1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 if( p->op==TK_FUNCTION && p->x.pList ){ 370 int i; 371 for(i=0; i<p->x.pList->nExpr; i++){ 372 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 373 } 374 } 375 setJoinExpr(p->pLeft, iTable); 376 p = p->pRight; 377 } 378 } 379 380 /* 381 ** This routine processes the join information for a SELECT statement. 382 ** ON and USING clauses are converted into extra terms of the WHERE clause. 383 ** NATURAL joins also create extra WHERE clause terms. 384 ** 385 ** The terms of a FROM clause are contained in the Select.pSrc structure. 386 ** The left most table is the first entry in Select.pSrc. The right-most 387 ** table is the last entry. The join operator is held in the entry to 388 ** the left. Thus entry 0 contains the join operator for the join between 389 ** entries 0 and 1. Any ON or USING clauses associated with the join are 390 ** also attached to the left entry. 391 ** 392 ** This routine returns the number of errors encountered. 393 */ 394 static int sqliteProcessJoin(Parse *pParse, Select *p){ 395 SrcList *pSrc; /* All tables in the FROM clause */ 396 int i, j; /* Loop counters */ 397 struct SrcList_item *pLeft; /* Left table being joined */ 398 struct SrcList_item *pRight; /* Right table being joined */ 399 400 pSrc = p->pSrc; 401 pLeft = &pSrc->a[0]; 402 pRight = &pLeft[1]; 403 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 404 Table *pLeftTab = pLeft->pTab; 405 Table *pRightTab = pRight->pTab; 406 int isOuter; 407 408 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 409 isOuter = (pRight->jointype & JT_OUTER)!=0; 410 411 /* When the NATURAL keyword is present, add WHERE clause terms for 412 ** every column that the two tables have in common. 413 */ 414 if( pRight->jointype & JT_NATURAL ){ 415 if( pRight->pOn || pRight->pUsing ){ 416 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 417 "an ON or USING clause", 0); 418 return 1; 419 } 420 for(j=0; j<pRightTab->nCol; j++){ 421 char *zName; /* Name of column in the right table */ 422 int iLeft; /* Matching left table */ 423 int iLeftCol; /* Matching column in the left table */ 424 425 zName = pRightTab->aCol[j].zName; 426 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 427 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 428 isOuter, &p->pWhere); 429 } 430 } 431 } 432 433 /* Disallow both ON and USING clauses in the same join 434 */ 435 if( pRight->pOn && pRight->pUsing ){ 436 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 437 "clauses in the same join"); 438 return 1; 439 } 440 441 /* Add the ON clause to the end of the WHERE clause, connected by 442 ** an AND operator. 443 */ 444 if( pRight->pOn ){ 445 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 446 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 447 pRight->pOn = 0; 448 } 449 450 /* Create extra terms on the WHERE clause for each column named 451 ** in the USING clause. Example: If the two tables to be joined are 452 ** A and B and the USING clause names X, Y, and Z, then add this 453 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 454 ** Report an error if any column mentioned in the USING clause is 455 ** not contained in both tables to be joined. 456 */ 457 if( pRight->pUsing ){ 458 IdList *pList = pRight->pUsing; 459 for(j=0; j<pList->nId; j++){ 460 char *zName; /* Name of the term in the USING clause */ 461 int iLeft; /* Table on the left with matching column name */ 462 int iLeftCol; /* Column number of matching column on the left */ 463 int iRightCol; /* Column number of matching column on the right */ 464 465 zName = pList->a[j].zName; 466 iRightCol = columnIndex(pRightTab, zName); 467 if( iRightCol<0 468 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 469 ){ 470 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 471 "not present in both tables", zName); 472 return 1; 473 } 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 return 0; 480 } 481 482 /* Forward reference */ 483 static KeyInfo *keyInfoFromExprList( 484 Parse *pParse, /* Parsing context */ 485 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 486 int iStart, /* Begin with this column of pList */ 487 int nExtra /* Add this many extra columns to the end */ 488 ); 489 490 /* 491 ** Generate code that will push the record in registers regData 492 ** through regData+nData-1 onto the sorter. 493 */ 494 static void pushOntoSorter( 495 Parse *pParse, /* Parser context */ 496 SortCtx *pSort, /* Information about the ORDER BY clause */ 497 Select *pSelect, /* The whole SELECT statement */ 498 int regData, /* First register holding data to be sorted */ 499 int nData, /* Number of elements in the data array */ 500 int nPrefixReg /* No. of reg prior to regData available for use */ 501 ){ 502 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 503 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 504 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 505 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 506 int regBase; /* Regs for sorter record */ 507 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 508 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 509 int op; /* Opcode to add sorter record to sorter */ 510 511 assert( bSeq==0 || bSeq==1 ); 512 if( nPrefixReg ){ 513 assert( nPrefixReg==nExpr+bSeq ); 514 regBase = regData - nExpr - bSeq; 515 }else{ 516 regBase = pParse->nMem + 1; 517 pParse->nMem += nBase; 518 } 519 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 520 if( bSeq ){ 521 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 522 } 523 if( nPrefixReg==0 ){ 524 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 525 } 526 527 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 528 if( nOBSat>0 ){ 529 int regPrevKey; /* The first nOBSat columns of the previous row */ 530 int addrFirst; /* Address of the OP_IfNot opcode */ 531 int addrJmp; /* Address of the OP_Jump opcode */ 532 VdbeOp *pOp; /* Opcode that opens the sorter */ 533 int nKey; /* Number of sorting key columns, including OP_Sequence */ 534 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 535 536 regPrevKey = pParse->nMem+1; 537 pParse->nMem += pSort->nOBSat; 538 nKey = nExpr - pSort->nOBSat + bSeq; 539 if( bSeq ){ 540 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 541 }else{ 542 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 543 } 544 VdbeCoverage(v); 545 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 546 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 547 if( pParse->db->mallocFailed ) return; 548 pOp->p2 = nKey + nData; 549 pKI = pOp->p4.pKeyInfo; 550 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 551 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 552 testcase( pKI->nXField>2 ); 553 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 554 pKI->nXField-1); 555 addrJmp = sqlite3VdbeCurrentAddr(v); 556 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 557 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 558 pSort->regReturn = ++pParse->nMem; 559 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 560 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 561 sqlite3VdbeJumpHere(v, addrFirst); 562 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 563 sqlite3VdbeJumpHere(v, addrJmp); 564 } 565 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 566 op = OP_SorterInsert; 567 }else{ 568 op = OP_IdxInsert; 569 } 570 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 571 if( pSelect->iLimit ){ 572 int addr; 573 int iLimit; 574 if( pSelect->iOffset ){ 575 iLimit = pSelect->iOffset+1; 576 }else{ 577 iLimit = pSelect->iLimit; 578 } 579 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 580 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 581 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 582 sqlite3VdbeJumpHere(v, addr); 583 } 584 } 585 586 /* 587 ** Add code to implement the OFFSET 588 */ 589 static void codeOffset( 590 Vdbe *v, /* Generate code into this VM */ 591 int iOffset, /* Register holding the offset counter */ 592 int iContinue /* Jump here to skip the current record */ 593 ){ 594 if( iOffset>0 ){ 595 int addr; 596 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 597 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 598 VdbeComment((v, "skip OFFSET records")); 599 sqlite3VdbeJumpHere(v, addr); 600 } 601 } 602 603 /* 604 ** Add code that will check to make sure the N registers starting at iMem 605 ** form a distinct entry. iTab is a sorting index that holds previously 606 ** seen combinations of the N values. A new entry is made in iTab 607 ** if the current N values are new. 608 ** 609 ** A jump to addrRepeat is made and the N+1 values are popped from the 610 ** stack if the top N elements are not distinct. 611 */ 612 static void codeDistinct( 613 Parse *pParse, /* Parsing and code generating context */ 614 int iTab, /* A sorting index used to test for distinctness */ 615 int addrRepeat, /* Jump to here if not distinct */ 616 int N, /* Number of elements */ 617 int iMem /* First element */ 618 ){ 619 Vdbe *v; 620 int r1; 621 622 v = pParse->pVdbe; 623 r1 = sqlite3GetTempReg(pParse); 624 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 625 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 626 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 627 sqlite3ReleaseTempReg(pParse, r1); 628 } 629 630 #ifndef SQLITE_OMIT_SUBQUERY 631 /* 632 ** Generate an error message when a SELECT is used within a subexpression 633 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 634 ** column. We do this in a subroutine because the error used to occur 635 ** in multiple places. (The error only occurs in one place now, but we 636 ** retain the subroutine to minimize code disruption.) 637 */ 638 static int checkForMultiColumnSelectError( 639 Parse *pParse, /* Parse context. */ 640 SelectDest *pDest, /* Destination of SELECT results */ 641 int nExpr /* Number of result columns returned by SELECT */ 642 ){ 643 int eDest = pDest->eDest; 644 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 645 sqlite3ErrorMsg(pParse, "only a single result allowed for " 646 "a SELECT that is part of an expression"); 647 return 1; 648 }else{ 649 return 0; 650 } 651 } 652 #endif 653 654 /* 655 ** This routine generates the code for the inside of the inner loop 656 ** of a SELECT. 657 ** 658 ** If srcTab is negative, then the pEList expressions 659 ** are evaluated in order to get the data for this row. If srcTab is 660 ** zero or more, then data is pulled from srcTab and pEList is used only 661 ** to get number columns and the datatype for each column. 662 */ 663 static void selectInnerLoop( 664 Parse *pParse, /* The parser context */ 665 Select *p, /* The complete select statement being coded */ 666 ExprList *pEList, /* List of values being extracted */ 667 int srcTab, /* Pull data from this table */ 668 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 669 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 670 SelectDest *pDest, /* How to dispose of the results */ 671 int iContinue, /* Jump here to continue with next row */ 672 int iBreak /* Jump here to break out of the inner loop */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 int i; 676 int hasDistinct; /* True if the DISTINCT keyword is present */ 677 int regResult; /* Start of memory holding result set */ 678 int eDest = pDest->eDest; /* How to dispose of results */ 679 int iParm = pDest->iSDParm; /* First argument to disposal method */ 680 int nResultCol; /* Number of result columns */ 681 int nPrefixReg = 0; /* Number of extra registers before regResult */ 682 683 assert( v ); 684 assert( pEList!=0 ); 685 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 686 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 687 if( pSort==0 && !hasDistinct ){ 688 assert( iContinue!=0 ); 689 codeOffset(v, p->iOffset, iContinue); 690 } 691 692 /* Pull the requested columns. 693 */ 694 nResultCol = pEList->nExpr; 695 696 if( pDest->iSdst==0 ){ 697 if( pSort ){ 698 nPrefixReg = pSort->pOrderBy->nExpr; 699 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 700 pParse->nMem += nPrefixReg; 701 } 702 pDest->iSdst = pParse->nMem+1; 703 pParse->nMem += nResultCol; 704 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 705 /* This is an error condition that can result, for example, when a SELECT 706 ** on the right-hand side of an INSERT contains more result columns than 707 ** there are columns in the table on the left. The error will be caught 708 ** and reported later. But we need to make sure enough memory is allocated 709 ** to avoid other spurious errors in the meantime. */ 710 pParse->nMem += nResultCol; 711 } 712 pDest->nSdst = nResultCol; 713 regResult = pDest->iSdst; 714 if( srcTab>=0 ){ 715 for(i=0; i<nResultCol; i++){ 716 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 717 VdbeComment((v, "%s", pEList->a[i].zName)); 718 } 719 }else if( eDest!=SRT_Exists ){ 720 /* If the destination is an EXISTS(...) expression, the actual 721 ** values returned by the SELECT are not required. 722 */ 723 u8 ecelFlags; 724 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 725 ecelFlags = SQLITE_ECEL_DUP; 726 }else{ 727 ecelFlags = 0; 728 } 729 sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags); 730 } 731 732 /* If the DISTINCT keyword was present on the SELECT statement 733 ** and this row has been seen before, then do not make this row 734 ** part of the result. 735 */ 736 if( hasDistinct ){ 737 switch( pDistinct->eTnctType ){ 738 case WHERE_DISTINCT_ORDERED: { 739 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 740 int iJump; /* Jump destination */ 741 int regPrev; /* Previous row content */ 742 743 /* Allocate space for the previous row */ 744 regPrev = pParse->nMem+1; 745 pParse->nMem += nResultCol; 746 747 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 748 ** sets the MEM_Cleared bit on the first register of the 749 ** previous value. This will cause the OP_Ne below to always 750 ** fail on the first iteration of the loop even if the first 751 ** row is all NULLs. 752 */ 753 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 754 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 755 pOp->opcode = OP_Null; 756 pOp->p1 = 1; 757 pOp->p2 = regPrev; 758 759 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 760 for(i=0; i<nResultCol; i++){ 761 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 762 if( i<nResultCol-1 ){ 763 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 764 VdbeCoverage(v); 765 }else{ 766 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 767 VdbeCoverage(v); 768 } 769 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 770 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 771 } 772 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 773 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 774 break; 775 } 776 777 case WHERE_DISTINCT_UNIQUE: { 778 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 779 break; 780 } 781 782 default: { 783 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 784 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 785 regResult); 786 break; 787 } 788 } 789 if( pSort==0 ){ 790 codeOffset(v, p->iOffset, iContinue); 791 } 792 } 793 794 switch( eDest ){ 795 /* In this mode, write each query result to the key of the temporary 796 ** table iParm. 797 */ 798 #ifndef SQLITE_OMIT_COMPOUND_SELECT 799 case SRT_Union: { 800 int r1; 801 r1 = sqlite3GetTempReg(pParse); 802 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 803 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 804 sqlite3ReleaseTempReg(pParse, r1); 805 break; 806 } 807 808 /* Construct a record from the query result, but instead of 809 ** saving that record, use it as a key to delete elements from 810 ** the temporary table iParm. 811 */ 812 case SRT_Except: { 813 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 814 break; 815 } 816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 817 818 /* Store the result as data using a unique key. 819 */ 820 case SRT_Fifo: 821 case SRT_DistFifo: 822 case SRT_Table: 823 case SRT_EphemTab: { 824 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 825 testcase( eDest==SRT_Table ); 826 testcase( eDest==SRT_EphemTab ); 827 testcase( eDest==SRT_Fifo ); 828 testcase( eDest==SRT_DistFifo ); 829 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 830 #ifndef SQLITE_OMIT_CTE 831 if( eDest==SRT_DistFifo ){ 832 /* If the destination is DistFifo, then cursor (iParm+1) is open 833 ** on an ephemeral index. If the current row is already present 834 ** in the index, do not write it to the output. If not, add the 835 ** current row to the index and proceed with writing it to the 836 ** output table as well. */ 837 int addr = sqlite3VdbeCurrentAddr(v) + 4; 838 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 839 VdbeCoverage(v); 840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 841 assert( pSort==0 ); 842 } 843 #endif 844 if( pSort ){ 845 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 846 }else{ 847 int r2 = sqlite3GetTempReg(pParse); 848 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 849 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 850 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 851 sqlite3ReleaseTempReg(pParse, r2); 852 } 853 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 854 break; 855 } 856 857 #ifndef SQLITE_OMIT_SUBQUERY 858 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 859 ** then there should be a single item on the stack. Write this 860 ** item into the set table with bogus data. 861 */ 862 case SRT_Set: { 863 assert( nResultCol==1 ); 864 pDest->affSdst = 865 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 866 if( pSort ){ 867 /* At first glance you would think we could optimize out the 868 ** ORDER BY in this case since the order of entries in the set 869 ** does not matter. But there might be a LIMIT clause, in which 870 ** case the order does matter */ 871 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 872 }else{ 873 int r1 = sqlite3GetTempReg(pParse); 874 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 875 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 876 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 877 sqlite3ReleaseTempReg(pParse, r1); 878 } 879 break; 880 } 881 882 /* If any row exist in the result set, record that fact and abort. 883 */ 884 case SRT_Exists: { 885 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 886 /* The LIMIT clause will terminate the loop for us */ 887 break; 888 } 889 890 /* If this is a scalar select that is part of an expression, then 891 ** store the results in the appropriate memory cell and break out 892 ** of the scan loop. 893 */ 894 case SRT_Mem: { 895 assert( nResultCol==1 ); 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 898 }else{ 899 assert( regResult==iParm ); 900 /* The LIMIT clause will jump out of the loop for us */ 901 } 902 break; 903 } 904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 905 906 case SRT_Coroutine: /* Send data to a co-routine */ 907 case SRT_Output: { /* Return the results */ 908 testcase( eDest==SRT_Coroutine ); 909 testcase( eDest==SRT_Output ); 910 if( pSort ){ 911 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 912 }else if( eDest==SRT_Coroutine ){ 913 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 914 }else{ 915 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 916 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 917 } 918 break; 919 } 920 921 #ifndef SQLITE_OMIT_CTE 922 /* Write the results into a priority queue that is order according to 923 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 924 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 925 ** pSO->nExpr columns, then make sure all keys are unique by adding a 926 ** final OP_Sequence column. The last column is the record as a blob. 927 */ 928 case SRT_DistQueue: 929 case SRT_Queue: { 930 int nKey; 931 int r1, r2, r3; 932 int addrTest = 0; 933 ExprList *pSO; 934 pSO = pDest->pOrderBy; 935 assert( pSO ); 936 nKey = pSO->nExpr; 937 r1 = sqlite3GetTempReg(pParse); 938 r2 = sqlite3GetTempRange(pParse, nKey+2); 939 r3 = r2+nKey+1; 940 if( eDest==SRT_DistQueue ){ 941 /* If the destination is DistQueue, then cursor (iParm+1) is open 942 ** on a second ephemeral index that holds all values every previously 943 ** added to the queue. */ 944 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 945 regResult, nResultCol); 946 VdbeCoverage(v); 947 } 948 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 949 if( eDest==SRT_DistQueue ){ 950 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 951 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 952 } 953 for(i=0; i<nKey; i++){ 954 sqlite3VdbeAddOp2(v, OP_SCopy, 955 regResult + pSO->a[i].u.x.iOrderByCol - 1, 956 r2+i); 957 } 958 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 959 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 960 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 961 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 962 sqlite3ReleaseTempReg(pParse, r1); 963 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 964 break; 965 } 966 #endif /* SQLITE_OMIT_CTE */ 967 968 969 970 #if !defined(SQLITE_OMIT_TRIGGER) 971 /* Discard the results. This is used for SELECT statements inside 972 ** the body of a TRIGGER. The purpose of such selects is to call 973 ** user-defined functions that have side effects. We do not care 974 ** about the actual results of the select. 975 */ 976 default: { 977 assert( eDest==SRT_Discard ); 978 break; 979 } 980 #endif 981 } 982 983 /* Jump to the end of the loop if the LIMIT is reached. Except, if 984 ** there is a sorter, in which case the sorter has already limited 985 ** the output for us. 986 */ 987 if( pSort==0 && p->iLimit ){ 988 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 989 } 990 } 991 992 /* 993 ** Allocate a KeyInfo object sufficient for an index of N key columns and 994 ** X extra columns. 995 */ 996 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 997 KeyInfo *p = sqlite3DbMallocZero(0, 998 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 999 if( p ){ 1000 p->aSortOrder = (u8*)&p->aColl[N+X]; 1001 p->nField = (u16)N; 1002 p->nXField = (u16)X; 1003 p->enc = ENC(db); 1004 p->db = db; 1005 p->nRef = 1; 1006 }else{ 1007 db->mallocFailed = 1; 1008 } 1009 return p; 1010 } 1011 1012 /* 1013 ** Deallocate a KeyInfo object 1014 */ 1015 void sqlite3KeyInfoUnref(KeyInfo *p){ 1016 if( p ){ 1017 assert( p->nRef>0 ); 1018 p->nRef--; 1019 if( p->nRef==0 ) sqlite3DbFree(0, p); 1020 } 1021 } 1022 1023 /* 1024 ** Make a new pointer to a KeyInfo object 1025 */ 1026 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1027 if( p ){ 1028 assert( p->nRef>0 ); 1029 p->nRef++; 1030 } 1031 return p; 1032 } 1033 1034 #ifdef SQLITE_DEBUG 1035 /* 1036 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1037 ** can only be changed if this is just a single reference to the object. 1038 ** 1039 ** This routine is used only inside of assert() statements. 1040 */ 1041 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1042 #endif /* SQLITE_DEBUG */ 1043 1044 /* 1045 ** Given an expression list, generate a KeyInfo structure that records 1046 ** the collating sequence for each expression in that expression list. 1047 ** 1048 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1049 ** KeyInfo structure is appropriate for initializing a virtual index to 1050 ** implement that clause. If the ExprList is the result set of a SELECT 1051 ** then the KeyInfo structure is appropriate for initializing a virtual 1052 ** index to implement a DISTINCT test. 1053 ** 1054 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1055 ** function is responsible for seeing that this structure is eventually 1056 ** freed. 1057 */ 1058 static KeyInfo *keyInfoFromExprList( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1061 int iStart, /* Begin with this column of pList */ 1062 int nExtra /* Add this many extra columns to the end */ 1063 ){ 1064 int nExpr; 1065 KeyInfo *pInfo; 1066 struct ExprList_item *pItem; 1067 sqlite3 *db = pParse->db; 1068 int i; 1069 1070 nExpr = pList->nExpr; 1071 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1072 if( pInfo ){ 1073 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1074 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1075 CollSeq *pColl; 1076 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1077 if( !pColl ) pColl = db->pDfltColl; 1078 pInfo->aColl[i-iStart] = pColl; 1079 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1080 } 1081 } 1082 return pInfo; 1083 } 1084 1085 /* 1086 ** Name of the connection operator, used for error messages. 1087 */ 1088 static const char *selectOpName(int id){ 1089 char *z; 1090 switch( id ){ 1091 case TK_ALL: z = "UNION ALL"; break; 1092 case TK_INTERSECT: z = "INTERSECT"; break; 1093 case TK_EXCEPT: z = "EXCEPT"; break; 1094 default: z = "UNION"; break; 1095 } 1096 return z; 1097 } 1098 1099 #ifndef SQLITE_OMIT_EXPLAIN 1100 /* 1101 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1102 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1103 ** where the caption is of the form: 1104 ** 1105 ** "USE TEMP B-TREE FOR xxx" 1106 ** 1107 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1108 ** is determined by the zUsage argument. 1109 */ 1110 static void explainTempTable(Parse *pParse, const char *zUsage){ 1111 if( pParse->explain==2 ){ 1112 Vdbe *v = pParse->pVdbe; 1113 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1114 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1115 } 1116 } 1117 1118 /* 1119 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1120 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1121 ** in sqlite3Select() to assign values to structure member variables that 1122 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1123 ** code with #ifndef directives. 1124 */ 1125 # define explainSetInteger(a, b) a = b 1126 1127 #else 1128 /* No-op versions of the explainXXX() functions and macros. */ 1129 # define explainTempTable(y,z) 1130 # define explainSetInteger(y,z) 1131 #endif 1132 1133 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1134 /* 1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1137 ** where the caption is of one of the two forms: 1138 ** 1139 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1140 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1141 ** 1142 ** where iSub1 and iSub2 are the integers passed as the corresponding 1143 ** function parameters, and op is the text representation of the parameter 1144 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1145 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1146 ** false, or the second form if it is true. 1147 */ 1148 static void explainComposite( 1149 Parse *pParse, /* Parse context */ 1150 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1151 int iSub1, /* Subquery id 1 */ 1152 int iSub2, /* Subquery id 2 */ 1153 int bUseTmp /* True if a temp table was used */ 1154 ){ 1155 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1156 if( pParse->explain==2 ){ 1157 Vdbe *v = pParse->pVdbe; 1158 char *zMsg = sqlite3MPrintf( 1159 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1160 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1161 ); 1162 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1163 } 1164 } 1165 #else 1166 /* No-op versions of the explainXXX() functions and macros. */ 1167 # define explainComposite(v,w,x,y,z) 1168 #endif 1169 1170 /* 1171 ** If the inner loop was generated using a non-null pOrderBy argument, 1172 ** then the results were placed in a sorter. After the loop is terminated 1173 ** we need to run the sorter and output the results. The following 1174 ** routine generates the code needed to do that. 1175 */ 1176 static void generateSortTail( 1177 Parse *pParse, /* Parsing context */ 1178 Select *p, /* The SELECT statement */ 1179 SortCtx *pSort, /* Information on the ORDER BY clause */ 1180 int nColumn, /* Number of columns of data */ 1181 SelectDest *pDest /* Write the sorted results here */ 1182 ){ 1183 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1184 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1185 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1186 int addr; 1187 int addrOnce = 0; 1188 int iTab; 1189 ExprList *pOrderBy = pSort->pOrderBy; 1190 int eDest = pDest->eDest; 1191 int iParm = pDest->iSDParm; 1192 int regRow; 1193 int regRowid; 1194 int nKey; 1195 int iSortTab; /* Sorter cursor to read from */ 1196 int nSortData; /* Trailing values to read from sorter */ 1197 int i; 1198 int bSeq; /* True if sorter record includes seq. no. */ 1199 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1200 struct ExprList_item *aOutEx = p->pEList->a; 1201 #endif 1202 1203 if( pSort->labelBkOut ){ 1204 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1205 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1206 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1207 } 1208 iTab = pSort->iECursor; 1209 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1210 regRowid = 0; 1211 regRow = pDest->iSdst; 1212 nSortData = nColumn; 1213 }else{ 1214 regRowid = sqlite3GetTempReg(pParse); 1215 regRow = sqlite3GetTempReg(pParse); 1216 nSortData = 1; 1217 } 1218 nKey = pOrderBy->nExpr - pSort->nOBSat; 1219 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1220 int regSortOut = ++pParse->nMem; 1221 iSortTab = pParse->nTab++; 1222 if( pSort->labelBkOut ){ 1223 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1224 } 1225 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1226 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1227 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1228 VdbeCoverage(v); 1229 codeOffset(v, p->iOffset, addrContinue); 1230 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1231 bSeq = 0; 1232 }else{ 1233 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1234 codeOffset(v, p->iOffset, addrContinue); 1235 iSortTab = iTab; 1236 bSeq = 1; 1237 } 1238 for(i=0; i<nSortData; i++){ 1239 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1240 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1241 } 1242 switch( eDest ){ 1243 case SRT_EphemTab: { 1244 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1245 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1246 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1247 break; 1248 } 1249 #ifndef SQLITE_OMIT_SUBQUERY 1250 case SRT_Set: { 1251 assert( nColumn==1 ); 1252 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1253 &pDest->affSdst, 1); 1254 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1255 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1256 break; 1257 } 1258 case SRT_Mem: { 1259 assert( nColumn==1 ); 1260 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1261 /* The LIMIT clause will terminate the loop for us */ 1262 break; 1263 } 1264 #endif 1265 default: { 1266 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1267 testcase( eDest==SRT_Output ); 1268 testcase( eDest==SRT_Coroutine ); 1269 if( eDest==SRT_Output ){ 1270 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1271 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1272 }else{ 1273 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1274 } 1275 break; 1276 } 1277 } 1278 if( regRowid ){ 1279 sqlite3ReleaseTempReg(pParse, regRow); 1280 sqlite3ReleaseTempReg(pParse, regRowid); 1281 } 1282 /* The bottom of the loop 1283 */ 1284 sqlite3VdbeResolveLabel(v, addrContinue); 1285 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1286 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1287 }else{ 1288 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1289 } 1290 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1291 sqlite3VdbeResolveLabel(v, addrBreak); 1292 } 1293 1294 /* 1295 ** Return a pointer to a string containing the 'declaration type' of the 1296 ** expression pExpr. The string may be treated as static by the caller. 1297 ** 1298 ** Also try to estimate the size of the returned value and return that 1299 ** result in *pEstWidth. 1300 ** 1301 ** The declaration type is the exact datatype definition extracted from the 1302 ** original CREATE TABLE statement if the expression is a column. The 1303 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1304 ** is considered a column can be complex in the presence of subqueries. The 1305 ** result-set expression in all of the following SELECT statements is 1306 ** considered a column by this function. 1307 ** 1308 ** SELECT col FROM tbl; 1309 ** SELECT (SELECT col FROM tbl; 1310 ** SELECT (SELECT col FROM tbl); 1311 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1312 ** 1313 ** The declaration type for any expression other than a column is NULL. 1314 ** 1315 ** This routine has either 3 or 6 parameters depending on whether or not 1316 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1317 */ 1318 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1319 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1320 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1322 #endif 1323 static const char *columnTypeImpl( 1324 NameContext *pNC, 1325 Expr *pExpr, 1326 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1327 const char **pzOrigDb, 1328 const char **pzOrigTab, 1329 const char **pzOrigCol, 1330 #endif 1331 u8 *pEstWidth 1332 ){ 1333 char const *zType = 0; 1334 int j; 1335 u8 estWidth = 1; 1336 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1337 char const *zOrigDb = 0; 1338 char const *zOrigTab = 0; 1339 char const *zOrigCol = 0; 1340 #endif 1341 1342 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1343 switch( pExpr->op ){ 1344 case TK_AGG_COLUMN: 1345 case TK_COLUMN: { 1346 /* The expression is a column. Locate the table the column is being 1347 ** extracted from in NameContext.pSrcList. This table may be real 1348 ** database table or a subquery. 1349 */ 1350 Table *pTab = 0; /* Table structure column is extracted from */ 1351 Select *pS = 0; /* Select the column is extracted from */ 1352 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1353 testcase( pExpr->op==TK_AGG_COLUMN ); 1354 testcase( pExpr->op==TK_COLUMN ); 1355 while( pNC && !pTab ){ 1356 SrcList *pTabList = pNC->pSrcList; 1357 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1358 if( j<pTabList->nSrc ){ 1359 pTab = pTabList->a[j].pTab; 1360 pS = pTabList->a[j].pSelect; 1361 }else{ 1362 pNC = pNC->pNext; 1363 } 1364 } 1365 1366 if( pTab==0 ){ 1367 /* At one time, code such as "SELECT new.x" within a trigger would 1368 ** cause this condition to run. Since then, we have restructured how 1369 ** trigger code is generated and so this condition is no longer 1370 ** possible. However, it can still be true for statements like 1371 ** the following: 1372 ** 1373 ** CREATE TABLE t1(col INTEGER); 1374 ** SELECT (SELECT t1.col) FROM FROM t1; 1375 ** 1376 ** when columnType() is called on the expression "t1.col" in the 1377 ** sub-select. In this case, set the column type to NULL, even 1378 ** though it should really be "INTEGER". 1379 ** 1380 ** This is not a problem, as the column type of "t1.col" is never 1381 ** used. When columnType() is called on the expression 1382 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1383 ** branch below. */ 1384 break; 1385 } 1386 1387 assert( pTab && pExpr->pTab==pTab ); 1388 if( pS ){ 1389 /* The "table" is actually a sub-select or a view in the FROM clause 1390 ** of the SELECT statement. Return the declaration type and origin 1391 ** data for the result-set column of the sub-select. 1392 */ 1393 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1394 /* If iCol is less than zero, then the expression requests the 1395 ** rowid of the sub-select or view. This expression is legal (see 1396 ** test case misc2.2.2) - it always evaluates to NULL. 1397 ** 1398 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1399 ** caught already by name resolution. 1400 */ 1401 NameContext sNC; 1402 Expr *p = pS->pEList->a[iCol].pExpr; 1403 sNC.pSrcList = pS->pSrc; 1404 sNC.pNext = pNC; 1405 sNC.pParse = pNC->pParse; 1406 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1407 } 1408 }else if( pTab->pSchema ){ 1409 /* A real table */ 1410 assert( !pS ); 1411 if( iCol<0 ) iCol = pTab->iPKey; 1412 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1413 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1414 if( iCol<0 ){ 1415 zType = "INTEGER"; 1416 zOrigCol = "rowid"; 1417 }else{ 1418 zType = pTab->aCol[iCol].zType; 1419 zOrigCol = pTab->aCol[iCol].zName; 1420 estWidth = pTab->aCol[iCol].szEst; 1421 } 1422 zOrigTab = pTab->zName; 1423 if( pNC->pParse ){ 1424 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1425 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1426 } 1427 #else 1428 if( iCol<0 ){ 1429 zType = "INTEGER"; 1430 }else{ 1431 zType = pTab->aCol[iCol].zType; 1432 estWidth = pTab->aCol[iCol].szEst; 1433 } 1434 #endif 1435 } 1436 break; 1437 } 1438 #ifndef SQLITE_OMIT_SUBQUERY 1439 case TK_SELECT: { 1440 /* The expression is a sub-select. Return the declaration type and 1441 ** origin info for the single column in the result set of the SELECT 1442 ** statement. 1443 */ 1444 NameContext sNC; 1445 Select *pS = pExpr->x.pSelect; 1446 Expr *p = pS->pEList->a[0].pExpr; 1447 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1448 sNC.pSrcList = pS->pSrc; 1449 sNC.pNext = pNC; 1450 sNC.pParse = pNC->pParse; 1451 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1452 break; 1453 } 1454 #endif 1455 } 1456 1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1458 if( pzOrigDb ){ 1459 assert( pzOrigTab && pzOrigCol ); 1460 *pzOrigDb = zOrigDb; 1461 *pzOrigTab = zOrigTab; 1462 *pzOrigCol = zOrigCol; 1463 } 1464 #endif 1465 if( pEstWidth ) *pEstWidth = estWidth; 1466 return zType; 1467 } 1468 1469 /* 1470 ** Generate code that will tell the VDBE the declaration types of columns 1471 ** in the result set. 1472 */ 1473 static void generateColumnTypes( 1474 Parse *pParse, /* Parser context */ 1475 SrcList *pTabList, /* List of tables */ 1476 ExprList *pEList /* Expressions defining the result set */ 1477 ){ 1478 #ifndef SQLITE_OMIT_DECLTYPE 1479 Vdbe *v = pParse->pVdbe; 1480 int i; 1481 NameContext sNC; 1482 sNC.pSrcList = pTabList; 1483 sNC.pParse = pParse; 1484 for(i=0; i<pEList->nExpr; i++){ 1485 Expr *p = pEList->a[i].pExpr; 1486 const char *zType; 1487 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1488 const char *zOrigDb = 0; 1489 const char *zOrigTab = 0; 1490 const char *zOrigCol = 0; 1491 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1492 1493 /* The vdbe must make its own copy of the column-type and other 1494 ** column specific strings, in case the schema is reset before this 1495 ** virtual machine is deleted. 1496 */ 1497 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1498 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1499 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1500 #else 1501 zType = columnType(&sNC, p, 0, 0, 0, 0); 1502 #endif 1503 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1504 } 1505 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1506 } 1507 1508 /* 1509 ** Generate code that will tell the VDBE the names of columns 1510 ** in the result set. This information is used to provide the 1511 ** azCol[] values in the callback. 1512 */ 1513 static void generateColumnNames( 1514 Parse *pParse, /* Parser context */ 1515 SrcList *pTabList, /* List of tables */ 1516 ExprList *pEList /* Expressions defining the result set */ 1517 ){ 1518 Vdbe *v = pParse->pVdbe; 1519 int i, j; 1520 sqlite3 *db = pParse->db; 1521 int fullNames, shortNames; 1522 1523 #ifndef SQLITE_OMIT_EXPLAIN 1524 /* If this is an EXPLAIN, skip this step */ 1525 if( pParse->explain ){ 1526 return; 1527 } 1528 #endif 1529 1530 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1531 pParse->colNamesSet = 1; 1532 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1533 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1534 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1535 for(i=0; i<pEList->nExpr; i++){ 1536 Expr *p; 1537 p = pEList->a[i].pExpr; 1538 if( NEVER(p==0) ) continue; 1539 if( pEList->a[i].zName ){ 1540 char *zName = pEList->a[i].zName; 1541 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1542 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1543 Table *pTab; 1544 char *zCol; 1545 int iCol = p->iColumn; 1546 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1547 if( pTabList->a[j].iCursor==p->iTable ) break; 1548 } 1549 assert( j<pTabList->nSrc ); 1550 pTab = pTabList->a[j].pTab; 1551 if( iCol<0 ) iCol = pTab->iPKey; 1552 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1553 if( iCol<0 ){ 1554 zCol = "rowid"; 1555 }else{ 1556 zCol = pTab->aCol[iCol].zName; 1557 } 1558 if( !shortNames && !fullNames ){ 1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1560 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1561 }else if( fullNames ){ 1562 char *zName = 0; 1563 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1564 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1565 }else{ 1566 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1567 } 1568 }else{ 1569 const char *z = pEList->a[i].zSpan; 1570 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1571 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1572 } 1573 } 1574 generateColumnTypes(pParse, pTabList, pEList); 1575 } 1576 1577 /* 1578 ** Given an expression list (which is really the list of expressions 1579 ** that form the result set of a SELECT statement) compute appropriate 1580 ** column names for a table that would hold the expression list. 1581 ** 1582 ** All column names will be unique. 1583 ** 1584 ** Only the column names are computed. Column.zType, Column.zColl, 1585 ** and other fields of Column are zeroed. 1586 ** 1587 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1588 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1589 */ 1590 static int selectColumnsFromExprList( 1591 Parse *pParse, /* Parsing context */ 1592 ExprList *pEList, /* Expr list from which to derive column names */ 1593 i16 *pnCol, /* Write the number of columns here */ 1594 Column **paCol /* Write the new column list here */ 1595 ){ 1596 sqlite3 *db = pParse->db; /* Database connection */ 1597 int i, j; /* Loop counters */ 1598 int cnt; /* Index added to make the name unique */ 1599 Column *aCol, *pCol; /* For looping over result columns */ 1600 int nCol; /* Number of columns in the result set */ 1601 Expr *p; /* Expression for a single result column */ 1602 char *zName; /* Column name */ 1603 int nName; /* Size of name in zName[] */ 1604 1605 if( pEList ){ 1606 nCol = pEList->nExpr; 1607 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1608 testcase( aCol==0 ); 1609 }else{ 1610 nCol = 0; 1611 aCol = 0; 1612 } 1613 *pnCol = nCol; 1614 *paCol = aCol; 1615 1616 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1617 /* Get an appropriate name for the column 1618 */ 1619 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1620 if( (zName = pEList->a[i].zName)!=0 ){ 1621 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1622 zName = sqlite3DbStrDup(db, zName); 1623 }else{ 1624 Expr *pColExpr = p; /* The expression that is the result column name */ 1625 Table *pTab; /* Table associated with this expression */ 1626 while( pColExpr->op==TK_DOT ){ 1627 pColExpr = pColExpr->pRight; 1628 assert( pColExpr!=0 ); 1629 } 1630 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1631 /* For columns use the column name name */ 1632 int iCol = pColExpr->iColumn; 1633 pTab = pColExpr->pTab; 1634 if( iCol<0 ) iCol = pTab->iPKey; 1635 zName = sqlite3MPrintf(db, "%s", 1636 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1637 }else if( pColExpr->op==TK_ID ){ 1638 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1639 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1640 }else{ 1641 /* Use the original text of the column expression as its name */ 1642 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1643 } 1644 } 1645 if( db->mallocFailed ){ 1646 sqlite3DbFree(db, zName); 1647 break; 1648 } 1649 1650 /* Make sure the column name is unique. If the name is not unique, 1651 ** append an integer to the name so that it becomes unique. 1652 */ 1653 nName = sqlite3Strlen30(zName); 1654 for(j=cnt=0; j<i; j++){ 1655 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1656 char *zNewName; 1657 int k; 1658 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1659 if( k>=0 && zName[k]==':' ) nName = k; 1660 zName[nName] = 0; 1661 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1662 sqlite3DbFree(db, zName); 1663 zName = zNewName; 1664 j = -1; 1665 if( zName==0 ) break; 1666 } 1667 } 1668 pCol->zName = zName; 1669 } 1670 if( db->mallocFailed ){ 1671 for(j=0; j<i; j++){ 1672 sqlite3DbFree(db, aCol[j].zName); 1673 } 1674 sqlite3DbFree(db, aCol); 1675 *paCol = 0; 1676 *pnCol = 0; 1677 return SQLITE_NOMEM; 1678 } 1679 return SQLITE_OK; 1680 } 1681 1682 /* 1683 ** Add type and collation information to a column list based on 1684 ** a SELECT statement. 1685 ** 1686 ** The column list presumably came from selectColumnNamesFromExprList(). 1687 ** The column list has only names, not types or collations. This 1688 ** routine goes through and adds the types and collations. 1689 ** 1690 ** This routine requires that all identifiers in the SELECT 1691 ** statement be resolved. 1692 */ 1693 static void selectAddColumnTypeAndCollation( 1694 Parse *pParse, /* Parsing contexts */ 1695 Table *pTab, /* Add column type information to this table */ 1696 Select *pSelect /* SELECT used to determine types and collations */ 1697 ){ 1698 sqlite3 *db = pParse->db; 1699 NameContext sNC; 1700 Column *pCol; 1701 CollSeq *pColl; 1702 int i; 1703 Expr *p; 1704 struct ExprList_item *a; 1705 u64 szAll = 0; 1706 1707 assert( pSelect!=0 ); 1708 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1709 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1710 if( db->mallocFailed ) return; 1711 memset(&sNC, 0, sizeof(sNC)); 1712 sNC.pSrcList = pSelect->pSrc; 1713 a = pSelect->pEList->a; 1714 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1715 p = a[i].pExpr; 1716 if( pCol->zType==0 ){ 1717 pCol->zType = sqlite3DbStrDup(db, 1718 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1719 } 1720 szAll += pCol->szEst; 1721 pCol->affinity = sqlite3ExprAffinity(p); 1722 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1723 pColl = sqlite3ExprCollSeq(pParse, p); 1724 if( pColl && pCol->zColl==0 ){ 1725 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1726 } 1727 } 1728 pTab->szTabRow = sqlite3LogEst(szAll*4); 1729 } 1730 1731 /* 1732 ** Given a SELECT statement, generate a Table structure that describes 1733 ** the result set of that SELECT. 1734 */ 1735 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1736 Table *pTab; 1737 sqlite3 *db = pParse->db; 1738 int savedFlags; 1739 1740 savedFlags = db->flags; 1741 db->flags &= ~SQLITE_FullColNames; 1742 db->flags |= SQLITE_ShortColNames; 1743 sqlite3SelectPrep(pParse, pSelect, 0); 1744 if( pParse->nErr ) return 0; 1745 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1746 db->flags = savedFlags; 1747 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1748 if( pTab==0 ){ 1749 return 0; 1750 } 1751 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1752 ** is disabled */ 1753 assert( db->lookaside.bEnabled==0 ); 1754 pTab->nRef = 1; 1755 pTab->zName = 0; 1756 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1757 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1758 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1759 pTab->iPKey = -1; 1760 if( db->mallocFailed ){ 1761 sqlite3DeleteTable(db, pTab); 1762 return 0; 1763 } 1764 return pTab; 1765 } 1766 1767 /* 1768 ** Get a VDBE for the given parser context. Create a new one if necessary. 1769 ** If an error occurs, return NULL and leave a message in pParse. 1770 */ 1771 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1772 Vdbe *v = pParse->pVdbe; 1773 if( v==0 ){ 1774 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1775 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1776 if( pParse->pToplevel==0 1777 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1778 ){ 1779 pParse->okConstFactor = 1; 1780 } 1781 1782 } 1783 return v; 1784 } 1785 1786 1787 /* 1788 ** Compute the iLimit and iOffset fields of the SELECT based on the 1789 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1790 ** that appear in the original SQL statement after the LIMIT and OFFSET 1791 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1792 ** are the integer memory register numbers for counters used to compute 1793 ** the limit and offset. If there is no limit and/or offset, then 1794 ** iLimit and iOffset are negative. 1795 ** 1796 ** This routine changes the values of iLimit and iOffset only if 1797 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1798 ** iOffset should have been preset to appropriate default values (zero) 1799 ** prior to calling this routine. 1800 ** 1801 ** The iOffset register (if it exists) is initialized to the value 1802 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1803 ** iOffset+1 is initialized to LIMIT+OFFSET. 1804 ** 1805 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1806 ** redefined. The UNION ALL operator uses this property to force 1807 ** the reuse of the same limit and offset registers across multiple 1808 ** SELECT statements. 1809 */ 1810 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1811 Vdbe *v = 0; 1812 int iLimit = 0; 1813 int iOffset; 1814 int addr1, n; 1815 if( p->iLimit ) return; 1816 1817 /* 1818 ** "LIMIT -1" always shows all rows. There is some 1819 ** controversy about what the correct behavior should be. 1820 ** The current implementation interprets "LIMIT 0" to mean 1821 ** no rows. 1822 */ 1823 sqlite3ExprCacheClear(pParse); 1824 assert( p->pOffset==0 || p->pLimit!=0 ); 1825 if( p->pLimit ){ 1826 p->iLimit = iLimit = ++pParse->nMem; 1827 v = sqlite3GetVdbe(pParse); 1828 assert( v!=0 ); 1829 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1830 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1831 VdbeComment((v, "LIMIT counter")); 1832 if( n==0 ){ 1833 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1834 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1835 p->nSelectRow = n; 1836 } 1837 }else{ 1838 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1839 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1840 VdbeComment((v, "LIMIT counter")); 1841 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1842 } 1843 if( p->pOffset ){ 1844 p->iOffset = iOffset = ++pParse->nMem; 1845 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1846 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1847 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1848 VdbeComment((v, "OFFSET counter")); 1849 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1850 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1851 sqlite3VdbeJumpHere(v, addr1); 1852 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1853 VdbeComment((v, "LIMIT+OFFSET")); 1854 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1855 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1856 sqlite3VdbeJumpHere(v, addr1); 1857 } 1858 } 1859 } 1860 1861 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1862 /* 1863 ** Return the appropriate collating sequence for the iCol-th column of 1864 ** the result set for the compound-select statement "p". Return NULL if 1865 ** the column has no default collating sequence. 1866 ** 1867 ** The collating sequence for the compound select is taken from the 1868 ** left-most term of the select that has a collating sequence. 1869 */ 1870 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1871 CollSeq *pRet; 1872 if( p->pPrior ){ 1873 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1874 }else{ 1875 pRet = 0; 1876 } 1877 assert( iCol>=0 ); 1878 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1879 ** have been thrown during name resolution and we would not have gotten 1880 ** this far */ 1881 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1882 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1883 } 1884 return pRet; 1885 } 1886 1887 /* 1888 ** The select statement passed as the second parameter is a compound SELECT 1889 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1890 ** structure suitable for implementing the ORDER BY. 1891 ** 1892 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1893 ** function is responsible for ensuring that this structure is eventually 1894 ** freed. 1895 */ 1896 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1897 ExprList *pOrderBy = p->pOrderBy; 1898 int nOrderBy = p->pOrderBy->nExpr; 1899 sqlite3 *db = pParse->db; 1900 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1901 if( pRet ){ 1902 int i; 1903 for(i=0; i<nOrderBy; i++){ 1904 struct ExprList_item *pItem = &pOrderBy->a[i]; 1905 Expr *pTerm = pItem->pExpr; 1906 CollSeq *pColl; 1907 1908 if( pTerm->flags & EP_Collate ){ 1909 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1910 }else{ 1911 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1912 if( pColl==0 ) pColl = db->pDfltColl; 1913 pOrderBy->a[i].pExpr = 1914 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1915 } 1916 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1917 pRet->aColl[i] = pColl; 1918 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1919 } 1920 } 1921 1922 return pRet; 1923 } 1924 1925 #ifndef SQLITE_OMIT_CTE 1926 /* 1927 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1928 ** query of the form: 1929 ** 1930 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1931 ** \___________/ \_______________/ 1932 ** p->pPrior p 1933 ** 1934 ** 1935 ** There is exactly one reference to the recursive-table in the FROM clause 1936 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1937 ** 1938 ** The setup-query runs once to generate an initial set of rows that go 1939 ** into a Queue table. Rows are extracted from the Queue table one by 1940 ** one. Each row extracted from Queue is output to pDest. Then the single 1941 ** extracted row (now in the iCurrent table) becomes the content of the 1942 ** recursive-table for a recursive-query run. The output of the recursive-query 1943 ** is added back into the Queue table. Then another row is extracted from Queue 1944 ** and the iteration continues until the Queue table is empty. 1945 ** 1946 ** If the compound query operator is UNION then no duplicate rows are ever 1947 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1948 ** that have ever been inserted into Queue and causes duplicates to be 1949 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1950 ** 1951 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1952 ** ORDER BY order and the first entry is extracted for each cycle. Without 1953 ** an ORDER BY, the Queue table is just a FIFO. 1954 ** 1955 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1956 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1957 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1958 ** with a positive value, then the first OFFSET outputs are discarded rather 1959 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1960 ** rows have been skipped. 1961 */ 1962 static void generateWithRecursiveQuery( 1963 Parse *pParse, /* Parsing context */ 1964 Select *p, /* The recursive SELECT to be coded */ 1965 SelectDest *pDest /* What to do with query results */ 1966 ){ 1967 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1968 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1969 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1970 Select *pSetup = p->pPrior; /* The setup query */ 1971 int addrTop; /* Top of the loop */ 1972 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1973 int iCurrent = 0; /* The Current table */ 1974 int regCurrent; /* Register holding Current table */ 1975 int iQueue; /* The Queue table */ 1976 int iDistinct = 0; /* To ensure unique results if UNION */ 1977 int eDest = SRT_Fifo; /* How to write to Queue */ 1978 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1979 int i; /* Loop counter */ 1980 int rc; /* Result code */ 1981 ExprList *pOrderBy; /* The ORDER BY clause */ 1982 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1983 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1984 1985 /* Obtain authorization to do a recursive query */ 1986 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1987 1988 /* Process the LIMIT and OFFSET clauses, if they exist */ 1989 addrBreak = sqlite3VdbeMakeLabel(v); 1990 computeLimitRegisters(pParse, p, addrBreak); 1991 pLimit = p->pLimit; 1992 pOffset = p->pOffset; 1993 regLimit = p->iLimit; 1994 regOffset = p->iOffset; 1995 p->pLimit = p->pOffset = 0; 1996 p->iLimit = p->iOffset = 0; 1997 pOrderBy = p->pOrderBy; 1998 1999 /* Locate the cursor number of the Current table */ 2000 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2001 if( pSrc->a[i].isRecursive ){ 2002 iCurrent = pSrc->a[i].iCursor; 2003 break; 2004 } 2005 } 2006 2007 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2008 ** the Distinct table must be exactly one greater than Queue in order 2009 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2010 iQueue = pParse->nTab++; 2011 if( p->op==TK_UNION ){ 2012 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2013 iDistinct = pParse->nTab++; 2014 }else{ 2015 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2016 } 2017 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2018 2019 /* Allocate cursors for Current, Queue, and Distinct. */ 2020 regCurrent = ++pParse->nMem; 2021 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2022 if( pOrderBy ){ 2023 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2024 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2025 (char*)pKeyInfo, P4_KEYINFO); 2026 destQueue.pOrderBy = pOrderBy; 2027 }else{ 2028 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2029 } 2030 VdbeComment((v, "Queue table")); 2031 if( iDistinct ){ 2032 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2033 p->selFlags |= SF_UsesEphemeral; 2034 } 2035 2036 /* Detach the ORDER BY clause from the compound SELECT */ 2037 p->pOrderBy = 0; 2038 2039 /* Store the results of the setup-query in Queue. */ 2040 pSetup->pNext = 0; 2041 rc = sqlite3Select(pParse, pSetup, &destQueue); 2042 pSetup->pNext = p; 2043 if( rc ) goto end_of_recursive_query; 2044 2045 /* Find the next row in the Queue and output that row */ 2046 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2047 2048 /* Transfer the next row in Queue over to Current */ 2049 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2050 if( pOrderBy ){ 2051 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2052 }else{ 2053 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2054 } 2055 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2056 2057 /* Output the single row in Current */ 2058 addrCont = sqlite3VdbeMakeLabel(v); 2059 codeOffset(v, regOffset, addrCont); 2060 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2061 0, 0, pDest, addrCont, addrBreak); 2062 if( regLimit ){ 2063 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2064 VdbeCoverage(v); 2065 } 2066 sqlite3VdbeResolveLabel(v, addrCont); 2067 2068 /* Execute the recursive SELECT taking the single row in Current as 2069 ** the value for the recursive-table. Store the results in the Queue. 2070 */ 2071 if( p->selFlags & SF_Aggregate ){ 2072 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2073 }else{ 2074 p->pPrior = 0; 2075 sqlite3Select(pParse, p, &destQueue); 2076 assert( p->pPrior==0 ); 2077 p->pPrior = pSetup; 2078 } 2079 2080 /* Keep running the loop until the Queue is empty */ 2081 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2082 sqlite3VdbeResolveLabel(v, addrBreak); 2083 2084 end_of_recursive_query: 2085 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2086 p->pOrderBy = pOrderBy; 2087 p->pLimit = pLimit; 2088 p->pOffset = pOffset; 2089 return; 2090 } 2091 #endif /* SQLITE_OMIT_CTE */ 2092 2093 /* Forward references */ 2094 static int multiSelectOrderBy( 2095 Parse *pParse, /* Parsing context */ 2096 Select *p, /* The right-most of SELECTs to be coded */ 2097 SelectDest *pDest /* What to do with query results */ 2098 ); 2099 2100 /* 2101 ** Handle the special case of a compound-select that originates from a 2102 ** VALUES clause. By handling this as a special case, we avoid deep 2103 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2104 ** on a VALUES clause. 2105 ** 2106 ** Because the Select object originates from a VALUES clause: 2107 ** (1) It has no LIMIT or OFFSET 2108 ** (2) All terms are UNION ALL 2109 ** (3) There is no ORDER BY clause 2110 */ 2111 static int multiSelectValues( 2112 Parse *pParse, /* Parsing context */ 2113 Select *p, /* The right-most of SELECTs to be coded */ 2114 SelectDest *pDest /* What to do with query results */ 2115 ){ 2116 Select *pPrior; 2117 int nRow = 1; 2118 int rc = 0; 2119 assert( p->selFlags & SF_MultiValue ); 2120 do{ 2121 assert( p->selFlags & SF_Values ); 2122 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2123 assert( p->pLimit==0 ); 2124 assert( p->pOffset==0 ); 2125 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2126 if( p->pPrior==0 ) break; 2127 assert( p->pPrior->pNext==p ); 2128 p = p->pPrior; 2129 nRow++; 2130 }while(1); 2131 while( p ){ 2132 pPrior = p->pPrior; 2133 p->pPrior = 0; 2134 rc = sqlite3Select(pParse, p, pDest); 2135 p->pPrior = pPrior; 2136 if( rc ) break; 2137 p->nSelectRow = nRow; 2138 p = p->pNext; 2139 } 2140 return rc; 2141 } 2142 2143 /* 2144 ** This routine is called to process a compound query form from 2145 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2146 ** INTERSECT 2147 ** 2148 ** "p" points to the right-most of the two queries. the query on the 2149 ** left is p->pPrior. The left query could also be a compound query 2150 ** in which case this routine will be called recursively. 2151 ** 2152 ** The results of the total query are to be written into a destination 2153 ** of type eDest with parameter iParm. 2154 ** 2155 ** Example 1: Consider a three-way compound SQL statement. 2156 ** 2157 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2158 ** 2159 ** This statement is parsed up as follows: 2160 ** 2161 ** SELECT c FROM t3 2162 ** | 2163 ** `-----> SELECT b FROM t2 2164 ** | 2165 ** `------> SELECT a FROM t1 2166 ** 2167 ** The arrows in the diagram above represent the Select.pPrior pointer. 2168 ** So if this routine is called with p equal to the t3 query, then 2169 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2170 ** 2171 ** Notice that because of the way SQLite parses compound SELECTs, the 2172 ** individual selects always group from left to right. 2173 */ 2174 static int multiSelect( 2175 Parse *pParse, /* Parsing context */ 2176 Select *p, /* The right-most of SELECTs to be coded */ 2177 SelectDest *pDest /* What to do with query results */ 2178 ){ 2179 int rc = SQLITE_OK; /* Success code from a subroutine */ 2180 Select *pPrior; /* Another SELECT immediately to our left */ 2181 Vdbe *v; /* Generate code to this VDBE */ 2182 SelectDest dest; /* Alternative data destination */ 2183 Select *pDelete = 0; /* Chain of simple selects to delete */ 2184 sqlite3 *db; /* Database connection */ 2185 #ifndef SQLITE_OMIT_EXPLAIN 2186 int iSub1 = 0; /* EQP id of left-hand query */ 2187 int iSub2 = 0; /* EQP id of right-hand query */ 2188 #endif 2189 2190 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2191 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2192 */ 2193 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2194 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2195 db = pParse->db; 2196 pPrior = p->pPrior; 2197 dest = *pDest; 2198 if( pPrior->pOrderBy ){ 2199 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2200 selectOpName(p->op)); 2201 rc = 1; 2202 goto multi_select_end; 2203 } 2204 if( pPrior->pLimit ){ 2205 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2206 selectOpName(p->op)); 2207 rc = 1; 2208 goto multi_select_end; 2209 } 2210 2211 v = sqlite3GetVdbe(pParse); 2212 assert( v!=0 ); /* The VDBE already created by calling function */ 2213 2214 /* Create the destination temporary table if necessary 2215 */ 2216 if( dest.eDest==SRT_EphemTab ){ 2217 assert( p->pEList ); 2218 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2219 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2220 dest.eDest = SRT_Table; 2221 } 2222 2223 /* Special handling for a compound-select that originates as a VALUES clause. 2224 */ 2225 if( p->selFlags & SF_MultiValue ){ 2226 rc = multiSelectValues(pParse, p, &dest); 2227 goto multi_select_end; 2228 } 2229 2230 /* Make sure all SELECTs in the statement have the same number of elements 2231 ** in their result sets. 2232 */ 2233 assert( p->pEList && pPrior->pEList ); 2234 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2235 2236 #ifndef SQLITE_OMIT_CTE 2237 if( p->selFlags & SF_Recursive ){ 2238 generateWithRecursiveQuery(pParse, p, &dest); 2239 }else 2240 #endif 2241 2242 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2243 */ 2244 if( p->pOrderBy ){ 2245 return multiSelectOrderBy(pParse, p, pDest); 2246 }else 2247 2248 /* Generate code for the left and right SELECT statements. 2249 */ 2250 switch( p->op ){ 2251 case TK_ALL: { 2252 int addr = 0; 2253 int nLimit; 2254 assert( !pPrior->pLimit ); 2255 pPrior->iLimit = p->iLimit; 2256 pPrior->iOffset = p->iOffset; 2257 pPrior->pLimit = p->pLimit; 2258 pPrior->pOffset = p->pOffset; 2259 explainSetInteger(iSub1, pParse->iNextSelectId); 2260 rc = sqlite3Select(pParse, pPrior, &dest); 2261 p->pLimit = 0; 2262 p->pOffset = 0; 2263 if( rc ){ 2264 goto multi_select_end; 2265 } 2266 p->pPrior = 0; 2267 p->iLimit = pPrior->iLimit; 2268 p->iOffset = pPrior->iOffset; 2269 if( p->iLimit ){ 2270 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2271 VdbeComment((v, "Jump ahead if LIMIT reached")); 2272 } 2273 explainSetInteger(iSub2, pParse->iNextSelectId); 2274 rc = sqlite3Select(pParse, p, &dest); 2275 testcase( rc!=SQLITE_OK ); 2276 pDelete = p->pPrior; 2277 p->pPrior = pPrior; 2278 p->nSelectRow += pPrior->nSelectRow; 2279 if( pPrior->pLimit 2280 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2281 && nLimit>0 && p->nSelectRow > (u64)nLimit 2282 ){ 2283 p->nSelectRow = nLimit; 2284 } 2285 if( addr ){ 2286 sqlite3VdbeJumpHere(v, addr); 2287 } 2288 break; 2289 } 2290 case TK_EXCEPT: 2291 case TK_UNION: { 2292 int unionTab; /* Cursor number of the temporary table holding result */ 2293 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2294 int priorOp; /* The SRT_ operation to apply to prior selects */ 2295 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2296 int addr; 2297 SelectDest uniondest; 2298 2299 testcase( p->op==TK_EXCEPT ); 2300 testcase( p->op==TK_UNION ); 2301 priorOp = SRT_Union; 2302 if( dest.eDest==priorOp ){ 2303 /* We can reuse a temporary table generated by a SELECT to our 2304 ** right. 2305 */ 2306 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2307 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2308 unionTab = dest.iSDParm; 2309 }else{ 2310 /* We will need to create our own temporary table to hold the 2311 ** intermediate results. 2312 */ 2313 unionTab = pParse->nTab++; 2314 assert( p->pOrderBy==0 ); 2315 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2316 assert( p->addrOpenEphm[0] == -1 ); 2317 p->addrOpenEphm[0] = addr; 2318 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2319 assert( p->pEList ); 2320 } 2321 2322 /* Code the SELECT statements to our left 2323 */ 2324 assert( !pPrior->pOrderBy ); 2325 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2326 explainSetInteger(iSub1, pParse->iNextSelectId); 2327 rc = sqlite3Select(pParse, pPrior, &uniondest); 2328 if( rc ){ 2329 goto multi_select_end; 2330 } 2331 2332 /* Code the current SELECT statement 2333 */ 2334 if( p->op==TK_EXCEPT ){ 2335 op = SRT_Except; 2336 }else{ 2337 assert( p->op==TK_UNION ); 2338 op = SRT_Union; 2339 } 2340 p->pPrior = 0; 2341 pLimit = p->pLimit; 2342 p->pLimit = 0; 2343 pOffset = p->pOffset; 2344 p->pOffset = 0; 2345 uniondest.eDest = op; 2346 explainSetInteger(iSub2, pParse->iNextSelectId); 2347 rc = sqlite3Select(pParse, p, &uniondest); 2348 testcase( rc!=SQLITE_OK ); 2349 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2350 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2351 sqlite3ExprListDelete(db, p->pOrderBy); 2352 pDelete = p->pPrior; 2353 p->pPrior = pPrior; 2354 p->pOrderBy = 0; 2355 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2356 sqlite3ExprDelete(db, p->pLimit); 2357 p->pLimit = pLimit; 2358 p->pOffset = pOffset; 2359 p->iLimit = 0; 2360 p->iOffset = 0; 2361 2362 /* Convert the data in the temporary table into whatever form 2363 ** it is that we currently need. 2364 */ 2365 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2366 if( dest.eDest!=priorOp ){ 2367 int iCont, iBreak, iStart; 2368 assert( p->pEList ); 2369 if( dest.eDest==SRT_Output ){ 2370 Select *pFirst = p; 2371 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2372 generateColumnNames(pParse, 0, pFirst->pEList); 2373 } 2374 iBreak = sqlite3VdbeMakeLabel(v); 2375 iCont = sqlite3VdbeMakeLabel(v); 2376 computeLimitRegisters(pParse, p, iBreak); 2377 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2378 iStart = sqlite3VdbeCurrentAddr(v); 2379 selectInnerLoop(pParse, p, p->pEList, unionTab, 2380 0, 0, &dest, iCont, iBreak); 2381 sqlite3VdbeResolveLabel(v, iCont); 2382 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2383 sqlite3VdbeResolveLabel(v, iBreak); 2384 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2385 } 2386 break; 2387 } 2388 default: assert( p->op==TK_INTERSECT ); { 2389 int tab1, tab2; 2390 int iCont, iBreak, iStart; 2391 Expr *pLimit, *pOffset; 2392 int addr; 2393 SelectDest intersectdest; 2394 int r1; 2395 2396 /* INTERSECT is different from the others since it requires 2397 ** two temporary tables. Hence it has its own case. Begin 2398 ** by allocating the tables we will need. 2399 */ 2400 tab1 = pParse->nTab++; 2401 tab2 = pParse->nTab++; 2402 assert( p->pOrderBy==0 ); 2403 2404 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2405 assert( p->addrOpenEphm[0] == -1 ); 2406 p->addrOpenEphm[0] = addr; 2407 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2408 assert( p->pEList ); 2409 2410 /* Code the SELECTs to our left into temporary table "tab1". 2411 */ 2412 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2413 explainSetInteger(iSub1, pParse->iNextSelectId); 2414 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2415 if( rc ){ 2416 goto multi_select_end; 2417 } 2418 2419 /* Code the current SELECT into temporary table "tab2" 2420 */ 2421 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2422 assert( p->addrOpenEphm[1] == -1 ); 2423 p->addrOpenEphm[1] = addr; 2424 p->pPrior = 0; 2425 pLimit = p->pLimit; 2426 p->pLimit = 0; 2427 pOffset = p->pOffset; 2428 p->pOffset = 0; 2429 intersectdest.iSDParm = tab2; 2430 explainSetInteger(iSub2, pParse->iNextSelectId); 2431 rc = sqlite3Select(pParse, p, &intersectdest); 2432 testcase( rc!=SQLITE_OK ); 2433 pDelete = p->pPrior; 2434 p->pPrior = pPrior; 2435 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2436 sqlite3ExprDelete(db, p->pLimit); 2437 p->pLimit = pLimit; 2438 p->pOffset = pOffset; 2439 2440 /* Generate code to take the intersection of the two temporary 2441 ** tables. 2442 */ 2443 assert( p->pEList ); 2444 if( dest.eDest==SRT_Output ){ 2445 Select *pFirst = p; 2446 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2447 generateColumnNames(pParse, 0, pFirst->pEList); 2448 } 2449 iBreak = sqlite3VdbeMakeLabel(v); 2450 iCont = sqlite3VdbeMakeLabel(v); 2451 computeLimitRegisters(pParse, p, iBreak); 2452 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2453 r1 = sqlite3GetTempReg(pParse); 2454 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2455 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2456 sqlite3ReleaseTempReg(pParse, r1); 2457 selectInnerLoop(pParse, p, p->pEList, tab1, 2458 0, 0, &dest, iCont, iBreak); 2459 sqlite3VdbeResolveLabel(v, iCont); 2460 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2461 sqlite3VdbeResolveLabel(v, iBreak); 2462 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2463 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2464 break; 2465 } 2466 } 2467 2468 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2469 2470 /* Compute collating sequences used by 2471 ** temporary tables needed to implement the compound select. 2472 ** Attach the KeyInfo structure to all temporary tables. 2473 ** 2474 ** This section is run by the right-most SELECT statement only. 2475 ** SELECT statements to the left always skip this part. The right-most 2476 ** SELECT might also skip this part if it has no ORDER BY clause and 2477 ** no temp tables are required. 2478 */ 2479 if( p->selFlags & SF_UsesEphemeral ){ 2480 int i; /* Loop counter */ 2481 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2482 Select *pLoop; /* For looping through SELECT statements */ 2483 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2484 int nCol; /* Number of columns in result set */ 2485 2486 assert( p->pNext==0 ); 2487 nCol = p->pEList->nExpr; 2488 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2489 if( !pKeyInfo ){ 2490 rc = SQLITE_NOMEM; 2491 goto multi_select_end; 2492 } 2493 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2494 *apColl = multiSelectCollSeq(pParse, p, i); 2495 if( 0==*apColl ){ 2496 *apColl = db->pDfltColl; 2497 } 2498 } 2499 2500 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2501 for(i=0; i<2; i++){ 2502 int addr = pLoop->addrOpenEphm[i]; 2503 if( addr<0 ){ 2504 /* If [0] is unused then [1] is also unused. So we can 2505 ** always safely abort as soon as the first unused slot is found */ 2506 assert( pLoop->addrOpenEphm[1]<0 ); 2507 break; 2508 } 2509 sqlite3VdbeChangeP2(v, addr, nCol); 2510 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2511 P4_KEYINFO); 2512 pLoop->addrOpenEphm[i] = -1; 2513 } 2514 } 2515 sqlite3KeyInfoUnref(pKeyInfo); 2516 } 2517 2518 multi_select_end: 2519 pDest->iSdst = dest.iSdst; 2520 pDest->nSdst = dest.nSdst; 2521 sqlite3SelectDelete(db, pDelete); 2522 return rc; 2523 } 2524 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2525 2526 /* 2527 ** Error message for when two or more terms of a compound select have different 2528 ** size result sets. 2529 */ 2530 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2531 if( p->selFlags & SF_Values ){ 2532 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2533 }else{ 2534 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2535 " do not have the same number of result columns", selectOpName(p->op)); 2536 } 2537 } 2538 2539 /* 2540 ** Code an output subroutine for a coroutine implementation of a 2541 ** SELECT statment. 2542 ** 2543 ** The data to be output is contained in pIn->iSdst. There are 2544 ** pIn->nSdst columns to be output. pDest is where the output should 2545 ** be sent. 2546 ** 2547 ** regReturn is the number of the register holding the subroutine 2548 ** return address. 2549 ** 2550 ** If regPrev>0 then it is the first register in a vector that 2551 ** records the previous output. mem[regPrev] is a flag that is false 2552 ** if there has been no previous output. If regPrev>0 then code is 2553 ** generated to suppress duplicates. pKeyInfo is used for comparing 2554 ** keys. 2555 ** 2556 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2557 ** iBreak. 2558 */ 2559 static int generateOutputSubroutine( 2560 Parse *pParse, /* Parsing context */ 2561 Select *p, /* The SELECT statement */ 2562 SelectDest *pIn, /* Coroutine supplying data */ 2563 SelectDest *pDest, /* Where to send the data */ 2564 int regReturn, /* The return address register */ 2565 int regPrev, /* Previous result register. No uniqueness if 0 */ 2566 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2567 int iBreak /* Jump here if we hit the LIMIT */ 2568 ){ 2569 Vdbe *v = pParse->pVdbe; 2570 int iContinue; 2571 int addr; 2572 2573 addr = sqlite3VdbeCurrentAddr(v); 2574 iContinue = sqlite3VdbeMakeLabel(v); 2575 2576 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2577 */ 2578 if( regPrev ){ 2579 int j1, j2; 2580 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2581 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2582 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2583 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2584 sqlite3VdbeJumpHere(v, j1); 2585 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2586 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2587 } 2588 if( pParse->db->mallocFailed ) return 0; 2589 2590 /* Suppress the first OFFSET entries if there is an OFFSET clause 2591 */ 2592 codeOffset(v, p->iOffset, iContinue); 2593 2594 assert( pDest->eDest!=SRT_Exists ); 2595 assert( pDest->eDest!=SRT_Table ); 2596 switch( pDest->eDest ){ 2597 /* Store the result as data using a unique key. 2598 */ 2599 case SRT_EphemTab: { 2600 int r1 = sqlite3GetTempReg(pParse); 2601 int r2 = sqlite3GetTempReg(pParse); 2602 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2603 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2604 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2605 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2606 sqlite3ReleaseTempReg(pParse, r2); 2607 sqlite3ReleaseTempReg(pParse, r1); 2608 break; 2609 } 2610 2611 #ifndef SQLITE_OMIT_SUBQUERY 2612 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2613 ** then there should be a single item on the stack. Write this 2614 ** item into the set table with bogus data. 2615 */ 2616 case SRT_Set: { 2617 int r1; 2618 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2619 pDest->affSdst = 2620 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2621 r1 = sqlite3GetTempReg(pParse); 2622 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2623 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2624 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2625 sqlite3ReleaseTempReg(pParse, r1); 2626 break; 2627 } 2628 2629 /* If this is a scalar select that is part of an expression, then 2630 ** store the results in the appropriate memory cell and break out 2631 ** of the scan loop. 2632 */ 2633 case SRT_Mem: { 2634 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2635 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2636 /* The LIMIT clause will jump out of the loop for us */ 2637 break; 2638 } 2639 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2640 2641 /* The results are stored in a sequence of registers 2642 ** starting at pDest->iSdst. Then the co-routine yields. 2643 */ 2644 case SRT_Coroutine: { 2645 if( pDest->iSdst==0 ){ 2646 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2647 pDest->nSdst = pIn->nSdst; 2648 } 2649 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2650 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2651 break; 2652 } 2653 2654 /* If none of the above, then the result destination must be 2655 ** SRT_Output. This routine is never called with any other 2656 ** destination other than the ones handled above or SRT_Output. 2657 ** 2658 ** For SRT_Output, results are stored in a sequence of registers. 2659 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2660 ** return the next row of result. 2661 */ 2662 default: { 2663 assert( pDest->eDest==SRT_Output ); 2664 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2665 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2666 break; 2667 } 2668 } 2669 2670 /* Jump to the end of the loop if the LIMIT is reached. 2671 */ 2672 if( p->iLimit ){ 2673 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2674 } 2675 2676 /* Generate the subroutine return 2677 */ 2678 sqlite3VdbeResolveLabel(v, iContinue); 2679 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2680 2681 return addr; 2682 } 2683 2684 /* 2685 ** Alternative compound select code generator for cases when there 2686 ** is an ORDER BY clause. 2687 ** 2688 ** We assume a query of the following form: 2689 ** 2690 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2691 ** 2692 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2693 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2694 ** co-routines. Then run the co-routines in parallel and merge the results 2695 ** into the output. In addition to the two coroutines (called selectA and 2696 ** selectB) there are 7 subroutines: 2697 ** 2698 ** outA: Move the output of the selectA coroutine into the output 2699 ** of the compound query. 2700 ** 2701 ** outB: Move the output of the selectB coroutine into the output 2702 ** of the compound query. (Only generated for UNION and 2703 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2704 ** appears only in B.) 2705 ** 2706 ** AltB: Called when there is data from both coroutines and A<B. 2707 ** 2708 ** AeqB: Called when there is data from both coroutines and A==B. 2709 ** 2710 ** AgtB: Called when there is data from both coroutines and A>B. 2711 ** 2712 ** EofA: Called when data is exhausted from selectA. 2713 ** 2714 ** EofB: Called when data is exhausted from selectB. 2715 ** 2716 ** The implementation of the latter five subroutines depend on which 2717 ** <operator> is used: 2718 ** 2719 ** 2720 ** UNION ALL UNION EXCEPT INTERSECT 2721 ** ------------- ----------------- -------------- ----------------- 2722 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2723 ** 2724 ** AeqB: outA, nextA nextA nextA outA, nextA 2725 ** 2726 ** AgtB: outB, nextB outB, nextB nextB nextB 2727 ** 2728 ** EofA: outB, nextB outB, nextB halt halt 2729 ** 2730 ** EofB: outA, nextA outA, nextA outA, nextA halt 2731 ** 2732 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2733 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2734 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2735 ** following nextX causes a jump to the end of the select processing. 2736 ** 2737 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2738 ** within the output subroutine. The regPrev register set holds the previously 2739 ** output value. A comparison is made against this value and the output 2740 ** is skipped if the next results would be the same as the previous. 2741 ** 2742 ** The implementation plan is to implement the two coroutines and seven 2743 ** subroutines first, then put the control logic at the bottom. Like this: 2744 ** 2745 ** goto Init 2746 ** coA: coroutine for left query (A) 2747 ** coB: coroutine for right query (B) 2748 ** outA: output one row of A 2749 ** outB: output one row of B (UNION and UNION ALL only) 2750 ** EofA: ... 2751 ** EofB: ... 2752 ** AltB: ... 2753 ** AeqB: ... 2754 ** AgtB: ... 2755 ** Init: initialize coroutine registers 2756 ** yield coA 2757 ** if eof(A) goto EofA 2758 ** yield coB 2759 ** if eof(B) goto EofB 2760 ** Cmpr: Compare A, B 2761 ** Jump AltB, AeqB, AgtB 2762 ** End: ... 2763 ** 2764 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2765 ** actually called using Gosub and they do not Return. EofA and EofB loop 2766 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2767 ** and AgtB jump to either L2 or to one of EofA or EofB. 2768 */ 2769 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2770 static int multiSelectOrderBy( 2771 Parse *pParse, /* Parsing context */ 2772 Select *p, /* The right-most of SELECTs to be coded */ 2773 SelectDest *pDest /* What to do with query results */ 2774 ){ 2775 int i, j; /* Loop counters */ 2776 Select *pPrior; /* Another SELECT immediately to our left */ 2777 Vdbe *v; /* Generate code to this VDBE */ 2778 SelectDest destA; /* Destination for coroutine A */ 2779 SelectDest destB; /* Destination for coroutine B */ 2780 int regAddrA; /* Address register for select-A coroutine */ 2781 int regAddrB; /* Address register for select-B coroutine */ 2782 int addrSelectA; /* Address of the select-A coroutine */ 2783 int addrSelectB; /* Address of the select-B coroutine */ 2784 int regOutA; /* Address register for the output-A subroutine */ 2785 int regOutB; /* Address register for the output-B subroutine */ 2786 int addrOutA; /* Address of the output-A subroutine */ 2787 int addrOutB = 0; /* Address of the output-B subroutine */ 2788 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2789 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2790 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2791 int addrAltB; /* Address of the A<B subroutine */ 2792 int addrAeqB; /* Address of the A==B subroutine */ 2793 int addrAgtB; /* Address of the A>B subroutine */ 2794 int regLimitA; /* Limit register for select-A */ 2795 int regLimitB; /* Limit register for select-A */ 2796 int regPrev; /* A range of registers to hold previous output */ 2797 int savedLimit; /* Saved value of p->iLimit */ 2798 int savedOffset; /* Saved value of p->iOffset */ 2799 int labelCmpr; /* Label for the start of the merge algorithm */ 2800 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2801 int j1; /* Jump instructions that get retargetted */ 2802 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2803 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2804 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2805 sqlite3 *db; /* Database connection */ 2806 ExprList *pOrderBy; /* The ORDER BY clause */ 2807 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2808 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2809 #ifndef SQLITE_OMIT_EXPLAIN 2810 int iSub1; /* EQP id of left-hand query */ 2811 int iSub2; /* EQP id of right-hand query */ 2812 #endif 2813 2814 assert( p->pOrderBy!=0 ); 2815 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2816 db = pParse->db; 2817 v = pParse->pVdbe; 2818 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2819 labelEnd = sqlite3VdbeMakeLabel(v); 2820 labelCmpr = sqlite3VdbeMakeLabel(v); 2821 2822 2823 /* Patch up the ORDER BY clause 2824 */ 2825 op = p->op; 2826 pPrior = p->pPrior; 2827 assert( pPrior->pOrderBy==0 ); 2828 pOrderBy = p->pOrderBy; 2829 assert( pOrderBy ); 2830 nOrderBy = pOrderBy->nExpr; 2831 2832 /* For operators other than UNION ALL we have to make sure that 2833 ** the ORDER BY clause covers every term of the result set. Add 2834 ** terms to the ORDER BY clause as necessary. 2835 */ 2836 if( op!=TK_ALL ){ 2837 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2838 struct ExprList_item *pItem; 2839 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2840 assert( pItem->u.x.iOrderByCol>0 ); 2841 if( pItem->u.x.iOrderByCol==i ) break; 2842 } 2843 if( j==nOrderBy ){ 2844 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2845 if( pNew==0 ) return SQLITE_NOMEM; 2846 pNew->flags |= EP_IntValue; 2847 pNew->u.iValue = i; 2848 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2849 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2850 } 2851 } 2852 } 2853 2854 /* Compute the comparison permutation and keyinfo that is used with 2855 ** the permutation used to determine if the next 2856 ** row of results comes from selectA or selectB. Also add explicit 2857 ** collations to the ORDER BY clause terms so that when the subqueries 2858 ** to the right and the left are evaluated, they use the correct 2859 ** collation. 2860 */ 2861 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2862 if( aPermute ){ 2863 struct ExprList_item *pItem; 2864 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2865 assert( pItem->u.x.iOrderByCol>0 ); 2866 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2867 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2868 } 2869 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2870 }else{ 2871 pKeyMerge = 0; 2872 } 2873 2874 /* Reattach the ORDER BY clause to the query. 2875 */ 2876 p->pOrderBy = pOrderBy; 2877 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2878 2879 /* Allocate a range of temporary registers and the KeyInfo needed 2880 ** for the logic that removes duplicate result rows when the 2881 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2882 */ 2883 if( op==TK_ALL ){ 2884 regPrev = 0; 2885 }else{ 2886 int nExpr = p->pEList->nExpr; 2887 assert( nOrderBy>=nExpr || db->mallocFailed ); 2888 regPrev = pParse->nMem+1; 2889 pParse->nMem += nExpr+1; 2890 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2891 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2892 if( pKeyDup ){ 2893 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2894 for(i=0; i<nExpr; i++){ 2895 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2896 pKeyDup->aSortOrder[i] = 0; 2897 } 2898 } 2899 } 2900 2901 /* Separate the left and the right query from one another 2902 */ 2903 p->pPrior = 0; 2904 pPrior->pNext = 0; 2905 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2906 if( pPrior->pPrior==0 ){ 2907 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2908 } 2909 2910 /* Compute the limit registers */ 2911 computeLimitRegisters(pParse, p, labelEnd); 2912 if( p->iLimit && op==TK_ALL ){ 2913 regLimitA = ++pParse->nMem; 2914 regLimitB = ++pParse->nMem; 2915 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2916 regLimitA); 2917 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2918 }else{ 2919 regLimitA = regLimitB = 0; 2920 } 2921 sqlite3ExprDelete(db, p->pLimit); 2922 p->pLimit = 0; 2923 sqlite3ExprDelete(db, p->pOffset); 2924 p->pOffset = 0; 2925 2926 regAddrA = ++pParse->nMem; 2927 regAddrB = ++pParse->nMem; 2928 regOutA = ++pParse->nMem; 2929 regOutB = ++pParse->nMem; 2930 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2931 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2932 2933 /* Generate a coroutine to evaluate the SELECT statement to the 2934 ** left of the compound operator - the "A" select. 2935 */ 2936 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2937 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2938 VdbeComment((v, "left SELECT")); 2939 pPrior->iLimit = regLimitA; 2940 explainSetInteger(iSub1, pParse->iNextSelectId); 2941 sqlite3Select(pParse, pPrior, &destA); 2942 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2943 sqlite3VdbeJumpHere(v, j1); 2944 2945 /* Generate a coroutine to evaluate the SELECT statement on 2946 ** the right - the "B" select 2947 */ 2948 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2949 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2950 VdbeComment((v, "right SELECT")); 2951 savedLimit = p->iLimit; 2952 savedOffset = p->iOffset; 2953 p->iLimit = regLimitB; 2954 p->iOffset = 0; 2955 explainSetInteger(iSub2, pParse->iNextSelectId); 2956 sqlite3Select(pParse, p, &destB); 2957 p->iLimit = savedLimit; 2958 p->iOffset = savedOffset; 2959 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2960 2961 /* Generate a subroutine that outputs the current row of the A 2962 ** select as the next output row of the compound select. 2963 */ 2964 VdbeNoopComment((v, "Output routine for A")); 2965 addrOutA = generateOutputSubroutine(pParse, 2966 p, &destA, pDest, regOutA, 2967 regPrev, pKeyDup, labelEnd); 2968 2969 /* Generate a subroutine that outputs the current row of the B 2970 ** select as the next output row of the compound select. 2971 */ 2972 if( op==TK_ALL || op==TK_UNION ){ 2973 VdbeNoopComment((v, "Output routine for B")); 2974 addrOutB = generateOutputSubroutine(pParse, 2975 p, &destB, pDest, regOutB, 2976 regPrev, pKeyDup, labelEnd); 2977 } 2978 sqlite3KeyInfoUnref(pKeyDup); 2979 2980 /* Generate a subroutine to run when the results from select A 2981 ** are exhausted and only data in select B remains. 2982 */ 2983 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2984 addrEofA_noB = addrEofA = labelEnd; 2985 }else{ 2986 VdbeNoopComment((v, "eof-A subroutine")); 2987 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2988 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2989 VdbeCoverage(v); 2990 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2991 p->nSelectRow += pPrior->nSelectRow; 2992 } 2993 2994 /* Generate a subroutine to run when the results from select B 2995 ** are exhausted and only data in select A remains. 2996 */ 2997 if( op==TK_INTERSECT ){ 2998 addrEofB = addrEofA; 2999 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3000 }else{ 3001 VdbeNoopComment((v, "eof-B subroutine")); 3002 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3003 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3004 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3005 } 3006 3007 /* Generate code to handle the case of A<B 3008 */ 3009 VdbeNoopComment((v, "A-lt-B subroutine")); 3010 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3011 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3012 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3013 3014 /* Generate code to handle the case of A==B 3015 */ 3016 if( op==TK_ALL ){ 3017 addrAeqB = addrAltB; 3018 }else if( op==TK_INTERSECT ){ 3019 addrAeqB = addrAltB; 3020 addrAltB++; 3021 }else{ 3022 VdbeNoopComment((v, "A-eq-B subroutine")); 3023 addrAeqB = 3024 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3025 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3026 } 3027 3028 /* Generate code to handle the case of A>B 3029 */ 3030 VdbeNoopComment((v, "A-gt-B subroutine")); 3031 addrAgtB = sqlite3VdbeCurrentAddr(v); 3032 if( op==TK_ALL || op==TK_UNION ){ 3033 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3034 } 3035 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3036 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3037 3038 /* This code runs once to initialize everything. 3039 */ 3040 sqlite3VdbeJumpHere(v, j1); 3041 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3042 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3043 3044 /* Implement the main merge loop 3045 */ 3046 sqlite3VdbeResolveLabel(v, labelCmpr); 3047 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3048 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3049 (char*)pKeyMerge, P4_KEYINFO); 3050 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3051 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3052 3053 /* Jump to the this point in order to terminate the query. 3054 */ 3055 sqlite3VdbeResolveLabel(v, labelEnd); 3056 3057 /* Set the number of output columns 3058 */ 3059 if( pDest->eDest==SRT_Output ){ 3060 Select *pFirst = pPrior; 3061 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3062 generateColumnNames(pParse, 0, pFirst->pEList); 3063 } 3064 3065 /* Reassembly the compound query so that it will be freed correctly 3066 ** by the calling function */ 3067 if( p->pPrior ){ 3068 sqlite3SelectDelete(db, p->pPrior); 3069 } 3070 p->pPrior = pPrior; 3071 pPrior->pNext = p; 3072 3073 /*** TBD: Insert subroutine calls to close cursors on incomplete 3074 **** subqueries ****/ 3075 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3076 return pParse->nErr!=0; 3077 } 3078 #endif 3079 3080 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3081 /* Forward Declarations */ 3082 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3083 static void substSelect(sqlite3*, Select *, int, ExprList *); 3084 3085 /* 3086 ** Scan through the expression pExpr. Replace every reference to 3087 ** a column in table number iTable with a copy of the iColumn-th 3088 ** entry in pEList. (But leave references to the ROWID column 3089 ** unchanged.) 3090 ** 3091 ** This routine is part of the flattening procedure. A subquery 3092 ** whose result set is defined by pEList appears as entry in the 3093 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3094 ** FORM clause entry is iTable. This routine make the necessary 3095 ** changes to pExpr so that it refers directly to the source table 3096 ** of the subquery rather the result set of the subquery. 3097 */ 3098 static Expr *substExpr( 3099 sqlite3 *db, /* Report malloc errors to this connection */ 3100 Expr *pExpr, /* Expr in which substitution occurs */ 3101 int iTable, /* Table to be substituted */ 3102 ExprList *pEList /* Substitute expressions */ 3103 ){ 3104 if( pExpr==0 ) return 0; 3105 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3106 if( pExpr->iColumn<0 ){ 3107 pExpr->op = TK_NULL; 3108 }else{ 3109 Expr *pNew; 3110 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3111 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3112 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3113 sqlite3ExprDelete(db, pExpr); 3114 pExpr = pNew; 3115 } 3116 }else{ 3117 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3118 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3119 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3120 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3121 }else{ 3122 substExprList(db, pExpr->x.pList, iTable, pEList); 3123 } 3124 } 3125 return pExpr; 3126 } 3127 static void substExprList( 3128 sqlite3 *db, /* Report malloc errors here */ 3129 ExprList *pList, /* List to scan and in which to make substitutes */ 3130 int iTable, /* Table to be substituted */ 3131 ExprList *pEList /* Substitute values */ 3132 ){ 3133 int i; 3134 if( pList==0 ) return; 3135 for(i=0; i<pList->nExpr; i++){ 3136 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3137 } 3138 } 3139 static void substSelect( 3140 sqlite3 *db, /* Report malloc errors here */ 3141 Select *p, /* SELECT statement in which to make substitutions */ 3142 int iTable, /* Table to be replaced */ 3143 ExprList *pEList /* Substitute values */ 3144 ){ 3145 SrcList *pSrc; 3146 struct SrcList_item *pItem; 3147 int i; 3148 if( !p ) return; 3149 substExprList(db, p->pEList, iTable, pEList); 3150 substExprList(db, p->pGroupBy, iTable, pEList); 3151 substExprList(db, p->pOrderBy, iTable, pEList); 3152 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3153 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3154 substSelect(db, p->pPrior, iTable, pEList); 3155 pSrc = p->pSrc; 3156 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3157 if( ALWAYS(pSrc) ){ 3158 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3159 substSelect(db, pItem->pSelect, iTable, pEList); 3160 } 3161 } 3162 } 3163 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3164 3165 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3166 /* 3167 ** This routine attempts to flatten subqueries as a performance optimization. 3168 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3169 ** 3170 ** To understand the concept of flattening, consider the following 3171 ** query: 3172 ** 3173 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3174 ** 3175 ** The default way of implementing this query is to execute the 3176 ** subquery first and store the results in a temporary table, then 3177 ** run the outer query on that temporary table. This requires two 3178 ** passes over the data. Furthermore, because the temporary table 3179 ** has no indices, the WHERE clause on the outer query cannot be 3180 ** optimized. 3181 ** 3182 ** This routine attempts to rewrite queries such as the above into 3183 ** a single flat select, like this: 3184 ** 3185 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3186 ** 3187 ** The code generated for this simplification gives the same result 3188 ** but only has to scan the data once. And because indices might 3189 ** exist on the table t1, a complete scan of the data might be 3190 ** avoided. 3191 ** 3192 ** Flattening is only attempted if all of the following are true: 3193 ** 3194 ** (1) The subquery and the outer query do not both use aggregates. 3195 ** 3196 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3197 ** and (2b) the outer query does not use subqueries other than the one 3198 ** FROM-clause subquery that is a candidate for flattening. (2b is 3199 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3200 ** 3201 ** (3) The subquery is not the right operand of a left outer join 3202 ** (Originally ticket #306. Strengthened by ticket #3300) 3203 ** 3204 ** (4) The subquery is not DISTINCT. 3205 ** 3206 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3207 ** sub-queries that were excluded from this optimization. Restriction 3208 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3209 ** 3210 ** (6) The subquery does not use aggregates or the outer query is not 3211 ** DISTINCT. 3212 ** 3213 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3214 ** A FROM clause, consider adding a FROM close with the special 3215 ** table sqlite_once that consists of a single row containing a 3216 ** single NULL. 3217 ** 3218 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3219 ** 3220 ** (9) The subquery does not use LIMIT or the outer query does not use 3221 ** aggregates. 3222 ** 3223 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3224 ** accidently carried the comment forward until 2014-09-15. Original 3225 ** text: "The subquery does not use aggregates or the outer query 3226 ** does not use LIMIT." 3227 ** 3228 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3229 ** 3230 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3231 ** a separate restriction deriving from ticket #350. 3232 ** 3233 ** (13) The subquery and outer query do not both use LIMIT. 3234 ** 3235 ** (14) The subquery does not use OFFSET. 3236 ** 3237 ** (15) The outer query is not part of a compound select or the 3238 ** subquery does not have a LIMIT clause. 3239 ** (See ticket #2339 and ticket [02a8e81d44]). 3240 ** 3241 ** (16) The outer query is not an aggregate or the subquery does 3242 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3243 ** until we introduced the group_concat() function. 3244 ** 3245 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3246 ** compound clause made up entirely of non-aggregate queries, and 3247 ** the parent query: 3248 ** 3249 ** * is not itself part of a compound select, 3250 ** * is not an aggregate or DISTINCT query, and 3251 ** * is not a join 3252 ** 3253 ** The parent and sub-query may contain WHERE clauses. Subject to 3254 ** rules (11), (13) and (14), they may also contain ORDER BY, 3255 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3256 ** operator other than UNION ALL because all the other compound 3257 ** operators have an implied DISTINCT which is disallowed by 3258 ** restriction (4). 3259 ** 3260 ** Also, each component of the sub-query must return the same number 3261 ** of result columns. This is actually a requirement for any compound 3262 ** SELECT statement, but all the code here does is make sure that no 3263 ** such (illegal) sub-query is flattened. The caller will detect the 3264 ** syntax error and return a detailed message. 3265 ** 3266 ** (18) If the sub-query is a compound select, then all terms of the 3267 ** ORDER by clause of the parent must be simple references to 3268 ** columns of the sub-query. 3269 ** 3270 ** (19) The subquery does not use LIMIT or the outer query does not 3271 ** have a WHERE clause. 3272 ** 3273 ** (20) If the sub-query is a compound select, then it must not use 3274 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3275 ** somewhat by saying that the terms of the ORDER BY clause must 3276 ** appear as unmodified result columns in the outer query. But we 3277 ** have other optimizations in mind to deal with that case. 3278 ** 3279 ** (21) The subquery does not use LIMIT or the outer query is not 3280 ** DISTINCT. (See ticket [752e1646fc]). 3281 ** 3282 ** (22) The subquery is not a recursive CTE. 3283 ** 3284 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3285 ** compound query. This restriction is because transforming the 3286 ** parent to a compound query confuses the code that handles 3287 ** recursive queries in multiSelect(). 3288 ** 3289 ** (24) The subquery is not an aggregate that uses the built-in min() or 3290 ** or max() functions. (Without this restriction, a query like: 3291 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3292 ** return the value X for which Y was maximal.) 3293 ** 3294 ** 3295 ** In this routine, the "p" parameter is a pointer to the outer query. 3296 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3297 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3298 ** 3299 ** If flattening is not attempted, this routine is a no-op and returns 0. 3300 ** If flattening is attempted this routine returns 1. 3301 ** 3302 ** All of the expression analysis must occur on both the outer query and 3303 ** the subquery before this routine runs. 3304 */ 3305 static int flattenSubquery( 3306 Parse *pParse, /* Parsing context */ 3307 Select *p, /* The parent or outer SELECT statement */ 3308 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3309 int isAgg, /* True if outer SELECT uses aggregate functions */ 3310 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3311 ){ 3312 const char *zSavedAuthContext = pParse->zAuthContext; 3313 Select *pParent; 3314 Select *pSub; /* The inner query or "subquery" */ 3315 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3316 SrcList *pSrc; /* The FROM clause of the outer query */ 3317 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3318 ExprList *pList; /* The result set of the outer query */ 3319 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3320 int i; /* Loop counter */ 3321 Expr *pWhere; /* The WHERE clause */ 3322 struct SrcList_item *pSubitem; /* The subquery */ 3323 sqlite3 *db = pParse->db; 3324 3325 /* Check to see if flattening is permitted. Return 0 if not. 3326 */ 3327 assert( p!=0 ); 3328 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3329 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3330 pSrc = p->pSrc; 3331 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3332 pSubitem = &pSrc->a[iFrom]; 3333 iParent = pSubitem->iCursor; 3334 pSub = pSubitem->pSelect; 3335 assert( pSub!=0 ); 3336 if( subqueryIsAgg ){ 3337 if( isAgg ) return 0; /* Restriction (1) */ 3338 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3339 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3340 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3341 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3342 ){ 3343 return 0; /* Restriction (2b) */ 3344 } 3345 } 3346 3347 pSubSrc = pSub->pSrc; 3348 assert( pSubSrc ); 3349 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3350 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3351 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3352 ** became arbitrary expressions, we were forced to add restrictions (13) 3353 ** and (14). */ 3354 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3355 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3356 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3357 return 0; /* Restriction (15) */ 3358 } 3359 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3360 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3361 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3362 return 0; /* Restrictions (8)(9) */ 3363 } 3364 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3365 return 0; /* Restriction (6) */ 3366 } 3367 if( p->pOrderBy && pSub->pOrderBy ){ 3368 return 0; /* Restriction (11) */ 3369 } 3370 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3371 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3372 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3373 return 0; /* Restriction (21) */ 3374 } 3375 testcase( pSub->selFlags & SF_Recursive ); 3376 testcase( pSub->selFlags & SF_MinMaxAgg ); 3377 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3378 return 0; /* Restrictions (22) and (24) */ 3379 } 3380 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3381 return 0; /* Restriction (23) */ 3382 } 3383 3384 /* OBSOLETE COMMENT 1: 3385 ** Restriction 3: If the subquery is a join, make sure the subquery is 3386 ** not used as the right operand of an outer join. Examples of why this 3387 ** is not allowed: 3388 ** 3389 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3390 ** 3391 ** If we flatten the above, we would get 3392 ** 3393 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3394 ** 3395 ** which is not at all the same thing. 3396 ** 3397 ** OBSOLETE COMMENT 2: 3398 ** Restriction 12: If the subquery is the right operand of a left outer 3399 ** join, make sure the subquery has no WHERE clause. 3400 ** An examples of why this is not allowed: 3401 ** 3402 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3403 ** 3404 ** If we flatten the above, we would get 3405 ** 3406 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3407 ** 3408 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3409 ** effectively converts the OUTER JOIN into an INNER JOIN. 3410 ** 3411 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3412 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3413 ** is fraught with danger. Best to avoid the whole thing. If the 3414 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3415 */ 3416 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3417 return 0; 3418 } 3419 3420 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3421 ** use only the UNION ALL operator. And none of the simple select queries 3422 ** that make up the compound SELECT are allowed to be aggregate or distinct 3423 ** queries. 3424 */ 3425 if( pSub->pPrior ){ 3426 if( pSub->pOrderBy ){ 3427 return 0; /* Restriction 20 */ 3428 } 3429 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3430 return 0; 3431 } 3432 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3433 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3434 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3435 assert( pSub->pSrc!=0 ); 3436 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3437 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3438 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3439 || pSub1->pSrc->nSrc<1 3440 ){ 3441 return 0; 3442 } 3443 testcase( pSub1->pSrc->nSrc>1 ); 3444 } 3445 3446 /* Restriction 18. */ 3447 if( p->pOrderBy ){ 3448 int ii; 3449 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3450 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3451 } 3452 } 3453 } 3454 3455 /***** If we reach this point, flattening is permitted. *****/ 3456 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3457 pSub->zSelName, pSub, iFrom)); 3458 3459 /* Authorize the subquery */ 3460 pParse->zAuthContext = pSubitem->zName; 3461 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3462 testcase( i==SQLITE_DENY ); 3463 pParse->zAuthContext = zSavedAuthContext; 3464 3465 /* If the sub-query is a compound SELECT statement, then (by restrictions 3466 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3467 ** be of the form: 3468 ** 3469 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3470 ** 3471 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3472 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3473 ** OFFSET clauses and joins them to the left-hand-side of the original 3474 ** using UNION ALL operators. In this case N is the number of simple 3475 ** select statements in the compound sub-query. 3476 ** 3477 ** Example: 3478 ** 3479 ** SELECT a+1 FROM ( 3480 ** SELECT x FROM tab 3481 ** UNION ALL 3482 ** SELECT y FROM tab 3483 ** UNION ALL 3484 ** SELECT abs(z*2) FROM tab2 3485 ** ) WHERE a!=5 ORDER BY 1 3486 ** 3487 ** Transformed into: 3488 ** 3489 ** SELECT x+1 FROM tab WHERE x+1!=5 3490 ** UNION ALL 3491 ** SELECT y+1 FROM tab WHERE y+1!=5 3492 ** UNION ALL 3493 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3494 ** ORDER BY 1 3495 ** 3496 ** We call this the "compound-subquery flattening". 3497 */ 3498 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3499 Select *pNew; 3500 ExprList *pOrderBy = p->pOrderBy; 3501 Expr *pLimit = p->pLimit; 3502 Expr *pOffset = p->pOffset; 3503 Select *pPrior = p->pPrior; 3504 p->pOrderBy = 0; 3505 p->pSrc = 0; 3506 p->pPrior = 0; 3507 p->pLimit = 0; 3508 p->pOffset = 0; 3509 pNew = sqlite3SelectDup(db, p, 0); 3510 sqlite3SelectSetName(pNew, pSub->zSelName); 3511 p->pOffset = pOffset; 3512 p->pLimit = pLimit; 3513 p->pOrderBy = pOrderBy; 3514 p->pSrc = pSrc; 3515 p->op = TK_ALL; 3516 if( pNew==0 ){ 3517 p->pPrior = pPrior; 3518 }else{ 3519 pNew->pPrior = pPrior; 3520 if( pPrior ) pPrior->pNext = pNew; 3521 pNew->pNext = p; 3522 p->pPrior = pNew; 3523 SELECTTRACE(2,pParse,p, 3524 ("compound-subquery flattener creates %s.%p as peer\n", 3525 pNew->zSelName, pNew)); 3526 } 3527 if( db->mallocFailed ) return 1; 3528 } 3529 3530 /* Begin flattening the iFrom-th entry of the FROM clause 3531 ** in the outer query. 3532 */ 3533 pSub = pSub1 = pSubitem->pSelect; 3534 3535 /* Delete the transient table structure associated with the 3536 ** subquery 3537 */ 3538 sqlite3DbFree(db, pSubitem->zDatabase); 3539 sqlite3DbFree(db, pSubitem->zName); 3540 sqlite3DbFree(db, pSubitem->zAlias); 3541 pSubitem->zDatabase = 0; 3542 pSubitem->zName = 0; 3543 pSubitem->zAlias = 0; 3544 pSubitem->pSelect = 0; 3545 3546 /* Defer deleting the Table object associated with the 3547 ** subquery until code generation is 3548 ** complete, since there may still exist Expr.pTab entries that 3549 ** refer to the subquery even after flattening. Ticket #3346. 3550 ** 3551 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3552 */ 3553 if( ALWAYS(pSubitem->pTab!=0) ){ 3554 Table *pTabToDel = pSubitem->pTab; 3555 if( pTabToDel->nRef==1 ){ 3556 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3557 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3558 pToplevel->pZombieTab = pTabToDel; 3559 }else{ 3560 pTabToDel->nRef--; 3561 } 3562 pSubitem->pTab = 0; 3563 } 3564 3565 /* The following loop runs once for each term in a compound-subquery 3566 ** flattening (as described above). If we are doing a different kind 3567 ** of flattening - a flattening other than a compound-subquery flattening - 3568 ** then this loop only runs once. 3569 ** 3570 ** This loop moves all of the FROM elements of the subquery into the 3571 ** the FROM clause of the outer query. Before doing this, remember 3572 ** the cursor number for the original outer query FROM element in 3573 ** iParent. The iParent cursor will never be used. Subsequent code 3574 ** will scan expressions looking for iParent references and replace 3575 ** those references with expressions that resolve to the subquery FROM 3576 ** elements we are now copying in. 3577 */ 3578 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3579 int nSubSrc; 3580 u8 jointype = 0; 3581 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3582 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3583 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3584 3585 if( pSrc ){ 3586 assert( pParent==p ); /* First time through the loop */ 3587 jointype = pSubitem->jointype; 3588 }else{ 3589 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3590 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3591 if( pSrc==0 ){ 3592 assert( db->mallocFailed ); 3593 break; 3594 } 3595 } 3596 3597 /* The subquery uses a single slot of the FROM clause of the outer 3598 ** query. If the subquery has more than one element in its FROM clause, 3599 ** then expand the outer query to make space for it to hold all elements 3600 ** of the subquery. 3601 ** 3602 ** Example: 3603 ** 3604 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3605 ** 3606 ** The outer query has 3 slots in its FROM clause. One slot of the 3607 ** outer query (the middle slot) is used by the subquery. The next 3608 ** block of code will expand the out query to 4 slots. The middle 3609 ** slot is expanded to two slots in order to make space for the 3610 ** two elements in the FROM clause of the subquery. 3611 */ 3612 if( nSubSrc>1 ){ 3613 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3614 if( db->mallocFailed ){ 3615 break; 3616 } 3617 } 3618 3619 /* Transfer the FROM clause terms from the subquery into the 3620 ** outer query. 3621 */ 3622 for(i=0; i<nSubSrc; i++){ 3623 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3624 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3625 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3626 } 3627 pSrc->a[iFrom].jointype = jointype; 3628 3629 /* Now begin substituting subquery result set expressions for 3630 ** references to the iParent in the outer query. 3631 ** 3632 ** Example: 3633 ** 3634 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3635 ** \ \_____________ subquery __________/ / 3636 ** \_____________________ outer query ______________________________/ 3637 ** 3638 ** We look at every expression in the outer query and every place we see 3639 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3640 */ 3641 pList = pParent->pEList; 3642 for(i=0; i<pList->nExpr; i++){ 3643 if( pList->a[i].zName==0 ){ 3644 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3645 sqlite3Dequote(zName); 3646 pList->a[i].zName = zName; 3647 } 3648 } 3649 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3650 if( isAgg ){ 3651 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3652 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3653 } 3654 if( pSub->pOrderBy ){ 3655 /* At this point, any non-zero iOrderByCol values indicate that the 3656 ** ORDER BY column expression is identical to the iOrderByCol'th 3657 ** expression returned by SELECT statement pSub. Since these values 3658 ** do not necessarily correspond to columns in SELECT statement pParent, 3659 ** zero them before transfering the ORDER BY clause. 3660 ** 3661 ** Not doing this may cause an error if a subsequent call to this 3662 ** function attempts to flatten a compound sub-query into pParent 3663 ** (the only way this can happen is if the compound sub-query is 3664 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3665 ExprList *pOrderBy = pSub->pOrderBy; 3666 for(i=0; i<pOrderBy->nExpr; i++){ 3667 pOrderBy->a[i].u.x.iOrderByCol = 0; 3668 } 3669 assert( pParent->pOrderBy==0 ); 3670 assert( pSub->pPrior==0 ); 3671 pParent->pOrderBy = pOrderBy; 3672 pSub->pOrderBy = 0; 3673 }else if( pParent->pOrderBy ){ 3674 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3675 } 3676 if( pSub->pWhere ){ 3677 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3678 }else{ 3679 pWhere = 0; 3680 } 3681 if( subqueryIsAgg ){ 3682 assert( pParent->pHaving==0 ); 3683 pParent->pHaving = pParent->pWhere; 3684 pParent->pWhere = pWhere; 3685 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3686 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3687 sqlite3ExprDup(db, pSub->pHaving, 0)); 3688 assert( pParent->pGroupBy==0 ); 3689 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3690 }else{ 3691 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3692 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3693 } 3694 3695 /* The flattened query is distinct if either the inner or the 3696 ** outer query is distinct. 3697 */ 3698 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3699 3700 /* 3701 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3702 ** 3703 ** One is tempted to try to add a and b to combine the limits. But this 3704 ** does not work if either limit is negative. 3705 */ 3706 if( pSub->pLimit ){ 3707 pParent->pLimit = pSub->pLimit; 3708 pSub->pLimit = 0; 3709 } 3710 } 3711 3712 /* Finially, delete what is left of the subquery and return 3713 ** success. 3714 */ 3715 sqlite3SelectDelete(db, pSub1); 3716 3717 #if SELECTTRACE_ENABLED 3718 if( sqlite3SelectTrace & 0x100 ){ 3719 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3720 sqlite3TreeViewSelect(0, p, 0); 3721 } 3722 #endif 3723 3724 return 1; 3725 } 3726 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3727 3728 3729 3730 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3731 /* 3732 ** Make copies of relevant WHERE clause terms of the outer query into 3733 ** the WHERE clause of subquery. Example: 3734 ** 3735 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3736 ** 3737 ** Transformed into: 3738 ** 3739 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3740 ** WHERE x=5 AND y=10; 3741 ** 3742 ** The hope is that the terms added to the inner query will make it more 3743 ** efficient. 3744 ** 3745 ** Do not attempt this optimization if: 3746 ** 3747 ** (1) The inner query is an aggregate. (In that case, we'd really want 3748 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3749 ** inner query. But they probably won't help there so do not bother.) 3750 ** 3751 ** (2) The inner query is the recursive part of a common table expression. 3752 ** 3753 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3754 ** close would change the meaning of the LIMIT). 3755 ** 3756 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3757 ** enforces this restriction since this routine does not have enough 3758 ** information to know.) 3759 ** 3760 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3761 ** terms are duplicated into the subquery. 3762 */ 3763 static int pushDownWhereTerms( 3764 sqlite3 *db, /* The database connection (for malloc()) */ 3765 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3766 Expr *pWhere, /* The WHERE clause of the outer query */ 3767 int iCursor /* Cursor number of the subquery */ 3768 ){ 3769 Expr *pNew; 3770 int nChng = 0; 3771 if( pWhere==0 ) return 0; 3772 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3773 return 0; /* restrictions (1) and (2) */ 3774 } 3775 if( pSubq->pLimit!=0 ){ 3776 return 0; /* restriction (3) */ 3777 } 3778 while( pWhere->op==TK_AND ){ 3779 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3780 pWhere = pWhere->pLeft; 3781 } 3782 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3783 nChng++; 3784 while( pSubq ){ 3785 pNew = sqlite3ExprDup(db, pWhere, 0); 3786 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3787 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3788 pSubq = pSubq->pPrior; 3789 } 3790 } 3791 return nChng; 3792 } 3793 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3794 3795 /* 3796 ** Based on the contents of the AggInfo structure indicated by the first 3797 ** argument, this function checks if the following are true: 3798 ** 3799 ** * the query contains just a single aggregate function, 3800 ** * the aggregate function is either min() or max(), and 3801 ** * the argument to the aggregate function is a column value. 3802 ** 3803 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3804 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3805 ** list of arguments passed to the aggregate before returning. 3806 ** 3807 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3808 ** WHERE_ORDERBY_NORMAL is returned. 3809 */ 3810 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3811 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3812 3813 *ppMinMax = 0; 3814 if( pAggInfo->nFunc==1 ){ 3815 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3816 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3817 3818 assert( pExpr->op==TK_AGG_FUNCTION ); 3819 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3820 const char *zFunc = pExpr->u.zToken; 3821 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3822 eRet = WHERE_ORDERBY_MIN; 3823 *ppMinMax = pEList; 3824 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3825 eRet = WHERE_ORDERBY_MAX; 3826 *ppMinMax = pEList; 3827 } 3828 } 3829 } 3830 3831 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3832 return eRet; 3833 } 3834 3835 /* 3836 ** The select statement passed as the first argument is an aggregate query. 3837 ** The second argument is the associated aggregate-info object. This 3838 ** function tests if the SELECT is of the form: 3839 ** 3840 ** SELECT count(*) FROM <tbl> 3841 ** 3842 ** where table is a database table, not a sub-select or view. If the query 3843 ** does match this pattern, then a pointer to the Table object representing 3844 ** <tbl> is returned. Otherwise, 0 is returned. 3845 */ 3846 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3847 Table *pTab; 3848 Expr *pExpr; 3849 3850 assert( !p->pGroupBy ); 3851 3852 if( p->pWhere || p->pEList->nExpr!=1 3853 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3854 ){ 3855 return 0; 3856 } 3857 pTab = p->pSrc->a[0].pTab; 3858 pExpr = p->pEList->a[0].pExpr; 3859 assert( pTab && !pTab->pSelect && pExpr ); 3860 3861 if( IsVirtual(pTab) ) return 0; 3862 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3863 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3864 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3865 if( pExpr->flags&EP_Distinct ) return 0; 3866 3867 return pTab; 3868 } 3869 3870 /* 3871 ** If the source-list item passed as an argument was augmented with an 3872 ** INDEXED BY clause, then try to locate the specified index. If there 3873 ** was such a clause and the named index cannot be found, return 3874 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3875 ** pFrom->pIndex and return SQLITE_OK. 3876 */ 3877 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3878 if( pFrom->pTab && pFrom->zIndexedBy ){ 3879 Table *pTab = pFrom->pTab; 3880 char *zIndexedBy = pFrom->zIndexedBy; 3881 Index *pIdx; 3882 for(pIdx=pTab->pIndex; 3883 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3884 pIdx=pIdx->pNext 3885 ); 3886 if( !pIdx ){ 3887 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3888 pParse->checkSchema = 1; 3889 return SQLITE_ERROR; 3890 } 3891 pFrom->pIndex = pIdx; 3892 } 3893 return SQLITE_OK; 3894 } 3895 /* 3896 ** Detect compound SELECT statements that use an ORDER BY clause with 3897 ** an alternative collating sequence. 3898 ** 3899 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3900 ** 3901 ** These are rewritten as a subquery: 3902 ** 3903 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3904 ** ORDER BY ... COLLATE ... 3905 ** 3906 ** This transformation is necessary because the multiSelectOrderBy() routine 3907 ** above that generates the code for a compound SELECT with an ORDER BY clause 3908 ** uses a merge algorithm that requires the same collating sequence on the 3909 ** result columns as on the ORDER BY clause. See ticket 3910 ** http://www.sqlite.org/src/info/6709574d2a 3911 ** 3912 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3913 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3914 ** there are COLLATE terms in the ORDER BY. 3915 */ 3916 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3917 int i; 3918 Select *pNew; 3919 Select *pX; 3920 sqlite3 *db; 3921 struct ExprList_item *a; 3922 SrcList *pNewSrc; 3923 Parse *pParse; 3924 Token dummy; 3925 3926 if( p->pPrior==0 ) return WRC_Continue; 3927 if( p->pOrderBy==0 ) return WRC_Continue; 3928 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3929 if( pX==0 ) return WRC_Continue; 3930 a = p->pOrderBy->a; 3931 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3932 if( a[i].pExpr->flags & EP_Collate ) break; 3933 } 3934 if( i<0 ) return WRC_Continue; 3935 3936 /* If we reach this point, that means the transformation is required. */ 3937 3938 pParse = pWalker->pParse; 3939 db = pParse->db; 3940 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3941 if( pNew==0 ) return WRC_Abort; 3942 memset(&dummy, 0, sizeof(dummy)); 3943 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3944 if( pNewSrc==0 ) return WRC_Abort; 3945 *pNew = *p; 3946 p->pSrc = pNewSrc; 3947 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3948 p->op = TK_SELECT; 3949 p->pWhere = 0; 3950 pNew->pGroupBy = 0; 3951 pNew->pHaving = 0; 3952 pNew->pOrderBy = 0; 3953 p->pPrior = 0; 3954 p->pNext = 0; 3955 p->pWith = 0; 3956 p->selFlags &= ~SF_Compound; 3957 assert( (p->selFlags & SF_Converted)==0 ); 3958 p->selFlags |= SF_Converted; 3959 assert( pNew->pPrior!=0 ); 3960 pNew->pPrior->pNext = pNew; 3961 pNew->pLimit = 0; 3962 pNew->pOffset = 0; 3963 return WRC_Continue; 3964 } 3965 3966 #ifndef SQLITE_OMIT_CTE 3967 /* 3968 ** Argument pWith (which may be NULL) points to a linked list of nested 3969 ** WITH contexts, from inner to outermost. If the table identified by 3970 ** FROM clause element pItem is really a common-table-expression (CTE) 3971 ** then return a pointer to the CTE definition for that table. Otherwise 3972 ** return NULL. 3973 ** 3974 ** If a non-NULL value is returned, set *ppContext to point to the With 3975 ** object that the returned CTE belongs to. 3976 */ 3977 static struct Cte *searchWith( 3978 With *pWith, /* Current outermost WITH clause */ 3979 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3980 With **ppContext /* OUT: WITH clause return value belongs to */ 3981 ){ 3982 const char *zName; 3983 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3984 With *p; 3985 for(p=pWith; p; p=p->pOuter){ 3986 int i; 3987 for(i=0; i<p->nCte; i++){ 3988 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3989 *ppContext = p; 3990 return &p->a[i]; 3991 } 3992 } 3993 } 3994 } 3995 return 0; 3996 } 3997 3998 /* The code generator maintains a stack of active WITH clauses 3999 ** with the inner-most WITH clause being at the top of the stack. 4000 ** 4001 ** This routine pushes the WITH clause passed as the second argument 4002 ** onto the top of the stack. If argument bFree is true, then this 4003 ** WITH clause will never be popped from the stack. In this case it 4004 ** should be freed along with the Parse object. In other cases, when 4005 ** bFree==0, the With object will be freed along with the SELECT 4006 ** statement with which it is associated. 4007 */ 4008 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4009 assert( bFree==0 || pParse->pWith==0 ); 4010 if( pWith ){ 4011 pWith->pOuter = pParse->pWith; 4012 pParse->pWith = pWith; 4013 pParse->bFreeWith = bFree; 4014 } 4015 } 4016 4017 /* 4018 ** This function checks if argument pFrom refers to a CTE declared by 4019 ** a WITH clause on the stack currently maintained by the parser. And, 4020 ** if currently processing a CTE expression, if it is a recursive 4021 ** reference to the current CTE. 4022 ** 4023 ** If pFrom falls into either of the two categories above, pFrom->pTab 4024 ** and other fields are populated accordingly. The caller should check 4025 ** (pFrom->pTab!=0) to determine whether or not a successful match 4026 ** was found. 4027 ** 4028 ** Whether or not a match is found, SQLITE_OK is returned if no error 4029 ** occurs. If an error does occur, an error message is stored in the 4030 ** parser and some error code other than SQLITE_OK returned. 4031 */ 4032 static int withExpand( 4033 Walker *pWalker, 4034 struct SrcList_item *pFrom 4035 ){ 4036 Parse *pParse = pWalker->pParse; 4037 sqlite3 *db = pParse->db; 4038 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4039 With *pWith; /* WITH clause that pCte belongs to */ 4040 4041 assert( pFrom->pTab==0 ); 4042 4043 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4044 if( pCte ){ 4045 Table *pTab; 4046 ExprList *pEList; 4047 Select *pSel; 4048 Select *pLeft; /* Left-most SELECT statement */ 4049 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4050 With *pSavedWith; /* Initial value of pParse->pWith */ 4051 4052 /* If pCte->zErr is non-NULL at this point, then this is an illegal 4053 ** recursive reference to CTE pCte. Leave an error in pParse and return 4054 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 4055 ** In this case, proceed. */ 4056 if( pCte->zErr ){ 4057 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 4058 return SQLITE_ERROR; 4059 } 4060 4061 assert( pFrom->pTab==0 ); 4062 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4063 if( pTab==0 ) return WRC_Abort; 4064 pTab->nRef = 1; 4065 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4066 pTab->iPKey = -1; 4067 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4068 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4069 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4070 if( db->mallocFailed ) return SQLITE_NOMEM; 4071 assert( pFrom->pSelect ); 4072 4073 /* Check if this is a recursive CTE. */ 4074 pSel = pFrom->pSelect; 4075 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4076 if( bMayRecursive ){ 4077 int i; 4078 SrcList *pSrc = pFrom->pSelect->pSrc; 4079 for(i=0; i<pSrc->nSrc; i++){ 4080 struct SrcList_item *pItem = &pSrc->a[i]; 4081 if( pItem->zDatabase==0 4082 && pItem->zName!=0 4083 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4084 ){ 4085 pItem->pTab = pTab; 4086 pItem->isRecursive = 1; 4087 pTab->nRef++; 4088 pSel->selFlags |= SF_Recursive; 4089 } 4090 } 4091 } 4092 4093 /* Only one recursive reference is permitted. */ 4094 if( pTab->nRef>2 ){ 4095 sqlite3ErrorMsg( 4096 pParse, "multiple references to recursive table: %s", pCte->zName 4097 ); 4098 return SQLITE_ERROR; 4099 } 4100 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4101 4102 pCte->zErr = "circular reference: %s"; 4103 pSavedWith = pParse->pWith; 4104 pParse->pWith = pWith; 4105 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4106 4107 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4108 pEList = pLeft->pEList; 4109 if( pCte->pCols ){ 4110 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4111 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4112 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4113 ); 4114 pParse->pWith = pSavedWith; 4115 return SQLITE_ERROR; 4116 } 4117 pEList = pCte->pCols; 4118 } 4119 4120 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4121 if( bMayRecursive ){ 4122 if( pSel->selFlags & SF_Recursive ){ 4123 pCte->zErr = "multiple recursive references: %s"; 4124 }else{ 4125 pCte->zErr = "recursive reference in a subquery: %s"; 4126 } 4127 sqlite3WalkSelect(pWalker, pSel); 4128 } 4129 pCte->zErr = 0; 4130 pParse->pWith = pSavedWith; 4131 } 4132 4133 return SQLITE_OK; 4134 } 4135 #endif 4136 4137 #ifndef SQLITE_OMIT_CTE 4138 /* 4139 ** If the SELECT passed as the second argument has an associated WITH 4140 ** clause, pop it from the stack stored as part of the Parse object. 4141 ** 4142 ** This function is used as the xSelectCallback2() callback by 4143 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4144 ** names and other FROM clause elements. 4145 */ 4146 static void selectPopWith(Walker *pWalker, Select *p){ 4147 Parse *pParse = pWalker->pParse; 4148 With *pWith = findRightmost(p)->pWith; 4149 if( pWith!=0 ){ 4150 assert( pParse->pWith==pWith ); 4151 pParse->pWith = pWith->pOuter; 4152 } 4153 } 4154 #else 4155 #define selectPopWith 0 4156 #endif 4157 4158 /* 4159 ** This routine is a Walker callback for "expanding" a SELECT statement. 4160 ** "Expanding" means to do the following: 4161 ** 4162 ** (1) Make sure VDBE cursor numbers have been assigned to every 4163 ** element of the FROM clause. 4164 ** 4165 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4166 ** defines FROM clause. When views appear in the FROM clause, 4167 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4168 ** that implements the view. A copy is made of the view's SELECT 4169 ** statement so that we can freely modify or delete that statement 4170 ** without worrying about messing up the persistent representation 4171 ** of the view. 4172 ** 4173 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4174 ** on joins and the ON and USING clause of joins. 4175 ** 4176 ** (4) Scan the list of columns in the result set (pEList) looking 4177 ** for instances of the "*" operator or the TABLE.* operator. 4178 ** If found, expand each "*" to be every column in every table 4179 ** and TABLE.* to be every column in TABLE. 4180 ** 4181 */ 4182 static int selectExpander(Walker *pWalker, Select *p){ 4183 Parse *pParse = pWalker->pParse; 4184 int i, j, k; 4185 SrcList *pTabList; 4186 ExprList *pEList; 4187 struct SrcList_item *pFrom; 4188 sqlite3 *db = pParse->db; 4189 Expr *pE, *pRight, *pExpr; 4190 u16 selFlags = p->selFlags; 4191 4192 p->selFlags |= SF_Expanded; 4193 if( db->mallocFailed ){ 4194 return WRC_Abort; 4195 } 4196 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4197 return WRC_Prune; 4198 } 4199 pTabList = p->pSrc; 4200 pEList = p->pEList; 4201 if( pWalker->xSelectCallback2==selectPopWith ){ 4202 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4203 } 4204 4205 /* Make sure cursor numbers have been assigned to all entries in 4206 ** the FROM clause of the SELECT statement. 4207 */ 4208 sqlite3SrcListAssignCursors(pParse, pTabList); 4209 4210 /* Look up every table named in the FROM clause of the select. If 4211 ** an entry of the FROM clause is a subquery instead of a table or view, 4212 ** then create a transient table structure to describe the subquery. 4213 */ 4214 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4215 Table *pTab; 4216 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4217 if( pFrom->isRecursive ) continue; 4218 if( pFrom->pTab!=0 ){ 4219 /* This statement has already been prepared. There is no need 4220 ** to go further. */ 4221 assert( i==0 ); 4222 #ifndef SQLITE_OMIT_CTE 4223 selectPopWith(pWalker, p); 4224 #endif 4225 return WRC_Prune; 4226 } 4227 #ifndef SQLITE_OMIT_CTE 4228 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4229 if( pFrom->pTab ) {} else 4230 #endif 4231 if( pFrom->zName==0 ){ 4232 #ifndef SQLITE_OMIT_SUBQUERY 4233 Select *pSel = pFrom->pSelect; 4234 /* A sub-query in the FROM clause of a SELECT */ 4235 assert( pSel!=0 ); 4236 assert( pFrom->pTab==0 ); 4237 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4238 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4239 if( pTab==0 ) return WRC_Abort; 4240 pTab->nRef = 1; 4241 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4242 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4243 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4244 pTab->iPKey = -1; 4245 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4246 pTab->tabFlags |= TF_Ephemeral; 4247 #endif 4248 }else{ 4249 /* An ordinary table or view name in the FROM clause */ 4250 assert( pFrom->pTab==0 ); 4251 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4252 if( pTab==0 ) return WRC_Abort; 4253 if( pTab->nRef==0xffff ){ 4254 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4255 pTab->zName); 4256 pFrom->pTab = 0; 4257 return WRC_Abort; 4258 } 4259 pTab->nRef++; 4260 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4261 if( pTab->pSelect || IsVirtual(pTab) ){ 4262 /* We reach here if the named table is a really a view */ 4263 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4264 assert( pFrom->pSelect==0 ); 4265 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4266 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4267 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4268 } 4269 #endif 4270 } 4271 4272 /* Locate the index named by the INDEXED BY clause, if any. */ 4273 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4274 return WRC_Abort; 4275 } 4276 } 4277 4278 /* Process NATURAL keywords, and ON and USING clauses of joins. 4279 */ 4280 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4281 return WRC_Abort; 4282 } 4283 4284 /* For every "*" that occurs in the column list, insert the names of 4285 ** all columns in all tables. And for every TABLE.* insert the names 4286 ** of all columns in TABLE. The parser inserted a special expression 4287 ** with the TK_ALL operator for each "*" that it found in the column list. 4288 ** The following code just has to locate the TK_ALL expressions and expand 4289 ** each one to the list of all columns in all tables. 4290 ** 4291 ** The first loop just checks to see if there are any "*" operators 4292 ** that need expanding. 4293 */ 4294 for(k=0; k<pEList->nExpr; k++){ 4295 pE = pEList->a[k].pExpr; 4296 if( pE->op==TK_ALL ) break; 4297 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4298 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4299 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4300 } 4301 if( k<pEList->nExpr ){ 4302 /* 4303 ** If we get here it means the result set contains one or more "*" 4304 ** operators that need to be expanded. Loop through each expression 4305 ** in the result set and expand them one by one. 4306 */ 4307 struct ExprList_item *a = pEList->a; 4308 ExprList *pNew = 0; 4309 int flags = pParse->db->flags; 4310 int longNames = (flags & SQLITE_FullColNames)!=0 4311 && (flags & SQLITE_ShortColNames)==0; 4312 4313 for(k=0; k<pEList->nExpr; k++){ 4314 pE = a[k].pExpr; 4315 pRight = pE->pRight; 4316 assert( pE->op!=TK_DOT || pRight!=0 ); 4317 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4318 /* This particular expression does not need to be expanded. 4319 */ 4320 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4321 if( pNew ){ 4322 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4323 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4324 a[k].zName = 0; 4325 a[k].zSpan = 0; 4326 } 4327 a[k].pExpr = 0; 4328 }else{ 4329 /* This expression is a "*" or a "TABLE.*" and needs to be 4330 ** expanded. */ 4331 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4332 char *zTName = 0; /* text of name of TABLE */ 4333 if( pE->op==TK_DOT ){ 4334 assert( pE->pLeft!=0 ); 4335 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4336 zTName = pE->pLeft->u.zToken; 4337 } 4338 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4339 Table *pTab = pFrom->pTab; 4340 Select *pSub = pFrom->pSelect; 4341 char *zTabName = pFrom->zAlias; 4342 const char *zSchemaName = 0; 4343 int iDb; 4344 if( zTabName==0 ){ 4345 zTabName = pTab->zName; 4346 } 4347 if( db->mallocFailed ) break; 4348 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4349 pSub = 0; 4350 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4351 continue; 4352 } 4353 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4354 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4355 } 4356 for(j=0; j<pTab->nCol; j++){ 4357 char *zName = pTab->aCol[j].zName; 4358 char *zColname; /* The computed column name */ 4359 char *zToFree; /* Malloced string that needs to be freed */ 4360 Token sColname; /* Computed column name as a token */ 4361 4362 assert( zName ); 4363 if( zTName && pSub 4364 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4365 ){ 4366 continue; 4367 } 4368 4369 /* If a column is marked as 'hidden' (currently only possible 4370 ** for virtual tables), do not include it in the expanded 4371 ** result-set list. 4372 */ 4373 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4374 assert(IsVirtual(pTab)); 4375 continue; 4376 } 4377 tableSeen = 1; 4378 4379 if( i>0 && zTName==0 ){ 4380 if( (pFrom->jointype & JT_NATURAL)!=0 4381 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4382 ){ 4383 /* In a NATURAL join, omit the join columns from the 4384 ** table to the right of the join */ 4385 continue; 4386 } 4387 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4388 /* In a join with a USING clause, omit columns in the 4389 ** using clause from the table on the right. */ 4390 continue; 4391 } 4392 } 4393 pRight = sqlite3Expr(db, TK_ID, zName); 4394 zColname = zName; 4395 zToFree = 0; 4396 if( longNames || pTabList->nSrc>1 ){ 4397 Expr *pLeft; 4398 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4399 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4400 if( zSchemaName ){ 4401 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4402 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4403 } 4404 if( longNames ){ 4405 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4406 zToFree = zColname; 4407 } 4408 }else{ 4409 pExpr = pRight; 4410 } 4411 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4412 sColname.z = zColname; 4413 sColname.n = sqlite3Strlen30(zColname); 4414 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4415 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4416 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4417 if( pSub ){ 4418 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4419 testcase( pX->zSpan==0 ); 4420 }else{ 4421 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4422 zSchemaName, zTabName, zColname); 4423 testcase( pX->zSpan==0 ); 4424 } 4425 pX->bSpanIsTab = 1; 4426 } 4427 sqlite3DbFree(db, zToFree); 4428 } 4429 } 4430 if( !tableSeen ){ 4431 if( zTName ){ 4432 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4433 }else{ 4434 sqlite3ErrorMsg(pParse, "no tables specified"); 4435 } 4436 } 4437 } 4438 } 4439 sqlite3ExprListDelete(db, pEList); 4440 p->pEList = pNew; 4441 } 4442 #if SQLITE_MAX_COLUMN 4443 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4444 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4445 } 4446 #endif 4447 return WRC_Continue; 4448 } 4449 4450 /* 4451 ** No-op routine for the parse-tree walker. 4452 ** 4453 ** When this routine is the Walker.xExprCallback then expression trees 4454 ** are walked without any actions being taken at each node. Presumably, 4455 ** when this routine is used for Walker.xExprCallback then 4456 ** Walker.xSelectCallback is set to do something useful for every 4457 ** subquery in the parser tree. 4458 */ 4459 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4460 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4461 return WRC_Continue; 4462 } 4463 4464 /* 4465 ** This routine "expands" a SELECT statement and all of its subqueries. 4466 ** For additional information on what it means to "expand" a SELECT 4467 ** statement, see the comment on the selectExpand worker callback above. 4468 ** 4469 ** Expanding a SELECT statement is the first step in processing a 4470 ** SELECT statement. The SELECT statement must be expanded before 4471 ** name resolution is performed. 4472 ** 4473 ** If anything goes wrong, an error message is written into pParse. 4474 ** The calling function can detect the problem by looking at pParse->nErr 4475 ** and/or pParse->db->mallocFailed. 4476 */ 4477 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4478 Walker w; 4479 memset(&w, 0, sizeof(w)); 4480 w.xExprCallback = exprWalkNoop; 4481 w.pParse = pParse; 4482 if( pParse->hasCompound ){ 4483 w.xSelectCallback = convertCompoundSelectToSubquery; 4484 sqlite3WalkSelect(&w, pSelect); 4485 } 4486 w.xSelectCallback = selectExpander; 4487 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4488 w.xSelectCallback2 = selectPopWith; 4489 } 4490 sqlite3WalkSelect(&w, pSelect); 4491 } 4492 4493 4494 #ifndef SQLITE_OMIT_SUBQUERY 4495 /* 4496 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4497 ** interface. 4498 ** 4499 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4500 ** information to the Table structure that represents the result set 4501 ** of that subquery. 4502 ** 4503 ** The Table structure that represents the result set was constructed 4504 ** by selectExpander() but the type and collation information was omitted 4505 ** at that point because identifiers had not yet been resolved. This 4506 ** routine is called after identifier resolution. 4507 */ 4508 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4509 Parse *pParse; 4510 int i; 4511 SrcList *pTabList; 4512 struct SrcList_item *pFrom; 4513 4514 assert( p->selFlags & SF_Resolved ); 4515 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4516 p->selFlags |= SF_HasTypeInfo; 4517 pParse = pWalker->pParse; 4518 pTabList = p->pSrc; 4519 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4520 Table *pTab = pFrom->pTab; 4521 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4522 /* A sub-query in the FROM clause of a SELECT */ 4523 Select *pSel = pFrom->pSelect; 4524 if( pSel ){ 4525 while( pSel->pPrior ) pSel = pSel->pPrior; 4526 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4527 } 4528 } 4529 } 4530 } 4531 } 4532 #endif 4533 4534 4535 /* 4536 ** This routine adds datatype and collating sequence information to 4537 ** the Table structures of all FROM-clause subqueries in a 4538 ** SELECT statement. 4539 ** 4540 ** Use this routine after name resolution. 4541 */ 4542 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4543 #ifndef SQLITE_OMIT_SUBQUERY 4544 Walker w; 4545 memset(&w, 0, sizeof(w)); 4546 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4547 w.xExprCallback = exprWalkNoop; 4548 w.pParse = pParse; 4549 sqlite3WalkSelect(&w, pSelect); 4550 #endif 4551 } 4552 4553 4554 /* 4555 ** This routine sets up a SELECT statement for processing. The 4556 ** following is accomplished: 4557 ** 4558 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4559 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4560 ** * ON and USING clauses are shifted into WHERE statements 4561 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4562 ** * Identifiers in expression are matched to tables. 4563 ** 4564 ** This routine acts recursively on all subqueries within the SELECT. 4565 */ 4566 void sqlite3SelectPrep( 4567 Parse *pParse, /* The parser context */ 4568 Select *p, /* The SELECT statement being coded. */ 4569 NameContext *pOuterNC /* Name context for container */ 4570 ){ 4571 sqlite3 *db; 4572 if( NEVER(p==0) ) return; 4573 db = pParse->db; 4574 if( db->mallocFailed ) return; 4575 if( p->selFlags & SF_HasTypeInfo ) return; 4576 sqlite3SelectExpand(pParse, p); 4577 if( pParse->nErr || db->mallocFailed ) return; 4578 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4579 if( pParse->nErr || db->mallocFailed ) return; 4580 sqlite3SelectAddTypeInfo(pParse, p); 4581 } 4582 4583 /* 4584 ** Reset the aggregate accumulator. 4585 ** 4586 ** The aggregate accumulator is a set of memory cells that hold 4587 ** intermediate results while calculating an aggregate. This 4588 ** routine generates code that stores NULLs in all of those memory 4589 ** cells. 4590 */ 4591 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4592 Vdbe *v = pParse->pVdbe; 4593 int i; 4594 struct AggInfo_func *pFunc; 4595 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4596 if( nReg==0 ) return; 4597 #ifdef SQLITE_DEBUG 4598 /* Verify that all AggInfo registers are within the range specified by 4599 ** AggInfo.mnReg..AggInfo.mxReg */ 4600 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4601 for(i=0; i<pAggInfo->nColumn; i++){ 4602 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4603 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4604 } 4605 for(i=0; i<pAggInfo->nFunc; i++){ 4606 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4607 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4608 } 4609 #endif 4610 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4611 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4612 if( pFunc->iDistinct>=0 ){ 4613 Expr *pE = pFunc->pExpr; 4614 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4615 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4616 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4617 "argument"); 4618 pFunc->iDistinct = -1; 4619 }else{ 4620 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4621 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4622 (char*)pKeyInfo, P4_KEYINFO); 4623 } 4624 } 4625 } 4626 } 4627 4628 /* 4629 ** Invoke the OP_AggFinalize opcode for every aggregate function 4630 ** in the AggInfo structure. 4631 */ 4632 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4633 Vdbe *v = pParse->pVdbe; 4634 int i; 4635 struct AggInfo_func *pF; 4636 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4637 ExprList *pList = pF->pExpr->x.pList; 4638 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4639 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4640 (void*)pF->pFunc, P4_FUNCDEF); 4641 } 4642 } 4643 4644 /* 4645 ** Update the accumulator memory cells for an aggregate based on 4646 ** the current cursor position. 4647 */ 4648 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4649 Vdbe *v = pParse->pVdbe; 4650 int i; 4651 int regHit = 0; 4652 int addrHitTest = 0; 4653 struct AggInfo_func *pF; 4654 struct AggInfo_col *pC; 4655 4656 pAggInfo->directMode = 1; 4657 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4658 int nArg; 4659 int addrNext = 0; 4660 int regAgg; 4661 ExprList *pList = pF->pExpr->x.pList; 4662 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4663 if( pList ){ 4664 nArg = pList->nExpr; 4665 regAgg = sqlite3GetTempRange(pParse, nArg); 4666 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4667 }else{ 4668 nArg = 0; 4669 regAgg = 0; 4670 } 4671 if( pF->iDistinct>=0 ){ 4672 addrNext = sqlite3VdbeMakeLabel(v); 4673 testcase( nArg==0 ); /* Error condition */ 4674 testcase( nArg>1 ); /* Also an error */ 4675 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4676 } 4677 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4678 CollSeq *pColl = 0; 4679 struct ExprList_item *pItem; 4680 int j; 4681 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4682 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4683 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4684 } 4685 if( !pColl ){ 4686 pColl = pParse->db->pDfltColl; 4687 } 4688 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4689 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4690 } 4691 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4692 (void*)pF->pFunc, P4_FUNCDEF); 4693 sqlite3VdbeChangeP5(v, (u8)nArg); 4694 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4695 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4696 if( addrNext ){ 4697 sqlite3VdbeResolveLabel(v, addrNext); 4698 sqlite3ExprCacheClear(pParse); 4699 } 4700 } 4701 4702 /* Before populating the accumulator registers, clear the column cache. 4703 ** Otherwise, if any of the required column values are already present 4704 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4705 ** to pC->iMem. But by the time the value is used, the original register 4706 ** may have been used, invalidating the underlying buffer holding the 4707 ** text or blob value. See ticket [883034dcb5]. 4708 ** 4709 ** Another solution would be to change the OP_SCopy used to copy cached 4710 ** values to an OP_Copy. 4711 */ 4712 if( regHit ){ 4713 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4714 } 4715 sqlite3ExprCacheClear(pParse); 4716 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4717 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4718 } 4719 pAggInfo->directMode = 0; 4720 sqlite3ExprCacheClear(pParse); 4721 if( addrHitTest ){ 4722 sqlite3VdbeJumpHere(v, addrHitTest); 4723 } 4724 } 4725 4726 /* 4727 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4728 ** count(*) query ("SELECT count(*) FROM pTab"). 4729 */ 4730 #ifndef SQLITE_OMIT_EXPLAIN 4731 static void explainSimpleCount( 4732 Parse *pParse, /* Parse context */ 4733 Table *pTab, /* Table being queried */ 4734 Index *pIdx /* Index used to optimize scan, or NULL */ 4735 ){ 4736 if( pParse->explain==2 ){ 4737 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4738 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4739 pTab->zName, 4740 bCover ? " USING COVERING INDEX " : "", 4741 bCover ? pIdx->zName : "" 4742 ); 4743 sqlite3VdbeAddOp4( 4744 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4745 ); 4746 } 4747 } 4748 #else 4749 # define explainSimpleCount(a,b,c) 4750 #endif 4751 4752 /* 4753 ** Generate code for the SELECT statement given in the p argument. 4754 ** 4755 ** The results are returned according to the SelectDest structure. 4756 ** See comments in sqliteInt.h for further information. 4757 ** 4758 ** This routine returns the number of errors. If any errors are 4759 ** encountered, then an appropriate error message is left in 4760 ** pParse->zErrMsg. 4761 ** 4762 ** This routine does NOT free the Select structure passed in. The 4763 ** calling function needs to do that. 4764 */ 4765 int sqlite3Select( 4766 Parse *pParse, /* The parser context */ 4767 Select *p, /* The SELECT statement being coded. */ 4768 SelectDest *pDest /* What to do with the query results */ 4769 ){ 4770 int i, j; /* Loop counters */ 4771 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4772 Vdbe *v; /* The virtual machine under construction */ 4773 int isAgg; /* True for select lists like "count(*)" */ 4774 ExprList *pEList = 0; /* List of columns to extract. */ 4775 SrcList *pTabList; /* List of tables to select from */ 4776 Expr *pWhere; /* The WHERE clause. May be NULL */ 4777 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4778 Expr *pHaving; /* The HAVING clause. May be NULL */ 4779 int rc = 1; /* Value to return from this function */ 4780 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4781 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4782 AggInfo sAggInfo; /* Information used by aggregate queries */ 4783 int iEnd; /* Address of the end of the query */ 4784 sqlite3 *db; /* The database connection */ 4785 4786 #ifndef SQLITE_OMIT_EXPLAIN 4787 int iRestoreSelectId = pParse->iSelectId; 4788 pParse->iSelectId = pParse->iNextSelectId++; 4789 #endif 4790 4791 db = pParse->db; 4792 if( p==0 || db->mallocFailed || pParse->nErr ){ 4793 return 1; 4794 } 4795 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4796 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4797 #if SELECTTRACE_ENABLED 4798 pParse->nSelectIndent++; 4799 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4800 if( sqlite3SelectTrace & 0x100 ){ 4801 sqlite3TreeViewSelect(0, p, 0); 4802 } 4803 #endif 4804 4805 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4806 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4807 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4808 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4809 if( IgnorableOrderby(pDest) ){ 4810 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4811 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4812 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4813 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4814 /* If ORDER BY makes no difference in the output then neither does 4815 ** DISTINCT so it can be removed too. */ 4816 sqlite3ExprListDelete(db, p->pOrderBy); 4817 p->pOrderBy = 0; 4818 p->selFlags &= ~SF_Distinct; 4819 } 4820 sqlite3SelectPrep(pParse, p, 0); 4821 memset(&sSort, 0, sizeof(sSort)); 4822 sSort.pOrderBy = p->pOrderBy; 4823 pTabList = p->pSrc; 4824 if( pParse->nErr || db->mallocFailed ){ 4825 goto select_end; 4826 } 4827 assert( p->pEList!=0 ); 4828 isAgg = (p->selFlags & SF_Aggregate)!=0; 4829 #if SELECTTRACE_ENABLED 4830 if( sqlite3SelectTrace & 0x100 ){ 4831 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4832 sqlite3TreeViewSelect(0, p, 0); 4833 } 4834 #endif 4835 4836 4837 /* If writing to memory or generating a set 4838 ** only a single column may be output. 4839 */ 4840 #ifndef SQLITE_OMIT_SUBQUERY 4841 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4842 goto select_end; 4843 } 4844 #endif 4845 4846 /* Try to flatten subqueries in the FROM clause up into the main query 4847 */ 4848 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4849 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4850 struct SrcList_item *pItem = &pTabList->a[i]; 4851 Select *pSub = pItem->pSelect; 4852 int isAggSub; 4853 if( pSub==0 ) continue; 4854 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4855 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4856 /* This subquery can be absorbed into its parent. */ 4857 if( isAggSub ){ 4858 isAgg = 1; 4859 p->selFlags |= SF_Aggregate; 4860 } 4861 i = -1; 4862 } 4863 pTabList = p->pSrc; 4864 if( db->mallocFailed ) goto select_end; 4865 if( !IgnorableOrderby(pDest) ){ 4866 sSort.pOrderBy = p->pOrderBy; 4867 } 4868 } 4869 #endif 4870 4871 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4872 ** does not already exist */ 4873 v = sqlite3GetVdbe(pParse); 4874 if( v==0 ) goto select_end; 4875 4876 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4877 /* Handle compound SELECT statements using the separate multiSelect() 4878 ** procedure. 4879 */ 4880 if( p->pPrior ){ 4881 rc = multiSelect(pParse, p, pDest); 4882 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4883 #if SELECTTRACE_ENABLED 4884 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4885 pParse->nSelectIndent--; 4886 #endif 4887 return rc; 4888 } 4889 #endif 4890 4891 /* Generate code for all sub-queries in the FROM clause 4892 */ 4893 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4894 for(i=0; i<pTabList->nSrc; i++){ 4895 struct SrcList_item *pItem = &pTabList->a[i]; 4896 SelectDest dest; 4897 Select *pSub = pItem->pSelect; 4898 if( pSub==0 ) continue; 4899 4900 /* Sometimes the code for a subquery will be generated more than 4901 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4902 ** for example. In that case, do not regenerate the code to manifest 4903 ** a view or the co-routine to implement a view. The first instance 4904 ** is sufficient, though the subroutine to manifest the view does need 4905 ** to be invoked again. */ 4906 if( pItem->addrFillSub ){ 4907 if( pItem->viaCoroutine==0 ){ 4908 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4909 } 4910 continue; 4911 } 4912 4913 /* Increment Parse.nHeight by the height of the largest expression 4914 ** tree referred to by this, the parent select. The child select 4915 ** may contain expression trees of at most 4916 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4917 ** more conservative than necessary, but much easier than enforcing 4918 ** an exact limit. 4919 */ 4920 pParse->nHeight += sqlite3SelectExprHeight(p); 4921 4922 /* Make copies of constant WHERE-clause terms in the outer query down 4923 ** inside the subquery. This can help the subquery to run more efficiently. 4924 */ 4925 if( (pItem->jointype & JT_OUTER)==0 4926 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4927 ){ 4928 #if SELECTTRACE_ENABLED 4929 if( sqlite3SelectTrace & 0x100 ){ 4930 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4931 sqlite3TreeViewSelect(0, p, 0); 4932 } 4933 #endif 4934 } 4935 4936 /* Generate code to implement the subquery 4937 */ 4938 if( pTabList->nSrc==1 4939 && (p->selFlags & SF_All)==0 4940 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4941 ){ 4942 /* Implement a co-routine that will return a single row of the result 4943 ** set on each invocation. 4944 */ 4945 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4946 pItem->regReturn = ++pParse->nMem; 4947 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4948 VdbeComment((v, "%s", pItem->pTab->zName)); 4949 pItem->addrFillSub = addrTop; 4950 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4951 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4952 sqlite3Select(pParse, pSub, &dest); 4953 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4954 pItem->viaCoroutine = 1; 4955 pItem->regResult = dest.iSdst; 4956 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4957 sqlite3VdbeJumpHere(v, addrTop-1); 4958 sqlite3ClearTempRegCache(pParse); 4959 }else{ 4960 /* Generate a subroutine that will fill an ephemeral table with 4961 ** the content of this subquery. pItem->addrFillSub will point 4962 ** to the address of the generated subroutine. pItem->regReturn 4963 ** is a register allocated to hold the subroutine return address 4964 */ 4965 int topAddr; 4966 int onceAddr = 0; 4967 int retAddr; 4968 assert( pItem->addrFillSub==0 ); 4969 pItem->regReturn = ++pParse->nMem; 4970 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4971 pItem->addrFillSub = topAddr+1; 4972 if( pItem->isCorrelated==0 ){ 4973 /* If the subquery is not correlated and if we are not inside of 4974 ** a trigger, then we only need to compute the value of the subquery 4975 ** once. */ 4976 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4977 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4978 }else{ 4979 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4980 } 4981 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4982 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4983 sqlite3Select(pParse, pSub, &dest); 4984 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4985 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4986 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4987 VdbeComment((v, "end %s", pItem->pTab->zName)); 4988 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4989 sqlite3ClearTempRegCache(pParse); 4990 } 4991 if( db->mallocFailed ) goto select_end; 4992 pParse->nHeight -= sqlite3SelectExprHeight(p); 4993 } 4994 #endif 4995 4996 /* Various elements of the SELECT copied into local variables for 4997 ** convenience */ 4998 pEList = p->pEList; 4999 pWhere = p->pWhere; 5000 pGroupBy = p->pGroupBy; 5001 pHaving = p->pHaving; 5002 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5003 5004 #if SELECTTRACE_ENABLED 5005 if( sqlite3SelectTrace & 0x400 ){ 5006 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5007 sqlite3TreeViewSelect(0, p, 0); 5008 } 5009 #endif 5010 5011 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5012 ** if the select-list is the same as the ORDER BY list, then this query 5013 ** can be rewritten as a GROUP BY. In other words, this: 5014 ** 5015 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5016 ** 5017 ** is transformed to: 5018 ** 5019 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5020 ** 5021 ** The second form is preferred as a single index (or temp-table) may be 5022 ** used for both the ORDER BY and DISTINCT processing. As originally 5023 ** written the query must use a temp-table for at least one of the ORDER 5024 ** BY and DISTINCT, and an index or separate temp-table for the other. 5025 */ 5026 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5027 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5028 ){ 5029 p->selFlags &= ~SF_Distinct; 5030 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5031 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5032 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5033 ** original setting of the SF_Distinct flag, not the current setting */ 5034 assert( sDistinct.isTnct ); 5035 } 5036 5037 /* If there is an ORDER BY clause, then create an ephemeral index to 5038 ** do the sorting. But this sorting ephemeral index might end up 5039 ** being unused if the data can be extracted in pre-sorted order. 5040 ** If that is the case, then the OP_OpenEphemeral instruction will be 5041 ** changed to an OP_Noop once we figure out that the sorting index is 5042 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5043 ** that change. 5044 */ 5045 if( sSort.pOrderBy ){ 5046 KeyInfo *pKeyInfo; 5047 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5048 sSort.iECursor = pParse->nTab++; 5049 sSort.addrSortIndex = 5050 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5051 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5052 (char*)pKeyInfo, P4_KEYINFO 5053 ); 5054 }else{ 5055 sSort.addrSortIndex = -1; 5056 } 5057 5058 /* If the output is destined for a temporary table, open that table. 5059 */ 5060 if( pDest->eDest==SRT_EphemTab ){ 5061 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5062 } 5063 5064 /* Set the limiter. 5065 */ 5066 iEnd = sqlite3VdbeMakeLabel(v); 5067 p->nSelectRow = LARGEST_INT64; 5068 computeLimitRegisters(pParse, p, iEnd); 5069 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5070 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 5071 sSort.sortFlags |= SORTFLAG_UseSorter; 5072 } 5073 5074 /* Open an ephemeral index to use for the distinct set. 5075 */ 5076 if( p->selFlags & SF_Distinct ){ 5077 sDistinct.tabTnct = pParse->nTab++; 5078 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5079 sDistinct.tabTnct, 0, 0, 5080 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5081 P4_KEYINFO); 5082 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5083 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5084 }else{ 5085 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5086 } 5087 5088 if( !isAgg && pGroupBy==0 ){ 5089 /* No aggregate functions and no GROUP BY clause */ 5090 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5091 5092 /* Begin the database scan. */ 5093 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5094 p->pEList, wctrlFlags, 0); 5095 if( pWInfo==0 ) goto select_end; 5096 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5097 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5098 } 5099 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5100 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5101 } 5102 if( sSort.pOrderBy ){ 5103 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5104 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5105 sSort.pOrderBy = 0; 5106 } 5107 } 5108 5109 /* If sorting index that was created by a prior OP_OpenEphemeral 5110 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5111 ** into an OP_Noop. 5112 */ 5113 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5114 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5115 } 5116 5117 /* Use the standard inner loop. */ 5118 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5119 sqlite3WhereContinueLabel(pWInfo), 5120 sqlite3WhereBreakLabel(pWInfo)); 5121 5122 /* End the database scan loop. 5123 */ 5124 sqlite3WhereEnd(pWInfo); 5125 }else{ 5126 /* This case when there exist aggregate functions or a GROUP BY clause 5127 ** or both */ 5128 NameContext sNC; /* Name context for processing aggregate information */ 5129 int iAMem; /* First Mem address for storing current GROUP BY */ 5130 int iBMem; /* First Mem address for previous GROUP BY */ 5131 int iUseFlag; /* Mem address holding flag indicating that at least 5132 ** one row of the input to the aggregator has been 5133 ** processed */ 5134 int iAbortFlag; /* Mem address which causes query abort if positive */ 5135 int groupBySort; /* Rows come from source in GROUP BY order */ 5136 int addrEnd; /* End of processing for this SELECT */ 5137 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5138 int sortOut = 0; /* Output register from the sorter */ 5139 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5140 5141 /* Remove any and all aliases between the result set and the 5142 ** GROUP BY clause. 5143 */ 5144 if( pGroupBy ){ 5145 int k; /* Loop counter */ 5146 struct ExprList_item *pItem; /* For looping over expression in a list */ 5147 5148 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5149 pItem->u.x.iAlias = 0; 5150 } 5151 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5152 pItem->u.x.iAlias = 0; 5153 } 5154 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5155 }else{ 5156 p->nSelectRow = 1; 5157 } 5158 5159 /* If there is both a GROUP BY and an ORDER BY clause and they are 5160 ** identical, then it may be possible to disable the ORDER BY clause 5161 ** on the grounds that the GROUP BY will cause elements to come out 5162 ** in the correct order. It also may not - the GROUP BY might use a 5163 ** database index that causes rows to be grouped together as required 5164 ** but not actually sorted. Either way, record the fact that the 5165 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5166 ** variable. */ 5167 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5168 orderByGrp = 1; 5169 } 5170 5171 /* Create a label to jump to when we want to abort the query */ 5172 addrEnd = sqlite3VdbeMakeLabel(v); 5173 5174 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5175 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5176 ** SELECT statement. 5177 */ 5178 memset(&sNC, 0, sizeof(sNC)); 5179 sNC.pParse = pParse; 5180 sNC.pSrcList = pTabList; 5181 sNC.pAggInfo = &sAggInfo; 5182 sAggInfo.mnReg = pParse->nMem+1; 5183 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5184 sAggInfo.pGroupBy = pGroupBy; 5185 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5186 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5187 if( pHaving ){ 5188 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5189 } 5190 sAggInfo.nAccumulator = sAggInfo.nColumn; 5191 for(i=0; i<sAggInfo.nFunc; i++){ 5192 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5193 sNC.ncFlags |= NC_InAggFunc; 5194 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5195 sNC.ncFlags &= ~NC_InAggFunc; 5196 } 5197 sAggInfo.mxReg = pParse->nMem; 5198 if( db->mallocFailed ) goto select_end; 5199 5200 /* Processing for aggregates with GROUP BY is very different and 5201 ** much more complex than aggregates without a GROUP BY. 5202 */ 5203 if( pGroupBy ){ 5204 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5205 int j1; /* A-vs-B comparision jump */ 5206 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5207 int regOutputRow; /* Return address register for output subroutine */ 5208 int addrSetAbort; /* Set the abort flag and return */ 5209 int addrTopOfLoop; /* Top of the input loop */ 5210 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5211 int addrReset; /* Subroutine for resetting the accumulator */ 5212 int regReset; /* Return address register for reset subroutine */ 5213 5214 /* If there is a GROUP BY clause we might need a sorting index to 5215 ** implement it. Allocate that sorting index now. If it turns out 5216 ** that we do not need it after all, the OP_SorterOpen instruction 5217 ** will be converted into a Noop. 5218 */ 5219 sAggInfo.sortingIdx = pParse->nTab++; 5220 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5221 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5222 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5223 0, (char*)pKeyInfo, P4_KEYINFO); 5224 5225 /* Initialize memory locations used by GROUP BY aggregate processing 5226 */ 5227 iUseFlag = ++pParse->nMem; 5228 iAbortFlag = ++pParse->nMem; 5229 regOutputRow = ++pParse->nMem; 5230 addrOutputRow = sqlite3VdbeMakeLabel(v); 5231 regReset = ++pParse->nMem; 5232 addrReset = sqlite3VdbeMakeLabel(v); 5233 iAMem = pParse->nMem + 1; 5234 pParse->nMem += pGroupBy->nExpr; 5235 iBMem = pParse->nMem + 1; 5236 pParse->nMem += pGroupBy->nExpr; 5237 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5238 VdbeComment((v, "clear abort flag")); 5239 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5240 VdbeComment((v, "indicate accumulator empty")); 5241 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5242 5243 /* Begin a loop that will extract all source rows in GROUP BY order. 5244 ** This might involve two separate loops with an OP_Sort in between, or 5245 ** it might be a single loop that uses an index to extract information 5246 ** in the right order to begin with. 5247 */ 5248 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5249 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5250 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5251 ); 5252 if( pWInfo==0 ) goto select_end; 5253 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5254 /* The optimizer is able to deliver rows in group by order so 5255 ** we do not have to sort. The OP_OpenEphemeral table will be 5256 ** cancelled later because we still need to use the pKeyInfo 5257 */ 5258 groupBySort = 0; 5259 }else{ 5260 /* Rows are coming out in undetermined order. We have to push 5261 ** each row into a sorting index, terminate the first loop, 5262 ** then loop over the sorting index in order to get the output 5263 ** in sorted order 5264 */ 5265 int regBase; 5266 int regRecord; 5267 int nCol; 5268 int nGroupBy; 5269 5270 explainTempTable(pParse, 5271 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5272 "DISTINCT" : "GROUP BY"); 5273 5274 groupBySort = 1; 5275 nGroupBy = pGroupBy->nExpr; 5276 nCol = nGroupBy; 5277 j = nGroupBy; 5278 for(i=0; i<sAggInfo.nColumn; i++){ 5279 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5280 nCol++; 5281 j++; 5282 } 5283 } 5284 regBase = sqlite3GetTempRange(pParse, nCol); 5285 sqlite3ExprCacheClear(pParse); 5286 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5287 j = nGroupBy; 5288 for(i=0; i<sAggInfo.nColumn; i++){ 5289 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5290 if( pCol->iSorterColumn>=j ){ 5291 int r1 = j + regBase; 5292 int r2; 5293 5294 r2 = sqlite3ExprCodeGetColumn(pParse, 5295 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5296 if( r1!=r2 ){ 5297 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5298 } 5299 j++; 5300 } 5301 } 5302 regRecord = sqlite3GetTempReg(pParse); 5303 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5304 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5305 sqlite3ReleaseTempReg(pParse, regRecord); 5306 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5307 sqlite3WhereEnd(pWInfo); 5308 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5309 sortOut = sqlite3GetTempReg(pParse); 5310 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5311 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5312 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5313 sAggInfo.useSortingIdx = 1; 5314 sqlite3ExprCacheClear(pParse); 5315 5316 } 5317 5318 /* If the index or temporary table used by the GROUP BY sort 5319 ** will naturally deliver rows in the order required by the ORDER BY 5320 ** clause, cancel the ephemeral table open coded earlier. 5321 ** 5322 ** This is an optimization - the correct answer should result regardless. 5323 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5324 ** disable this optimization for testing purposes. */ 5325 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5326 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5327 ){ 5328 sSort.pOrderBy = 0; 5329 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5330 } 5331 5332 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5333 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5334 ** Then compare the current GROUP BY terms against the GROUP BY terms 5335 ** from the previous row currently stored in a0, a1, a2... 5336 */ 5337 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5338 sqlite3ExprCacheClear(pParse); 5339 if( groupBySort ){ 5340 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5341 sortOut, sortPTab); 5342 } 5343 for(j=0; j<pGroupBy->nExpr; j++){ 5344 if( groupBySort ){ 5345 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5346 }else{ 5347 sAggInfo.directMode = 1; 5348 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5349 } 5350 } 5351 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5352 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5353 j1 = sqlite3VdbeCurrentAddr(v); 5354 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5355 5356 /* Generate code that runs whenever the GROUP BY changes. 5357 ** Changes in the GROUP BY are detected by the previous code 5358 ** block. If there were no changes, this block is skipped. 5359 ** 5360 ** This code copies current group by terms in b0,b1,b2,... 5361 ** over to a0,a1,a2. It then calls the output subroutine 5362 ** and resets the aggregate accumulator registers in preparation 5363 ** for the next GROUP BY batch. 5364 */ 5365 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5366 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5367 VdbeComment((v, "output one row")); 5368 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5369 VdbeComment((v, "check abort flag")); 5370 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5371 VdbeComment((v, "reset accumulator")); 5372 5373 /* Update the aggregate accumulators based on the content of 5374 ** the current row 5375 */ 5376 sqlite3VdbeJumpHere(v, j1); 5377 updateAccumulator(pParse, &sAggInfo); 5378 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5379 VdbeComment((v, "indicate data in accumulator")); 5380 5381 /* End of the loop 5382 */ 5383 if( groupBySort ){ 5384 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5385 VdbeCoverage(v); 5386 }else{ 5387 sqlite3WhereEnd(pWInfo); 5388 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5389 } 5390 5391 /* Output the final row of result 5392 */ 5393 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5394 VdbeComment((v, "output final row")); 5395 5396 /* Jump over the subroutines 5397 */ 5398 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5399 5400 /* Generate a subroutine that outputs a single row of the result 5401 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5402 ** is less than or equal to zero, the subroutine is a no-op. If 5403 ** the processing calls for the query to abort, this subroutine 5404 ** increments the iAbortFlag memory location before returning in 5405 ** order to signal the caller to abort. 5406 */ 5407 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5408 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5409 VdbeComment((v, "set abort flag")); 5410 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5411 sqlite3VdbeResolveLabel(v, addrOutputRow); 5412 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5413 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5414 VdbeCoverage(v); 5415 VdbeComment((v, "Groupby result generator entry point")); 5416 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5417 finalizeAggFunctions(pParse, &sAggInfo); 5418 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5419 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5420 &sDistinct, pDest, 5421 addrOutputRow+1, addrSetAbort); 5422 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5423 VdbeComment((v, "end groupby result generator")); 5424 5425 /* Generate a subroutine that will reset the group-by accumulator 5426 */ 5427 sqlite3VdbeResolveLabel(v, addrReset); 5428 resetAccumulator(pParse, &sAggInfo); 5429 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5430 5431 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5432 else { 5433 ExprList *pDel = 0; 5434 #ifndef SQLITE_OMIT_BTREECOUNT 5435 Table *pTab; 5436 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5437 /* If isSimpleCount() returns a pointer to a Table structure, then 5438 ** the SQL statement is of the form: 5439 ** 5440 ** SELECT count(*) FROM <tbl> 5441 ** 5442 ** where the Table structure returned represents table <tbl>. 5443 ** 5444 ** This statement is so common that it is optimized specially. The 5445 ** OP_Count instruction is executed either on the intkey table that 5446 ** contains the data for table <tbl> or on one of its indexes. It 5447 ** is better to execute the op on an index, as indexes are almost 5448 ** always spread across less pages than their corresponding tables. 5449 */ 5450 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5451 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5452 Index *pIdx; /* Iterator variable */ 5453 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5454 Index *pBest = 0; /* Best index found so far */ 5455 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5456 5457 sqlite3CodeVerifySchema(pParse, iDb); 5458 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5459 5460 /* Search for the index that has the lowest scan cost. 5461 ** 5462 ** (2011-04-15) Do not do a full scan of an unordered index. 5463 ** 5464 ** (2013-10-03) Do not count the entries in a partial index. 5465 ** 5466 ** In practice the KeyInfo structure will not be used. It is only 5467 ** passed to keep OP_OpenRead happy. 5468 */ 5469 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5470 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5471 if( pIdx->bUnordered==0 5472 && pIdx->szIdxRow<pTab->szTabRow 5473 && pIdx->pPartIdxWhere==0 5474 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5475 ){ 5476 pBest = pIdx; 5477 } 5478 } 5479 if( pBest ){ 5480 iRoot = pBest->tnum; 5481 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5482 } 5483 5484 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5485 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5486 if( pKeyInfo ){ 5487 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5488 } 5489 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5490 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5491 explainSimpleCount(pParse, pTab, pBest); 5492 }else 5493 #endif /* SQLITE_OMIT_BTREECOUNT */ 5494 { 5495 /* Check if the query is of one of the following forms: 5496 ** 5497 ** SELECT min(x) FROM ... 5498 ** SELECT max(x) FROM ... 5499 ** 5500 ** If it is, then ask the code in where.c to attempt to sort results 5501 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5502 ** If where.c is able to produce results sorted in this order, then 5503 ** add vdbe code to break out of the processing loop after the 5504 ** first iteration (since the first iteration of the loop is 5505 ** guaranteed to operate on the row with the minimum or maximum 5506 ** value of x, the only row required). 5507 ** 5508 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5509 ** modify behavior as follows: 5510 ** 5511 ** + If the query is a "SELECT min(x)", then the loop coded by 5512 ** where.c should not iterate over any values with a NULL value 5513 ** for x. 5514 ** 5515 ** + The optimizer code in where.c (the thing that decides which 5516 ** index or indices to use) should place a different priority on 5517 ** satisfying the 'ORDER BY' clause than it does in other cases. 5518 ** Refer to code and comments in where.c for details. 5519 */ 5520 ExprList *pMinMax = 0; 5521 u8 flag = WHERE_ORDERBY_NORMAL; 5522 5523 assert( p->pGroupBy==0 ); 5524 assert( flag==0 ); 5525 if( p->pHaving==0 ){ 5526 flag = minMaxQuery(&sAggInfo, &pMinMax); 5527 } 5528 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5529 5530 if( flag ){ 5531 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5532 pDel = pMinMax; 5533 if( pMinMax && !db->mallocFailed ){ 5534 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5535 pMinMax->a[0].pExpr->op = TK_COLUMN; 5536 } 5537 } 5538 5539 /* This case runs if the aggregate has no GROUP BY clause. The 5540 ** processing is much simpler since there is only a single row 5541 ** of output. 5542 */ 5543 resetAccumulator(pParse, &sAggInfo); 5544 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5545 if( pWInfo==0 ){ 5546 sqlite3ExprListDelete(db, pDel); 5547 goto select_end; 5548 } 5549 updateAccumulator(pParse, &sAggInfo); 5550 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5551 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5552 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5553 VdbeComment((v, "%s() by index", 5554 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5555 } 5556 sqlite3WhereEnd(pWInfo); 5557 finalizeAggFunctions(pParse, &sAggInfo); 5558 } 5559 5560 sSort.pOrderBy = 0; 5561 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5562 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5563 pDest, addrEnd, addrEnd); 5564 sqlite3ExprListDelete(db, pDel); 5565 } 5566 sqlite3VdbeResolveLabel(v, addrEnd); 5567 5568 } /* endif aggregate query */ 5569 5570 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5571 explainTempTable(pParse, "DISTINCT"); 5572 } 5573 5574 /* If there is an ORDER BY clause, then we need to sort the results 5575 ** and send them to the callback one by one. 5576 */ 5577 if( sSort.pOrderBy ){ 5578 explainTempTable(pParse, 5579 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5580 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5581 } 5582 5583 /* Jump here to skip this query 5584 */ 5585 sqlite3VdbeResolveLabel(v, iEnd); 5586 5587 /* The SELECT has been coded. If there is an error in the Parse structure, 5588 ** set the return code to 1. Otherwise 0. */ 5589 rc = (pParse->nErr>0); 5590 5591 /* Control jumps to here if an error is encountered above, or upon 5592 ** successful coding of the SELECT. 5593 */ 5594 select_end: 5595 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5596 5597 /* Identify column names if results of the SELECT are to be output. 5598 */ 5599 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5600 generateColumnNames(pParse, pTabList, pEList); 5601 } 5602 5603 sqlite3DbFree(db, sAggInfo.aCol); 5604 sqlite3DbFree(db, sAggInfo.aFunc); 5605 #if SELECTTRACE_ENABLED 5606 SELECTTRACE(1,pParse,p,("end processing\n")); 5607 pParse->nSelectIndent--; 5608 #endif 5609 return rc; 5610 } 5611