1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 sqlite3WithDelete(db, p->pWith); 33 } 34 35 /* 36 ** Initialize a SelectDest structure. 37 */ 38 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 39 pDest->eDest = (u8)eDest; 40 pDest->iSDParm = iParm; 41 pDest->affSdst = 0; 42 pDest->iSdst = 0; 43 pDest->nSdst = 0; 44 } 45 46 47 /* 48 ** Allocate a new Select structure and return a pointer to that 49 ** structure. 50 */ 51 Select *sqlite3SelectNew( 52 Parse *pParse, /* Parsing context */ 53 ExprList *pEList, /* which columns to include in the result */ 54 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 55 Expr *pWhere, /* the WHERE clause */ 56 ExprList *pGroupBy, /* the GROUP BY clause */ 57 Expr *pHaving, /* the HAVING clause */ 58 ExprList *pOrderBy, /* the ORDER BY clause */ 59 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 60 Expr *pLimit, /* LIMIT value. NULL means not used */ 61 Expr *pOffset /* OFFSET value. NULL means no offset */ 62 ){ 63 Select *pNew; 64 Select standin; 65 sqlite3 *db = pParse->db; 66 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 67 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 68 if( pNew==0 ){ 69 assert( db->mallocFailed ); 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 75 } 76 pNew->pEList = pEList; 77 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 78 pNew->pSrc = pSrc; 79 pNew->pWhere = pWhere; 80 pNew->pGroupBy = pGroupBy; 81 pNew->pHaving = pHaving; 82 pNew->pOrderBy = pOrderBy; 83 pNew->selFlags = selFlags; 84 pNew->op = TK_SELECT; 85 pNew->pLimit = pLimit; 86 pNew->pOffset = pOffset; 87 assert( pOffset==0 || pLimit!=0 ); 88 pNew->addrOpenEphm[0] = -1; 89 pNew->addrOpenEphm[1] = -1; 90 pNew->addrOpenEphm[2] = -1; 91 if( db->mallocFailed ) { 92 clearSelect(db, pNew); 93 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 94 pNew = 0; 95 }else{ 96 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 97 } 98 assert( pNew!=&standin ); 99 return pNew; 100 } 101 102 /* 103 ** Delete the given Select structure and all of its substructures. 104 */ 105 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 106 if( p ){ 107 clearSelect(db, p); 108 sqlite3DbFree(db, p); 109 } 110 } 111 112 /* 113 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 114 ** type of join. Return an integer constant that expresses that type 115 ** in terms of the following bit values: 116 ** 117 ** JT_INNER 118 ** JT_CROSS 119 ** JT_OUTER 120 ** JT_NATURAL 121 ** JT_LEFT 122 ** JT_RIGHT 123 ** 124 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 125 ** 126 ** If an illegal or unsupported join type is seen, then still return 127 ** a join type, but put an error in the pParse structure. 128 */ 129 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 130 int jointype = 0; 131 Token *apAll[3]; 132 Token *p; 133 /* 0123456789 123456789 123456789 123 */ 134 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 135 static const struct { 136 u8 i; /* Beginning of keyword text in zKeyText[] */ 137 u8 nChar; /* Length of the keyword in characters */ 138 u8 code; /* Join type mask */ 139 } aKeyword[] = { 140 /* natural */ { 0, 7, JT_NATURAL }, 141 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 142 /* outer */ { 10, 5, JT_OUTER }, 143 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 144 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 145 /* inner */ { 23, 5, JT_INNER }, 146 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 147 }; 148 int i, j; 149 apAll[0] = pA; 150 apAll[1] = pB; 151 apAll[2] = pC; 152 for(i=0; i<3 && apAll[i]; i++){ 153 p = apAll[i]; 154 for(j=0; j<ArraySize(aKeyword); j++){ 155 if( p->n==aKeyword[j].nChar 156 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 157 jointype |= aKeyword[j].code; 158 break; 159 } 160 } 161 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 162 if( j>=ArraySize(aKeyword) ){ 163 jointype |= JT_ERROR; 164 break; 165 } 166 } 167 if( 168 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 169 (jointype & JT_ERROR)!=0 170 ){ 171 const char *zSp = " "; 172 assert( pB!=0 ); 173 if( pC==0 ){ zSp++; } 174 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 175 "%T %T%s%T", pA, pB, zSp, pC); 176 jointype = JT_INNER; 177 }else if( (jointype & JT_OUTER)!=0 178 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 179 sqlite3ErrorMsg(pParse, 180 "RIGHT and FULL OUTER JOINs are not currently supported"); 181 jointype = JT_INNER; 182 } 183 return jointype; 184 } 185 186 /* 187 ** Return the index of a column in a table. Return -1 if the column 188 ** is not contained in the table. 189 */ 190 static int columnIndex(Table *pTab, const char *zCol){ 191 int i; 192 for(i=0; i<pTab->nCol; i++){ 193 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 194 } 195 return -1; 196 } 197 198 /* 199 ** Search the first N tables in pSrc, from left to right, looking for a 200 ** table that has a column named zCol. 201 ** 202 ** When found, set *piTab and *piCol to the table index and column index 203 ** of the matching column and return TRUE. 204 ** 205 ** If not found, return FALSE. 206 */ 207 static int tableAndColumnIndex( 208 SrcList *pSrc, /* Array of tables to search */ 209 int N, /* Number of tables in pSrc->a[] to search */ 210 const char *zCol, /* Name of the column we are looking for */ 211 int *piTab, /* Write index of pSrc->a[] here */ 212 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 213 ){ 214 int i; /* For looping over tables in pSrc */ 215 int iCol; /* Index of column matching zCol */ 216 217 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 218 for(i=0; i<N; i++){ 219 iCol = columnIndex(pSrc->a[i].pTab, zCol); 220 if( iCol>=0 ){ 221 if( piTab ){ 222 *piTab = i; 223 *piCol = iCol; 224 } 225 return 1; 226 } 227 } 228 return 0; 229 } 230 231 /* 232 ** This function is used to add terms implied by JOIN syntax to the 233 ** WHERE clause expression of a SELECT statement. The new term, which 234 ** is ANDed with the existing WHERE clause, is of the form: 235 ** 236 ** (tab1.col1 = tab2.col2) 237 ** 238 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 239 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 240 ** column iColRight of tab2. 241 */ 242 static void addWhereTerm( 243 Parse *pParse, /* Parsing context */ 244 SrcList *pSrc, /* List of tables in FROM clause */ 245 int iLeft, /* Index of first table to join in pSrc */ 246 int iColLeft, /* Index of column in first table */ 247 int iRight, /* Index of second table in pSrc */ 248 int iColRight, /* Index of column in second table */ 249 int isOuterJoin, /* True if this is an OUTER join */ 250 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 251 ){ 252 sqlite3 *db = pParse->db; 253 Expr *pE1; 254 Expr *pE2; 255 Expr *pEq; 256 257 assert( iLeft<iRight ); 258 assert( pSrc->nSrc>iRight ); 259 assert( pSrc->a[iLeft].pTab ); 260 assert( pSrc->a[iRight].pTab ); 261 262 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 263 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 264 265 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 266 if( pEq && isOuterJoin ){ 267 ExprSetProperty(pEq, EP_FromJoin); 268 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 269 ExprSetVVAProperty(pEq, EP_NoReduce); 270 pEq->iRightJoinTable = (i16)pE2->iTable; 271 } 272 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 273 } 274 275 /* 276 ** Set the EP_FromJoin property on all terms of the given expression. 277 ** And set the Expr.iRightJoinTable to iTable for every term in the 278 ** expression. 279 ** 280 ** The EP_FromJoin property is used on terms of an expression to tell 281 ** the LEFT OUTER JOIN processing logic that this term is part of the 282 ** join restriction specified in the ON or USING clause and not a part 283 ** of the more general WHERE clause. These terms are moved over to the 284 ** WHERE clause during join processing but we need to remember that they 285 ** originated in the ON or USING clause. 286 ** 287 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 288 ** expression depends on table iRightJoinTable even if that table is not 289 ** explicitly mentioned in the expression. That information is needed 290 ** for cases like this: 291 ** 292 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 293 ** 294 ** The where clause needs to defer the handling of the t1.x=5 295 ** term until after the t2 loop of the join. In that way, a 296 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 297 ** defer the handling of t1.x=5, it will be processed immediately 298 ** after the t1 loop and rows with t1.x!=5 will never appear in 299 ** the output, which is incorrect. 300 */ 301 static void setJoinExpr(Expr *p, int iTable){ 302 while( p ){ 303 ExprSetProperty(p, EP_FromJoin); 304 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 305 ExprSetVVAProperty(p, EP_NoReduce); 306 p->iRightJoinTable = (i16)iTable; 307 setJoinExpr(p->pLeft, iTable); 308 p = p->pRight; 309 } 310 } 311 312 /* 313 ** This routine processes the join information for a SELECT statement. 314 ** ON and USING clauses are converted into extra terms of the WHERE clause. 315 ** NATURAL joins also create extra WHERE clause terms. 316 ** 317 ** The terms of a FROM clause are contained in the Select.pSrc structure. 318 ** The left most table is the first entry in Select.pSrc. The right-most 319 ** table is the last entry. The join operator is held in the entry to 320 ** the left. Thus entry 0 contains the join operator for the join between 321 ** entries 0 and 1. Any ON or USING clauses associated with the join are 322 ** also attached to the left entry. 323 ** 324 ** This routine returns the number of errors encountered. 325 */ 326 static int sqliteProcessJoin(Parse *pParse, Select *p){ 327 SrcList *pSrc; /* All tables in the FROM clause */ 328 int i, j; /* Loop counters */ 329 struct SrcList_item *pLeft; /* Left table being joined */ 330 struct SrcList_item *pRight; /* Right table being joined */ 331 332 pSrc = p->pSrc; 333 pLeft = &pSrc->a[0]; 334 pRight = &pLeft[1]; 335 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 336 Table *pLeftTab = pLeft->pTab; 337 Table *pRightTab = pRight->pTab; 338 int isOuter; 339 340 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 341 isOuter = (pRight->jointype & JT_OUTER)!=0; 342 343 /* When the NATURAL keyword is present, add WHERE clause terms for 344 ** every column that the two tables have in common. 345 */ 346 if( pRight->jointype & JT_NATURAL ){ 347 if( pRight->pOn || pRight->pUsing ){ 348 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 349 "an ON or USING clause", 0); 350 return 1; 351 } 352 for(j=0; j<pRightTab->nCol; j++){ 353 char *zName; /* Name of column in the right table */ 354 int iLeft; /* Matching left table */ 355 int iLeftCol; /* Matching column in the left table */ 356 357 zName = pRightTab->aCol[j].zName; 358 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 359 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 360 isOuter, &p->pWhere); 361 } 362 } 363 } 364 365 /* Disallow both ON and USING clauses in the same join 366 */ 367 if( pRight->pOn && pRight->pUsing ){ 368 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 369 "clauses in the same join"); 370 return 1; 371 } 372 373 /* Add the ON clause to the end of the WHERE clause, connected by 374 ** an AND operator. 375 */ 376 if( pRight->pOn ){ 377 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 378 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 379 pRight->pOn = 0; 380 } 381 382 /* Create extra terms on the WHERE clause for each column named 383 ** in the USING clause. Example: If the two tables to be joined are 384 ** A and B and the USING clause names X, Y, and Z, then add this 385 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 386 ** Report an error if any column mentioned in the USING clause is 387 ** not contained in both tables to be joined. 388 */ 389 if( pRight->pUsing ){ 390 IdList *pList = pRight->pUsing; 391 for(j=0; j<pList->nId; j++){ 392 char *zName; /* Name of the term in the USING clause */ 393 int iLeft; /* Table on the left with matching column name */ 394 int iLeftCol; /* Column number of matching column on the left */ 395 int iRightCol; /* Column number of matching column on the right */ 396 397 zName = pList->a[j].zName; 398 iRightCol = columnIndex(pRightTab, zName); 399 if( iRightCol<0 400 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 401 ){ 402 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 403 "not present in both tables", zName); 404 return 1; 405 } 406 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 407 isOuter, &p->pWhere); 408 } 409 } 410 } 411 return 0; 412 } 413 414 /* 415 ** Insert code into "v" that will push the record on the top of the 416 ** stack into the sorter. 417 */ 418 static void pushOntoSorter( 419 Parse *pParse, /* Parser context */ 420 ExprList *pOrderBy, /* The ORDER BY clause */ 421 Select *pSelect, /* The whole SELECT statement */ 422 int regData /* Register holding data to be sorted */ 423 ){ 424 Vdbe *v = pParse->pVdbe; 425 int nExpr = pOrderBy->nExpr; 426 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 427 int regRecord = sqlite3GetTempReg(pParse); 428 int op; 429 sqlite3ExprCacheClear(pParse); 430 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 431 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 432 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 433 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 434 if( pSelect->selFlags & SF_UseSorter ){ 435 op = OP_SorterInsert; 436 }else{ 437 op = OP_IdxInsert; 438 } 439 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 440 sqlite3ReleaseTempReg(pParse, regRecord); 441 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 442 if( pSelect->iLimit ){ 443 int addr1, addr2; 444 int iLimit; 445 if( pSelect->iOffset ){ 446 iLimit = pSelect->iOffset+1; 447 }else{ 448 iLimit = pSelect->iLimit; 449 } 450 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 451 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 452 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 453 sqlite3VdbeJumpHere(v, addr1); 454 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 455 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 456 sqlite3VdbeJumpHere(v, addr2); 457 } 458 } 459 460 /* 461 ** Add code to implement the OFFSET 462 */ 463 static void codeOffset( 464 Vdbe *v, /* Generate code into this VM */ 465 int iOffset, /* Register holding the offset counter */ 466 int iContinue /* Jump here to skip the current record */ 467 ){ 468 if( iOffset>0 && iContinue!=0 ){ 469 int addr; 470 sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); 471 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); 472 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 473 VdbeComment((v, "skip OFFSET records")); 474 sqlite3VdbeJumpHere(v, addr); 475 } 476 } 477 478 /* 479 ** Add code that will check to make sure the N registers starting at iMem 480 ** form a distinct entry. iTab is a sorting index that holds previously 481 ** seen combinations of the N values. A new entry is made in iTab 482 ** if the current N values are new. 483 ** 484 ** A jump to addrRepeat is made and the N+1 values are popped from the 485 ** stack if the top N elements are not distinct. 486 */ 487 static void codeDistinct( 488 Parse *pParse, /* Parsing and code generating context */ 489 int iTab, /* A sorting index used to test for distinctness */ 490 int addrRepeat, /* Jump to here if not distinct */ 491 int N, /* Number of elements */ 492 int iMem /* First element */ 493 ){ 494 Vdbe *v; 495 int r1; 496 497 v = pParse->pVdbe; 498 r1 = sqlite3GetTempReg(pParse); 499 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 500 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 501 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 502 sqlite3ReleaseTempReg(pParse, r1); 503 } 504 505 #ifndef SQLITE_OMIT_SUBQUERY 506 /* 507 ** Generate an error message when a SELECT is used within a subexpression 508 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 509 ** column. We do this in a subroutine because the error used to occur 510 ** in multiple places. (The error only occurs in one place now, but we 511 ** retain the subroutine to minimize code disruption.) 512 */ 513 static int checkForMultiColumnSelectError( 514 Parse *pParse, /* Parse context. */ 515 SelectDest *pDest, /* Destination of SELECT results */ 516 int nExpr /* Number of result columns returned by SELECT */ 517 ){ 518 int eDest = pDest->eDest; 519 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 520 sqlite3ErrorMsg(pParse, "only a single result allowed for " 521 "a SELECT that is part of an expression"); 522 return 1; 523 }else{ 524 return 0; 525 } 526 } 527 #endif 528 529 /* 530 ** An instance of the following object is used to record information about 531 ** how to process the DISTINCT keyword, to simplify passing that information 532 ** into the selectInnerLoop() routine. 533 */ 534 typedef struct DistinctCtx DistinctCtx; 535 struct DistinctCtx { 536 u8 isTnct; /* True if the DISTINCT keyword is present */ 537 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 538 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 539 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 540 }; 541 542 /* 543 ** This routine generates the code for the inside of the inner loop 544 ** of a SELECT. 545 ** 546 ** If srcTab is negative, then the pEList expressions 547 ** are evaluated in order to get the data for this row. If srcTab is 548 ** zero or more, then data is pulled from srcTab and pEList is used only 549 ** to get number columns and the datatype for each column. 550 */ 551 static void selectInnerLoop( 552 Parse *pParse, /* The parser context */ 553 Select *p, /* The complete select statement being coded */ 554 ExprList *pEList, /* List of values being extracted */ 555 int srcTab, /* Pull data from this table */ 556 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 557 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 558 SelectDest *pDest, /* How to dispose of the results */ 559 int iContinue, /* Jump here to continue with next row */ 560 int iBreak /* Jump here to break out of the inner loop */ 561 ){ 562 Vdbe *v = pParse->pVdbe; 563 int i; 564 int hasDistinct; /* True if the DISTINCT keyword is present */ 565 int regResult; /* Start of memory holding result set */ 566 int eDest = pDest->eDest; /* How to dispose of results */ 567 int iParm = pDest->iSDParm; /* First argument to disposal method */ 568 int nResultCol; /* Number of result columns */ 569 570 assert( v ); 571 assert( pEList!=0 ); 572 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 573 if( pOrderBy==0 && !hasDistinct ){ 574 codeOffset(v, p->iOffset, iContinue); 575 } 576 577 /* Pull the requested columns. 578 */ 579 nResultCol = pEList->nExpr; 580 if( pDest->iSdst==0 ){ 581 pDest->iSdst = pParse->nMem+1; 582 pDest->nSdst = nResultCol; 583 pParse->nMem += nResultCol; 584 }else{ 585 assert( pDest->nSdst==nResultCol ); 586 } 587 regResult = pDest->iSdst; 588 if( srcTab>=0 ){ 589 for(i=0; i<nResultCol; i++){ 590 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 591 VdbeComment((v, "%s", pEList->a[i].zName)); 592 } 593 }else if( eDest!=SRT_Exists ){ 594 /* If the destination is an EXISTS(...) expression, the actual 595 ** values returned by the SELECT are not required. 596 */ 597 sqlite3ExprCodeExprList(pParse, pEList, regResult, 598 (eDest==SRT_Output)?SQLITE_ECEL_DUP:0); 599 } 600 601 /* If the DISTINCT keyword was present on the SELECT statement 602 ** and this row has been seen before, then do not make this row 603 ** part of the result. 604 */ 605 if( hasDistinct ){ 606 switch( pDistinct->eTnctType ){ 607 case WHERE_DISTINCT_ORDERED: { 608 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 609 int iJump; /* Jump destination */ 610 int regPrev; /* Previous row content */ 611 612 /* Allocate space for the previous row */ 613 regPrev = pParse->nMem+1; 614 pParse->nMem += nResultCol; 615 616 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 617 ** sets the MEM_Cleared bit on the first register of the 618 ** previous value. This will cause the OP_Ne below to always 619 ** fail on the first iteration of the loop even if the first 620 ** row is all NULLs. 621 */ 622 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 623 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 624 pOp->opcode = OP_Null; 625 pOp->p1 = 1; 626 pOp->p2 = regPrev; 627 628 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 629 for(i=0; i<nResultCol; i++){ 630 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 631 if( i<nResultCol-1 ){ 632 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 633 }else{ 634 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 635 } 636 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 637 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 638 } 639 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 640 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 641 break; 642 } 643 644 case WHERE_DISTINCT_UNIQUE: { 645 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 646 break; 647 } 648 649 default: { 650 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 651 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 652 break; 653 } 654 } 655 if( pOrderBy==0 ){ 656 codeOffset(v, p->iOffset, iContinue); 657 } 658 } 659 660 switch( eDest ){ 661 /* In this mode, write each query result to the key of the temporary 662 ** table iParm. 663 */ 664 #ifndef SQLITE_OMIT_COMPOUND_SELECT 665 case SRT_Union: { 666 int r1; 667 r1 = sqlite3GetTempReg(pParse); 668 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 669 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 670 sqlite3ReleaseTempReg(pParse, r1); 671 break; 672 } 673 674 /* Construct a record from the query result, but instead of 675 ** saving that record, use it as a key to delete elements from 676 ** the temporary table iParm. 677 */ 678 case SRT_Except: { 679 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 680 break; 681 } 682 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 683 684 /* Store the result as data using a unique key. 685 */ 686 case SRT_DistTable: 687 case SRT_Table: 688 case SRT_EphemTab: { 689 int r1 = sqlite3GetTempReg(pParse); 690 testcase( eDest==SRT_Table ); 691 testcase( eDest==SRT_EphemTab ); 692 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 693 #ifndef SQLITE_OMIT_CTE 694 if( eDest==SRT_DistTable ){ 695 /* If the destination is DistTable, then cursor (iParm+1) is open 696 ** on an ephemeral index. If the current row is already present 697 ** in the index, do not write it to the output. If not, add the 698 ** current row to the index and proceed with writing it to the 699 ** output table as well. */ 700 int addr = sqlite3VdbeCurrentAddr(v) + 4; 701 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 702 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 703 assert( pOrderBy==0 ); 704 } 705 #endif 706 if( pOrderBy ){ 707 pushOntoSorter(pParse, pOrderBy, p, r1); 708 }else{ 709 int r2 = sqlite3GetTempReg(pParse); 710 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 711 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 712 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 713 sqlite3ReleaseTempReg(pParse, r2); 714 } 715 sqlite3ReleaseTempReg(pParse, r1); 716 break; 717 } 718 719 #ifndef SQLITE_OMIT_SUBQUERY 720 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 721 ** then there should be a single item on the stack. Write this 722 ** item into the set table with bogus data. 723 */ 724 case SRT_Set: { 725 assert( nResultCol==1 ); 726 pDest->affSdst = 727 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 728 if( pOrderBy ){ 729 /* At first glance you would think we could optimize out the 730 ** ORDER BY in this case since the order of entries in the set 731 ** does not matter. But there might be a LIMIT clause, in which 732 ** case the order does matter */ 733 pushOntoSorter(pParse, pOrderBy, p, regResult); 734 }else{ 735 int r1 = sqlite3GetTempReg(pParse); 736 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 737 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 738 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 739 sqlite3ReleaseTempReg(pParse, r1); 740 } 741 break; 742 } 743 744 /* If any row exist in the result set, record that fact and abort. 745 */ 746 case SRT_Exists: { 747 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 748 /* The LIMIT clause will terminate the loop for us */ 749 break; 750 } 751 752 /* If this is a scalar select that is part of an expression, then 753 ** store the results in the appropriate memory cell and break out 754 ** of the scan loop. 755 */ 756 case SRT_Mem: { 757 assert( nResultCol==1 ); 758 if( pOrderBy ){ 759 pushOntoSorter(pParse, pOrderBy, p, regResult); 760 }else{ 761 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 762 /* The LIMIT clause will jump out of the loop for us */ 763 } 764 break; 765 } 766 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 767 768 /* Send the data to the callback function or to a subroutine. In the 769 ** case of a subroutine, the subroutine itself is responsible for 770 ** popping the data from the stack. 771 */ 772 case SRT_Coroutine: 773 case SRT_Output: { 774 testcase( eDest==SRT_Coroutine ); 775 testcase( eDest==SRT_Output ); 776 if( pOrderBy ){ 777 int r1 = sqlite3GetTempReg(pParse); 778 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 779 pushOntoSorter(pParse, pOrderBy, p, r1); 780 sqlite3ReleaseTempReg(pParse, r1); 781 }else if( eDest==SRT_Coroutine ){ 782 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 783 }else{ 784 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 785 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 786 } 787 break; 788 } 789 790 #ifndef SQLITE_OMIT_CTE 791 /* Write the results into a priority queue that is order according to 792 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 793 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 794 ** pSO->nExpr columns, then make sure all keys are unique by adding a 795 ** final OP_Sequence column. The last column is the record as a blob. 796 */ 797 case SRT_DistQueue: 798 case SRT_Queue: { 799 int nKey; 800 int r1, r2, r3; 801 int addrTest = 0; 802 ExprList *pSO; 803 pSO = pDest->pOrderBy; 804 assert( pSO ); 805 nKey = pSO->nExpr; 806 r1 = sqlite3GetTempReg(pParse); 807 r2 = sqlite3GetTempRange(pParse, nKey+2); 808 r3 = r2+nKey+1; 809 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 810 if( eDest==SRT_DistQueue ){ 811 /* If the destination is DistQueue, then cursor (iParm+1) is open 812 ** on a second ephemeral index that holds all values every previously 813 ** added to the queue. Only add this new value if it has never before 814 ** been added */ 815 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, r3, 0); 816 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 817 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 818 } 819 for(i=0; i<nKey; i++){ 820 sqlite3VdbeAddOp2(v, OP_SCopy, 821 regResult + pSO->a[i].u.x.iOrderByCol - 1, 822 r2+i); 823 } 824 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 825 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 826 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 827 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 828 sqlite3ReleaseTempReg(pParse, r1); 829 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 830 break; 831 } 832 #endif /* SQLITE_OMIT_CTE */ 833 834 835 836 #if !defined(SQLITE_OMIT_TRIGGER) 837 /* Discard the results. This is used for SELECT statements inside 838 ** the body of a TRIGGER. The purpose of such selects is to call 839 ** user-defined functions that have side effects. We do not care 840 ** about the actual results of the select. 841 */ 842 default: { 843 assert( eDest==SRT_Discard ); 844 break; 845 } 846 #endif 847 } 848 849 /* Jump to the end of the loop if the LIMIT is reached. Except, if 850 ** there is a sorter, in which case the sorter has already limited 851 ** the output for us. 852 */ 853 if( pOrderBy==0 && p->iLimit ){ 854 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 855 } 856 } 857 858 /* 859 ** Allocate a KeyInfo object sufficient for an index of N key columns and 860 ** X extra columns. 861 */ 862 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 863 KeyInfo *p = sqlite3DbMallocZero(0, 864 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 865 if( p ){ 866 p->aSortOrder = (u8*)&p->aColl[N+X]; 867 p->nField = (u16)N; 868 p->nXField = (u16)X; 869 p->enc = ENC(db); 870 p->db = db; 871 p->nRef = 1; 872 }else{ 873 db->mallocFailed = 1; 874 } 875 return p; 876 } 877 878 /* 879 ** Deallocate a KeyInfo object 880 */ 881 void sqlite3KeyInfoUnref(KeyInfo *p){ 882 if( p ){ 883 assert( p->nRef>0 ); 884 p->nRef--; 885 if( p->nRef==0 ) sqlite3DbFree(0, p); 886 } 887 } 888 889 /* 890 ** Make a new pointer to a KeyInfo object 891 */ 892 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 893 if( p ){ 894 assert( p->nRef>0 ); 895 p->nRef++; 896 } 897 return p; 898 } 899 900 #ifdef SQLITE_DEBUG 901 /* 902 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 903 ** can only be changed if this is just a single reference to the object. 904 ** 905 ** This routine is used only inside of assert() statements. 906 */ 907 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 908 #endif /* SQLITE_DEBUG */ 909 910 /* 911 ** Given an expression list, generate a KeyInfo structure that records 912 ** the collating sequence for each expression in that expression list. 913 ** 914 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 915 ** KeyInfo structure is appropriate for initializing a virtual index to 916 ** implement that clause. If the ExprList is the result set of a SELECT 917 ** then the KeyInfo structure is appropriate for initializing a virtual 918 ** index to implement a DISTINCT test. 919 ** 920 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 921 ** function is responsible for seeing that this structure is eventually 922 ** freed. 923 */ 924 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList, int nExtra){ 925 int nExpr; 926 KeyInfo *pInfo; 927 struct ExprList_item *pItem; 928 sqlite3 *db = pParse->db; 929 int i; 930 931 nExpr = pList->nExpr; 932 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra, 1); 933 if( pInfo ){ 934 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 935 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 936 CollSeq *pColl; 937 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 938 if( !pColl ) pColl = db->pDfltColl; 939 pInfo->aColl[i] = pColl; 940 pInfo->aSortOrder[i] = pItem->sortOrder; 941 } 942 } 943 return pInfo; 944 } 945 946 #ifndef SQLITE_OMIT_COMPOUND_SELECT 947 /* 948 ** Name of the connection operator, used for error messages. 949 */ 950 static const char *selectOpName(int id){ 951 char *z; 952 switch( id ){ 953 case TK_ALL: z = "UNION ALL"; break; 954 case TK_INTERSECT: z = "INTERSECT"; break; 955 case TK_EXCEPT: z = "EXCEPT"; break; 956 default: z = "UNION"; break; 957 } 958 return z; 959 } 960 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 961 962 #ifndef SQLITE_OMIT_EXPLAIN 963 /* 964 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 965 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 966 ** where the caption is of the form: 967 ** 968 ** "USE TEMP B-TREE FOR xxx" 969 ** 970 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 971 ** is determined by the zUsage argument. 972 */ 973 static void explainTempTable(Parse *pParse, const char *zUsage){ 974 if( pParse->explain==2 ){ 975 Vdbe *v = pParse->pVdbe; 976 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 977 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 978 } 979 } 980 981 /* 982 ** Assign expression b to lvalue a. A second, no-op, version of this macro 983 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 984 ** in sqlite3Select() to assign values to structure member variables that 985 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 986 ** code with #ifndef directives. 987 */ 988 # define explainSetInteger(a, b) a = b 989 990 #else 991 /* No-op versions of the explainXXX() functions and macros. */ 992 # define explainTempTable(y,z) 993 # define explainSetInteger(y,z) 994 #endif 995 996 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 997 /* 998 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 999 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1000 ** where the caption is of one of the two forms: 1001 ** 1002 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1003 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1004 ** 1005 ** where iSub1 and iSub2 are the integers passed as the corresponding 1006 ** function parameters, and op is the text representation of the parameter 1007 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1008 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1009 ** false, or the second form if it is true. 1010 */ 1011 static void explainComposite( 1012 Parse *pParse, /* Parse context */ 1013 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1014 int iSub1, /* Subquery id 1 */ 1015 int iSub2, /* Subquery id 2 */ 1016 int bUseTmp /* True if a temp table was used */ 1017 ){ 1018 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1019 if( pParse->explain==2 ){ 1020 Vdbe *v = pParse->pVdbe; 1021 char *zMsg = sqlite3MPrintf( 1022 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1023 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1024 ); 1025 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1026 } 1027 } 1028 #else 1029 /* No-op versions of the explainXXX() functions and macros. */ 1030 # define explainComposite(v,w,x,y,z) 1031 #endif 1032 1033 /* 1034 ** If the inner loop was generated using a non-null pOrderBy argument, 1035 ** then the results were placed in a sorter. After the loop is terminated 1036 ** we need to run the sorter and output the results. The following 1037 ** routine generates the code needed to do that. 1038 */ 1039 static void generateSortTail( 1040 Parse *pParse, /* Parsing context */ 1041 Select *p, /* The SELECT statement */ 1042 Vdbe *v, /* Generate code into this VDBE */ 1043 int nColumn, /* Number of columns of data */ 1044 SelectDest *pDest /* Write the sorted results here */ 1045 ){ 1046 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1047 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1048 int addr; 1049 int iTab; 1050 int pseudoTab = 0; 1051 ExprList *pOrderBy = p->pOrderBy; 1052 1053 int eDest = pDest->eDest; 1054 int iParm = pDest->iSDParm; 1055 1056 int regRow; 1057 int regRowid; 1058 1059 iTab = pOrderBy->iECursor; 1060 regRow = sqlite3GetTempReg(pParse); 1061 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1062 pseudoTab = pParse->nTab++; 1063 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 1064 regRowid = 0; 1065 }else{ 1066 regRowid = sqlite3GetTempReg(pParse); 1067 } 1068 if( p->selFlags & SF_UseSorter ){ 1069 int regSortOut = ++pParse->nMem; 1070 int ptab2 = pParse->nTab++; 1071 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 1072 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1073 codeOffset(v, p->iOffset, addrContinue); 1074 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1075 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 1076 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1077 }else{ 1078 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 1079 codeOffset(v, p->iOffset, addrContinue); 1080 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 1081 } 1082 switch( eDest ){ 1083 case SRT_Table: 1084 case SRT_EphemTab: { 1085 testcase( eDest==SRT_Table ); 1086 testcase( eDest==SRT_EphemTab ); 1087 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1088 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1089 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1090 break; 1091 } 1092 #ifndef SQLITE_OMIT_SUBQUERY 1093 case SRT_Set: { 1094 assert( nColumn==1 ); 1095 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1096 &pDest->affSdst, 1); 1097 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1098 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1099 break; 1100 } 1101 case SRT_Mem: { 1102 assert( nColumn==1 ); 1103 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1104 /* The LIMIT clause will terminate the loop for us */ 1105 break; 1106 } 1107 #endif 1108 default: { 1109 int i; 1110 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1111 testcase( eDest==SRT_Output ); 1112 testcase( eDest==SRT_Coroutine ); 1113 for(i=0; i<nColumn; i++){ 1114 assert( regRow!=pDest->iSdst+i ); 1115 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1116 if( i==0 ){ 1117 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1118 } 1119 } 1120 if( eDest==SRT_Output ){ 1121 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1122 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1123 }else{ 1124 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1125 } 1126 break; 1127 } 1128 } 1129 sqlite3ReleaseTempReg(pParse, regRow); 1130 sqlite3ReleaseTempReg(pParse, regRowid); 1131 1132 /* The bottom of the loop 1133 */ 1134 sqlite3VdbeResolveLabel(v, addrContinue); 1135 if( p->selFlags & SF_UseSorter ){ 1136 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 1137 }else{ 1138 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 1139 } 1140 sqlite3VdbeResolveLabel(v, addrBreak); 1141 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1142 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 1143 } 1144 } 1145 1146 /* 1147 ** Return a pointer to a string containing the 'declaration type' of the 1148 ** expression pExpr. The string may be treated as static by the caller. 1149 ** 1150 ** Also try to estimate the size of the returned value and return that 1151 ** result in *pEstWidth. 1152 ** 1153 ** The declaration type is the exact datatype definition extracted from the 1154 ** original CREATE TABLE statement if the expression is a column. The 1155 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1156 ** is considered a column can be complex in the presence of subqueries. The 1157 ** result-set expression in all of the following SELECT statements is 1158 ** considered a column by this function. 1159 ** 1160 ** SELECT col FROM tbl; 1161 ** SELECT (SELECT col FROM tbl; 1162 ** SELECT (SELECT col FROM tbl); 1163 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1164 ** 1165 ** The declaration type for any expression other than a column is NULL. 1166 ** 1167 ** This routine has either 3 or 6 parameters depending on whether or not 1168 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1169 */ 1170 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1171 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1172 static const char *columnTypeImpl( 1173 NameContext *pNC, 1174 Expr *pExpr, 1175 const char **pzOrigDb, 1176 const char **pzOrigTab, 1177 const char **pzOrigCol, 1178 u8 *pEstWidth 1179 ){ 1180 char const *zOrigDb = 0; 1181 char const *zOrigTab = 0; 1182 char const *zOrigCol = 0; 1183 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1184 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1185 static const char *columnTypeImpl( 1186 NameContext *pNC, 1187 Expr *pExpr, 1188 u8 *pEstWidth 1189 ){ 1190 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1191 char const *zType = 0; 1192 int j; 1193 u8 estWidth = 1; 1194 1195 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1196 switch( pExpr->op ){ 1197 case TK_AGG_COLUMN: 1198 case TK_COLUMN: { 1199 /* The expression is a column. Locate the table the column is being 1200 ** extracted from in NameContext.pSrcList. This table may be real 1201 ** database table or a subquery. 1202 */ 1203 Table *pTab = 0; /* Table structure column is extracted from */ 1204 Select *pS = 0; /* Select the column is extracted from */ 1205 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1206 testcase( pExpr->op==TK_AGG_COLUMN ); 1207 testcase( pExpr->op==TK_COLUMN ); 1208 while( pNC && !pTab ){ 1209 SrcList *pTabList = pNC->pSrcList; 1210 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1211 if( j<pTabList->nSrc ){ 1212 pTab = pTabList->a[j].pTab; 1213 pS = pTabList->a[j].pSelect; 1214 }else{ 1215 pNC = pNC->pNext; 1216 } 1217 } 1218 1219 if( pTab==0 ){ 1220 /* At one time, code such as "SELECT new.x" within a trigger would 1221 ** cause this condition to run. Since then, we have restructured how 1222 ** trigger code is generated and so this condition is no longer 1223 ** possible. However, it can still be true for statements like 1224 ** the following: 1225 ** 1226 ** CREATE TABLE t1(col INTEGER); 1227 ** SELECT (SELECT t1.col) FROM FROM t1; 1228 ** 1229 ** when columnType() is called on the expression "t1.col" in the 1230 ** sub-select. In this case, set the column type to NULL, even 1231 ** though it should really be "INTEGER". 1232 ** 1233 ** This is not a problem, as the column type of "t1.col" is never 1234 ** used. When columnType() is called on the expression 1235 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1236 ** branch below. */ 1237 break; 1238 } 1239 1240 assert( pTab && pExpr->pTab==pTab ); 1241 if( pS ){ 1242 /* The "table" is actually a sub-select or a view in the FROM clause 1243 ** of the SELECT statement. Return the declaration type and origin 1244 ** data for the result-set column of the sub-select. 1245 */ 1246 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1247 /* If iCol is less than zero, then the expression requests the 1248 ** rowid of the sub-select or view. This expression is legal (see 1249 ** test case misc2.2.2) - it always evaluates to NULL. 1250 */ 1251 NameContext sNC; 1252 Expr *p = pS->pEList->a[iCol].pExpr; 1253 sNC.pSrcList = pS->pSrc; 1254 sNC.pNext = pNC; 1255 sNC.pParse = pNC->pParse; 1256 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1257 } 1258 }else if( pTab->pSchema ){ 1259 /* A real table */ 1260 assert( !pS ); 1261 if( iCol<0 ) iCol = pTab->iPKey; 1262 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1263 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1264 if( iCol<0 ){ 1265 zType = "INTEGER"; 1266 zOrigCol = "rowid"; 1267 }else{ 1268 zType = pTab->aCol[iCol].zType; 1269 zOrigCol = pTab->aCol[iCol].zName; 1270 estWidth = pTab->aCol[iCol].szEst; 1271 } 1272 zOrigTab = pTab->zName; 1273 if( pNC->pParse ){ 1274 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1275 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1276 } 1277 #else 1278 if( iCol<0 ){ 1279 zType = "INTEGER"; 1280 }else{ 1281 zType = pTab->aCol[iCol].zType; 1282 estWidth = pTab->aCol[iCol].szEst; 1283 } 1284 #endif 1285 } 1286 break; 1287 } 1288 #ifndef SQLITE_OMIT_SUBQUERY 1289 case TK_SELECT: { 1290 /* The expression is a sub-select. Return the declaration type and 1291 ** origin info for the single column in the result set of the SELECT 1292 ** statement. 1293 */ 1294 NameContext sNC; 1295 Select *pS = pExpr->x.pSelect; 1296 Expr *p = pS->pEList->a[0].pExpr; 1297 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1298 sNC.pSrcList = pS->pSrc; 1299 sNC.pNext = pNC; 1300 sNC.pParse = pNC->pParse; 1301 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1302 break; 1303 } 1304 #endif 1305 } 1306 1307 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1308 if( pzOrigDb ){ 1309 assert( pzOrigTab && pzOrigCol ); 1310 *pzOrigDb = zOrigDb; 1311 *pzOrigTab = zOrigTab; 1312 *pzOrigCol = zOrigCol; 1313 } 1314 #endif 1315 if( pEstWidth ) *pEstWidth = estWidth; 1316 return zType; 1317 } 1318 1319 /* 1320 ** Generate code that will tell the VDBE the declaration types of columns 1321 ** in the result set. 1322 */ 1323 static void generateColumnTypes( 1324 Parse *pParse, /* Parser context */ 1325 SrcList *pTabList, /* List of tables */ 1326 ExprList *pEList /* Expressions defining the result set */ 1327 ){ 1328 #ifndef SQLITE_OMIT_DECLTYPE 1329 Vdbe *v = pParse->pVdbe; 1330 int i; 1331 NameContext sNC; 1332 sNC.pSrcList = pTabList; 1333 sNC.pParse = pParse; 1334 for(i=0; i<pEList->nExpr; i++){ 1335 Expr *p = pEList->a[i].pExpr; 1336 const char *zType; 1337 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1338 const char *zOrigDb = 0; 1339 const char *zOrigTab = 0; 1340 const char *zOrigCol = 0; 1341 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1342 1343 /* The vdbe must make its own copy of the column-type and other 1344 ** column specific strings, in case the schema is reset before this 1345 ** virtual machine is deleted. 1346 */ 1347 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1348 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1349 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1350 #else 1351 zType = columnType(&sNC, p, 0, 0, 0, 0); 1352 #endif 1353 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1354 } 1355 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1356 } 1357 1358 /* 1359 ** Generate code that will tell the VDBE the names of columns 1360 ** in the result set. This information is used to provide the 1361 ** azCol[] values in the callback. 1362 */ 1363 static void generateColumnNames( 1364 Parse *pParse, /* Parser context */ 1365 SrcList *pTabList, /* List of tables */ 1366 ExprList *pEList /* Expressions defining the result set */ 1367 ){ 1368 Vdbe *v = pParse->pVdbe; 1369 int i, j; 1370 sqlite3 *db = pParse->db; 1371 int fullNames, shortNames; 1372 1373 #ifndef SQLITE_OMIT_EXPLAIN 1374 /* If this is an EXPLAIN, skip this step */ 1375 if( pParse->explain ){ 1376 return; 1377 } 1378 #endif 1379 1380 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1381 pParse->colNamesSet = 1; 1382 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1383 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1384 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1385 for(i=0; i<pEList->nExpr; i++){ 1386 Expr *p; 1387 p = pEList->a[i].pExpr; 1388 if( NEVER(p==0) ) continue; 1389 if( pEList->a[i].zName ){ 1390 char *zName = pEList->a[i].zName; 1391 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1392 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1393 Table *pTab; 1394 char *zCol; 1395 int iCol = p->iColumn; 1396 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1397 if( pTabList->a[j].iCursor==p->iTable ) break; 1398 } 1399 assert( j<pTabList->nSrc ); 1400 pTab = pTabList->a[j].pTab; 1401 if( iCol<0 ) iCol = pTab->iPKey; 1402 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1403 if( iCol<0 ){ 1404 zCol = "rowid"; 1405 }else{ 1406 zCol = pTab->aCol[iCol].zName; 1407 } 1408 if( !shortNames && !fullNames ){ 1409 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1410 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1411 }else if( fullNames ){ 1412 char *zName = 0; 1413 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1414 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1415 }else{ 1416 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1417 } 1418 }else{ 1419 const char *z = pEList->a[i].zSpan; 1420 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1421 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1422 } 1423 } 1424 generateColumnTypes(pParse, pTabList, pEList); 1425 } 1426 1427 /* 1428 ** Given a an expression list (which is really the list of expressions 1429 ** that form the result set of a SELECT statement) compute appropriate 1430 ** column names for a table that would hold the expression list. 1431 ** 1432 ** All column names will be unique. 1433 ** 1434 ** Only the column names are computed. Column.zType, Column.zColl, 1435 ** and other fields of Column are zeroed. 1436 ** 1437 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1438 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1439 */ 1440 static int selectColumnsFromExprList( 1441 Parse *pParse, /* Parsing context */ 1442 ExprList *pEList, /* Expr list from which to derive column names */ 1443 i16 *pnCol, /* Write the number of columns here */ 1444 Column **paCol /* Write the new column list here */ 1445 ){ 1446 sqlite3 *db = pParse->db; /* Database connection */ 1447 int i, j; /* Loop counters */ 1448 int cnt; /* Index added to make the name unique */ 1449 Column *aCol, *pCol; /* For looping over result columns */ 1450 int nCol; /* Number of columns in the result set */ 1451 Expr *p; /* Expression for a single result column */ 1452 char *zName; /* Column name */ 1453 int nName; /* Size of name in zName[] */ 1454 1455 if( pEList ){ 1456 nCol = pEList->nExpr; 1457 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1458 testcase( aCol==0 ); 1459 }else{ 1460 nCol = 0; 1461 aCol = 0; 1462 } 1463 *pnCol = nCol; 1464 *paCol = aCol; 1465 1466 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1467 /* Get an appropriate name for the column 1468 */ 1469 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1470 if( (zName = pEList->a[i].zName)!=0 ){ 1471 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1472 zName = sqlite3DbStrDup(db, zName); 1473 }else{ 1474 Expr *pColExpr = p; /* The expression that is the result column name */ 1475 Table *pTab; /* Table associated with this expression */ 1476 while( pColExpr->op==TK_DOT ){ 1477 pColExpr = pColExpr->pRight; 1478 assert( pColExpr!=0 ); 1479 } 1480 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1481 /* For columns use the column name name */ 1482 int iCol = pColExpr->iColumn; 1483 pTab = pColExpr->pTab; 1484 if( iCol<0 ) iCol = pTab->iPKey; 1485 zName = sqlite3MPrintf(db, "%s", 1486 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1487 }else if( pColExpr->op==TK_ID ){ 1488 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1489 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1490 }else{ 1491 /* Use the original text of the column expression as its name */ 1492 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1493 } 1494 } 1495 if( db->mallocFailed ){ 1496 sqlite3DbFree(db, zName); 1497 break; 1498 } 1499 1500 /* Make sure the column name is unique. If the name is not unique, 1501 ** append a integer to the name so that it becomes unique. 1502 */ 1503 nName = sqlite3Strlen30(zName); 1504 for(j=cnt=0; j<i; j++){ 1505 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1506 char *zNewName; 1507 int k; 1508 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1509 if( zName[k]==':' ) nName = k; 1510 zName[nName] = 0; 1511 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1512 sqlite3DbFree(db, zName); 1513 zName = zNewName; 1514 j = -1; 1515 if( zName==0 ) break; 1516 } 1517 } 1518 pCol->zName = zName; 1519 } 1520 if( db->mallocFailed ){ 1521 for(j=0; j<i; j++){ 1522 sqlite3DbFree(db, aCol[j].zName); 1523 } 1524 sqlite3DbFree(db, aCol); 1525 *paCol = 0; 1526 *pnCol = 0; 1527 return SQLITE_NOMEM; 1528 } 1529 return SQLITE_OK; 1530 } 1531 1532 /* 1533 ** Add type and collation information to a column list based on 1534 ** a SELECT statement. 1535 ** 1536 ** The column list presumably came from selectColumnNamesFromExprList(). 1537 ** The column list has only names, not types or collations. This 1538 ** routine goes through and adds the types and collations. 1539 ** 1540 ** This routine requires that all identifiers in the SELECT 1541 ** statement be resolved. 1542 */ 1543 static void selectAddColumnTypeAndCollation( 1544 Parse *pParse, /* Parsing contexts */ 1545 Table *pTab, /* Add column type information to this table */ 1546 Select *pSelect /* SELECT used to determine types and collations */ 1547 ){ 1548 sqlite3 *db = pParse->db; 1549 NameContext sNC; 1550 Column *pCol; 1551 CollSeq *pColl; 1552 int i; 1553 Expr *p; 1554 struct ExprList_item *a; 1555 u64 szAll = 0; 1556 1557 assert( pSelect!=0 ); 1558 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1559 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1560 if( db->mallocFailed ) return; 1561 memset(&sNC, 0, sizeof(sNC)); 1562 sNC.pSrcList = pSelect->pSrc; 1563 a = pSelect->pEList->a; 1564 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1565 p = a[i].pExpr; 1566 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1567 szAll += pCol->szEst; 1568 pCol->affinity = sqlite3ExprAffinity(p); 1569 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1570 pColl = sqlite3ExprCollSeq(pParse, p); 1571 if( pColl ){ 1572 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1573 } 1574 } 1575 pTab->szTabRow = sqlite3LogEst(szAll*4); 1576 } 1577 1578 /* 1579 ** Given a SELECT statement, generate a Table structure that describes 1580 ** the result set of that SELECT. 1581 */ 1582 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1583 Table *pTab; 1584 sqlite3 *db = pParse->db; 1585 int savedFlags; 1586 1587 savedFlags = db->flags; 1588 db->flags &= ~SQLITE_FullColNames; 1589 db->flags |= SQLITE_ShortColNames; 1590 sqlite3SelectPrep(pParse, pSelect, 0); 1591 if( pParse->nErr ) return 0; 1592 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1593 db->flags = savedFlags; 1594 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1595 if( pTab==0 ){ 1596 return 0; 1597 } 1598 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1599 ** is disabled */ 1600 assert( db->lookaside.bEnabled==0 ); 1601 pTab->nRef = 1; 1602 pTab->zName = 0; 1603 pTab->nRowEst = 1048576; 1604 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1605 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1606 pTab->iPKey = -1; 1607 if( db->mallocFailed ){ 1608 sqlite3DeleteTable(db, pTab); 1609 return 0; 1610 } 1611 return pTab; 1612 } 1613 1614 /* 1615 ** Get a VDBE for the given parser context. Create a new one if necessary. 1616 ** If an error occurs, return NULL and leave a message in pParse. 1617 */ 1618 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1619 Vdbe *v = pParse->pVdbe; 1620 if( v==0 ){ 1621 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1622 #ifndef SQLITE_OMIT_TRACE 1623 if( v ){ 1624 sqlite3VdbeAddOp0(v, OP_Trace); 1625 } 1626 #endif 1627 } 1628 return v; 1629 } 1630 1631 1632 /* 1633 ** Compute the iLimit and iOffset fields of the SELECT based on the 1634 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1635 ** that appear in the original SQL statement after the LIMIT and OFFSET 1636 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1637 ** are the integer memory register numbers for counters used to compute 1638 ** the limit and offset. If there is no limit and/or offset, then 1639 ** iLimit and iOffset are negative. 1640 ** 1641 ** This routine changes the values of iLimit and iOffset only if 1642 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1643 ** iOffset should have been preset to appropriate default values (zero) 1644 ** prior to calling this routine. 1645 ** 1646 ** The iOffset register (if it exists) is initialized to the value 1647 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1648 ** iOffset+1 is initialized to LIMIT+OFFSET. 1649 ** 1650 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1651 ** redefined. The UNION ALL operator uses this property to force 1652 ** the reuse of the same limit and offset registers across multiple 1653 ** SELECT statements. 1654 */ 1655 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1656 Vdbe *v = 0; 1657 int iLimit = 0; 1658 int iOffset; 1659 int addr1, n; 1660 if( p->iLimit ) return; 1661 1662 /* 1663 ** "LIMIT -1" always shows all rows. There is some 1664 ** controversy about what the correct behavior should be. 1665 ** The current implementation interprets "LIMIT 0" to mean 1666 ** no rows. 1667 */ 1668 sqlite3ExprCacheClear(pParse); 1669 assert( p->pOffset==0 || p->pLimit!=0 ); 1670 if( p->pLimit ){ 1671 p->iLimit = iLimit = ++pParse->nMem; 1672 v = sqlite3GetVdbe(pParse); 1673 assert( v!=0 ); 1674 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1675 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1676 VdbeComment((v, "LIMIT counter")); 1677 if( n==0 ){ 1678 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1679 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1680 p->nSelectRow = n; 1681 } 1682 }else{ 1683 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1684 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1685 VdbeComment((v, "LIMIT counter")); 1686 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1687 } 1688 if( p->pOffset ){ 1689 p->iOffset = iOffset = ++pParse->nMem; 1690 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1691 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1692 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1693 VdbeComment((v, "OFFSET counter")); 1694 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1695 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1696 sqlite3VdbeJumpHere(v, addr1); 1697 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1698 VdbeComment((v, "LIMIT+OFFSET")); 1699 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1700 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1701 sqlite3VdbeJumpHere(v, addr1); 1702 } 1703 } 1704 } 1705 1706 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1707 /* 1708 ** Return the appropriate collating sequence for the iCol-th column of 1709 ** the result set for the compound-select statement "p". Return NULL if 1710 ** the column has no default collating sequence. 1711 ** 1712 ** The collating sequence for the compound select is taken from the 1713 ** left-most term of the select that has a collating sequence. 1714 */ 1715 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1716 CollSeq *pRet; 1717 if( p->pPrior ){ 1718 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1719 }else{ 1720 pRet = 0; 1721 } 1722 assert( iCol>=0 ); 1723 if( pRet==0 && iCol<p->pEList->nExpr ){ 1724 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1725 } 1726 return pRet; 1727 } 1728 1729 /* 1730 ** The select statement passed as the second parameter is a compound SELECT 1731 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1732 ** structure suitable for implementing the ORDER BY. 1733 ** 1734 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1735 ** function is responsible for ensuring that this structure is eventually 1736 ** freed. 1737 */ 1738 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1739 ExprList *pOrderBy = p->pOrderBy; 1740 int nOrderBy = p->pOrderBy->nExpr; 1741 sqlite3 *db = pParse->db; 1742 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1743 if( pRet ){ 1744 int i; 1745 for(i=0; i<nOrderBy; i++){ 1746 struct ExprList_item *pItem = &pOrderBy->a[i]; 1747 Expr *pTerm = pItem->pExpr; 1748 CollSeq *pColl; 1749 1750 if( pTerm->flags & EP_Collate ){ 1751 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1752 }else{ 1753 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1754 if( pColl==0 ) pColl = db->pDfltColl; 1755 pOrderBy->a[i].pExpr = 1756 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1757 } 1758 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1759 pRet->aColl[i] = pColl; 1760 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1761 } 1762 } 1763 1764 return pRet; 1765 } 1766 1767 #ifndef SQLITE_OMIT_CTE 1768 /* 1769 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1770 ** query of the form: 1771 ** 1772 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1773 ** \___________/ \_______________/ 1774 ** p->pPrior p 1775 ** 1776 ** 1777 ** There is exactly one reference to the recursive-table in the FROM clause 1778 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1779 ** 1780 ** The setup-query runs once to generate an initial set of rows that go 1781 ** into a Queue table. Rows are extracted from the Queue table one by 1782 ** one. Each row extracted from Queue is output to pDest. Then the single 1783 ** extracted row (now in the iCurrent table) becomes the content of the 1784 ** recursive-table for a recursive-query run. The output of the recursive-query 1785 ** is added back into the Queue table. Then another row is extracted from Queue 1786 ** and the iteration continues until the Queue table is empty. 1787 ** 1788 ** If the compound query operator is UNION then no duplicate rows are ever 1789 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1790 ** that have ever been inserted into Queue and causes duplicates to be 1791 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1792 ** 1793 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1794 ** ORDER BY order and the first entry is extracted for each cycle. Without 1795 ** an ORDER BY, the Queue table is just a FIFO. 1796 ** 1797 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1798 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1799 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1800 ** with a positive value, then the first OFFSET outputs are discarded rather 1801 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1802 ** rows have been skipped. 1803 */ 1804 static void generateWithRecursiveQuery( 1805 Parse *pParse, /* Parsing context */ 1806 Select *p, /* The recursive SELECT to be coded */ 1807 SelectDest *pDest /* What to do with query results */ 1808 ){ 1809 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1810 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1811 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1812 Select *pSetup = p->pPrior; /* The setup query */ 1813 int addrTop; /* Top of the loop */ 1814 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1815 int iCurrent = 0; /* The Current table */ 1816 int regCurrent; /* Register holding Current table */ 1817 int iQueue; /* The Queue table */ 1818 int iDistinct = 0; /* To ensure unique results if UNION */ 1819 int eDest = SRT_Table; /* How to write to Queue */ 1820 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1821 int i; /* Loop counter */ 1822 int rc; /* Result code */ 1823 ExprList *pOrderBy; /* The ORDER BY clause */ 1824 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1825 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1826 1827 /* Obtain authorization to do a recursive query */ 1828 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1829 1830 /* Process the LIMIT and OFFSET clauses, if they exist */ 1831 addrBreak = sqlite3VdbeMakeLabel(v); 1832 computeLimitRegisters(pParse, p, addrBreak); 1833 pLimit = p->pLimit; 1834 pOffset = p->pOffset; 1835 regLimit = p->iLimit; 1836 regOffset = p->iOffset; 1837 p->pLimit = p->pOffset = 0; 1838 p->iLimit = p->iOffset = 0; 1839 pOrderBy = p->pOrderBy; 1840 1841 /* Locate the cursor number of the Current table */ 1842 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1843 if( pSrc->a[i].isRecursive ){ 1844 iCurrent = pSrc->a[i].iCursor; 1845 break; 1846 } 1847 } 1848 1849 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1850 ** the Distinct table must be exactly one greater than Queue in order 1851 ** for the SRT_DistTable and SRT_DistQueue destinations to work. */ 1852 iQueue = pParse->nTab++; 1853 if( p->op==TK_UNION ){ 1854 eDest = pOrderBy ? SRT_DistQueue : SRT_DistTable; 1855 iDistinct = pParse->nTab++; 1856 }else{ 1857 eDest = pOrderBy ? SRT_Queue : SRT_Table; 1858 } 1859 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1860 1861 /* Allocate cursors for Current, Queue, and Distinct. */ 1862 regCurrent = ++pParse->nMem; 1863 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1864 if( pOrderBy ){ 1865 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1866 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1867 (char*)pKeyInfo, P4_KEYINFO); 1868 destQueue.pOrderBy = pOrderBy; 1869 }else{ 1870 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1871 } 1872 VdbeComment((v, "Queue table")); 1873 if( iDistinct ){ 1874 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1875 p->selFlags |= SF_UsesEphemeral; 1876 } 1877 1878 /* Detach the ORDER BY clause from the compound SELECT */ 1879 p->pOrderBy = 0; 1880 1881 /* Store the results of the setup-query in Queue. */ 1882 rc = sqlite3Select(pParse, pSetup, &destQueue); 1883 if( rc ) goto end_of_recursive_query; 1884 1885 /* Find the next row in the Queue and output that row */ 1886 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); 1887 1888 /* Transfer the next row in Queue over to Current */ 1889 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 1890 if( pOrderBy ){ 1891 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 1892 }else{ 1893 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 1894 } 1895 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 1896 1897 /* Output the single row in Current */ 1898 addrCont = sqlite3VdbeMakeLabel(v); 1899 codeOffset(v, regOffset, addrCont); 1900 selectInnerLoop(pParse, p, p->pEList, iCurrent, 1901 0, 0, pDest, addrCont, addrBreak); 1902 if( regLimit ) sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 1903 sqlite3VdbeResolveLabel(v, addrCont); 1904 1905 /* Execute the recursive SELECT taking the single row in Current as 1906 ** the value for the recursive-table. Store the results in the Queue. 1907 */ 1908 p->pPrior = 0; 1909 sqlite3Select(pParse, p, &destQueue); 1910 assert( p->pPrior==0 ); 1911 p->pPrior = pSetup; 1912 1913 /* Keep running the loop until the Queue is empty */ 1914 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 1915 sqlite3VdbeResolveLabel(v, addrBreak); 1916 1917 end_of_recursive_query: 1918 p->pOrderBy = pOrderBy; 1919 p->pLimit = pLimit; 1920 p->pOffset = pOffset; 1921 return; 1922 } 1923 #endif /* SQLITE_OMIT_CTE */ 1924 1925 /* Forward references */ 1926 static int multiSelectOrderBy( 1927 Parse *pParse, /* Parsing context */ 1928 Select *p, /* The right-most of SELECTs to be coded */ 1929 SelectDest *pDest /* What to do with query results */ 1930 ); 1931 1932 1933 /* 1934 ** This routine is called to process a compound query form from 1935 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1936 ** INTERSECT 1937 ** 1938 ** "p" points to the right-most of the two queries. the query on the 1939 ** left is p->pPrior. The left query could also be a compound query 1940 ** in which case this routine will be called recursively. 1941 ** 1942 ** The results of the total query are to be written into a destination 1943 ** of type eDest with parameter iParm. 1944 ** 1945 ** Example 1: Consider a three-way compound SQL statement. 1946 ** 1947 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1948 ** 1949 ** This statement is parsed up as follows: 1950 ** 1951 ** SELECT c FROM t3 1952 ** | 1953 ** `-----> SELECT b FROM t2 1954 ** | 1955 ** `------> SELECT a FROM t1 1956 ** 1957 ** The arrows in the diagram above represent the Select.pPrior pointer. 1958 ** So if this routine is called with p equal to the t3 query, then 1959 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1960 ** 1961 ** Notice that because of the way SQLite parses compound SELECTs, the 1962 ** individual selects always group from left to right. 1963 */ 1964 static int multiSelect( 1965 Parse *pParse, /* Parsing context */ 1966 Select *p, /* The right-most of SELECTs to be coded */ 1967 SelectDest *pDest /* What to do with query results */ 1968 ){ 1969 int rc = SQLITE_OK; /* Success code from a subroutine */ 1970 Select *pPrior; /* Another SELECT immediately to our left */ 1971 Vdbe *v; /* Generate code to this VDBE */ 1972 SelectDest dest; /* Alternative data destination */ 1973 Select *pDelete = 0; /* Chain of simple selects to delete */ 1974 sqlite3 *db; /* Database connection */ 1975 #ifndef SQLITE_OMIT_EXPLAIN 1976 int iSub1 = 0; /* EQP id of left-hand query */ 1977 int iSub2 = 0; /* EQP id of right-hand query */ 1978 #endif 1979 1980 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1981 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1982 */ 1983 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1984 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 1985 db = pParse->db; 1986 pPrior = p->pPrior; 1987 assert( pPrior->pRightmost!=pPrior ); 1988 assert( pPrior->pRightmost==p->pRightmost ); 1989 dest = *pDest; 1990 if( pPrior->pOrderBy ){ 1991 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1992 selectOpName(p->op)); 1993 rc = 1; 1994 goto multi_select_end; 1995 } 1996 if( pPrior->pLimit ){ 1997 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1998 selectOpName(p->op)); 1999 rc = 1; 2000 goto multi_select_end; 2001 } 2002 2003 v = sqlite3GetVdbe(pParse); 2004 assert( v!=0 ); /* The VDBE already created by calling function */ 2005 2006 /* Create the destination temporary table if necessary 2007 */ 2008 if( dest.eDest==SRT_EphemTab ){ 2009 assert( p->pEList ); 2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2011 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2012 dest.eDest = SRT_Table; 2013 } 2014 2015 /* Make sure all SELECTs in the statement have the same number of elements 2016 ** in their result sets. 2017 */ 2018 assert( p->pEList && pPrior->pEList ); 2019 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2020 if( p->selFlags & SF_Values ){ 2021 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2022 }else{ 2023 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2024 " do not have the same number of result columns", selectOpName(p->op)); 2025 } 2026 rc = 1; 2027 goto multi_select_end; 2028 } 2029 2030 #ifndef SQLITE_OMIT_CTE 2031 if( p->selFlags & SF_Recursive ){ 2032 generateWithRecursiveQuery(pParse, p, &dest); 2033 }else 2034 #endif 2035 2036 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2037 */ 2038 if( p->pOrderBy ){ 2039 return multiSelectOrderBy(pParse, p, pDest); 2040 }else 2041 2042 /* Generate code for the left and right SELECT statements. 2043 */ 2044 switch( p->op ){ 2045 case TK_ALL: { 2046 int addr = 0; 2047 int nLimit; 2048 assert( !pPrior->pLimit ); 2049 pPrior->iLimit = p->iLimit; 2050 pPrior->iOffset = p->iOffset; 2051 pPrior->pLimit = p->pLimit; 2052 pPrior->pOffset = p->pOffset; 2053 explainSetInteger(iSub1, pParse->iNextSelectId); 2054 rc = sqlite3Select(pParse, pPrior, &dest); 2055 p->pLimit = 0; 2056 p->pOffset = 0; 2057 if( rc ){ 2058 goto multi_select_end; 2059 } 2060 p->pPrior = 0; 2061 p->iLimit = pPrior->iLimit; 2062 p->iOffset = pPrior->iOffset; 2063 if( p->iLimit ){ 2064 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 2065 VdbeComment((v, "Jump ahead if LIMIT reached")); 2066 } 2067 explainSetInteger(iSub2, pParse->iNextSelectId); 2068 rc = sqlite3Select(pParse, p, &dest); 2069 testcase( rc!=SQLITE_OK ); 2070 pDelete = p->pPrior; 2071 p->pPrior = pPrior; 2072 p->nSelectRow += pPrior->nSelectRow; 2073 if( pPrior->pLimit 2074 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2075 && nLimit>0 && p->nSelectRow > (u64)nLimit 2076 ){ 2077 p->nSelectRow = nLimit; 2078 } 2079 if( addr ){ 2080 sqlite3VdbeJumpHere(v, addr); 2081 } 2082 break; 2083 } 2084 case TK_EXCEPT: 2085 case TK_UNION: { 2086 int unionTab; /* Cursor number of the temporary table holding result */ 2087 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2088 int priorOp; /* The SRT_ operation to apply to prior selects */ 2089 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2090 int addr; 2091 SelectDest uniondest; 2092 2093 testcase( p->op==TK_EXCEPT ); 2094 testcase( p->op==TK_UNION ); 2095 priorOp = SRT_Union; 2096 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 2097 /* We can reuse a temporary table generated by a SELECT to our 2098 ** right. 2099 */ 2100 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 2101 ** of a 3-way or more compound */ 2102 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2103 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2104 unionTab = dest.iSDParm; 2105 }else{ 2106 /* We will need to create our own temporary table to hold the 2107 ** intermediate results. 2108 */ 2109 unionTab = pParse->nTab++; 2110 assert( p->pOrderBy==0 ); 2111 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2112 assert( p->addrOpenEphm[0] == -1 ); 2113 p->addrOpenEphm[0] = addr; 2114 p->pRightmost->selFlags |= SF_UsesEphemeral; 2115 assert( p->pEList ); 2116 } 2117 2118 /* Code the SELECT statements to our left 2119 */ 2120 assert( !pPrior->pOrderBy ); 2121 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2122 explainSetInteger(iSub1, pParse->iNextSelectId); 2123 rc = sqlite3Select(pParse, pPrior, &uniondest); 2124 if( rc ){ 2125 goto multi_select_end; 2126 } 2127 2128 /* Code the current SELECT statement 2129 */ 2130 if( p->op==TK_EXCEPT ){ 2131 op = SRT_Except; 2132 }else{ 2133 assert( p->op==TK_UNION ); 2134 op = SRT_Union; 2135 } 2136 p->pPrior = 0; 2137 pLimit = p->pLimit; 2138 p->pLimit = 0; 2139 pOffset = p->pOffset; 2140 p->pOffset = 0; 2141 uniondest.eDest = op; 2142 explainSetInteger(iSub2, pParse->iNextSelectId); 2143 rc = sqlite3Select(pParse, p, &uniondest); 2144 testcase( rc!=SQLITE_OK ); 2145 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2146 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2147 sqlite3ExprListDelete(db, p->pOrderBy); 2148 pDelete = p->pPrior; 2149 p->pPrior = pPrior; 2150 p->pOrderBy = 0; 2151 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2152 sqlite3ExprDelete(db, p->pLimit); 2153 p->pLimit = pLimit; 2154 p->pOffset = pOffset; 2155 p->iLimit = 0; 2156 p->iOffset = 0; 2157 2158 /* Convert the data in the temporary table into whatever form 2159 ** it is that we currently need. 2160 */ 2161 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2162 if( dest.eDest!=priorOp ){ 2163 int iCont, iBreak, iStart; 2164 assert( p->pEList ); 2165 if( dest.eDest==SRT_Output ){ 2166 Select *pFirst = p; 2167 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2168 generateColumnNames(pParse, 0, pFirst->pEList); 2169 } 2170 iBreak = sqlite3VdbeMakeLabel(v); 2171 iCont = sqlite3VdbeMakeLabel(v); 2172 computeLimitRegisters(pParse, p, iBreak); 2173 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 2174 iStart = sqlite3VdbeCurrentAddr(v); 2175 selectInnerLoop(pParse, p, p->pEList, unionTab, 2176 0, 0, &dest, iCont, iBreak); 2177 sqlite3VdbeResolveLabel(v, iCont); 2178 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 2179 sqlite3VdbeResolveLabel(v, iBreak); 2180 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2181 } 2182 break; 2183 } 2184 default: assert( p->op==TK_INTERSECT ); { 2185 int tab1, tab2; 2186 int iCont, iBreak, iStart; 2187 Expr *pLimit, *pOffset; 2188 int addr; 2189 SelectDest intersectdest; 2190 int r1; 2191 2192 /* INTERSECT is different from the others since it requires 2193 ** two temporary tables. Hence it has its own case. Begin 2194 ** by allocating the tables we will need. 2195 */ 2196 tab1 = pParse->nTab++; 2197 tab2 = pParse->nTab++; 2198 assert( p->pOrderBy==0 ); 2199 2200 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2201 assert( p->addrOpenEphm[0] == -1 ); 2202 p->addrOpenEphm[0] = addr; 2203 p->pRightmost->selFlags |= SF_UsesEphemeral; 2204 assert( p->pEList ); 2205 2206 /* Code the SELECTs to our left into temporary table "tab1". 2207 */ 2208 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2209 explainSetInteger(iSub1, pParse->iNextSelectId); 2210 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2211 if( rc ){ 2212 goto multi_select_end; 2213 } 2214 2215 /* Code the current SELECT into temporary table "tab2" 2216 */ 2217 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2218 assert( p->addrOpenEphm[1] == -1 ); 2219 p->addrOpenEphm[1] = addr; 2220 p->pPrior = 0; 2221 pLimit = p->pLimit; 2222 p->pLimit = 0; 2223 pOffset = p->pOffset; 2224 p->pOffset = 0; 2225 intersectdest.iSDParm = tab2; 2226 explainSetInteger(iSub2, pParse->iNextSelectId); 2227 rc = sqlite3Select(pParse, p, &intersectdest); 2228 testcase( rc!=SQLITE_OK ); 2229 pDelete = p->pPrior; 2230 p->pPrior = pPrior; 2231 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2232 sqlite3ExprDelete(db, p->pLimit); 2233 p->pLimit = pLimit; 2234 p->pOffset = pOffset; 2235 2236 /* Generate code to take the intersection of the two temporary 2237 ** tables. 2238 */ 2239 assert( p->pEList ); 2240 if( dest.eDest==SRT_Output ){ 2241 Select *pFirst = p; 2242 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2243 generateColumnNames(pParse, 0, pFirst->pEList); 2244 } 2245 iBreak = sqlite3VdbeMakeLabel(v); 2246 iCont = sqlite3VdbeMakeLabel(v); 2247 computeLimitRegisters(pParse, p, iBreak); 2248 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 2249 r1 = sqlite3GetTempReg(pParse); 2250 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2251 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2252 sqlite3ReleaseTempReg(pParse, r1); 2253 selectInnerLoop(pParse, p, p->pEList, tab1, 2254 0, 0, &dest, iCont, iBreak); 2255 sqlite3VdbeResolveLabel(v, iCont); 2256 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 2257 sqlite3VdbeResolveLabel(v, iBreak); 2258 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2259 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2260 break; 2261 } 2262 } 2263 2264 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2265 2266 /* Compute collating sequences used by 2267 ** temporary tables needed to implement the compound select. 2268 ** Attach the KeyInfo structure to all temporary tables. 2269 ** 2270 ** This section is run by the right-most SELECT statement only. 2271 ** SELECT statements to the left always skip this part. The right-most 2272 ** SELECT might also skip this part if it has no ORDER BY clause and 2273 ** no temp tables are required. 2274 */ 2275 if( p->selFlags & SF_UsesEphemeral ){ 2276 int i; /* Loop counter */ 2277 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2278 Select *pLoop; /* For looping through SELECT statements */ 2279 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2280 int nCol; /* Number of columns in result set */ 2281 2282 assert( p->pRightmost==p ); 2283 nCol = p->pEList->nExpr; 2284 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2285 if( !pKeyInfo ){ 2286 rc = SQLITE_NOMEM; 2287 goto multi_select_end; 2288 } 2289 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2290 *apColl = multiSelectCollSeq(pParse, p, i); 2291 if( 0==*apColl ){ 2292 *apColl = db->pDfltColl; 2293 } 2294 } 2295 2296 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2297 for(i=0; i<2; i++){ 2298 int addr = pLoop->addrOpenEphm[i]; 2299 if( addr<0 ){ 2300 /* If [0] is unused then [1] is also unused. So we can 2301 ** always safely abort as soon as the first unused slot is found */ 2302 assert( pLoop->addrOpenEphm[1]<0 ); 2303 break; 2304 } 2305 sqlite3VdbeChangeP2(v, addr, nCol); 2306 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2307 P4_KEYINFO); 2308 pLoop->addrOpenEphm[i] = -1; 2309 } 2310 } 2311 sqlite3KeyInfoUnref(pKeyInfo); 2312 } 2313 2314 multi_select_end: 2315 pDest->iSdst = dest.iSdst; 2316 pDest->nSdst = dest.nSdst; 2317 sqlite3SelectDelete(db, pDelete); 2318 return rc; 2319 } 2320 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2321 2322 /* 2323 ** Code an output subroutine for a coroutine implementation of a 2324 ** SELECT statment. 2325 ** 2326 ** The data to be output is contained in pIn->iSdst. There are 2327 ** pIn->nSdst columns to be output. pDest is where the output should 2328 ** be sent. 2329 ** 2330 ** regReturn is the number of the register holding the subroutine 2331 ** return address. 2332 ** 2333 ** If regPrev>0 then it is the first register in a vector that 2334 ** records the previous output. mem[regPrev] is a flag that is false 2335 ** if there has been no previous output. If regPrev>0 then code is 2336 ** generated to suppress duplicates. pKeyInfo is used for comparing 2337 ** keys. 2338 ** 2339 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2340 ** iBreak. 2341 */ 2342 static int generateOutputSubroutine( 2343 Parse *pParse, /* Parsing context */ 2344 Select *p, /* The SELECT statement */ 2345 SelectDest *pIn, /* Coroutine supplying data */ 2346 SelectDest *pDest, /* Where to send the data */ 2347 int regReturn, /* The return address register */ 2348 int regPrev, /* Previous result register. No uniqueness if 0 */ 2349 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2350 int iBreak /* Jump here if we hit the LIMIT */ 2351 ){ 2352 Vdbe *v = pParse->pVdbe; 2353 int iContinue; 2354 int addr; 2355 2356 addr = sqlite3VdbeCurrentAddr(v); 2357 iContinue = sqlite3VdbeMakeLabel(v); 2358 2359 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2360 */ 2361 if( regPrev ){ 2362 int j1, j2; 2363 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2364 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2365 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2366 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2367 sqlite3VdbeJumpHere(v, j1); 2368 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2369 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2370 } 2371 if( pParse->db->mallocFailed ) return 0; 2372 2373 /* Suppress the first OFFSET entries if there is an OFFSET clause 2374 */ 2375 codeOffset(v, p->iOffset, iContinue); 2376 2377 switch( pDest->eDest ){ 2378 /* Store the result as data using a unique key. 2379 */ 2380 case SRT_Table: 2381 case SRT_EphemTab: { 2382 int r1 = sqlite3GetTempReg(pParse); 2383 int r2 = sqlite3GetTempReg(pParse); 2384 testcase( pDest->eDest==SRT_Table ); 2385 testcase( pDest->eDest==SRT_EphemTab ); 2386 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2387 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2388 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2389 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2390 sqlite3ReleaseTempReg(pParse, r2); 2391 sqlite3ReleaseTempReg(pParse, r1); 2392 break; 2393 } 2394 2395 #ifndef SQLITE_OMIT_SUBQUERY 2396 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2397 ** then there should be a single item on the stack. Write this 2398 ** item into the set table with bogus data. 2399 */ 2400 case SRT_Set: { 2401 int r1; 2402 assert( pIn->nSdst==1 ); 2403 pDest->affSdst = 2404 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2405 r1 = sqlite3GetTempReg(pParse); 2406 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2407 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2408 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2409 sqlite3ReleaseTempReg(pParse, r1); 2410 break; 2411 } 2412 2413 #if 0 /* Never occurs on an ORDER BY query */ 2414 /* If any row exist in the result set, record that fact and abort. 2415 */ 2416 case SRT_Exists: { 2417 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2418 /* The LIMIT clause will terminate the loop for us */ 2419 break; 2420 } 2421 #endif 2422 2423 /* If this is a scalar select that is part of an expression, then 2424 ** store the results in the appropriate memory cell and break out 2425 ** of the scan loop. 2426 */ 2427 case SRT_Mem: { 2428 assert( pIn->nSdst==1 ); 2429 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2430 /* The LIMIT clause will jump out of the loop for us */ 2431 break; 2432 } 2433 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2434 2435 /* The results are stored in a sequence of registers 2436 ** starting at pDest->iSdst. Then the co-routine yields. 2437 */ 2438 case SRT_Coroutine: { 2439 if( pDest->iSdst==0 ){ 2440 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2441 pDest->nSdst = pIn->nSdst; 2442 } 2443 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2444 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2445 break; 2446 } 2447 2448 /* If none of the above, then the result destination must be 2449 ** SRT_Output. This routine is never called with any other 2450 ** destination other than the ones handled above or SRT_Output. 2451 ** 2452 ** For SRT_Output, results are stored in a sequence of registers. 2453 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2454 ** return the next row of result. 2455 */ 2456 default: { 2457 assert( pDest->eDest==SRT_Output ); 2458 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2459 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2460 break; 2461 } 2462 } 2463 2464 /* Jump to the end of the loop if the LIMIT is reached. 2465 */ 2466 if( p->iLimit ){ 2467 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2468 } 2469 2470 /* Generate the subroutine return 2471 */ 2472 sqlite3VdbeResolveLabel(v, iContinue); 2473 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2474 2475 return addr; 2476 } 2477 2478 /* 2479 ** Alternative compound select code generator for cases when there 2480 ** is an ORDER BY clause. 2481 ** 2482 ** We assume a query of the following form: 2483 ** 2484 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2485 ** 2486 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2487 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2488 ** co-routines. Then run the co-routines in parallel and merge the results 2489 ** into the output. In addition to the two coroutines (called selectA and 2490 ** selectB) there are 7 subroutines: 2491 ** 2492 ** outA: Move the output of the selectA coroutine into the output 2493 ** of the compound query. 2494 ** 2495 ** outB: Move the output of the selectB coroutine into the output 2496 ** of the compound query. (Only generated for UNION and 2497 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2498 ** appears only in B.) 2499 ** 2500 ** AltB: Called when there is data from both coroutines and A<B. 2501 ** 2502 ** AeqB: Called when there is data from both coroutines and A==B. 2503 ** 2504 ** AgtB: Called when there is data from both coroutines and A>B. 2505 ** 2506 ** EofA: Called when data is exhausted from selectA. 2507 ** 2508 ** EofB: Called when data is exhausted from selectB. 2509 ** 2510 ** The implementation of the latter five subroutines depend on which 2511 ** <operator> is used: 2512 ** 2513 ** 2514 ** UNION ALL UNION EXCEPT INTERSECT 2515 ** ------------- ----------------- -------------- ----------------- 2516 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2517 ** 2518 ** AeqB: outA, nextA nextA nextA outA, nextA 2519 ** 2520 ** AgtB: outB, nextB outB, nextB nextB nextB 2521 ** 2522 ** EofA: outB, nextB outB, nextB halt halt 2523 ** 2524 ** EofB: outA, nextA outA, nextA outA, nextA halt 2525 ** 2526 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2527 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2528 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2529 ** following nextX causes a jump to the end of the select processing. 2530 ** 2531 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2532 ** within the output subroutine. The regPrev register set holds the previously 2533 ** output value. A comparison is made against this value and the output 2534 ** is skipped if the next results would be the same as the previous. 2535 ** 2536 ** The implementation plan is to implement the two coroutines and seven 2537 ** subroutines first, then put the control logic at the bottom. Like this: 2538 ** 2539 ** goto Init 2540 ** coA: coroutine for left query (A) 2541 ** coB: coroutine for right query (B) 2542 ** outA: output one row of A 2543 ** outB: output one row of B (UNION and UNION ALL only) 2544 ** EofA: ... 2545 ** EofB: ... 2546 ** AltB: ... 2547 ** AeqB: ... 2548 ** AgtB: ... 2549 ** Init: initialize coroutine registers 2550 ** yield coA 2551 ** if eof(A) goto EofA 2552 ** yield coB 2553 ** if eof(B) goto EofB 2554 ** Cmpr: Compare A, B 2555 ** Jump AltB, AeqB, AgtB 2556 ** End: ... 2557 ** 2558 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2559 ** actually called using Gosub and they do not Return. EofA and EofB loop 2560 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2561 ** and AgtB jump to either L2 or to one of EofA or EofB. 2562 */ 2563 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2564 static int multiSelectOrderBy( 2565 Parse *pParse, /* Parsing context */ 2566 Select *p, /* The right-most of SELECTs to be coded */ 2567 SelectDest *pDest /* What to do with query results */ 2568 ){ 2569 int i, j; /* Loop counters */ 2570 Select *pPrior; /* Another SELECT immediately to our left */ 2571 Vdbe *v; /* Generate code to this VDBE */ 2572 SelectDest destA; /* Destination for coroutine A */ 2573 SelectDest destB; /* Destination for coroutine B */ 2574 int regAddrA; /* Address register for select-A coroutine */ 2575 int regEofA; /* Flag to indicate when select-A is complete */ 2576 int regAddrB; /* Address register for select-B coroutine */ 2577 int regEofB; /* Flag to indicate when select-B is complete */ 2578 int addrSelectA; /* Address of the select-A coroutine */ 2579 int addrSelectB; /* Address of the select-B coroutine */ 2580 int regOutA; /* Address register for the output-A subroutine */ 2581 int regOutB; /* Address register for the output-B subroutine */ 2582 int addrOutA; /* Address of the output-A subroutine */ 2583 int addrOutB = 0; /* Address of the output-B subroutine */ 2584 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2585 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2586 int addrAltB; /* Address of the A<B subroutine */ 2587 int addrAeqB; /* Address of the A==B subroutine */ 2588 int addrAgtB; /* Address of the A>B subroutine */ 2589 int regLimitA; /* Limit register for select-A */ 2590 int regLimitB; /* Limit register for select-A */ 2591 int regPrev; /* A range of registers to hold previous output */ 2592 int savedLimit; /* Saved value of p->iLimit */ 2593 int savedOffset; /* Saved value of p->iOffset */ 2594 int labelCmpr; /* Label for the start of the merge algorithm */ 2595 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2596 int j1; /* Jump instructions that get retargetted */ 2597 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2598 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2599 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2600 sqlite3 *db; /* Database connection */ 2601 ExprList *pOrderBy; /* The ORDER BY clause */ 2602 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2603 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2604 #ifndef SQLITE_OMIT_EXPLAIN 2605 int iSub1; /* EQP id of left-hand query */ 2606 int iSub2; /* EQP id of right-hand query */ 2607 #endif 2608 2609 assert( p->pOrderBy!=0 ); 2610 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2611 db = pParse->db; 2612 v = pParse->pVdbe; 2613 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2614 labelEnd = sqlite3VdbeMakeLabel(v); 2615 labelCmpr = sqlite3VdbeMakeLabel(v); 2616 2617 2618 /* Patch up the ORDER BY clause 2619 */ 2620 op = p->op; 2621 pPrior = p->pPrior; 2622 assert( pPrior->pOrderBy==0 ); 2623 pOrderBy = p->pOrderBy; 2624 assert( pOrderBy ); 2625 nOrderBy = pOrderBy->nExpr; 2626 2627 /* For operators other than UNION ALL we have to make sure that 2628 ** the ORDER BY clause covers every term of the result set. Add 2629 ** terms to the ORDER BY clause as necessary. 2630 */ 2631 if( op!=TK_ALL ){ 2632 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2633 struct ExprList_item *pItem; 2634 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2635 assert( pItem->u.x.iOrderByCol>0 ); 2636 if( pItem->u.x.iOrderByCol==i ) break; 2637 } 2638 if( j==nOrderBy ){ 2639 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2640 if( pNew==0 ) return SQLITE_NOMEM; 2641 pNew->flags |= EP_IntValue; 2642 pNew->u.iValue = i; 2643 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2644 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2645 } 2646 } 2647 } 2648 2649 /* Compute the comparison permutation and keyinfo that is used with 2650 ** the permutation used to determine if the next 2651 ** row of results comes from selectA or selectB. Also add explicit 2652 ** collations to the ORDER BY clause terms so that when the subqueries 2653 ** to the right and the left are evaluated, they use the correct 2654 ** collation. 2655 */ 2656 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2657 if( aPermute ){ 2658 struct ExprList_item *pItem; 2659 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2660 assert( pItem->u.x.iOrderByCol>0 2661 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2662 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2663 } 2664 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2665 }else{ 2666 pKeyMerge = 0; 2667 } 2668 2669 /* Reattach the ORDER BY clause to the query. 2670 */ 2671 p->pOrderBy = pOrderBy; 2672 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2673 2674 /* Allocate a range of temporary registers and the KeyInfo needed 2675 ** for the logic that removes duplicate result rows when the 2676 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2677 */ 2678 if( op==TK_ALL ){ 2679 regPrev = 0; 2680 }else{ 2681 int nExpr = p->pEList->nExpr; 2682 assert( nOrderBy>=nExpr || db->mallocFailed ); 2683 regPrev = pParse->nMem+1; 2684 pParse->nMem += nExpr+1; 2685 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2686 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2687 if( pKeyDup ){ 2688 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2689 for(i=0; i<nExpr; i++){ 2690 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2691 pKeyDup->aSortOrder[i] = 0; 2692 } 2693 } 2694 } 2695 2696 /* Separate the left and the right query from one another 2697 */ 2698 p->pPrior = 0; 2699 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2700 if( pPrior->pPrior==0 ){ 2701 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2702 } 2703 2704 /* Compute the limit registers */ 2705 computeLimitRegisters(pParse, p, labelEnd); 2706 if( p->iLimit && op==TK_ALL ){ 2707 regLimitA = ++pParse->nMem; 2708 regLimitB = ++pParse->nMem; 2709 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2710 regLimitA); 2711 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2712 }else{ 2713 regLimitA = regLimitB = 0; 2714 } 2715 sqlite3ExprDelete(db, p->pLimit); 2716 p->pLimit = 0; 2717 sqlite3ExprDelete(db, p->pOffset); 2718 p->pOffset = 0; 2719 2720 regAddrA = ++pParse->nMem; 2721 regEofA = ++pParse->nMem; 2722 regAddrB = ++pParse->nMem; 2723 regEofB = ++pParse->nMem; 2724 regOutA = ++pParse->nMem; 2725 regOutB = ++pParse->nMem; 2726 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2727 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2728 2729 /* Jump past the various subroutines and coroutines to the main 2730 ** merge loop 2731 */ 2732 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2733 addrSelectA = sqlite3VdbeCurrentAddr(v); 2734 2735 2736 /* Generate a coroutine to evaluate the SELECT statement to the 2737 ** left of the compound operator - the "A" select. 2738 */ 2739 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2740 pPrior->iLimit = regLimitA; 2741 explainSetInteger(iSub1, pParse->iNextSelectId); 2742 sqlite3Select(pParse, pPrior, &destA); 2743 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2744 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2745 VdbeNoopComment((v, "End coroutine for left SELECT")); 2746 2747 /* Generate a coroutine to evaluate the SELECT statement on 2748 ** the right - the "B" select 2749 */ 2750 addrSelectB = sqlite3VdbeCurrentAddr(v); 2751 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2752 savedLimit = p->iLimit; 2753 savedOffset = p->iOffset; 2754 p->iLimit = regLimitB; 2755 p->iOffset = 0; 2756 explainSetInteger(iSub2, pParse->iNextSelectId); 2757 sqlite3Select(pParse, p, &destB); 2758 p->iLimit = savedLimit; 2759 p->iOffset = savedOffset; 2760 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2761 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2762 VdbeNoopComment((v, "End coroutine for right SELECT")); 2763 2764 /* Generate a subroutine that outputs the current row of the A 2765 ** select as the next output row of the compound select. 2766 */ 2767 VdbeNoopComment((v, "Output routine for A")); 2768 addrOutA = generateOutputSubroutine(pParse, 2769 p, &destA, pDest, regOutA, 2770 regPrev, pKeyDup, labelEnd); 2771 2772 /* Generate a subroutine that outputs the current row of the B 2773 ** select as the next output row of the compound select. 2774 */ 2775 if( op==TK_ALL || op==TK_UNION ){ 2776 VdbeNoopComment((v, "Output routine for B")); 2777 addrOutB = generateOutputSubroutine(pParse, 2778 p, &destB, pDest, regOutB, 2779 regPrev, pKeyDup, labelEnd); 2780 } 2781 sqlite3KeyInfoUnref(pKeyDup); 2782 2783 /* Generate a subroutine to run when the results from select A 2784 ** are exhausted and only data in select B remains. 2785 */ 2786 VdbeNoopComment((v, "eof-A subroutine")); 2787 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2788 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2789 }else{ 2790 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2791 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2792 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2793 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2794 p->nSelectRow += pPrior->nSelectRow; 2795 } 2796 2797 /* Generate a subroutine to run when the results from select B 2798 ** are exhausted and only data in select A remains. 2799 */ 2800 if( op==TK_INTERSECT ){ 2801 addrEofB = addrEofA; 2802 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2803 }else{ 2804 VdbeNoopComment((v, "eof-B subroutine")); 2805 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2806 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2807 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2808 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2809 } 2810 2811 /* Generate code to handle the case of A<B 2812 */ 2813 VdbeNoopComment((v, "A-lt-B subroutine")); 2814 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2815 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2816 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2817 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2818 2819 /* Generate code to handle the case of A==B 2820 */ 2821 if( op==TK_ALL ){ 2822 addrAeqB = addrAltB; 2823 }else if( op==TK_INTERSECT ){ 2824 addrAeqB = addrAltB; 2825 addrAltB++; 2826 }else{ 2827 VdbeNoopComment((v, "A-eq-B subroutine")); 2828 addrAeqB = 2829 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2830 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2831 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2832 } 2833 2834 /* Generate code to handle the case of A>B 2835 */ 2836 VdbeNoopComment((v, "A-gt-B subroutine")); 2837 addrAgtB = sqlite3VdbeCurrentAddr(v); 2838 if( op==TK_ALL || op==TK_UNION ){ 2839 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2840 } 2841 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2842 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2843 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2844 2845 /* This code runs once to initialize everything. 2846 */ 2847 sqlite3VdbeJumpHere(v, j1); 2848 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2849 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2850 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2851 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2852 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2853 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2854 2855 /* Implement the main merge loop 2856 */ 2857 sqlite3VdbeResolveLabel(v, labelCmpr); 2858 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2859 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2860 (char*)pKeyMerge, P4_KEYINFO); 2861 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2862 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2863 2864 /* Jump to the this point in order to terminate the query. 2865 */ 2866 sqlite3VdbeResolveLabel(v, labelEnd); 2867 2868 /* Set the number of output columns 2869 */ 2870 if( pDest->eDest==SRT_Output ){ 2871 Select *pFirst = pPrior; 2872 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2873 generateColumnNames(pParse, 0, pFirst->pEList); 2874 } 2875 2876 /* Reassembly the compound query so that it will be freed correctly 2877 ** by the calling function */ 2878 if( p->pPrior ){ 2879 sqlite3SelectDelete(db, p->pPrior); 2880 } 2881 p->pPrior = pPrior; 2882 2883 /*** TBD: Insert subroutine calls to close cursors on incomplete 2884 **** subqueries ****/ 2885 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2886 return SQLITE_OK; 2887 } 2888 #endif 2889 2890 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2891 /* Forward Declarations */ 2892 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2893 static void substSelect(sqlite3*, Select *, int, ExprList *); 2894 2895 /* 2896 ** Scan through the expression pExpr. Replace every reference to 2897 ** a column in table number iTable with a copy of the iColumn-th 2898 ** entry in pEList. (But leave references to the ROWID column 2899 ** unchanged.) 2900 ** 2901 ** This routine is part of the flattening procedure. A subquery 2902 ** whose result set is defined by pEList appears as entry in the 2903 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2904 ** FORM clause entry is iTable. This routine make the necessary 2905 ** changes to pExpr so that it refers directly to the source table 2906 ** of the subquery rather the result set of the subquery. 2907 */ 2908 static Expr *substExpr( 2909 sqlite3 *db, /* Report malloc errors to this connection */ 2910 Expr *pExpr, /* Expr in which substitution occurs */ 2911 int iTable, /* Table to be substituted */ 2912 ExprList *pEList /* Substitute expressions */ 2913 ){ 2914 if( pExpr==0 ) return 0; 2915 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2916 if( pExpr->iColumn<0 ){ 2917 pExpr->op = TK_NULL; 2918 }else{ 2919 Expr *pNew; 2920 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2921 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2922 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2923 sqlite3ExprDelete(db, pExpr); 2924 pExpr = pNew; 2925 } 2926 }else{ 2927 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2928 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2929 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2930 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2931 }else{ 2932 substExprList(db, pExpr->x.pList, iTable, pEList); 2933 } 2934 } 2935 return pExpr; 2936 } 2937 static void substExprList( 2938 sqlite3 *db, /* Report malloc errors here */ 2939 ExprList *pList, /* List to scan and in which to make substitutes */ 2940 int iTable, /* Table to be substituted */ 2941 ExprList *pEList /* Substitute values */ 2942 ){ 2943 int i; 2944 if( pList==0 ) return; 2945 for(i=0; i<pList->nExpr; i++){ 2946 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2947 } 2948 } 2949 static void substSelect( 2950 sqlite3 *db, /* Report malloc errors here */ 2951 Select *p, /* SELECT statement in which to make substitutions */ 2952 int iTable, /* Table to be replaced */ 2953 ExprList *pEList /* Substitute values */ 2954 ){ 2955 SrcList *pSrc; 2956 struct SrcList_item *pItem; 2957 int i; 2958 if( !p ) return; 2959 substExprList(db, p->pEList, iTable, pEList); 2960 substExprList(db, p->pGroupBy, iTable, pEList); 2961 substExprList(db, p->pOrderBy, iTable, pEList); 2962 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2963 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2964 substSelect(db, p->pPrior, iTable, pEList); 2965 pSrc = p->pSrc; 2966 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2967 if( ALWAYS(pSrc) ){ 2968 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2969 substSelect(db, pItem->pSelect, iTable, pEList); 2970 } 2971 } 2972 } 2973 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2974 2975 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2976 /* 2977 ** This routine attempts to flatten subqueries as a performance optimization. 2978 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2979 ** 2980 ** To understand the concept of flattening, consider the following 2981 ** query: 2982 ** 2983 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2984 ** 2985 ** The default way of implementing this query is to execute the 2986 ** subquery first and store the results in a temporary table, then 2987 ** run the outer query on that temporary table. This requires two 2988 ** passes over the data. Furthermore, because the temporary table 2989 ** has no indices, the WHERE clause on the outer query cannot be 2990 ** optimized. 2991 ** 2992 ** This routine attempts to rewrite queries such as the above into 2993 ** a single flat select, like this: 2994 ** 2995 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2996 ** 2997 ** The code generated for this simpification gives the same result 2998 ** but only has to scan the data once. And because indices might 2999 ** exist on the table t1, a complete scan of the data might be 3000 ** avoided. 3001 ** 3002 ** Flattening is only attempted if all of the following are true: 3003 ** 3004 ** (1) The subquery and the outer query do not both use aggregates. 3005 ** 3006 ** (2) The subquery is not an aggregate or the outer query is not a join. 3007 ** 3008 ** (3) The subquery is not the right operand of a left outer join 3009 ** (Originally ticket #306. Strengthened by ticket #3300) 3010 ** 3011 ** (4) The subquery is not DISTINCT. 3012 ** 3013 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3014 ** sub-queries that were excluded from this optimization. Restriction 3015 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3016 ** 3017 ** (6) The subquery does not use aggregates or the outer query is not 3018 ** DISTINCT. 3019 ** 3020 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3021 ** A FROM clause, consider adding a FROM close with the special 3022 ** table sqlite_once that consists of a single row containing a 3023 ** single NULL. 3024 ** 3025 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3026 ** 3027 ** (9) The subquery does not use LIMIT or the outer query does not use 3028 ** aggregates. 3029 ** 3030 ** (10) The subquery does not use aggregates or the outer query does not 3031 ** use LIMIT. 3032 ** 3033 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3034 ** 3035 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3036 ** a separate restriction deriving from ticket #350. 3037 ** 3038 ** (13) The subquery and outer query do not both use LIMIT. 3039 ** 3040 ** (14) The subquery does not use OFFSET. 3041 ** 3042 ** (15) The outer query is not part of a compound select or the 3043 ** subquery does not have a LIMIT clause. 3044 ** (See ticket #2339 and ticket [02a8e81d44]). 3045 ** 3046 ** (16) The outer query is not an aggregate or the subquery does 3047 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3048 ** until we introduced the group_concat() function. 3049 ** 3050 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3051 ** compound clause made up entirely of non-aggregate queries, and 3052 ** the parent query: 3053 ** 3054 ** * is not itself part of a compound select, 3055 ** * is not an aggregate or DISTINCT query, and 3056 ** * is not a join 3057 ** 3058 ** The parent and sub-query may contain WHERE clauses. Subject to 3059 ** rules (11), (13) and (14), they may also contain ORDER BY, 3060 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3061 ** operator other than UNION ALL because all the other compound 3062 ** operators have an implied DISTINCT which is disallowed by 3063 ** restriction (4). 3064 ** 3065 ** Also, each component of the sub-query must return the same number 3066 ** of result columns. This is actually a requirement for any compound 3067 ** SELECT statement, but all the code here does is make sure that no 3068 ** such (illegal) sub-query is flattened. The caller will detect the 3069 ** syntax error and return a detailed message. 3070 ** 3071 ** (18) If the sub-query is a compound select, then all terms of the 3072 ** ORDER by clause of the parent must be simple references to 3073 ** columns of the sub-query. 3074 ** 3075 ** (19) The subquery does not use LIMIT or the outer query does not 3076 ** have a WHERE clause. 3077 ** 3078 ** (20) If the sub-query is a compound select, then it must not use 3079 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3080 ** somewhat by saying that the terms of the ORDER BY clause must 3081 ** appear as unmodified result columns in the outer query. But we 3082 ** have other optimizations in mind to deal with that case. 3083 ** 3084 ** (21) The subquery does not use LIMIT or the outer query is not 3085 ** DISTINCT. (See ticket [752e1646fc]). 3086 ** 3087 ** (22) The subquery is not a recursive CTE. 3088 ** 3089 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3090 ** compound query. This restriction is because transforming the 3091 ** parent to a compound query confuses the code that handles 3092 ** recursive queries in multiSelect(). 3093 ** 3094 ** 3095 ** In this routine, the "p" parameter is a pointer to the outer query. 3096 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3097 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3098 ** 3099 ** If flattening is not attempted, this routine is a no-op and returns 0. 3100 ** If flattening is attempted this routine returns 1. 3101 ** 3102 ** All of the expression analysis must occur on both the outer query and 3103 ** the subquery before this routine runs. 3104 */ 3105 static int flattenSubquery( 3106 Parse *pParse, /* Parsing context */ 3107 Select *p, /* The parent or outer SELECT statement */ 3108 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3109 int isAgg, /* True if outer SELECT uses aggregate functions */ 3110 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3111 ){ 3112 const char *zSavedAuthContext = pParse->zAuthContext; 3113 Select *pParent; 3114 Select *pSub; /* The inner query or "subquery" */ 3115 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3116 SrcList *pSrc; /* The FROM clause of the outer query */ 3117 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3118 ExprList *pList; /* The result set of the outer query */ 3119 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3120 int i; /* Loop counter */ 3121 Expr *pWhere; /* The WHERE clause */ 3122 struct SrcList_item *pSubitem; /* The subquery */ 3123 sqlite3 *db = pParse->db; 3124 3125 /* Check to see if flattening is permitted. Return 0 if not. 3126 */ 3127 assert( p!=0 ); 3128 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3129 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3130 pSrc = p->pSrc; 3131 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3132 pSubitem = &pSrc->a[iFrom]; 3133 iParent = pSubitem->iCursor; 3134 pSub = pSubitem->pSelect; 3135 assert( pSub!=0 ); 3136 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3137 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3138 pSubSrc = pSub->pSrc; 3139 assert( pSubSrc ); 3140 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3141 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3142 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3143 ** became arbitrary expressions, we were forced to add restrictions (13) 3144 ** and (14). */ 3145 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3146 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3147 if( p->pRightmost && pSub->pLimit ){ 3148 return 0; /* Restriction (15) */ 3149 } 3150 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3151 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3152 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3153 return 0; /* Restrictions (8)(9) */ 3154 } 3155 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3156 return 0; /* Restriction (6) */ 3157 } 3158 if( p->pOrderBy && pSub->pOrderBy ){ 3159 return 0; /* Restriction (11) */ 3160 } 3161 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3162 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3163 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3164 return 0; /* Restriction (21) */ 3165 } 3166 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3167 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3168 3169 /* OBSOLETE COMMENT 1: 3170 ** Restriction 3: If the subquery is a join, make sure the subquery is 3171 ** not used as the right operand of an outer join. Examples of why this 3172 ** is not allowed: 3173 ** 3174 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3175 ** 3176 ** If we flatten the above, we would get 3177 ** 3178 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3179 ** 3180 ** which is not at all the same thing. 3181 ** 3182 ** OBSOLETE COMMENT 2: 3183 ** Restriction 12: If the subquery is the right operand of a left outer 3184 ** join, make sure the subquery has no WHERE clause. 3185 ** An examples of why this is not allowed: 3186 ** 3187 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3188 ** 3189 ** If we flatten the above, we would get 3190 ** 3191 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3192 ** 3193 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3194 ** effectively converts the OUTER JOIN into an INNER JOIN. 3195 ** 3196 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3197 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3198 ** is fraught with danger. Best to avoid the whole thing. If the 3199 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3200 */ 3201 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3202 return 0; 3203 } 3204 3205 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3206 ** use only the UNION ALL operator. And none of the simple select queries 3207 ** that make up the compound SELECT are allowed to be aggregate or distinct 3208 ** queries. 3209 */ 3210 if( pSub->pPrior ){ 3211 if( pSub->pOrderBy ){ 3212 return 0; /* Restriction 20 */ 3213 } 3214 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3215 return 0; 3216 } 3217 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3218 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3219 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3220 assert( pSub->pSrc!=0 ); 3221 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3222 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3223 || pSub1->pSrc->nSrc<1 3224 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3225 ){ 3226 return 0; 3227 } 3228 testcase( pSub1->pSrc->nSrc>1 ); 3229 } 3230 3231 /* Restriction 18. */ 3232 if( p->pOrderBy ){ 3233 int ii; 3234 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3235 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3236 } 3237 } 3238 } 3239 3240 /***** If we reach this point, flattening is permitted. *****/ 3241 3242 /* Authorize the subquery */ 3243 pParse->zAuthContext = pSubitem->zName; 3244 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3245 testcase( i==SQLITE_DENY ); 3246 pParse->zAuthContext = zSavedAuthContext; 3247 3248 /* If the sub-query is a compound SELECT statement, then (by restrictions 3249 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3250 ** be of the form: 3251 ** 3252 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3253 ** 3254 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3255 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3256 ** OFFSET clauses and joins them to the left-hand-side of the original 3257 ** using UNION ALL operators. In this case N is the number of simple 3258 ** select statements in the compound sub-query. 3259 ** 3260 ** Example: 3261 ** 3262 ** SELECT a+1 FROM ( 3263 ** SELECT x FROM tab 3264 ** UNION ALL 3265 ** SELECT y FROM tab 3266 ** UNION ALL 3267 ** SELECT abs(z*2) FROM tab2 3268 ** ) WHERE a!=5 ORDER BY 1 3269 ** 3270 ** Transformed into: 3271 ** 3272 ** SELECT x+1 FROM tab WHERE x+1!=5 3273 ** UNION ALL 3274 ** SELECT y+1 FROM tab WHERE y+1!=5 3275 ** UNION ALL 3276 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3277 ** ORDER BY 1 3278 ** 3279 ** We call this the "compound-subquery flattening". 3280 */ 3281 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3282 Select *pNew; 3283 ExprList *pOrderBy = p->pOrderBy; 3284 Expr *pLimit = p->pLimit; 3285 Expr *pOffset = p->pOffset; 3286 Select *pPrior = p->pPrior; 3287 p->pOrderBy = 0; 3288 p->pSrc = 0; 3289 p->pPrior = 0; 3290 p->pLimit = 0; 3291 p->pOffset = 0; 3292 pNew = sqlite3SelectDup(db, p, 0); 3293 p->pOffset = pOffset; 3294 p->pLimit = pLimit; 3295 p->pOrderBy = pOrderBy; 3296 p->pSrc = pSrc; 3297 p->op = TK_ALL; 3298 p->pRightmost = 0; 3299 if( pNew==0 ){ 3300 pNew = pPrior; 3301 }else{ 3302 pNew->pPrior = pPrior; 3303 pNew->pRightmost = 0; 3304 } 3305 p->pPrior = pNew; 3306 if( db->mallocFailed ) return 1; 3307 } 3308 3309 /* Begin flattening the iFrom-th entry of the FROM clause 3310 ** in the outer query. 3311 */ 3312 pSub = pSub1 = pSubitem->pSelect; 3313 3314 /* Delete the transient table structure associated with the 3315 ** subquery 3316 */ 3317 sqlite3DbFree(db, pSubitem->zDatabase); 3318 sqlite3DbFree(db, pSubitem->zName); 3319 sqlite3DbFree(db, pSubitem->zAlias); 3320 pSubitem->zDatabase = 0; 3321 pSubitem->zName = 0; 3322 pSubitem->zAlias = 0; 3323 pSubitem->pSelect = 0; 3324 3325 /* Defer deleting the Table object associated with the 3326 ** subquery until code generation is 3327 ** complete, since there may still exist Expr.pTab entries that 3328 ** refer to the subquery even after flattening. Ticket #3346. 3329 ** 3330 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3331 */ 3332 if( ALWAYS(pSubitem->pTab!=0) ){ 3333 Table *pTabToDel = pSubitem->pTab; 3334 if( pTabToDel->nRef==1 ){ 3335 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3336 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3337 pToplevel->pZombieTab = pTabToDel; 3338 }else{ 3339 pTabToDel->nRef--; 3340 } 3341 pSubitem->pTab = 0; 3342 } 3343 3344 /* The following loop runs once for each term in a compound-subquery 3345 ** flattening (as described above). If we are doing a different kind 3346 ** of flattening - a flattening other than a compound-subquery flattening - 3347 ** then this loop only runs once. 3348 ** 3349 ** This loop moves all of the FROM elements of the subquery into the 3350 ** the FROM clause of the outer query. Before doing this, remember 3351 ** the cursor number for the original outer query FROM element in 3352 ** iParent. The iParent cursor will never be used. Subsequent code 3353 ** will scan expressions looking for iParent references and replace 3354 ** those references with expressions that resolve to the subquery FROM 3355 ** elements we are now copying in. 3356 */ 3357 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3358 int nSubSrc; 3359 u8 jointype = 0; 3360 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3361 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3362 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3363 3364 if( pSrc ){ 3365 assert( pParent==p ); /* First time through the loop */ 3366 jointype = pSubitem->jointype; 3367 }else{ 3368 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3369 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3370 if( pSrc==0 ){ 3371 assert( db->mallocFailed ); 3372 break; 3373 } 3374 } 3375 3376 /* The subquery uses a single slot of the FROM clause of the outer 3377 ** query. If the subquery has more than one element in its FROM clause, 3378 ** then expand the outer query to make space for it to hold all elements 3379 ** of the subquery. 3380 ** 3381 ** Example: 3382 ** 3383 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3384 ** 3385 ** The outer query has 3 slots in its FROM clause. One slot of the 3386 ** outer query (the middle slot) is used by the subquery. The next 3387 ** block of code will expand the out query to 4 slots. The middle 3388 ** slot is expanded to two slots in order to make space for the 3389 ** two elements in the FROM clause of the subquery. 3390 */ 3391 if( nSubSrc>1 ){ 3392 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3393 if( db->mallocFailed ){ 3394 break; 3395 } 3396 } 3397 3398 /* Transfer the FROM clause terms from the subquery into the 3399 ** outer query. 3400 */ 3401 for(i=0; i<nSubSrc; i++){ 3402 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3403 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3404 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3405 } 3406 pSrc->a[iFrom].jointype = jointype; 3407 3408 /* Now begin substituting subquery result set expressions for 3409 ** references to the iParent in the outer query. 3410 ** 3411 ** Example: 3412 ** 3413 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3414 ** \ \_____________ subquery __________/ / 3415 ** \_____________________ outer query ______________________________/ 3416 ** 3417 ** We look at every expression in the outer query and every place we see 3418 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3419 */ 3420 pList = pParent->pEList; 3421 for(i=0; i<pList->nExpr; i++){ 3422 if( pList->a[i].zName==0 ){ 3423 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3424 sqlite3Dequote(zName); 3425 pList->a[i].zName = zName; 3426 } 3427 } 3428 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3429 if( isAgg ){ 3430 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3431 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3432 } 3433 if( pSub->pOrderBy ){ 3434 assert( pParent->pOrderBy==0 ); 3435 pParent->pOrderBy = pSub->pOrderBy; 3436 pSub->pOrderBy = 0; 3437 }else if( pParent->pOrderBy ){ 3438 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3439 } 3440 if( pSub->pWhere ){ 3441 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3442 }else{ 3443 pWhere = 0; 3444 } 3445 if( subqueryIsAgg ){ 3446 assert( pParent->pHaving==0 ); 3447 pParent->pHaving = pParent->pWhere; 3448 pParent->pWhere = pWhere; 3449 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3450 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3451 sqlite3ExprDup(db, pSub->pHaving, 0)); 3452 assert( pParent->pGroupBy==0 ); 3453 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3454 }else{ 3455 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3456 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3457 } 3458 3459 /* The flattened query is distinct if either the inner or the 3460 ** outer query is distinct. 3461 */ 3462 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3463 3464 /* 3465 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3466 ** 3467 ** One is tempted to try to add a and b to combine the limits. But this 3468 ** does not work if either limit is negative. 3469 */ 3470 if( pSub->pLimit ){ 3471 pParent->pLimit = pSub->pLimit; 3472 pSub->pLimit = 0; 3473 } 3474 } 3475 3476 /* Finially, delete what is left of the subquery and return 3477 ** success. 3478 */ 3479 sqlite3SelectDelete(db, pSub1); 3480 3481 return 1; 3482 } 3483 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3484 3485 /* 3486 ** Based on the contents of the AggInfo structure indicated by the first 3487 ** argument, this function checks if the following are true: 3488 ** 3489 ** * the query contains just a single aggregate function, 3490 ** * the aggregate function is either min() or max(), and 3491 ** * the argument to the aggregate function is a column value. 3492 ** 3493 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3494 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3495 ** list of arguments passed to the aggregate before returning. 3496 ** 3497 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3498 ** WHERE_ORDERBY_NORMAL is returned. 3499 */ 3500 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3501 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3502 3503 *ppMinMax = 0; 3504 if( pAggInfo->nFunc==1 ){ 3505 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3506 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3507 3508 assert( pExpr->op==TK_AGG_FUNCTION ); 3509 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3510 const char *zFunc = pExpr->u.zToken; 3511 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3512 eRet = WHERE_ORDERBY_MIN; 3513 *ppMinMax = pEList; 3514 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3515 eRet = WHERE_ORDERBY_MAX; 3516 *ppMinMax = pEList; 3517 } 3518 } 3519 } 3520 3521 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3522 return eRet; 3523 } 3524 3525 /* 3526 ** The select statement passed as the first argument is an aggregate query. 3527 ** The second argment is the associated aggregate-info object. This 3528 ** function tests if the SELECT is of the form: 3529 ** 3530 ** SELECT count(*) FROM <tbl> 3531 ** 3532 ** where table is a database table, not a sub-select or view. If the query 3533 ** does match this pattern, then a pointer to the Table object representing 3534 ** <tbl> is returned. Otherwise, 0 is returned. 3535 */ 3536 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3537 Table *pTab; 3538 Expr *pExpr; 3539 3540 assert( !p->pGroupBy ); 3541 3542 if( p->pWhere || p->pEList->nExpr!=1 3543 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3544 ){ 3545 return 0; 3546 } 3547 pTab = p->pSrc->a[0].pTab; 3548 pExpr = p->pEList->a[0].pExpr; 3549 assert( pTab && !pTab->pSelect && pExpr ); 3550 3551 if( IsVirtual(pTab) ) return 0; 3552 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3553 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3554 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3555 if( pExpr->flags&EP_Distinct ) return 0; 3556 3557 return pTab; 3558 } 3559 3560 /* 3561 ** If the source-list item passed as an argument was augmented with an 3562 ** INDEXED BY clause, then try to locate the specified index. If there 3563 ** was such a clause and the named index cannot be found, return 3564 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3565 ** pFrom->pIndex and return SQLITE_OK. 3566 */ 3567 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3568 if( pFrom->pTab && pFrom->zIndex ){ 3569 Table *pTab = pFrom->pTab; 3570 char *zIndex = pFrom->zIndex; 3571 Index *pIdx; 3572 for(pIdx=pTab->pIndex; 3573 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3574 pIdx=pIdx->pNext 3575 ); 3576 if( !pIdx ){ 3577 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3578 pParse->checkSchema = 1; 3579 return SQLITE_ERROR; 3580 } 3581 pFrom->pIndex = pIdx; 3582 } 3583 return SQLITE_OK; 3584 } 3585 /* 3586 ** Detect compound SELECT statements that use an ORDER BY clause with 3587 ** an alternative collating sequence. 3588 ** 3589 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3590 ** 3591 ** These are rewritten as a subquery: 3592 ** 3593 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3594 ** ORDER BY ... COLLATE ... 3595 ** 3596 ** This transformation is necessary because the multiSelectOrderBy() routine 3597 ** above that generates the code for a compound SELECT with an ORDER BY clause 3598 ** uses a merge algorithm that requires the same collating sequence on the 3599 ** result columns as on the ORDER BY clause. See ticket 3600 ** http://www.sqlite.org/src/info/6709574d2a 3601 ** 3602 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3603 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3604 ** there are COLLATE terms in the ORDER BY. 3605 */ 3606 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3607 int i; 3608 Select *pNew; 3609 Select *pX; 3610 sqlite3 *db; 3611 struct ExprList_item *a; 3612 SrcList *pNewSrc; 3613 Parse *pParse; 3614 Token dummy; 3615 3616 if( p->pPrior==0 ) return WRC_Continue; 3617 if( p->pOrderBy==0 ) return WRC_Continue; 3618 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3619 if( pX==0 ) return WRC_Continue; 3620 a = p->pOrderBy->a; 3621 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3622 if( a[i].pExpr->flags & EP_Collate ) break; 3623 } 3624 if( i<0 ) return WRC_Continue; 3625 3626 /* If we reach this point, that means the transformation is required. */ 3627 3628 pParse = pWalker->pParse; 3629 db = pParse->db; 3630 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3631 if( pNew==0 ) return WRC_Abort; 3632 memset(&dummy, 0, sizeof(dummy)); 3633 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3634 if( pNewSrc==0 ) return WRC_Abort; 3635 *pNew = *p; 3636 p->pSrc = pNewSrc; 3637 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3638 p->op = TK_SELECT; 3639 p->pWhere = 0; 3640 pNew->pGroupBy = 0; 3641 pNew->pHaving = 0; 3642 pNew->pOrderBy = 0; 3643 p->pPrior = 0; 3644 pNew->pLimit = 0; 3645 pNew->pOffset = 0; 3646 return WRC_Continue; 3647 } 3648 3649 #ifndef SQLITE_OMIT_CTE 3650 /* 3651 ** Argument pWith (which may be NULL) points to a linked list of nested 3652 ** WITH contexts, from inner to outermost. If the table identified by 3653 ** FROM clause element pItem is really a common-table-expression (CTE) 3654 ** then return a pointer to the CTE definition for that table. Otherwise 3655 ** return NULL. 3656 ** 3657 ** If a non-NULL value is returned, set *ppContext to point to the With 3658 ** object that the returned CTE belongs to. 3659 */ 3660 static struct Cte *searchWith( 3661 With *pWith, /* Current outermost WITH clause */ 3662 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3663 With **ppContext /* OUT: WITH clause return value belongs to */ 3664 ){ 3665 const char *zName; 3666 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3667 With *p; 3668 for(p=pWith; p; p=p->pOuter){ 3669 int i; 3670 for(i=0; i<p->nCte; i++){ 3671 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3672 *ppContext = p; 3673 return &p->a[i]; 3674 } 3675 } 3676 } 3677 } 3678 return 0; 3679 } 3680 3681 /* The code generator maintains a stack of active WITH clauses 3682 ** with the inner-most WITH clause being at the top of the stack. 3683 ** 3684 ** This routine pushes the WITH clause passed as the second argument 3685 ** onto the top of the stack. If argument bFree is true, then this 3686 ** WITH clause will never be popped from the stack. In this case it 3687 ** should be freed along with the Parse object. In other cases, when 3688 ** bFree==0, the With object will be freed along with the SELECT 3689 ** statement with which it is associated. 3690 */ 3691 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3692 assert( bFree==0 || pParse->pWith==0 ); 3693 if( pWith ){ 3694 pWith->pOuter = pParse->pWith; 3695 pParse->pWith = pWith; 3696 pParse->bFreeWith = bFree; 3697 } 3698 } 3699 3700 /* 3701 ** This function checks if argument pFrom refers to a CTE declared by 3702 ** a WITH clause on the stack currently maintained by the parser. And, 3703 ** if currently processing a CTE expression, if it is a recursive 3704 ** reference to the current CTE. 3705 ** 3706 ** If pFrom falls into either of the two categories above, pFrom->pTab 3707 ** and other fields are populated accordingly. The caller should check 3708 ** (pFrom->pTab!=0) to determine whether or not a successful match 3709 ** was found. 3710 ** 3711 ** Whether or not a match is found, SQLITE_OK is returned if no error 3712 ** occurs. If an error does occur, an error message is stored in the 3713 ** parser and some error code other than SQLITE_OK returned. 3714 */ 3715 static int withExpand( 3716 Walker *pWalker, 3717 struct SrcList_item *pFrom 3718 ){ 3719 Parse *pParse = pWalker->pParse; 3720 sqlite3 *db = pParse->db; 3721 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3722 With *pWith; /* WITH clause that pCte belongs to */ 3723 3724 assert( pFrom->pTab==0 ); 3725 3726 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3727 if( pCte ){ 3728 Table *pTab; 3729 ExprList *pEList; 3730 Select *pSel; 3731 Select *pLeft; /* Left-most SELECT statement */ 3732 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3733 With *pSavedWith; /* Initial value of pParse->pWith */ 3734 3735 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3736 ** recursive reference to CTE pCte. Leave an error in pParse and return 3737 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3738 ** In this case, proceed. */ 3739 if( pCte->zErr ){ 3740 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3741 return SQLITE_ERROR; 3742 } 3743 3744 assert( pFrom->pTab==0 ); 3745 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3746 if( pTab==0 ) return WRC_Abort; 3747 pTab->nRef = 1; 3748 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3749 pTab->iPKey = -1; 3750 pTab->nRowEst = 1048576; 3751 pTab->tabFlags |= TF_Ephemeral; 3752 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3753 if( db->mallocFailed ) return SQLITE_NOMEM; 3754 assert( pFrom->pSelect ); 3755 3756 /* Check if this is a recursive CTE. */ 3757 pSel = pFrom->pSelect; 3758 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3759 if( bMayRecursive ){ 3760 int i; 3761 SrcList *pSrc = pFrom->pSelect->pSrc; 3762 for(i=0; i<pSrc->nSrc; i++){ 3763 struct SrcList_item *pItem = &pSrc->a[i]; 3764 if( pItem->zDatabase==0 3765 && pItem->zName!=0 3766 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3767 ){ 3768 pItem->pTab = pTab; 3769 pItem->isRecursive = 1; 3770 pTab->nRef++; 3771 pSel->selFlags |= SF_Recursive; 3772 } 3773 } 3774 } 3775 3776 /* Only one recursive reference is permitted. */ 3777 if( pTab->nRef>2 ){ 3778 sqlite3ErrorMsg( 3779 pParse, "multiple references to recursive table: %s", pCte->zName 3780 ); 3781 return SQLITE_ERROR; 3782 } 3783 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3784 3785 pCte->zErr = "circular reference: %s"; 3786 pSavedWith = pParse->pWith; 3787 pParse->pWith = pWith; 3788 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3789 3790 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3791 pEList = pLeft->pEList; 3792 if( pCte->pCols ){ 3793 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3794 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3795 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3796 ); 3797 pParse->pWith = pSavedWith; 3798 return SQLITE_ERROR; 3799 } 3800 pEList = pCte->pCols; 3801 } 3802 3803 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3804 if( bMayRecursive ){ 3805 if( pSel->selFlags & SF_Recursive ){ 3806 pCte->zErr = "multiple recursive references: %s"; 3807 }else{ 3808 pCte->zErr = "recursive reference in a subquery: %s"; 3809 } 3810 sqlite3WalkSelect(pWalker, pSel); 3811 } 3812 pCte->zErr = 0; 3813 pParse->pWith = pSavedWith; 3814 } 3815 3816 return SQLITE_OK; 3817 } 3818 #endif 3819 3820 #ifndef SQLITE_OMIT_CTE 3821 /* 3822 ** If the SELECT passed as the second argument has an associated WITH 3823 ** clause, pop it from the stack stored as part of the Parse object. 3824 ** 3825 ** This function is used as the xSelectCallback2() callback by 3826 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3827 ** names and other FROM clause elements. 3828 */ 3829 static void selectPopWith(Walker *pWalker, Select *p){ 3830 Parse *pParse = pWalker->pParse; 3831 if( p->pWith ){ 3832 assert( pParse->pWith==p->pWith ); 3833 pParse->pWith = p->pWith->pOuter; 3834 } 3835 } 3836 #else 3837 #define selectPopWith 0 3838 #endif 3839 3840 /* 3841 ** This routine is a Walker callback for "expanding" a SELECT statement. 3842 ** "Expanding" means to do the following: 3843 ** 3844 ** (1) Make sure VDBE cursor numbers have been assigned to every 3845 ** element of the FROM clause. 3846 ** 3847 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3848 ** defines FROM clause. When views appear in the FROM clause, 3849 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3850 ** that implements the view. A copy is made of the view's SELECT 3851 ** statement so that we can freely modify or delete that statement 3852 ** without worrying about messing up the presistent representation 3853 ** of the view. 3854 ** 3855 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3856 ** on joins and the ON and USING clause of joins. 3857 ** 3858 ** (4) Scan the list of columns in the result set (pEList) looking 3859 ** for instances of the "*" operator or the TABLE.* operator. 3860 ** If found, expand each "*" to be every column in every table 3861 ** and TABLE.* to be every column in TABLE. 3862 ** 3863 */ 3864 static int selectExpander(Walker *pWalker, Select *p){ 3865 Parse *pParse = pWalker->pParse; 3866 int i, j, k; 3867 SrcList *pTabList; 3868 ExprList *pEList; 3869 struct SrcList_item *pFrom; 3870 sqlite3 *db = pParse->db; 3871 Expr *pE, *pRight, *pExpr; 3872 u16 selFlags = p->selFlags; 3873 3874 p->selFlags |= SF_Expanded; 3875 if( db->mallocFailed ){ 3876 return WRC_Abort; 3877 } 3878 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3879 return WRC_Prune; 3880 } 3881 pTabList = p->pSrc; 3882 pEList = p->pEList; 3883 sqlite3WithPush(pParse, p->pWith, 0); 3884 3885 /* Make sure cursor numbers have been assigned to all entries in 3886 ** the FROM clause of the SELECT statement. 3887 */ 3888 sqlite3SrcListAssignCursors(pParse, pTabList); 3889 3890 /* Look up every table named in the FROM clause of the select. If 3891 ** an entry of the FROM clause is a subquery instead of a table or view, 3892 ** then create a transient table structure to describe the subquery. 3893 */ 3894 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3895 Table *pTab; 3896 assert( pFrom->isRecursive==0 || pFrom->pTab ); 3897 if( pFrom->isRecursive ) continue; 3898 if( pFrom->pTab!=0 ){ 3899 /* This statement has already been prepared. There is no need 3900 ** to go further. */ 3901 assert( i==0 ); 3902 #ifndef SQLITE_OMIT_CTE 3903 selectPopWith(pWalker, p); 3904 #endif 3905 return WRC_Prune; 3906 } 3907 #ifndef SQLITE_OMIT_CTE 3908 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 3909 if( pFrom->pTab ) {} else 3910 #endif 3911 if( pFrom->zName==0 ){ 3912 #ifndef SQLITE_OMIT_SUBQUERY 3913 Select *pSel = pFrom->pSelect; 3914 /* A sub-query in the FROM clause of a SELECT */ 3915 assert( pSel!=0 ); 3916 assert( pFrom->pTab==0 ); 3917 sqlite3WalkSelect(pWalker, pSel); 3918 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3919 if( pTab==0 ) return WRC_Abort; 3920 pTab->nRef = 1; 3921 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 3922 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3923 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3924 pTab->iPKey = -1; 3925 pTab->nRowEst = 1048576; 3926 pTab->tabFlags |= TF_Ephemeral; 3927 #endif 3928 }else{ 3929 /* An ordinary table or view name in the FROM clause */ 3930 assert( pFrom->pTab==0 ); 3931 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 3932 if( pTab==0 ) return WRC_Abort; 3933 if( pTab->nRef==0xffff ){ 3934 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 3935 pTab->zName); 3936 pFrom->pTab = 0; 3937 return WRC_Abort; 3938 } 3939 pTab->nRef++; 3940 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3941 if( pTab->pSelect || IsVirtual(pTab) ){ 3942 /* We reach here if the named table is a really a view */ 3943 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3944 assert( pFrom->pSelect==0 ); 3945 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3946 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3947 } 3948 #endif 3949 } 3950 3951 /* Locate the index named by the INDEXED BY clause, if any. */ 3952 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3953 return WRC_Abort; 3954 } 3955 } 3956 3957 /* Process NATURAL keywords, and ON and USING clauses of joins. 3958 */ 3959 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3960 return WRC_Abort; 3961 } 3962 3963 /* For every "*" that occurs in the column list, insert the names of 3964 ** all columns in all tables. And for every TABLE.* insert the names 3965 ** of all columns in TABLE. The parser inserted a special expression 3966 ** with the TK_ALL operator for each "*" that it found in the column list. 3967 ** The following code just has to locate the TK_ALL expressions and expand 3968 ** each one to the list of all columns in all tables. 3969 ** 3970 ** The first loop just checks to see if there are any "*" operators 3971 ** that need expanding. 3972 */ 3973 for(k=0; k<pEList->nExpr; k++){ 3974 pE = pEList->a[k].pExpr; 3975 if( pE->op==TK_ALL ) break; 3976 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3977 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3978 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3979 } 3980 if( k<pEList->nExpr ){ 3981 /* 3982 ** If we get here it means the result set contains one or more "*" 3983 ** operators that need to be expanded. Loop through each expression 3984 ** in the result set and expand them one by one. 3985 */ 3986 struct ExprList_item *a = pEList->a; 3987 ExprList *pNew = 0; 3988 int flags = pParse->db->flags; 3989 int longNames = (flags & SQLITE_FullColNames)!=0 3990 && (flags & SQLITE_ShortColNames)==0; 3991 3992 /* When processing FROM-clause subqueries, it is always the case 3993 ** that full_column_names=OFF and short_column_names=ON. The 3994 ** sqlite3ResultSetOfSelect() routine makes it so. */ 3995 assert( (p->selFlags & SF_NestedFrom)==0 3996 || ((flags & SQLITE_FullColNames)==0 && 3997 (flags & SQLITE_ShortColNames)!=0) ); 3998 3999 for(k=0; k<pEList->nExpr; k++){ 4000 pE = a[k].pExpr; 4001 pRight = pE->pRight; 4002 assert( pE->op!=TK_DOT || pRight!=0 ); 4003 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4004 /* This particular expression does not need to be expanded. 4005 */ 4006 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4007 if( pNew ){ 4008 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4009 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4010 a[k].zName = 0; 4011 a[k].zSpan = 0; 4012 } 4013 a[k].pExpr = 0; 4014 }else{ 4015 /* This expression is a "*" or a "TABLE.*" and needs to be 4016 ** expanded. */ 4017 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4018 char *zTName = 0; /* text of name of TABLE */ 4019 if( pE->op==TK_DOT ){ 4020 assert( pE->pLeft!=0 ); 4021 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4022 zTName = pE->pLeft->u.zToken; 4023 } 4024 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4025 Table *pTab = pFrom->pTab; 4026 Select *pSub = pFrom->pSelect; 4027 char *zTabName = pFrom->zAlias; 4028 const char *zSchemaName = 0; 4029 int iDb; 4030 if( zTabName==0 ){ 4031 zTabName = pTab->zName; 4032 } 4033 if( db->mallocFailed ) break; 4034 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4035 pSub = 0; 4036 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4037 continue; 4038 } 4039 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4040 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4041 } 4042 for(j=0; j<pTab->nCol; j++){ 4043 char *zName = pTab->aCol[j].zName; 4044 char *zColname; /* The computed column name */ 4045 char *zToFree; /* Malloced string that needs to be freed */ 4046 Token sColname; /* Computed column name as a token */ 4047 4048 assert( zName ); 4049 if( zTName && pSub 4050 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4051 ){ 4052 continue; 4053 } 4054 4055 /* If a column is marked as 'hidden' (currently only possible 4056 ** for virtual tables), do not include it in the expanded 4057 ** result-set list. 4058 */ 4059 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4060 assert(IsVirtual(pTab)); 4061 continue; 4062 } 4063 tableSeen = 1; 4064 4065 if( i>0 && zTName==0 ){ 4066 if( (pFrom->jointype & JT_NATURAL)!=0 4067 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4068 ){ 4069 /* In a NATURAL join, omit the join columns from the 4070 ** table to the right of the join */ 4071 continue; 4072 } 4073 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4074 /* In a join with a USING clause, omit columns in the 4075 ** using clause from the table on the right. */ 4076 continue; 4077 } 4078 } 4079 pRight = sqlite3Expr(db, TK_ID, zName); 4080 zColname = zName; 4081 zToFree = 0; 4082 if( longNames || pTabList->nSrc>1 ){ 4083 Expr *pLeft; 4084 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4085 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4086 if( zSchemaName ){ 4087 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4088 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4089 } 4090 if( longNames ){ 4091 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4092 zToFree = zColname; 4093 } 4094 }else{ 4095 pExpr = pRight; 4096 } 4097 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4098 sColname.z = zColname; 4099 sColname.n = sqlite3Strlen30(zColname); 4100 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4101 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4102 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4103 if( pSub ){ 4104 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4105 testcase( pX->zSpan==0 ); 4106 }else{ 4107 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4108 zSchemaName, zTabName, zColname); 4109 testcase( pX->zSpan==0 ); 4110 } 4111 pX->bSpanIsTab = 1; 4112 } 4113 sqlite3DbFree(db, zToFree); 4114 } 4115 } 4116 if( !tableSeen ){ 4117 if( zTName ){ 4118 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4119 }else{ 4120 sqlite3ErrorMsg(pParse, "no tables specified"); 4121 } 4122 } 4123 } 4124 } 4125 sqlite3ExprListDelete(db, pEList); 4126 p->pEList = pNew; 4127 } 4128 #if SQLITE_MAX_COLUMN 4129 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4130 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4131 } 4132 #endif 4133 return WRC_Continue; 4134 } 4135 4136 /* 4137 ** No-op routine for the parse-tree walker. 4138 ** 4139 ** When this routine is the Walker.xExprCallback then expression trees 4140 ** are walked without any actions being taken at each node. Presumably, 4141 ** when this routine is used for Walker.xExprCallback then 4142 ** Walker.xSelectCallback is set to do something useful for every 4143 ** subquery in the parser tree. 4144 */ 4145 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4146 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4147 return WRC_Continue; 4148 } 4149 4150 /* 4151 ** This routine "expands" a SELECT statement and all of its subqueries. 4152 ** For additional information on what it means to "expand" a SELECT 4153 ** statement, see the comment on the selectExpand worker callback above. 4154 ** 4155 ** Expanding a SELECT statement is the first step in processing a 4156 ** SELECT statement. The SELECT statement must be expanded before 4157 ** name resolution is performed. 4158 ** 4159 ** If anything goes wrong, an error message is written into pParse. 4160 ** The calling function can detect the problem by looking at pParse->nErr 4161 ** and/or pParse->db->mallocFailed. 4162 */ 4163 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4164 Walker w; 4165 memset(&w, 0, sizeof(w)); 4166 w.xExprCallback = exprWalkNoop; 4167 w.pParse = pParse; 4168 if( pParse->hasCompound ){ 4169 w.xSelectCallback = convertCompoundSelectToSubquery; 4170 sqlite3WalkSelect(&w, pSelect); 4171 } 4172 w.xSelectCallback = selectExpander; 4173 w.xSelectCallback2 = selectPopWith; 4174 sqlite3WalkSelect(&w, pSelect); 4175 } 4176 4177 4178 #ifndef SQLITE_OMIT_SUBQUERY 4179 /* 4180 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4181 ** interface. 4182 ** 4183 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4184 ** information to the Table structure that represents the result set 4185 ** of that subquery. 4186 ** 4187 ** The Table structure that represents the result set was constructed 4188 ** by selectExpander() but the type and collation information was omitted 4189 ** at that point because identifiers had not yet been resolved. This 4190 ** routine is called after identifier resolution. 4191 */ 4192 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4193 Parse *pParse; 4194 int i; 4195 SrcList *pTabList; 4196 struct SrcList_item *pFrom; 4197 4198 assert( p->selFlags & SF_Resolved ); 4199 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4200 p->selFlags |= SF_HasTypeInfo; 4201 pParse = pWalker->pParse; 4202 pTabList = p->pSrc; 4203 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4204 Table *pTab = pFrom->pTab; 4205 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4206 /* A sub-query in the FROM clause of a SELECT */ 4207 Select *pSel = pFrom->pSelect; 4208 if( pSel ){ 4209 while( pSel->pPrior ) pSel = pSel->pPrior; 4210 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4211 } 4212 } 4213 } 4214 } 4215 } 4216 #endif 4217 4218 4219 /* 4220 ** This routine adds datatype and collating sequence information to 4221 ** the Table structures of all FROM-clause subqueries in a 4222 ** SELECT statement. 4223 ** 4224 ** Use this routine after name resolution. 4225 */ 4226 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4227 #ifndef SQLITE_OMIT_SUBQUERY 4228 Walker w; 4229 memset(&w, 0, sizeof(w)); 4230 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4231 w.xExprCallback = exprWalkNoop; 4232 w.pParse = pParse; 4233 sqlite3WalkSelect(&w, pSelect); 4234 #endif 4235 } 4236 4237 4238 /* 4239 ** This routine sets up a SELECT statement for processing. The 4240 ** following is accomplished: 4241 ** 4242 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4243 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4244 ** * ON and USING clauses are shifted into WHERE statements 4245 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4246 ** * Identifiers in expression are matched to tables. 4247 ** 4248 ** This routine acts recursively on all subqueries within the SELECT. 4249 */ 4250 void sqlite3SelectPrep( 4251 Parse *pParse, /* The parser context */ 4252 Select *p, /* The SELECT statement being coded. */ 4253 NameContext *pOuterNC /* Name context for container */ 4254 ){ 4255 sqlite3 *db; 4256 if( NEVER(p==0) ) return; 4257 db = pParse->db; 4258 if( db->mallocFailed ) return; 4259 if( p->selFlags & SF_HasTypeInfo ) return; 4260 sqlite3SelectExpand(pParse, p); 4261 if( pParse->nErr || db->mallocFailed ) return; 4262 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4263 if( pParse->nErr || db->mallocFailed ) return; 4264 sqlite3SelectAddTypeInfo(pParse, p); 4265 } 4266 4267 /* 4268 ** Reset the aggregate accumulator. 4269 ** 4270 ** The aggregate accumulator is a set of memory cells that hold 4271 ** intermediate results while calculating an aggregate. This 4272 ** routine generates code that stores NULLs in all of those memory 4273 ** cells. 4274 */ 4275 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4276 Vdbe *v = pParse->pVdbe; 4277 int i; 4278 struct AggInfo_func *pFunc; 4279 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4280 if( nReg==0 ) return; 4281 #ifdef SQLITE_DEBUG 4282 /* Verify that all AggInfo registers are within the range specified by 4283 ** AggInfo.mnReg..AggInfo.mxReg */ 4284 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4285 for(i=0; i<pAggInfo->nColumn; i++){ 4286 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4287 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4288 } 4289 for(i=0; i<pAggInfo->nFunc; i++){ 4290 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4291 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4292 } 4293 #endif 4294 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4295 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4296 if( pFunc->iDistinct>=0 ){ 4297 Expr *pE = pFunc->pExpr; 4298 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4299 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4300 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4301 "argument"); 4302 pFunc->iDistinct = -1; 4303 }else{ 4304 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0); 4305 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4306 (char*)pKeyInfo, P4_KEYINFO); 4307 } 4308 } 4309 } 4310 } 4311 4312 /* 4313 ** Invoke the OP_AggFinalize opcode for every aggregate function 4314 ** in the AggInfo structure. 4315 */ 4316 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4317 Vdbe *v = pParse->pVdbe; 4318 int i; 4319 struct AggInfo_func *pF; 4320 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4321 ExprList *pList = pF->pExpr->x.pList; 4322 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4323 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4324 (void*)pF->pFunc, P4_FUNCDEF); 4325 } 4326 } 4327 4328 /* 4329 ** Update the accumulator memory cells for an aggregate based on 4330 ** the current cursor position. 4331 */ 4332 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4333 Vdbe *v = pParse->pVdbe; 4334 int i; 4335 int regHit = 0; 4336 int addrHitTest = 0; 4337 struct AggInfo_func *pF; 4338 struct AggInfo_col *pC; 4339 4340 pAggInfo->directMode = 1; 4341 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4342 int nArg; 4343 int addrNext = 0; 4344 int regAgg; 4345 ExprList *pList = pF->pExpr->x.pList; 4346 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4347 if( pList ){ 4348 nArg = pList->nExpr; 4349 regAgg = sqlite3GetTempRange(pParse, nArg); 4350 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4351 }else{ 4352 nArg = 0; 4353 regAgg = 0; 4354 } 4355 if( pF->iDistinct>=0 ){ 4356 addrNext = sqlite3VdbeMakeLabel(v); 4357 assert( nArg==1 ); 4358 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4359 } 4360 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4361 CollSeq *pColl = 0; 4362 struct ExprList_item *pItem; 4363 int j; 4364 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4365 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4366 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4367 } 4368 if( !pColl ){ 4369 pColl = pParse->db->pDfltColl; 4370 } 4371 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4372 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4373 } 4374 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4375 (void*)pF->pFunc, P4_FUNCDEF); 4376 sqlite3VdbeChangeP5(v, (u8)nArg); 4377 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4378 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4379 if( addrNext ){ 4380 sqlite3VdbeResolveLabel(v, addrNext); 4381 sqlite3ExprCacheClear(pParse); 4382 } 4383 } 4384 4385 /* Before populating the accumulator registers, clear the column cache. 4386 ** Otherwise, if any of the required column values are already present 4387 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4388 ** to pC->iMem. But by the time the value is used, the original register 4389 ** may have been used, invalidating the underlying buffer holding the 4390 ** text or blob value. See ticket [883034dcb5]. 4391 ** 4392 ** Another solution would be to change the OP_SCopy used to copy cached 4393 ** values to an OP_Copy. 4394 */ 4395 if( regHit ){ 4396 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); 4397 } 4398 sqlite3ExprCacheClear(pParse); 4399 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4400 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4401 } 4402 pAggInfo->directMode = 0; 4403 sqlite3ExprCacheClear(pParse); 4404 if( addrHitTest ){ 4405 sqlite3VdbeJumpHere(v, addrHitTest); 4406 } 4407 } 4408 4409 /* 4410 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4411 ** count(*) query ("SELECT count(*) FROM pTab"). 4412 */ 4413 #ifndef SQLITE_OMIT_EXPLAIN 4414 static void explainSimpleCount( 4415 Parse *pParse, /* Parse context */ 4416 Table *pTab, /* Table being queried */ 4417 Index *pIdx /* Index used to optimize scan, or NULL */ 4418 ){ 4419 if( pParse->explain==2 ){ 4420 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4421 pTab->zName, 4422 pIdx ? " USING COVERING INDEX " : "", 4423 pIdx ? pIdx->zName : "" 4424 ); 4425 sqlite3VdbeAddOp4( 4426 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4427 ); 4428 } 4429 } 4430 #else 4431 # define explainSimpleCount(a,b,c) 4432 #endif 4433 4434 /* 4435 ** Generate code for the SELECT statement given in the p argument. 4436 ** 4437 ** The results are returned according to the SelectDest structure. 4438 ** See comments in sqliteInt.h for further information. 4439 ** 4440 ** This routine returns the number of errors. If any errors are 4441 ** encountered, then an appropriate error message is left in 4442 ** pParse->zErrMsg. 4443 ** 4444 ** This routine does NOT free the Select structure passed in. The 4445 ** calling function needs to do that. 4446 */ 4447 int sqlite3Select( 4448 Parse *pParse, /* The parser context */ 4449 Select *p, /* The SELECT statement being coded. */ 4450 SelectDest *pDest /* What to do with the query results */ 4451 ){ 4452 int i, j; /* Loop counters */ 4453 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4454 Vdbe *v; /* The virtual machine under construction */ 4455 int isAgg; /* True for select lists like "count(*)" */ 4456 ExprList *pEList; /* List of columns to extract. */ 4457 SrcList *pTabList; /* List of tables to select from */ 4458 Expr *pWhere; /* The WHERE clause. May be NULL */ 4459 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 4460 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4461 Expr *pHaving; /* The HAVING clause. May be NULL */ 4462 int rc = 1; /* Value to return from this function */ 4463 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 4464 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4465 AggInfo sAggInfo; /* Information used by aggregate queries */ 4466 int iEnd; /* Address of the end of the query */ 4467 sqlite3 *db; /* The database connection */ 4468 4469 #ifndef SQLITE_OMIT_EXPLAIN 4470 int iRestoreSelectId = pParse->iSelectId; 4471 pParse->iSelectId = pParse->iNextSelectId++; 4472 #endif 4473 4474 db = pParse->db; 4475 if( p==0 || db->mallocFailed || pParse->nErr ){ 4476 return 1; 4477 } 4478 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4479 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4480 4481 if( IgnorableOrderby(pDest) ){ 4482 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4483 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 4484 /* If ORDER BY makes no difference in the output then neither does 4485 ** DISTINCT so it can be removed too. */ 4486 sqlite3ExprListDelete(db, p->pOrderBy); 4487 p->pOrderBy = 0; 4488 p->selFlags &= ~SF_Distinct; 4489 } 4490 sqlite3SelectPrep(pParse, p, 0); 4491 pOrderBy = p->pOrderBy; 4492 pTabList = p->pSrc; 4493 pEList = p->pEList; 4494 if( pParse->nErr || db->mallocFailed ){ 4495 goto select_end; 4496 } 4497 isAgg = (p->selFlags & SF_Aggregate)!=0; 4498 assert( pEList!=0 ); 4499 4500 /* Begin generating code. 4501 */ 4502 v = sqlite3GetVdbe(pParse); 4503 if( v==0 ) goto select_end; 4504 4505 /* If writing to memory or generating a set 4506 ** only a single column may be output. 4507 */ 4508 #ifndef SQLITE_OMIT_SUBQUERY 4509 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4510 goto select_end; 4511 } 4512 #endif 4513 4514 /* Generate code for all sub-queries in the FROM clause 4515 */ 4516 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4517 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4518 struct SrcList_item *pItem = &pTabList->a[i]; 4519 SelectDest dest; 4520 Select *pSub = pItem->pSelect; 4521 int isAggSub; 4522 4523 if( pSub==0 ) continue; 4524 4525 /* Sometimes the code for a subquery will be generated more than 4526 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4527 ** for example. In that case, do not regenerate the code to manifest 4528 ** a view or the co-routine to implement a view. The first instance 4529 ** is sufficient, though the subroutine to manifest the view does need 4530 ** to be invoked again. */ 4531 if( pItem->addrFillSub ){ 4532 if( pItem->viaCoroutine==0 ){ 4533 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4534 } 4535 continue; 4536 } 4537 4538 /* Increment Parse.nHeight by the height of the largest expression 4539 ** tree referred to by this, the parent select. The child select 4540 ** may contain expression trees of at most 4541 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4542 ** more conservative than necessary, but much easier than enforcing 4543 ** an exact limit. 4544 */ 4545 pParse->nHeight += sqlite3SelectExprHeight(p); 4546 4547 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4548 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4549 /* This subquery can be absorbed into its parent. */ 4550 if( isAggSub ){ 4551 isAgg = 1; 4552 p->selFlags |= SF_Aggregate; 4553 } 4554 i = -1; 4555 }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0 4556 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4557 ){ 4558 /* Implement a co-routine that will return a single row of the result 4559 ** set on each invocation. 4560 */ 4561 int addrTop; 4562 int addrEof; 4563 pItem->regReturn = ++pParse->nMem; 4564 addrEof = ++pParse->nMem; 4565 /* Before coding the OP_Goto to jump to the start of the main routine, 4566 ** ensure that the jump to the verify-schema routine has already 4567 ** been coded. Otherwise, the verify-schema would likely be coded as 4568 ** part of the co-routine. If the main routine then accessed the 4569 ** database before invoking the co-routine for the first time (for 4570 ** example to initialize a LIMIT register from a sub-select), it would 4571 ** be doing so without having verified the schema version and obtained 4572 ** the required db locks. See ticket d6b36be38. */ 4573 sqlite3CodeVerifySchema(pParse, -1); 4574 sqlite3VdbeAddOp0(v, OP_Goto); 4575 addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor); 4576 sqlite3VdbeChangeP5(v, 1); 4577 VdbeComment((v, "coroutine for %s", pItem->pTab->zName)); 4578 pItem->addrFillSub = addrTop; 4579 sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof); 4580 sqlite3VdbeChangeP5(v, 1); 4581 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4582 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4583 sqlite3Select(pParse, pSub, &dest); 4584 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4585 pItem->viaCoroutine = 1; 4586 sqlite3VdbeChangeP2(v, addrTop, dest.iSdst); 4587 sqlite3VdbeChangeP3(v, addrTop, dest.nSdst); 4588 sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof); 4589 sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn); 4590 VdbeComment((v, "end %s", pItem->pTab->zName)); 4591 sqlite3VdbeJumpHere(v, addrTop-1); 4592 sqlite3ClearTempRegCache(pParse); 4593 }else{ 4594 /* Generate a subroutine that will fill an ephemeral table with 4595 ** the content of this subquery. pItem->addrFillSub will point 4596 ** to the address of the generated subroutine. pItem->regReturn 4597 ** is a register allocated to hold the subroutine return address 4598 */ 4599 int topAddr; 4600 int onceAddr = 0; 4601 int retAddr; 4602 assert( pItem->addrFillSub==0 ); 4603 pItem->regReturn = ++pParse->nMem; 4604 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4605 pItem->addrFillSub = topAddr+1; 4606 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); 4607 if( pItem->isCorrelated==0 ){ 4608 /* If the subquery is not correlated and if we are not inside of 4609 ** a trigger, then we only need to compute the value of the subquery 4610 ** once. */ 4611 onceAddr = sqlite3CodeOnce(pParse); 4612 } 4613 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4614 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4615 sqlite3Select(pParse, pSub, &dest); 4616 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4617 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4618 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4619 VdbeComment((v, "end %s", pItem->pTab->zName)); 4620 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4621 sqlite3ClearTempRegCache(pParse); 4622 } 4623 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4624 goto select_end; 4625 } 4626 pParse->nHeight -= sqlite3SelectExprHeight(p); 4627 pTabList = p->pSrc; 4628 if( !IgnorableOrderby(pDest) ){ 4629 pOrderBy = p->pOrderBy; 4630 } 4631 } 4632 pEList = p->pEList; 4633 #endif 4634 pWhere = p->pWhere; 4635 pGroupBy = p->pGroupBy; 4636 pHaving = p->pHaving; 4637 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4638 4639 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4640 /* If there is are a sequence of queries, do the earlier ones first. 4641 */ 4642 if( p->pPrior ){ 4643 if( p->pRightmost==0 ){ 4644 Select *pLoop, *pRight = 0; 4645 int cnt = 0; 4646 int mxSelect; 4647 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 4648 pLoop->pRightmost = p; 4649 pLoop->pNext = pRight; 4650 pRight = pLoop; 4651 } 4652 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 4653 if( mxSelect && cnt>mxSelect ){ 4654 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 4655 goto select_end; 4656 } 4657 } 4658 rc = multiSelect(pParse, p, pDest); 4659 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4660 return rc; 4661 } 4662 #endif 4663 4664 /* If there is both a GROUP BY and an ORDER BY clause and they are 4665 ** identical, then disable the ORDER BY clause since the GROUP BY 4666 ** will cause elements to come out in the correct order. This is 4667 ** an optimization - the correct answer should result regardless. 4668 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 4669 ** to disable this optimization for testing purposes. 4670 */ 4671 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy, -1)==0 4672 && OptimizationEnabled(db, SQLITE_GroupByOrder) ){ 4673 pOrderBy = 0; 4674 } 4675 4676 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4677 ** if the select-list is the same as the ORDER BY list, then this query 4678 ** can be rewritten as a GROUP BY. In other words, this: 4679 ** 4680 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4681 ** 4682 ** is transformed to: 4683 ** 4684 ** SELECT xyz FROM ... GROUP BY xyz 4685 ** 4686 ** The second form is preferred as a single index (or temp-table) may be 4687 ** used for both the ORDER BY and DISTINCT processing. As originally 4688 ** written the query must use a temp-table for at least one of the ORDER 4689 ** BY and DISTINCT, and an index or separate temp-table for the other. 4690 */ 4691 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4692 && sqlite3ExprListCompare(pOrderBy, p->pEList, -1)==0 4693 ){ 4694 p->selFlags &= ~SF_Distinct; 4695 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4696 pGroupBy = p->pGroupBy; 4697 pOrderBy = 0; 4698 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4699 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4700 ** original setting of the SF_Distinct flag, not the current setting */ 4701 assert( sDistinct.isTnct ); 4702 } 4703 4704 /* If there is an ORDER BY clause, then this sorting 4705 ** index might end up being unused if the data can be 4706 ** extracted in pre-sorted order. If that is the case, then the 4707 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4708 ** we figure out that the sorting index is not needed. The addrSortIndex 4709 ** variable is used to facilitate that change. 4710 */ 4711 if( pOrderBy ){ 4712 KeyInfo *pKeyInfo; 4713 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy, 0); 4714 pOrderBy->iECursor = pParse->nTab++; 4715 p->addrOpenEphm[2] = addrSortIndex = 4716 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4717 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 4718 (char*)pKeyInfo, P4_KEYINFO); 4719 }else{ 4720 addrSortIndex = -1; 4721 } 4722 4723 /* If the output is destined for a temporary table, open that table. 4724 */ 4725 if( pDest->eDest==SRT_EphemTab ){ 4726 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4727 } 4728 4729 /* Set the limiter. 4730 */ 4731 iEnd = sqlite3VdbeMakeLabel(v); 4732 p->nSelectRow = LARGEST_INT64; 4733 computeLimitRegisters(pParse, p, iEnd); 4734 if( p->iLimit==0 && addrSortIndex>=0 ){ 4735 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 4736 p->selFlags |= SF_UseSorter; 4737 } 4738 4739 /* Open a virtual index to use for the distinct set. 4740 */ 4741 if( p->selFlags & SF_Distinct ){ 4742 sDistinct.tabTnct = pParse->nTab++; 4743 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4744 sDistinct.tabTnct, 0, 0, 4745 (char*)keyInfoFromExprList(pParse, p->pEList, 0), 4746 P4_KEYINFO); 4747 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4748 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4749 }else{ 4750 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4751 } 4752 4753 if( !isAgg && pGroupBy==0 ){ 4754 /* No aggregate functions and no GROUP BY clause */ 4755 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4756 4757 /* Begin the database scan. */ 4758 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, p->pEList, 4759 wctrlFlags, 0); 4760 if( pWInfo==0 ) goto select_end; 4761 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4762 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4763 } 4764 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4765 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4766 } 4767 if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0; 4768 4769 /* If sorting index that was created by a prior OP_OpenEphemeral 4770 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4771 ** into an OP_Noop. 4772 */ 4773 if( addrSortIndex>=0 && pOrderBy==0 ){ 4774 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4775 p->addrOpenEphm[2] = -1; 4776 } 4777 4778 /* Use the standard inner loop. */ 4779 selectInnerLoop(pParse, p, pEList, -1, pOrderBy, &sDistinct, pDest, 4780 sqlite3WhereContinueLabel(pWInfo), 4781 sqlite3WhereBreakLabel(pWInfo)); 4782 4783 /* End the database scan loop. 4784 */ 4785 sqlite3WhereEnd(pWInfo); 4786 }else{ 4787 /* This case when there exist aggregate functions or a GROUP BY clause 4788 ** or both */ 4789 NameContext sNC; /* Name context for processing aggregate information */ 4790 int iAMem; /* First Mem address for storing current GROUP BY */ 4791 int iBMem; /* First Mem address for previous GROUP BY */ 4792 int iUseFlag; /* Mem address holding flag indicating that at least 4793 ** one row of the input to the aggregator has been 4794 ** processed */ 4795 int iAbortFlag; /* Mem address which causes query abort if positive */ 4796 int groupBySort; /* Rows come from source in GROUP BY order */ 4797 int addrEnd; /* End of processing for this SELECT */ 4798 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4799 int sortOut = 0; /* Output register from the sorter */ 4800 4801 /* Remove any and all aliases between the result set and the 4802 ** GROUP BY clause. 4803 */ 4804 if( pGroupBy ){ 4805 int k; /* Loop counter */ 4806 struct ExprList_item *pItem; /* For looping over expression in a list */ 4807 4808 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4809 pItem->u.x.iAlias = 0; 4810 } 4811 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4812 pItem->u.x.iAlias = 0; 4813 } 4814 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4815 }else{ 4816 p->nSelectRow = 1; 4817 } 4818 4819 4820 /* Create a label to jump to when we want to abort the query */ 4821 addrEnd = sqlite3VdbeMakeLabel(v); 4822 4823 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4824 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4825 ** SELECT statement. 4826 */ 4827 memset(&sNC, 0, sizeof(sNC)); 4828 sNC.pParse = pParse; 4829 sNC.pSrcList = pTabList; 4830 sNC.pAggInfo = &sAggInfo; 4831 sAggInfo.mnReg = pParse->nMem+1; 4832 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4833 sAggInfo.pGroupBy = pGroupBy; 4834 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4835 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4836 if( pHaving ){ 4837 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4838 } 4839 sAggInfo.nAccumulator = sAggInfo.nColumn; 4840 for(i=0; i<sAggInfo.nFunc; i++){ 4841 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4842 sNC.ncFlags |= NC_InAggFunc; 4843 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4844 sNC.ncFlags &= ~NC_InAggFunc; 4845 } 4846 sAggInfo.mxReg = pParse->nMem; 4847 if( db->mallocFailed ) goto select_end; 4848 4849 /* Processing for aggregates with GROUP BY is very different and 4850 ** much more complex than aggregates without a GROUP BY. 4851 */ 4852 if( pGroupBy ){ 4853 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4854 int j1; /* A-vs-B comparision jump */ 4855 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4856 int regOutputRow; /* Return address register for output subroutine */ 4857 int addrSetAbort; /* Set the abort flag and return */ 4858 int addrTopOfLoop; /* Top of the input loop */ 4859 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4860 int addrReset; /* Subroutine for resetting the accumulator */ 4861 int regReset; /* Return address register for reset subroutine */ 4862 4863 /* If there is a GROUP BY clause we might need a sorting index to 4864 ** implement it. Allocate that sorting index now. If it turns out 4865 ** that we do not need it after all, the OP_SorterOpen instruction 4866 ** will be converted into a Noop. 4867 */ 4868 sAggInfo.sortingIdx = pParse->nTab++; 4869 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0); 4870 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4871 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4872 0, (char*)pKeyInfo, P4_KEYINFO); 4873 4874 /* Initialize memory locations used by GROUP BY aggregate processing 4875 */ 4876 iUseFlag = ++pParse->nMem; 4877 iAbortFlag = ++pParse->nMem; 4878 regOutputRow = ++pParse->nMem; 4879 addrOutputRow = sqlite3VdbeMakeLabel(v); 4880 regReset = ++pParse->nMem; 4881 addrReset = sqlite3VdbeMakeLabel(v); 4882 iAMem = pParse->nMem + 1; 4883 pParse->nMem += pGroupBy->nExpr; 4884 iBMem = pParse->nMem + 1; 4885 pParse->nMem += pGroupBy->nExpr; 4886 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4887 VdbeComment((v, "clear abort flag")); 4888 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4889 VdbeComment((v, "indicate accumulator empty")); 4890 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4891 4892 /* Begin a loop that will extract all source rows in GROUP BY order. 4893 ** This might involve two separate loops with an OP_Sort in between, or 4894 ** it might be a single loop that uses an index to extract information 4895 ** in the right order to begin with. 4896 */ 4897 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4898 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4899 WHERE_GROUPBY, 0); 4900 if( pWInfo==0 ) goto select_end; 4901 if( sqlite3WhereIsOrdered(pWInfo) ){ 4902 /* The optimizer is able to deliver rows in group by order so 4903 ** we do not have to sort. The OP_OpenEphemeral table will be 4904 ** cancelled later because we still need to use the pKeyInfo 4905 */ 4906 groupBySort = 0; 4907 }else{ 4908 /* Rows are coming out in undetermined order. We have to push 4909 ** each row into a sorting index, terminate the first loop, 4910 ** then loop over the sorting index in order to get the output 4911 ** in sorted order 4912 */ 4913 int regBase; 4914 int regRecord; 4915 int nCol; 4916 int nGroupBy; 4917 4918 explainTempTable(pParse, 4919 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4920 "DISTINCT" : "GROUP BY"); 4921 4922 groupBySort = 1; 4923 nGroupBy = pGroupBy->nExpr; 4924 nCol = nGroupBy + 1; 4925 j = nGroupBy+1; 4926 for(i=0; i<sAggInfo.nColumn; i++){ 4927 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4928 nCol++; 4929 j++; 4930 } 4931 } 4932 regBase = sqlite3GetTempRange(pParse, nCol); 4933 sqlite3ExprCacheClear(pParse); 4934 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4935 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4936 j = nGroupBy+1; 4937 for(i=0; i<sAggInfo.nColumn; i++){ 4938 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4939 if( pCol->iSorterColumn>=j ){ 4940 int r1 = j + regBase; 4941 int r2; 4942 4943 r2 = sqlite3ExprCodeGetColumn(pParse, 4944 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4945 if( r1!=r2 ){ 4946 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4947 } 4948 j++; 4949 } 4950 } 4951 regRecord = sqlite3GetTempReg(pParse); 4952 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4953 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4954 sqlite3ReleaseTempReg(pParse, regRecord); 4955 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4956 sqlite3WhereEnd(pWInfo); 4957 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4958 sortOut = sqlite3GetTempReg(pParse); 4959 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4960 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4961 VdbeComment((v, "GROUP BY sort")); 4962 sAggInfo.useSortingIdx = 1; 4963 sqlite3ExprCacheClear(pParse); 4964 } 4965 4966 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4967 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4968 ** Then compare the current GROUP BY terms against the GROUP BY terms 4969 ** from the previous row currently stored in a0, a1, a2... 4970 */ 4971 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4972 sqlite3ExprCacheClear(pParse); 4973 if( groupBySort ){ 4974 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4975 } 4976 for(j=0; j<pGroupBy->nExpr; j++){ 4977 if( groupBySort ){ 4978 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4979 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4980 }else{ 4981 sAggInfo.directMode = 1; 4982 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4983 } 4984 } 4985 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4986 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 4987 j1 = sqlite3VdbeCurrentAddr(v); 4988 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4989 4990 /* Generate code that runs whenever the GROUP BY changes. 4991 ** Changes in the GROUP BY are detected by the previous code 4992 ** block. If there were no changes, this block is skipped. 4993 ** 4994 ** This code copies current group by terms in b0,b1,b2,... 4995 ** over to a0,a1,a2. It then calls the output subroutine 4996 ** and resets the aggregate accumulator registers in preparation 4997 ** for the next GROUP BY batch. 4998 */ 4999 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5000 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5001 VdbeComment((v, "output one row")); 5002 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 5003 VdbeComment((v, "check abort flag")); 5004 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5005 VdbeComment((v, "reset accumulator")); 5006 5007 /* Update the aggregate accumulators based on the content of 5008 ** the current row 5009 */ 5010 sqlite3VdbeJumpHere(v, j1); 5011 updateAccumulator(pParse, &sAggInfo); 5012 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5013 VdbeComment((v, "indicate data in accumulator")); 5014 5015 /* End of the loop 5016 */ 5017 if( groupBySort ){ 5018 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5019 }else{ 5020 sqlite3WhereEnd(pWInfo); 5021 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5022 } 5023 5024 /* Output the final row of result 5025 */ 5026 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5027 VdbeComment((v, "output final row")); 5028 5029 /* Jump over the subroutines 5030 */ 5031 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5032 5033 /* Generate a subroutine that outputs a single row of the result 5034 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5035 ** is less than or equal to zero, the subroutine is a no-op. If 5036 ** the processing calls for the query to abort, this subroutine 5037 ** increments the iAbortFlag memory location before returning in 5038 ** order to signal the caller to abort. 5039 */ 5040 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5041 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5042 VdbeComment((v, "set abort flag")); 5043 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5044 sqlite3VdbeResolveLabel(v, addrOutputRow); 5045 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5046 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5047 VdbeComment((v, "Groupby result generator entry point")); 5048 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5049 finalizeAggFunctions(pParse, &sAggInfo); 5050 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5051 selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy, 5052 &sDistinct, pDest, 5053 addrOutputRow+1, addrSetAbort); 5054 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5055 VdbeComment((v, "end groupby result generator")); 5056 5057 /* Generate a subroutine that will reset the group-by accumulator 5058 */ 5059 sqlite3VdbeResolveLabel(v, addrReset); 5060 resetAccumulator(pParse, &sAggInfo); 5061 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5062 5063 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5064 else { 5065 ExprList *pDel = 0; 5066 #ifndef SQLITE_OMIT_BTREECOUNT 5067 Table *pTab; 5068 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5069 /* If isSimpleCount() returns a pointer to a Table structure, then 5070 ** the SQL statement is of the form: 5071 ** 5072 ** SELECT count(*) FROM <tbl> 5073 ** 5074 ** where the Table structure returned represents table <tbl>. 5075 ** 5076 ** This statement is so common that it is optimized specially. The 5077 ** OP_Count instruction is executed either on the intkey table that 5078 ** contains the data for table <tbl> or on one of its indexes. It 5079 ** is better to execute the op on an index, as indexes are almost 5080 ** always spread across less pages than their corresponding tables. 5081 */ 5082 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5083 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5084 Index *pIdx; /* Iterator variable */ 5085 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5086 Index *pBest = 0; /* Best index found so far */ 5087 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5088 5089 sqlite3CodeVerifySchema(pParse, iDb); 5090 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5091 5092 /* Search for the index that has the lowest scan cost. 5093 ** 5094 ** (2011-04-15) Do not do a full scan of an unordered index. 5095 ** 5096 ** (2013-10-03) Do not count the entries in a partial index. 5097 ** 5098 ** In practice the KeyInfo structure will not be used. It is only 5099 ** passed to keep OP_OpenRead happy. 5100 */ 5101 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5102 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5103 if( pIdx->bUnordered==0 5104 && pIdx->szIdxRow<pTab->szTabRow 5105 && pIdx->pPartIdxWhere==0 5106 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5107 ){ 5108 pBest = pIdx; 5109 } 5110 } 5111 if( pBest ){ 5112 iRoot = pBest->tnum; 5113 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5114 } 5115 5116 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5117 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5118 if( pKeyInfo ){ 5119 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5120 } 5121 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5122 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5123 explainSimpleCount(pParse, pTab, pBest); 5124 }else 5125 #endif /* SQLITE_OMIT_BTREECOUNT */ 5126 { 5127 /* Check if the query is of one of the following forms: 5128 ** 5129 ** SELECT min(x) FROM ... 5130 ** SELECT max(x) FROM ... 5131 ** 5132 ** If it is, then ask the code in where.c to attempt to sort results 5133 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5134 ** If where.c is able to produce results sorted in this order, then 5135 ** add vdbe code to break out of the processing loop after the 5136 ** first iteration (since the first iteration of the loop is 5137 ** guaranteed to operate on the row with the minimum or maximum 5138 ** value of x, the only row required). 5139 ** 5140 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5141 ** modify behavior as follows: 5142 ** 5143 ** + If the query is a "SELECT min(x)", then the loop coded by 5144 ** where.c should not iterate over any values with a NULL value 5145 ** for x. 5146 ** 5147 ** + The optimizer code in where.c (the thing that decides which 5148 ** index or indices to use) should place a different priority on 5149 ** satisfying the 'ORDER BY' clause than it does in other cases. 5150 ** Refer to code and comments in where.c for details. 5151 */ 5152 ExprList *pMinMax = 0; 5153 u8 flag = WHERE_ORDERBY_NORMAL; 5154 5155 assert( p->pGroupBy==0 ); 5156 assert( flag==0 ); 5157 if( p->pHaving==0 ){ 5158 flag = minMaxQuery(&sAggInfo, &pMinMax); 5159 } 5160 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5161 5162 if( flag ){ 5163 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5164 pDel = pMinMax; 5165 if( pMinMax && !db->mallocFailed ){ 5166 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5167 pMinMax->a[0].pExpr->op = TK_COLUMN; 5168 } 5169 } 5170 5171 /* This case runs if the aggregate has no GROUP BY clause. The 5172 ** processing is much simpler since there is only a single row 5173 ** of output. 5174 */ 5175 resetAccumulator(pParse, &sAggInfo); 5176 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5177 if( pWInfo==0 ){ 5178 sqlite3ExprListDelete(db, pDel); 5179 goto select_end; 5180 } 5181 updateAccumulator(pParse, &sAggInfo); 5182 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5183 if( sqlite3WhereIsOrdered(pWInfo) ){ 5184 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5185 VdbeComment((v, "%s() by index", 5186 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5187 } 5188 sqlite3WhereEnd(pWInfo); 5189 finalizeAggFunctions(pParse, &sAggInfo); 5190 } 5191 5192 pOrderBy = 0; 5193 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5194 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5195 pDest, addrEnd, addrEnd); 5196 sqlite3ExprListDelete(db, pDel); 5197 } 5198 sqlite3VdbeResolveLabel(v, addrEnd); 5199 5200 } /* endif aggregate query */ 5201 5202 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5203 explainTempTable(pParse, "DISTINCT"); 5204 } 5205 5206 /* If there is an ORDER BY clause, then we need to sort the results 5207 ** and send them to the callback one by one. 5208 */ 5209 if( pOrderBy ){ 5210 explainTempTable(pParse, "ORDER BY"); 5211 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 5212 } 5213 5214 /* Jump here to skip this query 5215 */ 5216 sqlite3VdbeResolveLabel(v, iEnd); 5217 5218 /* The SELECT was successfully coded. Set the return code to 0 5219 ** to indicate no errors. 5220 */ 5221 rc = 0; 5222 5223 /* Control jumps to here if an error is encountered above, or upon 5224 ** successful coding of the SELECT. 5225 */ 5226 select_end: 5227 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5228 5229 /* Identify column names if results of the SELECT are to be output. 5230 */ 5231 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5232 generateColumnNames(pParse, pTabList, pEList); 5233 } 5234 5235 sqlite3DbFree(db, sAggInfo.aCol); 5236 sqlite3DbFree(db, sAggInfo.aFunc); 5237 return rc; 5238 } 5239 5240 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5241 /* 5242 ** Generate a human-readable description of a the Select object. 5243 */ 5244 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5245 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5246 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5247 if( p->selFlags & SF_Distinct ){ 5248 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5249 } 5250 if( p->selFlags & SF_Aggregate ){ 5251 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5252 } 5253 sqlite3ExplainNL(pVdbe); 5254 sqlite3ExplainPrintf(pVdbe, " "); 5255 } 5256 sqlite3ExplainExprList(pVdbe, p->pEList); 5257 sqlite3ExplainNL(pVdbe); 5258 if( p->pSrc && p->pSrc->nSrc ){ 5259 int i; 5260 sqlite3ExplainPrintf(pVdbe, "FROM "); 5261 sqlite3ExplainPush(pVdbe); 5262 for(i=0; i<p->pSrc->nSrc; i++){ 5263 struct SrcList_item *pItem = &p->pSrc->a[i]; 5264 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5265 if( pItem->pSelect ){ 5266 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5267 if( pItem->pTab ){ 5268 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5269 } 5270 }else if( pItem->zName ){ 5271 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5272 } 5273 if( pItem->zAlias ){ 5274 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5275 } 5276 if( pItem->jointype & JT_LEFT ){ 5277 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5278 } 5279 sqlite3ExplainNL(pVdbe); 5280 } 5281 sqlite3ExplainPop(pVdbe); 5282 } 5283 if( p->pWhere ){ 5284 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5285 sqlite3ExplainExpr(pVdbe, p->pWhere); 5286 sqlite3ExplainNL(pVdbe); 5287 } 5288 if( p->pGroupBy ){ 5289 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5290 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5291 sqlite3ExplainNL(pVdbe); 5292 } 5293 if( p->pHaving ){ 5294 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5295 sqlite3ExplainExpr(pVdbe, p->pHaving); 5296 sqlite3ExplainNL(pVdbe); 5297 } 5298 if( p->pOrderBy ){ 5299 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5300 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5301 sqlite3ExplainNL(pVdbe); 5302 } 5303 if( p->pLimit ){ 5304 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5305 sqlite3ExplainExpr(pVdbe, p->pLimit); 5306 sqlite3ExplainNL(pVdbe); 5307 } 5308 if( p->pOffset ){ 5309 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5310 sqlite3ExplainExpr(pVdbe, p->pOffset); 5311 sqlite3ExplainNL(pVdbe); 5312 } 5313 } 5314 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5315 if( p==0 ){ 5316 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5317 return; 5318 } 5319 while( p->pPrior ){ 5320 p->pPrior->pNext = p; 5321 p = p->pPrior; 5322 } 5323 sqlite3ExplainPush(pVdbe); 5324 while( p ){ 5325 explainOneSelect(pVdbe, p); 5326 p = p->pNext; 5327 if( p==0 ) break; 5328 sqlite3ExplainNL(pVdbe); 5329 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5330 } 5331 sqlite3ExplainPrintf(pVdbe, "END"); 5332 sqlite3ExplainPop(pVdbe); 5333 } 5334 5335 /* End of the structure debug printing code 5336 *****************************************************************************/ 5337 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5338