xref: /sqlite-3.40.0/src/select.c (revision 9edb5ceb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     if( p->op==TK_FUNCTION && p->x.pList ){
370       int i;
371       for(i=0; i<p->x.pList->nExpr; i++){
372         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
373       }
374     }
375     setJoinExpr(p->pLeft, iTable);
376     p = p->pRight;
377   }
378 }
379 
380 /*
381 ** This routine processes the join information for a SELECT statement.
382 ** ON and USING clauses are converted into extra terms of the WHERE clause.
383 ** NATURAL joins also create extra WHERE clause terms.
384 **
385 ** The terms of a FROM clause are contained in the Select.pSrc structure.
386 ** The left most table is the first entry in Select.pSrc.  The right-most
387 ** table is the last entry.  The join operator is held in the entry to
388 ** the left.  Thus entry 0 contains the join operator for the join between
389 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
390 ** also attached to the left entry.
391 **
392 ** This routine returns the number of errors encountered.
393 */
394 static int sqliteProcessJoin(Parse *pParse, Select *p){
395   SrcList *pSrc;                  /* All tables in the FROM clause */
396   int i, j;                       /* Loop counters */
397   struct SrcList_item *pLeft;     /* Left table being joined */
398   struct SrcList_item *pRight;    /* Right table being joined */
399 
400   pSrc = p->pSrc;
401   pLeft = &pSrc->a[0];
402   pRight = &pLeft[1];
403   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
404     Table *pLeftTab = pLeft->pTab;
405     Table *pRightTab = pRight->pTab;
406     int isOuter;
407 
408     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
409     isOuter = (pRight->jointype & JT_OUTER)!=0;
410 
411     /* When the NATURAL keyword is present, add WHERE clause terms for
412     ** every column that the two tables have in common.
413     */
414     if( pRight->jointype & JT_NATURAL ){
415       if( pRight->pOn || pRight->pUsing ){
416         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
417            "an ON or USING clause", 0);
418         return 1;
419       }
420       for(j=0; j<pRightTab->nCol; j++){
421         char *zName;   /* Name of column in the right table */
422         int iLeft;     /* Matching left table */
423         int iLeftCol;  /* Matching column in the left table */
424 
425         zName = pRightTab->aCol[j].zName;
426         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
427           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
428                        isOuter, &p->pWhere);
429         }
430       }
431     }
432 
433     /* Disallow both ON and USING clauses in the same join
434     */
435     if( pRight->pOn && pRight->pUsing ){
436       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
437         "clauses in the same join");
438       return 1;
439     }
440 
441     /* Add the ON clause to the end of the WHERE clause, connected by
442     ** an AND operator.
443     */
444     if( pRight->pOn ){
445       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
446       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
447       pRight->pOn = 0;
448     }
449 
450     /* Create extra terms on the WHERE clause for each column named
451     ** in the USING clause.  Example: If the two tables to be joined are
452     ** A and B and the USING clause names X, Y, and Z, then add this
453     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
454     ** Report an error if any column mentioned in the USING clause is
455     ** not contained in both tables to be joined.
456     */
457     if( pRight->pUsing ){
458       IdList *pList = pRight->pUsing;
459       for(j=0; j<pList->nId; j++){
460         char *zName;     /* Name of the term in the USING clause */
461         int iLeft;       /* Table on the left with matching column name */
462         int iLeftCol;    /* Column number of matching column on the left */
463         int iRightCol;   /* Column number of matching column on the right */
464 
465         zName = pList->a[j].zName;
466         iRightCol = columnIndex(pRightTab, zName);
467         if( iRightCol<0
468          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
469         ){
470           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
471             "not present in both tables", zName);
472           return 1;
473         }
474         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
475                      isOuter, &p->pWhere);
476       }
477     }
478   }
479   return 0;
480 }
481 
482 /* Forward reference */
483 static KeyInfo *keyInfoFromExprList(
484   Parse *pParse,       /* Parsing context */
485   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
486   int iStart,          /* Begin with this column of pList */
487   int nExtra           /* Add this many extra columns to the end */
488 );
489 
490 /*
491 ** Generate code that will push the record in registers regData
492 ** through regData+nData-1 onto the sorter.
493 */
494 static void pushOntoSorter(
495   Parse *pParse,         /* Parser context */
496   SortCtx *pSort,        /* Information about the ORDER BY clause */
497   Select *pSelect,       /* The whole SELECT statement */
498   int regData,           /* First register holding data to be sorted */
499   int nData,             /* Number of elements in the data array */
500   int nPrefixReg         /* No. of reg prior to regData available for use */
501 ){
502   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
503   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
504   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
505   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
506   int regBase;                                     /* Regs for sorter record */
507   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
508   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
509   int op;                            /* Opcode to add sorter record to sorter */
510 
511   assert( bSeq==0 || bSeq==1 );
512   if( nPrefixReg ){
513     assert( nPrefixReg==nExpr+bSeq );
514     regBase = regData - nExpr - bSeq;
515   }else{
516     regBase = pParse->nMem + 1;
517     pParse->nMem += nBase;
518   }
519   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
520   if( bSeq ){
521     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
522   }
523   if( nPrefixReg==0 ){
524     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
525   }
526 
527   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
528   if( nOBSat>0 ){
529     int regPrevKey;   /* The first nOBSat columns of the previous row */
530     int addrFirst;    /* Address of the OP_IfNot opcode */
531     int addrJmp;      /* Address of the OP_Jump opcode */
532     VdbeOp *pOp;      /* Opcode that opens the sorter */
533     int nKey;         /* Number of sorting key columns, including OP_Sequence */
534     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
535 
536     regPrevKey = pParse->nMem+1;
537     pParse->nMem += pSort->nOBSat;
538     nKey = nExpr - pSort->nOBSat + bSeq;
539     if( bSeq ){
540       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
541     }else{
542       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
543     }
544     VdbeCoverage(v);
545     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
546     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
547     if( pParse->db->mallocFailed ) return;
548     pOp->p2 = nKey + nData;
549     pKI = pOp->p4.pKeyInfo;
550     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
551     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
552     testcase( pKI->nXField>2 );
553     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
554                                            pKI->nXField-1);
555     addrJmp = sqlite3VdbeCurrentAddr(v);
556     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
557     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
558     pSort->regReturn = ++pParse->nMem;
559     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
560     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
561     sqlite3VdbeJumpHere(v, addrFirst);
562     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
563     sqlite3VdbeJumpHere(v, addrJmp);
564   }
565   if( pSort->sortFlags & SORTFLAG_UseSorter ){
566     op = OP_SorterInsert;
567   }else{
568     op = OP_IdxInsert;
569   }
570   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
571   if( pSelect->iLimit ){
572     int addr;
573     int iLimit;
574     if( pSelect->iOffset ){
575       iLimit = pSelect->iOffset+1;
576     }else{
577       iLimit = pSelect->iLimit;
578     }
579     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
580     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
581     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
582     sqlite3VdbeJumpHere(v, addr);
583   }
584 }
585 
586 /*
587 ** Add code to implement the OFFSET
588 */
589 static void codeOffset(
590   Vdbe *v,          /* Generate code into this VM */
591   int iOffset,      /* Register holding the offset counter */
592   int iContinue     /* Jump here to skip the current record */
593 ){
594   if( iOffset>0 ){
595     int addr;
596     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
597     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
598     VdbeComment((v, "skip OFFSET records"));
599     sqlite3VdbeJumpHere(v, addr);
600   }
601 }
602 
603 /*
604 ** Add code that will check to make sure the N registers starting at iMem
605 ** form a distinct entry.  iTab is a sorting index that holds previously
606 ** seen combinations of the N values.  A new entry is made in iTab
607 ** if the current N values are new.
608 **
609 ** A jump to addrRepeat is made and the N+1 values are popped from the
610 ** stack if the top N elements are not distinct.
611 */
612 static void codeDistinct(
613   Parse *pParse,     /* Parsing and code generating context */
614   int iTab,          /* A sorting index used to test for distinctness */
615   int addrRepeat,    /* Jump to here if not distinct */
616   int N,             /* Number of elements */
617   int iMem           /* First element */
618 ){
619   Vdbe *v;
620   int r1;
621 
622   v = pParse->pVdbe;
623   r1 = sqlite3GetTempReg(pParse);
624   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
625   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
626   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
627   sqlite3ReleaseTempReg(pParse, r1);
628 }
629 
630 #ifndef SQLITE_OMIT_SUBQUERY
631 /*
632 ** Generate an error message when a SELECT is used within a subexpression
633 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
634 ** column.  We do this in a subroutine because the error used to occur
635 ** in multiple places.  (The error only occurs in one place now, but we
636 ** retain the subroutine to minimize code disruption.)
637 */
638 static int checkForMultiColumnSelectError(
639   Parse *pParse,       /* Parse context. */
640   SelectDest *pDest,   /* Destination of SELECT results */
641   int nExpr            /* Number of result columns returned by SELECT */
642 ){
643   int eDest = pDest->eDest;
644   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
645     sqlite3ErrorMsg(pParse, "only a single result allowed for "
646        "a SELECT that is part of an expression");
647     return 1;
648   }else{
649     return 0;
650   }
651 }
652 #endif
653 
654 /*
655 ** This routine generates the code for the inside of the inner loop
656 ** of a SELECT.
657 **
658 ** If srcTab is negative, then the pEList expressions
659 ** are evaluated in order to get the data for this row.  If srcTab is
660 ** zero or more, then data is pulled from srcTab and pEList is used only
661 ** to get number columns and the datatype for each column.
662 */
663 static void selectInnerLoop(
664   Parse *pParse,          /* The parser context */
665   Select *p,              /* The complete select statement being coded */
666   ExprList *pEList,       /* List of values being extracted */
667   int srcTab,             /* Pull data from this table */
668   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
669   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
670   SelectDest *pDest,      /* How to dispose of the results */
671   int iContinue,          /* Jump here to continue with next row */
672   int iBreak              /* Jump here to break out of the inner loop */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   int i;
676   int hasDistinct;        /* True if the DISTINCT keyword is present */
677   int regResult;              /* Start of memory holding result set */
678   int eDest = pDest->eDest;   /* How to dispose of results */
679   int iParm = pDest->iSDParm; /* First argument to disposal method */
680   int nResultCol;             /* Number of result columns */
681   int nPrefixReg = 0;         /* Number of extra registers before regResult */
682 
683   assert( v );
684   assert( pEList!=0 );
685   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
686   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
687   if( pSort==0 && !hasDistinct ){
688     assert( iContinue!=0 );
689     codeOffset(v, p->iOffset, iContinue);
690   }
691 
692   /* Pull the requested columns.
693   */
694   nResultCol = pEList->nExpr;
695 
696   if( pDest->iSdst==0 ){
697     if( pSort ){
698       nPrefixReg = pSort->pOrderBy->nExpr;
699       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
700       pParse->nMem += nPrefixReg;
701     }
702     pDest->iSdst = pParse->nMem+1;
703     pParse->nMem += nResultCol;
704   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
705     /* This is an error condition that can result, for example, when a SELECT
706     ** on the right-hand side of an INSERT contains more result columns than
707     ** there are columns in the table on the left.  The error will be caught
708     ** and reported later.  But we need to make sure enough memory is allocated
709     ** to avoid other spurious errors in the meantime. */
710     pParse->nMem += nResultCol;
711   }
712   pDest->nSdst = nResultCol;
713   regResult = pDest->iSdst;
714   if( srcTab>=0 ){
715     for(i=0; i<nResultCol; i++){
716       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
717       VdbeComment((v, "%s", pEList->a[i].zName));
718     }
719   }else if( eDest!=SRT_Exists ){
720     /* If the destination is an EXISTS(...) expression, the actual
721     ** values returned by the SELECT are not required.
722     */
723     u8 ecelFlags;
724     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
725       ecelFlags = SQLITE_ECEL_DUP;
726     }else{
727       ecelFlags = 0;
728     }
729     sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags);
730   }
731 
732   /* If the DISTINCT keyword was present on the SELECT statement
733   ** and this row has been seen before, then do not make this row
734   ** part of the result.
735   */
736   if( hasDistinct ){
737     switch( pDistinct->eTnctType ){
738       case WHERE_DISTINCT_ORDERED: {
739         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
740         int iJump;              /* Jump destination */
741         int regPrev;            /* Previous row content */
742 
743         /* Allocate space for the previous row */
744         regPrev = pParse->nMem+1;
745         pParse->nMem += nResultCol;
746 
747         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
748         ** sets the MEM_Cleared bit on the first register of the
749         ** previous value.  This will cause the OP_Ne below to always
750         ** fail on the first iteration of the loop even if the first
751         ** row is all NULLs.
752         */
753         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
754         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
755         pOp->opcode = OP_Null;
756         pOp->p1 = 1;
757         pOp->p2 = regPrev;
758 
759         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
760         for(i=0; i<nResultCol; i++){
761           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
762           if( i<nResultCol-1 ){
763             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
764             VdbeCoverage(v);
765           }else{
766             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
767             VdbeCoverage(v);
768            }
769           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
770           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
771         }
772         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
773         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
774         break;
775       }
776 
777       case WHERE_DISTINCT_UNIQUE: {
778         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
779         break;
780       }
781 
782       default: {
783         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
784         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
785                      regResult);
786         break;
787       }
788     }
789     if( pSort==0 ){
790       codeOffset(v, p->iOffset, iContinue);
791     }
792   }
793 
794   switch( eDest ){
795     /* In this mode, write each query result to the key of the temporary
796     ** table iParm.
797     */
798 #ifndef SQLITE_OMIT_COMPOUND_SELECT
799     case SRT_Union: {
800       int r1;
801       r1 = sqlite3GetTempReg(pParse);
802       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
803       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
804       sqlite3ReleaseTempReg(pParse, r1);
805       break;
806     }
807 
808     /* Construct a record from the query result, but instead of
809     ** saving that record, use it as a key to delete elements from
810     ** the temporary table iParm.
811     */
812     case SRT_Except: {
813       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
814       break;
815     }
816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
817 
818     /* Store the result as data using a unique key.
819     */
820     case SRT_Fifo:
821     case SRT_DistFifo:
822     case SRT_Table:
823     case SRT_EphemTab: {
824       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
825       testcase( eDest==SRT_Table );
826       testcase( eDest==SRT_EphemTab );
827       testcase( eDest==SRT_Fifo );
828       testcase( eDest==SRT_DistFifo );
829       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
830 #ifndef SQLITE_OMIT_CTE
831       if( eDest==SRT_DistFifo ){
832         /* If the destination is DistFifo, then cursor (iParm+1) is open
833         ** on an ephemeral index. If the current row is already present
834         ** in the index, do not write it to the output. If not, add the
835         ** current row to the index and proceed with writing it to the
836         ** output table as well.  */
837         int addr = sqlite3VdbeCurrentAddr(v) + 4;
838         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
839         VdbeCoverage(v);
840         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
841         assert( pSort==0 );
842       }
843 #endif
844       if( pSort ){
845         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
846       }else{
847         int r2 = sqlite3GetTempReg(pParse);
848         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
849         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
850         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
851         sqlite3ReleaseTempReg(pParse, r2);
852       }
853       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
854       break;
855     }
856 
857 #ifndef SQLITE_OMIT_SUBQUERY
858     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
859     ** then there should be a single item on the stack.  Write this
860     ** item into the set table with bogus data.
861     */
862     case SRT_Set: {
863       assert( nResultCol==1 );
864       pDest->affSdst =
865                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
866       if( pSort ){
867         /* At first glance you would think we could optimize out the
868         ** ORDER BY in this case since the order of entries in the set
869         ** does not matter.  But there might be a LIMIT clause, in which
870         ** case the order does matter */
871         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
872       }else{
873         int r1 = sqlite3GetTempReg(pParse);
874         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
875         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
876         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
877         sqlite3ReleaseTempReg(pParse, r1);
878       }
879       break;
880     }
881 
882     /* If any row exist in the result set, record that fact and abort.
883     */
884     case SRT_Exists: {
885       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
886       /* The LIMIT clause will terminate the loop for us */
887       break;
888     }
889 
890     /* If this is a scalar select that is part of an expression, then
891     ** store the results in the appropriate memory cell and break out
892     ** of the scan loop.
893     */
894     case SRT_Mem: {
895       assert( nResultCol==1 );
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
898       }else{
899         assert( regResult==iParm );
900         /* The LIMIT clause will jump out of the loop for us */
901       }
902       break;
903     }
904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
905 
906     case SRT_Coroutine:       /* Send data to a co-routine */
907     case SRT_Output: {        /* Return the results */
908       testcase( eDest==SRT_Coroutine );
909       testcase( eDest==SRT_Output );
910       if( pSort ){
911         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
912       }else if( eDest==SRT_Coroutine ){
913         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
914       }else{
915         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
916         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
917       }
918       break;
919     }
920 
921 #ifndef SQLITE_OMIT_CTE
922     /* Write the results into a priority queue that is order according to
923     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
924     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
925     ** pSO->nExpr columns, then make sure all keys are unique by adding a
926     ** final OP_Sequence column.  The last column is the record as a blob.
927     */
928     case SRT_DistQueue:
929     case SRT_Queue: {
930       int nKey;
931       int r1, r2, r3;
932       int addrTest = 0;
933       ExprList *pSO;
934       pSO = pDest->pOrderBy;
935       assert( pSO );
936       nKey = pSO->nExpr;
937       r1 = sqlite3GetTempReg(pParse);
938       r2 = sqlite3GetTempRange(pParse, nKey+2);
939       r3 = r2+nKey+1;
940       if( eDest==SRT_DistQueue ){
941         /* If the destination is DistQueue, then cursor (iParm+1) is open
942         ** on a second ephemeral index that holds all values every previously
943         ** added to the queue. */
944         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
945                                         regResult, nResultCol);
946         VdbeCoverage(v);
947       }
948       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
949       if( eDest==SRT_DistQueue ){
950         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
951         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952       }
953       for(i=0; i<nKey; i++){
954         sqlite3VdbeAddOp2(v, OP_SCopy,
955                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
956                           r2+i);
957       }
958       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
959       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
960       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
961       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
962       sqlite3ReleaseTempReg(pParse, r1);
963       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
964       break;
965     }
966 #endif /* SQLITE_OMIT_CTE */
967 
968 
969 
970 #if !defined(SQLITE_OMIT_TRIGGER)
971     /* Discard the results.  This is used for SELECT statements inside
972     ** the body of a TRIGGER.  The purpose of such selects is to call
973     ** user-defined functions that have side effects.  We do not care
974     ** about the actual results of the select.
975     */
976     default: {
977       assert( eDest==SRT_Discard );
978       break;
979     }
980 #endif
981   }
982 
983   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
984   ** there is a sorter, in which case the sorter has already limited
985   ** the output for us.
986   */
987   if( pSort==0 && p->iLimit ){
988     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
989   }
990 }
991 
992 /*
993 ** Allocate a KeyInfo object sufficient for an index of N key columns and
994 ** X extra columns.
995 */
996 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
997   KeyInfo *p = sqlite3DbMallocZero(0,
998                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
999   if( p ){
1000     p->aSortOrder = (u8*)&p->aColl[N+X];
1001     p->nField = (u16)N;
1002     p->nXField = (u16)X;
1003     p->enc = ENC(db);
1004     p->db = db;
1005     p->nRef = 1;
1006   }else{
1007     db->mallocFailed = 1;
1008   }
1009   return p;
1010 }
1011 
1012 /*
1013 ** Deallocate a KeyInfo object
1014 */
1015 void sqlite3KeyInfoUnref(KeyInfo *p){
1016   if( p ){
1017     assert( p->nRef>0 );
1018     p->nRef--;
1019     if( p->nRef==0 ) sqlite3DbFree(0, p);
1020   }
1021 }
1022 
1023 /*
1024 ** Make a new pointer to a KeyInfo object
1025 */
1026 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1027   if( p ){
1028     assert( p->nRef>0 );
1029     p->nRef++;
1030   }
1031   return p;
1032 }
1033 
1034 #ifdef SQLITE_DEBUG
1035 /*
1036 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1037 ** can only be changed if this is just a single reference to the object.
1038 **
1039 ** This routine is used only inside of assert() statements.
1040 */
1041 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1042 #endif /* SQLITE_DEBUG */
1043 
1044 /*
1045 ** Given an expression list, generate a KeyInfo structure that records
1046 ** the collating sequence for each expression in that expression list.
1047 **
1048 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1049 ** KeyInfo structure is appropriate for initializing a virtual index to
1050 ** implement that clause.  If the ExprList is the result set of a SELECT
1051 ** then the KeyInfo structure is appropriate for initializing a virtual
1052 ** index to implement a DISTINCT test.
1053 **
1054 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1055 ** function is responsible for seeing that this structure is eventually
1056 ** freed.
1057 */
1058 static KeyInfo *keyInfoFromExprList(
1059   Parse *pParse,       /* Parsing context */
1060   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1061   int iStart,          /* Begin with this column of pList */
1062   int nExtra           /* Add this many extra columns to the end */
1063 ){
1064   int nExpr;
1065   KeyInfo *pInfo;
1066   struct ExprList_item *pItem;
1067   sqlite3 *db = pParse->db;
1068   int i;
1069 
1070   nExpr = pList->nExpr;
1071   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1072   if( pInfo ){
1073     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1074     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1075       CollSeq *pColl;
1076       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1077       if( !pColl ) pColl = db->pDfltColl;
1078       pInfo->aColl[i-iStart] = pColl;
1079       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1080     }
1081   }
1082   return pInfo;
1083 }
1084 
1085 /*
1086 ** Name of the connection operator, used for error messages.
1087 */
1088 static const char *selectOpName(int id){
1089   char *z;
1090   switch( id ){
1091     case TK_ALL:       z = "UNION ALL";   break;
1092     case TK_INTERSECT: z = "INTERSECT";   break;
1093     case TK_EXCEPT:    z = "EXCEPT";      break;
1094     default:           z = "UNION";       break;
1095   }
1096   return z;
1097 }
1098 
1099 #ifndef SQLITE_OMIT_EXPLAIN
1100 /*
1101 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1102 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1103 ** where the caption is of the form:
1104 **
1105 **   "USE TEMP B-TREE FOR xxx"
1106 **
1107 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1108 ** is determined by the zUsage argument.
1109 */
1110 static void explainTempTable(Parse *pParse, const char *zUsage){
1111   if( pParse->explain==2 ){
1112     Vdbe *v = pParse->pVdbe;
1113     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1114     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1115   }
1116 }
1117 
1118 /*
1119 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1120 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1121 ** in sqlite3Select() to assign values to structure member variables that
1122 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1123 ** code with #ifndef directives.
1124 */
1125 # define explainSetInteger(a, b) a = b
1126 
1127 #else
1128 /* No-op versions of the explainXXX() functions and macros. */
1129 # define explainTempTable(y,z)
1130 # define explainSetInteger(y,z)
1131 #endif
1132 
1133 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1134 /*
1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1137 ** where the caption is of one of the two forms:
1138 **
1139 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1140 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1141 **
1142 ** where iSub1 and iSub2 are the integers passed as the corresponding
1143 ** function parameters, and op is the text representation of the parameter
1144 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1145 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1146 ** false, or the second form if it is true.
1147 */
1148 static void explainComposite(
1149   Parse *pParse,                  /* Parse context */
1150   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1151   int iSub1,                      /* Subquery id 1 */
1152   int iSub2,                      /* Subquery id 2 */
1153   int bUseTmp                     /* True if a temp table was used */
1154 ){
1155   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1156   if( pParse->explain==2 ){
1157     Vdbe *v = pParse->pVdbe;
1158     char *zMsg = sqlite3MPrintf(
1159         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1160         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1161     );
1162     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1163   }
1164 }
1165 #else
1166 /* No-op versions of the explainXXX() functions and macros. */
1167 # define explainComposite(v,w,x,y,z)
1168 #endif
1169 
1170 /*
1171 ** If the inner loop was generated using a non-null pOrderBy argument,
1172 ** then the results were placed in a sorter.  After the loop is terminated
1173 ** we need to run the sorter and output the results.  The following
1174 ** routine generates the code needed to do that.
1175 */
1176 static void generateSortTail(
1177   Parse *pParse,    /* Parsing context */
1178   Select *p,        /* The SELECT statement */
1179   SortCtx *pSort,   /* Information on the ORDER BY clause */
1180   int nColumn,      /* Number of columns of data */
1181   SelectDest *pDest /* Write the sorted results here */
1182 ){
1183   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1184   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1185   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1186   int addr;
1187   int addrOnce = 0;
1188   int iTab;
1189   ExprList *pOrderBy = pSort->pOrderBy;
1190   int eDest = pDest->eDest;
1191   int iParm = pDest->iSDParm;
1192   int regRow;
1193   int regRowid;
1194   int nKey;
1195   int iSortTab;                   /* Sorter cursor to read from */
1196   int nSortData;                  /* Trailing values to read from sorter */
1197   int i;
1198   int bSeq;                       /* True if sorter record includes seq. no. */
1199 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1200   struct ExprList_item *aOutEx = p->pEList->a;
1201 #endif
1202 
1203   if( pSort->labelBkOut ){
1204     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1205     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1206     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1207   }
1208   iTab = pSort->iECursor;
1209   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1210     regRowid = 0;
1211     regRow = pDest->iSdst;
1212     nSortData = nColumn;
1213   }else{
1214     regRowid = sqlite3GetTempReg(pParse);
1215     regRow = sqlite3GetTempReg(pParse);
1216     nSortData = 1;
1217   }
1218   nKey = pOrderBy->nExpr - pSort->nOBSat;
1219   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1220     int regSortOut = ++pParse->nMem;
1221     iSortTab = pParse->nTab++;
1222     if( pSort->labelBkOut ){
1223       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1224     }
1225     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1226     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1227     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1228     VdbeCoverage(v);
1229     codeOffset(v, p->iOffset, addrContinue);
1230     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1231     bSeq = 0;
1232   }else{
1233     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1234     codeOffset(v, p->iOffset, addrContinue);
1235     iSortTab = iTab;
1236     bSeq = 1;
1237   }
1238   for(i=0; i<nSortData; i++){
1239     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1240     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1241   }
1242   switch( eDest ){
1243     case SRT_EphemTab: {
1244       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1245       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1246       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1247       break;
1248     }
1249 #ifndef SQLITE_OMIT_SUBQUERY
1250     case SRT_Set: {
1251       assert( nColumn==1 );
1252       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1253                         &pDest->affSdst, 1);
1254       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1255       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1256       break;
1257     }
1258     case SRT_Mem: {
1259       assert( nColumn==1 );
1260       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1261       /* The LIMIT clause will terminate the loop for us */
1262       break;
1263     }
1264 #endif
1265     default: {
1266       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1267       testcase( eDest==SRT_Output );
1268       testcase( eDest==SRT_Coroutine );
1269       if( eDest==SRT_Output ){
1270         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1271         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1272       }else{
1273         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1274       }
1275       break;
1276     }
1277   }
1278   if( regRowid ){
1279     sqlite3ReleaseTempReg(pParse, regRow);
1280     sqlite3ReleaseTempReg(pParse, regRowid);
1281   }
1282   /* The bottom of the loop
1283   */
1284   sqlite3VdbeResolveLabel(v, addrContinue);
1285   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1286     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1287   }else{
1288     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1289   }
1290   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1291   sqlite3VdbeResolveLabel(v, addrBreak);
1292 }
1293 
1294 /*
1295 ** Return a pointer to a string containing the 'declaration type' of the
1296 ** expression pExpr. The string may be treated as static by the caller.
1297 **
1298 ** Also try to estimate the size of the returned value and return that
1299 ** result in *pEstWidth.
1300 **
1301 ** The declaration type is the exact datatype definition extracted from the
1302 ** original CREATE TABLE statement if the expression is a column. The
1303 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1304 ** is considered a column can be complex in the presence of subqueries. The
1305 ** result-set expression in all of the following SELECT statements is
1306 ** considered a column by this function.
1307 **
1308 **   SELECT col FROM tbl;
1309 **   SELECT (SELECT col FROM tbl;
1310 **   SELECT (SELECT col FROM tbl);
1311 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1312 **
1313 ** The declaration type for any expression other than a column is NULL.
1314 **
1315 ** This routine has either 3 or 6 parameters depending on whether or not
1316 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1317 */
1318 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1319 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1320 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1322 #endif
1323 static const char *columnTypeImpl(
1324   NameContext *pNC,
1325   Expr *pExpr,
1326 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1327   const char **pzOrigDb,
1328   const char **pzOrigTab,
1329   const char **pzOrigCol,
1330 #endif
1331   u8 *pEstWidth
1332 ){
1333   char const *zType = 0;
1334   int j;
1335   u8 estWidth = 1;
1336 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1337   char const *zOrigDb = 0;
1338   char const *zOrigTab = 0;
1339   char const *zOrigCol = 0;
1340 #endif
1341 
1342   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1343   switch( pExpr->op ){
1344     case TK_AGG_COLUMN:
1345     case TK_COLUMN: {
1346       /* The expression is a column. Locate the table the column is being
1347       ** extracted from in NameContext.pSrcList. This table may be real
1348       ** database table or a subquery.
1349       */
1350       Table *pTab = 0;            /* Table structure column is extracted from */
1351       Select *pS = 0;             /* Select the column is extracted from */
1352       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1353       testcase( pExpr->op==TK_AGG_COLUMN );
1354       testcase( pExpr->op==TK_COLUMN );
1355       while( pNC && !pTab ){
1356         SrcList *pTabList = pNC->pSrcList;
1357         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1358         if( j<pTabList->nSrc ){
1359           pTab = pTabList->a[j].pTab;
1360           pS = pTabList->a[j].pSelect;
1361         }else{
1362           pNC = pNC->pNext;
1363         }
1364       }
1365 
1366       if( pTab==0 ){
1367         /* At one time, code such as "SELECT new.x" within a trigger would
1368         ** cause this condition to run.  Since then, we have restructured how
1369         ** trigger code is generated and so this condition is no longer
1370         ** possible. However, it can still be true for statements like
1371         ** the following:
1372         **
1373         **   CREATE TABLE t1(col INTEGER);
1374         **   SELECT (SELECT t1.col) FROM FROM t1;
1375         **
1376         ** when columnType() is called on the expression "t1.col" in the
1377         ** sub-select. In this case, set the column type to NULL, even
1378         ** though it should really be "INTEGER".
1379         **
1380         ** This is not a problem, as the column type of "t1.col" is never
1381         ** used. When columnType() is called on the expression
1382         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1383         ** branch below.  */
1384         break;
1385       }
1386 
1387       assert( pTab && pExpr->pTab==pTab );
1388       if( pS ){
1389         /* The "table" is actually a sub-select or a view in the FROM clause
1390         ** of the SELECT statement. Return the declaration type and origin
1391         ** data for the result-set column of the sub-select.
1392         */
1393         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1394           /* If iCol is less than zero, then the expression requests the
1395           ** rowid of the sub-select or view. This expression is legal (see
1396           ** test case misc2.2.2) - it always evaluates to NULL.
1397           **
1398           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1399           ** caught already by name resolution.
1400           */
1401           NameContext sNC;
1402           Expr *p = pS->pEList->a[iCol].pExpr;
1403           sNC.pSrcList = pS->pSrc;
1404           sNC.pNext = pNC;
1405           sNC.pParse = pNC->pParse;
1406           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1407         }
1408       }else if( pTab->pSchema ){
1409         /* A real table */
1410         assert( !pS );
1411         if( iCol<0 ) iCol = pTab->iPKey;
1412         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1413 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1414         if( iCol<0 ){
1415           zType = "INTEGER";
1416           zOrigCol = "rowid";
1417         }else{
1418           zType = pTab->aCol[iCol].zType;
1419           zOrigCol = pTab->aCol[iCol].zName;
1420           estWidth = pTab->aCol[iCol].szEst;
1421         }
1422         zOrigTab = pTab->zName;
1423         if( pNC->pParse ){
1424           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1425           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1426         }
1427 #else
1428         if( iCol<0 ){
1429           zType = "INTEGER";
1430         }else{
1431           zType = pTab->aCol[iCol].zType;
1432           estWidth = pTab->aCol[iCol].szEst;
1433         }
1434 #endif
1435       }
1436       break;
1437     }
1438 #ifndef SQLITE_OMIT_SUBQUERY
1439     case TK_SELECT: {
1440       /* The expression is a sub-select. Return the declaration type and
1441       ** origin info for the single column in the result set of the SELECT
1442       ** statement.
1443       */
1444       NameContext sNC;
1445       Select *pS = pExpr->x.pSelect;
1446       Expr *p = pS->pEList->a[0].pExpr;
1447       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1448       sNC.pSrcList = pS->pSrc;
1449       sNC.pNext = pNC;
1450       sNC.pParse = pNC->pParse;
1451       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1452       break;
1453     }
1454 #endif
1455   }
1456 
1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1458   if( pzOrigDb ){
1459     assert( pzOrigTab && pzOrigCol );
1460     *pzOrigDb = zOrigDb;
1461     *pzOrigTab = zOrigTab;
1462     *pzOrigCol = zOrigCol;
1463   }
1464 #endif
1465   if( pEstWidth ) *pEstWidth = estWidth;
1466   return zType;
1467 }
1468 
1469 /*
1470 ** Generate code that will tell the VDBE the declaration types of columns
1471 ** in the result set.
1472 */
1473 static void generateColumnTypes(
1474   Parse *pParse,      /* Parser context */
1475   SrcList *pTabList,  /* List of tables */
1476   ExprList *pEList    /* Expressions defining the result set */
1477 ){
1478 #ifndef SQLITE_OMIT_DECLTYPE
1479   Vdbe *v = pParse->pVdbe;
1480   int i;
1481   NameContext sNC;
1482   sNC.pSrcList = pTabList;
1483   sNC.pParse = pParse;
1484   for(i=0; i<pEList->nExpr; i++){
1485     Expr *p = pEList->a[i].pExpr;
1486     const char *zType;
1487 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1488     const char *zOrigDb = 0;
1489     const char *zOrigTab = 0;
1490     const char *zOrigCol = 0;
1491     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1492 
1493     /* The vdbe must make its own copy of the column-type and other
1494     ** column specific strings, in case the schema is reset before this
1495     ** virtual machine is deleted.
1496     */
1497     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1498     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1499     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1500 #else
1501     zType = columnType(&sNC, p, 0, 0, 0, 0);
1502 #endif
1503     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1504   }
1505 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1506 }
1507 
1508 /*
1509 ** Generate code that will tell the VDBE the names of columns
1510 ** in the result set.  This information is used to provide the
1511 ** azCol[] values in the callback.
1512 */
1513 static void generateColumnNames(
1514   Parse *pParse,      /* Parser context */
1515   SrcList *pTabList,  /* List of tables */
1516   ExprList *pEList    /* Expressions defining the result set */
1517 ){
1518   Vdbe *v = pParse->pVdbe;
1519   int i, j;
1520   sqlite3 *db = pParse->db;
1521   int fullNames, shortNames;
1522 
1523 #ifndef SQLITE_OMIT_EXPLAIN
1524   /* If this is an EXPLAIN, skip this step */
1525   if( pParse->explain ){
1526     return;
1527   }
1528 #endif
1529 
1530   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1531   pParse->colNamesSet = 1;
1532   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1533   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1534   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1535   for(i=0; i<pEList->nExpr; i++){
1536     Expr *p;
1537     p = pEList->a[i].pExpr;
1538     if( NEVER(p==0) ) continue;
1539     if( pEList->a[i].zName ){
1540       char *zName = pEList->a[i].zName;
1541       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1542     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1543       Table *pTab;
1544       char *zCol;
1545       int iCol = p->iColumn;
1546       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1547         if( pTabList->a[j].iCursor==p->iTable ) break;
1548       }
1549       assert( j<pTabList->nSrc );
1550       pTab = pTabList->a[j].pTab;
1551       if( iCol<0 ) iCol = pTab->iPKey;
1552       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1553       if( iCol<0 ){
1554         zCol = "rowid";
1555       }else{
1556         zCol = pTab->aCol[iCol].zName;
1557       }
1558       if( !shortNames && !fullNames ){
1559         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1560             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1561       }else if( fullNames ){
1562         char *zName = 0;
1563         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1564         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1565       }else{
1566         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1567       }
1568     }else{
1569       const char *z = pEList->a[i].zSpan;
1570       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1571       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1572     }
1573   }
1574   generateColumnTypes(pParse, pTabList, pEList);
1575 }
1576 
1577 /*
1578 ** Given an expression list (which is really the list of expressions
1579 ** that form the result set of a SELECT statement) compute appropriate
1580 ** column names for a table that would hold the expression list.
1581 **
1582 ** All column names will be unique.
1583 **
1584 ** Only the column names are computed.  Column.zType, Column.zColl,
1585 ** and other fields of Column are zeroed.
1586 **
1587 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1588 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1589 */
1590 static int selectColumnsFromExprList(
1591   Parse *pParse,          /* Parsing context */
1592   ExprList *pEList,       /* Expr list from which to derive column names */
1593   i16 *pnCol,             /* Write the number of columns here */
1594   Column **paCol          /* Write the new column list here */
1595 ){
1596   sqlite3 *db = pParse->db;   /* Database connection */
1597   int i, j;                   /* Loop counters */
1598   int cnt;                    /* Index added to make the name unique */
1599   Column *aCol, *pCol;        /* For looping over result columns */
1600   int nCol;                   /* Number of columns in the result set */
1601   Expr *p;                    /* Expression for a single result column */
1602   char *zName;                /* Column name */
1603   int nName;                  /* Size of name in zName[] */
1604 
1605   if( pEList ){
1606     nCol = pEList->nExpr;
1607     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1608     testcase( aCol==0 );
1609   }else{
1610     nCol = 0;
1611     aCol = 0;
1612   }
1613   *pnCol = nCol;
1614   *paCol = aCol;
1615 
1616   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1617     /* Get an appropriate name for the column
1618     */
1619     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1620     if( (zName = pEList->a[i].zName)!=0 ){
1621       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1622       zName = sqlite3DbStrDup(db, zName);
1623     }else{
1624       Expr *pColExpr = p;  /* The expression that is the result column name */
1625       Table *pTab;         /* Table associated with this expression */
1626       while( pColExpr->op==TK_DOT ){
1627         pColExpr = pColExpr->pRight;
1628         assert( pColExpr!=0 );
1629       }
1630       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1631         /* For columns use the column name name */
1632         int iCol = pColExpr->iColumn;
1633         pTab = pColExpr->pTab;
1634         if( iCol<0 ) iCol = pTab->iPKey;
1635         zName = sqlite3MPrintf(db, "%s",
1636                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1637       }else if( pColExpr->op==TK_ID ){
1638         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1639         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1640       }else{
1641         /* Use the original text of the column expression as its name */
1642         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1643       }
1644     }
1645     if( db->mallocFailed ){
1646       sqlite3DbFree(db, zName);
1647       break;
1648     }
1649 
1650     /* Make sure the column name is unique.  If the name is not unique,
1651     ** append an integer to the name so that it becomes unique.
1652     */
1653     nName = sqlite3Strlen30(zName);
1654     for(j=cnt=0; j<i; j++){
1655       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1656         char *zNewName;
1657         int k;
1658         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1659         if( k>=0 && zName[k]==':' ) nName = k;
1660         zName[nName] = 0;
1661         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1662         sqlite3DbFree(db, zName);
1663         zName = zNewName;
1664         j = -1;
1665         if( zName==0 ) break;
1666       }
1667     }
1668     pCol->zName = zName;
1669   }
1670   if( db->mallocFailed ){
1671     for(j=0; j<i; j++){
1672       sqlite3DbFree(db, aCol[j].zName);
1673     }
1674     sqlite3DbFree(db, aCol);
1675     *paCol = 0;
1676     *pnCol = 0;
1677     return SQLITE_NOMEM;
1678   }
1679   return SQLITE_OK;
1680 }
1681 
1682 /*
1683 ** Add type and collation information to a column list based on
1684 ** a SELECT statement.
1685 **
1686 ** The column list presumably came from selectColumnNamesFromExprList().
1687 ** The column list has only names, not types or collations.  This
1688 ** routine goes through and adds the types and collations.
1689 **
1690 ** This routine requires that all identifiers in the SELECT
1691 ** statement be resolved.
1692 */
1693 static void selectAddColumnTypeAndCollation(
1694   Parse *pParse,        /* Parsing contexts */
1695   Table *pTab,          /* Add column type information to this table */
1696   Select *pSelect       /* SELECT used to determine types and collations */
1697 ){
1698   sqlite3 *db = pParse->db;
1699   NameContext sNC;
1700   Column *pCol;
1701   CollSeq *pColl;
1702   int i;
1703   Expr *p;
1704   struct ExprList_item *a;
1705   u64 szAll = 0;
1706 
1707   assert( pSelect!=0 );
1708   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1709   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1710   if( db->mallocFailed ) return;
1711   memset(&sNC, 0, sizeof(sNC));
1712   sNC.pSrcList = pSelect->pSrc;
1713   a = pSelect->pEList->a;
1714   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1715     p = a[i].pExpr;
1716     if( pCol->zType==0 ){
1717       pCol->zType = sqlite3DbStrDup(db,
1718                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1719     }
1720     szAll += pCol->szEst;
1721     pCol->affinity = sqlite3ExprAffinity(p);
1722     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1723     pColl = sqlite3ExprCollSeq(pParse, p);
1724     if( pColl && pCol->zColl==0 ){
1725       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1726     }
1727   }
1728   pTab->szTabRow = sqlite3LogEst(szAll*4);
1729 }
1730 
1731 /*
1732 ** Given a SELECT statement, generate a Table structure that describes
1733 ** the result set of that SELECT.
1734 */
1735 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1736   Table *pTab;
1737   sqlite3 *db = pParse->db;
1738   int savedFlags;
1739 
1740   savedFlags = db->flags;
1741   db->flags &= ~SQLITE_FullColNames;
1742   db->flags |= SQLITE_ShortColNames;
1743   sqlite3SelectPrep(pParse, pSelect, 0);
1744   if( pParse->nErr ) return 0;
1745   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1746   db->flags = savedFlags;
1747   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1748   if( pTab==0 ){
1749     return 0;
1750   }
1751   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1752   ** is disabled */
1753   assert( db->lookaside.bEnabled==0 );
1754   pTab->nRef = 1;
1755   pTab->zName = 0;
1756   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1757   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1758   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1759   pTab->iPKey = -1;
1760   if( db->mallocFailed ){
1761     sqlite3DeleteTable(db, pTab);
1762     return 0;
1763   }
1764   return pTab;
1765 }
1766 
1767 /*
1768 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1769 ** If an error occurs, return NULL and leave a message in pParse.
1770 */
1771 Vdbe *sqlite3GetVdbe(Parse *pParse){
1772   Vdbe *v = pParse->pVdbe;
1773   if( v==0 ){
1774     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1775     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1776     if( pParse->pToplevel==0
1777      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1778     ){
1779       pParse->okConstFactor = 1;
1780     }
1781 
1782   }
1783   return v;
1784 }
1785 
1786 
1787 /*
1788 ** Compute the iLimit and iOffset fields of the SELECT based on the
1789 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1790 ** that appear in the original SQL statement after the LIMIT and OFFSET
1791 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1792 ** are the integer memory register numbers for counters used to compute
1793 ** the limit and offset.  If there is no limit and/or offset, then
1794 ** iLimit and iOffset are negative.
1795 **
1796 ** This routine changes the values of iLimit and iOffset only if
1797 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1798 ** iOffset should have been preset to appropriate default values (zero)
1799 ** prior to calling this routine.
1800 **
1801 ** The iOffset register (if it exists) is initialized to the value
1802 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1803 ** iOffset+1 is initialized to LIMIT+OFFSET.
1804 **
1805 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1806 ** redefined.  The UNION ALL operator uses this property to force
1807 ** the reuse of the same limit and offset registers across multiple
1808 ** SELECT statements.
1809 */
1810 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1811   Vdbe *v = 0;
1812   int iLimit = 0;
1813   int iOffset;
1814   int addr1, n;
1815   if( p->iLimit ) return;
1816 
1817   /*
1818   ** "LIMIT -1" always shows all rows.  There is some
1819   ** controversy about what the correct behavior should be.
1820   ** The current implementation interprets "LIMIT 0" to mean
1821   ** no rows.
1822   */
1823   sqlite3ExprCacheClear(pParse);
1824   assert( p->pOffset==0 || p->pLimit!=0 );
1825   if( p->pLimit ){
1826     p->iLimit = iLimit = ++pParse->nMem;
1827     v = sqlite3GetVdbe(pParse);
1828     assert( v!=0 );
1829     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1830       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1831       VdbeComment((v, "LIMIT counter"));
1832       if( n==0 ){
1833         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1834       }else if( n>=0 && p->nSelectRow>(u64)n ){
1835         p->nSelectRow = n;
1836       }
1837     }else{
1838       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1839       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1840       VdbeComment((v, "LIMIT counter"));
1841       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1842     }
1843     if( p->pOffset ){
1844       p->iOffset = iOffset = ++pParse->nMem;
1845       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1846       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1847       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1848       VdbeComment((v, "OFFSET counter"));
1849       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1850       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1851       sqlite3VdbeJumpHere(v, addr1);
1852       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1853       VdbeComment((v, "LIMIT+OFFSET"));
1854       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1855       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1856       sqlite3VdbeJumpHere(v, addr1);
1857     }
1858   }
1859 }
1860 
1861 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1862 /*
1863 ** Return the appropriate collating sequence for the iCol-th column of
1864 ** the result set for the compound-select statement "p".  Return NULL if
1865 ** the column has no default collating sequence.
1866 **
1867 ** The collating sequence for the compound select is taken from the
1868 ** left-most term of the select that has a collating sequence.
1869 */
1870 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1871   CollSeq *pRet;
1872   if( p->pPrior ){
1873     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1874   }else{
1875     pRet = 0;
1876   }
1877   assert( iCol>=0 );
1878   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1879   ** have been thrown during name resolution and we would not have gotten
1880   ** this far */
1881   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1882     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1883   }
1884   return pRet;
1885 }
1886 
1887 /*
1888 ** The select statement passed as the second parameter is a compound SELECT
1889 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1890 ** structure suitable for implementing the ORDER BY.
1891 **
1892 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1893 ** function is responsible for ensuring that this structure is eventually
1894 ** freed.
1895 */
1896 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1897   ExprList *pOrderBy = p->pOrderBy;
1898   int nOrderBy = p->pOrderBy->nExpr;
1899   sqlite3 *db = pParse->db;
1900   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1901   if( pRet ){
1902     int i;
1903     for(i=0; i<nOrderBy; i++){
1904       struct ExprList_item *pItem = &pOrderBy->a[i];
1905       Expr *pTerm = pItem->pExpr;
1906       CollSeq *pColl;
1907 
1908       if( pTerm->flags & EP_Collate ){
1909         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1910       }else{
1911         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1912         if( pColl==0 ) pColl = db->pDfltColl;
1913         pOrderBy->a[i].pExpr =
1914           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1915       }
1916       assert( sqlite3KeyInfoIsWriteable(pRet) );
1917       pRet->aColl[i] = pColl;
1918       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1919     }
1920   }
1921 
1922   return pRet;
1923 }
1924 
1925 #ifndef SQLITE_OMIT_CTE
1926 /*
1927 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1928 ** query of the form:
1929 **
1930 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1931 **                         \___________/             \_______________/
1932 **                           p->pPrior                      p
1933 **
1934 **
1935 ** There is exactly one reference to the recursive-table in the FROM clause
1936 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1937 **
1938 ** The setup-query runs once to generate an initial set of rows that go
1939 ** into a Queue table.  Rows are extracted from the Queue table one by
1940 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1941 ** extracted row (now in the iCurrent table) becomes the content of the
1942 ** recursive-table for a recursive-query run.  The output of the recursive-query
1943 ** is added back into the Queue table.  Then another row is extracted from Queue
1944 ** and the iteration continues until the Queue table is empty.
1945 **
1946 ** If the compound query operator is UNION then no duplicate rows are ever
1947 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1948 ** that have ever been inserted into Queue and causes duplicates to be
1949 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1950 **
1951 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1952 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1953 ** an ORDER BY, the Queue table is just a FIFO.
1954 **
1955 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1956 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1957 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1958 ** with a positive value, then the first OFFSET outputs are discarded rather
1959 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1960 ** rows have been skipped.
1961 */
1962 static void generateWithRecursiveQuery(
1963   Parse *pParse,        /* Parsing context */
1964   Select *p,            /* The recursive SELECT to be coded */
1965   SelectDest *pDest     /* What to do with query results */
1966 ){
1967   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1968   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1969   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1970   Select *pSetup = p->pPrior;   /* The setup query */
1971   int addrTop;                  /* Top of the loop */
1972   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1973   int iCurrent = 0;             /* The Current table */
1974   int regCurrent;               /* Register holding Current table */
1975   int iQueue;                   /* The Queue table */
1976   int iDistinct = 0;            /* To ensure unique results if UNION */
1977   int eDest = SRT_Fifo;         /* How to write to Queue */
1978   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1979   int i;                        /* Loop counter */
1980   int rc;                       /* Result code */
1981   ExprList *pOrderBy;           /* The ORDER BY clause */
1982   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1983   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1984 
1985   /* Obtain authorization to do a recursive query */
1986   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1987 
1988   /* Process the LIMIT and OFFSET clauses, if they exist */
1989   addrBreak = sqlite3VdbeMakeLabel(v);
1990   computeLimitRegisters(pParse, p, addrBreak);
1991   pLimit = p->pLimit;
1992   pOffset = p->pOffset;
1993   regLimit = p->iLimit;
1994   regOffset = p->iOffset;
1995   p->pLimit = p->pOffset = 0;
1996   p->iLimit = p->iOffset = 0;
1997   pOrderBy = p->pOrderBy;
1998 
1999   /* Locate the cursor number of the Current table */
2000   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2001     if( pSrc->a[i].isRecursive ){
2002       iCurrent = pSrc->a[i].iCursor;
2003       break;
2004     }
2005   }
2006 
2007   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2008   ** the Distinct table must be exactly one greater than Queue in order
2009   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2010   iQueue = pParse->nTab++;
2011   if( p->op==TK_UNION ){
2012     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2013     iDistinct = pParse->nTab++;
2014   }else{
2015     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2016   }
2017   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2018 
2019   /* Allocate cursors for Current, Queue, and Distinct. */
2020   regCurrent = ++pParse->nMem;
2021   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2022   if( pOrderBy ){
2023     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2024     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2025                       (char*)pKeyInfo, P4_KEYINFO);
2026     destQueue.pOrderBy = pOrderBy;
2027   }else{
2028     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2029   }
2030   VdbeComment((v, "Queue table"));
2031   if( iDistinct ){
2032     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2033     p->selFlags |= SF_UsesEphemeral;
2034   }
2035 
2036   /* Detach the ORDER BY clause from the compound SELECT */
2037   p->pOrderBy = 0;
2038 
2039   /* Store the results of the setup-query in Queue. */
2040   pSetup->pNext = 0;
2041   rc = sqlite3Select(pParse, pSetup, &destQueue);
2042   pSetup->pNext = p;
2043   if( rc ) goto end_of_recursive_query;
2044 
2045   /* Find the next row in the Queue and output that row */
2046   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2047 
2048   /* Transfer the next row in Queue over to Current */
2049   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2050   if( pOrderBy ){
2051     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2052   }else{
2053     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2054   }
2055   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2056 
2057   /* Output the single row in Current */
2058   addrCont = sqlite3VdbeMakeLabel(v);
2059   codeOffset(v, regOffset, addrCont);
2060   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2061       0, 0, pDest, addrCont, addrBreak);
2062   if( regLimit ){
2063     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2064     VdbeCoverage(v);
2065   }
2066   sqlite3VdbeResolveLabel(v, addrCont);
2067 
2068   /* Execute the recursive SELECT taking the single row in Current as
2069   ** the value for the recursive-table. Store the results in the Queue.
2070   */
2071   if( p->selFlags & SF_Aggregate ){
2072     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2073   }else{
2074     p->pPrior = 0;
2075     sqlite3Select(pParse, p, &destQueue);
2076     assert( p->pPrior==0 );
2077     p->pPrior = pSetup;
2078   }
2079 
2080   /* Keep running the loop until the Queue is empty */
2081   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2082   sqlite3VdbeResolveLabel(v, addrBreak);
2083 
2084 end_of_recursive_query:
2085   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2086   p->pOrderBy = pOrderBy;
2087   p->pLimit = pLimit;
2088   p->pOffset = pOffset;
2089   return;
2090 }
2091 #endif /* SQLITE_OMIT_CTE */
2092 
2093 /* Forward references */
2094 static int multiSelectOrderBy(
2095   Parse *pParse,        /* Parsing context */
2096   Select *p,            /* The right-most of SELECTs to be coded */
2097   SelectDest *pDest     /* What to do with query results */
2098 );
2099 
2100 /*
2101 ** Handle the special case of a compound-select that originates from a
2102 ** VALUES clause.  By handling this as a special case, we avoid deep
2103 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2104 ** on a VALUES clause.
2105 **
2106 ** Because the Select object originates from a VALUES clause:
2107 **   (1) It has no LIMIT or OFFSET
2108 **   (2) All terms are UNION ALL
2109 **   (3) There is no ORDER BY clause
2110 */
2111 static int multiSelectValues(
2112   Parse *pParse,        /* Parsing context */
2113   Select *p,            /* The right-most of SELECTs to be coded */
2114   SelectDest *pDest     /* What to do with query results */
2115 ){
2116   Select *pPrior;
2117   int nRow = 1;
2118   int rc = 0;
2119   assert( p->selFlags & SF_MultiValue );
2120   do{
2121     assert( p->selFlags & SF_Values );
2122     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2123     assert( p->pLimit==0 );
2124     assert( p->pOffset==0 );
2125     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2126     if( p->pPrior==0 ) break;
2127     assert( p->pPrior->pNext==p );
2128     p = p->pPrior;
2129     nRow++;
2130   }while(1);
2131   while( p ){
2132     pPrior = p->pPrior;
2133     p->pPrior = 0;
2134     rc = sqlite3Select(pParse, p, pDest);
2135     p->pPrior = pPrior;
2136     if( rc ) break;
2137     p->nSelectRow = nRow;
2138     p = p->pNext;
2139   }
2140   return rc;
2141 }
2142 
2143 /*
2144 ** This routine is called to process a compound query form from
2145 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2146 ** INTERSECT
2147 **
2148 ** "p" points to the right-most of the two queries.  the query on the
2149 ** left is p->pPrior.  The left query could also be a compound query
2150 ** in which case this routine will be called recursively.
2151 **
2152 ** The results of the total query are to be written into a destination
2153 ** of type eDest with parameter iParm.
2154 **
2155 ** Example 1:  Consider a three-way compound SQL statement.
2156 **
2157 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2158 **
2159 ** This statement is parsed up as follows:
2160 **
2161 **     SELECT c FROM t3
2162 **      |
2163 **      `----->  SELECT b FROM t2
2164 **                |
2165 **                `------>  SELECT a FROM t1
2166 **
2167 ** The arrows in the diagram above represent the Select.pPrior pointer.
2168 ** So if this routine is called with p equal to the t3 query, then
2169 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2170 **
2171 ** Notice that because of the way SQLite parses compound SELECTs, the
2172 ** individual selects always group from left to right.
2173 */
2174 static int multiSelect(
2175   Parse *pParse,        /* Parsing context */
2176   Select *p,            /* The right-most of SELECTs to be coded */
2177   SelectDest *pDest     /* What to do with query results */
2178 ){
2179   int rc = SQLITE_OK;   /* Success code from a subroutine */
2180   Select *pPrior;       /* Another SELECT immediately to our left */
2181   Vdbe *v;              /* Generate code to this VDBE */
2182   SelectDest dest;      /* Alternative data destination */
2183   Select *pDelete = 0;  /* Chain of simple selects to delete */
2184   sqlite3 *db;          /* Database connection */
2185 #ifndef SQLITE_OMIT_EXPLAIN
2186   int iSub1 = 0;        /* EQP id of left-hand query */
2187   int iSub2 = 0;        /* EQP id of right-hand query */
2188 #endif
2189 
2190   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2191   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2192   */
2193   assert( p && p->pPrior );  /* Calling function guarantees this much */
2194   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2195   db = pParse->db;
2196   pPrior = p->pPrior;
2197   dest = *pDest;
2198   if( pPrior->pOrderBy ){
2199     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2200       selectOpName(p->op));
2201     rc = 1;
2202     goto multi_select_end;
2203   }
2204   if( pPrior->pLimit ){
2205     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2206       selectOpName(p->op));
2207     rc = 1;
2208     goto multi_select_end;
2209   }
2210 
2211   v = sqlite3GetVdbe(pParse);
2212   assert( v!=0 );  /* The VDBE already created by calling function */
2213 
2214   /* Create the destination temporary table if necessary
2215   */
2216   if( dest.eDest==SRT_EphemTab ){
2217     assert( p->pEList );
2218     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2219     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2220     dest.eDest = SRT_Table;
2221   }
2222 
2223   /* Special handling for a compound-select that originates as a VALUES clause.
2224   */
2225   if( p->selFlags & SF_MultiValue ){
2226     rc = multiSelectValues(pParse, p, &dest);
2227     goto multi_select_end;
2228   }
2229 
2230   /* Make sure all SELECTs in the statement have the same number of elements
2231   ** in their result sets.
2232   */
2233   assert( p->pEList && pPrior->pEList );
2234   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2235 
2236 #ifndef SQLITE_OMIT_CTE
2237   if( p->selFlags & SF_Recursive ){
2238     generateWithRecursiveQuery(pParse, p, &dest);
2239   }else
2240 #endif
2241 
2242   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2243   */
2244   if( p->pOrderBy ){
2245     return multiSelectOrderBy(pParse, p, pDest);
2246   }else
2247 
2248   /* Generate code for the left and right SELECT statements.
2249   */
2250   switch( p->op ){
2251     case TK_ALL: {
2252       int addr = 0;
2253       int nLimit;
2254       assert( !pPrior->pLimit );
2255       pPrior->iLimit = p->iLimit;
2256       pPrior->iOffset = p->iOffset;
2257       pPrior->pLimit = p->pLimit;
2258       pPrior->pOffset = p->pOffset;
2259       explainSetInteger(iSub1, pParse->iNextSelectId);
2260       rc = sqlite3Select(pParse, pPrior, &dest);
2261       p->pLimit = 0;
2262       p->pOffset = 0;
2263       if( rc ){
2264         goto multi_select_end;
2265       }
2266       p->pPrior = 0;
2267       p->iLimit = pPrior->iLimit;
2268       p->iOffset = pPrior->iOffset;
2269       if( p->iLimit ){
2270         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2271         VdbeComment((v, "Jump ahead if LIMIT reached"));
2272       }
2273       explainSetInteger(iSub2, pParse->iNextSelectId);
2274       rc = sqlite3Select(pParse, p, &dest);
2275       testcase( rc!=SQLITE_OK );
2276       pDelete = p->pPrior;
2277       p->pPrior = pPrior;
2278       p->nSelectRow += pPrior->nSelectRow;
2279       if( pPrior->pLimit
2280        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2281        && nLimit>0 && p->nSelectRow > (u64)nLimit
2282       ){
2283         p->nSelectRow = nLimit;
2284       }
2285       if( addr ){
2286         sqlite3VdbeJumpHere(v, addr);
2287       }
2288       break;
2289     }
2290     case TK_EXCEPT:
2291     case TK_UNION: {
2292       int unionTab;    /* Cursor number of the temporary table holding result */
2293       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2294       int priorOp;     /* The SRT_ operation to apply to prior selects */
2295       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2296       int addr;
2297       SelectDest uniondest;
2298 
2299       testcase( p->op==TK_EXCEPT );
2300       testcase( p->op==TK_UNION );
2301       priorOp = SRT_Union;
2302       if( dest.eDest==priorOp ){
2303         /* We can reuse a temporary table generated by a SELECT to our
2304         ** right.
2305         */
2306         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2307         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2308         unionTab = dest.iSDParm;
2309       }else{
2310         /* We will need to create our own temporary table to hold the
2311         ** intermediate results.
2312         */
2313         unionTab = pParse->nTab++;
2314         assert( p->pOrderBy==0 );
2315         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2316         assert( p->addrOpenEphm[0] == -1 );
2317         p->addrOpenEphm[0] = addr;
2318         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2319         assert( p->pEList );
2320       }
2321 
2322       /* Code the SELECT statements to our left
2323       */
2324       assert( !pPrior->pOrderBy );
2325       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2326       explainSetInteger(iSub1, pParse->iNextSelectId);
2327       rc = sqlite3Select(pParse, pPrior, &uniondest);
2328       if( rc ){
2329         goto multi_select_end;
2330       }
2331 
2332       /* Code the current SELECT statement
2333       */
2334       if( p->op==TK_EXCEPT ){
2335         op = SRT_Except;
2336       }else{
2337         assert( p->op==TK_UNION );
2338         op = SRT_Union;
2339       }
2340       p->pPrior = 0;
2341       pLimit = p->pLimit;
2342       p->pLimit = 0;
2343       pOffset = p->pOffset;
2344       p->pOffset = 0;
2345       uniondest.eDest = op;
2346       explainSetInteger(iSub2, pParse->iNextSelectId);
2347       rc = sqlite3Select(pParse, p, &uniondest);
2348       testcase( rc!=SQLITE_OK );
2349       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2350       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2351       sqlite3ExprListDelete(db, p->pOrderBy);
2352       pDelete = p->pPrior;
2353       p->pPrior = pPrior;
2354       p->pOrderBy = 0;
2355       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2356       sqlite3ExprDelete(db, p->pLimit);
2357       p->pLimit = pLimit;
2358       p->pOffset = pOffset;
2359       p->iLimit = 0;
2360       p->iOffset = 0;
2361 
2362       /* Convert the data in the temporary table into whatever form
2363       ** it is that we currently need.
2364       */
2365       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2366       if( dest.eDest!=priorOp ){
2367         int iCont, iBreak, iStart;
2368         assert( p->pEList );
2369         if( dest.eDest==SRT_Output ){
2370           Select *pFirst = p;
2371           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2372           generateColumnNames(pParse, 0, pFirst->pEList);
2373         }
2374         iBreak = sqlite3VdbeMakeLabel(v);
2375         iCont = sqlite3VdbeMakeLabel(v);
2376         computeLimitRegisters(pParse, p, iBreak);
2377         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2378         iStart = sqlite3VdbeCurrentAddr(v);
2379         selectInnerLoop(pParse, p, p->pEList, unionTab,
2380                         0, 0, &dest, iCont, iBreak);
2381         sqlite3VdbeResolveLabel(v, iCont);
2382         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2383         sqlite3VdbeResolveLabel(v, iBreak);
2384         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2385       }
2386       break;
2387     }
2388     default: assert( p->op==TK_INTERSECT ); {
2389       int tab1, tab2;
2390       int iCont, iBreak, iStart;
2391       Expr *pLimit, *pOffset;
2392       int addr;
2393       SelectDest intersectdest;
2394       int r1;
2395 
2396       /* INTERSECT is different from the others since it requires
2397       ** two temporary tables.  Hence it has its own case.  Begin
2398       ** by allocating the tables we will need.
2399       */
2400       tab1 = pParse->nTab++;
2401       tab2 = pParse->nTab++;
2402       assert( p->pOrderBy==0 );
2403 
2404       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2405       assert( p->addrOpenEphm[0] == -1 );
2406       p->addrOpenEphm[0] = addr;
2407       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2408       assert( p->pEList );
2409 
2410       /* Code the SELECTs to our left into temporary table "tab1".
2411       */
2412       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2413       explainSetInteger(iSub1, pParse->iNextSelectId);
2414       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2415       if( rc ){
2416         goto multi_select_end;
2417       }
2418 
2419       /* Code the current SELECT into temporary table "tab2"
2420       */
2421       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2422       assert( p->addrOpenEphm[1] == -1 );
2423       p->addrOpenEphm[1] = addr;
2424       p->pPrior = 0;
2425       pLimit = p->pLimit;
2426       p->pLimit = 0;
2427       pOffset = p->pOffset;
2428       p->pOffset = 0;
2429       intersectdest.iSDParm = tab2;
2430       explainSetInteger(iSub2, pParse->iNextSelectId);
2431       rc = sqlite3Select(pParse, p, &intersectdest);
2432       testcase( rc!=SQLITE_OK );
2433       pDelete = p->pPrior;
2434       p->pPrior = pPrior;
2435       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2436       sqlite3ExprDelete(db, p->pLimit);
2437       p->pLimit = pLimit;
2438       p->pOffset = pOffset;
2439 
2440       /* Generate code to take the intersection of the two temporary
2441       ** tables.
2442       */
2443       assert( p->pEList );
2444       if( dest.eDest==SRT_Output ){
2445         Select *pFirst = p;
2446         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2447         generateColumnNames(pParse, 0, pFirst->pEList);
2448       }
2449       iBreak = sqlite3VdbeMakeLabel(v);
2450       iCont = sqlite3VdbeMakeLabel(v);
2451       computeLimitRegisters(pParse, p, iBreak);
2452       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2453       r1 = sqlite3GetTempReg(pParse);
2454       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2455       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2456       sqlite3ReleaseTempReg(pParse, r1);
2457       selectInnerLoop(pParse, p, p->pEList, tab1,
2458                       0, 0, &dest, iCont, iBreak);
2459       sqlite3VdbeResolveLabel(v, iCont);
2460       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2461       sqlite3VdbeResolveLabel(v, iBreak);
2462       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2463       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2464       break;
2465     }
2466   }
2467 
2468   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2469 
2470   /* Compute collating sequences used by
2471   ** temporary tables needed to implement the compound select.
2472   ** Attach the KeyInfo structure to all temporary tables.
2473   **
2474   ** This section is run by the right-most SELECT statement only.
2475   ** SELECT statements to the left always skip this part.  The right-most
2476   ** SELECT might also skip this part if it has no ORDER BY clause and
2477   ** no temp tables are required.
2478   */
2479   if( p->selFlags & SF_UsesEphemeral ){
2480     int i;                        /* Loop counter */
2481     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2482     Select *pLoop;                /* For looping through SELECT statements */
2483     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2484     int nCol;                     /* Number of columns in result set */
2485 
2486     assert( p->pNext==0 );
2487     nCol = p->pEList->nExpr;
2488     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2489     if( !pKeyInfo ){
2490       rc = SQLITE_NOMEM;
2491       goto multi_select_end;
2492     }
2493     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2494       *apColl = multiSelectCollSeq(pParse, p, i);
2495       if( 0==*apColl ){
2496         *apColl = db->pDfltColl;
2497       }
2498     }
2499 
2500     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2501       for(i=0; i<2; i++){
2502         int addr = pLoop->addrOpenEphm[i];
2503         if( addr<0 ){
2504           /* If [0] is unused then [1] is also unused.  So we can
2505           ** always safely abort as soon as the first unused slot is found */
2506           assert( pLoop->addrOpenEphm[1]<0 );
2507           break;
2508         }
2509         sqlite3VdbeChangeP2(v, addr, nCol);
2510         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2511                             P4_KEYINFO);
2512         pLoop->addrOpenEphm[i] = -1;
2513       }
2514     }
2515     sqlite3KeyInfoUnref(pKeyInfo);
2516   }
2517 
2518 multi_select_end:
2519   pDest->iSdst = dest.iSdst;
2520   pDest->nSdst = dest.nSdst;
2521   sqlite3SelectDelete(db, pDelete);
2522   return rc;
2523 }
2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2525 
2526 /*
2527 ** Error message for when two or more terms of a compound select have different
2528 ** size result sets.
2529 */
2530 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2531   if( p->selFlags & SF_Values ){
2532     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2533   }else{
2534     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2535       " do not have the same number of result columns", selectOpName(p->op));
2536   }
2537 }
2538 
2539 /*
2540 ** Code an output subroutine for a coroutine implementation of a
2541 ** SELECT statment.
2542 **
2543 ** The data to be output is contained in pIn->iSdst.  There are
2544 ** pIn->nSdst columns to be output.  pDest is where the output should
2545 ** be sent.
2546 **
2547 ** regReturn is the number of the register holding the subroutine
2548 ** return address.
2549 **
2550 ** If regPrev>0 then it is the first register in a vector that
2551 ** records the previous output.  mem[regPrev] is a flag that is false
2552 ** if there has been no previous output.  If regPrev>0 then code is
2553 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2554 ** keys.
2555 **
2556 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2557 ** iBreak.
2558 */
2559 static int generateOutputSubroutine(
2560   Parse *pParse,          /* Parsing context */
2561   Select *p,              /* The SELECT statement */
2562   SelectDest *pIn,        /* Coroutine supplying data */
2563   SelectDest *pDest,      /* Where to send the data */
2564   int regReturn,          /* The return address register */
2565   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2566   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2567   int iBreak              /* Jump here if we hit the LIMIT */
2568 ){
2569   Vdbe *v = pParse->pVdbe;
2570   int iContinue;
2571   int addr;
2572 
2573   addr = sqlite3VdbeCurrentAddr(v);
2574   iContinue = sqlite3VdbeMakeLabel(v);
2575 
2576   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2577   */
2578   if( regPrev ){
2579     int j1, j2;
2580     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2581     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2582                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2583     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2584     sqlite3VdbeJumpHere(v, j1);
2585     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2586     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2587   }
2588   if( pParse->db->mallocFailed ) return 0;
2589 
2590   /* Suppress the first OFFSET entries if there is an OFFSET clause
2591   */
2592   codeOffset(v, p->iOffset, iContinue);
2593 
2594   assert( pDest->eDest!=SRT_Exists );
2595   assert( pDest->eDest!=SRT_Table );
2596   switch( pDest->eDest ){
2597     /* Store the result as data using a unique key.
2598     */
2599     case SRT_EphemTab: {
2600       int r1 = sqlite3GetTempReg(pParse);
2601       int r2 = sqlite3GetTempReg(pParse);
2602       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2603       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2604       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2605       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2606       sqlite3ReleaseTempReg(pParse, r2);
2607       sqlite3ReleaseTempReg(pParse, r1);
2608       break;
2609     }
2610 
2611 #ifndef SQLITE_OMIT_SUBQUERY
2612     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2613     ** then there should be a single item on the stack.  Write this
2614     ** item into the set table with bogus data.
2615     */
2616     case SRT_Set: {
2617       int r1;
2618       assert( pIn->nSdst==1 || pParse->nErr>0 );
2619       pDest->affSdst =
2620          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2621       r1 = sqlite3GetTempReg(pParse);
2622       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2623       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2624       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2625       sqlite3ReleaseTempReg(pParse, r1);
2626       break;
2627     }
2628 
2629     /* If this is a scalar select that is part of an expression, then
2630     ** store the results in the appropriate memory cell and break out
2631     ** of the scan loop.
2632     */
2633     case SRT_Mem: {
2634       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2635       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2636       /* The LIMIT clause will jump out of the loop for us */
2637       break;
2638     }
2639 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2640 
2641     /* The results are stored in a sequence of registers
2642     ** starting at pDest->iSdst.  Then the co-routine yields.
2643     */
2644     case SRT_Coroutine: {
2645       if( pDest->iSdst==0 ){
2646         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2647         pDest->nSdst = pIn->nSdst;
2648       }
2649       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2650       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2651       break;
2652     }
2653 
2654     /* If none of the above, then the result destination must be
2655     ** SRT_Output.  This routine is never called with any other
2656     ** destination other than the ones handled above or SRT_Output.
2657     **
2658     ** For SRT_Output, results are stored in a sequence of registers.
2659     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2660     ** return the next row of result.
2661     */
2662     default: {
2663       assert( pDest->eDest==SRT_Output );
2664       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2665       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2666       break;
2667     }
2668   }
2669 
2670   /* Jump to the end of the loop if the LIMIT is reached.
2671   */
2672   if( p->iLimit ){
2673     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2674   }
2675 
2676   /* Generate the subroutine return
2677   */
2678   sqlite3VdbeResolveLabel(v, iContinue);
2679   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2680 
2681   return addr;
2682 }
2683 
2684 /*
2685 ** Alternative compound select code generator for cases when there
2686 ** is an ORDER BY clause.
2687 **
2688 ** We assume a query of the following form:
2689 **
2690 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2691 **
2692 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2693 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2694 ** co-routines.  Then run the co-routines in parallel and merge the results
2695 ** into the output.  In addition to the two coroutines (called selectA and
2696 ** selectB) there are 7 subroutines:
2697 **
2698 **    outA:    Move the output of the selectA coroutine into the output
2699 **             of the compound query.
2700 **
2701 **    outB:    Move the output of the selectB coroutine into the output
2702 **             of the compound query.  (Only generated for UNION and
2703 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2704 **             appears only in B.)
2705 **
2706 **    AltB:    Called when there is data from both coroutines and A<B.
2707 **
2708 **    AeqB:    Called when there is data from both coroutines and A==B.
2709 **
2710 **    AgtB:    Called when there is data from both coroutines and A>B.
2711 **
2712 **    EofA:    Called when data is exhausted from selectA.
2713 **
2714 **    EofB:    Called when data is exhausted from selectB.
2715 **
2716 ** The implementation of the latter five subroutines depend on which
2717 ** <operator> is used:
2718 **
2719 **
2720 **             UNION ALL         UNION            EXCEPT          INTERSECT
2721 **          -------------  -----------------  --------------  -----------------
2722 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2723 **
2724 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2725 **
2726 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2727 **
2728 **   EofA:   outB, nextB      outB, nextB          halt             halt
2729 **
2730 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2731 **
2732 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2733 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2734 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2735 ** following nextX causes a jump to the end of the select processing.
2736 **
2737 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2738 ** within the output subroutine.  The regPrev register set holds the previously
2739 ** output value.  A comparison is made against this value and the output
2740 ** is skipped if the next results would be the same as the previous.
2741 **
2742 ** The implementation plan is to implement the two coroutines and seven
2743 ** subroutines first, then put the control logic at the bottom.  Like this:
2744 **
2745 **          goto Init
2746 **     coA: coroutine for left query (A)
2747 **     coB: coroutine for right query (B)
2748 **    outA: output one row of A
2749 **    outB: output one row of B (UNION and UNION ALL only)
2750 **    EofA: ...
2751 **    EofB: ...
2752 **    AltB: ...
2753 **    AeqB: ...
2754 **    AgtB: ...
2755 **    Init: initialize coroutine registers
2756 **          yield coA
2757 **          if eof(A) goto EofA
2758 **          yield coB
2759 **          if eof(B) goto EofB
2760 **    Cmpr: Compare A, B
2761 **          Jump AltB, AeqB, AgtB
2762 **     End: ...
2763 **
2764 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2765 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2766 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2767 ** and AgtB jump to either L2 or to one of EofA or EofB.
2768 */
2769 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2770 static int multiSelectOrderBy(
2771   Parse *pParse,        /* Parsing context */
2772   Select *p,            /* The right-most of SELECTs to be coded */
2773   SelectDest *pDest     /* What to do with query results */
2774 ){
2775   int i, j;             /* Loop counters */
2776   Select *pPrior;       /* Another SELECT immediately to our left */
2777   Vdbe *v;              /* Generate code to this VDBE */
2778   SelectDest destA;     /* Destination for coroutine A */
2779   SelectDest destB;     /* Destination for coroutine B */
2780   int regAddrA;         /* Address register for select-A coroutine */
2781   int regAddrB;         /* Address register for select-B coroutine */
2782   int addrSelectA;      /* Address of the select-A coroutine */
2783   int addrSelectB;      /* Address of the select-B coroutine */
2784   int regOutA;          /* Address register for the output-A subroutine */
2785   int regOutB;          /* Address register for the output-B subroutine */
2786   int addrOutA;         /* Address of the output-A subroutine */
2787   int addrOutB = 0;     /* Address of the output-B subroutine */
2788   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2789   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2790   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2791   int addrAltB;         /* Address of the A<B subroutine */
2792   int addrAeqB;         /* Address of the A==B subroutine */
2793   int addrAgtB;         /* Address of the A>B subroutine */
2794   int regLimitA;        /* Limit register for select-A */
2795   int regLimitB;        /* Limit register for select-A */
2796   int regPrev;          /* A range of registers to hold previous output */
2797   int savedLimit;       /* Saved value of p->iLimit */
2798   int savedOffset;      /* Saved value of p->iOffset */
2799   int labelCmpr;        /* Label for the start of the merge algorithm */
2800   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2801   int j1;               /* Jump instructions that get retargetted */
2802   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2803   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2804   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2805   sqlite3 *db;          /* Database connection */
2806   ExprList *pOrderBy;   /* The ORDER BY clause */
2807   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2808   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2809 #ifndef SQLITE_OMIT_EXPLAIN
2810   int iSub1;            /* EQP id of left-hand query */
2811   int iSub2;            /* EQP id of right-hand query */
2812 #endif
2813 
2814   assert( p->pOrderBy!=0 );
2815   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2816   db = pParse->db;
2817   v = pParse->pVdbe;
2818   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2819   labelEnd = sqlite3VdbeMakeLabel(v);
2820   labelCmpr = sqlite3VdbeMakeLabel(v);
2821 
2822 
2823   /* Patch up the ORDER BY clause
2824   */
2825   op = p->op;
2826   pPrior = p->pPrior;
2827   assert( pPrior->pOrderBy==0 );
2828   pOrderBy = p->pOrderBy;
2829   assert( pOrderBy );
2830   nOrderBy = pOrderBy->nExpr;
2831 
2832   /* For operators other than UNION ALL we have to make sure that
2833   ** the ORDER BY clause covers every term of the result set.  Add
2834   ** terms to the ORDER BY clause as necessary.
2835   */
2836   if( op!=TK_ALL ){
2837     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2838       struct ExprList_item *pItem;
2839       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2840         assert( pItem->u.x.iOrderByCol>0 );
2841         if( pItem->u.x.iOrderByCol==i ) break;
2842       }
2843       if( j==nOrderBy ){
2844         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2845         if( pNew==0 ) return SQLITE_NOMEM;
2846         pNew->flags |= EP_IntValue;
2847         pNew->u.iValue = i;
2848         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2849         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2850       }
2851     }
2852   }
2853 
2854   /* Compute the comparison permutation and keyinfo that is used with
2855   ** the permutation used to determine if the next
2856   ** row of results comes from selectA or selectB.  Also add explicit
2857   ** collations to the ORDER BY clause terms so that when the subqueries
2858   ** to the right and the left are evaluated, they use the correct
2859   ** collation.
2860   */
2861   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2862   if( aPermute ){
2863     struct ExprList_item *pItem;
2864     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2865       assert( pItem->u.x.iOrderByCol>0 );
2866       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2867       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2868     }
2869     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2870   }else{
2871     pKeyMerge = 0;
2872   }
2873 
2874   /* Reattach the ORDER BY clause to the query.
2875   */
2876   p->pOrderBy = pOrderBy;
2877   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2878 
2879   /* Allocate a range of temporary registers and the KeyInfo needed
2880   ** for the logic that removes duplicate result rows when the
2881   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2882   */
2883   if( op==TK_ALL ){
2884     regPrev = 0;
2885   }else{
2886     int nExpr = p->pEList->nExpr;
2887     assert( nOrderBy>=nExpr || db->mallocFailed );
2888     regPrev = pParse->nMem+1;
2889     pParse->nMem += nExpr+1;
2890     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2891     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2892     if( pKeyDup ){
2893       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2894       for(i=0; i<nExpr; i++){
2895         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2896         pKeyDup->aSortOrder[i] = 0;
2897       }
2898     }
2899   }
2900 
2901   /* Separate the left and the right query from one another
2902   */
2903   p->pPrior = 0;
2904   pPrior->pNext = 0;
2905   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2906   if( pPrior->pPrior==0 ){
2907     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2908   }
2909 
2910   /* Compute the limit registers */
2911   computeLimitRegisters(pParse, p, labelEnd);
2912   if( p->iLimit && op==TK_ALL ){
2913     regLimitA = ++pParse->nMem;
2914     regLimitB = ++pParse->nMem;
2915     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2916                                   regLimitA);
2917     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2918   }else{
2919     regLimitA = regLimitB = 0;
2920   }
2921   sqlite3ExprDelete(db, p->pLimit);
2922   p->pLimit = 0;
2923   sqlite3ExprDelete(db, p->pOffset);
2924   p->pOffset = 0;
2925 
2926   regAddrA = ++pParse->nMem;
2927   regAddrB = ++pParse->nMem;
2928   regOutA = ++pParse->nMem;
2929   regOutB = ++pParse->nMem;
2930   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2931   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2932 
2933   /* Generate a coroutine to evaluate the SELECT statement to the
2934   ** left of the compound operator - the "A" select.
2935   */
2936   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2937   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2938   VdbeComment((v, "left SELECT"));
2939   pPrior->iLimit = regLimitA;
2940   explainSetInteger(iSub1, pParse->iNextSelectId);
2941   sqlite3Select(pParse, pPrior, &destA);
2942   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2943   sqlite3VdbeJumpHere(v, j1);
2944 
2945   /* Generate a coroutine to evaluate the SELECT statement on
2946   ** the right - the "B" select
2947   */
2948   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2949   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2950   VdbeComment((v, "right SELECT"));
2951   savedLimit = p->iLimit;
2952   savedOffset = p->iOffset;
2953   p->iLimit = regLimitB;
2954   p->iOffset = 0;
2955   explainSetInteger(iSub2, pParse->iNextSelectId);
2956   sqlite3Select(pParse, p, &destB);
2957   p->iLimit = savedLimit;
2958   p->iOffset = savedOffset;
2959   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2960 
2961   /* Generate a subroutine that outputs the current row of the A
2962   ** select as the next output row of the compound select.
2963   */
2964   VdbeNoopComment((v, "Output routine for A"));
2965   addrOutA = generateOutputSubroutine(pParse,
2966                  p, &destA, pDest, regOutA,
2967                  regPrev, pKeyDup, labelEnd);
2968 
2969   /* Generate a subroutine that outputs the current row of the B
2970   ** select as the next output row of the compound select.
2971   */
2972   if( op==TK_ALL || op==TK_UNION ){
2973     VdbeNoopComment((v, "Output routine for B"));
2974     addrOutB = generateOutputSubroutine(pParse,
2975                  p, &destB, pDest, regOutB,
2976                  regPrev, pKeyDup, labelEnd);
2977   }
2978   sqlite3KeyInfoUnref(pKeyDup);
2979 
2980   /* Generate a subroutine to run when the results from select A
2981   ** are exhausted and only data in select B remains.
2982   */
2983   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2984     addrEofA_noB = addrEofA = labelEnd;
2985   }else{
2986     VdbeNoopComment((v, "eof-A subroutine"));
2987     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2988     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2989                                      VdbeCoverage(v);
2990     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2991     p->nSelectRow += pPrior->nSelectRow;
2992   }
2993 
2994   /* Generate a subroutine to run when the results from select B
2995   ** are exhausted and only data in select A remains.
2996   */
2997   if( op==TK_INTERSECT ){
2998     addrEofB = addrEofA;
2999     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3000   }else{
3001     VdbeNoopComment((v, "eof-B subroutine"));
3002     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3003     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3004     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3005   }
3006 
3007   /* Generate code to handle the case of A<B
3008   */
3009   VdbeNoopComment((v, "A-lt-B subroutine"));
3010   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3011   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3012   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3013 
3014   /* Generate code to handle the case of A==B
3015   */
3016   if( op==TK_ALL ){
3017     addrAeqB = addrAltB;
3018   }else if( op==TK_INTERSECT ){
3019     addrAeqB = addrAltB;
3020     addrAltB++;
3021   }else{
3022     VdbeNoopComment((v, "A-eq-B subroutine"));
3023     addrAeqB =
3024     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3025     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3026   }
3027 
3028   /* Generate code to handle the case of A>B
3029   */
3030   VdbeNoopComment((v, "A-gt-B subroutine"));
3031   addrAgtB = sqlite3VdbeCurrentAddr(v);
3032   if( op==TK_ALL || op==TK_UNION ){
3033     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3034   }
3035   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3036   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3037 
3038   /* This code runs once to initialize everything.
3039   */
3040   sqlite3VdbeJumpHere(v, j1);
3041   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3042   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3043 
3044   /* Implement the main merge loop
3045   */
3046   sqlite3VdbeResolveLabel(v, labelCmpr);
3047   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3048   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3049                          (char*)pKeyMerge, P4_KEYINFO);
3050   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3051   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3052 
3053   /* Jump to the this point in order to terminate the query.
3054   */
3055   sqlite3VdbeResolveLabel(v, labelEnd);
3056 
3057   /* Set the number of output columns
3058   */
3059   if( pDest->eDest==SRT_Output ){
3060     Select *pFirst = pPrior;
3061     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3062     generateColumnNames(pParse, 0, pFirst->pEList);
3063   }
3064 
3065   /* Reassembly the compound query so that it will be freed correctly
3066   ** by the calling function */
3067   if( p->pPrior ){
3068     sqlite3SelectDelete(db, p->pPrior);
3069   }
3070   p->pPrior = pPrior;
3071   pPrior->pNext = p;
3072 
3073   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3074   **** subqueries ****/
3075   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3076   return pParse->nErr!=0;
3077 }
3078 #endif
3079 
3080 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3081 /* Forward Declarations */
3082 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3083 static void substSelect(sqlite3*, Select *, int, ExprList *);
3084 
3085 /*
3086 ** Scan through the expression pExpr.  Replace every reference to
3087 ** a column in table number iTable with a copy of the iColumn-th
3088 ** entry in pEList.  (But leave references to the ROWID column
3089 ** unchanged.)
3090 **
3091 ** This routine is part of the flattening procedure.  A subquery
3092 ** whose result set is defined by pEList appears as entry in the
3093 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3094 ** FORM clause entry is iTable.  This routine make the necessary
3095 ** changes to pExpr so that it refers directly to the source table
3096 ** of the subquery rather the result set of the subquery.
3097 */
3098 static Expr *substExpr(
3099   sqlite3 *db,        /* Report malloc errors to this connection */
3100   Expr *pExpr,        /* Expr in which substitution occurs */
3101   int iTable,         /* Table to be substituted */
3102   ExprList *pEList    /* Substitute expressions */
3103 ){
3104   if( pExpr==0 ) return 0;
3105   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3106     if( pExpr->iColumn<0 ){
3107       pExpr->op = TK_NULL;
3108     }else{
3109       Expr *pNew;
3110       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3111       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3112       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3113       sqlite3ExprDelete(db, pExpr);
3114       pExpr = pNew;
3115     }
3116   }else{
3117     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3118     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3119     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3120       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3121     }else{
3122       substExprList(db, pExpr->x.pList, iTable, pEList);
3123     }
3124   }
3125   return pExpr;
3126 }
3127 static void substExprList(
3128   sqlite3 *db,         /* Report malloc errors here */
3129   ExprList *pList,     /* List to scan and in which to make substitutes */
3130   int iTable,          /* Table to be substituted */
3131   ExprList *pEList     /* Substitute values */
3132 ){
3133   int i;
3134   if( pList==0 ) return;
3135   for(i=0; i<pList->nExpr; i++){
3136     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3137   }
3138 }
3139 static void substSelect(
3140   sqlite3 *db,         /* Report malloc errors here */
3141   Select *p,           /* SELECT statement in which to make substitutions */
3142   int iTable,          /* Table to be replaced */
3143   ExprList *pEList     /* Substitute values */
3144 ){
3145   SrcList *pSrc;
3146   struct SrcList_item *pItem;
3147   int i;
3148   if( !p ) return;
3149   substExprList(db, p->pEList, iTable, pEList);
3150   substExprList(db, p->pGroupBy, iTable, pEList);
3151   substExprList(db, p->pOrderBy, iTable, pEList);
3152   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3153   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3154   substSelect(db, p->pPrior, iTable, pEList);
3155   pSrc = p->pSrc;
3156   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3157   if( ALWAYS(pSrc) ){
3158     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3159       substSelect(db, pItem->pSelect, iTable, pEList);
3160     }
3161   }
3162 }
3163 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3164 
3165 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3166 /*
3167 ** This routine attempts to flatten subqueries as a performance optimization.
3168 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3169 **
3170 ** To understand the concept of flattening, consider the following
3171 ** query:
3172 **
3173 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3174 **
3175 ** The default way of implementing this query is to execute the
3176 ** subquery first and store the results in a temporary table, then
3177 ** run the outer query on that temporary table.  This requires two
3178 ** passes over the data.  Furthermore, because the temporary table
3179 ** has no indices, the WHERE clause on the outer query cannot be
3180 ** optimized.
3181 **
3182 ** This routine attempts to rewrite queries such as the above into
3183 ** a single flat select, like this:
3184 **
3185 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3186 **
3187 ** The code generated for this simplification gives the same result
3188 ** but only has to scan the data once.  And because indices might
3189 ** exist on the table t1, a complete scan of the data might be
3190 ** avoided.
3191 **
3192 ** Flattening is only attempted if all of the following are true:
3193 **
3194 **   (1)  The subquery and the outer query do not both use aggregates.
3195 **
3196 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3197 **        and (2b) the outer query does not use subqueries other than the one
3198 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3199 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3200 **
3201 **   (3)  The subquery is not the right operand of a left outer join
3202 **        (Originally ticket #306.  Strengthened by ticket #3300)
3203 **
3204 **   (4)  The subquery is not DISTINCT.
3205 **
3206 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3207 **        sub-queries that were excluded from this optimization. Restriction
3208 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3209 **
3210 **   (6)  The subquery does not use aggregates or the outer query is not
3211 **        DISTINCT.
3212 **
3213 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3214 **        A FROM clause, consider adding a FROM close with the special
3215 **        table sqlite_once that consists of a single row containing a
3216 **        single NULL.
3217 **
3218 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3219 **
3220 **   (9)  The subquery does not use LIMIT or the outer query does not use
3221 **        aggregates.
3222 **
3223 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3224 **        accidently carried the comment forward until 2014-09-15.  Original
3225 **        text: "The subquery does not use aggregates or the outer query
3226 **        does not use LIMIT."
3227 **
3228 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3229 **
3230 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3231 **        a separate restriction deriving from ticket #350.
3232 **
3233 **  (13)  The subquery and outer query do not both use LIMIT.
3234 **
3235 **  (14)  The subquery does not use OFFSET.
3236 **
3237 **  (15)  The outer query is not part of a compound select or the
3238 **        subquery does not have a LIMIT clause.
3239 **        (See ticket #2339 and ticket [02a8e81d44]).
3240 **
3241 **  (16)  The outer query is not an aggregate or the subquery does
3242 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3243 **        until we introduced the group_concat() function.
3244 **
3245 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3246 **        compound clause made up entirely of non-aggregate queries, and
3247 **        the parent query:
3248 **
3249 **          * is not itself part of a compound select,
3250 **          * is not an aggregate or DISTINCT query, and
3251 **          * is not a join
3252 **
3253 **        The parent and sub-query may contain WHERE clauses. Subject to
3254 **        rules (11), (13) and (14), they may also contain ORDER BY,
3255 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3256 **        operator other than UNION ALL because all the other compound
3257 **        operators have an implied DISTINCT which is disallowed by
3258 **        restriction (4).
3259 **
3260 **        Also, each component of the sub-query must return the same number
3261 **        of result columns. This is actually a requirement for any compound
3262 **        SELECT statement, but all the code here does is make sure that no
3263 **        such (illegal) sub-query is flattened. The caller will detect the
3264 **        syntax error and return a detailed message.
3265 **
3266 **  (18)  If the sub-query is a compound select, then all terms of the
3267 **        ORDER by clause of the parent must be simple references to
3268 **        columns of the sub-query.
3269 **
3270 **  (19)  The subquery does not use LIMIT or the outer query does not
3271 **        have a WHERE clause.
3272 **
3273 **  (20)  If the sub-query is a compound select, then it must not use
3274 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3275 **        somewhat by saying that the terms of the ORDER BY clause must
3276 **        appear as unmodified result columns in the outer query.  But we
3277 **        have other optimizations in mind to deal with that case.
3278 **
3279 **  (21)  The subquery does not use LIMIT or the outer query is not
3280 **        DISTINCT.  (See ticket [752e1646fc]).
3281 **
3282 **  (22)  The subquery is not a recursive CTE.
3283 **
3284 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3285 **        compound query. This restriction is because transforming the
3286 **        parent to a compound query confuses the code that handles
3287 **        recursive queries in multiSelect().
3288 **
3289 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3290 **        or max() functions.  (Without this restriction, a query like:
3291 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3292 **        return the value X for which Y was maximal.)
3293 **
3294 **
3295 ** In this routine, the "p" parameter is a pointer to the outer query.
3296 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3297 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3298 **
3299 ** If flattening is not attempted, this routine is a no-op and returns 0.
3300 ** If flattening is attempted this routine returns 1.
3301 **
3302 ** All of the expression analysis must occur on both the outer query and
3303 ** the subquery before this routine runs.
3304 */
3305 static int flattenSubquery(
3306   Parse *pParse,       /* Parsing context */
3307   Select *p,           /* The parent or outer SELECT statement */
3308   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3309   int isAgg,           /* True if outer SELECT uses aggregate functions */
3310   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3311 ){
3312   const char *zSavedAuthContext = pParse->zAuthContext;
3313   Select *pParent;
3314   Select *pSub;       /* The inner query or "subquery" */
3315   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3316   SrcList *pSrc;      /* The FROM clause of the outer query */
3317   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3318   ExprList *pList;    /* The result set of the outer query */
3319   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3320   int i;              /* Loop counter */
3321   Expr *pWhere;                    /* The WHERE clause */
3322   struct SrcList_item *pSubitem;   /* The subquery */
3323   sqlite3 *db = pParse->db;
3324 
3325   /* Check to see if flattening is permitted.  Return 0 if not.
3326   */
3327   assert( p!=0 );
3328   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3329   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3330   pSrc = p->pSrc;
3331   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3332   pSubitem = &pSrc->a[iFrom];
3333   iParent = pSubitem->iCursor;
3334   pSub = pSubitem->pSelect;
3335   assert( pSub!=0 );
3336   if( subqueryIsAgg ){
3337     if( isAgg ) return 0;                                /* Restriction (1)   */
3338     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3339     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3340      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3341      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3342     ){
3343       return 0;                                          /* Restriction (2b)  */
3344     }
3345   }
3346 
3347   pSubSrc = pSub->pSrc;
3348   assert( pSubSrc );
3349   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3350   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3351   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3352   ** became arbitrary expressions, we were forced to add restrictions (13)
3353   ** and (14). */
3354   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3355   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3356   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3357     return 0;                                            /* Restriction (15) */
3358   }
3359   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3360   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3361   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3362      return 0;         /* Restrictions (8)(9) */
3363   }
3364   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3365      return 0;         /* Restriction (6)  */
3366   }
3367   if( p->pOrderBy && pSub->pOrderBy ){
3368      return 0;                                           /* Restriction (11) */
3369   }
3370   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3371   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3372   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3373      return 0;         /* Restriction (21) */
3374   }
3375   testcase( pSub->selFlags & SF_Recursive );
3376   testcase( pSub->selFlags & SF_MinMaxAgg );
3377   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3378     return 0; /* Restrictions (22) and (24) */
3379   }
3380   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3381     return 0; /* Restriction (23) */
3382   }
3383 
3384   /* OBSOLETE COMMENT 1:
3385   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3386   ** not used as the right operand of an outer join.  Examples of why this
3387   ** is not allowed:
3388   **
3389   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3390   **
3391   ** If we flatten the above, we would get
3392   **
3393   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3394   **
3395   ** which is not at all the same thing.
3396   **
3397   ** OBSOLETE COMMENT 2:
3398   ** Restriction 12:  If the subquery is the right operand of a left outer
3399   ** join, make sure the subquery has no WHERE clause.
3400   ** An examples of why this is not allowed:
3401   **
3402   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3403   **
3404   ** If we flatten the above, we would get
3405   **
3406   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3407   **
3408   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3409   ** effectively converts the OUTER JOIN into an INNER JOIN.
3410   **
3411   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3412   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3413   ** is fraught with danger.  Best to avoid the whole thing.  If the
3414   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3415   */
3416   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3417     return 0;
3418   }
3419 
3420   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3421   ** use only the UNION ALL operator. And none of the simple select queries
3422   ** that make up the compound SELECT are allowed to be aggregate or distinct
3423   ** queries.
3424   */
3425   if( pSub->pPrior ){
3426     if( pSub->pOrderBy ){
3427       return 0;  /* Restriction 20 */
3428     }
3429     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3430       return 0;
3431     }
3432     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3433       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3434       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3435       assert( pSub->pSrc!=0 );
3436       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3437       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3438        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3439        || pSub1->pSrc->nSrc<1
3440       ){
3441         return 0;
3442       }
3443       testcase( pSub1->pSrc->nSrc>1 );
3444     }
3445 
3446     /* Restriction 18. */
3447     if( p->pOrderBy ){
3448       int ii;
3449       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3450         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3451       }
3452     }
3453   }
3454 
3455   /***** If we reach this point, flattening is permitted. *****/
3456   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3457                    pSub->zSelName, pSub, iFrom));
3458 
3459   /* Authorize the subquery */
3460   pParse->zAuthContext = pSubitem->zName;
3461   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3462   testcase( i==SQLITE_DENY );
3463   pParse->zAuthContext = zSavedAuthContext;
3464 
3465   /* If the sub-query is a compound SELECT statement, then (by restrictions
3466   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3467   ** be of the form:
3468   **
3469   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3470   **
3471   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3472   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3473   ** OFFSET clauses and joins them to the left-hand-side of the original
3474   ** using UNION ALL operators. In this case N is the number of simple
3475   ** select statements in the compound sub-query.
3476   **
3477   ** Example:
3478   **
3479   **     SELECT a+1 FROM (
3480   **        SELECT x FROM tab
3481   **        UNION ALL
3482   **        SELECT y FROM tab
3483   **        UNION ALL
3484   **        SELECT abs(z*2) FROM tab2
3485   **     ) WHERE a!=5 ORDER BY 1
3486   **
3487   ** Transformed into:
3488   **
3489   **     SELECT x+1 FROM tab WHERE x+1!=5
3490   **     UNION ALL
3491   **     SELECT y+1 FROM tab WHERE y+1!=5
3492   **     UNION ALL
3493   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3494   **     ORDER BY 1
3495   **
3496   ** We call this the "compound-subquery flattening".
3497   */
3498   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3499     Select *pNew;
3500     ExprList *pOrderBy = p->pOrderBy;
3501     Expr *pLimit = p->pLimit;
3502     Expr *pOffset = p->pOffset;
3503     Select *pPrior = p->pPrior;
3504     p->pOrderBy = 0;
3505     p->pSrc = 0;
3506     p->pPrior = 0;
3507     p->pLimit = 0;
3508     p->pOffset = 0;
3509     pNew = sqlite3SelectDup(db, p, 0);
3510     sqlite3SelectSetName(pNew, pSub->zSelName);
3511     p->pOffset = pOffset;
3512     p->pLimit = pLimit;
3513     p->pOrderBy = pOrderBy;
3514     p->pSrc = pSrc;
3515     p->op = TK_ALL;
3516     if( pNew==0 ){
3517       p->pPrior = pPrior;
3518     }else{
3519       pNew->pPrior = pPrior;
3520       if( pPrior ) pPrior->pNext = pNew;
3521       pNew->pNext = p;
3522       p->pPrior = pNew;
3523       SELECTTRACE(2,pParse,p,
3524          ("compound-subquery flattener creates %s.%p as peer\n",
3525          pNew->zSelName, pNew));
3526     }
3527     if( db->mallocFailed ) return 1;
3528   }
3529 
3530   /* Begin flattening the iFrom-th entry of the FROM clause
3531   ** in the outer query.
3532   */
3533   pSub = pSub1 = pSubitem->pSelect;
3534 
3535   /* Delete the transient table structure associated with the
3536   ** subquery
3537   */
3538   sqlite3DbFree(db, pSubitem->zDatabase);
3539   sqlite3DbFree(db, pSubitem->zName);
3540   sqlite3DbFree(db, pSubitem->zAlias);
3541   pSubitem->zDatabase = 0;
3542   pSubitem->zName = 0;
3543   pSubitem->zAlias = 0;
3544   pSubitem->pSelect = 0;
3545 
3546   /* Defer deleting the Table object associated with the
3547   ** subquery until code generation is
3548   ** complete, since there may still exist Expr.pTab entries that
3549   ** refer to the subquery even after flattening.  Ticket #3346.
3550   **
3551   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3552   */
3553   if( ALWAYS(pSubitem->pTab!=0) ){
3554     Table *pTabToDel = pSubitem->pTab;
3555     if( pTabToDel->nRef==1 ){
3556       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3557       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3558       pToplevel->pZombieTab = pTabToDel;
3559     }else{
3560       pTabToDel->nRef--;
3561     }
3562     pSubitem->pTab = 0;
3563   }
3564 
3565   /* The following loop runs once for each term in a compound-subquery
3566   ** flattening (as described above).  If we are doing a different kind
3567   ** of flattening - a flattening other than a compound-subquery flattening -
3568   ** then this loop only runs once.
3569   **
3570   ** This loop moves all of the FROM elements of the subquery into the
3571   ** the FROM clause of the outer query.  Before doing this, remember
3572   ** the cursor number for the original outer query FROM element in
3573   ** iParent.  The iParent cursor will never be used.  Subsequent code
3574   ** will scan expressions looking for iParent references and replace
3575   ** those references with expressions that resolve to the subquery FROM
3576   ** elements we are now copying in.
3577   */
3578   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3579     int nSubSrc;
3580     u8 jointype = 0;
3581     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3582     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3583     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3584 
3585     if( pSrc ){
3586       assert( pParent==p );  /* First time through the loop */
3587       jointype = pSubitem->jointype;
3588     }else{
3589       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3590       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3591       if( pSrc==0 ){
3592         assert( db->mallocFailed );
3593         break;
3594       }
3595     }
3596 
3597     /* The subquery uses a single slot of the FROM clause of the outer
3598     ** query.  If the subquery has more than one element in its FROM clause,
3599     ** then expand the outer query to make space for it to hold all elements
3600     ** of the subquery.
3601     **
3602     ** Example:
3603     **
3604     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3605     **
3606     ** The outer query has 3 slots in its FROM clause.  One slot of the
3607     ** outer query (the middle slot) is used by the subquery.  The next
3608     ** block of code will expand the out query to 4 slots.  The middle
3609     ** slot is expanded to two slots in order to make space for the
3610     ** two elements in the FROM clause of the subquery.
3611     */
3612     if( nSubSrc>1 ){
3613       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3614       if( db->mallocFailed ){
3615         break;
3616       }
3617     }
3618 
3619     /* Transfer the FROM clause terms from the subquery into the
3620     ** outer query.
3621     */
3622     for(i=0; i<nSubSrc; i++){
3623       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3624       pSrc->a[i+iFrom] = pSubSrc->a[i];
3625       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3626     }
3627     pSrc->a[iFrom].jointype = jointype;
3628 
3629     /* Now begin substituting subquery result set expressions for
3630     ** references to the iParent in the outer query.
3631     **
3632     ** Example:
3633     **
3634     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3635     **   \                     \_____________ subquery __________/          /
3636     **    \_____________________ outer query ______________________________/
3637     **
3638     ** We look at every expression in the outer query and every place we see
3639     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3640     */
3641     pList = pParent->pEList;
3642     for(i=0; i<pList->nExpr; i++){
3643       if( pList->a[i].zName==0 ){
3644         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3645         sqlite3Dequote(zName);
3646         pList->a[i].zName = zName;
3647       }
3648     }
3649     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3650     if( isAgg ){
3651       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3652       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3653     }
3654     if( pSub->pOrderBy ){
3655       /* At this point, any non-zero iOrderByCol values indicate that the
3656       ** ORDER BY column expression is identical to the iOrderByCol'th
3657       ** expression returned by SELECT statement pSub. Since these values
3658       ** do not necessarily correspond to columns in SELECT statement pParent,
3659       ** zero them before transfering the ORDER BY clause.
3660       **
3661       ** Not doing this may cause an error if a subsequent call to this
3662       ** function attempts to flatten a compound sub-query into pParent
3663       ** (the only way this can happen is if the compound sub-query is
3664       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3665       ExprList *pOrderBy = pSub->pOrderBy;
3666       for(i=0; i<pOrderBy->nExpr; i++){
3667         pOrderBy->a[i].u.x.iOrderByCol = 0;
3668       }
3669       assert( pParent->pOrderBy==0 );
3670       assert( pSub->pPrior==0 );
3671       pParent->pOrderBy = pOrderBy;
3672       pSub->pOrderBy = 0;
3673     }else if( pParent->pOrderBy ){
3674       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3675     }
3676     if( pSub->pWhere ){
3677       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3678     }else{
3679       pWhere = 0;
3680     }
3681     if( subqueryIsAgg ){
3682       assert( pParent->pHaving==0 );
3683       pParent->pHaving = pParent->pWhere;
3684       pParent->pWhere = pWhere;
3685       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3686       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3687                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3688       assert( pParent->pGroupBy==0 );
3689       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3690     }else{
3691       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3692       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3693     }
3694 
3695     /* The flattened query is distinct if either the inner or the
3696     ** outer query is distinct.
3697     */
3698     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3699 
3700     /*
3701     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3702     **
3703     ** One is tempted to try to add a and b to combine the limits.  But this
3704     ** does not work if either limit is negative.
3705     */
3706     if( pSub->pLimit ){
3707       pParent->pLimit = pSub->pLimit;
3708       pSub->pLimit = 0;
3709     }
3710   }
3711 
3712   /* Finially, delete what is left of the subquery and return
3713   ** success.
3714   */
3715   sqlite3SelectDelete(db, pSub1);
3716 
3717 #if SELECTTRACE_ENABLED
3718   if( sqlite3SelectTrace & 0x100 ){
3719     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3720     sqlite3TreeViewSelect(0, p, 0);
3721   }
3722 #endif
3723 
3724   return 1;
3725 }
3726 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3727 
3728 
3729 
3730 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3731 /*
3732 ** Make copies of relevant WHERE clause terms of the outer query into
3733 ** the WHERE clause of subquery.  Example:
3734 **
3735 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3736 **
3737 ** Transformed into:
3738 **
3739 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3740 **     WHERE x=5 AND y=10;
3741 **
3742 ** The hope is that the terms added to the inner query will make it more
3743 ** efficient.
3744 **
3745 ** Do not attempt this optimization if:
3746 **
3747 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3748 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3749 **       inner query.  But they probably won't help there so do not bother.)
3750 **
3751 **   (2) The inner query is the recursive part of a common table expression.
3752 **
3753 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3754 **       close would change the meaning of the LIMIT).
3755 **
3756 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3757 **       enforces this restriction since this routine does not have enough
3758 **       information to know.)
3759 **
3760 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3761 ** terms are duplicated into the subquery.
3762 */
3763 static int pushDownWhereTerms(
3764   sqlite3 *db,          /* The database connection (for malloc()) */
3765   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3766   Expr *pWhere,         /* The WHERE clause of the outer query */
3767   int iCursor           /* Cursor number of the subquery */
3768 ){
3769   Expr *pNew;
3770   int nChng = 0;
3771   if( pWhere==0 ) return 0;
3772   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3773      return 0; /* restrictions (1) and (2) */
3774   }
3775   if( pSubq->pLimit!=0 ){
3776      return 0; /* restriction (3) */
3777   }
3778   while( pWhere->op==TK_AND ){
3779     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3780     pWhere = pWhere->pLeft;
3781   }
3782   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3783     nChng++;
3784     while( pSubq ){
3785       pNew = sqlite3ExprDup(db, pWhere, 0);
3786       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3787       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3788       pSubq = pSubq->pPrior;
3789     }
3790   }
3791   return nChng;
3792 }
3793 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3794 
3795 /*
3796 ** Based on the contents of the AggInfo structure indicated by the first
3797 ** argument, this function checks if the following are true:
3798 **
3799 **    * the query contains just a single aggregate function,
3800 **    * the aggregate function is either min() or max(), and
3801 **    * the argument to the aggregate function is a column value.
3802 **
3803 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3804 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3805 ** list of arguments passed to the aggregate before returning.
3806 **
3807 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3808 ** WHERE_ORDERBY_NORMAL is returned.
3809 */
3810 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3811   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3812 
3813   *ppMinMax = 0;
3814   if( pAggInfo->nFunc==1 ){
3815     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3816     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3817 
3818     assert( pExpr->op==TK_AGG_FUNCTION );
3819     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3820       const char *zFunc = pExpr->u.zToken;
3821       if( sqlite3StrICmp(zFunc, "min")==0 ){
3822         eRet = WHERE_ORDERBY_MIN;
3823         *ppMinMax = pEList;
3824       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3825         eRet = WHERE_ORDERBY_MAX;
3826         *ppMinMax = pEList;
3827       }
3828     }
3829   }
3830 
3831   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3832   return eRet;
3833 }
3834 
3835 /*
3836 ** The select statement passed as the first argument is an aggregate query.
3837 ** The second argument is the associated aggregate-info object. This
3838 ** function tests if the SELECT is of the form:
3839 **
3840 **   SELECT count(*) FROM <tbl>
3841 **
3842 ** where table is a database table, not a sub-select or view. If the query
3843 ** does match this pattern, then a pointer to the Table object representing
3844 ** <tbl> is returned. Otherwise, 0 is returned.
3845 */
3846 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3847   Table *pTab;
3848   Expr *pExpr;
3849 
3850   assert( !p->pGroupBy );
3851 
3852   if( p->pWhere || p->pEList->nExpr!=1
3853    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3854   ){
3855     return 0;
3856   }
3857   pTab = p->pSrc->a[0].pTab;
3858   pExpr = p->pEList->a[0].pExpr;
3859   assert( pTab && !pTab->pSelect && pExpr );
3860 
3861   if( IsVirtual(pTab) ) return 0;
3862   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3863   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3864   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3865   if( pExpr->flags&EP_Distinct ) return 0;
3866 
3867   return pTab;
3868 }
3869 
3870 /*
3871 ** If the source-list item passed as an argument was augmented with an
3872 ** INDEXED BY clause, then try to locate the specified index. If there
3873 ** was such a clause and the named index cannot be found, return
3874 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3875 ** pFrom->pIndex and return SQLITE_OK.
3876 */
3877 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3878   if( pFrom->pTab && pFrom->zIndexedBy ){
3879     Table *pTab = pFrom->pTab;
3880     char *zIndexedBy = pFrom->zIndexedBy;
3881     Index *pIdx;
3882     for(pIdx=pTab->pIndex;
3883         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3884         pIdx=pIdx->pNext
3885     );
3886     if( !pIdx ){
3887       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3888       pParse->checkSchema = 1;
3889       return SQLITE_ERROR;
3890     }
3891     pFrom->pIndex = pIdx;
3892   }
3893   return SQLITE_OK;
3894 }
3895 /*
3896 ** Detect compound SELECT statements that use an ORDER BY clause with
3897 ** an alternative collating sequence.
3898 **
3899 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3900 **
3901 ** These are rewritten as a subquery:
3902 **
3903 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3904 **     ORDER BY ... COLLATE ...
3905 **
3906 ** This transformation is necessary because the multiSelectOrderBy() routine
3907 ** above that generates the code for a compound SELECT with an ORDER BY clause
3908 ** uses a merge algorithm that requires the same collating sequence on the
3909 ** result columns as on the ORDER BY clause.  See ticket
3910 ** http://www.sqlite.org/src/info/6709574d2a
3911 **
3912 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3913 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3914 ** there are COLLATE terms in the ORDER BY.
3915 */
3916 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3917   int i;
3918   Select *pNew;
3919   Select *pX;
3920   sqlite3 *db;
3921   struct ExprList_item *a;
3922   SrcList *pNewSrc;
3923   Parse *pParse;
3924   Token dummy;
3925 
3926   if( p->pPrior==0 ) return WRC_Continue;
3927   if( p->pOrderBy==0 ) return WRC_Continue;
3928   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3929   if( pX==0 ) return WRC_Continue;
3930   a = p->pOrderBy->a;
3931   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3932     if( a[i].pExpr->flags & EP_Collate ) break;
3933   }
3934   if( i<0 ) return WRC_Continue;
3935 
3936   /* If we reach this point, that means the transformation is required. */
3937 
3938   pParse = pWalker->pParse;
3939   db = pParse->db;
3940   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3941   if( pNew==0 ) return WRC_Abort;
3942   memset(&dummy, 0, sizeof(dummy));
3943   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3944   if( pNewSrc==0 ) return WRC_Abort;
3945   *pNew = *p;
3946   p->pSrc = pNewSrc;
3947   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3948   p->op = TK_SELECT;
3949   p->pWhere = 0;
3950   pNew->pGroupBy = 0;
3951   pNew->pHaving = 0;
3952   pNew->pOrderBy = 0;
3953   p->pPrior = 0;
3954   p->pNext = 0;
3955   p->pWith = 0;
3956   p->selFlags &= ~SF_Compound;
3957   assert( (p->selFlags & SF_Converted)==0 );
3958   p->selFlags |= SF_Converted;
3959   assert( pNew->pPrior!=0 );
3960   pNew->pPrior->pNext = pNew;
3961   pNew->pLimit = 0;
3962   pNew->pOffset = 0;
3963   return WRC_Continue;
3964 }
3965 
3966 #ifndef SQLITE_OMIT_CTE
3967 /*
3968 ** Argument pWith (which may be NULL) points to a linked list of nested
3969 ** WITH contexts, from inner to outermost. If the table identified by
3970 ** FROM clause element pItem is really a common-table-expression (CTE)
3971 ** then return a pointer to the CTE definition for that table. Otherwise
3972 ** return NULL.
3973 **
3974 ** If a non-NULL value is returned, set *ppContext to point to the With
3975 ** object that the returned CTE belongs to.
3976 */
3977 static struct Cte *searchWith(
3978   With *pWith,                    /* Current outermost WITH clause */
3979   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3980   With **ppContext                /* OUT: WITH clause return value belongs to */
3981 ){
3982   const char *zName;
3983   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3984     With *p;
3985     for(p=pWith; p; p=p->pOuter){
3986       int i;
3987       for(i=0; i<p->nCte; i++){
3988         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3989           *ppContext = p;
3990           return &p->a[i];
3991         }
3992       }
3993     }
3994   }
3995   return 0;
3996 }
3997 
3998 /* The code generator maintains a stack of active WITH clauses
3999 ** with the inner-most WITH clause being at the top of the stack.
4000 **
4001 ** This routine pushes the WITH clause passed as the second argument
4002 ** onto the top of the stack. If argument bFree is true, then this
4003 ** WITH clause will never be popped from the stack. In this case it
4004 ** should be freed along with the Parse object. In other cases, when
4005 ** bFree==0, the With object will be freed along with the SELECT
4006 ** statement with which it is associated.
4007 */
4008 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4009   assert( bFree==0 || pParse->pWith==0 );
4010   if( pWith ){
4011     pWith->pOuter = pParse->pWith;
4012     pParse->pWith = pWith;
4013     pParse->bFreeWith = bFree;
4014   }
4015 }
4016 
4017 /*
4018 ** This function checks if argument pFrom refers to a CTE declared by
4019 ** a WITH clause on the stack currently maintained by the parser. And,
4020 ** if currently processing a CTE expression, if it is a recursive
4021 ** reference to the current CTE.
4022 **
4023 ** If pFrom falls into either of the two categories above, pFrom->pTab
4024 ** and other fields are populated accordingly. The caller should check
4025 ** (pFrom->pTab!=0) to determine whether or not a successful match
4026 ** was found.
4027 **
4028 ** Whether or not a match is found, SQLITE_OK is returned if no error
4029 ** occurs. If an error does occur, an error message is stored in the
4030 ** parser and some error code other than SQLITE_OK returned.
4031 */
4032 static int withExpand(
4033   Walker *pWalker,
4034   struct SrcList_item *pFrom
4035 ){
4036   Parse *pParse = pWalker->pParse;
4037   sqlite3 *db = pParse->db;
4038   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4039   With *pWith;                    /* WITH clause that pCte belongs to */
4040 
4041   assert( pFrom->pTab==0 );
4042 
4043   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4044   if( pCte ){
4045     Table *pTab;
4046     ExprList *pEList;
4047     Select *pSel;
4048     Select *pLeft;                /* Left-most SELECT statement */
4049     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4050     With *pSavedWith;             /* Initial value of pParse->pWith */
4051 
4052     /* If pCte->zErr is non-NULL at this point, then this is an illegal
4053     ** recursive reference to CTE pCte. Leave an error in pParse and return
4054     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
4055     ** In this case, proceed.  */
4056     if( pCte->zErr ){
4057       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
4058       return SQLITE_ERROR;
4059     }
4060 
4061     assert( pFrom->pTab==0 );
4062     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4063     if( pTab==0 ) return WRC_Abort;
4064     pTab->nRef = 1;
4065     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4066     pTab->iPKey = -1;
4067     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4068     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4069     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4070     if( db->mallocFailed ) return SQLITE_NOMEM;
4071     assert( pFrom->pSelect );
4072 
4073     /* Check if this is a recursive CTE. */
4074     pSel = pFrom->pSelect;
4075     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4076     if( bMayRecursive ){
4077       int i;
4078       SrcList *pSrc = pFrom->pSelect->pSrc;
4079       for(i=0; i<pSrc->nSrc; i++){
4080         struct SrcList_item *pItem = &pSrc->a[i];
4081         if( pItem->zDatabase==0
4082          && pItem->zName!=0
4083          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4084           ){
4085           pItem->pTab = pTab;
4086           pItem->isRecursive = 1;
4087           pTab->nRef++;
4088           pSel->selFlags |= SF_Recursive;
4089         }
4090       }
4091     }
4092 
4093     /* Only one recursive reference is permitted. */
4094     if( pTab->nRef>2 ){
4095       sqlite3ErrorMsg(
4096           pParse, "multiple references to recursive table: %s", pCte->zName
4097       );
4098       return SQLITE_ERROR;
4099     }
4100     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4101 
4102     pCte->zErr = "circular reference: %s";
4103     pSavedWith = pParse->pWith;
4104     pParse->pWith = pWith;
4105     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4106 
4107     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4108     pEList = pLeft->pEList;
4109     if( pCte->pCols ){
4110       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4111         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4112             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4113         );
4114         pParse->pWith = pSavedWith;
4115         return SQLITE_ERROR;
4116       }
4117       pEList = pCte->pCols;
4118     }
4119 
4120     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4121     if( bMayRecursive ){
4122       if( pSel->selFlags & SF_Recursive ){
4123         pCte->zErr = "multiple recursive references: %s";
4124       }else{
4125         pCte->zErr = "recursive reference in a subquery: %s";
4126       }
4127       sqlite3WalkSelect(pWalker, pSel);
4128     }
4129     pCte->zErr = 0;
4130     pParse->pWith = pSavedWith;
4131   }
4132 
4133   return SQLITE_OK;
4134 }
4135 #endif
4136 
4137 #ifndef SQLITE_OMIT_CTE
4138 /*
4139 ** If the SELECT passed as the second argument has an associated WITH
4140 ** clause, pop it from the stack stored as part of the Parse object.
4141 **
4142 ** This function is used as the xSelectCallback2() callback by
4143 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4144 ** names and other FROM clause elements.
4145 */
4146 static void selectPopWith(Walker *pWalker, Select *p){
4147   Parse *pParse = pWalker->pParse;
4148   With *pWith = findRightmost(p)->pWith;
4149   if( pWith!=0 ){
4150     assert( pParse->pWith==pWith );
4151     pParse->pWith = pWith->pOuter;
4152   }
4153 }
4154 #else
4155 #define selectPopWith 0
4156 #endif
4157 
4158 /*
4159 ** This routine is a Walker callback for "expanding" a SELECT statement.
4160 ** "Expanding" means to do the following:
4161 **
4162 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4163 **         element of the FROM clause.
4164 **
4165 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4166 **         defines FROM clause.  When views appear in the FROM clause,
4167 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4168 **         that implements the view.  A copy is made of the view's SELECT
4169 **         statement so that we can freely modify or delete that statement
4170 **         without worrying about messing up the persistent representation
4171 **         of the view.
4172 **
4173 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4174 **         on joins and the ON and USING clause of joins.
4175 **
4176 **    (4)  Scan the list of columns in the result set (pEList) looking
4177 **         for instances of the "*" operator or the TABLE.* operator.
4178 **         If found, expand each "*" to be every column in every table
4179 **         and TABLE.* to be every column in TABLE.
4180 **
4181 */
4182 static int selectExpander(Walker *pWalker, Select *p){
4183   Parse *pParse = pWalker->pParse;
4184   int i, j, k;
4185   SrcList *pTabList;
4186   ExprList *pEList;
4187   struct SrcList_item *pFrom;
4188   sqlite3 *db = pParse->db;
4189   Expr *pE, *pRight, *pExpr;
4190   u16 selFlags = p->selFlags;
4191 
4192   p->selFlags |= SF_Expanded;
4193   if( db->mallocFailed  ){
4194     return WRC_Abort;
4195   }
4196   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4197     return WRC_Prune;
4198   }
4199   pTabList = p->pSrc;
4200   pEList = p->pEList;
4201   if( pWalker->xSelectCallback2==selectPopWith ){
4202     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4203   }
4204 
4205   /* Make sure cursor numbers have been assigned to all entries in
4206   ** the FROM clause of the SELECT statement.
4207   */
4208   sqlite3SrcListAssignCursors(pParse, pTabList);
4209 
4210   /* Look up every table named in the FROM clause of the select.  If
4211   ** an entry of the FROM clause is a subquery instead of a table or view,
4212   ** then create a transient table structure to describe the subquery.
4213   */
4214   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4215     Table *pTab;
4216     assert( pFrom->isRecursive==0 || pFrom->pTab );
4217     if( pFrom->isRecursive ) continue;
4218     if( pFrom->pTab!=0 ){
4219       /* This statement has already been prepared.  There is no need
4220       ** to go further. */
4221       assert( i==0 );
4222 #ifndef SQLITE_OMIT_CTE
4223       selectPopWith(pWalker, p);
4224 #endif
4225       return WRC_Prune;
4226     }
4227 #ifndef SQLITE_OMIT_CTE
4228     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4229     if( pFrom->pTab ) {} else
4230 #endif
4231     if( pFrom->zName==0 ){
4232 #ifndef SQLITE_OMIT_SUBQUERY
4233       Select *pSel = pFrom->pSelect;
4234       /* A sub-query in the FROM clause of a SELECT */
4235       assert( pSel!=0 );
4236       assert( pFrom->pTab==0 );
4237       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4238       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4239       if( pTab==0 ) return WRC_Abort;
4240       pTab->nRef = 1;
4241       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4242       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4243       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4244       pTab->iPKey = -1;
4245       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4246       pTab->tabFlags |= TF_Ephemeral;
4247 #endif
4248     }else{
4249       /* An ordinary table or view name in the FROM clause */
4250       assert( pFrom->pTab==0 );
4251       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4252       if( pTab==0 ) return WRC_Abort;
4253       if( pTab->nRef==0xffff ){
4254         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4255            pTab->zName);
4256         pFrom->pTab = 0;
4257         return WRC_Abort;
4258       }
4259       pTab->nRef++;
4260 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4261       if( pTab->pSelect || IsVirtual(pTab) ){
4262         /* We reach here if the named table is a really a view */
4263         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4264         assert( pFrom->pSelect==0 );
4265         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4266         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4267         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4268       }
4269 #endif
4270     }
4271 
4272     /* Locate the index named by the INDEXED BY clause, if any. */
4273     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4274       return WRC_Abort;
4275     }
4276   }
4277 
4278   /* Process NATURAL keywords, and ON and USING clauses of joins.
4279   */
4280   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4281     return WRC_Abort;
4282   }
4283 
4284   /* For every "*" that occurs in the column list, insert the names of
4285   ** all columns in all tables.  And for every TABLE.* insert the names
4286   ** of all columns in TABLE.  The parser inserted a special expression
4287   ** with the TK_ALL operator for each "*" that it found in the column list.
4288   ** The following code just has to locate the TK_ALL expressions and expand
4289   ** each one to the list of all columns in all tables.
4290   **
4291   ** The first loop just checks to see if there are any "*" operators
4292   ** that need expanding.
4293   */
4294   for(k=0; k<pEList->nExpr; k++){
4295     pE = pEList->a[k].pExpr;
4296     if( pE->op==TK_ALL ) break;
4297     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4298     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4299     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4300   }
4301   if( k<pEList->nExpr ){
4302     /*
4303     ** If we get here it means the result set contains one or more "*"
4304     ** operators that need to be expanded.  Loop through each expression
4305     ** in the result set and expand them one by one.
4306     */
4307     struct ExprList_item *a = pEList->a;
4308     ExprList *pNew = 0;
4309     int flags = pParse->db->flags;
4310     int longNames = (flags & SQLITE_FullColNames)!=0
4311                       && (flags & SQLITE_ShortColNames)==0;
4312 
4313     for(k=0; k<pEList->nExpr; k++){
4314       pE = a[k].pExpr;
4315       pRight = pE->pRight;
4316       assert( pE->op!=TK_DOT || pRight!=0 );
4317       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4318         /* This particular expression does not need to be expanded.
4319         */
4320         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4321         if( pNew ){
4322           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4323           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4324           a[k].zName = 0;
4325           a[k].zSpan = 0;
4326         }
4327         a[k].pExpr = 0;
4328       }else{
4329         /* This expression is a "*" or a "TABLE.*" and needs to be
4330         ** expanded. */
4331         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4332         char *zTName = 0;       /* text of name of TABLE */
4333         if( pE->op==TK_DOT ){
4334           assert( pE->pLeft!=0 );
4335           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4336           zTName = pE->pLeft->u.zToken;
4337         }
4338         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4339           Table *pTab = pFrom->pTab;
4340           Select *pSub = pFrom->pSelect;
4341           char *zTabName = pFrom->zAlias;
4342           const char *zSchemaName = 0;
4343           int iDb;
4344           if( zTabName==0 ){
4345             zTabName = pTab->zName;
4346           }
4347           if( db->mallocFailed ) break;
4348           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4349             pSub = 0;
4350             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4351               continue;
4352             }
4353             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4354             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4355           }
4356           for(j=0; j<pTab->nCol; j++){
4357             char *zName = pTab->aCol[j].zName;
4358             char *zColname;  /* The computed column name */
4359             char *zToFree;   /* Malloced string that needs to be freed */
4360             Token sColname;  /* Computed column name as a token */
4361 
4362             assert( zName );
4363             if( zTName && pSub
4364              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4365             ){
4366               continue;
4367             }
4368 
4369             /* If a column is marked as 'hidden' (currently only possible
4370             ** for virtual tables), do not include it in the expanded
4371             ** result-set list.
4372             */
4373             if( IsHiddenColumn(&pTab->aCol[j]) ){
4374               assert(IsVirtual(pTab));
4375               continue;
4376             }
4377             tableSeen = 1;
4378 
4379             if( i>0 && zTName==0 ){
4380               if( (pFrom->jointype & JT_NATURAL)!=0
4381                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4382               ){
4383                 /* In a NATURAL join, omit the join columns from the
4384                 ** table to the right of the join */
4385                 continue;
4386               }
4387               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4388                 /* In a join with a USING clause, omit columns in the
4389                 ** using clause from the table on the right. */
4390                 continue;
4391               }
4392             }
4393             pRight = sqlite3Expr(db, TK_ID, zName);
4394             zColname = zName;
4395             zToFree = 0;
4396             if( longNames || pTabList->nSrc>1 ){
4397               Expr *pLeft;
4398               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4399               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4400               if( zSchemaName ){
4401                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4402                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4403               }
4404               if( longNames ){
4405                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4406                 zToFree = zColname;
4407               }
4408             }else{
4409               pExpr = pRight;
4410             }
4411             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4412             sColname.z = zColname;
4413             sColname.n = sqlite3Strlen30(zColname);
4414             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4415             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4416               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4417               if( pSub ){
4418                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4419                 testcase( pX->zSpan==0 );
4420               }else{
4421                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4422                                            zSchemaName, zTabName, zColname);
4423                 testcase( pX->zSpan==0 );
4424               }
4425               pX->bSpanIsTab = 1;
4426             }
4427             sqlite3DbFree(db, zToFree);
4428           }
4429         }
4430         if( !tableSeen ){
4431           if( zTName ){
4432             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4433           }else{
4434             sqlite3ErrorMsg(pParse, "no tables specified");
4435           }
4436         }
4437       }
4438     }
4439     sqlite3ExprListDelete(db, pEList);
4440     p->pEList = pNew;
4441   }
4442 #if SQLITE_MAX_COLUMN
4443   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4444     sqlite3ErrorMsg(pParse, "too many columns in result set");
4445   }
4446 #endif
4447   return WRC_Continue;
4448 }
4449 
4450 /*
4451 ** No-op routine for the parse-tree walker.
4452 **
4453 ** When this routine is the Walker.xExprCallback then expression trees
4454 ** are walked without any actions being taken at each node.  Presumably,
4455 ** when this routine is used for Walker.xExprCallback then
4456 ** Walker.xSelectCallback is set to do something useful for every
4457 ** subquery in the parser tree.
4458 */
4459 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4460   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4461   return WRC_Continue;
4462 }
4463 
4464 /*
4465 ** This routine "expands" a SELECT statement and all of its subqueries.
4466 ** For additional information on what it means to "expand" a SELECT
4467 ** statement, see the comment on the selectExpand worker callback above.
4468 **
4469 ** Expanding a SELECT statement is the first step in processing a
4470 ** SELECT statement.  The SELECT statement must be expanded before
4471 ** name resolution is performed.
4472 **
4473 ** If anything goes wrong, an error message is written into pParse.
4474 ** The calling function can detect the problem by looking at pParse->nErr
4475 ** and/or pParse->db->mallocFailed.
4476 */
4477 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4478   Walker w;
4479   memset(&w, 0, sizeof(w));
4480   w.xExprCallback = exprWalkNoop;
4481   w.pParse = pParse;
4482   if( pParse->hasCompound ){
4483     w.xSelectCallback = convertCompoundSelectToSubquery;
4484     sqlite3WalkSelect(&w, pSelect);
4485   }
4486   w.xSelectCallback = selectExpander;
4487   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4488     w.xSelectCallback2 = selectPopWith;
4489   }
4490   sqlite3WalkSelect(&w, pSelect);
4491 }
4492 
4493 
4494 #ifndef SQLITE_OMIT_SUBQUERY
4495 /*
4496 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4497 ** interface.
4498 **
4499 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4500 ** information to the Table structure that represents the result set
4501 ** of that subquery.
4502 **
4503 ** The Table structure that represents the result set was constructed
4504 ** by selectExpander() but the type and collation information was omitted
4505 ** at that point because identifiers had not yet been resolved.  This
4506 ** routine is called after identifier resolution.
4507 */
4508 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4509   Parse *pParse;
4510   int i;
4511   SrcList *pTabList;
4512   struct SrcList_item *pFrom;
4513 
4514   assert( p->selFlags & SF_Resolved );
4515   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4516     p->selFlags |= SF_HasTypeInfo;
4517     pParse = pWalker->pParse;
4518     pTabList = p->pSrc;
4519     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4520       Table *pTab = pFrom->pTab;
4521       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4522         /* A sub-query in the FROM clause of a SELECT */
4523         Select *pSel = pFrom->pSelect;
4524         if( pSel ){
4525           while( pSel->pPrior ) pSel = pSel->pPrior;
4526           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4527         }
4528       }
4529     }
4530   }
4531 }
4532 #endif
4533 
4534 
4535 /*
4536 ** This routine adds datatype and collating sequence information to
4537 ** the Table structures of all FROM-clause subqueries in a
4538 ** SELECT statement.
4539 **
4540 ** Use this routine after name resolution.
4541 */
4542 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4543 #ifndef SQLITE_OMIT_SUBQUERY
4544   Walker w;
4545   memset(&w, 0, sizeof(w));
4546   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4547   w.xExprCallback = exprWalkNoop;
4548   w.pParse = pParse;
4549   sqlite3WalkSelect(&w, pSelect);
4550 #endif
4551 }
4552 
4553 
4554 /*
4555 ** This routine sets up a SELECT statement for processing.  The
4556 ** following is accomplished:
4557 **
4558 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4559 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4560 **     *  ON and USING clauses are shifted into WHERE statements
4561 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4562 **     *  Identifiers in expression are matched to tables.
4563 **
4564 ** This routine acts recursively on all subqueries within the SELECT.
4565 */
4566 void sqlite3SelectPrep(
4567   Parse *pParse,         /* The parser context */
4568   Select *p,             /* The SELECT statement being coded. */
4569   NameContext *pOuterNC  /* Name context for container */
4570 ){
4571   sqlite3 *db;
4572   if( NEVER(p==0) ) return;
4573   db = pParse->db;
4574   if( db->mallocFailed ) return;
4575   if( p->selFlags & SF_HasTypeInfo ) return;
4576   sqlite3SelectExpand(pParse, p);
4577   if( pParse->nErr || db->mallocFailed ) return;
4578   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4579   if( pParse->nErr || db->mallocFailed ) return;
4580   sqlite3SelectAddTypeInfo(pParse, p);
4581 }
4582 
4583 /*
4584 ** Reset the aggregate accumulator.
4585 **
4586 ** The aggregate accumulator is a set of memory cells that hold
4587 ** intermediate results while calculating an aggregate.  This
4588 ** routine generates code that stores NULLs in all of those memory
4589 ** cells.
4590 */
4591 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4592   Vdbe *v = pParse->pVdbe;
4593   int i;
4594   struct AggInfo_func *pFunc;
4595   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4596   if( nReg==0 ) return;
4597 #ifdef SQLITE_DEBUG
4598   /* Verify that all AggInfo registers are within the range specified by
4599   ** AggInfo.mnReg..AggInfo.mxReg */
4600   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4601   for(i=0; i<pAggInfo->nColumn; i++){
4602     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4603          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4604   }
4605   for(i=0; i<pAggInfo->nFunc; i++){
4606     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4607          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4608   }
4609 #endif
4610   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4611   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4612     if( pFunc->iDistinct>=0 ){
4613       Expr *pE = pFunc->pExpr;
4614       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4615       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4616         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4617            "argument");
4618         pFunc->iDistinct = -1;
4619       }else{
4620         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4621         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4622                           (char*)pKeyInfo, P4_KEYINFO);
4623       }
4624     }
4625   }
4626 }
4627 
4628 /*
4629 ** Invoke the OP_AggFinalize opcode for every aggregate function
4630 ** in the AggInfo structure.
4631 */
4632 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4633   Vdbe *v = pParse->pVdbe;
4634   int i;
4635   struct AggInfo_func *pF;
4636   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4637     ExprList *pList = pF->pExpr->x.pList;
4638     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4639     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4640                       (void*)pF->pFunc, P4_FUNCDEF);
4641   }
4642 }
4643 
4644 /*
4645 ** Update the accumulator memory cells for an aggregate based on
4646 ** the current cursor position.
4647 */
4648 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4649   Vdbe *v = pParse->pVdbe;
4650   int i;
4651   int regHit = 0;
4652   int addrHitTest = 0;
4653   struct AggInfo_func *pF;
4654   struct AggInfo_col *pC;
4655 
4656   pAggInfo->directMode = 1;
4657   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4658     int nArg;
4659     int addrNext = 0;
4660     int regAgg;
4661     ExprList *pList = pF->pExpr->x.pList;
4662     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4663     if( pList ){
4664       nArg = pList->nExpr;
4665       regAgg = sqlite3GetTempRange(pParse, nArg);
4666       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4667     }else{
4668       nArg = 0;
4669       regAgg = 0;
4670     }
4671     if( pF->iDistinct>=0 ){
4672       addrNext = sqlite3VdbeMakeLabel(v);
4673       testcase( nArg==0 );  /* Error condition */
4674       testcase( nArg>1 );   /* Also an error */
4675       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4676     }
4677     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4678       CollSeq *pColl = 0;
4679       struct ExprList_item *pItem;
4680       int j;
4681       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4682       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4683         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4684       }
4685       if( !pColl ){
4686         pColl = pParse->db->pDfltColl;
4687       }
4688       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4689       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4690     }
4691     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4692                       (void*)pF->pFunc, P4_FUNCDEF);
4693     sqlite3VdbeChangeP5(v, (u8)nArg);
4694     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4695     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4696     if( addrNext ){
4697       sqlite3VdbeResolveLabel(v, addrNext);
4698       sqlite3ExprCacheClear(pParse);
4699     }
4700   }
4701 
4702   /* Before populating the accumulator registers, clear the column cache.
4703   ** Otherwise, if any of the required column values are already present
4704   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4705   ** to pC->iMem. But by the time the value is used, the original register
4706   ** may have been used, invalidating the underlying buffer holding the
4707   ** text or blob value. See ticket [883034dcb5].
4708   **
4709   ** Another solution would be to change the OP_SCopy used to copy cached
4710   ** values to an OP_Copy.
4711   */
4712   if( regHit ){
4713     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4714   }
4715   sqlite3ExprCacheClear(pParse);
4716   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4717     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4718   }
4719   pAggInfo->directMode = 0;
4720   sqlite3ExprCacheClear(pParse);
4721   if( addrHitTest ){
4722     sqlite3VdbeJumpHere(v, addrHitTest);
4723   }
4724 }
4725 
4726 /*
4727 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4728 ** count(*) query ("SELECT count(*) FROM pTab").
4729 */
4730 #ifndef SQLITE_OMIT_EXPLAIN
4731 static void explainSimpleCount(
4732   Parse *pParse,                  /* Parse context */
4733   Table *pTab,                    /* Table being queried */
4734   Index *pIdx                     /* Index used to optimize scan, or NULL */
4735 ){
4736   if( pParse->explain==2 ){
4737     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4738     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4739         pTab->zName,
4740         bCover ? " USING COVERING INDEX " : "",
4741         bCover ? pIdx->zName : ""
4742     );
4743     sqlite3VdbeAddOp4(
4744         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4745     );
4746   }
4747 }
4748 #else
4749 # define explainSimpleCount(a,b,c)
4750 #endif
4751 
4752 /*
4753 ** Generate code for the SELECT statement given in the p argument.
4754 **
4755 ** The results are returned according to the SelectDest structure.
4756 ** See comments in sqliteInt.h for further information.
4757 **
4758 ** This routine returns the number of errors.  If any errors are
4759 ** encountered, then an appropriate error message is left in
4760 ** pParse->zErrMsg.
4761 **
4762 ** This routine does NOT free the Select structure passed in.  The
4763 ** calling function needs to do that.
4764 */
4765 int sqlite3Select(
4766   Parse *pParse,         /* The parser context */
4767   Select *p,             /* The SELECT statement being coded. */
4768   SelectDest *pDest      /* What to do with the query results */
4769 ){
4770   int i, j;              /* Loop counters */
4771   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4772   Vdbe *v;               /* The virtual machine under construction */
4773   int isAgg;             /* True for select lists like "count(*)" */
4774   ExprList *pEList = 0;  /* List of columns to extract. */
4775   SrcList *pTabList;     /* List of tables to select from */
4776   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4777   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4778   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4779   int rc = 1;            /* Value to return from this function */
4780   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4781   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4782   AggInfo sAggInfo;      /* Information used by aggregate queries */
4783   int iEnd;              /* Address of the end of the query */
4784   sqlite3 *db;           /* The database connection */
4785 
4786 #ifndef SQLITE_OMIT_EXPLAIN
4787   int iRestoreSelectId = pParse->iSelectId;
4788   pParse->iSelectId = pParse->iNextSelectId++;
4789 #endif
4790 
4791   db = pParse->db;
4792   if( p==0 || db->mallocFailed || pParse->nErr ){
4793     return 1;
4794   }
4795   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4796   memset(&sAggInfo, 0, sizeof(sAggInfo));
4797 #if SELECTTRACE_ENABLED
4798   pParse->nSelectIndent++;
4799   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4800   if( sqlite3SelectTrace & 0x100 ){
4801     sqlite3TreeViewSelect(0, p, 0);
4802   }
4803 #endif
4804 
4805   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4806   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4807   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4808   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4809   if( IgnorableOrderby(pDest) ){
4810     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4811            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4812            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4813            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4814     /* If ORDER BY makes no difference in the output then neither does
4815     ** DISTINCT so it can be removed too. */
4816     sqlite3ExprListDelete(db, p->pOrderBy);
4817     p->pOrderBy = 0;
4818     p->selFlags &= ~SF_Distinct;
4819   }
4820   sqlite3SelectPrep(pParse, p, 0);
4821   memset(&sSort, 0, sizeof(sSort));
4822   sSort.pOrderBy = p->pOrderBy;
4823   pTabList = p->pSrc;
4824   if( pParse->nErr || db->mallocFailed ){
4825     goto select_end;
4826   }
4827   assert( p->pEList!=0 );
4828   isAgg = (p->selFlags & SF_Aggregate)!=0;
4829 #if SELECTTRACE_ENABLED
4830   if( sqlite3SelectTrace & 0x100 ){
4831     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4832     sqlite3TreeViewSelect(0, p, 0);
4833   }
4834 #endif
4835 
4836 
4837   /* If writing to memory or generating a set
4838   ** only a single column may be output.
4839   */
4840 #ifndef SQLITE_OMIT_SUBQUERY
4841   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4842     goto select_end;
4843   }
4844 #endif
4845 
4846   /* Try to flatten subqueries in the FROM clause up into the main query
4847   */
4848 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4849   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4850     struct SrcList_item *pItem = &pTabList->a[i];
4851     Select *pSub = pItem->pSelect;
4852     int isAggSub;
4853     if( pSub==0 ) continue;
4854     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4855     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4856       /* This subquery can be absorbed into its parent. */
4857       if( isAggSub ){
4858         isAgg = 1;
4859         p->selFlags |= SF_Aggregate;
4860       }
4861       i = -1;
4862     }
4863     pTabList = p->pSrc;
4864     if( db->mallocFailed ) goto select_end;
4865     if( !IgnorableOrderby(pDest) ){
4866       sSort.pOrderBy = p->pOrderBy;
4867     }
4868   }
4869 #endif
4870 
4871   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4872   ** does not already exist */
4873   v = sqlite3GetVdbe(pParse);
4874   if( v==0 ) goto select_end;
4875 
4876 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4877   /* Handle compound SELECT statements using the separate multiSelect()
4878   ** procedure.
4879   */
4880   if( p->pPrior ){
4881     rc = multiSelect(pParse, p, pDest);
4882     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4883 #if SELECTTRACE_ENABLED
4884     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4885     pParse->nSelectIndent--;
4886 #endif
4887     return rc;
4888   }
4889 #endif
4890 
4891   /* Generate code for all sub-queries in the FROM clause
4892   */
4893 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4894   for(i=0; i<pTabList->nSrc; i++){
4895     struct SrcList_item *pItem = &pTabList->a[i];
4896     SelectDest dest;
4897     Select *pSub = pItem->pSelect;
4898     if( pSub==0 ) continue;
4899 
4900     /* Sometimes the code for a subquery will be generated more than
4901     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4902     ** for example.  In that case, do not regenerate the code to manifest
4903     ** a view or the co-routine to implement a view.  The first instance
4904     ** is sufficient, though the subroutine to manifest the view does need
4905     ** to be invoked again. */
4906     if( pItem->addrFillSub ){
4907       if( pItem->viaCoroutine==0 ){
4908         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4909       }
4910       continue;
4911     }
4912 
4913     /* Increment Parse.nHeight by the height of the largest expression
4914     ** tree referred to by this, the parent select. The child select
4915     ** may contain expression trees of at most
4916     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4917     ** more conservative than necessary, but much easier than enforcing
4918     ** an exact limit.
4919     */
4920     pParse->nHeight += sqlite3SelectExprHeight(p);
4921 
4922     /* Make copies of constant WHERE-clause terms in the outer query down
4923     ** inside the subquery.  This can help the subquery to run more efficiently.
4924     */
4925     if( (pItem->jointype & JT_OUTER)==0
4926      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4927     ){
4928 #if SELECTTRACE_ENABLED
4929       if( sqlite3SelectTrace & 0x100 ){
4930         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4931         sqlite3TreeViewSelect(0, p, 0);
4932       }
4933 #endif
4934     }
4935 
4936     /* Generate code to implement the subquery
4937     */
4938     if( pTabList->nSrc==1
4939      && (p->selFlags & SF_All)==0
4940      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4941     ){
4942       /* Implement a co-routine that will return a single row of the result
4943       ** set on each invocation.
4944       */
4945       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4946       pItem->regReturn = ++pParse->nMem;
4947       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4948       VdbeComment((v, "%s", pItem->pTab->zName));
4949       pItem->addrFillSub = addrTop;
4950       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4951       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4952       sqlite3Select(pParse, pSub, &dest);
4953       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4954       pItem->viaCoroutine = 1;
4955       pItem->regResult = dest.iSdst;
4956       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4957       sqlite3VdbeJumpHere(v, addrTop-1);
4958       sqlite3ClearTempRegCache(pParse);
4959     }else{
4960       /* Generate a subroutine that will fill an ephemeral table with
4961       ** the content of this subquery.  pItem->addrFillSub will point
4962       ** to the address of the generated subroutine.  pItem->regReturn
4963       ** is a register allocated to hold the subroutine return address
4964       */
4965       int topAddr;
4966       int onceAddr = 0;
4967       int retAddr;
4968       assert( pItem->addrFillSub==0 );
4969       pItem->regReturn = ++pParse->nMem;
4970       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4971       pItem->addrFillSub = topAddr+1;
4972       if( pItem->isCorrelated==0 ){
4973         /* If the subquery is not correlated and if we are not inside of
4974         ** a trigger, then we only need to compute the value of the subquery
4975         ** once. */
4976         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4977         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4978       }else{
4979         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4980       }
4981       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4982       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4983       sqlite3Select(pParse, pSub, &dest);
4984       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4985       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4986       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4987       VdbeComment((v, "end %s", pItem->pTab->zName));
4988       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4989       sqlite3ClearTempRegCache(pParse);
4990     }
4991     if( db->mallocFailed ) goto select_end;
4992     pParse->nHeight -= sqlite3SelectExprHeight(p);
4993   }
4994 #endif
4995 
4996   /* Various elements of the SELECT copied into local variables for
4997   ** convenience */
4998   pEList = p->pEList;
4999   pWhere = p->pWhere;
5000   pGroupBy = p->pGroupBy;
5001   pHaving = p->pHaving;
5002   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5003 
5004 #if SELECTTRACE_ENABLED
5005   if( sqlite3SelectTrace & 0x400 ){
5006     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5007     sqlite3TreeViewSelect(0, p, 0);
5008   }
5009 #endif
5010 
5011   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5012   ** if the select-list is the same as the ORDER BY list, then this query
5013   ** can be rewritten as a GROUP BY. In other words, this:
5014   **
5015   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5016   **
5017   ** is transformed to:
5018   **
5019   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5020   **
5021   ** The second form is preferred as a single index (or temp-table) may be
5022   ** used for both the ORDER BY and DISTINCT processing. As originally
5023   ** written the query must use a temp-table for at least one of the ORDER
5024   ** BY and DISTINCT, and an index or separate temp-table for the other.
5025   */
5026   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5027    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5028   ){
5029     p->selFlags &= ~SF_Distinct;
5030     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5031     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5032     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5033     ** original setting of the SF_Distinct flag, not the current setting */
5034     assert( sDistinct.isTnct );
5035   }
5036 
5037   /* If there is an ORDER BY clause, then create an ephemeral index to
5038   ** do the sorting.  But this sorting ephemeral index might end up
5039   ** being unused if the data can be extracted in pre-sorted order.
5040   ** If that is the case, then the OP_OpenEphemeral instruction will be
5041   ** changed to an OP_Noop once we figure out that the sorting index is
5042   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5043   ** that change.
5044   */
5045   if( sSort.pOrderBy ){
5046     KeyInfo *pKeyInfo;
5047     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5048     sSort.iECursor = pParse->nTab++;
5049     sSort.addrSortIndex =
5050       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5051           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5052           (char*)pKeyInfo, P4_KEYINFO
5053       );
5054   }else{
5055     sSort.addrSortIndex = -1;
5056   }
5057 
5058   /* If the output is destined for a temporary table, open that table.
5059   */
5060   if( pDest->eDest==SRT_EphemTab ){
5061     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5062   }
5063 
5064   /* Set the limiter.
5065   */
5066   iEnd = sqlite3VdbeMakeLabel(v);
5067   p->nSelectRow = LARGEST_INT64;
5068   computeLimitRegisters(pParse, p, iEnd);
5069   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5070     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
5071     sSort.sortFlags |= SORTFLAG_UseSorter;
5072   }
5073 
5074   /* Open an ephemeral index to use for the distinct set.
5075   */
5076   if( p->selFlags & SF_Distinct ){
5077     sDistinct.tabTnct = pParse->nTab++;
5078     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5079                              sDistinct.tabTnct, 0, 0,
5080                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5081                              P4_KEYINFO);
5082     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5083     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5084   }else{
5085     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5086   }
5087 
5088   if( !isAgg && pGroupBy==0 ){
5089     /* No aggregate functions and no GROUP BY clause */
5090     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5091 
5092     /* Begin the database scan. */
5093     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5094                                p->pEList, wctrlFlags, 0);
5095     if( pWInfo==0 ) goto select_end;
5096     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5097       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5098     }
5099     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5100       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5101     }
5102     if( sSort.pOrderBy ){
5103       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5104       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5105         sSort.pOrderBy = 0;
5106       }
5107     }
5108 
5109     /* If sorting index that was created by a prior OP_OpenEphemeral
5110     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5111     ** into an OP_Noop.
5112     */
5113     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5114       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5115     }
5116 
5117     /* Use the standard inner loop. */
5118     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5119                     sqlite3WhereContinueLabel(pWInfo),
5120                     sqlite3WhereBreakLabel(pWInfo));
5121 
5122     /* End the database scan loop.
5123     */
5124     sqlite3WhereEnd(pWInfo);
5125   }else{
5126     /* This case when there exist aggregate functions or a GROUP BY clause
5127     ** or both */
5128     NameContext sNC;    /* Name context for processing aggregate information */
5129     int iAMem;          /* First Mem address for storing current GROUP BY */
5130     int iBMem;          /* First Mem address for previous GROUP BY */
5131     int iUseFlag;       /* Mem address holding flag indicating that at least
5132                         ** one row of the input to the aggregator has been
5133                         ** processed */
5134     int iAbortFlag;     /* Mem address which causes query abort if positive */
5135     int groupBySort;    /* Rows come from source in GROUP BY order */
5136     int addrEnd;        /* End of processing for this SELECT */
5137     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5138     int sortOut = 0;    /* Output register from the sorter */
5139     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5140 
5141     /* Remove any and all aliases between the result set and the
5142     ** GROUP BY clause.
5143     */
5144     if( pGroupBy ){
5145       int k;                        /* Loop counter */
5146       struct ExprList_item *pItem;  /* For looping over expression in a list */
5147 
5148       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5149         pItem->u.x.iAlias = 0;
5150       }
5151       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5152         pItem->u.x.iAlias = 0;
5153       }
5154       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5155     }else{
5156       p->nSelectRow = 1;
5157     }
5158 
5159     /* If there is both a GROUP BY and an ORDER BY clause and they are
5160     ** identical, then it may be possible to disable the ORDER BY clause
5161     ** on the grounds that the GROUP BY will cause elements to come out
5162     ** in the correct order. It also may not - the GROUP BY might use a
5163     ** database index that causes rows to be grouped together as required
5164     ** but not actually sorted. Either way, record the fact that the
5165     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5166     ** variable.  */
5167     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5168       orderByGrp = 1;
5169     }
5170 
5171     /* Create a label to jump to when we want to abort the query */
5172     addrEnd = sqlite3VdbeMakeLabel(v);
5173 
5174     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5175     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5176     ** SELECT statement.
5177     */
5178     memset(&sNC, 0, sizeof(sNC));
5179     sNC.pParse = pParse;
5180     sNC.pSrcList = pTabList;
5181     sNC.pAggInfo = &sAggInfo;
5182     sAggInfo.mnReg = pParse->nMem+1;
5183     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5184     sAggInfo.pGroupBy = pGroupBy;
5185     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5186     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5187     if( pHaving ){
5188       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5189     }
5190     sAggInfo.nAccumulator = sAggInfo.nColumn;
5191     for(i=0; i<sAggInfo.nFunc; i++){
5192       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5193       sNC.ncFlags |= NC_InAggFunc;
5194       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5195       sNC.ncFlags &= ~NC_InAggFunc;
5196     }
5197     sAggInfo.mxReg = pParse->nMem;
5198     if( db->mallocFailed ) goto select_end;
5199 
5200     /* Processing for aggregates with GROUP BY is very different and
5201     ** much more complex than aggregates without a GROUP BY.
5202     */
5203     if( pGroupBy ){
5204       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5205       int j1;             /* A-vs-B comparision jump */
5206       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5207       int regOutputRow;   /* Return address register for output subroutine */
5208       int addrSetAbort;   /* Set the abort flag and return */
5209       int addrTopOfLoop;  /* Top of the input loop */
5210       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5211       int addrReset;      /* Subroutine for resetting the accumulator */
5212       int regReset;       /* Return address register for reset subroutine */
5213 
5214       /* If there is a GROUP BY clause we might need a sorting index to
5215       ** implement it.  Allocate that sorting index now.  If it turns out
5216       ** that we do not need it after all, the OP_SorterOpen instruction
5217       ** will be converted into a Noop.
5218       */
5219       sAggInfo.sortingIdx = pParse->nTab++;
5220       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5221       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5222           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5223           0, (char*)pKeyInfo, P4_KEYINFO);
5224 
5225       /* Initialize memory locations used by GROUP BY aggregate processing
5226       */
5227       iUseFlag = ++pParse->nMem;
5228       iAbortFlag = ++pParse->nMem;
5229       regOutputRow = ++pParse->nMem;
5230       addrOutputRow = sqlite3VdbeMakeLabel(v);
5231       regReset = ++pParse->nMem;
5232       addrReset = sqlite3VdbeMakeLabel(v);
5233       iAMem = pParse->nMem + 1;
5234       pParse->nMem += pGroupBy->nExpr;
5235       iBMem = pParse->nMem + 1;
5236       pParse->nMem += pGroupBy->nExpr;
5237       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5238       VdbeComment((v, "clear abort flag"));
5239       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5240       VdbeComment((v, "indicate accumulator empty"));
5241       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5242 
5243       /* Begin a loop that will extract all source rows in GROUP BY order.
5244       ** This might involve two separate loops with an OP_Sort in between, or
5245       ** it might be a single loop that uses an index to extract information
5246       ** in the right order to begin with.
5247       */
5248       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5249       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5250           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5251       );
5252       if( pWInfo==0 ) goto select_end;
5253       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5254         /* The optimizer is able to deliver rows in group by order so
5255         ** we do not have to sort.  The OP_OpenEphemeral table will be
5256         ** cancelled later because we still need to use the pKeyInfo
5257         */
5258         groupBySort = 0;
5259       }else{
5260         /* Rows are coming out in undetermined order.  We have to push
5261         ** each row into a sorting index, terminate the first loop,
5262         ** then loop over the sorting index in order to get the output
5263         ** in sorted order
5264         */
5265         int regBase;
5266         int regRecord;
5267         int nCol;
5268         int nGroupBy;
5269 
5270         explainTempTable(pParse,
5271             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5272                     "DISTINCT" : "GROUP BY");
5273 
5274         groupBySort = 1;
5275         nGroupBy = pGroupBy->nExpr;
5276         nCol = nGroupBy;
5277         j = nGroupBy;
5278         for(i=0; i<sAggInfo.nColumn; i++){
5279           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5280             nCol++;
5281             j++;
5282           }
5283         }
5284         regBase = sqlite3GetTempRange(pParse, nCol);
5285         sqlite3ExprCacheClear(pParse);
5286         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5287         j = nGroupBy;
5288         for(i=0; i<sAggInfo.nColumn; i++){
5289           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5290           if( pCol->iSorterColumn>=j ){
5291             int r1 = j + regBase;
5292             int r2;
5293 
5294             r2 = sqlite3ExprCodeGetColumn(pParse,
5295                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5296             if( r1!=r2 ){
5297               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5298             }
5299             j++;
5300           }
5301         }
5302         regRecord = sqlite3GetTempReg(pParse);
5303         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5304         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5305         sqlite3ReleaseTempReg(pParse, regRecord);
5306         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5307         sqlite3WhereEnd(pWInfo);
5308         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5309         sortOut = sqlite3GetTempReg(pParse);
5310         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5311         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5312         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5313         sAggInfo.useSortingIdx = 1;
5314         sqlite3ExprCacheClear(pParse);
5315 
5316       }
5317 
5318       /* If the index or temporary table used by the GROUP BY sort
5319       ** will naturally deliver rows in the order required by the ORDER BY
5320       ** clause, cancel the ephemeral table open coded earlier.
5321       **
5322       ** This is an optimization - the correct answer should result regardless.
5323       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5324       ** disable this optimization for testing purposes.  */
5325       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5326        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5327       ){
5328         sSort.pOrderBy = 0;
5329         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5330       }
5331 
5332       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5333       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5334       ** Then compare the current GROUP BY terms against the GROUP BY terms
5335       ** from the previous row currently stored in a0, a1, a2...
5336       */
5337       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5338       sqlite3ExprCacheClear(pParse);
5339       if( groupBySort ){
5340         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5341                           sortOut, sortPTab);
5342       }
5343       for(j=0; j<pGroupBy->nExpr; j++){
5344         if( groupBySort ){
5345           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5346         }else{
5347           sAggInfo.directMode = 1;
5348           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5349         }
5350       }
5351       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5352                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5353       j1 = sqlite3VdbeCurrentAddr(v);
5354       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5355 
5356       /* Generate code that runs whenever the GROUP BY changes.
5357       ** Changes in the GROUP BY are detected by the previous code
5358       ** block.  If there were no changes, this block is skipped.
5359       **
5360       ** This code copies current group by terms in b0,b1,b2,...
5361       ** over to a0,a1,a2.  It then calls the output subroutine
5362       ** and resets the aggregate accumulator registers in preparation
5363       ** for the next GROUP BY batch.
5364       */
5365       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5366       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5367       VdbeComment((v, "output one row"));
5368       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5369       VdbeComment((v, "check abort flag"));
5370       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5371       VdbeComment((v, "reset accumulator"));
5372 
5373       /* Update the aggregate accumulators based on the content of
5374       ** the current row
5375       */
5376       sqlite3VdbeJumpHere(v, j1);
5377       updateAccumulator(pParse, &sAggInfo);
5378       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5379       VdbeComment((v, "indicate data in accumulator"));
5380 
5381       /* End of the loop
5382       */
5383       if( groupBySort ){
5384         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5385         VdbeCoverage(v);
5386       }else{
5387         sqlite3WhereEnd(pWInfo);
5388         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5389       }
5390 
5391       /* Output the final row of result
5392       */
5393       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5394       VdbeComment((v, "output final row"));
5395 
5396       /* Jump over the subroutines
5397       */
5398       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5399 
5400       /* Generate a subroutine that outputs a single row of the result
5401       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5402       ** is less than or equal to zero, the subroutine is a no-op.  If
5403       ** the processing calls for the query to abort, this subroutine
5404       ** increments the iAbortFlag memory location before returning in
5405       ** order to signal the caller to abort.
5406       */
5407       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5408       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5409       VdbeComment((v, "set abort flag"));
5410       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5411       sqlite3VdbeResolveLabel(v, addrOutputRow);
5412       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5413       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5414       VdbeCoverage(v);
5415       VdbeComment((v, "Groupby result generator entry point"));
5416       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5417       finalizeAggFunctions(pParse, &sAggInfo);
5418       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5419       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5420                       &sDistinct, pDest,
5421                       addrOutputRow+1, addrSetAbort);
5422       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5423       VdbeComment((v, "end groupby result generator"));
5424 
5425       /* Generate a subroutine that will reset the group-by accumulator
5426       */
5427       sqlite3VdbeResolveLabel(v, addrReset);
5428       resetAccumulator(pParse, &sAggInfo);
5429       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5430 
5431     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5432     else {
5433       ExprList *pDel = 0;
5434 #ifndef SQLITE_OMIT_BTREECOUNT
5435       Table *pTab;
5436       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5437         /* If isSimpleCount() returns a pointer to a Table structure, then
5438         ** the SQL statement is of the form:
5439         **
5440         **   SELECT count(*) FROM <tbl>
5441         **
5442         ** where the Table structure returned represents table <tbl>.
5443         **
5444         ** This statement is so common that it is optimized specially. The
5445         ** OP_Count instruction is executed either on the intkey table that
5446         ** contains the data for table <tbl> or on one of its indexes. It
5447         ** is better to execute the op on an index, as indexes are almost
5448         ** always spread across less pages than their corresponding tables.
5449         */
5450         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5451         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5452         Index *pIdx;                         /* Iterator variable */
5453         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5454         Index *pBest = 0;                    /* Best index found so far */
5455         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5456 
5457         sqlite3CodeVerifySchema(pParse, iDb);
5458         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5459 
5460         /* Search for the index that has the lowest scan cost.
5461         **
5462         ** (2011-04-15) Do not do a full scan of an unordered index.
5463         **
5464         ** (2013-10-03) Do not count the entries in a partial index.
5465         **
5466         ** In practice the KeyInfo structure will not be used. It is only
5467         ** passed to keep OP_OpenRead happy.
5468         */
5469         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5470         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5471           if( pIdx->bUnordered==0
5472            && pIdx->szIdxRow<pTab->szTabRow
5473            && pIdx->pPartIdxWhere==0
5474            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5475           ){
5476             pBest = pIdx;
5477           }
5478         }
5479         if( pBest ){
5480           iRoot = pBest->tnum;
5481           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5482         }
5483 
5484         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5485         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5486         if( pKeyInfo ){
5487           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5488         }
5489         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5490         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5491         explainSimpleCount(pParse, pTab, pBest);
5492       }else
5493 #endif /* SQLITE_OMIT_BTREECOUNT */
5494       {
5495         /* Check if the query is of one of the following forms:
5496         **
5497         **   SELECT min(x) FROM ...
5498         **   SELECT max(x) FROM ...
5499         **
5500         ** If it is, then ask the code in where.c to attempt to sort results
5501         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5502         ** If where.c is able to produce results sorted in this order, then
5503         ** add vdbe code to break out of the processing loop after the
5504         ** first iteration (since the first iteration of the loop is
5505         ** guaranteed to operate on the row with the minimum or maximum
5506         ** value of x, the only row required).
5507         **
5508         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5509         ** modify behavior as follows:
5510         **
5511         **   + If the query is a "SELECT min(x)", then the loop coded by
5512         **     where.c should not iterate over any values with a NULL value
5513         **     for x.
5514         **
5515         **   + The optimizer code in where.c (the thing that decides which
5516         **     index or indices to use) should place a different priority on
5517         **     satisfying the 'ORDER BY' clause than it does in other cases.
5518         **     Refer to code and comments in where.c for details.
5519         */
5520         ExprList *pMinMax = 0;
5521         u8 flag = WHERE_ORDERBY_NORMAL;
5522 
5523         assert( p->pGroupBy==0 );
5524         assert( flag==0 );
5525         if( p->pHaving==0 ){
5526           flag = minMaxQuery(&sAggInfo, &pMinMax);
5527         }
5528         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5529 
5530         if( flag ){
5531           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5532           pDel = pMinMax;
5533           if( pMinMax && !db->mallocFailed ){
5534             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5535             pMinMax->a[0].pExpr->op = TK_COLUMN;
5536           }
5537         }
5538 
5539         /* This case runs if the aggregate has no GROUP BY clause.  The
5540         ** processing is much simpler since there is only a single row
5541         ** of output.
5542         */
5543         resetAccumulator(pParse, &sAggInfo);
5544         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5545         if( pWInfo==0 ){
5546           sqlite3ExprListDelete(db, pDel);
5547           goto select_end;
5548         }
5549         updateAccumulator(pParse, &sAggInfo);
5550         assert( pMinMax==0 || pMinMax->nExpr==1 );
5551         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5552           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5553           VdbeComment((v, "%s() by index",
5554                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5555         }
5556         sqlite3WhereEnd(pWInfo);
5557         finalizeAggFunctions(pParse, &sAggInfo);
5558       }
5559 
5560       sSort.pOrderBy = 0;
5561       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5562       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5563                       pDest, addrEnd, addrEnd);
5564       sqlite3ExprListDelete(db, pDel);
5565     }
5566     sqlite3VdbeResolveLabel(v, addrEnd);
5567 
5568   } /* endif aggregate query */
5569 
5570   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5571     explainTempTable(pParse, "DISTINCT");
5572   }
5573 
5574   /* If there is an ORDER BY clause, then we need to sort the results
5575   ** and send them to the callback one by one.
5576   */
5577   if( sSort.pOrderBy ){
5578     explainTempTable(pParse,
5579                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5580     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5581   }
5582 
5583   /* Jump here to skip this query
5584   */
5585   sqlite3VdbeResolveLabel(v, iEnd);
5586 
5587   /* The SELECT has been coded. If there is an error in the Parse structure,
5588   ** set the return code to 1. Otherwise 0. */
5589   rc = (pParse->nErr>0);
5590 
5591   /* Control jumps to here if an error is encountered above, or upon
5592   ** successful coding of the SELECT.
5593   */
5594 select_end:
5595   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5596 
5597   /* Identify column names if results of the SELECT are to be output.
5598   */
5599   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5600     generateColumnNames(pParse, pTabList, pEList);
5601   }
5602 
5603   sqlite3DbFree(db, sAggInfo.aCol);
5604   sqlite3DbFree(db, sAggInfo.aFunc);
5605 #if SELECTTRACE_ENABLED
5606   SELECTTRACE(1,pParse,p,("end processing\n"));
5607   pParse->nSelectIndent--;
5608 #endif
5609   return rc;
5610 }
5611