1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.354 2007/07/18 18:17:12 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 assert( pOffset==0 || pLimit!=0 ); 72 pNew->pLimit = pLimit; 73 pNew->pOffset = pOffset; 74 pNew->iLimit = -1; 75 pNew->iOffset = -1; 76 pNew->addrOpenEphm[0] = -1; 77 pNew->addrOpenEphm[1] = -1; 78 pNew->addrOpenEphm[2] = -1; 79 if( pNew==&standin) { 80 clearSelect(pNew); 81 pNew = 0; 82 } 83 return pNew; 84 } 85 86 /* 87 ** Delete the given Select structure and all of its substructures. 88 */ 89 void sqlite3SelectDelete(Select *p){ 90 if( p ){ 91 clearSelect(p); 92 sqliteFree(p); 93 } 94 } 95 96 /* 97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 98 ** type of join. Return an integer constant that expresses that type 99 ** in terms of the following bit values: 100 ** 101 ** JT_INNER 102 ** JT_CROSS 103 ** JT_OUTER 104 ** JT_NATURAL 105 ** JT_LEFT 106 ** JT_RIGHT 107 ** 108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 109 ** 110 ** If an illegal or unsupported join type is seen, then still return 111 ** a join type, but put an error in the pParse structure. 112 */ 113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 114 int jointype = 0; 115 Token *apAll[3]; 116 Token *p; 117 static const struct { 118 const char zKeyword[8]; 119 u8 nChar; 120 u8 code; 121 } keywords[] = { 122 { "natural", 7, JT_NATURAL }, 123 { "left", 4, JT_LEFT|JT_OUTER }, 124 { "right", 5, JT_RIGHT|JT_OUTER }, 125 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 126 { "outer", 5, JT_OUTER }, 127 { "inner", 5, JT_INNER }, 128 { "cross", 5, JT_INNER|JT_CROSS }, 129 }; 130 int i, j; 131 apAll[0] = pA; 132 apAll[1] = pB; 133 apAll[2] = pC; 134 for(i=0; i<3 && apAll[i]; i++){ 135 p = apAll[i]; 136 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 137 if( p->n==keywords[j].nChar 138 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 139 jointype |= keywords[j].code; 140 break; 141 } 142 } 143 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 144 jointype |= JT_ERROR; 145 break; 146 } 147 } 148 if( 149 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 150 (jointype & JT_ERROR)!=0 151 ){ 152 const char *zSp1 = " "; 153 const char *zSp2 = " "; 154 if( pB==0 ){ zSp1++; } 155 if( pC==0 ){ zSp2++; } 156 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 157 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 158 jointype = JT_INNER; 159 }else if( jointype & JT_RIGHT ){ 160 sqlite3ErrorMsg(pParse, 161 "RIGHT and FULL OUTER JOINs are not currently supported"); 162 jointype = JT_INNER; 163 } 164 return jointype; 165 } 166 167 /* 168 ** Return the index of a column in a table. Return -1 if the column 169 ** is not contained in the table. 170 */ 171 static int columnIndex(Table *pTab, const char *zCol){ 172 int i; 173 for(i=0; i<pTab->nCol; i++){ 174 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 175 } 176 return -1; 177 } 178 179 /* 180 ** Set the value of a token to a '\000'-terminated string. 181 */ 182 static void setToken(Token *p, const char *z){ 183 p->z = (u8*)z; 184 p->n = z ? strlen(z) : 0; 185 p->dyn = 0; 186 } 187 188 /* 189 ** Set the token to the double-quoted and escaped version of the string pointed 190 ** to by z. For example; 191 ** 192 ** {a"bc} -> {"a""bc"} 193 */ 194 static void setQuotedToken(Token *p, const char *z){ 195 p->z = (u8 *)sqlite3MPrintf("\"%w\"", z); 196 p->dyn = 1; 197 if( p->z ){ 198 p->n = strlen((char *)p->z); 199 } 200 } 201 202 /* 203 ** Create an expression node for an identifier with the name of zName 204 */ 205 Expr *sqlite3CreateIdExpr(const char *zName){ 206 Token dummy; 207 setToken(&dummy, zName); 208 return sqlite3Expr(TK_ID, 0, 0, &dummy); 209 } 210 211 212 /* 213 ** Add a term to the WHERE expression in *ppExpr that requires the 214 ** zCol column to be equal in the two tables pTab1 and pTab2. 215 */ 216 static void addWhereTerm( 217 const char *zCol, /* Name of the column */ 218 const Table *pTab1, /* First table */ 219 const char *zAlias1, /* Alias for first table. May be NULL */ 220 const Table *pTab2, /* Second table */ 221 const char *zAlias2, /* Alias for second table. May be NULL */ 222 int iRightJoinTable, /* VDBE cursor for the right table */ 223 Expr **ppExpr /* Add the equality term to this expression */ 224 ){ 225 Expr *pE1a, *pE1b, *pE1c; 226 Expr *pE2a, *pE2b, *pE2c; 227 Expr *pE; 228 229 pE1a = sqlite3CreateIdExpr(zCol); 230 pE2a = sqlite3CreateIdExpr(zCol); 231 if( zAlias1==0 ){ 232 zAlias1 = pTab1->zName; 233 } 234 pE1b = sqlite3CreateIdExpr(zAlias1); 235 if( zAlias2==0 ){ 236 zAlias2 = pTab2->zName; 237 } 238 pE2b = sqlite3CreateIdExpr(zAlias2); 239 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 240 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 241 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 242 if( pE ){ 243 ExprSetProperty(pE, EP_FromJoin); 244 pE->iRightJoinTable = iRightJoinTable; 245 } 246 pE = sqlite3ExprAnd(*ppExpr, pE); 247 if( pE ){ 248 *ppExpr = pE; 249 } 250 } 251 252 /* 253 ** Set the EP_FromJoin property on all terms of the given expression. 254 ** And set the Expr.iRightJoinTable to iTable for every term in the 255 ** expression. 256 ** 257 ** The EP_FromJoin property is used on terms of an expression to tell 258 ** the LEFT OUTER JOIN processing logic that this term is part of the 259 ** join restriction specified in the ON or USING clause and not a part 260 ** of the more general WHERE clause. These terms are moved over to the 261 ** WHERE clause during join processing but we need to remember that they 262 ** originated in the ON or USING clause. 263 ** 264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 265 ** expression depends on table iRightJoinTable even if that table is not 266 ** explicitly mentioned in the expression. That information is needed 267 ** for cases like this: 268 ** 269 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 270 ** 271 ** The where clause needs to defer the handling of the t1.x=5 272 ** term until after the t2 loop of the join. In that way, a 273 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 274 ** defer the handling of t1.x=5, it will be processed immediately 275 ** after the t1 loop and rows with t1.x!=5 will never appear in 276 ** the output, which is incorrect. 277 */ 278 static void setJoinExpr(Expr *p, int iTable){ 279 while( p ){ 280 ExprSetProperty(p, EP_FromJoin); 281 p->iRightJoinTable = iTable; 282 setJoinExpr(p->pLeft, iTable); 283 p = p->pRight; 284 } 285 } 286 287 /* 288 ** This routine processes the join information for a SELECT statement. 289 ** ON and USING clauses are converted into extra terms of the WHERE clause. 290 ** NATURAL joins also create extra WHERE clause terms. 291 ** 292 ** The terms of a FROM clause are contained in the Select.pSrc structure. 293 ** The left most table is the first entry in Select.pSrc. The right-most 294 ** table is the last entry. The join operator is held in the entry to 295 ** the left. Thus entry 0 contains the join operator for the join between 296 ** entries 0 and 1. Any ON or USING clauses associated with the join are 297 ** also attached to the left entry. 298 ** 299 ** This routine returns the number of errors encountered. 300 */ 301 static int sqliteProcessJoin(Parse *pParse, Select *p){ 302 SrcList *pSrc; /* All tables in the FROM clause */ 303 int i, j; /* Loop counters */ 304 struct SrcList_item *pLeft; /* Left table being joined */ 305 struct SrcList_item *pRight; /* Right table being joined */ 306 307 pSrc = p->pSrc; 308 pLeft = &pSrc->a[0]; 309 pRight = &pLeft[1]; 310 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 311 Table *pLeftTab = pLeft->pTab; 312 Table *pRightTab = pRight->pTab; 313 314 if( pLeftTab==0 || pRightTab==0 ) continue; 315 316 /* When the NATURAL keyword is present, add WHERE clause terms for 317 ** every column that the two tables have in common. 318 */ 319 if( pRight->jointype & JT_NATURAL ){ 320 if( pRight->pOn || pRight->pUsing ){ 321 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 322 "an ON or USING clause", 0); 323 return 1; 324 } 325 for(j=0; j<pLeftTab->nCol; j++){ 326 char *zName = pLeftTab->aCol[j].zName; 327 if( columnIndex(pRightTab, zName)>=0 ){ 328 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 329 pRightTab, pRight->zAlias, 330 pRight->iCursor, &p->pWhere); 331 332 } 333 } 334 } 335 336 /* Disallow both ON and USING clauses in the same join 337 */ 338 if( pRight->pOn && pRight->pUsing ){ 339 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 340 "clauses in the same join"); 341 return 1; 342 } 343 344 /* Add the ON clause to the end of the WHERE clause, connected by 345 ** an AND operator. 346 */ 347 if( pRight->pOn ){ 348 setJoinExpr(pRight->pOn, pRight->iCursor); 349 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 350 pRight->pOn = 0; 351 } 352 353 /* Create extra terms on the WHERE clause for each column named 354 ** in the USING clause. Example: If the two tables to be joined are 355 ** A and B and the USING clause names X, Y, and Z, then add this 356 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 357 ** Report an error if any column mentioned in the USING clause is 358 ** not contained in both tables to be joined. 359 */ 360 if( pRight->pUsing ){ 361 IdList *pList = pRight->pUsing; 362 for(j=0; j<pList->nId; j++){ 363 char *zName = pList->a[j].zName; 364 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 365 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 366 "not present in both tables", zName); 367 return 1; 368 } 369 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 370 pRightTab, pRight->zAlias, 371 pRight->iCursor, &p->pWhere); 372 } 373 } 374 } 375 return 0; 376 } 377 378 /* 379 ** Insert code into "v" that will push the record on the top of the 380 ** stack into the sorter. 381 */ 382 static void pushOntoSorter( 383 Parse *pParse, /* Parser context */ 384 ExprList *pOrderBy, /* The ORDER BY clause */ 385 Select *pSelect /* The whole SELECT statement */ 386 ){ 387 Vdbe *v = pParse->pVdbe; 388 sqlite3ExprCodeExprList(pParse, pOrderBy); 389 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 390 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 391 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 392 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 393 if( pSelect->iLimit>=0 ){ 394 int addr1, addr2; 395 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 396 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 397 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 398 sqlite3VdbeJumpHere(v, addr1); 399 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 400 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 401 sqlite3VdbeJumpHere(v, addr2); 402 pSelect->iLimit = -1; 403 } 404 } 405 406 /* 407 ** Add code to implement the OFFSET 408 */ 409 static void codeOffset( 410 Vdbe *v, /* Generate code into this VM */ 411 Select *p, /* The SELECT statement being coded */ 412 int iContinue, /* Jump here to skip the current record */ 413 int nPop /* Number of times to pop stack when jumping */ 414 ){ 415 if( p->iOffset>=0 && iContinue!=0 ){ 416 int addr; 417 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 418 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 419 if( nPop>0 ){ 420 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 421 } 422 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 423 VdbeComment((v, "# skip OFFSET records")); 424 sqlite3VdbeJumpHere(v, addr); 425 } 426 } 427 428 /* 429 ** Add code that will check to make sure the top N elements of the 430 ** stack are distinct. iTab is a sorting index that holds previously 431 ** seen combinations of the N values. A new entry is made in iTab 432 ** if the current N values are new. 433 ** 434 ** A jump to addrRepeat is made and the N+1 values are popped from the 435 ** stack if the top N elements are not distinct. 436 */ 437 static void codeDistinct( 438 Vdbe *v, /* Generate code into this VM */ 439 int iTab, /* A sorting index used to test for distinctness */ 440 int addrRepeat, /* Jump to here if not distinct */ 441 int N /* The top N elements of the stack must be distinct */ 442 ){ 443 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 444 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 445 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 446 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 447 VdbeComment((v, "# skip indistinct records")); 448 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 449 } 450 451 /* 452 ** Generate an error message when a SELECT is used within a subexpression 453 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 454 ** column. We do this in a subroutine because the error occurs in multiple 455 ** places. 456 */ 457 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ 458 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 459 sqlite3ErrorMsg(pParse, "only a single result allowed for " 460 "a SELECT that is part of an expression"); 461 return 1; 462 }else{ 463 return 0; 464 } 465 } 466 467 /* 468 ** This routine generates the code for the inside of the inner loop 469 ** of a SELECT. 470 ** 471 ** If srcTab and nColumn are both zero, then the pEList expressions 472 ** are evaluated in order to get the data for this row. If nColumn>0 473 ** then data is pulled from srcTab and pEList is used only to get the 474 ** datatypes for each column. 475 */ 476 static int selectInnerLoop( 477 Parse *pParse, /* The parser context */ 478 Select *p, /* The complete select statement being coded */ 479 ExprList *pEList, /* List of values being extracted */ 480 int srcTab, /* Pull data from this table */ 481 int nColumn, /* Number of columns in the source table */ 482 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 483 int distinct, /* If >=0, make sure results are distinct */ 484 int eDest, /* How to dispose of the results */ 485 int iParm, /* An argument to the disposal method */ 486 int iContinue, /* Jump here to continue with next row */ 487 int iBreak, /* Jump here to break out of the inner loop */ 488 char *aff /* affinity string if eDest is SRT_Union */ 489 ){ 490 Vdbe *v = pParse->pVdbe; 491 int i; 492 int hasDistinct; /* True if the DISTINCT keyword is present */ 493 494 if( v==0 ) return 0; 495 assert( pEList!=0 ); 496 497 /* If there was a LIMIT clause on the SELECT statement, then do the check 498 ** to see if this row should be output. 499 */ 500 hasDistinct = distinct>=0 && pEList->nExpr>0; 501 if( pOrderBy==0 && !hasDistinct ){ 502 codeOffset(v, p, iContinue, 0); 503 } 504 505 /* Pull the requested columns. 506 */ 507 if( nColumn>0 ){ 508 for(i=0; i<nColumn; i++){ 509 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 510 } 511 }else{ 512 nColumn = pEList->nExpr; 513 sqlite3ExprCodeExprList(pParse, pEList); 514 } 515 516 /* If the DISTINCT keyword was present on the SELECT statement 517 ** and this row has been seen before, then do not make this row 518 ** part of the result. 519 */ 520 if( hasDistinct ){ 521 assert( pEList!=0 ); 522 assert( pEList->nExpr==nColumn ); 523 codeDistinct(v, distinct, iContinue, nColumn); 524 if( pOrderBy==0 ){ 525 codeOffset(v, p, iContinue, nColumn); 526 } 527 } 528 529 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 530 return 0; 531 } 532 533 switch( eDest ){ 534 /* In this mode, write each query result to the key of the temporary 535 ** table iParm. 536 */ 537 #ifndef SQLITE_OMIT_COMPOUND_SELECT 538 case SRT_Union: { 539 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 540 if( aff ){ 541 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 542 } 543 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 544 break; 545 } 546 547 /* Construct a record from the query result, but instead of 548 ** saving that record, use it as a key to delete elements from 549 ** the temporary table iParm. 550 */ 551 case SRT_Except: { 552 int addr; 553 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 554 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 555 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 556 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 557 break; 558 } 559 #endif 560 561 /* Store the result as data using a unique key. 562 */ 563 case SRT_Table: 564 case SRT_EphemTab: { 565 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 566 if( pOrderBy ){ 567 pushOntoSorter(pParse, pOrderBy, p); 568 }else{ 569 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 570 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 571 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 572 } 573 break; 574 } 575 576 #ifndef SQLITE_OMIT_SUBQUERY 577 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 578 ** then there should be a single item on the stack. Write this 579 ** item into the set table with bogus data. 580 */ 581 case SRT_Set: { 582 int addr1 = sqlite3VdbeCurrentAddr(v); 583 int addr2; 584 585 assert( nColumn==1 ); 586 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 587 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 588 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 589 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 590 if( pOrderBy ){ 591 /* At first glance you would think we could optimize out the 592 ** ORDER BY in this case since the order of entries in the set 593 ** does not matter. But there might be a LIMIT clause, in which 594 ** case the order does matter */ 595 pushOntoSorter(pParse, pOrderBy, p); 596 }else{ 597 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 598 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 599 } 600 sqlite3VdbeJumpHere(v, addr2); 601 break; 602 } 603 604 /* If any row exist in the result set, record that fact and abort. 605 */ 606 case SRT_Exists: { 607 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 608 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 609 /* The LIMIT clause will terminate the loop for us */ 610 break; 611 } 612 613 /* If this is a scalar select that is part of an expression, then 614 ** store the results in the appropriate memory cell and break out 615 ** of the scan loop. 616 */ 617 case SRT_Mem: { 618 assert( nColumn==1 ); 619 if( pOrderBy ){ 620 pushOntoSorter(pParse, pOrderBy, p); 621 }else{ 622 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 623 /* The LIMIT clause will jump out of the loop for us */ 624 } 625 break; 626 } 627 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 628 629 /* Send the data to the callback function or to a subroutine. In the 630 ** case of a subroutine, the subroutine itself is responsible for 631 ** popping the data from the stack. 632 */ 633 case SRT_Subroutine: 634 case SRT_Callback: { 635 if( pOrderBy ){ 636 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 637 pushOntoSorter(pParse, pOrderBy, p); 638 }else if( eDest==SRT_Subroutine ){ 639 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 640 }else{ 641 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 642 } 643 break; 644 } 645 646 #if !defined(SQLITE_OMIT_TRIGGER) 647 /* Discard the results. This is used for SELECT statements inside 648 ** the body of a TRIGGER. The purpose of such selects is to call 649 ** user-defined functions that have side effects. We do not care 650 ** about the actual results of the select. 651 */ 652 default: { 653 assert( eDest==SRT_Discard ); 654 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 655 break; 656 } 657 #endif 658 } 659 660 /* Jump to the end of the loop if the LIMIT is reached. 661 */ 662 if( p->iLimit>=0 && pOrderBy==0 ){ 663 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 664 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 665 } 666 return 0; 667 } 668 669 /* 670 ** Given an expression list, generate a KeyInfo structure that records 671 ** the collating sequence for each expression in that expression list. 672 ** 673 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 674 ** KeyInfo structure is appropriate for initializing a virtual index to 675 ** implement that clause. If the ExprList is the result set of a SELECT 676 ** then the KeyInfo structure is appropriate for initializing a virtual 677 ** index to implement a DISTINCT test. 678 ** 679 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 680 ** function is responsible for seeing that this structure is eventually 681 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 682 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 683 */ 684 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 685 sqlite3 *db = pParse->db; 686 int nExpr; 687 KeyInfo *pInfo; 688 struct ExprList_item *pItem; 689 int i; 690 691 nExpr = pList->nExpr; 692 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 693 if( pInfo ){ 694 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 695 pInfo->nField = nExpr; 696 pInfo->enc = ENC(db); 697 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 698 CollSeq *pColl; 699 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 700 if( !pColl ){ 701 pColl = db->pDfltColl; 702 } 703 pInfo->aColl[i] = pColl; 704 pInfo->aSortOrder[i] = pItem->sortOrder; 705 } 706 } 707 return pInfo; 708 } 709 710 711 /* 712 ** If the inner loop was generated using a non-null pOrderBy argument, 713 ** then the results were placed in a sorter. After the loop is terminated 714 ** we need to run the sorter and output the results. The following 715 ** routine generates the code needed to do that. 716 */ 717 static void generateSortTail( 718 Parse *pParse, /* Parsing context */ 719 Select *p, /* The SELECT statement */ 720 Vdbe *v, /* Generate code into this VDBE */ 721 int nColumn, /* Number of columns of data */ 722 int eDest, /* Write the sorted results here */ 723 int iParm /* Optional parameter associated with eDest */ 724 ){ 725 int brk = sqlite3VdbeMakeLabel(v); 726 int cont = sqlite3VdbeMakeLabel(v); 727 int addr; 728 int iTab; 729 int pseudoTab = 0; 730 ExprList *pOrderBy = p->pOrderBy; 731 732 iTab = pOrderBy->iECursor; 733 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 734 pseudoTab = pParse->nTab++; 735 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 736 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 737 } 738 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 739 codeOffset(v, p, cont, 0); 740 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 741 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 742 } 743 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 744 switch( eDest ){ 745 case SRT_Table: 746 case SRT_EphemTab: { 747 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 748 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 749 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 750 break; 751 } 752 #ifndef SQLITE_OMIT_SUBQUERY 753 case SRT_Set: { 754 assert( nColumn==1 ); 755 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 756 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 757 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 758 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 759 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 760 break; 761 } 762 case SRT_Mem: { 763 assert( nColumn==1 ); 764 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 765 /* The LIMIT clause will terminate the loop for us */ 766 break; 767 } 768 #endif 769 case SRT_Callback: 770 case SRT_Subroutine: { 771 int i; 772 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 773 for(i=0; i<nColumn; i++){ 774 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 775 } 776 if( eDest==SRT_Callback ){ 777 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 778 }else{ 779 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 780 } 781 break; 782 } 783 default: { 784 /* Do nothing */ 785 break; 786 } 787 } 788 789 /* Jump to the end of the loop when the LIMIT is reached 790 */ 791 if( p->iLimit>=0 ){ 792 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 793 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 794 } 795 796 /* The bottom of the loop 797 */ 798 sqlite3VdbeResolveLabel(v, cont); 799 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 800 sqlite3VdbeResolveLabel(v, brk); 801 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 802 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 803 } 804 805 } 806 807 /* 808 ** Return a pointer to a string containing the 'declaration type' of the 809 ** expression pExpr. The string may be treated as static by the caller. 810 ** 811 ** The declaration type is the exact datatype definition extracted from the 812 ** original CREATE TABLE statement if the expression is a column. The 813 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 814 ** is considered a column can be complex in the presence of subqueries. The 815 ** result-set expression in all of the following SELECT statements is 816 ** considered a column by this function. 817 ** 818 ** SELECT col FROM tbl; 819 ** SELECT (SELECT col FROM tbl; 820 ** SELECT (SELECT col FROM tbl); 821 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 822 ** 823 ** The declaration type for any expression other than a column is NULL. 824 */ 825 static const char *columnType( 826 NameContext *pNC, 827 Expr *pExpr, 828 const char **pzOriginDb, 829 const char **pzOriginTab, 830 const char **pzOriginCol 831 ){ 832 char const *zType = 0; 833 char const *zOriginDb = 0; 834 char const *zOriginTab = 0; 835 char const *zOriginCol = 0; 836 int j; 837 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 838 839 switch( pExpr->op ){ 840 case TK_AGG_COLUMN: 841 case TK_COLUMN: { 842 /* The expression is a column. Locate the table the column is being 843 ** extracted from in NameContext.pSrcList. This table may be real 844 ** database table or a subquery. 845 */ 846 Table *pTab = 0; /* Table structure column is extracted from */ 847 Select *pS = 0; /* Select the column is extracted from */ 848 int iCol = pExpr->iColumn; /* Index of column in pTab */ 849 while( pNC && !pTab ){ 850 SrcList *pTabList = pNC->pSrcList; 851 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 852 if( j<pTabList->nSrc ){ 853 pTab = pTabList->a[j].pTab; 854 pS = pTabList->a[j].pSelect; 855 }else{ 856 pNC = pNC->pNext; 857 } 858 } 859 860 if( pTab==0 ){ 861 /* FIX ME: 862 ** This can occurs if you have something like "SELECT new.x;" inside 863 ** a trigger. In other words, if you reference the special "new" 864 ** table in the result set of a select. We do not have a good way 865 ** to find the actual table type, so call it "TEXT". This is really 866 ** something of a bug, but I do not know how to fix it. 867 ** 868 ** This code does not produce the correct answer - it just prevents 869 ** a segfault. See ticket #1229. 870 */ 871 zType = "TEXT"; 872 break; 873 } 874 875 assert( pTab ); 876 if( pS ){ 877 /* The "table" is actually a sub-select or a view in the FROM clause 878 ** of the SELECT statement. Return the declaration type and origin 879 ** data for the result-set column of the sub-select. 880 */ 881 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 882 /* If iCol is less than zero, then the expression requests the 883 ** rowid of the sub-select or view. This expression is legal (see 884 ** test case misc2.2.2) - it always evaluates to NULL. 885 */ 886 NameContext sNC; 887 Expr *p = pS->pEList->a[iCol].pExpr; 888 sNC.pSrcList = pS->pSrc; 889 sNC.pNext = 0; 890 sNC.pParse = pNC->pParse; 891 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 892 } 893 }else if( pTab->pSchema ){ 894 /* A real table */ 895 assert( !pS ); 896 if( iCol<0 ) iCol = pTab->iPKey; 897 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 898 if( iCol<0 ){ 899 zType = "INTEGER"; 900 zOriginCol = "rowid"; 901 }else{ 902 zType = pTab->aCol[iCol].zType; 903 zOriginCol = pTab->aCol[iCol].zName; 904 } 905 zOriginTab = pTab->zName; 906 if( pNC->pParse ){ 907 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 908 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 909 } 910 } 911 break; 912 } 913 #ifndef SQLITE_OMIT_SUBQUERY 914 case TK_SELECT: { 915 /* The expression is a sub-select. Return the declaration type and 916 ** origin info for the single column in the result set of the SELECT 917 ** statement. 918 */ 919 NameContext sNC; 920 Select *pS = pExpr->pSelect; 921 Expr *p = pS->pEList->a[0].pExpr; 922 sNC.pSrcList = pS->pSrc; 923 sNC.pNext = pNC; 924 sNC.pParse = pNC->pParse; 925 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 926 break; 927 } 928 #endif 929 } 930 931 if( pzOriginDb ){ 932 assert( pzOriginTab && pzOriginCol ); 933 *pzOriginDb = zOriginDb; 934 *pzOriginTab = zOriginTab; 935 *pzOriginCol = zOriginCol; 936 } 937 return zType; 938 } 939 940 /* 941 ** Generate code that will tell the VDBE the declaration types of columns 942 ** in the result set. 943 */ 944 static void generateColumnTypes( 945 Parse *pParse, /* Parser context */ 946 SrcList *pTabList, /* List of tables */ 947 ExprList *pEList /* Expressions defining the result set */ 948 ){ 949 Vdbe *v = pParse->pVdbe; 950 int i; 951 NameContext sNC; 952 sNC.pSrcList = pTabList; 953 sNC.pParse = pParse; 954 for(i=0; i<pEList->nExpr; i++){ 955 Expr *p = pEList->a[i].pExpr; 956 const char *zOrigDb = 0; 957 const char *zOrigTab = 0; 958 const char *zOrigCol = 0; 959 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 960 961 /* The vdbe must make it's own copy of the column-type and other 962 ** column specific strings, in case the schema is reset before this 963 ** virtual machine is deleted. 964 */ 965 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 966 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 967 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 968 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 969 } 970 } 971 972 /* 973 ** Generate code that will tell the VDBE the names of columns 974 ** in the result set. This information is used to provide the 975 ** azCol[] values in the callback. 976 */ 977 static void generateColumnNames( 978 Parse *pParse, /* Parser context */ 979 SrcList *pTabList, /* List of tables */ 980 ExprList *pEList /* Expressions defining the result set */ 981 ){ 982 Vdbe *v = pParse->pVdbe; 983 int i, j; 984 sqlite3 *db = pParse->db; 985 int fullNames, shortNames; 986 987 #ifndef SQLITE_OMIT_EXPLAIN 988 /* If this is an EXPLAIN, skip this step */ 989 if( pParse->explain ){ 990 return; 991 } 992 #endif 993 994 assert( v!=0 ); 995 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 996 pParse->colNamesSet = 1; 997 fullNames = (db->flags & SQLITE_FullColNames)!=0; 998 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 999 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1000 for(i=0; i<pEList->nExpr; i++){ 1001 Expr *p; 1002 p = pEList->a[i].pExpr; 1003 if( p==0 ) continue; 1004 if( pEList->a[i].zName ){ 1005 char *zName = pEList->a[i].zName; 1006 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1007 continue; 1008 } 1009 if( p->op==TK_COLUMN && pTabList ){ 1010 Table *pTab; 1011 char *zCol; 1012 int iCol = p->iColumn; 1013 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1014 assert( j<pTabList->nSrc ); 1015 pTab = pTabList->a[j].pTab; 1016 if( iCol<0 ) iCol = pTab->iPKey; 1017 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1018 if( iCol<0 ){ 1019 zCol = "rowid"; 1020 }else{ 1021 zCol = pTab->aCol[iCol].zName; 1022 } 1023 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 1024 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1025 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1026 char *zName = 0; 1027 char *zTab; 1028 1029 zTab = pTabList->a[j].zAlias; 1030 if( fullNames || zTab==0 ) zTab = pTab->zName; 1031 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1032 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1033 }else{ 1034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1035 } 1036 }else if( p->span.z && p->span.z[0] ){ 1037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1038 /* sqlite3VdbeCompressSpace(v, addr); */ 1039 }else{ 1040 char zName[30]; 1041 assert( p->op!=TK_COLUMN || pTabList==0 ); 1042 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1043 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1044 } 1045 } 1046 generateColumnTypes(pParse, pTabList, pEList); 1047 } 1048 1049 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1050 /* 1051 ** Name of the connection operator, used for error messages. 1052 */ 1053 static const char *selectOpName(int id){ 1054 char *z; 1055 switch( id ){ 1056 case TK_ALL: z = "UNION ALL"; break; 1057 case TK_INTERSECT: z = "INTERSECT"; break; 1058 case TK_EXCEPT: z = "EXCEPT"; break; 1059 default: z = "UNION"; break; 1060 } 1061 return z; 1062 } 1063 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1064 1065 /* 1066 ** Forward declaration 1067 */ 1068 static int prepSelectStmt(Parse*, Select*); 1069 1070 /* 1071 ** Given a SELECT statement, generate a Table structure that describes 1072 ** the result set of that SELECT. 1073 */ 1074 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1075 Table *pTab; 1076 int i, j; 1077 ExprList *pEList; 1078 Column *aCol, *pCol; 1079 1080 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1081 if( prepSelectStmt(pParse, pSelect) ){ 1082 return 0; 1083 } 1084 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1085 return 0; 1086 } 1087 pTab = sqliteMalloc( sizeof(Table) ); 1088 if( pTab==0 ){ 1089 return 0; 1090 } 1091 pTab->nRef = 1; 1092 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1093 pEList = pSelect->pEList; 1094 pTab->nCol = pEList->nExpr; 1095 assert( pTab->nCol>0 ); 1096 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1097 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1098 Expr *p, *pR; 1099 char *zType; 1100 char *zName; 1101 int nName; 1102 CollSeq *pColl; 1103 int cnt; 1104 NameContext sNC; 1105 1106 /* Get an appropriate name for the column 1107 */ 1108 p = pEList->a[i].pExpr; 1109 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1110 if( (zName = pEList->a[i].zName)!=0 ){ 1111 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1112 zName = sqliteStrDup(zName); 1113 }else if( p->op==TK_DOT 1114 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1115 /* For columns of the from A.B use B as the name */ 1116 zName = sqlite3MPrintf("%T", &pR->token); 1117 }else if( p->span.z && p->span.z[0] ){ 1118 /* Use the original text of the column expression as its name */ 1119 zName = sqlite3MPrintf("%T", &p->span); 1120 }else{ 1121 /* If all else fails, make up a name */ 1122 zName = sqlite3MPrintf("column%d", i+1); 1123 } 1124 sqlite3Dequote(zName); 1125 if( sqlite3MallocFailed() ){ 1126 sqliteFree(zName); 1127 sqlite3DeleteTable(pTab); 1128 return 0; 1129 } 1130 1131 /* Make sure the column name is unique. If the name is not unique, 1132 ** append a integer to the name so that it becomes unique. 1133 */ 1134 nName = strlen(zName); 1135 for(j=cnt=0; j<i; j++){ 1136 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1137 zName[nName] = 0; 1138 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1139 j = -1; 1140 if( zName==0 ) break; 1141 } 1142 } 1143 pCol->zName = zName; 1144 1145 /* Get the typename, type affinity, and collating sequence for the 1146 ** column. 1147 */ 1148 memset(&sNC, 0, sizeof(sNC)); 1149 sNC.pSrcList = pSelect->pSrc; 1150 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1151 pCol->zType = zType; 1152 pCol->affinity = sqlite3ExprAffinity(p); 1153 pColl = sqlite3ExprCollSeq(pParse, p); 1154 if( pColl ){ 1155 pCol->zColl = sqliteStrDup(pColl->zName); 1156 } 1157 } 1158 pTab->iPKey = -1; 1159 return pTab; 1160 } 1161 1162 /* 1163 ** Prepare a SELECT statement for processing by doing the following 1164 ** things: 1165 ** 1166 ** (1) Make sure VDBE cursor numbers have been assigned to every 1167 ** element of the FROM clause. 1168 ** 1169 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1170 ** defines FROM clause. When views appear in the FROM clause, 1171 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1172 ** that implements the view. A copy is made of the view's SELECT 1173 ** statement so that we can freely modify or delete that statement 1174 ** without worrying about messing up the presistent representation 1175 ** of the view. 1176 ** 1177 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1178 ** on joins and the ON and USING clause of joins. 1179 ** 1180 ** (4) Scan the list of columns in the result set (pEList) looking 1181 ** for instances of the "*" operator or the TABLE.* operator. 1182 ** If found, expand each "*" to be every column in every table 1183 ** and TABLE.* to be every column in TABLE. 1184 ** 1185 ** Return 0 on success. If there are problems, leave an error message 1186 ** in pParse and return non-zero. 1187 */ 1188 static int prepSelectStmt(Parse *pParse, Select *p){ 1189 int i, j, k, rc; 1190 SrcList *pTabList; 1191 ExprList *pEList; 1192 struct SrcList_item *pFrom; 1193 1194 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1195 return 1; 1196 } 1197 pTabList = p->pSrc; 1198 pEList = p->pEList; 1199 1200 /* Make sure cursor numbers have been assigned to all entries in 1201 ** the FROM clause of the SELECT statement. 1202 */ 1203 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1204 1205 /* Look up every table named in the FROM clause of the select. If 1206 ** an entry of the FROM clause is a subquery instead of a table or view, 1207 ** then create a transient table structure to describe the subquery. 1208 */ 1209 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1210 Table *pTab; 1211 if( pFrom->pTab!=0 ){ 1212 /* This statement has already been prepared. There is no need 1213 ** to go further. */ 1214 assert( i==0 ); 1215 return 0; 1216 } 1217 if( pFrom->zName==0 ){ 1218 #ifndef SQLITE_OMIT_SUBQUERY 1219 /* A sub-query in the FROM clause of a SELECT */ 1220 assert( pFrom->pSelect!=0 ); 1221 if( pFrom->zAlias==0 ){ 1222 pFrom->zAlias = 1223 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1224 } 1225 assert( pFrom->pTab==0 ); 1226 pFrom->pTab = pTab = 1227 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1228 if( pTab==0 ){ 1229 return 1; 1230 } 1231 /* The isEphem flag indicates that the Table structure has been 1232 ** dynamically allocated and may be freed at any time. In other words, 1233 ** pTab is not pointing to a persistent table structure that defines 1234 ** part of the schema. */ 1235 pTab->isEphem = 1; 1236 #endif 1237 }else{ 1238 /* An ordinary table or view name in the FROM clause */ 1239 assert( pFrom->pTab==0 ); 1240 pFrom->pTab = pTab = 1241 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1242 if( pTab==0 ){ 1243 return 1; 1244 } 1245 pTab->nRef++; 1246 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1247 if( pTab->pSelect || IsVirtual(pTab) ){ 1248 /* We reach here if the named table is a really a view */ 1249 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1250 return 1; 1251 } 1252 /* If pFrom->pSelect!=0 it means we are dealing with a 1253 ** view within a view. The SELECT structure has already been 1254 ** copied by the outer view so we can skip the copy step here 1255 ** in the inner view. 1256 */ 1257 if( pFrom->pSelect==0 ){ 1258 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1259 } 1260 } 1261 #endif 1262 } 1263 } 1264 1265 /* Process NATURAL keywords, and ON and USING clauses of joins. 1266 */ 1267 if( sqliteProcessJoin(pParse, p) ) return 1; 1268 1269 /* For every "*" that occurs in the column list, insert the names of 1270 ** all columns in all tables. And for every TABLE.* insert the names 1271 ** of all columns in TABLE. The parser inserted a special expression 1272 ** with the TK_ALL operator for each "*" that it found in the column list. 1273 ** The following code just has to locate the TK_ALL expressions and expand 1274 ** each one to the list of all columns in all tables. 1275 ** 1276 ** The first loop just checks to see if there are any "*" operators 1277 ** that need expanding. 1278 */ 1279 for(k=0; k<pEList->nExpr; k++){ 1280 Expr *pE = pEList->a[k].pExpr; 1281 if( pE->op==TK_ALL ) break; 1282 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1283 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1284 } 1285 rc = 0; 1286 if( k<pEList->nExpr ){ 1287 /* 1288 ** If we get here it means the result set contains one or more "*" 1289 ** operators that need to be expanded. Loop through each expression 1290 ** in the result set and expand them one by one. 1291 */ 1292 struct ExprList_item *a = pEList->a; 1293 ExprList *pNew = 0; 1294 int flags = pParse->db->flags; 1295 int longNames = (flags & SQLITE_FullColNames)!=0 && 1296 (flags & SQLITE_ShortColNames)==0; 1297 1298 for(k=0; k<pEList->nExpr; k++){ 1299 Expr *pE = a[k].pExpr; 1300 if( pE->op!=TK_ALL && 1301 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1302 /* This particular expression does not need to be expanded. 1303 */ 1304 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1305 if( pNew ){ 1306 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1307 }else{ 1308 rc = 1; 1309 } 1310 a[k].pExpr = 0; 1311 a[k].zName = 0; 1312 }else{ 1313 /* This expression is a "*" or a "TABLE.*" and needs to be 1314 ** expanded. */ 1315 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1316 char *zTName; /* text of name of TABLE */ 1317 if( pE->op==TK_DOT && pE->pLeft ){ 1318 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1319 }else{ 1320 zTName = 0; 1321 } 1322 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1323 Table *pTab = pFrom->pTab; 1324 char *zTabName = pFrom->zAlias; 1325 if( zTabName==0 || zTabName[0]==0 ){ 1326 zTabName = pTab->zName; 1327 } 1328 if( zTName && (zTabName==0 || zTabName[0]==0 || 1329 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1330 continue; 1331 } 1332 tableSeen = 1; 1333 for(j=0; j<pTab->nCol; j++){ 1334 Expr *pExpr, *pRight; 1335 char *zName = pTab->aCol[j].zName; 1336 1337 /* If a column is marked as 'hidden' (currently only possible 1338 ** for virtual tables), do not include it in the expanded 1339 ** result-set list. 1340 */ 1341 if( IsHiddenColumn(&pTab->aCol[j]) ){ 1342 assert(IsVirtual(pTab)); 1343 continue; 1344 } 1345 1346 if( i>0 ){ 1347 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1348 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1349 columnIndex(pLeft->pTab, zName)>=0 ){ 1350 /* In a NATURAL join, omit the join columns from the 1351 ** table on the right */ 1352 continue; 1353 } 1354 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1355 /* In a join with a USING clause, omit columns in the 1356 ** using clause from the table on the right. */ 1357 continue; 1358 } 1359 } 1360 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1361 if( pRight==0 ) break; 1362 setQuotedToken(&pRight->token, zName); 1363 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1364 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1365 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1366 if( pExpr==0 ) break; 1367 setQuotedToken(&pLeft->token, zTabName); 1368 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1369 pExpr->span.dyn = 1; 1370 pExpr->token.z = 0; 1371 pExpr->token.n = 0; 1372 pExpr->token.dyn = 0; 1373 }else{ 1374 pExpr = pRight; 1375 pExpr->span = pExpr->token; 1376 pExpr->span.dyn = 0; 1377 } 1378 if( longNames ){ 1379 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1380 }else{ 1381 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1382 } 1383 } 1384 } 1385 if( !tableSeen ){ 1386 if( zTName ){ 1387 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1388 }else{ 1389 sqlite3ErrorMsg(pParse, "no tables specified"); 1390 } 1391 rc = 1; 1392 } 1393 sqliteFree(zTName); 1394 } 1395 } 1396 sqlite3ExprListDelete(pEList); 1397 p->pEList = pNew; 1398 } 1399 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ 1400 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1401 rc = SQLITE_ERROR; 1402 } 1403 if( sqlite3MallocFailed() ){ 1404 rc = SQLITE_NOMEM; 1405 } 1406 return rc; 1407 } 1408 1409 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1410 /* 1411 ** This routine associates entries in an ORDER BY expression list with 1412 ** columns in a result. For each ORDER BY expression, the opcode of 1413 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1414 ** the top-level node is filled in with column number and the iTable 1415 ** value of the top-level node is filled with iTable parameter. 1416 ** 1417 ** If there are prior SELECT clauses, they are processed first. A match 1418 ** in an earlier SELECT takes precedence over a later SELECT. 1419 ** 1420 ** Any entry that does not match is flagged as an error. The number 1421 ** of errors is returned. 1422 */ 1423 static int matchOrderbyToColumn( 1424 Parse *pParse, /* A place to leave error messages */ 1425 Select *pSelect, /* Match to result columns of this SELECT */ 1426 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1427 int iTable, /* Insert this value in iTable */ 1428 int mustComplete /* If TRUE all ORDER BYs must match */ 1429 ){ 1430 int nErr = 0; 1431 int i, j; 1432 ExprList *pEList; 1433 1434 if( pSelect==0 || pOrderBy==0 ) return 1; 1435 if( mustComplete ){ 1436 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1437 } 1438 if( prepSelectStmt(pParse, pSelect) ){ 1439 return 1; 1440 } 1441 if( pSelect->pPrior ){ 1442 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1443 return 1; 1444 } 1445 } 1446 pEList = pSelect->pEList; 1447 for(i=0; i<pOrderBy->nExpr; i++){ 1448 struct ExprList_item *pItem; 1449 Expr *pE = pOrderBy->a[i].pExpr; 1450 int iCol = -1; 1451 char *zLabel; 1452 1453 if( pOrderBy->a[i].done ) continue; 1454 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1455 if( iCol<=0 || iCol>pEList->nExpr ){ 1456 sqlite3ErrorMsg(pParse, 1457 "ORDER BY position %d should be between 1 and %d", 1458 iCol, pEList->nExpr); 1459 nErr++; 1460 break; 1461 } 1462 if( !mustComplete ) continue; 1463 iCol--; 1464 } 1465 if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){ 1466 for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){ 1467 char *zName; 1468 int isMatch; 1469 if( pItem->zName ){ 1470 zName = sqlite3StrDup(pItem->zName); 1471 }else{ 1472 zName = sqlite3NameFromToken(&pItem->pExpr->token); 1473 } 1474 isMatch = zName && sqlite3StrICmp(zName, zLabel)==0; 1475 sqliteFree(zName); 1476 if( isMatch ){ 1477 iCol = j; 1478 break; 1479 } 1480 } 1481 sqliteFree(zLabel); 1482 } 1483 if( iCol>=0 ){ 1484 pE->op = TK_COLUMN; 1485 pE->iColumn = iCol; 1486 pE->iTable = iTable; 1487 pE->iAgg = -1; 1488 pOrderBy->a[i].done = 1; 1489 }else if( mustComplete ){ 1490 sqlite3ErrorMsg(pParse, 1491 "ORDER BY term number %d does not match any result column", i+1); 1492 nErr++; 1493 break; 1494 } 1495 } 1496 return nErr; 1497 } 1498 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1499 1500 /* 1501 ** Get a VDBE for the given parser context. Create a new one if necessary. 1502 ** If an error occurs, return NULL and leave a message in pParse. 1503 */ 1504 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1505 Vdbe *v = pParse->pVdbe; 1506 if( v==0 ){ 1507 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1508 } 1509 return v; 1510 } 1511 1512 1513 /* 1514 ** Compute the iLimit and iOffset fields of the SELECT based on the 1515 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1516 ** that appear in the original SQL statement after the LIMIT and OFFSET 1517 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1518 ** are the integer memory register numbers for counters used to compute 1519 ** the limit and offset. If there is no limit and/or offset, then 1520 ** iLimit and iOffset are negative. 1521 ** 1522 ** This routine changes the values of iLimit and iOffset only if 1523 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1524 ** iOffset should have been preset to appropriate default values 1525 ** (usually but not always -1) prior to calling this routine. 1526 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1527 ** redefined. The UNION ALL operator uses this property to force 1528 ** the reuse of the same limit and offset registers across multiple 1529 ** SELECT statements. 1530 */ 1531 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1532 Vdbe *v = 0; 1533 int iLimit = 0; 1534 int iOffset; 1535 int addr1, addr2; 1536 1537 /* 1538 ** "LIMIT -1" always shows all rows. There is some 1539 ** contraversy about what the correct behavior should be. 1540 ** The current implementation interprets "LIMIT 0" to mean 1541 ** no rows. 1542 */ 1543 if( p->pLimit ){ 1544 p->iLimit = iLimit = pParse->nMem; 1545 pParse->nMem += 2; 1546 v = sqlite3GetVdbe(pParse); 1547 if( v==0 ) return; 1548 sqlite3ExprCode(pParse, p->pLimit); 1549 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1550 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); 1551 VdbeComment((v, "# LIMIT counter")); 1552 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1553 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); 1554 } 1555 if( p->pOffset ){ 1556 p->iOffset = iOffset = pParse->nMem++; 1557 v = sqlite3GetVdbe(pParse); 1558 if( v==0 ) return; 1559 sqlite3ExprCode(pParse, p->pOffset); 1560 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1561 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1562 VdbeComment((v, "# OFFSET counter")); 1563 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1564 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1565 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1566 sqlite3VdbeJumpHere(v, addr1); 1567 if( p->pLimit ){ 1568 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1569 } 1570 } 1571 if( p->pLimit ){ 1572 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1573 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1574 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1575 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1576 sqlite3VdbeJumpHere(v, addr1); 1577 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1578 VdbeComment((v, "# LIMIT+OFFSET")); 1579 sqlite3VdbeJumpHere(v, addr2); 1580 } 1581 } 1582 1583 /* 1584 ** Allocate a virtual index to use for sorting. 1585 */ 1586 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1587 if( pOrderBy ){ 1588 int addr; 1589 assert( pOrderBy->iECursor==0 ); 1590 pOrderBy->iECursor = pParse->nTab++; 1591 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1592 pOrderBy->iECursor, pOrderBy->nExpr+1); 1593 assert( p->addrOpenEphm[2] == -1 ); 1594 p->addrOpenEphm[2] = addr; 1595 } 1596 } 1597 1598 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1599 /* 1600 ** Return the appropriate collating sequence for the iCol-th column of 1601 ** the result set for the compound-select statement "p". Return NULL if 1602 ** the column has no default collating sequence. 1603 ** 1604 ** The collating sequence for the compound select is taken from the 1605 ** left-most term of the select that has a collating sequence. 1606 */ 1607 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1608 CollSeq *pRet; 1609 if( p->pPrior ){ 1610 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1611 }else{ 1612 pRet = 0; 1613 } 1614 if( pRet==0 ){ 1615 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1616 } 1617 return pRet; 1618 } 1619 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1620 1621 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1622 /* 1623 ** This routine is called to process a query that is really the union 1624 ** or intersection of two or more separate queries. 1625 ** 1626 ** "p" points to the right-most of the two queries. the query on the 1627 ** left is p->pPrior. The left query could also be a compound query 1628 ** in which case this routine will be called recursively. 1629 ** 1630 ** The results of the total query are to be written into a destination 1631 ** of type eDest with parameter iParm. 1632 ** 1633 ** Example 1: Consider a three-way compound SQL statement. 1634 ** 1635 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1636 ** 1637 ** This statement is parsed up as follows: 1638 ** 1639 ** SELECT c FROM t3 1640 ** | 1641 ** `-----> SELECT b FROM t2 1642 ** | 1643 ** `------> SELECT a FROM t1 1644 ** 1645 ** The arrows in the diagram above represent the Select.pPrior pointer. 1646 ** So if this routine is called with p equal to the t3 query, then 1647 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1648 ** 1649 ** Notice that because of the way SQLite parses compound SELECTs, the 1650 ** individual selects always group from left to right. 1651 */ 1652 static int multiSelect( 1653 Parse *pParse, /* Parsing context */ 1654 Select *p, /* The right-most of SELECTs to be coded */ 1655 int eDest, /* \___ Store query results as specified */ 1656 int iParm, /* / by these two parameters. */ 1657 char *aff /* If eDest is SRT_Union, the affinity string */ 1658 ){ 1659 int rc = SQLITE_OK; /* Success code from a subroutine */ 1660 Select *pPrior; /* Another SELECT immediately to our left */ 1661 Vdbe *v; /* Generate code to this VDBE */ 1662 int nCol; /* Number of columns in the result set */ 1663 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1664 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1665 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1666 1667 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1668 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1669 */ 1670 if( p==0 || p->pPrior==0 ){ 1671 rc = 1; 1672 goto multi_select_end; 1673 } 1674 pPrior = p->pPrior; 1675 assert( pPrior->pRightmost!=pPrior ); 1676 assert( pPrior->pRightmost==p->pRightmost ); 1677 if( pPrior->pOrderBy ){ 1678 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1679 selectOpName(p->op)); 1680 rc = 1; 1681 goto multi_select_end; 1682 } 1683 if( pPrior->pLimit ){ 1684 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1685 selectOpName(p->op)); 1686 rc = 1; 1687 goto multi_select_end; 1688 } 1689 1690 /* Make sure we have a valid query engine. If not, create a new one. 1691 */ 1692 v = sqlite3GetVdbe(pParse); 1693 if( v==0 ){ 1694 rc = 1; 1695 goto multi_select_end; 1696 } 1697 1698 /* Create the destination temporary table if necessary 1699 */ 1700 if( eDest==SRT_EphemTab ){ 1701 assert( p->pEList ); 1702 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1703 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1704 eDest = SRT_Table; 1705 } 1706 1707 /* Generate code for the left and right SELECT statements. 1708 */ 1709 pOrderBy = p->pOrderBy; 1710 switch( p->op ){ 1711 case TK_ALL: { 1712 if( pOrderBy==0 ){ 1713 int addr = 0; 1714 assert( !pPrior->pLimit ); 1715 pPrior->pLimit = p->pLimit; 1716 pPrior->pOffset = p->pOffset; 1717 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1718 p->pLimit = 0; 1719 p->pOffset = 0; 1720 if( rc ){ 1721 goto multi_select_end; 1722 } 1723 p->pPrior = 0; 1724 p->iLimit = pPrior->iLimit; 1725 p->iOffset = pPrior->iOffset; 1726 if( p->iLimit>=0 ){ 1727 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1728 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1729 } 1730 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1731 p->pPrior = pPrior; 1732 if( rc ){ 1733 goto multi_select_end; 1734 } 1735 if( addr ){ 1736 sqlite3VdbeJumpHere(v, addr); 1737 } 1738 break; 1739 } 1740 /* For UNION ALL ... ORDER BY fall through to the next case */ 1741 } 1742 case TK_EXCEPT: 1743 case TK_UNION: { 1744 int unionTab; /* Cursor number of the temporary table holding result */ 1745 int op = 0; /* One of the SRT_ operations to apply to self */ 1746 int priorOp; /* The SRT_ operation to apply to prior selects */ 1747 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1748 int addr; 1749 1750 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1751 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1752 /* We can reuse a temporary table generated by a SELECT to our 1753 ** right. 1754 */ 1755 unionTab = iParm; 1756 }else{ 1757 /* We will need to create our own temporary table to hold the 1758 ** intermediate results. 1759 */ 1760 unionTab = pParse->nTab++; 1761 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1762 rc = 1; 1763 goto multi_select_end; 1764 } 1765 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1766 if( priorOp==SRT_Table ){ 1767 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1768 aSetP2[nSetP2++] = addr; 1769 }else{ 1770 assert( p->addrOpenEphm[0] == -1 ); 1771 p->addrOpenEphm[0] = addr; 1772 p->pRightmost->usesEphm = 1; 1773 } 1774 createSortingIndex(pParse, p, pOrderBy); 1775 assert( p->pEList ); 1776 } 1777 1778 /* Code the SELECT statements to our left 1779 */ 1780 assert( !pPrior->pOrderBy ); 1781 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1782 if( rc ){ 1783 goto multi_select_end; 1784 } 1785 1786 /* Code the current SELECT statement 1787 */ 1788 switch( p->op ){ 1789 case TK_EXCEPT: op = SRT_Except; break; 1790 case TK_UNION: op = SRT_Union; break; 1791 case TK_ALL: op = SRT_Table; break; 1792 } 1793 p->pPrior = 0; 1794 p->pOrderBy = 0; 1795 p->disallowOrderBy = pOrderBy!=0; 1796 pLimit = p->pLimit; 1797 p->pLimit = 0; 1798 pOffset = p->pOffset; 1799 p->pOffset = 0; 1800 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1801 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1802 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1803 sqlite3ExprListDelete(p->pOrderBy); 1804 p->pPrior = pPrior; 1805 p->pOrderBy = pOrderBy; 1806 sqlite3ExprDelete(p->pLimit); 1807 p->pLimit = pLimit; 1808 p->pOffset = pOffset; 1809 p->iLimit = -1; 1810 p->iOffset = -1; 1811 if( rc ){ 1812 goto multi_select_end; 1813 } 1814 1815 1816 /* Convert the data in the temporary table into whatever form 1817 ** it is that we currently need. 1818 */ 1819 if( eDest!=priorOp || unionTab!=iParm ){ 1820 int iCont, iBreak, iStart; 1821 assert( p->pEList ); 1822 if( eDest==SRT_Callback ){ 1823 Select *pFirst = p; 1824 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1825 generateColumnNames(pParse, 0, pFirst->pEList); 1826 } 1827 iBreak = sqlite3VdbeMakeLabel(v); 1828 iCont = sqlite3VdbeMakeLabel(v); 1829 computeLimitRegisters(pParse, p, iBreak); 1830 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1831 iStart = sqlite3VdbeCurrentAddr(v); 1832 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1833 pOrderBy, -1, eDest, iParm, 1834 iCont, iBreak, 0); 1835 if( rc ){ 1836 rc = 1; 1837 goto multi_select_end; 1838 } 1839 sqlite3VdbeResolveLabel(v, iCont); 1840 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1841 sqlite3VdbeResolveLabel(v, iBreak); 1842 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1843 } 1844 break; 1845 } 1846 case TK_INTERSECT: { 1847 int tab1, tab2; 1848 int iCont, iBreak, iStart; 1849 Expr *pLimit, *pOffset; 1850 int addr; 1851 1852 /* INTERSECT is different from the others since it requires 1853 ** two temporary tables. Hence it has its own case. Begin 1854 ** by allocating the tables we will need. 1855 */ 1856 tab1 = pParse->nTab++; 1857 tab2 = pParse->nTab++; 1858 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1859 rc = 1; 1860 goto multi_select_end; 1861 } 1862 createSortingIndex(pParse, p, pOrderBy); 1863 1864 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1865 assert( p->addrOpenEphm[0] == -1 ); 1866 p->addrOpenEphm[0] = addr; 1867 p->pRightmost->usesEphm = 1; 1868 assert( p->pEList ); 1869 1870 /* Code the SELECTs to our left into temporary table "tab1". 1871 */ 1872 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1873 if( rc ){ 1874 goto multi_select_end; 1875 } 1876 1877 /* Code the current SELECT into temporary table "tab2" 1878 */ 1879 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1880 assert( p->addrOpenEphm[1] == -1 ); 1881 p->addrOpenEphm[1] = addr; 1882 p->pPrior = 0; 1883 pLimit = p->pLimit; 1884 p->pLimit = 0; 1885 pOffset = p->pOffset; 1886 p->pOffset = 0; 1887 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1888 p->pPrior = pPrior; 1889 sqlite3ExprDelete(p->pLimit); 1890 p->pLimit = pLimit; 1891 p->pOffset = pOffset; 1892 if( rc ){ 1893 goto multi_select_end; 1894 } 1895 1896 /* Generate code to take the intersection of the two temporary 1897 ** tables. 1898 */ 1899 assert( p->pEList ); 1900 if( eDest==SRT_Callback ){ 1901 Select *pFirst = p; 1902 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1903 generateColumnNames(pParse, 0, pFirst->pEList); 1904 } 1905 iBreak = sqlite3VdbeMakeLabel(v); 1906 iCont = sqlite3VdbeMakeLabel(v); 1907 computeLimitRegisters(pParse, p, iBreak); 1908 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1909 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1910 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1911 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1912 pOrderBy, -1, eDest, iParm, 1913 iCont, iBreak, 0); 1914 if( rc ){ 1915 rc = 1; 1916 goto multi_select_end; 1917 } 1918 sqlite3VdbeResolveLabel(v, iCont); 1919 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1920 sqlite3VdbeResolveLabel(v, iBreak); 1921 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1922 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1923 break; 1924 } 1925 } 1926 1927 /* Make sure all SELECTs in the statement have the same number of elements 1928 ** in their result sets. 1929 */ 1930 assert( p->pEList && pPrior->pEList ); 1931 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1932 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1933 " do not have the same number of result columns", selectOpName(p->op)); 1934 rc = 1; 1935 goto multi_select_end; 1936 } 1937 1938 /* Set the number of columns in temporary tables 1939 */ 1940 nCol = p->pEList->nExpr; 1941 while( nSetP2 ){ 1942 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1943 } 1944 1945 /* Compute collating sequences used by either the ORDER BY clause or 1946 ** by any temporary tables needed to implement the compound select. 1947 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1948 ** ORDER BY processing if there is an ORDER BY clause. 1949 ** 1950 ** This section is run by the right-most SELECT statement only. 1951 ** SELECT statements to the left always skip this part. The right-most 1952 ** SELECT might also skip this part if it has no ORDER BY clause and 1953 ** no temp tables are required. 1954 */ 1955 if( pOrderBy || p->usesEphm ){ 1956 int i; /* Loop counter */ 1957 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1958 Select *pLoop; /* For looping through SELECT statements */ 1959 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1960 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1961 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 1962 1963 assert( p->pRightmost==p ); 1964 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1965 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1966 if( !pKeyInfo ){ 1967 rc = SQLITE_NOMEM; 1968 goto multi_select_end; 1969 } 1970 1971 pKeyInfo->enc = ENC(pParse->db); 1972 pKeyInfo->nField = nCol; 1973 1974 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1975 *apColl = multiSelectCollSeq(pParse, p, i); 1976 if( 0==*apColl ){ 1977 *apColl = pParse->db->pDfltColl; 1978 } 1979 } 1980 1981 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1982 for(i=0; i<2; i++){ 1983 int addr = pLoop->addrOpenEphm[i]; 1984 if( addr<0 ){ 1985 /* If [0] is unused then [1] is also unused. So we can 1986 ** always safely abort as soon as the first unused slot is found */ 1987 assert( pLoop->addrOpenEphm[1]<0 ); 1988 break; 1989 } 1990 sqlite3VdbeChangeP2(v, addr, nCol); 1991 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1992 pLoop->addrOpenEphm[i] = -1; 1993 } 1994 } 1995 1996 if( pOrderBy ){ 1997 struct ExprList_item *pOTerm = pOrderBy->a; 1998 int nOrderByExpr = pOrderBy->nExpr; 1999 int addr; 2000 u8 *pSortOrder; 2001 2002 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 2003 ** the compound select statements. Except we have to change out the 2004 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 2005 ** reused when constructing the pKeyInfo for the ORDER BY, so make 2006 ** a copy. Sufficient space to hold both the nCol entries for 2007 ** the compound select and the nOrderbyExpr entries for the ORDER BY 2008 ** was allocated above. But we need to move the compound select 2009 ** entries out of the way before constructing the ORDER BY entries. 2010 ** Move the compound select entries into aCopy[] where they can be 2011 ** accessed and reused when constructing the ORDER BY entries. 2012 ** Because nCol might be greater than or less than nOrderByExpr 2013 ** we have to use memmove() when doing the copy. 2014 */ 2015 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 2016 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 2017 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 2018 2019 apColl = pKeyInfo->aColl; 2020 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 2021 Expr *pExpr = pOTerm->pExpr; 2022 if( (pExpr->flags & EP_ExpCollate) ){ 2023 assert( pExpr->pColl!=0 ); 2024 *apColl = pExpr->pColl; 2025 }else{ 2026 *apColl = aCopy[pExpr->iColumn]; 2027 } 2028 *pSortOrder = pOTerm->sortOrder; 2029 } 2030 assert( p->pRightmost==p ); 2031 assert( p->addrOpenEphm[2]>=0 ); 2032 addr = p->addrOpenEphm[2]; 2033 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); 2034 pKeyInfo->nField = nOrderByExpr; 2035 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2036 pKeyInfo = 0; 2037 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 2038 } 2039 2040 sqliteFree(pKeyInfo); 2041 } 2042 2043 multi_select_end: 2044 return rc; 2045 } 2046 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2047 2048 #ifndef SQLITE_OMIT_VIEW 2049 /* 2050 ** Scan through the expression pExpr. Replace every reference to 2051 ** a column in table number iTable with a copy of the iColumn-th 2052 ** entry in pEList. (But leave references to the ROWID column 2053 ** unchanged.) 2054 ** 2055 ** This routine is part of the flattening procedure. A subquery 2056 ** whose result set is defined by pEList appears as entry in the 2057 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2058 ** FORM clause entry is iTable. This routine make the necessary 2059 ** changes to pExpr so that it refers directly to the source table 2060 ** of the subquery rather the result set of the subquery. 2061 */ 2062 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 2063 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 2064 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 2065 if( pExpr==0 ) return; 2066 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2067 if( pExpr->iColumn<0 ){ 2068 pExpr->op = TK_NULL; 2069 }else{ 2070 Expr *pNew; 2071 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2072 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2073 pNew = pEList->a[pExpr->iColumn].pExpr; 2074 assert( pNew!=0 ); 2075 pExpr->op = pNew->op; 2076 assert( pExpr->pLeft==0 ); 2077 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2078 assert( pExpr->pRight==0 ); 2079 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2080 assert( pExpr->pList==0 ); 2081 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2082 pExpr->iTable = pNew->iTable; 2083 pExpr->pTab = pNew->pTab; 2084 pExpr->iColumn = pNew->iColumn; 2085 pExpr->iAgg = pNew->iAgg; 2086 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2087 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2088 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2089 pExpr->flags = pNew->flags; 2090 } 2091 }else{ 2092 substExpr(pExpr->pLeft, iTable, pEList); 2093 substExpr(pExpr->pRight, iTable, pEList); 2094 substSelect(pExpr->pSelect, iTable, pEList); 2095 substExprList(pExpr->pList, iTable, pEList); 2096 } 2097 } 2098 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2099 int i; 2100 if( pList==0 ) return; 2101 for(i=0; i<pList->nExpr; i++){ 2102 substExpr(pList->a[i].pExpr, iTable, pEList); 2103 } 2104 } 2105 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2106 if( !p ) return; 2107 substExprList(p->pEList, iTable, pEList); 2108 substExprList(p->pGroupBy, iTable, pEList); 2109 substExprList(p->pOrderBy, iTable, pEList); 2110 substExpr(p->pHaving, iTable, pEList); 2111 substExpr(p->pWhere, iTable, pEList); 2112 substSelect(p->pPrior, iTable, pEList); 2113 } 2114 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2115 2116 #ifndef SQLITE_OMIT_VIEW 2117 /* 2118 ** This routine attempts to flatten subqueries in order to speed 2119 ** execution. It returns 1 if it makes changes and 0 if no flattening 2120 ** occurs. 2121 ** 2122 ** To understand the concept of flattening, consider the following 2123 ** query: 2124 ** 2125 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2126 ** 2127 ** The default way of implementing this query is to execute the 2128 ** subquery first and store the results in a temporary table, then 2129 ** run the outer query on that temporary table. This requires two 2130 ** passes over the data. Furthermore, because the temporary table 2131 ** has no indices, the WHERE clause on the outer query cannot be 2132 ** optimized. 2133 ** 2134 ** This routine attempts to rewrite queries such as the above into 2135 ** a single flat select, like this: 2136 ** 2137 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2138 ** 2139 ** The code generated for this simpification gives the same result 2140 ** but only has to scan the data once. And because indices might 2141 ** exist on the table t1, a complete scan of the data might be 2142 ** avoided. 2143 ** 2144 ** Flattening is only attempted if all of the following are true: 2145 ** 2146 ** (1) The subquery and the outer query do not both use aggregates. 2147 ** 2148 ** (2) The subquery is not an aggregate or the outer query is not a join. 2149 ** 2150 ** (3) The subquery is not the right operand of a left outer join, or 2151 ** the subquery is not itself a join. (Ticket #306) 2152 ** 2153 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2154 ** 2155 ** (5) The subquery is not DISTINCT or the outer query does not use 2156 ** aggregates. 2157 ** 2158 ** (6) The subquery does not use aggregates or the outer query is not 2159 ** DISTINCT. 2160 ** 2161 ** (7) The subquery has a FROM clause. 2162 ** 2163 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2164 ** 2165 ** (9) The subquery does not use LIMIT or the outer query does not use 2166 ** aggregates. 2167 ** 2168 ** (10) The subquery does not use aggregates or the outer query does not 2169 ** use LIMIT. 2170 ** 2171 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2172 ** 2173 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2174 ** subquery has no WHERE clause. (added by ticket #350) 2175 ** 2176 ** (13) The subquery and outer query do not both use LIMIT 2177 ** 2178 ** (14) The subquery does not use OFFSET 2179 ** 2180 ** (15) The outer query is not part of a compound select or the 2181 ** subquery does not have both an ORDER BY and a LIMIT clause. 2182 ** (See ticket #2339) 2183 ** 2184 ** In this routine, the "p" parameter is a pointer to the outer query. 2185 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2186 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2187 ** 2188 ** If flattening is not attempted, this routine is a no-op and returns 0. 2189 ** If flattening is attempted this routine returns 1. 2190 ** 2191 ** All of the expression analysis must occur on both the outer query and 2192 ** the subquery before this routine runs. 2193 */ 2194 static int flattenSubquery( 2195 Select *p, /* The parent or outer SELECT statement */ 2196 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2197 int isAgg, /* True if outer SELECT uses aggregate functions */ 2198 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2199 ){ 2200 Select *pSub; /* The inner query or "subquery" */ 2201 SrcList *pSrc; /* The FROM clause of the outer query */ 2202 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2203 ExprList *pList; /* The result set of the outer query */ 2204 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2205 int i; /* Loop counter */ 2206 Expr *pWhere; /* The WHERE clause */ 2207 struct SrcList_item *pSubitem; /* The subquery */ 2208 2209 /* Check to see if flattening is permitted. Return 0 if not. 2210 */ 2211 if( p==0 ) return 0; 2212 pSrc = p->pSrc; 2213 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2214 pSubitem = &pSrc->a[iFrom]; 2215 pSub = pSubitem->pSelect; 2216 assert( pSub!=0 ); 2217 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2218 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2219 pSubSrc = pSub->pSrc; 2220 assert( pSubSrc ); 2221 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2222 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2223 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2224 ** became arbitrary expressions, we were forced to add restrictions (13) 2225 ** and (14). */ 2226 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2227 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2228 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2229 return 0; /* Restriction (15) */ 2230 } 2231 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2232 if( (pSub->isDistinct || pSub->pLimit) 2233 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2234 return 0; 2235 } 2236 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2237 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2238 return 0; /* Restriction (11) */ 2239 } 2240 2241 /* Restriction 3: If the subquery is a join, make sure the subquery is 2242 ** not used as the right operand of an outer join. Examples of why this 2243 ** is not allowed: 2244 ** 2245 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2246 ** 2247 ** If we flatten the above, we would get 2248 ** 2249 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2250 ** 2251 ** which is not at all the same thing. 2252 */ 2253 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2254 return 0; 2255 } 2256 2257 /* Restriction 12: If the subquery is the right operand of a left outer 2258 ** join, make sure the subquery has no WHERE clause. 2259 ** An examples of why this is not allowed: 2260 ** 2261 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2262 ** 2263 ** If we flatten the above, we would get 2264 ** 2265 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2266 ** 2267 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2268 ** effectively converts the OUTER JOIN into an INNER JOIN. 2269 */ 2270 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2271 return 0; 2272 } 2273 2274 /* If we reach this point, it means flattening is permitted for the 2275 ** iFrom-th entry of the FROM clause in the outer query. 2276 */ 2277 2278 /* Move all of the FROM elements of the subquery into the 2279 ** the FROM clause of the outer query. Before doing this, remember 2280 ** the cursor number for the original outer query FROM element in 2281 ** iParent. The iParent cursor will never be used. Subsequent code 2282 ** will scan expressions looking for iParent references and replace 2283 ** those references with expressions that resolve to the subquery FROM 2284 ** elements we are now copying in. 2285 */ 2286 iParent = pSubitem->iCursor; 2287 { 2288 int nSubSrc = pSubSrc->nSrc; 2289 int jointype = pSubitem->jointype; 2290 2291 sqlite3DeleteTable(pSubitem->pTab); 2292 sqliteFree(pSubitem->zDatabase); 2293 sqliteFree(pSubitem->zName); 2294 sqliteFree(pSubitem->zAlias); 2295 if( nSubSrc>1 ){ 2296 int extra = nSubSrc - 1; 2297 for(i=1; i<nSubSrc; i++){ 2298 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2299 } 2300 p->pSrc = pSrc; 2301 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2302 pSrc->a[i] = pSrc->a[i-extra]; 2303 } 2304 } 2305 for(i=0; i<nSubSrc; i++){ 2306 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2307 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2308 } 2309 pSrc->a[iFrom].jointype = jointype; 2310 } 2311 2312 /* Now begin substituting subquery result set expressions for 2313 ** references to the iParent in the outer query. 2314 ** 2315 ** Example: 2316 ** 2317 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2318 ** \ \_____________ subquery __________/ / 2319 ** \_____________________ outer query ______________________________/ 2320 ** 2321 ** We look at every expression in the outer query and every place we see 2322 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2323 */ 2324 pList = p->pEList; 2325 for(i=0; i<pList->nExpr; i++){ 2326 Expr *pExpr; 2327 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2328 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2329 } 2330 } 2331 substExprList(p->pEList, iParent, pSub->pEList); 2332 if( isAgg ){ 2333 substExprList(p->pGroupBy, iParent, pSub->pEList); 2334 substExpr(p->pHaving, iParent, pSub->pEList); 2335 } 2336 if( pSub->pOrderBy ){ 2337 assert( p->pOrderBy==0 ); 2338 p->pOrderBy = pSub->pOrderBy; 2339 pSub->pOrderBy = 0; 2340 }else if( p->pOrderBy ){ 2341 substExprList(p->pOrderBy, iParent, pSub->pEList); 2342 } 2343 if( pSub->pWhere ){ 2344 pWhere = sqlite3ExprDup(pSub->pWhere); 2345 }else{ 2346 pWhere = 0; 2347 } 2348 if( subqueryIsAgg ){ 2349 assert( p->pHaving==0 ); 2350 p->pHaving = p->pWhere; 2351 p->pWhere = pWhere; 2352 substExpr(p->pHaving, iParent, pSub->pEList); 2353 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2354 assert( p->pGroupBy==0 ); 2355 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2356 }else{ 2357 substExpr(p->pWhere, iParent, pSub->pEList); 2358 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2359 } 2360 2361 /* The flattened query is distinct if either the inner or the 2362 ** outer query is distinct. 2363 */ 2364 p->isDistinct = p->isDistinct || pSub->isDistinct; 2365 2366 /* 2367 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2368 ** 2369 ** One is tempted to try to add a and b to combine the limits. But this 2370 ** does not work if either limit is negative. 2371 */ 2372 if( pSub->pLimit ){ 2373 p->pLimit = pSub->pLimit; 2374 pSub->pLimit = 0; 2375 } 2376 2377 /* Finially, delete what is left of the subquery and return 2378 ** success. 2379 */ 2380 sqlite3SelectDelete(pSub); 2381 return 1; 2382 } 2383 #endif /* SQLITE_OMIT_VIEW */ 2384 2385 /* 2386 ** Analyze the SELECT statement passed in as an argument to see if it 2387 ** is a simple min() or max() query. If it is and this query can be 2388 ** satisfied using a single seek to the beginning or end of an index, 2389 ** then generate the code for this SELECT and return 1. If this is not a 2390 ** simple min() or max() query, then return 0; 2391 ** 2392 ** A simply min() or max() query looks like this: 2393 ** 2394 ** SELECT min(a) FROM table; 2395 ** SELECT max(a) FROM table; 2396 ** 2397 ** The query may have only a single table in its FROM argument. There 2398 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2399 ** be the min() or max() of a single column of the table. The column 2400 ** in the min() or max() function must be indexed. 2401 ** 2402 ** The parameters to this routine are the same as for sqlite3Select(). 2403 ** See the header comment on that routine for additional information. 2404 */ 2405 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2406 Expr *pExpr; 2407 int iCol; 2408 Table *pTab; 2409 Index *pIdx; 2410 int base; 2411 Vdbe *v; 2412 int seekOp; 2413 ExprList *pEList, *pList, eList; 2414 struct ExprList_item eListItem; 2415 SrcList *pSrc; 2416 int brk; 2417 int iDb; 2418 2419 /* Check to see if this query is a simple min() or max() query. Return 2420 ** zero if it is not. 2421 */ 2422 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2423 pSrc = p->pSrc; 2424 if( pSrc->nSrc!=1 ) return 0; 2425 pEList = p->pEList; 2426 if( pEList->nExpr!=1 ) return 0; 2427 pExpr = pEList->a[0].pExpr; 2428 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2429 pList = pExpr->pList; 2430 if( pList==0 || pList->nExpr!=1 ) return 0; 2431 if( pExpr->token.n!=3 ) return 0; 2432 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2433 seekOp = OP_Rewind; 2434 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2435 seekOp = OP_Last; 2436 }else{ 2437 return 0; 2438 } 2439 pExpr = pList->a[0].pExpr; 2440 if( pExpr->op!=TK_COLUMN ) return 0; 2441 iCol = pExpr->iColumn; 2442 pTab = pSrc->a[0].pTab; 2443 2444 /* This optimization cannot be used with virtual tables. */ 2445 if( IsVirtual(pTab) ) return 0; 2446 2447 /* If we get to here, it means the query is of the correct form. 2448 ** Check to make sure we have an index and make pIdx point to the 2449 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2450 ** key column, no index is necessary so set pIdx to NULL. If no 2451 ** usable index is found, return 0. 2452 */ 2453 if( iCol<0 ){ 2454 pIdx = 0; 2455 }else{ 2456 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2457 if( pColl==0 ) return 0; 2458 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2459 assert( pIdx->nColumn>=1 ); 2460 if( pIdx->aiColumn[0]==iCol && 2461 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2462 break; 2463 } 2464 } 2465 if( pIdx==0 ) return 0; 2466 } 2467 2468 /* Identify column types if we will be using the callback. This 2469 ** step is skipped if the output is going to a table or a memory cell. 2470 ** The column names have already been generated in the calling function. 2471 */ 2472 v = sqlite3GetVdbe(pParse); 2473 if( v==0 ) return 0; 2474 2475 /* If the output is destined for a temporary table, open that table. 2476 */ 2477 if( eDest==SRT_EphemTab ){ 2478 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2479 } 2480 2481 /* Generating code to find the min or the max. Basically all we have 2482 ** to do is find the first or the last entry in the chosen index. If 2483 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2484 ** or last entry in the main table. 2485 */ 2486 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2487 assert( iDb>=0 || pTab->isEphem ); 2488 sqlite3CodeVerifySchema(pParse, iDb); 2489 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2490 base = pSrc->a[0].iCursor; 2491 brk = sqlite3VdbeMakeLabel(v); 2492 computeLimitRegisters(pParse, p, brk); 2493 if( pSrc->a[0].pSelect==0 ){ 2494 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2495 } 2496 if( pIdx==0 ){ 2497 sqlite3VdbeAddOp(v, seekOp, base, 0); 2498 }else{ 2499 /* Even though the cursor used to open the index here is closed 2500 ** as soon as a single value has been read from it, allocate it 2501 ** using (pParse->nTab++) to prevent the cursor id from being 2502 ** reused. This is important for statements of the form 2503 ** "INSERT INTO x SELECT max() FROM x". 2504 */ 2505 int iIdx; 2506 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2507 iIdx = pParse->nTab++; 2508 assert( pIdx->pSchema==pTab->pSchema ); 2509 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2510 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2511 (char*)pKey, P3_KEYINFO_HANDOFF); 2512 if( seekOp==OP_Rewind ){ 2513 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2514 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2515 seekOp = OP_MoveGt; 2516 } 2517 if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){ 2518 /* Ticket #2514: invert the seek operator if we are using 2519 ** a descending index. */ 2520 if( seekOp==OP_Last ){ 2521 seekOp = OP_Rewind; 2522 }else{ 2523 assert( seekOp==OP_MoveGt ); 2524 seekOp = OP_MoveLt; 2525 } 2526 } 2527 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2528 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2529 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2530 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2531 } 2532 eList.nExpr = 1; 2533 memset(&eListItem, 0, sizeof(eListItem)); 2534 eList.a = &eListItem; 2535 eList.a[0].pExpr = pExpr; 2536 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2537 sqlite3VdbeResolveLabel(v, brk); 2538 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2539 2540 return 1; 2541 } 2542 2543 /* 2544 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2545 ** the number of errors seen. 2546 ** 2547 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2548 ** is an integer constant, then that expression is replaced by the 2549 ** corresponding entry in the result set. 2550 */ 2551 static int processOrderGroupBy( 2552 NameContext *pNC, /* Name context of the SELECT statement. */ 2553 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2554 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2555 ){ 2556 int i; 2557 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2558 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2559 assert( pEList ); 2560 2561 if( pOrderBy==0 ) return 0; 2562 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 2563 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 2564 return 1; 2565 } 2566 for(i=0; i<pOrderBy->nExpr; i++){ 2567 int iCol; 2568 Expr *pE = pOrderBy->a[i].pExpr; 2569 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2570 if( iCol>0 && iCol<=pEList->nExpr ){ 2571 CollSeq *pColl = pE->pColl; 2572 int flags = pE->flags & EP_ExpCollate; 2573 sqlite3ExprDelete(pE); 2574 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2575 if( pColl && flags ){ 2576 pE->pColl = pColl; 2577 pE->flags |= flags; 2578 } 2579 }else{ 2580 sqlite3ErrorMsg(pParse, 2581 "%s BY column number %d out of range - should be " 2582 "between 1 and %d", zType, iCol, pEList->nExpr); 2583 return 1; 2584 } 2585 } 2586 if( sqlite3ExprResolveNames(pNC, pE) ){ 2587 return 1; 2588 } 2589 } 2590 return 0; 2591 } 2592 2593 /* 2594 ** This routine resolves any names used in the result set of the 2595 ** supplied SELECT statement. If the SELECT statement being resolved 2596 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2597 ** of the parent SELECT. 2598 */ 2599 int sqlite3SelectResolve( 2600 Parse *pParse, /* The parser context */ 2601 Select *p, /* The SELECT statement being coded. */ 2602 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2603 ){ 2604 ExprList *pEList; /* Result set. */ 2605 int i; /* For-loop variable used in multiple places */ 2606 NameContext sNC; /* Local name-context */ 2607 ExprList *pGroupBy; /* The group by clause */ 2608 2609 /* If this routine has run before, return immediately. */ 2610 if( p->isResolved ){ 2611 assert( !pOuterNC ); 2612 return SQLITE_OK; 2613 } 2614 p->isResolved = 1; 2615 2616 /* If there have already been errors, do nothing. */ 2617 if( pParse->nErr>0 ){ 2618 return SQLITE_ERROR; 2619 } 2620 2621 /* Prepare the select statement. This call will allocate all cursors 2622 ** required to handle the tables and subqueries in the FROM clause. 2623 */ 2624 if( prepSelectStmt(pParse, p) ){ 2625 return SQLITE_ERROR; 2626 } 2627 2628 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2629 ** are not allowed to refer to any names, so pass an empty NameContext. 2630 */ 2631 memset(&sNC, 0, sizeof(sNC)); 2632 sNC.pParse = pParse; 2633 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2634 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2635 return SQLITE_ERROR; 2636 } 2637 2638 /* Set up the local name-context to pass to ExprResolveNames() to 2639 ** resolve the expression-list. 2640 */ 2641 sNC.allowAgg = 1; 2642 sNC.pSrcList = p->pSrc; 2643 sNC.pNext = pOuterNC; 2644 2645 /* Resolve names in the result set. */ 2646 pEList = p->pEList; 2647 if( !pEList ) return SQLITE_ERROR; 2648 for(i=0; i<pEList->nExpr; i++){ 2649 Expr *pX = pEList->a[i].pExpr; 2650 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2651 return SQLITE_ERROR; 2652 } 2653 } 2654 2655 /* If there are no aggregate functions in the result-set, and no GROUP BY 2656 ** expression, do not allow aggregates in any of the other expressions. 2657 */ 2658 assert( !p->isAgg ); 2659 pGroupBy = p->pGroupBy; 2660 if( pGroupBy || sNC.hasAgg ){ 2661 p->isAgg = 1; 2662 }else{ 2663 sNC.allowAgg = 0; 2664 } 2665 2666 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2667 */ 2668 if( p->pHaving && !pGroupBy ){ 2669 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2670 return SQLITE_ERROR; 2671 } 2672 2673 /* Add the expression list to the name-context before parsing the 2674 ** other expressions in the SELECT statement. This is so that 2675 ** expressions in the WHERE clause (etc.) can refer to expressions by 2676 ** aliases in the result set. 2677 ** 2678 ** Minor point: If this is the case, then the expression will be 2679 ** re-evaluated for each reference to it. 2680 */ 2681 sNC.pEList = p->pEList; 2682 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2683 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2684 return SQLITE_ERROR; 2685 } 2686 if( p->pPrior==0 ){ 2687 if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2688 processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){ 2689 return SQLITE_ERROR; 2690 } 2691 } 2692 2693 if( sqlite3MallocFailed() ){ 2694 return SQLITE_NOMEM; 2695 } 2696 2697 /* Make sure the GROUP BY clause does not contain aggregate functions. 2698 */ 2699 if( pGroupBy ){ 2700 struct ExprList_item *pItem; 2701 2702 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2703 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2704 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2705 "the GROUP BY clause"); 2706 return SQLITE_ERROR; 2707 } 2708 } 2709 } 2710 2711 /* If this is one SELECT of a compound, be sure to resolve names 2712 ** in the other SELECTs. 2713 */ 2714 if( p->pPrior ){ 2715 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2716 }else{ 2717 return SQLITE_OK; 2718 } 2719 } 2720 2721 /* 2722 ** Reset the aggregate accumulator. 2723 ** 2724 ** The aggregate accumulator is a set of memory cells that hold 2725 ** intermediate results while calculating an aggregate. This 2726 ** routine simply stores NULLs in all of those memory cells. 2727 */ 2728 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2729 Vdbe *v = pParse->pVdbe; 2730 int i; 2731 struct AggInfo_func *pFunc; 2732 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2733 return; 2734 } 2735 for(i=0; i<pAggInfo->nColumn; i++){ 2736 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2737 } 2738 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2739 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2740 if( pFunc->iDistinct>=0 ){ 2741 Expr *pE = pFunc->pExpr; 2742 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2743 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2744 "by an expression"); 2745 pFunc->iDistinct = -1; 2746 }else{ 2747 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2748 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2749 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2750 } 2751 } 2752 } 2753 } 2754 2755 /* 2756 ** Invoke the OP_AggFinalize opcode for every aggregate function 2757 ** in the AggInfo structure. 2758 */ 2759 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2760 Vdbe *v = pParse->pVdbe; 2761 int i; 2762 struct AggInfo_func *pF; 2763 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2764 ExprList *pList = pF->pExpr->pList; 2765 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2766 (void*)pF->pFunc, P3_FUNCDEF); 2767 } 2768 } 2769 2770 /* 2771 ** Update the accumulator memory cells for an aggregate based on 2772 ** the current cursor position. 2773 */ 2774 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2775 Vdbe *v = pParse->pVdbe; 2776 int i; 2777 struct AggInfo_func *pF; 2778 struct AggInfo_col *pC; 2779 2780 pAggInfo->directMode = 1; 2781 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2782 int nArg; 2783 int addrNext = 0; 2784 ExprList *pList = pF->pExpr->pList; 2785 if( pList ){ 2786 nArg = pList->nExpr; 2787 sqlite3ExprCodeExprList(pParse, pList); 2788 }else{ 2789 nArg = 0; 2790 } 2791 if( pF->iDistinct>=0 ){ 2792 addrNext = sqlite3VdbeMakeLabel(v); 2793 assert( nArg==1 ); 2794 codeDistinct(v, pF->iDistinct, addrNext, 1); 2795 } 2796 if( pF->pFunc->needCollSeq ){ 2797 CollSeq *pColl = 0; 2798 struct ExprList_item *pItem; 2799 int j; 2800 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2801 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2802 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2803 } 2804 if( !pColl ){ 2805 pColl = pParse->db->pDfltColl; 2806 } 2807 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2808 } 2809 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2810 if( addrNext ){ 2811 sqlite3VdbeResolveLabel(v, addrNext); 2812 } 2813 } 2814 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2815 sqlite3ExprCode(pParse, pC->pExpr); 2816 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2817 } 2818 pAggInfo->directMode = 0; 2819 } 2820 2821 2822 /* 2823 ** Generate code for the given SELECT statement. 2824 ** 2825 ** The results are distributed in various ways depending on the 2826 ** value of eDest and iParm. 2827 ** 2828 ** eDest Value Result 2829 ** ------------ ------------------------------------------- 2830 ** SRT_Callback Invoke the callback for each row of the result. 2831 ** 2832 ** SRT_Mem Store first result in memory cell iParm 2833 ** 2834 ** SRT_Set Store results as keys of table iParm. 2835 ** 2836 ** SRT_Union Store results as a key in a temporary table iParm 2837 ** 2838 ** SRT_Except Remove results from the temporary table iParm. 2839 ** 2840 ** SRT_Table Store results in temporary table iParm 2841 ** 2842 ** The table above is incomplete. Additional eDist value have be added 2843 ** since this comment was written. See the selectInnerLoop() function for 2844 ** a complete listing of the allowed values of eDest and their meanings. 2845 ** 2846 ** This routine returns the number of errors. If any errors are 2847 ** encountered, then an appropriate error message is left in 2848 ** pParse->zErrMsg. 2849 ** 2850 ** This routine does NOT free the Select structure passed in. The 2851 ** calling function needs to do that. 2852 ** 2853 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2854 ** SELECT is a subquery. This routine may try to combine this SELECT 2855 ** with its parent to form a single flat query. In so doing, it might 2856 ** change the parent query from a non-aggregate to an aggregate query. 2857 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2858 ** can be changed. 2859 ** 2860 ** Example 1: The meaning of the pParent parameter. 2861 ** 2862 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2863 ** \ \_______ subquery _______/ / 2864 ** \ / 2865 ** \____________________ outer query ___________________/ 2866 ** 2867 ** This routine is called for the outer query first. For that call, 2868 ** pParent will be NULL. During the processing of the outer query, this 2869 ** routine is called recursively to handle the subquery. For the recursive 2870 ** call, pParent will point to the outer query. Because the subquery is 2871 ** the second element in a three-way join, the parentTab parameter will 2872 ** be 1 (the 2nd value of a 0-indexed array.) 2873 */ 2874 int sqlite3Select( 2875 Parse *pParse, /* The parser context */ 2876 Select *p, /* The SELECT statement being coded. */ 2877 int eDest, /* How to dispose of the results */ 2878 int iParm, /* A parameter used by the eDest disposal method */ 2879 Select *pParent, /* Another SELECT for which this is a sub-query */ 2880 int parentTab, /* Index in pParent->pSrc of this query */ 2881 int *pParentAgg, /* True if pParent uses aggregate functions */ 2882 char *aff /* If eDest is SRT_Union, the affinity string */ 2883 ){ 2884 int i, j; /* Loop counters */ 2885 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2886 Vdbe *v; /* The virtual machine under construction */ 2887 int isAgg; /* True for select lists like "count(*)" */ 2888 ExprList *pEList; /* List of columns to extract. */ 2889 SrcList *pTabList; /* List of tables to select from */ 2890 Expr *pWhere; /* The WHERE clause. May be NULL */ 2891 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2892 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2893 Expr *pHaving; /* The HAVING clause. May be NULL */ 2894 int isDistinct; /* True if the DISTINCT keyword is present */ 2895 int distinct; /* Table to use for the distinct set */ 2896 int rc = 1; /* Value to return from this function */ 2897 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2898 AggInfo sAggInfo; /* Information used by aggregate queries */ 2899 int iEnd; /* Address of the end of the query */ 2900 2901 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2902 return 1; 2903 } 2904 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2905 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2906 2907 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2908 /* If there is are a sequence of queries, do the earlier ones first. 2909 */ 2910 if( p->pPrior ){ 2911 if( p->pRightmost==0 ){ 2912 Select *pLoop; 2913 int cnt = 0; 2914 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 2915 pLoop->pRightmost = p; 2916 } 2917 if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){ 2918 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 2919 return 1; 2920 } 2921 } 2922 return multiSelect(pParse, p, eDest, iParm, aff); 2923 } 2924 #endif 2925 2926 pOrderBy = p->pOrderBy; 2927 if( IgnorableOrderby(eDest) ){ 2928 p->pOrderBy = 0; 2929 } 2930 if( sqlite3SelectResolve(pParse, p, 0) ){ 2931 goto select_end; 2932 } 2933 p->pOrderBy = pOrderBy; 2934 2935 /* Make local copies of the parameters for this query. 2936 */ 2937 pTabList = p->pSrc; 2938 pWhere = p->pWhere; 2939 pGroupBy = p->pGroupBy; 2940 pHaving = p->pHaving; 2941 isAgg = p->isAgg; 2942 isDistinct = p->isDistinct; 2943 pEList = p->pEList; 2944 if( pEList==0 ) goto select_end; 2945 2946 /* 2947 ** Do not even attempt to generate any code if we have already seen 2948 ** errors before this routine starts. 2949 */ 2950 if( pParse->nErr>0 ) goto select_end; 2951 2952 /* If writing to memory or generating a set 2953 ** only a single column may be output. 2954 */ 2955 #ifndef SQLITE_OMIT_SUBQUERY 2956 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 2957 goto select_end; 2958 } 2959 #endif 2960 2961 /* ORDER BY is ignored for some destinations. 2962 */ 2963 if( IgnorableOrderby(eDest) ){ 2964 pOrderBy = 0; 2965 } 2966 2967 /* Begin generating code. 2968 */ 2969 v = sqlite3GetVdbe(pParse); 2970 if( v==0 ) goto select_end; 2971 2972 /* Generate code for all sub-queries in the FROM clause 2973 */ 2974 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2975 for(i=0; i<pTabList->nSrc; i++){ 2976 const char *zSavedAuthContext = 0; 2977 int needRestoreContext; 2978 struct SrcList_item *pItem = &pTabList->a[i]; 2979 2980 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2981 if( pItem->zName!=0 ){ 2982 zSavedAuthContext = pParse->zAuthContext; 2983 pParse->zAuthContext = pItem->zName; 2984 needRestoreContext = 1; 2985 }else{ 2986 needRestoreContext = 0; 2987 } 2988 #if SQLITE_MAX_EXPR_DEPTH>0 2989 /* Increment Parse.nHeight by the height of the largest expression 2990 ** tree refered to by this, the parent select. The child select 2991 ** may contain expression trees of at most 2992 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 2993 ** more conservative than necessary, but much easier than enforcing 2994 ** an exact limit. 2995 */ 2996 pParse->nHeight += sqlite3SelectExprHeight(p); 2997 #endif 2998 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2999 pItem->iCursor, p, i, &isAgg, 0); 3000 #if SQLITE_MAX_EXPR_DEPTH>0 3001 pParse->nHeight -= sqlite3SelectExprHeight(p); 3002 #endif 3003 if( needRestoreContext ){ 3004 pParse->zAuthContext = zSavedAuthContext; 3005 } 3006 pTabList = p->pSrc; 3007 pWhere = p->pWhere; 3008 if( !IgnorableOrderby(eDest) ){ 3009 pOrderBy = p->pOrderBy; 3010 } 3011 pGroupBy = p->pGroupBy; 3012 pHaving = p->pHaving; 3013 isDistinct = p->isDistinct; 3014 } 3015 #endif 3016 3017 /* Check for the special case of a min() or max() function by itself 3018 ** in the result set. 3019 */ 3020 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 3021 rc = 0; 3022 goto select_end; 3023 } 3024 3025 /* Check to see if this is a subquery that can be "flattened" into its parent. 3026 ** If flattening is a possiblity, do so and return immediately. 3027 */ 3028 #ifndef SQLITE_OMIT_VIEW 3029 if( pParent && pParentAgg && 3030 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 3031 if( isAgg ) *pParentAgg = 1; 3032 goto select_end; 3033 } 3034 #endif 3035 3036 /* If there is an ORDER BY clause, then this sorting 3037 ** index might end up being unused if the data can be 3038 ** extracted in pre-sorted order. If that is the case, then the 3039 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3040 ** we figure out that the sorting index is not needed. The addrSortIndex 3041 ** variable is used to facilitate that change. 3042 */ 3043 if( pOrderBy ){ 3044 KeyInfo *pKeyInfo; 3045 if( pParse->nErr ){ 3046 goto select_end; 3047 } 3048 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3049 pOrderBy->iECursor = pParse->nTab++; 3050 p->addrOpenEphm[2] = addrSortIndex = 3051 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3052 }else{ 3053 addrSortIndex = -1; 3054 } 3055 3056 /* If the output is destined for a temporary table, open that table. 3057 */ 3058 if( eDest==SRT_EphemTab ){ 3059 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 3060 } 3061 3062 /* Set the limiter. 3063 */ 3064 iEnd = sqlite3VdbeMakeLabel(v); 3065 computeLimitRegisters(pParse, p, iEnd); 3066 3067 /* Open a virtual index to use for the distinct set. 3068 */ 3069 if( isDistinct ){ 3070 KeyInfo *pKeyInfo; 3071 distinct = pParse->nTab++; 3072 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3073 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 3074 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3075 }else{ 3076 distinct = -1; 3077 } 3078 3079 /* Aggregate and non-aggregate queries are handled differently */ 3080 if( !isAgg && pGroupBy==0 ){ 3081 /* This case is for non-aggregate queries 3082 ** Begin the database scan 3083 */ 3084 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 3085 if( pWInfo==0 ) goto select_end; 3086 3087 /* If sorting index that was created by a prior OP_OpenEphemeral 3088 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3089 ** into an OP_Noop. 3090 */ 3091 if( addrSortIndex>=0 && pOrderBy==0 ){ 3092 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3093 p->addrOpenEphm[2] = -1; 3094 } 3095 3096 /* Use the standard inner loop 3097 */ 3098 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 3099 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3100 goto select_end; 3101 } 3102 3103 /* End the database scan loop. 3104 */ 3105 sqlite3WhereEnd(pWInfo); 3106 }else{ 3107 /* This is the processing for aggregate queries */ 3108 NameContext sNC; /* Name context for processing aggregate information */ 3109 int iAMem; /* First Mem address for storing current GROUP BY */ 3110 int iBMem; /* First Mem address for previous GROUP BY */ 3111 int iUseFlag; /* Mem address holding flag indicating that at least 3112 ** one row of the input to the aggregator has been 3113 ** processed */ 3114 int iAbortFlag; /* Mem address which causes query abort if positive */ 3115 int groupBySort; /* Rows come from source in GROUP BY order */ 3116 3117 3118 /* The following variables hold addresses or labels for parts of the 3119 ** virtual machine program we are putting together */ 3120 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3121 int addrSetAbort; /* Set the abort flag and return */ 3122 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3123 int addrTopOfLoop; /* Top of the input loop */ 3124 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3125 int addrProcessRow; /* Code to process a single input row */ 3126 int addrEnd; /* End of all processing */ 3127 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3128 int addrReset; /* Subroutine for resetting the accumulator */ 3129 3130 addrEnd = sqlite3VdbeMakeLabel(v); 3131 3132 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3133 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3134 ** SELECT statement. 3135 */ 3136 memset(&sNC, 0, sizeof(sNC)); 3137 sNC.pParse = pParse; 3138 sNC.pSrcList = pTabList; 3139 sNC.pAggInfo = &sAggInfo; 3140 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3141 sAggInfo.pGroupBy = pGroupBy; 3142 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3143 goto select_end; 3144 } 3145 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3146 goto select_end; 3147 } 3148 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3149 goto select_end; 3150 } 3151 sAggInfo.nAccumulator = sAggInfo.nColumn; 3152 for(i=0; i<sAggInfo.nFunc; i++){ 3153 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3154 goto select_end; 3155 } 3156 } 3157 if( sqlite3MallocFailed() ) goto select_end; 3158 3159 /* Processing for aggregates with GROUP BY is very different and 3160 ** much more complex tha aggregates without a GROUP BY. 3161 */ 3162 if( pGroupBy ){ 3163 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3164 3165 /* Create labels that we will be needing 3166 */ 3167 3168 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3169 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3170 addrProcessRow = sqlite3VdbeMakeLabel(v); 3171 3172 /* If there is a GROUP BY clause we might need a sorting index to 3173 ** implement it. Allocate that sorting index now. If it turns out 3174 ** that we do not need it after all, the OpenEphemeral instruction 3175 ** will be converted into a Noop. 3176 */ 3177 sAggInfo.sortingIdx = pParse->nTab++; 3178 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3179 addrSortingIdx = 3180 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3181 sAggInfo.nSortingColumn, 3182 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3183 3184 /* Initialize memory locations used by GROUP BY aggregate processing 3185 */ 3186 iUseFlag = pParse->nMem++; 3187 iAbortFlag = pParse->nMem++; 3188 iAMem = pParse->nMem; 3189 pParse->nMem += pGroupBy->nExpr; 3190 iBMem = pParse->nMem; 3191 pParse->nMem += pGroupBy->nExpr; 3192 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3193 VdbeComment((v, "# clear abort flag")); 3194 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3195 VdbeComment((v, "# indicate accumulator empty")); 3196 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3197 3198 /* Generate a subroutine that outputs a single row of the result 3199 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3200 ** is less than or equal to zero, the subroutine is a no-op. If 3201 ** the processing calls for the query to abort, this subroutine 3202 ** increments the iAbortFlag memory location before returning in 3203 ** order to signal the caller to abort. 3204 */ 3205 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3206 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3207 VdbeComment((v, "# set abort flag")); 3208 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3209 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3210 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3211 VdbeComment((v, "# Groupby result generator entry point")); 3212 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3213 finalizeAggFunctions(pParse, &sAggInfo); 3214 if( pHaving ){ 3215 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3216 } 3217 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3218 distinct, eDest, iParm, 3219 addrOutputRow+1, addrSetAbort, aff); 3220 if( rc ){ 3221 goto select_end; 3222 } 3223 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3224 VdbeComment((v, "# end groupby result generator")); 3225 3226 /* Generate a subroutine that will reset the group-by accumulator 3227 */ 3228 addrReset = sqlite3VdbeCurrentAddr(v); 3229 resetAccumulator(pParse, &sAggInfo); 3230 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3231 3232 /* Begin a loop that will extract all source rows in GROUP BY order. 3233 ** This might involve two separate loops with an OP_Sort in between, or 3234 ** it might be a single loop that uses an index to extract information 3235 ** in the right order to begin with. 3236 */ 3237 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3238 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3239 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3240 if( pWInfo==0 ) goto select_end; 3241 if( pGroupBy==0 ){ 3242 /* The optimizer is able to deliver rows in group by order so 3243 ** we do not have to sort. The OP_OpenEphemeral table will be 3244 ** cancelled later because we still need to use the pKeyInfo 3245 */ 3246 pGroupBy = p->pGroupBy; 3247 groupBySort = 0; 3248 }else{ 3249 /* Rows are coming out in undetermined order. We have to push 3250 ** each row into a sorting index, terminate the first loop, 3251 ** then loop over the sorting index in order to get the output 3252 ** in sorted order 3253 */ 3254 groupBySort = 1; 3255 sqlite3ExprCodeExprList(pParse, pGroupBy); 3256 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3257 j = pGroupBy->nExpr+1; 3258 for(i=0; i<sAggInfo.nColumn; i++){ 3259 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3260 if( pCol->iSorterColumn<j ) continue; 3261 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3262 j++; 3263 } 3264 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3265 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3266 sqlite3WhereEnd(pWInfo); 3267 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3268 VdbeComment((v, "# GROUP BY sort")); 3269 sAggInfo.useSortingIdx = 1; 3270 } 3271 3272 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3273 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3274 ** Then compare the current GROUP BY terms against the GROUP BY terms 3275 ** from the previous row currently stored in a0, a1, a2... 3276 */ 3277 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3278 for(j=0; j<pGroupBy->nExpr; j++){ 3279 if( groupBySort ){ 3280 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3281 }else{ 3282 sAggInfo.directMode = 1; 3283 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3284 } 3285 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3286 } 3287 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3288 if( j<pGroupBy->nExpr-1 ){ 3289 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3290 } 3291 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3292 if( j==0 ){ 3293 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3294 }else{ 3295 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3296 } 3297 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3298 } 3299 3300 /* Generate code that runs whenever the GROUP BY changes. 3301 ** Change in the GROUP BY are detected by the previous code 3302 ** block. If there were no changes, this block is skipped. 3303 ** 3304 ** This code copies current group by terms in b0,b1,b2,... 3305 ** over to a0,a1,a2. It then calls the output subroutine 3306 ** and resets the aggregate accumulator registers in preparation 3307 ** for the next GROUP BY batch. 3308 */ 3309 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3310 for(j=0; j<pGroupBy->nExpr; j++){ 3311 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3312 } 3313 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3314 VdbeComment((v, "# output one row")); 3315 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3316 VdbeComment((v, "# check abort flag")); 3317 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3318 VdbeComment((v, "# reset accumulator")); 3319 3320 /* Update the aggregate accumulators based on the content of 3321 ** the current row 3322 */ 3323 sqlite3VdbeResolveLabel(v, addrProcessRow); 3324 updateAccumulator(pParse, &sAggInfo); 3325 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3326 VdbeComment((v, "# indicate data in accumulator")); 3327 3328 /* End of the loop 3329 */ 3330 if( groupBySort ){ 3331 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3332 }else{ 3333 sqlite3WhereEnd(pWInfo); 3334 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3335 } 3336 3337 /* Output the final row of result 3338 */ 3339 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3340 VdbeComment((v, "# output final row")); 3341 3342 } /* endif pGroupBy */ 3343 else { 3344 /* This case runs if the aggregate has no GROUP BY clause. The 3345 ** processing is much simpler since there is only a single row 3346 ** of output. 3347 */ 3348 resetAccumulator(pParse, &sAggInfo); 3349 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3350 if( pWInfo==0 ) goto select_end; 3351 updateAccumulator(pParse, &sAggInfo); 3352 sqlite3WhereEnd(pWInfo); 3353 finalizeAggFunctions(pParse, &sAggInfo); 3354 pOrderBy = 0; 3355 if( pHaving ){ 3356 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3357 } 3358 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3359 eDest, iParm, addrEnd, addrEnd, aff); 3360 } 3361 sqlite3VdbeResolveLabel(v, addrEnd); 3362 3363 } /* endif aggregate query */ 3364 3365 /* If there is an ORDER BY clause, then we need to sort the results 3366 ** and send them to the callback one by one. 3367 */ 3368 if( pOrderBy ){ 3369 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3370 } 3371 3372 #ifndef SQLITE_OMIT_SUBQUERY 3373 /* If this was a subquery, we have now converted the subquery into a 3374 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3375 ** this subquery from being evaluated again and to force the use of 3376 ** the temporary table. 3377 */ 3378 if( pParent ){ 3379 assert( pParent->pSrc->nSrc>parentTab ); 3380 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3381 pParent->pSrc->a[parentTab].isPopulated = 1; 3382 } 3383 #endif 3384 3385 /* Jump here to skip this query 3386 */ 3387 sqlite3VdbeResolveLabel(v, iEnd); 3388 3389 /* The SELECT was successfully coded. Set the return code to 0 3390 ** to indicate no errors. 3391 */ 3392 rc = 0; 3393 3394 /* Control jumps to here if an error is encountered above, or upon 3395 ** successful coding of the SELECT. 3396 */ 3397 select_end: 3398 3399 /* Identify column names if we will be using them in a callback. This 3400 ** step is skipped if the output is going to some other destination. 3401 */ 3402 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3403 generateColumnNames(pParse, pTabList, pEList); 3404 } 3405 3406 sqliteFree(sAggInfo.aCol); 3407 sqliteFree(sAggInfo.aFunc); 3408 return rc; 3409 } 3410 3411 #if defined(SQLITE_DEBUG) 3412 /* 3413 ******************************************************************************* 3414 ** The following code is used for testing and debugging only. The code 3415 ** that follows does not appear in normal builds. 3416 ** 3417 ** These routines are used to print out the content of all or part of a 3418 ** parse structures such as Select or Expr. Such printouts are useful 3419 ** for helping to understand what is happening inside the code generator 3420 ** during the execution of complex SELECT statements. 3421 ** 3422 ** These routine are not called anywhere from within the normal 3423 ** code base. Then are intended to be called from within the debugger 3424 ** or from temporary "printf" statements inserted for debugging. 3425 */ 3426 void sqlite3PrintExpr(Expr *p){ 3427 if( p->token.z && p->token.n>0 ){ 3428 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3429 }else{ 3430 sqlite3DebugPrintf("(%d", p->op); 3431 } 3432 if( p->pLeft ){ 3433 sqlite3DebugPrintf(" "); 3434 sqlite3PrintExpr(p->pLeft); 3435 } 3436 if( p->pRight ){ 3437 sqlite3DebugPrintf(" "); 3438 sqlite3PrintExpr(p->pRight); 3439 } 3440 sqlite3DebugPrintf(")"); 3441 } 3442 void sqlite3PrintExprList(ExprList *pList){ 3443 int i; 3444 for(i=0; i<pList->nExpr; i++){ 3445 sqlite3PrintExpr(pList->a[i].pExpr); 3446 if( i<pList->nExpr-1 ){ 3447 sqlite3DebugPrintf(", "); 3448 } 3449 } 3450 } 3451 void sqlite3PrintSelect(Select *p, int indent){ 3452 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3453 sqlite3PrintExprList(p->pEList); 3454 sqlite3DebugPrintf("\n"); 3455 if( p->pSrc ){ 3456 char *zPrefix; 3457 int i; 3458 zPrefix = "FROM"; 3459 for(i=0; i<p->pSrc->nSrc; i++){ 3460 struct SrcList_item *pItem = &p->pSrc->a[i]; 3461 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3462 zPrefix = ""; 3463 if( pItem->pSelect ){ 3464 sqlite3DebugPrintf("(\n"); 3465 sqlite3PrintSelect(pItem->pSelect, indent+10); 3466 sqlite3DebugPrintf("%*s)", indent+8, ""); 3467 }else if( pItem->zName ){ 3468 sqlite3DebugPrintf("%s", pItem->zName); 3469 } 3470 if( pItem->pTab ){ 3471 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3472 } 3473 if( pItem->zAlias ){ 3474 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3475 } 3476 if( i<p->pSrc->nSrc-1 ){ 3477 sqlite3DebugPrintf(","); 3478 } 3479 sqlite3DebugPrintf("\n"); 3480 } 3481 } 3482 if( p->pWhere ){ 3483 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3484 sqlite3PrintExpr(p->pWhere); 3485 sqlite3DebugPrintf("\n"); 3486 } 3487 if( p->pGroupBy ){ 3488 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3489 sqlite3PrintExprList(p->pGroupBy); 3490 sqlite3DebugPrintf("\n"); 3491 } 3492 if( p->pHaving ){ 3493 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3494 sqlite3PrintExpr(p->pHaving); 3495 sqlite3DebugPrintf("\n"); 3496 } 3497 if( p->pOrderBy ){ 3498 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3499 sqlite3PrintExprList(p->pOrderBy); 3500 sqlite3DebugPrintf("\n"); 3501 } 3502 } 3503 /* End of the structure debug printing code 3504 *****************************************************************************/ 3505 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3506