xref: /sqlite-3.40.0/src/select.c (revision a3fdec71)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32   sqlite3WithDelete(db, p->pWith);
33 }
34 
35 /*
36 ** Initialize a SelectDest structure.
37 */
38 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
39   pDest->eDest = (u8)eDest;
40   pDest->iSDParm = iParm;
41   pDest->affSdst = 0;
42   pDest->iSdst = 0;
43   pDest->nSdst = 0;
44 }
45 
46 
47 /*
48 ** Allocate a new Select structure and return a pointer to that
49 ** structure.
50 */
51 Select *sqlite3SelectNew(
52   Parse *pParse,        /* Parsing context */
53   ExprList *pEList,     /* which columns to include in the result */
54   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
55   Expr *pWhere,         /* the WHERE clause */
56   ExprList *pGroupBy,   /* the GROUP BY clause */
57   Expr *pHaving,        /* the HAVING clause */
58   ExprList *pOrderBy,   /* the ORDER BY clause */
59   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
60   Expr *pLimit,         /* LIMIT value.  NULL means not used */
61   Expr *pOffset         /* OFFSET value.  NULL means no offset */
62 ){
63   Select *pNew;
64   Select standin;
65   sqlite3 *db = pParse->db;
66   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
67   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
68   if( pNew==0 ){
69     assert( db->mallocFailed );
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
75   }
76   pNew->pEList = pEList;
77   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
78   pNew->pSrc = pSrc;
79   pNew->pWhere = pWhere;
80   pNew->pGroupBy = pGroupBy;
81   pNew->pHaving = pHaving;
82   pNew->pOrderBy = pOrderBy;
83   pNew->selFlags = selFlags;
84   pNew->op = TK_SELECT;
85   pNew->pLimit = pLimit;
86   pNew->pOffset = pOffset;
87   assert( pOffset==0 || pLimit!=0 );
88   pNew->addrOpenEphm[0] = -1;
89   pNew->addrOpenEphm[1] = -1;
90   pNew->addrOpenEphm[2] = -1;
91   if( db->mallocFailed ) {
92     clearSelect(db, pNew);
93     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
94     pNew = 0;
95   }else{
96     assert( pNew->pSrc!=0 || pParse->nErr>0 );
97   }
98   assert( pNew!=&standin );
99   return pNew;
100 }
101 
102 /*
103 ** Delete the given Select structure and all of its substructures.
104 */
105 void sqlite3SelectDelete(sqlite3 *db, Select *p){
106   if( p ){
107     clearSelect(db, p);
108     sqlite3DbFree(db, p);
109   }
110 }
111 
112 /*
113 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
114 ** type of join.  Return an integer constant that expresses that type
115 ** in terms of the following bit values:
116 **
117 **     JT_INNER
118 **     JT_CROSS
119 **     JT_OUTER
120 **     JT_NATURAL
121 **     JT_LEFT
122 **     JT_RIGHT
123 **
124 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
125 **
126 ** If an illegal or unsupported join type is seen, then still return
127 ** a join type, but put an error in the pParse structure.
128 */
129 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
130   int jointype = 0;
131   Token *apAll[3];
132   Token *p;
133                              /*   0123456789 123456789 123456789 123 */
134   static const char zKeyText[] = "naturaleftouterightfullinnercross";
135   static const struct {
136     u8 i;        /* Beginning of keyword text in zKeyText[] */
137     u8 nChar;    /* Length of the keyword in characters */
138     u8 code;     /* Join type mask */
139   } aKeyword[] = {
140     /* natural */ { 0,  7, JT_NATURAL                },
141     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
142     /* outer   */ { 10, 5, JT_OUTER                  },
143     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
144     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
145     /* inner   */ { 23, 5, JT_INNER                  },
146     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
147   };
148   int i, j;
149   apAll[0] = pA;
150   apAll[1] = pB;
151   apAll[2] = pC;
152   for(i=0; i<3 && apAll[i]; i++){
153     p = apAll[i];
154     for(j=0; j<ArraySize(aKeyword); j++){
155       if( p->n==aKeyword[j].nChar
156           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
157         jointype |= aKeyword[j].code;
158         break;
159       }
160     }
161     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
162     if( j>=ArraySize(aKeyword) ){
163       jointype |= JT_ERROR;
164       break;
165     }
166   }
167   if(
168      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
169      (jointype & JT_ERROR)!=0
170   ){
171     const char *zSp = " ";
172     assert( pB!=0 );
173     if( pC==0 ){ zSp++; }
174     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
175        "%T %T%s%T", pA, pB, zSp, pC);
176     jointype = JT_INNER;
177   }else if( (jointype & JT_OUTER)!=0
178          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
179     sqlite3ErrorMsg(pParse,
180       "RIGHT and FULL OUTER JOINs are not currently supported");
181     jointype = JT_INNER;
182   }
183   return jointype;
184 }
185 
186 /*
187 ** Return the index of a column in a table.  Return -1 if the column
188 ** is not contained in the table.
189 */
190 static int columnIndex(Table *pTab, const char *zCol){
191   int i;
192   for(i=0; i<pTab->nCol; i++){
193     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
194   }
195   return -1;
196 }
197 
198 /*
199 ** Search the first N tables in pSrc, from left to right, looking for a
200 ** table that has a column named zCol.
201 **
202 ** When found, set *piTab and *piCol to the table index and column index
203 ** of the matching column and return TRUE.
204 **
205 ** If not found, return FALSE.
206 */
207 static int tableAndColumnIndex(
208   SrcList *pSrc,       /* Array of tables to search */
209   int N,               /* Number of tables in pSrc->a[] to search */
210   const char *zCol,    /* Name of the column we are looking for */
211   int *piTab,          /* Write index of pSrc->a[] here */
212   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
213 ){
214   int i;               /* For looping over tables in pSrc */
215   int iCol;            /* Index of column matching zCol */
216 
217   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
218   for(i=0; i<N; i++){
219     iCol = columnIndex(pSrc->a[i].pTab, zCol);
220     if( iCol>=0 ){
221       if( piTab ){
222         *piTab = i;
223         *piCol = iCol;
224       }
225       return 1;
226     }
227   }
228   return 0;
229 }
230 
231 /*
232 ** This function is used to add terms implied by JOIN syntax to the
233 ** WHERE clause expression of a SELECT statement. The new term, which
234 ** is ANDed with the existing WHERE clause, is of the form:
235 **
236 **    (tab1.col1 = tab2.col2)
237 **
238 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
239 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
240 ** column iColRight of tab2.
241 */
242 static void addWhereTerm(
243   Parse *pParse,                  /* Parsing context */
244   SrcList *pSrc,                  /* List of tables in FROM clause */
245   int iLeft,                      /* Index of first table to join in pSrc */
246   int iColLeft,                   /* Index of column in first table */
247   int iRight,                     /* Index of second table in pSrc */
248   int iColRight,                  /* Index of column in second table */
249   int isOuterJoin,                /* True if this is an OUTER join */
250   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
251 ){
252   sqlite3 *db = pParse->db;
253   Expr *pE1;
254   Expr *pE2;
255   Expr *pEq;
256 
257   assert( iLeft<iRight );
258   assert( pSrc->nSrc>iRight );
259   assert( pSrc->a[iLeft].pTab );
260   assert( pSrc->a[iRight].pTab );
261 
262   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
263   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
264 
265   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
266   if( pEq && isOuterJoin ){
267     ExprSetProperty(pEq, EP_FromJoin);
268     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
269     ExprSetVVAProperty(pEq, EP_NoReduce);
270     pEq->iRightJoinTable = (i16)pE2->iTable;
271   }
272   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
273 }
274 
275 /*
276 ** Set the EP_FromJoin property on all terms of the given expression.
277 ** And set the Expr.iRightJoinTable to iTable for every term in the
278 ** expression.
279 **
280 ** The EP_FromJoin property is used on terms of an expression to tell
281 ** the LEFT OUTER JOIN processing logic that this term is part of the
282 ** join restriction specified in the ON or USING clause and not a part
283 ** of the more general WHERE clause.  These terms are moved over to the
284 ** WHERE clause during join processing but we need to remember that they
285 ** originated in the ON or USING clause.
286 **
287 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
288 ** expression depends on table iRightJoinTable even if that table is not
289 ** explicitly mentioned in the expression.  That information is needed
290 ** for cases like this:
291 **
292 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
293 **
294 ** The where clause needs to defer the handling of the t1.x=5
295 ** term until after the t2 loop of the join.  In that way, a
296 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
297 ** defer the handling of t1.x=5, it will be processed immediately
298 ** after the t1 loop and rows with t1.x!=5 will never appear in
299 ** the output, which is incorrect.
300 */
301 static void setJoinExpr(Expr *p, int iTable){
302   while( p ){
303     ExprSetProperty(p, EP_FromJoin);
304     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
305     ExprSetVVAProperty(p, EP_NoReduce);
306     p->iRightJoinTable = (i16)iTable;
307     setJoinExpr(p->pLeft, iTable);
308     p = p->pRight;
309   }
310 }
311 
312 /*
313 ** This routine processes the join information for a SELECT statement.
314 ** ON and USING clauses are converted into extra terms of the WHERE clause.
315 ** NATURAL joins also create extra WHERE clause terms.
316 **
317 ** The terms of a FROM clause are contained in the Select.pSrc structure.
318 ** The left most table is the first entry in Select.pSrc.  The right-most
319 ** table is the last entry.  The join operator is held in the entry to
320 ** the left.  Thus entry 0 contains the join operator for the join between
321 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
322 ** also attached to the left entry.
323 **
324 ** This routine returns the number of errors encountered.
325 */
326 static int sqliteProcessJoin(Parse *pParse, Select *p){
327   SrcList *pSrc;                  /* All tables in the FROM clause */
328   int i, j;                       /* Loop counters */
329   struct SrcList_item *pLeft;     /* Left table being joined */
330   struct SrcList_item *pRight;    /* Right table being joined */
331 
332   pSrc = p->pSrc;
333   pLeft = &pSrc->a[0];
334   pRight = &pLeft[1];
335   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
336     Table *pLeftTab = pLeft->pTab;
337     Table *pRightTab = pRight->pTab;
338     int isOuter;
339 
340     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
341     isOuter = (pRight->jointype & JT_OUTER)!=0;
342 
343     /* When the NATURAL keyword is present, add WHERE clause terms for
344     ** every column that the two tables have in common.
345     */
346     if( pRight->jointype & JT_NATURAL ){
347       if( pRight->pOn || pRight->pUsing ){
348         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
349            "an ON or USING clause", 0);
350         return 1;
351       }
352       for(j=0; j<pRightTab->nCol; j++){
353         char *zName;   /* Name of column in the right table */
354         int iLeft;     /* Matching left table */
355         int iLeftCol;  /* Matching column in the left table */
356 
357         zName = pRightTab->aCol[j].zName;
358         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
359           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
360                        isOuter, &p->pWhere);
361         }
362       }
363     }
364 
365     /* Disallow both ON and USING clauses in the same join
366     */
367     if( pRight->pOn && pRight->pUsing ){
368       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
369         "clauses in the same join");
370       return 1;
371     }
372 
373     /* Add the ON clause to the end of the WHERE clause, connected by
374     ** an AND operator.
375     */
376     if( pRight->pOn ){
377       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
378       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
379       pRight->pOn = 0;
380     }
381 
382     /* Create extra terms on the WHERE clause for each column named
383     ** in the USING clause.  Example: If the two tables to be joined are
384     ** A and B and the USING clause names X, Y, and Z, then add this
385     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
386     ** Report an error if any column mentioned in the USING clause is
387     ** not contained in both tables to be joined.
388     */
389     if( pRight->pUsing ){
390       IdList *pList = pRight->pUsing;
391       for(j=0; j<pList->nId; j++){
392         char *zName;     /* Name of the term in the USING clause */
393         int iLeft;       /* Table on the left with matching column name */
394         int iLeftCol;    /* Column number of matching column on the left */
395         int iRightCol;   /* Column number of matching column on the right */
396 
397         zName = pList->a[j].zName;
398         iRightCol = columnIndex(pRightTab, zName);
399         if( iRightCol<0
400          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
401         ){
402           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
403             "not present in both tables", zName);
404           return 1;
405         }
406         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
407                      isOuter, &p->pWhere);
408       }
409     }
410   }
411   return 0;
412 }
413 
414 /*
415 ** Insert code into "v" that will push the record on the top of the
416 ** stack into the sorter.
417 */
418 static void pushOntoSorter(
419   Parse *pParse,         /* Parser context */
420   ExprList *pOrderBy,    /* The ORDER BY clause */
421   Select *pSelect,       /* The whole SELECT statement */
422   int regData            /* Register holding data to be sorted */
423 ){
424   Vdbe *v = pParse->pVdbe;
425   int nExpr = pOrderBy->nExpr;
426   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
427   int regRecord = sqlite3GetTempReg(pParse);
428   int op;
429   sqlite3ExprCacheClear(pParse);
430   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
431   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
432   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
433   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
434   if( pSelect->selFlags & SF_UseSorter ){
435     op = OP_SorterInsert;
436   }else{
437     op = OP_IdxInsert;
438   }
439   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
440   sqlite3ReleaseTempReg(pParse, regRecord);
441   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
442   if( pSelect->iLimit ){
443     int addr1, addr2;
444     int iLimit;
445     if( pSelect->iOffset ){
446       iLimit = pSelect->iOffset+1;
447     }else{
448       iLimit = pSelect->iLimit;
449     }
450     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
451     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
452     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
453     sqlite3VdbeJumpHere(v, addr1);
454     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
455     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
456     sqlite3VdbeJumpHere(v, addr2);
457   }
458 }
459 
460 /*
461 ** Add code to implement the OFFSET
462 */
463 static void codeOffset(
464   Vdbe *v,          /* Generate code into this VM */
465   int iOffset,      /* Register holding the offset counter */
466   int iContinue     /* Jump here to skip the current record */
467 ){
468   if( iOffset>0 && iContinue!=0 ){
469     int addr;
470     sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
471     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset);
472     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
473     VdbeComment((v, "skip OFFSET records"));
474     sqlite3VdbeJumpHere(v, addr);
475   }
476 }
477 
478 /*
479 ** Add code that will check to make sure the N registers starting at iMem
480 ** form a distinct entry.  iTab is a sorting index that holds previously
481 ** seen combinations of the N values.  A new entry is made in iTab
482 ** if the current N values are new.
483 **
484 ** A jump to addrRepeat is made and the N+1 values are popped from the
485 ** stack if the top N elements are not distinct.
486 */
487 static void codeDistinct(
488   Parse *pParse,     /* Parsing and code generating context */
489   int iTab,          /* A sorting index used to test for distinctness */
490   int addrRepeat,    /* Jump to here if not distinct */
491   int N,             /* Number of elements */
492   int iMem           /* First element */
493 ){
494   Vdbe *v;
495   int r1;
496 
497   v = pParse->pVdbe;
498   r1 = sqlite3GetTempReg(pParse);
499   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
500   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
501   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
502   sqlite3ReleaseTempReg(pParse, r1);
503 }
504 
505 #ifndef SQLITE_OMIT_SUBQUERY
506 /*
507 ** Generate an error message when a SELECT is used within a subexpression
508 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
509 ** column.  We do this in a subroutine because the error used to occur
510 ** in multiple places.  (The error only occurs in one place now, but we
511 ** retain the subroutine to minimize code disruption.)
512 */
513 static int checkForMultiColumnSelectError(
514   Parse *pParse,       /* Parse context. */
515   SelectDest *pDest,   /* Destination of SELECT results */
516   int nExpr            /* Number of result columns returned by SELECT */
517 ){
518   int eDest = pDest->eDest;
519   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
520     sqlite3ErrorMsg(pParse, "only a single result allowed for "
521        "a SELECT that is part of an expression");
522     return 1;
523   }else{
524     return 0;
525   }
526 }
527 #endif
528 
529 /*
530 ** An instance of the following object is used to record information about
531 ** how to process the DISTINCT keyword, to simplify passing that information
532 ** into the selectInnerLoop() routine.
533 */
534 typedef struct DistinctCtx DistinctCtx;
535 struct DistinctCtx {
536   u8 isTnct;      /* True if the DISTINCT keyword is present */
537   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
538   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
539   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
540 };
541 
542 /*
543 ** This routine generates the code for the inside of the inner loop
544 ** of a SELECT.
545 **
546 ** If srcTab is negative, then the pEList expressions
547 ** are evaluated in order to get the data for this row.  If srcTab is
548 ** zero or more, then data is pulled from srcTab and pEList is used only
549 ** to get number columns and the datatype for each column.
550 */
551 static void selectInnerLoop(
552   Parse *pParse,          /* The parser context */
553   Select *p,              /* The complete select statement being coded */
554   ExprList *pEList,       /* List of values being extracted */
555   int srcTab,             /* Pull data from this table */
556   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
557   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
558   SelectDest *pDest,      /* How to dispose of the results */
559   int iContinue,          /* Jump here to continue with next row */
560   int iBreak              /* Jump here to break out of the inner loop */
561 ){
562   Vdbe *v = pParse->pVdbe;
563   int i;
564   int hasDistinct;        /* True if the DISTINCT keyword is present */
565   int regResult;              /* Start of memory holding result set */
566   int eDest = pDest->eDest;   /* How to dispose of results */
567   int iParm = pDest->iSDParm; /* First argument to disposal method */
568   int nResultCol;             /* Number of result columns */
569 
570   assert( v );
571   assert( pEList!=0 );
572   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
573   if( pOrderBy==0 && !hasDistinct ){
574     codeOffset(v, p->iOffset, iContinue);
575   }
576 
577   /* Pull the requested columns.
578   */
579   nResultCol = pEList->nExpr;
580   if( pDest->iSdst==0 ){
581     pDest->iSdst = pParse->nMem+1;
582     pDest->nSdst = nResultCol;
583     pParse->nMem += nResultCol;
584   }else{
585     assert( pDest->nSdst==nResultCol );
586   }
587   regResult = pDest->iSdst;
588   if( srcTab>=0 ){
589     for(i=0; i<nResultCol; i++){
590       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
591       VdbeComment((v, "%s", pEList->a[i].zName));
592     }
593   }else if( eDest!=SRT_Exists ){
594     /* If the destination is an EXISTS(...) expression, the actual
595     ** values returned by the SELECT are not required.
596     */
597     sqlite3ExprCodeExprList(pParse, pEList, regResult,
598                             (eDest==SRT_Output)?SQLITE_ECEL_DUP:0);
599   }
600 
601   /* If the DISTINCT keyword was present on the SELECT statement
602   ** and this row has been seen before, then do not make this row
603   ** part of the result.
604   */
605   if( hasDistinct ){
606     switch( pDistinct->eTnctType ){
607       case WHERE_DISTINCT_ORDERED: {
608         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
609         int iJump;              /* Jump destination */
610         int regPrev;            /* Previous row content */
611 
612         /* Allocate space for the previous row */
613         regPrev = pParse->nMem+1;
614         pParse->nMem += nResultCol;
615 
616         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
617         ** sets the MEM_Cleared bit on the first register of the
618         ** previous value.  This will cause the OP_Ne below to always
619         ** fail on the first iteration of the loop even if the first
620         ** row is all NULLs.
621         */
622         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
623         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
624         pOp->opcode = OP_Null;
625         pOp->p1 = 1;
626         pOp->p2 = regPrev;
627 
628         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
629         for(i=0; i<nResultCol; i++){
630           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
631           if( i<nResultCol-1 ){
632             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
633           }else{
634             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
635           }
636           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
637           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
638         }
639         assert( sqlite3VdbeCurrentAddr(v)==iJump );
640         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
641         break;
642       }
643 
644       case WHERE_DISTINCT_UNIQUE: {
645         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
646         break;
647       }
648 
649       default: {
650         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
651         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
652         break;
653       }
654     }
655     if( pOrderBy==0 ){
656       codeOffset(v, p->iOffset, iContinue);
657     }
658   }
659 
660   switch( eDest ){
661     /* In this mode, write each query result to the key of the temporary
662     ** table iParm.
663     */
664 #ifndef SQLITE_OMIT_COMPOUND_SELECT
665     case SRT_Union: {
666       int r1;
667       r1 = sqlite3GetTempReg(pParse);
668       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
669       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
670       sqlite3ReleaseTempReg(pParse, r1);
671       break;
672     }
673 
674     /* Construct a record from the query result, but instead of
675     ** saving that record, use it as a key to delete elements from
676     ** the temporary table iParm.
677     */
678     case SRT_Except: {
679       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
680       break;
681     }
682 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
683 
684     /* Store the result as data using a unique key.
685     */
686     case SRT_DistTable:
687     case SRT_Table:
688     case SRT_EphemTab: {
689       int r1 = sqlite3GetTempReg(pParse);
690       testcase( eDest==SRT_Table );
691       testcase( eDest==SRT_EphemTab );
692       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
693 #ifndef SQLITE_OMIT_CTE
694       if( eDest==SRT_DistTable ){
695         /* If the destination is DistTable, then cursor (iParm+1) is open
696         ** on an ephemeral index. If the current row is already present
697         ** in the index, do not write it to the output. If not, add the
698         ** current row to the index and proceed with writing it to the
699         ** output table as well.  */
700         int addr = sqlite3VdbeCurrentAddr(v) + 4;
701         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
702         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
703         assert( pOrderBy==0 );
704       }
705 #endif
706       if( pOrderBy ){
707         pushOntoSorter(pParse, pOrderBy, p, r1);
708       }else{
709         int r2 = sqlite3GetTempReg(pParse);
710         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
711         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
712         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
713         sqlite3ReleaseTempReg(pParse, r2);
714       }
715       sqlite3ReleaseTempReg(pParse, r1);
716       break;
717     }
718 
719 #ifndef SQLITE_OMIT_SUBQUERY
720     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
721     ** then there should be a single item on the stack.  Write this
722     ** item into the set table with bogus data.
723     */
724     case SRT_Set: {
725       assert( nResultCol==1 );
726       pDest->affSdst =
727                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
728       if( pOrderBy ){
729         /* At first glance you would think we could optimize out the
730         ** ORDER BY in this case since the order of entries in the set
731         ** does not matter.  But there might be a LIMIT clause, in which
732         ** case the order does matter */
733         pushOntoSorter(pParse, pOrderBy, p, regResult);
734       }else{
735         int r1 = sqlite3GetTempReg(pParse);
736         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
737         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
738         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
739         sqlite3ReleaseTempReg(pParse, r1);
740       }
741       break;
742     }
743 
744     /* If any row exist in the result set, record that fact and abort.
745     */
746     case SRT_Exists: {
747       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
748       /* The LIMIT clause will terminate the loop for us */
749       break;
750     }
751 
752     /* If this is a scalar select that is part of an expression, then
753     ** store the results in the appropriate memory cell and break out
754     ** of the scan loop.
755     */
756     case SRT_Mem: {
757       assert( nResultCol==1 );
758       if( pOrderBy ){
759         pushOntoSorter(pParse, pOrderBy, p, regResult);
760       }else{
761         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
762         /* The LIMIT clause will jump out of the loop for us */
763       }
764       break;
765     }
766 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
767 
768     /* Send the data to the callback function or to a subroutine.  In the
769     ** case of a subroutine, the subroutine itself is responsible for
770     ** popping the data from the stack.
771     */
772     case SRT_Coroutine:
773     case SRT_Output: {
774       testcase( eDest==SRT_Coroutine );
775       testcase( eDest==SRT_Output );
776       if( pOrderBy ){
777         int r1 = sqlite3GetTempReg(pParse);
778         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
779         pushOntoSorter(pParse, pOrderBy, p, r1);
780         sqlite3ReleaseTempReg(pParse, r1);
781       }else if( eDest==SRT_Coroutine ){
782         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
783       }else{
784         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
785         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
786       }
787       break;
788     }
789 
790 #ifndef SQLITE_OMIT_CTE
791     /* Write the results into a priority queue that is order according to
792     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
793     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
794     ** pSO->nExpr columns, then make sure all keys are unique by adding a
795     ** final OP_Sequence column.  The last column is the record as a blob.
796     */
797     case SRT_DistQueue:
798     case SRT_Queue: {
799       int nKey;
800       int r1, r2, r3;
801       int addrTest = 0;
802       ExprList *pSO;
803       pSO = pDest->pOrderBy;
804       assert( pSO );
805       nKey = pSO->nExpr;
806       r1 = sqlite3GetTempReg(pParse);
807       r2 = sqlite3GetTempRange(pParse, nKey+2);
808       r3 = r2+nKey+1;
809       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
810       if( eDest==SRT_DistQueue ){
811         /* If the destination is DistQueue, then cursor (iParm+1) is open
812         ** on a second ephemeral index that holds all values every previously
813         ** added to the queue.  Only add this new value if it has never before
814         ** been added */
815         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, r3, 0);
816         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
817         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
818       }
819       for(i=0; i<nKey; i++){
820         sqlite3VdbeAddOp2(v, OP_SCopy,
821                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
822                           r2+i);
823       }
824       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
825       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
826       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
827       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
828       sqlite3ReleaseTempReg(pParse, r1);
829       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
830       break;
831     }
832 #endif /* SQLITE_OMIT_CTE */
833 
834 
835 
836 #if !defined(SQLITE_OMIT_TRIGGER)
837     /* Discard the results.  This is used for SELECT statements inside
838     ** the body of a TRIGGER.  The purpose of such selects is to call
839     ** user-defined functions that have side effects.  We do not care
840     ** about the actual results of the select.
841     */
842     default: {
843       assert( eDest==SRT_Discard );
844       break;
845     }
846 #endif
847   }
848 
849   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
850   ** there is a sorter, in which case the sorter has already limited
851   ** the output for us.
852   */
853   if( pOrderBy==0 && p->iLimit ){
854     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
855   }
856 }
857 
858 /*
859 ** Allocate a KeyInfo object sufficient for an index of N key columns and
860 ** X extra columns.
861 */
862 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
863   KeyInfo *p = sqlite3DbMallocZero(0,
864                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
865   if( p ){
866     p->aSortOrder = (u8*)&p->aColl[N+X];
867     p->nField = (u16)N;
868     p->nXField = (u16)X;
869     p->enc = ENC(db);
870     p->db = db;
871     p->nRef = 1;
872   }else{
873     db->mallocFailed = 1;
874   }
875   return p;
876 }
877 
878 /*
879 ** Deallocate a KeyInfo object
880 */
881 void sqlite3KeyInfoUnref(KeyInfo *p){
882   if( p ){
883     assert( p->nRef>0 );
884     p->nRef--;
885     if( p->nRef==0 ) sqlite3DbFree(0, p);
886   }
887 }
888 
889 /*
890 ** Make a new pointer to a KeyInfo object
891 */
892 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
893   if( p ){
894     assert( p->nRef>0 );
895     p->nRef++;
896   }
897   return p;
898 }
899 
900 #ifdef SQLITE_DEBUG
901 /*
902 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
903 ** can only be changed if this is just a single reference to the object.
904 **
905 ** This routine is used only inside of assert() statements.
906 */
907 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
908 #endif /* SQLITE_DEBUG */
909 
910 /*
911 ** Given an expression list, generate a KeyInfo structure that records
912 ** the collating sequence for each expression in that expression list.
913 **
914 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
915 ** KeyInfo structure is appropriate for initializing a virtual index to
916 ** implement that clause.  If the ExprList is the result set of a SELECT
917 ** then the KeyInfo structure is appropriate for initializing a virtual
918 ** index to implement a DISTINCT test.
919 **
920 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
921 ** function is responsible for seeing that this structure is eventually
922 ** freed.
923 */
924 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList, int nExtra){
925   int nExpr;
926   KeyInfo *pInfo;
927   struct ExprList_item *pItem;
928   sqlite3 *db = pParse->db;
929   int i;
930 
931   nExpr = pList->nExpr;
932   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra, 1);
933   if( pInfo ){
934     assert( sqlite3KeyInfoIsWriteable(pInfo) );
935     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
936       CollSeq *pColl;
937       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
938       if( !pColl ) pColl = db->pDfltColl;
939       pInfo->aColl[i] = pColl;
940       pInfo->aSortOrder[i] = pItem->sortOrder;
941     }
942   }
943   return pInfo;
944 }
945 
946 #ifndef SQLITE_OMIT_COMPOUND_SELECT
947 /*
948 ** Name of the connection operator, used for error messages.
949 */
950 static const char *selectOpName(int id){
951   char *z;
952   switch( id ){
953     case TK_ALL:       z = "UNION ALL";   break;
954     case TK_INTERSECT: z = "INTERSECT";   break;
955     case TK_EXCEPT:    z = "EXCEPT";      break;
956     default:           z = "UNION";       break;
957   }
958   return z;
959 }
960 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
961 
962 #ifndef SQLITE_OMIT_EXPLAIN
963 /*
964 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
965 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
966 ** where the caption is of the form:
967 **
968 **   "USE TEMP B-TREE FOR xxx"
969 **
970 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
971 ** is determined by the zUsage argument.
972 */
973 static void explainTempTable(Parse *pParse, const char *zUsage){
974   if( pParse->explain==2 ){
975     Vdbe *v = pParse->pVdbe;
976     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
977     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
978   }
979 }
980 
981 /*
982 ** Assign expression b to lvalue a. A second, no-op, version of this macro
983 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
984 ** in sqlite3Select() to assign values to structure member variables that
985 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
986 ** code with #ifndef directives.
987 */
988 # define explainSetInteger(a, b) a = b
989 
990 #else
991 /* No-op versions of the explainXXX() functions and macros. */
992 # define explainTempTable(y,z)
993 # define explainSetInteger(y,z)
994 #endif
995 
996 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
997 /*
998 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
999 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1000 ** where the caption is of one of the two forms:
1001 **
1002 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1003 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1004 **
1005 ** where iSub1 and iSub2 are the integers passed as the corresponding
1006 ** function parameters, and op is the text representation of the parameter
1007 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1008 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1009 ** false, or the second form if it is true.
1010 */
1011 static void explainComposite(
1012   Parse *pParse,                  /* Parse context */
1013   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1014   int iSub1,                      /* Subquery id 1 */
1015   int iSub2,                      /* Subquery id 2 */
1016   int bUseTmp                     /* True if a temp table was used */
1017 ){
1018   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1019   if( pParse->explain==2 ){
1020     Vdbe *v = pParse->pVdbe;
1021     char *zMsg = sqlite3MPrintf(
1022         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1023         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1024     );
1025     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1026   }
1027 }
1028 #else
1029 /* No-op versions of the explainXXX() functions and macros. */
1030 # define explainComposite(v,w,x,y,z)
1031 #endif
1032 
1033 /*
1034 ** If the inner loop was generated using a non-null pOrderBy argument,
1035 ** then the results were placed in a sorter.  After the loop is terminated
1036 ** we need to run the sorter and output the results.  The following
1037 ** routine generates the code needed to do that.
1038 */
1039 static void generateSortTail(
1040   Parse *pParse,    /* Parsing context */
1041   Select *p,        /* The SELECT statement */
1042   Vdbe *v,          /* Generate code into this VDBE */
1043   int nColumn,      /* Number of columns of data */
1044   SelectDest *pDest /* Write the sorted results here */
1045 ){
1046   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1047   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1048   int addr;
1049   int iTab;
1050   int pseudoTab = 0;
1051   ExprList *pOrderBy = p->pOrderBy;
1052 
1053   int eDest = pDest->eDest;
1054   int iParm = pDest->iSDParm;
1055 
1056   int regRow;
1057   int regRowid;
1058 
1059   iTab = pOrderBy->iECursor;
1060   regRow = sqlite3GetTempReg(pParse);
1061   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1062     pseudoTab = pParse->nTab++;
1063     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
1064     regRowid = 0;
1065   }else{
1066     regRowid = sqlite3GetTempReg(pParse);
1067   }
1068   if( p->selFlags & SF_UseSorter ){
1069     int regSortOut = ++pParse->nMem;
1070     int ptab2 = pParse->nTab++;
1071     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
1072     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1073     codeOffset(v, p->iOffset, addrContinue);
1074     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
1075     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
1076     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1077   }else{
1078     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
1079     codeOffset(v, p->iOffset, addrContinue);
1080     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
1081   }
1082   switch( eDest ){
1083     case SRT_Table:
1084     case SRT_EphemTab: {
1085       testcase( eDest==SRT_Table );
1086       testcase( eDest==SRT_EphemTab );
1087       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1088       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1089       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1090       break;
1091     }
1092 #ifndef SQLITE_OMIT_SUBQUERY
1093     case SRT_Set: {
1094       assert( nColumn==1 );
1095       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1096                         &pDest->affSdst, 1);
1097       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1098       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1099       break;
1100     }
1101     case SRT_Mem: {
1102       assert( nColumn==1 );
1103       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1104       /* The LIMIT clause will terminate the loop for us */
1105       break;
1106     }
1107 #endif
1108     default: {
1109       int i;
1110       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1111       testcase( eDest==SRT_Output );
1112       testcase( eDest==SRT_Coroutine );
1113       for(i=0; i<nColumn; i++){
1114         assert( regRow!=pDest->iSdst+i );
1115         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1116         if( i==0 ){
1117           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1118         }
1119       }
1120       if( eDest==SRT_Output ){
1121         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1122         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1123       }else{
1124         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1125       }
1126       break;
1127     }
1128   }
1129   sqlite3ReleaseTempReg(pParse, regRow);
1130   sqlite3ReleaseTempReg(pParse, regRowid);
1131 
1132   /* The bottom of the loop
1133   */
1134   sqlite3VdbeResolveLabel(v, addrContinue);
1135   if( p->selFlags & SF_UseSorter ){
1136     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
1137   }else{
1138     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
1139   }
1140   sqlite3VdbeResolveLabel(v, addrBreak);
1141   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1142     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
1143   }
1144 }
1145 
1146 /*
1147 ** Return a pointer to a string containing the 'declaration type' of the
1148 ** expression pExpr. The string may be treated as static by the caller.
1149 **
1150 ** Also try to estimate the size of the returned value and return that
1151 ** result in *pEstWidth.
1152 **
1153 ** The declaration type is the exact datatype definition extracted from the
1154 ** original CREATE TABLE statement if the expression is a column. The
1155 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1156 ** is considered a column can be complex in the presence of subqueries. The
1157 ** result-set expression in all of the following SELECT statements is
1158 ** considered a column by this function.
1159 **
1160 **   SELECT col FROM tbl;
1161 **   SELECT (SELECT col FROM tbl;
1162 **   SELECT (SELECT col FROM tbl);
1163 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1164 **
1165 ** The declaration type for any expression other than a column is NULL.
1166 **
1167 ** This routine has either 3 or 6 parameters depending on whether or not
1168 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1169 */
1170 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1171 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1172 static const char *columnTypeImpl(
1173   NameContext *pNC,
1174   Expr *pExpr,
1175   const char **pzOrigDb,
1176   const char **pzOrigTab,
1177   const char **pzOrigCol,
1178   u8 *pEstWidth
1179 ){
1180   char const *zOrigDb = 0;
1181   char const *zOrigTab = 0;
1182   char const *zOrigCol = 0;
1183 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1184 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1185 static const char *columnTypeImpl(
1186   NameContext *pNC,
1187   Expr *pExpr,
1188   u8 *pEstWidth
1189 ){
1190 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1191   char const *zType = 0;
1192   int j;
1193   u8 estWidth = 1;
1194 
1195   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1196   switch( pExpr->op ){
1197     case TK_AGG_COLUMN:
1198     case TK_COLUMN: {
1199       /* The expression is a column. Locate the table the column is being
1200       ** extracted from in NameContext.pSrcList. This table may be real
1201       ** database table or a subquery.
1202       */
1203       Table *pTab = 0;            /* Table structure column is extracted from */
1204       Select *pS = 0;             /* Select the column is extracted from */
1205       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1206       testcase( pExpr->op==TK_AGG_COLUMN );
1207       testcase( pExpr->op==TK_COLUMN );
1208       while( pNC && !pTab ){
1209         SrcList *pTabList = pNC->pSrcList;
1210         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1211         if( j<pTabList->nSrc ){
1212           pTab = pTabList->a[j].pTab;
1213           pS = pTabList->a[j].pSelect;
1214         }else{
1215           pNC = pNC->pNext;
1216         }
1217       }
1218 
1219       if( pTab==0 ){
1220         /* At one time, code such as "SELECT new.x" within a trigger would
1221         ** cause this condition to run.  Since then, we have restructured how
1222         ** trigger code is generated and so this condition is no longer
1223         ** possible. However, it can still be true for statements like
1224         ** the following:
1225         **
1226         **   CREATE TABLE t1(col INTEGER);
1227         **   SELECT (SELECT t1.col) FROM FROM t1;
1228         **
1229         ** when columnType() is called on the expression "t1.col" in the
1230         ** sub-select. In this case, set the column type to NULL, even
1231         ** though it should really be "INTEGER".
1232         **
1233         ** This is not a problem, as the column type of "t1.col" is never
1234         ** used. When columnType() is called on the expression
1235         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1236         ** branch below.  */
1237         break;
1238       }
1239 
1240       assert( pTab && pExpr->pTab==pTab );
1241       if( pS ){
1242         /* The "table" is actually a sub-select or a view in the FROM clause
1243         ** of the SELECT statement. Return the declaration type and origin
1244         ** data for the result-set column of the sub-select.
1245         */
1246         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1247           /* If iCol is less than zero, then the expression requests the
1248           ** rowid of the sub-select or view. This expression is legal (see
1249           ** test case misc2.2.2) - it always evaluates to NULL.
1250           */
1251           NameContext sNC;
1252           Expr *p = pS->pEList->a[iCol].pExpr;
1253           sNC.pSrcList = pS->pSrc;
1254           sNC.pNext = pNC;
1255           sNC.pParse = pNC->pParse;
1256           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1257         }
1258       }else if( pTab->pSchema ){
1259         /* A real table */
1260         assert( !pS );
1261         if( iCol<0 ) iCol = pTab->iPKey;
1262         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1263 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1264         if( iCol<0 ){
1265           zType = "INTEGER";
1266           zOrigCol = "rowid";
1267         }else{
1268           zType = pTab->aCol[iCol].zType;
1269           zOrigCol = pTab->aCol[iCol].zName;
1270           estWidth = pTab->aCol[iCol].szEst;
1271         }
1272         zOrigTab = pTab->zName;
1273         if( pNC->pParse ){
1274           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1275           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1276         }
1277 #else
1278         if( iCol<0 ){
1279           zType = "INTEGER";
1280         }else{
1281           zType = pTab->aCol[iCol].zType;
1282           estWidth = pTab->aCol[iCol].szEst;
1283         }
1284 #endif
1285       }
1286       break;
1287     }
1288 #ifndef SQLITE_OMIT_SUBQUERY
1289     case TK_SELECT: {
1290       /* The expression is a sub-select. Return the declaration type and
1291       ** origin info for the single column in the result set of the SELECT
1292       ** statement.
1293       */
1294       NameContext sNC;
1295       Select *pS = pExpr->x.pSelect;
1296       Expr *p = pS->pEList->a[0].pExpr;
1297       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1298       sNC.pSrcList = pS->pSrc;
1299       sNC.pNext = pNC;
1300       sNC.pParse = pNC->pParse;
1301       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1302       break;
1303     }
1304 #endif
1305   }
1306 
1307 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1308   if( pzOrigDb ){
1309     assert( pzOrigTab && pzOrigCol );
1310     *pzOrigDb = zOrigDb;
1311     *pzOrigTab = zOrigTab;
1312     *pzOrigCol = zOrigCol;
1313   }
1314 #endif
1315   if( pEstWidth ) *pEstWidth = estWidth;
1316   return zType;
1317 }
1318 
1319 /*
1320 ** Generate code that will tell the VDBE the declaration types of columns
1321 ** in the result set.
1322 */
1323 static void generateColumnTypes(
1324   Parse *pParse,      /* Parser context */
1325   SrcList *pTabList,  /* List of tables */
1326   ExprList *pEList    /* Expressions defining the result set */
1327 ){
1328 #ifndef SQLITE_OMIT_DECLTYPE
1329   Vdbe *v = pParse->pVdbe;
1330   int i;
1331   NameContext sNC;
1332   sNC.pSrcList = pTabList;
1333   sNC.pParse = pParse;
1334   for(i=0; i<pEList->nExpr; i++){
1335     Expr *p = pEList->a[i].pExpr;
1336     const char *zType;
1337 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1338     const char *zOrigDb = 0;
1339     const char *zOrigTab = 0;
1340     const char *zOrigCol = 0;
1341     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1342 
1343     /* The vdbe must make its own copy of the column-type and other
1344     ** column specific strings, in case the schema is reset before this
1345     ** virtual machine is deleted.
1346     */
1347     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1348     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1349     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1350 #else
1351     zType = columnType(&sNC, p, 0, 0, 0, 0);
1352 #endif
1353     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1354   }
1355 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1356 }
1357 
1358 /*
1359 ** Generate code that will tell the VDBE the names of columns
1360 ** in the result set.  This information is used to provide the
1361 ** azCol[] values in the callback.
1362 */
1363 static void generateColumnNames(
1364   Parse *pParse,      /* Parser context */
1365   SrcList *pTabList,  /* List of tables */
1366   ExprList *pEList    /* Expressions defining the result set */
1367 ){
1368   Vdbe *v = pParse->pVdbe;
1369   int i, j;
1370   sqlite3 *db = pParse->db;
1371   int fullNames, shortNames;
1372 
1373 #ifndef SQLITE_OMIT_EXPLAIN
1374   /* If this is an EXPLAIN, skip this step */
1375   if( pParse->explain ){
1376     return;
1377   }
1378 #endif
1379 
1380   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1381   pParse->colNamesSet = 1;
1382   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1383   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1384   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1385   for(i=0; i<pEList->nExpr; i++){
1386     Expr *p;
1387     p = pEList->a[i].pExpr;
1388     if( NEVER(p==0) ) continue;
1389     if( pEList->a[i].zName ){
1390       char *zName = pEList->a[i].zName;
1391       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1392     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1393       Table *pTab;
1394       char *zCol;
1395       int iCol = p->iColumn;
1396       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1397         if( pTabList->a[j].iCursor==p->iTable ) break;
1398       }
1399       assert( j<pTabList->nSrc );
1400       pTab = pTabList->a[j].pTab;
1401       if( iCol<0 ) iCol = pTab->iPKey;
1402       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1403       if( iCol<0 ){
1404         zCol = "rowid";
1405       }else{
1406         zCol = pTab->aCol[iCol].zName;
1407       }
1408       if( !shortNames && !fullNames ){
1409         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1410             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1411       }else if( fullNames ){
1412         char *zName = 0;
1413         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1414         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1415       }else{
1416         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1417       }
1418     }else{
1419       const char *z = pEList->a[i].zSpan;
1420       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1421       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1422     }
1423   }
1424   generateColumnTypes(pParse, pTabList, pEList);
1425 }
1426 
1427 /*
1428 ** Given a an expression list (which is really the list of expressions
1429 ** that form the result set of a SELECT statement) compute appropriate
1430 ** column names for a table that would hold the expression list.
1431 **
1432 ** All column names will be unique.
1433 **
1434 ** Only the column names are computed.  Column.zType, Column.zColl,
1435 ** and other fields of Column are zeroed.
1436 **
1437 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1438 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1439 */
1440 static int selectColumnsFromExprList(
1441   Parse *pParse,          /* Parsing context */
1442   ExprList *pEList,       /* Expr list from which to derive column names */
1443   i16 *pnCol,             /* Write the number of columns here */
1444   Column **paCol          /* Write the new column list here */
1445 ){
1446   sqlite3 *db = pParse->db;   /* Database connection */
1447   int i, j;                   /* Loop counters */
1448   int cnt;                    /* Index added to make the name unique */
1449   Column *aCol, *pCol;        /* For looping over result columns */
1450   int nCol;                   /* Number of columns in the result set */
1451   Expr *p;                    /* Expression for a single result column */
1452   char *zName;                /* Column name */
1453   int nName;                  /* Size of name in zName[] */
1454 
1455   if( pEList ){
1456     nCol = pEList->nExpr;
1457     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1458     testcase( aCol==0 );
1459   }else{
1460     nCol = 0;
1461     aCol = 0;
1462   }
1463   *pnCol = nCol;
1464   *paCol = aCol;
1465 
1466   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1467     /* Get an appropriate name for the column
1468     */
1469     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1470     if( (zName = pEList->a[i].zName)!=0 ){
1471       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1472       zName = sqlite3DbStrDup(db, zName);
1473     }else{
1474       Expr *pColExpr = p;  /* The expression that is the result column name */
1475       Table *pTab;         /* Table associated with this expression */
1476       while( pColExpr->op==TK_DOT ){
1477         pColExpr = pColExpr->pRight;
1478         assert( pColExpr!=0 );
1479       }
1480       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1481         /* For columns use the column name name */
1482         int iCol = pColExpr->iColumn;
1483         pTab = pColExpr->pTab;
1484         if( iCol<0 ) iCol = pTab->iPKey;
1485         zName = sqlite3MPrintf(db, "%s",
1486                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1487       }else if( pColExpr->op==TK_ID ){
1488         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1489         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1490       }else{
1491         /* Use the original text of the column expression as its name */
1492         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1493       }
1494     }
1495     if( db->mallocFailed ){
1496       sqlite3DbFree(db, zName);
1497       break;
1498     }
1499 
1500     /* Make sure the column name is unique.  If the name is not unique,
1501     ** append a integer to the name so that it becomes unique.
1502     */
1503     nName = sqlite3Strlen30(zName);
1504     for(j=cnt=0; j<i; j++){
1505       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1506         char *zNewName;
1507         int k;
1508         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1509         if( zName[k]==':' ) nName = k;
1510         zName[nName] = 0;
1511         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1512         sqlite3DbFree(db, zName);
1513         zName = zNewName;
1514         j = -1;
1515         if( zName==0 ) break;
1516       }
1517     }
1518     pCol->zName = zName;
1519   }
1520   if( db->mallocFailed ){
1521     for(j=0; j<i; j++){
1522       sqlite3DbFree(db, aCol[j].zName);
1523     }
1524     sqlite3DbFree(db, aCol);
1525     *paCol = 0;
1526     *pnCol = 0;
1527     return SQLITE_NOMEM;
1528   }
1529   return SQLITE_OK;
1530 }
1531 
1532 /*
1533 ** Add type and collation information to a column list based on
1534 ** a SELECT statement.
1535 **
1536 ** The column list presumably came from selectColumnNamesFromExprList().
1537 ** The column list has only names, not types or collations.  This
1538 ** routine goes through and adds the types and collations.
1539 **
1540 ** This routine requires that all identifiers in the SELECT
1541 ** statement be resolved.
1542 */
1543 static void selectAddColumnTypeAndCollation(
1544   Parse *pParse,        /* Parsing contexts */
1545   Table *pTab,          /* Add column type information to this table */
1546   Select *pSelect       /* SELECT used to determine types and collations */
1547 ){
1548   sqlite3 *db = pParse->db;
1549   NameContext sNC;
1550   Column *pCol;
1551   CollSeq *pColl;
1552   int i;
1553   Expr *p;
1554   struct ExprList_item *a;
1555   u64 szAll = 0;
1556 
1557   assert( pSelect!=0 );
1558   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1559   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1560   if( db->mallocFailed ) return;
1561   memset(&sNC, 0, sizeof(sNC));
1562   sNC.pSrcList = pSelect->pSrc;
1563   a = pSelect->pEList->a;
1564   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1565     p = a[i].pExpr;
1566     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1567     szAll += pCol->szEst;
1568     pCol->affinity = sqlite3ExprAffinity(p);
1569     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1570     pColl = sqlite3ExprCollSeq(pParse, p);
1571     if( pColl ){
1572       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1573     }
1574   }
1575   pTab->szTabRow = sqlite3LogEst(szAll*4);
1576 }
1577 
1578 /*
1579 ** Given a SELECT statement, generate a Table structure that describes
1580 ** the result set of that SELECT.
1581 */
1582 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1583   Table *pTab;
1584   sqlite3 *db = pParse->db;
1585   int savedFlags;
1586 
1587   savedFlags = db->flags;
1588   db->flags &= ~SQLITE_FullColNames;
1589   db->flags |= SQLITE_ShortColNames;
1590   sqlite3SelectPrep(pParse, pSelect, 0);
1591   if( pParse->nErr ) return 0;
1592   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1593   db->flags = savedFlags;
1594   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1595   if( pTab==0 ){
1596     return 0;
1597   }
1598   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1599   ** is disabled */
1600   assert( db->lookaside.bEnabled==0 );
1601   pTab->nRef = 1;
1602   pTab->zName = 0;
1603   pTab->nRowEst = 1048576;
1604   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1605   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1606   pTab->iPKey = -1;
1607   if( db->mallocFailed ){
1608     sqlite3DeleteTable(db, pTab);
1609     return 0;
1610   }
1611   return pTab;
1612 }
1613 
1614 /*
1615 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1616 ** If an error occurs, return NULL and leave a message in pParse.
1617 */
1618 Vdbe *sqlite3GetVdbe(Parse *pParse){
1619   Vdbe *v = pParse->pVdbe;
1620   if( v==0 ){
1621     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1622 #ifndef SQLITE_OMIT_TRACE
1623     if( v ){
1624       sqlite3VdbeAddOp0(v, OP_Trace);
1625     }
1626 #endif
1627   }
1628   return v;
1629 }
1630 
1631 
1632 /*
1633 ** Compute the iLimit and iOffset fields of the SELECT based on the
1634 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1635 ** that appear in the original SQL statement after the LIMIT and OFFSET
1636 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1637 ** are the integer memory register numbers for counters used to compute
1638 ** the limit and offset.  If there is no limit and/or offset, then
1639 ** iLimit and iOffset are negative.
1640 **
1641 ** This routine changes the values of iLimit and iOffset only if
1642 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1643 ** iOffset should have been preset to appropriate default values (zero)
1644 ** prior to calling this routine.
1645 **
1646 ** The iOffset register (if it exists) is initialized to the value
1647 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1648 ** iOffset+1 is initialized to LIMIT+OFFSET.
1649 **
1650 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1651 ** redefined.  The UNION ALL operator uses this property to force
1652 ** the reuse of the same limit and offset registers across multiple
1653 ** SELECT statements.
1654 */
1655 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1656   Vdbe *v = 0;
1657   int iLimit = 0;
1658   int iOffset;
1659   int addr1, n;
1660   if( p->iLimit ) return;
1661 
1662   /*
1663   ** "LIMIT -1" always shows all rows.  There is some
1664   ** controversy about what the correct behavior should be.
1665   ** The current implementation interprets "LIMIT 0" to mean
1666   ** no rows.
1667   */
1668   sqlite3ExprCacheClear(pParse);
1669   assert( p->pOffset==0 || p->pLimit!=0 );
1670   if( p->pLimit ){
1671     p->iLimit = iLimit = ++pParse->nMem;
1672     v = sqlite3GetVdbe(pParse);
1673     assert( v!=0 );
1674     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1675       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1676       VdbeComment((v, "LIMIT counter"));
1677       if( n==0 ){
1678         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1679       }else if( n>=0 && p->nSelectRow>(u64)n ){
1680         p->nSelectRow = n;
1681       }
1682     }else{
1683       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1684       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1685       VdbeComment((v, "LIMIT counter"));
1686       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1687     }
1688     if( p->pOffset ){
1689       p->iOffset = iOffset = ++pParse->nMem;
1690       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1691       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1692       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1693       VdbeComment((v, "OFFSET counter"));
1694       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1695       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1696       sqlite3VdbeJumpHere(v, addr1);
1697       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1698       VdbeComment((v, "LIMIT+OFFSET"));
1699       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1700       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1701       sqlite3VdbeJumpHere(v, addr1);
1702     }
1703   }
1704 }
1705 
1706 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1707 /*
1708 ** Return the appropriate collating sequence for the iCol-th column of
1709 ** the result set for the compound-select statement "p".  Return NULL if
1710 ** the column has no default collating sequence.
1711 **
1712 ** The collating sequence for the compound select is taken from the
1713 ** left-most term of the select that has a collating sequence.
1714 */
1715 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1716   CollSeq *pRet;
1717   if( p->pPrior ){
1718     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1719   }else{
1720     pRet = 0;
1721   }
1722   assert( iCol>=0 );
1723   if( pRet==0 && iCol<p->pEList->nExpr ){
1724     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1725   }
1726   return pRet;
1727 }
1728 
1729 /*
1730 ** The select statement passed as the second parameter is a compound SELECT
1731 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1732 ** structure suitable for implementing the ORDER BY.
1733 **
1734 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1735 ** function is responsible for ensuring that this structure is eventually
1736 ** freed.
1737 */
1738 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1739   ExprList *pOrderBy = p->pOrderBy;
1740   int nOrderBy = p->pOrderBy->nExpr;
1741   sqlite3 *db = pParse->db;
1742   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1743   if( pRet ){
1744     int i;
1745     for(i=0; i<nOrderBy; i++){
1746       struct ExprList_item *pItem = &pOrderBy->a[i];
1747       Expr *pTerm = pItem->pExpr;
1748       CollSeq *pColl;
1749 
1750       if( pTerm->flags & EP_Collate ){
1751         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1752       }else{
1753         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1754         if( pColl==0 ) pColl = db->pDfltColl;
1755         pOrderBy->a[i].pExpr =
1756           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1757       }
1758       assert( sqlite3KeyInfoIsWriteable(pRet) );
1759       pRet->aColl[i] = pColl;
1760       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1761     }
1762   }
1763 
1764   return pRet;
1765 }
1766 
1767 #ifndef SQLITE_OMIT_CTE
1768 /*
1769 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1770 ** query of the form:
1771 **
1772 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1773 **                         \___________/             \_______________/
1774 **                           p->pPrior                      p
1775 **
1776 **
1777 ** There is exactly one reference to the recursive-table in the FROM clause
1778 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1779 **
1780 ** The setup-query runs once to generate an initial set of rows that go
1781 ** into a Queue table.  Rows are extracted from the Queue table one by
1782 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1783 ** extracted row (now in the iCurrent table) becomes the content of the
1784 ** recursive-table for a recursive-query run.  The output of the recursive-query
1785 ** is added back into the Queue table.  Then another row is extracted from Queue
1786 ** and the iteration continues until the Queue table is empty.
1787 **
1788 ** If the compound query operator is UNION then no duplicate rows are ever
1789 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1790 ** that have ever been inserted into Queue and causes duplicates to be
1791 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1792 **
1793 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1794 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1795 ** an ORDER BY, the Queue table is just a FIFO.
1796 **
1797 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1798 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1799 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1800 ** with a positive value, then the first OFFSET outputs are discarded rather
1801 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1802 ** rows have been skipped.
1803 */
1804 static void generateWithRecursiveQuery(
1805   Parse *pParse,        /* Parsing context */
1806   Select *p,            /* The recursive SELECT to be coded */
1807   SelectDest *pDest     /* What to do with query results */
1808 ){
1809   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1810   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1811   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1812   Select *pSetup = p->pPrior;   /* The setup query */
1813   int addrTop;                  /* Top of the loop */
1814   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1815   int iCurrent = 0;             /* The Current table */
1816   int regCurrent;               /* Register holding Current table */
1817   int iQueue;                   /* The Queue table */
1818   int iDistinct = 0;            /* To ensure unique results if UNION */
1819   int eDest = SRT_Table;        /* How to write to Queue */
1820   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1821   int i;                        /* Loop counter */
1822   int rc;                       /* Result code */
1823   ExprList *pOrderBy;           /* The ORDER BY clause */
1824   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1825   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1826 
1827   /* Obtain authorization to do a recursive query */
1828   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1829 
1830   /* Process the LIMIT and OFFSET clauses, if they exist */
1831   addrBreak = sqlite3VdbeMakeLabel(v);
1832   computeLimitRegisters(pParse, p, addrBreak);
1833   pLimit = p->pLimit;
1834   pOffset = p->pOffset;
1835   regLimit = p->iLimit;
1836   regOffset = p->iOffset;
1837   p->pLimit = p->pOffset = 0;
1838   p->iLimit = p->iOffset = 0;
1839   pOrderBy = p->pOrderBy;
1840 
1841   /* Locate the cursor number of the Current table */
1842   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1843     if( pSrc->a[i].isRecursive ){
1844       iCurrent = pSrc->a[i].iCursor;
1845       break;
1846     }
1847   }
1848 
1849   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1850   ** the Distinct table must be exactly one greater than Queue in order
1851   ** for the SRT_DistTable and SRT_DistQueue destinations to work. */
1852   iQueue = pParse->nTab++;
1853   if( p->op==TK_UNION ){
1854     eDest = pOrderBy ? SRT_DistQueue : SRT_DistTable;
1855     iDistinct = pParse->nTab++;
1856   }else{
1857     eDest = pOrderBy ? SRT_Queue : SRT_Table;
1858   }
1859   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
1860 
1861   /* Allocate cursors for Current, Queue, and Distinct. */
1862   regCurrent = ++pParse->nMem;
1863   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
1864   if( pOrderBy ){
1865     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
1866     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
1867                       (char*)pKeyInfo, P4_KEYINFO);
1868     destQueue.pOrderBy = pOrderBy;
1869   }else{
1870     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
1871   }
1872   VdbeComment((v, "Queue table"));
1873   if( iDistinct ){
1874     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
1875     p->selFlags |= SF_UsesEphemeral;
1876   }
1877 
1878   /* Detach the ORDER BY clause from the compound SELECT */
1879   p->pOrderBy = 0;
1880 
1881   /* Store the results of the setup-query in Queue. */
1882   rc = sqlite3Select(pParse, pSetup, &destQueue);
1883   if( rc ) goto end_of_recursive_query;
1884 
1885   /* Find the next row in the Queue and output that row */
1886   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak);
1887 
1888   /* Transfer the next row in Queue over to Current */
1889   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
1890   if( pOrderBy ){
1891     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
1892   }else{
1893     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
1894   }
1895   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
1896 
1897   /* Output the single row in Current */
1898   addrCont = sqlite3VdbeMakeLabel(v);
1899   codeOffset(v, regOffset, addrCont);
1900   selectInnerLoop(pParse, p, p->pEList, iCurrent,
1901       0, 0, pDest, addrCont, addrBreak);
1902   if( regLimit ) sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
1903   sqlite3VdbeResolveLabel(v, addrCont);
1904 
1905   /* Execute the recursive SELECT taking the single row in Current as
1906   ** the value for the recursive-table. Store the results in the Queue.
1907   */
1908   p->pPrior = 0;
1909   sqlite3Select(pParse, p, &destQueue);
1910   assert( p->pPrior==0 );
1911   p->pPrior = pSetup;
1912 
1913   /* Keep running the loop until the Queue is empty */
1914   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
1915   sqlite3VdbeResolveLabel(v, addrBreak);
1916 
1917 end_of_recursive_query:
1918   p->pOrderBy = pOrderBy;
1919   p->pLimit = pLimit;
1920   p->pOffset = pOffset;
1921   return;
1922 }
1923 #endif /* SQLITE_OMIT_CTE */
1924 
1925 /* Forward references */
1926 static int multiSelectOrderBy(
1927   Parse *pParse,        /* Parsing context */
1928   Select *p,            /* The right-most of SELECTs to be coded */
1929   SelectDest *pDest     /* What to do with query results */
1930 );
1931 
1932 
1933 /*
1934 ** This routine is called to process a compound query form from
1935 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1936 ** INTERSECT
1937 **
1938 ** "p" points to the right-most of the two queries.  the query on the
1939 ** left is p->pPrior.  The left query could also be a compound query
1940 ** in which case this routine will be called recursively.
1941 **
1942 ** The results of the total query are to be written into a destination
1943 ** of type eDest with parameter iParm.
1944 **
1945 ** Example 1:  Consider a three-way compound SQL statement.
1946 **
1947 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1948 **
1949 ** This statement is parsed up as follows:
1950 **
1951 **     SELECT c FROM t3
1952 **      |
1953 **      `----->  SELECT b FROM t2
1954 **                |
1955 **                `------>  SELECT a FROM t1
1956 **
1957 ** The arrows in the diagram above represent the Select.pPrior pointer.
1958 ** So if this routine is called with p equal to the t3 query, then
1959 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1960 **
1961 ** Notice that because of the way SQLite parses compound SELECTs, the
1962 ** individual selects always group from left to right.
1963 */
1964 static int multiSelect(
1965   Parse *pParse,        /* Parsing context */
1966   Select *p,            /* The right-most of SELECTs to be coded */
1967   SelectDest *pDest     /* What to do with query results */
1968 ){
1969   int rc = SQLITE_OK;   /* Success code from a subroutine */
1970   Select *pPrior;       /* Another SELECT immediately to our left */
1971   Vdbe *v;              /* Generate code to this VDBE */
1972   SelectDest dest;      /* Alternative data destination */
1973   Select *pDelete = 0;  /* Chain of simple selects to delete */
1974   sqlite3 *db;          /* Database connection */
1975 #ifndef SQLITE_OMIT_EXPLAIN
1976   int iSub1 = 0;        /* EQP id of left-hand query */
1977   int iSub2 = 0;        /* EQP id of right-hand query */
1978 #endif
1979 
1980   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1981   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1982   */
1983   assert( p && p->pPrior );  /* Calling function guarantees this much */
1984   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
1985   db = pParse->db;
1986   pPrior = p->pPrior;
1987   assert( pPrior->pRightmost!=pPrior );
1988   assert( pPrior->pRightmost==p->pRightmost );
1989   dest = *pDest;
1990   if( pPrior->pOrderBy ){
1991     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1992       selectOpName(p->op));
1993     rc = 1;
1994     goto multi_select_end;
1995   }
1996   if( pPrior->pLimit ){
1997     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1998       selectOpName(p->op));
1999     rc = 1;
2000     goto multi_select_end;
2001   }
2002 
2003   v = sqlite3GetVdbe(pParse);
2004   assert( v!=0 );  /* The VDBE already created by calling function */
2005 
2006   /* Create the destination temporary table if necessary
2007   */
2008   if( dest.eDest==SRT_EphemTab ){
2009     assert( p->pEList );
2010     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2011     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2012     dest.eDest = SRT_Table;
2013   }
2014 
2015   /* Make sure all SELECTs in the statement have the same number of elements
2016   ** in their result sets.
2017   */
2018   assert( p->pEList && pPrior->pEList );
2019   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2020     if( p->selFlags & SF_Values ){
2021       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2022     }else{
2023       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2024         " do not have the same number of result columns", selectOpName(p->op));
2025     }
2026     rc = 1;
2027     goto multi_select_end;
2028   }
2029 
2030 #ifndef SQLITE_OMIT_CTE
2031   if( p->selFlags & SF_Recursive ){
2032     generateWithRecursiveQuery(pParse, p, &dest);
2033   }else
2034 #endif
2035 
2036   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2037   */
2038   if( p->pOrderBy ){
2039     return multiSelectOrderBy(pParse, p, pDest);
2040   }else
2041 
2042   /* Generate code for the left and right SELECT statements.
2043   */
2044   switch( p->op ){
2045     case TK_ALL: {
2046       int addr = 0;
2047       int nLimit;
2048       assert( !pPrior->pLimit );
2049       pPrior->iLimit = p->iLimit;
2050       pPrior->iOffset = p->iOffset;
2051       pPrior->pLimit = p->pLimit;
2052       pPrior->pOffset = p->pOffset;
2053       explainSetInteger(iSub1, pParse->iNextSelectId);
2054       rc = sqlite3Select(pParse, pPrior, &dest);
2055       p->pLimit = 0;
2056       p->pOffset = 0;
2057       if( rc ){
2058         goto multi_select_end;
2059       }
2060       p->pPrior = 0;
2061       p->iLimit = pPrior->iLimit;
2062       p->iOffset = pPrior->iOffset;
2063       if( p->iLimit ){
2064         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
2065         VdbeComment((v, "Jump ahead if LIMIT reached"));
2066       }
2067       explainSetInteger(iSub2, pParse->iNextSelectId);
2068       rc = sqlite3Select(pParse, p, &dest);
2069       testcase( rc!=SQLITE_OK );
2070       pDelete = p->pPrior;
2071       p->pPrior = pPrior;
2072       p->nSelectRow += pPrior->nSelectRow;
2073       if( pPrior->pLimit
2074        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2075        && nLimit>0 && p->nSelectRow > (u64)nLimit
2076       ){
2077         p->nSelectRow = nLimit;
2078       }
2079       if( addr ){
2080         sqlite3VdbeJumpHere(v, addr);
2081       }
2082       break;
2083     }
2084     case TK_EXCEPT:
2085     case TK_UNION: {
2086       int unionTab;    /* Cursor number of the temporary table holding result */
2087       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2088       int priorOp;     /* The SRT_ operation to apply to prior selects */
2089       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2090       int addr;
2091       SelectDest uniondest;
2092 
2093       testcase( p->op==TK_EXCEPT );
2094       testcase( p->op==TK_UNION );
2095       priorOp = SRT_Union;
2096       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
2097         /* We can reuse a temporary table generated by a SELECT to our
2098         ** right.
2099         */
2100         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
2101                                      ** of a 3-way or more compound */
2102         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2103         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2104         unionTab = dest.iSDParm;
2105       }else{
2106         /* We will need to create our own temporary table to hold the
2107         ** intermediate results.
2108         */
2109         unionTab = pParse->nTab++;
2110         assert( p->pOrderBy==0 );
2111         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2112         assert( p->addrOpenEphm[0] == -1 );
2113         p->addrOpenEphm[0] = addr;
2114         p->pRightmost->selFlags |= SF_UsesEphemeral;
2115         assert( p->pEList );
2116       }
2117 
2118       /* Code the SELECT statements to our left
2119       */
2120       assert( !pPrior->pOrderBy );
2121       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2122       explainSetInteger(iSub1, pParse->iNextSelectId);
2123       rc = sqlite3Select(pParse, pPrior, &uniondest);
2124       if( rc ){
2125         goto multi_select_end;
2126       }
2127 
2128       /* Code the current SELECT statement
2129       */
2130       if( p->op==TK_EXCEPT ){
2131         op = SRT_Except;
2132       }else{
2133         assert( p->op==TK_UNION );
2134         op = SRT_Union;
2135       }
2136       p->pPrior = 0;
2137       pLimit = p->pLimit;
2138       p->pLimit = 0;
2139       pOffset = p->pOffset;
2140       p->pOffset = 0;
2141       uniondest.eDest = op;
2142       explainSetInteger(iSub2, pParse->iNextSelectId);
2143       rc = sqlite3Select(pParse, p, &uniondest);
2144       testcase( rc!=SQLITE_OK );
2145       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2146       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2147       sqlite3ExprListDelete(db, p->pOrderBy);
2148       pDelete = p->pPrior;
2149       p->pPrior = pPrior;
2150       p->pOrderBy = 0;
2151       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2152       sqlite3ExprDelete(db, p->pLimit);
2153       p->pLimit = pLimit;
2154       p->pOffset = pOffset;
2155       p->iLimit = 0;
2156       p->iOffset = 0;
2157 
2158       /* Convert the data in the temporary table into whatever form
2159       ** it is that we currently need.
2160       */
2161       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2162       if( dest.eDest!=priorOp ){
2163         int iCont, iBreak, iStart;
2164         assert( p->pEList );
2165         if( dest.eDest==SRT_Output ){
2166           Select *pFirst = p;
2167           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2168           generateColumnNames(pParse, 0, pFirst->pEList);
2169         }
2170         iBreak = sqlite3VdbeMakeLabel(v);
2171         iCont = sqlite3VdbeMakeLabel(v);
2172         computeLimitRegisters(pParse, p, iBreak);
2173         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
2174         iStart = sqlite3VdbeCurrentAddr(v);
2175         selectInnerLoop(pParse, p, p->pEList, unionTab,
2176                         0, 0, &dest, iCont, iBreak);
2177         sqlite3VdbeResolveLabel(v, iCont);
2178         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
2179         sqlite3VdbeResolveLabel(v, iBreak);
2180         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2181       }
2182       break;
2183     }
2184     default: assert( p->op==TK_INTERSECT ); {
2185       int tab1, tab2;
2186       int iCont, iBreak, iStart;
2187       Expr *pLimit, *pOffset;
2188       int addr;
2189       SelectDest intersectdest;
2190       int r1;
2191 
2192       /* INTERSECT is different from the others since it requires
2193       ** two temporary tables.  Hence it has its own case.  Begin
2194       ** by allocating the tables we will need.
2195       */
2196       tab1 = pParse->nTab++;
2197       tab2 = pParse->nTab++;
2198       assert( p->pOrderBy==0 );
2199 
2200       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2201       assert( p->addrOpenEphm[0] == -1 );
2202       p->addrOpenEphm[0] = addr;
2203       p->pRightmost->selFlags |= SF_UsesEphemeral;
2204       assert( p->pEList );
2205 
2206       /* Code the SELECTs to our left into temporary table "tab1".
2207       */
2208       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2209       explainSetInteger(iSub1, pParse->iNextSelectId);
2210       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2211       if( rc ){
2212         goto multi_select_end;
2213       }
2214 
2215       /* Code the current SELECT into temporary table "tab2"
2216       */
2217       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2218       assert( p->addrOpenEphm[1] == -1 );
2219       p->addrOpenEphm[1] = addr;
2220       p->pPrior = 0;
2221       pLimit = p->pLimit;
2222       p->pLimit = 0;
2223       pOffset = p->pOffset;
2224       p->pOffset = 0;
2225       intersectdest.iSDParm = tab2;
2226       explainSetInteger(iSub2, pParse->iNextSelectId);
2227       rc = sqlite3Select(pParse, p, &intersectdest);
2228       testcase( rc!=SQLITE_OK );
2229       pDelete = p->pPrior;
2230       p->pPrior = pPrior;
2231       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2232       sqlite3ExprDelete(db, p->pLimit);
2233       p->pLimit = pLimit;
2234       p->pOffset = pOffset;
2235 
2236       /* Generate code to take the intersection of the two temporary
2237       ** tables.
2238       */
2239       assert( p->pEList );
2240       if( dest.eDest==SRT_Output ){
2241         Select *pFirst = p;
2242         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2243         generateColumnNames(pParse, 0, pFirst->pEList);
2244       }
2245       iBreak = sqlite3VdbeMakeLabel(v);
2246       iCont = sqlite3VdbeMakeLabel(v);
2247       computeLimitRegisters(pParse, p, iBreak);
2248       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
2249       r1 = sqlite3GetTempReg(pParse);
2250       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2251       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2252       sqlite3ReleaseTempReg(pParse, r1);
2253       selectInnerLoop(pParse, p, p->pEList, tab1,
2254                       0, 0, &dest, iCont, iBreak);
2255       sqlite3VdbeResolveLabel(v, iCont);
2256       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
2257       sqlite3VdbeResolveLabel(v, iBreak);
2258       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2259       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2260       break;
2261     }
2262   }
2263 
2264   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2265 
2266   /* Compute collating sequences used by
2267   ** temporary tables needed to implement the compound select.
2268   ** Attach the KeyInfo structure to all temporary tables.
2269   **
2270   ** This section is run by the right-most SELECT statement only.
2271   ** SELECT statements to the left always skip this part.  The right-most
2272   ** SELECT might also skip this part if it has no ORDER BY clause and
2273   ** no temp tables are required.
2274   */
2275   if( p->selFlags & SF_UsesEphemeral ){
2276     int i;                        /* Loop counter */
2277     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2278     Select *pLoop;                /* For looping through SELECT statements */
2279     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2280     int nCol;                     /* Number of columns in result set */
2281 
2282     assert( p->pRightmost==p );
2283     nCol = p->pEList->nExpr;
2284     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2285     if( !pKeyInfo ){
2286       rc = SQLITE_NOMEM;
2287       goto multi_select_end;
2288     }
2289     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2290       *apColl = multiSelectCollSeq(pParse, p, i);
2291       if( 0==*apColl ){
2292         *apColl = db->pDfltColl;
2293       }
2294     }
2295 
2296     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2297       for(i=0; i<2; i++){
2298         int addr = pLoop->addrOpenEphm[i];
2299         if( addr<0 ){
2300           /* If [0] is unused then [1] is also unused.  So we can
2301           ** always safely abort as soon as the first unused slot is found */
2302           assert( pLoop->addrOpenEphm[1]<0 );
2303           break;
2304         }
2305         sqlite3VdbeChangeP2(v, addr, nCol);
2306         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2307                             P4_KEYINFO);
2308         pLoop->addrOpenEphm[i] = -1;
2309       }
2310     }
2311     sqlite3KeyInfoUnref(pKeyInfo);
2312   }
2313 
2314 multi_select_end:
2315   pDest->iSdst = dest.iSdst;
2316   pDest->nSdst = dest.nSdst;
2317   sqlite3SelectDelete(db, pDelete);
2318   return rc;
2319 }
2320 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2321 
2322 /*
2323 ** Code an output subroutine for a coroutine implementation of a
2324 ** SELECT statment.
2325 **
2326 ** The data to be output is contained in pIn->iSdst.  There are
2327 ** pIn->nSdst columns to be output.  pDest is where the output should
2328 ** be sent.
2329 **
2330 ** regReturn is the number of the register holding the subroutine
2331 ** return address.
2332 **
2333 ** If regPrev>0 then it is the first register in a vector that
2334 ** records the previous output.  mem[regPrev] is a flag that is false
2335 ** if there has been no previous output.  If regPrev>0 then code is
2336 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2337 ** keys.
2338 **
2339 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2340 ** iBreak.
2341 */
2342 static int generateOutputSubroutine(
2343   Parse *pParse,          /* Parsing context */
2344   Select *p,              /* The SELECT statement */
2345   SelectDest *pIn,        /* Coroutine supplying data */
2346   SelectDest *pDest,      /* Where to send the data */
2347   int regReturn,          /* The return address register */
2348   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2349   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2350   int iBreak              /* Jump here if we hit the LIMIT */
2351 ){
2352   Vdbe *v = pParse->pVdbe;
2353   int iContinue;
2354   int addr;
2355 
2356   addr = sqlite3VdbeCurrentAddr(v);
2357   iContinue = sqlite3VdbeMakeLabel(v);
2358 
2359   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2360   */
2361   if( regPrev ){
2362     int j1, j2;
2363     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2364     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2365                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2366     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2367     sqlite3VdbeJumpHere(v, j1);
2368     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2369     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2370   }
2371   if( pParse->db->mallocFailed ) return 0;
2372 
2373   /* Suppress the first OFFSET entries if there is an OFFSET clause
2374   */
2375   codeOffset(v, p->iOffset, iContinue);
2376 
2377   switch( pDest->eDest ){
2378     /* Store the result as data using a unique key.
2379     */
2380     case SRT_Table:
2381     case SRT_EphemTab: {
2382       int r1 = sqlite3GetTempReg(pParse);
2383       int r2 = sqlite3GetTempReg(pParse);
2384       testcase( pDest->eDest==SRT_Table );
2385       testcase( pDest->eDest==SRT_EphemTab );
2386       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2387       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2388       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2389       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2390       sqlite3ReleaseTempReg(pParse, r2);
2391       sqlite3ReleaseTempReg(pParse, r1);
2392       break;
2393     }
2394 
2395 #ifndef SQLITE_OMIT_SUBQUERY
2396     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2397     ** then there should be a single item on the stack.  Write this
2398     ** item into the set table with bogus data.
2399     */
2400     case SRT_Set: {
2401       int r1;
2402       assert( pIn->nSdst==1 );
2403       pDest->affSdst =
2404          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2405       r1 = sqlite3GetTempReg(pParse);
2406       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2407       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2408       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2409       sqlite3ReleaseTempReg(pParse, r1);
2410       break;
2411     }
2412 
2413 #if 0  /* Never occurs on an ORDER BY query */
2414     /* If any row exist in the result set, record that fact and abort.
2415     */
2416     case SRT_Exists: {
2417       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2418       /* The LIMIT clause will terminate the loop for us */
2419       break;
2420     }
2421 #endif
2422 
2423     /* If this is a scalar select that is part of an expression, then
2424     ** store the results in the appropriate memory cell and break out
2425     ** of the scan loop.
2426     */
2427     case SRT_Mem: {
2428       assert( pIn->nSdst==1 );
2429       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2430       /* The LIMIT clause will jump out of the loop for us */
2431       break;
2432     }
2433 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2434 
2435     /* The results are stored in a sequence of registers
2436     ** starting at pDest->iSdst.  Then the co-routine yields.
2437     */
2438     case SRT_Coroutine: {
2439       if( pDest->iSdst==0 ){
2440         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2441         pDest->nSdst = pIn->nSdst;
2442       }
2443       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2444       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2445       break;
2446     }
2447 
2448     /* If none of the above, then the result destination must be
2449     ** SRT_Output.  This routine is never called with any other
2450     ** destination other than the ones handled above or SRT_Output.
2451     **
2452     ** For SRT_Output, results are stored in a sequence of registers.
2453     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2454     ** return the next row of result.
2455     */
2456     default: {
2457       assert( pDest->eDest==SRT_Output );
2458       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2459       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2460       break;
2461     }
2462   }
2463 
2464   /* Jump to the end of the loop if the LIMIT is reached.
2465   */
2466   if( p->iLimit ){
2467     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2468   }
2469 
2470   /* Generate the subroutine return
2471   */
2472   sqlite3VdbeResolveLabel(v, iContinue);
2473   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2474 
2475   return addr;
2476 }
2477 
2478 /*
2479 ** Alternative compound select code generator for cases when there
2480 ** is an ORDER BY clause.
2481 **
2482 ** We assume a query of the following form:
2483 **
2484 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2485 **
2486 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2487 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2488 ** co-routines.  Then run the co-routines in parallel and merge the results
2489 ** into the output.  In addition to the two coroutines (called selectA and
2490 ** selectB) there are 7 subroutines:
2491 **
2492 **    outA:    Move the output of the selectA coroutine into the output
2493 **             of the compound query.
2494 **
2495 **    outB:    Move the output of the selectB coroutine into the output
2496 **             of the compound query.  (Only generated for UNION and
2497 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2498 **             appears only in B.)
2499 **
2500 **    AltB:    Called when there is data from both coroutines and A<B.
2501 **
2502 **    AeqB:    Called when there is data from both coroutines and A==B.
2503 **
2504 **    AgtB:    Called when there is data from both coroutines and A>B.
2505 **
2506 **    EofA:    Called when data is exhausted from selectA.
2507 **
2508 **    EofB:    Called when data is exhausted from selectB.
2509 **
2510 ** The implementation of the latter five subroutines depend on which
2511 ** <operator> is used:
2512 **
2513 **
2514 **             UNION ALL         UNION            EXCEPT          INTERSECT
2515 **          -------------  -----------------  --------------  -----------------
2516 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2517 **
2518 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2519 **
2520 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2521 **
2522 **   EofA:   outB, nextB      outB, nextB          halt             halt
2523 **
2524 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2525 **
2526 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2527 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2528 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2529 ** following nextX causes a jump to the end of the select processing.
2530 **
2531 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2532 ** within the output subroutine.  The regPrev register set holds the previously
2533 ** output value.  A comparison is made against this value and the output
2534 ** is skipped if the next results would be the same as the previous.
2535 **
2536 ** The implementation plan is to implement the two coroutines and seven
2537 ** subroutines first, then put the control logic at the bottom.  Like this:
2538 **
2539 **          goto Init
2540 **     coA: coroutine for left query (A)
2541 **     coB: coroutine for right query (B)
2542 **    outA: output one row of A
2543 **    outB: output one row of B (UNION and UNION ALL only)
2544 **    EofA: ...
2545 **    EofB: ...
2546 **    AltB: ...
2547 **    AeqB: ...
2548 **    AgtB: ...
2549 **    Init: initialize coroutine registers
2550 **          yield coA
2551 **          if eof(A) goto EofA
2552 **          yield coB
2553 **          if eof(B) goto EofB
2554 **    Cmpr: Compare A, B
2555 **          Jump AltB, AeqB, AgtB
2556 **     End: ...
2557 **
2558 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2559 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2560 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2561 ** and AgtB jump to either L2 or to one of EofA or EofB.
2562 */
2563 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2564 static int multiSelectOrderBy(
2565   Parse *pParse,        /* Parsing context */
2566   Select *p,            /* The right-most of SELECTs to be coded */
2567   SelectDest *pDest     /* What to do with query results */
2568 ){
2569   int i, j;             /* Loop counters */
2570   Select *pPrior;       /* Another SELECT immediately to our left */
2571   Vdbe *v;              /* Generate code to this VDBE */
2572   SelectDest destA;     /* Destination for coroutine A */
2573   SelectDest destB;     /* Destination for coroutine B */
2574   int regAddrA;         /* Address register for select-A coroutine */
2575   int regEofA;          /* Flag to indicate when select-A is complete */
2576   int regAddrB;         /* Address register for select-B coroutine */
2577   int regEofB;          /* Flag to indicate when select-B is complete */
2578   int addrSelectA;      /* Address of the select-A coroutine */
2579   int addrSelectB;      /* Address of the select-B coroutine */
2580   int regOutA;          /* Address register for the output-A subroutine */
2581   int regOutB;          /* Address register for the output-B subroutine */
2582   int addrOutA;         /* Address of the output-A subroutine */
2583   int addrOutB = 0;     /* Address of the output-B subroutine */
2584   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2585   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2586   int addrAltB;         /* Address of the A<B subroutine */
2587   int addrAeqB;         /* Address of the A==B subroutine */
2588   int addrAgtB;         /* Address of the A>B subroutine */
2589   int regLimitA;        /* Limit register for select-A */
2590   int regLimitB;        /* Limit register for select-A */
2591   int regPrev;          /* A range of registers to hold previous output */
2592   int savedLimit;       /* Saved value of p->iLimit */
2593   int savedOffset;      /* Saved value of p->iOffset */
2594   int labelCmpr;        /* Label for the start of the merge algorithm */
2595   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2596   int j1;               /* Jump instructions that get retargetted */
2597   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2598   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2599   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2600   sqlite3 *db;          /* Database connection */
2601   ExprList *pOrderBy;   /* The ORDER BY clause */
2602   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2603   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2604 #ifndef SQLITE_OMIT_EXPLAIN
2605   int iSub1;            /* EQP id of left-hand query */
2606   int iSub2;            /* EQP id of right-hand query */
2607 #endif
2608 
2609   assert( p->pOrderBy!=0 );
2610   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2611   db = pParse->db;
2612   v = pParse->pVdbe;
2613   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2614   labelEnd = sqlite3VdbeMakeLabel(v);
2615   labelCmpr = sqlite3VdbeMakeLabel(v);
2616 
2617 
2618   /* Patch up the ORDER BY clause
2619   */
2620   op = p->op;
2621   pPrior = p->pPrior;
2622   assert( pPrior->pOrderBy==0 );
2623   pOrderBy = p->pOrderBy;
2624   assert( pOrderBy );
2625   nOrderBy = pOrderBy->nExpr;
2626 
2627   /* For operators other than UNION ALL we have to make sure that
2628   ** the ORDER BY clause covers every term of the result set.  Add
2629   ** terms to the ORDER BY clause as necessary.
2630   */
2631   if( op!=TK_ALL ){
2632     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2633       struct ExprList_item *pItem;
2634       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2635         assert( pItem->u.x.iOrderByCol>0 );
2636         if( pItem->u.x.iOrderByCol==i ) break;
2637       }
2638       if( j==nOrderBy ){
2639         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2640         if( pNew==0 ) return SQLITE_NOMEM;
2641         pNew->flags |= EP_IntValue;
2642         pNew->u.iValue = i;
2643         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2644         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2645       }
2646     }
2647   }
2648 
2649   /* Compute the comparison permutation and keyinfo that is used with
2650   ** the permutation used to determine if the next
2651   ** row of results comes from selectA or selectB.  Also add explicit
2652   ** collations to the ORDER BY clause terms so that when the subqueries
2653   ** to the right and the left are evaluated, they use the correct
2654   ** collation.
2655   */
2656   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2657   if( aPermute ){
2658     struct ExprList_item *pItem;
2659     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2660       assert( pItem->u.x.iOrderByCol>0
2661           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2662       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2663     }
2664     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2665   }else{
2666     pKeyMerge = 0;
2667   }
2668 
2669   /* Reattach the ORDER BY clause to the query.
2670   */
2671   p->pOrderBy = pOrderBy;
2672   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2673 
2674   /* Allocate a range of temporary registers and the KeyInfo needed
2675   ** for the logic that removes duplicate result rows when the
2676   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2677   */
2678   if( op==TK_ALL ){
2679     regPrev = 0;
2680   }else{
2681     int nExpr = p->pEList->nExpr;
2682     assert( nOrderBy>=nExpr || db->mallocFailed );
2683     regPrev = pParse->nMem+1;
2684     pParse->nMem += nExpr+1;
2685     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2686     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2687     if( pKeyDup ){
2688       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2689       for(i=0; i<nExpr; i++){
2690         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2691         pKeyDup->aSortOrder[i] = 0;
2692       }
2693     }
2694   }
2695 
2696   /* Separate the left and the right query from one another
2697   */
2698   p->pPrior = 0;
2699   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2700   if( pPrior->pPrior==0 ){
2701     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2702   }
2703 
2704   /* Compute the limit registers */
2705   computeLimitRegisters(pParse, p, labelEnd);
2706   if( p->iLimit && op==TK_ALL ){
2707     regLimitA = ++pParse->nMem;
2708     regLimitB = ++pParse->nMem;
2709     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2710                                   regLimitA);
2711     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2712   }else{
2713     regLimitA = regLimitB = 0;
2714   }
2715   sqlite3ExprDelete(db, p->pLimit);
2716   p->pLimit = 0;
2717   sqlite3ExprDelete(db, p->pOffset);
2718   p->pOffset = 0;
2719 
2720   regAddrA = ++pParse->nMem;
2721   regEofA = ++pParse->nMem;
2722   regAddrB = ++pParse->nMem;
2723   regEofB = ++pParse->nMem;
2724   regOutA = ++pParse->nMem;
2725   regOutB = ++pParse->nMem;
2726   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2727   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2728 
2729   /* Jump past the various subroutines and coroutines to the main
2730   ** merge loop
2731   */
2732   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2733   addrSelectA = sqlite3VdbeCurrentAddr(v);
2734 
2735 
2736   /* Generate a coroutine to evaluate the SELECT statement to the
2737   ** left of the compound operator - the "A" select.
2738   */
2739   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2740   pPrior->iLimit = regLimitA;
2741   explainSetInteger(iSub1, pParse->iNextSelectId);
2742   sqlite3Select(pParse, pPrior, &destA);
2743   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2744   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2745   VdbeNoopComment((v, "End coroutine for left SELECT"));
2746 
2747   /* Generate a coroutine to evaluate the SELECT statement on
2748   ** the right - the "B" select
2749   */
2750   addrSelectB = sqlite3VdbeCurrentAddr(v);
2751   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2752   savedLimit = p->iLimit;
2753   savedOffset = p->iOffset;
2754   p->iLimit = regLimitB;
2755   p->iOffset = 0;
2756   explainSetInteger(iSub2, pParse->iNextSelectId);
2757   sqlite3Select(pParse, p, &destB);
2758   p->iLimit = savedLimit;
2759   p->iOffset = savedOffset;
2760   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2761   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2762   VdbeNoopComment((v, "End coroutine for right SELECT"));
2763 
2764   /* Generate a subroutine that outputs the current row of the A
2765   ** select as the next output row of the compound select.
2766   */
2767   VdbeNoopComment((v, "Output routine for A"));
2768   addrOutA = generateOutputSubroutine(pParse,
2769                  p, &destA, pDest, regOutA,
2770                  regPrev, pKeyDup, labelEnd);
2771 
2772   /* Generate a subroutine that outputs the current row of the B
2773   ** select as the next output row of the compound select.
2774   */
2775   if( op==TK_ALL || op==TK_UNION ){
2776     VdbeNoopComment((v, "Output routine for B"));
2777     addrOutB = generateOutputSubroutine(pParse,
2778                  p, &destB, pDest, regOutB,
2779                  regPrev, pKeyDup, labelEnd);
2780   }
2781   sqlite3KeyInfoUnref(pKeyDup);
2782 
2783   /* Generate a subroutine to run when the results from select A
2784   ** are exhausted and only data in select B remains.
2785   */
2786   VdbeNoopComment((v, "eof-A subroutine"));
2787   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2788     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2789   }else{
2790     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2791     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2792     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2793     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2794     p->nSelectRow += pPrior->nSelectRow;
2795   }
2796 
2797   /* Generate a subroutine to run when the results from select B
2798   ** are exhausted and only data in select A remains.
2799   */
2800   if( op==TK_INTERSECT ){
2801     addrEofB = addrEofA;
2802     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2803   }else{
2804     VdbeNoopComment((v, "eof-B subroutine"));
2805     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2806     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2807     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2808     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2809   }
2810 
2811   /* Generate code to handle the case of A<B
2812   */
2813   VdbeNoopComment((v, "A-lt-B subroutine"));
2814   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2815   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2816   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2817   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2818 
2819   /* Generate code to handle the case of A==B
2820   */
2821   if( op==TK_ALL ){
2822     addrAeqB = addrAltB;
2823   }else if( op==TK_INTERSECT ){
2824     addrAeqB = addrAltB;
2825     addrAltB++;
2826   }else{
2827     VdbeNoopComment((v, "A-eq-B subroutine"));
2828     addrAeqB =
2829     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2830     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2831     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2832   }
2833 
2834   /* Generate code to handle the case of A>B
2835   */
2836   VdbeNoopComment((v, "A-gt-B subroutine"));
2837   addrAgtB = sqlite3VdbeCurrentAddr(v);
2838   if( op==TK_ALL || op==TK_UNION ){
2839     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2840   }
2841   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2842   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2843   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2844 
2845   /* This code runs once to initialize everything.
2846   */
2847   sqlite3VdbeJumpHere(v, j1);
2848   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2849   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2850   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2851   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2852   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2853   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2854 
2855   /* Implement the main merge loop
2856   */
2857   sqlite3VdbeResolveLabel(v, labelCmpr);
2858   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2859   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2860                          (char*)pKeyMerge, P4_KEYINFO);
2861   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2862   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2863 
2864   /* Jump to the this point in order to terminate the query.
2865   */
2866   sqlite3VdbeResolveLabel(v, labelEnd);
2867 
2868   /* Set the number of output columns
2869   */
2870   if( pDest->eDest==SRT_Output ){
2871     Select *pFirst = pPrior;
2872     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2873     generateColumnNames(pParse, 0, pFirst->pEList);
2874   }
2875 
2876   /* Reassembly the compound query so that it will be freed correctly
2877   ** by the calling function */
2878   if( p->pPrior ){
2879     sqlite3SelectDelete(db, p->pPrior);
2880   }
2881   p->pPrior = pPrior;
2882 
2883   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2884   **** subqueries ****/
2885   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2886   return SQLITE_OK;
2887 }
2888 #endif
2889 
2890 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2891 /* Forward Declarations */
2892 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2893 static void substSelect(sqlite3*, Select *, int, ExprList *);
2894 
2895 /*
2896 ** Scan through the expression pExpr.  Replace every reference to
2897 ** a column in table number iTable with a copy of the iColumn-th
2898 ** entry in pEList.  (But leave references to the ROWID column
2899 ** unchanged.)
2900 **
2901 ** This routine is part of the flattening procedure.  A subquery
2902 ** whose result set is defined by pEList appears as entry in the
2903 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2904 ** FORM clause entry is iTable.  This routine make the necessary
2905 ** changes to pExpr so that it refers directly to the source table
2906 ** of the subquery rather the result set of the subquery.
2907 */
2908 static Expr *substExpr(
2909   sqlite3 *db,        /* Report malloc errors to this connection */
2910   Expr *pExpr,        /* Expr in which substitution occurs */
2911   int iTable,         /* Table to be substituted */
2912   ExprList *pEList    /* Substitute expressions */
2913 ){
2914   if( pExpr==0 ) return 0;
2915   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2916     if( pExpr->iColumn<0 ){
2917       pExpr->op = TK_NULL;
2918     }else{
2919       Expr *pNew;
2920       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2921       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2922       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2923       sqlite3ExprDelete(db, pExpr);
2924       pExpr = pNew;
2925     }
2926   }else{
2927     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2928     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2929     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2930       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2931     }else{
2932       substExprList(db, pExpr->x.pList, iTable, pEList);
2933     }
2934   }
2935   return pExpr;
2936 }
2937 static void substExprList(
2938   sqlite3 *db,         /* Report malloc errors here */
2939   ExprList *pList,     /* List to scan and in which to make substitutes */
2940   int iTable,          /* Table to be substituted */
2941   ExprList *pEList     /* Substitute values */
2942 ){
2943   int i;
2944   if( pList==0 ) return;
2945   for(i=0; i<pList->nExpr; i++){
2946     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2947   }
2948 }
2949 static void substSelect(
2950   sqlite3 *db,         /* Report malloc errors here */
2951   Select *p,           /* SELECT statement in which to make substitutions */
2952   int iTable,          /* Table to be replaced */
2953   ExprList *pEList     /* Substitute values */
2954 ){
2955   SrcList *pSrc;
2956   struct SrcList_item *pItem;
2957   int i;
2958   if( !p ) return;
2959   substExprList(db, p->pEList, iTable, pEList);
2960   substExprList(db, p->pGroupBy, iTable, pEList);
2961   substExprList(db, p->pOrderBy, iTable, pEList);
2962   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2963   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2964   substSelect(db, p->pPrior, iTable, pEList);
2965   pSrc = p->pSrc;
2966   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2967   if( ALWAYS(pSrc) ){
2968     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2969       substSelect(db, pItem->pSelect, iTable, pEList);
2970     }
2971   }
2972 }
2973 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2974 
2975 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2976 /*
2977 ** This routine attempts to flatten subqueries as a performance optimization.
2978 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2979 **
2980 ** To understand the concept of flattening, consider the following
2981 ** query:
2982 **
2983 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2984 **
2985 ** The default way of implementing this query is to execute the
2986 ** subquery first and store the results in a temporary table, then
2987 ** run the outer query on that temporary table.  This requires two
2988 ** passes over the data.  Furthermore, because the temporary table
2989 ** has no indices, the WHERE clause on the outer query cannot be
2990 ** optimized.
2991 **
2992 ** This routine attempts to rewrite queries such as the above into
2993 ** a single flat select, like this:
2994 **
2995 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2996 **
2997 ** The code generated for this simpification gives the same result
2998 ** but only has to scan the data once.  And because indices might
2999 ** exist on the table t1, a complete scan of the data might be
3000 ** avoided.
3001 **
3002 ** Flattening is only attempted if all of the following are true:
3003 **
3004 **   (1)  The subquery and the outer query do not both use aggregates.
3005 **
3006 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3007 **
3008 **   (3)  The subquery is not the right operand of a left outer join
3009 **        (Originally ticket #306.  Strengthened by ticket #3300)
3010 **
3011 **   (4)  The subquery is not DISTINCT.
3012 **
3013 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3014 **        sub-queries that were excluded from this optimization. Restriction
3015 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3016 **
3017 **   (6)  The subquery does not use aggregates or the outer query is not
3018 **        DISTINCT.
3019 **
3020 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3021 **        A FROM clause, consider adding a FROM close with the special
3022 **        table sqlite_once that consists of a single row containing a
3023 **        single NULL.
3024 **
3025 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3026 **
3027 **   (9)  The subquery does not use LIMIT or the outer query does not use
3028 **        aggregates.
3029 **
3030 **  (10)  The subquery does not use aggregates or the outer query does not
3031 **        use LIMIT.
3032 **
3033 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3034 **
3035 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3036 **        a separate restriction deriving from ticket #350.
3037 **
3038 **  (13)  The subquery and outer query do not both use LIMIT.
3039 **
3040 **  (14)  The subquery does not use OFFSET.
3041 **
3042 **  (15)  The outer query is not part of a compound select or the
3043 **        subquery does not have a LIMIT clause.
3044 **        (See ticket #2339 and ticket [02a8e81d44]).
3045 **
3046 **  (16)  The outer query is not an aggregate or the subquery does
3047 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3048 **        until we introduced the group_concat() function.
3049 **
3050 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3051 **        compound clause made up entirely of non-aggregate queries, and
3052 **        the parent query:
3053 **
3054 **          * is not itself part of a compound select,
3055 **          * is not an aggregate or DISTINCT query, and
3056 **          * is not a join
3057 **
3058 **        The parent and sub-query may contain WHERE clauses. Subject to
3059 **        rules (11), (13) and (14), they may also contain ORDER BY,
3060 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3061 **        operator other than UNION ALL because all the other compound
3062 **        operators have an implied DISTINCT which is disallowed by
3063 **        restriction (4).
3064 **
3065 **        Also, each component of the sub-query must return the same number
3066 **        of result columns. This is actually a requirement for any compound
3067 **        SELECT statement, but all the code here does is make sure that no
3068 **        such (illegal) sub-query is flattened. The caller will detect the
3069 **        syntax error and return a detailed message.
3070 **
3071 **  (18)  If the sub-query is a compound select, then all terms of the
3072 **        ORDER by clause of the parent must be simple references to
3073 **        columns of the sub-query.
3074 **
3075 **  (19)  The subquery does not use LIMIT or the outer query does not
3076 **        have a WHERE clause.
3077 **
3078 **  (20)  If the sub-query is a compound select, then it must not use
3079 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3080 **        somewhat by saying that the terms of the ORDER BY clause must
3081 **        appear as unmodified result columns in the outer query.  But we
3082 **        have other optimizations in mind to deal with that case.
3083 **
3084 **  (21)  The subquery does not use LIMIT or the outer query is not
3085 **        DISTINCT.  (See ticket [752e1646fc]).
3086 **
3087 **  (22)  The subquery is not a recursive CTE.
3088 **
3089 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3090 **        compound query. This restriction is because transforming the
3091 **        parent to a compound query confuses the code that handles
3092 **        recursive queries in multiSelect().
3093 **
3094 **
3095 ** In this routine, the "p" parameter is a pointer to the outer query.
3096 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3097 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3098 **
3099 ** If flattening is not attempted, this routine is a no-op and returns 0.
3100 ** If flattening is attempted this routine returns 1.
3101 **
3102 ** All of the expression analysis must occur on both the outer query and
3103 ** the subquery before this routine runs.
3104 */
3105 static int flattenSubquery(
3106   Parse *pParse,       /* Parsing context */
3107   Select *p,           /* The parent or outer SELECT statement */
3108   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3109   int isAgg,           /* True if outer SELECT uses aggregate functions */
3110   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3111 ){
3112   const char *zSavedAuthContext = pParse->zAuthContext;
3113   Select *pParent;
3114   Select *pSub;       /* The inner query or "subquery" */
3115   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3116   SrcList *pSrc;      /* The FROM clause of the outer query */
3117   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3118   ExprList *pList;    /* The result set of the outer query */
3119   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3120   int i;              /* Loop counter */
3121   Expr *pWhere;                    /* The WHERE clause */
3122   struct SrcList_item *pSubitem;   /* The subquery */
3123   sqlite3 *db = pParse->db;
3124 
3125   /* Check to see if flattening is permitted.  Return 0 if not.
3126   */
3127   assert( p!=0 );
3128   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3129   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3130   pSrc = p->pSrc;
3131   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3132   pSubitem = &pSrc->a[iFrom];
3133   iParent = pSubitem->iCursor;
3134   pSub = pSubitem->pSelect;
3135   assert( pSub!=0 );
3136   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3137   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3138   pSubSrc = pSub->pSrc;
3139   assert( pSubSrc );
3140   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3141   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3142   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3143   ** became arbitrary expressions, we were forced to add restrictions (13)
3144   ** and (14). */
3145   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3146   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3147   if( p->pRightmost && pSub->pLimit ){
3148     return 0;                                            /* Restriction (15) */
3149   }
3150   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3151   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3152   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3153      return 0;         /* Restrictions (8)(9) */
3154   }
3155   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3156      return 0;         /* Restriction (6)  */
3157   }
3158   if( p->pOrderBy && pSub->pOrderBy ){
3159      return 0;                                           /* Restriction (11) */
3160   }
3161   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3162   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3163   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3164      return 0;         /* Restriction (21) */
3165   }
3166   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
3167   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
3168 
3169   /* OBSOLETE COMMENT 1:
3170   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3171   ** not used as the right operand of an outer join.  Examples of why this
3172   ** is not allowed:
3173   **
3174   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3175   **
3176   ** If we flatten the above, we would get
3177   **
3178   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3179   **
3180   ** which is not at all the same thing.
3181   **
3182   ** OBSOLETE COMMENT 2:
3183   ** Restriction 12:  If the subquery is the right operand of a left outer
3184   ** join, make sure the subquery has no WHERE clause.
3185   ** An examples of why this is not allowed:
3186   **
3187   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3188   **
3189   ** If we flatten the above, we would get
3190   **
3191   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3192   **
3193   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3194   ** effectively converts the OUTER JOIN into an INNER JOIN.
3195   **
3196   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3197   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3198   ** is fraught with danger.  Best to avoid the whole thing.  If the
3199   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3200   */
3201   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3202     return 0;
3203   }
3204 
3205   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3206   ** use only the UNION ALL operator. And none of the simple select queries
3207   ** that make up the compound SELECT are allowed to be aggregate or distinct
3208   ** queries.
3209   */
3210   if( pSub->pPrior ){
3211     if( pSub->pOrderBy ){
3212       return 0;  /* Restriction 20 */
3213     }
3214     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3215       return 0;
3216     }
3217     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3218       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3219       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3220       assert( pSub->pSrc!=0 );
3221       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3222        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3223        || pSub1->pSrc->nSrc<1
3224        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3225       ){
3226         return 0;
3227       }
3228       testcase( pSub1->pSrc->nSrc>1 );
3229     }
3230 
3231     /* Restriction 18. */
3232     if( p->pOrderBy ){
3233       int ii;
3234       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3235         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3236       }
3237     }
3238   }
3239 
3240   /***** If we reach this point, flattening is permitted. *****/
3241 
3242   /* Authorize the subquery */
3243   pParse->zAuthContext = pSubitem->zName;
3244   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3245   testcase( i==SQLITE_DENY );
3246   pParse->zAuthContext = zSavedAuthContext;
3247 
3248   /* If the sub-query is a compound SELECT statement, then (by restrictions
3249   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3250   ** be of the form:
3251   **
3252   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3253   **
3254   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3255   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3256   ** OFFSET clauses and joins them to the left-hand-side of the original
3257   ** using UNION ALL operators. In this case N is the number of simple
3258   ** select statements in the compound sub-query.
3259   **
3260   ** Example:
3261   **
3262   **     SELECT a+1 FROM (
3263   **        SELECT x FROM tab
3264   **        UNION ALL
3265   **        SELECT y FROM tab
3266   **        UNION ALL
3267   **        SELECT abs(z*2) FROM tab2
3268   **     ) WHERE a!=5 ORDER BY 1
3269   **
3270   ** Transformed into:
3271   **
3272   **     SELECT x+1 FROM tab WHERE x+1!=5
3273   **     UNION ALL
3274   **     SELECT y+1 FROM tab WHERE y+1!=5
3275   **     UNION ALL
3276   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3277   **     ORDER BY 1
3278   **
3279   ** We call this the "compound-subquery flattening".
3280   */
3281   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3282     Select *pNew;
3283     ExprList *pOrderBy = p->pOrderBy;
3284     Expr *pLimit = p->pLimit;
3285     Expr *pOffset = p->pOffset;
3286     Select *pPrior = p->pPrior;
3287     p->pOrderBy = 0;
3288     p->pSrc = 0;
3289     p->pPrior = 0;
3290     p->pLimit = 0;
3291     p->pOffset = 0;
3292     pNew = sqlite3SelectDup(db, p, 0);
3293     p->pOffset = pOffset;
3294     p->pLimit = pLimit;
3295     p->pOrderBy = pOrderBy;
3296     p->pSrc = pSrc;
3297     p->op = TK_ALL;
3298     p->pRightmost = 0;
3299     if( pNew==0 ){
3300       pNew = pPrior;
3301     }else{
3302       pNew->pPrior = pPrior;
3303       pNew->pRightmost = 0;
3304     }
3305     p->pPrior = pNew;
3306     if( db->mallocFailed ) return 1;
3307   }
3308 
3309   /* Begin flattening the iFrom-th entry of the FROM clause
3310   ** in the outer query.
3311   */
3312   pSub = pSub1 = pSubitem->pSelect;
3313 
3314   /* Delete the transient table structure associated with the
3315   ** subquery
3316   */
3317   sqlite3DbFree(db, pSubitem->zDatabase);
3318   sqlite3DbFree(db, pSubitem->zName);
3319   sqlite3DbFree(db, pSubitem->zAlias);
3320   pSubitem->zDatabase = 0;
3321   pSubitem->zName = 0;
3322   pSubitem->zAlias = 0;
3323   pSubitem->pSelect = 0;
3324 
3325   /* Defer deleting the Table object associated with the
3326   ** subquery until code generation is
3327   ** complete, since there may still exist Expr.pTab entries that
3328   ** refer to the subquery even after flattening.  Ticket #3346.
3329   **
3330   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3331   */
3332   if( ALWAYS(pSubitem->pTab!=0) ){
3333     Table *pTabToDel = pSubitem->pTab;
3334     if( pTabToDel->nRef==1 ){
3335       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3336       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3337       pToplevel->pZombieTab = pTabToDel;
3338     }else{
3339       pTabToDel->nRef--;
3340     }
3341     pSubitem->pTab = 0;
3342   }
3343 
3344   /* The following loop runs once for each term in a compound-subquery
3345   ** flattening (as described above).  If we are doing a different kind
3346   ** of flattening - a flattening other than a compound-subquery flattening -
3347   ** then this loop only runs once.
3348   **
3349   ** This loop moves all of the FROM elements of the subquery into the
3350   ** the FROM clause of the outer query.  Before doing this, remember
3351   ** the cursor number for the original outer query FROM element in
3352   ** iParent.  The iParent cursor will never be used.  Subsequent code
3353   ** will scan expressions looking for iParent references and replace
3354   ** those references with expressions that resolve to the subquery FROM
3355   ** elements we are now copying in.
3356   */
3357   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3358     int nSubSrc;
3359     u8 jointype = 0;
3360     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3361     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3362     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3363 
3364     if( pSrc ){
3365       assert( pParent==p );  /* First time through the loop */
3366       jointype = pSubitem->jointype;
3367     }else{
3368       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3369       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3370       if( pSrc==0 ){
3371         assert( db->mallocFailed );
3372         break;
3373       }
3374     }
3375 
3376     /* The subquery uses a single slot of the FROM clause of the outer
3377     ** query.  If the subquery has more than one element in its FROM clause,
3378     ** then expand the outer query to make space for it to hold all elements
3379     ** of the subquery.
3380     **
3381     ** Example:
3382     **
3383     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3384     **
3385     ** The outer query has 3 slots in its FROM clause.  One slot of the
3386     ** outer query (the middle slot) is used by the subquery.  The next
3387     ** block of code will expand the out query to 4 slots.  The middle
3388     ** slot is expanded to two slots in order to make space for the
3389     ** two elements in the FROM clause of the subquery.
3390     */
3391     if( nSubSrc>1 ){
3392       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3393       if( db->mallocFailed ){
3394         break;
3395       }
3396     }
3397 
3398     /* Transfer the FROM clause terms from the subquery into the
3399     ** outer query.
3400     */
3401     for(i=0; i<nSubSrc; i++){
3402       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3403       pSrc->a[i+iFrom] = pSubSrc->a[i];
3404       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3405     }
3406     pSrc->a[iFrom].jointype = jointype;
3407 
3408     /* Now begin substituting subquery result set expressions for
3409     ** references to the iParent in the outer query.
3410     **
3411     ** Example:
3412     **
3413     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3414     **   \                     \_____________ subquery __________/          /
3415     **    \_____________________ outer query ______________________________/
3416     **
3417     ** We look at every expression in the outer query and every place we see
3418     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3419     */
3420     pList = pParent->pEList;
3421     for(i=0; i<pList->nExpr; i++){
3422       if( pList->a[i].zName==0 ){
3423         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3424         sqlite3Dequote(zName);
3425         pList->a[i].zName = zName;
3426       }
3427     }
3428     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3429     if( isAgg ){
3430       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3431       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3432     }
3433     if( pSub->pOrderBy ){
3434       assert( pParent->pOrderBy==0 );
3435       pParent->pOrderBy = pSub->pOrderBy;
3436       pSub->pOrderBy = 0;
3437     }else if( pParent->pOrderBy ){
3438       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3439     }
3440     if( pSub->pWhere ){
3441       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3442     }else{
3443       pWhere = 0;
3444     }
3445     if( subqueryIsAgg ){
3446       assert( pParent->pHaving==0 );
3447       pParent->pHaving = pParent->pWhere;
3448       pParent->pWhere = pWhere;
3449       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3450       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3451                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3452       assert( pParent->pGroupBy==0 );
3453       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3454     }else{
3455       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3456       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3457     }
3458 
3459     /* The flattened query is distinct if either the inner or the
3460     ** outer query is distinct.
3461     */
3462     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3463 
3464     /*
3465     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3466     **
3467     ** One is tempted to try to add a and b to combine the limits.  But this
3468     ** does not work if either limit is negative.
3469     */
3470     if( pSub->pLimit ){
3471       pParent->pLimit = pSub->pLimit;
3472       pSub->pLimit = 0;
3473     }
3474   }
3475 
3476   /* Finially, delete what is left of the subquery and return
3477   ** success.
3478   */
3479   sqlite3SelectDelete(db, pSub1);
3480 
3481   return 1;
3482 }
3483 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3484 
3485 /*
3486 ** Based on the contents of the AggInfo structure indicated by the first
3487 ** argument, this function checks if the following are true:
3488 **
3489 **    * the query contains just a single aggregate function,
3490 **    * the aggregate function is either min() or max(), and
3491 **    * the argument to the aggregate function is a column value.
3492 **
3493 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3494 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3495 ** list of arguments passed to the aggregate before returning.
3496 **
3497 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3498 ** WHERE_ORDERBY_NORMAL is returned.
3499 */
3500 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3501   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3502 
3503   *ppMinMax = 0;
3504   if( pAggInfo->nFunc==1 ){
3505     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3506     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3507 
3508     assert( pExpr->op==TK_AGG_FUNCTION );
3509     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3510       const char *zFunc = pExpr->u.zToken;
3511       if( sqlite3StrICmp(zFunc, "min")==0 ){
3512         eRet = WHERE_ORDERBY_MIN;
3513         *ppMinMax = pEList;
3514       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3515         eRet = WHERE_ORDERBY_MAX;
3516         *ppMinMax = pEList;
3517       }
3518     }
3519   }
3520 
3521   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3522   return eRet;
3523 }
3524 
3525 /*
3526 ** The select statement passed as the first argument is an aggregate query.
3527 ** The second argment is the associated aggregate-info object. This
3528 ** function tests if the SELECT is of the form:
3529 **
3530 **   SELECT count(*) FROM <tbl>
3531 **
3532 ** where table is a database table, not a sub-select or view. If the query
3533 ** does match this pattern, then a pointer to the Table object representing
3534 ** <tbl> is returned. Otherwise, 0 is returned.
3535 */
3536 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3537   Table *pTab;
3538   Expr *pExpr;
3539 
3540   assert( !p->pGroupBy );
3541 
3542   if( p->pWhere || p->pEList->nExpr!=1
3543    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3544   ){
3545     return 0;
3546   }
3547   pTab = p->pSrc->a[0].pTab;
3548   pExpr = p->pEList->a[0].pExpr;
3549   assert( pTab && !pTab->pSelect && pExpr );
3550 
3551   if( IsVirtual(pTab) ) return 0;
3552   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3553   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3554   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3555   if( pExpr->flags&EP_Distinct ) return 0;
3556 
3557   return pTab;
3558 }
3559 
3560 /*
3561 ** If the source-list item passed as an argument was augmented with an
3562 ** INDEXED BY clause, then try to locate the specified index. If there
3563 ** was such a clause and the named index cannot be found, return
3564 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3565 ** pFrom->pIndex and return SQLITE_OK.
3566 */
3567 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3568   if( pFrom->pTab && pFrom->zIndex ){
3569     Table *pTab = pFrom->pTab;
3570     char *zIndex = pFrom->zIndex;
3571     Index *pIdx;
3572     for(pIdx=pTab->pIndex;
3573         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3574         pIdx=pIdx->pNext
3575     );
3576     if( !pIdx ){
3577       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3578       pParse->checkSchema = 1;
3579       return SQLITE_ERROR;
3580     }
3581     pFrom->pIndex = pIdx;
3582   }
3583   return SQLITE_OK;
3584 }
3585 /*
3586 ** Detect compound SELECT statements that use an ORDER BY clause with
3587 ** an alternative collating sequence.
3588 **
3589 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3590 **
3591 ** These are rewritten as a subquery:
3592 **
3593 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3594 **     ORDER BY ... COLLATE ...
3595 **
3596 ** This transformation is necessary because the multiSelectOrderBy() routine
3597 ** above that generates the code for a compound SELECT with an ORDER BY clause
3598 ** uses a merge algorithm that requires the same collating sequence on the
3599 ** result columns as on the ORDER BY clause.  See ticket
3600 ** http://www.sqlite.org/src/info/6709574d2a
3601 **
3602 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3603 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3604 ** there are COLLATE terms in the ORDER BY.
3605 */
3606 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3607   int i;
3608   Select *pNew;
3609   Select *pX;
3610   sqlite3 *db;
3611   struct ExprList_item *a;
3612   SrcList *pNewSrc;
3613   Parse *pParse;
3614   Token dummy;
3615 
3616   if( p->pPrior==0 ) return WRC_Continue;
3617   if( p->pOrderBy==0 ) return WRC_Continue;
3618   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3619   if( pX==0 ) return WRC_Continue;
3620   a = p->pOrderBy->a;
3621   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3622     if( a[i].pExpr->flags & EP_Collate ) break;
3623   }
3624   if( i<0 ) return WRC_Continue;
3625 
3626   /* If we reach this point, that means the transformation is required. */
3627 
3628   pParse = pWalker->pParse;
3629   db = pParse->db;
3630   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3631   if( pNew==0 ) return WRC_Abort;
3632   memset(&dummy, 0, sizeof(dummy));
3633   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3634   if( pNewSrc==0 ) return WRC_Abort;
3635   *pNew = *p;
3636   p->pSrc = pNewSrc;
3637   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3638   p->op = TK_SELECT;
3639   p->pWhere = 0;
3640   pNew->pGroupBy = 0;
3641   pNew->pHaving = 0;
3642   pNew->pOrderBy = 0;
3643   p->pPrior = 0;
3644   pNew->pLimit = 0;
3645   pNew->pOffset = 0;
3646   return WRC_Continue;
3647 }
3648 
3649 #ifndef SQLITE_OMIT_CTE
3650 /*
3651 ** Argument pWith (which may be NULL) points to a linked list of nested
3652 ** WITH contexts, from inner to outermost. If the table identified by
3653 ** FROM clause element pItem is really a common-table-expression (CTE)
3654 ** then return a pointer to the CTE definition for that table. Otherwise
3655 ** return NULL.
3656 **
3657 ** If a non-NULL value is returned, set *ppContext to point to the With
3658 ** object that the returned CTE belongs to.
3659 */
3660 static struct Cte *searchWith(
3661   With *pWith,                    /* Current outermost WITH clause */
3662   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3663   With **ppContext                /* OUT: WITH clause return value belongs to */
3664 ){
3665   const char *zName;
3666   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3667     With *p;
3668     for(p=pWith; p; p=p->pOuter){
3669       int i;
3670       for(i=0; i<p->nCte; i++){
3671         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3672           *ppContext = p;
3673           return &p->a[i];
3674         }
3675       }
3676     }
3677   }
3678   return 0;
3679 }
3680 
3681 /* The code generator maintains a stack of active WITH clauses
3682 ** with the inner-most WITH clause being at the top of the stack.
3683 **
3684 ** This routine pushes the WITH clause passed as the second argument
3685 ** onto the top of the stack. If argument bFree is true, then this
3686 ** WITH clause will never be popped from the stack. In this case it
3687 ** should be freed along with the Parse object. In other cases, when
3688 ** bFree==0, the With object will be freed along with the SELECT
3689 ** statement with which it is associated.
3690 */
3691 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3692   assert( bFree==0 || pParse->pWith==0 );
3693   if( pWith ){
3694     pWith->pOuter = pParse->pWith;
3695     pParse->pWith = pWith;
3696     pParse->bFreeWith = bFree;
3697   }
3698 }
3699 
3700 /*
3701 ** This function checks if argument pFrom refers to a CTE declared by
3702 ** a WITH clause on the stack currently maintained by the parser. And,
3703 ** if currently processing a CTE expression, if it is a recursive
3704 ** reference to the current CTE.
3705 **
3706 ** If pFrom falls into either of the two categories above, pFrom->pTab
3707 ** and other fields are populated accordingly. The caller should check
3708 ** (pFrom->pTab!=0) to determine whether or not a successful match
3709 ** was found.
3710 **
3711 ** Whether or not a match is found, SQLITE_OK is returned if no error
3712 ** occurs. If an error does occur, an error message is stored in the
3713 ** parser and some error code other than SQLITE_OK returned.
3714 */
3715 static int withExpand(
3716   Walker *pWalker,
3717   struct SrcList_item *pFrom
3718 ){
3719   Parse *pParse = pWalker->pParse;
3720   sqlite3 *db = pParse->db;
3721   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3722   With *pWith;                    /* WITH clause that pCte belongs to */
3723 
3724   assert( pFrom->pTab==0 );
3725 
3726   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3727   if( pCte ){
3728     Table *pTab;
3729     ExprList *pEList;
3730     Select *pSel;
3731     Select *pLeft;                /* Left-most SELECT statement */
3732     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3733     With *pSavedWith;             /* Initial value of pParse->pWith */
3734 
3735     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3736     ** recursive reference to CTE pCte. Leave an error in pParse and return
3737     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3738     ** In this case, proceed.  */
3739     if( pCte->zErr ){
3740       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3741       return SQLITE_ERROR;
3742     }
3743 
3744     assert( pFrom->pTab==0 );
3745     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3746     if( pTab==0 ) return WRC_Abort;
3747     pTab->nRef = 1;
3748     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3749     pTab->iPKey = -1;
3750     pTab->nRowEst = 1048576;
3751     pTab->tabFlags |= TF_Ephemeral;
3752     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3753     if( db->mallocFailed ) return SQLITE_NOMEM;
3754     assert( pFrom->pSelect );
3755 
3756     /* Check if this is a recursive CTE. */
3757     pSel = pFrom->pSelect;
3758     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3759     if( bMayRecursive ){
3760       int i;
3761       SrcList *pSrc = pFrom->pSelect->pSrc;
3762       for(i=0; i<pSrc->nSrc; i++){
3763         struct SrcList_item *pItem = &pSrc->a[i];
3764         if( pItem->zDatabase==0
3765          && pItem->zName!=0
3766          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3767           ){
3768           pItem->pTab = pTab;
3769           pItem->isRecursive = 1;
3770           pTab->nRef++;
3771           pSel->selFlags |= SF_Recursive;
3772         }
3773       }
3774     }
3775 
3776     /* Only one recursive reference is permitted. */
3777     if( pTab->nRef>2 ){
3778       sqlite3ErrorMsg(
3779           pParse, "multiple references to recursive table: %s", pCte->zName
3780       );
3781       return SQLITE_ERROR;
3782     }
3783     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3784 
3785     pCte->zErr = "circular reference: %s";
3786     pSavedWith = pParse->pWith;
3787     pParse->pWith = pWith;
3788     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3789 
3790     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3791     pEList = pLeft->pEList;
3792     if( pCte->pCols ){
3793       if( pEList->nExpr!=pCte->pCols->nExpr ){
3794         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3795             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3796         );
3797         pParse->pWith = pSavedWith;
3798         return SQLITE_ERROR;
3799       }
3800       pEList = pCte->pCols;
3801     }
3802 
3803     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3804     if( bMayRecursive ){
3805       if( pSel->selFlags & SF_Recursive ){
3806         pCte->zErr = "multiple recursive references: %s";
3807       }else{
3808         pCte->zErr = "recursive reference in a subquery: %s";
3809       }
3810       sqlite3WalkSelect(pWalker, pSel);
3811     }
3812     pCte->zErr = 0;
3813     pParse->pWith = pSavedWith;
3814   }
3815 
3816   return SQLITE_OK;
3817 }
3818 #endif
3819 
3820 #ifndef SQLITE_OMIT_CTE
3821 /*
3822 ** If the SELECT passed as the second argument has an associated WITH
3823 ** clause, pop it from the stack stored as part of the Parse object.
3824 **
3825 ** This function is used as the xSelectCallback2() callback by
3826 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3827 ** names and other FROM clause elements.
3828 */
3829 static void selectPopWith(Walker *pWalker, Select *p){
3830   Parse *pParse = pWalker->pParse;
3831   if( p->pWith ){
3832     assert( pParse->pWith==p->pWith );
3833     pParse->pWith = p->pWith->pOuter;
3834   }
3835 }
3836 #else
3837 #define selectPopWith 0
3838 #endif
3839 
3840 /*
3841 ** This routine is a Walker callback for "expanding" a SELECT statement.
3842 ** "Expanding" means to do the following:
3843 **
3844 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3845 **         element of the FROM clause.
3846 **
3847 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3848 **         defines FROM clause.  When views appear in the FROM clause,
3849 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3850 **         that implements the view.  A copy is made of the view's SELECT
3851 **         statement so that we can freely modify or delete that statement
3852 **         without worrying about messing up the presistent representation
3853 **         of the view.
3854 **
3855 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3856 **         on joins and the ON and USING clause of joins.
3857 **
3858 **    (4)  Scan the list of columns in the result set (pEList) looking
3859 **         for instances of the "*" operator or the TABLE.* operator.
3860 **         If found, expand each "*" to be every column in every table
3861 **         and TABLE.* to be every column in TABLE.
3862 **
3863 */
3864 static int selectExpander(Walker *pWalker, Select *p){
3865   Parse *pParse = pWalker->pParse;
3866   int i, j, k;
3867   SrcList *pTabList;
3868   ExprList *pEList;
3869   struct SrcList_item *pFrom;
3870   sqlite3 *db = pParse->db;
3871   Expr *pE, *pRight, *pExpr;
3872   u16 selFlags = p->selFlags;
3873 
3874   p->selFlags |= SF_Expanded;
3875   if( db->mallocFailed  ){
3876     return WRC_Abort;
3877   }
3878   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3879     return WRC_Prune;
3880   }
3881   pTabList = p->pSrc;
3882   pEList = p->pEList;
3883   sqlite3WithPush(pParse, p->pWith, 0);
3884 
3885   /* Make sure cursor numbers have been assigned to all entries in
3886   ** the FROM clause of the SELECT statement.
3887   */
3888   sqlite3SrcListAssignCursors(pParse, pTabList);
3889 
3890   /* Look up every table named in the FROM clause of the select.  If
3891   ** an entry of the FROM clause is a subquery instead of a table or view,
3892   ** then create a transient table structure to describe the subquery.
3893   */
3894   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3895     Table *pTab;
3896     assert( pFrom->isRecursive==0 || pFrom->pTab );
3897     if( pFrom->isRecursive ) continue;
3898     if( pFrom->pTab!=0 ){
3899       /* This statement has already been prepared.  There is no need
3900       ** to go further. */
3901       assert( i==0 );
3902 #ifndef SQLITE_OMIT_CTE
3903       selectPopWith(pWalker, p);
3904 #endif
3905       return WRC_Prune;
3906     }
3907 #ifndef SQLITE_OMIT_CTE
3908     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
3909     if( pFrom->pTab ) {} else
3910 #endif
3911     if( pFrom->zName==0 ){
3912 #ifndef SQLITE_OMIT_SUBQUERY
3913       Select *pSel = pFrom->pSelect;
3914       /* A sub-query in the FROM clause of a SELECT */
3915       assert( pSel!=0 );
3916       assert( pFrom->pTab==0 );
3917       sqlite3WalkSelect(pWalker, pSel);
3918       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3919       if( pTab==0 ) return WRC_Abort;
3920       pTab->nRef = 1;
3921       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
3922       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3923       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3924       pTab->iPKey = -1;
3925       pTab->nRowEst = 1048576;
3926       pTab->tabFlags |= TF_Ephemeral;
3927 #endif
3928     }else{
3929       /* An ordinary table or view name in the FROM clause */
3930       assert( pFrom->pTab==0 );
3931       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
3932       if( pTab==0 ) return WRC_Abort;
3933       if( pTab->nRef==0xffff ){
3934         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
3935            pTab->zName);
3936         pFrom->pTab = 0;
3937         return WRC_Abort;
3938       }
3939       pTab->nRef++;
3940 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3941       if( pTab->pSelect || IsVirtual(pTab) ){
3942         /* We reach here if the named table is a really a view */
3943         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3944         assert( pFrom->pSelect==0 );
3945         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3946         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3947       }
3948 #endif
3949     }
3950 
3951     /* Locate the index named by the INDEXED BY clause, if any. */
3952     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3953       return WRC_Abort;
3954     }
3955   }
3956 
3957   /* Process NATURAL keywords, and ON and USING clauses of joins.
3958   */
3959   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3960     return WRC_Abort;
3961   }
3962 
3963   /* For every "*" that occurs in the column list, insert the names of
3964   ** all columns in all tables.  And for every TABLE.* insert the names
3965   ** of all columns in TABLE.  The parser inserted a special expression
3966   ** with the TK_ALL operator for each "*" that it found in the column list.
3967   ** The following code just has to locate the TK_ALL expressions and expand
3968   ** each one to the list of all columns in all tables.
3969   **
3970   ** The first loop just checks to see if there are any "*" operators
3971   ** that need expanding.
3972   */
3973   for(k=0; k<pEList->nExpr; k++){
3974     pE = pEList->a[k].pExpr;
3975     if( pE->op==TK_ALL ) break;
3976     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3977     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3978     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3979   }
3980   if( k<pEList->nExpr ){
3981     /*
3982     ** If we get here it means the result set contains one or more "*"
3983     ** operators that need to be expanded.  Loop through each expression
3984     ** in the result set and expand them one by one.
3985     */
3986     struct ExprList_item *a = pEList->a;
3987     ExprList *pNew = 0;
3988     int flags = pParse->db->flags;
3989     int longNames = (flags & SQLITE_FullColNames)!=0
3990                       && (flags & SQLITE_ShortColNames)==0;
3991 
3992     /* When processing FROM-clause subqueries, it is always the case
3993     ** that full_column_names=OFF and short_column_names=ON.  The
3994     ** sqlite3ResultSetOfSelect() routine makes it so. */
3995     assert( (p->selFlags & SF_NestedFrom)==0
3996           || ((flags & SQLITE_FullColNames)==0 &&
3997               (flags & SQLITE_ShortColNames)!=0) );
3998 
3999     for(k=0; k<pEList->nExpr; k++){
4000       pE = a[k].pExpr;
4001       pRight = pE->pRight;
4002       assert( pE->op!=TK_DOT || pRight!=0 );
4003       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4004         /* This particular expression does not need to be expanded.
4005         */
4006         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4007         if( pNew ){
4008           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4009           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4010           a[k].zName = 0;
4011           a[k].zSpan = 0;
4012         }
4013         a[k].pExpr = 0;
4014       }else{
4015         /* This expression is a "*" or a "TABLE.*" and needs to be
4016         ** expanded. */
4017         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4018         char *zTName = 0;       /* text of name of TABLE */
4019         if( pE->op==TK_DOT ){
4020           assert( pE->pLeft!=0 );
4021           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4022           zTName = pE->pLeft->u.zToken;
4023         }
4024         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4025           Table *pTab = pFrom->pTab;
4026           Select *pSub = pFrom->pSelect;
4027           char *zTabName = pFrom->zAlias;
4028           const char *zSchemaName = 0;
4029           int iDb;
4030           if( zTabName==0 ){
4031             zTabName = pTab->zName;
4032           }
4033           if( db->mallocFailed ) break;
4034           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4035             pSub = 0;
4036             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4037               continue;
4038             }
4039             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4040             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4041           }
4042           for(j=0; j<pTab->nCol; j++){
4043             char *zName = pTab->aCol[j].zName;
4044             char *zColname;  /* The computed column name */
4045             char *zToFree;   /* Malloced string that needs to be freed */
4046             Token sColname;  /* Computed column name as a token */
4047 
4048             assert( zName );
4049             if( zTName && pSub
4050              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4051             ){
4052               continue;
4053             }
4054 
4055             /* If a column is marked as 'hidden' (currently only possible
4056             ** for virtual tables), do not include it in the expanded
4057             ** result-set list.
4058             */
4059             if( IsHiddenColumn(&pTab->aCol[j]) ){
4060               assert(IsVirtual(pTab));
4061               continue;
4062             }
4063             tableSeen = 1;
4064 
4065             if( i>0 && zTName==0 ){
4066               if( (pFrom->jointype & JT_NATURAL)!=0
4067                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4068               ){
4069                 /* In a NATURAL join, omit the join columns from the
4070                 ** table to the right of the join */
4071                 continue;
4072               }
4073               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4074                 /* In a join with a USING clause, omit columns in the
4075                 ** using clause from the table on the right. */
4076                 continue;
4077               }
4078             }
4079             pRight = sqlite3Expr(db, TK_ID, zName);
4080             zColname = zName;
4081             zToFree = 0;
4082             if( longNames || pTabList->nSrc>1 ){
4083               Expr *pLeft;
4084               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4085               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4086               if( zSchemaName ){
4087                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4088                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4089               }
4090               if( longNames ){
4091                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4092                 zToFree = zColname;
4093               }
4094             }else{
4095               pExpr = pRight;
4096             }
4097             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4098             sColname.z = zColname;
4099             sColname.n = sqlite3Strlen30(zColname);
4100             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4101             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4102               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4103               if( pSub ){
4104                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4105                 testcase( pX->zSpan==0 );
4106               }else{
4107                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4108                                            zSchemaName, zTabName, zColname);
4109                 testcase( pX->zSpan==0 );
4110               }
4111               pX->bSpanIsTab = 1;
4112             }
4113             sqlite3DbFree(db, zToFree);
4114           }
4115         }
4116         if( !tableSeen ){
4117           if( zTName ){
4118             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4119           }else{
4120             sqlite3ErrorMsg(pParse, "no tables specified");
4121           }
4122         }
4123       }
4124     }
4125     sqlite3ExprListDelete(db, pEList);
4126     p->pEList = pNew;
4127   }
4128 #if SQLITE_MAX_COLUMN
4129   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4130     sqlite3ErrorMsg(pParse, "too many columns in result set");
4131   }
4132 #endif
4133   return WRC_Continue;
4134 }
4135 
4136 /*
4137 ** No-op routine for the parse-tree walker.
4138 **
4139 ** When this routine is the Walker.xExprCallback then expression trees
4140 ** are walked without any actions being taken at each node.  Presumably,
4141 ** when this routine is used for Walker.xExprCallback then
4142 ** Walker.xSelectCallback is set to do something useful for every
4143 ** subquery in the parser tree.
4144 */
4145 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4146   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4147   return WRC_Continue;
4148 }
4149 
4150 /*
4151 ** This routine "expands" a SELECT statement and all of its subqueries.
4152 ** For additional information on what it means to "expand" a SELECT
4153 ** statement, see the comment on the selectExpand worker callback above.
4154 **
4155 ** Expanding a SELECT statement is the first step in processing a
4156 ** SELECT statement.  The SELECT statement must be expanded before
4157 ** name resolution is performed.
4158 **
4159 ** If anything goes wrong, an error message is written into pParse.
4160 ** The calling function can detect the problem by looking at pParse->nErr
4161 ** and/or pParse->db->mallocFailed.
4162 */
4163 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4164   Walker w;
4165   memset(&w, 0, sizeof(w));
4166   w.xExprCallback = exprWalkNoop;
4167   w.pParse = pParse;
4168   if( pParse->hasCompound ){
4169     w.xSelectCallback = convertCompoundSelectToSubquery;
4170     sqlite3WalkSelect(&w, pSelect);
4171   }
4172   w.xSelectCallback = selectExpander;
4173   w.xSelectCallback2 = selectPopWith;
4174   sqlite3WalkSelect(&w, pSelect);
4175 }
4176 
4177 
4178 #ifndef SQLITE_OMIT_SUBQUERY
4179 /*
4180 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4181 ** interface.
4182 **
4183 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4184 ** information to the Table structure that represents the result set
4185 ** of that subquery.
4186 **
4187 ** The Table structure that represents the result set was constructed
4188 ** by selectExpander() but the type and collation information was omitted
4189 ** at that point because identifiers had not yet been resolved.  This
4190 ** routine is called after identifier resolution.
4191 */
4192 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4193   Parse *pParse;
4194   int i;
4195   SrcList *pTabList;
4196   struct SrcList_item *pFrom;
4197 
4198   assert( p->selFlags & SF_Resolved );
4199   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4200     p->selFlags |= SF_HasTypeInfo;
4201     pParse = pWalker->pParse;
4202     pTabList = p->pSrc;
4203     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4204       Table *pTab = pFrom->pTab;
4205       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4206         /* A sub-query in the FROM clause of a SELECT */
4207         Select *pSel = pFrom->pSelect;
4208         if( pSel ){
4209           while( pSel->pPrior ) pSel = pSel->pPrior;
4210           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4211         }
4212       }
4213     }
4214   }
4215 }
4216 #endif
4217 
4218 
4219 /*
4220 ** This routine adds datatype and collating sequence information to
4221 ** the Table structures of all FROM-clause subqueries in a
4222 ** SELECT statement.
4223 **
4224 ** Use this routine after name resolution.
4225 */
4226 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4227 #ifndef SQLITE_OMIT_SUBQUERY
4228   Walker w;
4229   memset(&w, 0, sizeof(w));
4230   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4231   w.xExprCallback = exprWalkNoop;
4232   w.pParse = pParse;
4233   sqlite3WalkSelect(&w, pSelect);
4234 #endif
4235 }
4236 
4237 
4238 /*
4239 ** This routine sets up a SELECT statement for processing.  The
4240 ** following is accomplished:
4241 **
4242 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4243 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4244 **     *  ON and USING clauses are shifted into WHERE statements
4245 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4246 **     *  Identifiers in expression are matched to tables.
4247 **
4248 ** This routine acts recursively on all subqueries within the SELECT.
4249 */
4250 void sqlite3SelectPrep(
4251   Parse *pParse,         /* The parser context */
4252   Select *p,             /* The SELECT statement being coded. */
4253   NameContext *pOuterNC  /* Name context for container */
4254 ){
4255   sqlite3 *db;
4256   if( NEVER(p==0) ) return;
4257   db = pParse->db;
4258   if( db->mallocFailed ) return;
4259   if( p->selFlags & SF_HasTypeInfo ) return;
4260   sqlite3SelectExpand(pParse, p);
4261   if( pParse->nErr || db->mallocFailed ) return;
4262   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4263   if( pParse->nErr || db->mallocFailed ) return;
4264   sqlite3SelectAddTypeInfo(pParse, p);
4265 }
4266 
4267 /*
4268 ** Reset the aggregate accumulator.
4269 **
4270 ** The aggregate accumulator is a set of memory cells that hold
4271 ** intermediate results while calculating an aggregate.  This
4272 ** routine generates code that stores NULLs in all of those memory
4273 ** cells.
4274 */
4275 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4276   Vdbe *v = pParse->pVdbe;
4277   int i;
4278   struct AggInfo_func *pFunc;
4279   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4280   if( nReg==0 ) return;
4281 #ifdef SQLITE_DEBUG
4282   /* Verify that all AggInfo registers are within the range specified by
4283   ** AggInfo.mnReg..AggInfo.mxReg */
4284   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4285   for(i=0; i<pAggInfo->nColumn; i++){
4286     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4287          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4288   }
4289   for(i=0; i<pAggInfo->nFunc; i++){
4290     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4291          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4292   }
4293 #endif
4294   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4295   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4296     if( pFunc->iDistinct>=0 ){
4297       Expr *pE = pFunc->pExpr;
4298       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4299       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4300         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4301            "argument");
4302         pFunc->iDistinct = -1;
4303       }else{
4304         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0);
4305         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4306                           (char*)pKeyInfo, P4_KEYINFO);
4307       }
4308     }
4309   }
4310 }
4311 
4312 /*
4313 ** Invoke the OP_AggFinalize opcode for every aggregate function
4314 ** in the AggInfo structure.
4315 */
4316 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4317   Vdbe *v = pParse->pVdbe;
4318   int i;
4319   struct AggInfo_func *pF;
4320   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4321     ExprList *pList = pF->pExpr->x.pList;
4322     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4323     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4324                       (void*)pF->pFunc, P4_FUNCDEF);
4325   }
4326 }
4327 
4328 /*
4329 ** Update the accumulator memory cells for an aggregate based on
4330 ** the current cursor position.
4331 */
4332 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4333   Vdbe *v = pParse->pVdbe;
4334   int i;
4335   int regHit = 0;
4336   int addrHitTest = 0;
4337   struct AggInfo_func *pF;
4338   struct AggInfo_col *pC;
4339 
4340   pAggInfo->directMode = 1;
4341   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4342     int nArg;
4343     int addrNext = 0;
4344     int regAgg;
4345     ExprList *pList = pF->pExpr->x.pList;
4346     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4347     if( pList ){
4348       nArg = pList->nExpr;
4349       regAgg = sqlite3GetTempRange(pParse, nArg);
4350       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4351     }else{
4352       nArg = 0;
4353       regAgg = 0;
4354     }
4355     if( pF->iDistinct>=0 ){
4356       addrNext = sqlite3VdbeMakeLabel(v);
4357       assert( nArg==1 );
4358       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4359     }
4360     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4361       CollSeq *pColl = 0;
4362       struct ExprList_item *pItem;
4363       int j;
4364       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4365       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4366         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4367       }
4368       if( !pColl ){
4369         pColl = pParse->db->pDfltColl;
4370       }
4371       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4372       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4373     }
4374     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4375                       (void*)pF->pFunc, P4_FUNCDEF);
4376     sqlite3VdbeChangeP5(v, (u8)nArg);
4377     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4378     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4379     if( addrNext ){
4380       sqlite3VdbeResolveLabel(v, addrNext);
4381       sqlite3ExprCacheClear(pParse);
4382     }
4383   }
4384 
4385   /* Before populating the accumulator registers, clear the column cache.
4386   ** Otherwise, if any of the required column values are already present
4387   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4388   ** to pC->iMem. But by the time the value is used, the original register
4389   ** may have been used, invalidating the underlying buffer holding the
4390   ** text or blob value. See ticket [883034dcb5].
4391   **
4392   ** Another solution would be to change the OP_SCopy used to copy cached
4393   ** values to an OP_Copy.
4394   */
4395   if( regHit ){
4396     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
4397   }
4398   sqlite3ExprCacheClear(pParse);
4399   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4400     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4401   }
4402   pAggInfo->directMode = 0;
4403   sqlite3ExprCacheClear(pParse);
4404   if( addrHitTest ){
4405     sqlite3VdbeJumpHere(v, addrHitTest);
4406   }
4407 }
4408 
4409 /*
4410 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4411 ** count(*) query ("SELECT count(*) FROM pTab").
4412 */
4413 #ifndef SQLITE_OMIT_EXPLAIN
4414 static void explainSimpleCount(
4415   Parse *pParse,                  /* Parse context */
4416   Table *pTab,                    /* Table being queried */
4417   Index *pIdx                     /* Index used to optimize scan, or NULL */
4418 ){
4419   if( pParse->explain==2 ){
4420     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4421         pTab->zName,
4422         pIdx ? " USING COVERING INDEX " : "",
4423         pIdx ? pIdx->zName : ""
4424     );
4425     sqlite3VdbeAddOp4(
4426         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4427     );
4428   }
4429 }
4430 #else
4431 # define explainSimpleCount(a,b,c)
4432 #endif
4433 
4434 /*
4435 ** Generate code for the SELECT statement given in the p argument.
4436 **
4437 ** The results are returned according to the SelectDest structure.
4438 ** See comments in sqliteInt.h for further information.
4439 **
4440 ** This routine returns the number of errors.  If any errors are
4441 ** encountered, then an appropriate error message is left in
4442 ** pParse->zErrMsg.
4443 **
4444 ** This routine does NOT free the Select structure passed in.  The
4445 ** calling function needs to do that.
4446 */
4447 int sqlite3Select(
4448   Parse *pParse,         /* The parser context */
4449   Select *p,             /* The SELECT statement being coded. */
4450   SelectDest *pDest      /* What to do with the query results */
4451 ){
4452   int i, j;              /* Loop counters */
4453   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4454   Vdbe *v;               /* The virtual machine under construction */
4455   int isAgg;             /* True for select lists like "count(*)" */
4456   ExprList *pEList;      /* List of columns to extract. */
4457   SrcList *pTabList;     /* List of tables to select from */
4458   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4459   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
4460   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4461   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4462   int rc = 1;            /* Value to return from this function */
4463   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
4464   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4465   AggInfo sAggInfo;      /* Information used by aggregate queries */
4466   int iEnd;              /* Address of the end of the query */
4467   sqlite3 *db;           /* The database connection */
4468 
4469 #ifndef SQLITE_OMIT_EXPLAIN
4470   int iRestoreSelectId = pParse->iSelectId;
4471   pParse->iSelectId = pParse->iNextSelectId++;
4472 #endif
4473 
4474   db = pParse->db;
4475   if( p==0 || db->mallocFailed || pParse->nErr ){
4476     return 1;
4477   }
4478   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4479   memset(&sAggInfo, 0, sizeof(sAggInfo));
4480 
4481   if( IgnorableOrderby(pDest) ){
4482     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4483            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
4484     /* If ORDER BY makes no difference in the output then neither does
4485     ** DISTINCT so it can be removed too. */
4486     sqlite3ExprListDelete(db, p->pOrderBy);
4487     p->pOrderBy = 0;
4488     p->selFlags &= ~SF_Distinct;
4489   }
4490   sqlite3SelectPrep(pParse, p, 0);
4491   pOrderBy = p->pOrderBy;
4492   pTabList = p->pSrc;
4493   pEList = p->pEList;
4494   if( pParse->nErr || db->mallocFailed ){
4495     goto select_end;
4496   }
4497   isAgg = (p->selFlags & SF_Aggregate)!=0;
4498   assert( pEList!=0 );
4499 
4500   /* Begin generating code.
4501   */
4502   v = sqlite3GetVdbe(pParse);
4503   if( v==0 ) goto select_end;
4504 
4505   /* If writing to memory or generating a set
4506   ** only a single column may be output.
4507   */
4508 #ifndef SQLITE_OMIT_SUBQUERY
4509   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4510     goto select_end;
4511   }
4512 #endif
4513 
4514   /* Generate code for all sub-queries in the FROM clause
4515   */
4516 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4517   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4518     struct SrcList_item *pItem = &pTabList->a[i];
4519     SelectDest dest;
4520     Select *pSub = pItem->pSelect;
4521     int isAggSub;
4522 
4523     if( pSub==0 ) continue;
4524 
4525     /* Sometimes the code for a subquery will be generated more than
4526     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4527     ** for example.  In that case, do not regenerate the code to manifest
4528     ** a view or the co-routine to implement a view.  The first instance
4529     ** is sufficient, though the subroutine to manifest the view does need
4530     ** to be invoked again. */
4531     if( pItem->addrFillSub ){
4532       if( pItem->viaCoroutine==0 ){
4533         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4534       }
4535       continue;
4536     }
4537 
4538     /* Increment Parse.nHeight by the height of the largest expression
4539     ** tree referred to by this, the parent select. The child select
4540     ** may contain expression trees of at most
4541     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4542     ** more conservative than necessary, but much easier than enforcing
4543     ** an exact limit.
4544     */
4545     pParse->nHeight += sqlite3SelectExprHeight(p);
4546 
4547     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4548     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4549       /* This subquery can be absorbed into its parent. */
4550       if( isAggSub ){
4551         isAgg = 1;
4552         p->selFlags |= SF_Aggregate;
4553       }
4554       i = -1;
4555     }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0
4556       && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4557     ){
4558       /* Implement a co-routine that will return a single row of the result
4559       ** set on each invocation.
4560       */
4561       int addrTop;
4562       int addrEof;
4563       pItem->regReturn = ++pParse->nMem;
4564       addrEof = ++pParse->nMem;
4565       /* Before coding the OP_Goto to jump to the start of the main routine,
4566       ** ensure that the jump to the verify-schema routine has already
4567       ** been coded. Otherwise, the verify-schema would likely be coded as
4568       ** part of the co-routine. If the main routine then accessed the
4569       ** database before invoking the co-routine for the first time (for
4570       ** example to initialize a LIMIT register from a sub-select), it would
4571       ** be doing so without having verified the schema version and obtained
4572       ** the required db locks. See ticket d6b36be38.  */
4573       sqlite3CodeVerifySchema(pParse, -1);
4574       sqlite3VdbeAddOp0(v, OP_Goto);
4575       addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
4576       sqlite3VdbeChangeP5(v, 1);
4577       VdbeComment((v, "coroutine for %s", pItem->pTab->zName));
4578       pItem->addrFillSub = addrTop;
4579       sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof);
4580       sqlite3VdbeChangeP5(v, 1);
4581       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4582       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4583       sqlite3Select(pParse, pSub, &dest);
4584       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4585       pItem->viaCoroutine = 1;
4586       sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
4587       sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);
4588       sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof);
4589       sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn);
4590       VdbeComment((v, "end %s", pItem->pTab->zName));
4591       sqlite3VdbeJumpHere(v, addrTop-1);
4592       sqlite3ClearTempRegCache(pParse);
4593     }else{
4594       /* Generate a subroutine that will fill an ephemeral table with
4595       ** the content of this subquery.  pItem->addrFillSub will point
4596       ** to the address of the generated subroutine.  pItem->regReturn
4597       ** is a register allocated to hold the subroutine return address
4598       */
4599       int topAddr;
4600       int onceAddr = 0;
4601       int retAddr;
4602       assert( pItem->addrFillSub==0 );
4603       pItem->regReturn = ++pParse->nMem;
4604       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4605       pItem->addrFillSub = topAddr+1;
4606       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
4607       if( pItem->isCorrelated==0 ){
4608         /* If the subquery is not correlated and if we are not inside of
4609         ** a trigger, then we only need to compute the value of the subquery
4610         ** once. */
4611         onceAddr = sqlite3CodeOnce(pParse);
4612       }
4613       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4614       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4615       sqlite3Select(pParse, pSub, &dest);
4616       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4617       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4618       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4619       VdbeComment((v, "end %s", pItem->pTab->zName));
4620       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4621       sqlite3ClearTempRegCache(pParse);
4622     }
4623     if( /*pParse->nErr ||*/ db->mallocFailed ){
4624       goto select_end;
4625     }
4626     pParse->nHeight -= sqlite3SelectExprHeight(p);
4627     pTabList = p->pSrc;
4628     if( !IgnorableOrderby(pDest) ){
4629       pOrderBy = p->pOrderBy;
4630     }
4631   }
4632   pEList = p->pEList;
4633 #endif
4634   pWhere = p->pWhere;
4635   pGroupBy = p->pGroupBy;
4636   pHaving = p->pHaving;
4637   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4638 
4639 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4640   /* If there is are a sequence of queries, do the earlier ones first.
4641   */
4642   if( p->pPrior ){
4643     if( p->pRightmost==0 ){
4644       Select *pLoop, *pRight = 0;
4645       int cnt = 0;
4646       int mxSelect;
4647       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
4648         pLoop->pRightmost = p;
4649         pLoop->pNext = pRight;
4650         pRight = pLoop;
4651       }
4652       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
4653       if( mxSelect && cnt>mxSelect ){
4654         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
4655         goto select_end;
4656       }
4657     }
4658     rc = multiSelect(pParse, p, pDest);
4659     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4660     return rc;
4661   }
4662 #endif
4663 
4664   /* If there is both a GROUP BY and an ORDER BY clause and they are
4665   ** identical, then disable the ORDER BY clause since the GROUP BY
4666   ** will cause elements to come out in the correct order.  This is
4667   ** an optimization - the correct answer should result regardless.
4668   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
4669   ** to disable this optimization for testing purposes.
4670   */
4671   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy, -1)==0
4672          && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
4673     pOrderBy = 0;
4674   }
4675 
4676   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4677   ** if the select-list is the same as the ORDER BY list, then this query
4678   ** can be rewritten as a GROUP BY. In other words, this:
4679   **
4680   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4681   **
4682   ** is transformed to:
4683   **
4684   **     SELECT xyz FROM ... GROUP BY xyz
4685   **
4686   ** The second form is preferred as a single index (or temp-table) may be
4687   ** used for both the ORDER BY and DISTINCT processing. As originally
4688   ** written the query must use a temp-table for at least one of the ORDER
4689   ** BY and DISTINCT, and an index or separate temp-table for the other.
4690   */
4691   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4692    && sqlite3ExprListCompare(pOrderBy, p->pEList, -1)==0
4693   ){
4694     p->selFlags &= ~SF_Distinct;
4695     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4696     pGroupBy = p->pGroupBy;
4697     pOrderBy = 0;
4698     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4699     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4700     ** original setting of the SF_Distinct flag, not the current setting */
4701     assert( sDistinct.isTnct );
4702   }
4703 
4704   /* If there is an ORDER BY clause, then this sorting
4705   ** index might end up being unused if the data can be
4706   ** extracted in pre-sorted order.  If that is the case, then the
4707   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4708   ** we figure out that the sorting index is not needed.  The addrSortIndex
4709   ** variable is used to facilitate that change.
4710   */
4711   if( pOrderBy ){
4712     KeyInfo *pKeyInfo;
4713     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy, 0);
4714     pOrderBy->iECursor = pParse->nTab++;
4715     p->addrOpenEphm[2] = addrSortIndex =
4716       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4717                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
4718                            (char*)pKeyInfo, P4_KEYINFO);
4719   }else{
4720     addrSortIndex = -1;
4721   }
4722 
4723   /* If the output is destined for a temporary table, open that table.
4724   */
4725   if( pDest->eDest==SRT_EphemTab ){
4726     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4727   }
4728 
4729   /* Set the limiter.
4730   */
4731   iEnd = sqlite3VdbeMakeLabel(v);
4732   p->nSelectRow = LARGEST_INT64;
4733   computeLimitRegisters(pParse, p, iEnd);
4734   if( p->iLimit==0 && addrSortIndex>=0 ){
4735     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
4736     p->selFlags |= SF_UseSorter;
4737   }
4738 
4739   /* Open a virtual index to use for the distinct set.
4740   */
4741   if( p->selFlags & SF_Distinct ){
4742     sDistinct.tabTnct = pParse->nTab++;
4743     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4744                                 sDistinct.tabTnct, 0, 0,
4745                                 (char*)keyInfoFromExprList(pParse, p->pEList, 0),
4746                                 P4_KEYINFO);
4747     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4748     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4749   }else{
4750     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4751   }
4752 
4753   if( !isAgg && pGroupBy==0 ){
4754     /* No aggregate functions and no GROUP BY clause */
4755     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4756 
4757     /* Begin the database scan. */
4758     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, p->pEList,
4759                                wctrlFlags, 0);
4760     if( pWInfo==0 ) goto select_end;
4761     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4762       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4763     }
4764     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4765       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4766     }
4767     if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0;
4768 
4769     /* If sorting index that was created by a prior OP_OpenEphemeral
4770     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4771     ** into an OP_Noop.
4772     */
4773     if( addrSortIndex>=0 && pOrderBy==0 ){
4774       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4775       p->addrOpenEphm[2] = -1;
4776     }
4777 
4778     /* Use the standard inner loop. */
4779     selectInnerLoop(pParse, p, pEList, -1, pOrderBy, &sDistinct, pDest,
4780                     sqlite3WhereContinueLabel(pWInfo),
4781                     sqlite3WhereBreakLabel(pWInfo));
4782 
4783     /* End the database scan loop.
4784     */
4785     sqlite3WhereEnd(pWInfo);
4786   }else{
4787     /* This case when there exist aggregate functions or a GROUP BY clause
4788     ** or both */
4789     NameContext sNC;    /* Name context for processing aggregate information */
4790     int iAMem;          /* First Mem address for storing current GROUP BY */
4791     int iBMem;          /* First Mem address for previous GROUP BY */
4792     int iUseFlag;       /* Mem address holding flag indicating that at least
4793                         ** one row of the input to the aggregator has been
4794                         ** processed */
4795     int iAbortFlag;     /* Mem address which causes query abort if positive */
4796     int groupBySort;    /* Rows come from source in GROUP BY order */
4797     int addrEnd;        /* End of processing for this SELECT */
4798     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4799     int sortOut = 0;    /* Output register from the sorter */
4800 
4801     /* Remove any and all aliases between the result set and the
4802     ** GROUP BY clause.
4803     */
4804     if( pGroupBy ){
4805       int k;                        /* Loop counter */
4806       struct ExprList_item *pItem;  /* For looping over expression in a list */
4807 
4808       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4809         pItem->u.x.iAlias = 0;
4810       }
4811       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4812         pItem->u.x.iAlias = 0;
4813       }
4814       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4815     }else{
4816       p->nSelectRow = 1;
4817     }
4818 
4819 
4820     /* Create a label to jump to when we want to abort the query */
4821     addrEnd = sqlite3VdbeMakeLabel(v);
4822 
4823     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4824     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4825     ** SELECT statement.
4826     */
4827     memset(&sNC, 0, sizeof(sNC));
4828     sNC.pParse = pParse;
4829     sNC.pSrcList = pTabList;
4830     sNC.pAggInfo = &sAggInfo;
4831     sAggInfo.mnReg = pParse->nMem+1;
4832     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4833     sAggInfo.pGroupBy = pGroupBy;
4834     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4835     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4836     if( pHaving ){
4837       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4838     }
4839     sAggInfo.nAccumulator = sAggInfo.nColumn;
4840     for(i=0; i<sAggInfo.nFunc; i++){
4841       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4842       sNC.ncFlags |= NC_InAggFunc;
4843       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4844       sNC.ncFlags &= ~NC_InAggFunc;
4845     }
4846     sAggInfo.mxReg = pParse->nMem;
4847     if( db->mallocFailed ) goto select_end;
4848 
4849     /* Processing for aggregates with GROUP BY is very different and
4850     ** much more complex than aggregates without a GROUP BY.
4851     */
4852     if( pGroupBy ){
4853       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4854       int j1;             /* A-vs-B comparision jump */
4855       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4856       int regOutputRow;   /* Return address register for output subroutine */
4857       int addrSetAbort;   /* Set the abort flag and return */
4858       int addrTopOfLoop;  /* Top of the input loop */
4859       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4860       int addrReset;      /* Subroutine for resetting the accumulator */
4861       int regReset;       /* Return address register for reset subroutine */
4862 
4863       /* If there is a GROUP BY clause we might need a sorting index to
4864       ** implement it.  Allocate that sorting index now.  If it turns out
4865       ** that we do not need it after all, the OP_SorterOpen instruction
4866       ** will be converted into a Noop.
4867       */
4868       sAggInfo.sortingIdx = pParse->nTab++;
4869       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0);
4870       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4871           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4872           0, (char*)pKeyInfo, P4_KEYINFO);
4873 
4874       /* Initialize memory locations used by GROUP BY aggregate processing
4875       */
4876       iUseFlag = ++pParse->nMem;
4877       iAbortFlag = ++pParse->nMem;
4878       regOutputRow = ++pParse->nMem;
4879       addrOutputRow = sqlite3VdbeMakeLabel(v);
4880       regReset = ++pParse->nMem;
4881       addrReset = sqlite3VdbeMakeLabel(v);
4882       iAMem = pParse->nMem + 1;
4883       pParse->nMem += pGroupBy->nExpr;
4884       iBMem = pParse->nMem + 1;
4885       pParse->nMem += pGroupBy->nExpr;
4886       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4887       VdbeComment((v, "clear abort flag"));
4888       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4889       VdbeComment((v, "indicate accumulator empty"));
4890       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4891 
4892       /* Begin a loop that will extract all source rows in GROUP BY order.
4893       ** This might involve two separate loops with an OP_Sort in between, or
4894       ** it might be a single loop that uses an index to extract information
4895       ** in the right order to begin with.
4896       */
4897       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4898       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
4899                                  WHERE_GROUPBY, 0);
4900       if( pWInfo==0 ) goto select_end;
4901       if( sqlite3WhereIsOrdered(pWInfo) ){
4902         /* The optimizer is able to deliver rows in group by order so
4903         ** we do not have to sort.  The OP_OpenEphemeral table will be
4904         ** cancelled later because we still need to use the pKeyInfo
4905         */
4906         groupBySort = 0;
4907       }else{
4908         /* Rows are coming out in undetermined order.  We have to push
4909         ** each row into a sorting index, terminate the first loop,
4910         ** then loop over the sorting index in order to get the output
4911         ** in sorted order
4912         */
4913         int regBase;
4914         int regRecord;
4915         int nCol;
4916         int nGroupBy;
4917 
4918         explainTempTable(pParse,
4919             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4920                     "DISTINCT" : "GROUP BY");
4921 
4922         groupBySort = 1;
4923         nGroupBy = pGroupBy->nExpr;
4924         nCol = nGroupBy + 1;
4925         j = nGroupBy+1;
4926         for(i=0; i<sAggInfo.nColumn; i++){
4927           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4928             nCol++;
4929             j++;
4930           }
4931         }
4932         regBase = sqlite3GetTempRange(pParse, nCol);
4933         sqlite3ExprCacheClear(pParse);
4934         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4935         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4936         j = nGroupBy+1;
4937         for(i=0; i<sAggInfo.nColumn; i++){
4938           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4939           if( pCol->iSorterColumn>=j ){
4940             int r1 = j + regBase;
4941             int r2;
4942 
4943             r2 = sqlite3ExprCodeGetColumn(pParse,
4944                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4945             if( r1!=r2 ){
4946               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4947             }
4948             j++;
4949           }
4950         }
4951         regRecord = sqlite3GetTempReg(pParse);
4952         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4953         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4954         sqlite3ReleaseTempReg(pParse, regRecord);
4955         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4956         sqlite3WhereEnd(pWInfo);
4957         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4958         sortOut = sqlite3GetTempReg(pParse);
4959         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4960         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4961         VdbeComment((v, "GROUP BY sort"));
4962         sAggInfo.useSortingIdx = 1;
4963         sqlite3ExprCacheClear(pParse);
4964       }
4965 
4966       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4967       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4968       ** Then compare the current GROUP BY terms against the GROUP BY terms
4969       ** from the previous row currently stored in a0, a1, a2...
4970       */
4971       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4972       sqlite3ExprCacheClear(pParse);
4973       if( groupBySort ){
4974         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4975       }
4976       for(j=0; j<pGroupBy->nExpr; j++){
4977         if( groupBySort ){
4978           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4979           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4980         }else{
4981           sAggInfo.directMode = 1;
4982           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4983         }
4984       }
4985       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4986                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
4987       j1 = sqlite3VdbeCurrentAddr(v);
4988       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4989 
4990       /* Generate code that runs whenever the GROUP BY changes.
4991       ** Changes in the GROUP BY are detected by the previous code
4992       ** block.  If there were no changes, this block is skipped.
4993       **
4994       ** This code copies current group by terms in b0,b1,b2,...
4995       ** over to a0,a1,a2.  It then calls the output subroutine
4996       ** and resets the aggregate accumulator registers in preparation
4997       ** for the next GROUP BY batch.
4998       */
4999       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5000       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5001       VdbeComment((v, "output one row"));
5002       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
5003       VdbeComment((v, "check abort flag"));
5004       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5005       VdbeComment((v, "reset accumulator"));
5006 
5007       /* Update the aggregate accumulators based on the content of
5008       ** the current row
5009       */
5010       sqlite3VdbeJumpHere(v, j1);
5011       updateAccumulator(pParse, &sAggInfo);
5012       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5013       VdbeComment((v, "indicate data in accumulator"));
5014 
5015       /* End of the loop
5016       */
5017       if( groupBySort ){
5018         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5019       }else{
5020         sqlite3WhereEnd(pWInfo);
5021         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5022       }
5023 
5024       /* Output the final row of result
5025       */
5026       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5027       VdbeComment((v, "output final row"));
5028 
5029       /* Jump over the subroutines
5030       */
5031       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5032 
5033       /* Generate a subroutine that outputs a single row of the result
5034       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5035       ** is less than or equal to zero, the subroutine is a no-op.  If
5036       ** the processing calls for the query to abort, this subroutine
5037       ** increments the iAbortFlag memory location before returning in
5038       ** order to signal the caller to abort.
5039       */
5040       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5041       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5042       VdbeComment((v, "set abort flag"));
5043       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5044       sqlite3VdbeResolveLabel(v, addrOutputRow);
5045       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5046       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5047       VdbeComment((v, "Groupby result generator entry point"));
5048       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5049       finalizeAggFunctions(pParse, &sAggInfo);
5050       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5051       selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy,
5052                       &sDistinct, pDest,
5053                       addrOutputRow+1, addrSetAbort);
5054       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5055       VdbeComment((v, "end groupby result generator"));
5056 
5057       /* Generate a subroutine that will reset the group-by accumulator
5058       */
5059       sqlite3VdbeResolveLabel(v, addrReset);
5060       resetAccumulator(pParse, &sAggInfo);
5061       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5062 
5063     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5064     else {
5065       ExprList *pDel = 0;
5066 #ifndef SQLITE_OMIT_BTREECOUNT
5067       Table *pTab;
5068       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5069         /* If isSimpleCount() returns a pointer to a Table structure, then
5070         ** the SQL statement is of the form:
5071         **
5072         **   SELECT count(*) FROM <tbl>
5073         **
5074         ** where the Table structure returned represents table <tbl>.
5075         **
5076         ** This statement is so common that it is optimized specially. The
5077         ** OP_Count instruction is executed either on the intkey table that
5078         ** contains the data for table <tbl> or on one of its indexes. It
5079         ** is better to execute the op on an index, as indexes are almost
5080         ** always spread across less pages than their corresponding tables.
5081         */
5082         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5083         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5084         Index *pIdx;                         /* Iterator variable */
5085         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5086         Index *pBest = 0;                    /* Best index found so far */
5087         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5088 
5089         sqlite3CodeVerifySchema(pParse, iDb);
5090         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5091 
5092         /* Search for the index that has the lowest scan cost.
5093         **
5094         ** (2011-04-15) Do not do a full scan of an unordered index.
5095         **
5096         ** (2013-10-03) Do not count the entries in a partial index.
5097         **
5098         ** In practice the KeyInfo structure will not be used. It is only
5099         ** passed to keep OP_OpenRead happy.
5100         */
5101         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5102         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5103           if( pIdx->bUnordered==0
5104            && pIdx->szIdxRow<pTab->szTabRow
5105            && pIdx->pPartIdxWhere==0
5106            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5107           ){
5108             pBest = pIdx;
5109           }
5110         }
5111         if( pBest ){
5112           iRoot = pBest->tnum;
5113           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5114         }
5115 
5116         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5117         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5118         if( pKeyInfo ){
5119           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5120         }
5121         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5122         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5123         explainSimpleCount(pParse, pTab, pBest);
5124       }else
5125 #endif /* SQLITE_OMIT_BTREECOUNT */
5126       {
5127         /* Check if the query is of one of the following forms:
5128         **
5129         **   SELECT min(x) FROM ...
5130         **   SELECT max(x) FROM ...
5131         **
5132         ** If it is, then ask the code in where.c to attempt to sort results
5133         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5134         ** If where.c is able to produce results sorted in this order, then
5135         ** add vdbe code to break out of the processing loop after the
5136         ** first iteration (since the first iteration of the loop is
5137         ** guaranteed to operate on the row with the minimum or maximum
5138         ** value of x, the only row required).
5139         **
5140         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5141         ** modify behavior as follows:
5142         **
5143         **   + If the query is a "SELECT min(x)", then the loop coded by
5144         **     where.c should not iterate over any values with a NULL value
5145         **     for x.
5146         **
5147         **   + The optimizer code in where.c (the thing that decides which
5148         **     index or indices to use) should place a different priority on
5149         **     satisfying the 'ORDER BY' clause than it does in other cases.
5150         **     Refer to code and comments in where.c for details.
5151         */
5152         ExprList *pMinMax = 0;
5153         u8 flag = WHERE_ORDERBY_NORMAL;
5154 
5155         assert( p->pGroupBy==0 );
5156         assert( flag==0 );
5157         if( p->pHaving==0 ){
5158           flag = minMaxQuery(&sAggInfo, &pMinMax);
5159         }
5160         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5161 
5162         if( flag ){
5163           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5164           pDel = pMinMax;
5165           if( pMinMax && !db->mallocFailed ){
5166             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5167             pMinMax->a[0].pExpr->op = TK_COLUMN;
5168           }
5169         }
5170 
5171         /* This case runs if the aggregate has no GROUP BY clause.  The
5172         ** processing is much simpler since there is only a single row
5173         ** of output.
5174         */
5175         resetAccumulator(pParse, &sAggInfo);
5176         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5177         if( pWInfo==0 ){
5178           sqlite3ExprListDelete(db, pDel);
5179           goto select_end;
5180         }
5181         updateAccumulator(pParse, &sAggInfo);
5182         assert( pMinMax==0 || pMinMax->nExpr==1 );
5183         if( sqlite3WhereIsOrdered(pWInfo) ){
5184           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5185           VdbeComment((v, "%s() by index",
5186                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5187         }
5188         sqlite3WhereEnd(pWInfo);
5189         finalizeAggFunctions(pParse, &sAggInfo);
5190       }
5191 
5192       pOrderBy = 0;
5193       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5194       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5195                       pDest, addrEnd, addrEnd);
5196       sqlite3ExprListDelete(db, pDel);
5197     }
5198     sqlite3VdbeResolveLabel(v, addrEnd);
5199 
5200   } /* endif aggregate query */
5201 
5202   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5203     explainTempTable(pParse, "DISTINCT");
5204   }
5205 
5206   /* If there is an ORDER BY clause, then we need to sort the results
5207   ** and send them to the callback one by one.
5208   */
5209   if( pOrderBy ){
5210     explainTempTable(pParse, "ORDER BY");
5211     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
5212   }
5213 
5214   /* Jump here to skip this query
5215   */
5216   sqlite3VdbeResolveLabel(v, iEnd);
5217 
5218   /* The SELECT was successfully coded.   Set the return code to 0
5219   ** to indicate no errors.
5220   */
5221   rc = 0;
5222 
5223   /* Control jumps to here if an error is encountered above, or upon
5224   ** successful coding of the SELECT.
5225   */
5226 select_end:
5227   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5228 
5229   /* Identify column names if results of the SELECT are to be output.
5230   */
5231   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5232     generateColumnNames(pParse, pTabList, pEList);
5233   }
5234 
5235   sqlite3DbFree(db, sAggInfo.aCol);
5236   sqlite3DbFree(db, sAggInfo.aFunc);
5237   return rc;
5238 }
5239 
5240 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
5241 /*
5242 ** Generate a human-readable description of a the Select object.
5243 */
5244 static void explainOneSelect(Vdbe *pVdbe, Select *p){
5245   sqlite3ExplainPrintf(pVdbe, "SELECT ");
5246   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
5247     if( p->selFlags & SF_Distinct ){
5248       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
5249     }
5250     if( p->selFlags & SF_Aggregate ){
5251       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
5252     }
5253     sqlite3ExplainNL(pVdbe);
5254     sqlite3ExplainPrintf(pVdbe, "   ");
5255   }
5256   sqlite3ExplainExprList(pVdbe, p->pEList);
5257   sqlite3ExplainNL(pVdbe);
5258   if( p->pSrc && p->pSrc->nSrc ){
5259     int i;
5260     sqlite3ExplainPrintf(pVdbe, "FROM ");
5261     sqlite3ExplainPush(pVdbe);
5262     for(i=0; i<p->pSrc->nSrc; i++){
5263       struct SrcList_item *pItem = &p->pSrc->a[i];
5264       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
5265       if( pItem->pSelect ){
5266         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
5267         if( pItem->pTab ){
5268           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
5269         }
5270       }else if( pItem->zName ){
5271         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
5272       }
5273       if( pItem->zAlias ){
5274         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
5275       }
5276       if( pItem->jointype & JT_LEFT ){
5277         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
5278       }
5279       sqlite3ExplainNL(pVdbe);
5280     }
5281     sqlite3ExplainPop(pVdbe);
5282   }
5283   if( p->pWhere ){
5284     sqlite3ExplainPrintf(pVdbe, "WHERE ");
5285     sqlite3ExplainExpr(pVdbe, p->pWhere);
5286     sqlite3ExplainNL(pVdbe);
5287   }
5288   if( p->pGroupBy ){
5289     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
5290     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
5291     sqlite3ExplainNL(pVdbe);
5292   }
5293   if( p->pHaving ){
5294     sqlite3ExplainPrintf(pVdbe, "HAVING ");
5295     sqlite3ExplainExpr(pVdbe, p->pHaving);
5296     sqlite3ExplainNL(pVdbe);
5297   }
5298   if( p->pOrderBy ){
5299     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
5300     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
5301     sqlite3ExplainNL(pVdbe);
5302   }
5303   if( p->pLimit ){
5304     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
5305     sqlite3ExplainExpr(pVdbe, p->pLimit);
5306     sqlite3ExplainNL(pVdbe);
5307   }
5308   if( p->pOffset ){
5309     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
5310     sqlite3ExplainExpr(pVdbe, p->pOffset);
5311     sqlite3ExplainNL(pVdbe);
5312   }
5313 }
5314 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
5315   if( p==0 ){
5316     sqlite3ExplainPrintf(pVdbe, "(null-select)");
5317     return;
5318   }
5319   while( p->pPrior ){
5320     p->pPrior->pNext = p;
5321     p = p->pPrior;
5322   }
5323   sqlite3ExplainPush(pVdbe);
5324   while( p ){
5325     explainOneSelect(pVdbe, p);
5326     p = p->pNext;
5327     if( p==0 ) break;
5328     sqlite3ExplainNL(pVdbe);
5329     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
5330   }
5331   sqlite3ExplainPrintf(pVdbe, "END");
5332   sqlite3ExplainPop(pVdbe);
5333 }
5334 
5335 /* End of the structure debug printing code
5336 *****************************************************************************/
5337 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
5338