1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.348 2007/05/14 16:50:49 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 assert( pOffset==0 || pLimit!=0 ); 72 pNew->pLimit = pLimit; 73 pNew->pOffset = pOffset; 74 pNew->iLimit = -1; 75 pNew->iOffset = -1; 76 pNew->addrOpenEphm[0] = -1; 77 pNew->addrOpenEphm[1] = -1; 78 pNew->addrOpenEphm[2] = -1; 79 if( pNew==&standin) { 80 clearSelect(pNew); 81 pNew = 0; 82 } 83 return pNew; 84 } 85 86 /* 87 ** Delete the given Select structure and all of its substructures. 88 */ 89 void sqlite3SelectDelete(Select *p){ 90 if( p ){ 91 clearSelect(p); 92 sqliteFree(p); 93 } 94 } 95 96 /* 97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 98 ** type of join. Return an integer constant that expresses that type 99 ** in terms of the following bit values: 100 ** 101 ** JT_INNER 102 ** JT_CROSS 103 ** JT_OUTER 104 ** JT_NATURAL 105 ** JT_LEFT 106 ** JT_RIGHT 107 ** 108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 109 ** 110 ** If an illegal or unsupported join type is seen, then still return 111 ** a join type, but put an error in the pParse structure. 112 */ 113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 114 int jointype = 0; 115 Token *apAll[3]; 116 Token *p; 117 static const struct { 118 const char zKeyword[8]; 119 u8 nChar; 120 u8 code; 121 } keywords[] = { 122 { "natural", 7, JT_NATURAL }, 123 { "left", 4, JT_LEFT|JT_OUTER }, 124 { "right", 5, JT_RIGHT|JT_OUTER }, 125 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 126 { "outer", 5, JT_OUTER }, 127 { "inner", 5, JT_INNER }, 128 { "cross", 5, JT_INNER|JT_CROSS }, 129 }; 130 int i, j; 131 apAll[0] = pA; 132 apAll[1] = pB; 133 apAll[2] = pC; 134 for(i=0; i<3 && apAll[i]; i++){ 135 p = apAll[i]; 136 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 137 if( p->n==keywords[j].nChar 138 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 139 jointype |= keywords[j].code; 140 break; 141 } 142 } 143 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 144 jointype |= JT_ERROR; 145 break; 146 } 147 } 148 if( 149 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 150 (jointype & JT_ERROR)!=0 151 ){ 152 const char *zSp1 = " "; 153 const char *zSp2 = " "; 154 if( pB==0 ){ zSp1++; } 155 if( pC==0 ){ zSp2++; } 156 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 157 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 158 jointype = JT_INNER; 159 }else if( jointype & JT_RIGHT ){ 160 sqlite3ErrorMsg(pParse, 161 "RIGHT and FULL OUTER JOINs are not currently supported"); 162 jointype = JT_INNER; 163 } 164 return jointype; 165 } 166 167 /* 168 ** Return the index of a column in a table. Return -1 if the column 169 ** is not contained in the table. 170 */ 171 static int columnIndex(Table *pTab, const char *zCol){ 172 int i; 173 for(i=0; i<pTab->nCol; i++){ 174 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 175 } 176 return -1; 177 } 178 179 /* 180 ** Set the value of a token to a '\000'-terminated string. 181 */ 182 static void setToken(Token *p, const char *z){ 183 p->z = (u8*)z; 184 p->n = z ? strlen(z) : 0; 185 p->dyn = 0; 186 } 187 188 /* 189 ** Create an expression node for an identifier with the name of zName 190 */ 191 Expr *sqlite3CreateIdExpr(const char *zName){ 192 Token dummy; 193 setToken(&dummy, zName); 194 return sqlite3Expr(TK_ID, 0, 0, &dummy); 195 } 196 197 198 /* 199 ** Add a term to the WHERE expression in *ppExpr that requires the 200 ** zCol column to be equal in the two tables pTab1 and pTab2. 201 */ 202 static void addWhereTerm( 203 const char *zCol, /* Name of the column */ 204 const Table *pTab1, /* First table */ 205 const char *zAlias1, /* Alias for first table. May be NULL */ 206 const Table *pTab2, /* Second table */ 207 const char *zAlias2, /* Alias for second table. May be NULL */ 208 int iRightJoinTable, /* VDBE cursor for the right table */ 209 Expr **ppExpr /* Add the equality term to this expression */ 210 ){ 211 Expr *pE1a, *pE1b, *pE1c; 212 Expr *pE2a, *pE2b, *pE2c; 213 Expr *pE; 214 215 pE1a = sqlite3CreateIdExpr(zCol); 216 pE2a = sqlite3CreateIdExpr(zCol); 217 if( zAlias1==0 ){ 218 zAlias1 = pTab1->zName; 219 } 220 pE1b = sqlite3CreateIdExpr(zAlias1); 221 if( zAlias2==0 ){ 222 zAlias2 = pTab2->zName; 223 } 224 pE2b = sqlite3CreateIdExpr(zAlias2); 225 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 226 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 227 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 228 if( pE ){ 229 ExprSetProperty(pE, EP_FromJoin); 230 pE->iRightJoinTable = iRightJoinTable; 231 } 232 pE = sqlite3ExprAnd(*ppExpr, pE); 233 if( pE ){ 234 *ppExpr = pE; 235 } 236 } 237 238 /* 239 ** Set the EP_FromJoin property on all terms of the given expression. 240 ** And set the Expr.iRightJoinTable to iTable for every term in the 241 ** expression. 242 ** 243 ** The EP_FromJoin property is used on terms of an expression to tell 244 ** the LEFT OUTER JOIN processing logic that this term is part of the 245 ** join restriction specified in the ON or USING clause and not a part 246 ** of the more general WHERE clause. These terms are moved over to the 247 ** WHERE clause during join processing but we need to remember that they 248 ** originated in the ON or USING clause. 249 ** 250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 251 ** expression depends on table iRightJoinTable even if that table is not 252 ** explicitly mentioned in the expression. That information is needed 253 ** for cases like this: 254 ** 255 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 256 ** 257 ** The where clause needs to defer the handling of the t1.x=5 258 ** term until after the t2 loop of the join. In that way, a 259 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 260 ** defer the handling of t1.x=5, it will be processed immediately 261 ** after the t1 loop and rows with t1.x!=5 will never appear in 262 ** the output, which is incorrect. 263 */ 264 static void setJoinExpr(Expr *p, int iTable){ 265 while( p ){ 266 ExprSetProperty(p, EP_FromJoin); 267 p->iRightJoinTable = iTable; 268 setJoinExpr(p->pLeft, iTable); 269 p = p->pRight; 270 } 271 } 272 273 /* 274 ** This routine processes the join information for a SELECT statement. 275 ** ON and USING clauses are converted into extra terms of the WHERE clause. 276 ** NATURAL joins also create extra WHERE clause terms. 277 ** 278 ** The terms of a FROM clause are contained in the Select.pSrc structure. 279 ** The left most table is the first entry in Select.pSrc. The right-most 280 ** table is the last entry. The join operator is held in the entry to 281 ** the left. Thus entry 0 contains the join operator for the join between 282 ** entries 0 and 1. Any ON or USING clauses associated with the join are 283 ** also attached to the left entry. 284 ** 285 ** This routine returns the number of errors encountered. 286 */ 287 static int sqliteProcessJoin(Parse *pParse, Select *p){ 288 SrcList *pSrc; /* All tables in the FROM clause */ 289 int i, j; /* Loop counters */ 290 struct SrcList_item *pLeft; /* Left table being joined */ 291 struct SrcList_item *pRight; /* Right table being joined */ 292 293 pSrc = p->pSrc; 294 pLeft = &pSrc->a[0]; 295 pRight = &pLeft[1]; 296 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 297 Table *pLeftTab = pLeft->pTab; 298 Table *pRightTab = pRight->pTab; 299 300 if( pLeftTab==0 || pRightTab==0 ) continue; 301 302 /* When the NATURAL keyword is present, add WHERE clause terms for 303 ** every column that the two tables have in common. 304 */ 305 if( pRight->jointype & JT_NATURAL ){ 306 if( pRight->pOn || pRight->pUsing ){ 307 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 308 "an ON or USING clause", 0); 309 return 1; 310 } 311 for(j=0; j<pLeftTab->nCol; j++){ 312 char *zName = pLeftTab->aCol[j].zName; 313 if( columnIndex(pRightTab, zName)>=0 ){ 314 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 315 pRightTab, pRight->zAlias, 316 pRight->iCursor, &p->pWhere); 317 318 } 319 } 320 } 321 322 /* Disallow both ON and USING clauses in the same join 323 */ 324 if( pRight->pOn && pRight->pUsing ){ 325 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 326 "clauses in the same join"); 327 return 1; 328 } 329 330 /* Add the ON clause to the end of the WHERE clause, connected by 331 ** an AND operator. 332 */ 333 if( pRight->pOn ){ 334 setJoinExpr(pRight->pOn, pRight->iCursor); 335 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 336 pRight->pOn = 0; 337 } 338 339 /* Create extra terms on the WHERE clause for each column named 340 ** in the USING clause. Example: If the two tables to be joined are 341 ** A and B and the USING clause names X, Y, and Z, then add this 342 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 343 ** Report an error if any column mentioned in the USING clause is 344 ** not contained in both tables to be joined. 345 */ 346 if( pRight->pUsing ){ 347 IdList *pList = pRight->pUsing; 348 for(j=0; j<pList->nId; j++){ 349 char *zName = pList->a[j].zName; 350 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 351 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 352 "not present in both tables", zName); 353 return 1; 354 } 355 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 356 pRightTab, pRight->zAlias, 357 pRight->iCursor, &p->pWhere); 358 } 359 } 360 } 361 return 0; 362 } 363 364 /* 365 ** Insert code into "v" that will push the record on the top of the 366 ** stack into the sorter. 367 */ 368 static void pushOntoSorter( 369 Parse *pParse, /* Parser context */ 370 ExprList *pOrderBy, /* The ORDER BY clause */ 371 Select *pSelect /* The whole SELECT statement */ 372 ){ 373 Vdbe *v = pParse->pVdbe; 374 sqlite3ExprCodeExprList(pParse, pOrderBy); 375 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 376 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 377 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 378 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 379 if( pSelect->iLimit>=0 ){ 380 int addr1, addr2; 381 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 382 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 383 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 384 sqlite3VdbeJumpHere(v, addr1); 385 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 386 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 387 sqlite3VdbeJumpHere(v, addr2); 388 pSelect->iLimit = -1; 389 } 390 } 391 392 /* 393 ** Add code to implement the OFFSET 394 */ 395 static void codeOffset( 396 Vdbe *v, /* Generate code into this VM */ 397 Select *p, /* The SELECT statement being coded */ 398 int iContinue, /* Jump here to skip the current record */ 399 int nPop /* Number of times to pop stack when jumping */ 400 ){ 401 if( p->iOffset>=0 && iContinue!=0 ){ 402 int addr; 403 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 404 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 405 if( nPop>0 ){ 406 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 407 } 408 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 409 VdbeComment((v, "# skip OFFSET records")); 410 sqlite3VdbeJumpHere(v, addr); 411 } 412 } 413 414 /* 415 ** Add code that will check to make sure the top N elements of the 416 ** stack are distinct. iTab is a sorting index that holds previously 417 ** seen combinations of the N values. A new entry is made in iTab 418 ** if the current N values are new. 419 ** 420 ** A jump to addrRepeat is made and the N+1 values are popped from the 421 ** stack if the top N elements are not distinct. 422 */ 423 static void codeDistinct( 424 Vdbe *v, /* Generate code into this VM */ 425 int iTab, /* A sorting index used to test for distinctness */ 426 int addrRepeat, /* Jump to here if not distinct */ 427 int N /* The top N elements of the stack must be distinct */ 428 ){ 429 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 430 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 431 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 432 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 433 VdbeComment((v, "# skip indistinct records")); 434 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 435 } 436 437 /* 438 ** Generate an error message when a SELECT is used within a subexpression 439 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 440 ** column. We do this in a subroutine because the error occurs in multiple 441 ** places. 442 */ 443 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ 444 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 445 sqlite3ErrorMsg(pParse, "only a single result allowed for " 446 "a SELECT that is part of an expression"); 447 return 1; 448 }else{ 449 return 0; 450 } 451 } 452 453 /* 454 ** This routine generates the code for the inside of the inner loop 455 ** of a SELECT. 456 ** 457 ** If srcTab and nColumn are both zero, then the pEList expressions 458 ** are evaluated in order to get the data for this row. If nColumn>0 459 ** then data is pulled from srcTab and pEList is used only to get the 460 ** datatypes for each column. 461 */ 462 static int selectInnerLoop( 463 Parse *pParse, /* The parser context */ 464 Select *p, /* The complete select statement being coded */ 465 ExprList *pEList, /* List of values being extracted */ 466 int srcTab, /* Pull data from this table */ 467 int nColumn, /* Number of columns in the source table */ 468 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 469 int distinct, /* If >=0, make sure results are distinct */ 470 int eDest, /* How to dispose of the results */ 471 int iParm, /* An argument to the disposal method */ 472 int iContinue, /* Jump here to continue with next row */ 473 int iBreak, /* Jump here to break out of the inner loop */ 474 char *aff /* affinity string if eDest is SRT_Union */ 475 ){ 476 Vdbe *v = pParse->pVdbe; 477 int i; 478 int hasDistinct; /* True if the DISTINCT keyword is present */ 479 480 if( v==0 ) return 0; 481 assert( pEList!=0 ); 482 483 /* If there was a LIMIT clause on the SELECT statement, then do the check 484 ** to see if this row should be output. 485 */ 486 hasDistinct = distinct>=0 && pEList->nExpr>0; 487 if( pOrderBy==0 && !hasDistinct ){ 488 codeOffset(v, p, iContinue, 0); 489 } 490 491 /* Pull the requested columns. 492 */ 493 if( nColumn>0 ){ 494 for(i=0; i<nColumn; i++){ 495 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 496 } 497 }else{ 498 nColumn = pEList->nExpr; 499 sqlite3ExprCodeExprList(pParse, pEList); 500 } 501 502 /* If the DISTINCT keyword was present on the SELECT statement 503 ** and this row has been seen before, then do not make this row 504 ** part of the result. 505 */ 506 if( hasDistinct ){ 507 assert( pEList!=0 ); 508 assert( pEList->nExpr==nColumn ); 509 codeDistinct(v, distinct, iContinue, nColumn); 510 if( pOrderBy==0 ){ 511 codeOffset(v, p, iContinue, nColumn); 512 } 513 } 514 515 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 516 return 0; 517 } 518 519 switch( eDest ){ 520 /* In this mode, write each query result to the key of the temporary 521 ** table iParm. 522 */ 523 #ifndef SQLITE_OMIT_COMPOUND_SELECT 524 case SRT_Union: { 525 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 526 if( aff ){ 527 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 528 } 529 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 530 break; 531 } 532 533 /* Construct a record from the query result, but instead of 534 ** saving that record, use it as a key to delete elements from 535 ** the temporary table iParm. 536 */ 537 case SRT_Except: { 538 int addr; 539 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 540 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 541 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 542 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 543 break; 544 } 545 #endif 546 547 /* Store the result as data using a unique key. 548 */ 549 case SRT_Table: 550 case SRT_EphemTab: { 551 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 552 if( pOrderBy ){ 553 pushOntoSorter(pParse, pOrderBy, p); 554 }else{ 555 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 556 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 557 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 558 } 559 break; 560 } 561 562 #ifndef SQLITE_OMIT_SUBQUERY 563 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 564 ** then there should be a single item on the stack. Write this 565 ** item into the set table with bogus data. 566 */ 567 case SRT_Set: { 568 int addr1 = sqlite3VdbeCurrentAddr(v); 569 int addr2; 570 571 assert( nColumn==1 ); 572 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 573 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 574 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 575 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 576 if( pOrderBy ){ 577 /* At first glance you would think we could optimize out the 578 ** ORDER BY in this case since the order of entries in the set 579 ** does not matter. But there might be a LIMIT clause, in which 580 ** case the order does matter */ 581 pushOntoSorter(pParse, pOrderBy, p); 582 }else{ 583 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 584 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 585 } 586 sqlite3VdbeJumpHere(v, addr2); 587 break; 588 } 589 590 /* If any row exist in the result set, record that fact and abort. 591 */ 592 case SRT_Exists: { 593 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 594 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 595 /* The LIMIT clause will terminate the loop for us */ 596 break; 597 } 598 599 /* If this is a scalar select that is part of an expression, then 600 ** store the results in the appropriate memory cell and break out 601 ** of the scan loop. 602 */ 603 case SRT_Mem: { 604 assert( nColumn==1 ); 605 if( pOrderBy ){ 606 pushOntoSorter(pParse, pOrderBy, p); 607 }else{ 608 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 609 /* The LIMIT clause will jump out of the loop for us */ 610 } 611 break; 612 } 613 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 614 615 /* Send the data to the callback function or to a subroutine. In the 616 ** case of a subroutine, the subroutine itself is responsible for 617 ** popping the data from the stack. 618 */ 619 case SRT_Subroutine: 620 case SRT_Callback: { 621 if( pOrderBy ){ 622 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 623 pushOntoSorter(pParse, pOrderBy, p); 624 }else if( eDest==SRT_Subroutine ){ 625 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 626 }else{ 627 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 628 } 629 break; 630 } 631 632 #if !defined(SQLITE_OMIT_TRIGGER) 633 /* Discard the results. This is used for SELECT statements inside 634 ** the body of a TRIGGER. The purpose of such selects is to call 635 ** user-defined functions that have side effects. We do not care 636 ** about the actual results of the select. 637 */ 638 default: { 639 assert( eDest==SRT_Discard ); 640 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 641 break; 642 } 643 #endif 644 } 645 646 /* Jump to the end of the loop if the LIMIT is reached. 647 */ 648 if( p->iLimit>=0 && pOrderBy==0 ){ 649 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 650 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 651 } 652 return 0; 653 } 654 655 /* 656 ** Given an expression list, generate a KeyInfo structure that records 657 ** the collating sequence for each expression in that expression list. 658 ** 659 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 660 ** KeyInfo structure is appropriate for initializing a virtual index to 661 ** implement that clause. If the ExprList is the result set of a SELECT 662 ** then the KeyInfo structure is appropriate for initializing a virtual 663 ** index to implement a DISTINCT test. 664 ** 665 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 666 ** function is responsible for seeing that this structure is eventually 667 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 668 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 669 */ 670 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 671 sqlite3 *db = pParse->db; 672 int nExpr; 673 KeyInfo *pInfo; 674 struct ExprList_item *pItem; 675 int i; 676 677 nExpr = pList->nExpr; 678 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 679 if( pInfo ){ 680 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 681 pInfo->nField = nExpr; 682 pInfo->enc = ENC(db); 683 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 684 CollSeq *pColl; 685 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 686 if( !pColl ){ 687 pColl = db->pDfltColl; 688 } 689 pInfo->aColl[i] = pColl; 690 pInfo->aSortOrder[i] = pItem->sortOrder; 691 } 692 } 693 return pInfo; 694 } 695 696 697 /* 698 ** If the inner loop was generated using a non-null pOrderBy argument, 699 ** then the results were placed in a sorter. After the loop is terminated 700 ** we need to run the sorter and output the results. The following 701 ** routine generates the code needed to do that. 702 */ 703 static void generateSortTail( 704 Parse *pParse, /* Parsing context */ 705 Select *p, /* The SELECT statement */ 706 Vdbe *v, /* Generate code into this VDBE */ 707 int nColumn, /* Number of columns of data */ 708 int eDest, /* Write the sorted results here */ 709 int iParm /* Optional parameter associated with eDest */ 710 ){ 711 int brk = sqlite3VdbeMakeLabel(v); 712 int cont = sqlite3VdbeMakeLabel(v); 713 int addr; 714 int iTab; 715 int pseudoTab = 0; 716 ExprList *pOrderBy = p->pOrderBy; 717 718 iTab = pOrderBy->iECursor; 719 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 720 pseudoTab = pParse->nTab++; 721 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 722 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 723 } 724 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 725 codeOffset(v, p, cont, 0); 726 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 727 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 728 } 729 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 730 switch( eDest ){ 731 case SRT_Table: 732 case SRT_EphemTab: { 733 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 734 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 735 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 736 break; 737 } 738 #ifndef SQLITE_OMIT_SUBQUERY 739 case SRT_Set: { 740 assert( nColumn==1 ); 741 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 742 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 743 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 744 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 745 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 746 break; 747 } 748 case SRT_Mem: { 749 assert( nColumn==1 ); 750 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 751 /* The LIMIT clause will terminate the loop for us */ 752 break; 753 } 754 #endif 755 case SRT_Callback: 756 case SRT_Subroutine: { 757 int i; 758 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 759 for(i=0; i<nColumn; i++){ 760 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 761 } 762 if( eDest==SRT_Callback ){ 763 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 764 }else{ 765 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 766 } 767 break; 768 } 769 default: { 770 /* Do nothing */ 771 break; 772 } 773 } 774 775 /* Jump to the end of the loop when the LIMIT is reached 776 */ 777 if( p->iLimit>=0 ){ 778 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 779 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 780 } 781 782 /* The bottom of the loop 783 */ 784 sqlite3VdbeResolveLabel(v, cont); 785 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 786 sqlite3VdbeResolveLabel(v, brk); 787 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 788 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 789 } 790 791 } 792 793 /* 794 ** Return a pointer to a string containing the 'declaration type' of the 795 ** expression pExpr. The string may be treated as static by the caller. 796 ** 797 ** The declaration type is the exact datatype definition extracted from the 798 ** original CREATE TABLE statement if the expression is a column. The 799 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 800 ** is considered a column can be complex in the presence of subqueries. The 801 ** result-set expression in all of the following SELECT statements is 802 ** considered a column by this function. 803 ** 804 ** SELECT col FROM tbl; 805 ** SELECT (SELECT col FROM tbl; 806 ** SELECT (SELECT col FROM tbl); 807 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 808 ** 809 ** The declaration type for any expression other than a column is NULL. 810 */ 811 static const char *columnType( 812 NameContext *pNC, 813 Expr *pExpr, 814 const char **pzOriginDb, 815 const char **pzOriginTab, 816 const char **pzOriginCol 817 ){ 818 char const *zType = 0; 819 char const *zOriginDb = 0; 820 char const *zOriginTab = 0; 821 char const *zOriginCol = 0; 822 int j; 823 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 824 825 switch( pExpr->op ){ 826 case TK_AGG_COLUMN: 827 case TK_COLUMN: { 828 /* The expression is a column. Locate the table the column is being 829 ** extracted from in NameContext.pSrcList. This table may be real 830 ** database table or a subquery. 831 */ 832 Table *pTab = 0; /* Table structure column is extracted from */ 833 Select *pS = 0; /* Select the column is extracted from */ 834 int iCol = pExpr->iColumn; /* Index of column in pTab */ 835 while( pNC && !pTab ){ 836 SrcList *pTabList = pNC->pSrcList; 837 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 838 if( j<pTabList->nSrc ){ 839 pTab = pTabList->a[j].pTab; 840 pS = pTabList->a[j].pSelect; 841 }else{ 842 pNC = pNC->pNext; 843 } 844 } 845 846 if( pTab==0 ){ 847 /* FIX ME: 848 ** This can occurs if you have something like "SELECT new.x;" inside 849 ** a trigger. In other words, if you reference the special "new" 850 ** table in the result set of a select. We do not have a good way 851 ** to find the actual table type, so call it "TEXT". This is really 852 ** something of a bug, but I do not know how to fix it. 853 ** 854 ** This code does not produce the correct answer - it just prevents 855 ** a segfault. See ticket #1229. 856 */ 857 zType = "TEXT"; 858 break; 859 } 860 861 assert( pTab ); 862 if( pS ){ 863 /* The "table" is actually a sub-select or a view in the FROM clause 864 ** of the SELECT statement. Return the declaration type and origin 865 ** data for the result-set column of the sub-select. 866 */ 867 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 868 /* If iCol is less than zero, then the expression requests the 869 ** rowid of the sub-select or view. This expression is legal (see 870 ** test case misc2.2.2) - it always evaluates to NULL. 871 */ 872 NameContext sNC; 873 Expr *p = pS->pEList->a[iCol].pExpr; 874 sNC.pSrcList = pS->pSrc; 875 sNC.pNext = 0; 876 sNC.pParse = pNC->pParse; 877 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 878 } 879 }else if( pTab->pSchema ){ 880 /* A real table */ 881 assert( !pS ); 882 if( iCol<0 ) iCol = pTab->iPKey; 883 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 884 if( iCol<0 ){ 885 zType = "INTEGER"; 886 zOriginCol = "rowid"; 887 }else{ 888 zType = pTab->aCol[iCol].zType; 889 zOriginCol = pTab->aCol[iCol].zName; 890 } 891 zOriginTab = pTab->zName; 892 if( pNC->pParse ){ 893 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 894 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 895 } 896 } 897 break; 898 } 899 #ifndef SQLITE_OMIT_SUBQUERY 900 case TK_SELECT: { 901 /* The expression is a sub-select. Return the declaration type and 902 ** origin info for the single column in the result set of the SELECT 903 ** statement. 904 */ 905 NameContext sNC; 906 Select *pS = pExpr->pSelect; 907 Expr *p = pS->pEList->a[0].pExpr; 908 sNC.pSrcList = pS->pSrc; 909 sNC.pNext = pNC; 910 sNC.pParse = pNC->pParse; 911 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 912 break; 913 } 914 #endif 915 } 916 917 if( pzOriginDb ){ 918 assert( pzOriginTab && pzOriginCol ); 919 *pzOriginDb = zOriginDb; 920 *pzOriginTab = zOriginTab; 921 *pzOriginCol = zOriginCol; 922 } 923 return zType; 924 } 925 926 /* 927 ** Generate code that will tell the VDBE the declaration types of columns 928 ** in the result set. 929 */ 930 static void generateColumnTypes( 931 Parse *pParse, /* Parser context */ 932 SrcList *pTabList, /* List of tables */ 933 ExprList *pEList /* Expressions defining the result set */ 934 ){ 935 Vdbe *v = pParse->pVdbe; 936 int i; 937 NameContext sNC; 938 sNC.pSrcList = pTabList; 939 sNC.pParse = pParse; 940 for(i=0; i<pEList->nExpr; i++){ 941 Expr *p = pEList->a[i].pExpr; 942 const char *zOrigDb = 0; 943 const char *zOrigTab = 0; 944 const char *zOrigCol = 0; 945 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 946 947 /* The vdbe must make it's own copy of the column-type and other 948 ** column specific strings, in case the schema is reset before this 949 ** virtual machine is deleted. 950 */ 951 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 952 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 953 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 954 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 955 } 956 } 957 958 /* 959 ** Generate code that will tell the VDBE the names of columns 960 ** in the result set. This information is used to provide the 961 ** azCol[] values in the callback. 962 */ 963 static void generateColumnNames( 964 Parse *pParse, /* Parser context */ 965 SrcList *pTabList, /* List of tables */ 966 ExprList *pEList /* Expressions defining the result set */ 967 ){ 968 Vdbe *v = pParse->pVdbe; 969 int i, j; 970 sqlite3 *db = pParse->db; 971 int fullNames, shortNames; 972 973 #ifndef SQLITE_OMIT_EXPLAIN 974 /* If this is an EXPLAIN, skip this step */ 975 if( pParse->explain ){ 976 return; 977 } 978 #endif 979 980 assert( v!=0 ); 981 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 982 pParse->colNamesSet = 1; 983 fullNames = (db->flags & SQLITE_FullColNames)!=0; 984 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 985 sqlite3VdbeSetNumCols(v, pEList->nExpr); 986 for(i=0; i<pEList->nExpr; i++){ 987 Expr *p; 988 p = pEList->a[i].pExpr; 989 if( p==0 ) continue; 990 if( pEList->a[i].zName ){ 991 char *zName = pEList->a[i].zName; 992 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 993 continue; 994 } 995 if( p->op==TK_COLUMN && pTabList ){ 996 Table *pTab; 997 char *zCol; 998 int iCol = p->iColumn; 999 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1000 assert( j<pTabList->nSrc ); 1001 pTab = pTabList->a[j].pTab; 1002 if( iCol<0 ) iCol = pTab->iPKey; 1003 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1004 if( iCol<0 ){ 1005 zCol = "rowid"; 1006 }else{ 1007 zCol = pTab->aCol[iCol].zName; 1008 } 1009 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 1010 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1011 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1012 char *zName = 0; 1013 char *zTab; 1014 1015 zTab = pTabList->a[j].zAlias; 1016 if( fullNames || zTab==0 ) zTab = pTab->zName; 1017 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1018 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1019 }else{ 1020 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1021 } 1022 }else if( p->span.z && p->span.z[0] ){ 1023 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1024 /* sqlite3VdbeCompressSpace(v, addr); */ 1025 }else{ 1026 char zName[30]; 1027 assert( p->op!=TK_COLUMN || pTabList==0 ); 1028 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1029 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1030 } 1031 } 1032 generateColumnTypes(pParse, pTabList, pEList); 1033 } 1034 1035 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1036 /* 1037 ** Name of the connection operator, used for error messages. 1038 */ 1039 static const char *selectOpName(int id){ 1040 char *z; 1041 switch( id ){ 1042 case TK_ALL: z = "UNION ALL"; break; 1043 case TK_INTERSECT: z = "INTERSECT"; break; 1044 case TK_EXCEPT: z = "EXCEPT"; break; 1045 default: z = "UNION"; break; 1046 } 1047 return z; 1048 } 1049 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1050 1051 /* 1052 ** Forward declaration 1053 */ 1054 static int prepSelectStmt(Parse*, Select*); 1055 1056 /* 1057 ** Given a SELECT statement, generate a Table structure that describes 1058 ** the result set of that SELECT. 1059 */ 1060 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1061 Table *pTab; 1062 int i, j; 1063 ExprList *pEList; 1064 Column *aCol, *pCol; 1065 1066 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1067 if( prepSelectStmt(pParse, pSelect) ){ 1068 return 0; 1069 } 1070 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1071 return 0; 1072 } 1073 pTab = sqliteMalloc( sizeof(Table) ); 1074 if( pTab==0 ){ 1075 return 0; 1076 } 1077 pTab->nRef = 1; 1078 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1079 pEList = pSelect->pEList; 1080 pTab->nCol = pEList->nExpr; 1081 assert( pTab->nCol>0 ); 1082 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1083 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1084 Expr *p, *pR; 1085 char *zType; 1086 char *zName; 1087 int nName; 1088 CollSeq *pColl; 1089 int cnt; 1090 NameContext sNC; 1091 1092 /* Get an appropriate name for the column 1093 */ 1094 p = pEList->a[i].pExpr; 1095 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1096 if( (zName = pEList->a[i].zName)!=0 ){ 1097 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1098 zName = sqliteStrDup(zName); 1099 }else if( p->op==TK_DOT 1100 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1101 /* For columns of the from A.B use B as the name */ 1102 zName = sqlite3MPrintf("%T", &pR->token); 1103 }else if( p->span.z && p->span.z[0] ){ 1104 /* Use the original text of the column expression as its name */ 1105 zName = sqlite3MPrintf("%T", &p->span); 1106 }else{ 1107 /* If all else fails, make up a name */ 1108 zName = sqlite3MPrintf("column%d", i+1); 1109 } 1110 sqlite3Dequote(zName); 1111 if( sqlite3MallocFailed() ){ 1112 sqliteFree(zName); 1113 sqlite3DeleteTable(pTab); 1114 return 0; 1115 } 1116 1117 /* Make sure the column name is unique. If the name is not unique, 1118 ** append a integer to the name so that it becomes unique. 1119 */ 1120 nName = strlen(zName); 1121 for(j=cnt=0; j<i; j++){ 1122 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1123 zName[nName] = 0; 1124 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1125 j = -1; 1126 if( zName==0 ) break; 1127 } 1128 } 1129 pCol->zName = zName; 1130 1131 /* Get the typename, type affinity, and collating sequence for the 1132 ** column. 1133 */ 1134 memset(&sNC, 0, sizeof(sNC)); 1135 sNC.pSrcList = pSelect->pSrc; 1136 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1137 pCol->zType = zType; 1138 pCol->affinity = sqlite3ExprAffinity(p); 1139 pColl = sqlite3ExprCollSeq(pParse, p); 1140 if( pColl ){ 1141 pCol->zColl = sqliteStrDup(pColl->zName); 1142 } 1143 } 1144 pTab->iPKey = -1; 1145 return pTab; 1146 } 1147 1148 /* 1149 ** Prepare a SELECT statement for processing by doing the following 1150 ** things: 1151 ** 1152 ** (1) Make sure VDBE cursor numbers have been assigned to every 1153 ** element of the FROM clause. 1154 ** 1155 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1156 ** defines FROM clause. When views appear in the FROM clause, 1157 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1158 ** that implements the view. A copy is made of the view's SELECT 1159 ** statement so that we can freely modify or delete that statement 1160 ** without worrying about messing up the presistent representation 1161 ** of the view. 1162 ** 1163 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1164 ** on joins and the ON and USING clause of joins. 1165 ** 1166 ** (4) Scan the list of columns in the result set (pEList) looking 1167 ** for instances of the "*" operator or the TABLE.* operator. 1168 ** If found, expand each "*" to be every column in every table 1169 ** and TABLE.* to be every column in TABLE. 1170 ** 1171 ** Return 0 on success. If there are problems, leave an error message 1172 ** in pParse and return non-zero. 1173 */ 1174 static int prepSelectStmt(Parse *pParse, Select *p){ 1175 int i, j, k, rc; 1176 SrcList *pTabList; 1177 ExprList *pEList; 1178 struct SrcList_item *pFrom; 1179 1180 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1181 return 1; 1182 } 1183 pTabList = p->pSrc; 1184 pEList = p->pEList; 1185 1186 /* Make sure cursor numbers have been assigned to all entries in 1187 ** the FROM clause of the SELECT statement. 1188 */ 1189 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1190 1191 /* Look up every table named in the FROM clause of the select. If 1192 ** an entry of the FROM clause is a subquery instead of a table or view, 1193 ** then create a transient table structure to describe the subquery. 1194 */ 1195 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1196 Table *pTab; 1197 if( pFrom->pTab!=0 ){ 1198 /* This statement has already been prepared. There is no need 1199 ** to go further. */ 1200 assert( i==0 ); 1201 return 0; 1202 } 1203 if( pFrom->zName==0 ){ 1204 #ifndef SQLITE_OMIT_SUBQUERY 1205 /* A sub-query in the FROM clause of a SELECT */ 1206 assert( pFrom->pSelect!=0 ); 1207 if( pFrom->zAlias==0 ){ 1208 pFrom->zAlias = 1209 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1210 } 1211 assert( pFrom->pTab==0 ); 1212 pFrom->pTab = pTab = 1213 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1214 if( pTab==0 ){ 1215 return 1; 1216 } 1217 /* The isEphem flag indicates that the Table structure has been 1218 ** dynamically allocated and may be freed at any time. In other words, 1219 ** pTab is not pointing to a persistent table structure that defines 1220 ** part of the schema. */ 1221 pTab->isEphem = 1; 1222 #endif 1223 }else{ 1224 /* An ordinary table or view name in the FROM clause */ 1225 assert( pFrom->pTab==0 ); 1226 pFrom->pTab = pTab = 1227 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1228 if( pTab==0 ){ 1229 return 1; 1230 } 1231 pTab->nRef++; 1232 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1233 if( pTab->pSelect || IsVirtual(pTab) ){ 1234 /* We reach here if the named table is a really a view */ 1235 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1236 return 1; 1237 } 1238 /* If pFrom->pSelect!=0 it means we are dealing with a 1239 ** view within a view. The SELECT structure has already been 1240 ** copied by the outer view so we can skip the copy step here 1241 ** in the inner view. 1242 */ 1243 if( pFrom->pSelect==0 ){ 1244 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1245 } 1246 } 1247 #endif 1248 } 1249 } 1250 1251 /* Process NATURAL keywords, and ON and USING clauses of joins. 1252 */ 1253 if( sqliteProcessJoin(pParse, p) ) return 1; 1254 1255 /* For every "*" that occurs in the column list, insert the names of 1256 ** all columns in all tables. And for every TABLE.* insert the names 1257 ** of all columns in TABLE. The parser inserted a special expression 1258 ** with the TK_ALL operator for each "*" that it found in the column list. 1259 ** The following code just has to locate the TK_ALL expressions and expand 1260 ** each one to the list of all columns in all tables. 1261 ** 1262 ** The first loop just checks to see if there are any "*" operators 1263 ** that need expanding. 1264 */ 1265 for(k=0; k<pEList->nExpr; k++){ 1266 Expr *pE = pEList->a[k].pExpr; 1267 if( pE->op==TK_ALL ) break; 1268 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1269 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1270 } 1271 rc = 0; 1272 if( k<pEList->nExpr ){ 1273 /* 1274 ** If we get here it means the result set contains one or more "*" 1275 ** operators that need to be expanded. Loop through each expression 1276 ** in the result set and expand them one by one. 1277 */ 1278 struct ExprList_item *a = pEList->a; 1279 ExprList *pNew = 0; 1280 int flags = pParse->db->flags; 1281 int longNames = (flags & SQLITE_FullColNames)!=0 && 1282 (flags & SQLITE_ShortColNames)==0; 1283 1284 for(k=0; k<pEList->nExpr; k++){ 1285 Expr *pE = a[k].pExpr; 1286 if( pE->op!=TK_ALL && 1287 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1288 /* This particular expression does not need to be expanded. 1289 */ 1290 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1291 if( pNew ){ 1292 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1293 }else{ 1294 rc = 1; 1295 } 1296 a[k].pExpr = 0; 1297 a[k].zName = 0; 1298 }else{ 1299 /* This expression is a "*" or a "TABLE.*" and needs to be 1300 ** expanded. */ 1301 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1302 char *zTName; /* text of name of TABLE */ 1303 if( pE->op==TK_DOT && pE->pLeft ){ 1304 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1305 }else{ 1306 zTName = 0; 1307 } 1308 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1309 Table *pTab = pFrom->pTab; 1310 char *zTabName = pFrom->zAlias; 1311 if( zTabName==0 || zTabName[0]==0 ){ 1312 zTabName = pTab->zName; 1313 } 1314 if( zTName && (zTabName==0 || zTabName[0]==0 || 1315 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1316 continue; 1317 } 1318 tableSeen = 1; 1319 for(j=0; j<pTab->nCol; j++){ 1320 Expr *pExpr, *pRight; 1321 char *zName = pTab->aCol[j].zName; 1322 1323 if( i>0 ){ 1324 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1325 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1326 columnIndex(pLeft->pTab, zName)>=0 ){ 1327 /* In a NATURAL join, omit the join columns from the 1328 ** table on the right */ 1329 continue; 1330 } 1331 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1332 /* In a join with a USING clause, omit columns in the 1333 ** using clause from the table on the right. */ 1334 continue; 1335 } 1336 } 1337 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1338 if( pRight==0 ) break; 1339 setToken(&pRight->token, zName); 1340 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1341 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1342 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1343 if( pExpr==0 ) break; 1344 setToken(&pLeft->token, zTabName); 1345 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1346 pExpr->span.dyn = 1; 1347 pExpr->token.z = 0; 1348 pExpr->token.n = 0; 1349 pExpr->token.dyn = 0; 1350 }else{ 1351 pExpr = pRight; 1352 pExpr->span = pExpr->token; 1353 } 1354 if( longNames ){ 1355 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1356 }else{ 1357 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1358 } 1359 } 1360 } 1361 if( !tableSeen ){ 1362 if( zTName ){ 1363 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1364 }else{ 1365 sqlite3ErrorMsg(pParse, "no tables specified"); 1366 } 1367 rc = 1; 1368 } 1369 sqliteFree(zTName); 1370 } 1371 } 1372 sqlite3ExprListDelete(pEList); 1373 p->pEList = pNew; 1374 } 1375 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ 1376 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1377 rc = SQLITE_ERROR; 1378 } 1379 return rc; 1380 } 1381 1382 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1383 /* 1384 ** This routine associates entries in an ORDER BY expression list with 1385 ** columns in a result. For each ORDER BY expression, the opcode of 1386 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1387 ** the top-level node is filled in with column number and the iTable 1388 ** value of the top-level node is filled with iTable parameter. 1389 ** 1390 ** If there are prior SELECT clauses, they are processed first. A match 1391 ** in an earlier SELECT takes precedence over a later SELECT. 1392 ** 1393 ** Any entry that does not match is flagged as an error. The number 1394 ** of errors is returned. 1395 */ 1396 static int matchOrderbyToColumn( 1397 Parse *pParse, /* A place to leave error messages */ 1398 Select *pSelect, /* Match to result columns of this SELECT */ 1399 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1400 int iTable, /* Insert this value in iTable */ 1401 int mustComplete /* If TRUE all ORDER BYs must match */ 1402 ){ 1403 int nErr = 0; 1404 int i, j; 1405 ExprList *pEList; 1406 1407 if( pSelect==0 || pOrderBy==0 ) return 1; 1408 if( mustComplete ){ 1409 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1410 } 1411 if( prepSelectStmt(pParse, pSelect) ){ 1412 return 1; 1413 } 1414 if( pSelect->pPrior ){ 1415 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1416 return 1; 1417 } 1418 } 1419 pEList = pSelect->pEList; 1420 for(i=0; i<pOrderBy->nExpr; i++){ 1421 struct ExprList_item *pItem; 1422 Expr *pE = pOrderBy->a[i].pExpr; 1423 int iCol = -1; 1424 char *zLabel; 1425 1426 if( pOrderBy->a[i].done ) continue; 1427 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1428 if( iCol<=0 || iCol>pEList->nExpr ){ 1429 sqlite3ErrorMsg(pParse, 1430 "ORDER BY position %d should be between 1 and %d", 1431 iCol, pEList->nExpr); 1432 nErr++; 1433 break; 1434 } 1435 if( !mustComplete ) continue; 1436 iCol--; 1437 } 1438 if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){ 1439 for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){ 1440 char *zName; 1441 int isMatch; 1442 if( pItem->zName ){ 1443 zName = sqlite3StrDup(pItem->zName); 1444 }else{ 1445 zName = sqlite3NameFromToken(&pItem->pExpr->token); 1446 } 1447 isMatch = zName && sqlite3StrICmp(zName, zLabel)==0; 1448 sqliteFree(zName); 1449 if( isMatch ){ 1450 iCol = j; 1451 break; 1452 } 1453 } 1454 sqliteFree(zLabel); 1455 } 1456 if( iCol>=0 ){ 1457 pE->op = TK_COLUMN; 1458 pE->iColumn = iCol; 1459 pE->iTable = iTable; 1460 pE->iAgg = -1; 1461 pOrderBy->a[i].done = 1; 1462 }else if( mustComplete ){ 1463 sqlite3ErrorMsg(pParse, 1464 "ORDER BY term number %d does not match any result column", i+1); 1465 nErr++; 1466 break; 1467 } 1468 } 1469 return nErr; 1470 } 1471 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1472 1473 /* 1474 ** Get a VDBE for the given parser context. Create a new one if necessary. 1475 ** If an error occurs, return NULL and leave a message in pParse. 1476 */ 1477 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1478 Vdbe *v = pParse->pVdbe; 1479 if( v==0 ){ 1480 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1481 } 1482 return v; 1483 } 1484 1485 1486 /* 1487 ** Compute the iLimit and iOffset fields of the SELECT based on the 1488 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1489 ** that appear in the original SQL statement after the LIMIT and OFFSET 1490 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1491 ** are the integer memory register numbers for counters used to compute 1492 ** the limit and offset. If there is no limit and/or offset, then 1493 ** iLimit and iOffset are negative. 1494 ** 1495 ** This routine changes the values of iLimit and iOffset only if 1496 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1497 ** iOffset should have been preset to appropriate default values 1498 ** (usually but not always -1) prior to calling this routine. 1499 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1500 ** redefined. The UNION ALL operator uses this property to force 1501 ** the reuse of the same limit and offset registers across multiple 1502 ** SELECT statements. 1503 */ 1504 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1505 Vdbe *v = 0; 1506 int iLimit = 0; 1507 int iOffset; 1508 int addr1, addr2; 1509 1510 /* 1511 ** "LIMIT -1" always shows all rows. There is some 1512 ** contraversy about what the correct behavior should be. 1513 ** The current implementation interprets "LIMIT 0" to mean 1514 ** no rows. 1515 */ 1516 if( p->pLimit ){ 1517 p->iLimit = iLimit = pParse->nMem; 1518 pParse->nMem += 2; 1519 v = sqlite3GetVdbe(pParse); 1520 if( v==0 ) return; 1521 sqlite3ExprCode(pParse, p->pLimit); 1522 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1523 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); 1524 VdbeComment((v, "# LIMIT counter")); 1525 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1526 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); 1527 } 1528 if( p->pOffset ){ 1529 p->iOffset = iOffset = pParse->nMem++; 1530 v = sqlite3GetVdbe(pParse); 1531 if( v==0 ) return; 1532 sqlite3ExprCode(pParse, p->pOffset); 1533 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1534 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1535 VdbeComment((v, "# OFFSET counter")); 1536 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1537 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1538 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1539 sqlite3VdbeJumpHere(v, addr1); 1540 if( p->pLimit ){ 1541 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1542 } 1543 } 1544 if( p->pLimit ){ 1545 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1546 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1547 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1548 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1549 sqlite3VdbeJumpHere(v, addr1); 1550 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1551 VdbeComment((v, "# LIMIT+OFFSET")); 1552 sqlite3VdbeJumpHere(v, addr2); 1553 } 1554 } 1555 1556 /* 1557 ** Allocate a virtual index to use for sorting. 1558 */ 1559 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1560 if( pOrderBy ){ 1561 int addr; 1562 assert( pOrderBy->iECursor==0 ); 1563 pOrderBy->iECursor = pParse->nTab++; 1564 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1565 pOrderBy->iECursor, pOrderBy->nExpr+1); 1566 assert( p->addrOpenEphm[2] == -1 ); 1567 p->addrOpenEphm[2] = addr; 1568 } 1569 } 1570 1571 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1572 /* 1573 ** Return the appropriate collating sequence for the iCol-th column of 1574 ** the result set for the compound-select statement "p". Return NULL if 1575 ** the column has no default collating sequence. 1576 ** 1577 ** The collating sequence for the compound select is taken from the 1578 ** left-most term of the select that has a collating sequence. 1579 */ 1580 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1581 CollSeq *pRet; 1582 if( p->pPrior ){ 1583 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1584 }else{ 1585 pRet = 0; 1586 } 1587 if( pRet==0 ){ 1588 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1589 } 1590 return pRet; 1591 } 1592 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1593 1594 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1595 /* 1596 ** This routine is called to process a query that is really the union 1597 ** or intersection of two or more separate queries. 1598 ** 1599 ** "p" points to the right-most of the two queries. the query on the 1600 ** left is p->pPrior. The left query could also be a compound query 1601 ** in which case this routine will be called recursively. 1602 ** 1603 ** The results of the total query are to be written into a destination 1604 ** of type eDest with parameter iParm. 1605 ** 1606 ** Example 1: Consider a three-way compound SQL statement. 1607 ** 1608 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1609 ** 1610 ** This statement is parsed up as follows: 1611 ** 1612 ** SELECT c FROM t3 1613 ** | 1614 ** `-----> SELECT b FROM t2 1615 ** | 1616 ** `------> SELECT a FROM t1 1617 ** 1618 ** The arrows in the diagram above represent the Select.pPrior pointer. 1619 ** So if this routine is called with p equal to the t3 query, then 1620 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1621 ** 1622 ** Notice that because of the way SQLite parses compound SELECTs, the 1623 ** individual selects always group from left to right. 1624 */ 1625 static int multiSelect( 1626 Parse *pParse, /* Parsing context */ 1627 Select *p, /* The right-most of SELECTs to be coded */ 1628 int eDest, /* \___ Store query results as specified */ 1629 int iParm, /* / by these two parameters. */ 1630 char *aff /* If eDest is SRT_Union, the affinity string */ 1631 ){ 1632 int rc = SQLITE_OK; /* Success code from a subroutine */ 1633 Select *pPrior; /* Another SELECT immediately to our left */ 1634 Vdbe *v; /* Generate code to this VDBE */ 1635 int nCol; /* Number of columns in the result set */ 1636 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1637 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1638 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1639 1640 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1641 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1642 */ 1643 if( p==0 || p->pPrior==0 ){ 1644 rc = 1; 1645 goto multi_select_end; 1646 } 1647 pPrior = p->pPrior; 1648 assert( pPrior->pRightmost!=pPrior ); 1649 assert( pPrior->pRightmost==p->pRightmost ); 1650 if( pPrior->pOrderBy ){ 1651 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1652 selectOpName(p->op)); 1653 rc = 1; 1654 goto multi_select_end; 1655 } 1656 if( pPrior->pLimit ){ 1657 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1658 selectOpName(p->op)); 1659 rc = 1; 1660 goto multi_select_end; 1661 } 1662 1663 /* Make sure we have a valid query engine. If not, create a new one. 1664 */ 1665 v = sqlite3GetVdbe(pParse); 1666 if( v==0 ){ 1667 rc = 1; 1668 goto multi_select_end; 1669 } 1670 1671 /* Create the destination temporary table if necessary 1672 */ 1673 if( eDest==SRT_EphemTab ){ 1674 assert( p->pEList ); 1675 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1676 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1677 eDest = SRT_Table; 1678 } 1679 1680 /* Generate code for the left and right SELECT statements. 1681 */ 1682 pOrderBy = p->pOrderBy; 1683 switch( p->op ){ 1684 case TK_ALL: { 1685 if( pOrderBy==0 ){ 1686 int addr = 0; 1687 assert( !pPrior->pLimit ); 1688 pPrior->pLimit = p->pLimit; 1689 pPrior->pOffset = p->pOffset; 1690 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1691 p->pLimit = 0; 1692 p->pOffset = 0; 1693 if( rc ){ 1694 goto multi_select_end; 1695 } 1696 p->pPrior = 0; 1697 p->iLimit = pPrior->iLimit; 1698 p->iOffset = pPrior->iOffset; 1699 if( p->iLimit>=0 ){ 1700 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1701 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1702 } 1703 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1704 p->pPrior = pPrior; 1705 if( rc ){ 1706 goto multi_select_end; 1707 } 1708 if( addr ){ 1709 sqlite3VdbeJumpHere(v, addr); 1710 } 1711 break; 1712 } 1713 /* For UNION ALL ... ORDER BY fall through to the next case */ 1714 } 1715 case TK_EXCEPT: 1716 case TK_UNION: { 1717 int unionTab; /* Cursor number of the temporary table holding result */ 1718 int op = 0; /* One of the SRT_ operations to apply to self */ 1719 int priorOp; /* The SRT_ operation to apply to prior selects */ 1720 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1721 int addr; 1722 1723 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1724 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1725 /* We can reuse a temporary table generated by a SELECT to our 1726 ** right. 1727 */ 1728 unionTab = iParm; 1729 }else{ 1730 /* We will need to create our own temporary table to hold the 1731 ** intermediate results. 1732 */ 1733 unionTab = pParse->nTab++; 1734 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1735 rc = 1; 1736 goto multi_select_end; 1737 } 1738 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1739 if( priorOp==SRT_Table ){ 1740 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1741 aSetP2[nSetP2++] = addr; 1742 }else{ 1743 assert( p->addrOpenEphm[0] == -1 ); 1744 p->addrOpenEphm[0] = addr; 1745 p->pRightmost->usesEphm = 1; 1746 } 1747 createSortingIndex(pParse, p, pOrderBy); 1748 assert( p->pEList ); 1749 } 1750 1751 /* Code the SELECT statements to our left 1752 */ 1753 assert( !pPrior->pOrderBy ); 1754 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1755 if( rc ){ 1756 goto multi_select_end; 1757 } 1758 1759 /* Code the current SELECT statement 1760 */ 1761 switch( p->op ){ 1762 case TK_EXCEPT: op = SRT_Except; break; 1763 case TK_UNION: op = SRT_Union; break; 1764 case TK_ALL: op = SRT_Table; break; 1765 } 1766 p->pPrior = 0; 1767 p->pOrderBy = 0; 1768 p->disallowOrderBy = pOrderBy!=0; 1769 pLimit = p->pLimit; 1770 p->pLimit = 0; 1771 pOffset = p->pOffset; 1772 p->pOffset = 0; 1773 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1774 p->pPrior = pPrior; 1775 p->pOrderBy = pOrderBy; 1776 sqlite3ExprDelete(p->pLimit); 1777 p->pLimit = pLimit; 1778 p->pOffset = pOffset; 1779 p->iLimit = -1; 1780 p->iOffset = -1; 1781 if( rc ){ 1782 goto multi_select_end; 1783 } 1784 1785 1786 /* Convert the data in the temporary table into whatever form 1787 ** it is that we currently need. 1788 */ 1789 if( eDest!=priorOp || unionTab!=iParm ){ 1790 int iCont, iBreak, iStart; 1791 assert( p->pEList ); 1792 if( eDest==SRT_Callback ){ 1793 Select *pFirst = p; 1794 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1795 generateColumnNames(pParse, 0, pFirst->pEList); 1796 } 1797 iBreak = sqlite3VdbeMakeLabel(v); 1798 iCont = sqlite3VdbeMakeLabel(v); 1799 computeLimitRegisters(pParse, p, iBreak); 1800 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1801 iStart = sqlite3VdbeCurrentAddr(v); 1802 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1803 pOrderBy, -1, eDest, iParm, 1804 iCont, iBreak, 0); 1805 if( rc ){ 1806 rc = 1; 1807 goto multi_select_end; 1808 } 1809 sqlite3VdbeResolveLabel(v, iCont); 1810 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1811 sqlite3VdbeResolveLabel(v, iBreak); 1812 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1813 } 1814 break; 1815 } 1816 case TK_INTERSECT: { 1817 int tab1, tab2; 1818 int iCont, iBreak, iStart; 1819 Expr *pLimit, *pOffset; 1820 int addr; 1821 1822 /* INTERSECT is different from the others since it requires 1823 ** two temporary tables. Hence it has its own case. Begin 1824 ** by allocating the tables we will need. 1825 */ 1826 tab1 = pParse->nTab++; 1827 tab2 = pParse->nTab++; 1828 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1829 rc = 1; 1830 goto multi_select_end; 1831 } 1832 createSortingIndex(pParse, p, pOrderBy); 1833 1834 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1835 assert( p->addrOpenEphm[0] == -1 ); 1836 p->addrOpenEphm[0] = addr; 1837 p->pRightmost->usesEphm = 1; 1838 assert( p->pEList ); 1839 1840 /* Code the SELECTs to our left into temporary table "tab1". 1841 */ 1842 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1843 if( rc ){ 1844 goto multi_select_end; 1845 } 1846 1847 /* Code the current SELECT into temporary table "tab2" 1848 */ 1849 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1850 assert( p->addrOpenEphm[1] == -1 ); 1851 p->addrOpenEphm[1] = addr; 1852 p->pPrior = 0; 1853 pLimit = p->pLimit; 1854 p->pLimit = 0; 1855 pOffset = p->pOffset; 1856 p->pOffset = 0; 1857 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1858 p->pPrior = pPrior; 1859 sqlite3ExprDelete(p->pLimit); 1860 p->pLimit = pLimit; 1861 p->pOffset = pOffset; 1862 if( rc ){ 1863 goto multi_select_end; 1864 } 1865 1866 /* Generate code to take the intersection of the two temporary 1867 ** tables. 1868 */ 1869 assert( p->pEList ); 1870 if( eDest==SRT_Callback ){ 1871 Select *pFirst = p; 1872 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1873 generateColumnNames(pParse, 0, pFirst->pEList); 1874 } 1875 iBreak = sqlite3VdbeMakeLabel(v); 1876 iCont = sqlite3VdbeMakeLabel(v); 1877 computeLimitRegisters(pParse, p, iBreak); 1878 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1879 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1880 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1881 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1882 pOrderBy, -1, eDest, iParm, 1883 iCont, iBreak, 0); 1884 if( rc ){ 1885 rc = 1; 1886 goto multi_select_end; 1887 } 1888 sqlite3VdbeResolveLabel(v, iCont); 1889 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1890 sqlite3VdbeResolveLabel(v, iBreak); 1891 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1892 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1893 break; 1894 } 1895 } 1896 1897 /* Make sure all SELECTs in the statement have the same number of elements 1898 ** in their result sets. 1899 */ 1900 assert( p->pEList && pPrior->pEList ); 1901 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1902 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1903 " do not have the same number of result columns", selectOpName(p->op)); 1904 rc = 1; 1905 goto multi_select_end; 1906 } 1907 1908 /* Set the number of columns in temporary tables 1909 */ 1910 nCol = p->pEList->nExpr; 1911 while( nSetP2 ){ 1912 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1913 } 1914 1915 /* Compute collating sequences used by either the ORDER BY clause or 1916 ** by any temporary tables needed to implement the compound select. 1917 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1918 ** ORDER BY processing if there is an ORDER BY clause. 1919 ** 1920 ** This section is run by the right-most SELECT statement only. 1921 ** SELECT statements to the left always skip this part. The right-most 1922 ** SELECT might also skip this part if it has no ORDER BY clause and 1923 ** no temp tables are required. 1924 */ 1925 if( pOrderBy || p->usesEphm ){ 1926 int i; /* Loop counter */ 1927 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1928 Select *pLoop; /* For looping through SELECT statements */ 1929 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1930 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1931 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 1932 1933 assert( p->pRightmost==p ); 1934 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1935 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1936 if( !pKeyInfo ){ 1937 rc = SQLITE_NOMEM; 1938 goto multi_select_end; 1939 } 1940 1941 pKeyInfo->enc = ENC(pParse->db); 1942 pKeyInfo->nField = nCol; 1943 1944 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1945 *apColl = multiSelectCollSeq(pParse, p, i); 1946 if( 0==*apColl ){ 1947 *apColl = pParse->db->pDfltColl; 1948 } 1949 } 1950 1951 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1952 for(i=0; i<2; i++){ 1953 int addr = pLoop->addrOpenEphm[i]; 1954 if( addr<0 ){ 1955 /* If [0] is unused then [1] is also unused. So we can 1956 ** always safely abort as soon as the first unused slot is found */ 1957 assert( pLoop->addrOpenEphm[1]<0 ); 1958 break; 1959 } 1960 sqlite3VdbeChangeP2(v, addr, nCol); 1961 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1962 pLoop->addrOpenEphm[i] = -1; 1963 } 1964 } 1965 1966 if( pOrderBy ){ 1967 struct ExprList_item *pOTerm = pOrderBy->a; 1968 int nOrderByExpr = pOrderBy->nExpr; 1969 int addr; 1970 u8 *pSortOrder; 1971 1972 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 1973 ** the compound select statements. Except we have to change out the 1974 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 1975 ** reused when constructing the pKeyInfo for the ORDER BY, so make 1976 ** a copy. Sufficient space to hold both the nCol entries for 1977 ** the compound select and the nOrderbyExpr entries for the ORDER BY 1978 ** was allocated above. But we need to move the compound select 1979 ** entries out of the way before constructing the ORDER BY entries. 1980 ** Move the compound select entries into aCopy[] where they can be 1981 ** accessed and reused when constructing the ORDER BY entries. 1982 ** Because nCol might be greater than or less than nOrderByExpr 1983 ** we have to use memmove() when doing the copy. 1984 */ 1985 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 1986 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 1987 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 1988 1989 apColl = pKeyInfo->aColl; 1990 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 1991 Expr *pExpr = pOTerm->pExpr; 1992 if( (pExpr->flags & EP_ExpCollate) ){ 1993 assert( pExpr->pColl!=0 ); 1994 *apColl = pExpr->pColl; 1995 }else{ 1996 *apColl = aCopy[pExpr->iColumn]; 1997 } 1998 *pSortOrder = pOTerm->sortOrder; 1999 } 2000 assert( p->pRightmost==p ); 2001 assert( p->addrOpenEphm[2]>=0 ); 2002 addr = p->addrOpenEphm[2]; 2003 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); 2004 pKeyInfo->nField = nOrderByExpr; 2005 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2006 pKeyInfo = 0; 2007 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 2008 } 2009 2010 sqliteFree(pKeyInfo); 2011 } 2012 2013 multi_select_end: 2014 return rc; 2015 } 2016 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2017 2018 #ifndef SQLITE_OMIT_VIEW 2019 /* 2020 ** Scan through the expression pExpr. Replace every reference to 2021 ** a column in table number iTable with a copy of the iColumn-th 2022 ** entry in pEList. (But leave references to the ROWID column 2023 ** unchanged.) 2024 ** 2025 ** This routine is part of the flattening procedure. A subquery 2026 ** whose result set is defined by pEList appears as entry in the 2027 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2028 ** FORM clause entry is iTable. This routine make the necessary 2029 ** changes to pExpr so that it refers directly to the source table 2030 ** of the subquery rather the result set of the subquery. 2031 */ 2032 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 2033 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 2034 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 2035 if( pExpr==0 ) return; 2036 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2037 if( pExpr->iColumn<0 ){ 2038 pExpr->op = TK_NULL; 2039 }else{ 2040 Expr *pNew; 2041 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2042 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2043 pNew = pEList->a[pExpr->iColumn].pExpr; 2044 assert( pNew!=0 ); 2045 pExpr->op = pNew->op; 2046 assert( pExpr->pLeft==0 ); 2047 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2048 assert( pExpr->pRight==0 ); 2049 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2050 assert( pExpr->pList==0 ); 2051 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2052 pExpr->iTable = pNew->iTable; 2053 pExpr->pTab = pNew->pTab; 2054 pExpr->iColumn = pNew->iColumn; 2055 pExpr->iAgg = pNew->iAgg; 2056 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2057 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2058 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2059 pExpr->flags = pNew->flags; 2060 } 2061 }else{ 2062 substExpr(pExpr->pLeft, iTable, pEList); 2063 substExpr(pExpr->pRight, iTable, pEList); 2064 substSelect(pExpr->pSelect, iTable, pEList); 2065 substExprList(pExpr->pList, iTable, pEList); 2066 } 2067 } 2068 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2069 int i; 2070 if( pList==0 ) return; 2071 for(i=0; i<pList->nExpr; i++){ 2072 substExpr(pList->a[i].pExpr, iTable, pEList); 2073 } 2074 } 2075 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2076 if( !p ) return; 2077 substExprList(p->pEList, iTable, pEList); 2078 substExprList(p->pGroupBy, iTable, pEList); 2079 substExprList(p->pOrderBy, iTable, pEList); 2080 substExpr(p->pHaving, iTable, pEList); 2081 substExpr(p->pWhere, iTable, pEList); 2082 substSelect(p->pPrior, iTable, pEList); 2083 } 2084 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2085 2086 #ifndef SQLITE_OMIT_VIEW 2087 /* 2088 ** This routine attempts to flatten subqueries in order to speed 2089 ** execution. It returns 1 if it makes changes and 0 if no flattening 2090 ** occurs. 2091 ** 2092 ** To understand the concept of flattening, consider the following 2093 ** query: 2094 ** 2095 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2096 ** 2097 ** The default way of implementing this query is to execute the 2098 ** subquery first and store the results in a temporary table, then 2099 ** run the outer query on that temporary table. This requires two 2100 ** passes over the data. Furthermore, because the temporary table 2101 ** has no indices, the WHERE clause on the outer query cannot be 2102 ** optimized. 2103 ** 2104 ** This routine attempts to rewrite queries such as the above into 2105 ** a single flat select, like this: 2106 ** 2107 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2108 ** 2109 ** The code generated for this simpification gives the same result 2110 ** but only has to scan the data once. And because indices might 2111 ** exist on the table t1, a complete scan of the data might be 2112 ** avoided. 2113 ** 2114 ** Flattening is only attempted if all of the following are true: 2115 ** 2116 ** (1) The subquery and the outer query do not both use aggregates. 2117 ** 2118 ** (2) The subquery is not an aggregate or the outer query is not a join. 2119 ** 2120 ** (3) The subquery is not the right operand of a left outer join, or 2121 ** the subquery is not itself a join. (Ticket #306) 2122 ** 2123 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2124 ** 2125 ** (5) The subquery is not DISTINCT or the outer query does not use 2126 ** aggregates. 2127 ** 2128 ** (6) The subquery does not use aggregates or the outer query is not 2129 ** DISTINCT. 2130 ** 2131 ** (7) The subquery has a FROM clause. 2132 ** 2133 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2134 ** 2135 ** (9) The subquery does not use LIMIT or the outer query does not use 2136 ** aggregates. 2137 ** 2138 ** (10) The subquery does not use aggregates or the outer query does not 2139 ** use LIMIT. 2140 ** 2141 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2142 ** 2143 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2144 ** subquery has no WHERE clause. (added by ticket #350) 2145 ** 2146 ** (13) The subquery and outer query do not both use LIMIT 2147 ** 2148 ** (14) The subquery does not use OFFSET 2149 ** 2150 ** (15) The outer query is not part of a compound select or the 2151 ** subquery does not have both an ORDER BY and a LIMIT clause. 2152 ** (See ticket #2339) 2153 ** 2154 ** In this routine, the "p" parameter is a pointer to the outer query. 2155 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2156 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2157 ** 2158 ** If flattening is not attempted, this routine is a no-op and returns 0. 2159 ** If flattening is attempted this routine returns 1. 2160 ** 2161 ** All of the expression analysis must occur on both the outer query and 2162 ** the subquery before this routine runs. 2163 */ 2164 static int flattenSubquery( 2165 Select *p, /* The parent or outer SELECT statement */ 2166 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2167 int isAgg, /* True if outer SELECT uses aggregate functions */ 2168 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2169 ){ 2170 Select *pSub; /* The inner query or "subquery" */ 2171 SrcList *pSrc; /* The FROM clause of the outer query */ 2172 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2173 ExprList *pList; /* The result set of the outer query */ 2174 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2175 int i; /* Loop counter */ 2176 Expr *pWhere; /* The WHERE clause */ 2177 struct SrcList_item *pSubitem; /* The subquery */ 2178 2179 /* Check to see if flattening is permitted. Return 0 if not. 2180 */ 2181 if( p==0 ) return 0; 2182 pSrc = p->pSrc; 2183 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2184 pSubitem = &pSrc->a[iFrom]; 2185 pSub = pSubitem->pSelect; 2186 assert( pSub!=0 ); 2187 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2188 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2189 pSubSrc = pSub->pSrc; 2190 assert( pSubSrc ); 2191 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2192 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2193 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2194 ** became arbitrary expressions, we were forced to add restrictions (13) 2195 ** and (14). */ 2196 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2197 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2198 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2199 return 0; /* Restriction (15) */ 2200 } 2201 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2202 if( (pSub->isDistinct || pSub->pLimit) 2203 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2204 return 0; 2205 } 2206 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2207 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2208 return 0; /* Restriction (11) */ 2209 } 2210 2211 /* Restriction 3: If the subquery is a join, make sure the subquery is 2212 ** not used as the right operand of an outer join. Examples of why this 2213 ** is not allowed: 2214 ** 2215 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2216 ** 2217 ** If we flatten the above, we would get 2218 ** 2219 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2220 ** 2221 ** which is not at all the same thing. 2222 */ 2223 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2224 return 0; 2225 } 2226 2227 /* Restriction 12: If the subquery is the right operand of a left outer 2228 ** join, make sure the subquery has no WHERE clause. 2229 ** An examples of why this is not allowed: 2230 ** 2231 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2232 ** 2233 ** If we flatten the above, we would get 2234 ** 2235 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2236 ** 2237 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2238 ** effectively converts the OUTER JOIN into an INNER JOIN. 2239 */ 2240 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2241 return 0; 2242 } 2243 2244 /* If we reach this point, it means flattening is permitted for the 2245 ** iFrom-th entry of the FROM clause in the outer query. 2246 */ 2247 2248 /* Move all of the FROM elements of the subquery into the 2249 ** the FROM clause of the outer query. Before doing this, remember 2250 ** the cursor number for the original outer query FROM element in 2251 ** iParent. The iParent cursor will never be used. Subsequent code 2252 ** will scan expressions looking for iParent references and replace 2253 ** those references with expressions that resolve to the subquery FROM 2254 ** elements we are now copying in. 2255 */ 2256 iParent = pSubitem->iCursor; 2257 { 2258 int nSubSrc = pSubSrc->nSrc; 2259 int jointype = pSubitem->jointype; 2260 2261 sqlite3DeleteTable(pSubitem->pTab); 2262 sqliteFree(pSubitem->zDatabase); 2263 sqliteFree(pSubitem->zName); 2264 sqliteFree(pSubitem->zAlias); 2265 if( nSubSrc>1 ){ 2266 int extra = nSubSrc - 1; 2267 for(i=1; i<nSubSrc; i++){ 2268 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2269 } 2270 p->pSrc = pSrc; 2271 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2272 pSrc->a[i] = pSrc->a[i-extra]; 2273 } 2274 } 2275 for(i=0; i<nSubSrc; i++){ 2276 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2277 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2278 } 2279 pSrc->a[iFrom].jointype = jointype; 2280 } 2281 2282 /* Now begin substituting subquery result set expressions for 2283 ** references to the iParent in the outer query. 2284 ** 2285 ** Example: 2286 ** 2287 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2288 ** \ \_____________ subquery __________/ / 2289 ** \_____________________ outer query ______________________________/ 2290 ** 2291 ** We look at every expression in the outer query and every place we see 2292 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2293 */ 2294 pList = p->pEList; 2295 for(i=0; i<pList->nExpr; i++){ 2296 Expr *pExpr; 2297 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2298 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2299 } 2300 } 2301 substExprList(p->pEList, iParent, pSub->pEList); 2302 if( isAgg ){ 2303 substExprList(p->pGroupBy, iParent, pSub->pEList); 2304 substExpr(p->pHaving, iParent, pSub->pEList); 2305 } 2306 if( pSub->pOrderBy ){ 2307 assert( p->pOrderBy==0 ); 2308 p->pOrderBy = pSub->pOrderBy; 2309 pSub->pOrderBy = 0; 2310 }else if( p->pOrderBy ){ 2311 substExprList(p->pOrderBy, iParent, pSub->pEList); 2312 } 2313 if( pSub->pWhere ){ 2314 pWhere = sqlite3ExprDup(pSub->pWhere); 2315 }else{ 2316 pWhere = 0; 2317 } 2318 if( subqueryIsAgg ){ 2319 assert( p->pHaving==0 ); 2320 p->pHaving = p->pWhere; 2321 p->pWhere = pWhere; 2322 substExpr(p->pHaving, iParent, pSub->pEList); 2323 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2324 assert( p->pGroupBy==0 ); 2325 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2326 }else{ 2327 substExpr(p->pWhere, iParent, pSub->pEList); 2328 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2329 } 2330 2331 /* The flattened query is distinct if either the inner or the 2332 ** outer query is distinct. 2333 */ 2334 p->isDistinct = p->isDistinct || pSub->isDistinct; 2335 2336 /* 2337 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2338 ** 2339 ** One is tempted to try to add a and b to combine the limits. But this 2340 ** does not work if either limit is negative. 2341 */ 2342 if( pSub->pLimit ){ 2343 p->pLimit = pSub->pLimit; 2344 pSub->pLimit = 0; 2345 } 2346 2347 /* Finially, delete what is left of the subquery and return 2348 ** success. 2349 */ 2350 sqlite3SelectDelete(pSub); 2351 return 1; 2352 } 2353 #endif /* SQLITE_OMIT_VIEW */ 2354 2355 /* 2356 ** Analyze the SELECT statement passed in as an argument to see if it 2357 ** is a simple min() or max() query. If it is and this query can be 2358 ** satisfied using a single seek to the beginning or end of an index, 2359 ** then generate the code for this SELECT and return 1. If this is not a 2360 ** simple min() or max() query, then return 0; 2361 ** 2362 ** A simply min() or max() query looks like this: 2363 ** 2364 ** SELECT min(a) FROM table; 2365 ** SELECT max(a) FROM table; 2366 ** 2367 ** The query may have only a single table in its FROM argument. There 2368 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2369 ** be the min() or max() of a single column of the table. The column 2370 ** in the min() or max() function must be indexed. 2371 ** 2372 ** The parameters to this routine are the same as for sqlite3Select(). 2373 ** See the header comment on that routine for additional information. 2374 */ 2375 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2376 Expr *pExpr; 2377 int iCol; 2378 Table *pTab; 2379 Index *pIdx; 2380 int base; 2381 Vdbe *v; 2382 int seekOp; 2383 ExprList *pEList, *pList, eList; 2384 struct ExprList_item eListItem; 2385 SrcList *pSrc; 2386 int brk; 2387 int iDb; 2388 2389 /* Check to see if this query is a simple min() or max() query. Return 2390 ** zero if it is not. 2391 */ 2392 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2393 pSrc = p->pSrc; 2394 if( pSrc->nSrc!=1 ) return 0; 2395 pEList = p->pEList; 2396 if( pEList->nExpr!=1 ) return 0; 2397 pExpr = pEList->a[0].pExpr; 2398 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2399 pList = pExpr->pList; 2400 if( pList==0 || pList->nExpr!=1 ) return 0; 2401 if( pExpr->token.n!=3 ) return 0; 2402 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2403 seekOp = OP_Rewind; 2404 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2405 seekOp = OP_Last; 2406 }else{ 2407 return 0; 2408 } 2409 pExpr = pList->a[0].pExpr; 2410 if( pExpr->op!=TK_COLUMN ) return 0; 2411 iCol = pExpr->iColumn; 2412 pTab = pSrc->a[0].pTab; 2413 2414 /* This optimization cannot be used with virtual tables. */ 2415 if( IsVirtual(pTab) ) return 0; 2416 2417 /* If we get to here, it means the query is of the correct form. 2418 ** Check to make sure we have an index and make pIdx point to the 2419 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2420 ** key column, no index is necessary so set pIdx to NULL. If no 2421 ** usable index is found, return 0. 2422 */ 2423 if( iCol<0 ){ 2424 pIdx = 0; 2425 }else{ 2426 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2427 if( pColl==0 ) return 0; 2428 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2429 assert( pIdx->nColumn>=1 ); 2430 if( pIdx->aiColumn[0]==iCol && 2431 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2432 break; 2433 } 2434 } 2435 if( pIdx==0 ) return 0; 2436 } 2437 2438 /* Identify column types if we will be using the callback. This 2439 ** step is skipped if the output is going to a table or a memory cell. 2440 ** The column names have already been generated in the calling function. 2441 */ 2442 v = sqlite3GetVdbe(pParse); 2443 if( v==0 ) return 0; 2444 2445 /* If the output is destined for a temporary table, open that table. 2446 */ 2447 if( eDest==SRT_EphemTab ){ 2448 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2449 } 2450 2451 /* Generating code to find the min or the max. Basically all we have 2452 ** to do is find the first or the last entry in the chosen index. If 2453 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2454 ** or last entry in the main table. 2455 */ 2456 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2457 assert( iDb>=0 || pTab->isEphem ); 2458 sqlite3CodeVerifySchema(pParse, iDb); 2459 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2460 base = pSrc->a[0].iCursor; 2461 brk = sqlite3VdbeMakeLabel(v); 2462 computeLimitRegisters(pParse, p, brk); 2463 if( pSrc->a[0].pSelect==0 ){ 2464 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2465 } 2466 if( pIdx==0 ){ 2467 sqlite3VdbeAddOp(v, seekOp, base, 0); 2468 }else{ 2469 /* Even though the cursor used to open the index here is closed 2470 ** as soon as a single value has been read from it, allocate it 2471 ** using (pParse->nTab++) to prevent the cursor id from being 2472 ** reused. This is important for statements of the form 2473 ** "INSERT INTO x SELECT max() FROM x". 2474 */ 2475 int iIdx; 2476 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2477 iIdx = pParse->nTab++; 2478 assert( pIdx->pSchema==pTab->pSchema ); 2479 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2480 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2481 (char*)pKey, P3_KEYINFO_HANDOFF); 2482 if( seekOp==OP_Rewind ){ 2483 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2484 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2485 seekOp = OP_MoveGt; 2486 } 2487 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2488 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2489 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2490 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2491 } 2492 eList.nExpr = 1; 2493 memset(&eListItem, 0, sizeof(eListItem)); 2494 eList.a = &eListItem; 2495 eList.a[0].pExpr = pExpr; 2496 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2497 sqlite3VdbeResolveLabel(v, brk); 2498 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2499 2500 return 1; 2501 } 2502 2503 /* 2504 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2505 ** the number of errors seen. 2506 ** 2507 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2508 ** is an integer constant, then that expression is replaced by the 2509 ** corresponding entry in the result set. 2510 */ 2511 static int processOrderGroupBy( 2512 NameContext *pNC, /* Name context of the SELECT statement. */ 2513 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2514 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2515 ){ 2516 int i; 2517 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2518 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2519 assert( pEList ); 2520 2521 if( pOrderBy==0 ) return 0; 2522 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 2523 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 2524 return 1; 2525 } 2526 for(i=0; i<pOrderBy->nExpr; i++){ 2527 int iCol; 2528 Expr *pE = pOrderBy->a[i].pExpr; 2529 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2530 if( iCol>0 && iCol<=pEList->nExpr ){ 2531 CollSeq *pColl = pE->pColl; 2532 int flags = pE->flags & EP_ExpCollate; 2533 sqlite3ExprDelete(pE); 2534 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2535 if( pColl && flags ){ 2536 pE->pColl = pColl; 2537 pE->flags |= flags; 2538 } 2539 }else{ 2540 sqlite3ErrorMsg(pParse, 2541 "%s BY column number %d out of range - should be " 2542 "between 1 and %d", zType, iCol, pEList->nExpr); 2543 return 1; 2544 } 2545 } 2546 if( sqlite3ExprResolveNames(pNC, pE) ){ 2547 return 1; 2548 } 2549 } 2550 return 0; 2551 } 2552 2553 /* 2554 ** This routine resolves any names used in the result set of the 2555 ** supplied SELECT statement. If the SELECT statement being resolved 2556 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2557 ** of the parent SELECT. 2558 */ 2559 int sqlite3SelectResolve( 2560 Parse *pParse, /* The parser context */ 2561 Select *p, /* The SELECT statement being coded. */ 2562 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2563 ){ 2564 ExprList *pEList; /* Result set. */ 2565 int i; /* For-loop variable used in multiple places */ 2566 NameContext sNC; /* Local name-context */ 2567 ExprList *pGroupBy; /* The group by clause */ 2568 2569 /* If this routine has run before, return immediately. */ 2570 if( p->isResolved ){ 2571 assert( !pOuterNC ); 2572 return SQLITE_OK; 2573 } 2574 p->isResolved = 1; 2575 2576 /* If there have already been errors, do nothing. */ 2577 if( pParse->nErr>0 ){ 2578 return SQLITE_ERROR; 2579 } 2580 2581 /* Prepare the select statement. This call will allocate all cursors 2582 ** required to handle the tables and subqueries in the FROM clause. 2583 */ 2584 if( prepSelectStmt(pParse, p) ){ 2585 return SQLITE_ERROR; 2586 } 2587 2588 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2589 ** are not allowed to refer to any names, so pass an empty NameContext. 2590 */ 2591 memset(&sNC, 0, sizeof(sNC)); 2592 sNC.pParse = pParse; 2593 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2594 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2595 return SQLITE_ERROR; 2596 } 2597 2598 /* Set up the local name-context to pass to ExprResolveNames() to 2599 ** resolve the expression-list. 2600 */ 2601 sNC.allowAgg = 1; 2602 sNC.pSrcList = p->pSrc; 2603 sNC.pNext = pOuterNC; 2604 2605 /* Resolve names in the result set. */ 2606 pEList = p->pEList; 2607 if( !pEList ) return SQLITE_ERROR; 2608 for(i=0; i<pEList->nExpr; i++){ 2609 Expr *pX = pEList->a[i].pExpr; 2610 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2611 return SQLITE_ERROR; 2612 } 2613 } 2614 2615 /* If there are no aggregate functions in the result-set, and no GROUP BY 2616 ** expression, do not allow aggregates in any of the other expressions. 2617 */ 2618 assert( !p->isAgg ); 2619 pGroupBy = p->pGroupBy; 2620 if( pGroupBy || sNC.hasAgg ){ 2621 p->isAgg = 1; 2622 }else{ 2623 sNC.allowAgg = 0; 2624 } 2625 2626 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2627 */ 2628 if( p->pHaving && !pGroupBy ){ 2629 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2630 return SQLITE_ERROR; 2631 } 2632 2633 /* Add the expression list to the name-context before parsing the 2634 ** other expressions in the SELECT statement. This is so that 2635 ** expressions in the WHERE clause (etc.) can refer to expressions by 2636 ** aliases in the result set. 2637 ** 2638 ** Minor point: If this is the case, then the expression will be 2639 ** re-evaluated for each reference to it. 2640 */ 2641 sNC.pEList = p->pEList; 2642 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2643 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2644 return SQLITE_ERROR; 2645 } 2646 if( p->pPrior==0 ){ 2647 if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2648 processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){ 2649 return SQLITE_ERROR; 2650 } 2651 } 2652 2653 /* Make sure the GROUP BY clause does not contain aggregate functions. 2654 */ 2655 if( pGroupBy ){ 2656 struct ExprList_item *pItem; 2657 2658 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2659 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2660 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2661 "the GROUP BY clause"); 2662 return SQLITE_ERROR; 2663 } 2664 } 2665 } 2666 2667 /* If this is one SELECT of a compound, be sure to resolve names 2668 ** in the other SELECTs. 2669 */ 2670 if( p->pPrior ){ 2671 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2672 }else{ 2673 return SQLITE_OK; 2674 } 2675 } 2676 2677 /* 2678 ** Reset the aggregate accumulator. 2679 ** 2680 ** The aggregate accumulator is a set of memory cells that hold 2681 ** intermediate results while calculating an aggregate. This 2682 ** routine simply stores NULLs in all of those memory cells. 2683 */ 2684 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2685 Vdbe *v = pParse->pVdbe; 2686 int i; 2687 struct AggInfo_func *pFunc; 2688 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2689 return; 2690 } 2691 for(i=0; i<pAggInfo->nColumn; i++){ 2692 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2693 } 2694 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2695 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2696 if( pFunc->iDistinct>=0 ){ 2697 Expr *pE = pFunc->pExpr; 2698 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2699 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2700 "by an expression"); 2701 pFunc->iDistinct = -1; 2702 }else{ 2703 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2704 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2705 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2706 } 2707 } 2708 } 2709 } 2710 2711 /* 2712 ** Invoke the OP_AggFinalize opcode for every aggregate function 2713 ** in the AggInfo structure. 2714 */ 2715 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2716 Vdbe *v = pParse->pVdbe; 2717 int i; 2718 struct AggInfo_func *pF; 2719 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2720 ExprList *pList = pF->pExpr->pList; 2721 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2722 (void*)pF->pFunc, P3_FUNCDEF); 2723 } 2724 } 2725 2726 /* 2727 ** Update the accumulator memory cells for an aggregate based on 2728 ** the current cursor position. 2729 */ 2730 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2731 Vdbe *v = pParse->pVdbe; 2732 int i; 2733 struct AggInfo_func *pF; 2734 struct AggInfo_col *pC; 2735 2736 pAggInfo->directMode = 1; 2737 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2738 int nArg; 2739 int addrNext = 0; 2740 ExprList *pList = pF->pExpr->pList; 2741 if( pList ){ 2742 nArg = pList->nExpr; 2743 sqlite3ExprCodeExprList(pParse, pList); 2744 }else{ 2745 nArg = 0; 2746 } 2747 if( pF->iDistinct>=0 ){ 2748 addrNext = sqlite3VdbeMakeLabel(v); 2749 assert( nArg==1 ); 2750 codeDistinct(v, pF->iDistinct, addrNext, 1); 2751 } 2752 if( pF->pFunc->needCollSeq ){ 2753 CollSeq *pColl = 0; 2754 struct ExprList_item *pItem; 2755 int j; 2756 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2757 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2758 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2759 } 2760 if( !pColl ){ 2761 pColl = pParse->db->pDfltColl; 2762 } 2763 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2764 } 2765 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2766 if( addrNext ){ 2767 sqlite3VdbeResolveLabel(v, addrNext); 2768 } 2769 } 2770 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2771 sqlite3ExprCode(pParse, pC->pExpr); 2772 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2773 } 2774 pAggInfo->directMode = 0; 2775 } 2776 2777 2778 /* 2779 ** Generate code for the given SELECT statement. 2780 ** 2781 ** The results are distributed in various ways depending on the 2782 ** value of eDest and iParm. 2783 ** 2784 ** eDest Value Result 2785 ** ------------ ------------------------------------------- 2786 ** SRT_Callback Invoke the callback for each row of the result. 2787 ** 2788 ** SRT_Mem Store first result in memory cell iParm 2789 ** 2790 ** SRT_Set Store results as keys of table iParm. 2791 ** 2792 ** SRT_Union Store results as a key in a temporary table iParm 2793 ** 2794 ** SRT_Except Remove results from the temporary table iParm. 2795 ** 2796 ** SRT_Table Store results in temporary table iParm 2797 ** 2798 ** The table above is incomplete. Additional eDist value have be added 2799 ** since this comment was written. See the selectInnerLoop() function for 2800 ** a complete listing of the allowed values of eDest and their meanings. 2801 ** 2802 ** This routine returns the number of errors. If any errors are 2803 ** encountered, then an appropriate error message is left in 2804 ** pParse->zErrMsg. 2805 ** 2806 ** This routine does NOT free the Select structure passed in. The 2807 ** calling function needs to do that. 2808 ** 2809 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2810 ** SELECT is a subquery. This routine may try to combine this SELECT 2811 ** with its parent to form a single flat query. In so doing, it might 2812 ** change the parent query from a non-aggregate to an aggregate query. 2813 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2814 ** can be changed. 2815 ** 2816 ** Example 1: The meaning of the pParent parameter. 2817 ** 2818 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2819 ** \ \_______ subquery _______/ / 2820 ** \ / 2821 ** \____________________ outer query ___________________/ 2822 ** 2823 ** This routine is called for the outer query first. For that call, 2824 ** pParent will be NULL. During the processing of the outer query, this 2825 ** routine is called recursively to handle the subquery. For the recursive 2826 ** call, pParent will point to the outer query. Because the subquery is 2827 ** the second element in a three-way join, the parentTab parameter will 2828 ** be 1 (the 2nd value of a 0-indexed array.) 2829 */ 2830 int sqlite3Select( 2831 Parse *pParse, /* The parser context */ 2832 Select *p, /* The SELECT statement being coded. */ 2833 int eDest, /* How to dispose of the results */ 2834 int iParm, /* A parameter used by the eDest disposal method */ 2835 Select *pParent, /* Another SELECT for which this is a sub-query */ 2836 int parentTab, /* Index in pParent->pSrc of this query */ 2837 int *pParentAgg, /* True if pParent uses aggregate functions */ 2838 char *aff /* If eDest is SRT_Union, the affinity string */ 2839 ){ 2840 int i, j; /* Loop counters */ 2841 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2842 Vdbe *v; /* The virtual machine under construction */ 2843 int isAgg; /* True for select lists like "count(*)" */ 2844 ExprList *pEList; /* List of columns to extract. */ 2845 SrcList *pTabList; /* List of tables to select from */ 2846 Expr *pWhere; /* The WHERE clause. May be NULL */ 2847 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2848 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2849 Expr *pHaving; /* The HAVING clause. May be NULL */ 2850 int isDistinct; /* True if the DISTINCT keyword is present */ 2851 int distinct; /* Table to use for the distinct set */ 2852 int rc = 1; /* Value to return from this function */ 2853 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2854 AggInfo sAggInfo; /* Information used by aggregate queries */ 2855 int iEnd; /* Address of the end of the query */ 2856 2857 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2858 return 1; 2859 } 2860 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2861 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2862 2863 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2864 /* If there is are a sequence of queries, do the earlier ones first. 2865 */ 2866 if( p->pPrior ){ 2867 if( p->pRightmost==0 ){ 2868 Select *pLoop; 2869 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2870 pLoop->pRightmost = p; 2871 } 2872 } 2873 return multiSelect(pParse, p, eDest, iParm, aff); 2874 } 2875 #endif 2876 2877 pOrderBy = p->pOrderBy; 2878 if( IgnorableOrderby(eDest) ){ 2879 p->pOrderBy = 0; 2880 } 2881 if( sqlite3SelectResolve(pParse, p, 0) ){ 2882 goto select_end; 2883 } 2884 p->pOrderBy = pOrderBy; 2885 2886 /* Make local copies of the parameters for this query. 2887 */ 2888 pTabList = p->pSrc; 2889 pWhere = p->pWhere; 2890 pGroupBy = p->pGroupBy; 2891 pHaving = p->pHaving; 2892 isAgg = p->isAgg; 2893 isDistinct = p->isDistinct; 2894 pEList = p->pEList; 2895 if( pEList==0 ) goto select_end; 2896 2897 /* 2898 ** Do not even attempt to generate any code if we have already seen 2899 ** errors before this routine starts. 2900 */ 2901 if( pParse->nErr>0 ) goto select_end; 2902 2903 /* If writing to memory or generating a set 2904 ** only a single column may be output. 2905 */ 2906 #ifndef SQLITE_OMIT_SUBQUERY 2907 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 2908 goto select_end; 2909 } 2910 #endif 2911 2912 /* ORDER BY is ignored for some destinations. 2913 */ 2914 if( IgnorableOrderby(eDest) ){ 2915 pOrderBy = 0; 2916 } 2917 2918 /* Begin generating code. 2919 */ 2920 v = sqlite3GetVdbe(pParse); 2921 if( v==0 ) goto select_end; 2922 2923 /* Generate code for all sub-queries in the FROM clause 2924 */ 2925 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2926 for(i=0; i<pTabList->nSrc; i++){ 2927 const char *zSavedAuthContext = 0; 2928 int needRestoreContext; 2929 struct SrcList_item *pItem = &pTabList->a[i]; 2930 2931 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2932 if( pItem->zName!=0 ){ 2933 zSavedAuthContext = pParse->zAuthContext; 2934 pParse->zAuthContext = pItem->zName; 2935 needRestoreContext = 1; 2936 }else{ 2937 needRestoreContext = 0; 2938 } 2939 #if SQLITE_MAX_EXPR_DEPTH>0 2940 /* Increment Parse.nHeight by the height of the largest expression 2941 ** tree refered to by this, the parent select. The child select 2942 ** may contain expression trees of at most 2943 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 2944 ** more conservative than necessary, but much easier than enforcing 2945 ** an exact limit. 2946 */ 2947 pParse->nHeight += sqlite3SelectExprHeight(p); 2948 #endif 2949 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2950 pItem->iCursor, p, i, &isAgg, 0); 2951 #if SQLITE_MAX_EXPR_DEPTH>0 2952 pParse->nHeight -= sqlite3SelectExprHeight(p); 2953 #endif 2954 if( needRestoreContext ){ 2955 pParse->zAuthContext = zSavedAuthContext; 2956 } 2957 pTabList = p->pSrc; 2958 pWhere = p->pWhere; 2959 if( !IgnorableOrderby(eDest) ){ 2960 pOrderBy = p->pOrderBy; 2961 } 2962 pGroupBy = p->pGroupBy; 2963 pHaving = p->pHaving; 2964 isDistinct = p->isDistinct; 2965 } 2966 #endif 2967 2968 /* Check for the special case of a min() or max() function by itself 2969 ** in the result set. 2970 */ 2971 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 2972 rc = 0; 2973 goto select_end; 2974 } 2975 2976 /* Check to see if this is a subquery that can be "flattened" into its parent. 2977 ** If flattening is a possiblity, do so and return immediately. 2978 */ 2979 #ifndef SQLITE_OMIT_VIEW 2980 if( pParent && pParentAgg && 2981 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 2982 if( isAgg ) *pParentAgg = 1; 2983 goto select_end; 2984 } 2985 #endif 2986 2987 /* If there is an ORDER BY clause, then this sorting 2988 ** index might end up being unused if the data can be 2989 ** extracted in pre-sorted order. If that is the case, then the 2990 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 2991 ** we figure out that the sorting index is not needed. The addrSortIndex 2992 ** variable is used to facilitate that change. 2993 */ 2994 if( pOrderBy ){ 2995 KeyInfo *pKeyInfo; 2996 if( pParse->nErr ){ 2997 goto select_end; 2998 } 2999 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3000 pOrderBy->iECursor = pParse->nTab++; 3001 p->addrOpenEphm[2] = addrSortIndex = 3002 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3003 }else{ 3004 addrSortIndex = -1; 3005 } 3006 3007 /* If the output is destined for a temporary table, open that table. 3008 */ 3009 if( eDest==SRT_EphemTab ){ 3010 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 3011 } 3012 3013 /* Set the limiter. 3014 */ 3015 iEnd = sqlite3VdbeMakeLabel(v); 3016 computeLimitRegisters(pParse, p, iEnd); 3017 3018 /* Open a virtual index to use for the distinct set. 3019 */ 3020 if( isDistinct ){ 3021 KeyInfo *pKeyInfo; 3022 distinct = pParse->nTab++; 3023 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3024 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 3025 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3026 }else{ 3027 distinct = -1; 3028 } 3029 3030 /* Aggregate and non-aggregate queries are handled differently */ 3031 if( !isAgg && pGroupBy==0 ){ 3032 /* This case is for non-aggregate queries 3033 ** Begin the database scan 3034 */ 3035 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 3036 if( pWInfo==0 ) goto select_end; 3037 3038 /* If sorting index that was created by a prior OP_OpenEphemeral 3039 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3040 ** into an OP_Noop. 3041 */ 3042 if( addrSortIndex>=0 && pOrderBy==0 ){ 3043 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3044 p->addrOpenEphm[2] = -1; 3045 } 3046 3047 /* Use the standard inner loop 3048 */ 3049 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 3050 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3051 goto select_end; 3052 } 3053 3054 /* End the database scan loop. 3055 */ 3056 sqlite3WhereEnd(pWInfo); 3057 }else{ 3058 /* This is the processing for aggregate queries */ 3059 NameContext sNC; /* Name context for processing aggregate information */ 3060 int iAMem; /* First Mem address for storing current GROUP BY */ 3061 int iBMem; /* First Mem address for previous GROUP BY */ 3062 int iUseFlag; /* Mem address holding flag indicating that at least 3063 ** one row of the input to the aggregator has been 3064 ** processed */ 3065 int iAbortFlag; /* Mem address which causes query abort if positive */ 3066 int groupBySort; /* Rows come from source in GROUP BY order */ 3067 3068 3069 /* The following variables hold addresses or labels for parts of the 3070 ** virtual machine program we are putting together */ 3071 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3072 int addrSetAbort; /* Set the abort flag and return */ 3073 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3074 int addrTopOfLoop; /* Top of the input loop */ 3075 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3076 int addrProcessRow; /* Code to process a single input row */ 3077 int addrEnd; /* End of all processing */ 3078 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3079 int addrReset; /* Subroutine for resetting the accumulator */ 3080 3081 addrEnd = sqlite3VdbeMakeLabel(v); 3082 3083 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3084 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3085 ** SELECT statement. 3086 */ 3087 memset(&sNC, 0, sizeof(sNC)); 3088 sNC.pParse = pParse; 3089 sNC.pSrcList = pTabList; 3090 sNC.pAggInfo = &sAggInfo; 3091 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3092 sAggInfo.pGroupBy = pGroupBy; 3093 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3094 goto select_end; 3095 } 3096 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3097 goto select_end; 3098 } 3099 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3100 goto select_end; 3101 } 3102 sAggInfo.nAccumulator = sAggInfo.nColumn; 3103 for(i=0; i<sAggInfo.nFunc; i++){ 3104 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3105 goto select_end; 3106 } 3107 } 3108 if( sqlite3MallocFailed() ) goto select_end; 3109 3110 /* Processing for aggregates with GROUP BY is very different and 3111 ** much more complex tha aggregates without a GROUP BY. 3112 */ 3113 if( pGroupBy ){ 3114 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3115 3116 /* Create labels that we will be needing 3117 */ 3118 3119 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3120 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3121 addrProcessRow = sqlite3VdbeMakeLabel(v); 3122 3123 /* If there is a GROUP BY clause we might need a sorting index to 3124 ** implement it. Allocate that sorting index now. If it turns out 3125 ** that we do not need it after all, the OpenEphemeral instruction 3126 ** will be converted into a Noop. 3127 */ 3128 sAggInfo.sortingIdx = pParse->nTab++; 3129 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3130 addrSortingIdx = 3131 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3132 sAggInfo.nSortingColumn, 3133 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3134 3135 /* Initialize memory locations used by GROUP BY aggregate processing 3136 */ 3137 iUseFlag = pParse->nMem++; 3138 iAbortFlag = pParse->nMem++; 3139 iAMem = pParse->nMem; 3140 pParse->nMem += pGroupBy->nExpr; 3141 iBMem = pParse->nMem; 3142 pParse->nMem += pGroupBy->nExpr; 3143 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3144 VdbeComment((v, "# clear abort flag")); 3145 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3146 VdbeComment((v, "# indicate accumulator empty")); 3147 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3148 3149 /* Generate a subroutine that outputs a single row of the result 3150 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3151 ** is less than or equal to zero, the subroutine is a no-op. If 3152 ** the processing calls for the query to abort, this subroutine 3153 ** increments the iAbortFlag memory location before returning in 3154 ** order to signal the caller to abort. 3155 */ 3156 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3157 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3158 VdbeComment((v, "# set abort flag")); 3159 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3160 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3161 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3162 VdbeComment((v, "# Groupby result generator entry point")); 3163 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3164 finalizeAggFunctions(pParse, &sAggInfo); 3165 if( pHaving ){ 3166 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3167 } 3168 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3169 distinct, eDest, iParm, 3170 addrOutputRow+1, addrSetAbort, aff); 3171 if( rc ){ 3172 goto select_end; 3173 } 3174 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3175 VdbeComment((v, "# end groupby result generator")); 3176 3177 /* Generate a subroutine that will reset the group-by accumulator 3178 */ 3179 addrReset = sqlite3VdbeCurrentAddr(v); 3180 resetAccumulator(pParse, &sAggInfo); 3181 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3182 3183 /* Begin a loop that will extract all source rows in GROUP BY order. 3184 ** This might involve two separate loops with an OP_Sort in between, or 3185 ** it might be a single loop that uses an index to extract information 3186 ** in the right order to begin with. 3187 */ 3188 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3189 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3190 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3191 if( pWInfo==0 ) goto select_end; 3192 if( pGroupBy==0 ){ 3193 /* The optimizer is able to deliver rows in group by order so 3194 ** we do not have to sort. The OP_OpenEphemeral table will be 3195 ** cancelled later because we still need to use the pKeyInfo 3196 */ 3197 pGroupBy = p->pGroupBy; 3198 groupBySort = 0; 3199 }else{ 3200 /* Rows are coming out in undetermined order. We have to push 3201 ** each row into a sorting index, terminate the first loop, 3202 ** then loop over the sorting index in order to get the output 3203 ** in sorted order 3204 */ 3205 groupBySort = 1; 3206 sqlite3ExprCodeExprList(pParse, pGroupBy); 3207 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3208 j = pGroupBy->nExpr+1; 3209 for(i=0; i<sAggInfo.nColumn; i++){ 3210 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3211 if( pCol->iSorterColumn<j ) continue; 3212 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3213 j++; 3214 } 3215 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3216 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3217 sqlite3WhereEnd(pWInfo); 3218 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3219 VdbeComment((v, "# GROUP BY sort")); 3220 sAggInfo.useSortingIdx = 1; 3221 } 3222 3223 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3224 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3225 ** Then compare the current GROUP BY terms against the GROUP BY terms 3226 ** from the previous row currently stored in a0, a1, a2... 3227 */ 3228 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3229 for(j=0; j<pGroupBy->nExpr; j++){ 3230 if( groupBySort ){ 3231 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3232 }else{ 3233 sAggInfo.directMode = 1; 3234 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3235 } 3236 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3237 } 3238 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3239 if( j<pGroupBy->nExpr-1 ){ 3240 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3241 } 3242 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3243 if( j==0 ){ 3244 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3245 }else{ 3246 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3247 } 3248 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3249 } 3250 3251 /* Generate code that runs whenever the GROUP BY changes. 3252 ** Change in the GROUP BY are detected by the previous code 3253 ** block. If there were no changes, this block is skipped. 3254 ** 3255 ** This code copies current group by terms in b0,b1,b2,... 3256 ** over to a0,a1,a2. It then calls the output subroutine 3257 ** and resets the aggregate accumulator registers in preparation 3258 ** for the next GROUP BY batch. 3259 */ 3260 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3261 for(j=0; j<pGroupBy->nExpr; j++){ 3262 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3263 } 3264 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3265 VdbeComment((v, "# output one row")); 3266 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3267 VdbeComment((v, "# check abort flag")); 3268 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3269 VdbeComment((v, "# reset accumulator")); 3270 3271 /* Update the aggregate accumulators based on the content of 3272 ** the current row 3273 */ 3274 sqlite3VdbeResolveLabel(v, addrProcessRow); 3275 updateAccumulator(pParse, &sAggInfo); 3276 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3277 VdbeComment((v, "# indicate data in accumulator")); 3278 3279 /* End of the loop 3280 */ 3281 if( groupBySort ){ 3282 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3283 }else{ 3284 sqlite3WhereEnd(pWInfo); 3285 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3286 } 3287 3288 /* Output the final row of result 3289 */ 3290 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3291 VdbeComment((v, "# output final row")); 3292 3293 } /* endif pGroupBy */ 3294 else { 3295 /* This case runs if the aggregate has no GROUP BY clause. The 3296 ** processing is much simpler since there is only a single row 3297 ** of output. 3298 */ 3299 resetAccumulator(pParse, &sAggInfo); 3300 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3301 if( pWInfo==0 ) goto select_end; 3302 updateAccumulator(pParse, &sAggInfo); 3303 sqlite3WhereEnd(pWInfo); 3304 finalizeAggFunctions(pParse, &sAggInfo); 3305 pOrderBy = 0; 3306 if( pHaving ){ 3307 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3308 } 3309 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3310 eDest, iParm, addrEnd, addrEnd, aff); 3311 } 3312 sqlite3VdbeResolveLabel(v, addrEnd); 3313 3314 } /* endif aggregate query */ 3315 3316 /* If there is an ORDER BY clause, then we need to sort the results 3317 ** and send them to the callback one by one. 3318 */ 3319 if( pOrderBy ){ 3320 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3321 } 3322 3323 #ifndef SQLITE_OMIT_SUBQUERY 3324 /* If this was a subquery, we have now converted the subquery into a 3325 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3326 ** this subquery from being evaluated again and to force the use of 3327 ** the temporary table. 3328 */ 3329 if( pParent ){ 3330 assert( pParent->pSrc->nSrc>parentTab ); 3331 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3332 pParent->pSrc->a[parentTab].isPopulated = 1; 3333 } 3334 #endif 3335 3336 /* Jump here to skip this query 3337 */ 3338 sqlite3VdbeResolveLabel(v, iEnd); 3339 3340 /* The SELECT was successfully coded. Set the return code to 0 3341 ** to indicate no errors. 3342 */ 3343 rc = 0; 3344 3345 /* Control jumps to here if an error is encountered above, or upon 3346 ** successful coding of the SELECT. 3347 */ 3348 select_end: 3349 3350 /* Identify column names if we will be using them in a callback. This 3351 ** step is skipped if the output is going to some other destination. 3352 */ 3353 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3354 generateColumnNames(pParse, pTabList, pEList); 3355 } 3356 3357 sqliteFree(sAggInfo.aCol); 3358 sqliteFree(sAggInfo.aFunc); 3359 return rc; 3360 } 3361 3362 #if defined(SQLITE_DEBUG) 3363 /* 3364 ******************************************************************************* 3365 ** The following code is used for testing and debugging only. The code 3366 ** that follows does not appear in normal builds. 3367 ** 3368 ** These routines are used to print out the content of all or part of a 3369 ** parse structures such as Select or Expr. Such printouts are useful 3370 ** for helping to understand what is happening inside the code generator 3371 ** during the execution of complex SELECT statements. 3372 ** 3373 ** These routine are not called anywhere from within the normal 3374 ** code base. Then are intended to be called from within the debugger 3375 ** or from temporary "printf" statements inserted for debugging. 3376 */ 3377 void sqlite3PrintExpr(Expr *p){ 3378 if( p->token.z && p->token.n>0 ){ 3379 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3380 }else{ 3381 sqlite3DebugPrintf("(%d", p->op); 3382 } 3383 if( p->pLeft ){ 3384 sqlite3DebugPrintf(" "); 3385 sqlite3PrintExpr(p->pLeft); 3386 } 3387 if( p->pRight ){ 3388 sqlite3DebugPrintf(" "); 3389 sqlite3PrintExpr(p->pRight); 3390 } 3391 sqlite3DebugPrintf(")"); 3392 } 3393 void sqlite3PrintExprList(ExprList *pList){ 3394 int i; 3395 for(i=0; i<pList->nExpr; i++){ 3396 sqlite3PrintExpr(pList->a[i].pExpr); 3397 if( i<pList->nExpr-1 ){ 3398 sqlite3DebugPrintf(", "); 3399 } 3400 } 3401 } 3402 void sqlite3PrintSelect(Select *p, int indent){ 3403 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3404 sqlite3PrintExprList(p->pEList); 3405 sqlite3DebugPrintf("\n"); 3406 if( p->pSrc ){ 3407 char *zPrefix; 3408 int i; 3409 zPrefix = "FROM"; 3410 for(i=0; i<p->pSrc->nSrc; i++){ 3411 struct SrcList_item *pItem = &p->pSrc->a[i]; 3412 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3413 zPrefix = ""; 3414 if( pItem->pSelect ){ 3415 sqlite3DebugPrintf("(\n"); 3416 sqlite3PrintSelect(pItem->pSelect, indent+10); 3417 sqlite3DebugPrintf("%*s)", indent+8, ""); 3418 }else if( pItem->zName ){ 3419 sqlite3DebugPrintf("%s", pItem->zName); 3420 } 3421 if( pItem->pTab ){ 3422 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3423 } 3424 if( pItem->zAlias ){ 3425 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3426 } 3427 if( i<p->pSrc->nSrc-1 ){ 3428 sqlite3DebugPrintf(","); 3429 } 3430 sqlite3DebugPrintf("\n"); 3431 } 3432 } 3433 if( p->pWhere ){ 3434 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3435 sqlite3PrintExpr(p->pWhere); 3436 sqlite3DebugPrintf("\n"); 3437 } 3438 if( p->pGroupBy ){ 3439 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3440 sqlite3PrintExprList(p->pGroupBy); 3441 sqlite3DebugPrintf("\n"); 3442 } 3443 if( p->pHaving ){ 3444 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3445 sqlite3PrintExpr(p->pHaving); 3446 sqlite3DebugPrintf("\n"); 3447 } 3448 if( p->pOrderBy ){ 3449 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3450 sqlite3PrintExprList(p->pOrderBy); 3451 sqlite3DebugPrintf("\n"); 3452 } 3453 } 3454 /* End of the structure debug printing code 3455 *****************************************************************************/ 3456 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3457