct AggInfo_func *pF;
2734   struct AggInfo_col *pC;
2735 
2736   pAggInfo->directMode = 1;
2737   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2738     int nArg;
2739     int addrNext = 0;
2740     ExprList *pList = pF->pExpr->pList;
2741     if( pList ){
2742       nArg = pList->nExpr;
2743       sqlite3ExprCodeExprList(pParse, pList);
2744     }else{
2745       nArg = 0;
2746     }
2747     if( pF->iDistinct>=0 ){
2748       addrNext = sqlite3VdbeMakeLabel(v);
2749       assert( nArg==1 );
2750       codeDistinct(v, pF->iDistinct, addrNext, 1);
2751     }
2752     if( pF->pFunc->needCollSeq ){
2753       CollSeq *pColl = 0;
2754       struct ExprList_item *pItem;
2755       int j;
2756       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2757       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2758         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2759       }
2760       if( !pColl ){
2761         pColl = pParse->db->pDfltColl;
2762       }
2763       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2764     }
2765     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2766     if( addrNext ){
2767       sqlite3VdbeResolveLabel(v, addrNext);
2768     }
2769   }
2770   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2771     sqlite3ExprCode(pParse, pC->pExpr);
2772     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2773   }
2774   pAggInfo->directMode = 0;
2775 }
2776 
2777 
2778 /*
2779 ** Generate code for the given SELECT statement.
2780 **
2781 ** The results are distributed in various ways depending on the
2782 ** value of eDest and iParm.
2783 **
2784 **     eDest Value       Result
2785 **     ------------    -------------------------------------------
2786 **     SRT_Callback    Invoke the callback for each row of the result.
2787 **
2788 **     SRT_Mem         Store first result in memory cell iParm
2789 **
2790 **     SRT_Set         Store results as keys of table iParm.
2791 **
2792 **     SRT_Union       Store results as a key in a temporary table iParm
2793 **
2794 **     SRT_Except      Remove results from the temporary table iParm.
2795 **
2796 **     SRT_Table       Store results in temporary table iParm
2797 **
2798 ** The table above is incomplete.  Additional eDist value have be added
2799 ** since this comment was written.  See the selectInnerLoop() function for
2800 ** a complete listing of the allowed values of eDest and their meanings.
2801 **
2802 ** This routine returns the number of errors.  If any errors are
2803 ** encountered, then an appropriate error message is left in
2804 ** pParse->zErrMsg.
2805 **
2806 ** This routine does NOT free the Select structure passed in.  The
2807 ** calling function needs to do that.
2808 **
2809 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2810 ** SELECT is a subquery.  This routine may try to combine this SELECT
2811 ** with its parent to form a single flat query.  In so doing, it might
2812 ** change the parent query from a non-aggregate to an aggregate query.
2813 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2814 ** can be changed.
2815 **
2816 ** Example 1:   The meaning of the pParent parameter.
2817 **
2818 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2819 **    \                      \_______ subquery _______/        /
2820 **     \                                                      /
2821 **      \____________________ outer query ___________________/
2822 **
2823 ** This routine is called for the outer query first.   For that call,
2824 ** pParent will be NULL.  During the processing of the outer query, this
2825 ** routine is called recursively to handle the subquery.  For the recursive
2826 ** call, pParent will point to the outer query.  Because the subquery is
2827 ** the second element in a three-way join, the parentTab parameter will
2828 ** be 1 (the 2nd value of a 0-indexed array.)
2829 */
2830 int sqlite3Select(
2831   Parse *pParse,         /* The parser context */
2832   Select *p,             /* The SELECT statement being coded. */
2833   int eDest,             /* How to dispose of the results */
2834   int iParm,             /* A parameter used by the eDest disposal method */
2835   Select *pParent,       /* Another SELECT for which this is a sub-query */
2836   int parentTab,         /* Index in pParent->pSrc of this query */
2837   int *pParentAgg,       /* True if pParent uses aggregate functions */
2838   char *aff              /* If eDest is SRT_Union, the affinity string */
2839 ){
2840   int i, j;              /* Loop counters */
2841   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2842   Vdbe *v;               /* The virtual machine under construction */
2843   int isAgg;             /* True for select lists like "count(*)" */
2844   ExprList *pEList;      /* List of columns to extract. */
2845   SrcList *pTabList;     /* List of tables to select from */
2846   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2847   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2848   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2849   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2850   int isDistinct;        /* True if the DISTINCT keyword is present */
2851   int distinct;          /* Table to use for the distinct set */
2852   int rc = 1;            /* Value to return from this function */
2853   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2854   AggInfo sAggInfo;      /* Information used by aggregate queries */
2855   int iEnd;              /* Address of the end of the query */
2856 
2857   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2858     return 1;
2859   }
2860   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2861   memset(&sAggInfo, 0, sizeof(sAggInfo));
2862 
2863 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2864   /* If there is are a sequence of queries, do the earlier ones first.
2865   */
2866   if( p->pPrior ){
2867     if( p->pRightmost==0 ){
2868       Select *pLoop;
2869       for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2870         pLoop->pRightmost = p;
2871       }
2872     }
2873     return multiSelect(pParse, p, eDest, iParm, aff);
2874   }
2875 #endif
2876 
2877   pOrderBy = p->pOrderBy;
2878   if( IgnorableOrderby(eDest) ){
2879     p->pOrderBy = 0;
2880   }
2881   if( sqlite3SelectResolve(pParse, p, 0) ){
2882     goto select_end;
2883   }
2884   p->pOrderBy = pOrderBy;
2885 
2886   /* Make local copies of the parameters for this query.
2887   */
2888   pTabList = p->pSrc;
2889   pWhere = p->pWhere;
2890   pGroupBy = p->pGroupBy;
2891   pHaving = p->pHaving;
2892   isAgg = p->isAgg;
2893   isDistinct = p->isDistinct;
2894   pEList = p->pEList;
2895   if( pEList==0 ) goto select_end;
2896 
2897   /*
2898   ** Do not even attempt to generate any code if we have already seen
2899   ** errors before this routine starts.
2900   */
2901   if( pParse->nErr>0 ) goto select_end;
2902 
2903   /* If writing to memory or generating a set
2904   ** only a single column may be output.
2905   */
2906 #ifndef SQLITE_OMIT_SUBQUERY
2907   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
2908     goto select_end;
2909   }
2910 #endif
2911 
2912   /* ORDER BY is ignored for some destinations.
2913   */
2914   if( IgnorableOrderby(eDest) ){
2915     pOrderBy = 0;
2916   }
2917 
2918   /* Begin generating code.
2919   */
2920   v = sqlite3GetVdbe(pParse);
2921   if( v==0 ) goto select_end;
2922 
2923   /* Generate code for all sub-queries in the FROM clause
2924   */
2925 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2926   for(i=0; i<pTabList->nSrc; i++){
2927     const char *zSavedAuthContext = 0;
2928     int needRestoreContext;
2929     struct SrcList_item *pItem = &pTabList->a[i];
2930 
2931     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2932     if( pItem->zName!=0 ){
2933       zSavedAuthContext = pParse->zAuthContext;
2934       pParse->zAuthContext = pItem->zName;
2935       needRestoreContext = 1;
2936     }else{
2937       needRestoreContext = 0;
2938     }
2939 #if SQLITE_MAX_EXPR_DEPTH>0
2940     /* Increment Parse.nHeight by the height of the largest expression
2941     ** tree refered to by this, the parent select. The child select
2942     ** may contain expression trees of at most
2943     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
2944     ** more conservative than necessary, but much easier than enforcing
2945     ** an exact limit.
2946     */
2947     pParse->nHeight += sqlite3SelectExprHeight(p);
2948 #endif
2949     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2950                  pItem->iCursor, p, i, &isAgg, 0);
2951 #if SQLITE_MAX_EXPR_DEPTH>0
2952     pParse->nHeight -= sqlite3SelectExprHeight(p);
2953 #endif
2954     if( needRestoreContext ){
2955       pParse->zAuthContext = zSavedAuthContext;
2956     }
2957     pTabList = p->pSrc;
2958     pWhere = p->pWhere;
2959     if( !IgnorableOrderby(eDest) ){
2960       pOrderBy = p->pOrderBy;
2961     }
2962     pGroupBy = p->pGroupBy;
2963     pHaving = p->pHaving;
2964     isDistinct = p->isDistinct;
2965   }
2966 #endif
2967 
2968   /* Check for the special case of a min() or max() function by itself
2969   ** in the result set.
2970   */
2971   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
2972     rc = 0;
2973     goto select_end;
2974   }
2975 
2976   /* Check to see if this is a subquery that can be "flattened" into its parent.
2977   ** If flattening is a possiblity, do so and return immediately.
2978   */
2979 #ifndef SQLITE_OMIT_VIEW
2980   if( pParent && pParentAgg &&
2981       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
2982     if( isAgg ) *pParentAgg = 1;
2983     goto select_end;
2984   }
2985 #endif
2986 
2987   /* If there is an ORDER BY clause, then this sorting
2988   ** index might end up being unused if the data can be
2989   ** extracted in pre-sorted order.  If that is the case, then the
2990   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
2991   ** we figure out that the sorting index is not needed.  The addrSortIndex
2992   ** variable is used to facilitate that change.
2993   */
2994   if( pOrderBy ){
2995     KeyInfo *pKeyInfo;
2996     if( pParse->nErr ){
2997       goto select_end;
2998     }
2999     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3000     pOrderBy->iECursor = pParse->nTab++;
3001     p->addrOpenEphm[2] = addrSortIndex =
3002       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3003   }else{
3004     addrSortIndex = -1;
3005   }
3006 
3007   /* If the output is destined for a temporary table, open that table.
3008   */
3009   if( eDest==SRT_EphemTab ){
3010     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
3011   }
3012 
3013   /* Set the limiter.
3014   */
3015   iEnd = sqlite3VdbeMakeLabel(v);
3016   computeLimitRegisters(pParse, p, iEnd);
3017 
3018   /* Open a virtual index to use for the distinct set.
3019   */
3020   if( isDistinct ){
3021     KeyInfo *pKeyInfo;
3022     distinct = pParse->nTab++;
3023     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3024     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
3025                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3026   }else{
3027     distinct = -1;
3028   }
3029 
3030   /* Aggregate and non-aggregate queries are handled differently */
3031   if( !isAgg && pGroupBy==0 ){
3032     /* This case is for non-aggregate queries
3033     ** Begin the database scan
3034     */
3035     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
3036     if( pWInfo==0 ) goto select_end;
3037 
3038     /* If sorting index that was created by a prior OP_OpenEphemeral
3039     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3040     ** into an OP_Noop.
3041     */
3042     if( addrSortIndex>=0 && pOrderBy==0 ){
3043       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3044       p->addrOpenEphm[2] = -1;
3045     }
3046 
3047     /* Use the standard inner loop
3048     */
3049     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
3050                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3051        goto select_end;
3052     }
3053 
3054     /* End the database scan loop.
3055     */
3056     sqlite3WhereEnd(pWInfo);
3057   }else{
3058     /* This is the processing for aggregate queries */
3059     NameContext sNC;    /* Name context for processing aggregate information */
3060     int iAMem;          /* First Mem address for storing current GROUP BY */
3061     int iBMem;          /* First Mem address for previous GROUP BY */
3062     int iUseFlag;       /* Mem address holding flag indicating that at least
3063                         ** one row of the input to the aggregator has been
3064                         ** processed */
3065     int iAbortFlag;     /* Mem address which causes query abort if positive */
3066     int groupBySort;    /* Rows come from source in GROUP BY order */
3067 
3068 
3069     /* The following variables hold addresses or labels for parts of the
3070     ** virtual machine program we are putting together */
3071     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3072     int addrSetAbort;       /* Set the abort flag and return */
3073     int addrInitializeLoop; /* Start of code that initializes the input loop */
3074     int addrTopOfLoop;      /* Top of the input loop */
3075     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3076     int addrProcessRow;     /* Code to process a single input row */
3077     int addrEnd;            /* End of all processing */
3078     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3079     int addrReset;          /* Subroutine for resetting the accumulator */
3080 
3081     addrEnd = sqlite3VdbeMakeLabel(v);
3082 
3083     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3084     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3085     ** SELECT statement.
3086     */
3087     memset(&sNC, 0, sizeof(sNC));
3088     sNC.pParse = pParse;
3089     sNC.pSrcList = pTabList;
3090     sNC.pAggInfo = &sAggInfo;
3091     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3092     sAggInfo.pGroupBy = pGroupBy;
3093     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3094       goto select_end;
3095     }
3096     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3097       goto select_end;
3098     }
3099     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3100       goto select_end;
3101     }
3102     sAggInfo.nAccumulator = sAggInfo.nColumn;
3103     for(i=0; i<sAggInfo.nFunc; i++){
3104       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3105         goto select_end;
3106       }
3107     }
3108     if( sqlite3MallocFailed() ) goto select_end;
3109 
3110     /* Processing for aggregates with GROUP BY is very different and
3111     ** much more complex tha aggregates without a GROUP BY.
3112     */
3113     if( pGroupBy ){
3114       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3115 
3116       /* Create labels that we will be needing
3117       */
3118 
3119       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3120       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3121       addrProcessRow = sqlite3VdbeMakeLabel(v);
3122 
3123       /* If there is a GROUP BY clause we might need a sorting index to
3124       ** implement it.  Allocate that sorting index now.  If it turns out
3125       ** that we do not need it after all, the OpenEphemeral instruction
3126       ** will be converted into a Noop.
3127       */
3128       sAggInfo.sortingIdx = pParse->nTab++;
3129       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3130       addrSortingIdx =
3131           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3132                          sAggInfo.nSortingColumn,
3133                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3134 
3135       /* Initialize memory locations used by GROUP BY aggregate processing
3136       */
3137       iUseFlag = pParse->nMem++;
3138       iAbortFlag = pParse->nMem++;
3139       iAMem = pParse->nMem;
3140       pParse->nMem += pGroupBy->nExpr;
3141       iBMem = pParse->nMem;
3142       pParse->nMem += pGroupBy->nExpr;
3143       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3144       VdbeComment((v, "# clear abort flag"));
3145       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3146       VdbeComment((v, "# indicate accumulator empty"));
3147       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3148 
3149       /* Generate a subroutine that outputs a single row of the result
3150       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3151       ** is less than or equal to zero, the subroutine is a no-op.  If
3152       ** the processing calls for the query to abort, this subroutine
3153       ** increments the iAbortFlag memory location before returning in
3154       ** order to signal the caller to abort.
3155       */
3156       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3157       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3158       VdbeComment((v, "# set abort flag"));
3159       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3160       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3161       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3162       VdbeComment((v, "# Groupby result generator entry point"));
3163       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3164       finalizeAggFunctions(pParse, &sAggInfo);
3165       if( pHaving ){
3166         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3167       }
3168       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3169                            distinct, eDest, iParm,
3170                            addrOutputRow+1, addrSetAbort, aff);
3171       if( rc ){
3172         goto select_end;
3173       }
3174       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3175       VdbeComment((v, "# end groupby result generator"));
3176 
3177       /* Generate a subroutine that will reset the group-by accumulator
3178       */
3179       addrReset = sqlite3VdbeCurrentAddr(v);
3180       resetAccumulator(pParse, &sAggInfo);
3181       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3182 
3183       /* Begin a loop that will extract all source rows in GROUP BY order.
3184       ** This might involve two separate loops with an OP_Sort in between, or
3185       ** it might be a single loop that uses an index to extract information
3186       ** in the right order to begin with.
3187       */
3188       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3189       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3190       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3191       if( pWInfo==0 ) goto select_end;
3192       if( pGroupBy==0 ){
3193         /* The optimizer is able to deliver rows in group by order so
3194         ** we do not have to sort.  The OP_OpenEphemeral table will be
3195         ** cancelled later because we still need to use the pKeyInfo
3196         */
3197         pGroupBy = p->pGroupBy;
3198         groupBySort = 0;
3199       }else{
3200         /* Rows are coming out in undetermined order.  We have to push
3201         ** each row into a sorting index, terminate the first loop,
3202         ** then loop over the sorting index in order to get the output
3203         ** in sorted order
3204         */
3205         groupBySort = 1;
3206         sqlite3ExprCodeExprList(pParse, pGroupBy);
3207         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3208         j = pGroupBy->nExpr+1;
3209         for(i=0; i<sAggInfo.nColumn; i++){
3210           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3211           if( pCol->iSorterColumn<j ) continue;
3212           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3213           j++;
3214         }
3215         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3216         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3217         sqlite3WhereEnd(pWInfo);
3218         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3219         VdbeComment((v, "# GROUP BY sort"));
3220         sAggInfo.useSortingIdx = 1;
3221       }
3222 
3223       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3224       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3225       ** Then compare the current GROUP BY terms against the GROUP BY terms
3226       ** from the previous row currently stored in a0, a1, a2...
3227       */
3228       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3229       for(j=0; j<pGroupBy->nExpr; j++){
3230         if( groupBySort ){
3231           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3232         }else{
3233           sAggInfo.directMode = 1;
3234           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3235         }
3236         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3237       }
3238       for(j=pGroupBy->nExpr-1; j>=0; j--){
3239         if( j<pGroupBy->nExpr-1 ){
3240           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3241         }
3242         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3243         if( j==0 ){
3244           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3245         }else{
3246           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3247         }
3248         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3249       }
3250 
3251       /* Generate code that runs whenever the GROUP BY changes.
3252       ** Change in the GROUP BY are detected by the previous code
3253       ** block.  If there were no changes, this block is skipped.
3254       **
3255       ** This code copies current group by terms in b0,b1,b2,...
3256       ** over to a0,a1,a2.  It then calls the output subroutine
3257       ** and resets the aggregate accumulator registers in preparation
3258       ** for the next GROUP BY batch.
3259       */
3260       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3261       for(j=0; j<pGroupBy->nExpr; j++){
3262         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3263       }
3264       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3265       VdbeComment((v, "# output one row"));
3266       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3267       VdbeComment((v, "# check abort flag"));
3268       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3269       VdbeComment((v, "# reset accumulator"));
3270 
3271       /* Update the aggregate accumulators based on the content of
3272       ** the current row
3273       */
3274       sqlite3VdbeResolveLabel(v, addrProcessRow);
3275       updateAccumulator(pParse, &sAggInfo);
3276       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3277       VdbeComment((v, "# indicate data in accumulator"));
3278 
3279       /* End of the loop
3280       */
3281       if( groupBySort ){
3282         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3283       }else{
3284         sqlite3WhereEnd(pWInfo);
3285         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3286       }
3287 
3288       /* Output the final row of result
3289       */
3290       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3291       VdbeComment((v, "# output final row"));
3292 
3293     } /* endif pGroupBy */
3294     else {
3295       /* This case runs if the aggregate has no GROUP BY clause.  The
3296       ** processing is much simpler since there is only a single row
3297       ** of output.
3298       */
3299       resetAccumulator(pParse, &sAggInfo);
3300       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3301       if( pWInfo==0 ) goto select_end;
3302       updateAccumulator(pParse, &sAggInfo);
3303       sqlite3WhereEnd(pWInfo);
3304       finalizeAggFunctions(pParse, &sAggInfo);
3305       pOrderBy = 0;
3306       if( pHaving ){
3307         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3308       }
3309       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3310                       eDest, iParm, addrEnd, addrEnd, aff);
3311     }
3312     sqlite3VdbeResolveLabel(v, addrEnd);
3313 
3314   } /* endif aggregate query */
3315 
3316   /* If there is an ORDER BY clause, then we need to sort the results
3317   ** and send them to the callback one by one.
3318   */
3319   if( pOrderBy ){
3320     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3321   }
3322 
3323 #ifndef SQLITE_OMIT_SUBQUERY
3324   /* If this was a subquery, we have now converted the subquery into a
3325   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3326   ** this subquery from being evaluated again and to force the use of
3327   ** the temporary table.
3328   */
3329   if( pParent ){
3330     assert( pParent->pSrc->nSrc>parentTab );
3331     assert( pParent->pSrc->a[parentTab].pSelect==p );
3332     pParent->pSrc->a[parentTab].isPopulated = 1;
3333   }
3334 #endif
3335 
3336   /* Jump here to skip this query
3337   */
3338   sqlite3VdbeResolveLabel(v, iEnd);
3339 
3340   /* The SELECT was successfully coded.   Set the return code to 0
3341   ** to indicate no errors.
3342   */
3343   rc = 0;
3344 
3345   /* Control jumps to here if an error is encountered above, or upon
3346   ** successful coding of the SELECT.
3347   */
3348 select_end:
3349 
3350   /* Identify column names if we will be using them in a callback.  This
3351   ** step is skipped if the output is going to some other destination.
3352   */
3353   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3354     generateColumnNames(pParse, pTabList, pEList);
3355   }
3356 
3357   sqliteFree(sAggInfo.aCol);
3358   sqliteFree(sAggInfo.aFunc);
3359   return rc;
3360 }
3361 
3362 #if defined(SQLITE_DEBUG)
3363 /*
3364 *******************************************************************************
3365 ** The following code is used for testing and debugging only.  The code
3366 ** that follows does not appear in normal builds.
3367 **
3368 ** These routines are used to print out the content of all or part of a
3369 ** parse structures such as Select or Expr.  Such printouts are useful
3370 ** for helping to understand what is happening inside the code generator
3371 ** during the execution of complex SELECT statements.
3372 **
3373 ** These routine are not called anywhere from within the normal
3374 ** code base.  Then are intended to be called from within the debugger
3375 ** or from temporary "printf" statements inserted for debugging.
3376 */
3377 void sqlite3PrintExpr(Expr *p){
3378   if( p->token.z && p->token.n>0 ){
3379     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3380   }else{
3381     sqlite3DebugPrintf("(%d", p->op);
3382   }
3383   if( p->pLeft ){
3384     sqlite3DebugPrintf(" ");
3385     sqlite3PrintExpr(p->pLeft);
3386   }
3387   if( p->pRight ){
3388     sqlite3DebugPrintf(" ");
3389     sqlite3PrintExpr(p->pRight);
3390   }
3391   sqlite3DebugPrintf(")");
3392 }
3393 void sqlite3PrintExprList(ExprList *pList){
3394   int i;
3395   for(i=0; i<pList->nExpr; i++){
3396     sqlite3PrintExpr(pList->a[i].pExpr);
3397     if( i<pList->nExpr-1 ){
3398       sqlite3DebugPrintf(", ");
3399     }
3400   }
3401 }
3402 void sqlite3PrintSelect(Select *p, int indent){
3403   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3404   sqlite3PrintExprList(p->pEList);
3405   sqlite3DebugPrintf("\n");
3406   if( p->pSrc ){
3407     char *zPrefix;
3408     int i;
3409     zPrefix = "FROM";
3410     for(i=0; i<p->pSrc->nSrc; i++){
3411       struct SrcList_item *pItem = &p->pSrc->a[i];
3412       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3413       zPrefix = "";
3414       if( pItem->pSelect ){
3415         sqlite3DebugPrintf("(\n");
3416         sqlite3PrintSelect(pItem->pSelect, indent+10);
3417         sqlite3DebugPrintf("%*s)", indent+8, "");
3418       }else if( pItem->zName ){
3419         sqlite3DebugPrintf("%s", pItem->zName);
3420       }
3421       if( pItem->pTab ){
3422         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3423       }
3424       if( pItem->zAlias ){
3425         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3426       }
3427       if( i<p->pSrc->nSrc-1 ){
3428         sqlite3DebugPrintf(",");
3429       }
3430       sqlite3DebugPrintf("\n");
3431     }
3432   }
3433   if( p->pWhere ){
3434     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3435     sqlite3PrintExpr(p->pWhere);
3436     sqlite3DebugPrintf("\n");
3437   }
3438   if( p->pGroupBy ){
3439     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3440     sqlite3PrintExprList(p->pGroupBy);
3441     sqlite3DebugPrintf("\n");
3442   }
3443   if( p->pHaving ){
3444     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3445     sqlite3PrintExpr(p->pHaving);
3446     sqlite3DebugPrintf("\n");
3447   }
3448   if( p->pOrderBy ){
3449     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3450     sqlite3PrintExprList(p->pOrderBy);
3451     sqlite3DebugPrintf("\n");
3452   }
3453 }
3454 /* End of the structure debug printing code
3455 *****************************************************************************/
3456 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3457