xref: /sqlite-3.40.0/src/select.c (revision 9f8a4b43)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.354 2007/07/18 18:17:12 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   assert( pOffset==0 || pLimit!=0 );
72   pNew->pLimit = pLimit;
73   pNew->pOffset = pOffset;
74   pNew->iLimit = -1;
75   pNew->iOffset = -1;
76   pNew->addrOpenEphm[0] = -1;
77   pNew->addrOpenEphm[1] = -1;
78   pNew->addrOpenEphm[2] = -1;
79   if( pNew==&standin) {
80     clearSelect(pNew);
81     pNew = 0;
82   }
83   return pNew;
84 }
85 
86 /*
87 ** Delete the given Select structure and all of its substructures.
88 */
89 void sqlite3SelectDelete(Select *p){
90   if( p ){
91     clearSelect(p);
92     sqliteFree(p);
93   }
94 }
95 
96 /*
97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
98 ** type of join.  Return an integer constant that expresses that type
99 ** in terms of the following bit values:
100 **
101 **     JT_INNER
102 **     JT_CROSS
103 **     JT_OUTER
104 **     JT_NATURAL
105 **     JT_LEFT
106 **     JT_RIGHT
107 **
108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
109 **
110 ** If an illegal or unsupported join type is seen, then still return
111 ** a join type, but put an error in the pParse structure.
112 */
113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
114   int jointype = 0;
115   Token *apAll[3];
116   Token *p;
117   static const struct {
118     const char zKeyword[8];
119     u8 nChar;
120     u8 code;
121   } keywords[] = {
122     { "natural", 7, JT_NATURAL },
123     { "left",    4, JT_LEFT|JT_OUTER },
124     { "right",   5, JT_RIGHT|JT_OUTER },
125     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
126     { "outer",   5, JT_OUTER },
127     { "inner",   5, JT_INNER },
128     { "cross",   5, JT_INNER|JT_CROSS },
129   };
130   int i, j;
131   apAll[0] = pA;
132   apAll[1] = pB;
133   apAll[2] = pC;
134   for(i=0; i<3 && apAll[i]; i++){
135     p = apAll[i];
136     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
137       if( p->n==keywords[j].nChar
138           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
139         jointype |= keywords[j].code;
140         break;
141       }
142     }
143     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
144       jointype |= JT_ERROR;
145       break;
146     }
147   }
148   if(
149      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
150      (jointype & JT_ERROR)!=0
151   ){
152     const char *zSp1 = " ";
153     const char *zSp2 = " ";
154     if( pB==0 ){ zSp1++; }
155     if( pC==0 ){ zSp2++; }
156     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
157        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
158     jointype = JT_INNER;
159   }else if( jointype & JT_RIGHT ){
160     sqlite3ErrorMsg(pParse,
161       "RIGHT and FULL OUTER JOINs are not currently supported");
162     jointype = JT_INNER;
163   }
164   return jointype;
165 }
166 
167 /*
168 ** Return the index of a column in a table.  Return -1 if the column
169 ** is not contained in the table.
170 */
171 static int columnIndex(Table *pTab, const char *zCol){
172   int i;
173   for(i=0; i<pTab->nCol; i++){
174     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
175   }
176   return -1;
177 }
178 
179 /*
180 ** Set the value of a token to a '\000'-terminated string.
181 */
182 static void setToken(Token *p, const char *z){
183   p->z = (u8*)z;
184   p->n = z ? strlen(z) : 0;
185   p->dyn = 0;
186 }
187 
188 /*
189 ** Set the token to the double-quoted and escaped version of the string pointed
190 ** to by z. For example;
191 **
192 **    {a"bc}  ->  {"a""bc"}
193 */
194 static void setQuotedToken(Token *p, const char *z){
195   p->z = (u8 *)sqlite3MPrintf("\"%w\"", z);
196   p->dyn = 1;
197   if( p->z ){
198     p->n = strlen((char *)p->z);
199   }
200 }
201 
202 /*
203 ** Create an expression node for an identifier with the name of zName
204 */
205 Expr *sqlite3CreateIdExpr(const char *zName){
206   Token dummy;
207   setToken(&dummy, zName);
208   return sqlite3Expr(TK_ID, 0, 0, &dummy);
209 }
210 
211 
212 /*
213 ** Add a term to the WHERE expression in *ppExpr that requires the
214 ** zCol column to be equal in the two tables pTab1 and pTab2.
215 */
216 static void addWhereTerm(
217   const char *zCol,        /* Name of the column */
218   const Table *pTab1,      /* First table */
219   const char *zAlias1,     /* Alias for first table.  May be NULL */
220   const Table *pTab2,      /* Second table */
221   const char *zAlias2,     /* Alias for second table.  May be NULL */
222   int iRightJoinTable,     /* VDBE cursor for the right table */
223   Expr **ppExpr            /* Add the equality term to this expression */
224 ){
225   Expr *pE1a, *pE1b, *pE1c;
226   Expr *pE2a, *pE2b, *pE2c;
227   Expr *pE;
228 
229   pE1a = sqlite3CreateIdExpr(zCol);
230   pE2a = sqlite3CreateIdExpr(zCol);
231   if( zAlias1==0 ){
232     zAlias1 = pTab1->zName;
233   }
234   pE1b = sqlite3CreateIdExpr(zAlias1);
235   if( zAlias2==0 ){
236     zAlias2 = pTab2->zName;
237   }
238   pE2b = sqlite3CreateIdExpr(zAlias2);
239   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
240   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
241   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
242   if( pE ){
243     ExprSetProperty(pE, EP_FromJoin);
244     pE->iRightJoinTable = iRightJoinTable;
245   }
246   pE = sqlite3ExprAnd(*ppExpr, pE);
247   if( pE ){
248     *ppExpr = pE;
249   }
250 }
251 
252 /*
253 ** Set the EP_FromJoin property on all terms of the given expression.
254 ** And set the Expr.iRightJoinTable to iTable for every term in the
255 ** expression.
256 **
257 ** The EP_FromJoin property is used on terms of an expression to tell
258 ** the LEFT OUTER JOIN processing logic that this term is part of the
259 ** join restriction specified in the ON or USING clause and not a part
260 ** of the more general WHERE clause.  These terms are moved over to the
261 ** WHERE clause during join processing but we need to remember that they
262 ** originated in the ON or USING clause.
263 **
264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
265 ** expression depends on table iRightJoinTable even if that table is not
266 ** explicitly mentioned in the expression.  That information is needed
267 ** for cases like this:
268 **
269 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
270 **
271 ** The where clause needs to defer the handling of the t1.x=5
272 ** term until after the t2 loop of the join.  In that way, a
273 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
274 ** defer the handling of t1.x=5, it will be processed immediately
275 ** after the t1 loop and rows with t1.x!=5 will never appear in
276 ** the output, which is incorrect.
277 */
278 static void setJoinExpr(Expr *p, int iTable){
279   while( p ){
280     ExprSetProperty(p, EP_FromJoin);
281     p->iRightJoinTable = iTable;
282     setJoinExpr(p->pLeft, iTable);
283     p = p->pRight;
284   }
285 }
286 
287 /*
288 ** This routine processes the join information for a SELECT statement.
289 ** ON and USING clauses are converted into extra terms of the WHERE clause.
290 ** NATURAL joins also create extra WHERE clause terms.
291 **
292 ** The terms of a FROM clause are contained in the Select.pSrc structure.
293 ** The left most table is the first entry in Select.pSrc.  The right-most
294 ** table is the last entry.  The join operator is held in the entry to
295 ** the left.  Thus entry 0 contains the join operator for the join between
296 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
297 ** also attached to the left entry.
298 **
299 ** This routine returns the number of errors encountered.
300 */
301 static int sqliteProcessJoin(Parse *pParse, Select *p){
302   SrcList *pSrc;                  /* All tables in the FROM clause */
303   int i, j;                       /* Loop counters */
304   struct SrcList_item *pLeft;     /* Left table being joined */
305   struct SrcList_item *pRight;    /* Right table being joined */
306 
307   pSrc = p->pSrc;
308   pLeft = &pSrc->a[0];
309   pRight = &pLeft[1];
310   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
311     Table *pLeftTab = pLeft->pTab;
312     Table *pRightTab = pRight->pTab;
313 
314     if( pLeftTab==0 || pRightTab==0 ) continue;
315 
316     /* When the NATURAL keyword is present, add WHERE clause terms for
317     ** every column that the two tables have in common.
318     */
319     if( pRight->jointype & JT_NATURAL ){
320       if( pRight->pOn || pRight->pUsing ){
321         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
322            "an ON or USING clause", 0);
323         return 1;
324       }
325       for(j=0; j<pLeftTab->nCol; j++){
326         char *zName = pLeftTab->aCol[j].zName;
327         if( columnIndex(pRightTab, zName)>=0 ){
328           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
329                               pRightTab, pRight->zAlias,
330                               pRight->iCursor, &p->pWhere);
331 
332         }
333       }
334     }
335 
336     /* Disallow both ON and USING clauses in the same join
337     */
338     if( pRight->pOn && pRight->pUsing ){
339       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
340         "clauses in the same join");
341       return 1;
342     }
343 
344     /* Add the ON clause to the end of the WHERE clause, connected by
345     ** an AND operator.
346     */
347     if( pRight->pOn ){
348       setJoinExpr(pRight->pOn, pRight->iCursor);
349       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
350       pRight->pOn = 0;
351     }
352 
353     /* Create extra terms on the WHERE clause for each column named
354     ** in the USING clause.  Example: If the two tables to be joined are
355     ** A and B and the USING clause names X, Y, and Z, then add this
356     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
357     ** Report an error if any column mentioned in the USING clause is
358     ** not contained in both tables to be joined.
359     */
360     if( pRight->pUsing ){
361       IdList *pList = pRight->pUsing;
362       for(j=0; j<pList->nId; j++){
363         char *zName = pList->a[j].zName;
364         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
365           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
366             "not present in both tables", zName);
367           return 1;
368         }
369         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
370                             pRightTab, pRight->zAlias,
371                             pRight->iCursor, &p->pWhere);
372       }
373     }
374   }
375   return 0;
376 }
377 
378 /*
379 ** Insert code into "v" that will push the record on the top of the
380 ** stack into the sorter.
381 */
382 static void pushOntoSorter(
383   Parse *pParse,         /* Parser context */
384   ExprList *pOrderBy,    /* The ORDER BY clause */
385   Select *pSelect        /* The whole SELECT statement */
386 ){
387   Vdbe *v = pParse->pVdbe;
388   sqlite3ExprCodeExprList(pParse, pOrderBy);
389   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
390   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
391   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
392   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
393   if( pSelect->iLimit>=0 ){
394     int addr1, addr2;
395     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
396     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
397     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
398     sqlite3VdbeJumpHere(v, addr1);
399     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
400     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
401     sqlite3VdbeJumpHere(v, addr2);
402     pSelect->iLimit = -1;
403   }
404 }
405 
406 /*
407 ** Add code to implement the OFFSET
408 */
409 static void codeOffset(
410   Vdbe *v,          /* Generate code into this VM */
411   Select *p,        /* The SELECT statement being coded */
412   int iContinue,    /* Jump here to skip the current record */
413   int nPop          /* Number of times to pop stack when jumping */
414 ){
415   if( p->iOffset>=0 && iContinue!=0 ){
416     int addr;
417     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
418     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
419     if( nPop>0 ){
420       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
421     }
422     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
423     VdbeComment((v, "# skip OFFSET records"));
424     sqlite3VdbeJumpHere(v, addr);
425   }
426 }
427 
428 /*
429 ** Add code that will check to make sure the top N elements of the
430 ** stack are distinct.  iTab is a sorting index that holds previously
431 ** seen combinations of the N values.  A new entry is made in iTab
432 ** if the current N values are new.
433 **
434 ** A jump to addrRepeat is made and the N+1 values are popped from the
435 ** stack if the top N elements are not distinct.
436 */
437 static void codeDistinct(
438   Vdbe *v,           /* Generate code into this VM */
439   int iTab,          /* A sorting index used to test for distinctness */
440   int addrRepeat,    /* Jump to here if not distinct */
441   int N              /* The top N elements of the stack must be distinct */
442 ){
443   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
444   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
445   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
446   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
447   VdbeComment((v, "# skip indistinct records"));
448   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
449 }
450 
451 /*
452 ** Generate an error message when a SELECT is used within a subexpression
453 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
454 ** column.  We do this in a subroutine because the error occurs in multiple
455 ** places.
456 */
457 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
458   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
459     sqlite3ErrorMsg(pParse, "only a single result allowed for "
460        "a SELECT that is part of an expression");
461     return 1;
462   }else{
463     return 0;
464   }
465 }
466 
467 /*
468 ** This routine generates the code for the inside of the inner loop
469 ** of a SELECT.
470 **
471 ** If srcTab and nColumn are both zero, then the pEList expressions
472 ** are evaluated in order to get the data for this row.  If nColumn>0
473 ** then data is pulled from srcTab and pEList is used only to get the
474 ** datatypes for each column.
475 */
476 static int selectInnerLoop(
477   Parse *pParse,          /* The parser context */
478   Select *p,              /* The complete select statement being coded */
479   ExprList *pEList,       /* List of values being extracted */
480   int srcTab,             /* Pull data from this table */
481   int nColumn,            /* Number of columns in the source table */
482   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
483   int distinct,           /* If >=0, make sure results are distinct */
484   int eDest,              /* How to dispose of the results */
485   int iParm,              /* An argument to the disposal method */
486   int iContinue,          /* Jump here to continue with next row */
487   int iBreak,             /* Jump here to break out of the inner loop */
488   char *aff               /* affinity string if eDest is SRT_Union */
489 ){
490   Vdbe *v = pParse->pVdbe;
491   int i;
492   int hasDistinct;        /* True if the DISTINCT keyword is present */
493 
494   if( v==0 ) return 0;
495   assert( pEList!=0 );
496 
497   /* If there was a LIMIT clause on the SELECT statement, then do the check
498   ** to see if this row should be output.
499   */
500   hasDistinct = distinct>=0 && pEList->nExpr>0;
501   if( pOrderBy==0 && !hasDistinct ){
502     codeOffset(v, p, iContinue, 0);
503   }
504 
505   /* Pull the requested columns.
506   */
507   if( nColumn>0 ){
508     for(i=0; i<nColumn; i++){
509       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
510     }
511   }else{
512     nColumn = pEList->nExpr;
513     sqlite3ExprCodeExprList(pParse, pEList);
514   }
515 
516   /* If the DISTINCT keyword was present on the SELECT statement
517   ** and this row has been seen before, then do not make this row
518   ** part of the result.
519   */
520   if( hasDistinct ){
521     assert( pEList!=0 );
522     assert( pEList->nExpr==nColumn );
523     codeDistinct(v, distinct, iContinue, nColumn);
524     if( pOrderBy==0 ){
525       codeOffset(v, p, iContinue, nColumn);
526     }
527   }
528 
529   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
530     return 0;
531   }
532 
533   switch( eDest ){
534     /* In this mode, write each query result to the key of the temporary
535     ** table iParm.
536     */
537 #ifndef SQLITE_OMIT_COMPOUND_SELECT
538     case SRT_Union: {
539       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
540       if( aff ){
541         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
542       }
543       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
544       break;
545     }
546 
547     /* Construct a record from the query result, but instead of
548     ** saving that record, use it as a key to delete elements from
549     ** the temporary table iParm.
550     */
551     case SRT_Except: {
552       int addr;
553       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
554       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
555       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
556       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
557       break;
558     }
559 #endif
560 
561     /* Store the result as data using a unique key.
562     */
563     case SRT_Table:
564     case SRT_EphemTab: {
565       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
566       if( pOrderBy ){
567         pushOntoSorter(pParse, pOrderBy, p);
568       }else{
569         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
570         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
571         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
572       }
573       break;
574     }
575 
576 #ifndef SQLITE_OMIT_SUBQUERY
577     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
578     ** then there should be a single item on the stack.  Write this
579     ** item into the set table with bogus data.
580     */
581     case SRT_Set: {
582       int addr1 = sqlite3VdbeCurrentAddr(v);
583       int addr2;
584 
585       assert( nColumn==1 );
586       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
587       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
588       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
589       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
590       if( pOrderBy ){
591         /* At first glance you would think we could optimize out the
592         ** ORDER BY in this case since the order of entries in the set
593         ** does not matter.  But there might be a LIMIT clause, in which
594         ** case the order does matter */
595         pushOntoSorter(pParse, pOrderBy, p);
596       }else{
597         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
598         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
599       }
600       sqlite3VdbeJumpHere(v, addr2);
601       break;
602     }
603 
604     /* If any row exist in the result set, record that fact and abort.
605     */
606     case SRT_Exists: {
607       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
608       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
609       /* The LIMIT clause will terminate the loop for us */
610       break;
611     }
612 
613     /* If this is a scalar select that is part of an expression, then
614     ** store the results in the appropriate memory cell and break out
615     ** of the scan loop.
616     */
617     case SRT_Mem: {
618       assert( nColumn==1 );
619       if( pOrderBy ){
620         pushOntoSorter(pParse, pOrderBy, p);
621       }else{
622         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
623         /* The LIMIT clause will jump out of the loop for us */
624       }
625       break;
626     }
627 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
628 
629     /* Send the data to the callback function or to a subroutine.  In the
630     ** case of a subroutine, the subroutine itself is responsible for
631     ** popping the data from the stack.
632     */
633     case SRT_Subroutine:
634     case SRT_Callback: {
635       if( pOrderBy ){
636         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
637         pushOntoSorter(pParse, pOrderBy, p);
638       }else if( eDest==SRT_Subroutine ){
639         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
640       }else{
641         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
642       }
643       break;
644     }
645 
646 #if !defined(SQLITE_OMIT_TRIGGER)
647     /* Discard the results.  This is used for SELECT statements inside
648     ** the body of a TRIGGER.  The purpose of such selects is to call
649     ** user-defined functions that have side effects.  We do not care
650     ** about the actual results of the select.
651     */
652     default: {
653       assert( eDest==SRT_Discard );
654       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
655       break;
656     }
657 #endif
658   }
659 
660   /* Jump to the end of the loop if the LIMIT is reached.
661   */
662   if( p->iLimit>=0 && pOrderBy==0 ){
663     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
664     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
665   }
666   return 0;
667 }
668 
669 /*
670 ** Given an expression list, generate a KeyInfo structure that records
671 ** the collating sequence for each expression in that expression list.
672 **
673 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
674 ** KeyInfo structure is appropriate for initializing a virtual index to
675 ** implement that clause.  If the ExprList is the result set of a SELECT
676 ** then the KeyInfo structure is appropriate for initializing a virtual
677 ** index to implement a DISTINCT test.
678 **
679 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
680 ** function is responsible for seeing that this structure is eventually
681 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
682 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
683 */
684 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
685   sqlite3 *db = pParse->db;
686   int nExpr;
687   KeyInfo *pInfo;
688   struct ExprList_item *pItem;
689   int i;
690 
691   nExpr = pList->nExpr;
692   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
693   if( pInfo ){
694     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
695     pInfo->nField = nExpr;
696     pInfo->enc = ENC(db);
697     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
698       CollSeq *pColl;
699       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
700       if( !pColl ){
701         pColl = db->pDfltColl;
702       }
703       pInfo->aColl[i] = pColl;
704       pInfo->aSortOrder[i] = pItem->sortOrder;
705     }
706   }
707   return pInfo;
708 }
709 
710 
711 /*
712 ** If the inner loop was generated using a non-null pOrderBy argument,
713 ** then the results were placed in a sorter.  After the loop is terminated
714 ** we need to run the sorter and output the results.  The following
715 ** routine generates the code needed to do that.
716 */
717 static void generateSortTail(
718   Parse *pParse,   /* Parsing context */
719   Select *p,       /* The SELECT statement */
720   Vdbe *v,         /* Generate code into this VDBE */
721   int nColumn,     /* Number of columns of data */
722   int eDest,       /* Write the sorted results here */
723   int iParm        /* Optional parameter associated with eDest */
724 ){
725   int brk = sqlite3VdbeMakeLabel(v);
726   int cont = sqlite3VdbeMakeLabel(v);
727   int addr;
728   int iTab;
729   int pseudoTab = 0;
730   ExprList *pOrderBy = p->pOrderBy;
731 
732   iTab = pOrderBy->iECursor;
733   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
734     pseudoTab = pParse->nTab++;
735     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
736     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
737   }
738   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
739   codeOffset(v, p, cont, 0);
740   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
741     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
742   }
743   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
744   switch( eDest ){
745     case SRT_Table:
746     case SRT_EphemTab: {
747       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
748       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
749       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
750       break;
751     }
752 #ifndef SQLITE_OMIT_SUBQUERY
753     case SRT_Set: {
754       assert( nColumn==1 );
755       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
756       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
757       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
758       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
759       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
760       break;
761     }
762     case SRT_Mem: {
763       assert( nColumn==1 );
764       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
765       /* The LIMIT clause will terminate the loop for us */
766       break;
767     }
768 #endif
769     case SRT_Callback:
770     case SRT_Subroutine: {
771       int i;
772       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
773       for(i=0; i<nColumn; i++){
774         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
775       }
776       if( eDest==SRT_Callback ){
777         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
778       }else{
779         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
780       }
781       break;
782     }
783     default: {
784       /* Do nothing */
785       break;
786     }
787   }
788 
789   /* Jump to the end of the loop when the LIMIT is reached
790   */
791   if( p->iLimit>=0 ){
792     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
793     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
794   }
795 
796   /* The bottom of the loop
797   */
798   sqlite3VdbeResolveLabel(v, cont);
799   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
800   sqlite3VdbeResolveLabel(v, brk);
801   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
802     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
803   }
804 
805 }
806 
807 /*
808 ** Return a pointer to a string containing the 'declaration type' of the
809 ** expression pExpr. The string may be treated as static by the caller.
810 **
811 ** The declaration type is the exact datatype definition extracted from the
812 ** original CREATE TABLE statement if the expression is a column. The
813 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
814 ** is considered a column can be complex in the presence of subqueries. The
815 ** result-set expression in all of the following SELECT statements is
816 ** considered a column by this function.
817 **
818 **   SELECT col FROM tbl;
819 **   SELECT (SELECT col FROM tbl;
820 **   SELECT (SELECT col FROM tbl);
821 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
822 **
823 ** The declaration type for any expression other than a column is NULL.
824 */
825 static const char *columnType(
826   NameContext *pNC,
827   Expr *pExpr,
828   const char **pzOriginDb,
829   const char **pzOriginTab,
830   const char **pzOriginCol
831 ){
832   char const *zType = 0;
833   char const *zOriginDb = 0;
834   char const *zOriginTab = 0;
835   char const *zOriginCol = 0;
836   int j;
837   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
838 
839   switch( pExpr->op ){
840     case TK_AGG_COLUMN:
841     case TK_COLUMN: {
842       /* The expression is a column. Locate the table the column is being
843       ** extracted from in NameContext.pSrcList. This table may be real
844       ** database table or a subquery.
845       */
846       Table *pTab = 0;            /* Table structure column is extracted from */
847       Select *pS = 0;             /* Select the column is extracted from */
848       int iCol = pExpr->iColumn;  /* Index of column in pTab */
849       while( pNC && !pTab ){
850         SrcList *pTabList = pNC->pSrcList;
851         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
852         if( j<pTabList->nSrc ){
853           pTab = pTabList->a[j].pTab;
854           pS = pTabList->a[j].pSelect;
855         }else{
856           pNC = pNC->pNext;
857         }
858       }
859 
860       if( pTab==0 ){
861         /* FIX ME:
862         ** This can occurs if you have something like "SELECT new.x;" inside
863         ** a trigger.  In other words, if you reference the special "new"
864         ** table in the result set of a select.  We do not have a good way
865         ** to find the actual table type, so call it "TEXT".  This is really
866         ** something of a bug, but I do not know how to fix it.
867         **
868         ** This code does not produce the correct answer - it just prevents
869         ** a segfault.  See ticket #1229.
870         */
871         zType = "TEXT";
872         break;
873       }
874 
875       assert( pTab );
876       if( pS ){
877         /* The "table" is actually a sub-select or a view in the FROM clause
878         ** of the SELECT statement. Return the declaration type and origin
879         ** data for the result-set column of the sub-select.
880         */
881         if( iCol>=0 && iCol<pS->pEList->nExpr ){
882           /* If iCol is less than zero, then the expression requests the
883           ** rowid of the sub-select or view. This expression is legal (see
884           ** test case misc2.2.2) - it always evaluates to NULL.
885           */
886           NameContext sNC;
887           Expr *p = pS->pEList->a[iCol].pExpr;
888           sNC.pSrcList = pS->pSrc;
889           sNC.pNext = 0;
890           sNC.pParse = pNC->pParse;
891           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
892         }
893       }else if( pTab->pSchema ){
894         /* A real table */
895         assert( !pS );
896         if( iCol<0 ) iCol = pTab->iPKey;
897         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
898         if( iCol<0 ){
899           zType = "INTEGER";
900           zOriginCol = "rowid";
901         }else{
902           zType = pTab->aCol[iCol].zType;
903           zOriginCol = pTab->aCol[iCol].zName;
904         }
905         zOriginTab = pTab->zName;
906         if( pNC->pParse ){
907           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
908           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
909         }
910       }
911       break;
912     }
913 #ifndef SQLITE_OMIT_SUBQUERY
914     case TK_SELECT: {
915       /* The expression is a sub-select. Return the declaration type and
916       ** origin info for the single column in the result set of the SELECT
917       ** statement.
918       */
919       NameContext sNC;
920       Select *pS = pExpr->pSelect;
921       Expr *p = pS->pEList->a[0].pExpr;
922       sNC.pSrcList = pS->pSrc;
923       sNC.pNext = pNC;
924       sNC.pParse = pNC->pParse;
925       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
926       break;
927     }
928 #endif
929   }
930 
931   if( pzOriginDb ){
932     assert( pzOriginTab && pzOriginCol );
933     *pzOriginDb = zOriginDb;
934     *pzOriginTab = zOriginTab;
935     *pzOriginCol = zOriginCol;
936   }
937   return zType;
938 }
939 
940 /*
941 ** Generate code that will tell the VDBE the declaration types of columns
942 ** in the result set.
943 */
944 static void generateColumnTypes(
945   Parse *pParse,      /* Parser context */
946   SrcList *pTabList,  /* List of tables */
947   ExprList *pEList    /* Expressions defining the result set */
948 ){
949   Vdbe *v = pParse->pVdbe;
950   int i;
951   NameContext sNC;
952   sNC.pSrcList = pTabList;
953   sNC.pParse = pParse;
954   for(i=0; i<pEList->nExpr; i++){
955     Expr *p = pEList->a[i].pExpr;
956     const char *zOrigDb = 0;
957     const char *zOrigTab = 0;
958     const char *zOrigCol = 0;
959     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
960 
961     /* The vdbe must make it's own copy of the column-type and other
962     ** column specific strings, in case the schema is reset before this
963     ** virtual machine is deleted.
964     */
965     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
966     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
967     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
968     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
969   }
970 }
971 
972 /*
973 ** Generate code that will tell the VDBE the names of columns
974 ** in the result set.  This information is used to provide the
975 ** azCol[] values in the callback.
976 */
977 static void generateColumnNames(
978   Parse *pParse,      /* Parser context */
979   SrcList *pTabList,  /* List of tables */
980   ExprList *pEList    /* Expressions defining the result set */
981 ){
982   Vdbe *v = pParse->pVdbe;
983   int i, j;
984   sqlite3 *db = pParse->db;
985   int fullNames, shortNames;
986 
987 #ifndef SQLITE_OMIT_EXPLAIN
988   /* If this is an EXPLAIN, skip this step */
989   if( pParse->explain ){
990     return;
991   }
992 #endif
993 
994   assert( v!=0 );
995   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
996   pParse->colNamesSet = 1;
997   fullNames = (db->flags & SQLITE_FullColNames)!=0;
998   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
999   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1000   for(i=0; i<pEList->nExpr; i++){
1001     Expr *p;
1002     p = pEList->a[i].pExpr;
1003     if( p==0 ) continue;
1004     if( pEList->a[i].zName ){
1005       char *zName = pEList->a[i].zName;
1006       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1007       continue;
1008     }
1009     if( p->op==TK_COLUMN && pTabList ){
1010       Table *pTab;
1011       char *zCol;
1012       int iCol = p->iColumn;
1013       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1014       assert( j<pTabList->nSrc );
1015       pTab = pTabList->a[j].pTab;
1016       if( iCol<0 ) iCol = pTab->iPKey;
1017       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1018       if( iCol<0 ){
1019         zCol = "rowid";
1020       }else{
1021         zCol = pTab->aCol[iCol].zName;
1022       }
1023       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
1024         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1025       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1026         char *zName = 0;
1027         char *zTab;
1028 
1029         zTab = pTabList->a[j].zAlias;
1030         if( fullNames || zTab==0 ) zTab = pTab->zName;
1031         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1032         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1033       }else{
1034         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1035       }
1036     }else if( p->span.z && p->span.z[0] ){
1037       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1038       /* sqlite3VdbeCompressSpace(v, addr); */
1039     }else{
1040       char zName[30];
1041       assert( p->op!=TK_COLUMN || pTabList==0 );
1042       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1043       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1044     }
1045   }
1046   generateColumnTypes(pParse, pTabList, pEList);
1047 }
1048 
1049 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1050 /*
1051 ** Name of the connection operator, used for error messages.
1052 */
1053 static const char *selectOpName(int id){
1054   char *z;
1055   switch( id ){
1056     case TK_ALL:       z = "UNION ALL";   break;
1057     case TK_INTERSECT: z = "INTERSECT";   break;
1058     case TK_EXCEPT:    z = "EXCEPT";      break;
1059     default:           z = "UNION";       break;
1060   }
1061   return z;
1062 }
1063 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1064 
1065 /*
1066 ** Forward declaration
1067 */
1068 static int prepSelectStmt(Parse*, Select*);
1069 
1070 /*
1071 ** Given a SELECT statement, generate a Table structure that describes
1072 ** the result set of that SELECT.
1073 */
1074 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1075   Table *pTab;
1076   int i, j;
1077   ExprList *pEList;
1078   Column *aCol, *pCol;
1079 
1080   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1081   if( prepSelectStmt(pParse, pSelect) ){
1082     return 0;
1083   }
1084   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1085     return 0;
1086   }
1087   pTab = sqliteMalloc( sizeof(Table) );
1088   if( pTab==0 ){
1089     return 0;
1090   }
1091   pTab->nRef = 1;
1092   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1093   pEList = pSelect->pEList;
1094   pTab->nCol = pEList->nExpr;
1095   assert( pTab->nCol>0 );
1096   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1097   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1098     Expr *p, *pR;
1099     char *zType;
1100     char *zName;
1101     int nName;
1102     CollSeq *pColl;
1103     int cnt;
1104     NameContext sNC;
1105 
1106     /* Get an appropriate name for the column
1107     */
1108     p = pEList->a[i].pExpr;
1109     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1110     if( (zName = pEList->a[i].zName)!=0 ){
1111       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1112       zName = sqliteStrDup(zName);
1113     }else if( p->op==TK_DOT
1114               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1115       /* For columns of the from A.B use B as the name */
1116       zName = sqlite3MPrintf("%T", &pR->token);
1117     }else if( p->span.z && p->span.z[0] ){
1118       /* Use the original text of the column expression as its name */
1119       zName = sqlite3MPrintf("%T", &p->span);
1120     }else{
1121       /* If all else fails, make up a name */
1122       zName = sqlite3MPrintf("column%d", i+1);
1123     }
1124     sqlite3Dequote(zName);
1125     if( sqlite3MallocFailed() ){
1126       sqliteFree(zName);
1127       sqlite3DeleteTable(pTab);
1128       return 0;
1129     }
1130 
1131     /* Make sure the column name is unique.  If the name is not unique,
1132     ** append a integer to the name so that it becomes unique.
1133     */
1134     nName = strlen(zName);
1135     for(j=cnt=0; j<i; j++){
1136       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1137         zName[nName] = 0;
1138         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1139         j = -1;
1140         if( zName==0 ) break;
1141       }
1142     }
1143     pCol->zName = zName;
1144 
1145     /* Get the typename, type affinity, and collating sequence for the
1146     ** column.
1147     */
1148     memset(&sNC, 0, sizeof(sNC));
1149     sNC.pSrcList = pSelect->pSrc;
1150     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1151     pCol->zType = zType;
1152     pCol->affinity = sqlite3ExprAffinity(p);
1153     pColl = sqlite3ExprCollSeq(pParse, p);
1154     if( pColl ){
1155       pCol->zColl = sqliteStrDup(pColl->zName);
1156     }
1157   }
1158   pTab->iPKey = -1;
1159   return pTab;
1160 }
1161 
1162 /*
1163 ** Prepare a SELECT statement for processing by doing the following
1164 ** things:
1165 **
1166 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1167 **         element of the FROM clause.
1168 **
1169 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1170 **         defines FROM clause.  When views appear in the FROM clause,
1171 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1172 **         that implements the view.  A copy is made of the view's SELECT
1173 **         statement so that we can freely modify or delete that statement
1174 **         without worrying about messing up the presistent representation
1175 **         of the view.
1176 **
1177 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1178 **         on joins and the ON and USING clause of joins.
1179 **
1180 **    (4)  Scan the list of columns in the result set (pEList) looking
1181 **         for instances of the "*" operator or the TABLE.* operator.
1182 **         If found, expand each "*" to be every column in every table
1183 **         and TABLE.* to be every column in TABLE.
1184 **
1185 ** Return 0 on success.  If there are problems, leave an error message
1186 ** in pParse and return non-zero.
1187 */
1188 static int prepSelectStmt(Parse *pParse, Select *p){
1189   int i, j, k, rc;
1190   SrcList *pTabList;
1191   ExprList *pEList;
1192   struct SrcList_item *pFrom;
1193 
1194   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1195     return 1;
1196   }
1197   pTabList = p->pSrc;
1198   pEList = p->pEList;
1199 
1200   /* Make sure cursor numbers have been assigned to all entries in
1201   ** the FROM clause of the SELECT statement.
1202   */
1203   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1204 
1205   /* Look up every table named in the FROM clause of the select.  If
1206   ** an entry of the FROM clause is a subquery instead of a table or view,
1207   ** then create a transient table structure to describe the subquery.
1208   */
1209   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1210     Table *pTab;
1211     if( pFrom->pTab!=0 ){
1212       /* This statement has already been prepared.  There is no need
1213       ** to go further. */
1214       assert( i==0 );
1215       return 0;
1216     }
1217     if( pFrom->zName==0 ){
1218 #ifndef SQLITE_OMIT_SUBQUERY
1219       /* A sub-query in the FROM clause of a SELECT */
1220       assert( pFrom->pSelect!=0 );
1221       if( pFrom->zAlias==0 ){
1222         pFrom->zAlias =
1223           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1224       }
1225       assert( pFrom->pTab==0 );
1226       pFrom->pTab = pTab =
1227         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1228       if( pTab==0 ){
1229         return 1;
1230       }
1231       /* The isEphem flag indicates that the Table structure has been
1232       ** dynamically allocated and may be freed at any time.  In other words,
1233       ** pTab is not pointing to a persistent table structure that defines
1234       ** part of the schema. */
1235       pTab->isEphem = 1;
1236 #endif
1237     }else{
1238       /* An ordinary table or view name in the FROM clause */
1239       assert( pFrom->pTab==0 );
1240       pFrom->pTab = pTab =
1241         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1242       if( pTab==0 ){
1243         return 1;
1244       }
1245       pTab->nRef++;
1246 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1247       if( pTab->pSelect || IsVirtual(pTab) ){
1248         /* We reach here if the named table is a really a view */
1249         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1250           return 1;
1251         }
1252         /* If pFrom->pSelect!=0 it means we are dealing with a
1253         ** view within a view.  The SELECT structure has already been
1254         ** copied by the outer view so we can skip the copy step here
1255         ** in the inner view.
1256         */
1257         if( pFrom->pSelect==0 ){
1258           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1259         }
1260       }
1261 #endif
1262     }
1263   }
1264 
1265   /* Process NATURAL keywords, and ON and USING clauses of joins.
1266   */
1267   if( sqliteProcessJoin(pParse, p) ) return 1;
1268 
1269   /* For every "*" that occurs in the column list, insert the names of
1270   ** all columns in all tables.  And for every TABLE.* insert the names
1271   ** of all columns in TABLE.  The parser inserted a special expression
1272   ** with the TK_ALL operator for each "*" that it found in the column list.
1273   ** The following code just has to locate the TK_ALL expressions and expand
1274   ** each one to the list of all columns in all tables.
1275   **
1276   ** The first loop just checks to see if there are any "*" operators
1277   ** that need expanding.
1278   */
1279   for(k=0; k<pEList->nExpr; k++){
1280     Expr *pE = pEList->a[k].pExpr;
1281     if( pE->op==TK_ALL ) break;
1282     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1283          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1284   }
1285   rc = 0;
1286   if( k<pEList->nExpr ){
1287     /*
1288     ** If we get here it means the result set contains one or more "*"
1289     ** operators that need to be expanded.  Loop through each expression
1290     ** in the result set and expand them one by one.
1291     */
1292     struct ExprList_item *a = pEList->a;
1293     ExprList *pNew = 0;
1294     int flags = pParse->db->flags;
1295     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1296                       (flags & SQLITE_ShortColNames)==0;
1297 
1298     for(k=0; k<pEList->nExpr; k++){
1299       Expr *pE = a[k].pExpr;
1300       if( pE->op!=TK_ALL &&
1301            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1302         /* This particular expression does not need to be expanded.
1303         */
1304         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1305         if( pNew ){
1306           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1307         }else{
1308           rc = 1;
1309         }
1310         a[k].pExpr = 0;
1311         a[k].zName = 0;
1312       }else{
1313         /* This expression is a "*" or a "TABLE.*" and needs to be
1314         ** expanded. */
1315         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1316         char *zTName;            /* text of name of TABLE */
1317         if( pE->op==TK_DOT && pE->pLeft ){
1318           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1319         }else{
1320           zTName = 0;
1321         }
1322         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1323           Table *pTab = pFrom->pTab;
1324           char *zTabName = pFrom->zAlias;
1325           if( zTabName==0 || zTabName[0]==0 ){
1326             zTabName = pTab->zName;
1327           }
1328           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1329                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1330             continue;
1331           }
1332           tableSeen = 1;
1333           for(j=0; j<pTab->nCol; j++){
1334             Expr *pExpr, *pRight;
1335             char *zName = pTab->aCol[j].zName;
1336 
1337             /* If a column is marked as 'hidden' (currently only possible
1338             ** for virtual tables), do not include it in the expanded
1339             ** result-set list.
1340             */
1341             if( IsHiddenColumn(&pTab->aCol[j]) ){
1342               assert(IsVirtual(pTab));
1343               continue;
1344             }
1345 
1346             if( i>0 ){
1347               struct SrcList_item *pLeft = &pTabList->a[i-1];
1348               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1349                         columnIndex(pLeft->pTab, zName)>=0 ){
1350                 /* In a NATURAL join, omit the join columns from the
1351                 ** table on the right */
1352                 continue;
1353               }
1354               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1355                 /* In a join with a USING clause, omit columns in the
1356                 ** using clause from the table on the right. */
1357                 continue;
1358               }
1359             }
1360             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1361             if( pRight==0 ) break;
1362             setQuotedToken(&pRight->token, zName);
1363             if( zTabName && (longNames || pTabList->nSrc>1) ){
1364               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1365               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1366               if( pExpr==0 ) break;
1367               setQuotedToken(&pLeft->token, zTabName);
1368               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1369               pExpr->span.dyn = 1;
1370               pExpr->token.z = 0;
1371               pExpr->token.n = 0;
1372               pExpr->token.dyn = 0;
1373             }else{
1374               pExpr = pRight;
1375               pExpr->span = pExpr->token;
1376               pExpr->span.dyn = 0;
1377             }
1378             if( longNames ){
1379               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1380             }else{
1381               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1382             }
1383           }
1384         }
1385         if( !tableSeen ){
1386           if( zTName ){
1387             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1388           }else{
1389             sqlite3ErrorMsg(pParse, "no tables specified");
1390           }
1391           rc = 1;
1392         }
1393         sqliteFree(zTName);
1394       }
1395     }
1396     sqlite3ExprListDelete(pEList);
1397     p->pEList = pNew;
1398   }
1399   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
1400     sqlite3ErrorMsg(pParse, "too many columns in result set");
1401     rc = SQLITE_ERROR;
1402   }
1403   if( sqlite3MallocFailed() ){
1404     rc = SQLITE_NOMEM;
1405   }
1406   return rc;
1407 }
1408 
1409 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1410 /*
1411 ** This routine associates entries in an ORDER BY expression list with
1412 ** columns in a result.  For each ORDER BY expression, the opcode of
1413 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1414 ** the top-level node is filled in with column number and the iTable
1415 ** value of the top-level node is filled with iTable parameter.
1416 **
1417 ** If there are prior SELECT clauses, they are processed first.  A match
1418 ** in an earlier SELECT takes precedence over a later SELECT.
1419 **
1420 ** Any entry that does not match is flagged as an error.  The number
1421 ** of errors is returned.
1422 */
1423 static int matchOrderbyToColumn(
1424   Parse *pParse,          /* A place to leave error messages */
1425   Select *pSelect,        /* Match to result columns of this SELECT */
1426   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1427   int iTable,             /* Insert this value in iTable */
1428   int mustComplete        /* If TRUE all ORDER BYs must match */
1429 ){
1430   int nErr = 0;
1431   int i, j;
1432   ExprList *pEList;
1433 
1434   if( pSelect==0 || pOrderBy==0 ) return 1;
1435   if( mustComplete ){
1436     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1437   }
1438   if( prepSelectStmt(pParse, pSelect) ){
1439     return 1;
1440   }
1441   if( pSelect->pPrior ){
1442     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1443       return 1;
1444     }
1445   }
1446   pEList = pSelect->pEList;
1447   for(i=0; i<pOrderBy->nExpr; i++){
1448     struct ExprList_item *pItem;
1449     Expr *pE = pOrderBy->a[i].pExpr;
1450     int iCol = -1;
1451     char *zLabel;
1452 
1453     if( pOrderBy->a[i].done ) continue;
1454     if( sqlite3ExprIsInteger(pE, &iCol) ){
1455       if( iCol<=0 || iCol>pEList->nExpr ){
1456         sqlite3ErrorMsg(pParse,
1457           "ORDER BY position %d should be between 1 and %d",
1458           iCol, pEList->nExpr);
1459         nErr++;
1460         break;
1461       }
1462       if( !mustComplete ) continue;
1463       iCol--;
1464     }
1465     if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
1466       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1467         char *zName;
1468         int isMatch;
1469         if( pItem->zName ){
1470           zName = sqlite3StrDup(pItem->zName);
1471         }else{
1472           zName = sqlite3NameFromToken(&pItem->pExpr->token);
1473         }
1474         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1475         sqliteFree(zName);
1476         if( isMatch ){
1477           iCol = j;
1478           break;
1479         }
1480       }
1481       sqliteFree(zLabel);
1482     }
1483     if( iCol>=0 ){
1484       pE->op = TK_COLUMN;
1485       pE->iColumn = iCol;
1486       pE->iTable = iTable;
1487       pE->iAgg = -1;
1488       pOrderBy->a[i].done = 1;
1489     }else if( mustComplete ){
1490       sqlite3ErrorMsg(pParse,
1491         "ORDER BY term number %d does not match any result column", i+1);
1492       nErr++;
1493       break;
1494     }
1495   }
1496   return nErr;
1497 }
1498 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1499 
1500 /*
1501 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1502 ** If an error occurs, return NULL and leave a message in pParse.
1503 */
1504 Vdbe *sqlite3GetVdbe(Parse *pParse){
1505   Vdbe *v = pParse->pVdbe;
1506   if( v==0 ){
1507     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1508   }
1509   return v;
1510 }
1511 
1512 
1513 /*
1514 ** Compute the iLimit and iOffset fields of the SELECT based on the
1515 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1516 ** that appear in the original SQL statement after the LIMIT and OFFSET
1517 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1518 ** are the integer memory register numbers for counters used to compute
1519 ** the limit and offset.  If there is no limit and/or offset, then
1520 ** iLimit and iOffset are negative.
1521 **
1522 ** This routine changes the values of iLimit and iOffset only if
1523 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1524 ** iOffset should have been preset to appropriate default values
1525 ** (usually but not always -1) prior to calling this routine.
1526 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1527 ** redefined.  The UNION ALL operator uses this property to force
1528 ** the reuse of the same limit and offset registers across multiple
1529 ** SELECT statements.
1530 */
1531 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1532   Vdbe *v = 0;
1533   int iLimit = 0;
1534   int iOffset;
1535   int addr1, addr2;
1536 
1537   /*
1538   ** "LIMIT -1" always shows all rows.  There is some
1539   ** contraversy about what the correct behavior should be.
1540   ** The current implementation interprets "LIMIT 0" to mean
1541   ** no rows.
1542   */
1543   if( p->pLimit ){
1544     p->iLimit = iLimit = pParse->nMem;
1545     pParse->nMem += 2;
1546     v = sqlite3GetVdbe(pParse);
1547     if( v==0 ) return;
1548     sqlite3ExprCode(pParse, p->pLimit);
1549     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1550     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
1551     VdbeComment((v, "# LIMIT counter"));
1552     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1553     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
1554   }
1555   if( p->pOffset ){
1556     p->iOffset = iOffset = pParse->nMem++;
1557     v = sqlite3GetVdbe(pParse);
1558     if( v==0 ) return;
1559     sqlite3ExprCode(pParse, p->pOffset);
1560     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1561     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1562     VdbeComment((v, "# OFFSET counter"));
1563     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1564     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1565     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1566     sqlite3VdbeJumpHere(v, addr1);
1567     if( p->pLimit ){
1568       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1569     }
1570   }
1571   if( p->pLimit ){
1572     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1573     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1574     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1575     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1576     sqlite3VdbeJumpHere(v, addr1);
1577     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1578     VdbeComment((v, "# LIMIT+OFFSET"));
1579     sqlite3VdbeJumpHere(v, addr2);
1580   }
1581 }
1582 
1583 /*
1584 ** Allocate a virtual index to use for sorting.
1585 */
1586 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1587   if( pOrderBy ){
1588     int addr;
1589     assert( pOrderBy->iECursor==0 );
1590     pOrderBy->iECursor = pParse->nTab++;
1591     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1592                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1593     assert( p->addrOpenEphm[2] == -1 );
1594     p->addrOpenEphm[2] = addr;
1595   }
1596 }
1597 
1598 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1599 /*
1600 ** Return the appropriate collating sequence for the iCol-th column of
1601 ** the result set for the compound-select statement "p".  Return NULL if
1602 ** the column has no default collating sequence.
1603 **
1604 ** The collating sequence for the compound select is taken from the
1605 ** left-most term of the select that has a collating sequence.
1606 */
1607 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1608   CollSeq *pRet;
1609   if( p->pPrior ){
1610     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1611   }else{
1612     pRet = 0;
1613   }
1614   if( pRet==0 ){
1615     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1616   }
1617   return pRet;
1618 }
1619 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1620 
1621 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1622 /*
1623 ** This routine is called to process a query that is really the union
1624 ** or intersection of two or more separate queries.
1625 **
1626 ** "p" points to the right-most of the two queries.  the query on the
1627 ** left is p->pPrior.  The left query could also be a compound query
1628 ** in which case this routine will be called recursively.
1629 **
1630 ** The results of the total query are to be written into a destination
1631 ** of type eDest with parameter iParm.
1632 **
1633 ** Example 1:  Consider a three-way compound SQL statement.
1634 **
1635 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1636 **
1637 ** This statement is parsed up as follows:
1638 **
1639 **     SELECT c FROM t3
1640 **      |
1641 **      `----->  SELECT b FROM t2
1642 **                |
1643 **                `------>  SELECT a FROM t1
1644 **
1645 ** The arrows in the diagram above represent the Select.pPrior pointer.
1646 ** So if this routine is called with p equal to the t3 query, then
1647 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1648 **
1649 ** Notice that because of the way SQLite parses compound SELECTs, the
1650 ** individual selects always group from left to right.
1651 */
1652 static int multiSelect(
1653   Parse *pParse,        /* Parsing context */
1654   Select *p,            /* The right-most of SELECTs to be coded */
1655   int eDest,            /* \___  Store query results as specified */
1656   int iParm,            /* /     by these two parameters.         */
1657   char *aff             /* If eDest is SRT_Union, the affinity string */
1658 ){
1659   int rc = SQLITE_OK;   /* Success code from a subroutine */
1660   Select *pPrior;       /* Another SELECT immediately to our left */
1661   Vdbe *v;              /* Generate code to this VDBE */
1662   int nCol;             /* Number of columns in the result set */
1663   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1664   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1665   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1666 
1667   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1668   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1669   */
1670   if( p==0 || p->pPrior==0 ){
1671     rc = 1;
1672     goto multi_select_end;
1673   }
1674   pPrior = p->pPrior;
1675   assert( pPrior->pRightmost!=pPrior );
1676   assert( pPrior->pRightmost==p->pRightmost );
1677   if( pPrior->pOrderBy ){
1678     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1679       selectOpName(p->op));
1680     rc = 1;
1681     goto multi_select_end;
1682   }
1683   if( pPrior->pLimit ){
1684     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1685       selectOpName(p->op));
1686     rc = 1;
1687     goto multi_select_end;
1688   }
1689 
1690   /* Make sure we have a valid query engine.  If not, create a new one.
1691   */
1692   v = sqlite3GetVdbe(pParse);
1693   if( v==0 ){
1694     rc = 1;
1695     goto multi_select_end;
1696   }
1697 
1698   /* Create the destination temporary table if necessary
1699   */
1700   if( eDest==SRT_EphemTab ){
1701     assert( p->pEList );
1702     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1703     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1704     eDest = SRT_Table;
1705   }
1706 
1707   /* Generate code for the left and right SELECT statements.
1708   */
1709   pOrderBy = p->pOrderBy;
1710   switch( p->op ){
1711     case TK_ALL: {
1712       if( pOrderBy==0 ){
1713         int addr = 0;
1714         assert( !pPrior->pLimit );
1715         pPrior->pLimit = p->pLimit;
1716         pPrior->pOffset = p->pOffset;
1717         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1718         p->pLimit = 0;
1719         p->pOffset = 0;
1720         if( rc ){
1721           goto multi_select_end;
1722         }
1723         p->pPrior = 0;
1724         p->iLimit = pPrior->iLimit;
1725         p->iOffset = pPrior->iOffset;
1726         if( p->iLimit>=0 ){
1727           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1728           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1729         }
1730         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1731         p->pPrior = pPrior;
1732         if( rc ){
1733           goto multi_select_end;
1734         }
1735         if( addr ){
1736           sqlite3VdbeJumpHere(v, addr);
1737         }
1738         break;
1739       }
1740       /* For UNION ALL ... ORDER BY fall through to the next case */
1741     }
1742     case TK_EXCEPT:
1743     case TK_UNION: {
1744       int unionTab;    /* Cursor number of the temporary table holding result */
1745       int op = 0;      /* One of the SRT_ operations to apply to self */
1746       int priorOp;     /* The SRT_ operation to apply to prior selects */
1747       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1748       int addr;
1749 
1750       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1751       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1752         /* We can reuse a temporary table generated by a SELECT to our
1753         ** right.
1754         */
1755         unionTab = iParm;
1756       }else{
1757         /* We will need to create our own temporary table to hold the
1758         ** intermediate results.
1759         */
1760         unionTab = pParse->nTab++;
1761         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1762           rc = 1;
1763           goto multi_select_end;
1764         }
1765         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1766         if( priorOp==SRT_Table ){
1767           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1768           aSetP2[nSetP2++] = addr;
1769         }else{
1770           assert( p->addrOpenEphm[0] == -1 );
1771           p->addrOpenEphm[0] = addr;
1772           p->pRightmost->usesEphm = 1;
1773         }
1774         createSortingIndex(pParse, p, pOrderBy);
1775         assert( p->pEList );
1776       }
1777 
1778       /* Code the SELECT statements to our left
1779       */
1780       assert( !pPrior->pOrderBy );
1781       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1782       if( rc ){
1783         goto multi_select_end;
1784       }
1785 
1786       /* Code the current SELECT statement
1787       */
1788       switch( p->op ){
1789          case TK_EXCEPT:  op = SRT_Except;   break;
1790          case TK_UNION:   op = SRT_Union;    break;
1791          case TK_ALL:     op = SRT_Table;    break;
1792       }
1793       p->pPrior = 0;
1794       p->pOrderBy = 0;
1795       p->disallowOrderBy = pOrderBy!=0;
1796       pLimit = p->pLimit;
1797       p->pLimit = 0;
1798       pOffset = p->pOffset;
1799       p->pOffset = 0;
1800       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1801       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1802       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1803       sqlite3ExprListDelete(p->pOrderBy);
1804       p->pPrior = pPrior;
1805       p->pOrderBy = pOrderBy;
1806       sqlite3ExprDelete(p->pLimit);
1807       p->pLimit = pLimit;
1808       p->pOffset = pOffset;
1809       p->iLimit = -1;
1810       p->iOffset = -1;
1811       if( rc ){
1812         goto multi_select_end;
1813       }
1814 
1815 
1816       /* Convert the data in the temporary table into whatever form
1817       ** it is that we currently need.
1818       */
1819       if( eDest!=priorOp || unionTab!=iParm ){
1820         int iCont, iBreak, iStart;
1821         assert( p->pEList );
1822         if( eDest==SRT_Callback ){
1823           Select *pFirst = p;
1824           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1825           generateColumnNames(pParse, 0, pFirst->pEList);
1826         }
1827         iBreak = sqlite3VdbeMakeLabel(v);
1828         iCont = sqlite3VdbeMakeLabel(v);
1829         computeLimitRegisters(pParse, p, iBreak);
1830         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1831         iStart = sqlite3VdbeCurrentAddr(v);
1832         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1833                              pOrderBy, -1, eDest, iParm,
1834                              iCont, iBreak, 0);
1835         if( rc ){
1836           rc = 1;
1837           goto multi_select_end;
1838         }
1839         sqlite3VdbeResolveLabel(v, iCont);
1840         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1841         sqlite3VdbeResolveLabel(v, iBreak);
1842         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1843       }
1844       break;
1845     }
1846     case TK_INTERSECT: {
1847       int tab1, tab2;
1848       int iCont, iBreak, iStart;
1849       Expr *pLimit, *pOffset;
1850       int addr;
1851 
1852       /* INTERSECT is different from the others since it requires
1853       ** two temporary tables.  Hence it has its own case.  Begin
1854       ** by allocating the tables we will need.
1855       */
1856       tab1 = pParse->nTab++;
1857       tab2 = pParse->nTab++;
1858       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1859         rc = 1;
1860         goto multi_select_end;
1861       }
1862       createSortingIndex(pParse, p, pOrderBy);
1863 
1864       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1865       assert( p->addrOpenEphm[0] == -1 );
1866       p->addrOpenEphm[0] = addr;
1867       p->pRightmost->usesEphm = 1;
1868       assert( p->pEList );
1869 
1870       /* Code the SELECTs to our left into temporary table "tab1".
1871       */
1872       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1873       if( rc ){
1874         goto multi_select_end;
1875       }
1876 
1877       /* Code the current SELECT into temporary table "tab2"
1878       */
1879       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1880       assert( p->addrOpenEphm[1] == -1 );
1881       p->addrOpenEphm[1] = addr;
1882       p->pPrior = 0;
1883       pLimit = p->pLimit;
1884       p->pLimit = 0;
1885       pOffset = p->pOffset;
1886       p->pOffset = 0;
1887       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1888       p->pPrior = pPrior;
1889       sqlite3ExprDelete(p->pLimit);
1890       p->pLimit = pLimit;
1891       p->pOffset = pOffset;
1892       if( rc ){
1893         goto multi_select_end;
1894       }
1895 
1896       /* Generate code to take the intersection of the two temporary
1897       ** tables.
1898       */
1899       assert( p->pEList );
1900       if( eDest==SRT_Callback ){
1901         Select *pFirst = p;
1902         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1903         generateColumnNames(pParse, 0, pFirst->pEList);
1904       }
1905       iBreak = sqlite3VdbeMakeLabel(v);
1906       iCont = sqlite3VdbeMakeLabel(v);
1907       computeLimitRegisters(pParse, p, iBreak);
1908       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1909       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1910       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1911       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1912                              pOrderBy, -1, eDest, iParm,
1913                              iCont, iBreak, 0);
1914       if( rc ){
1915         rc = 1;
1916         goto multi_select_end;
1917       }
1918       sqlite3VdbeResolveLabel(v, iCont);
1919       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1920       sqlite3VdbeResolveLabel(v, iBreak);
1921       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1922       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1923       break;
1924     }
1925   }
1926 
1927   /* Make sure all SELECTs in the statement have the same number of elements
1928   ** in their result sets.
1929   */
1930   assert( p->pEList && pPrior->pEList );
1931   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1932     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1933       " do not have the same number of result columns", selectOpName(p->op));
1934     rc = 1;
1935     goto multi_select_end;
1936   }
1937 
1938   /* Set the number of columns in temporary tables
1939   */
1940   nCol = p->pEList->nExpr;
1941   while( nSetP2 ){
1942     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1943   }
1944 
1945   /* Compute collating sequences used by either the ORDER BY clause or
1946   ** by any temporary tables needed to implement the compound select.
1947   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1948   ** ORDER BY processing if there is an ORDER BY clause.
1949   **
1950   ** This section is run by the right-most SELECT statement only.
1951   ** SELECT statements to the left always skip this part.  The right-most
1952   ** SELECT might also skip this part if it has no ORDER BY clause and
1953   ** no temp tables are required.
1954   */
1955   if( pOrderBy || p->usesEphm ){
1956     int i;                        /* Loop counter */
1957     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1958     Select *pLoop;                /* For looping through SELECT statements */
1959     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1960     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1961     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1962 
1963     assert( p->pRightmost==p );
1964     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1965     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1966     if( !pKeyInfo ){
1967       rc = SQLITE_NOMEM;
1968       goto multi_select_end;
1969     }
1970 
1971     pKeyInfo->enc = ENC(pParse->db);
1972     pKeyInfo->nField = nCol;
1973 
1974     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1975       *apColl = multiSelectCollSeq(pParse, p, i);
1976       if( 0==*apColl ){
1977         *apColl = pParse->db->pDfltColl;
1978       }
1979     }
1980 
1981     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1982       for(i=0; i<2; i++){
1983         int addr = pLoop->addrOpenEphm[i];
1984         if( addr<0 ){
1985           /* If [0] is unused then [1] is also unused.  So we can
1986           ** always safely abort as soon as the first unused slot is found */
1987           assert( pLoop->addrOpenEphm[1]<0 );
1988           break;
1989         }
1990         sqlite3VdbeChangeP2(v, addr, nCol);
1991         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1992         pLoop->addrOpenEphm[i] = -1;
1993       }
1994     }
1995 
1996     if( pOrderBy ){
1997       struct ExprList_item *pOTerm = pOrderBy->a;
1998       int nOrderByExpr = pOrderBy->nExpr;
1999       int addr;
2000       u8 *pSortOrder;
2001 
2002       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
2003       ** the compound select statements.  Except we have to change out the
2004       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
2005       ** reused when constructing the pKeyInfo for the ORDER BY, so make
2006       ** a copy.  Sufficient space to hold both the nCol entries for
2007       ** the compound select and the nOrderbyExpr entries for the ORDER BY
2008       ** was allocated above.  But we need to move the compound select
2009       ** entries out of the way before constructing the ORDER BY entries.
2010       ** Move the compound select entries into aCopy[] where they can be
2011       ** accessed and reused when constructing the ORDER BY entries.
2012       ** Because nCol might be greater than or less than nOrderByExpr
2013       ** we have to use memmove() when doing the copy.
2014       */
2015       aCopy = &pKeyInfo->aColl[nOrderByExpr];
2016       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
2017       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
2018 
2019       apColl = pKeyInfo->aColl;
2020       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
2021         Expr *pExpr = pOTerm->pExpr;
2022         if( (pExpr->flags & EP_ExpCollate) ){
2023           assert( pExpr->pColl!=0 );
2024           *apColl = pExpr->pColl;
2025         }else{
2026           *apColl = aCopy[pExpr->iColumn];
2027         }
2028         *pSortOrder = pOTerm->sortOrder;
2029       }
2030       assert( p->pRightmost==p );
2031       assert( p->addrOpenEphm[2]>=0 );
2032       addr = p->addrOpenEphm[2];
2033       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
2034       pKeyInfo->nField = nOrderByExpr;
2035       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2036       pKeyInfo = 0;
2037       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
2038     }
2039 
2040     sqliteFree(pKeyInfo);
2041   }
2042 
2043 multi_select_end:
2044   return rc;
2045 }
2046 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2047 
2048 #ifndef SQLITE_OMIT_VIEW
2049 /*
2050 ** Scan through the expression pExpr.  Replace every reference to
2051 ** a column in table number iTable with a copy of the iColumn-th
2052 ** entry in pEList.  (But leave references to the ROWID column
2053 ** unchanged.)
2054 **
2055 ** This routine is part of the flattening procedure.  A subquery
2056 ** whose result set is defined by pEList appears as entry in the
2057 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2058 ** FORM clause entry is iTable.  This routine make the necessary
2059 ** changes to pExpr so that it refers directly to the source table
2060 ** of the subquery rather the result set of the subquery.
2061 */
2062 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
2063 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
2064 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
2065   if( pExpr==0 ) return;
2066   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2067     if( pExpr->iColumn<0 ){
2068       pExpr->op = TK_NULL;
2069     }else{
2070       Expr *pNew;
2071       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2072       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2073       pNew = pEList->a[pExpr->iColumn].pExpr;
2074       assert( pNew!=0 );
2075       pExpr->op = pNew->op;
2076       assert( pExpr->pLeft==0 );
2077       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2078       assert( pExpr->pRight==0 );
2079       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2080       assert( pExpr->pList==0 );
2081       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2082       pExpr->iTable = pNew->iTable;
2083       pExpr->pTab = pNew->pTab;
2084       pExpr->iColumn = pNew->iColumn;
2085       pExpr->iAgg = pNew->iAgg;
2086       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2087       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2088       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2089       pExpr->flags = pNew->flags;
2090     }
2091   }else{
2092     substExpr(pExpr->pLeft, iTable, pEList);
2093     substExpr(pExpr->pRight, iTable, pEList);
2094     substSelect(pExpr->pSelect, iTable, pEList);
2095     substExprList(pExpr->pList, iTable, pEList);
2096   }
2097 }
2098 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2099   int i;
2100   if( pList==0 ) return;
2101   for(i=0; i<pList->nExpr; i++){
2102     substExpr(pList->a[i].pExpr, iTable, pEList);
2103   }
2104 }
2105 static void substSelect(Select *p, int iTable, ExprList *pEList){
2106   if( !p ) return;
2107   substExprList(p->pEList, iTable, pEList);
2108   substExprList(p->pGroupBy, iTable, pEList);
2109   substExprList(p->pOrderBy, iTable, pEList);
2110   substExpr(p->pHaving, iTable, pEList);
2111   substExpr(p->pWhere, iTable, pEList);
2112   substSelect(p->pPrior, iTable, pEList);
2113 }
2114 #endif /* !defined(SQLITE_OMIT_VIEW) */
2115 
2116 #ifndef SQLITE_OMIT_VIEW
2117 /*
2118 ** This routine attempts to flatten subqueries in order to speed
2119 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2120 ** occurs.
2121 **
2122 ** To understand the concept of flattening, consider the following
2123 ** query:
2124 **
2125 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2126 **
2127 ** The default way of implementing this query is to execute the
2128 ** subquery first and store the results in a temporary table, then
2129 ** run the outer query on that temporary table.  This requires two
2130 ** passes over the data.  Furthermore, because the temporary table
2131 ** has no indices, the WHERE clause on the outer query cannot be
2132 ** optimized.
2133 **
2134 ** This routine attempts to rewrite queries such as the above into
2135 ** a single flat select, like this:
2136 **
2137 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2138 **
2139 ** The code generated for this simpification gives the same result
2140 ** but only has to scan the data once.  And because indices might
2141 ** exist on the table t1, a complete scan of the data might be
2142 ** avoided.
2143 **
2144 ** Flattening is only attempted if all of the following are true:
2145 **
2146 **   (1)  The subquery and the outer query do not both use aggregates.
2147 **
2148 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2149 **
2150 **   (3)  The subquery is not the right operand of a left outer join, or
2151 **        the subquery is not itself a join.  (Ticket #306)
2152 **
2153 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2154 **
2155 **   (5)  The subquery is not DISTINCT or the outer query does not use
2156 **        aggregates.
2157 **
2158 **   (6)  The subquery does not use aggregates or the outer query is not
2159 **        DISTINCT.
2160 **
2161 **   (7)  The subquery has a FROM clause.
2162 **
2163 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2164 **
2165 **   (9)  The subquery does not use LIMIT or the outer query does not use
2166 **        aggregates.
2167 **
2168 **  (10)  The subquery does not use aggregates or the outer query does not
2169 **        use LIMIT.
2170 **
2171 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2172 **
2173 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2174 **        subquery has no WHERE clause.  (added by ticket #350)
2175 **
2176 **  (13)  The subquery and outer query do not both use LIMIT
2177 **
2178 **  (14)  The subquery does not use OFFSET
2179 **
2180 **  (15)  The outer query is not part of a compound select or the
2181 **        subquery does not have both an ORDER BY and a LIMIT clause.
2182 **        (See ticket #2339)
2183 **
2184 ** In this routine, the "p" parameter is a pointer to the outer query.
2185 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2186 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2187 **
2188 ** If flattening is not attempted, this routine is a no-op and returns 0.
2189 ** If flattening is attempted this routine returns 1.
2190 **
2191 ** All of the expression analysis must occur on both the outer query and
2192 ** the subquery before this routine runs.
2193 */
2194 static int flattenSubquery(
2195   Select *p,           /* The parent or outer SELECT statement */
2196   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2197   int isAgg,           /* True if outer SELECT uses aggregate functions */
2198   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2199 ){
2200   Select *pSub;       /* The inner query or "subquery" */
2201   SrcList *pSrc;      /* The FROM clause of the outer query */
2202   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2203   ExprList *pList;    /* The result set of the outer query */
2204   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2205   int i;              /* Loop counter */
2206   Expr *pWhere;                    /* The WHERE clause */
2207   struct SrcList_item *pSubitem;   /* The subquery */
2208 
2209   /* Check to see if flattening is permitted.  Return 0 if not.
2210   */
2211   if( p==0 ) return 0;
2212   pSrc = p->pSrc;
2213   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2214   pSubitem = &pSrc->a[iFrom];
2215   pSub = pSubitem->pSelect;
2216   assert( pSub!=0 );
2217   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2218   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2219   pSubSrc = pSub->pSrc;
2220   assert( pSubSrc );
2221   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2222   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2223   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2224   ** became arbitrary expressions, we were forced to add restrictions (13)
2225   ** and (14). */
2226   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2227   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2228   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2229     return 0;                                            /* Restriction (15) */
2230   }
2231   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2232   if( (pSub->isDistinct || pSub->pLimit)
2233          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2234      return 0;
2235   }
2236   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2237   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2238      return 0;                                           /* Restriction (11) */
2239   }
2240 
2241   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2242   ** not used as the right operand of an outer join.  Examples of why this
2243   ** is not allowed:
2244   **
2245   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2246   **
2247   ** If we flatten the above, we would get
2248   **
2249   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2250   **
2251   ** which is not at all the same thing.
2252   */
2253   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2254     return 0;
2255   }
2256 
2257   /* Restriction 12:  If the subquery is the right operand of a left outer
2258   ** join, make sure the subquery has no WHERE clause.
2259   ** An examples of why this is not allowed:
2260   **
2261   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2262   **
2263   ** If we flatten the above, we would get
2264   **
2265   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2266   **
2267   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2268   ** effectively converts the OUTER JOIN into an INNER JOIN.
2269   */
2270   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2271     return 0;
2272   }
2273 
2274   /* If we reach this point, it means flattening is permitted for the
2275   ** iFrom-th entry of the FROM clause in the outer query.
2276   */
2277 
2278   /* Move all of the FROM elements of the subquery into the
2279   ** the FROM clause of the outer query.  Before doing this, remember
2280   ** the cursor number for the original outer query FROM element in
2281   ** iParent.  The iParent cursor will never be used.  Subsequent code
2282   ** will scan expressions looking for iParent references and replace
2283   ** those references with expressions that resolve to the subquery FROM
2284   ** elements we are now copying in.
2285   */
2286   iParent = pSubitem->iCursor;
2287   {
2288     int nSubSrc = pSubSrc->nSrc;
2289     int jointype = pSubitem->jointype;
2290 
2291     sqlite3DeleteTable(pSubitem->pTab);
2292     sqliteFree(pSubitem->zDatabase);
2293     sqliteFree(pSubitem->zName);
2294     sqliteFree(pSubitem->zAlias);
2295     if( nSubSrc>1 ){
2296       int extra = nSubSrc - 1;
2297       for(i=1; i<nSubSrc; i++){
2298         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2299       }
2300       p->pSrc = pSrc;
2301       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2302         pSrc->a[i] = pSrc->a[i-extra];
2303       }
2304     }
2305     for(i=0; i<nSubSrc; i++){
2306       pSrc->a[i+iFrom] = pSubSrc->a[i];
2307       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2308     }
2309     pSrc->a[iFrom].jointype = jointype;
2310   }
2311 
2312   /* Now begin substituting subquery result set expressions for
2313   ** references to the iParent in the outer query.
2314   **
2315   ** Example:
2316   **
2317   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2318   **   \                     \_____________ subquery __________/          /
2319   **    \_____________________ outer query ______________________________/
2320   **
2321   ** We look at every expression in the outer query and every place we see
2322   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2323   */
2324   pList = p->pEList;
2325   for(i=0; i<pList->nExpr; i++){
2326     Expr *pExpr;
2327     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2328       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2329     }
2330   }
2331   substExprList(p->pEList, iParent, pSub->pEList);
2332   if( isAgg ){
2333     substExprList(p->pGroupBy, iParent, pSub->pEList);
2334     substExpr(p->pHaving, iParent, pSub->pEList);
2335   }
2336   if( pSub->pOrderBy ){
2337     assert( p->pOrderBy==0 );
2338     p->pOrderBy = pSub->pOrderBy;
2339     pSub->pOrderBy = 0;
2340   }else if( p->pOrderBy ){
2341     substExprList(p->pOrderBy, iParent, pSub->pEList);
2342   }
2343   if( pSub->pWhere ){
2344     pWhere = sqlite3ExprDup(pSub->pWhere);
2345   }else{
2346     pWhere = 0;
2347   }
2348   if( subqueryIsAgg ){
2349     assert( p->pHaving==0 );
2350     p->pHaving = p->pWhere;
2351     p->pWhere = pWhere;
2352     substExpr(p->pHaving, iParent, pSub->pEList);
2353     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2354     assert( p->pGroupBy==0 );
2355     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2356   }else{
2357     substExpr(p->pWhere, iParent, pSub->pEList);
2358     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2359   }
2360 
2361   /* The flattened query is distinct if either the inner or the
2362   ** outer query is distinct.
2363   */
2364   p->isDistinct = p->isDistinct || pSub->isDistinct;
2365 
2366   /*
2367   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2368   **
2369   ** One is tempted to try to add a and b to combine the limits.  But this
2370   ** does not work if either limit is negative.
2371   */
2372   if( pSub->pLimit ){
2373     p->pLimit = pSub->pLimit;
2374     pSub->pLimit = 0;
2375   }
2376 
2377   /* Finially, delete what is left of the subquery and return
2378   ** success.
2379   */
2380   sqlite3SelectDelete(pSub);
2381   return 1;
2382 }
2383 #endif /* SQLITE_OMIT_VIEW */
2384 
2385 /*
2386 ** Analyze the SELECT statement passed in as an argument to see if it
2387 ** is a simple min() or max() query.  If it is and this query can be
2388 ** satisfied using a single seek to the beginning or end of an index,
2389 ** then generate the code for this SELECT and return 1.  If this is not a
2390 ** simple min() or max() query, then return 0;
2391 **
2392 ** A simply min() or max() query looks like this:
2393 **
2394 **    SELECT min(a) FROM table;
2395 **    SELECT max(a) FROM table;
2396 **
2397 ** The query may have only a single table in its FROM argument.  There
2398 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2399 ** be the min() or max() of a single column of the table.  The column
2400 ** in the min() or max() function must be indexed.
2401 **
2402 ** The parameters to this routine are the same as for sqlite3Select().
2403 ** See the header comment on that routine for additional information.
2404 */
2405 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2406   Expr *pExpr;
2407   int iCol;
2408   Table *pTab;
2409   Index *pIdx;
2410   int base;
2411   Vdbe *v;
2412   int seekOp;
2413   ExprList *pEList, *pList, eList;
2414   struct ExprList_item eListItem;
2415   SrcList *pSrc;
2416   int brk;
2417   int iDb;
2418 
2419   /* Check to see if this query is a simple min() or max() query.  Return
2420   ** zero if it is  not.
2421   */
2422   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2423   pSrc = p->pSrc;
2424   if( pSrc->nSrc!=1 ) return 0;
2425   pEList = p->pEList;
2426   if( pEList->nExpr!=1 ) return 0;
2427   pExpr = pEList->a[0].pExpr;
2428   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2429   pList = pExpr->pList;
2430   if( pList==0 || pList->nExpr!=1 ) return 0;
2431   if( pExpr->token.n!=3 ) return 0;
2432   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2433     seekOp = OP_Rewind;
2434   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2435     seekOp = OP_Last;
2436   }else{
2437     return 0;
2438   }
2439   pExpr = pList->a[0].pExpr;
2440   if( pExpr->op!=TK_COLUMN ) return 0;
2441   iCol = pExpr->iColumn;
2442   pTab = pSrc->a[0].pTab;
2443 
2444   /* This optimization cannot be used with virtual tables. */
2445   if( IsVirtual(pTab) ) return 0;
2446 
2447   /* If we get to here, it means the query is of the correct form.
2448   ** Check to make sure we have an index and make pIdx point to the
2449   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2450   ** key column, no index is necessary so set pIdx to NULL.  If no
2451   ** usable index is found, return 0.
2452   */
2453   if( iCol<0 ){
2454     pIdx = 0;
2455   }else{
2456     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2457     if( pColl==0 ) return 0;
2458     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2459       assert( pIdx->nColumn>=1 );
2460       if( pIdx->aiColumn[0]==iCol &&
2461           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2462         break;
2463       }
2464     }
2465     if( pIdx==0 ) return 0;
2466   }
2467 
2468   /* Identify column types if we will be using the callback.  This
2469   ** step is skipped if the output is going to a table or a memory cell.
2470   ** The column names have already been generated in the calling function.
2471   */
2472   v = sqlite3GetVdbe(pParse);
2473   if( v==0 ) return 0;
2474 
2475   /* If the output is destined for a temporary table, open that table.
2476   */
2477   if( eDest==SRT_EphemTab ){
2478     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2479   }
2480 
2481   /* Generating code to find the min or the max.  Basically all we have
2482   ** to do is find the first or the last entry in the chosen index.  If
2483   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2484   ** or last entry in the main table.
2485   */
2486   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2487   assert( iDb>=0 || pTab->isEphem );
2488   sqlite3CodeVerifySchema(pParse, iDb);
2489   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2490   base = pSrc->a[0].iCursor;
2491   brk = sqlite3VdbeMakeLabel(v);
2492   computeLimitRegisters(pParse, p, brk);
2493   if( pSrc->a[0].pSelect==0 ){
2494     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2495   }
2496   if( pIdx==0 ){
2497     sqlite3VdbeAddOp(v, seekOp, base, 0);
2498   }else{
2499     /* Even though the cursor used to open the index here is closed
2500     ** as soon as a single value has been read from it, allocate it
2501     ** using (pParse->nTab++) to prevent the cursor id from being
2502     ** reused. This is important for statements of the form
2503     ** "INSERT INTO x SELECT max() FROM x".
2504     */
2505     int iIdx;
2506     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2507     iIdx = pParse->nTab++;
2508     assert( pIdx->pSchema==pTab->pSchema );
2509     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2510     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2511         (char*)pKey, P3_KEYINFO_HANDOFF);
2512     if( seekOp==OP_Rewind ){
2513       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2514       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2515       seekOp = OP_MoveGt;
2516     }
2517     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
2518       /* Ticket #2514: invert the seek operator if we are using
2519       ** a descending index. */
2520       if( seekOp==OP_Last ){
2521         seekOp = OP_Rewind;
2522       }else{
2523         assert( seekOp==OP_MoveGt );
2524         seekOp = OP_MoveLt;
2525       }
2526     }
2527     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2528     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2529     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2530     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2531   }
2532   eList.nExpr = 1;
2533   memset(&eListItem, 0, sizeof(eListItem));
2534   eList.a = &eListItem;
2535   eList.a[0].pExpr = pExpr;
2536   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2537   sqlite3VdbeResolveLabel(v, brk);
2538   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2539 
2540   return 1;
2541 }
2542 
2543 /*
2544 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2545 ** the number of errors seen.
2546 **
2547 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2548 ** is an integer constant, then that expression is replaced by the
2549 ** corresponding entry in the result set.
2550 */
2551 static int processOrderGroupBy(
2552   NameContext *pNC,     /* Name context of the SELECT statement. */
2553   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2554   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2555 ){
2556   int i;
2557   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2558   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2559   assert( pEList );
2560 
2561   if( pOrderBy==0 ) return 0;
2562   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
2563     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
2564     return 1;
2565   }
2566   for(i=0; i<pOrderBy->nExpr; i++){
2567     int iCol;
2568     Expr *pE = pOrderBy->a[i].pExpr;
2569     if( sqlite3ExprIsInteger(pE, &iCol) ){
2570       if( iCol>0 && iCol<=pEList->nExpr ){
2571         CollSeq *pColl = pE->pColl;
2572         int flags = pE->flags & EP_ExpCollate;
2573         sqlite3ExprDelete(pE);
2574         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2575         if( pColl && flags ){
2576           pE->pColl = pColl;
2577           pE->flags |= flags;
2578         }
2579       }else{
2580         sqlite3ErrorMsg(pParse,
2581            "%s BY column number %d out of range - should be "
2582            "between 1 and %d", zType, iCol, pEList->nExpr);
2583         return 1;
2584       }
2585     }
2586     if( sqlite3ExprResolveNames(pNC, pE) ){
2587       return 1;
2588     }
2589   }
2590   return 0;
2591 }
2592 
2593 /*
2594 ** This routine resolves any names used in the result set of the
2595 ** supplied SELECT statement. If the SELECT statement being resolved
2596 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2597 ** of the parent SELECT.
2598 */
2599 int sqlite3SelectResolve(
2600   Parse *pParse,         /* The parser context */
2601   Select *p,             /* The SELECT statement being coded. */
2602   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2603 ){
2604   ExprList *pEList;          /* Result set. */
2605   int i;                     /* For-loop variable used in multiple places */
2606   NameContext sNC;           /* Local name-context */
2607   ExprList *pGroupBy;        /* The group by clause */
2608 
2609   /* If this routine has run before, return immediately. */
2610   if( p->isResolved ){
2611     assert( !pOuterNC );
2612     return SQLITE_OK;
2613   }
2614   p->isResolved = 1;
2615 
2616   /* If there have already been errors, do nothing. */
2617   if( pParse->nErr>0 ){
2618     return SQLITE_ERROR;
2619   }
2620 
2621   /* Prepare the select statement. This call will allocate all cursors
2622   ** required to handle the tables and subqueries in the FROM clause.
2623   */
2624   if( prepSelectStmt(pParse, p) ){
2625     return SQLITE_ERROR;
2626   }
2627 
2628   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2629   ** are not allowed to refer to any names, so pass an empty NameContext.
2630   */
2631   memset(&sNC, 0, sizeof(sNC));
2632   sNC.pParse = pParse;
2633   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2634       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2635     return SQLITE_ERROR;
2636   }
2637 
2638   /* Set up the local name-context to pass to ExprResolveNames() to
2639   ** resolve the expression-list.
2640   */
2641   sNC.allowAgg = 1;
2642   sNC.pSrcList = p->pSrc;
2643   sNC.pNext = pOuterNC;
2644 
2645   /* Resolve names in the result set. */
2646   pEList = p->pEList;
2647   if( !pEList ) return SQLITE_ERROR;
2648   for(i=0; i<pEList->nExpr; i++){
2649     Expr *pX = pEList->a[i].pExpr;
2650     if( sqlite3ExprResolveNames(&sNC, pX) ){
2651       return SQLITE_ERROR;
2652     }
2653   }
2654 
2655   /* If there are no aggregate functions in the result-set, and no GROUP BY
2656   ** expression, do not allow aggregates in any of the other expressions.
2657   */
2658   assert( !p->isAgg );
2659   pGroupBy = p->pGroupBy;
2660   if( pGroupBy || sNC.hasAgg ){
2661     p->isAgg = 1;
2662   }else{
2663     sNC.allowAgg = 0;
2664   }
2665 
2666   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2667   */
2668   if( p->pHaving && !pGroupBy ){
2669     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2670     return SQLITE_ERROR;
2671   }
2672 
2673   /* Add the expression list to the name-context before parsing the
2674   ** other expressions in the SELECT statement. This is so that
2675   ** expressions in the WHERE clause (etc.) can refer to expressions by
2676   ** aliases in the result set.
2677   **
2678   ** Minor point: If this is the case, then the expression will be
2679   ** re-evaluated for each reference to it.
2680   */
2681   sNC.pEList = p->pEList;
2682   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2683      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2684     return SQLITE_ERROR;
2685   }
2686   if( p->pPrior==0 ){
2687     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2688         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2689       return SQLITE_ERROR;
2690     }
2691   }
2692 
2693   if( sqlite3MallocFailed() ){
2694     return SQLITE_NOMEM;
2695   }
2696 
2697   /* Make sure the GROUP BY clause does not contain aggregate functions.
2698   */
2699   if( pGroupBy ){
2700     struct ExprList_item *pItem;
2701 
2702     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2703       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2704         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2705             "the GROUP BY clause");
2706         return SQLITE_ERROR;
2707       }
2708     }
2709   }
2710 
2711   /* If this is one SELECT of a compound, be sure to resolve names
2712   ** in the other SELECTs.
2713   */
2714   if( p->pPrior ){
2715     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2716   }else{
2717     return SQLITE_OK;
2718   }
2719 }
2720 
2721 /*
2722 ** Reset the aggregate accumulator.
2723 **
2724 ** The aggregate accumulator is a set of memory cells that hold
2725 ** intermediate results while calculating an aggregate.  This
2726 ** routine simply stores NULLs in all of those memory cells.
2727 */
2728 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2729   Vdbe *v = pParse->pVdbe;
2730   int i;
2731   struct AggInfo_func *pFunc;
2732   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2733     return;
2734   }
2735   for(i=0; i<pAggInfo->nColumn; i++){
2736     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2737   }
2738   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2739     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2740     if( pFunc->iDistinct>=0 ){
2741       Expr *pE = pFunc->pExpr;
2742       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2743         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2744            "by an expression");
2745         pFunc->iDistinct = -1;
2746       }else{
2747         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2748         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2749                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2750       }
2751     }
2752   }
2753 }
2754 
2755 /*
2756 ** Invoke the OP_AggFinalize opcode for every aggregate function
2757 ** in the AggInfo structure.
2758 */
2759 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2760   Vdbe *v = pParse->pVdbe;
2761   int i;
2762   struct AggInfo_func *pF;
2763   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2764     ExprList *pList = pF->pExpr->pList;
2765     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2766                       (void*)pF->pFunc, P3_FUNCDEF);
2767   }
2768 }
2769 
2770 /*
2771 ** Update the accumulator memory cells for an aggregate based on
2772 ** the current cursor position.
2773 */
2774 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2775   Vdbe *v = pParse->pVdbe;
2776   int i;
2777   struct AggInfo_func *pF;
2778   struct AggInfo_col *pC;
2779 
2780   pAggInfo->directMode = 1;
2781   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2782     int nArg;
2783     int addrNext = 0;
2784     ExprList *pList = pF->pExpr->pList;
2785     if( pList ){
2786       nArg = pList->nExpr;
2787       sqlite3ExprCodeExprList(pParse, pList);
2788     }else{
2789       nArg = 0;
2790     }
2791     if( pF->iDistinct>=0 ){
2792       addrNext = sqlite3VdbeMakeLabel(v);
2793       assert( nArg==1 );
2794       codeDistinct(v, pF->iDistinct, addrNext, 1);
2795     }
2796     if( pF->pFunc->needCollSeq ){
2797       CollSeq *pColl = 0;
2798       struct ExprList_item *pItem;
2799       int j;
2800       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2801       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2802         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2803       }
2804       if( !pColl ){
2805         pColl = pParse->db->pDfltColl;
2806       }
2807       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2808     }
2809     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2810     if( addrNext ){
2811       sqlite3VdbeResolveLabel(v, addrNext);
2812     }
2813   }
2814   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2815     sqlite3ExprCode(pParse, pC->pExpr);
2816     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2817   }
2818   pAggInfo->directMode = 0;
2819 }
2820 
2821 
2822 /*
2823 ** Generate code for the given SELECT statement.
2824 **
2825 ** The results are distributed in various ways depending on the
2826 ** value of eDest and iParm.
2827 **
2828 **     eDest Value       Result
2829 **     ------------    -------------------------------------------
2830 **     SRT_Callback    Invoke the callback for each row of the result.
2831 **
2832 **     SRT_Mem         Store first result in memory cell iParm
2833 **
2834 **     SRT_Set         Store results as keys of table iParm.
2835 **
2836 **     SRT_Union       Store results as a key in a temporary table iParm
2837 **
2838 **     SRT_Except      Remove results from the temporary table iParm.
2839 **
2840 **     SRT_Table       Store results in temporary table iParm
2841 **
2842 ** The table above is incomplete.  Additional eDist value have be added
2843 ** since this comment was written.  See the selectInnerLoop() function for
2844 ** a complete listing of the allowed values of eDest and their meanings.
2845 **
2846 ** This routine returns the number of errors.  If any errors are
2847 ** encountered, then an appropriate error message is left in
2848 ** pParse->zErrMsg.
2849 **
2850 ** This routine does NOT free the Select structure passed in.  The
2851 ** calling function needs to do that.
2852 **
2853 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2854 ** SELECT is a subquery.  This routine may try to combine this SELECT
2855 ** with its parent to form a single flat query.  In so doing, it might
2856 ** change the parent query from a non-aggregate to an aggregate query.
2857 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2858 ** can be changed.
2859 **
2860 ** Example 1:   The meaning of the pParent parameter.
2861 **
2862 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2863 **    \                      \_______ subquery _______/        /
2864 **     \                                                      /
2865 **      \____________________ outer query ___________________/
2866 **
2867 ** This routine is called for the outer query first.   For that call,
2868 ** pParent will be NULL.  During the processing of the outer query, this
2869 ** routine is called recursively to handle the subquery.  For the recursive
2870 ** call, pParent will point to the outer query.  Because the subquery is
2871 ** the second element in a three-way join, the parentTab parameter will
2872 ** be 1 (the 2nd value of a 0-indexed array.)
2873 */
2874 int sqlite3Select(
2875   Parse *pParse,         /* The parser context */
2876   Select *p,             /* The SELECT statement being coded. */
2877   int eDest,             /* How to dispose of the results */
2878   int iParm,             /* A parameter used by the eDest disposal method */
2879   Select *pParent,       /* Another SELECT for which this is a sub-query */
2880   int parentTab,         /* Index in pParent->pSrc of this query */
2881   int *pParentAgg,       /* True if pParent uses aggregate functions */
2882   char *aff              /* If eDest is SRT_Union, the affinity string */
2883 ){
2884   int i, j;              /* Loop counters */
2885   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2886   Vdbe *v;               /* The virtual machine under construction */
2887   int isAgg;             /* True for select lists like "count(*)" */
2888   ExprList *pEList;      /* List of columns to extract. */
2889   SrcList *pTabList;     /* List of tables to select from */
2890   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2891   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2892   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2893   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2894   int isDistinct;        /* True if the DISTINCT keyword is present */
2895   int distinct;          /* Table to use for the distinct set */
2896   int rc = 1;            /* Value to return from this function */
2897   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2898   AggInfo sAggInfo;      /* Information used by aggregate queries */
2899   int iEnd;              /* Address of the end of the query */
2900 
2901   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2902     return 1;
2903   }
2904   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2905   memset(&sAggInfo, 0, sizeof(sAggInfo));
2906 
2907 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2908   /* If there is are a sequence of queries, do the earlier ones first.
2909   */
2910   if( p->pPrior ){
2911     if( p->pRightmost==0 ){
2912       Select *pLoop;
2913       int cnt = 0;
2914       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
2915         pLoop->pRightmost = p;
2916       }
2917       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
2918         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
2919         return 1;
2920       }
2921     }
2922     return multiSelect(pParse, p, eDest, iParm, aff);
2923   }
2924 #endif
2925 
2926   pOrderBy = p->pOrderBy;
2927   if( IgnorableOrderby(eDest) ){
2928     p->pOrderBy = 0;
2929   }
2930   if( sqlite3SelectResolve(pParse, p, 0) ){
2931     goto select_end;
2932   }
2933   p->pOrderBy = pOrderBy;
2934 
2935   /* Make local copies of the parameters for this query.
2936   */
2937   pTabList = p->pSrc;
2938   pWhere = p->pWhere;
2939   pGroupBy = p->pGroupBy;
2940   pHaving = p->pHaving;
2941   isAgg = p->isAgg;
2942   isDistinct = p->isDistinct;
2943   pEList = p->pEList;
2944   if( pEList==0 ) goto select_end;
2945 
2946   /*
2947   ** Do not even attempt to generate any code if we have already seen
2948   ** errors before this routine starts.
2949   */
2950   if( pParse->nErr>0 ) goto select_end;
2951 
2952   /* If writing to memory or generating a set
2953   ** only a single column may be output.
2954   */
2955 #ifndef SQLITE_OMIT_SUBQUERY
2956   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
2957     goto select_end;
2958   }
2959 #endif
2960 
2961   /* ORDER BY is ignored for some destinations.
2962   */
2963   if( IgnorableOrderby(eDest) ){
2964     pOrderBy = 0;
2965   }
2966 
2967   /* Begin generating code.
2968   */
2969   v = sqlite3GetVdbe(pParse);
2970   if( v==0 ) goto select_end;
2971 
2972   /* Generate code for all sub-queries in the FROM clause
2973   */
2974 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2975   for(i=0; i<pTabList->nSrc; i++){
2976     const char *zSavedAuthContext = 0;
2977     int needRestoreContext;
2978     struct SrcList_item *pItem = &pTabList->a[i];
2979 
2980     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2981     if( pItem->zName!=0 ){
2982       zSavedAuthContext = pParse->zAuthContext;
2983       pParse->zAuthContext = pItem->zName;
2984       needRestoreContext = 1;
2985     }else{
2986       needRestoreContext = 0;
2987     }
2988 #if SQLITE_MAX_EXPR_DEPTH>0
2989     /* Increment Parse.nHeight by the height of the largest expression
2990     ** tree refered to by this, the parent select. The child select
2991     ** may contain expression trees of at most
2992     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
2993     ** more conservative than necessary, but much easier than enforcing
2994     ** an exact limit.
2995     */
2996     pParse->nHeight += sqlite3SelectExprHeight(p);
2997 #endif
2998     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2999                  pItem->iCursor, p, i, &isAgg, 0);
3000 #if SQLITE_MAX_EXPR_DEPTH>0
3001     pParse->nHeight -= sqlite3SelectExprHeight(p);
3002 #endif
3003     if( needRestoreContext ){
3004       pParse->zAuthContext = zSavedAuthContext;
3005     }
3006     pTabList = p->pSrc;
3007     pWhere = p->pWhere;
3008     if( !IgnorableOrderby(eDest) ){
3009       pOrderBy = p->pOrderBy;
3010     }
3011     pGroupBy = p->pGroupBy;
3012     pHaving = p->pHaving;
3013     isDistinct = p->isDistinct;
3014   }
3015 #endif
3016 
3017   /* Check for the special case of a min() or max() function by itself
3018   ** in the result set.
3019   */
3020   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
3021     rc = 0;
3022     goto select_end;
3023   }
3024 
3025   /* Check to see if this is a subquery that can be "flattened" into its parent.
3026   ** If flattening is a possiblity, do so and return immediately.
3027   */
3028 #ifndef SQLITE_OMIT_VIEW
3029   if( pParent && pParentAgg &&
3030       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
3031     if( isAgg ) *pParentAgg = 1;
3032     goto select_end;
3033   }
3034 #endif
3035 
3036   /* If there is an ORDER BY clause, then this sorting
3037   ** index might end up being unused if the data can be
3038   ** extracted in pre-sorted order.  If that is the case, then the
3039   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3040   ** we figure out that the sorting index is not needed.  The addrSortIndex
3041   ** variable is used to facilitate that change.
3042   */
3043   if( pOrderBy ){
3044     KeyInfo *pKeyInfo;
3045     if( pParse->nErr ){
3046       goto select_end;
3047     }
3048     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3049     pOrderBy->iECursor = pParse->nTab++;
3050     p->addrOpenEphm[2] = addrSortIndex =
3051       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3052   }else{
3053     addrSortIndex = -1;
3054   }
3055 
3056   /* If the output is destined for a temporary table, open that table.
3057   */
3058   if( eDest==SRT_EphemTab ){
3059     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
3060   }
3061 
3062   /* Set the limiter.
3063   */
3064   iEnd = sqlite3VdbeMakeLabel(v);
3065   computeLimitRegisters(pParse, p, iEnd);
3066 
3067   /* Open a virtual index to use for the distinct set.
3068   */
3069   if( isDistinct ){
3070     KeyInfo *pKeyInfo;
3071     distinct = pParse->nTab++;
3072     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3073     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
3074                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3075   }else{
3076     distinct = -1;
3077   }
3078 
3079   /* Aggregate and non-aggregate queries are handled differently */
3080   if( !isAgg && pGroupBy==0 ){
3081     /* This case is for non-aggregate queries
3082     ** Begin the database scan
3083     */
3084     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
3085     if( pWInfo==0 ) goto select_end;
3086 
3087     /* If sorting index that was created by a prior OP_OpenEphemeral
3088     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3089     ** into an OP_Noop.
3090     */
3091     if( addrSortIndex>=0 && pOrderBy==0 ){
3092       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3093       p->addrOpenEphm[2] = -1;
3094     }
3095 
3096     /* Use the standard inner loop
3097     */
3098     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
3099                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3100        goto select_end;
3101     }
3102 
3103     /* End the database scan loop.
3104     */
3105     sqlite3WhereEnd(pWInfo);
3106   }else{
3107     /* This is the processing for aggregate queries */
3108     NameContext sNC;    /* Name context for processing aggregate information */
3109     int iAMem;          /* First Mem address for storing current GROUP BY */
3110     int iBMem;          /* First Mem address for previous GROUP BY */
3111     int iUseFlag;       /* Mem address holding flag indicating that at least
3112                         ** one row of the input to the aggregator has been
3113                         ** processed */
3114     int iAbortFlag;     /* Mem address which causes query abort if positive */
3115     int groupBySort;    /* Rows come from source in GROUP BY order */
3116 
3117 
3118     /* The following variables hold addresses or labels for parts of the
3119     ** virtual machine program we are putting together */
3120     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3121     int addrSetAbort;       /* Set the abort flag and return */
3122     int addrInitializeLoop; /* Start of code that initializes the input loop */
3123     int addrTopOfLoop;      /* Top of the input loop */
3124     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3125     int addrProcessRow;     /* Code to process a single input row */
3126     int addrEnd;            /* End of all processing */
3127     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3128     int addrReset;          /* Subroutine for resetting the accumulator */
3129 
3130     addrEnd = sqlite3VdbeMakeLabel(v);
3131 
3132     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3133     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3134     ** SELECT statement.
3135     */
3136     memset(&sNC, 0, sizeof(sNC));
3137     sNC.pParse = pParse;
3138     sNC.pSrcList = pTabList;
3139     sNC.pAggInfo = &sAggInfo;
3140     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3141     sAggInfo.pGroupBy = pGroupBy;
3142     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3143       goto select_end;
3144     }
3145     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3146       goto select_end;
3147     }
3148     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3149       goto select_end;
3150     }
3151     sAggInfo.nAccumulator = sAggInfo.nColumn;
3152     for(i=0; i<sAggInfo.nFunc; i++){
3153       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3154         goto select_end;
3155       }
3156     }
3157     if( sqlite3MallocFailed() ) goto select_end;
3158 
3159     /* Processing for aggregates with GROUP BY is very different and
3160     ** much more complex tha aggregates without a GROUP BY.
3161     */
3162     if( pGroupBy ){
3163       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3164 
3165       /* Create labels that we will be needing
3166       */
3167 
3168       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3169       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3170       addrProcessRow = sqlite3VdbeMakeLabel(v);
3171 
3172       /* If there is a GROUP BY clause we might need a sorting index to
3173       ** implement it.  Allocate that sorting index now.  If it turns out
3174       ** that we do not need it after all, the OpenEphemeral instruction
3175       ** will be converted into a Noop.
3176       */
3177       sAggInfo.sortingIdx = pParse->nTab++;
3178       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3179       addrSortingIdx =
3180           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3181                          sAggInfo.nSortingColumn,
3182                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3183 
3184       /* Initialize memory locations used by GROUP BY aggregate processing
3185       */
3186       iUseFlag = pParse->nMem++;
3187       iAbortFlag = pParse->nMem++;
3188       iAMem = pParse->nMem;
3189       pParse->nMem += pGroupBy->nExpr;
3190       iBMem = pParse->nMem;
3191       pParse->nMem += pGroupBy->nExpr;
3192       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3193       VdbeComment((v, "# clear abort flag"));
3194       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3195       VdbeComment((v, "# indicate accumulator empty"));
3196       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3197 
3198       /* Generate a subroutine that outputs a single row of the result
3199       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3200       ** is less than or equal to zero, the subroutine is a no-op.  If
3201       ** the processing calls for the query to abort, this subroutine
3202       ** increments the iAbortFlag memory location before returning in
3203       ** order to signal the caller to abort.
3204       */
3205       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3206       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3207       VdbeComment((v, "# set abort flag"));
3208       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3209       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3210       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3211       VdbeComment((v, "# Groupby result generator entry point"));
3212       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3213       finalizeAggFunctions(pParse, &sAggInfo);
3214       if( pHaving ){
3215         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3216       }
3217       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3218                            distinct, eDest, iParm,
3219                            addrOutputRow+1, addrSetAbort, aff);
3220       if( rc ){
3221         goto select_end;
3222       }
3223       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3224       VdbeComment((v, "# end groupby result generator"));
3225 
3226       /* Generate a subroutine that will reset the group-by accumulator
3227       */
3228       addrReset = sqlite3VdbeCurrentAddr(v);
3229       resetAccumulator(pParse, &sAggInfo);
3230       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3231 
3232       /* Begin a loop that will extract all source rows in GROUP BY order.
3233       ** This might involve two separate loops with an OP_Sort in between, or
3234       ** it might be a single loop that uses an index to extract information
3235       ** in the right order to begin with.
3236       */
3237       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3238       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3239       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3240       if( pWInfo==0 ) goto select_end;
3241       if( pGroupBy==0 ){
3242         /* The optimizer is able to deliver rows in group by order so
3243         ** we do not have to sort.  The OP_OpenEphemeral table will be
3244         ** cancelled later because we still need to use the pKeyInfo
3245         */
3246         pGroupBy = p->pGroupBy;
3247         groupBySort = 0;
3248       }else{
3249         /* Rows are coming out in undetermined order.  We have to push
3250         ** each row into a sorting index, terminate the first loop,
3251         ** then loop over the sorting index in order to get the output
3252         ** in sorted order
3253         */
3254         groupBySort = 1;
3255         sqlite3ExprCodeExprList(pParse, pGroupBy);
3256         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3257         j = pGroupBy->nExpr+1;
3258         for(i=0; i<sAggInfo.nColumn; i++){
3259           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3260           if( pCol->iSorterColumn<j ) continue;
3261           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3262           j++;
3263         }
3264         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3265         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3266         sqlite3WhereEnd(pWInfo);
3267         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3268         VdbeComment((v, "# GROUP BY sort"));
3269         sAggInfo.useSortingIdx = 1;
3270       }
3271 
3272       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3273       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3274       ** Then compare the current GROUP BY terms against the GROUP BY terms
3275       ** from the previous row currently stored in a0, a1, a2...
3276       */
3277       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3278       for(j=0; j<pGroupBy->nExpr; j++){
3279         if( groupBySort ){
3280           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3281         }else{
3282           sAggInfo.directMode = 1;
3283           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3284         }
3285         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3286       }
3287       for(j=pGroupBy->nExpr-1; j>=0; j--){
3288         if( j<pGroupBy->nExpr-1 ){
3289           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3290         }
3291         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3292         if( j==0 ){
3293           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3294         }else{
3295           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3296         }
3297         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3298       }
3299 
3300       /* Generate code that runs whenever the GROUP BY changes.
3301       ** Change in the GROUP BY are detected by the previous code
3302       ** block.  If there were no changes, this block is skipped.
3303       **
3304       ** This code copies current group by terms in b0,b1,b2,...
3305       ** over to a0,a1,a2.  It then calls the output subroutine
3306       ** and resets the aggregate accumulator registers in preparation
3307       ** for the next GROUP BY batch.
3308       */
3309       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3310       for(j=0; j<pGroupBy->nExpr; j++){
3311         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3312       }
3313       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3314       VdbeComment((v, "# output one row"));
3315       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3316       VdbeComment((v, "# check abort flag"));
3317       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3318       VdbeComment((v, "# reset accumulator"));
3319 
3320       /* Update the aggregate accumulators based on the content of
3321       ** the current row
3322       */
3323       sqlite3VdbeResolveLabel(v, addrProcessRow);
3324       updateAccumulator(pParse, &sAggInfo);
3325       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3326       VdbeComment((v, "# indicate data in accumulator"));
3327 
3328       /* End of the loop
3329       */
3330       if( groupBySort ){
3331         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3332       }else{
3333         sqlite3WhereEnd(pWInfo);
3334         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3335       }
3336 
3337       /* Output the final row of result
3338       */
3339       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3340       VdbeComment((v, "# output final row"));
3341 
3342     } /* endif pGroupBy */
3343     else {
3344       /* This case runs if the aggregate has no GROUP BY clause.  The
3345       ** processing is much simpler since there is only a single row
3346       ** of output.
3347       */
3348       resetAccumulator(pParse, &sAggInfo);
3349       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3350       if( pWInfo==0 ) goto select_end;
3351       updateAccumulator(pParse, &sAggInfo);
3352       sqlite3WhereEnd(pWInfo);
3353       finalizeAggFunctions(pParse, &sAggInfo);
3354       pOrderBy = 0;
3355       if( pHaving ){
3356         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3357       }
3358       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3359                       eDest, iParm, addrEnd, addrEnd, aff);
3360     }
3361     sqlite3VdbeResolveLabel(v, addrEnd);
3362 
3363   } /* endif aggregate query */
3364 
3365   /* If there is an ORDER BY clause, then we need to sort the results
3366   ** and send them to the callback one by one.
3367   */
3368   if( pOrderBy ){
3369     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3370   }
3371 
3372 #ifndef SQLITE_OMIT_SUBQUERY
3373   /* If this was a subquery, we have now converted the subquery into a
3374   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3375   ** this subquery from being evaluated again and to force the use of
3376   ** the temporary table.
3377   */
3378   if( pParent ){
3379     assert( pParent->pSrc->nSrc>parentTab );
3380     assert( pParent->pSrc->a[parentTab].pSelect==p );
3381     pParent->pSrc->a[parentTab].isPopulated = 1;
3382   }
3383 #endif
3384 
3385   /* Jump here to skip this query
3386   */
3387   sqlite3VdbeResolveLabel(v, iEnd);
3388 
3389   /* The SELECT was successfully coded.   Set the return code to 0
3390   ** to indicate no errors.
3391   */
3392   rc = 0;
3393 
3394   /* Control jumps to here if an error is encountered above, or upon
3395   ** successful coding of the SELECT.
3396   */
3397 select_end:
3398 
3399   /* Identify column names if we will be using them in a callback.  This
3400   ** step is skipped if the output is going to some other destination.
3401   */
3402   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3403     generateColumnNames(pParse, pTabList, pEList);
3404   }
3405 
3406   sqliteFree(sAggInfo.aCol);
3407   sqliteFree(sAggInfo.aFunc);
3408   return rc;
3409 }
3410 
3411 #if defined(SQLITE_DEBUG)
3412 /*
3413 *******************************************************************************
3414 ** The following code is used for testing and debugging only.  The code
3415 ** that follows does not appear in normal builds.
3416 **
3417 ** These routines are used to print out the content of all or part of a
3418 ** parse structures such as Select or Expr.  Such printouts are useful
3419 ** for helping to understand what is happening inside the code generator
3420 ** during the execution of complex SELECT statements.
3421 **
3422 ** These routine are not called anywhere from within the normal
3423 ** code base.  Then are intended to be called from within the debugger
3424 ** or from temporary "printf" statements inserted for debugging.
3425 */
3426 void sqlite3PrintExpr(Expr *p){
3427   if( p->token.z && p->token.n>0 ){
3428     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3429   }else{
3430     sqlite3DebugPrintf("(%d", p->op);
3431   }
3432   if( p->pLeft ){
3433     sqlite3DebugPrintf(" ");
3434     sqlite3PrintExpr(p->pLeft);
3435   }
3436   if( p->pRight ){
3437     sqlite3DebugPrintf(" ");
3438     sqlite3PrintExpr(p->pRight);
3439   }
3440   sqlite3DebugPrintf(")");
3441 }
3442 void sqlite3PrintExprList(ExprList *pList){
3443   int i;
3444   for(i=0; i<pList->nExpr; i++){
3445     sqlite3PrintExpr(pList->a[i].pExpr);
3446     if( i<pList->nExpr-1 ){
3447       sqlite3DebugPrintf(", ");
3448     }
3449   }
3450 }
3451 void sqlite3PrintSelect(Select *p, int indent){
3452   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3453   sqlite3PrintExprList(p->pEList);
3454   sqlite3DebugPrintf("\n");
3455   if( p->pSrc ){
3456     char *zPrefix;
3457     int i;
3458     zPrefix = "FROM";
3459     for(i=0; i<p->pSrc->nSrc; i++){
3460       struct SrcList_item *pItem = &p->pSrc->a[i];
3461       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3462       zPrefix = "";
3463       if( pItem->pSelect ){
3464         sqlite3DebugPrintf("(\n");
3465         sqlite3PrintSelect(pItem->pSelect, indent+10);
3466         sqlite3DebugPrintf("%*s)", indent+8, "");
3467       }else if( pItem->zName ){
3468         sqlite3DebugPrintf("%s", pItem->zName);
3469       }
3470       if( pItem->pTab ){
3471         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3472       }
3473       if( pItem->zAlias ){
3474         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3475       }
3476       if( i<p->pSrc->nSrc-1 ){
3477         sqlite3DebugPrintf(",");
3478       }
3479       sqlite3DebugPrintf("\n");
3480     }
3481   }
3482   if( p->pWhere ){
3483     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3484     sqlite3PrintExpr(p->pWhere);
3485     sqlite3DebugPrintf("\n");
3486   }
3487   if( p->pGroupBy ){
3488     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3489     sqlite3PrintExprList(p->pGroupBy);
3490     sqlite3DebugPrintf("\n");
3491   }
3492   if( p->pHaving ){
3493     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3494     sqlite3PrintExpr(p->pHaving);
3495     sqlite3DebugPrintf("\n");
3496   }
3497   if( p->pOrderBy ){
3498     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3499     sqlite3PrintExprList(p->pOrderBy);
3500     sqlite3DebugPrintf("\n");
3501   }
3502 }
3503 /* End of the structure debug printing code
3504 *****************************************************************************/
3505 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3506